

Meier02275 ffi rs V2 - 03/22/2012

ffirs.indd iiffirs.indd ii 4/11/2012 10:37:19 AM4/11/2012 10:37:19 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Meier02275 ffi rs V2 - 03/22/2012

PROFESSIONAL

ANDROID™ 4 APPLICATION DEVELOPMENT

INTRODUCTION . xxxvii

CHAPTER 1 Hello, Android . 1

CHAPTER 2 Getting Started .19

CHAPTER 3 Creating Applications and Activities . 53

CHAPTER 4 Building User Interfaces . 95

CHAPTER 5 Intents and Broadcast Receivers . 165

CHAPTER 6 Using Internet Resources . 201

CHAPTER 7 Files, Saving State, and Preferences . 221

CHAPTER 8 Databases and Content Providers . 251

CHAPTER 9 Working in the Background . 331

CHAPTER 10 Expanding the User Experience . 359

CHAPTER 11 Advanced User Experience . 425

CHAPTER 12 Hardware Sensors . 481

CHAPTER 13 Maps, Geocoding, and Location-Based Services 513

CHAPTER 14 Invading the Home Screen . 565

CHAPTER 15 Audio, Video, and Using the Camera . 621

CHAPTER 16 Bluetooth, NFC, Networks, and Wi-Fi. 665

CHAPTER 17 Telephony and SMS . 701

CHAPTER 18 Advanced Android Development . 739

CHAPTER 19 Monetizing, Promoting, and Distributing Applications771

INDEX . 787

ffirs.indd iffirs.indd i 4/11/2012 10:37:18 AM4/11/2012 10:37:18 AM

Meier02275 ffi rs V2 - 03/22/2012

ffirs.indd iiffirs.indd ii 4/11/2012 10:37:19 AM4/11/2012 10:37:19 AM

12 Meier02275 ffi rs V2 - 03/22/2012

PROFESSIONAL

Android™ 4 Application Development

ffirs.indd iiiffirs.indd iii 4/11/2012 10:37:19 AM4/11/2012 10:37:19 AM

Meier02275 ffi rs V2 - 03/22/2012

ffirs.indd ivffirs.indd iv 4/11/2012 10:37:19 AM4/11/2012 10:37:19 AM

Meier02275 ffi rs V2 - 03/22/2012

PROFESSIONAL

Android™ 4 Application Development

Reto Meier

ffirs.indd vffirs.indd v 4/11/2012 10:37:19 AM4/11/2012 10:37:19 AM

Book Title <Chapter No> V2 - MM/DD/2010

Professional Android™ 4 Application Development

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2012 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-10227-5
ISBN: 978-1-118-22385-7 (ebk)
ISBN: 978-1-118-23722-9 (ebk)
ISBN: 978-1-118-26215-3 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, elec-
tronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the
1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through pay-
ment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978)
750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department,
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://
www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect
to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including without
limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or promotional
materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the
understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional
assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author
shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses the information the
organization or Web site may provide or recommendations it may make. Further, readers should be aware that Internet Web
sites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the United
States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard
print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD
or DVD that is not included in the version you purchased, you may download this material at http://booksupport
.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2011945019

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress
are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other
countries, and may not be used without written permission. Android is a trademark of Google, Inc. All other trademarks
are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned
in this book.

ffirs.indd viffirs.indd vi 4/11/2012 10:37:21 AM4/11/2012 10:37:21 AM

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/permissions
http://booksupport
http://www.wiley.com

10 Meier02275 ffi rs V2 - 03/22/2012

To Kris

ffirs.indd viiffirs.indd vii 4/11/2012 10:37:21 AM4/11/2012 10:37:21 AM

Meier02275 ffi rs V2 - 03/22/2012

ffirs.indd viiiffirs.indd viii 4/11/2012 10:37:21 AM4/11/2012 10:37:21 AM

12 Meier02275 ffi rs V2 - 03/22/2012

ABOUT THE AUTHOR

RETO MEIER grew up in Perth, Western Australia, and then lived in London for 6 years before
moving to the San Francisco Bay Area in 2011.

Reto currently works as a Developer Advocate on the Android team at Google, helping Android
developers create the best applications possible. Reto is an experienced software developer with
more than 10 years of experience in GUI application development. Before coming to Google, he
worked in various industries, including offshore oil and gas and fi nance.

Always interested in emerging technologies, Reto has been involved in Android since the initial
release in 2007.

You can fi nd out entirely too much about Reto’s interests and hobbies on his web site, The
Radioactive Yak (http://blog.radioactiveyak.com), or on Google+ (http://profiles
.google.com/reto.meier) or Twitter (www.twitter.com/retomeier), where he shares more than
he probably should.

ffirs.indd ixffirs.indd ix 4/11/2012 10:37:21 AM4/11/2012 10:37:21 AM

http://blog.radioactiveyak.com
http://profiles.google.com/reto.meier
http://profiles.google.com/reto.meier
http://www.twitter.com/retomeier

Meier02275 ffi rs V2 - 03/22/2012

ffirs.indd xffirs.indd x 4/11/2012 10:37:22 AM4/11/2012 10:37:22 AM

12 Meier02275 ffi rs V2 - 03/22/2012

ABOUT THE TECHNICAL EDITOR

DAN ULERY is a software engineer with experience in .NET, Java, and PHP development, as well as
in deployment engineering. He graduated from the University of Idaho with a Bachelor of Science
degree in computer science and a minor in mathematics.

ffirs.indd xiffirs.indd xi 4/11/2012 10:37:22 AM4/11/2012 10:37:22 AM

Meier02275 ffi rs V2 - 03/22/2012

ffirs.indd xiiffirs.indd xii 4/11/2012 10:37:22 AM4/11/2012 10:37:22 AM

12 Book Title <Chapter No> V2 - MM/DD/2010

CREDITS

EXECUTIVE EDITOR

Robert Elliott

PROJECT EDITOR

John Sleeva

TECHNICAL EDITOR

Dan Ulery

PRODUCTION EDITOR

Kathleen Wisor

COPY EDITOR

San Dee Phillips

EDITORIAL MANAGER

Mary Beth Wakefi eld

FREELANCER EDITORIAL MANAGER

Rosemarie Graham

ASSOCIATE DIRECTOR OF MARKETING

David Mayhew

MARKETING MANAGER

Ashley Zurcher

BUSINESS MANAGER

Amy Knies

PRODUCTION MANAGER

Tim Tate

VICE PRESIDENT AND EXECUTIVE GROUP

PUBLISHER

Richard Swadley

VICE PRESIDENT AND EXECUTIVE PUBLISHER

Neil Edde

ASSOCIATE PUBLISHER

Jim Minatel

PROJECT COORDINATOR, COVER

Katie Crocker

PROOFREADER

Jen Larsen, Word One New York

INDEXER

Johnna VanHoose Dinse

COVER DESIGNER

Ryan Sneed

COVER IMAGE

© Linda Bucklin / iStockPhoto

ffirs.indd xiiiffirs.indd xiii 4/11/2012 10:37:22 AM4/11/2012 10:37:22 AM

Meier02275 ffi rs V2 - 03/22/2012

ffirs.indd xivffirs.indd xiv 4/11/2012 10:37:22 AM4/11/2012 10:37:22 AM

12 Meier02275 ffi rs V2 - 03/22/2012

ACKNOWLEDGMENTS

FIRST, I’D LIKE TO THANK KRISTY, whose love, patience, and understanding are pushed to new limits
every time I forget what’s involved in writing a book and agree to do another one. Your support
makes everything I do possible.

A big thank you to my friends and colleagues at Google, particularly the Android engineers and my
colleagues in developer relations. The pace at which Android grows makes life diffi cult for those of
us who choose to write books, but the opportunities it creates for developers makes the stress and
rewrites easy to bear.

I also thank Dan Ulery for his sharp eye and valuable insights; Robert Elliot and John Sleeva for
their patience in waiting for me to get this book fi nished; San Dee Phillips; and the whole team at
Wrox for helping to get it done.

A special shout-out goes out to the entire Android developer community. Your passion, hard work,
and excellent applications have helped make Android the huge success that it is. Thank you.

ffirs.indd xvffirs.indd xv 4/11/2012 10:37:22 AM4/11/2012 10:37:22 AM

Meier02275 ffi rs V2 - 03/22/2012

ffirs.indd xviffirs.indd xvi 4/11/2012 10:37:22 AM4/11/2012 10:37:22 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Meier02275 ftoc V2 - 03/22/2012

CONTENTS

INTRODUCTION xxxvii

CHAPTER 1: HELLO, ANDROID 1

A Little Background 2

The Not-So-Distant Past 2

Living in the Future 3

What Android Isn’t 3

Android: An Open Platform for Mobile Development 4

Native Android Applications 5

Android SDK Features 6

Access to Hardware, Including Camera, GPS, and Sensors 6

Data Transfers Using Wi-Fi, Bluetooth, and NFC 7

Maps, Geocoding, and Location-Based Services 7

Background Services 7

SQLite Database for Data Storage and Retrieval 8

Shared Data and Inter-Application Communication 8

Using Widgets and Live Wallpaper to Enhance the Home Screen 9

Extensive Media Support and 2D/3D Graphics 9

Cloud to Device Messaging 9

Optimized Memory and Process Management 10

Introducing the Open Handset Alliance 10

What Does Android Run On? 10

Why Develop for Mobile? 11

Why Develop for Android? 11

Factors Driving Android’s Adoption 12

What Android Has That Other Platforms Don’t Have 12

The Changing Mobile Development Landscape 13

Introducing the Development Framework 14

What Comes in the Box 14

Understanding the Android Software Stack 15

The Dalvik Virtual Machine 16

Android Application Architecture 17

Android Libraries 18

ftoc.indd xviiftoc.indd xvii 4/11/2012 10:34:48 AM4/11/2012 10:34:48 AM

Meier02275 ftoc V2 - 03/22/2012

xviii

CONTENTS

CHAPTER 2: GETTING STARTED 19

Developing for Android 20

What You Need to Begin 20

Downloading and Installing the Android SDK 21

Downloading and Installing Updates to the SDK 23

Developing with Eclipse 23

Using the Android Developer Tools Plug-In for Eclipse 24

Using the Support Package 27

Creating Your First Android Application 28

Creating a New Android Project 28

Creating an Android Virtual Device 30

Creating Launch Confi gurations 30

Running and Debugging Your Android Application 33

Understanding Hello World 33

Types of Android Applications 36

Foreground Applications 36

Background Applications 37

Intermittent Applications 37

Widgets and Live Wallpapers 37

Developing for Mobile and Embedded Devices 38

Hardware-Imposed Design Considerations 38

Be Effi cient 38

Expect Limited Capacity 39

Design for Diff erent Screens 39

Expect Low Speeds, High Latency 40

At What Cost? 41

Considering the User’s Environment 42

Developing for Android 43

Being Fast and Effi cient 43

Being Responsive 44

Ensuring Data Freshness 45

Developing Secure Applications 45

Ensuring a Seamless User Experience 46

Providing Accessibility 47

Android Development Tools 47

The Android Virtual Device Manager 48

Android SDK Manager 49

The Android Emulator 50

ftoc.indd xviiiftoc.indd xviii 4/11/2012 10:34:49 AM4/11/2012 10:34:49 AM

Meier02275 ftoc V2 - 03/22/2012

xix

CONTENTS

The Dalvik Debug Monitor Service 50

The Android Debug Bridge 51

The Hierarchy Viewer and Lint Tool 51

Monkey and Monkey Runner 52

CHAPTER 3: CREATING APPLICATIONS AND ACTIVITIES 53

What Makes an Android Application? 54

Introducing the Application Manifest File 55

A Closer Look at the Application Manifest 56

Using the Manifest Editor 63

Externalizing Resources 64

Creating Resources 65

Simple Values 65

Styles and Themes 68

Drawables 68

Layouts 69

Animations 70

Menus 73

Using Resources 74

Using Resources in Code 74

Referencing Resources Within Resources 75

Using System Resources 76

Referring to Styles in the Current Theme 76

Creating Resources for Diff erent Languages and Hardware 77

Runtime Confi guration Changes 79

The Android Application Lifecycle 81

Understanding an Application’s Priority and Its Process’ States 82

Introducing the Android Application Class 83

Extending and Using the Application Class 83

Overriding the Application Lifecycle Events 84

A Closer Look at Android Activities 86

Creating Activities 86

The Activity Lifecycle 87

Activity Stacks 88

Activity States 88

Monitoring State Changes 89

Understanding Activity Lifetimes 91

Android Activity Classes 93

ftoc.indd xixftoc.indd xix 4/11/2012 10:34:49 AM4/11/2012 10:34:49 AM

Meier02275 ftoc V2 - 03/22/2012

xx

CONTENTS

CHAPTER 4: BUILDING USER INTERFACES 95

Fundamental Android UI Design 96

Android User Interface Fundamentals 97

Assigning User Interfaces to Activities 97

Introducing Layouts 98

Defi ning Layouts 99

Using Layouts to Create Device Independent User Interfaces 100

Using a Linear Layout 100

Using a Relative Layout 101

Using a Grid Layout 102

Optimizing Layouts 103

Redundant Layout Containers Are Redundant 103

Avoid Using Excessive Views 105

Using Lint to Analyze Your Layouts 106

To-Do List Example 107

Introducing Fragments 114

Creating New Fragments 115

The Fragment Lifecycle 116

Fragment-Specifi c Lifecycle Events 119

Fragment States 119

Introducing the Fragment Manager 120

Adding Fragments to Activities 120

Using Fragment Transactions 121

Adding, Removing, and Replacing Fragments 122

Using the Fragment Manager to Find Fragments 122

Populating Dynamic Activity Layouts with Fragments 123

Fragments and the Back Stack 124

Animating Fragment Transactions 125

Interfacing Between Fragments and Activities 126

Fragments Without User Interfaces 126

Android Fragment Classes 128

Using Fragments for Your To-Do List 128

The Android Widget Toolbox 132

Creating New Views 133

Modifying Existing Views 133

Customizing Your To-Do List 135

Creating Compound Controls 138

Creating Simple Compound Controls Using Layouts 141

Creating Custom Views 141

Creating a New Visual Interface 142

Handling User Interaction Events 147

ftoc.indd xxftoc.indd xx 4/11/2012 10:34:49 AM4/11/2012 10:34:49 AM

Meier02275 ftoc V2 - 03/22/2012

xxi

CONTENTS

Supporting Accessibility in Custom Views 148

Creating a Compass View Example 149

Using Custom Controls 155

Introducing Adapters 156

Introducing Some Native Adapters 156

Customizing the Array Adapter 156

Using Adapters to Bind Data to a View 158

Customizing the To-Do List Array Adapter 158

Using the Simple Cursor Adapter 162

CHAPTER 5: INTENTS AND BROADCAST RECEIVERS 165

Introducing Intents 166

Using Intents to Launch Activities 166

Explicitly Starting New Activities 167

Implicit Intents and Late Runtime Binding 167

Determining If an Intent Will Resolve 168

Returning Results from Activities 169

Native Android Actions 172

Introducing Linkify 174

Native Linkify Link Types 174

Creating Custom Link Strings 175

Using the Match Filter 176

Using the Transform Filter 176

Using Intents to Broadcast Events 177

Broadcasting Events with Intents 177

Listening for Broadcasts with Broadcast Receivers 178

Broadcasting Ordered Intents 180

Broadcasting Sticky Intents 181

Introducing the Local Broadcast Manager 182

Introducing Pending Intents 182

Creating Intent Filters and Broadcast Receivers 183

Using Intent Filters to Service Implicit Intents 183

How Android Resolves Intent Filters 185

Finding and Using Intents Received Within an Activity 186

Passing on Responsibility 187

Selecting a Contact Example 187

Using Intent Filters for Plug-Ins and Extensibility 193

Supplying Anonymous Actions to Applications 193

Discovering New Actions from Third-Party Intent Receivers 194

Incorporating Anonymous Actions as Menu Items 195

Listening for Native Broadcast Intents 196

ftoc.indd xxiftoc.indd xxi 4/11/2012 10:34:49 AM4/11/2012 10:34:49 AM

Meier02275 ftoc V2 - 03/22/2012

xxii

CONTENTS

Monitoring Device State Changes Using Broadcast Intents 197

Listening for Battery Changes 197

Listening for Connectivity Changes 198

Listening for Docking Changes 199

Managing Manifest Receivers at Run Time 199

CHAPTER 6: USING INTERNET RESOURCES 201

Downloading and Parsing Internet Resources 201

Connecting to an Internet Resource 202

Parsing XML Using the XML Pull Parser 203

Creating an Earthquake Viewer 205

Using the Download Manager 210

Downloading Files 211

Customizing Download Manager Notifi cations 213

Specifying a Download Location 213

Cancelling and Removing Downloads 214

Querying the Download Manager 215

Using Internet Services 217

Connecting to Google App Engine 218

Best Practices for Downloading Data Without Draining
the Battery 219

CHAPTER 7: FILES, SAVING STATE, AND PREFERENCES 221

Saving Simple Application Data 222

Creating and Saving Shared Preferences 222

Retrieving Shared Preferences 223

Creating a Settings Activity for the Earthquake Viewer 223

Introducing the Preference Framework and the
Preference Activity 231

Defi ning a Preference Screen Layout in XML 232

Native Preference Controls 234

Using Intents to Import System Preferences into Preference Screens 234

Introducing the Preference Fragment 235

Defi ning the Preference Fragment Hierarchy
Using Preference Headers 235

Introducing the Preference Activity 236

Backward Compatibility and Preference Screens 237

Finding and Using the Shared Preferences Set by Preference Screens 238

Introducing On Shared Preference Change Listeners 238

ftoc.indd xxiiftoc.indd xxii 4/11/2012 10:34:49 AM4/11/2012 10:34:49 AM

Meier02275 ftoc V2 - 03/22/2012

xxiii

CONTENTS

Creating a Standard Preference Activity for the Earthquake Viewer 238

Persisting the Application Instance State 242

Saving Activity State Using Shared Preferences 242

Saving and Restoring Activity Instance State
Using the Lifecycle Handlers 242

Saving and Restoring Fragment Instance State
Using the Lifecycle Handlers 243

Including Static Files as Resources 245

Working with the File System 246

File-Management Tools 246

Using Application-Specifi c Folders to Store Files 246

Creating Private Application Files 247

Using the Application File Cache 248

Storing Publicly Readable Files 248

CHAPTER 8: DATABASES AND CONTENT PROVIDERS 251

Introducing Android Databases 252

SQLite Databases 252

Content Providers 252

Introducing SQLite 253

Content Values and Cursors 253

Working with SQLite Databases 254

Introducing the SQLiteOpenHelper 255

Opening and Creating Databases Without the SQLite Open Helper 257

Android Database Design Considerations 257

Querying a Database 257

Extracting Values from a Cursor 259

Adding, Updating, and Removing Rows 260

Inserting Rows 260

Updating Rows 261

Deleting Rows 261

Creating Content Providers 262

Registering Content Providers 262

Publishing Your Content Provider’s URI Address 263

Creating the Content Provider’s Database 264

Implementing Content Provider Queries 264

Content Provider Transactions 266

Storing Files in a Content Provider 268

A Skeleton Content Provider Implementation 270

ftoc.indd xxiiiftoc.indd xxiii 4/11/2012 10:34:49 AM4/11/2012 10:34:49 AM

Meier02275 ftoc V2 - 03/22/2012

xxiv

CONTENTS

Using Content Providers 274

Introducing the Content Resolver 274

Querying Content Providers 274

Querying for Content Asynchronously Using the Cursor Loader 277

Introducing Loaders 277

Using the Cursor Loader 277

Adding, Deleting, and Updating Content 280

Inserting Content 280

Deleting Content 281

Updating Content 281

Accessing Files Stored in Content Providers 282

Creating a To-Do List Database and Content Provider 283

Adding Search to Your Application 290

Making Your Content Provider Searchable 291

Creating a Search Activity for Your Application 292

Making Your Search Activity the Default Search Provider
for Your Application 293

Performing a Search and Displaying the Results 294

Using the Search View Widget 297

Supporting Search Suggestions from a Content Provider 298

Surfacing Search Results in the Quick Search Box 301

Creating a Searchable Earthquake Content Provider 301

Creating the Content Provider 302

Using the Earthquake Provider 307

Searching the Earthquake Provider 310

Native Android Content Providers 316

Using the Media Store Content Provider 317

Using the Contacts Contract Content Provider 318

Introducing the Contacts Contract Content Provider 318

Reading Contact Details 319

Creating and Picking Contacts Using Intents 323

Modifying and Augmenting Contact Details Directly 324

Using the Calendar Content Provider 325

Querying the Calendar 325

Creating and Editing Calendar Entries Using Intents 327

Modifying Calendar Entries Directly 329

CHAPTER 9: WORKING IN THE BACKGROUND 331

Introducing Services 332

Creating and Controlling Services 332

Creating Services 332

ftoc.indd xxivftoc.indd xxiv 4/11/2012 10:34:49 AM4/11/2012 10:34:49 AM

Meier02275 ftoc V2 - 03/22/2012

xxv

CONTENTS

Executing a Service and Controlling Its Restart Behavior 333

Starting and Stopping Services 335

Self-Terminating Services 336

Binding Services to Activities 336

An Earthquake-Monitoring Service Example 338

Creating Foreground Services 343

Using Background Threads 345

Using AsyncTask to Run Asynchronous Tasks 345

Creating New Asynchronous Tasks 346

Running Asynchronous Tasks 347

Introducing the Intent Service 348

Introducing Loaders 349

Manual Thread Creation and GUI Thread Synchronization 349

Using Alarms 351

Creating, Setting, and Canceling Alarms 352

Setting Repeating Alarms 353

Using Repeating Alarms to Schedule Network Refreshes 354

Using the Intent Service to Simplify the Earthquake
Update Service 357

CHAPTER 10: EXPANDING THE USER EXPERIENCE 359

Introducing the Action Bar 360

Customizing the Action Bar 362

Modifying the Icon and Title Text 362

Customizing the Background 363

Enabling the Split Action Bar Mode 364

Customizing the Action Bar to Control Application Navigation Behavior 364

Confi guring Action Bar Icon Navigation Behavior 365

Using Navigation Tabs 366

Using Drop-Down Lists for Navigation 368

Using Custom Navigation Views 370

Introducing Action Bar Actions 370

Adding an Action Bar to the Earthquake Monitor 370

Creating and Using Menus and Action Bar Action Items 377

Introducing the Android Menu System 377

Creating a Menu 379

Specifying Action Bar Actions 380

Menu Item Options 381

Adding Action Views and Action Providers 382

Adding Menu Items from Fragments 383

Defi ning Menu Hierarchies in XML 384

ftoc.indd xxvftoc.indd xxv 4/11/2012 10:34:49 AM4/11/2012 10:34:49 AM

Meier02275 ftoc V2 - 03/22/2012

xxvi

CONTENTS

Updating Menu Items Dynamically 385

Handling Menu Selections 386

Introducing Submenus and Context Menus 387

Creating Submenus 387

Using Context Menus and Popup Menus 388

Refreshing the Earthquake Monitor 390

Going Full Screen 392

Introducing Dialogs 394

Creating a Dialog 395

Using the Alert Dialog Class 396

Using Specialized Input Dialogs 397

Managing and Displaying Dialogs Using Dialog Fragments 398

Managing and Displaying Dialogs Using Activity Event Handlers 400

Using Activities as Dialogs 401

Let’s Make a Toast 401

Customizing Toasts 402

Using Toasts in Worker Threads 404

Introducing Notifi cations 405

Introducing the Notifi cation Manager 406

Creating Notifi cations 407

Creating a Notifi cation and Confi guring the Status Bar Display 407

Using the Default Notifi cation Sounds, Lights, and Vibrations 408

Making Sounds 408

Vibrating the Device 409

Flashing the Lights 409

Using the Notifi cation Builder 410

Setting and Customizing the Notifi cation Tray UI 410

Using the Standard Notifi cation UI 411

Creating a Custom Notifi cation UI 412

Customizing the Ticker View 414

Confi guring Ongoing and Insistent Notifi cations 415

Triggering, Updating, and Canceling Notifi cations 416

Adding Notifi cations and Dialogs to the Earthquake Monitor 418

CHAPTER 11: ADVANCED USER EXPERIENCE 425

Designing for Every Screen Size and Density 426

Resolution Independence 426

Using Density-Independent Pixels 426

Resource Qualifi ers for Pixel Density 427

ftoc.indd xxviftoc.indd xxvi 4/11/2012 10:34:49 AM4/11/2012 10:34:49 AM

Meier02275 ftoc V2 - 03/22/2012

xxvii

CONTENTS

Supporting and Optimizing for Diff erent Screen Sizes 427

Creating Scalable Layouts 428

Optimizing Layouts for Diff erent Screen Types 428

Specifying Supported Screen Sizes 430

Creating Scalable Graphics Assets 431

Color Drawables 431

Shape Drawables 431

Gradient Drawables 432

NinePatch Drawables 434

Creating Optimized, Adaptive, and Dynamic Designs 434

Testing, Testing, Testing 435

Using Emulator Skins 435

Testing for Custom Resolutions and Screen Sizes 435

Ensuring Accessibility 436

Supporting Navigation Without a Touch Screen 436

Providing a Textual Description of Each View 436

Introducing Android Text-to-Speech 437

Using Speech Recognition 439

Using Speech Recognition for Voice Input 440

Using Speech Recognition for Search 441

Controlling Device Vibration 441

Working with Animations 442

Tweened View Animations 442

Creating Tweened View Animations 443

Applying Tweened Animations 443

Using Animation Listeners 444

Animating Layouts and View Groups 444

Creating and Using Frame-by-Frame Animations 445

Interpolated Property Animations 446

Creating Property Animations 447

Creating Property Animation Sets 449

Using Animation Listeners 449

Enhancing Your Views 450

Advanced Canvas Drawing 450

What Can You Draw? 450

Getting the Most from Your Paint 451

Improving Paint Quality with Anti-Aliasing 456

Canvas Drawing Best Practice 457

Advanced Compass Face Example 458

ftoc.indd xxviiftoc.indd xxvii 4/11/2012 10:34:49 AM4/11/2012 10:34:49 AM

Meier02275 ftoc V2 - 03/22/2012

xxviii

CONTENTS

Hardware Acceleration 466

Managing Hardware Acceleration Use in Your Applications 466

Checking If Hardware Acceleration Is Enabled 467

Introducing the Surface View 467

When to Use a Surface View 467

Creating Surface Views 468

Creating 3D Views with a Surface View 470

Creating Interactive Controls 470

Using the Touch Screen 471

Using the Device Keys, Buttons, and D-Pad 475

Using the On Key Listener 475

Using the Trackball 476

Advanced Drawable Resources 476

Composite Drawables 476

Transformative Drawables 476

Layer Drawables 477

State List Drawables 478

Level List Drawables 479

Copy, Paste, and the Clipboard 479

Copying Data to the Clipboard 479

Pasting Clipboard Data 480

CHAPTER 12: HARDWARE SENSORS 481

Using Sensors and the Sensor Manager 482

Supported Android Sensors 482

Introducing Virtual Sensors 483

Finding Sensors 484

Monitoring Sensors 485

Interpreting Sensor Values 487

Monitoring a Device’s Movement and Orientation 489

Determining the Natural Orientation of a Device 490

Introducing Accelerometers 491

Detecting Acceleration Changes 492

Creating a Gravitational Force Meter 494

Determining a Device’s Orientation 497

Understanding the Standard Reference Frame 497

Calculating Orientation Using the Accelerometer and
Magnetic Field Sensors 498

Remapping the Orientation Reference Frame 500

Determining Orientation Using the Deprecated Orientation Sensor 501

ftoc.indd xxviiiftoc.indd xxviii 4/11/2012 10:34:49 AM4/11/2012 10:34:49 AM

Meier02275 ftoc V2 - 03/22/2012

xxix

CONTENTS

Creating a Compass and Artifi cial Horizon 502

Introducing the Gyroscope Sensor 505

Introducing the Environmental Sensors 506

Using the Barometer Sensor 506

Creating a Weather Station 508

CHAPTER 13: MAPS, GEOCODING, AND
LOCATION-BASED SERVICES 513

Using Location-Based Services 514

Using the Emulator with Location-Based Services 515

Updating Locations in Emulator Location Providers 515

Confi guring the Emulator to Test Location-Based Services 516

Selecting a Location Provider 516

Finding Location Providers 517

Finding Location Providers by Specifying Criteria 517

Determining Location Provider Capabilities 518

Finding Your Current Location 519

Location Privacy 519

Finding the Last Known Location 519

Where Am I Example 519

Refreshing the Current Location 522

Tracking Your Location in Where Am I 525

Requesting a Single Location Update 527

Best Practice for Location Updates 527

Monitoring Location Provider Status and Availability 528

Using Proximity Alerts 530

Using the Geocoder 532

Reverse Geocoding 533

Forward Geocoding 534

Geocoding Where Am I 535

Creating Map-Based Activities 536

Introducing Map View and Map Activity 537

Getting Your Maps API Key 537

Getting Your Development/Debugging MD5 Fingerprint 537

Getting your Production/Release MD5 Fingerprint 538

Creating a Map-Based Activity 538

Maps and Fragments 540

Confi guring and Using Map Views 541

Using the Map Controller 541

Mapping Where Am I 542

ftoc.indd xxixftoc.indd xxix 4/11/2012 10:34:50 AM4/11/2012 10:34:50 AM

Meier02275 ftoc V2 - 03/22/2012

xxx

CONTENTS

Creating and Using Overlays 546

Creating New Overlays 546

Introducing Projections 547

Drawing on the Overlay Canvas 547

Handling Map Tap Events 548

Adding and Removing Overlays 549

Annotating Where Am I 549

Introducing My Location Overlay 553

Introducing Itemized Overlays and Overlay Items 554

Pinning Views to the Map and Map Positions 556

Mapping Earthquakes Example 558

CHAPTER 14: INVADING THE HOME SCREEN 565

Introducing Home Screen Widgets 566

Creating App Widgets 567

Creating the Widget XML Layout Resource 567

Widget Design Guidelines 567

Supported Widget Views and Layouts 568

Defi ning Your Widget Settings 569

Creating Your Widget Intent Receiver and Adding It to the
Application Manifest 570

Introducing the App Widget Manager and Remote Views 572

Creating and Manipulating Remote Views 572

Applying Remote Views to Running App Widgets 574

Using Remote Views to Add Widget Interactivity 575

Refreshing Your Widgets 577

Using the Minimum Update Rate 577

Using Intents 578

Using Alarms 579

Creating and Using a Widget Confi guration Activity 580

Creating an Earthquake Widget 582

Introducing Collection View Widgets 587

Creating Collection View Widget Layouts 589

Creating the Remote Views Service 591

Creating a Remote Views Factory 591

Populating Collection View Widgets Using a Remote Views Service 594

Adding Interactivity to the Items Within a Collection View Widget 595

Binding Collection View Widgets to Content Providers 596

Refreshing Your Collection View Widgets 598

Creating an Earthquake Collection View Widget 598

ftoc.indd xxxftoc.indd xxx 4/11/2012 10:34:50 AM4/11/2012 10:34:50 AM

Meier02275 ftoc V2 - 03/22/2012

xxxi

CONTENTS

Introducing Live Folders 605

Creating Live Folders 606

The Live Folder Content Provider 606

The Live Folder Activity 608

Creating an Earthquake Live Folder 610

Surfacing Application Search Results Using the Quick Search Box 614

Surfacing Search Results to the Quick Search Box 614

Adding the Earthquake Example Search Results to the
Quick Search Box 615

Creating Live Wallpaper 616

Creating a Live Wallpaper Defi nition Resource 616

Creating a Wallpaper Service 617

Creating a Wallpaper Service Engine 618

CHAPTER 15: AUDIO, VIDEO, AND USING THE CAMERA 621

Playing Audio and Video 622

Introducing the Media Player 623

Preparing Audio for Playback 624

Initializing Audio Content for Playback 624

Preparing Video for Playback 625

Playing Video Using the Video View 625

Creating a Surface for Video Playback 626

Controlling Media Player Playback 629

Managing Media Playback Output 631

Responding to the Volume Controls 631

Responding to the Media Playback Controls 632

Requesting and Managing Audio Focus 635

Pausing Playback When the Output Changes 637

Introducing the Remote Control Client 637

Manipulating Raw Audio 640

Recording Sound with Audio Record 640

Playing Sound with Audio Track 642

Creating a Sound Pool 643

Using Audio Eff ects 645

Using the Camera for Taking Pictures 646

Using Intents to Take Pictures 646

Controlling the Camera Directly 648

Camera Properties 648

Camera Settings and Image Parameters 649

Controlling Auto Focus, Focus Areas, and Metering Areas 650

ftoc.indd xxxiftoc.indd xxxi 4/11/2012 10:34:50 AM4/11/2012 10:34:50 AM

Meier02275 ftoc V2 - 03/22/2012

xxxii

CONTENTS

Using the Camera Preview 651

Detecting Faces and Facial Features 653

Taking a Picture 654

Reading and Writing JPEG EXIF Image Details 655

Recording Video 656

Using Intents to Record Video 656

Using the Media Recorder to Record Video 657

Confi guring the Video Recorder 658

Previewing the Video Stream 660

Controlling the Recording 660

Creating a Time-Lapse Video 661

Using Media Eff ects 661

Adding Media to the Media Store 662

Inserting Media Using the Media Scanner 662

Inserting Media Manually 663

CHAPTER 16: BLUETOOTH, NFC, NETWORKS, AND WI-FI 665

Using Bluetooth 666

Managing the Local Bluetooth Device Adapter 666

Being Discoverable and Remote Device Discovery 669

Managing Device Discoverability 669

Discovering Remote Devices 671

Bluetooth Communications 673

Opening a Bluetooth Server Socket Listener 674

Selecting Remote Bluetooth Devices for Communications 675

Opening a Client Bluetooth Socket Connection 676

Transmitting Data Using Bluetooth Sockets 677

Managing Network and Internet Connectivity 679

Introducing the Connectivity Manager 679

Supporting User Preferences for Background Data Transfers 679

Finding and Monitoring Network Connectivity 681

Managing Wi-Fi 682

Monitoring Wi-Fi Connectivity 683

Monitoring Active Wi-Fi Connection Details 684

Scanning for Hotspots 684

Managing Wi-Fi Confi gurations 685

Creating Wi-Fi Network Confi gurations 685

Transferring Data Using Wi-Fi Direct 686

Initializing the Wi-Fi Direct Framework 686

Enabling Wi-Fi Direct and Monitoring Its Status 688

ftoc.indd xxxiiftoc.indd xxxii 4/11/2012 10:34:50 AM4/11/2012 10:34:50 AM

Meier02275 ftoc V2 - 03/22/2012

xxxiii

CONTENTS

Discovering Peers 689

Connecting with Peers 690

Transferring Data Between Peers 692

Near Field Communication 693

Reading NFC Tags 693

Using the Foreground Dispatch System 695

Introducing Android Beam 697

Creating Android Beam Messages 697

Assigning the Android Beam Payload 699

Receiving Android Beam Messages 699

CHAPTER 17: TELEPHONY AND SMS 701

Hardware Support for Telephony 701

Marking Telephony as a Required Hardware Feature 702

Checking for Telephony Hardware 702

Using Telephony 702

Initiating Phone Calls 703

Replacing the Native Dialer 703

Accessing Telephony Properties and Phone State 705

Reading Phone Device Details 705

Reading Network Details 706

Reading SIM Details 707

Reading Data Connection and Transfer State Details 707

Monitoring Changes in Phone State Using the Phone State Listener 708

Monitoring Incoming Phone Calls 709

Tracking Cell Location Changes 710

Tracking Service Changes 710

Monitoring Data Connectivity and Data Transfer Status Changes 711

Using Intent Receivers to Monitor Incoming Phone Calls 712

Introducing SMS and MMS 713

Using SMS and MMS in Your Application 713

Sending SMS and MMS from Your Application Using Intents 713

Sending SMS Messages Using the SMS Manager 714

Sending Text Messages 715

Tracking and Confi rming SMS Message Delivery 715

Conforming to the Maximum SMS Message Size 717

Sending Data Messages 717

Listening for Incoming SMS Messages 717

Simulating Incoming SMS Messages in the Emulator 719

Handling Data SMS Messages 719

ftoc.indd xxxiiiftoc.indd xxxiii 4/11/2012 10:34:50 AM4/11/2012 10:34:50 AM

Meier02275 ftoc V2 - 03/22/2012

xxxiv

CONTENTS

Emergency Responder SMS Example 720

Automating the Emergency Responder 729

Introducing SIP and VOIP 737

CHAPTER 18: ADVANCED ANDROID DEVELOPMENT 739

Paranoid Android 740

Linux Kernel Security 740

Introducing Permissions 740

Declaring and Enforcing Permissions 741

Enforcing Permissions when Broadcasting Intents 742

Introducing Cloud to Device Messaging 743

C2DM Restrictions 743

Signing Up to Use C2DM 744

Registering Devices with a C2DM Server 744

Sending C2DM Messages to Devices 748

Receiving C2DM Messages 749

Implementing Copy Protection Using the License
Verifi cation Library 750

Installing the License Verifi cation Library 750

Finding Your License Verifi cation Public Key 751

Confi guring Your License Validation Policy 751

Performing License Validation Checks 752

Introducing In-App Billing 753

In-App Billing Restrictions 754

Installing the In-App Billing Library 754

Finding Your Public Key and Defi ning Your Purchasable Items 754

Initiating In-App Billing Transactions 755

Handling In-App Billing Purchase Request Responses 756

Using Wake Locks 757

Using AIDL to Support Inter-Process Communication for Services 759

Implementing an AIDL Interface 759

Making Classes Parcelable 759

Creating an AIDL Service Defi nition 762

Implementing and Exposing the AIDL Service Defi nition 762

Dealing with Diff erent Hardware and Software Availability 765

Specifying Hardware as Required 766

Confi rming Hardware Availability 766

Building Backward-Compatible Applications 766

Parallel Activities 767

Interfaces and Fragments 768

Optimizing UI Performance with Strict Mode 769

ftoc.indd xxxivftoc.indd xxxiv 4/11/2012 10:34:50 AM4/11/2012 10:34:50 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Meier02275 ftoc V2 - 03/22/2012

xxxv

CONTENTS

CHAPTER 19: MONETIZING, PROMOTING, AND DISTRIBUTING
APPLICATIONS 771

Signing and Publishing Applications 772

Signing Applications Using the Export Android Application Wizard 772

Distributing Applications 774

Introducing the Google Play 774

Getting Started with Google Play 775

Publishing Applications 776

Application Reports Within the Developer Console 778

Accessing Application Error Reports 778

An Introduction to Monetizing Your Applications 779

Application Marketing, Promotion, and Distribution Strategies 780

Application Launch Strategies 781

Promotion Within Google Play 781

Internationalization 782

Analytics and Referral Tracking 783

Using Google Analytics for Mobile Applications 784

Referral Tracking with Google Analytics 786

INDEX 787

ftoc.indd xxxvftoc.indd xxxv 4/11/2012 10:34:50 AM4/11/2012 10:34:50 AM

Meier02275 fl ast V3 - 03/25/2012

flast.indd xxxviflast.indd xxxvi 4/11/2012 10:37:32 AM4/11/2012 10:37:32 AM

Meier02275 fl ast V3 - 03/25/2012

INTRODUCTION

THIS IS AN EXCITING TIME FOR ANDROID DEVELOPERS. Mobile phones have never been more popu-
lar; powerful smartphones are now a regular choice for consumers; and the Android ecosystem
has expanded to include tablet and TV devices to further expand the audience of your Android
applications.

Hundreds of stylish and versatile devices — packing hardware features such as GPS, accelerometers,
NFC, and touch screens, combined with reasonably priced data plans — provide an enticing plat-
form upon which to create innovative applications for all Android devices.

Android offers an open alternative for mobile application development. Without artifi cial barriers,
Android developers are free to write applications that take full advantage of increasingly powerful
mobile hardware and distribute them in an open market. As a result, developer interest in Android
devices has exploded as handset sales have continued to grow. As of 2012, there are hundreds of
handset and tablet OEMs, including HTC, Motorola, LG, Samsung, ASUS, and Sony Ericsson.
More than 300 million Android devices have been activated, and that number is growing at a rate of
over 850,000 activations every day.

Using Google Play for distribution, developers can take advantage of an open marketplace, with no
review process, for distributing free and paid applications to all compatible Android devices. Built
on an open-source framework, and featuring powerful SDK libraries, Android has enabled more
than 450,000 applications to be launched in Google Play.

This book is a hands-on guide to building mobile applications using version 4 of the Android SDK.
Chapter by chapter, it takes you through a series of sample projects, each introducing new features
and techniques to get the most out of Android. It covers all the basic functionality to get started, as
well as the information for experienced mobile developers to leverage the unique features of Android
to enhance existing products or create innovative new ones.

Google’s philosophy is to release early and iterate often. Since Android’s fi rst full release in
December 2008, there have been 19 platform and SDK releases. With such a rapid release cycle,
there are likely to be regular changes and improvements to the software and development libraries.
While the Android engineering team works hard to ensure backward compatibility, future releases
are likely to date some of the information provided in this book. Similarly, not all active Android
devices will be running the latest platform release.

Wherever possible, I have included details on which platform releases support the functionality
described, and which alternatives may exist to provide support for users of older devices. Further,
the explanations and examples included will give you the grounding and knowledge needed to write
compelling mobile applications using the current SDK, along with the fl exibility to quickly adapt to
future enhancements.

flast.indd xxxviiflast.indd xxxvii 4/11/2012 10:37:33 AM4/11/2012 10:37:33 AM

Meier02275 fl ast V3 - 03/25/2012

xxxviii

INTRODUCTION

WHO THIS BOOK IS FOR

This book is for anyone interested in creating applications for the Android platform. It includes
information that will be valuable, whether you’re an experienced mobile developer or making your
fi rst foray, via Android, into writing mobile applications.

It will help if you have used smartphones (particularly phones running Android), but it’s not neces-
sary, nor is prior experience in mobile application development.

It’s expected that you’ll have some experience in software development and be familiar with basic
object-oriented development practices. An understanding of Java syntax is a requirement, and
detailed knowledge and experience is a distinct advantage, though not a strict necessity.

Chapters 1 and 2 introduce mobile development and contain instructions to get you started in
Android. Beyond that, there’s no requirement to read the chapters in order, although a good under-
standing of the core components described in Chapters 3–9 is important before you venture into
the remaining chapters. Chapters 10 and 11 cover important details on how to create an application
that provides a rich and consistent user experience, while Chapters 12–19 cover a variety of optional
and advanced functionality and can be read in whatever order interest or need dictates.

WHAT THIS BOOK COVERS

Chapter 1 introduces Android, including what it is and how it fi ts into existing mobile development.
What Android offers as a development platform and why it’s an exciting opportunity for creating
mobile phone applications are then examined in greater detail.

Chapter 2 covers some best practices for mobile development and explains how to download the
Android SDK and start developing applications. It also introduces the Android Developer Tools and
demonstrates how to create new applications from scratch.

Chapters 3–9 take an in-depth look at the fundamental Android application components. Starting
with examining the pieces that make up an Android application and its lifecycle, you’ll quickly move
on to the application manifest and external resources before learning about “Activities,” their life-
times, and their lifecycles.

You’ll then learn how to create basic user interfaces with layouts, Views, and Fragments, before being
introduced to the Intent and Broadcast Receiver mechanisms used to perform actions and send mes-
sages between application components. Internet resources are then covered, followed by a detailed
look at data storage, retrieval, and sharing. You’ll start with the preference-saving mechanism and
then move on to fi le handling, databases, and Cursors. You’ll also learn how share application data
using Content Providers and access data from the native Content Providers. This section fi nishes with
an examination of how to work in the background using Services and background Threads.

Chapters 10 and 11 build on the UI lessons you learned in Chapter 4, examining how to enhance
the user experience through the use of the Action Bar, Menu System, and Notifi cations. You’ll
learn how to make your applications display-agnostic (optimized for a variety of screen sizes and

flast.indd xxxviiiflast.indd xxxviii 4/11/2012 10:37:33 AM4/11/2012 10:37:33 AM

Meier02275 fl ast V3 - 03/25/2012

xxxix

INTRODUCTION

resolutions), how to make your applications accessible, and how to use speech recognition within
your applications.

Chapters 12–18 look at more advanced topics. You’ll learn how to use the compass, accelerometers,
and other hardware sensors to let your application react to its environment, and then look at maps
and location-based services. Next, you’ll learn how your applications can interact with users directly
from the home screen using dynamic Widgets, Live Wallpaper, and the Quick Search Box.

After looking at playing and recording multimedia, and using the camera, you’ll be introduced to
Android’s communication capabilities. Bluetooth, NFC, Wi-Fi Direct, and network management
(both Wi-Fi and mobile data connections) are covered, followed by the telephony APIs and the APIs
used to send and receive SMS messages.

Chapter 18 discusses several advanced development topics, including security, IPC, Cloud to Device
Messaging, the License Verifi cation Library, and Strict Mode.

Finally, Chapter 19 examines the options and opportunities available for publishing, distributing,
and monetizing your applications — primarily within Google Play.

HOW THIS BOOK IS STRUCTURED

This book is structured in a logical sequence to help readers of different development backgrounds
learn how to write advanced Android applications. There’s no requirement to read each chapter
sequentially, but several of the sample projects are developed over the course of several chapters,
adding new functionality and other enhancements at each stage.

Experienced mobile developers with a working Android development environment can skim the fi rst
two chapters — which are an introduction to mobile development and instructions for creating your
development environment — and then dive in at Chapters 3–9. These chapters cover the fundamentals
of Android development, so it’s important to have a solid understanding of the concepts they describe.

With this covered, you can move on to the remaining chapters, which look at maps, location-based
services, background applications, and more advanced topics, such as hardware interaction and
networking.

WHAT YOU NEED TO USE THIS BOOK

To use the code samples in this book, you will need to create an Android development environment
by downloading the Android SDK, developer tools, and the Java Development Kit. You may also
want to download and install Eclipse and the Android Developer Tools plug-in to ease your develop-
ment, but neither is a requirement.

Android development is supported in Windows, Mac OS, and Linux, with the SDK available from
the Android web site.

You do not need an Android device to use this book or develop Android applications, though it can
be useful — particularly when testing.

flast.indd xxxixflast.indd xxxix 4/11/2012 10:37:33 AM4/11/2012 10:37:33 AM

Meier02275 fl ast V3 - 03/25/2012

xl

INTRODUCTION

Chapter 2 outlines these requirements in more detail and describes where to
download and how to install each component.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

The pencil icon indicates notes, tips, hints, tricks, and asides to the current
discussion.

Boxes with a warning icon like this one hold important, not-to-be forgotten
information that is directly relevant to the surrounding text.

As for styles in the text:

 ‰ We show fi le names, URLs, and code within the text like so: persistence.properties.

 ‰ To help readability, class names in text are often represented using a regular font but capital-
ized like so: Content Provider.

 ‰ We present code in two different ways:

We use a monofont type with no highlighting for most code examples.
We use bold to emphasize code that is particularly important in the present context
or to show changes from a previous code snippet.

 ‰ In some code samples, you’ll see lines marked as follows:

[... previous code goes here ...]

or

[... implement something here ...]

These represent instructions to replace the entire line (including the square brackets) with
actual code, either from a previous code snippet (in the former case) or with your own
implementation (in the latter).

 ‰ To keep the code samples reasonably concise, I have not always included every import state-
ment required in the code samples. The downloadable code samples described below include
all the required import statements. Additionally, if you are developing using Eclipse, you can
use the keyboard shortcut Ctrl+Shift+O (Cmd+Shift+O) to insert the required import state-
ments automatically.

flast.indd xlflast.indd xl 4/11/2012 10:37:33 AM4/11/2012 10:37:33 AM

Meier02275 fl ast V3 - 03/25/2012

xli

INTRODUCTION

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code man-
ually, or to use the source code fi les that accompany the book. All the source code used in this book
is available for download at www.wrox.com. When at the site, simply locate the book’s title (use the
Search box or one of the title lists) and click the Download Code link on the book’s detail page to
obtain all the source code for the book. Code that is included on the web site is highlighted by the
following icon:

Listings include the fi lename in the title. If it is just a code snippet, you’ll fi nd the fi lename in a code
note such as this:

code snippet fi lename

Because many books have similar titles, you may fi nd it easiest to search by
ISBN; this book’s ISBN is 978-1-118-10227-5.

Once you download the code, just decompress it with your favorite compression tool. Alternately,
you can go to the mai n Wrox code download page at www.wrox.com/dynamic/books/download
.aspx to see the code available for this book and all other Wrox books.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration, and at the same time, you will be helping us provide even
higher quality information.

To fi nd the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you
can view all errata that has been submitted for this book and posted by Wrox editors. A complete
book list, including links to each book’s errata, is also available at www.wrox.com/misc-pages/
booklist.shtml.

flast.indd xliflast.indd xli 4/11/2012 10:37:34 AM4/11/2012 10:37:34 AM

http://www.wrox.com
http://www.wrox.com/dynamic/books/download
http://www.wrox.com
http://www.wrox.com/misc-pages

Meier02275 fl ast V3 - 03/25/2012

xlii

INTRODUCTION

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsup-
port.shtml and complete the form there to send us the error you have found. We’ll check the
information and, if appropriate, post a message to the book’s errata page and fi x the problem in sub-
sequent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics
of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com, you will fi nd a number of different forums that will help you, not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but in order to post
your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to This Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

flast.indd xliiflast.indd xlii 4/11/2012 10:37:34 AM4/11/2012 10:37:34 AM

http://www.wrox.com/contact/techsup-port.shtml
http://www.wrox.com/contact/techsup-port.shtml
http://www.wrox.com/contact/techsup-port.shtml
http://p2p.wrox.com

Meier02275 fl ast V3 - 03/25/2012

PROFESSIONAL

Android™ 4 Application Development

flast.indd xliiiflast.indd xliii 4/11/2012 10:37:35 AM4/11/2012 10:37:35 AM

Meier02275 fl ast V3 - 03/25/2012

flast.indd xlivflast.indd xliv 4/11/2012 10:37:35 AM4/11/2012 10:37:35 AM

Meier c01.indd V1 - 11/24/2011 Page 1

1
Hello, Android

WHAT’S IN THIS CHAPTER?

 ‰ A background of mobile application development

 ‰ What Android is (and what it isn’t)

 ‰ An introduction to the Android SDK features

 ‰ Which devices Android runs on

 ‰ Why you should develop for mobile and Android

 ‰ An introduction to the Android SDK and development framework

Whether you’re an experienced mobile engineer, a desktop or web developer, or a complete
programming novice, Android represents an exciting new opportunity to write innovative
applications for an increasingly wide range of devices.

Despite the name, Android will not help you create an unstoppable army of emotionless
robot warriors on a relentless quest to cleanse the earth of the scourge of humanity. Instead,
Android is an open-source software stack that includes the operating system, middleware, and
key mobile applications, along with a set of API libraries for writing applications that can
shape the look, feel, and function of the devices on which they run.

Small, stylish, and versatile, modern mobile devices have become powerful tools that incorpo-
rate touchscreens, cameras, media players, Global Positioning System (GPS) receivers, and Near
Field Communications (NFC) hardware. As technology has evolved, mobile phones have become
about much more than simply making calls. With the introduction of tablets and Google TV,
Android has expanded beyond its roots as a mobile phone operating system, providing a consis-
tent platform for application development across an increasingly wide range of hardware.

In Android, native and third-party applications are written with the same APIs and executed
on the same run time. These APIs feature hardware access, video recording, location-based

c01.indd 1c01.indd 1 4/11/2012 10:03:20 AM4/11/2012 10:03:20 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Meier c01.indd V1 - 11/24/2011 Page 2

2 x CHAPTER 1 HELLO, ANDROID

services, support for background services, map-based activities, relational databases, inter-application
communication, Bluetooth, NFC, and 2D and 3D graphics.

This book describes how to use these APIs to create your own Android applications. In this chapter
you’ll learn some guidelines for mobile and embedded hardware development, as well as be intro-
duced to some of the platform features available for Android development.

Android has powerful APIs, excellent documentation, a thriving developer community, and no
development or distribution costs. As mobile devices continue to increase in popularity, and Android
devices expand into exciting new form-factors, you have the opportunity to create innovative appli-
cations no matter what your development experience.

A LITTLE BACKGROUND

In the days before Twitter and Facebook, when Google was still a twinkle in its founders’ eyes and
dinosaurs roamed the earth, mobile phones were just that — portable phones small enough to fi t
inside a briefcase, featuring batteries that could last up to several hours. They did, however, offer
the freedom to make calls without being physically connected to a landline.

Increasingly small, stylish, and powerful, mobile phones are now ubiquitous and indispensable.
Hardware advancements have made mobiles smaller and more effi cient while featuring bigger,
brighter screens and including an increasing number of hardware peripherals.

After fi rst including cameras and media players, mobiles now feature GPS receivers, accelerometers,
NFC hardware, and high-defi nition touchscreens. These hardware innovations offer fertile ground
for software development, but until relatively recently the applications available for mobile phones
have lagged behind their hardware counterparts.

The Not-So-Distant Past

Historically, developers, generally coding in low-level C or C++, have needed to understand the spe-
cifi c hardware they were coding for, typically a single device or possibly a range of devices from a
single manufacturer. As hardware technology and mobile Internet access has advanced, this closed
approach has become outmoded.

Platforms such as Symbian were later created to provide developers with a wider target audience.
These systems proved more successful in encouraging mobile developers to provide rich applications
that better leveraged the hardware available.

Although these platforms did, and continue to, offer some access to the device hardware, they gener-
ally required developers to write complex C/C++ code and make heavy use of proprietary APIs that are
notoriously diffi cult to work with. This diffi culty is amplifi ed for applications that must work on differ-
ent hardware implementations and those that make use of a particular hardware feature, such as GPS.

In more recent years, the biggest advance in mobile phone development was the introduction of Java-
hosted MIDlets. MIDlets are executed on a Java virtual machine (JVM), a process that abstracts the
underlying hardware and lets developers create applications that run on the wide variety of devices
that support the Java run time. Unfortunately, this convenience comes at the price of restricted
access to the device hardware.

c01.indd 2c01.indd 2 4/11/2012 10:03:24 AM4/11/2012 10:03:24 AM

Meier c01.indd V1 - 11/24/2011 Page 3

What Android Isn’t x 3

In mobile development, it was long considered normal for third-party applications to receive dif-
ferent hardware access and execution rights from those given to native applications written by the
phone manufacturers, with MIDlets often receiving few of either.

The introduction of Java MIDlets expanded developers’ audiences, but the lack of low-level hardware
access and sandboxed execution meant that most mobile applications were regular desktop programs
or websites designed to render on a smaller screen, and didn’t take advantage of the inherent mobility
of the handheld platform.

Living in the Future

Android sits alongside a new wave of modern mobile operating systems designed to support applica-
tion development on increasingly powerful mobile hardware. Platforms like Microsoft’s Windows
Phone and the Apple iPhone also provide a richer, simplifi ed development environment for mobile
applications; however, unlike Android, they’re built on proprietary operating systems. In some cases
they prioritize native applications over those created by third parties, restrict communication among
applications and native phone data, and restrict or control the distribution of third-party applica-
tions to their platforms.

Android offers new possibilities for mobile applications by offering an open development environ-
ment built on an open-source Linux kernel. Hardware access is available to all applications through
a series of API libraries, and application interaction, while carefully controlled, is fully supported.

In Android, all applications have equal standing. Third-party and native Android applications are
written with the same APIs and are executed on the same run time. Users can remove and replace
any native application with a third-party developer’s alternative; indeed, even the dialer and home
screens can be replaced.

WHAT ANDROID ISN’T

As a disruptive addition to a mature fi eld, it’s not hard to see why there has been some confusion
about what exactly Android is. Android is not the following:

 ‰ A Java ME implementation — Android applications are written using the Java language,
but they are not run within a Java ME (Mobile Edition) VM, and Java-compiled classes and
executables will not run natively in Android.

 ‰ Part of the Linux Phone Standards Forum (LiPS) or the Open Mobile Alliance (OMA) —
Android runs on an open-source Linux kernel, but, while their goals are similar, Android’s
complete software stack approach goes further than the focus of these standards-defi ning
organizations.

 ‰ Simply an application layer (such as UIQ or S60) — Although Android does include an appli-
cation layer, “Android’’ also describes the entire software stack, encompassing the underlying
operating system, the API libraries, and the applications themselves.

 ‰ A mobile phone handset — Android includes a reference design for mobile handset manufac-
turers, but there is no single “Android phone.” Instead, Android has been designed to sup-
port many alternative hardware devices.

c01.indd 3c01.indd 3 4/11/2012 10:03:24 AM4/11/2012 10:03:24 AM

Meier c01.indd V1 - 11/24/2011 Page 4

4 x CHAPTER 1 HELLO, ANDROID

 ‰ Google’s answer to the iPhone — The iPhone is a fully proprietary hardware and software
platform released by a single company (Apple), whereas Android is an open-source
software stack produced and supported by the Open Handset Alliance (OHA) and designed
to operate on any compatible device.

ANDROID: AN OPEN PLATFORM FOR MOBILE DEVELOPMENT

Google’s Andy Rubin describes Android as follows:

The fi rst truly open and comprehensive platform for mobile devices. It includes
an operating system, user-interface and applications — all of the software to run
a mobile phone but without the proprietary obstacles that have hindered mobile
innovation.

 —Where’s My Gphone? (http://googleblog.blogspot.com/2007/11/
wheres-my-gphone.html)

More recently, Android has expanded beyond a pure mobile phone platform to provide a develop-
ment platform for an increasingly wide range of hardware, including tablets and televisions.

Put simply, Android is an ecosystem made up of a combination of three components:

 ‰ A free, open-source operating system for embedded devices

 ‰ An open-source development platform for creating applications

 ‰ Devices, particularly mobile phones, that run the Android operating system and the applica-
tions created for it

More specifi cally, Android is made up of several necessary and dependent parts, including the
following:

 ‰ A Compatibility Defi nition Document (CDD) and Compatibility Test Suite (CTS) that
describe the capabilities required for a device to support the software stack.

 ‰ A Linux operating system kernel that provides a low-level interface with the hardware, mem-
ory management, and process control, all optimized for mobile and embedded devices.

 ‰ Open-source libraries for application development, including SQLite, WebKit, OpenGL, and
a media manager.

 ‰ A run time used to execute and host Android applications, including the Dalvik Virtual
Machine (VM) and the core libraries that provide Android-specifi c functionality. The run
time is designed to be small and effi cient for use on mobile devices.

 ‰ An application framework that agnostically exposes system services to the application layer,
including the window manager and location manager, databases, telephony, and sensors.

 ‰ A user interface framework used to host and launch applications.

 ‰ A set of core pre-installed applications.

c01.indd 4c01.indd 4 4/11/2012 10:03:24 AM4/11/2012 10:03:24 AM

http://googleblog.blogspot.com/2007/11/wheres-my-gphone.html
http://googleblog.blogspot.com/2007/11/wheres-my-gphone.html

Meier c01.indd V1 - 11/24/2011 Page 5

Native Android Applications x 5

 ‰ A software development kit (SDK) used to create applications, including the related tools,
plug-ins, and documentation.

What really makes Android compelling is its open philosophy, which ensures that you can fi x any
defi ciencies in user interface or native application design by writing an extension or replacement.
Android provides you, as a developer, with the opportunity to create mobile phone interfaces and
applications designed to look, feel, and function exactly as you imagine them.

NATIVE ANDROID APPLICATIONS

Android devices typically come with a suite of preinstalled applications that form part of
the Android Open Source Project (AOSP), including, but not necessarily limited to, the following:

 ‰ An e-mail client

 ‰ An SMS management application

 ‰ A full PIM (personal information management) suite, including a calendar and contacts list

 ‰ A WebKit-based web browser

 ‰ A music player and picture gallery

 ‰ A camera and video recording application

 ‰ A calculator

 ‰ A home screen

 ‰ An alarm clock

In many cases Android devices also ship with the following proprietary Google mobile applications:

 ‰ The Google Play Store for downloading third-party Android applications

 ‰ A fully featured mobile Google Maps application, including StreetView, driving directions,
and turn-by-turn navigation, satellite views, and traffi c conditions

 ‰ The Gmail email client

 ‰ The Google Talk instant-messaging client

 ‰ The YouTube video player

The data stored and used by many of these native applications — such as contact details — are also
available to third-party applications. Similarly, your applications can respond to events such as
incoming calls.

The exact makeup of the applications available on new Android phones is likely to vary based
on the hardware manufacturer and/or the phone carrier or distributor.

The open-source nature of Android means that carriers and OEMs can customize the user interface
and the applications bundled with each Android device. Several OEMs have done this, including
HTC with Sense, Motorola with MotoBlur, and Samsung with TouchWiz.

c01.indd 5c01.indd 5 4/11/2012 10:03:24 AM4/11/2012 10:03:24 AM

Meier c01.indd V1 - 11/24/2011 Page 6

6 x CHAPTER 1 HELLO, ANDROID

It’s important to note that for compatible devices, the underlying platform and SDK remain consis-
tent across OEM and carrier variations. The look and feel of the user interface may vary, but your
applications will function in the same way across all compatible Android devices.

ANDROID SDK FEATURES

The true appeal of Android as a development environment lies in its APIs.

As an application-neutral platform, Android gives you the opportunity to create applications that
are as much a part of the phone as anything provided out-of-the-box. The following list highlights
some of the most noteworthy Android features:

 ‰ GSM, EDGE, 3G, 4G, and LTE networks for telephony or data transfer, enabling you to
make or receive calls or SMS messages, or to send and retrieve data across mobile networks

 ‰ Comprehensive APIs for location-based services such as GPS and network-based location
detection

 ‰ Full support for applications that integrate map controls as part of their user interfaces

 ‰ Wi-Fi hardware access and peer-to-peer connections

 ‰ Full multimedia hardware control, including playback and recording with the camera and
microphone

 ‰ Media libraries for playing and recording a variety of audio/video or still-image formats

 ‰ APIs for using sensor hardware, including accelerometers, compasses, and barometers

 ‰ Libraries for using Bluetooth and NFC hardware for peer-to-peer data transfer

 ‰ IPC message passing

 ‰ Shared data stores and APIs for contacts, social networking, calendar, and multi-media

 ‰ Background Services, applications, and processes

 ‰ Home-screen Widgets and Live Wallpaper

 ‰ The ability to integrate application search results into the system searches

 ‰ An integrated open-source HTML5 WebKit-based browser

 ‰ Mobile-optimized, hardware-accelerated graphics, including a path-based 2D graphics library
and support for 3D graphics using OpenGL ES 2.0

 ‰ Localization through a dynamic resource framework

 ‰ An application framework that encourages the reuse of application components and the
replacement of native applications

Access to Hardware, Including Camera, GPS, and Sensors

Android includes API libraries to simplify development involving the underlying device hardware.
They ensure that you don’t need to create specifi c implementations of your software for different
devices, so you can create Android applications that work as expected on any device that supports
the Android software stack.

c01.indd 6c01.indd 6 4/11/2012 10:03:24 AM4/11/2012 10:03:24 AM

Meier c01.indd V1 - 11/24/2011 Page 7

Android SDK Features x 7

The Android SDK includes APIs for location-based hardware (such as GPS), the camera, audio, net-
work connections, Wi-Fi, Bluetooth, sensors (including accelerometers), NFC, the touchscreen, and
power management. You can explore the possibilities of some of Android’s hardware APIs in more
detail in Chapters 12 and 15–17.

Data Transfers Using Wi-Fi, Bluetooth, and NFC

Android offers rich support for transferring data between devices, including Bluetooth, Wi-Fi
Direct, and Android Beam. These technologies offer a rich variety of techniques for sharing data
between paired devices, depending on the hardware available on the underlying device, allowing
you to create innovative collaborative applications.

In addition, Android offers APIs to manage your network connections, Bluetooth connections, and
NFC tag reading.

Details on using Android’s communications APIs are available in Chapter 16,
“Bluetooth, NFC, Networks, and Wi-Fi.”

Maps, Geocoding, and Location-Based Services

Embedded map support enables you to create a range of map-based applications that leverage the
mobility of Android devices. Android lets you design user interfaces that include interactive Google
Maps that you can control programmatically and annotate using Android’s rich graphics library.

Android’s location-based services manage technologies such as GPS and Google’s network-based
location technology to determine the device’s current position. These services enforce an abstrac-
tion from specifi c location-detecting technology and let you specify minimum requirements (e.g.,
accuracy or cost) rather than selecting a particular technology. This also means your location-based
applications will work no matter what technology the host device supports.

To combine maps with locations, Android includes an API for forward and reverse geocoding that
lets you fi nd map coordinates for an address, and the address of a map position.

You’ll learn the details of using maps, the geocoder, and location-based ser-
vices in Chapter 13, “Maps, Geocoding, and Location-Based Services.”

Background Services

Android supports applications and services designed to run in the background while your applica-
tion isn’t being actively used.

Modern mobiles and tablets are by nature multifunction devices; however, their screen sizes and
interaction models mean that generally only one interactive application is visible at any time.
Platforms that don’t support background execution limit the viability of applications that don’t need
your constant attention.

c01.indd 7c01.indd 7 4/11/2012 10:03:24 AM4/11/2012 10:03:24 AM

Meier c01.indd V1 - 11/24/2011 Page 8

8 x CHAPTER 1 HELLO, ANDROID

Background services make it possible to create invisible application components that perform auto-
matic processing without direct user action. Background execution allows your applications to
become event-driven and to support regular updates, which is perfect for monitoring game scores
or market prices, generating location-based alerts, or prioritizing and prescreening incoming calls
and SMS messages.

Notifi cations are the standard means by which a mobile device traditionally alerts users to events that
have happened in a background application. Using the Notifi cation Manager, you can trigger audible
alerts, cause vibration, and fl ash the device’s LED, as well as control status bar notifi cation icons.

Learn more about how to use Notifi cations and get the most out of back-
ground services in Chapters 9 and 10.

SQLite Database for Data Storage and Retrieval

Rapid and effi cient data storage and retrieval are essential for a device whose storage capacity is
relatively limited.

Android provides a lightweight relational database for each application via SQLite. Your applications
can take advantage of this managed relational database engine to store data securely and effi ciently.

By default, each application database is sandboxed — its content is available only to the application
that created it — but Content Providers supply a mechanism for the managed sharing of these appli-
cation databases as well as providing an abstraction between your application and the underlying
data source.

Databases and Content Providers are covered in detail in Chapter 8, “Databases
and Content Providers.”

Shared Data and Inter-Application Communication

Android includes several techniques for making information from your applications available for use
elsewhere, primarily: Intents and Content Providers.

Intents provide a mechanism for message-passing within and between applications. Using Intents,
you can broadcast a desired action (such as dialing the phone or editing a contact) systemwide for
other applications to handle. Using the same mechanism, you can register your own application to
receive these messages or execute the requested actions.

You can use Content Providers to provide secure, managed access to your applications’ private data-
bases. The data stores for native applications, such as the contact manager, are exposed as Content
Providers so you can read or modify this data from within your own applications.

c01.indd 8c01.indd 8 4/11/2012 10:03:25 AM4/11/2012 10:03:25 AM

Meier c01.indd V1 - 11/24/2011 Page 9

Android SDK Features x 9

Intents are a fundamental component of Android and are covered in depth in
Chapter 5, “Intents and Broadcast Receivers.”

Chapter 8 covers content providers in detail, including the native providers, and
demonstrates how to create and use providers of your own.

Using Widgets and Live Wallpaper to Enhance the Home Screen

Widgets and Live Wallpaper let you create dynamic application components that provide a window
into your applications, or offer useful and timely information, directly on the home screen.

Offering a way for users to interact with your application directly from the home screen increases
user engagement by giving them instant access to interesting information without needing to open
the application, as well as adding a dynamic shortcut into your application from their home screen.

You’ll learn how to create application components for the home screen in
Chapter 14, “Invading the Home Screen.”

Extensive Media Support and 2D/3D Graphics

Bigger screens and brighter, higher-resolution displays have helped make mobiles multimedia
devices. To help you make the most of the hardware available, Android provides graphics libraries
for 2D canvas drawing and 3D graphics with OpenGL.

Android also offers comprehensive libraries for handling still images, video, and audio fi les, includ-
ing the MPEG4, H.264, HTTP Live Streaming, VP8, WEBP, MP3, AAC, AMR, HLS, JPG, PNG,
and GIF formats.

2D and 3D graphics are covered in depth in Chapter 11, “Advanced User
Experience,” and Android media management libraries are covered in Chapter 15,
“Audio, Video, and Using the Camera.”

Cloud to Device Messaging

The Android Cloud to Device Messaging (C2DM) service provides an effi cient mechanism for devel-
opers to create event-driven applications based on server-side pushes.

Using C2DM you can create a lightweight, always-on connection between your mobile application
and your server, allowing you to send small amounts of data directly to your device in real time.

c01.indd 9c01.indd 9 4/11/2012 10:03:25 AM4/11/2012 10:03:25 AM

Meier c01.indd V1 - 11/24/2011 Page 10

10 x CHAPTER 1 HELLO, ANDROID

The C2DM service is typically used to prompt applications of new data available on the server,
reducing the need for polling, decreasing the battery impact of an application’s updates, and improv-
ing the timeliness of those updates.

Optimized Memory and Process Management

Like Java and .NET, Android uses its own run time and VM to manage application memory. Unlike
with either of these other frameworks, the Android run time also manages the process lifetimes.
Android ensures application responsiveness by stopping and killing processes as necessary to free
resources for higher-priority applications.

In this context, the highest priority is given to the application with which the user is interacting.
Ensuring that your applications are prepared for a swift death but are still able to remain responsive,
and to update or restart in the background if necessary, is an important consideration in an environ-
ment that does not allow applications to control their own lifetimes.

You will learn more about the Android application lifecycle in Chapter 3,
“Creating Applications and Activities.”

INTRODUCING THE OPEN HANDSET ALLIANCE

The Open Handset Alliance (OHA) is a collection of more than 80 technology companies, includ-
ing hardware manufacturers, mobile carriers, software developers, semiconductor companies, and
commercialization companies. Of particular note are the prominent mobile technology companies,
including Samsung, Motorola, HTC, T-Mobile, Vodafone, ARM, and Qualcomm. In their own
words, the OHA represents the following:

A commitment to openness, a shared vision for the future, and concrete plans to
make the vision a reality. To accelerate innovation in mobile and offer consumers
a richer, less expensive, and better mobile experience.

 —www.openhandsetalliance.com

The OHA hopes to deliver a better mobile software experience for consumers by providing the plat-
form needed for innovative mobile development at a faster rate and with higher quality than existing
platforms, without licensing fees for either software developers or handset manufacturers.

WHAT DOES ANDROID RUN ON?

The fi rst Android mobile handset, the T-Mobile G1, was released in the United States in October
2008. By the beginning of 2012, more than 300 million Android-compatible devices have been sold
from more than 39 manufacturers, in more than 123 countries, on 231 different carrier networks.

Rather than being a mobile OS created for a single hardware implementation, Android is designed
to support a large variety of hardware platforms, from smartphones to tablets and televisions.

c01.indd 10c01.indd 10 4/11/2012 10:03:26 AM4/11/2012 10:03:26 AM

http://www.openhandsetalliance.com

Meier c01.indd V1 - 11/24/2011 Page 11

Why Develop for Android? x 11

With no licensing fees or proprietary software, the cost to handset manufacturers for providing
Android devices is comparatively low. Many people now expect that the advantages of Android as a
platform for creating powerful applications will encourage device manufacturers to produce increas-
ingly diverse and tailored hardware.

WHY DEVELOP FOR MOBILE?

In market terms, the emergence of modern mobile smartphones — multifunction devices including a
phone but featuring a full-featured web browser, cameras, media players, Wi-Fi, and location-based
services — has fundamentally changed the way people interact with their mobile devices and access
the Internet.

Mobile-phone ownership easily surpasses computer ownership in many countries, with more than
3 billion mobile phone users worldwide. 2009 marked the year that more people accessed the Internet
for the fi rst time from a mobile phone rather than a PC. Many people believe that within the next
5 years more people will access the Internet by mobile phone rather than using personal computers.

The increasing popularity of modern smartphones, combined with the increasing availability of high-
speed mobile data and Wi-Fi hotspots, has created a huge opportunity for advanced mobile applications.

The ubiquity of mobile phones, and our attachment to them, makes them a fundamentally different
platform for development from PCs. With a microphone, camera, touchscreen, location detection,
and environmental sensors, a phone can effectively become an extra-sensory perception device.

Smartphone applications have changed the way people use their phones. This gives you, the applica-
tion developer, a unique opportunity to create dynamic, compelling new applications that become a
vital part of people’s lives.

WHY DEVELOP FOR ANDROID?

Android represents a clean break, a mobile framework based on the reality of modern mobile
devices designed by developers, for developers.

With a simple, powerful, and open SDK, no licensing fees, excellent documentation, and a thriving
developer community, Android represents an opportunity to create software that changes how and
why people use their mobile phones.

The barrier to entry for new Android developers is minimal:

 ‰ No certifi cation is required to become an Android developer.

 ‰ Google Play provides free, up-front purchase, and in-app billing options for distribution and
monetization of your applications.

 ‰ There is no approval process for application distribution.

 ‰ Developers have total control over their brands.

From a commercial perspective, more than 850,000 new Android devices are activated daily, with
many studies showing the largest proportion of new smartphone sales belonging to Android devices.

c01.indd 11c01.indd 11 4/11/2012 10:03:27 AM4/11/2012 10:03:27 AM

Meier c01.indd V1 - 11/24/2011 Page 12

12 x CHAPTER 1 HELLO, ANDROID

As of March 2012, Google Play (formerly Android Market) has expanded its support for application
sales to 131 countries, supporting more than 10 billion installs at a growth rate of 1 billion downloads
per month.

Factors Driving Android’s Adoption

Developers have always been a critical element within the Android ecosystem, with Google and the
OHA betting that the way to deliver better mobile software to consumers is to make it easier for
developers to write it.

As a development platform, Android is powerful and intuitive, enabling developers who have never
programmed for mobile devices to create innovative applications quickly and easily. It’s easy to see how
compelling Android applications have created demand for the devices necessary to run them, particu-
larly when developers write applications for Android because they can’t write them for other platforms.

As Android expands into more form-factors, with increasingly powerful hardware, advanced sen-
sors, and new developer APIs, the opportunities for innovation will continue to grow.

Open access to the nuts and bolts of the underlying system is what’s always driven software develop-
ment and platform adoption. The Internet’s inherent openness has seen it become the platform for
a multibillion-dollar industry within 10 years of its inception. Before that, it was open systems such
as Linux and the powerful APIs provided as part of the Windows operating system that enabled the
explosion in personal computers and the movement of computer programming from the arcane to
the mainstream.

This openness and power ensure that anyone with the inclination can bring a vision to life at
minimal cost.

What Android Has That Other Platforms Don’t Have

Many of the features listed previously, such as 3D graphics and native database support, are also
available in other native mobile SDKs, as well as becoming available on mobile browsers.

The pace of innovation in mobile platforms, both Android and its competitors, makes an accurate
comparison of the available features diffi cult. The following noncomprehensive list details some of the
features available on Android that may not be available on all modern mobile development platforms:

 ‰ Google Maps applications — Google Maps for Mobile has been hugely popular, and
Android offers a Google Map as an atomic, reusable control for use in your applications. The
Map View lets you display, manipulate, and annotate a Google Map within your Activities to
build map-based applications using the familiar Google Maps interface.

 ‰ Background services and applications — Full support for background applications and ser-
vices lets you create applications based on an event-driven model, working silently while other
applications are being used or while your mobile sits ignored until it rings, fl ashes, or vibrates
to get your attention. Maybe it’s a streaming music player, an application that tracks the stock
market, alerting you to signifi cant changes in your portfolio, or a service that changes your
ringtone or volume depending on your current location, the time of day, and the identity of
the caller. Android provides the same opportunities for all applications and developers.

c01.indd 12c01.indd 12 4/11/2012 10:03:27 AM4/11/2012 10:03:27 AM

Meier c01.indd V1 - 11/24/2011 Page 13

Why Develop for Android? x 13

 ‰ Shared data and inter-process communication — Using Intents and Content Providers,
Android lets your applications exchange messages, perform processing, and share data. You
can also use these mechanisms to leverage the data and functionality provided by the native
Android applications. To mitigate the risks of such an open strategy, each application’s pro-
cess, data storage, and fi les are private unless explicitly shared with other applications via
a full permission-based security mechanism, as detailed in Chapter 18, “Advanced Android
Development.”

 ‰ All applications are created equal — Android doesn’t differentiate between native applica-
tions and those developed by third parties. This gives consumers unprecedented power to
change the look and feel of their devices by letting them completely replace every native
application with a third-party alternative that has access to the same underlying data and
hardware.

 ‰ Wi-Fi Direct and Android Beam — Using these innovative new inter-device communication
APIs, you can include features such as instant media sharing and streaming. Android Beam is
an NFC-based API that lets you provide support for proximity-based interaction, while Wi-Fi
Direct offers a wider range peer-to-peer for reliable, high-speed communication between
devices.

 ‰ Home-screen Widgets, Live Wallpaper, and the quick search box — Using Widgets and Live
Wallpaper, you can create windows into your application from the phone’s home screen.
The quick search box lets you integrate search results from your application directly into the
phone’s search functionality.

The Changing Mobile Development Landscape

Existing mobile development platforms have created an aura of exclusivity around mobile develop-
ment. In contrast, Android allows, even encourages, radical change.

As consumer devices, Android handsets ship with a core set of the standard applications that
consumers expect on a new phone, but the real power lies in users’ ability to completely cus-
tomize their devices’ look, feel, and function — giving application developers an exciting
opportunity.

All Android applications are a native part of the phone, not just software that’s run in a sand-
box on top of it. Rather than writing small-screen versions of software that can be run on
low-power devices, you can now build mobile applications that change the way people use
their phones.

The fi eld of mobile development is currently enjoying a period of rapid innovation and incredible
growth. This provides both challenges and opportunities for developers simply to keep up with the
pace of change, let alone identify the opportunities these changes make possible.

Android will continue to advance and improve to compete with existing and future mobile develop-
ment platforms, but as an open-source developer framework, the strength of the SDK is very much
in its favor. Its free and open approach to mobile application development, with total access to the
phone’s resources, represents an opportunity for any mobile developer looking to seize the opportu-
nities now available in mobile development.

c01.indd 13c01.indd 13 4/11/2012 10:03:27 AM4/11/2012 10:03:27 AM

Meier c01.indd V1 - 11/24/2011 Page 14

14 x CHAPTER 1 HELLO, ANDROID

INTRODUCING THE DEVELOPMENT FRAMEWORK

With the “why” covered, let’s take a look at the “how.”

Android applications normally are written using Java as the programming language but executed by
means of a custom VM called Dalvik, rather than a traditional Java VM.

Later in this chapter you’ll be introduced to the framework, starting with a tech-
nical explanation of the Android software stack, followed by a look at what’s
included in the SDK, an introduction to the Android libraries, and a look at the
Dalvik VM.

Each Android application runs in a separate process within its own Dalvik instance, relinquishing
all responsibility for memory and process management to the Android run time, which stops and
kills processes as necessary to manage resources.

Dalvik and the Android run time sit on top of a Linux kernel that handles low-level hardware inter-
action, including drivers and memory management, while a set of APIs provides access to all the
underlying services, features, and hardware.

What Comes in the Box

The Android SDK includes everything you need to start developing, testing, and debugging Android
applications:

 ‰ The Android APIs — The core of the SDK is the Android API libraries that provide developer
access to the Android stack. These are the same libraries that Google uses to create native
Android applications.

 ‰ Development tools — The SDK includes several development tools that let you compile and
debug your applications so that you can turn Android source code into executable applica-
tions. You will learn more about the developer tools in Chapter 2, “Getting Started.”

 ‰ The Android Virtual Device Manager and emulator — The Android emulator is a fully inter-
active mobile device emulator featuring several alternative skins. The emulator runs within
an Android Virtual Device (AVD) that simulates a device hardware confi guration. Using the
emulator you can see how your applications will look and behave on a real Android device.
All Android applications run within the Dalvik VM, so the software emulator is an excellent
development environment — in fact, because it’s hardware-neutral, it provides a better inde-
pendent test environment than any single hardware implementation.

 ‰ Full documentation — The SDK includes extensive code-level reference information detailing
exactly what’s included in each package and class and how to use them. In addition to the
code documentation, Android’s reference documentation and developer guide explains how
to get started, gives detailed explanations of the fundamentals behind Android development,
highlights best practices, and provides deep-dives into framework topics.

 ‰ Sample code — The Android SDK includes a selection of sample applications that demonstrate
some of the possibilities available with Android, as well as simple programs that highlight
how to use individual API features.

c01.indd 14c01.indd 14 4/11/2012 10:03:27 AM4/11/2012 10:03:27 AM

Meier c01.indd V1 - 11/24/2011 Page 15

Introducing the Development Framework x 15

 ‰ Online support — Android has rapidly generated a vibrant developer community. The
Google Groups (http://developer.android.com/resources/community-groups
.html#ApplicationDeveloperLists) are active forums of Android developers with regular
input from the Android engineering and developer relations teams at Google. Stack Overfl ow
(www.stackoverflow.com/questions/tagged/android) is also a hugely popular destina-
tion for Android questions and a great place to fi nd answers to beginner questions.

For those of you using Eclipse, Android has released the Android Development Tools (ADT) plug-
in that simplifi es project creation and tightly integrates Eclipse with the Android emulator and the
build and debugging tools. The features of the ADT plug-in are covered in more detail in Chapter 2.

Understanding the Android Software Stack

The Android software stack is, put simply, a Linux kernel and a collection of C/C++ libraries
exposed through an application framework that provides services for, and management of, the run
time and applications. The Android software stack is composed of the elements shown in Figure 1-1.

 ‰ Linux kernel — Core services (including hardware drivers, process and memory management,
security, network, and power management) are handled by a Linux 2.6 kernel. The kernel
also provides an abstraction layer between the hardware and the remainder of the stack.

 ‰ Libraries — Running on top of the kernel, Android includes various C/C++ core libraries
such as libc and SSL, as well as the following:

 ‰ A media library for playback of audio and video media

 ‰ A surface manager to provide display management

 ‰ Graphics libraries that include SGL and OpenGL for 2D and 3D graphics

 ‰ SQLite for native database support

 ‰ SSL and WebKit for integrated web browser and Internet security

 ‰ Android run time — The run time is what makes an Android phone an Android phone rather
than a mobile Linux implementation. Including the core libraries and the Dalvik VM, the
Android run time is the engine that powers your applications and, along with the libraries,
forms the basis for the application framework.

 ‰ Core libraries — Although most Android application development is written using
the Java language, Dalvik is not a Java VM. The core Android libraries provide
most of the functionality available in the core Java libraries, as well as the Android-
specifi c libraries.

 ‰ Dalvik VM — Dalvik is a register-based Virtual Machine that’s been optimized to
ensure that a device can run multiple instances effi ciently. It relies on the Linux ker-
nel for threading and low-level memory management.

 ‰ Application framework — The application framework provides the classes used to create
Android applications. It also provides a generic abstraction for hardware access and manages
the user interface and application resources.

 ‰ Application layer — All applications, both native and third-party, are built on the application
layer by means of the same API libraries. The application layer runs within the Android run
time, using the classes and services made available from the application framework.

c01.indd 15c01.indd 15 4/11/2012 10:03:27 AM4/11/2012 10:03:27 AM

http://developer.android.com/resources/community-groups.html#ApplicationDeveloperLists
http://developer.android.com/resources/community-groups.html#ApplicationDeveloperLists
http://www.stackoverflow.com/questions/tagged/android

Meier c01.indd V1 - 11/24/2011 Page 16

16 x CHAPTER 1 HELLO, ANDROID

Application Layer

Application Framework

Native Apps
(Contacts, Maps, Browser, etc.)

Graphics
(OpenGL, SGL, FreeType)

Third-Party Apps

Location-Based
Services

Telephony
Bluetooth / NFC /

Wi-Fi Direct
Notifications

Media

libc

SSL & Webkit Android Libraries

Android Run Time

SQLite

Views
Resource
Manager

Surface
Manager

Dalvik
Virtual Machine

Memory
Management

Process
Management

Power
Management

Hardware Drivers
(USB, Display, Bluetooth, etc.)

Content
Providers

Window
Manager

Activity
Manager

Package
Manager

Developer Apps

Libraries

Linux Kernel

 FIGURE 1-1

The Dalvik Virtual Machine

One of the key elements of Android is the Dalvik VM. Rather than using a traditional Java VM such
as Java ME, Android uses its own custom VM designed to ensure that multiple instances run effi -
ciently on a single device.

The Dalvik VM uses the device’s underlying Linux kernel to handle low-level functionality, includ-
ing security, threading, and process and memory management. It’s also possible to write C/C++
applications that run closer to the underlying Linux OS. Although you can do this, in most cases
there’s no reason you should need to.

If the speed and effi ciency of C/C++ is required for your application, Android provides a native
development kit (NDK). The NDK is designed to enable you to create C++ libraries using the libc
and libm libraries, along with native access to OpenGL.

c01.indd 16c01.indd 16 4/11/2012 10:03:27 AM4/11/2012 10:03:27 AM

Meier c01.indd V1 - 11/24/2011 Page 17

Introducing the Development Framework x 17

This book focuses exclusively on writing applications that run within Dalvik
using the SDK; NDK development is not within the scope of this book. If
your inclinations run toward NDK development, exploring the Linux kernel
and C/C++ underbelly of Android, modifying Dalvik, or otherwise tinkering
with things under the hood, check out the Android Internals Google Group at
http://groups.google.com/group/android-internals.

All Android hardware and system service access is managed using Dalvik as a middle tier. By using
a VM to host application execution, developers have an abstraction layer that ensures they should
never have to worry about a particular hardware implementation.

The Dalvik VM executes Dalvik executable fi les, a format optimized to ensure minimal memory
footprint. You create .dex executables by transforming Java language compiled classes using the
tools supplied within the SDK.

You’ll learn more about how to create Dalvik executables in Chapter 2.

Android Application Architecture

Android’s architecture encourages component reuse, enabling you to publish and share Activities,
Services, and data with other applications, with access managed by the security restrictions you defi ne.

The same mechanism that enables you to produce a replacement contact manager or phone dialer
can let you expose your application’s components in order to let other developers build on them by
creating new UI front ends or functionality extensions.

The following application services are the architectural cornerstones of all Android applications,
providing the framework you’ll be using for your own software:

 ‰ Activity Manager and Fragment Manager — Control the lifecycle of your Activities and
Fragments, respectively, including management of the Activity stack (described in Chapters 3
and 4).

 ‰ Views — Used to construct the user interfaces for your Activities and Fragments, as described
in Chapter 4.

 ‰ Notifi cation Manager — Provides a consistent and nonintrusive mechanism for signaling
your users, as described in Chapter 10.

 ‰ Content Providers — Lets your applications share data, as described in Chapter 8.

 ‰ Resource Manager — Enables non-code resources, such as strings a nd graphics, to be exter-
nalized, as shown in Chapter 3.

 ‰ Intents — Provides a mechanism for transferring data between applications and their compo-
nents, as described in Chapter 5.

c01.indd 17c01.indd 17 4/11/2012 10:03:28 AM4/11/2012 10:03:28 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://groups.google.com/group/android-internals

Meier c01.indd V1 - 11/24/2011 Page 18

18 x CHAPTER 1 HELLO, ANDROID

Android Libraries

Android offers a number of APIs for developing your applications. Rather than list them all here,
check out the documentation at http://developer.android.com/reference/packages.html,
which gives a complete list of packages included in the Android SDK.

Android is intended to target a wide range of mobile hardware, so be aware that the suitability and
implementation of some of the advanced or optional APIs may vary depending on the host device.

c01.indd 18c01.indd 18 4/11/2012 10:03:28 AM4/11/2012 10:03:28 AM

http://developer.android.com/reference/packages.html

Meier c02.indd V1 - 12/07/2011 Page 19

2
Getting Started

WHAT’S IN THIS CHAPTER?

 ‰ Installing the Android SDK, creating a development environment, and

debugging your projects

 ‰ Understanding mobile design considerations

 ‰ The importance of optimizing for speed and effi ciency

 ‰ Designing for small screens and mobile data connections

 ‰ Using Android Virtual Devices, the Emulator, and other development

tools

All you need to start writing your own Android applications is a copy of the Android SDK
and the Java Development Kit (JDK). Unless you’re a masochist, you’ll probably want a Java
integrated development environment (IDE) — Eclipse is particularly well supported — to make
development a little bit less painful.

The Android SDK, the JDK, and Eclipse are each available for Windows, Mac OS, and Linux,
so you can explore Android from the comfort of whatever operating system you favor. The SDK
tools and Emulator work on all three OS environments, and because Android applications are
run on a Dalvik virtual machine (VM), there’s no advantage to developing on any particular OS.

Android code is written using Java syntax, and the core Android libraries include most of the
features from the core Java APIs. Before you can run your projects, you must translate them
into Dalvik bytecode. As a result, you get the familiarity of Java syntax while your applica-
tions gain the advantage of running on a VM optimized for mobile devices.

The Android SDK starter package contains the SDK platform tools, including the SDK
Manager, which is necessary to download and install the rest of the SDK packages.

c02.indd 19c02.indd 19 4/11/2012 10:04:31 AM4/11/2012 10:04:31 AM

Meier c02.indd V1 - 12/07/2011 Page 20

20 x CHAPTER 2 GETTING STARTED

The Android SDK Manager is used to download Android framework SDK libraries, optional add-
ons (including the Google APIs and the support library), complete documentation, and a series
of excellent sample applications. It also includes the platform and development tools you will use
to write and debug your applications, such as the Android Emulator to run your projects and the
Dalvik Debug Monitoring Service (DDMS) to help debug them.

By the end of this chapter, you’ll have downloaded the Android SDK starter package and used it to
install the SDK and its add-ons, the platform tools, documentation, and sample code. You’ll set up
your development environment, build your fi rst Hello World application, and run and debug it using
the DDMS and the Emulator running on an Android Virtual Device (AVD).

If you’ve developed for mobile devices before, you already know that their small-form factor, lim-
ited battery life, and restricted processing power and memory create some unique design challenges.
Even if you’re new to the game, it’s obvious that some of the things you can take for granted on the
desktop or the Web aren’t going to work on mobile or embedded devices.

The user environment brings its own challenges, in addition to those introduced by hardware limi-
tations. Many Android devices are used on the move and are often a distraction rather than the
focus of attention, so your application needs to be fast, responsive, and easy to learn. Even if your
application is designed for devices more conducive to an immersive experience, such as tablets or
televisions, the same design principles can be critical for delivering a high-quality user experience.

This chapter examines some of the best practices for writing Android applications that overcome the
inherent hardware and environmental challenges associated with mobile development. Rather than
try to tackle the whole topic, we’ll focus on using the Android SDK in a way that’s consistent with
good design principles.

DEVELOPING FOR ANDROID

The Android SDK includes all the tools and APIs you need to write compelling and powerful mobile
applications. The biggest challenge with Android, as with any new development toolkit, is learning
the features and limitations of its APIs.

If you have experience in Java development, you’ll fi nd that the techniques, syntax, and grammar
you’ve been using will translate directly into Android, although some of the specifi c optimization
techniques may seem counterintuitive.

If you don’t have experience with Java but have used other object-oriented languages (such as C#), you
should fi nd the transition straightforward. The power of Android comes from its APIs, not the language
being used, so being unfamiliar with some of the Java-specifi c classes won’t be a big disadvantage.

What You Need to Begin

Because Android applications run within the Dalvik VM, you can write them on any platform that
supports the developer tools. This currently includes the following:

 ‰ Microsoft Windows (XP or later)

 ‰ Mac OS X 10.5.8 or later (Intel chips only)

 ‰ Linux (including GNU C Library 2.7 or later)

c02.indd 20c02.indd 20 4/11/2012 10:04:35 AM4/11/2012 10:04:35 AM

Meier c02.indd V1 - 12/07/2011 Page 21

Developing for Android x 21

To get started, you’ll need to download and install the following:

 ‰ The Android SDK starter package

 ‰ Java Development Kit (JDK) 5 or 6

You can download the latest JDK from Sun at http://java.sun.com/javase/downloads/
index.jsp.

If you already have a JDK installed, make sure that it meets the preced-
ing requirements, and note that the Java Runtime Environment (JRE) is not
suffi cient.

In most circumstances, you’ll also want to install an IDE. The following sections describe how to
install the Android SDK and use Eclipse as your Android IDE.

Downloading and Installing the Android SDK

There’s no cost to download or use the API, and Google doesn’t require your application to pass
a review to distribute your fi nished programs on the Google Play Store. Although the Google Play
Store requires a small one-time fee to publish applications, if you chose not to distribute via the
Google Play Store, you can do so at no cost.

You can download the latest version of the SDK starter package for your chosen development platform
from the Android development home page at http://developer.android.com/sdk/index.html.

Unless otherwise noted, the version of the Android SDK used for writing this
book was version 4.0.3 (API level 15).

As an open-source platform, the Android SDK source is also available for you to
download and compile from http://source.android.com.

The starter package is a ZIP fi le that contains the latest version of the Android tools required to
download the rest of the Android SDK packages. Install it by unzipping the SDK into a new folder.
Take note of this location, as you’ll need it later.

If you are developing from a Windows platform, an executable Windows installer is available (and
recommended) as an alternative to the ZIP fi le for installing the platform tools.

Before you can begin development, you need to download at least one SDK platform release. You
can do this on Windows by running the SDK Manager.exe executable, or on Mac OS or Linux by
running the “android’’ executable in the tools subfolder of the starter package download.

The screen that appears (see Figure 2-1) shows each of the packages available for the download. This
includes a node for the platform tools, each of the platform releases, and a collection of extras, such
as the Android Support Package and billing/licensing packages.

c02.indd 21c02.indd 21 4/11/2012 10:04:35 AM4/11/2012 10:04:35 AM

http://java.sun.com/javase/downloads
http://developer.android.com/sdk/index.html
http://source.android.com

Meier c02.indd V1 - 12/07/2011 Page 22

22 x CHAPTER 2 GETTING STARTED

You can expand each platform release node to see a list of the packages included within it, including
the tools, documentation, and sample code packages.

To get started, simply check the boxes corresponding to the newest framework SDK and the latest
version of the tools, compatibility/support library, documentation, and sample code.

FIGURE 2-1

For testing the backward compatibility of your applications, it can often be use-
ful to download the framework SDK for each version you intend to support.

To use the Google APIs (which contain the Maps APIs), you also need to select the Google APIs by
Google package from the platform releases you want to support.

c02.indd 22c02.indd 22 4/11/2012 10:04:36 AM4/11/2012 10:04:36 AM

Meier c02.indd V1 - 12/07/2011 Page 23

Developing for Android x 23

When you click the Install Packages button, the packages you’ve chosen will be downloaded to your
SDK installation folder. The result is a collection of framework API libraries, documentation, and
several sample applications.

The examples included in the SDK are well documented and are an excellent
source for full, working examples of applications written for Android. When you
fi nish setting up your development environment, it’s worth going through them.

Downloading and Installing Updates to the SDK

As new versions of the Android framework SDK, developer tools, sample code, documentation,
compatibility library, and third-party add-ons become available, you can use the Android SDK
Manager to download and install those updates.

All future packages and upgrades will be placed in the same SDK location.

Developing with Eclipse

The examples and step-by-step instructions in this book are targeted at developers using Eclipse
with the Android Developer Tools (ADT) plug-in. Neither is required, though; you can use any text
editor or Java IDE you’re comfortable with and use the developer tools in the SDK to compile, test,
and debug the code snippets and sample applications.

As the recommended development platform, using Eclipse with the ADT plug-in for your Android
development offers some signifi cant advantages, primarily through the tight integration of many of
the Android build and debug tools into your IDE.

Eclipse is a particularly popular open-source IDE for Java development. It’s available for download
for each of the development platforms supported by Android (Windows, Mac OS, and Linux) from
the Eclipse foundation (www.eclipse.org/downloads).

Many variations of Eclipse are available, with Eclipse 3.5 (Galileo) or above required to use
the ADT plugin. The following is the confi guration for Android used in the preparation of
this book:

 ‰ Eclipse 3.7 (Indigo) (Eclipse Classic download)

 ‰ Eclipse Java Development Tools (JDT) plug-in

 ‰ Web Standard Tools (WST)

The JDT plug-in and WST are included in most Eclipse IDE packages.

Installing Eclipse consists of uncompressing the download into a new folder, and then running the
eclipse executable. When it starts for the fi rst time, you should create a new workspace for your
Android development projects.

c02.indd 23c02.indd 23 4/11/2012 10:04:36 AM4/11/2012 10:04:36 AM

http://www.eclipse.org/downloads

Meier c02.indd V1 - 12/07/2011 Page 24

24 x CHAPTER 2 GETTING STARTED

Using the Android Developer Tools Plug-In for Eclipse

The ADT plug-in for Eclipse simplifi es your Android development by integrating the developer
tools, including the Emulator and .class-to-.dex converter, directly into the IDE. Although you don’t
have to use the ADT plug-in, it can make creating, testing, and debugging your applications faster
and easier.

The ADT plug-in integrates the following into Eclipse:

 ‰ An Android Project Wizard, which simplifi es creating new projects and includes a basic
application template

 ‰ Forms-based manifest, layout, and resource editors to help create, edit, and validate your
XML resources

 ‰ Automated building of Android projects, conversion to Android executables (.dex), pack-
aging to package fi les (.apk), and installation of packages onto Dalvik VMs (running both
within the Emulator or on physical devices)

 ‰ The Android Virtual Device manager, which lets you create and manage virtual devices to
host Emulators that run a specifi c release of the Android OS and with set hardware and
memory constraints

 ‰ The Android Emulator, including the ability to control the Emulator’s appearance and net-
work connection settings, and the ability to simulate incoming calls and SMS messages

 ‰ The Dalvik Debug Monitoring Service (DDMS), which includes port forwarding, stack, heap,
and thread viewing, process details, and screen-capture facilities

 ‰ Access to the device or Emulator’s fi lesystem, enabling you to navigate the folder tree and
transfer fi les

 ‰ Runtime debugging, which enables you to set breakpoints and view call stacks

 ‰ All Android/Dalvik log and console outputs

Figure 2-2 shows the DDMS perspective within Eclipse with the ADT plug-in installed.

Installing the ADT Plug-In

Install the ADT plug-in by following these steps:

1. Select Help Í Install New Software from within Eclipse.

2. In the Available Software dialog box that appears, click the Add button.

3. In the next dialog, enter a name you will remember (e.g., Android Developer Tools) into the
Name fi eld, and paste the following address into the Location text entry box: https://dl-
ssl.google.com/android/eclipse/.

4. Press OK and Eclipse searches for the ADT plug-in. When fi nished, it displays the available
plug-ins, as shown in Figure 2-3. Select it by clicking the check box next to the Developer
Tools root node, and then click Next.

c02.indd 24c02.indd 24 4/11/2012 10:04:37 AM4/11/2012 10:04:37 AM

https://dl-ssl.google.com/android/eclipse
https://dl-ssl.google.com/android/eclipse
https://dl-ssl.google.com/android/eclipse

Meier c02.indd V1 - 12/07/2011 Page 25

Developing for Android x 25

FIGURE 2-2

5. Eclipse now downloads the plug-in. When it fi nishes, a list of the Developer Tools displays
for your review. Click Next.

6. Read and accept the terms of the license agreement, and click Next and then Finish. As the
ADT plug-in is not signed, you’ll be prompted before the installation continues.

7. When installation is complete, you need to restart Eclipse and update the ADT preferences.
Restart and select Window Í Preferences (or Eclipse Í Preferences for Mac OS).

8. Select Android from the left panel.

9. Click Browse, navigate to the folder into which you installed the Android SDK, and then
click Apply. The list updates to display each available SDK target, as shown in Figure 2-4.
Click OK to complete the SDK installation.

If you move your SDK installation to a different location, you will need to
update the ADT preference, as described in steps 7 to 9 above, to refl ect the new
path to the SDK against which the ADT should be building.

c02.indd 25c02.indd 25 4/11/2012 10:04:37 AM4/11/2012 10:04:37 AM

Meier c02.indd V1 - 12/07/2011 Page 26

26 x CHAPTER 2 GETTING STARTED

FIGURE 2-3

FIGURE 2-4

c02.indd 26c02.indd 26 4/11/2012 10:04:38 AM4/11/2012 10:04:38 AM

Meier c02.indd V1 - 12/07/2011 Page 27

Developing for Android x 27

Updating the ADT Plug-In

In most cases, you can update your ADT plug-in simply as follows:

1. Navigate to Help Í Check for Updates.

2. If there are any ADT updates available, they will be presented. Simply select them and choose
Install.

Sometimes a plug-in upgrade may be so signifi cant that the dynamic update mecha-
nism can’t be used. In those cases you may have to remove the previous plug-in
completely before installing the newer version, as described in the previous section.

Using the Support Package

The support library package (previously known as the compatibility library) is a set of static librar-
ies that you can include as part of your projects to gain either convenience APIs that aren’t packaged
as part of the framework (such as the View Pager), or useful APIs that are not available on all plat-
form releases (such as Fragments).

The support package enables you to use framework API features that were introduced in recent
Android platform releases on any device running Android 1.6 (API level 4) and above. This helps
you provide a consistent user experience and greatly simplifi es your development process by reduc-
ing the burden of supporting multiple platform versions.

It’s good practice to use the support library rather than the framework API
libraries when you want to support devices running earlier platform releases and
where the support library offers all the functionality you require.

In the interest of simplicity, the examples in this book target Android API level
15 and use the framework APIs in preference to the support library, highlighting
specifi c areas where the support library would not be a suitable alternative.

To incorporate a support library into your project, perform the following steps:

1. Add a new /libs folder in the root of your project hierarchy.

2. Copy the support library JAR fi le from the /extras/android/support/ folder in your
Android SDK installation location.

You’ll note that the support folder includes multiple subfolders, each of which represents
the minimum platform version supported by that library. Simply use the corresponding JAR
fi le stored in the subfolder labeled as less than or equal to the minimum platform version
you plan to support.

For example, if you want to support all platform versions from Android 1.6 (API level 4)
and above, you would copy v4/android-support-v4.jar.

3. After copying the fi le into your project’s /libs folder, add it to your project build path by
right-clicking in the Package Explorer and selecting Build Path Í Add to Build Path.

c02.indd 27c02.indd 27 4/11/2012 10:04:38 AM4/11/2012 10:04:38 AM

Meier c02.indd V1 - 12/07/2011 Page 28

28 x CHAPTER 2 GETTING STARTED

By design, the support library classes mirror the names of their framework
counterparts. Some of these classes (such as SimpleCursorAdapter) have existed
since early platform releases. As a result, there’s a signifi cant risk that the code
completion and automatic import-management tools in Eclipse (and other IDEs)
will select the wrong library — particularly when you’re building against newer
versions of the SDK.

It’s good practice to set your project build target to the minimum platform ver-
sion you plan to support, and to ensure the import statements are using the com-
patibility library for classes that also exist in the target framework.

Creating Your First Android Application

You’ve downloaded the SDK, installed Eclipse, and plugged in the plug-in. You are now ready to
start programming for Android. Start by creating a new Android project and setting up your Eclipse
run and debug confi gurations, as described in the following sections.

Creating a New Android Project

To create a new Android project using the Android New Project Wizard, do the following:

1. Select File Í New Í Project.

2. Select the Android Project application type from the Android folder, and click Next.

3. In the wizard that appears, enter the details for your new project. On the fi rst page
(Figure 2-5), the Project Name is the name of your project fi le. You can also select the loca-
tion your project should be saved.

FIGURE 2-5

c02.indd 28c02.indd 28 4/11/2012 10:04:39 AM4/11/2012 10:04:39 AM

Meier c02.indd V1 - 12/07/2011 Page 29

Developing for Android x 29

4. The next page (Figure 2-6) lets you select the build target for your application. The build tar-
get is the version of the Android framework SDK that you plan to develop with. In addition
to the open sourced Android SDK libraries available as part of each platform release, Google
offers a set of proprietary APIs that offer additional libraries (such as Maps). If you want to
use these Google-specifi c APIs, you must select the Google APIs package corresponding to the
platform release you want to target.

FIGURE 2-6

Your project’s build target does not need to correspond to its minimum SDK or
target SDK. For new projects it’s good practice to build against the newest ver-
sion of the SDK to take advantage of effi ciency and UI improvements in newer
platform releases.

5. The fi nal page (Figure 2-7) allows you to specify the application properties. The Application
Name is the friendly name for your application; the Package Name specifi es its Java pack-
age; the Create Activity option lets you specify the name of a class that will be your initial
Activity; and setting the Minimum SDK lets you specify the minimum version of the SDK
that your application will run on.

FIGURE 2-7

c02.indd 29c02.indd 29 4/11/2012 10:04:39 AM4/11/2012 10:04:39 AM

Meier c02.indd V1 - 12/07/2011 Page 30

30 x CHAPTER 2 GETTING STARTED

Selecting the minimum SDK version requires you to choose the level of backward
compatibility you want to support to target a wider group of Android devices.
Your application will be available from the Google Play Store on any device
running the specifi ed build or higher.

At the time of this writing, more than 98% of Android devices were running
at least Android 2.1 (API level 7). The latest Ice Cream Sandwich SDK is
4.0.3 (API level 15).

6. When you’ve entered the details, click Finish.

If you selected Create Activity, the ADT plug-in will create a new project that includes a class that
extends Activity. Rather than being completely empty, the default template implements Hello
World. Before modifying the project, take this opportunity to confi gure launch confi gurations for
running and debugging.

Creating an Android Virtual Device

AVDs are used to simulate the hardware and software confi gurations of different Android devices,
allowing you test your applications on a variety of hardware platforms.

There are no prebuilt AVDs in the Android SDK, so without a physical device, you need to create at
least one before you can run and debug your applications.

1. Select Window Í AVD Manager (or select the AVD Manager icon on the Eclipse toolbar).

2. Select the New... button.

The resulting Create new Android Virtual Device (AVD) dialog allows you to confi gure a
name, a target build of Android, an SD card capacity, and device skin.

3. Create a new AVD called “My_AVD” that targets Android 4.0.3, includes a 16MB SD Card,
and uses the Galaxy Nexus skin, as shown in Figure 2-8.

4. Click Create AVD and your new AVD will be created and ready to use.

Creating Launch Confi gurations

Launch confi gurations let you specify runtime options for running and debugging applications.
Using a launch confi guration you can specify the following:

 ‰ The Project and Activity to launch

 ‰ The deployment target (virtual or physical device)

 ‰ The Emulator’s launch parameters

 ‰ Input/output settings (including console defaults)

c02.indd 30c02.indd 30 4/11/2012 10:04:40 AM4/11/2012 10:04:40 AM

Meier c02.indd V1 - 12/07/2011 Page 31

Developing for Android x 31

FIGURE 2-8

You can specify different launch confi gurations for running and debugging applications. The follow-
ing steps show how to create a launch confi guration for an Android application:

1. Select Run Confi gurations… or Debug Confi gurations… from the Run menu.

2. Select your application from beneath the Android Application node on the project type list,
or right-click the Android Application node and select New.

3. Enter a name for the confi guration. You can create multiple confi gurations for each project,
so create a descriptive title that will help you identify this particular setup.

4. Choose your start-up options. The fi rst (Android) tab lets you select the project to run and
the Activity that you want to start when you run (or debug) the application. Figure 2-9
shows the settings for the project you created earlier.

5. Use the Target tab, as shown in Figure 2-10, to select the default virtual device to launch on,
or select Manual to select a physical or virtual device each time you run the application. You
can also confi gure the Emulator’s network connection settings and optionally wipe the user
data and disable the boot animation when launching a virtual device.

c02.indd 31c02.indd 31 4/11/2012 10:04:40 AM4/11/2012 10:04:40 AM

Meier c02.indd V1 - 12/07/2011 Page 32

32 x CHAPTER 2 GETTING STARTED

FIGURE 2-9

The Android SDK does not include a default AVD, so you need to create one
before you can run or debug your applications using the Emulator. If the Virtual
Device selection list in Figure 2-10 is empty, click Manager... to open the Android
Virtual Device Manager and create one as described in the previous section.

Further details on the Android Virtual Device Manager are available later in this
chapter.

6. Set any additional properties in the Common tab.

7. Click Apply, and your launch confi guration will be saved.

FIGURE 2-10

c02.indd 32c02.indd 32 4/11/2012 10:04:40 AM4/11/2012 10:04:40 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Meier c02.indd V1 - 12/07/2011 Page 33

Developing for Android x 33

Running and Debugging Your Android Application

You’ve created your fi rst project and created the run and debug confi gurations for it. Before making any
changes, test your installation and confi gurations by running and debugging the Hello World project.

From the Run menu, select Run or Debug to launch the most recently selected confi guration, or
select Run Confi gurations… or Debug Confi gurations… to select a specifi c confi guration.

If you’re using the ADT plug-in, running or debugging your application does the following:

 ‰ Compiles the current project and converts it to an Android executable (.dex)

 ‰ Packages the executable and your project’s resources into an Android package (.apk)

 ‰ Starts the virtual device (if you’ve targeted one and it’s not already running)

 ‰ Installs your application onto the target device

 ‰ Starts your application

If you’re debugging, the Eclipse debugger will then be attached, allowing you to set breakpoints and
debug your code.

If everything is working correctly, you’ll see a new Activity running on the device or in the
Emulator, as shown in Figure 2-11.

FIGURE 2-11

Understanding Hello World

Take a step back and have a good look at your fi rst Android application.

Activity is the base class for the visual, interactive components of your application; it is roughly
equivalent to a Form in traditional desktop development (and is described in detail in Chapter 3,

c02.indd 33c02.indd 33 4/11/2012 10:04:41 AM4/11/2012 10:04:41 AM

Meier c02.indd V1 - 12/07/2011 Page 34

34 x CHAPTER 2 GETTING STARTED

“Creating Applications and Activities”). Listing 2-1 shows the skeleton code for an Activity-based
class; note that it extends Activity and overrides the onCreate method.

LISTING 2-1: Hello World

package com.paad.helloworld;

import android.app.Activity;
import android.os.Bundle;

public class MyActivity extends Activity {

 /** Called when the Activity is first created. **/
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);
 }
}

code snippet PA4AD_Ch02_HelloWorld/src/MyActivity.java

In Android, visual components are called Views, which are similar to controls in traditional desktop
development. The Hello World template created by the wizard overrides the onCreate method to
call setContentView, which lays out the UI by infl ating a layout resource, as highlighted in bold in
the following snippet:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
}

The resources for an Android project are stored in the res folder of your project hierarchy, which
includes layout, values, and a series of drawable subfolders. The ADT plug-in interprets these
resources to provide design-time access to them through the R variable, as described in Chapter 3.

Listing 2-2 shows the UI layout defi ned in the main.xml fi le created by the Android project template
and stored in the project’s res/layout folder.

LISTING 2-2: Hello World layout resource

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>
 <TextView
 android:layout_width=”fill_parent”

c02.indd 34c02.indd 34 4/11/2012 10:04:41 AM4/11/2012 10:04:41 AM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier c02.indd V1 - 12/07/2011 Page 35

Developing for Android x 35

 android:layout_height=”wrap_content”
 android:text=”@string/hello”
 />
</LinearLayout>

code snippet PA4AD_Ch02_HelloWorld/res/layout/main.xml

Defi ning your UI in XML and infl ating it is the preferred way of implementing your user interfaces
(UIs), as it neatly decouples your application logic from your UI design.

To get access to your UI elements in code, you add identifi er attributes to them in the XML defi nition.
You can then use the findViewById method to return a reference to each named item. The following
XML snippet shows an ID attribute added to the Text View widget in the Hello World template:

<TextView
 android:id=”@+id/myTextView”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/hello”
/>

And the following snippet shows how to get access to it in code:

TextView myTextView = (TextView)findViewById(R.id.myTextView);

Alternatively (although it’s not generally considered good practice), you can create your layout
directly in code, as shown in Listing 2-3.

LISTING 2-3: Creating layouts in code

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 LinearLayout.LayoutParams lp;
 lp = new LinearLayout.LayoutParams(LinearLayout.LayoutParams.FILL_PARENT,
 LinearLayout.LayoutParams.FILL_PARENT);

 LinearLayout.LayoutParams textViewLP;
 textViewLP = new LinearLayout.LayoutParams(
 LinearLayout.LayoutParams.FILL_PARENT,
 LinearLayout.LayoutParams.WRAP_CONTENT);

 LinearLayout ll = new LinearLayout(this);
 ll.setOrientation(LinearLayout.VERTICAL);

 TextView myTextView = new TextView(this);
 myTextView.setText(getString(R.string.hello));

 ll.addView(myTextView, textViewLP);
 this.addContentView(ll, lp);
}

code snippet PA4AD_Ch02_Manual_Layout/src/MyActivity.java

c02.indd 35c02.indd 35 4/11/2012 10:04:41 AM4/11/2012 10:04:41 AM

Meier c02.indd V1 - 12/07/2011 Page 36

36 x CHAPTER 2 GETTING STARTED

All the properties available in code can be set with attributes in the XML layout.

More generally, keeping the visual design decoupled from the application code helps keep the code
concise. With Android available on hundreds of different devices of varying screen sizes, defi ning
your layouts as XML resources makes it easier for you to include multiple layouts optimized for dif-
ferent screens.

You’ll learn how to build your user interface by creating layouts and building
your own custom Views in Chapter 4, “Building User Interfaces.”

Types of Android Applications

Most of the applications you create in Android will fall into one of the following categories:

 ‰ Foreground — An application that’s useful only when it’s in the foreground and is effectively
suspended when it’s not visible. Games are the most common examples.

 ‰ Background — An application with limited interaction that, apart from when being confi g-
ured, spends most of its lifetime hidden. These applications are less common, but good exam-
ples include call screening applications, SMS auto-responders, and alarm clocks.

 ‰ Intermittent — Most well-designed applications fall into this category. At one extreme are
applications that expect limited interactivity but do most of their work in the background.
A common example would be a media player. At the other extreme are applications that are
typically used as foreground applications but that do important work in the background.
Email and news applications are great examples.

 ‰ Widgets and Live Wallpapers — Some applications are represented only as a home-screen
Widget or as a Live Wallpaper.

Complex applications are often diffi cult to pigeonhole into a single category and usually include ele-
ments of each of these types. When creating your application, you need to consider how it’s likely
to be used and then design it accordingly. The following sections look more closely at some of the
design considerations for each application type.

Foreground Applications

When creating foreground applications, you need to consider carefully the Activity lifecycle
(described in Chapter 3) so that the Activity switches seamlessly between the background and the
foreground.

Applications have little control over their lifecycles, and a background application with no running
Services is a prime candidate for cleanup by Android’s resource management. This means that you
need to save the state of the application when it leaves the foreground, and then present the same
state when it returns to the front.

c02.indd 36c02.indd 36 4/11/2012 10:04:42 AM4/11/2012 10:04:42 AM

Meier c02.indd V1 - 12/07/2011 Page 37

Developing for Android x 37

It’s also particularly important for foreground applications to present a slick and intuitive user
experience. You’ll learn more about creating well-behaved and attractive foreground Activities in
Chapters 3, 4, 10, and 11.

Background Applications

These applications run silently in the background with little user input. They often listen for mes-
sages or actions caused by the hardware, system, or other applications, rather than relying on user
interaction.

You can create completely invisible services, but in practice it’s better to provide at least a basic level
of user control. At a minimum you should let users confi rm that the service is running and let them
confi gure, pause, or terminate it, as needed.

Services and Broadcast Receivers, the driving forces of background applica-
tions, are covered in depth in Chapter 5, “Intents and Broadcast Receivers,” and
Chapter 9, “Working in the Background.”

Intermittent Applications

Often you’ll want to create an application that can accept user input and that also reacts to events
when it’s not the active foreground Activity. Chat and e-mail applications are typical examples.
These applications are generally a union of visible Activities and invisible background Services and
Broadcast Receivers.

Such an application needs to be aware of its state when interacting with the user. This might mean
updating the Activity UI when it’s visible and sending notifi cations to keep the user updated when
it’s in the background, as described in the section “Using Notifi cations” in Chapter 10.

You must be particularly careful to ensure that the background processes of applications of this type
are well behaved and have a minimal impact on the device’s battery life.

Widgets and Live Wallpapers

In some circumstances your application may consist entirely of a Widget or Live Wallpaper. By
creating Widgets and Live Wallpapers, you provide interactive visual components that can add func-
tionality to user’s home screens.

Widget-only applications are commonly used to display dynamic information, such as battery levels,
weather forecasts, or the date and time.

You’ll learn how to create Widgets and Live Wallpapers in Chapter 14,
“Invading the Home Screen.”

c02.indd 37c02.indd 37 4/11/2012 10:04:42 AM4/11/2012 10:04:42 AM

Meier c02.indd V1 - 12/07/2011 Page 38

38 x CHAPTER 2 GETTING STARTED

DEVELOPING FOR MOBILE AND EMBEDDED DEVICES

Android does a lot to simplify mobile- or embedded-device software development, but you need to
understand the reasons behind the conventions. There are several factors to account for when writ-
ing software for mobile and embedded devices, and when developing for Android in particular.

In this chapter you’ll learn some of the techniques and best practices for writ-
ing effi cient Android code. In later examples, effi ciency is sometimes compro-
mised for clarity and brevity when new Android concepts or functionality are
introduced. In the best tradition of “Do as I say, not as I do,” the examples are
designed to show the simplest (or easiest-to-understand) way of doing some-
thing, not necessarily the best way of doing it.

Hardware-Imposed Design Considerations

Small and portable, mobile devices offer exciting opportunities for software development. Their lim-
ited screen size and reduced memory, storage, and processor power are far less exciting, and instead
present some unique challenges.

Compared to desktop or notebook computers, mobile devices have relatively:

 ‰ Low processing power

 ‰ Limited RAM

 ‰ Limited permanent storage capacity

 ‰ Small screens with low resolution

 ‰ High costs associated with data transfer

 ‰ Intermittent connectivity, slow data transfer rates, and high latency

 ‰ Unreliable data connections

 ‰ Limited battery life

Each new generation of phones improves many of these restrictions. In particular, newer phones
have dramatically improved screen resolutions and signifi cantly cheaper data costs.

The introduction of tablet devices and Android-powered televisions has expanded the range of
devices on which your application may be running and eliminating some of these restrictions.
However, given the range of devices available, it’s always good practice to design to accommodate
the worst-case scenario to ensure your application provides a great user experience no matter what
the hardware platform it’s installed on.

Be Effi cient

Manufacturers of embedded devices, particularly mobile devices, generally value small size and long
battery life over potential improvements in processor speed. For developers, that means losing the

c02.indd 38c02.indd 38 4/11/2012 10:04:43 AM4/11/2012 10:04:43 AM

Meier c02.indd V1 - 12/07/2011 Page 39

Developing for Mobile and Embedded Devices x 39

head start traditionally afforded thanks to Moore’s law (the doubling of the number of transistors
placed on an integrated circuit every two years). In desktop and server hardware, this usually results
directly in processor performance improvements; for mobile devices, it instead means thinner, more
power-effi cient mobiles, with brighter, higher resolution screens. By comparison, improvements in
processor power take a back seat.

In practice, this means that you always need to optimize your code so that it runs quickly and
responsively, assuming that hardware improvements over the lifetime of your software are unlikely
to do you any favors.

Code effi ciency is a big topic in software engineering, so I’m not going to try and cover it extensively
here. Later in this chapter you’ll learn some Android-specifi c effi ciency tips, but for now note that
effi ciency is particularly important for resource-constrained platforms.

Expect Limited Capacity

Advances in fl ash memory and solid-state disks have led to a dramatic increase in mobile-device
storage capacities. (MP3 collections still tend to expand to fi ll the available storage.) Although an
8GB fl ash drive or SD card is no longer uncommon in mobile devices, optical disks offer more than
32GB, and terabyte drives are now commonly available for PCs. Given that most of the available
storage on a mobile device is likely to be used to store music and movies, many devices offer rela-
tively limited storage space for your applications.

Android lets you specify that your application can be installed on the SD card as an alternative to
using internal memory (described in detail in Chapter 3), but there are signifi cant restrictions to this
approach and it isn’t suitable for all applications. As a result, the compiled size of your application is
an important consideration, though more important is ensuring that your application is polite in its
use of system resources.

You should carefully consider how you store your application data. To make life easier, you can use
the Android databases and Content Providers to persist, reuse, and share large quantities of data,
as described in Chapter 8, “Databases and Content Providers.” For smaller data storage, such as
preferences or state settings, Android provides an optimized framework, as described in Chapter 7,
“Files, Saving State, and Preferences.”

Of course, these mechanisms won’t stop you from writing directly to the fi lesystem when you want
or need to, but in those circumstances always consider how you’re structuring these fi les, and ensure
that yours is an effi cient solution.

Part of being polite is cleaning up after yourself. Techniques such as caching, pre-fetching, and
lazy loading are useful for limiting repetitive network lookups and improving application respon-
siveness, but don’t leave fi les on the fi lesystem or records in a database when they’re no longer
needed.

Design for Diff erent Screens

The small size and portability of mobiles are a challenge for creating good interfaces, particularly
when users are demanding an increasingly striking and information-rich graphical user experience.
Combined with the wide range of screen sizes that make up the Android device ecosystem, creating
consistent, intuitive, and pleasing user interfaces can be a signifi cant challenge.

c02.indd 39c02.indd 39 4/11/2012 10:04:43 AM4/11/2012 10:04:43 AM

Meier c02.indd V1 - 12/07/2011 Page 40

40 x CHAPTER 2 GETTING STARTED

Write your applications knowing that users will often only glance at the screen. Make your applica-
tions intuitive and easy to use by reducing the number of controls and putting the most important
information front and center.

Graphical controls, such as the ones you’ll create in Chapter 4, are an excellent means of displaying
a lot of information in a way that’s easy to understand. Rather than a screen full of text with a lot of
buttons and text-entry boxes, use colors, shapes, and graphics to convey information.

You’ll also need to consider how touch input is going to affect your interface design. The time of the
stylus has passed; now it’s all about fi nger input, so make sure your Views are big enough to support
interaction using a fi nger on the screen. To support accessibility and non-touch screen devices such
as Google TV, you need to ensure your application is navigable without relying purely on touch.

Android devices are now available with a variety of screen sizes, from small-screen QVGA phones
to 10.1" tablets and 46" Google TVs. As display technology advances and new Android devices are
released, screen sizes and resolutions will be increasingly varied. To ensure that your application
looks good and behaves well on all the possible host devices, you need to design and test your appli-
cation on a variety of screens, optimizing for small screens and tablets, but also ensuring that your
UIs scale well on any display.

You’ll learn some techniques for optimizing your UI for different screen sizes in
Chapters 3 and 4.

Expect Low Speeds, High Latency

The ability to incorporate some of the wealth
of online information within your applications
is incredibly powerful. Unfortunately, the
mobile Web isn’t as fast, reliable, or readily
available as we would like; so, when you’re
developing your Internet-based applications,
it’s best to assume that the network connection
will be slow, intermittent, and expensive.

With unlimited 4G data plans and citywide
Wi-Fi, this is changing, but designing for the
worst case ensures that you always deliver a
high-standard user experience. This also means
making sure that your applications can handle
losing (or not fi nding) a data connection.

The Android Emulator enables you to control
the speed and latency of your network con-
nection. Figure 2-12 shows the Emulator’s net-
work connection speed and latency, simulating
a distinctly suboptimal EDGE connection. FIGURE 2-12

c02.indd 40c02.indd 40 4/11/2012 10:04:43 AM4/11/2012 10:04:43 AM

Meier c02.indd V1 - 12/07/2011 Page 41

Developing for Mobile and Embedded Devices x 41

Experiment to ensure seamlessness and responsiveness no matter what the speed, latency, and avail-
ability of network access. Some techniques include limiting the functionality of your application, or
reducing network lookups to cached bursts, when the available network connection supports only
limited data transfer capabilities.

In Chapter 6, “Using Internet Resources,” you’ll learn how to use Internet
resources in your applications.

Further details, including how to detect the kind of network connections avail-
able at run time, are included in Chapter 16, “Bluetooth, NFC, Networks, and
Wi-Fi.”

At What Cost?

If you’re a mobile device owner, you know all too well that some of your device’s functionality can
literally come at a price. Services such as SMS and data transfer can incur additional fees from your
service provider.

It’s obvious why any costs associated with functionality in your applications should be minimized,
and that users should be made aware when an action they perform might result in their being
charged.

It’s a good approach to assume that there’s a cost associated with any action involving an interac-
tion with the outside world. In some cases (such as with GPS and data transfer), the user can toggle
Android settings to disable a potentially costly action. As a developer, it’s important that you use
and respect those settings within your application.

In any case, it’s important to minimize interaction costs by doing the following:

 ‰ Transferring as little data as possible

 ‰ Caching data and geocoding results to eliminate redundant or repetitive lookups

 ‰ Stopping all data transfers and GPS updates when your Activity is not visible in the fore-
ground (provided they’re only used to update the UI)

 ‰ Keeping the refresh/update rates for data transfers (and location lookups) as low as
practicable

 ‰ Scheduling big updates or transfers at off-peak times or when connected via Wi-Fi by using
Alarms and Broadcast Receivers, as shown in Chapter 9

 ‰ Respecting the user’s preferences for background data transfers

Often the best solution is to use a lower-quality option that comes at a lower cost.

When using location-based services, as described in Chapter 13, “Maps, Geocoding, and Location-
Based Services,” you can select a location provider based on whether there is an associated cost.
Within your location-based applications, consider giving users the choice of lower cost or greater
accuracy.

c02.indd 41c02.indd 41 4/11/2012 10:04:44 AM4/11/2012 10:04:44 AM

Meier c02.indd V1 - 12/07/2011 Page 42

42 x CHAPTER 2 GETTING STARTED

In some circumstances costs are either hard to defi ne or different for different users. Charges for ser-
vices vary between service providers and contract plans. Although some people will have free unlim-
ited data transfers, others will have free SMS.

Rather than enforcing a particular technique based on which seems cheaper, consider letting your
users choose. For example, when users are downloading data from the Internet, ask them if they
want to use any network available or limit their transfers to times when they’re connected via Wi-Fi.

Considering the User’s Environment

You can’t assume that your users will think of your application as the most important feature of
their device.

Although Android has already expanded beyond its roots as a mobile phone platform, most Android
devices are phones or tablet devices. For most people, such a device is fi rst and foremost a phone,
secondly an SMS and email communicator, thirdly a camera, and fourthly an MP3 player. The
applications you write will most likely be in the fi fth category of “useful stuff.”

That’s not a bad thing — they’ll be in good company with others, including Google Maps and the
web browser. That said, each user’s usage model will be different; some people will never use their
device to listen to music, some devices don’t support telephony, and some don’t include cameras —
but the multitasking principle inherent in a device as ubiquitous as it is indispensable is an important
consideration for usability design.

It’s also important to consider when and how your users will use your applications. People use their
mobiles all the time — on the train, walking down the street, or even while driving their cars. You
can’t make people use their phones appropriately, but you can make sure that your applications
don’t distract them any more than necessary.

What does this mean in terms of software design? Make sure that your application:

 ‰ Is predictable and well behaved — Start by ensuring that your Activities suspend when
they’re not in the foreground. Android fi res event handlers when your Activity is paused or
resumed, so you can pause UI updates and network lookups when your application isn’t visi-
ble — there’s no point updating your UI if no one can see it. If you need to continue updating
or processing in the background, Android provides a Service class designed for this purpose,
without the UI overheads.

 ‰ Switches seamlessly from the background to the foreground — With the multitasking nature
of mobile devices, it’s likely that your applications will regularly move into and out of the
background. It’s important that they “come to life” quickly and seamlessly. Android’s nonde-
terministic process management means that if your application is in the background, there’s
every chance it will get killed to free resources. This should be invisible to the user. You can
ensure seamlessness by saving the application state and queuing updates so that your users
don’t notice a difference between restarting and resuming your application. Switching back
to it should be seamless, with users being shown the UI and application state they last saw.

 ‰ Is polite — Your application should never steal focus or interrupt a user’s current Activity.
Instead, use Notifi cations (detailed in Chapter 10) to request your user’s attention when
your application isn’t in the foreground. There are several ways to alert users — for example,

c02.indd 42c02.indd 42 4/11/2012 10:04:44 AM4/11/2012 10:04:44 AM

Meier c02.indd V1 - 12/07/2011 Page 43

Developing for Mobile and Embedded Devices x 43

incoming calls are announced by a ringtone and/or vibration; when you have unread mes-
sages, the LED fl ashes; and when you have new voice mail, a small unread mail icon appears
in the status bar. All these techniques and more are available to your application using the
Notifi cations mechanism.

 ‰ Presents an attractive and intuitive UI — Your application is likely to be one of several in
use at any time, so it’s important that the UI you present is easy to use. Spend the time and
resources necessary to produce a UI that is as attractive as it is functional, and don’t force
users to interpret and relearn your application every time they load it. Using it should be
simple, easy, and obvious — particularly given the limited screen space and distracting user
environment.

 ‰ Is responsive — Responsiveness is one of the most critical design considerations on a mobile
device. You’ve no doubt experienced the frustration of a “frozen” piece of software; the mul-
tifunctional nature of a mobile makes this even more annoying. With the possibility of delays
caused by slow and unreliable data connections, it’s important that your application use
worker threads and background Services to keep your Activities responsive and, more impor-
tant, to stop them from preventing other applications from responding promptly.

Developing for Android

Nothing covered so far is specifi c to Android; the preceding design considerations are just as
important in developing applications for any mobile device. In addition to these general guidelines,
Android has some particular considerations.

Take a few minutes to read the design best practices included in Google’s Android Dev Guide at
http://developer.android.com/guide/index.html.

The Android design philosophy demands that applications be designed for:

 ‰ Performance

 ‰ Responsiveness

 ‰ Freshness

 ‰ Security

 ‰ Seamlessness

 ‰ Accessibility

Being Fast and Effi cient

In a resource-constrained environment, being fast means being effi cient. A lot of what you already
know about writing effi cient code will be applicable to Android, but the limitations of embedded
systems and the use of the Dalvik VM mean you can’t take things for granted.

The smart bet for advice is to go to the source. The Android team has published some specifi c
guidance on writing effi cient code for Android, so rather than reading a rehash of its advice, visit
http://developer.android.com/guide/practices/design/performance.html for suggestions.

c02.indd 43c02.indd 43 4/11/2012 10:04:44 AM4/11/2012 10:04:44 AM

http://developer.android.com/guide/index.html
http://developer.android.com/guide/practices/design/performance.html

Meier c02.indd V1 - 12/07/2011 Page 44

44 x CHAPTER 2 GETTING STARTED

You may fi nd that some of these performance suggestions contradict established
design practices — for example, avoiding the use of internal setters and getters
or preferring virtual classes over using interfaces. When writing software for
resource-constrained systems such as embedded devices, there’s often a com-
promise between conventional design principles and the demand for greater
effi ciency.

One of the keys to writing effi cient Android code is not to carry over assumptions from desktop and
server environments to embedded devices.

At a time when 2 to 4GB of memory is standard for most desktop and server rigs, typical smart-
phones feature approximately 200MB of SDRAM. With memory such a scarce commodity, you
need to take special care to use it effi ciently. This means thinking about how you use the stack and
heap, limiting object creation, and being aware of how variable scope affects memory use.

Being Responsive

Android takes responsiveness very seriously. Android enforces
responsiveness with the Activity Manager and Window
Manager. If either service detects an unresponsive application,
it will display an “[Application] is not responding” dialog —
previously described as a force close error, as shown in
Figure 2-13.

This alert is modal, steals focus, and won’t go away until you
press a button. It’s pretty much the last thing you ever want to
confront a user with.

Android monitors two conditions to determine responsiveness:

 ‰ An application must respond to any user action, such as a key press or screen touch, within
fi ve seconds.

 ‰ A Broadcast Receiver must return from its onReceive handler within 10 seconds.

The most likely culprit in cases of unresponsiveness is a lengthy task being performed on the main
application thread. Network or database lookups, complex processing (such as the calculating of
game moves), and fi le I/O should all be moved off the main thread to ensure responsiveness. There
are a number of ways to ensure that these actions don’t exceed the responsiveness conditions, in par-
ticular by using Services and worker threads, as shown in Chapter 9.

Android 2.3 (API level 9) introduced Strict Mode — an API that makes it easier for you to discover
fi le I/O and network transfers being performed on the main application thread. Strict Mode is
described in more detail in Chapter 18.

FIGURE 2-13

c02.indd 44c02.indd 44 4/11/2012 10:04:44 AM4/11/2012 10:04:44 AM

Meier c02.indd V1 - 12/07/2011 Page 45

Developing for Mobile and Embedded Devices x 45

The “[Application] is not responding” dialog is a last resort of usability; the gen-
erous fi ve-second limit is a worst-case scenario, not a target. Users will notice
a regular pause of anything more than one-half second between key press and
action. Happily, a side effect of the effi cient code you’re already writing will be
more responsive applications.

Ensuring Data Freshness

The ability to multitask is a key feature in Android. One of the most important use cases for back-
ground Services is to keep your application updated while it’s not in use.

Where a responsive application reacts quickly to user interaction, a fresh application quickly dis-
plays the data users want to see and interact with. From a usability perspective, the right time to
update your application is immediately before the user plans to use it. In practice, you need to weigh
the update frequency against its effect on the battery and data usage.

When designing your application, it’s critical that you consider how often you will update the data
it uses, minimizing the time users are waiting for refreshes or updates, while limiting the effect of
these background updates on the battery life.

Developing Secure Applications

Android applications have access to networks and hardware, can be distributed independently, and
are built on an open-source platform featuring open communication, so it shouldn’t be surprising
that security is a signifi cant consideration.

For the most part, users need to take responsibility for the applications they install and the permis-
sions requests they accept. The Android security model sandboxes each application and restricts
access to services and functionality by requiring applications to declare the permissions they require.
During installation users are shown the application’s required permissions before they commit to
installing it.

You can learn more about Android’s security model in Chapter 18, “Advanced
Android Development,” and at http://developer.android.com/resources/
faq/security.html.

This doesn’t get you off the hook. You not only need to make sure your application is secure for its
own sake, but you also need to ensure that it doesn’t “leak” permissions and hardware access to
compromise the device. You can use several techniques to help maintain device security, and they’ll

c02.indd 45c02.indd 45 4/11/2012 10:04:45 AM4/11/2012 10:04:45 AM

http://developer.android.com/resources

Meier c02.indd V1 - 12/07/2011 Page 46

46 x CHAPTER 2 GETTING STARTED

be covered in more detail as you learn the technologies involved. In particular, you should do the
following:

 ‰ Require permissions for any Services you publish or Intents you broadcast. Take special care
when broadcasting an Intent that you aren’t leaking secure information, such as location data.

 ‰ Take special care when accepting input to your application from external sources, such as the
Internet, Bluetooth, NFC, Wi-Fi Direct, SMS messages, or instant messaging (IM). You can
fi nd out more about using Bluetooth, NFC, Wi-Fi Direct, and SMS for application messaging
in Chapters 16 and 17.

 ‰ Be cautious when your application may expose access to lower-level hardware to third-party
applications.

 ‰ Minimize the data your application uses and which permissions it requires.

For reasons of clarity and simplicity, many of the examples in this book take
a relaxed approach to security. When you’re creating your own applications,
particularly ones you plan to distribute, this is an area that should not be
overlooked.

Ensuring a Seamless User Experience

The idea of a seamless user experience is an important, if somewhat nebulous, concept. What do
we mean by seamless? The goal is a consistent user experience in which applications start, stop, and
transition instantly and without perceptible delays or jarring transitions.

The speed and responsiveness of a mobile device shouldn’t degrade the longer it’s on. Android’s
process management helps by acting as a silent assassin, killing background applications to free
resources as required. Knowing this, your applications should always present a consistent interface,
regardless of whether they’re being restarted or resumed.

With an Android device typically running several third-party applications written by different devel-
opers, it’s particularly important that these applications interact seamlessly. Using Intents, applica-
tions can provide functionality for each other. Knowing your application may provide, or consume,
third-party Activities provides additional incentive to maintain a consistent look and feel.

Use a consistent and intuitive approach to usability. You can create applications that are revolution-
ary and unfamiliar, but even these should integrate cleanly with the wider Android environment.

Persist data between sessions, and when the application isn’t visible, suspend tasks that use proces-
sor cycles, network bandwidth, or battery life. If your application has processes that need to con-
tinue running while your Activities are out of sight, use a Service, but hide these implementation
decisions from your users.

When your application is brought back to the front, or restarted, it should seamlessly return to its
last visible state. As far as your users are concerned, each application should be sitting silently, ready
to be used but just out of sight.

c02.indd 46c02.indd 46 4/11/2012 10:04:45 AM4/11/2012 10:04:45 AM

Meier c02.indd V1 - 12/07/2011 Page 47

Android Development Tools x 47

You should also follow the best-practice guidelines for using Notifi cations and use generic UI ele-
ments and themes to maintain consistency among applications.

There are many other techniques you can use to ensure a seamless user experience, and you’ll be
introduced to some of them as you discover more of the possibilities available in Android in the
upcoming chapters.

Providing Accessibility

When designing and developing your applications, it’s important not to assume that every user
will be exactly like you. This has implications for internationalization and usability but is critical
for providing accessible support for users with disabilities that require them to interact with their
Android devices in different ways.

Android provides facilities to help these users navigate their devices more easily using text-to-speech,
haptic feedback, and trackball or D-pad navigation.

To provide a good user experience for everyone — including people with visual, physical, or age-
related disabilities that prevent them from fully using or seeing a touchscreen — you can leverage
Android’s accessibility layer.

Best practices for making your application accessible are covered in detail in
Chapter 11, “Advanced User Experience.”

As a bonus, the same steps required to help make your touchscreen applications useful for users
with disabilities will also make your applications easier to use on non-touch screen devices, such as
GoogleTV.

ANDROID DEVELOPMENT TOOLS

The Android SDK includes several tools and utilities to help you create, test, and debug your proj-
ects. A detailed examination of each developer tool is outside the scope of this book, but it’s worth
briefl y reviewing what’s available. For additional details, check out the Android documentation at
http://developer.android.com/guide/developing/tools/index.html.

As mentioned earlier, the ADT plug-in conveniently incorporates many of these tools into the
Eclipse IDE, where you can access them from the DDMS perspective, including the following:

 ‰ The Android Virtual Device and SDK Managers — Used to create and manage AVDs and to
download SDK packages, respectively. The AVD hosts an Emulator running a particular build
of Android, letting you specify the supported SDK version, screen resolution, amount of SD
card storage available, and available hardware capabilities (such as touchscreens and GPS).

 ‰ The Android Emulator — An implementation of the Android VM designed to run within
an AVD on your development computer. Use the Emulator to test and debug your Android
applications.

c02.indd 47c02.indd 47 4/11/2012 10:04:46 AM4/11/2012 10:04:46 AM

http://developer.android.com/guide/developing/tools/index.html

Meier c02.indd V1 - 12/07/2011 Page 48

48 x CHAPTER 2 GETTING STARTED

 ‰ Dalvik Debug Monitoring Service (DDMS) — Use the DDMS to monitor and control the
Emulators on which you’re debugging your applications.

 ‰ Android Debug Bridge (ADB) — A client-server application that provides a link to virtual
and physical devices. It lets you copy fi les, install compiled application packages (.apk), and
run shell commands.

 ‰ Logcat — A utility used to view and fi lter the output of the Android logging system.

 ‰ Android Asset Packaging Tool (AAPT) — Constructs the distributable Android package
fi les (.apk).

The following additional tools are also available:

 ‰ SQLite3 — A database tool that you can use to access the SQLite database fi les created and
used by Android.

 ‰ Traceview and dmtracedump — Graphical analysis tools for viewing the trace logs from your
Android application.

 ‰ Hprof-conv — A tool that converts HPROF profi ling output fi les into a standard format to
view in your preferred profi ling tool.

 ‰ MkSDCard — Creates an SD card disk image that can be used by the Emulator to simulate
an external storage card.

 ‰ Dx — Converts Java .class bytecode into Android .dex bytecode.

 ‰ Hierarchy Viewer — Provides both a visual representation of a layout’s View hierarchy to
debug and optimize your UI, and a magnifi ed display to get your layouts pixel-perfect.

 ‰ Lint — A tool that analyzes your application and its resources to suggest improvements and
optimizations.

 ‰ Draw9patch: A handy utility to simplify the creation of NinePatch graphics using a
WYSIWYG editor.

 ‰ Monkey and Monkey Runner: Monkey runs within the VM, generating pseudo-random user
and system events. Monkey Runner provides an API for writing programs to control the VM
from outside your application.

 ‰ ProGuard — A tool to shrink and obfuscate your code by replacing class, variable, and
method names with semantically meaningless alternatives. This is useful to make your code
more diffi cult to reverse engineer.

Now take a look at some of the more important tools in more detail.

The Android Virtual Device Manager

The Android Virtual Device Manager is used to create and manage the virtual devices that will host
instances of the Emulator.

AVDs are used to simulate the software builds and hardware confi gurations available on different
physical devices. This lets you test your application on a variety of hardware platforms without
needing to buy a variety of phones.

c02.indd 48c02.indd 48 4/11/2012 10:04:46 AM4/11/2012 10:04:46 AM

Meier c02.indd V1 - 12/07/2011 Page 49

Android Development Tools x 49

The Android SDK doesn’t include any prebuilt virtual devices, so you will need
to create at least one device before you can run your applications within an
Emulator.

Each virtual device is confi gured with a name, a
target build of Android (based on the SDK version it
supports), an SD card capacity, and screen resolu-
tion, as shown in the Create new Android Virtual
Device (AVD) dialog in Figure 2-14.

You can also choose to enable snapshots to save
the Emulator state when it’s closed. Starting a new
Emulator from a snapshot is signifi cantly faster.

Each virtual device also supports a number of spe-
cifi c hardware settings and restrictions that can be
added in the form of name-value pairs (NVPs) in the
hardware table. Selecting one of the built-in skins
will automatically confi gure these additional settings
corresponding to the device the skin represents.

The additional settings include the following:

 ‰ Maximum VM heap size

 ‰ Screen pixel density

 ‰ SD card support

 ‰ Existence of D-pad, touchscreen, keyboard,
and trackball hardware

 ‰ Accelerometer, GPS, and proximity sensor support

 ‰ Available device memory

 ‰ Camera hardware (and resolution)

 ‰ Support for audio recording

 ‰ Existence of hardware back and home keys

Different hardware settings and screen resolutions will present alternative UI skins to represent the
different hardware confi gurations. This simulates a variety of mobile device types. Some manufac-
turers have made hardware presets and virtual device skins available for their devices. Some, includ-
ing Samsung, are available as SDK packages.

Android SDK Manager

The Android SDK Manager can be used to see which version of the SDK you have installed and to
install new SDKs when they are released.

 FIGURE 2-14

c02.indd 49c02.indd 49 4/11/2012 10:04:46 AM4/11/2012 10:04:46 AM

Meier c02.indd V1 - 12/07/2011 Page 50

50 x CHAPTER 2 GETTING STARTED

Each platform release is displayed, along with the platform tools and a number of additional support
packages. Each platform release includes the SDK platform, documentation, tools, and examples
corresponding to that release.

The Android Emulator

The Emulator is available for testing and debugging your applications.

The Emulator is an implementation of the Dalvik VM, making it as valid a platform for running
Android applications as any Android phone. Because it’s decoupled from any particular hardware,
it’s an excellent baseline to use for testing your applications.

Full network connectivity is provided along with the ability to tweak the Internet connection speed
and latency while debugging your applications. You can also simulate placing and receiving voice
calls and SMS messages.

The ADT plug-in integrates the Emulator into Eclipse so that it’s launched automatically within the
selected AVD when you run or debug your projects. If you aren’t using the plug-in or want to use the
Emulator outside of Eclipse, you can telnet into the Emulator and control it from its console. (For
more details on controlling the Emulator, check out the documentation at http://developer
.android.com/guide/developing/tools/emulator.html.)

To execute the Emulator, you fi rst need to create a virtual device, as described in the previous sec-
tion. The Emulator will launch the virtual device and run a Dalvik instance within it.

At the time of this writing, the Emulator doesn’t implement all the mobile hard-
ware features supported by Android. For example, it does not implement the
camera, vibration, LEDs, actual phone calls, accelerometer, USB connections,
audio capture, or battery charge level.

The Dalvik Debug Monitor Service

The Emulator enables you to see how your application will look, behave, and interact, but to actu-
ally see what’s happening under the surface, you need the Dalvik Debug Monitoring Service. The
DDMS is a powerful debugging tool that lets you interrogate active processes, view the stack and
heap, watch and pause active threads, and explore the fi lesystem of any connected Android device.

The DDMS perspective in Eclipse also provides simplifi ed access to screen captures of the Emulator
and the logs generated by LogCat.

If you’re using the ADT plug-in, the DDMS tool is fully integrated into Eclipse and is available from
the DDMS perspective. If you aren’t using the plug-in or Eclipse, you can run DDMS from the com-
mand line (it’s available from the tools folder of the Android SDK), and it will automatically connect
to any running device or Emulator.

c02.indd 50c02.indd 50 4/11/2012 10:04:47 AM4/11/2012 10:04:47 AM

http://developer

Meier c02.indd V1 - 12/07/2011 Page 51

Android Development Tools x 51

The Android Debug Bridge

The Android Debug Bridge (ADB) is a client-service application that lets you connect with an
Android device (virtual or actual). It’s made up of three components:

 ‰ A daemon running on the device or Emulator

 ‰ A service that runs on your development computer

 ‰ Client applications (such as the DDMS) that communicate with the daemon through the
service

As a communications conduit between your development hardware and the Android device/
Emulator, the ADB lets you install applications, push and pull fi les, and run shell commands on the
target device. Using the device shell, you can change logging settings and query or modify SQLite
databases available on the device.

The ADT tool automates and simplifi es a lot of the usual interaction with the ADB, includ-
ing application installation and updating, fi le logging, and fi le transfer (through the DDMS
perspective).

To learn more about what you can do with the ADB, check out the documenta-
tion at http://developer.android.com/guide/developing/tools/adb.html.

The Hierarchy Viewer and Lint Tool

To build applications that are fast and responsive, you need to optimize your UI. The Hierarchy
Viewer and Lint tools help you analyze, debug, and optimize the XML layout defi nitions used
within your application.

The Hierarchy Viewer displays a visual representation of the structure of your UI layout. Starting at
the root node, the children of each nested View (including layouts) is displayed in a hierarchy. Each
View node includes its name, appearance, and identifi er.

To optimize performance, the performance of the layout, measure, and draw steps of creating the
UI of each View at runtime is displayed. Using these values, you can learn the actual time taken to
create each View within your hierarchy, with colored “traffi c light” indicators showing the relative
performance for each step. You can then search within your layout for Views that appear to be tak-
ing longer to render than they should.

The Lint tool helps you to optimize your layouts by checking them for a series of common
ineffi ciencies that can have a negative impact on your application’s performance. Common
issues include a surplus of nested layouts, a surplus of Views within a layout, and unnecessary
parent Views.

c02.indd 51c02.indd 51 4/11/2012 10:04:47 AM4/11/2012 10:04:47 AM

http://developer.android.com/guide/developing/tools/adb.html

Meier c02.indd V1 - 12/07/2011 Page 52

52 x CHAPTER 2 GETTING STARTED

Although a detailed investigation into optimizing and debugging your UI is beyond the scope of
this book, you can fi nd further details at http://developer.android.com/guide/developing/
debugging/debugging-ui.html.

Monkey and Monkey Runner

Monkey and Monkey Runner can be used to test your applications stability from a UI perspective.

Monkey works from within the ADB shell, sending a stream of pseudo-random system and UI
events to your application. It’s particularly useful to stress test your applications to investigate edge-
cases you might not have anticipated through unconventional use of the UI.

Alternatively, Monkey Runner is a Python scripting API that lets you send specifi c UI commands to
control an Emulator or device from outside the application. It’s extremely useful for performing UI,
functional, and unit tests in a predictable, repeatable fashion.

c02.indd 52c02.indd 52 4/11/2012 10:04:47 AM4/11/2012 10:04:47 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://developer.android.com/guide/developing

Meier c03.indd V1 - 02/11/2011 Page 53

3
Creating Applications and
Activities

WHAT’S IN THIS CHAPTER?

 ‰ Introducing the Android application components and the diff erent

types of applications you can build with them

 ‰ Understanding the Android application lifecycle

 ‰ Creating your application manifest

 ‰ Using external resources to provide dynamic support for locations,

languages, and hardware confi gurations

 ‰ Implementing and using your own Application class

 ‰ Creating new Activities

 ‰ Understanding an Activity’s state transitions and lifecycle

To write high-quality applications, it’s important to understand the components they consist
of and how those components are bound together by the Android manifest. This chapter intro-
duces each of the application components, with special attention paid to Activities.

Next, you’ll see why and how you should use external resources and the resource hierarchy to
create applications that can be customized and optimized for a variety of devices, countries,
and languages.

In Chapter 2, “Getting Started,” you learned that each Android application runs in a separate
process, in its own instance of the Dalvik virtual machine. In this chapter, you learn more
about the application lifecycle and how the Android run time can manage your application.
You are also introduced to the application and Activity states, state transitions, and event
handlers. The application’s state determines its priority, which, in turn, affects the likelihood
of its being terminated when the system requires more resources.

c03.indd 53c03.indd 53 4/11/2012 10:06:14 AM4/11/2012 10:06:14 AM

Meier c03.indd V1 - 02/11/2011 Page 54

54 x CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

You should always provide the best possible experience for users, no matter which country they’re in
or which of the wide variety of Android device types, form factors, and screen sizes they’re using.
In this chapter, you learn how to use the resource framework to provide optimized resources, ensur-
ing your applications run seamlessly on different hardware (particularly different screen resolutions
and pixel densities), in different countries, and supporting multiple languages.

The Activity class forms the basis for all your user interface (UI) screens. You learn how to create
Activities and gain an understanding of their lifecycles and how they affect the application lifetime
and priority.

Finally, you are introduced to some of the Activity subclasses that simplify resource management
for some common UI patterns, such as map- and list-based Activities.

WHAT MAKES AN ANDROID APPLICATION?

Android applications consist of loosely coupled components, bound by the application manifest
that describes each component and how they interact. The manifest is also used to specify the
application’s metadata, its hardware and platform requirements, external libraries, and required
permissions.

The following components comprise the building blocks for all your Android applications:

 ‰ Activities — Your application’s presentation layer. The UI of your application is built around
one or more extensions of the Activity class. Activities use Fragments and Views to layout
and display information, and to respond to user actions. Compared to desktop development,
Activities are equivalent to Forms. You’ll learn more about Activities later in this chapter.

 ‰ Services — The invisible workers of your application. Service components run without a UI,
updating your data sources and Activities, triggering Notifi cations, and broadcasting Intents.
They’re used to perform long running tasks, or those that require no user interaction (such
as network lookups or tasks that need to continue even when your application’s Activities
aren’t active or visible.) You’ll learn more about how to create and use services in Chapter 9,
“Working in the Background.”

 ‰ Content Providers — Shareable persistent data storage. Content Providers manage and persist
application data and typically interact with SQL databases. They’re also the preferred means
to share data across application boundaries. You can confi gure your application’s Content
Providers to allow access from other applications, and you can access the Content Providers
exposed by others. Android devices include several native Content Providers that expose
useful databases such as the media store and contacts. You’ll learn how to create and use
Content Providers in Chapter 8, “Databases and Content Providers.”

 ‰ Intents — A powerful interapplication message-passing framework. Intents are used exten-
sively throughout Android. You can use Intents to start and stop Activities and Services, to
broadcast messages system-wide or to an explicit Activity, Service, or Broadcast Receiver, or
to request an action be performed on a particular piece of data. Explicit, implicit, and broad-
cast Intents are explored in more detail in Chapter 5, “Intents and Broadcast Receivers.”

c03.indd 54c03.indd 54 4/11/2012 10:06:18 AM4/11/2012 10:06:18 AM

Meier c03.indd V1 - 02/11/2011 Page 55

Introducing the Application Manifest File x 55

 ‰ Broadcast Receivers — Intent listeners. Broadcast Receivers enable your application to listen
for Intents that match the criteria you specify. Broadcast Receivers start your application
to react to any received Intent, making them perfect for creating event-driven applications.
Broadcast Receivers are covered with Intents in Chapter 5.

 ‰ Widgets — Visual application components that are typically added to the device home screen.
A special variation of a Broadcast Receiver, widgets enable you to create dynamic, interactive
application components for users to embed on their home screens. You’ll learn how to create
your own widgets in Chapter 14, “Invading the Home Screen.”

 ‰ Notifi cations — Notifi cations enable you to alert users to application events without steal-
ing focus or interrupting their current Activity. They’re the preferred technique for getting
a user’s attention when your application is not visible or active, particularly from within
a Service or Broadcast Receiver. For example, when a device receives a text message or
an email, the messaging and Gmail applications use Notifi cations to alert you by fl ash-
ing lights, playing sounds, displaying icons, and scrolling a text summary. You can trigger
these notifi cations from your applications, as discussed in Chapter 10, “Expanding the User
Experience.”

By decoupling the dependencies between application components, you can share and use individual
Content Providers, Services, and even Activities with other applications — both your own and those
of third parties.

INTRODUCING THE APPLICATION MANIFEST FILE

Each Android project includes a manifest fi le, AndroidManifest.xml, stored in the root of its proj-
ect hierarchy. The manifest defi nes the structure and metadata of your application, its components,
and its requirements.

It includes nodes for each of the Activities, Services, Content Providers, and Broadcast Receivers
that make up your application and, using Intent Filters and Permissions, determines how they inter-
act with each other and with other applications.

The manifest can also specify application metadata (such as its icon, version number, or theme), and
additional top-level nodes can specify any required permissions, unit tests, and defi ne hardware,
screen, or platform requirements (as described next).

The manifest is made up of a root manifest tag with a package attribute set to the project’s pack-
age. It should also include an xmlns:android attribute that supplies several system attributes used
within the fi le.

Use the versionCode attribute to defi ne the current application version as an integer that increases
with each version iteration, and use the versionName attribute to specify a public version that will
be displayed to users.

You can also specify whether to allow (or prefer) for your application be installed on external stor-
age (usually an SD card) rather than internal storage using the installLocation attribute. To do

c03.indd 55c03.indd 55 4/11/2012 10:06:18 AM4/11/2012 10:06:18 AM

Meier c03.indd V1 - 02/11/2011 Page 56

56 x CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

this specify either preferExternal or auto, where the former installs to external storage whenever
possible, and the latter asks the system to decide.

If your application is installed on external storage, it will be immediately
killed if a user mounts the USB mass storage to copy fi les to/from a computer, or
ejects or unmounts the SD card.

If you don’t specify an install location attribute, your application will be installed in the internal
storage and users won’t be able to move it to external storage. The total amount of internal stor-
age is generally limited, so it’s good practice to let your application be installed on external storage
whenever possible.

There are some applications for which installation to external storage is not appropriate due to the
consequences of unmounting or ejecting the external storage, including:

 ‰ Applications with Widgets, Live Wallpapers, and Live Folders — Your Widgets, Live
Wallpapers, and Live Folders will be removed from the home screen and may not be avail-
able until the system restarts.

 ‰ Applications with ongoing Services — Your application and its running Services will be
stopped and won’t be restarted automatically.

 ‰ Input Method Engines — Any IME installed on external storage will be disabled and must be
reselected by the user after the external storage is once again available.

 ‰ Device administrators — Your DeviceAdminReceiver and any associated admin capabilities
will be disabled.

A Closer Look at the Application Manifest

The following XML snippet shows a typical manifest node:

<manifest xmlns:android=”http://schemas.android.com/apk/res/android”
 package=“com.paad.myapp“
 android:versionCode=“1“
 android:versionName=“0.9 Beta“
 android:installLocation=“preferExternal“>
 [... manifest nodes ...]
</manifest>

The manifest tag can include nodes that defi ne the application components, security settings, test
classes, and requirements that make up your application. The following list gives a summary of the
available manifest sub-node tags and provides an XML snippet demonstrating how each tag is
used:

 ‰ uses-sdk — This node enables you to defi ne a minimum and maximum SDK version that
must be available on a device for your application to function properly, and target SDK for
which it has been designed using a combination of minSDKVersion, maxSDKVersion, and
targetSDKVersion attributes, respectively.

c03.indd 56c03.indd 56 4/11/2012 10:06:18 AM4/11/2012 10:06:18 AM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier c03.indd V1 - 02/11/2011 Page 57

Introducing the Application Manifest File x 57

The minimum SDK version specifi es the lowest version of the SDK that includes the APIs you have
used in your application. If you fail to specify a minimum version, it defaults to 1, and your applica-
tion crashes when it attempts to access unavailable APIs.

The target SDK version attribute enables you to specify the platform against which you did your
development and testing. Setting a target SDK version tells the system that there is no need to apply
any forward- or backward-compatibility changes to support that particular version. To take advan-
tage of the newest platform UI improvements, it’s considered good practice to update the target SDK
of your application to the latest platform release after you confi rm it behaves as expected, even if
you aren’t making use of any new APIs.

It is usually unnecessary to specify a maximum SDK, and doing so is strongly discouraged. The maxi-
mum SDK defi nes an upper limit you are willing to support and your application will not be visible
on the Google Play Store for devices running a higher platform release. Devices running on platforms
higher than Android 2.0.1 (API level 6) will ignore any maximum SDK values at installation time.

<uses-sdk android:minSdkVersion=”6”
 android:targetSdkVersion=”15”/>

The supported SDK version is not equivalent to the platform version and cannot
be derived from it. For example, Android platform release 4.0 supports the SDK
version 14. To fi nd the correct SDK version for each platform, use the table at
http://developer.android.com/guide/appendix/api-levels.html.

 ‰ uses-configuration — The uses-configuration nodes specify each combination of
input mechanisms are supported by your application. You shouldn’t normally need to
include this node, though it can be useful for games that require particular input controls.
You can specify any combination of input devices that include the following:

 ‰ reqFiveWayNav — Specify true for this attribute if you require an input device capa-
ble of navigating up, down, left, and right and of clicking the current selection. This
includes both trackballs and directional pads (D-pads).

 ‰ reqHardKeyboard — If your application requires a hardware keyboard, specify
true.

 ‰ reqKeyboardType — Lets you specify the keyboard type as one of nokeys, qwerty,
twelvekey, or undefined.

 ‰ reqNavigation — Specify the attribute value as one of nonav, dpad, trackball,
wheel, or undefined as a required navigation device.

 ‰ reqTouchScreen — Select one of notouch, stylus, finger, or undefined to spec-
ify the required touchscreen input.

You can specify multiple supported confi gurations, for example, a device with a fi nger
touchscreen, a trackball, and either a QUERTY or a twelve-key hardware keyboard, as
shown here:

<uses-configuration android:reqTouchScreen=”finger”
 android:reqNavigation=”trackball”

c03.indd 57c03.indd 57 4/11/2012 10:06:19 AM4/11/2012 10:06:19 AM

http://developer.android.com/guide/appendix/api-levels.html

Meier c03.indd V1 - 02/11/2011 Page 58

58 x CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

 android:reqHardKeyboard=”true”
 android:reqKeyboardType=”qwerty”/>
<uses-configuration android:reqTouchScreen=”finger”
 android:reqNavigation=”trackball”
 android:reqHardKeyboard=”true”
 android:reqKeyboardType=”twelvekey”/>

When specifying required confi gurations, be aware that your application won’t
be installed on any device that does not have one of the combinations specifi ed.
In the preceding example, a device with a QWERTY keyboard and a D-pad
(but no touchscreen or trackball) would not be supported. Ideally, you should
develop your application to ensure it works with any input confi guration, in
which case no uses-configuration node is required.

 ‰ uses-feature — Android is available on a wide variety of hardware platforms. Use
multiple uses-feature nodes to specify which hardware features your application requires.
This prevents your application from being installed on a device that does not include a
required piece of hardware, such as NFC hardware, as follows:

<uses-feature android:name=”android.hardware.nfc” />

You can require support for any hardware that is optional on a compatible device.
Currently, optional hardware features include the following:

 ‰ Audio — For applications that requires a low-latency audio pipeline. Note that at the
time of writing this book, no Android devices satisfi ed this requirement.

 ‰ Bluetooth — Where a Bluetooth radio is required.

 ‰ Camera — For applications that require a camera. You can also require (or set as
options) autofocus, fl ash, or a front-facing camera.

 ‰ Location — If you require location-based services. You can also specify either net-
work or GPS support explicitly.

 ‰ Microphone — For applications that require audio input.

 ‰ NFC — Requires NFC (near-fi eld communications) support.

 ‰ Sensors — Enables you to specify a requirement for any of the potentially available
hardware sensors.

 ‰ Telephony — Specify that either telephony in general, or a specifi c telephony radio
(GSM or CDMA) is required.

 ‰ Touchscreen — To specify the type of touch-screen your application requires.

 ‰ USB — For applications that require either USB host or accessory mode support.

 ‰ Wi-Fi — Where Wi-Fi networking support is required.

As the variety of platforms on which Android is available increases, so too will
the optional hardware. You can fi nd a full list of uses-feature hardware at
http://developer.android.com/guide/topics/manifest/uses-feature-element.
html#features-reference.

c03.indd 58c03.indd 58 4/11/2012 10:06:19 AM4/11/2012 10:06:19 AM

http://developer.android.com/guide/topics/manifest/uses-feature-element

Meier c03.indd V1 - 02/11/2011 Page 59

Introducing the Application Manifest File x 59

To ensure compatibility, requiring some permissions implies a feature requirement. In par-
ticular, requesting permission to access Bluetooth, the camera, any of the location service
permissions, audio recording, Wi-Fi, and telephony-related permissions implies the cor-
responding hardware features. You can override these implied requirements by adding a
required attribute and setting it to false — for example, a note-taking application that
supports recording an audio note:

<uses-feature android:name=”android.hardware.microphone”
 android:required=”false” />

The camera hardware also represents a special case. For compatibility reasons requesting
permission to use the camera, or adding a uses-feature node requiring it, implies a require-
ment for the camera to support autofocus. You can specify it as optional as appropriate:

<uses-feature android:name=”android.hardware.camera” />
<uses-feature android:name=”android.hardware.camera.autofocus”
 android:required=”false” />
<uses-feature android:name=”android.hardware.camera.flash”
 android:required=”false” />

You can also use the uses-feature node to specify the minimum version of OpenGL
required by your application. Use the glEsVersion attribute, specifying the OpenGL ES
version as an integer. The higher 16 bits represent the major number and the lower 16 bits
represent the minor number, so version 1.1 would be represented as follows:

<uses-feature android:glEsVersion=”0x00010001” />

 ‰ supports-screens — The fi rst Android devices were limited to 3.2" HVGA hardware.
Since then, hundreds of new Android devices have been launched including tiny 2.55"
QVGA phones, 10.1" tablets, and 42" HD televisions. The supports-screen node enables
you to specify the screen sizes your application has been designed and tested to. On devices
with supported screens, your application is laid out normally using the scaling properties
associated with the layout fi les you supply. On unsupported devices the system may apply a
“compatibility mode,” such as pixel scaling to display your application. It’s best practice to
create scalable layouts that adapt to all screen dimensions.

You can use two sets of attributes when describing your screen support. The fi rst set is used
primarily for devices running Android versions prior to Honeycomb MR2 (API level 13).
Each attribute takes a Boolean specifying support. As of SDK 1.6 (API level 4), the default
value for each attribute is true, so use this node to specify the screen sizes you do not support.

 ‰ smallScreens — Screens with a resolution smaller than traditional HVGA
(typically, QVGA screens).

 ‰ normalScreens — Used to specify typical mobile phone screens of at least HVGA,
including WVGA and WQVGA.

 ‰ largeScreens — Screens larger than normal. In this instance a large screen is
considered to be signifi cantly larger than a mobile phone display.

 ‰ xlargeScreens — Screens larger than large-typically tablet devices.

Honeycomb MR2 (API level 13) introduced additional attributes that provide a fi ner level
of control over the size of screen your application layouts can support. It is generally good
practice to use these in combination with the earlier attributes if your application is avail-
able to devices running platform releases earlier than API level 13.

c03.indd 59c03.indd 59 4/11/2012 10:06:20 AM4/11/2012 10:06:20 AM

Meier c03.indd V1 - 02/11/2011 Page 60

60 x CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

 ‰ requiresSmallestWidthDp — Enables you to specify a minimum supported screen
width in device independent pixels. The smallest screen width for a device is the
lower dimension of its screen height and width. This attribute can potentially be
used to fi lter applications from the Google Play Store for devices with unsupported
screens, so when used it should specify the absolute minimum number of pixels
required for your layouts to provide a useable user experience.

 ‰ compatibleWidthLimitDp — Specifi es the upper bound beyond which your appli-
cation may not scale. This can cause the system to enable a compatibility mode on
devices with screen resolutions larger than you specify.

 ‰ largestWidthLimitDp — Specifi es the absolute upper bound beyond which you
know your application will not scale appropriately. Typically this results in the
system forcing the application to run in compatibility mode (without the ability for
users to disable it) on devices with screen resolutions larger than that specifi ed.

It is generally considered a bad user experience to force your application into compatibility
mode. Wherever possible, ensure that your layouts scale in a way that makes them usable on
larger devices.

<supports-screens android:smallScreens=”false”
 android:normalScreens=”true”
 android:largeScreens=”true”
 android:xlargeScreens=”true”
 android:requiresSmallestWidthDp=”480”
 android:compatibleWidthLimitDp=”600”
 android:largestWidthLimitDp=”720”/>

Where possible you should optimize your application for different screen reso-
lutions and densities using the resources folder, as shown later in this chapter,
rather than enforcing a subset of supported screens.

 ‰ supports-gl-texture — Declares that the application is capable of providing texture
assets that are compressed using a particular GL texture compression format. You must use
multiple supports-gl-texture elements if your application is capable of supporting multiple
texture compression formats. You can fi nd the most up-to-date list of supported GL texture
compression format values at http://developer.android.com/guide/topics/manifest/
supports-gl-texture-element.html.

<supports-gl-texture android:name=”GL_OES_compressed_ETC1_RGB8_texture” />

 ‰ uses-permission — As part of the security model, uses-permission tags declare the user
permissions your application requires. Each permission you specify will be presented to the
user before the application is installed. Permissions are required for many APIs and method
calls, generally those with an associated cost or security implication (such as dialing, receiv-
ing SMS, or using the location-based services).

<uses-permission android:name=”android.permission.ACCESS_FINE_LOCATION”/>

 ‰ permission — Your application components can also create permissions to restrict access
to shared application components. You can use the existing platform permissions for this

c03.indd 60c03.indd 60 4/11/2012 10:06:20 AM4/11/2012 10:06:20 AM

http://developer.android.com/guide/topics/manifest

Meier c03.indd V1 - 02/11/2011 Page 61

Introducing the Application Manifest File x 61

purpose or defi ne your own permissions in the manifest. To do this, use the permission tag
to create a permission defi nition.

Your application components can then create permissions by adding an android:permission
attribute. Then you can include a uses-permission tag in your manifest to use these pro-
tected components, both in the application that includes the protected component and any
other application that wants to use it.

Within the permission tag, you can specify the level of access the permission permits
(normal, dangerous, signature, signatureOrSystem), a label, and an external resource
containing the description that explains the risks of granting the specifi ed permission. More
details on creating and using your own permissions can be found in Chapter 18, “Advanced
Android Development.”

<permission android:name=”com.paad.DETONATE_DEVICE”
 android:protectionLevel=”dangerous”
 android:label=”Self Destruct”
 android:description=”@string/detonate_description”>
</permission>

 ‰ instrumentation — Instrumentation classes provide a test framework for your application
components at run time. They provide hooks to monitor your application and its interaction
with the system resources. Create a new node for each of the test classes you’ve created for
your application.

<instrumentation android:label=”My Test”
 android:name=”.MyTestClass”
 android:targetPackage=”com.paad.apackage”>
</instrumentation>

Note that you can use a period (.) as shorthand for prepending the manifest package to a
class within your package.

 ‰ application — A manifest can contain only one application node. It uses attributes to
specify the metadata for your application (including its title, icon, and theme). During devel-
opment you should include a debuggable attribute set to true to enable debugging, then be
sure to disable it for your release builds.

The application node also acts as a container for the Activity, Service, Content Provider,
and Broadcast Receiver nodes that specify the application components. Later in this chapter
you’ll learn how to create and use your own Application class extension to manage applica-
tion state. You specify the name of your custom application class using the android:name
attribute.

<application android:icon=”@drawable/icon”
 android:logo=”@drawable/logo”
 android:theme=”@android:style/Theme.Light”
 android:name=”.MyApplicationClass”
 android:debuggable=”true”>
 [... application nodes ...]
</application>

 ‰ activity — An activity tag is required for every Activity within your applica-
tion. Use the android:name attribute to specify the Activity class name. You
must include the main launch Activity and any other Activity that may be displayed.
Trying to start an Activity that’s not defi ned in the manifest will throw a runtime

c03.indd 61c03.indd 61 4/11/2012 10:06:20 AM4/11/2012 10:06:20 AM

mailto:theme=%E2%80%9D@android:style/Theme.Light%E2%80%9D

Meier c03.indd V1 - 02/11/2011 Page 62

62 x CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

exception. Each Activity node supports intent-filter child tags that defi ne the
Intents that can be used to start the Activity. Later in this chapter you’ll explore the
Activity manifest entry in more detail.

Note, again, that a period is used as shorthand for the application’s package name when
specifying the Activity’s class name.

<activity android:name=”.MyActivity” android:label=”@string/app_name”>
 <intent-filter>
 <action android:name=”android.intent.action.MAIN” />
 <category android:name=»android.intent.category.LAUNCHER» />
 </intent-filter>
</activity>

 ‰ service — As with the activity tag, add a service tag for each Service class
used in your application. Service tags also support intent-filter child tags to
allow late runtime binding.

<service android:name=”.MyService”>
</service>

 ‰ provider — Provider tags specify each of your application’s Content Providers.
Content Providers are used to manage database access and sharing.

<provider android:name=”.MyContentProvider”
 android:authorities=”com.paad.myapp.MyContentProvider”/>

 ‰ receiver — By adding a receiver tag, you can register a Broadcast Receiver with-
out having to launch your application fi rst. As you’ll see in Chapter 5, Broadcast
Receivers are like global event listeners that, when registered, will execute whenever
a matching Intent is broadcast by the system or an application. By registering a
Broadcast Receiver in the manifest you can make this process entirely autonomous. If
a matching Intent is broadcast, your application will be started automatically and
the registered Broadcast Receiver will be executed. Each receiver node supports
intent-filter child tags that defi ne the Intents that can be used to trigger the
receiver:

<receiver android:name=”.MyIntentReceiver”>
 <intent-filter>
 <action android:name=”com.paad.mybroadcastaction” />
 </intent-filter>
</receiver>

 ‰ uses-library — Used to specify a shared library that this application requires. For
example, the maps APIs described in Chapter 13, “Maps, Geocoding, and Location-
Based Services,” are packaged as a separate library that is not automatically linked.
You can specify that a particular package is required — which prevents the appli-
cation from being installed on devices without the specifi ed library — or optional,
in which case your application must use refl ection to check for the library before
attempting to make use of it.

<uses-library android:name=”com.google.android.maps”
 android:required=”false”/>

c03.indd 62c03.indd 62 4/11/2012 10:06:20 AM4/11/2012 10:06:20 AM

Meier c03.indd V1 - 02/11/2011 Page 63

Using the Manifest Editor x 63

You can fi nd a more detailed description of the manifest and each of these
nodes at http://developer.android.com/guide/topics/manifest/
manifest-intro.html.

The ADT New Project Wizard automatically creates a new manifest fi le when it creates a new proj-
ect. You’ll return to the manifest as each of the application components is introduced and explored.

USING THE MANIFEST EDITOR

The Android Development Tools (ADT) plug-in includes a Manifest Editor, so you don’t have to
manipulate the underlying XML directly.

To use the Manifest Editor in Eclipse, right-click the AndroidManifest.xml fi le in your project
folder, and select Open With Í Android Manifest Editor. This presents the Android Manifest
Overview screen, as shown in Figure 3-1. This screen gives you a high-level view of your application
structure, enabling you to set your application version information and root level manifest nodes,
including uses-sdk and uses-features, as described previously in this chapter. It also provides
shortcut links to the Application, Permissions, Instrumentation, and raw XML screens.

FIGURE 3-1

c03.indd 63c03.indd 63 4/11/2012 10:06:20 AM4/11/2012 10:06:20 AM

http://developer.android.com/guide/topics/manifest

Meier c03.indd V1 - 02/11/2011 Page 64

64 x CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

Each of the next three tabs contains a visual interface for managing the application, security, and
instrumentation (testing) settings, while the last tab (labeled with the manifest’s fi lename) gives
access to the underlying XML.

Of particular interest is the Application tab, as shown in Figure 3-2. Use it to manage the applica-
tion node and the application component hierarchy, where you specify each of your application’s
components.

FIGURE 3-2

You can specify an application’s attributes — including its icon, label, and theme — in the
Application Attributes panel. The Application Nodes tree beneath it lets you manage the application
components, including their attributes and any associated Intent Filters.

EXTERNALIZING RESOURCES

It’s always good practice to keep non-code resources, such as images and string constants, external
to your code. Android supports the externalization of resources, ranging from simple values such as
strings and colors to more complex resources such as images (Drawables), animations, themes, and
menus. Perhaps the most powerful externalizable resources are layouts.

c03.indd 64c03.indd 64 4/11/2012 10:06:21 AM4/11/2012 10:06:21 AM

Meier c03.indd V1 - 02/11/2011 Page 65

Externalizing Resources x 65

By externalizing resources, you make them easier to maintain, update, and manage. This also
lets you easily defi ne alternative resource values for internationalization and to include different
resources to support variations in hardware — particularly, screen size and resolution.

You’ll see later in this section how Android dynamically selects resources from resource trees that
contain different values for alternative hardware confi gurations, languages, and locations. When an
application starts, Android automatically selects the correct resources without you having to write a
line of code.

Among other things, this lets you change the layout based on the screen size and orientation,
images based on screen density, and customize text prompts based on a user’s language and
country.

Creating Resources

Application resources are stored under the res folder in your project hierarchy. Each of the available
resource types is stored in subfolders, grouped by resource type.

If you start a project using the ADT Wizard, it creates a res folder that
contains subfolders for the values, drawable-ldpi, drawable-mdpi,
drawable-hdpi, and layout resources that contain the default string resource
defi nitions, application icon, and layouts respectively, as shown in Figure 3-3.

Note that three drawable resource folders contain three different icons: one
each for low, medium, and high density displays respectively.

Each resource type is stored in a different folder: simple values, Drawables,
colors, layouts, animations, styles, menus, XML fi les (including searchables),
and raw resources. When your application is built, these resources will be compiled and compressed
as effi ciently as possible and included in your application package.

This process also generates an R class fi le that contains references to each of the resources you
include in your project. This enables you to reference the resources in your code, with the advantage
of design-time syntax checking.

The following sections describe many of the specifi c resource types available within these categories
and how to create them for your applications.

In all cases, the resource fi lenames should contain only lowercase letters, numbers, and the period
(.) and underscore (_) symbols.

Simple Values

Supported simple values include strings, colors, dimensions, styles, and string or integer arrays. All
simple values are stored within XML fi les in the res/values folder.

Within each XML fi le, you indicate the type of value being stored using tags, as shown in the
sample XML fi le in Listing 3-1.

FIGURE 3-3

c03.indd 65c03.indd 65 4/11/2012 10:06:21 AM4/11/2012 10:06:21 AM

Meier c03.indd V1 - 02/11/2011 Page 66

66 x CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

LISTING 3-1: Simple values XML

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
 <string name=”app_name”>To Do List</string>
 <plurals name=”androidPlural”>
 <item quantity=”one”>One android</item>
 <item quantity=”other”>%d androids</item>
 </plurals>
 <color name=”app_background”>#FF0000FF</color>
 <dimen name=”default_border”>5px</dimen>
 <string-array name=“string_array“>
 <item>Item 1</item>
 <item>Item 2</item>
 <item>Item 3</item>
 </string-array>
 <array name=“integer_array“>
 <item>3</item>
 <item>2</item>
 <item>1</item>
 </array>
</resources>

code snippet PA4AD_Ch03_Manifest_and_Resources/res/values/simple_values.xml

This example includes all the simple value types. By convention, resources are generally stored in
separate fi les, one for each type; for example, res/values/strings.xml would contain only string
resources.

The following sections detail the options for defi ning simple resources.

Strings

Externalizing your strings helps maintain consistency within your application and makes it much
easier to internationalize them.

String resources are specifi ed with the string tag, as shown in the following XML snippet:

<string name=”stop_message”>Stop.</string>

Android supports simple text styling, so you can use the HTML tags , <i>, and <u> to apply
bold, italics, or underlining, respectively, to parts of your text strings, as shown in the following
example:

<string name=”stop_message”>Stop.</string>

You can use resource strings as input parameters for the String.format method. However,
String.format does not support the text styling previously described. To apply styling to a format
string, you have to escape the HTML tags when creating your resource, as shown in the following
snippet:

<string name=”stop_message”>Stop. %1$s</string>

Within your code, use the Html.fromHtml method to convert this back into a styled character
sequence.

c03.indd 66c03.indd 66 4/11/2012 10:06:21 AM4/11/2012 10:06:21 AM

Meier c03.indd V1 - 02/11/2011 Page 67

Externalizing Resources x 67

String rString = getString(R.string.stop_message);
String fString = String.format(rString, “Collaborate and listen.”);
CharSequence styledString = Html.fromHtml(fString);

You can also defi ne alternative plural forms for your strings. This enables you to defi ne different
strings based on the number of items you refer to. For example, in English you would refer to “one
Android” or “seven Androids.”

By creating a plurals resource, you can specify an alternative string for any of zero, one, multiple,
few, many, or other quantities. In English only the singular is a special case, but some languages
require fi ner detail:

<plurals name=”unicornCount”>
 <item quantity=”one”>One unicorn</item>
 <item quantity=”other”>%d unicorns</item>
</plurals>

To access the correct plural in code, use the getQuantityString method on your application’s
Resources object, passing in the resource ID of the plural resource, and specifying the number of
objects you want to describe:

Resources resources = getResources();
String unicornStr = resources.getQuantityString(
 R.plurals.unicornCount, unicornCount, unicornCount);

The object count is passed in twice — once to return the correct plural string, and again as an input
parameter to complete the sentence.

Colors

Use the color tag to defi ne a new color resource. Specify the color value using a # symbol followed
by the (optional) alpha channel, and then the red, green, and blue values using one or two hexadeci-
mal numbers with any of the following notations:

 ‰ #RGB

 ‰ #RRGGBB

 ‰ #ARGB

 ‰ #AARRGGBB

The following example shows how to specify a fully opaque blue and a partially transparent green:

<color name=”opaque_blue”>#00F</color>
<color name=”transparent_green”>#7700FF00</color>

Dimensions

Dimensions are most commonly referenced within style and layout resources. They’re useful for
creating layout constants, such as borders and font heights.

To specify a dimension resource, use the dimen tag, specifying the dimension value, followed by an
identifi er describing the scale of your dimension:

 ‰ px (screen pixels)

 ‰ in (physical inches)

c03.indd 67c03.indd 67 4/11/2012 10:06:21 AM4/11/2012 10:06:21 AM

Meier c03.indd V1 - 02/11/2011 Page 68

68 x CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

 ‰ pt (physical points)

 ‰ mm (physical millimeters)

 ‰ dp (density-independent pixels)

 ‰ sp (scale-independent pixels)

Although you can use any of these measurements to defi ne a dimension, it’s best practice to use
either density- or scale-independent pixels. These alternatives let you defi ne a dimension using rela-
tive scales that account for different screen resolutions and densities to simplify scaling on different
hardware.

Scale-independent pixels are particularly well suited when defi ning font sizes because they automati-
cally scale if the user changes the system font size.

The following XML snippet shows how to specify dimension values for a large font size and a
standard border:

<dimen name=”standard_border”>5dp</dimen>
<dimen name=”large_font_size”>16sp</dimen>

Styles and Themes

Style resources let your applications maintain a consistent look and feel by enabling you to specify
the attribute values used by Views. The most common use of themes and styles is to store the colors
and fonts for an application.

To create a style, use a style tag that includes a name attribute and contains one or more item tags.
Each item tag should include a name attribute used to specify the attribute (such as font size or color)
being defi ned. The tag itself should then contain the value, as shown in the following skeleton code.

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
 <style name=”base_text”>
 <item name=”android:textSize”>14sp</item>
 <item name=”android:textColor”>#111</item>
 </style>
</resources>

Styles support inheritance using the parent attribute on the style tag, making it easy to create simple
variations:

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
 <style name=”small_text” parent=”base_text”>
 <item name=”android:textSize”>8sp</item>
 </style>
</resources>

Drawables

Drawable resources include bitmaps and NinePatches (stretchable PNG images). They also include
complex composite Drawables, such as LevelListDrawables and StateListDrawables, that can be
defi ned in XML.

c03.indd 68c03.indd 68 4/11/2012 10:06:21 AM4/11/2012 10:06:21 AM

Meier c03.indd V1 - 02/11/2011 Page 69

Externalizing Resources x 69

Both NinePatch Drawables and complex composite resources are covered in
more detail in the next chapter.

All Drawables are stored as individual fi les in the res/drawable folder. Note that it’s good practice
to store bitmap image assets in the appropriate drawable -ldpi, -mdpi, -hdpi, and -xhdpi folders, as
described earlier in this chapter. The resource identifi er for a Drawable resource is the lowercase fi le
name without its extension.

The preferred format for a bitmap resource is PNG, although JPG and GIF fi les
are also supported.

Layouts

Layout resources enable you to decouple your presentation layer from your business logic by design-
ing UI layouts in XML rather than constructing them in code.

You can use layouts to defi ne the UI for any visual component, including Activities, Fragments,
and Widgets. Once defi ned in XML, the layout must be “infl ated” into the user interface. Within
an Activity this is done using setContentView (usually within the onCreate method), whereas
Fragment Views are infl ated using the inflate method from the Inflator object passed in to the
Fragment’s onCreateView handler.

For more detailed information on using and creating layouts in Activities and Fragments, see
Chapter 4, “Building User Interfaces.”

Using layouts to construct your screens in XML is best practice in Android. The decoupling of the
layout from the code enables you to create optimized layouts for different hardware confi gurations,
such as varying screen sizes, orientation, or the presence of keyboards and touchscreens.

Each layout defi nition is stored in a separate fi le, each containing a single layout, in the res/layout
folder. The fi lename then becomes the resource identifi er.

A thorough explanation of layout containers and View elements is included in the next chapter, but
as an example Listing 3-2 shows the layout created by the New Project Wizard. It uses a Linear
Layout (described in more detail in Chapter 4) as a layout container for a Text View that displays
the “Hello World” greeting.

LISTING 3-2: Hello World layout

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>

continues

c03.indd 69c03.indd 69 4/11/2012 10:06:22 AM4/11/2012 10:06:22 AM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier c03.indd V1 - 02/11/2011 Page 70

70 x CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

 <TextView
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/hello”
 />
</LinearLayout>

code snippet PA4AD_Ch03_Manifest_and_Resources/res/layout/main.xml

Animations

Android supports three types of animation:

 ‰ Property animations — A tweened animation that can be used to potentially animate any
property on the target object by applying incremental changes between two values. This can
be used for anything from changing the color or opacity of a View to gradually fade it in or
out, to changing a font size, or increasing a character’s hit points.

 ‰ View animations — Tweened animations that can be applied to rotate, move, and stretch
a View.

 ‰ Frame animations — Frame-by-frame “cell” animations used to display a sequence of
Drawable images.

A comprehensive overview of creating, using, and applying animations can be
found in Chapter 11, “Advanced User Experience.”

Defi ning animations as external resources enables you to reuse the same sequence in multiple places
and provides you with the opportunity to present different animations based on device hardware or
orientation.

Property Animations

Property animators were introduced in Android 3.0 (API level 11). It is a powerful framework that
can be used to animate almost anything.

Each property animation is stored in a separate XML fi le in the project’s res/animator folder. As
with layouts and Drawable resources, the animation’s fi lename is used as its resource identifi er.

You can use a property animator to animate almost any property on a target object. You can defi ne
animators that are tied to a specifi c property, or a generic value animator that can be allocated to
any property and object.

Property animators are extremely useful and are used extensively for animating Fragments in
Android. You will explore them in more detail in Chapter 11.

LISTING 3-2 (continued)

c03.indd 70c03.indd 70 4/11/2012 10:06:22 AM4/11/2012 10:06:22 AM

Meier c03.indd V1 - 02/11/2011 Page 71

Externalizing Resources x 71

The following simple XML snippet shows a property animator that changes the opacity of the target
object by calling its setAlpha method incrementally between 0 and 1 over the course of a second:

<?xml version=”1.0” encoding=”utf-8”?>
<objectAnimator xmlns:android=”http://schemas.android.com/apk/res/android”
 android:propertyName=”alpha”
 android:duration=”1000”
 android:valueFrom=”0.0”
 android:valueTo=”1.0”
/>

View Animations

Each view animation is stored in a separate XML fi le in the project’s res/anim folder. As with
layouts and Drawable resources, the animation’s fi lename is used as its resource identifi er.

An animation can be defi ned for changes in alpha (fading), scale (scaling), translate (movement),
or rotate (rotation).

Table 3-1 shows the valid attributes, and attribute values, supported by each animation type.

TABLE 3-1: Animation type attributes

ANIMATION TYPE ATTRIBUTES VALID VALUES

Alpha fromAlpha/toAlpha Float from 0 to 1

Scale fromXScale/toXScale Float from 0 to 1

fromYScale/toYScale Float from 0 to 1

pivotX/pivotY String of the percentage of graphic width/height

from 0% to 100%

Translate fromX/toX Float from 0 to 1

fromY/toY Float from 0 to 1

Rotate fromDegrees/toDegrees Float from 0 to 360

pivotX/pivotY String of the percentage of graphic width/height

from 0% to 100%

You can create a combination of animations using the set tag. An animation set contains one or
more animation transformations and supports various additional tags and attributes to customize
when and how each animation within the set is run.

The following list shows some of the set tags available:

 ‰ duration — Duration of the full animation in milliseconds.

 ‰ startOffset — Millisecond delay before the animation starts.

 ‰ fillBeforetrue — Applies the animation transformation before it begins.

c03.indd 71c03.indd 71 4/11/2012 10:06:23 AM4/11/2012 10:06:23 AM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier c03.indd V1 - 02/11/2011 Page 72

72 x CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

 ‰ fillAftertrue — Applies the animation transformation after it ends.

 ‰ interpolator — Sets how the speed of this effect varies over time. Chapter 11 explores
the interpolators available. To specify one, reference the system animation resources at
android:anim/interpolatorName.

If you do not use the startOffset tag, all the animation effects within a set will
execute simultaneously.

The following example shows an animation set that spins the target 360 degrees while it shrinks and
fades out:

<?xml version=”1.0” encoding=”utf-8”?>
<set xmlns:android=”http://schemas.android.com/apk/res/android”
 android:interpolator=”@android:anim/accelerate_interpolator”>
 <rotate
 android:fromDegrees=”0”
 android:toDegrees=”360”
 android:pivotX=”50%”
 android:pivotY=”50%”
 android:startOffset=”500”
 android:duration=”1000” />
 <scale
 android:fromXScale=”1.0”
 android:toXScale=”0.0”
 android:fromYScale=”1.0”
 android:toYScale=”0.0”
 android:pivotX=”50%”
 android:pivotY=”50%”
 android:startOffset=”500”
 android:duration=”500” />
 <alpha
 android:fromAlpha=”1.0”
 android:toAlpha=”0.0”
 android:startOffset=”500”
 android:duration=”500” />
</set>

Frame-by-Frame Animations

Frame-by-frame animations produce a sequence of Drawables, each of which is displayed for a
specifi ed duration.

Because frame-by-frame animations represent animated Drawables, they are stored in the res/
drawable folder and use their fi lenames (without the .xml extension) as their resource Ids.

The following XML snippet shows a simple animation that cycles through a series of bitmap
resources, displaying each one for half a second. To use this snippet, you need to create new image
resources android1 through android3:

<animation-list
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:oneshot=”false”>

c03.indd 72c03.indd 72 4/11/2012 10:06:23 AM4/11/2012 10:06:23 AM

http://schemas.android.com/apk/res/android%E2%80%9D
http://schemas.android.com/apk/res/android%E2%80%9D

Meier c03.indd V1 - 02/11/2011 Page 73

Externalizing Resources x 73

 <item android:drawable=”@drawable/android1” android:duration=”500” />
 <item android:drawable=”@drawable/android2” android:duration=”500” />
 <item android:drawable=”@drawable/android3” android:duration=”500” />
</animation-list>

Note that in many cases you should include multiple resolutions of each of the drawables used
within the animation list in the drawable-ldpi, -mdi, -hdpi, and -xhdpi folders, as appropriate.

To play the animation, start by assigning the resource to a host View before getting a reference to
the Animation Drawable object and starting it:

ImageView androidIV = (ImageView)findViewById(R.id.iv_android);
androidIV.setBackgroundResource(R.drawable.android_anim);

AnimationDrawable androidAnimation =
 (AnimationDrawable) androidIV.getBackground();

androidAnimation.start();

Typically, this is done in two steps; assigning the resource to the background should be done within
the onCreate handler.

Within this handler the animation is not fully attached to the window, so the animations can’t be
started; instead, this is usually done as a result to user action (such as a button press) or within the
onWindowFocusChanged handler.

Menus

Create menu resources to design your menu layouts in XML, rather than constructing them in code.

You can use menu resources to defi ne both Activity and context menus within your applications,
and provide the same options you would have when constructing your menus in code. When defi ned
in XML, a menu is infl ated within your application via the inflate method of the MenuInflator
Service, usually within the onCreateOptionsMenu method. You examine menus in more detail in
Chapter 10.

Each menu defi nition is stored in a separate fi le, each containing a single menu, in the res/menu
folder — the fi lename then becomes the resource identifi er. Using XML to defi ne your menus is best-
practice design in Android.

A thorough explanation of menu options is included in Chapter 10, but Listing 3-3 shows a simple
example.

LISTING 3-3: Simple menu layout resource

<?xml version=”1.0” encoding=”utf-8”?>
<menu xmlns:android=”http://schemas.android.com/apk/res/android”>
 <item android:id=”@+id/menu_refresh”
 android:title=”@string/refresh_mi” />
 <item android:id=”@+id/menu_settings”
 android:title=”@string/settings_mi” />
</menu>

code snippet PA4AD_Snippets_Chapter3/res/menu/menu.xml

c03.indd 73c03.indd 73 4/11/2012 10:06:23 AM4/11/2012 10:06:23 AM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier c03.indd V1 - 02/11/2011 Page 74

74 x CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

Using Resources

In addition to the resources you supply, the Android platform includes several system resources that
you can use in your applications. All resources can be used directly from your application code and
can also be referenced from within other resources. For example, a dimension resource might be ref-
erenced in a layout defi nition.

Later in this chapter you learn how to defi ne alternative resource values for different languages,
locations, and hardware. It’s important to note that when using resources, you shouldn’t choose a
particular specialized version. Android will automatically select the most appropriate value for a
given resource identifi er based on the current hardware, device, and language confi gurations.

Using Resources in Code

Access resources in code using the static R class. R is a generated class based on your external
resources, and created when your project is compiled. The R class contains static subclasses for each
of the resource types for which you’ve defi ned at least one resource. For example, the default new
project includes the R.string and R.drawable subclasses.

If you use the ADT plug-in in Eclipse, the R class will be created automatically
when you make any change to an external resource fi le or folder. If you are not
using the plug-in, use the AAPT tool to compile your project and generate the R
class. R is a compiler-generated class, so don’t make any manual modifi cations
to it because they will be lost when the fi le is regenerated.

Each of the subclasses within R exposes its associated resources as variables, with the variable names
matching the resource identifi ers — for example, R.string.app_name or R.drawable.icon.

The value of these variables is an integer that represents each resource’s location in the resource
table, not an instance of the resource itself.

Where a constructor or method, such as setContentView, accepts a resource identifi er, you can
pass in the resource variable, as shown in the following code snippet:

// Inflate a layout resource.
setContentView(R.layout.main);
// Display a transient dialog box that displays the
// error message string resource.
Toast.makeText(this, R.string.app_error, Toast.LENGTH_LONG).show();

When you need an instance of the resource itself, you need to use helper methods to extract them
from the resource table. The resource table is represented within your application as an instance of
the Resources class.

These methods perform lookups on the application’s current resource table, so these helper methods
can’t be static. Use the getResources method on your application context, as shown in the follow-
ing snippet, to access your application’s Resources instance:

Resources myResources = getResources();

c03.indd 74c03.indd 74 4/11/2012 10:06:23 AM4/11/2012 10:06:23 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Meier c03.indd V1 - 02/11/2011 Page 75

Externalizing Resources x 75

The Resources class includes getters for each of the available resource types and generally works by
passing in the resource ID you’d like an instance of. The following code snippet shows an example
of using the helper methods to return a selection of resource values:

Resources myResources = getResources();

CharSequence styledText = myResources.getText(R.string.stop_message);
Drawable icon = myResources.getDrawable(R.drawable.app_icon);

int opaqueBlue = myResources.getColor(R.color.opaque_blue);

float borderWidth = myResources.getDimension(R.dimen.standard_border);

Animation tranOut;
tranOut = AnimationUtils.loadAnimation(this, R.anim.spin_shrink_fade);

ObjectAnimator animator =
 (ObjectAnimator)AnimatorInflater.loadAnimator(this,
 R.anim.my_animator);

String[] stringArray;
stringArray = myResources.getStringArray(R.array.string_array);

int[] intArray = myResources.getIntArray(R.array.integer_array);

Frame-by-frame animated resources are infl ated into AnimationResources. You can return the
value using getDrawable and casting the return value, as shown here:

AnimationDrawable androidAnimation;
androidAnimation =
 (AnimationDrawable)myResources.getDrawable(R.drawable.frame_by_frame);

Referencing Resources Within Resources

You can also use resource references as attribute values in other XML resources.

This is particularly useful for layouts and styles, letting you create specialized variations on themes
and localized strings and image assets. It’s also a useful way to support different images and spacing
for a layout to ensure that it’s optimized for different screen sizes and resolutions.

To reference one resource from another, use the @ notation, as shown in the following snippet:

attribute=”@[packagename:]resourcetype/resourceidentifier”

Android assumes you use a resource from the same package, so you only
need to fully qualify the package name if you use a resource from a different
package.

Listing 3-4 shows a layout that uses color, dimension, and string resources.

c03.indd 75c03.indd 75 4/11/2012 10:06:24 AM4/11/2012 10:06:24 AM

Meier c03.indd V1 - 02/11/2011 Page 76

76 x CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

LISTING 3-4: Using resources in a layout

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:padding=”@dimen/standard_border”>
 <EditText
 android:id=”@+id/myEditText”
 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/stop_message”
 android:textColor=”@color/opaque_blue”
 />
</LinearLayout>

 code snippet PA4AD_Ch03_Manifest_and_Resources/res/layout/reslayout.xml

Using System Resources

The Android framework makes many native resources available, providing you with various strings,
images, animations, styles, and layouts to use in your applications.

Accessing the system resources in code is similar to using your own resources. The difference is that
you use the native Android resource classes available from android.R, rather than the application-
specifi c R class. The following code snippet uses the getString method available in the application
context to retrieve an error message available from the system resources:

CharSequence httpError = getString(android.R.string.httpErrorBadUrl);

To access system resources in XML, specify android as the package name, as shown in this XML
snippet:

<EditText
 android:id=”@+id/myEditText”
 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 android:text=”@android:string/httpErrorBadUrl”
 android:textColor=”@android:color/darker_gray”
/>

Referring to Styles in the Current Theme

Using themes is an excellent way to ensure consistency for your application’s UI. Rather than fully
defi ne each style, Android provides a shortcut to enable you to use styles from the currently applied
theme.

To do this, use ?android: rather than @ as a prefi x to the resource you want to use. The following
example shows a snippet of the preceding code but uses the current theme’s text color rather than a
system resource:

<EditText
 android:id=”@+id/myEditText”

c03.indd 76c03.indd 76 4/11/2012 10:06:24 AM4/11/2012 10:06:24 AM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier c03.indd V1 - 02/11/2011 Page 77

Externalizing Resources x 77

 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 android:text=”@android:string/httpErrorBadUrl”
 android:textColor=”?android:textColor”
/>

This technique enables you to create styles that change if the current theme changes, without you
modifying each individual style resource.

Creating Resources for Diff erent Languages and Hardware

Using the directory structure described here, you can create different resource values for specifi c
languages, locations, and hardware confi gurations. Android chooses from among these values
dynamically at run time using its dynamic resource-selection mechanism.

You can specify alternative resource values using a parallel directory structure within the res folder.
A hyphen (-) is used to separate qualifi ers that specify the conditions you provide alternatives for.

The following example hierarchy shows a folder structure that features default string values, with
French language and French Canadian location variations:

Project/
 res/
 values/
 strings.xml
 values-fr/
 strings.xml
 values-fr-rCA/
 strings.xml

The following list gives the qualifi ers you can use to customize your resource values:

 ‰ Mobile Country Code and Mobile Network Code (MCC/MNC) — The country, and option-
ally the network, associated with the SIM currently used in the device. The MCC is specifi ed
by mcc followed by the three-digit country code. You can optionally add the MNC using
mnc and the two- or three-digit network code (for example, mcc234-mnc20 or mcc310). You
can fi nd a list of MCC/MNC codes on Wikipedia at http://en.wikipedia.org/wiki/
MobileNetworkCode.

 ‰ Language and Region — Language specifi ed by the lowercase two-letter ISO 639-1 language
code, followed optionally by a region specifi ed by a lowercase r followed by the uppercase
two-letter ISO 3166-1-alpha-2 language code (for example, en, en-rUS, or en-rGB).

 ‰ Smallest Screen Width — The lowest of the device’s screen dimensions (height and width)
specifi ed in the form sw<Dimension value>dp (for example, sw600dp, sw320dp, or
sw720dp). This is generally used when providing multiple layouts, where the value specifi ed
should be the smallest screen width that your layout requires in order to render
correctly. Where you supply multiple directories with different smallest screen width quali-
fi ers, Android selects the largest value that doesn’t exceed the smallest dimension available on
the device.

 ‰ Available Screen Width — The minimum screen width required to use the contained
resources, specifi ed in the form w<Dimension value>dp (for example, w600dp, w320dp, or

c03.indd 77c03.indd 77 4/11/2012 10:06:24 AM4/11/2012 10:06:24 AM

http://en.wikipedia.org/wiki

Meier c03.indd V1 - 02/11/2011 Page 78

78 x CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

w720dp). Also used to supply multiple layouts alternatives, but unlike smallest screen width,
the available screen width changes to refl ect the current screen width when the device orien-
tation changes. Android selects the largest value that doesn’t exceed the currently available
screen width.

 ‰ Available Screen Height — The minimum screen height required to use the contained
resources, specifi ed in the form h<Dimension value>dp (for example, h720dp, h480dp, or
h1280dp). Like available screen width, the available screen height changes when the device
orientation changes to refl ect the current screen height. Android selects the largest value that
doesn’t exceed the currently available screen height.

 ‰ Screen Size — One of small (smaller than HVGA), medium (at least HVGA and typically
smaller than VGA), large (VGA or larger), or xlarge (signifi cantly larger than HVGA).
Because each of these screen categories can include devices with signifi cantly different screen
sizes (particularly tablets), it’s good practice to use the more specifi c smallest screen size,
and available screen width and height whenever possible. Because they precede this screen
size qualifi er, where both are specifi ed, the more specifi c qualifi ers will be used in preference
where supported.

 ‰ Screen Aspect Ratio — Specify long or notlong for resources designed specifi cally for wide
screen. (For example, WVGA is long; QVGA is notlong.)

 ‰ Screen Orientation: One of port (portrait), land (landscape), or square (square).

 ‰ Dock Mode — One of car or desk. Introduced in API level 8.

 ‰ Night Mode — One of night (night mode) or notnight (day mode). Introduced in API level
8. Used in combination with the dock mode qualifi er, this provides a simple way to change
the theme and/or color scheme of an application to make it more suitable for use at night in a
car dock.

 ‰ Screen Pixel Density — Pixel density in dots per inch (dpi). Best practice is to supply ldpi,
mdpi, hdpi, or xhdpi to specify low (120 dpi), medium (160 dpi), high (240 dpi), or extra
high (320 dpi) pixel density assets, respectively. You can specify nodpi for bitmap resources
you don’t want scaled to support an exact screen density. To better support applications
targeting televisions running Android, you can also use the tvdpi qualifi er for assets of
approximately 213dpi. This is generally unnecessary for most applications, where including
medium- and high-resolution assets is suffi cient for a good user experience. Unlike with other
resource types, Android does not require an exact match to select a resource. When selecting
the appropriate folder, it chooses the nearest match to the device’s pixel density and scales
the resulting Drawables accordingly.

 ‰ Touchscreen Type — One of notouch, stylus, or finger, allowing you to provide layouts
or dimensions optimized for the style of touchscreen input available on the host device.

 ‰ Keyboard Availability — One of keysexposed, keyshidden, or keyssoft.

 ‰ Keyboard Input Type — One of nokeys, qwerty, or 12key.

 ‰ Navigation Key Availability — One of navexposed or navhidden.

 ‰ UI Navigation Type — One of nonav, dpad, trackball, or wheel.

c03.indd 78c03.indd 78 4/11/2012 10:06:24 AM4/11/2012 10:06:24 AM

Meier c03.indd V1 - 02/11/2011 Page 79

Externalizing Resources x 79

 ‰ Platform Version — The target API level, specifi ed in the form v<API Level> (for example,
v7). Used for resources restricted to devices running at the specifi ed API level or higher.

You can specify multiple qualifi ers for any resource type, separating each qualifi er with a hyphen.
Any combination is supported; however, they must be used in the order given in the preceding list,
and no more than one value can be used per qualifi er.

The following example shows valid and invalid directory names for alternative layout resources.

VALID

 layout-large-land
 layout-xlarge-port-keyshidden
 layout-long-land-notouch-nokeys

INVALID

 values-rUS-en (out of order)
 values-rUS-rUK (multiple values for a single qualifier)

When Android retrieves a resource at run time, it fi nds the best match from the available alterna-
tives. Starting with a list of all the folders in which the required value exists, it selects the one with
the greatest number of matching qualifi ers. If two folders are an equal match, the tiebreaker is based
on the order of the matched qualifi ers in the preceding list.

If no resource matches are found on a given device, your application throws an
exception when attempting to access that resource. To avoid this, you should
always include default values for each resource type in a folder that includes no
qualifi ers.

Runtime Confi guration Changes

Android handles runtime changes to the language, location, and hardware by terminating and
restarting the active Activity. This forces the resource resolution for the Activity to be reevaluated
and the most appropriate resource values for the new confi guration to be selected.

In some special cases this default behavior may be inconvenient, particularly for applications that
don’t want to present a different UI based on screen orientation changes. You can customize your
application’s response to such changes by detecting and reacting to them yourself.

To have an Activity listen for runtime confi guration changes, add an android:configChanges attri-
bute to its manifest node, specifying the confi guration changes you want to handle.

The following list describes some of the confi guration changes you can specify:

 ‰ mcc and mnc — A SIM has been detected and the mobile country or network code (respec-
tively) has changed.

 ‰ locale — The user has changed the device’s language settings.

c03.indd 79c03.indd 79 4/11/2012 10:06:25 AM4/11/2012 10:06:25 AM

Meier c03.indd V1 - 02/11/2011 Page 80

80 x CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

 ‰ keyboardHidden — The keyboard, d-pad, or other input mechanism has been exposed or
hidden.

 ‰ keyboard — The type of keyboard has changed; for example, the phone may have a 12-key
keypad that fl ips out to reveal a full keyboard, or an external keyboard might have been
plugged in.

 ‰ fontScale — The user has changed the preferred font size.

 ‰ uiMode — The global UI mode has changed. This typically occurs if you switch between car
mode, day or night mode, and so on.

 ‰ orientation — The screen has been rotated between portrait and landscape.

 ‰ screenLayout — The screen layout has changed; typically occurs if a different screen has
been activated.

 ‰ screenSize — Introduced in Honeycomb MR2 (API level 12), occurs when the available
screen size has changed, for example a change in orientation between landscape and portrait.

 ‰ smallestScreenSize — Introduced in Honeycomb MR2 (API level 12), occurs when the
physical screen size has changed, such as when a device has been connected to an external
display.

In certain circumstances multiple events will be triggered simultaneously. For example, when the
user slides out a keyboard, most devices fi re both the keyboardHidden and orientation events,
and connecting an external display on a post-Honeycomb MR2 device is likely to trigger
orientation, screenLayout, screenSize, and smallestScreenSize events.

You can select multiple events you want to handle yourself by separating the values with a pipe (|),
as shown in Listing 3-5, which shows an activity node declaring that it will handle changes in screen
size and orientation, and keyboard visibility.

LISTING 3-5: Activity defi nition for handling dynamic resource changes

<activity
 android:name=”.MyActivity”
 android:label=”@string/app_name”
 android:configChanges=”screenSize|orientation|keyboardHidden”>
 <intent-filter >
 <action android:name=”android.intent.action.MAIN” />
 <category android:name=”android.intent.category.LAUNCHER” />
 </intent-filter>
</activity>

code snippet PA4AD_Ch03_Confi g_Changes/AndroidManifest.xml

Adding an android:configChanges attribute suppresses the restart for the specifi ed confi guration
changes, instead triggering the onConfigurationChanged handler in the associated Activity. Override
this method to handle the confi guration changes yourself, using the passed-in Configuration object

c03.indd 80c03.indd 80 4/11/2012 10:06:25 AM4/11/2012 10:06:25 AM

Meier c03.indd V1 - 02/11/2011 Page 81

The Android Application Lifecycle x 81

to determine the new confi guration values, as shown in Listing 3-6. Be sure to call back to the super-
class and reload any resource values that the Activity uses, in case they’ve changed.

LISTING 3-6: Handling confi guration changes in code

@Override
public void onConfigurationChanged(Configuration newConfig) {
 super.onConfigurationChanged(newConfig);

 // [... Update any UI based on resource values ...]

 if (newConfig.orientation == Configuration.ORIENTATION_LANDSCAPE) {
 // [... React to different orientation ...]
 }

 if (newConfig.keyboardHidden == Configuration.KEYBOARDHIDDEN_NO) {
 // [... React to changed keyboard visibility ...]
 }
}

code snippet PA4AD_Ch03_Confi g_Changes/src/MyActivity.java

When onConfigurationChanged is called, the Activity’s Resource variables have already been
updated with the new values, so they’ll be safe to use.

Any confi guration change that you don’t explicitly fl ag as being handled by your application will
cause your Activity to restart, without a call to onConfigurationChanged.

THE ANDROID APPLICATION LIFECYCLE

Unlike many traditional application platforms, Android applications have limited control over their
own lifecycles. Instead, application components must listen for changes in the application state and
react accordingly, taking particular care to be prepared for untimely termination.

By default, each Android application runs in its own process, each of which is running a separate
instance of Dalvik. Memory and process management is handled exclusively by the run time.

You can force application components within the same application to run in dif-
ferent processes or to have multiple applications share the same process using
the android:process attribute on the affected component nodes within the
manifest.

Android aggressively manages its resources, doing whatever’s necessary to ensure a smooth and
stable user experience. In practice that means that processes (and their hosted applications) will be
killed, in some case without warning, to free resources for higher-priority applications.

c03.indd 81c03.indd 81 4/11/2012 10:06:25 AM4/11/2012 10:06:25 AM

Meier c03.indd V1 - 02/11/2011 Page 82

82 x CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

UNDERSTANDING AN APPLICATION’S PRIORITY AND ITS

PROCESS’ STATES

The order in which processes are killed to reclaim resources is determined by the priority of their
hosted applications. An application’s priority is equal to that of its highest-priority component.

If two applications have the same priority, the process that has been at that priority longest will be
killed fi rst. Process priority is also affected by interprocess dependencies; if an application has a
dependency on a Service or Content Provider supplied by a second application, the secondary appli-
cation has at least as high a priority as the application it supports.

All Android applications continue running and in memory until the system
needs resources for other applications.

Figure 3-4 shows the priority tree used to determine the
order of application termination.

It’s important to structure your application to ensure
that its priority is appropriate for the work it’s doing. If
you don’t, your application could be killed while it’s in
the middle of something important, or it could remain
running when it is no longer needed.

The following list details each of the application states
shown in Figure 3-4, explaining how the state is
determined by the application components of which it
comprises:

 ‰ Active processes — Active (foreground) processes
have application components the user is interact-
ing with. These are the processes Android tries
to keep responsive by reclaiming resources from
other applications. There are generally very few
of these processes, and they will be killed only as a last resort.

Active processes include the following:

 ‰ Activities in an active state — that is, those in the foreground responding to user
events. You will explore Activity states in greater detail later in this chapter.

 ‰ Broadcast Receivers executing onReceive event handlers as described in
Chapter 5.

 ‰ Services executing onStart, onCreate, or onDestroy event handlers as described in
Chapter 9.

 ‰ Running Services that have been fl agged to run in the foreground (also described in
Chapter 9.)

1. Active Process
Critical Priority

High Priority

Low Priority

2. Visible Process

3. Started Service Process

4. Background Process

5. Empty Process

FIGURE 3-4

c03.indd 82c03.indd 82 4/11/2012 10:06:26 AM4/11/2012 10:06:26 AM

Meier c03.indd V1 - 02/11/2011 Page 83

Introducing the Android Application Class x 83

 ‰ Visible processes — Visible but inactive processes are those hosting “visible” Activities.
As the name suggests, visible Activities are visible, but they aren’t in the foreground
or responding to user events. This happens when an Activity is only partially obscured
(by a non-full-screen or transparent Activity). There are generally very few visible pro-
cesses, and they’ll be killed only under extreme circumstances to allow active processes to
continue.

 ‰ Started Service processes — Processes hosting Services that have been started. Because these
Services don’t interact directly with the user, they receive a slightly lower priority than visible
Activities or foreground Services. Applications with running Services are still considered fore-
ground processes and won’t be killed unless resources are needed for active or visible pro-
cesses. When the system terminates a running Service it will attempt to restart them (unless
you specify that it shouldn’t) when resources become available. You’ll learn more about
Services in Chapter 9.

 ‰ Background processes — Processes hosting Activities that aren’t visible and that don’t have
any running Services. There will generally be a large number of background processes that
Android will kill using a last-seen-fi rst-killed pattern in order to obtain resources for fore-
ground processes.

 ‰ Empty processes — To improve overall system performance, Android will often retain an
application in memory after it has reached the end of its lifetime. Android maintains this
cache to improve the start-up time of applications when they’re relaunched. These processes
are routinely killed, as required.

INTRODUCING THE ANDROID APPLICATION CLASS

Your application’s Application object remains instantiated whenever your application runs. Unlike
Activities, the Application is not restarted as a result of confi guration changes. Extending the
Application class with your own implementation enables you to do three things:

 ‰ Respond to application level events broadcast by the Android run time such as low memory
conditions.

 ‰ Transfer objects between application components.

 ‰ Manage and maintain resources used by several application components.

Of these, the latter two can be better achieved using a separate singleton class. When your
Application implementation is registered in the manifest, it will be instantiated when your
application process is created. As a result, your Application implementation is by nature a
singleton and should be implemented as such to provide access to its methods and member
variables.

Extending and Using the Application Class

Listing 3-7 shows the skeleton code for extending the Application class and implementing it as a
singleton.

c03.indd 83c03.indd 83 4/11/2012 10:06:26 AM4/11/2012 10:06:26 AM

Meier c03.indd V1 - 02/11/2011 Page 84

84 x CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

LISTING 3-7: Skeleton Application class

import android.app.Application;
import android.content.res.Configuration;

public class MyApplication extends Application {

 private static MyApplication singleton;

 // Returns the application instance
 public static MyApplication getInstance() {
 return singleton;
 }

 @Override
 public final void onCreate() {
 super.onCreate();
 singleton = this;
 }
}

code snippet PA4AD_Ch03_Confi g_Changes/src/MyApplication.java

When created, you must register your new Application class in the manifest’s application node
using a name attribute, as shown in the following snippet:

<application android:icon=”@drawable/icon”
 android:name=”.MyApplication”>
 [... Manifest nodes ...]
</application>

Your Application implementation will be instantiated when your application is started. Create new
state variables and global resources for access from within the application components:

MyObject value = MyApplication.getInstance().getGlobalStateValue();
MyApplication.getInstance().setGlobalStateValue(myObjectValue);

Although this can be an effective technique for transferring objects between your loosely coupled
application components, or for maintaining application state or shared resources, it is often better
to create your own static singleton class rather than extending the Application class specifi cally
unless you are also handling the lifecycle events described in the following section.

Overriding the Application Lifecycle Events

The Application class provides event handlers for application creation and termination, low
memory conditions, and confi guration changes (as described in the previous section).

By overriding these methods, you can implement your own application-specifi c behavior for each of
these circumstances:

 ‰ onCreate — Called when the application is created. Override this method to initialize your
application singleton and create and initialize any application state variables or shared
resources.

c03.indd 84c03.indd 84 4/11/2012 10:06:26 AM4/11/2012 10:06:26 AM

Meier c03.indd V1 - 02/11/2011 Page 85

Introducing the Android Application Class x 85

 ‰ onLowMemory — Provides an opportunity for well-behaved applications to free additional
memory when the system is running low on resources. This will generally only be called when
background processes have already been terminated and the current foreground applications are
still low on memory. Override this handler to clear caches or release unnecessary resources.

 ‰ onTrimMemory — An application specifi c alternative to the onLowMemory handler introduced
in Android 4.0 (API level 13). Called when the run time determines that the current appli-
cation should attempt to trim its memory overhead – typically when it moves to the back-
ground. It includes a level parameter that provides the context around the request.

 ‰ onConfigurationChanged — Unlike Activities Application objects are not restarted due to
confi guration changes. If your application uses values dependent on specifi c confi gurations,
override this handler to reload those values and otherwise handle confi guration changes at an
application level.

As shown in Listing 3-8, you must always call through to the superclass event handlers when over-
riding these methods.

LISTING 3-8: Overriding the Application Lifecycle Handlers

public class MyApplication extends Application {

 private static MyApplication singleton;

 // Returns the application instance
 public static MyApplication getInstance() {
 return singleton;
 }

 @Override
 public final void onCreate() {
 super.onCreate();
 singleton = this;
 }

 @Override
 public final void onLowMemory() {
 super.onLowMemory();
 }

 @Override
 public final void onTrimMemory(int level) {
 super.onTrimMemory(level);
 }

 @Override
 public final void onConfigurationChanged(Configuration newConfig) {
 super.onConfigurationChanged(newConfig);
 }
}

code snippet PA4AD_Snippets_Chapter3/MyApplication.java

c03.indd 85c03.indd 85 4/11/2012 10:06:27 AM4/11/2012 10:06:27 AM

Meier c03.indd V1 - 02/11/2011 Page 86

86 x CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

A CLOSER LOOK AT ANDROID ACTIVITIES

Each Activity represents a screen that an application can present to its users. The more complicated
your application, the more screens you are likely to need.

Typically, this includes at least a primary interface screen that handles the main UI functionality
of your application. This primary interface generally consists of a number of Fragments that make up
your UI and is generally supported by a set of secondary Activities. To move between screens you start
a new Activity (or return from one).

Most Activities are designed to occupy the entire display, but you can also create semitransparent or
fl oating Activities.

Creating Activities

Extend Activity to create a new Activity class. Within this new class you must defi ne the UI and
implement your functionality. Listing 3-9 shows the basic skeleton code for a new Activity.

LISTING 3-9: Activity skeleton code

package com.paad.activities;

import android.app.Activity;
import android.os.Bundle;

public class MyActivity extends Activity {

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 }
}

code snippet PA4AD_Ch03_Activities/src/MyActivity.java

The base Activity class presents an empty screen that encapsulates the window display handling.
An empty Activity isn’t particularly useful, so the fi rst thing you’ll want to do is create the UI with
Fragments, layouts, and Views.

Views are the UI controls that display data and provide user interaction. Android provides sev-
eral layout classes, called View Groups, which can contain multiple Views to help you layout
your UIs. Fragments are used to encapsulate segments of your UI, making it simple to create
dynamic interfaces that can be rearranged to optimize your layouts for different screen sizes and
orientations.

Chapter 4 discusses Views, View Groups, layouts, and Fragments in detail,
examining what’s available, how to use them, and how to create your own.

c03.indd 86c03.indd 86 4/11/2012 10:06:27 AM4/11/2012 10:06:27 AM

Meier c03.indd V1 - 02/11/2011 Page 87

A Closer Look at Android Activities x 87

To assign a UI to an Activity, call setContentView from the onCreate method of your Activity.

In this fi rst snippet, an instance of a TextView is used as the Activity’s UI:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 TextView textView = new TextView(this);
 setContentView(textView);
}

Usually, you’ll want to use a more complex UI design. You can create a layout in code using layout
View Groups, or you can use the standard Android convention of passing a resource ID for a
layout defi ned in an external resource, as shown in the following snippet:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
}

To use an Activity in your application, you need to register it in the manifest. Add a new
activity tag within the application node of the manifest; the activity tag includes attributes
for metadata, such as the label, icon, required permissions, and themes used by the Activity. An
Activity without a corresponding activity tag can’t be displayed — attempting to do so will
result in a runtime exception.

<activity android:label=”@string/app_name”
 android:name=”.MyActivity”>
</activity>

Within the activity tag you can add intent-filter nodes that specify the Intents that can be
used to start your Activity. Each Intent Filter defi nes one or more actions and categories that your
Activity supports. Intents and Intent Filters are covered in depth in Chapter 5, but it’s worth not-
ing that for an Activity to be available from the application launcher, it must include an Intent
Filter listening for the MAIN action and the LAUNCHER category, as highlighted in Listing 3-10.

LISTING 3-10: Main Application Activity Defi nition

<activity android:label=”@string/app_name”
 android:name=”.MyActivity”>
 <intent-filter>
 <action android:name=”android.intent.action.MAIN” />
 <category android:name=”android.intent.category.LAUNCHER” />
 </intent-filter>
</activity>

code snippet PA4AD_Ch03_Activities/AndroidManifest.xml

The Activity Lifecycle

A good understanding of the Activity lifecycle is vital to ensure that your application provides a
seamless user experience and properly manages its resources.

c03.indd 87c03.indd 87 4/11/2012 10:06:27 AM4/11/2012 10:06:27 AM

Meier c03.indd V1 - 02/11/2011 Page 88

88 x CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

As explained earlier, Android applications do not control their own process lifetimes; the Android
run time manages the process of each application, and by extension that of each Activity within it.

Although the run time handles the termination and management of an Activity’s process, the
Activity’s state helps determine the priority of its parent application. The application priority, in
turn, infl uences the likelihood that the run time will terminate it and the Activities running within it.

Activity Stacks

The state of each Activity is determined by its position on the Activity stack, a last-in–fi rst-out col-
lection of all the currently running Activities. When a new Activity starts, it becomes active and is
moved to the top of the stack. If the user navigates back using the Back button, or the foreground
Activity is otherwise closed, the next Activity down on the stack moves up and becomes active.
Figure 3-5 illustrates this process.

New Activity

New Activity
started

Active Activity

Back button
pushed or

activity closed

Last Active Activity

Removed to
free resources

Previous Activities

Activity Stack

FIGURE 3-5

As described previously in this chapter, an application’s priority is infl uenced by its highest-priority
Activity. When the Android memory manager is deciding which application to terminate to free
resources, it uses this Activity stack to determine the priority of applications.

Activity States

As Activities are created and destroyed, they move in and out of the stack, as shown in Figure 3-5.
As they do so, they transition through four possible states:

 ‰ Active — When an Activity is at the top of the stack it is the visible, focused, foreground
Activity that is receiving user input. Android will attempt to keep it alive at all costs, killing
Activities further down the stack as needed, to ensure that it has the resources it needs. When
another Activity becomes active, this one will be paused.

 ‰ Paused — In some cases your Activity will be visible but will not have focus; at this point
it’s paused. This state is reached if a transparent or non-full-screen Activity is active in front

c03.indd 88c03.indd 88 4/11/2012 10:06:27 AM4/11/2012 10:06:27 AM

Meier c03.indd V1 - 02/11/2011 Page 89

A Closer Look at Android Activities x 89

of it. When paused, an Activity is treated as if it were active; however, it doesn’t receive user
input events. In extreme cases Android will kill a paused Activity to recover resources for the
active Activity. When an Activity becomes totally obscured, it is stopped.

 ‰ Stopped — When an Activity isn’t visible, it “stops.” The Activity will remain in memory,
retaining all state information; however, it is now a candidate for termination when the sys-
tem requires memory elsewhere. When an Activity is in a stopped state, it’s important to save
data and the current UI state, and to stop any non-critical operations. Once an Activity has
exited or closed, it becomes inactive.

 ‰ Inactive — After an Activity has been killed, and before it’s been launched, it’s inactive.
Inactive Activities have been removed from the Activity stack and need to be restarted before
they can be displayed and used.

State transitions are nondeterministic and are handled entirely by the Android memory manager.
Android will start by closing applications that contain inactive Activities, followed by those that are
stopped. In extreme cases, it will remove those that are paused.

To ensure a seamless user experience, transitions between states should be
invisible to the user. There should be no difference in an Activity moving from
a paused, stopped, or inactive state back to active, so it’s important to save all
UI state and persist all data when an Activity is paused or stopped. Once an
Activity does become active, it should restore those saved values.

Similarly, apart from changes to the Activity’s priority, transitions between the
active, paused, and stopped states have little direct impact on the Activity itself.
It’s up to you to use these signals to pause and stop your Activities accordingly.

Monitoring State Changes

To ensure that Activities can react to state changes, Android provides a series of event handlers that
are fi red when an Activity transitions through its full, visible, and active lifetimes. Figure 3-6 sum-
marizes these lifetimes in terms of the Activity states described in the previous section.

Activity Is Killable

Activity.

onPause

Activity.

onRestart

Active Lifetime

Visible Lifetime

Full Lifetime

Activity.

onStop

Activity.

onDestroy

Activity.

onCreate

Activity.

onStart

Activity.

onResume

Activity.

onSaveInstanceState

Activity.

onRestoreInstanceState

FIGURE 3-6

c03.indd 89c03.indd 89 4/11/2012 10:06:28 AM4/11/2012 10:06:28 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Meier c03.indd V1 - 02/11/2011 Page 90

90 x CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

The skeleton code in Listing 3-11 shows the stubs for the state change method handlers available
in an Activity. Comments within each stub describe the actions you should consider taking on each
state change event.

LISTING 3-11: Activity state event handlers

package com.paad.activities;

import android.app.Activity;
import android.os.Bundle;

public class MyStateChangeActivity extends Activity {

 // Called at the start of the full lifetime.
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 // Initialize Activity and inflate the UI.
 }

 // Called after onCreate has finished, use to restore UI state
 @Override
 public void onRestoreInstanceState(Bundle savedInstanceState) {
 super.onRestoreInstanceState(savedInstanceState);
 // Restore UI state from the savedInstanceState.
 // This bundle has also been passed to onCreate.
 // Will only be called if the Activity has been
 // killed by the system since it was last visible.
 }

 // Called before subsequent visible lifetimes
 // for an Activity process.
 @Override
 public void onRestart(){
 super.onRestart();
 // Load changes knowing that the Activity has already
 // been visible within this process.
 }

 // Called at the start of the visible lifetime.
 @Override
 public void onStart(){
 super.onStart();
 // Apply any required UI change now that the Activity is visible.
 }

 // Called at the start of the active lifetime.
 @Override
 public void onResume(){
 super.onResume();
 // Resume any paused UI updates, threads, or processes required
 // by the Activity but suspended when it was inactive.

c03.indd 90c03.indd 90 4/11/2012 10:06:28 AM4/11/2012 10:06:28 AM

Meier c03.indd V1 - 02/11/2011 Page 91

A Closer Look at Android Activities x 91

 }

 // Called to save UI state changes at the
 // end of the active lifecycle.
 @Override
 public void onSaveInstanceState(Bundle savedInstanceState) {
 // Save UI state changes to the savedInstanceState.
 // This bundle will be passed to onCreate and
 // onRestoreInstanceState if the process is
 // killed and restarted by the run time.
 super.onSaveInstanceState(savedInstanceState);
 }

 // Called at the end of the active lifetime.
 @Override
 public void onPause(){
 // Suspend UI updates, threads, or CPU intensive processes
 // that don’t need to be updated when the Activity isn’t
 // the active foreground Activity.
 super.onPause();
 }

 // Called at the end of the visible lifetime.
 @Override
 public void onStop(){
 // Suspend remaining UI updates, threads, or processing
 // that aren’t required when the Activity isn’t visible.
 // Persist all edits or state changes
 // as after this call the process is likely to be killed.
 super.onStop();
 }

 // Sometimes called at the end of the full lifetime.
 @Override
 public void onDestroy(){
 // Clean up any resources including ending threads,
 // closing database connections etc.
 super.onDestroy();
 }
}

code snippet PA4AD_Ch03_Activities/src/MyStateChangeActivity.java

As shown in the preceding code, you should always call back to the superclass when overriding these
event handlers.

Understanding Activity Lifetimes

Within an Activity’s full lifetime, between creation and destruction, it goes through one or more
iterations of the active and visible lifetimes. Each transition triggers the method handlers previously
described. The following sections provide a closer look at each of these lifetimes and the events that
bracket them.

c03.indd 91c03.indd 91 4/11/2012 10:06:29 AM4/11/2012 10:06:29 AM

Meier c03.indd V1 - 02/11/2011 Page 92

92 x CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

The Full Lifetime

The full lifetime of your Activity occurs between the fi rst call to onCreate and the fi nal call to
onDestroy. It’s not uncommon for an Activity’s process to be terminated without the onDestroy
method being called.

Use the onCreate method to initialize your Activity: infl ate the user interface, get references to
Fragments, allocate references to class variables, bind data to controls, and start Services and
Timers. If the Activity was terminated unexpectedly by the runtime, the onCreate method is
passed a Bundle object containing the state saved in the last call to onSaveInstanceState. You
should use this Bundle to restore the UI to its previous state, either within the onCreate method or
onRestoreInstanceState.

Override onDestroy to clean up any resources created in onCreate, and ensure that all external
connections, such as network or database links, are closed.

As part of Android’s guidelines for writing effi cient code, it’s recommended that you avoid the cre-
ation of short-term objects. The rapid creation and destruction of objects force additional garbage
collection, a process that can have a direct negative impact on the user experience. If your Activity
creates the same set of objects regularly, consider creating them in the onCreate method instead, as
it’s called only once in the Activity’s lifetime.

The Visible Lifetime

An Activity’s visible lifetimes are bound between calls to onStart and onStop. Between these
calls your Activity will be visible to the user, although it may not have focus and may be partially
obscured. Activities are likely to go through several visible lifetimes during their full lifetime
because they move between the foreground and background. Although it’s unusual, in extreme cases
the Android run time will kill an Activity during its visible lifetime without a call to onStop.

The onStop method should be used to pause or stop animations, threads, Sensor listeners, GPS
lookups, Timers, Services, or other processes that are used exclusively to update the UI. There’s little
value in consuming resources (such as CPU cycles or network bandwidth) to update the UI when it
isn’t visible. Use the onStart (or onRestart) methods to resume or restart these processes when the
UI is visible again.

The onRestart method is called immediately prior to all but the fi rst call to onStart. Use it to
implement special processing that you want done only when the Activity restarts within its
full lifetime.

The onStart/onStop methods are also used to register and unregister Broadcast Receivers used
exclusively to update the UI.

You’ll learn more about using Broadcast Receivers in Chapter 5.

The Active Lifetime

The active lifetime starts with a call to onResume and ends with a corresponding call to onPause.

c03.indd 92c03.indd 92 4/11/2012 10:06:29 AM4/11/2012 10:06:29 AM

Meier c03.indd V1 - 02/11/2011 Page 93

A Closer Look at Android Activities x 93

An active Activity is in the foreground and is receiving user input events. Your Activity is likely to
go through many active lifetimes before it’s destroyed, as the active lifetime will end when a new
Activity is displayed, the device goes to sleep, or the Activity loses focus. Try to keep code in the
onPause and onResume methods relatively fast and lightweight to ensure that your application
remains responsive when moving in and out of the foreground.

Immediately before onPause, a call is made to onSaveInstanceState. This method provides an
opportunity to save the Activity’s UI state in a Bundle that may be passed to the onCreate and
onRestoreInstanceState methods. Use onSaveInstanceState to save the UI state (such as
checkbox states, user focus, and entered but uncommitted user input) to ensure that the Activity can
present the same UI when it next becomes active. You can safely assume that during the active life-
time onSaveInstanceState and onPause will be called before the process is terminated.

Most Activity implementations will override at least the onSaveInstanceState method to commit
unsaved changes, as it marks the point beyond which an Activity may be killed without warning.
Depending on your application architecture you may also choose to suspend threads, processes, or
Broadcast Receivers while your Activity is not in the foreground.

The onResume method can be lightweight. You do not need to reload the UI state here because this
is handled by the onCreate and onRestoreInstanceState methods when required. Use onResume
to reregister any Broadcast Receivers or other processes you may have suspended in onPause.

Android Activity Classes

The Android SDK includes a selection of Activity subclasses that wrap up the use of common UI
widgets. Some of the more useful ones are listed here:

 ‰ MapActivity — Encapsulates the resource handling required to support a MapView widget
within an Activity. Learn more about MapActivity and MapView in Chapter 13.

 ‰ ListActivity — Wrapper class for Activities that feature a ListView bound to a data
source as the primary UI metaphor, and expose event handlers for list item selection.

 ‰ ExpandableListActivity — Similar to the ListActivity but supports an
ExpandableListView.

c03.indd 93c03.indd 93 4/11/2012 10:06:29 AM4/11/2012 10:06:29 AM

c03.indd 94c03.indd 94 4/11/2012 10:06:29 AM4/11/2012 10:06:29 AM

Meier02275 c04 V2 - 03/19/2012 Page 95

4
Building User Interfaces

WHAT’S IN THIS CHAPTER?

 ‰ Using Views and layouts

 ‰ Understanding Fragments

 ‰ Optimizing layouts

 ‰ Creating resolution-independent user interfaces

 ‰ Extending, grouping, creating, and using Views

 ‰ Using Adapters to bind data to Views

To quote Stephen Fry on the role of style as part of substance in the design of digital devices:

As if a device can function if it has no style. As if a device can be called
stylish that does not function superbly…. Yes, beauty matters. Boy, does it
matter. It is not surface, it is not an extra, it is the thing itself.

—STEPHEN FRY, THE GUARDIAN (OCTOBER 27, 2007)

Although Fry was describing the style of the devices themselves, the same can be said of the
applications that run on them. Bigger, brighter, and higher resolution displays with multitouch
support have made applications increasingly visual. The introduction of devices optimized for
a more immersive experience — including tablets and televisions — into the Android ecosys-
tem has only served to increase the importance of an application’s visual design.

In this chapter you’ll discover the Android components used to create UIs. You’ll learn how to
use layouts, Fragments, and Views to create functional and intuitive UIs for your Activities.

The individual elements of an Android UI are arranged on screen by means of a variety of
Layout Managers derived from the ViewGroup class. This chapter introduces several native

c04.indd 95c04.indd 95 4/11/2012 10:07:22 AM4/11/2012 10:07:22 AM

Meier02275 c04 V2 - 03/19/2012 Page 96

96 x CHAPTER 4 BUILDING USER INTERFACES

layout classes and demonstrates how to use them, how to create your own, and how to ensure your
use of layouts is as effi cient as possible.

The range of screen sizes and display resolutions your application may be used on has expanded
along with the range of Android devices now available to buy. Android 3.0 introduced the Fragment
API to provide better support for creating dynamic layouts that can be optimized for tablets as well
as a variety of different smartphone displays.

You’ll learn how to use Fragments to create layouts that scale and adapt to accommodate a variety
of screen sizes and resolutions, as well as the best practices for developing and testing your UIs so
that they look great on all screens.

After being introduced to some of the visual controls available from the Android SDK, you’ll learn
how to extend and customize them. Using View Groups, you’ll combine Views to create atomic,
reusable UI elements made up of interacting subcontrols. You’ll also create your own Views, to dis-
play data and interact with users in creative new ways.

Finally, you’ll examine Adapters and learn how to use them to bind your presentation layer to the
underlying data sources.

FUNDAMENTAL ANDROID UI DESIGN

User interface (UI) design, user experience (UX), human computer interaction (HCI), and usability
are huge topics that can’t be covered in the depth they deserve within the confi nes of this book.
Nonetheless, the importance of creating a UI that your users will understand and enjoy using can’t
be overstated.

Android introduces some new terminology for familiar programming metaphors that will be
explored in detail in the following sections:

 ‰ Views — Views are the base class for all visual interface elements (commonly known as con-
trols or widgets). All UI controls, including the layout classes, are derived from View.

 ‰ View Groups — View Groups are extensions of the View class that can contain multiple child
Views. Extend the ViewGroup class to create compound controls made up of interconnected
child Views. The ViewGroup class is also extended to provide the Layout Managers that help
you lay out controls within your Activities.

 ‰ Fragments — Fragments, introduced in Android 3.0 (API level 11), are used to encapsulate
portions of your UI. This encapsulation makes Fragments particularly useful when opti-
mizing your UI layouts for different screen sizes and creating reusable UI elements. Each
Fragment includes its own UI layout and receives the related input events but is tightly
bound to the Activity into which each must be embedded. Fragments are similar to UI View
Controllers in iPhone development.

 ‰ Activities — Activities, described in detail in the previous chapter, represent the window,
or screen, being displayed. Activities are the Android equivalent of Forms in traditional
Windows desktop development. To display a UI, you assign a View (usually a layout or
Fragment) to an Activity.

c04.indd 96c04.indd 96 4/11/2012 10:07:25 AM4/11/2012 10:07:25 AM

Meier02275 c04 V2 - 03/19/2012 Page 97

Android User Interface Fundamentals x 97

Android provides several common UI controls, widgets, and Layout Managers.

For most graphical applications, it’s likely that you’ll need to extend and modify these
standard Views — or create composite or entirely new Views — to provide your own user
experience.

ANDROID USER INTERFACE FUNDAMENTALS

All visual components in Android descend from the View class and are referred to generically as
Views. You’ll often see Views referred to as controls or widgets (not to be confused with home
screen App Widgets described in Chapter 14, “Invading the Home Screen) — terms you’re probably
familiar with if you’ve previously done any GUI development.

The ViewGroup class is an extension of View designed to contain multiple Views. View Groups
are used most commonly to manage the layout of child Views, but they can also be used to create
atomic reusable components. View Groups that perform the former function are generally referred
to as layouts.

In the following sections you’ll learn how to put together increasingly complex UIs, before being
introduced to Fragments, the Views available in the SDK, how to extend these Views, build your
own compound controls, and create your own custom Views from scratch.

Assigning User Interfaces to Activities

A new Activity starts with a temptingly empty screen onto which you place your UI. To do so,
call setContentView, passing in the View instance, or layout resource, to display. Because empty
screens aren’t particularly inspiring, you will almost always use setContentView to assign an
Activity’s UI when overriding its onCreate handler.

The setContentView method accepts either a layout’s resource ID or a single View instance. This
lets you defi ne your UI either in code or using the preferred technique of external layout resources.

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);
}

Using layout resources decouples your presentation layer from the application logic, providing the
fl exibility to change the presentation without changing code. This makes it possible to specify differ-
ent layouts optimized for different hardware confi gurations, even changing them at run time based
on hardware changes (such as screen orientation changes).

You can obtain a reference to each of the Views within a layout using the findViewById method:

TextView myTextView = (TextView)findViewById(R.id.myTextView);

If you prefer the more traditional approach, you can construct the UI in code:

c04.indd 97c04.indd 97 4/11/2012 10:07:26 AM4/11/2012 10:07:26 AM

Meier02275 c04 V2 - 03/19/2012 Page 98

98 x CHAPTER 4 BUILDING USER INTERFACES

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 TextView myTextView = new TextView(this);
 setContentView(myTextView);

 myTextView.setText(“Hello, Android”);
}

The setContentView method accepts a single View instance; as a result, you use layouts to add
multiple controls to your Activity.

If you’re using Fragments to encapsulate portions of your Activity’s UI, the View infl ated within
your Activity’s onCreate handler will be a layout that describes the relative position of each of your
Fragments (or their containers). The UI used for each Fragment is defi ned in its own layout and
infl ated within the Fragment itself, as described later in this chapter.

Note that once a Fragment has been infl ated into an Activity, the Views it contains become part of
that Activity’s View hierarchy. As a result you can fi nd any of its child Views from within the parent
Activity, using findViewById as described previously.

INTRODUCING LAYOUTS

Layout Managers (or simply layouts) are extensions of the ViewGroup class and are used to position
child Views within your UI. Layouts can be nested, letting you create arbitrarily complex UIs using
a combination of layouts.

The Android SDK includes a number of layout classes. You can use these, modify them, or create
your own to construct the UI for your Views, Fragments, and Activities. It’s up to you to select and
use the right combination of layouts to make your UI aesthetically pleasing, easy to use, and effi cient
to display.

The following list includes some of the most commonly used layout classes available in the
Android SDK:

 ‰ FrameLayout — The simplest of the Layout Managers, the Frame Layout pins each child
view within its frame. The default position is the top-left corner, though you can use the
gravity attribute to alter its location. Adding multiple children stacks each new child on top
of the one before, with each new View potentially obscuring the previous ones.

 ‰ LinearLayout — A Linear Layout aligns each child View in either a vertical or a horizon-
tal line. A vertical layout has a column of Views, whereas a horizontal layout has a row of
Views. The Linear Layout supports a weight attribute for each child View that can control
the relative size of each child View within the available space.

 ‰ RelativeLayout — One of the most fl exible of the native layouts, the Relative Layout
lets you defi ne the positions of each child View relative to the others and to the screen
boundaries.

c04.indd 98c04.indd 98 4/11/2012 10:07:26 AM4/11/2012 10:07:26 AM

Meier02275 c04 V2 - 03/19/2012 Page 99

Introducing Layouts x 99

 ‰ GridLayout — Introduced in Android 4.0 (API level 14), the Grid Layout uses a rectangular
grid of infi nitely thin lines to lay out Views in a series of rows and columns. The Grid Layout
is incredibly fl exible and can be used to greatly simplify layouts and reduce or eliminate the
complex nesting often required to construct UIs using the layouts described above. It’s good
practice to use the Layout Editor to construct your Grid Layouts rather than relying on
tweaking the XML manually.

Each of these layouts is designed to scale to suit the host device’s screen size by avoiding the use of
absolute positions or predetermined pixel values. This makes them particularly useful when design-
ing applications that work well on a diverse set of Android hardware.

The Android documentation describes the features and properties of each layout class in detail; so,
rather than repeat that information here, I’ll refer you to http://developer.android.com/guide/
topics/ui/layout-objects.html.

You’ll see practical example of how these layouts should be used as they’re introduced in the exam-
ples throughout this book. Later in this chapter you’ll also learn how to create compound controls
by using and/or extending these layout classes.

Defi ning Layouts

The preferred way to defi ne a layout is by using XML external resources.

Each layout XML must contain a single root element. This root node can contain as many nested
layouts and Views as necessary to construct an arbitrarily complex UI.

The following snippet shows a simple layout that places a TextView above an EditText control
using a vertical LinearLayout.

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”>
 <TextView
 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 android:text=”Enter Text Below”
 />
 <EditText
 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 android:text=”Text Goes Here!”
 />
</LinearLayout>

For each of the layout elements, the constants wrap_content and match_parent are used rather
than an exact height or width in pixels. These constants, combined with layouts that scale (such as
the Linear Layout, Relative Layout, and Grid Layout) offer the simplest, and most powerful, tech-
nique for ensuring your layouts are screen-size and resolution independent.

c04.indd 99c04.indd 99 4/11/2012 10:07:26 AM4/11/2012 10:07:26 AM

http://developer.android.com/guide
http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c04 V2 - 03/19/2012 Page 100

100 x CHAPTER 4 BUILDING USER INTERFACES

The wrap_content constant sets the size of a View to the minimum required to contain the contents
it displays (such as the height required to display a wrapped text string). The match_parent con-
stant expands the View to match the available space within the parent View, Fragment, or Activity.

Later in this chapter you’ll learn how to set the minimum height and width for your own controls,
as well as further best practices for resolution independence.

Implementing layouts in XML decouples the presentation layer from the View, Fragment, and
Activity controller code and business logic. It also lets you create hardware confi guration-specifi c
variations that are dynamically loaded without requiring code changes.

When preferred, or required, you can implement layouts in code. When assigning Views to layouts
in code, it’s important to apply LayoutParameters using the setLayoutParams method, or by pass-
ing them in to the addView call:

LinearLayout ll = new LinearLayout(this);
ll.setOrientation(LinearLayout.VERTICAL);

TextView myTextView = new TextView(this);
EditText myEditText = new EditText(this);

myTextView.setText(“Enter Text Below”);
myEditText.setText(“Text Goes Here!”);

int lHeight = LinearLayout.LayoutParams.MATCH_PARENT;
int lWidth = LinearLayout.LayoutParams.WRAP_CONTENT;

ll.addView(myTextView, new LinearLayout.LayoutParams(lHeight, lWidth));
ll.addView(myEditText, new LinearLayout.LayoutParams(lHeight, lWidth));
setContentView(ll);

Using Layouts to Create Device Independent User Interfaces

A defi ning feature of the layout classes described previously, and the techniques described for using
them within your apps, is their ability to scale and adapt to a wide range of screen sizes, resolutions,
and orientations.

The variety of Android devices is a critical part of its success. For developers, this diversity intro-
duces a challenge for designing UIs to ensure that they provide the best possible experience for users,
regardless of which Android device they own.

Using a Linear Layout

The Linear Layout is one of the simplest layout classes. It allows you to create simple UIs (or UI ele-
ments) that align a sequence of child Views in either a vertical or a horizontal line.

The simplicity of the Linear Layout makes it easy to use but limits its fl exibility. In most cases you
will use Linear Layouts to construct UI elements that will be nested within other layouts, such as the
Relative Layout.

Listing 4-1 shows two nested Linear Layouts — a horizontal layout of two equally sized buttons
within a vertical layout that places the buttons above a List View.

c04.indd 100c04.indd 100 4/11/2012 10:07:26 AM4/11/2012 10:07:26 AM

Meier02275 c04 V2 - 03/19/2012 Page 101

Introducing Layouts x 101

LISTING 4-1: Linear Layout

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:orientation=”vertical”>
 <LinearLayout
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:orientation=”horizontal”
 android:padding=”5dp”>
 <Button
 android:text=”@string/cancel_button_text”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:layout_weight=”1”/>
 <Button
 android:text=”@string/ok_button_text”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:layout_weight=”1”/>
 </LinearLayout>
 <ListView
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”/>
</LinearLayout>

code snippet PA4AD_Ch4_Layouts/res/layout/linear_layout.xml

If you fi nd yourself creating increasingly complex nesting patterns of Linear Layouts, you will likely
be better served using a more fl exible Layout Manager.

Using a Relative Layout

The Relative Layout provides a great deal of fl exibility for your layouts, allowing you to defi ne the
position of each element within the layout in terms of its parent and the other Views.

Listing 4-2 modifi es the layout described in Listing 4-1 to move the buttons below the List View.

LISTING 4-2: Relative Layout

<?xml version=”1.0” encoding=”utf-8”?>
<RelativeLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”>
 <LinearLayout
 android:id=”@+id/button_bar”
 android:layout_alignParentBottom=”true”

continues

c04.indd 101c04.indd 101 4/11/2012 10:07:26 AM4/11/2012 10:07:26 AM

http://schemas.android.com/apk/res/android%E2%80%9D
http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c04 V2 - 03/19/2012 Page 102

102 x CHAPTER 4 BUILDING USER INTERFACES

 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:orientation=”horizontal”
 android:padding=”5dp”>
 <Button
 android:text=”@string/cancel_button_text”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:layout_weight=”1”/>
 <Button
 android:text=”@string/ok_button_text”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:layout_weight=”1”/>
 </LinearLayout>
 <ListView
 android:layout_above=”@id/button_bar”
 android:layout_alignParentLeft=”true”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”>
 </ListView>
</RelativeLayout>

code snippet PA4AD_Ch4_Layouts/res/layout/relative_layout.xml

Using a Grid Layout

The Grid Layout was introduced in Android 3.0 (API level 11) and provides the most fl exibility of
any of the Layout Managers.

The Grid Layout uses an arbitrary grid to position Views. By using row and column spanning, the
Space View, and Gravity attributes, you can create complex without resorting to the often complex
nesting required to construct UIs using the Relative Layout described previously.

The Grid Layout is particularly useful for constructing layouts that require alignment in two direc-
tions — for example, a form whose rows and columns must be aligned but which also includes ele-
ments that don’t fi t neatly into a standard grid pattern.

It’s also possible to replicate all the functionality provided by the Relative Layout by using the Grid
Layout and Linear Layout in combination. For performance reasons it’s good practice to use the
Grid Layout in preference to creating the same UI using a combination of nested layouts.

Listing 4-3 shows the same layout as described in Listing 4-2 using a Grid Layout to replace the
Relative Layout.

LISTING 4-3: Grid Layout

<?xml version=”1.0” encoding=”utf-8”?>
<GridLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”

LISTING 4-2 (continued)

c04.indd 102c04.indd 102 4/11/2012 10:07:26 AM4/11/2012 10:07:26 AM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c04 V2 - 03/19/2012 Page 103

Introducing Layouts x 103

 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:orientation=”vertical”>
 <ListView
 android:background=”#FF444444”
 android:layout_gravity=”fill”>
 </ListView>
 <LinearLayout
 android:layout_gravity=”fill_horizontal”
 android:orientation=”horizontal”
 android:padding=”5dp”>
 <Button
 android:text=”Cancel”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:layout_weight=”1”/>
 <Button
 android:text=”OK”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:layout_weight=”1”/>
 </LinearLayout>
</GridLayout>

code snippet PA4AD_Ch4_Layouts/res/layout/grid_layout.xml

Note that the Grid Layout elements do not require width and height parameters to be set. Instead,
each element wraps its content by default, and the layout_gravity attribute is used to determine in
which directions each element should expand.

Optimizing Layouts

Infl ating layouts is an expensive process; each additional nested layout and included View directly
impacts on the performance and responsiveness of your application.

To keep your applications smooth and responsive, it’s important to keep your layouts as simple as
possible and to avoid infl ating entirely new layouts for relatively small UI changes.

Redundant Layout Containers Are Redundant

A Linear Layout within a Frame Layout, both of which are set to MATCH_PARENT, does nothing but
add extra time to infl ate. Look for redundant layouts, particularly if you’ve been making signifi cant
changes to an existing layout or are adding child layouts to an existing layout.

Layouts can be arbitrarily nested, so it’s easy to create complex, deeply nested hierarchies. Although
there is no hard limit, it’s good practice to restrict nesting to fewer than 10 levels.

One common example of unnecessary nesting is a Frame Layout used to create the single root node
required for a layout, as shown in the following snippet:

<?xml version=”1.0” encoding=”utf-8”?>
<FrameLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”>

c04.indd 103c04.indd 103 4/11/2012 10:07:26 AM4/11/2012 10:07:26 AM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c04 V2 - 03/19/2012 Page 104

104 x CHAPTER 4 BUILDING USER INTERFACES

 <ImageView
 android:id=”@+id/myImageView”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:src=”@drawable/myimage”
 />
 <TextView
 android:id=”@+id/myTextView”
 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/hello”
 android:gravity=”center_horizontal”
 android:layout_gravity=”bottom”
 />
</FrameLayout>

In this example, when the Frame Layout is added to a parent, it will become redundant. A better
alternative is to use the Merge tag:

<?xml version=”1.0” encoding=”utf-8”?>
<merge
 xmlns:android=”http://schemas.android.com/apk/res/android”>
 <ImageView
 android:id=”@+id/myImageView”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:src=”@drawable/myimage”
 />
 <TextView
 android:id=”@+id/myTextView”
 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/hello”
 android:gravity=”center_horizontal”
 android:layout_gravity=”bottom”
 />
</merge>

When a layout containing a merge tag is added to another layout, the merge node is removed and its
child Views are added directly to the new parent.

The merge tag is particularly useful in conjunction with the include tag, which is used to insert the
contents of one layout into another:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”>
 <include android:id=”@+id/my_action_bar”
 layout=”@layout/actionbar”/>
 <include android:id=”@+id/my_image_text_layout”
 layout=”@layout/image_text_layout”/>
</LinearLayout>

c04.indd 104c04.indd 104 4/11/2012 10:07:26 AM4/11/2012 10:07:26 AM

http://schemas.android.com/apk/res/android%E2%80%9D
http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c04 V2 - 03/19/2012 Page 105

Introducing Layouts x 105

Combining the merge and include tags enables you to create fl exible, reusable layout defi nitions
that don’t create deeply nested layout hierarchies. You’ll learn more about creating and using simple
and reusable layouts later in this chapter.

Avoid Using Excessive Views

Each additional View takes time and resources to infl ate. To maximize the speed and responsiveness
of your application, none of its layouts should include more than 80 Views. When you exceed this
limit, the time taken to infl ate the layout becomes signifi cant.

To minimize the number of Views infl ated within a complex layout, you can use a ViewStub.

A View Stub works like a lazy include — a stub that represents the specifi ed child Views within the
parent layout — but the stub is only infl ated explicitly via the inflate method or when it’s made
visible.

// Find the stub
View stub = findViewById(R.id. download_progress_panel_stub);
// Make it visible, causing it to inflate the child layout
stub.setVisibility(View.VISIBLE);

// Find the root node of the inflated stub layout
View downloadProgressPanel = findViewById(R.id.download_progress_panel);

As a result, the Views contained within the child layout aren’t created until they are
required — minimizing the time and resource cost of infl ating complex UIs.

When adding a View Stub to your layout, you can override the id and layout parameters of the
root View of the layout it represents:

<?xml version=”1.0” encoding=”utf-8”?>
<FrameLayout “xmlns:android=http://schemas.android.com/apk/res/android”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”>
 <ListView
 android:id=”@+id/myListView”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 />
 <ViewStub
 android:id=”@+id/download_progress_panel_stub”

 android:layout=”@layout/progress_overlay_panel”
 android:inflatedId=”@+id/download_progress_panel”

 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 android:layout_gravity=”bottom”
 />
</FrameLayout>

This snippet modifi es the width, height, and gravity of the imported layout to suit the requirements
of the parent layout. This fl exibility makes it possible to create and reuse the same generic child lay-
outs in a variety of parent layouts.

c04.indd 105c04.indd 105 4/11/2012 10:07:26 AM4/11/2012 10:07:26 AM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c04 V2 - 03/19/2012 Page 106

106 x CHAPTER 4 BUILDING USER INTERFACES

An ID has been specifi ed for both the stub and the View Group it will become when infl ated using
the id and inflatedId attribute, respectively.

When the View Stub is infl ated, it is removed from the hierarchy and replaced by
the root node of the View it imported. If you need to modify the visibility of the
imported Views, you must either use the reference to their root node (returned
by the inflate call) or fi nd the View by using findViewById, using the layout
ID assigned to it within the corresponding View Stub node.

Using Lint to Analyze Your Layouts

To assist you in optimizing your layout hierarchies, the Android SDK includes lint — a power-
ful tool that can be used to detect problems within you application, including layout performance
issues.

The lint tool is available as a command-line tool or as a window within Eclipse supplied as part of
the ADT plug-in, as shown in Figure 4-1.

FIGURE 4-1

In addition to using Lint to detect each optimization issue described previously in this section, you
can also use Lint to detect missing translations, unused resources, inconsistent array sizes, accessi-
bility and internationalization problems, missing or duplicated image assets, usability problems, and
manifest errors.

Lint is a constantly evolving tool, with new rules added regularly. A full list of the tests performed
by the Lint tool can be found at http://tools.android.com/tips/lint-checks.

c04.indd 106c04.indd 106 4/11/2012 10:07:27 AM4/11/2012 10:07:27 AM

http://tools.android.com/tips/lint-checks

Meier02275 c04 V2 - 03/19/2012 Page 107

To-Do List Example x 107

TO-DO LIST EXAMPLE

In this example you’ll be creating a new Android application from scratch. This simple example cre-
ates a new to-do list application using native Android Views and layouts.

Don’t worry if you don’t understand everything that happens in this example.
Some of the features used to create this application, including ArrayAdapters,
ListViews, and KeyListeners, won’t be introduced properly until later in this
and subsequent chapters, where they’ll be explained in detail. You’ll also return
to this example later to add new functionality as you learn more about Android.

1. Create a new Android project. Within Eclipse, select File Í New Í Project, and then choose
Android Project within the Android node (as shown in Figure 4-2) before clicking Next.

FIGURE 4-2

2. Specify the project details for your new project.

2.1 Start by providing a project name, as shown in Figure 4-3, and then click Next.

2.2 Select the build target. Select the newest platform release, as shown in Figure 4-4, and
then click Next.

2.3 Enter the details for your new project, as shown in Figure 4-5. The Application name is
the friendly name of your application, and the Create Activity fi eld lets you name your
Activity (ToDoListActivity). When the remaining details are entered, click Finish to cre-
ate your new project.

c04.indd 107c04.indd 107 4/11/2012 10:07:27 AM4/11/2012 10:07:27 AM

Meier02275 c04 V2 - 03/19/2012 Page 108

108 x CHAPTER 4 BUILDING USER INTERFACES

FIGURE 4-3

FIGURE 4-4

c04.indd 108c04.indd 108 4/11/2012 10:07:28 AM4/11/2012 10:07:28 AM

Meier02275 c04 V2 - 03/19/2012 Page 109

To-Do List Example x 109

FIGURE 4-5

3. Before creating your debug and run confi gurations, take this opportunity to create a virtual
device for testing your applications.

3.1 Select Window Í AVD Manager. In the resulting dialog (see Figure 4-6), click the New
button.

FIGURE 4-6

c04.indd 109c04.indd 109 4/11/2012 10:07:28 AM4/11/2012 10:07:28 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Meier02275 c04 V2 - 03/19/2012 Page 110

110 x CHAPTER 4 BUILDING USER INTERFACES

3.2 In the dialog displayed in Figure 4-7, enter a name for your device and choose an SDK
target (use the same platform target as you selected for your project in step 2.2) and the
screen resolution. Set the SD Card size to larger than 8MB, enable snapshots, and then
press Create AVD.

FIGURE 4-7

4. Now create your debug and run confi gurations. Select Run Í Debug Confi gurations and then
Run Í Run Confi gurations, creating a new confi guration for each specifying the TodoList
project. If you want to debug using a virtual device, you can select the one you created in step
3 here; alternatively, if you want to debug on a device, you can select it here if it’s plugged
in and has debugging enabled. You can either leave the launch action as Launch Default
Activity or explicitly set it to launch the new ToDoListActivity.

5. In this example you want to present users with a list of to-do items and a text entry box to
add new ones. There’s both a list and a text-entry control available from the Android
libraries. (You’ll learn more about the Views available in Android, and how to create new
ones, later in this Chapter.)

The preferred method for laying out your UI is to create a layout resource. Open the
main.xml layout fi le in the res/layout project folder and modify it layout to include a

c04.indd 110c04.indd 110 4/11/2012 10:07:28 AM4/11/2012 10:07:28 AM

Meier02275 c04 V2 - 03/19/2012 Page 111

To-Do List Example x 111

ListView and an EditText within a LinearLayout. You must give both the EditText
and ListView an ID so that you can get references to them both in code:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”>
 <EditText
 android:id=”@+id/myEditText”
 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 android:hint=”@string/addItemHint”
 android:contentDescription=”@string/addItemContentDescription”
 />
 <ListView
 android:id=”@+id/myListView”
 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 />
</LinearLayout>

6. You’ll also need to add the string resources that provide the hint text and content description
included in step 5 to the strings.xml resource stored in the project’s res/values folder.
You can take this opportunity to remove the default “hello” string value:

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
 <string name=”app_name”>ToDoList</string>
 <string name=”addItemHint”>New To Do Item</string>
 <string name=”addItemContentDescription”>New To Do Item</string>
</resources>

7. With your UI defi ned, open the ToDoListActivity Activity from your project’s src folder.
Start by ensuring your UI is infl ated using setContentView. Then get references to the
ListView and EditText using findViewById:

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Inflate your View
 setContentView(R.layout.main);

 // Get references to UI widgets
 ListView myListView = (ListView)findViewById(R.id.myListView);
 final EditText myEditText = (EditText)findViewById(R.id.myEditText);
}

c04.indd 111c04.indd 111 4/11/2012 10:07:28 AM4/11/2012 10:07:28 AM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c04 V2 - 03/19/2012 Page 112

112 x CHAPTER 4 BUILDING USER INTERFACES

When you add the code from step 7 into the ToDoListActivity, or when
you try to compile your project, your IDE or compiler will complain that the
ListView and EditText classes cannot be resolved into a type.

You need to add import statements to your class to include the libraries that
contain these Views (in this case, android.widget.EditText and android
.widget.ListView). To ensure the code snippets and example applications
listed in this book remain concise and readable, not all the necessary import
statements within the code listings are included within the text (however they are
all included in the downloadable source code).

If you are using Eclipse, classes with missing import statements are highlighted
with a red underline. Clicking each highlighted class will display a list of “quick
fi xes,” which include adding the necessary import statements on your behalf.

Eclipse also includes a handy shortcut (Ctrl+Shift+o) that will attempt to auto-
matically create all the import statements required for the classes used in your
code.

8. Still within onCreate, defi ne an ArrayList of Strings to store each to-do list item. You can
bind a ListView to an ArrayList using an ArrayAdapter. (This process is described in
more detail later in this chapter.) Create a new ArrayAdapter instance to bind the to-do item
array to the ListView.

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Inflate your View
 setContentView(R.layout.main);

 // Get references to UI widgets
 ListView myListView = (ListView)findViewById(R.id.myListView);
 final EditText myEditText = (EditText)findViewById(R.id.myEditText);

 // Create the Array List of to do items
 final ArrayList<String> todoItems = new ArrayList<String>();

 // Create the Array Adapter to bind the array to the List View
 final ArrayAdapter<String> aa;

 aa = new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 todoItems);

 // Bind the Array Adapter to the List View
 myListView.setAdapter(aa);
}

9. Let users add new to-do items. Add an onKeyListener to the EditText that listens for
either a “D-pad center button” click or the Enter key being pressed. (You’ll learn more about

c04.indd 112c04.indd 112 4/11/2012 10:07:28 AM4/11/2012 10:07:28 AM

Meier02275 c04 V2 - 03/19/2012 Page 113

To-Do List Example x 113

listening for key presses later in this chapter.) Either of these actions should add the contents
of the EditText to the to-do list array created in step 8, and notify the ArrayAdapter of the
change. Finally, clear the EditText to prepare for the next item.

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Inflate your View
 setContentView(R.layout.main);

 // Get references to UI widgets
 ListView myListView = (ListView)findViewById(R.id.myListView);
 final EditText myEditText = (EditText)findViewById(R.id.myEditText);

 // Create the Array List of to do items
 final ArrayList<String> todoItems = new ArrayList<String>();

 // Create the Array Adapter to bind the array to the List View
 final ArrayAdapter<String> aa;

 aa = new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 todoItems);

 // Bind the Array Adapter to the List View
 myListView.setAdapter(aa);

 myEditText.setOnKeyListener(new View.OnKeyListener() {
 public boolean onKey(View v, int keyCode, KeyEvent event) {
 if (event.getAction() == KeyEvent.ACTION_DOWN)
 if ((keyCode == KeyEvent.KEYCODE_DPAD_CENTER) ||
 (keyCode == KeyEvent.KEYCODE_ENTER)) {
 todoItems.add(0, myEditText.getText().toString());
 aa.notifyDataSetChanged();
 myEditText.setText(“”);
 return true;
 }
 return false;
 }
 });
}

10. Run or debug the application and you’ll see a text entry box above a list, as shown
in Figure 4-8.

11. You’ve now fi nished your fi rst Android application. Try adding breakpoints to the code to
test the debugger and experiment with the DDMS perspective.

All code snippets in this example are part of the Chapter 4 To-Do List Part 1
project, available for download at www.wrox.com.

c04.indd 113c04.indd 113 4/11/2012 10:07:29 AM4/11/2012 10:07:29 AM

http://www.wrox.com

Meier02275 c04 V2 - 03/19/2012 Page 114

114 x CHAPTER 4 BUILDING USER INTERFACES

FIGURE 4-8

As it stands, this to-do list application isn’t spectacularly useful. It doesn’t save to-do list items
between sessions; you can’t edit or remove an item from the list; and typical task-list items, such as
due dates and task priorities, aren’t recorded or displayed. On balance, it fails most of the criteria
laid out so far for a good mobile application design. You’ll rectify some of these defi ciencies when
you return to this example.

INTRODUCING FRAGMENTS

Fragments enable you to divide your Activities into fully encapsulated reusable components, each
with its own lifecycle and UI.

The primary advantage of Fragments is the ease with which you can create dynamic and fl exible UI
designs that can be adapted to suite a range of screen sizes — from small-screen smartphones to tablets.

Each Fragment is an independent module that is tightly bound to the Activity into which it is placed.
Fragments can be reused within multiple activities, as well as laid out in a variety of combinations to
suit multipane tablet UIs and added to, removed from, and exchanged within a running Activity to
help build dynamic UIs.

Fragments provide a way to present a consistent UI optimized for a wide variety of Android device
types, screen sizes, and device densities.

Although it is not necessary to divide your Activities (and their corresponding layouts) into
Fragments, doing so will drastically improve the fl exibility of your UI and make it easier for you to
adapt your user experience for new device confi gurations.

c04.indd 114c04.indd 114 4/11/2012 10:07:29 AM4/11/2012 10:07:29 AM

Meier02275 c04 V2 - 03/19/2012 Page 115

Introducing Fragments x 115

Fragments were introduced to Android as part of the Android 3.0 Honeycomb
(API level 11) release. They are now also available as part of the Android sup-
port library, making it possible to take advantage of Fragments on platforms
from Android 1.6 (API level 4) onward.

To use Fragments using the support library, you must make your Activity extend
the FragmentActivity class:

public class MyActivity extends FragmentActivity

If you are using the compatibility library within a project that has a build target
of API level 11 or above, it’s critical that you ensure that all your Fragment-
related imports and class references are using only the support library classes.
The native and support library set of Fragment packages are closely related, but
their classes are not interchangeable.

Creating New Fragments

Extend the Fragment class to create a new Fragment, (optionally) defi ning the UI and implementing
the functionality it encapsulates.

In most circumstances you’ll want to assign a UI to your Fragment. It is possible to create a
Fragment that doesn’t include a UI but instead provides background behavior for an Activity. This is
explored in more detail later in this chapter.

If your Fragment does require a UI, override the onCreateView handler to infl ate and return the
required View hierarchy, as shown in the Fragment skeleton code in Listing 4-4.

LISTING 4-4: Fragment skeleton code

package com.paad.fragments;

import android.app.Fragment;
import android.os.Bundle;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;

public class MySkeletonFragment extends Fragment {
 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container,
 Bundle savedInstanceState) {
 // Create, or inflate the Fragment’s UI, and return it.
 // If this Fragment has no UI then return null.
 return inflater.inflate(R.layout.my_fragment, container, false);
 }
}

code snippet PA4AD_Ch04_Fragments/src/MySkeletonFragment.java

c04.indd 115c04.indd 115 4/11/2012 10:07:29 AM4/11/2012 10:07:29 AM

Meier02275 c04 V2 - 03/19/2012 Page 116

116 x CHAPTER 4 BUILDING USER INTERFACES

You can create a layout in code using layout View Groups; however, as with Activities, the preferred
way to design Fragment UI layouts is by infl ating an XML resource.

Unlike Activities, Fragments don’t need to be registered in your manifest. This is because Fragments
can exist only when embedded into an Activity, with their lifecycles dependent on that of the
Activity to which they’ve been added.

The Fragment Lifecycle

The lifecycle events of a Fragment mirror those of its parent Activity; however, after the containing
Activity is in its active — resumed — state adding or removing a Fragment will affect its lifecycle
independently.

Fragments include a series of event handlers that mirror those in the Activity class. They are trig-
gered as the Fragment is created, started, resumed, paused, stopped, and destroyed. Fragments also
include a number of additional callbacks that signal binding and unbinding the Fragment from its
parent Activity, creation (and destruction) of the Fragment’s View hierarchy, and the completion of
the creation of the parent Activity.

Figure 4-9 summarizes the Fragment lifecycle.

Fragment.onAttach

Created Visible Active

Fragment.onDetach Fragment.onDestroy Fragment.onDestroyView Fragment.onStop Fragment.onPause

Fragment.onCreate Fragment.onStart Fragment.onResumeFragment.onCreateView

Fragment returns to the

layout from the backstack

Fragment.onActivityCreated

FIGURE 4-9

The skeleton code in Listing 4-5 shows the stubs for the lifecycle handlers available in a Fragment.
Comments within each stub describe the actions you should consider taking on each state change event.

You must call back to the superclass when overriding most of these event
handlers.

LISTING 4-5: Fragment lifecycle event handlers

package com.paad.fragments;

import android.app.Activity;
import android.app.Fragment;
import android.os.Bundle;

c04.indd 116c04.indd 116 4/11/2012 10:07:30 AM4/11/2012 10:07:30 AM

Meier02275 c04 V2 - 03/19/2012 Page 117

Introducing Fragments x 117

import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;

public class MySkeletonFragment extends Fragment {

 // Called when the Fragment is attached to its parent Activity.
 @Override
 public void onAttach(Activity activity) {
 super.onAttach(activity);
 // Get a reference to the parent Activity.
 }

 // Called to do the initial creation of the Fragment.
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 // Initialize the Fragment.
 }

 // Called once the Fragment has been created in order for it to
 // create its user interface.
 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container,
 Bundle savedInstanceState) {
 // Create, or inflate the Fragment’s UI, and return it.
 // If this Fragment has no UI then return null.
 return inflater.inflate(R.layout.my_fragment, container, false);
 }

 // Called once the parent Activity and the Fragment’s UI have
 // been created.
 @Override
 public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);
 // Complete the Fragment initialization – particularly anything
 // that requires the parent Activity to be initialized or the
 // Fragment’s view to be fully inflated.
 }

 // Called at the start of the visible lifetime.
 @Override
 public void onStart(){
 super.onStart();
 // Apply any required UI change now that the Fragment is visible.
 }

 // Called at the start of the active lifetime.
 @Override
 public void onResume(){
 super.onResume();
 // Resume any paused UI updates, threads, or processes required

continues

c04.indd 117c04.indd 117 4/11/2012 10:07:31 AM4/11/2012 10:07:31 AM

Meier02275 c04 V2 - 03/19/2012 Page 118

118 x CHAPTER 4 BUILDING USER INTERFACES

 // by the Fragment but suspended when it became inactive.
 }

 // Called at the end of the active lifetime.
 @Override
 public void onPause(){
 // Suspend UI updates, threads, or CPU intensive processes
 // that don’t need to be updated when the Activity isn’t
 // the active foreground activity.
 // Persist all edits or state changes
 // as after this call the process is likely to be killed.
 super.onPause();
 }

 // Called to save UI state changes at the
 // end of the active lifecycle.
 @Override
 public void onSaveInstanceState(Bundle savedInstanceState) {
 // Save UI state changes to the savedInstanceState.
 // This bundle will be passed to onCreate, onCreateView, and
 // onCreateView if the parent Activity is killed and restarted.
 super.onSaveInstanceState(savedInstanceState);
 }

 // Called at the end of the visible lifetime.
 @Override
 public void onStop(){
 // Suspend remaining UI updates, threads, or processing
 // that aren’t required when the Fragment isn’t visible.
 super.onStop();
 }

 // Called when the Fragment’s View has been detached.
 @Override
 public void onDestroyView() {
 // Clean up resources related to the View.
 super.onDestroyView();
 }

 // Called at the end of the full lifetime.
 @Override
 public void onDestroy(){
 // Clean up any resources including ending threads,
 // closing database connections etc.
 super.onDestroy();
 }

 // Called when the Fragment has been detached from its parent Activity.
 @Override
 public void onDetach() {
 super.onDetach();
 }
}

code snippet PA4AD_Ch04_Fragments/src/MySkeletonFragment.java

LISTING 4-5 (continued)

c04.indd 118c04.indd 118 4/11/2012 10:07:31 AM4/11/2012 10:07:31 AM

Meier02275 c04 V2 - 03/19/2012 Page 119

Introducing Fragments x 119

Fragment-Specifi c Lifecycle Events

Most of the Fragment lifecycle events correspond to their equivalents in the Activity class, which
were covered in detail in Chapter 3. Those that remain are specifi c to Fragments and the way in
which they’re inserted into their parent Activity.

Attaching and Detaching Fragments from the Parent Activity

The full lifetime of your Fragment begins when it’s bound to its parent Activity and ends when it’s
been detached. These events are represented by the calls to onAttach and onDetach, respectively.

As with any handler called after a Fragment/Activity has become paused, it’s possible that onDetach
will not be called if the parent Activity’s process is terminated without completing its full lifecycle.

The onAttach event is triggered before the Fragment’s UI has been created, before the Fragment
itself or its parent Activity have fi nished their initialization. Typically, the onAttach event is used to
gain a reference to the parent Activity in preparation for further initialization tasks.

Creating and Destroying Fragments

The created lifetime of your Fragment occurs between the fi rst call to onCreate and the fi nal call
to onDestroy. As it’s not uncommon for an Activity’s process to be terminated without the corre-
sponding onDestroy method being called, so a Fragment can’t rely on its onDestroy handler being
triggered.

As with Activities, you should use the onCreate method to initialize your Fragment. It’s good prac-
tice to create any class scoped objects here to ensure they’re created only once in the Fragment’s
lifetime.

Unlike Activities, the UI is not initialized within onCreate.

Creating and Destroying User Interfaces

A Fragment’s UI is initialized (and destroyed) within a new set of event handlers: onCreateView and
onDestroyView, respectively.

Use the onCreateView method to initialize your Fragment: Infl ate the UI, get references (and bind
data to) the Views it contains, and then create any required Services and Timers.

Once you have infl ated your View hierarchy, it should be returned from this handler:

return inflater.inflate(R.layout.my_fragment, container, false);

If your Fragment needs to interact with the UI of its parent Activity, wait until the
onActivityCreated event has been triggered. This signifi es that the containing Activity has
completed its initialization and its UI has been fully constructed.

Fragment States

The fate of a Fragment is inextricably bound to that of the Activity to which it belongs. As a result,
Fragment state transitions are closely related to the corresponding Activity state transitions.

c04.indd 119c04.indd 119 4/11/2012 10:07:31 AM4/11/2012 10:07:31 AM

Meier02275 c04 V2 - 03/19/2012 Page 120

120 x CHAPTER 4 BUILDING USER INTERFACES

Like Activities, Fragments are active when they belong to an Activity that is focused and in the
foreground. When an Activity is paused or stopped, the Fragments it contains are also paused and
stopped, and the Fragments contained by an inactive Activity are also inactive. When an Activity is
fi nally destroyed, each Fragment it contains is likewise destroyed.

As the Android memory manager nondeterministically closes applications to free resources, the
Fragments within those Activities are also destroyed.

While Activities and their Fragments are tightly bound, one of the advantages of using Fragments to
compose your Activity’s UI is the fl exibility to dynamically add or remove Fragments from an active
Activity. As a result, each Fragment can progress through its full, visible, and active lifecycle several
times within the active lifetime of its parent Activity.

Whatever the trigger for a Fragment’s transition through its lifecycle, managing its state transitions
is critical in ensuring a seamless user experience. There should be no difference in a Fragment mov-
ing from a paused, stopped, or inactive state back to active, so it’s important to save all UI state and
persist all data when a Fragment is paused or stopped. Like an Activity, when a Fragment becomes
active again, it should restore that saved state.

Introducing the Fragment Manager

Each Activity includes a Fragment Manager to manage the Fragments it contains. You can access
the Fragment Manager using the getFragmentManager method:

FragmentManager fragmentManager = getFragmentManager();

The Fragment Manager provides the methods used to access the Fragments currently added to the
Activity, and to perform Fragment Transaction to add, remove, and replace Fragments.

Adding Fragments to Activities

The simplest way to add a Fragment to an Activity is by including it within the Activity’s layout
using the fragment tag, as shown in Listing 4-6.

LISTING 4-6: Adding Fragments to Activities using XML layouts

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”horizontal”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”>
 <fragment android:name=”com.paad.weatherstation.MyListFragment”
 android:id=”@+id/my_list_fragment”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:layout_weight=”1”
 />
 <fragment android:name=”com.paad.weatherstation.DetailsFragment”
 android:id=”@+id/details_fragment”
 android:layout_width=”match_parent”

c04.indd 120c04.indd 120 4/11/2012 10:07:32 AM4/11/2012 10:07:32 AM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c04 V2 - 03/19/2012 Page 121

Introducing Fragments x 121

 android:layout_height=”match_parent”
 android:layout_weight=”3”
 />
</LinearLayout>

code snippet PA4AD_Ch04_Fragments/res/layout/fragment_layout.xml

Once the Fragment has been infl ated, it becomes a View Group, laying out and managing its UI
within the Activity.

This technique works well when you use Fragments to defi ne a set of static layouts based on vari-
ous screen sizes. If you plan to dynamically modify your layouts by adding, removing, and replacing
Fragments at run time, a better approach is to create layouts that use container Views into which
Fragments can be placed at runtime, based on the current application state.

Listing 4-7 shows an XML snippet that you could use to support this latter approach.

LISTING 4-7: Specifying Fragment layouts using container views

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”horizontal”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”>
 <FrameLayout
 android:id=”@+id/ui_container”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:layout_weight=”1”
 />
 <FrameLayout
 android:id=”@+id/details_container”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:layout_weight=”3”
 />
</LinearLayout>

code snippet PA4AD_Ch04_Fragments/res/layout/fragment_container_layout.xml

You then need to create and add the corresponding Fragments to their appropriate parent containers
within the onCreate handler of your Activity using Fragment Transactions, as described in the next
section.

Using Fragment Transactions

Fragment Transactions can be used to add, remove, and replace Fragments within an Activity at run
time. Using Fragment Transactions, you can make your layouts dynamic — that is, they will adapt
and change based on user interactions and application state.

c04.indd 121c04.indd 121 4/11/2012 10:07:32 AM4/11/2012 10:07:32 AM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c04 V2 - 03/19/2012 Page 122

122 x CHAPTER 4 BUILDING USER INTERFACES

Each Fragment Transaction can include any combination of supported actions, including adding,
removing, or replacing Fragments. They also support the specifi cation of the transition animations
to display and whether to include the Transaction on the back stack.

A new Fragment Transaction is created using the beginTransaction method from the Activity’s
Fragment Manager. Modify the layout using the add, remove, and replace methods, as required,
before setting the animations to display, and setting the appropriate back-stack behavior. When you
are ready to execute the change, call commit to add the transaction to the UI queue.

FragmentTransaction fragmentTransaction = fragmentManager.beginTransaction();

// Add, remove, and/or replace Fragments.
// Specify animations.
// Add to back stack if required.

fragmentTransaction.commit();

Each of these transaction types and options will be explored in the following sections.

Adding, Removing, and Replacing Fragments

When adding a new UI Fragment, specify the Fragment instance to add, along with the container
View into which the Fragment will be placed. Optionally, you can specify a tag that can later be
used to fi nd the Fragment by using the findFragmentByTag method:

FragmentTransaction fragmentTransaction = fragmentManager.beginTransaction();
fragmentTransaction.add(R.id.ui_container, new MyListFragment());
fragmentTransaction.commit();

To remove a Fragment, you fi rst need to fi nd a reference to it, usually using either the Fragment
Manager’s findFragmentById or findFragmentByTag methods. Then pass the found Fragment
instance as a parameter to the remove method of a Fragment Transaction:

FragmentTransaction fragmentTransaction = fragmentManager.beginTransaction();
Fragment fragment = fragmentManager.findFragmentById(R.id.details_fragment);
fragmentTransaction.remove(fragment);
fragmentTransaction.commit();

You can also replace one Fragment with another. Using the replace method, specify the container
ID containing the Fragment to be replaced, the Fragment with which to replace it, and (optionally) a
tag to identify the newly inserted Fragment.

FragmentTransaction fragmentTransaction = fragmentManager.beginTransaction();
fragmentTransaction.replace(R.id.details_fragment,
 new DetailFragment(selected_index));
fragmentTransaction.commit();

Using the Fragment Manager to Find Fragments

To fi nd Fragments within your Activity, use the Fragment Manager’s findFragmentById method. If
you have added your Fragment to the Activity layout in XML, you can use the Fragment’s resource
identifi er:

c04.indd 122c04.indd 122 4/11/2012 10:07:32 AM4/11/2012 10:07:32 AM

Meier02275 c04 V2 - 03/19/2012 Page 123

Introducing Fragments x 123

MyFragment myFragment =
 (MyFragment)fragmentManager.findFragmentById(R.id.MyFragment);

If you’ve added a Fragment using a Fragment Transaction, you should specify the resource identi-
fi er of the container View to which you added the Fragment you want to fi nd. Alternatively, you can
use the findFragmentByTag method to search for the Fragment using the tag you specifi ed in the
Fragment Transaction:

MyFragment myFragment =
 (MyFragment)fragmentManager.findFragmentByTag(MY_FRAGMENT_TAG);

 Later in this chapter you’ll be introduced to Fragments that don’t include a UI. The find
FragmentByTag method is essential for interacting with these Fragments. Because they’re not part of
the Activity’s View hierarchy, they don’t have a resource identifi er or a container resource identifi er
to pass in to the findFragmentById method.

Populating Dynamic Activity Layouts with Fragments

If you’re dynamically changing the composition and layout of your Fragments at run time, it’s good
practice to defi ne only the parent containers within your XML layout and populate it exclusively
using Fragment Transactions at run time to ensure consistency when confi guration changes (such as
screen rotations) cause the UI to be re-created.

Listing 4-8 shows the skeleton code used to populate an Activity’s layout with Fragments at run
time.

LISTING 4-8: Populating Fragment layouts using container views

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Inflate the layout containing the Fragment containers
 setContentView(R.layout.fragment_container_layout);

 FragmentManager fm = getFragmentManager();

 // Check to see if the Fragment back stack has been populated
 // If not, create and populate the layout.
 DetailsFragment detailsFragment =
 (DetailsFragment)fm.findFragmentById(R.id.details_container);

 if (detailsFragment == null) {
 FragmentTransaction ft = fm.beginTransaction();
 ft.add(R.id.details_container, new DetailsFragment());
 ft.add(R.id.ui_container, new MyListFragment());
 ft.commit();
 }
}

code snippet PA4AD_Ch04_Fragments/src/MyFragmentActivity.java

c04.indd 123c04.indd 123 4/11/2012 10:07:32 AM4/11/2012 10:07:32 AM

Meier02275 c04 V2 - 03/19/2012 Page 124

124 x CHAPTER 4 BUILDING USER INTERFACES

You should fi rst check if the UI has already been populated based on the previous state. To ensure a
consistent user experience, Android persists the Fragment layout and associated back stack when an
Activity is restarted due to a confi guration change.

For the same reason, when creating alternative layouts for run time confi guration changes, it’s con-
sidered good practice to include any view containers involved in any transactions in all the layout
variations. Failing to do so may result in the Fragment Manager attempting to restore Fragments to
containers that don’t exist in the new layout.

To remove a Fragment container in a given orientation layout, simply mark its visibility attribute
as gone in your layout defi nition, as shown in Listing 4-9.

LISTING 4-9: Hiding Fragments in layout variations

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”horizontal”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”>
 <FrameLayout
 android:id=”@+id/ui_container”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:layout_weight=”1”
 />
 <FrameLayout
 android:id=”@+id/details_container”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:layout_weight=”3”
 android:visibility=”gone”
 />
</LinearLayout>

code snippet PA4AD_Ch04_Fragments/res/layout-port/fragment_container_layout.xml

Fragments and the Back Stack

Chapter 3 described the concept of Activity stacks — the logical stacking of Activities that are no
longer visible — which allow users to navigate back to previous screens using the back button.

Fragments enable you to create dynamic Activity layouts that can be modifi ed to present signifi cant
changes in the UIs. In some cases these changes could be considered a new screen — in which case a
user may reasonably expect the back button to return to the previous layout. This involves reversing
previously executed Fragment Transactions.

Android provides a convenient technique for providing this functionality. To add the Fragment
Transaction to the back stack, call addToBackStack on a Fragment Transaction before calling
commit.

c04.indd 124c04.indd 124 4/11/2012 10:07:32 AM4/11/2012 10:07:32 AM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c04 V2 - 03/19/2012 Page 125

Introducing Fragments x 125

FragmentTransaction fragmentTransaction = fragmentManager.beginTransaction();

fragmentTransaction.add(R.id.ui_container, new MyListFragment());

Fragment fragment = fragmentManager.findFragmentById(R.id.details_fragment);
fragmentTransaction.remove(fragment);

String tag = null;
fragmentTransaction.addToBackStack(tag);

fragmentTransaction.commit();

Pressing the Back button will then reverse the previous Fragment Transaction and return the UI to
the earlier layout.

When the Fragment Transaction shown above is committed, the Details Fragment is stopped and
moved to the back stack, rather than simply destroyed. If the Transaction is reversed, the List
Fragment is destroyed, and the Details Fragment is restarted.

Animating Fragment Transactions

To apply one of the default transition animations, use the setTransition method on any Fragment
Transaction, passing in one of the FragmentTransaction.TRANSIT_FRAGMENT_* constants.

transaction.setTransition(FragmentTransaction.TRANSIT_FRAGMENT_OPEN);

You can also apply custom animations to Fragment Transactions by using the setCustom
Animations method. This method accepts two animation XML resources: one for Fragments that
are being added to the layout by this transaction, and another for Fragments being removed:

fragmentTransaction.setCustomAnimations(R.animator.slide_in_left,
 R.animator.slide_out_right);

This is a particularly useful way to add seamless dynamic transitions when you are replacing
Fragments within your layout.

The Android animation libraries were signifi cantly improved in Android 3.0
(API level 11) with the inclusion of the Animator class. As a result, the anima-
tion resource passed in to the setCustomAnimations method is different for
applications built using the support library.

Applications built for devices running on API level 11 and above should use
Animator resources, whereas those using the support library to support earlier
platform releases should use the older View Animation resources.

You can fi nd more details on creating custom Animator and Animation resources in Chapter 11,
“Advanced User Experience.”

c04.indd 125c04.indd 125 4/11/2012 10:07:33 AM4/11/2012 10:07:33 AM

Meier02275 c04 V2 - 03/19/2012 Page 126

126 x CHAPTER 4 BUILDING USER INTERFACES

I nterfacing Between Fragments and Activities

Use the getActivity method within any Fragment to return a reference to the Activity within
which it’s embedded. This is particularly useful for fi nding the current Context, accessing other
Fragments using the Fragment Manager, and fi nding Views within the Activity’s View hierarchy.

TextView textView = (TextView)getActivity().findViewById(R.id.textview);

Although it’s possible for Fragments to communicate directly using the host Activity’s Fragment
Manager, it’s generally considered better practice to use the Activity as an intermediary. This allows
the Fragments to be as independent and loosely coupled as possible, with the responsibility for
deciding how an event in one Fragment should affect the overall UI falling to the host Activity.

Where your Fragment needs to share events with its host Activity (such as signaling UI selections), it’s
good practice to create a callback interface within the Fragment that a host Activity must implement.

Listing 4-10 shows a code snippet from within a Fragment class that defi nes a public event listener
interface. The onAttach handler is overridden to obtain a reference to the host Activity, confi rming
that it implements the required interface.

LISTING 4-10: Defi ning Fragment event callback interfaces

public interface OnSeasonSelectedListener {
 public void onSeasonSelected(Season season);
}

private OnSeasonSelectedListener onSeasonSelectedListener;
private Season currentSeason;

@Override
public void onAttach(Activity activity) {
 super.onAttach(activity);

 try {
 onSeasonSelectedListener = (OnSeasonSelectedListener)activity;
 } catch (ClassCastException e) {
 throw new ClassCastException(activity.toString() +
 “ must implement OnSeasonSelectedListener”);
 }
}

private void setSeason(Season season) {
 currentSeason = season;
 onSeasonSelectedListener.onSeasonSelected(season);
}

code snippet PA4AD_Ch04_Fragments/src/SeasonFragment.java

Fragments Without User Interfaces

In most circumstances, Fragments are used to encapsulate modular components of the UI; however,
you can also create a Fragment without a UI to provide background behavior that persists across

c04.indd 126c04.indd 126 4/11/2012 10:07:33 AM4/11/2012 10:07:33 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Meier02275 c04 V2 - 03/19/2012 Page 127

Introducing Fragments x 127

Activity restarts. This is particularly well suited to background tasks that regularly touch the UI or
where it’s important to maintain state across Activity restarts caused by confi guration changes.

You can choose to have an active Fragment retain its current instance when its parent Activity is re-
created using the setRetainInstance method. After you call this method, the Fragment’s lifecycle
will change.

Rather than being destroyed and re-created with its parent Activity, the same Fragment instance is
retained when the Activity restarts. It will receive the onDetach event when the parent Activity is
destroyed, followed by the onAttach, onCreateView, and onActivityCreated events as the new
parent Activity is instantiated.

Although you use this technique on Fragments with a UI, this is generally not
recommended. A better alternative is to move the associated background task or
required state into a new Fragment, without a UI, and have the two Fragments
interact as required.

The following snippet shows the skeleton code for a Fragment without a UI:

public class NewItemFragment extends Fragment {
 @Override
 public void onAttach(Activity activity) {
 super.onAttach(activity);

 // Get a type-safe reference to the parent Activity.
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Create background worker threads and tasks.
 }

 @Override
 public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);

 // Initiate worker threads and tasks.
 }
}

To add this Fragment to your Activity, create a new Fragment Transaction, specifying a tag to use to
identify it. Because the Fragment has no UI, it should not be associated with a container View and
generally shouldn’t be added to the back stack.

FragmentTransaction fragmentTransaction = fragmentManager.beginTransaction();

fragmentTransaction.add(workerFragment, MY_FRAGMENT_TAG);

fragmentTransaction.commit();

c04.indd 127c04.indd 127 4/11/2012 10:07:33 AM4/11/2012 10:07:33 AM

Meier02275 c04 V2 - 03/19/2012 Page 128

128 x CHAPTER 4 BUILDING USER INTERFACES

Use the findFragmentByTag from the Fragment Manager to fi nd a reference to it later.

MyFragment myFragment =
 (MyFragment)fragmentManager.findFragmentByTag(MY_FRAGMENT_TAG);

Android Fragment Classes

The Android SDK includes a number of Fragment subclasses that encapsulate some of the most
common Fragment implementations. Some of the more useful ones are listed here:

 ‰ DialogFragment — A Fragment that you can use to display a fl oating Dialog over the par-
ent Activity. You can customize the Dialog’s UI and control its visibility directly via the
Fragment API. Dialog Fragments are covered in more detail in Chapter 10, “Expanding the
User Experience.”

 ‰ ListFragment — A wrapper class for Fragments that feature a ListView bound to a data
source as the primary UI metaphor. It provides methods to set the Adapter to use and
exposes the event handlers for list item selection. The List Fragment is used as part of the
To-Do List example in the next section.

 ‰ WebViewFragment — A wrapper class that encapsulates a WebView within a Fragment. The
child WebView will be paused and resumed when the Fragment is paused and resumed.

Using Fragments for Your To-Do List

The earlier to-do list example used a Linear Layout within an Activity to defi ne its UI.

In this example you’ll break the UI into a series of Fragments that represent its component
pieces — the text entry box and the list of to-do items. This will enable you to easily create opti-
mized layouts for different screen sizes.

1. Start by creating a new layout fi le, new_item_fragment.xml in the res/layout folder that
contains the Edit Text node from the main.xml.

<?xml version=”1.0” encoding=”utf-8”?>
<EditText xmlns:android=”http://schemas.android.com/apk/res/android”
 android:id=”@+id/myEditText”
 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 android:hint=”@string/addItemHint”
 android:contentDescription=”@string/addItemContentDescription”
/>

2. You’ll need to create a new Fragment for each UI component. Start by creating a
NewItemFragment that extends Fragment. Override the onCreateView handler to infl ate the
layout you created in step 1.

package com.paad.todolist;

import android.app.Activity;
import android.app.Fragment;
import android.view.KeyEvent;

c04.indd 128c04.indd 128 4/11/2012 10:07:33 AM4/11/2012 10:07:33 AM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c04 V2 - 03/19/2012 Page 129

Introducing Fragments x 129

import android.os.Bundle;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.EditText;

public class NewItemFragment extends Fragment {

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 return inflater.inflate(R.layout.new_item_fragment, container, false);
 }

}

3. Each Fragment should encapsulate the functionality that it provides. In the case of the New
Item Fragment, that’s accepting new to-do items to add to your list. Start by defi ning an
interface that the ToDoListActivity can implement to listen for new items being added.

public interface OnNewItemAddedListener {
 public void onNewItemAdded(String newItem);
}

4. Now create a variable to store a reference to the parent ToDoListActivity that will imple-
ment this interface. You can get the reference as soon as the parent Activity has been bound
to the Fragment within the Fragment’s onAttach handler.

private OnNewItemAddedListener onNewItemAddedListener;

@Override
public void onAttach(Activity activity) {
 super.onAttach(activity);

 try {
 onNewItemAddedListener = (OnNewItemAddedListener)activity;
 } catch (ClassCastException e) {
 throw new ClassCastException(activity.toString() +
 “ must implement OnNewItemAddedListener”);
 }
}

5. Move the editText.onClickListener implementation from the ToDoListActivity into
your Fragment. When the user adds a new item, rather than adding the text directly to
an array, pass it in to the parent Activity’s OnNewItemAddedListener.onNewItemAdded
implementation.

@Override
public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 View view = inflater.inflate(R.layout.new_item_fragment, container, false);

 final EditText myEditText =
 (EditText)view.findViewById(R.id.myEditText);

c04.indd 129c04.indd 129 4/11/2012 10:07:34 AM4/11/2012 10:07:34 AM

Meier02275 c04 V2 - 03/19/2012 Page 130

130 x CHAPTER 4 BUILDING USER INTERFACES

 myEditText.setOnKeyListener(new View.OnKeyListener() {
 public boolean onKey(View v, int keyCode, KeyEvent event) {
 if (event.getAction() == KeyEvent.ACTION_DOWN)
 if ((keyCode == KeyEvent.KEYCODE_DPAD_CENTER) ||
 (keyCode == KeyEvent.KEYCODE_ENTER)) {
 String newItem = myEditText.getText().toString();
 onNewItemAddedListener.onNewItemAdded(newItem);
 myEditText.setText(“”);
 return true;
 }
 return false;
 }
 });

 return view;
}

6. Next, create the Fragment that contains the list of to-do items. Android provides a
ListFragment class that you can use to easily create a simple List View based Fragment.
Create a new class that Extends ListFragment.

package com.paad.todolist;

import android.app.ListFragment;

public class ToDoListFragment extends ListFragment {
}

The List Fragment class includes a default UI consisting of a single List View,
which is suffi cient for this example. You can easily customize the default List
Fragment UI by creating your own custom layout and infl ating it within the
onCreateView handler. Any custom layout must include a List View node with
the ID specifi ed as @android:id/list.

7. With your Fragments completed, it’s time to return to the Activity. Start by updating the
main.xml layout, replacing the List View and Edit Text with the ToDo List Fragment and
New Item Fragment, respectively.

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”>
 <fragment android:name=”com.paad.todolist.NewItemFragment”
 android:id=”@+id/NewItemFragment”
 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 />
 <fragment android:name=”com.paad.todolist.ToDoListFragment”
 android:id=”@+id/TodoListFragment”

c04.indd 130c04.indd 130 4/11/2012 10:07:34 AM4/11/2012 10:07:34 AM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c04 V2 - 03/19/2012 Page 131

Introducing Fragments x 131

 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 />
</LinearLayout>

8. Return to the ToDoListActivity. Within the onCreate method, use the Fragment Manager
to get a reference to the ToDo List Fragment before creating and assigning the adapter to it.
Because the List View and Edit Text Views are now encapsulated within fragments, you no
longer need to fi nd references to them within your Activity. You’ll need to expand the scope
of the Array Adapter and Array List to class variables.

private ArrayAdapter<String> aa;
private ArrayList<String> todoItems;

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Inflate your view
 setContentView(R.layout.main);

 // Get references to the Fragments
 FragmentManager fm = getFragmentManager();
 ToDoListFragment todoListFragment =
 (ToDoListFragment)fm.findFragmentById(R.id.TodoListFragment);

 // Create the array list of to do items
 todoItems = new ArrayList<String>();

 // Create the array adapter to bind the array to the listview
 aa = new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 todoItems);

 // Bind the array adapter to the listview.
 todoListFragment.setListAdapter(aa);
}

9. Your List View is now connected to your Array List using an adapter, so all that’s left is to
add any new items created within the New Item Fragment. Start by declaring that your class
will implement the OnNewItemAddedListener you defi ned within the New Item Fragment in
step 3.

public class ToDoList extends Activity
 implements NewItemFragment.OnNewItemAddedListener {

10. Finally, implement the listener by implementing an onNewItemAdded handler. Add the
received string variable to the Array List before notifying the Array Adapter that the dataset
has changed.

public void onNewItemAdded(String newItem) {
 todoItems.add(newItem);
 aa.notifyDataSetChanged();
}

c04.indd 131c04.indd 131 4/11/2012 10:07:34 AM4/11/2012 10:07:34 AM

Meier02275 c04 V2 - 03/19/2012 Page 132

132 x CHAPTER 4 BUILDING USER INTERFACES

All code snippets in this example are part of the Chapter 4 To-Do List Part 2
project, available for download at www.wrox.com.

THE ANDROID WIDGET TOOLBOX

Android supplies a toolbox of standard Views to help you create your UIs. By using these controls
(and modifying or extending them, as necessary), you can simplify your development and provide
consistency between applications.

The following list highlights some of the more familiar toolbox controls:

 ‰ TextView — A standard read-only text label that supports multiline display, string format-
ting, and automatic word wrapping.

 ‰ EditText — An editable text entry box that accepts multiline entry, word-wrapping, and
hint text.

 ‰ Chronometer — A Text View extension that implements a simple count-up timer.

 ‰ ListView — A View Group that creates and manages a vertical list of Views, displaying
them as rows within the list. The simplest List View displays the toString value of each
object in an array, using a Text View for each item.

 ‰ Spinner — A composite control that displays a Text View and an associated List View that
lets you select an item from a list to display in the textbox. It’s made from a Text View dis-
playing the current selection, combined with a button that displays a selection dialog when
pressed.

 ‰ Button — A standard push button.

 ‰ ToggleButton — A two-state button that can be used as an alternative to a check box. It’s
particularly appropriate where pressing the button will initiate an action as well as changing
a state (such as when turning something on or off).

 ‰ ImageButton — A push button for which you can specify a customized background image
(Drawable).

 ‰ CheckBox — A two-state button represented by a checked or unchecked box.

 ‰ RadioButton — A two-state grouped button. A group of these presents the user with a num-
ber of possible options, of which only one can be enabled at a time.

 ‰ ViewFlipper — A View Group that lets you defi ne a collection of Views as a horizontal row
in which only one View is visible at a time, and in which transitions between visible views
can be animated.

 ‰ VideoView — Handles all state management and display Surface confi guration for playing
videos more simply from within your Activity.

 ‰ QuickContactBadge — Displays a badge showing the image icon assigned to a contact you
specify using a phone number, name, email address, or URI. Clicking the image will display
the quick contact bar, which provides shortcuts for contacting the selected contact — includ-
ing calling and sending an SMS, email, and IM.

c04.indd 132c04.indd 132 4/11/2012 10:07:34 AM4/11/2012 10:07:34 AM

http://www.wrox.com

Meier02275 c04 V2 - 03/19/2012 Page 133

Creating New Views x 133

 ‰ ViewPager — Released as part of the Compatibility Package, the View Pager implements a
horizontally scrolling set of Views similar to the UI used in Google Play and Calendar. The
View Pager allows users to swipe or drag left or right to switch between different Views.

This is only a selection of the widgets available. Android also supports several more advanced View
implementations, including date-time pickers, auto-complete input boxes, maps, galleries, and tab
sheets. For a more comprehensive list of the available widgets, head to http://developer
.android.com/guide/tutorials/views/index.html.

CREATING NEW VIEWS

It’s only a matter of time before you, as an innovative developer, encounter a situation in which none
of the built-in controls meets your needs.

The ability to extend existing Views, assemble composite controls, and create unique new Views
makes it possible to implement beautiful UIs optimized for your application’s workfl ow. Android
lets you subclass the existing View toolbox or implement your own View controls, giving you total
freedom to tailor your UI to optimize the user experience.

When designing a UI, it’s important to balance raw aesthetics and usability.
With the power to create your own custom controls comes the temptation to
rebuild all your controls from scratch. Resist that urge. The standard Views will
be familiar to users from other Android applications and will update in line with
new platform releases. On small screens, with users often paying limited atten-
tion, familiarity can often provide better usability than a slightly shinier control.

The best approach to use when creating a new View depends on what you want to achieve:

 ‰ Modify or extend the appearance and/or behavior of an existing View when it supplies the
basic functionality you want. By overriding the event handlers and/or onDraw, but still calling
back to the superclass’s methods, you can customize a View without having to re-implement
its functionality. For example, you could customize a TextView to display numbers using a
set number of decimal points.

 ‰ Combine Views to create atomic, reusable controls that leverage the functionality of several
interconnected Views. For example, you could create a stopwatch timer by combining a
TextView and a Button that resets the counter when clicked.

 ‰ Create an entirely new control when you need a completely different interface that you can’t
get by changing or combining existing controls.

Modifying Existing Views

The Android widget toolbox includes Views that provide many common UI requirements, but the
controls are necessarily generic. By customizing these basic Views, you avoid re-implementing exist-
ing behavior while still tailoring the UI, and functionality, to your application’s needs.

c04.indd 133c04.indd 133 4/11/2012 10:07:35 AM4/11/2012 10:07:35 AM

http://developer

Meier02275 c04 V2 - 03/19/2012 Page 134

134 x CHAPTER 4 BUILDING USER INTERFACES

To create a new View based on an existing control, create a new class that extends it, as shown with
the TextView derived class shown in Listing 4-11. In this example you extend the Text View to cus-
tomize its appearance and behavior.

LISTING 4-11: Extending Text View

import android.content.Context;
import android.graphics.Canvas;
import android.util.AttributeSet;
import android.view.KeyEvent;
import android.widget.TextView;

public class MyTextView extends TextView {

 public MyTextView (Context context, AttributeSet attrs, int defStyle)
 {
 super(context, attrs, defStyle);
 }

 public MyTextView (Context context) {
 super(context);
 }

 public MyTextView (Context context, AttributeSet attrs) {
 super(context, attrs);
 }
}

code snippet PA4AD_Ch04_Views/src/MyTextView.java

To override the appearance or behavior of your new View, override and extend the event handlers
associated with the behavior you want to change.

In the following extension of the Listing 4-11 code, the onDraw method is overridden to modify the
View’s appearance, and the onKeyDown handler is overridden to allow custom key-press handling.

public class MyTextView extends TextView {

 public MyTextView (Context context, AttributeSet ats, int defStyle) {
 super(context, ats, defStyle);
 }

 public MyTextView (Context context) {
 super(context);
 }

 public MyTextView (Context context, AttributeSet attrs) {
 super(context, attrs);
 }

 @Override
 public void onDraw(Canvas canvas) {
 [... Draw things on the canvas under the text ...]

c04.indd 134c04.indd 134 4/11/2012 10:07:35 AM4/11/2012 10:07:35 AM

Meier02275 c04 V2 - 03/19/2012 Page 135

Creating New Views x 135

 // Render the text as usual using the TextView base class.
 super.onDraw(canvas);

 [... Draw things on the canvas over the text ...]
 }

 @Override
 public boolean onKeyDown(int keyCode, KeyEvent keyEvent) {
 [... Perform some special processing ...]
 [... based on a particular key press ...]

 // Use the existing functionality implemented by
 // the base class to respond to a key press event.
 return super.onKeyDown(keyCode, keyEvent);
 }
}

The event handlers available within Views are covered in more detail later in this chapter.

Customizing Your To-Do List

The to-do list example uses TextView controls to represent each row in a List View. You can cus-
tomize the appearance of the list by extending Text View and overriding the onDraw method.

In this example you’ll create a new TodoListItemView that will make each item appear as if on a
paper pad. When complete, your customized to-do list should look like Figure 4-10.

FIGURE 4-10

c04.indd 135c04.indd 135 4/11/2012 10:07:35 AM4/11/2012 10:07:35 AM

Meier02275 c04 V2 - 03/19/2012 Page 136

136 x CHAPTER 4 BUILDING USER INTERFACES

1. Create a new ToDoListItemView class that extends TextView. Include a stub for overriding
the onDraw method, and implement constructors that call a new init method stub.

package com.paad.todolist;

import android.content.Context;
import android.content.res.Resources;
import android.graphics.Canvas;
import android.graphics.Paint;
import android.util.AttributeSet;
import android.widget.TextView;

public class ToDoListItemView extends TextView {

 public ToDoListItemView (Context context, AttributeSet ats, int ds) {
 super(context, ats, ds);
 init();
 }

 public ToDoListItemView (Context context) {
 super(context);
 init();
 }

 public ToDoListItemView (Context context, AttributeSet attrs) {
 super(context, attrs);
 init();
 }

 private void init() {
 }

 @Override
 public void onDraw(Canvas canvas) {
 // Use the base TextView to render the text.
 super.onDraw(canvas);
 }

}

2. Create a new colors.xml resource in the res/values folder. Create new color values for
the paper, margin, line, and text colors.

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
 <color name=”notepad_paper”>#EEF8E0A0</color>
 <color name=”notepad_lines”>#FF0000FF</color>
 <color name=”notepad_margin”>#90FF0000</color>
 <color name=”notepad_text”>#AA0000FF</color>
</resources>

3. Create a new dimens.xml resource fi le, and add a new value for the paper’s margin width.

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
 <dimen name=”notepad_margin”>30dp</dimen>
</resources>

c04.indd 136c04.indd 136 4/11/2012 10:07:35 AM4/11/2012 10:07:35 AM

Meier02275 c04 V2 - 03/19/2012 Page 137

Creating New Views x 137

4. With the resources defi ned, you’re ready to customize the ToDoListItemView appearance.
Create new private instance variables to store the Paint objects you’ll use to draw the paper
background and margin. Also create variables for the paper color and margin width values.
Fill in the init method to get instances of the resources you created in the last two steps, and
create the Paint objects.

private Paint marginPaint;
private Paint linePaint;
private int paperColor;
private float margin;

private void init() {
 // Get a reference to our resource table.
 Resources myResources = getResources();

 // Create the paint brushes we will use in the onDraw method.
 marginPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
 marginPaint.setColor(myResources.getColor(R.color.notepad_margin));
 linePaint = new Paint(Paint.ANTI_ALIAS_FLAG);
 linePaint.setColor(myResources.getColor(R.color.notepad_lines));

 // Get the paper background color and the margin width.
 paperColor = myResources.getColor(R.color.notepad_paper);
 margin = myResources.getDimension(R.dimen.notepad_margin);
}

5. To draw the paper, override onDraw and draw the image using the Paint objects you created
in step 4. After you’ve drawn the paper image, call the superclass’s onDraw method and let it
draw the text as usual.

@Override
public void onDraw(Canvas canvas) {
 // Color as paper
 canvas.drawColor(paperColor);

 // Draw ruled lines
 canvas.drawLine(0, 0, 0, getMeasuredHeight(), linePaint);
 canvas.drawLine(0, getMeasuredHeight(),
 getMeasuredWidth(), getMeasuredHeight(),
 linePaint);

 // Draw margin
 canvas.drawLine(margin, 0, margin, getMeasuredHeight(), marginPaint);

 // Move the text across from the margin
 canvas.save();
 canvas.translate(margin, 0);

 // Use the TextView to render the text
 super.onDraw(canvas);
 canvas.restore();
}

6. That completes the ToDoListItemView implementation. To use it in the To-Do List
Activity, you need to include it in a new layout and pass that layout in to the Array Adapter

c04.indd 137c04.indd 137 4/11/2012 10:07:36 AM4/11/2012 10:07:36 AM

Meier02275 c04 V2 - 03/19/2012 Page 138

138 x CHAPTER 4 BUILDING USER INTERFACES

constructor. Start by creating a new todolist_item.xml resource in the res/layout folder.
It will specify how each of the to-do list items is displayed within the List View. For this
example, your layout need only consist of the new ToDoListItemView, set to fi ll the entire
available area.

<?xml version=”1.0” encoding=”utf-8”?>
<com.paad.todolist.ToDoListItemView
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:padding=”10dp”
 android:scrollbars=”vertical”
 android:textColor=”@color/notepad_text”
 android:fadingEdge=”vertical”
/>

7. The fi nal step is to change the parameters passed in to the ArrayAdapter in onCreate of the
ToDoListActivity class. Replace the reference to the default android.R.layout.simple_
list_item_1 with a reference to the new R.layout.todolist_item layout created in
step 6.

int resID = R.layout.todolist_item;
aa = new ArrayAdapter<String>(this, resID, todoItems);

All code snippets in this example are part of the Chapter 4 To-do List Part 3
project, available for download at www.wrox.com.

Creating Compound Controls

Compound controls are atomic, self-contained View Groups that contain multiple child Views laid
out and connected together.

When you create a compound control, you defi ne the layout, appearance, and interaction of the
Views it contains. You create compound controls by extending a ViewGroup (usually a layout). To
create a new compound control, choose the layout class that’s most suitable for positioning the child
controls and extend it:

public class MyCompoundView extends LinearLayout {
 public MyCompoundView(Context context) {
 super(context);
 }

 public MyCompoundView(Context context, AttributeSet attrs) {
 super(context, attrs);
 }
}

As with Activities, the preferred way to design compound View UI layouts is by using an external
resource.

c04.indd 138c04.indd 138 4/11/2012 10:07:36 AM4/11/2012 10:07:36 AM

http://schemas.android.com/apk/res/android%E2%80%9D
http://www.wrox.com

Meier02275 c04 V2 - 03/19/2012 Page 139

Creating New Views x 139

Listing 4-12 shows the XML layout defi nition for a simple compound control consisting of an Edit
Text for text entry, with a Clear Text button beneath it.

LISTING 4-12: A compound View layout resource

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”>
 <EditText
 android:id=”@+id/editText”
 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 />
 <Button
 android:id=”@+id/clearButton”
 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 android:text=”Clear”
 />
</LinearLayout>

code snippet PA4AD_Ch04_Views/res/layout/clearable_edit_text.xml

To use this layout in your new compound View, override its constructor to infl ate the layout
resource using the inflate method from the LayoutInflate system service. The inflate method
takes the layout resource and returns the infl ated View.

For circumstances such as this, in which the returned View should be the class you’re creating, you
can pass in the parent View and attach the result to it automatically.

Listing 4-13 demonstrates this using the ClearableEditText class. Within the constructor it
infl ates the layout resource from Listing 4-12 and then fi nds a reference to the Edit Text and Button
Views it contains. It also makes a call to hookupButton that will later be used to hook up the
plumbing that will implement the clear text functionality.

LISTING 4-13: Constructing a compound View

public class ClearableEditText extends LinearLayout {

 EditText editText;
 Button clearButton;

 public ClearableEditText(Context context) {
 super(context);

 // Inflate the view from the layout resource.
 String infService = Context.LAYOUT_INFLATER_SERVICE;
 LayoutInflater li;

continues

c04.indd 139c04.indd 139 4/11/2012 10:07:36 AM4/11/2012 10:07:36 AM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c04 V2 - 03/19/2012 Page 140

140 x CHAPTER 4 BUILDING USER INTERFACES

 li = (LayoutInflater)getContext().getSystemService(infService);
 li.inflate(R.layout.clearable_edit_text, this, true);

 // Get references to the child controls.
 editText = (EditText)findViewById(R.id.editText);
 clearButton = (Button)findViewById(R.id.clearButton);

 // Hook up the functionality
 hookupButton();
 }
}

code snippet PA4AD_Ch04_Views/src/ClearableEditText.java

If you prefer to construct your layout in code, you can do so just as you would for an Activity:

public ClearableEditText(Context context) {
 super(context);

 // Set orientation of layout to vertical
 setOrientation(LinearLayout.VERTICAL);

 // Create the child controls.
 editText = new EditText(getContext());
 clearButton = new Button(getContext());
 clearButton.setText(“Clear”);

 // Lay them out in the compound control.
 int lHeight = LinearLayout.LayoutParams.WRAP_CONTENT;
 int lWidth = LinearLayout.LayoutParams.MATCH_PARENT;

 addView(editText, new LinearLayout.LayoutParams(lWidth, lHeight));
 addView(clearButton, new LinearLayout.LayoutParams(lWidth, lHeight));

 // Hook up the functionality
 hookupButton();
}

After constructing the View layout, you can hook up the event handlers for each child control to
provide the functionality you need. In Listing 4-14, the hookupButton method is fi lled in to clear
the Edit Text when the button is pressed.

LISTING 4-14: Implementing the Clear Text Button

private void hookupButton() {
 clearButton.setOnClickListener(new Button.OnClickListener() {
 public void onClick(View v) {
 editText.setText(“”);

LISTING 4-13 (continued)

c04.indd 140c04.indd 140 4/11/2012 10:07:37 AM4/11/2012 10:07:37 AM

Meier02275 c04 V2 - 03/19/2012 Page 141

Creating New Views x 141

 }
 });
}

code snippet PA4AD_Ch04_Views/src/ClearableEditText.java

Creating Simple Compound Controls Using Layouts

It’s often suffi cient, and more fl exible, to defi ne the layout and appearance of a set of Views without
hard-wiring their interactions.

You can create a reusable layout by creating an XML resource that encapsulates the UI pattern
you want to reuse. You can then import these layout patterns when creating the UI for Activities or
Fragments by using the include tag within their layout resource defi nitions.

<include layout=”@layout/clearable_edit_text”/>

The include tag also enables you to override the id and layout parameters of the root node of the
included layout:

<include layout=”@layout/clearable_edit_text”
 android:id=”@+id/add_new_entry_input”
 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 android:layout_gravity=”top”/>

Creating Custom Views

Creating new Views gives you the power to fundamentally shape the way your applications
look and feel. By creating your own controls, you can create UIs that are uniquely suited to
your needs.

To create new controls from a blank canvas, you extend either the View or SurfaceView class.
The View class provides a Canvas object with a series of draw methods and Paint classes. Use them
to create a visual interface with bitmaps and raster graphics. You can then override user events,
including screen touches or key presses to provide interactivity.

In situations in which extremely rapid repaints and 3D graphics aren’t required, the View base class
offers a powerful lightweight solution.

The SurfaceView class provides a Surface object that supports drawing from a background thread
and optionally using openGL to implement your graphics. This is an excellent option for graphics-
heavy controls that are frequently updated (such as live video) or that display complex graphical
information (particularly, games and 3D visualizations).

This section focuses on building controls based on the View class. To learn more
about the SurfaceView class and some of the more advanced Canvas paint fea-
tures available in Android, see Chapter 10.

c04.indd 141c04.indd 141 4/11/2012 10:07:37 AM4/11/2012 10:07:37 AM

Meier02275 c04 V2 - 03/19/2012 Page 142

142 x CHAPTER 4 BUILDING USER INTERFACES

Creating a New Visual Interface

The base View class presents a distinctly empty 100-pixel-by-100-pixel square. To change the size of
the control and display a more compelling visual interface, you need to override the onMeasure and
onDraw methods.

Within onMeasure your View will determine the height and width it will occupy given a set of
boundary conditions. The onDraw method is where you draw onto the Canvas.

Listing 4-15 shows the skeleton code for a new View class, which will be examined and developed
further in the following sections.

LISTING 4-15: Creating a new View

public class MyView extends View {

 // Constructor required for in-code creation
 public MyView(Context context) {
 super(context);
 }

 // Constructor required for inflation from resource file
 public MyView (Context context, AttributeSet ats, int defaultStyle) {
 super(context, ats, defaultStyle);
 }

 //Constructor required for inflation from resource file
 public MyView (Context context, AttributeSet attrs) {
 super(context, attrs);
 }

 @Override
 protected void onMeasure(int wMeasureSpec, int hMeasureSpec) {
 int measuredHeight = measureHeight(hMeasureSpec);
 int measuredWidth = measureWidth(wMeasureSpec);

 // MUST make this call to setMeasuredDimension
 // or you will cause a runtime exception when
 // the control is laid out.
 setMeasuredDimension(measuredHeight, measuredWidth);
 }

 private int measureHeight(int measureSpec) {
 int specMode = MeasureSpec.getMode(measureSpec);
 int specSize = MeasureSpec.getSize(measureSpec);

 [... Calculate the view height ...]

 return specSize;
 }

 private int measureWidth(int measureSpec) {

c04.indd 142c04.indd 142 4/11/2012 10:07:39 AM4/11/2012 10:07:39 AM

Meier02275 c04 V2 - 03/19/2012 Page 143

Creating New Views x 143

 int specMode = MeasureSpec.getMode(measureSpec);
 int specSize = MeasureSpec.getSize(measureSpec);

 [... Calculate the view width ...]

 return specSize;
 }

 @Override
 protected void onDraw(Canvas canvas) {
 [... Draw your visual interface ...]
 }
}

code snippet PA4AD_Ch04_Views/src/MyView.java

The onMeasure method calls setMeasuredDimension. You must always call this
method within your overridden onMeasure method; otherwise, your control will
throw an exception when the parent container attempts to lay it out.

Drawing Your Control

The onDraw method is where the magic happens. If you’re creating a new widget from scratch, it’s
because you want to create a completely new visual interface. The Canvas parameter in the onDraw
method is the surface you’ll use to bring your imagination to life.

The Android Canvas uses the painter’s algorithm, meaning that each time you draw on to the can-
vas, it will cover anything previously drawn on the same area.

The drawing APIs provide a variety of tools to help draw your design on the Canvas using various
Paint objects. The Canvas class includes helper methods for drawing primitive 2D objects, includ-
ing circles, lines, rectangles, text, and Drawables (images). It also supports transformations that let
you rotate, translate (move), and scale (resize) the Canvas while you draw on it.

When these tools are used in combination with Drawables and the Paint class (which offer a vari-
ety of customizable fi lls and pens), the complexity and detail that your control can render are lim-
ited only by the size of the screen and the power of the processor rendering it.

One of the most important techniques for writing effi cient code in Android is
to avoid the repetitive creation and destruction of objects. Any object created
in your onDraw method will be created and destroyed every time the screen
refreshes. Improve effi ciency by making as many of these objects (particularly
instances of Paint and Drawable) class-scoped and by moving their creation
into the constructor.

c04.indd 143c04.indd 143 4/11/2012 10:07:39 AM4/11/2012 10:07:39 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Meier02275 c04 V2 - 03/19/2012 Page 144

144 x CHAPTER 4 BUILDING USER INTERFACES

Listing 4-16 shows how to override the onDraw method to display a simple text string in the center
of the control.

LISTING 4-16: Drawing a custom View

@Override
protected void onDraw(Canvas canvas) {
 // Get the size of the control based on the last call to onMeasure.
 int height = getMeasuredHeight();
 int width = getMeasuredWidth();

 // Find the center
 int px = width/2;
 int py = height/2;

 // Create the new paint brushes.
 // NOTE: For efficiency this should be done in
 // the views’s constructor
 Paint mTextPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
 mTextPaint.setColor(Color.WHITE);

 // Define the string.
 String displayText = “Hello World!”;

 // Measure the width of the text string.
 float textWidth = mTextPaint.measureText(displayText);

 // Draw the text string in the center of the control.
 canvas.drawText(displayText, px-textWidth/2, py, mTextPaint);
}

code snippet PA4AD_Ch04_Views/src/MyView.java

So that we don’t diverge too far from the current topic, a more detailed look at the Canvas and Paint
classes, and the techniques available for drawing more complex visuals is included in Chapter 10.

Android does not currently support vector graphics. As a result, changes to any
element of your Canvas require that the entire Canvas be repainted; modifying
the color of a brush will not change your View’s display until the control is inval-
idated and redrawn. Alternatively, you can use OpenGL to render graphics. For
more details, see the discussion on SurfaceView in Chapter 15, “Audio, Video,
and Using the Camera.”

Sizing Your Control

Unless you conveniently require a control that always occupies a space 100 pixels square, you will
also need to override onMeasure.

c04.indd 144c04.indd 144 4/11/2012 10:07:39 AM4/11/2012 10:07:39 AM

Meier02275 c04 V2 - 03/19/2012 Page 145

Creating New Views x 145

The onMeasure method is called when the control’s parent is laying out its child controls. It asks the
question, “How much space will you use?” and passes in two parameters: widthMeasureSpec and
heightMeasureSpec. These parameters specify the space available for the control and some meta-
data to describe that space.

Rather than return a result, you pass the View’s height and width into the setMeasuredDimension
method.

The following snippet shows how to override onMeasure. The calls to the local method stubs
measureHeight and measureWidth, which are used to decode the widthHeightSpec and height
MeasureSpec values and calculate the preferred height and width values, respectively.

@Override
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {

 int measuredHeight = measureHeight(heightMeasureSpec);
 int measuredWidth = measureWidth(widthMeasureSpec);

 setMeasuredDimension(measuredHeight, measuredWidth);
}

private int measureHeight(int measureSpec) {
 // Return measured widget height.
}

private int measureWidth(int measureSpec) {
 // Return measured widget width.
}

The boundary parameters, widthMeasureSpec and heightMeasureSpec, are passed in as integers
for effi ciency reasons. Before they can be used, they fi rst need to be decoded using the static get-
Mode and getSize methods from the MeasureSpec class.

int specMode = MeasureSpec.getMode(measureSpec);
int specSize = MeasureSpec.getSize(measureSpec);

Depending on the mode value, the size represents either the maximum space available for the con-
trol (in the case of AT_MOST), or the exact size that your control will occupy (for EXACTLY). In the
case of UNSPECIFIED, your control does not have any reference for what the size represents.

By marking a measurement size as EXACT, the parent is insisting that the View will be placed into
an area of the exact size specifi ed. The AT_MOST mode says the parent is asking what size the View
would like to occupy, given an upper boundary. In many cases the value you return will either be the
same, or the size required to appropriately wrap the UI you want to display.

In either case, you should treat these limits as absolute. In some circumstances it may still be appro-
priate to return a measurement outside these limits, in which case you can let the parent choose how
to deal with the oversized View, using techniques such as clipping and scrolling.

Listing 4-17 shows a typical implementation for handling View measurements.

c04.indd 145c04.indd 145 4/11/2012 10:07:40 AM4/11/2012 10:07:40 AM

Meier02275 c04 V2 - 03/19/2012 Page 146

146 x CHAPTER 4 BUILDING USER INTERFACES

LISTING 4-17: A typical View measurement implementation

@Override
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
 int measuredHeight = measureHeight(heightMeasureSpec);
 int measuredWidth = measureWidth(widthMeasureSpec);

 setMeasuredDimension(measuredHeight, measuredWidth);
}

private int measureHeight(int measureSpec) {
 int specMode = MeasureSpec.getMode(measureSpec);
 int specSize = MeasureSpec.getSize(measureSpec);

 // Default size if no limits are specified.
 int result = 500;

 if (specMode == MeasureSpec.AT_MOST) {
 // Calculate the ideal size of your
 // control within this maximum size.
 // If your control fills the available
 // space return the outer bound.
 result = specSize;
 } else if (specMode == MeasureSpec.EXACTLY) {
 // If your control can fit within these bounds return that value.
 result = specSize;
 }
 return result;
}

private int measureWidth(int measureSpec) {
 int specMode = MeasureSpec.getMode(measureSpec);
 int specSize = MeasureSpec.getSize(measureSpec);

 // Default size if no limits are specified.
 int result = 500;

 if (specMode == MeasureSpec.AT_MOST) {
 // Calculate the ideal size of your control
 // within this maximum size.
 // If your control fills the available space
 // return the outer bound.
 result = specSize;
 } else if (specMode == MeasureSpec.EXACTLY) {
 // If your control can fit within these bounds return that value.
 result = specSize;
 }
 return result;
}

code snippet PA4AD_Ch04_Views/src/MyView.java

c04.indd 146c04.indd 146 4/11/2012 10:07:40 AM4/11/2012 10:07:40 AM

Meier02275 c04 V2 - 03/19/2012 Page 147

Creating New Views x 147

Handling User Interaction Events

For your new View to be interactive, it will need to respond to user-initiated events such as key
presses, screen touches, and button clicks. Android exposes several virtual event handlers that you
can use to react to user input:

 ‰ onKeyDown — Called when any device key is pressed; includes the D-pad, keyboard, hang-up,
call, back, and camera buttons

 ‰ onKeyUp — Called when a user releases a pressed key

 ‰ onTrackballEvent — Called when the device’s trackball is moved

 ‰ onTouchEvent — Called when the touchscreen is pressed or released, or when it detects
movement

Listing 4-18 shows a skeleton class that overrides each of the user interaction handlers in a View.

LISTING 4-18: Input event handling for Views

@Override
public boolean onKeyDown(int keyCode, KeyEvent keyEvent) {
 // Return true if the event was handled.
 return true;
}

@Override
public boolean onKeyUp(int keyCode, KeyEvent keyEvent) {
 // Return true if the event was handled.
 return true;
}

@Override
public boolean onTrackballEvent(MotionEvent event) {
 // Get the type of action this event represents
 int actionPerformed = event.getAction();
 // Return true if the event was handled.
 return true;
}

@Override
public boolean onTouchEvent(MotionEvent event) {
 // Get the type of action this event represents
 int actionPerformed = event.getAction();
 // Return true if the event was handled.
 return true;
}

code snippet PA4AD_Ch04_Views/src/MyView.java

c04.indd 147c04.indd 147 4/11/2012 10:07:40 AM4/11/2012 10:07:40 AM

Meier02275 c04 V2 - 03/19/2012 Page 148

148 x CHAPTER 4 BUILDING USER INTERFACES

Further details on using each of these event handlers, including greater detail on the parameters
received by each method and support for multitouch events, are available in Chapter 11.

Supporting Accessibility in Custom Views

Creating a custom View with a beautiful interface is only half the story. It’s just as important to cre-
ate accessible controls that can be used by users with disabilities that require them to interact with
their devices in different ways.

Accessibility APIs were introduced in Android 1.6 (API level 4). They provide alternative interaction
methods for users with visual, physical, or age-related disabilities that make it diffi cult to interact
fully with a touchscreen.

The fi rst step is to ensure that your custom View is accessible and navigable using the trackball and
D-pad events, as described in the previous section. It’s also important to use the content descrip-
tion attribute within your layout defi nition to describe the input widgets. (This is described in more
detail in Chapter 11.)

To be accessible, custom Views must implement the AccessibilityEventSource
interface and broadcast AccessibilityEvents using the sendAccessibilityEvent
method.

The View class already implements the Accessibility Event Source interface, so you need to custom-
ize only the behavior to suit the functionality introduced by your custom View. Do this by passing
the type of event that has occurred — usually one of clicks, long clicks, selection changes, focus
changes, and text/content changes — to the sendAccessibilityEvent method. For custom Views
that implement a completely new UI, this will typically include a broadcast whenever the displayed
content changes, as shown in Listing 4-19.

LISTING 4-19: Broadcasting Accessibility Events

public void setSeason(Season _season) {
 season = _season;
 sendAccessibilityEvent(AccessibilityEvent.TYPE_VIEW_TEXT_CHANGED);
}

code snippet PA4AD_Ch04_Views/src/SeasonView.java

Clicks, long-clicks, and focus and selection changes typically will be broadcast by the underlying
View implementation, although you should take care to broadcast any additional events not cap-
tured by the base View class.

The broadcast Accessibility Event includes a number of properties used by the accessibility
service to augment the user experience. Several of these properties, including the View’s
class name and event timestamp, won’t need to be altered; however, by overriding the dispatch-
PopulateAccessibilityEvent handler, you can customize details such as the textual
representation of the View’s contents, checked state, and selection state of your View, as shown in
Listing 4-20.

c04.indd 148c04.indd 148 4/11/2012 10:07:40 AM4/11/2012 10:07:40 AM

Meier02275 c04 V2 - 03/19/2012 Page 149

Creating New Views x 149

LISTING 4-20: Customizing Accessibility Event properties

@Override
public boolean dispatchPopulateAccessibilityEvent(final
 AccessibilityEvent event) {

 super.dispatchPopulateAccessibilityEvent(event);
 if (isShown()) {
 String seasonStr = Season.valueOf(season);
 if (seasonStr.length() > AccessibilityEvent.MAX_TEXT_LENGTH)
 seasonStr = seasonStr.substring(0, AccessibilityEvent.MAX_TEXT_LENGTH-1);

 event.getText().add(seasonStr);
 return true;
 }
 else
 return false;
}

code snippet PA4AD_Ch04_Views/src/SeasonView.java

Creating a Compass View Example

In the following example you’ll create a new Compass View by extending the View class. This View
will display a traditional compass rose to indicate a heading/orientation. When complete, it should
appear as in Figure 4-11.

FIGURE 4-11

c04.indd 149c04.indd 149 4/11/2012 10:07:41 AM4/11/2012 10:07:41 AM

Meier02275 c04 V2 - 03/19/2012 Page 150

150 x CHAPTER 4 BUILDING USER INTERFACES

A compass is an example of a UI control that requires a radically different visual display from the
Text Views and Buttons available in the SDK toolbox, making it an excellent candidate for building
from scratch.

In Chapter 11 you will learn some advanced techniques for Canvas drawing
that will let you dramatically improve its appearance. Then in Chapter 12,
“Hardware Sensors,” you’ll use this Compass View and the device’s built-in
accelerometer to display the user’s current orientation.

1. Create a new Compass project that will contain your new CompassView, and create a
CompassActivity within which to display it. Within it, create a new CompassView class that
extends View and add constructors that will allow the View to be instantiated, either in code
or through infl ation from a resource layout. Also add a new initCompassView method that
will be used to initialize the control and call it from each constructor.

package com.paad.compass;

import android.content.Context;
import android.content.res.Resources;
import android.graphics.Canvas;
import android.graphics.Paint;
import android.util.AttributeSet;
import android.view.View;
import android.view.accessibility.AccessibilityEvent;

public class CompassView extends View {
 public CompassView(Context context) {
 super(context);
 initCompassView();
 }

 public CompassView(Context context, AttributeSet attrs) {
 super(context, attrs);
 initCompassView();
 }

 public CompassView(Context context,
 AttributeSet ats,
 int defaultStyle) {
 super(context, ats, defaultStyle);
 initCompassView();
 }

 protected void initCompassView() {
 setFocusable(true);
 }
}

2. The Compass View should always be a perfect circle that takes up as much of the canvas as
this restriction allows. Override the onMeasure method to calculate the length of the shortest
side, and use setMeasuredDimension to set the height and width using this value.

c04.indd 150c04.indd 150 4/11/2012 10:07:41 AM4/11/2012 10:07:41 AM

Meier02275 c04 V2 - 03/19/2012 Page 151

Creating New Views x 151

@Override
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
 // The compass is a circle that fills as much space as possible.
 // Set the measured dimensions by figuring out the shortest boundary,
 // height or width.
 int measuredWidth = measure(widthMeasureSpec);
 int measuredHeight = measure(heightMeasureSpec);

 int d = Math.min(measuredWidth, measuredHeight);

 setMeasuredDimension(d, d);
}

private int measure(int measureSpec) {
 int result = 0;

 // Decode the measurement specifications.
 int specMode = MeasureSpec.getMode(measureSpec);
 int specSize = MeasureSpec.getSize(measureSpec);

 if (specMode == MeasureSpec.UNSPECIFIED) {
 // Return a default size of 200 if no bounds are specified.
 result = 200;
 } else {
 // As you want to fill the available space
 // always return the full available bounds.
 result = specSize;
 }
 return result;
}

3. Modify the main.xml layout resource and replace the TextView reference with your new
CompassView:

<?xml version=”1.0” encoding=”utf-8”?>
<FrameLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”>
 <com.paad.compass.CompassView
 android:id=”@+id/compassView”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 />
</FrameLayout>

4. Create two new resource fi les that store the colors and text strings you’ll use to draw the
compass.

4.1 Create the text string resources by modifying the res/values/strings.xml fi le.

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
 <string name=”app_name”>Compass</string>
 <string name=”cardinal_north”>N</string>
 <string name=”cardinal_east”>E</string>

c04.indd 151c04.indd 151 4/11/2012 10:07:41 AM4/11/2012 10:07:41 AM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c04 V2 - 03/19/2012 Page 152

152 x CHAPTER 4 BUILDING USER INTERFACES

 <string name=”cardinal_south”>S</string>
 <string name=”cardinal_west”>W</string>
</resources>

4.2 Create the color resource res/values/colors.xml.

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
 <color name=”background_color”>#F555</color>
 <color name=”marker_color”>#AFFF</color>
 <color name=”text_color”>#AFFF</color>
</resources>

5. Return to the CompassView class. Add a new property to store the displayed bearing, and
create get and set methods for it.

private float bearing;

public void setBearing(float _bearing) {
 bearing = _bearing;
}

public float getBearing() {
 return bearing;
}

6. Return to the initCompassView method and get references to each resource created in
step 4. Store the string values as instance variables, and use the color values to create new
class-scoped Paint objects. You’ll use these objects in the next step to draw the compass face.

private Paint markerPaint;
private Paint textPaint;
private Paint circlePaint;
private String northString;
private String eastString;
private String southString;
private String westString;
private int textHeight;

protected void initCompassView() {
 setFocusable(true);

 Resources r = this.getResources();

 circlePaint = new Paint(Paint.ANTI_ALIAS_FLAG);
 circlePaint.setColor(r.getColor(R.color.background_color));
 circlePaint.setStrokeWidth(1);
 circlePaint.setStyle(Paint.Style.FILL_AND_STROKE);

 northString = r.getString(R.string.cardinal_north);
 eastString = r.getString(R.string.cardinal_east);
 southString = r.getString(R.string.cardinal_south);
 westString = r.getString(R.string.cardinal_west);

 textPaint = new Paint(Paint.ANTI_ALIAS_FLAG);

c04.indd 152c04.indd 152 4/11/2012 10:07:42 AM4/11/2012 10:07:42 AM

Meier02275 c04 V2 - 03/19/2012 Page 153

Creating New Views x 153

 textPaint.setColor(r.getColor(R.color.text_color));

 textHeight = (int)textPaint.measureText(“yY”);

 markerPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
 markerPaint.setColor(r.getColor(R.color.marker_color));
}

7. The next step is to draw the compass face using the String and Paint objects you created in
step 6. The following code snippet is presented with only limited commentary. You can fi nd
more detail about drawing on the Canvas and using advanced Paint effects in Chapter 11.

7.1 Start by overriding the onDraw method in the CompassView class.

@Override
protected void onDraw(Canvas canvas) {

7.2 Find the center of the control, and store the length of the smallest side as the compass’s
radius.

 int mMeasuredWidth = getMeasuredWidth();
 int mMeasuredHeight = getMeasuredHeight();

 int px = mMeasuredWidth / 2;
 int py = mMeasuredHeight / 2 ;

 int radius = Math.min(px, py);

7.3 Draw the outer boundary, and color the background of the Compass face using the
drawCircle method. Use the circlePaint object you created in step 6.

 // Draw the background
 canvas.drawCircle(px, py, radius, circlePaint);

7.4 This Compass displays the current heading by rotating the face so that the current
direction is always at the top of the device. To achieve this, rotate the canvas in the
opposite direction to the current heading.

 // Rotate our perspective so that the ‘top’ is
 // facing the current bearing.
 canvas.save();
 canvas.rotate(-bearing, px, py);

7.5 All that’s left is to draw the markings. Rotate the canvas through a full rotation, draw-
ing markings every 15 degrees and the abbreviated direction string every 45 degrees.

 int textWidth = (int)textPaint.measureText(“W”);
 int cardinalX = px-textWidth/2;
 int cardinalY = py-radius+textHeight;

 // Draw the marker every 15 degrees and text every 45.
 for (int i = 0; i < 24; i++) {
 // Draw a marker.
 canvas.drawLine(px, py-radius, px, py-radius+10, markerPaint);

 canvas.save();

c04.indd 153c04.indd 153 4/11/2012 10:07:42 AM4/11/2012 10:07:42 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Meier02275 c04 V2 - 03/19/2012 Page 154

154 x CHAPTER 4 BUILDING USER INTERFACES

 canvas.translate(0, textHeight);

 // Draw the cardinal points
 if (i % 6 == 0) {
 String dirString = “”;
 switch (i) {
 case(0) : {
 dirString = northString;
 int arrowY = 2*textHeight;
 canvas.drawLine(px, arrowY, px-5, 3*textHeight,
 markerPaint);
 canvas.drawLine(px, arrowY, px+5, 3*textHeight,
 markerPaint);
 break;
 }
 case(6) : dirString = eastString; break;
 case(12) : dirString = southString; break;
 case(18) : dirString = westString; break;
 }
 canvas.drawText(dirString, cardinalX, cardinalY, textPaint);
 }

 else if (i % 3 == 0) {
 // Draw the text every alternate 45deg
 String angle = String.valueOf(i*15);
 float angleTextWidth = textPaint.measureText(angle);

 int angleTextX = (int)(px-angleTextWidth/2);
 int angleTextY = py-radius+textHeight;
 canvas.drawText(angle, angleTextX, angleTextY, textPaint);
 }
 canvas.restore();

 canvas.rotate(15, px, py);
 }
 canvas.restore();
}

8. The next step is to add accessibility support. The Compass View presents a heading visually,
so to make it accessible you need to broadcast an accessibility event signifying that the “text”
(in this case, content) has changed when the bearing changes. Do this by modifying the set-
Bearing method.

public void setBearing(float _bearing) {
 bearing = _bearing;
 sendAccessibilityEvent(AccessibilityEvent.TYPE_VIEW_TEXT_CHANGED);
}

9. Override the dispatchPopulateAccessibilityEvent to use the current heading as the
content value to be used for accessibility events.

@Override
public boolean dispatchPopulateAccessibilityEvent(final AccessibilityEvent event) {
 super.dispatchPopulateAccessibilityEvent(event);

c04.indd 154c04.indd 154 4/11/2012 10:07:42 AM4/11/2012 10:07:42 AM

Meier02275 c04 V2 - 03/19/2012 Page 155

Creating New Views x 155

 if (isShown()) {
 String bearingStr = String.valueOf(bearing);
 if (bearingStr.length() > AccessibilityEvent.MAX_TEXT_LENGTH)
 bearingStr = bearingStr.substring(0, AccessibilityEvent.MAX_TEXT_LENGTH);

 event.getText().add(bearingStr);
 return true;
 }
 else
 return false;
}

All code snippets in this example are part of the Chapter 4 Compass project,
available for download at www.wrox.com.

Run the Activity, and you should see the CompassView displayed. See Chapter 12 to learn how to
bind the CompassView to the device’s compass sensor.

Using Custom Controls

Having created your own custom Views, you can use them within code and layouts as you would
any other View. Note that you must specify the fully qualifi ed class name when you create a new
node in the layout defi nition.

<com.paad.compass.CompassView
 android:id=”@+id/compassView”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
/>

You can infl ate the layout and get a reference to the CompassView, as usual, using the
following code:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 CompassView cv = (CompassView)this.findViewById(R.id.compassView);
 cv.setBearing(45);
}

You can also add your new view to a layout in code:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 CompassView cv = new CompassView(this);
 setContentView(cv);
 cv.setBearing(45);
}

c04.indd 155c04.indd 155 4/11/2012 10:07:42 AM4/11/2012 10:07:42 AM

http://www.wrox.com

Meier02275 c04 V2 - 03/19/2012 Page 156

156 x CHAPTER 4 BUILDING USER INTERFACES

INTRODUCING ADAPTERS

Adapters are used to bind data to View Groups that extend the AdapterView class (such as List
View or Gallery). Adapters are responsible for creating child Views that represent the underlying
data within the bound parent View.

You can create your own Adapter classes and build your own AdapterView-derived
controls.

Introducing Some Native Adapters

In most cases you won’t have to create your own Adapters from scratch. Android supplies a set of
Adapters that can pump data from common data sources (including arrays and Cursors) into the
native controls that extend Adapter View.

Because Adapters are responsible both for supplying the data and for creating the Views that rep-
resent each item, Adapters can radically modify the appearance and functionality of the controls
they’re bound to.

The following list highlights two of the most useful and versatile native Adapters:

 ‰ ArrayAdapter — The Array Adapter uses generics to bind an Adapter View to an array of
objects of the specifi ed class. By default, the Array Adapter uses the toString value of each
object in the array to create and populate Text Views. Alternative constructors enable you to
use more complex layouts, or you can extend the class (as shown in the next section) to bind
data to more complicated layouts.

 ‰ SimpleCursorAdapter — The Simple Cursor Adapter enables you to bind the Views
within a layout to specifi c columns contained within a Cursor (typically returned from a
Content Provider query). You specify an XML layout to infl ate and populate to display
each child, and then bind each column in the Cursor to a particular View within that
layout. The adapter will create a new View for each Cursor entry and infl ate the layout
into it, populating each View within the layout using the Cursor’s corresponding column
value.

The following sections delve into these Adapter classes. The examples provided bind data to List
Views, though the same logic will work just as well for other Adapter View classes, such as Spinners
and Galleries.

Customizing the Array Adapter

By default, the Array Adapter uses the toString values of each item within an object array to popu-
late a Text View within the layout you specify.

In most cases you will need to customize the Array Adapter to populate the layout used for each
View to represent the underlying array data. To do so, extend ArrayAdapter with a type-specifi c
variation, overriding the getView method to assign object properties to layout Views, as shown in
Listing 4-21.

c04.indd 156c04.indd 156 4/11/2012 10:07:42 AM4/11/2012 10:07:42 AM

Meier02275 c04 V2 - 03/19/2012 Page 157

Introducing Adapters x 157

LISTING 4-21: Customizing the Array Adapter

public class MyArrayAdapter extends ArrayAdapter<MyClass> {

 int resource;

 public MyArrayAdapter(Context context,
 int _resource,
 List<MyClass> items) {
 super(context, _resource, items);
 resource = _resource;
 }

 @Override
 public View getView(int position, View convertView, ViewGroup parent) {
 // Create and inflate the View to display
 LinearLayout newView;

 if (convertView == null) {
 // Inflate a new view if this is not an update.
 newView = new LinearLayout(getContext());
 String inflater = Context.LAYOUT_INFLATER_SERVICE;
 LayoutInflater li;
 li = (LayoutInflater)getContext().getSystemService(inflater);
 li.inflate(resource, newView, true);
 } else {
 // Otherwise we’ll update the existing View
 newView = (LinearLayout)convertView;
 }

 MyClass classInstance = getItem(position);

 // TODO Retrieve values to display from the
 // classInstance variable.

 // TODO Get references to the Views to populate from the layout.
 // TODO Populate the Views with object property values.

 return newView;
 }
}

code snippet PA4AD_Ch04_Adapters/src/MyArrayAdapter.java

The getView method is used to construct, infl ate, and populate the View that will be added to the
parent Adapter View class (e.g., List View), which is being bound to the underlying array using this
Adapter.

The getView method receives parameters that describe the position of the item to be displayed, the
View being updated (or null), and the View Group into which this new View will be placed. A call
to getItem will return the value stored at the specifi ed index in the underlying array.

Return the newly created and populated (or updated) View instance as a result from this method.

c04.indd 157c04.indd 157 4/11/2012 10:07:42 AM4/11/2012 10:07:42 AM

Meier02275 c04 V2 - 03/19/2012 Page 158

158 x CHAPTER 4 BUILDING USER INTERFACES

Using Adapters to Bind Data to a View

To apply an Adapter to an AdapterView-derived class, call the View’s setAdapter method, passing
in an Adapter instance, as shown in Listing 4-22.

LISTING 4-22: Creating and applying an Adapter

ArrayList<String> myStringArray = new ArrayList<String>();

int layoutID = android.R.layout.simple_list_item_1;

ArrayAdapter<String> myAdapterInstance;
myAdapterInstance =
 new ArrayAdapter<String>(this, layoutID, myStringArray);

myListView.setAdapter(myAdapterInstance);

code snippet PA4AD_Ch04_Adapters/src/MyActivity.java

This snippet shows the simplest case, in which the array being bound contains Strings and each List
View item is represented by a single Text View.

The following example demonstrates how to bind an array of complex objects to a List View using a
custom layout.

Customizing the To-Do List Array Adapter

This example extends the To-Do List project, storing each item as a ToDoItem object that includes
the date each item was created.

You will extend ArrayAdapter to bind a collection of ToDoItem objects to the ListView and cus-
tomize the layout used to display each to-do item within the List View.

 1. Return to the To-Do List project. Create a new ToDoItem class that stores the task and its
creation date. Override the toString method to return a summary of the item data.

package com.paad.todolist;

import java.text.SimpleDateFormat;
import java.util.Date;

public class ToDoItem {

 String task;
 Date created;

 public String getTask() {
 return task;
 }

c04.indd 158c04.indd 158 4/11/2012 10:07:42 AM4/11/2012 10:07:42 AM

Meier02275 c04 V2 - 03/19/2012 Page 159

Introducing Adapters x 159

 public Date getCreated() {
 return created;
 }

 public ToDoItem(String _task) {
 this(_task, new Date(java.lang.System.currentTimeMillis()));
 }

 public ToDoItem(String _task, Date _created) {
 task = _task;
 created = _created;
 }

 @Override
 public String toString() {
 SimpleDateFormat sdf = new SimpleDateFormat(“dd/MM/yy”);
 String dateString = sdf.format(created);
 return “(“ + dateString + “) “ + task;
 }
}

2. Open the ToDoListActivity and modify the ArrayList and ArrayAdapter variable
types to store ToDoItem objects rather than Strings. You then need to modify the onCreate
method to update the corresponding variable initialization.

private ArrayList<ToDoItem> todoItems;
private ArrayAdapter<ToDoItem> aa;

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Inflate your view
 setContentView(R.layout.main);

 // Get references to the Fragments
 FragmentManager fm = getFragmentManager();
 ToDoListFragment todoListFragment =
 (ToDoListFragment)fm.findFragmentById(R.id.TodoListFragment);

 // Create the array list of to do items
 todoItems = new ArrayList<ToDoItem>();

 // Create the array adapter to bind the array to the listview
 int resID = R.layout.todolist_item;
 aa = new ArrayAdapter<ToDoItem>(this, resID, todoItems);

 // Bind the array adapter to the listview.
 todoListFragment.setListAdapter(aa);
}

3. Update the onNewItemAdded handler to support the ToDoItem objects.

public void onNewItemAdded(String newItem) {
 ToDoItem newTodoItem = new ToDoItem(newItem);

c04.indd 159c04.indd 159 4/11/2012 10:07:43 AM4/11/2012 10:07:43 AM

Meier02275 c04 V2 - 03/19/2012 Page 160

160 x CHAPTER 4 BUILDING USER INTERFACES

 todoItems.add(0, newTodoItem);
 aa.notifyDataSetChanged();
}

4. Now you can modify the todolist_item.xml layout to display the additional information
stored for each to-do item. Start by modifying the custom layout you created earlier in this
chapter to include a second TextView. It will be used to show the creation date of each to-do
item.

<?xml version=”1.0” encoding=”utf-8”?>
<RelativeLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”>
 <TextView
 android:id=”@+id/rowDate”
 android:background=”@color/notepad_paper”
 android:layout_width=”wrap_content”
 android:layout_height=”match_parent”
 android:padding=”10dp”
 android:scrollbars=”vertical”
 android:fadingEdge=”vertical”
 android:textColor=”#F000”
 android:layout_alignParentRight=”true”
 />
 <com.paad.todolist.ToDoListItemView
 android:id=”@+id/row”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:padding=”10dp”
 android:scrollbars=”vertical”
 android:fadingEdge=”vertical”
 android:textColor=”@color/notepad_text”
 android:layout_toLeftOf=”@+id/rowDate”
 />
</RelativeLayout>

6. To assign the ToDoItem values to each ListView Item, create a new class (ToDoItemAdapter)
that extends an ArrayAdapter with a ToDoItem-specifi c variation. Override getView to
assign the task and date properties in the ToDoItem object to the Views in the layout you cre-
ated in step 4.

package com.paad.todolist;

import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.List;
import android.content.Context;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ArrayAdapter;
import android.widget.LinearLayout;
import android.widget.TextView;

c04.indd 160c04.indd 160 4/11/2012 10:07:43 AM4/11/2012 10:07:43 AM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c04 V2 - 03/19/2012 Page 161

Introducing Adapters x 161

public class ToDoItemAdapter extends ArrayAdapter<ToDoItem> {

 int resource;

 public ToDoItemAdapter(Context context,
 int resource,
 List<ToDoItem> items) {
 super(context, resource, items);
 this.resource = resource;
 }

 @Override
 public View getView(int position, View convertView, ViewGroup parent) {
 LinearLayout todoView;

 ToDoItem item = getItem(position);

 String taskString = item.getTask();
 Date createdDate = item.getCreated();
 SimpleDateFormat sdf = new SimpleDateFormat(“dd/MM/yy”);
 String dateString = sdf.format(createdDate);

 if (convertView == null) {
 todoView = new LinearLayout(getContext());
 String inflater = Context.LAYOUT_INFLATER_SERVICE;
 LayoutInflater li;
 li = (LayoutInflater)getContext().getSystemService(inflater);
 li.inflate(resource, todoView, true);
 } else {
 todoView = (LinearLayout) convertView;
 }

 TextView dateView = (TextView)todoView.findViewById(R.id.rowDate);
 TextView taskView = (TextView)todoView.findViewById(R.id.row);

 dateView.setText(dateString);
 taskView.setText(taskString);

 return todoView;
 }
}

7. Return to the ToDoListActivity and replace the ArrayAdapter declaration with a
ToDoItemAdapter:

private ToDoItemAdapter aa;

8. Within onCreate, replace the ArrayAdapter<ToDoItem> instantiation with the new
ToDoItemAdapter:

aa = new ToDoItemAdapter(this, resID, todoItems);

If you run your Activity and add some to-do items, it should appear as shown in Figure 4-12.

c04.indd 161c04.indd 161 4/11/2012 10:07:43 AM4/11/2012 10:07:43 AM

Meier02275 c04 V2 - 03/19/2012 Page 162

162 x CHAPTER 4 BUILDING USER INTERFACES

FIGURE 4-12

All code snippets in this example are part of the Chapter 4 To-do List Part 4
project, available for download at www.wrox.com.

Using the Simple Cursor Adapter

The SimpleCursorAdapter is used to bind a Cursor to an Adapter View using a layout to defi ne
the UI of each row/item. The content of each row’s View is populated using the column values of the
corresponding row in the underlying Cursor.

Construct a Simple Cursor Adapter by passing in the current context, a layout resource to use for
each item, a Cursor that represents the data to display, and two integer arrays: one that contains the
indexes of the columns from which to source the data, and a second (equally sized) array that con-
tains resource IDs to specify which Views within the layout should be used to display the contents of
the corresponding columns.

Listing 4-22 shows how to construct a Simple Cursor Adapter to display recent call information.

c04.indd 162c04.indd 162 4/11/2012 10:07:43 AM4/11/2012 10:07:43 AM

http://www.wrox.com

Meier02275 c04 V2 - 03/19/2012 Page 163

Introducing Adapters x 163

LISTING 4-22: Creating a Simple Cursor Adapter

LoaderManager.LoaderCallbacks<Cursor> loaded =
 new LoaderManager.LoaderCallbacks<Cu rsor>() {

 public Loader<Cursor> onCreateLoader(int id, Bundle args) {
 CursorLoader loader = new CursorLoader(MyActivity.this,
 CallLog.CONTENT_URI, null, null, null, null);
 return loader;
 }

 public void onLoadFinished(Loader<Cursor> loader, Cursor cursor) {

 String[] fromColumns = new String[] {CallLog.Calls.CACHED_NAME,
 CallLog.Calls.NUMBER};

 int[] toLayoutIDs = new int[] { R.id.nameTextView, R.id.numberTextView};

 SimpleCursorAdapter myAdapter;
 myAdapter = new SimpleCursorAdapter(MyActivity.this,
 R.layout.mysimplecursorlayout,
 cursor,
 fromColumns,
 toLayoutIDs);

 myListView.setAdapter(myAdapter);
 }

 public void onLoaderReset(Loader<Cursor> loader) {}
};

getLoaderManager().initLoader(0, null, loaded);

code snippet PA4AD_Ch4_Adapters/src/MyActivity.java

You’ll learn more about Content Providers, Cursors, and Cursor Loaders in Chapter 8, “Databases
and Content Providers,” where you’ll also fi nd more Simple Cursor Adapter examples.

c04.indd 163c04.indd 163 4/11/2012 10:07:44 AM4/11/2012 10:07:44 AM

c04.indd 164c04.indd 164 4/11/2012 10:07:44 AM4/11/2012 10:07:44 AM

Meier02275 c05 V2 - 03/19/2012 Page 165

5
Intents and Broadcast Receivers

WHAT’S IN THIS CHAPTER?

 ‰ Introducing Intents

 ‰ Starting Activities, sub-Activities, and Services using implicit and

explicit Intents

 ‰ Using Linkify

 ‰ Broadcasting events using Broadcast Intents

 ‰ Using Pending Intents

 ‰ An introduction to Intent Filters and Broadcast Receivers

 ‰ Extending application functionality using Intent Filters

 ‰ Listening for Broadcast Intents

 ‰ Monitoring device state changes

 ‰ Managing manifest Receivers at run time

This chapter looks at Intents — probably the most unique and important concept in
Android development. You’ll learn how to use Intents to broadcast data within and between
applications and how to listen for them to detect changes in the system state.

You’ll also learn how to defi ne implicit and explicit Intents to start Activities or Services using
late runtime binding. Using implicit Intents, you’ll learn how to request that an action be
performed on a piece of data, enabling Android to determine which application components
can best service that request.

Broadcast Intents are used to announce events systemwide. You’ll learn how to transmit these
broadcasts and receive them using Broadcast Receivers.

c05.indd 165c05.indd 165 4/11/2012 10:01:53 AM4/11/2012 10:01:53 AM

Meier02275 c05 V2 - 03/19/2012 Page 166

166 x CHAPTER 5 INTENTS AND BROADCAST RECEIVERS

INTRODUCING INTENTS

Intents are used as a message-passing mechanism that works both within your application and
between applications. You can use Intents to do the following:

 ‰ Explicitly start a particular Service or Activity using its class name

 ‰ Start an Activity or Service to perform an action with (or on) a particular piece of data

 ‰ Broadcast that an event has occurred

You can use Intents to support interaction among any of the application components installed on
an Android device, no matter which application they’re a part of. This turns your device from a
platform containing a collection of independent components into a single, interconnected system.

One of the most common uses for Intents is to start new Activities, either explicitly (by specifying
the class to load) or implicitly (by requesting that an action be performed on a piece of data). In the
latter case the action does not need to be performed by an Activity within the calling application.

You can also use Intents to broadcast messages across the system. Applications can register
Broadcast Receivers to listen for, and react to, these Broadcast Intents. This enables you to create
event-driven applications based on internal, system, or third-party application events.

Android broadcasts Intents to announce system events, such as changes in Internet connectivity or
battery charge levels. The native Android applications, such as the Phone Dialer and SMS Manager,
simply register components that listen for specifi c Broadcast Intents — such as “incoming phone
call” or “SMS message received” — and react accordingly. As a result, you can replace many of the
native applications by registering Broadcast Receivers that listen for the same Intents.

Using Intents, rather than explicitly loading classes, to propagate actions — even within the same
application — is a fundamental Android design principle. It encourages the decoupling of compo-
nents to allow the seamless replacement of application elements. It also provides the basis of a simple
model for extending an application’s functionality.

Using Intents to Launch Activities

The most common use of Intents is to bind your application components and communicate between
them. Intents are used to start Activities, allowing you to create a workfl ow of different screens.

The instructions in this section refer to starting new Activities, but the same
details also apply to Services. Details on starting (and creating) Services are
available in Chapter 9, “Working in the Background.”

To create and display an Activity, call startActivity, passing in an Intent, as follows:

startActivity(myIntent);

The startActivity method fi nds and starts the single Activity that best matches your Intent.

c05.indd 166c05.indd 166 4/11/2012 10:01:57 AM4/11/2012 10:01:57 AM

Meier02275 c05 V2 - 03/19/2012 Page 167

Introducing Intents x 167

You can construct the Intent to explicitly specify the Activity class to open, or to include an action
that the target Activity must be able to perform. In the latter case, the run time will choose an
Activity dynamically using a process known as intent resolution.

When you use startActivity, your application won’t receive any notifi cation when the newly
launched Activity fi nishes. To track feedback from a sub-Activity, use startActivityForResult, as
described later in this chapter.

Explicitly Starting New Activities

You learned in Chapter 3, “Creating Applications and Activities,” that applications consist of a
number of interrelated screens — Activities — that must be included in the application manifest. To
transition between them, you will often need to explicitly specify which Activity to open.

To select a specifi c Activity class to start, create a new Intent, specifying the current Activity’s
Context and the class of the Activity to launch. Pass this Intent into startActivity, as shown in
Listing 5-1.

LISTING 5-1: Explicitly starting an Activity

Intent intent = new Intent(MyActivity.this, MyOtherActivity.class);
startActivity(intent);

code snippet PA4AD_Ch05_Intents/src/MyActivity.java

After startActivity is called, the new Activity (in this example, MyOtherActivity) will be cre-
ated, started, and resumed — moving to the top of the Activity stack.

Calling finish on the new Activity, or pressing the hardware back button, closes it and removes it
from the stack. Alternatively, you can continue to navigate to other Activities by calling startAc-
tivity. Note that each time you call startActivity, a new Activity will be added to the stack;
pressing back (or calling finish) will remove each of these Activities, in turn.

Implicit Intents and Late Runtime Binding

An implicit Intent is a mechanism that lets anonymous application components service action
requests. That means you can ask the system to start an Activity to perform an action without
knowing which application, or Activity, will be started.

For example, to let users make calls from your application, you could implement a new dialer, or
you could use an implicit Intent that requests the action (dialing) be performed on a phone number
(represented as a URI).

if (somethingWeird && itDontLookGood) {
 Intent intent =
 new Intent(Intent.ACTION_DIAL, Uri.parse(“tel:555-2368”));

 startActivity(intent);
}

c05.indd 167c05.indd 167 4/11/2012 10:01:57 AM4/11/2012 10:01:57 AM

Meier02275 c05 V2 - 03/19/2012 Page 168

168 x CHAPTER 5 INTENTS AND BROADCAST RECEIVERS

Android resolves this Intent and starts an Activity that provides the dial action on a telephone num-
ber — in this case, typically the Phone Dialer.

When constructing a new implicit Intent, you specify an action to perform and, optionally, supply
the URI of the data on which to perform that action. You can send additional data to the target
Activity by adding extras to the Intent.

Extras are a mechanism used to attach primitive values to an Intent. You can use the overloaded
putExtra method on any Intent to attach a new name / value pair (NVP) that can then be retrieved
using the corresponding get[type]Extra method in the started Activity.

The extras are stored within the Intent as a Bundle object that can be retrieved using the getExtras
method.

When you use an implicit Intent to start an Activity, Android will — at run time — resolve it into
the Activity class best suited to performing the required action on the type of data specifi ed. This
means you can create projects that use functionality from other applications without knowing
exactly which application you’re borrowing functionality from ahead of time.

In circumstances where multiple Activities can potentially perform a given action, the user is
presented with a choice. The process of intent resolution is determined through an analysis of the
registered Broadcast Receivers, which are described in detail later in this chapter.

Various native applications provide Activities capable of performing actions against specifi c data.
Third-party applications, including your own, can be registered to support new actions or to pro-
vide an alternative provider of native actions. You’ll be introduced to some of the native actions, as
well as how to register your own Activities to support them, later in this chapter.

Determining If an Intent Will Resolve

Incorporating the Activities and Services of a third-party application into your own is incredibly
powerful; however, there is no guarantee that any particular application will be installed on a
device, or that any application capable of handling your request is available.

As a result, it’s good practice to determine if your call will resolve to an Activity before calling
startActivity.

You can query the Package Manager to determine which, if any, Activity will be launched to
service a specifi c Intent by calling resolveActivity on your Intent object, passing in the Package
Manager, as shown in Listing 5-2.

LISTING 5-2: Implicitly starting an Activity

if (somethingWeird && itDontLookGood) {
 // Create the impliciy Intent to use to start a new Activity.
 Intent intent =
 new Intent(Intent.ACTION_DIAL, Uri.parse(“tel:555-2368”));

 // Check if an Activity exists to perform this action.
 PackageManager pm = getPackageManager();

c05.indd 168c05.indd 168 4/11/2012 10:01:57 AM4/11/2012 10:01:57 AM

Meier02275 c05 V2 - 03/19/2012 Page 169

Introducing Intents x 169

 ComponentName cn = intent.resolveActivity(pm);
 if (cn == null) {
 // If there is no Activity available to perform the action
 // Check to see if the Google Play Store is available.
 Uri marketUri =
 Uri.parse(“market://search?q=pname:com.myapp.packagename”);
 Intent marketIntent = new
 Intent(Intent.ACTION_VIEW).setData(marketUri);

 // If the Google Play Store is available, use it to download an application
 // capable of performing the required action. Otherwise log an
 // error.
 if (marketIntent.resolveActivity(pm) != null)
 startActivity(marketIntent);
 else
 Log.d(TAG, “Market client not available.”);
 }
 else
 startActivity(intent);
}

code snippet PA4AD_Ch05_Intents/src/MyActivity.java

If no Activity is found, you can choose to either disable the related functionality (and associated user
interface controls) or direct users to the appropriate application in the Google Play Store. Note that
Google Play is not available on all devices, nor the emulator, so it’s good practice to check for that
as well.

Returning Results from Activities

An Activity started via startActivity is independent of its parent and will not provide any feed-
back when it closes.

Where feedback is required, you can start an Activity as a sub-Activity that can pass results back
to its parent. Sub-Activities are actually just Activities opened in a different way. As such, you must
register them in the application manifest in the same way as any other Activity. Any manifest-regis-
tered Activity can be opened as a sub-Activity, including those provided by the system or third-party
applications.

When a sub-Activity is fi nished, it triggers the onActivityResult event handler within the calling
Activity. Sub-Activities are particularly useful in situations in which one Activity is providing data
input for another, such as a user selecting an item from a list.

Launching Sub-Activities

The startActivityForResult method works much like startActivity, but with one important
difference. In addition to passing in the explicit or implicit Intent used to determine which Activity
to launch, you also pass in a request code. This value will later be used to uniquely identify the sub-
Activity that has returned a result.

Listing 5-3 shows the skeleton code for launching a sub-Activity explicitly.

c05.indd 169c05.indd 169 4/11/2012 10:01:58 AM4/11/2012 10:01:58 AM

market://search?q=pname:com.myapp.packagename%E2%80%9D%00%00

Meier02275 c05 V2 - 03/19/2012 Page 170

170 x CHAPTER 5 INTENTS AND BROADCAST RECEIVERS

LISTING 5-3: Explicitly starting a sub-Activity for a result

private static final int SHOW_SUBACTIVITY = 1;

private void startSubActivity() {
 Intent intent = new Intent(this, MyOtherActivity.class);
 startActivityForResult(intent, SHOW_SUBACTIVITY);
}

code snippet PA4AD_Ch05_Intents/src/MyActivity.java

Like regular Activities, you can start sub-Activities implicitly or explicitly. Listing 5-4 uses an
implicit Intent to launch a new sub-Activity to pick a contact.

LISTING 5-4: Implicitly starting a sub-Activity for a result

private static final int PICK_CONTACT_SUBACTIVITY = 2;

private void startSubActivityImplicitly() {
 Uri uri = Uri.parse(“content://contacts/people”);
 Intent intent = new Intent(Intent.ACTION_PICK, uri);
 startActivityForResult(intent, PICK_CONTACT_SUBACTIVITY);
}

code snippet PA4AD_Ch05_Intents/src/MyActivity.java

Returning Results

When your sub-Activity is ready to return, call setResult before finish to return a result to the
calling Activity.

The setResult method takes two parameters: the result code and the result data itself, represented
as an Intent.

The result code is the “result” of running the sub-Activity — generally, either Activity.
RESULT_OK or Activity.RESULT_CANCELED. In some circumstances, where OK and
cancelled don’t suffi ciently or accurately describe the available return results, you’ll want
to use your own response codes to handle application-specifi c choices; setResult supports
any integer value.

The Intent returned as a result often includes a data URI that points to a piece of content (such as
the selected contact, phone number, or media fi le) and a collection of extras used to return
additional information.

Listing 5-5, taken from a sub-Activity’s onCreate method, shows how an OK and Cancel button
might return different results to the calling Activity.

c05.indd 170c05.indd 170 4/11/2012 10:01:58 AM4/11/2012 10:01:58 AM

Meier02275 c05 V2 - 03/19/2012 Page 171

Introducing Intents x 171

LISTING 5-5: Returning a result from a sub-Activity

Button okButton = (Button) findViewById(R.id.ok_button);
okButton.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 long selected_horse_id = listView.getSelectedItemId();

 Uri selectedHorse = Uri.parse(“content://horses/” +
 selected_horse_id);
 Intent result = new Intent(Intent.ACTION_PICK, selectedHorse);

 setResult(RESULT_OK, result);
 finish();
 }
});

Button cancelButton = (Button) findViewById(R.id.cancel_button);
cancelButton.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 setResult(RESULT_CANCELED);
 finish();
 }
});

code snippet PA4AD_Ch05_Intents/src/SelectHorseActivity.java

If the Activity is closed by the user pressing the hardware back key, or finish is called without a prior
call to setResult, the result code will be set to RESULT_CANCELED and the result Intent set to null.

Handling Sub-Activity Results

When a sub-Activity closes, the onActivityResult event handler is fi red within the calling Activity.
Override this method to handle the results returned by sub-Activities.

The onActivityResult handler receives a number of parameters:

‰ Request code — The request code that was used to launch the returning sub-Activity.

 ‰ Result code — The result code set by the sub-Activity to indicate its result. It can be any inte-
ger value, but typically will be either Activity.RESULT_OK or Activity.RESULT_CANCELED.

‰ Data — An Intent used to package returned data. Depending on the purpose of the
sub-Activity, it may include a URI that represents a selected piece of content. The sub-Activ-
ity can also return information as an extra within the returned data Intent.

If the sub-Activity closes abnormally or doesn’t specify a result code before it
closes, the result code is Activity.RESULT_CANCELED.

c05.indd 171c05.indd 171 4/11/2012 10:01:58 AM4/11/2012 10:01:58 AM

Meier02275 c05 V2 - 03/19/2012 Page 172

172 x CHAPTER 5 INTENTS AND BROADCAST RECEIVERS

Listing 5-6 shows the skeleton code for implementing the onActivityResult event handler within
an Activity.

LISTING 5-6: Implementing an On Activity Result handler

private static final int SELECT_HORSE = 1;
private static final int SELECT_GUN = 2;

Uri selectedHorse = null;
Uri selectedGun = null;

@Override
public void onActivityResult(int requestCode,
 int resultCode,
 Intent data) {

 super.onActivityResult(requestCode, resultCode, data);

 switch(requestCode) {
 case (SELECT_HORSE):
 if (resultCode == Activity.RESULT_OK)
 selectedHorse = data.getData();
 break;

 case (SELECT_GUN):
 if (resultCode == Activity.RESULT_OK)
 selectedGun = data.getData();
 break;

 default: break;
 }
}

code snippet PA4AD_Ch05_Intents/src/MyActivity.java

Native Android Actions

Native Android applications also use Intents to launch Activities and sub-Activities.

The following (noncomprehensive) list shows some of the native actions available as static string
constants in the Intent class. When creating implicit Intents, you can use these actions, known as
Activity Intents, to start Activities and sub-Activities within your own applications.

Later you will be introduced to Intent Filters and how to register your own
Activities as handlers for these actions.

c05.indd 172c05.indd 172 4/11/2012 10:01:59 AM4/11/2012 10:01:59 AM

Meier02275 c05 V2 - 03/19/2012 Page 173

Introducing Intents x 173

 ‰ ACTION_ALL_APPS — Opens an Activity that lists all the installed applications. Typically, this
is handled by the launcher.

 ‰ ACTION_ANSWER — Opens an Activity that handles incoming calls. This is normally handled
by the native in-call screen.

 ‰ ACTION_BUG_REPORT — Displays an Activity that can report a bug. This is normally handled
by the native bug-reporting mechanism.

 ‰ ACTION_CALL — Brings up a phone dialer and immediately initiates a call using the num-
ber supplied in the Intent’s data URI. This action should be used only for Activities that
replace the native dialer application. In most situations it is considered better form to use
ACTION_DIAL.

 ‰ ACTION_CALL_BUTTON — Triggered when the user presses a hardware “call button.” This
typically initiates the dialer Activity.

 ‰ ACTION_DELETE — Starts an Activity that lets you delete the data specifi ed at the Intent’s data
URI.

 ‰ ACTION_DIAL — Brings up a dialer application with the number to dial prepopulated from
the Intent’s data URI. By default, this is handled by the native Android phone dialer. The
dialer can normalize most number schemas — for example, tel:555-1234 and tel:(212)
555 1212 are both valid numbers.

 ‰ ACTION_EDIT — Requests an Activity that can edit the data at the Intent’s data URI.

 ‰ ACTION_INSERT — Opens an Activity capable of inserting new items into the Cursor specifi ed
in the Intent’s data URI. When called as a sub-Activity, it should return a URI to the newly
inserted item.

 ‰ ACTION_PICK — Launches a sub-Activity that lets you pick an item from the Content
Provider specifi ed by the Intent’s data URI. When closed, it should return a URI to the item
that was picked. The Activity launched depends on the data being picked — for example,
passing content://contacts/people will invoke the native contacts list.

 ‰ ACTION_SEARCH — Typically used to launch a specifi c search Activity. When it’s fi red with-
out a specifi c Activity, the user will be prompted to select from all applications that support
search. Supply the search term as a string in the Intent’s extras using SearchManager.QUERY
as the key.

 ‰ ACTION_SEARCH_LONG_PRESS — Enables you to intercept long presses on the hardware
search key. This is typically handled by the system to provide a shortcut to a voice search.

 ‰ ACTION_SENDTO — Launches an Activity to send data to the contact specifi ed by the Intent’s
data URI.

 ‰ ACTION_SEND — Launches an Activity that sends the data specifi ed in the Intent. The recipi-
ent contact needs to be selected by the resolved Activity. Use setType to set the MIME
type of the transmitted data. The data itself should be stored as an extra by means of the

c05.indd 173c05.indd 173 4/11/2012 10:01:59 AM4/11/2012 10:01:59 AM

Meier02275 c05 V2 - 03/19/2012 Page 174

174 x CHAPTER 5 INTENTS AND BROADCAST RECEIVERS

key EXTRA_TEXT or EXTRA_STREAM, depending on the type. In the case of email, the native
Android applications will also accept extras via the EXTRA_EMAIL, EXTRA_CC, EXTRA_BCC,
and EXTRA_SUBJECT keys. Use the ACTION_SEND action only to send data to a remote recipi-
ent (not to another application on the device).

 ‰ ACTION_VIEW — This is the most common generic action. View asks that the data supplied
in the Intent’s data URI be viewed in the most reasonable manner. Different applications
will handle view requests depending on the URI schema of the data supplied. Natively http:
addresses will open in the browser; tel: addresses will open the dialer to call the number;
geo: addresses will be displayed in the Google Maps application; and contact content will be
displayed in the Contact Manager.

 ‰ ACTION_WEB_SEARCH — Opens the Browser to perform a web search based on the query sup-
plied using the SearchManager.QUERY key.

In addition to these Activity actions, Android includes a large number of broad-
cast actions to create Intents that are broadcast to announce system events.
These broadcast actions are described later in this chapter.

Introducing Linkify

Linkify is a helper class that creates hyperlinks within Text View (and Text View-derived) classes
through RegEx pattern matching.

Text that matches a specifi ed RegEx pattern will be converted into a clickable hyperlink that implic-
itly fi res startActivity(new Intent(Intent.ACTION_VIEW, uri)), using the matched text as the
target URI.

You can specify any string pattern to be treated as a clickable link; for convenience, the Linkify
class provides presets for common content types.

Native Linkify Link Types

The Linkify class has presets that can detect and linkify web URLs, email addresses, and phone
numbers. To apply a preset, use the static Linkify.addLinks method, passing in a View to Linkify
and a bitmask of one or more of the following self-describing Linkify class constants: WEB_URLS,
EMAIL_ADDRESSES, PHONE_NUMBERS, and ALL.

TextView textView = (TextView)findViewById(R.id.myTextView);
Linkify.addLinks(textView, Linkify.WEB_URLS|Linkify.EMAIL_ADDRESSES);

Most Android devices have at least two email applications: Gmail and Email. In
situations in which multiple Activities are resolved as possible action consumers,
users are asked to select their preference. In the case of the emulator, you must
have the email client confi gured before it will respond to Linkifi ed email addresses.

c05.indd 174c05.indd 174 4/11/2012 10:01:59 AM4/11/2012 10:01:59 AM

Meier02275 c05 V2 - 03/19/2012 Page 175

Introducing Intents x 175

You can also linkify Views directly within a layout using the android:autoLink attribute. It sup-
ports one or more of the following values: none, web, email, phone, and all.

<TextView
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:text=”@string/linkify_me”
 android:autoLink=”phone|email”
/>

Creating Custom Link Strings

To linkify your own data, you need to defi ne your own linkify strings. Do this by creating a new
RegEx pattern that matches the text you want to display as hyperlinks.

As with the native types, you can linkify the target Text View by calling Linkify.addLinks;
however, rather than passing in one of the preset constants, pass in your RegEx pattern. You can
also pass in a prefi x that will be prepended to the target URI when a link is clicked.

Listing 5-7 shows a View being linkifi ed to support earthquake data provided by an Android
Content Provider (which you will create in Chapter 8, “Databases and Content Providers”). Note
that rather than include the entire schema, the specifi ed RegEx matches any text that starts with
“quake” and is followed by a number, with optional whitespace. The full schema is then prepended
to the URI before the Intent is fi red.

LISTING 5-7: Creating custom link strings in Linkify

// Define the base URI.
String baseUri = “content://com.paad.earthquake/earthquakes/”;

// Contruct an Intent to test if there is an Activity capable of
// viewing the content you are Linkifying. Use the Package Manager
// to perform the test.
PackageManager pm = getPackageManager();
Intent testIntent = new Intent(Intent.ACTION_VIEW, Uri.parse(baseUri));
boolean activityExists = testIntent.resolveActivity(pm) != null;

// If there is an Activity capable of viewing the content
// Linkify the text.
if (activityExists) {
 int flags = Pattern.CASE_INSENSITIVE;
 Pattern p = Pattern.compile(“\\bquake[\\s]?[0-9]+\\b”, flags);
 Linkify.addLinks(myTextView, p, baseUri);
}

code snippet PA4AD_Ch05_Linkify/src/MyActivity.java

Note that in this example, including whitespace between “quake” and a number will return a
match, but the resulting URI won’t be valid. You can implement and specify one or both of a
TransformFilter and MatchFilter interface to resolve this problem. These interfaces, defi ned

c05.indd 175c05.indd 175 4/11/2012 10:02:00 AM4/11/2012 10:02:00 AM

Meier02275 c05 V2 - 03/19/2012 Page 176

176 x CHAPTER 5 INTENTS AND BROADCAST RECEIVERS

in detail in the following section, offer additional control over the target URI structure and the defi -
nition of matching strings, and are used as in the following skeleton code:

Linkify.addLinks(myTextView, p, baseUri,
 new MyMatchFilter(), new MyTransformFilter());

Using the Match Filter

To add additional conditions to RegEx pattern matches, implement the acceptMatch method in a
Match Filter. When a potential match is found, acceptMatch is triggered, with the match start and
end index (along with the full text being searched) passed in as parameters.

Listing 5-8 shows a MatchFilter implementation that cancels any match immediately preceded by
an exclamation mark.

LISTING 5-8: Using a Linkify Match Filter

class MyMatchFilter implements MatchFilter {
 public boolean acceptMatch(CharSequence s, int start, int end) {
 return (start == 0 || s.charAt(start-1) != ‘!’);
 }
}

code snippet PA4AD_Ch05_Linkify/src/MyActivity.java

Using the Transform Filter

The Transform Filter lets you modify the implicit URI generated by matching link text. Decoupling
the link text from the target URI gives you more freedom in how you display data strings to your
users.

To use the Transform Filter, implement the transformUrl method in your Transform Filter. When
Linkify fi nds a successful match, it calls transformUrl, passing in the RegEx pattern used and the
matched text string (before the base URI is prepended). You can modify the matched string and
return it such that it can be appended to the base string as the data for a View Intent.

As shown in Listing 5-9, the TransformFilter implementation transforms the matched text into a
lowercase URI, having also removed any whitespace characters.

LISTING 5-9: Using a Linkify Transform Filter

class MyTransformFilter implements TransformFilter {
 public String transformUrl(Matcher match, String url) {
 return url.toLowerCase().replace(“ “, “”);
 }
}

code snippet PA4AD_Ch05_Linkify/src/MyActivity.java

c05.indd 176c05.indd 176 4/11/2012 10:02:01 AM4/11/2012 10:02:01 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Meier02275 c05 V2 - 03/19/2012 Page 177

Introducing Intents x 177

Using Intents to Broadcast Events

So far, you’ve looked at using Intents to start new application components, but you can also use
Intents to broadcast messages anonymously between components via the sendBroadcast method.

As a system-level message-passing mechanism, Intents are capable of sending structured messages
across process boundaries. As a result, you can implement Broadcast Receivers to listen for, and
respond to, these Broadcast Intents within your applications.

Broadcast Intents are used to notify applications of system or application events, extending the
event-driven programming model between applications.

Broadcasting Intents helps make your application more open; by broadcasting an event using an
Intent, you let yourself and third-party developers react to events without having to modify your
original application. Within your applications you can listen for Broadcast Intents to to react to
device state changes and third-party application events.

Android uses Broadcast Intents extensively to broadcast system events, such as changes in network
connectivity, docking state, and incoming calls.

Broadcasting Events with Intents

Within your application, construct the Intent you want to broadcast and call sendBroadcast to send it.

Set the action, data, and category of your Intent in a way that lets Broadcast Receivers accurately
determine their interest. In this scenario, the Intent action string is used to identify the event being
broadcast, so it should be a unique string that identifi es the event. By convention, action strings are
constructed using the same form as Java package names:

public static final String NEW_LIFEFORM_DETECTED =
 “com.paad.action.NEW_LIFEFORM”;

If you want to include data within the Intent, you can specify a URI using the Intent’s data prop-
erty. You can also include extras to add additional primitive values. Considered in terms of an event-
driven paradigm, the extras equate to optional parameters passed into an event handler.

Listing 5-10 shows the basic creation of a Broadcast Intent using the action defi ned previously, with
additional event information stored as extras.

LISTING 5-10: Broadcasting an Intent

Intent intent = new Intent(LifeformDetectedReceiver.NEW_LIFEFORM);
intent.putExtra(LifeformDetectedReceiver.EXTRA_LIFEFORM_NAME,
 detectedLifeform);
intent.putExtra(LifeformDetectedReceiver.EXTRA_LONGITUDE,
 currentLongitude);
intent.putExtra(LifeformDetectedReceiver.EXTRA_LATITUDE,
 currentLatitude);

sendBroadcast(intent);

code snippet PA4AD_Ch05_BroadcastIntents/src/MyActivity.java

c05.indd 177c05.indd 177 4/11/2012 10:02:01 AM4/11/2012 10:02:01 AM

Meier02275 c05 V2 - 03/19/2012 Page 178

178 x CHAPTER 5 INTENTS AND BROADCAST RECEIVERS

Listening for Broadcasts with Broadcast Receivers

Broadcast Receivers (commonly referred to simply as Receivers) are used to listen for Broadcast
Intents. For a Receiver to receive broadcasts, it must be registered, either in code or within the appli-
cation manifest — the latter case is referred to as a manifest Receiver. In either case, use an Intent
Filter to specify which Intent actions and data your Receiver is listening for.

In the case of applications that include manifest Receivers, the applications don’t have to be run-
ning when the Intent is broadcast for those receivers to execute; they will be started automatically
when a matching Intent is broadcast. This is excellent for resource management, as it lets you create
event-driven applications that will still respond to broadcast events even after they’ve been closed or
killed.

To create a new Broadcast Receiver, extend the BroadcastReceiver class and override the onRe-
ceive event handler:

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;

public class MyBroadcastReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 //TODO: React to the Intent received.
 }
}

The onReceive method will be executed on the main application thread when a Broadcast Intent
is received that matches the Intent Filter used to register the Receiver. The onReceive handler must
complete within fi ve seconds; otherwise, the Force Close dialog will be displayed.

Typically, Broadcast Receivers will update content, launch Services, update Activity UI, or notify the
user using the Notifi cation Manager. The fi ve-second execution limit ensures that major processing
cannot, and should not, be done within the Broadcast Receiver itself.

Listing 5-11 shows how to implement a Broadcast Receiver that extracts the data and several extras
from the broadcast Intent and uses them to start a new Activity. In the following sections you will
learn how to register it in code or in your application manifest.

LISTING 5-11: Implementing a Broadcast Receiver

public class LifeformDetectedReceiver
 extends BroadcastReceiver {

 public final static String EXTRA_LIFEFORM_NAME
 = “EXTRA_LIFEFORM_NAME”;
 public final static String EXTRA_LATITUDE = “EXTRA_LATITUDE”;
 public final static String EXTRA_LONGITUDE = “EXTRA_LONGITUDE”;

 public static final String
 ACTION_BURN = “com.paad.alien.action.BURN_IT_WITH_FIRE”;

c05.indd 178c05.indd 178 4/11/2012 10:02:01 AM4/11/2012 10:02:01 AM

Meier02275 c05 V2 - 03/19/2012 Page 179

Introducing Intents x 179

 public static final String
 NEW_LIFEFORM = “com.paad.alien.action.NEW_LIFEFORM”;

 @Override
 public void onReceive(Context context, Intent intent) {
 // Get the lifeform details from the intent.
 Uri data = intent.getData();
 String type = intent.getStringExtra(EXTRA_LIFEFORM_NAME);
 double lat = intent.getDoubleExtra(EXTRA_LATITUDE, 0);
 double lng = intent.getDoubleExtra(EXTRA_LONGITUDE, 0);
 Location loc = new Location(“gps”);
 loc.setLatitude(lat);
 loc.setLongitude(lng);
 if (type.equals(“facehugger”)) {
 Intent startIntent = new Intent(ACTION_BURN, data);
 startIntent.putExtra(EXTRA_LATITUDE, lat);
 startIntent.putExtra(EXTRA_LONGITUDE, lng);

 context.startService(startIntent);
 }
 }
}

code snippet PA4AD_Ch05_BroadcastIntents/src/LifeformDetectedReceiver.java

Registering Broadcast Receivers in Code

Broadcast Receivers that affect the UI of a particular Activity are typically registered in code. A
Receiver registered programmatically will respond to Broadcast Intents only when the application
component it is registered within is running.

This is useful when the Receiver is being used to update UI elements in an Activity. In this case,
it’s good practice to register the Receiver within the onResume handler and unregister it during
onPause.

Listing 5-12 shows how to register and unregister a Broadcast Receiver in code using the
IntentFilter class.

LISTING 5-12: Registering and unregistering a Broadcast Receiver in code

private IntentFilter filter =
 new IntentFilter(LifeformDetectedReceiver.NEW_LIFEFORM);

private LifeformDetectedReceiver receiver =
 new LifeformDetectedReceiver();

@Override
public void onResume() {
 super.onResume();

 // Register the broadcast receiver.
continues

c05.indd 179c05.indd 179 4/11/2012 10:02:02 AM4/11/2012 10:02:02 AM

Meier02275 c05 V2 - 03/19/2012 Page 180

180 x CHAPTER 5 INTENTS AND BROADCAST RECEIVERS

 registerReceiver(receiver, filter);
}

@Override
public void onPause() {
 // Unregister the receiver
 unregisterReceiver(receiver);

 super.onPause();
}

code snippet PA4AD_Ch05_BroadcastIntents/src/MyActivity.java

Registering Broadcast Receivers in Your Application Manifest

To include a Broadcast Receiver in the application manifest, add a receiver tag within the appli-
cation node, specifying the class name of the Broadcast Receiver to register. The receiver node
needs to include an intent-filter tag that specifi es the action string being listened for.

<receiver android:name=”.LifeformDetectedReceiver”>
 <intent-filter>
 <action android:name=”com.paad.alien.action.NEW_LIFEFORM”/>
 </intent-filter>
</receiver>

Broadcast Receivers registered this way are always active and will receive Broadcast Intents even
when the application has been killed or hasn’t been started.

Broadcasting Ordered Intents

When the order in which the Broadcast Receivers receive the Intent is important — particularly
where you want to allow Receivers to affect the Broadcast Intent received by future Receivers — you
can use sendOrderedBroadcast, as follows:

String requiredPermission = “com.paad.MY_BROADCAST_PERMISSION”;
sendOrderedBroadcast(intent, requiredPermission);

Using this method, your Intent will be delivered to all registered Receivers that hold the required
permission (if one is specifi ed) in the order of their specifi ed priority. You can specify the priority of
a Broadcast Receiver using the android:priority attribute within its Intent Filter manifest node,
where higher values are considered higher priority.

<receiver
 android:name=”.MyOrderedReceiver”
 android:permission=”com.paad.MY_BROADCAST_PERMISSION”>
 <intent-filter
 android:priority=”100”>
 <action android:name=”com.paad.action.ORDERED_BROADCAST” />
 </intent-filter>
</receiver>

LISTING 13-4 (continued)

c05.indd 180c05.indd 180 4/11/2012 10:02:02 AM4/11/2012 10:02:02 AM

Meier02275 c05 V2 - 03/19/2012 Page 181

Introducing Intents x 181

It’s good practice to send ordered broadcasts, and specify Receiver priorities, only for Receivers used
within your application that specifi cally need to impose a specifi c order of receipt.

One common use-case for sending ordered broadcasts is to broadcast Intents for which you want
to receive result data. Using the sendOrderedBroadcast method, you can specify a Broadcast
Receiver that will be placed at the end of the Receiver queue, ensuring that it will receive
the Broadcast Intent after it has been handled (and modifi ed) by the ordered set of registered
Broadcast Receivers.

In this case, it’s often useful to specify default values for the Intent result, data, and extras that may
be modifi ed by any of the Receivers that receive the broadcast before it is returned to the fi nal result
Receiver.

// Specify the default result, data, and extras.
// The may be modified by any of the Receivers who handle the broadcast
// before being received by the final Receiver.
int initialResult = Activity.RESULT_OK;
String initialData = null;
String initialExtras = null;

// A special Handler instance on which to receive the final result.
// Specify null to use the Context on which the Intent was broadcast.
Handler scheduler = null;

sendOrderedBroadcast(intent, requiredPermission, finalResultReceiver,
 scheduler, initialResult, initialData, initialExtras);

Broadcasting Sticky Intents

Sticky Intents are useful variations of Broadcast Intents that persist the values associated with
their last broadcast, returning them as an Intent when a new Receiver is registered to receive the
broadcast.

When you call registerReceiver, specifying an Intent Filter that matches a sticky Broadcast
Intent, the return value will be the last Intent broadcast, such as the battery-level changed
broadcast:

IntentFilter battery = new IntentFilter(Intent.ACTION_BATTERY_CHANGED);
Intent currentBatteryCharge = registerReceiver(null, battery);

As shown in the preceding snippet, it is not necessary to specify a Receiver to obtain the current
value of a sticky Intent. As a result, many of the system device state broadcasts (such as battery and
docking state) use sticky Intents to improve effi ciency. These are examined in more detail later in
this chapter.

To broadcast your own sticky Intents, your application must have the BROADCAST_STICKY uses-per-
mission before calling sendStickyBroadcast and passing in the relevant Intent:

sendStickyBroadcast(intent);

To remove a sticky Intent, call removeStickyBroadcast, passing in the sticky Intent to remove:

removeStickyBroadcast(intent);

c05.indd 181c05.indd 181 4/11/2012 10:02:02 AM4/11/2012 10:02:02 AM

Meier02275 c05 V2 - 03/19/2012 Page 182

182 x CHAPTER 5 INTENTS AND BROADCAST RECEIVERS

Introducing the Local Broadcast Manager

The Local Broadcast Manager was introduced to the Android Support Library to simplify the
process of registering for, and sending, Broadcast Intents between components within your
application.

Because of the reduced broadcast scope, using the Local Broadcast Manager is more effi cient than
sending a global broadcast. It also ensures that the Intent you broadcast cannot be received by any
components outside your application, ensuring that there is no risk of leaking private or sensitive
data, such as location information.

Similarly, other applications can’t transmit broadcasts to your Receivers, negating the risk of these
Receivers becoming vectors for security exploits.

To use the Local Broadcast Manager, you must fi rst include the Android Support Library in your
application, as described in Chapter 2.

Use the LocalBroadcastManager.getInstance method to return an instance of the Local
Broadcast Manager:

LocalBroadcastManager lbm = LocalBroadcastManager.getInstance(this);

To register a local broadcast Receiver, use the Local Broadcast Manager’s registerReceiver
method, much as you would register a global receiver, passing in a Broadcast Receiver and an
Intent Filter:

lbm.registerReceiver(new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 // TODO Handle the received local broadcast
 }
 }, new IntentFilter(LOCAL_ACTION));

Note that the Broadcast Receiver specifi ed can also be used to handle global Intent broadcasts.

To transmit a local Broadcast Intent, use the Local Broadcast Manager’s sendBroadcast method,
passing in the Intent to broadcast:

lbm.sendBroadcast(new Intent(LOCAL_ACTION));

The Local Broadcast Manager also includes a sendBroadcastSync method that operates
synchronously, blocking until each registered Receiver has been dispatched.

Introducing Pending Intents

The PendingIntent class provides a mechanism for creating Intents that can be fi red on your
application’s behalf by another application at a later time.

A Pending Intent is commonly used to package Intents that will be fi red in response to a future
event, such as a Widget or Notifi cation being clicked.

c05.indd 182c05.indd 182 4/11/2012 10:02:02 AM4/11/2012 10:02:02 AM

Meier02275 c05 V2 - 03/19/2012 Page 183

Creating Intent Filters and Broadcast Receivers x 183

When used, Pending Intents execute the packaged Intent with the same per-
missions and identity as if you had executed them yourself, within your own
application.

The PendingIntent class offers static methods to construct Pending Intents used to start an
Activity, to start a Service, or to broadcast an Intent:

int requestCode = 0;
int flags = 0;

// Start an Activity
Intent startActivityIntent = new Intent(this, MyOtherActivity.class);
PendingIntent.getActivity(this, requestCode,
 startActivityIntent, flags);

// Start a Service
Intent startServiceIntent = new Intent(this, MyService.class);
PendingIntent.getService(this, requestCode,
 startServiceIntent , flags);

// Broadcast an Intent
Intent broadcastIntent = new Intent(NEW_LIFEFORM_DETECTED);
PendingIntent.getBroadcast(this, requestCode,
 broadcastIntent, flags);

The PendingIntent class includes static constants that can be used to specify fl ags to update
or cancel any existing Pending Intent that matches your specifi ed action, as well as to specify if
this Intent is to be fi red only once. The various options will be examined in more detail when
Notifi cations and Widgets are introduced in Chapters 10 and 14, respectively.

CREATING INTENT FILTERS AND BROADCAST RECEIVERS

Having learned to use Intents to start Activities/Services and to broadcast events, it’s important to
understand how to create the Broadcast Receivers and Intent Filters that listen for Broadcast Intents
and allow your application to respond to them.

In the case of Activities and Services, an Intent is a request for an action to be performed on a set of
data, and an Intent Filter is a declaration that a particular application component is capable of per-
forming an action on a type of data.

Intent Filters are also used to specify the actions a Broadcast Receiver is interested in receiving.

Using Intent Filters to Service Implicit Intents

If an Intent is a request for an action to be performed on a set of data, how does Android know
which application (and component) to use to service that request? Using Intent Filters, application
components can declare the actions and data they support.

c05.indd 183c05.indd 183 4/11/2012 10:02:02 AM4/11/2012 10:02:02 AM

Meier02275 c05 V2 - 03/19/2012 Page 184

184 x CHAPTER 5 INTENTS AND BROADCAST RECEIVERS

To register an Activity or Service as a potential Intent handler, add an intent-filter tag to its
manifest node using the following tags (and associated attributes):

 ‰ action — Uses the android:name attribute to specify the name of the action being serviced.
Each Intent Filter must have at least one action tag. Actions should be unique strings that are
self-describing. Best practice is to use a naming system based on the Java package naming
conventions.

 ‰ category — Uses the android:name attribute to specify under which circumstances
the action should be serviced. Each Intent Filter tag can include multiple category tags.
You can specify your own categories or use the following standard values provided by
Android:

 ‰ ALTERNATIVE — This category specifi es that this action should be available
as an alternative to the default action performed on an item of this data type. For
example, where the default action for a contact is to view it, the alternative could be
to edit it.

 ‰ SELECTED_ALTERNATIVE — Similar to the ALTERNATIVE category, but whereas that
category will always resolve to a single action using the intent resolution described
next, SELECTED_ALTERNATIVE is used when a list of possibilities is required. As you’ll
see later in this chapter, one of the uses of Intent Filters is to help populate context
menus dynamically using actions.

 ‰ BROWSABLE — Specifi es an action available from within the browser. When an Intent
is fi red from within the browser, it will always include the browsable category.
If you want your application to respond to actions triggered within the browser
(e.g., intercepting links to a particular website), you must include the browsable
category.

 ‰ DEFAULT — Set this to make a component the default action for the data type
specifi ed in the Intent Filter. This is also necessary for Activities that are launched
using an explicit Intent.

 ‰ HOME — By setting an Intent Filter category as home without specifying an action,
you are presenting it as an alternative to the native home screen.

 ‰ LAUNCHER — Using this category makes an Activity appear in the application
launcher.

 ‰ data — The data tag enables you to specify which data types your component can act on;
you can include several data tags as appropriate. You can use any combination of the
following attributes to specify the data your component supports:

 ‰ android:host — Specifi es a valid hostname (e.g., google.com).

 ‰ android:mimetype — Specifi es the type of data your component is capable of han-
dling. For example, <type android:value=”vnd.android.cursor.dir/*”/>
would match any Android cursor.

 ‰ android:path — Specifi es valid path values for the URI (e.g., /transport/boats/).

c05.indd 184c05.indd 184 4/11/2012 10:02:03 AM4/11/2012 10:02:03 AM

Meier02275 c05 V2 - 03/19/2012 Page 185

Creating Intent Filters and Broadcast Receivers x 185

 ‰ android:port — Specifi es valid ports for the specifi ed host.

 ‰ android:scheme — Requires a particular scheme (e.g., content or http).

The following snippet shows an Intent Filter for an Activity that can perform the SHOW_DAMAGE
action as either a primary or an alternative action based on its mime type.

<intent-filter>
 <action
 android:name=”com.paad.earthquake.intent.action.SHOW_DAMAGE”
 />
 <category android:name=”android.intent.category.DEFAULT”/>
 <category
 android:name=”android.intent.category.SELECTED_ALTERNATIVE”/>
 <data android:mimeType=”vnd.earthquake.cursor.item/*”/>
</intent-filter>

You may have noticed that clicking a link to a YouTube video or Google Maps location on an
Android device prompts you to use YouTube or Google Maps, respectively, rather than the browser.
This is achieved by specifying the scheme, host, and path attributes within the data tag of an Intent
Filter, as shown in Listing 5-13. In this example, any link of the form that begins http://blog.
radioactiveyak.com can be serviced by this Activity.

LISTING 5-13: Registering an Activity as an Intent Receiver for viewing content from a specifi c

website using an Intent Filter

<activity android:name=”.MyBlogViewerActivity”>
 <intent-filter>
 <action android:name=”android.intent.action.VIEW” />
 <category android:name=”android.intent.category.DEFAULT” />
 <category android:name=”android.intent.category.BROWSABLE” />
 <data android:scheme=”http”
 android:host=”blog.radioactiveyak.com”/>
 </intent-filter>
</activity>

code snippet PA4AD_Ch05_Intents/AndroidManifest.xml

Note that you must include the browsable category in order for links clicked within the browser to
trigger this behavior.

How Android Resolves Intent Filters

The process of deciding which Activity to start when an implicit Intent is passed in to start
Activity is called intent resolution. The aim of intent resolution is to fi nd the best Intent Filter
match possible by means of the following process:

 1. Android puts together a list of all the Intent Filters available from the installed packages.

 2. Intent Filters that do not match the action or category associated with the Intent being
resolved are removed from the list.

c05.indd 185c05.indd 185 4/11/2012 10:02:03 AM4/11/2012 10:02:03 AM

http://blog

Meier02275 c05 V2 - 03/19/2012 Page 186

186 x CHAPTER 5 INTENTS AND BROADCAST RECEIVERS

 ‰ Action matches are made only if the Intent Filter includes the specifi ed action. An
Intent Filter will fail the action match check if none of its actions matches the one
specifi ed by the Intent.

 ‰ For category matching, Intent Filters must include all the categories defi ned in the
resolving Intent, but can include additional categories not included in the Intent. An
Intent Filter with no categories specifi ed matches only Intents with no categories.

 3. Each part of the Intent’s data URI is compared to the Intent Filter’s data tag. If the Intent
Filter specifi es a scheme, host/authority, path, or MIME type, these values are compared to
the Intent’s URI. Any mismatch will remove the Intent Filter from the list. Specifying no data
values in an Intent Filter will result in a match with all Intent data values.

 ‰ The MIME type is the data type of the data being matched. When matching data
types, you can use wildcards to match subtypes (e.g., earthquakes/*). If the Intent
Filter specifi es a data type, it must match the Intent; specifying no data types results
in a match with all of them.

 ‰ The scheme is the “protocol” part of the URI (e.g., http:, mailto:, or tel:).

 ‰ The hostname or data authority is the section of the URI between the scheme and the
path (e.g., developer.android.com). For a hostname to match, the Intent Filter’s
scheme must also pass.

 ‰ The data path is what comes after the authority (e.g., /training). A path can match
only if the scheme and hostname parts of the data tag also match.

 4. When you implicitly start an Activity, if more than one component is resolved from this
process, all the matching possibilities are offered to the user. For Broadcast Receivers, each
matching Receiver will receive the broadcast Intent.

Native Android application components are part of the intent-resolution process in exactly the same
way as third-party applications. They do not have a higher priority and can be completely replaced
with new Activities that declare Intent Filters that service the same actions.

Finding and Using Intents Received Within an Activity

When an application component is started through an implicit Intent, it needs to fi nd the action it’s
to perform and the data to perform it on.

To fi nd the Intent used to start the Activity, call getIntent, as shown in Listing 5-14.

LISTING 5-14: Finding the launch Intent in an Activity

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Intent intent = getIntent();

c05.indd 186c05.indd 186 4/11/2012 10:02:04 AM4/11/2012 10:02:04 AM

Meier02275 c05 V2 - 03/19/2012 Page 187

Creating Intent Filters and Broadcast Receivers x 187

 String action = intent.getAction();
 Uri data = intent.getData();
}

code snippet PA4AD_Ch05_Intents/src/MyOtherActivity.java

Use the getData and getAction methods to fi nd the data and action, respectively, associated with
the Intent. Use the type-safe get<type>Extra methods to extract additional information stored in
its extras Bundle.

The getIntent method will always return the initial Intent used to create the Activity. In some
circumstances your Activity may continue to receive Intents after it has been launched. You can use
widgets and Notifi cations to provide shortcuts to displaying data within your Activity that may still
be running, though not visible.

Override the onNewIntent handler within your Activity to receive and handle new Intents after the
Activity has been created.

@Override
public void onNewIntent(Intent newIntent) {
 // TODO React to the new Intent
 super.onNewIntent(newIntent);
}

Passing on Responsibility

To pass responsibility for action handling to the next best Activity, use
startNextMatchingActivity.

Intent intent = getIntent();
if (isDuringBreak)
 startNextMatchingActivity(intent);

This lets you add additional conditions to your components that restrict their use beyond the ability
of the Intent Filter-based intent-resolution process.

Selecting a Contact Example

In this example you’ll create a new Activity that services ACTION_PICK for contact data. It displays
each of the contacts in the contacts database and lets the user select one, before closing and return-
ing the selected contact’s URI to the calling Activity.

This example is somewhat contrived. Android already supplies an Intent Filter
for picking a contact from a list that can be invoked by means of the content:
//contacts/people/ URI in an implicit Intent. The purpose of this exercise is
to demonstrate the form, even if this particular implementation isn’t particularly
useful.

c05.indd 187c05.indd 187 4/11/2012 10:02:04 AM4/11/2012 10:02:04 AM

Meier02275 c05 V2 - 03/19/2012 Page 188

188 x CHAPTER 5 INTENTS AND BROADCAST RECEIVERS

1. Create a new ContactPicker project that includes a ContactPicker Activity:

package com.paad.contactpicker;

import android.app.Activity;
import android.content.Intent;
import android.database.Cursor;
import android.net.Uri;
import android.os.Bundle;
import android.provider.ContactsContract.Contacts;
import android.view.View;
import android.widget.AdapterView;
import android.widget.ListView;
import android.widget.SimpleCursorAdapter;

public class ContactPicker extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
}

2. Modify the main.xml layout resource to include a single ListView control. This control will
be used to display the contacts.

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”>
 <ListView android:id=”@+id/contactListView”
 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 />
</LinearLayout>

3. Create a new listitemlayout.xml layout resource that includes a single TextView control.
This control will be used to display each contact in the List View.

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 >
 <TextView
 android:id=”@+id/itemTextView”
 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 android:padding=”10dp”
 android:textSize=”16dp”
 android:textColor=”#FFF”
 />
</LinearLayout>

c05.indd 188c05.indd 188 4/11/2012 10:02:05 AM4/11/2012 10:02:05 AM

http://schemas.android.com/apk/res/android%E2%80%9D
http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c05 V2 - 03/19/2012 Page 189

Creating Intent Filters and Broadcast Receivers x 189

4. Return to the ContactPicker Activity. Override the onCreate method.

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

4.1 Create a new Cursor to retrieve the people stored in the contact list, and bind it to the
List View using a SimpleCursorArrayAdapter. Note that in this example the query is
executed on the main UI thread. A better approach would be to use a Cursor Loader,
as shown in Chapter 8.

 final Cursor c = getContentResolver().query(
 ContactsContract.Contacts.CONTENT_URI, null, null, null, null);

 String[] from = new String[] { Contacts.DISPLAY_NAME_PRIMARY };
 int[] to = new int[] { R.id.itemTextView };

 SimpleCursorAdapter adapter = new SimpleCursorAdapter(this,
 R.layout.listitemlayout,
 c,
 from,
 to);
 ListView lv = (ListView)findViewById(R.id.contactListView);
 lv.setAdapter(adapter);

4.2 Add an onItemClickListener to the List View. Selecting a contact from the list
should return a path to the item to the calling Activity.

 lv.setOnItemClickListener(new ListView.OnItemClickListener() {
 public void onItemClick(AdapterView<?> parent, View view, int pos,
 long id) {
 // Move the cursor to the selected item
 c.moveToPosition(pos);
 // Extract the row id.
 int rowId = c.getInt(c.getColumnIndexOrThrow(“_id”));
 // Construct the result URI.
 Uri outURI =
 ContentUris.withAppendedId(ContactsContract.Contacts.CONTENT_URI, rowId);
 Intent outData = new Intent();
 outData.setData(outURI);
 setResult(Activity.RESULT_OK, outData);
 finish();
 }
 });

c. Close off the onCreate method:

}

5. Modify the application manifest and replace the intent-filter tag of the Activity to add
support for the ACTION_PICK action on contact data:

<?xml version=”1.0” encoding=”utf-8”?>
<manifest xmlns:android=”http://schemas.android.com/apk/res/android”
 package=”com.paad.contactpicker”>

c05.indd 189c05.indd 189 4/11/2012 10:02:05 AM4/11/2012 10:02:05 AM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c05 V2 - 03/19/2012 Page 190

190 x CHAPTER 5 INTENTS AND BROADCAST RECEIVERS

 <application android:icon=”@drawable/ic_launcher”>
 <activity android:name=”.ContactPicker” android:label=”@string/app_name”>
 <intent-filter>
 <action android:name=”android.intent.action.PICK”></action>
 <category android:name=”android.intent.category.DEFAULT”></category>
 <data android:path=”contacts” android:scheme=”content”></data>
 </intent-filter>
 </activity>
 </application>
</manifest>

6. This completes the sub-Activity. To test it, create a new test harness ContactPickerTester
Activity. Create a new layout resource — contactpickertester.xml — that includes a
TextView to display the selected contact and a Button to start the sub-Activity:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 >
 <TextView
 android:id=”@+id/selected_contact_textview”
 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 />
 <Button
 android:id=”@+id/pick_contact_button”
 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 android:text=”Pick Contact”
 />
</LinearLayout>

7. Override the onCreate method of the ContactPickerTester to add a click listener to the
Button so that it implicitly starts a new sub-Activity by specifying the ACTION_PICK and the
contact database URI (content://contacts/):

package com.paad.contactpicker;

import android.app.Activity;
import android.content.Intent;
import android.database.Cursor;
import android.net.Uri;
import android.os.Bundle;
import android.provider.ContactsContract;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.TextView;

public class ContactPickerTester extends Activity {

 public static final int PICK_CONTACT = 1;

c05.indd 190c05.indd 190 4/11/2012 10:02:05 AM4/11/2012 10:02:05 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c05 V2 - 03/19/2012 Page 191

Creating Intent Filters and Broadcast Receivers x 191

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.contactpickertester);

 Button button = (Button)findViewById(R.id.pick_contact_button);

 button.setOnClickListener(new OnClickListener() {
 @Override
 public void onClick(View _view) {
 Intent intent = new Intent(Intent.ACTION_PICK,
 Uri.parse(“content://contacts/”));
 startActivityForResult(intent, PICK_CONTACT);
 }
 });
 }
}

8. When the sub-Activity returns, use the result to populate the Text View with the selected
contact’s name:

@Override
public void onActivityResult(int reqCode, int resCode, Intent data) {
 super.onActivityResult(reqCode, resCode, data);

 switch(reqCode) {
 case (PICK_CONTACT) : {
 if (resCode == Activity.RESULT_OK) {
 Uri contactData = data.getData();
 Cursor c = getContentResolver().query(contactData, null, null, null, null);
 c.moveToFirst();
 String name = c.getString(c.getColumnIndexOrThrow(
 ContactsContract.Contacts.DISPLAY_NAME_PRIMARY));
 c.close();
 TextView tv = (TextView)findViewById(R.id.selected_contact_textview);
 tv.setText(name);
 }
 break;
 }
 default: break;
 }
}

9. With your test harness complete, simply add it to your application manifest. You’ll also need
to add a READ_CONTACTS permission within a uses-permission tag to allow the application
to access the contacts database.

<?xml version=”1.0” encoding=”utf-8”?>
<manifest xmlns:android=”http://schemas.android.com/apk/res/android”
 package=“com.paad.contactpicker“>
 <uses-permission android:name=”android.permission.READ_CONTACTS”/>
 <application android:icon=”@drawable/ic_launcher”>
 <activity android:name=”.ContactPicker” android:label=”@string/app_name”>
 <intent-filter>

c05.indd 191c05.indd 191 4/11/2012 10:02:05 AM4/11/2012 10:02:05 AM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c05 V2 - 03/19/2012 Page 192

192 x CHAPTER 5 INTENTS AND BROADCAST RECEIVERS

 <action android:name=”android.intent.action.PICK”></action>
 <category android:name=”android.intent.category.DEFAULT”></category>
 <data android:path=”contacts” android:scheme=”content”></data>
 </intent-filter>
 </activity>
 <activity android:name=”.ContactPickerTester”
 android:label=”Contact Picker Test”>
 <intent-filter>
 <action android:name=”android.intent.action.MAIN” />
 <category android:name=”android.intent.category.LAUNCHER” />
 </intent-filter>
 </activity>
 </application>

</manifest>

All code snippets in this example are part of the Chapter 5 Contact Picker
project, available for download at Wrox.com.

When your Activity is running, press the “pick contact” button. The contact picker Activity should
appear, as shown in Figure 5-1.

FIGURE 5-1

c05.indd 192c05.indd 192 4/11/2012 10:02:05 AM4/11/2012 10:02:05 AM

Meier02275 c05 V2 - 03/19/2012 Page 193

Creating Intent Filters and Broadcast Receivers x 193

After you select a contact, the parent Activity should return to the foreground with the selected con-
tact name displayed (see Figure 5-2).

FIGURE 5-2

Using Intent Filters for Plug-Ins and Extensibility

Having used Intent Filters to declare the actions your Activities can perform on different types of
data, it stands to reason that applications can also query to fi nd which actions are available to be
performed on a particular piece of data.

Android provides a plug-in model that lets your applications take advantage of functionality, pro-
vided anonymously from your own or third-party application components you haven’t yet conceived
of, without your having to modify or recompile your projects.

Supplying Anonymous Actions to Applications

To use this mechanism to make your Activity’s actions available anonymously for existing applica-
tions, publish them using intent-filter tags within their manifest nodes, as described earlier.

The Intent Filter describes the action it performs and the data upon which it can be performed.
The latter will be used during the intent-resolution process to determine when this action should be
available. The category tag must be either ALTERNATIVE or SELECTED_ALTERNATIVE, or both. The
android:label attribute should be a human-readable label that describes the action.

Listing 5-15 shows an example of an Intent Filter used to advertise an Activity’s capability to nuke
Moon bases from orbit.

LISTING 5-15: Advertising supported Activity actions

<activity android:name=”.NostromoController”>
 <intent-filter
 android:label=”@string/Nuke_From_Orbit”>
 <action android:name=”com.pad.nostromo.NUKE_FROM_ORBIT”/>
 <data android:mimeType=”vnd.moonbase.cursor.item/*”/>
 <category android:name=”android.intent.category.ALTERNATIVE”/>
 <category
 android:name=”android.intent.category.SELECTED_ALTERNATIVE”
 />
 </intent-filter>
</activity>

code snippet PA4AD_Ch05_Intents/AndroidManifest.xml

c05.indd 193c05.indd 193 4/11/2012 10:02:06 AM4/11/2012 10:02:06 AM

Meier02275 c05 V2 - 03/19/2012 Page 194

194 x CHAPTER 5 INTENTS AND BROADCAST RECEIVERS

Discovering New Actions from Third-Party Intent Receivers

Using the Package Manager, you can create an Intent that specifi es a type of data and a category of
action, and have the system return a list of Activities capable of performing an action on that data.

The elegance of this concept is best explained by an example. If the data your Activity displays
is a list of places, you might include functionality to View them on a map or “Show directions
to” each. Jump a few years ahead and you’ve created an application that interfaces with your car,
allowing your phone to handle driving. Thanks to the runtime menu generation, when a new Intent
Filter — with a DRIVE_CAR action — is included within the new Activity’s node, Android will resolve
this new action and make it available to your earlier application.

This provides you with the ability to retrofi t functionality to your application when you create new
components capable of performing actions on a given type of data. Many of Android’s native appli-
cations use this functionality, enabling you to provide additional actions to native Activities.

The Intent you create will be used to resolve components with Intent Filters that supply actions for
the data you specify. The Intent is being used to fi nd actions, so don’t assign it one; it should specify
only the data to perform actions on. You should also specify the category of the action, either
CATEGORY_ALTERNATIVE or CATEGORY_SELECTED_ALTERNATIVE.

The skeleton code for creating an Intent for menu-action resolution is shown here:

Intent intent = new Intent();
intent.setData(MyProvider.CONTENT_URI);
intent.addCategory(Intent.CATEGORY_ALTERNATIVE);

Pass this Intent into the Package Manager method queryIntentActivityOptions, specifying any
options fl ags.

Listing 5-16 shows how to generate a list of actions to make available within your application.

LISTING 5-16: Generating a list of possible actions to be performed on specifi c data

PackageManager packageManager = getPackageManager();

// Create the intent used to resolve which actions
// should appear in the menu.
Intent intent = new Intent();
intent.setData(MoonBaseProvider.CONTENT_URI);
intent.addCategory(Intent.CATEGORY_SELECTED_ALTERNATIVE);

// Specify flags. In this case, to return only filters
// with the default category.
int flags = PackageManager.MATCH_DEFAULT_ONLY;

// Generate the list
List<ResolveInfo> actions;
actions = packageManager.queryIntentActivities(intent, flags);

// Extract the list of action names
ArrayList<String> labels = new ArrayList<String>();

c05.indd 194c05.indd 194 4/11/2012 10:02:06 AM4/11/2012 10:02:06 AM

Meier02275 c05 V2 - 03/19/2012 Page 195

Creating Intent Filters and Broadcast Receivers x 195

Resources r = getResources();
for (ResolveInfo action : actions)
 labels.add(r.getString(action.labelRes));

code snippet PA4AD_Ch05_Intents/src/MyActivity.java

Incorporating Anonymous Actions as Menu Items

The most common way to incorporate actions from third-party applications is to include them
within your Menu Items or Action Bar Actions.

The addIntentOptions method, available from the Menu class, lets you specify an Intent that
describes the data acted upon within your Activity, as described previously; however, rather than
simply returning a list of possible Receivers, a new Menu Item will be created for each, with the text
populated from the matching Intent Filters’ labels.

To add Menu Items to your Menus dynamically at run time, use the addIntentOptions method on
the Menu object in question: Pass in an Intent that specifi es the data for which you want to provide
actions. Generally, this will be handled within your Activities’ onCreateOptionsMenu or onCreate-
ContextMenu handlers.

As in the previous section, the Intent you create will be used to resolve components with Intent
Filters that supply actions for the data you specify. The Intent is being used to fi nd actions, so don’t
assign it one; it should specify only the data to perform actions on. You should also specify the cat-
egory of the action, either CATEGORY_ALTERNATIVE or CATEGORY_SELECTED_ALTERNATIVE.

The skeleton code for creating an Intent for menu-action resolution is shown here:

Intent intent = new Intent();
intent.setData(MyProvider.CONTENT_URI);
intent.addCategory(Intent.CATEGORY_ALTERNATIVE);

Pass this Intent in to addIntentOptions on the Menu you want to populate, as well as any options
fl ags, the name of the calling class, the Menu group to use, and the Menu ID values. You can also
specify an array of Intents you’d like to use to create additional Menu Items.

Listing 5-17 gives an idea of how to dynamically populate an Activity Menu.

LISTING 5-17: Dynamic Menu population from advertised actions

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 super.onCreateOptionsMenu(menu);

 // Create the intent used to resolve which actions
 // should appear in the menu.
 Intent intent = new Intent();
 intent.setData(MoonBaseProvider.CONTENT_URI);
 intent.addCategory(Intent.CATEGORY_SELECTED_ALTERNATIVE);

 // Normal menu options to let you set a group and ID

continues

c05.indd 195c05.indd 195 4/11/2012 10:02:07 AM4/11/2012 10:02:07 AM

Meier02275 c05 V2 - 03/19/2012 Page 196

196 x CHAPTER 5 INTENTS AND BROADCAST RECEIVERS

 // values for the menu items you’re adding.
 int menuGroup = 0;
 int menuItemId = 0;
 int menuItemOrder = Menu.NONE;

 // Provide the name of the component that’s calling
 // the action -- generally the current Activity.
 ComponentName caller = getComponentName();

 // Define intents that should be added first.
 Intent[] specificIntents = null;
 // The menu items created from the previous Intents
 // will populate this array.
 MenuItem[] outSpecificItems = null;

 // Set any optional flags.
 int flags = Menu.FLAG_APPEND_TO_GROUP;

 // Populate the menu
 menu.addIntentOptions(menuGroup,
 menuItemId,
 menuItemOrder,
 caller,
 specificIntents,
 intent,
 flags,
 outSpecificItems);

 return true;
}

code snippet PA4AD_Ch05_Intents/src/MyActivity.java

Listening for Native Broadcast Intents

Many of the system Services broadcast Intents to signal changes. You can use these messages to add
functionality to your own projects based on system events, such as time-zone changes, data-connec-
tion status, incoming SMS messages, or phone calls.

The following list introduces some of the native actions exposed as constants in the Intent class;
these actions are used primarily to track device status changes:

 ‰ ACTION_BOOT_COMPLETED — Fired once when the device has completed its startup sequence.
An application requires the RECEIVE_BOOT_COMPLETED permission to receive this broadcast.

 ‰ ACTION_CAMERA_BUTTON — Fired when the camera button is clicked.

 ‰ ACTION_DATE_CHANGED and ACTION_TIME_CHANGED — These actions are broadcast if the
date or time on the device is manually changed (as opposed to changing through the inexo-
rable progression of time).

LISTING 5-17 (continued)

c05.indd 196c05.indd 196 4/11/2012 10:02:07 AM4/11/2012 10:02:07 AM

Meier02275 c05 V2 - 03/19/2012 Page 197

Creating Intent Filters and Broadcast Receivers x 197

 ‰ ACTION_MEDIA_EJECT — If the user chooses to eject the external storage media, this event is
fi red fi rst. If your application is reading or writing to the external media storage, you should
listen for this event to save and close any open fi le handles.

 ‰ ACTION_MEDIA_MOUNTED and ACTION_MEDIA_UNMOUNTED — These two events are broadcast
whenever new external storage media are successfully added to or removed from the device,
respectively.

 ‰ ACTION_NEW_OUTGOING_CALL — Broadcast when a new outgoing call is about to be placed.
Listen for this broadcast to intercept outgoing calls. The number being dialed is stored in the
EXTRA_PHONE_NUMBER extra, whereas the resultData in the returned Intent will be the num-
ber actually dialed. To register a Broadcast Receiver for this action, your application must
declare the PROCESS_OUTGOING_CALLS uses-permission.

 ‰ ACTION_SCREEN_OFF and ACTION_SCREEN_ON — Broadcast when the screen turns off or on,
respectively.

 ‰ ACTION_TIMEZONE_CHANGED — This action is broadcast whenever the phone’s current time
zone changes. The Intent includes a time-zone extra that returns the ID of the new java.
util.TimeZone.

A comprehensive list of the broadcast actions used and transmitted natively
by Android to notify applications of system state changes is available at http://
developer.android.com/reference/android/content/Intent.html.

Android also uses Broadcast Intents to announce application-specifi c events, such as incoming SMS
messages, changes in dock state, and battery level. The actions and Intents associated with these events
will be discussed in more detail in later chapters when you learn more about the associated Services.

Monitoring Device State Changes Using Broadcast Intents

Monitoring the device state is an important part of creating effi cient and dynamic applications
whose behavior can change based on connectivity, battery charge state, and docking status.

Android broadcasts Intents for changes in each of these device states. The following sections exam-
ine how to create Intent Filters to register Broadcast Receivers that can react to such changes, and
how to extract the device state information accordingly.

Listening for Battery Changes

To monitor changes in the battery level or charging status within an Activity, you can register a
Receiver using an Intent Filter that listens for the Intent.ACTION_BATTERY_CHANGED broadcast by
the Battery Manager.

The Broadcast Intent containing the current battery charge and charging status is a sticky Intent,
so you can retrieve the current battery status at any time without needing to implement a Broadcast
Receiver, as shown in Listing 5-18.

c05.indd 197c05.indd 197 4/11/2012 10:02:07 AM4/11/2012 10:02:07 AM

http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/content/Intent.html

Meier02275 c05 V2 - 03/19/2012 Page 198

198 x CHAPTER 5 INTENTS AND BROADCAST RECEIVERS

LISTING 5-18: Determining battery and charge state information

IntentFilter batIntentFilter = new IntentFilter(Intent.ACTION_BATTERY_CHANGED);
Intent battery = context.registerReceiver(null, batIntentFilter);
int status = battery.getIntExtra(BatteryManager.EXTRA_STATUS, -1);
boolean isCharging =
 status == BatteryManager.BATTERY_STATUS_CHARGING ||
 status == BatteryManager.BATTERY_STATUS_FULL;

code snippet PA4AD_Ch05_Intents/src/DeviceStateActivity.java

Note that you can’t register the battery changed action within a manifest Receiver; however, you can
monitor connection and disconnection from a power source and a low battery level using the follow-
ing action strings, each prefi xed with android.intent.action:

 ‰ ACTION_BATTERY_LOW

 ‰ ACTION_BATTERY_OKAY

 ‰ ACTION_POWER_CONNECTED

 ‰ ACTION_POWER_DISCONNECTED

Listening for Connectivity Changes

Changes in connectivity, including the bandwidth, latency, and availability of an Internet connec-
tion, can be signifi cant signals for your application. In particular, you might choose to suspend
recurring updates when you lose connectivity or to delay downloads of signifi cant size until you
have a Wi-Fi connection.

To monitor changes in connectivity, register a Broadcast Receiver (either within your appli-
cation or within the manifest) to listen for the android.net.conn.CONNECTIVITY_CHANGE
(ConnectivityManager.CONNECTIVITY_ACTION) action.

The connectivity change broadcast isn’t sticky and doesn’t contain any additional information
regarding the change. To extract details on the current connectivity status, you need to use the
Connectivity Manager, as shown in Listing 5-19.

LISTING 5-19: Determining connectivity state information

String svcName = Context.CONNECTIVITY_SERVICE;
ConnectivityManager cm = (ConnectivityManager)context.getSystemService(svcName);

NetworkInfo activeNetwork = cm.getActiveNetworkInfo();
boolean isConnected = activeNetwork.isConnectedOrConnecting();
boolean isMobile = activeNetwork.getType() ==
 ConnectivityManager.TYPE_MOBILE;

code snippet PA4AD_Ch05_Intents/src/DeviceStateActivity.java

c05.indd 198c05.indd 198 4/11/2012 10:02:09 AM4/11/2012 10:02:09 AM

Meier02275 c05 V2 - 03/19/2012 Page 199

Creating Intent Filters and Broadcast Receivers x 199

The Connectivity Manager is examined in more detail in Chapter 16,
“Bluetooth, NFC, Networks, and Wi-Fi.”

Listening for Docking Changes

Android devices can be docked in either a car dock or desk dock. These, in term, can be either analog
or digital docks. By registering a Receiver to listen for the Intent.ACTION_DOCK_EVENT (android.
intent.action.ACTION_DOCK_EVENT), you can determine the docking status and type of dock.

Like the battery status, the dock event Broadcast Intent is sticky. Listing 5-20 shows how to extract
the current docking status from the Intent returned when registering a Receiver for docking events.

LISTING 5-20: Determining docking state information

IntentFilter dockIntentFilter =
 new IntentFilter(Intent.ACTION_DOCK_EVENT);
Intent dock = registerReceiver(null, dockIntentFilter);

int dockState = dock.getIntExtra(Intent.EXTRA_DOCK_STATE,
 Intent.EXTRA_DOCK_STATE_UNDOCKED);
boolean isDocked = dockState != Intent.EXTRA_DOCK_STATE_UNDOCKED;

code snippet PA4AD_Ch05_Intents/src/DeviceStateActivity.java

Managing Manifest Receivers at Run Time

Using the Package Manager, you can enable and disable any of your application’s manifest Receivers
at run time using the setComponentEnabledSetting method. You can use this technique to enable
or disable any application component (including Activities and Services), but it is particularly useful
for manifest Receivers.

To minimize the footprint of your application, it’s good practice to disable manifest Receivers that
listen for common system events (such as connectivity changes) when your application doesn’t need
to respond to those events. This technique also enables you to schedule an action based on a system
event — such as downloading a large fi le when the device is connected to Wi-Fi — without gaining
the overhead of having the application launch every time a connectivity change is broadcast.

Listing 5-21 shows how to enable and disable a manifest Receiver at run time.

LISTING 5-21: Dynamically toggling manifest Receivers

ComponentName myReceiverName = new ComponentName(this, MyReceiver.class);
PackageManager pm = getPackageManager();

// Enable a manifest receiver
continues

c05.indd 199c05.indd 199 4/11/2012 10:02:09 AM4/11/2012 10:02:09 AM

Meier02275 c05 V2 - 03/19/2012 Page 200

200 x CHAPTER 5 INTENTS AND BROADCAST RECEIVERS

pm.setComponentEnabledSetting(myReceiverName,
 PackageManager.COMPONENT_ENABLED_STATE_ENABLED,
 PackageManager.DONT_KILL_APP);

// Disable a manifest receiver
pm.setComponentEnabledSetting(myReceiverName,
 PackageManager.COMPONENT_ENABLED_STATE_DISABLED,
 PackageManager.DONT_KILL_APP);

code snippet PA4AD_Ch05_Intents/src/DeviceStateActivity.java

LISTING 5-21 (continued)

c05.indd 200c05.indd 200 4/11/2012 10:02:10 AM4/11/2012 10:02:10 AM

6
Using Internet Resources

WHAT’S IN THIS CHAPTER?

 ‰ Connecting to Internet resources

 ‰ Parsing XML resources

 ‰ Using the Download Manager to download fi les

 ‰ Querying the Download Manager

 ‰ Using the Account Manager to authenticate with Google App Engine

This chapter introduces Android’s Internet connectivity model and some of the Java tech-
niques for parsing Internet data feeds. You’ll learn how to connect to an Internet resource and
how to use the SAX Parser and the XML Pull Parser to parse XML resources.

An earthquake-monitoring example will demonstrate how to tie together all these features,
and forms the basis of an ongoing example that you’ll improve and extend in later chapters.

This chapter introduces the Download Manager, and you learn how to use it to schedule
and manage long-running downloads. You’ll also learn how to customize its notifi cations and
query the Downloads Content Provider to determine the status of your downloads.

Finally, this chapter introduces how to use the Account Manager to make authenticated
requests from Google App Engine backends.

DOWNLOADING AND PARSING INTERNET RESOURCES

Android offers several ways to leverage Internet resources. At one extreme you can use a
WebView to include a WebKit-based browser within an Activity. At the other extreme you
can use client-side APIs, such as the Google APIs, to interact directly with server processes.

c06.indd 201c06.indd 201 4/11/2012 10:12:23 AM4/11/2012 10:12:23 AM

202 x CHAPTER 6 USING INTERNET RESOURCES

Somewhere in between, you can process remote XML feeds to extract and process data using a
Java-based XML parser, such as SAX or the XML Pull Parser.

With Internet connectivity and a WebKit browser, you might ask if there’s any reason to create
native Internet-based applications when you could make a web-based version instead.

There are a number of benefi ts to creating thick- and thin-client native applications rather than rely-
ing on entirely web-based solutions:

 ‰ Bandwidth — Static resources such as images, layouts, and sounds can be expensive on
devices with bandwidth restraints. By creating a native application, you can limit the band-
width requirements to changed data only.

 ‰ Caching — With a browser-based solution, a patchy Internet connection can result in inter-
mittent application availability. A native application can cache data and user actions to
provide as much functionality as possible without a live connection and synchronize with the
cloud when a connection is reestablished.

 ‰ Reducing battery drain — Each time your application opens a connection to a server, the
wireless radio will be turned on (or kept on). A native application can bundle its connections,
minimizing the number of connections initiated. The longer the period between network
requests, the longer the wireless radio can be left off.

 ‰ Native features — Android devices are more than simple platforms for running a browser.
They include location-based services, Notifi cations, widgets, camera hardware, background
Services, and hardware sensors. By creating a native application, you can combine the data
available online with the hardware features available on the device to provide a richer user
experience.

Modern mobile devices offer a number of alternatives for accessing the Internet. Broadly speaking,
Android provides two connection techniques for Internet connectivity. Each is offered transparently
to the application layer.

 ‰ Mobile Internet — GPRS, EDGE, 3G, 4G, and LTE Internet access is available through
carriers that offer mobile data.

 ‰ Wi-Fi — Wi-Fi receivers and mobile hotspots are becoming increasingly common.

If you use Internet resources in your application, remember that your users’ data connections
are dependent on the communications technology available to them. EDGE and GSM
connections are notoriously low-bandwidth, whereas a Wi-Fi connection may be unreliable in a
mobile setting.

Optimize the user experience by limiting the quantity of data transmitted and ensure that your
application is robust enough to handle network outages and bandwidth limitations.

Connecting to an Internet Resource

Before you can access Internet resources, you need to add an INTERNET uses-permission node to
your application manifest, as shown in the following XML snippet:

<uses-permission android:name=”android.permission.INTERNET”/>

c06.indd 202c06.indd 202 4/11/2012 10:12:26 AM4/11/2012 10:12:26 AM

Downloading and Parsing Internet Resources x 203

Listing 6-1 shows the basic pattern for opening an Internet data stream.

LISTING 6-1: Opening an Internet data stream

String myFeed = getString(R.string.my_feed);
try {
 URL url = new URL(myFeed);

 // Create a new HTTP URL connection
 URLConnection connection = url.openConnection();
 HttpURLConnection httpConnection = (HttpURLConnection)connection;

 int responseCode = httpConnection.getResponseCode();
 if (responseCode == HttpURLConnection.HTTP_OK) {
 InputStream in = httpConnection.getInputStream();
 processStream(in);
 }
}
catch (MalformedURLException e) {
 Log.d(TAG, “Malformed URL Exception.”);
}
catch (IOException e) {
 Log.d(TAG, “IO Exception.”);
}

code snippet PA4AD_Ch06_Internet/src/MyActivity.java

Attempting to perform network operations on the main UI thread will cause a
NetworkOnMainThreadException on the latest Android platform releases. Be
sure to execute code, such as that shown in Listing 6-1, in a background thread,
as described in Chapter 9, “Working in the Background.”

Android includes several classes to help you handle network communications. They are available in
the java.net.* and android.net.* packages.

Later in this chapter is a working example that shows how to obtain and process
an Internet feed to get a list of earthquakes felt in the last 24 hours. Chapter 16,
“Bluetooth, NFC, Networks, and Wi-Fi,” features more information on manag-
ing specifi c Internet connections, including monitoring connection status and
confi guring Wi-Fi access point connections.

Parsing XML Using the XML Pull Parser

Although detailed instructions for parsing XML and interacting with specifi c web services are out-
side the scope of this book, it’s important to understand the available technologies.

c06.indd 203c06.indd 203 4/11/2012 10:12:27 AM4/11/2012 10:12:27 AM

204 x CHAPTER 6 USING INTERNET RESOURCES

This section provides a brief overview of the XML Pull Parser, whereas the next section demon-
strates the use of the DOM parser to retrieve earthquake details from the United States Geological
Survey (USGS).

The XML Pull Parser API is available from the following libraries:

import org.xmlpull.v1.XmlPullParser;
import org.xmlpull.v1.XmlPullParserException;
import org.xmlpull.v1.XmlPullParserFactory;

It enables you to parse an XML document in a single pass. Unlike the DOM parser, the Pull Parser
presents the elements of your document in a sequential series of events and tags.

Your location within the document is represented by the current event. You can determine the cur-
rent event by calling getEventType. Each document begins at the START_DOCUMENT event and ends
at END_DOCUMENT.

To proceed through the tags, simply call next, which causes you to progress through a series of
matched (and often nested) START_TAG and END_TAG events. You can extract the name of each tag by
calling getName and extract the text between each set of tags using getNextText.

Listing 6-2 demonstrates how to use the XML Pull Parser to extract details from the points of inter-
est list returned by the Google Places API.

LISTING 6-2: Parsing XML using the XML Pull Parser

private void processStream(InputStream inputStream) {
 // Create a new XML Pull Parser.
 XmlPullParserFactory factory;
 try {
 factory = XmlPullParserFactory.newInstance();
 factory.setNamespaceAware(true);
 XmlPullParser xpp = factory.newPullParser();

 // Assign a new input stream.
 xpp.setInput(inputStream, null);
 int eventType = xpp.getEventType();

 // Continue until the end of the document is reached.
 while (eventType != XmlPullParser.END_DOCUMENT) {
 // Check for a start tag of the results tag.
 if (eventType == XmlPullParser.START_TAG &&
 xpp.getName().equals(“result”)) {
 eventType = xpp.next();
 String name = “”;
 // Process each result within the result tag.
 while (!(eventType == XmlPullParser.END_TAG &&
 xpp.getName().equals(“result”))) {
 // Check for the name tag within the results tag.
 if (eventType == XmlPullParser.START_TAG &&
 xpp.getName().equals(“name”))
 // Extract the POI name.
 name = xpp.nextText();

c06.indd 204c06.indd 204 4/11/2012 10:12:27 AM4/11/2012 10:12:27 AM

Downloading and Parsing Internet Resources x 205

 // Move on to the next tag.
 eventType = xpp.next();
 }
 // Do something with each POI name.
 }
 // Move on to the next result tag.
 eventType = xpp.next();
 }
 } catch (XmlPullParserException e) {
 Log.d(“PULLPARSER”, “XML Pull Parser Exception”, e);
 } catch (IOException e) {
 Log.d(“PULLPARSER”, “IO Exception”, e);
 }
}

code snippet PA4AD_ Ch6_Internet/src/MyActivity.java

Creating an Earthquake Viewer

In the following example you’ll create a tool that uses a USGS earthquake feed to display a list of
recent earthquakes. You will return to this earthquake application several times in the following
chapters, gradually adding more features and functionality.

The earthquake feed XML is parsed here by the DOM parser. Several alternatives exist, including
the XML Pull Parser described in the previous section. As noted, a detailed analysis of the alterna-
tive XML parsing techniques is beyond the scope of this book.

In this example you’ll create a list-based Activity that connects to an earthquake feed and displays
the location, magnitude, and time of the earthquakes it contains.

To simplify readability, each of these examples excludes the import statements.
If you are using Eclipse, you can press Ctrl+Shift+o (or Cmd+Shift+o on Mac)
to automatically populate the import statements required to support the classes
used in your code.

1. Start by creating an Earthquake project featuring an Earthquake Activity.

2. Create a new EarthquakeListFragment that extends ListFragment. This Fragment dis-
plays your list of earthquakes.

public class EarthquakeListFragment extends ListFragment {
}

3. Modify the main.xml layout resource to include the Fragment you created in Step 2. Be sure
to name it so that you can reference it from the Activity code.

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”

c06.indd 205c06.indd 205 4/11/2012 10:12:28 AM4/11/2012 10:12:28 AM

http://schemas.android.com/apk/res/android%E2%80%9D

206 x CHAPTER 6 USING INTERNET RESOURCES

 android:orientation=”vertical”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”>
 <fragment android:name=”com.paad.earthquake.EarthquakeListFragment”
 android:id=”@+id/EarthquakeListFragment”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 />
</LinearLayout>

4. Create a new public Quake class. This class will be used to store the details (date, details,
location, magnitude, and link) of each earthquake. Override the toString method to provide
the string that will be used to represent each quake in the List View.

package com.paad.earthquake;

import java.util.Date;
import java.text.SimpleDateFormat;
import android.location.Location;

public class Quake {
 private Date date;
 private String details;
 private Location location;
 private double magnitude;
 private String link;

 public Date getDate() { return date; }
 public String getDetails() { return details; }
 public Location getLocation() { return location; }
 public double getMagnitude() { return magnitude; }
 public String getLink() { return link; }

 public Quake(Date _d, String _det, Location _loc, double _mag, String _link) {
 date = _d;
 details = _det;
 location = _loc;
 magnitude = _mag;
 link = _link;
 }

 @Override
 public String toString() {
 SimpleDateFormat sdf = new SimpleDateFormat(“HH.mm”);
 String dateString = sdf.format(date);
 return dateString + “: “ + magnitude + “ “ + details;
 }

}

5. In the EarthquakeListFragment, override the onActivityCreated method to store
an ArrayList of Quake objects, and bind that to the underlying ListView using an
ArrayAdapter:

public class EarthquakeListFragment extends ListFragment {

c06.indd 206c06.indd 206 4/11/2012 10:12:29 AM4/11/2012 10:12:29 AM

Downloading and Parsing Internet Resources x 207

 ArrayAdapter<Quake> aa;
 ArrayList<Quake> earthquakes = new ArrayList<Quake>();

 @Override
 public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);

 int layoutID = android.R.layout.simple_list_item_1;
 aa = new ArrayAdapter<Quake>(getActivity(), layoutID , earthquakes);
 setListAdapter(aa);
 }
}

6. Start processing the earthquake feed. For this example, the feed used is the one-day USGS
feed for earthquakes with a magnitude greater than 2.5. Add the location of your feed as an
external string resource. This lets you potentially specify a different feed based on a user’s
location.

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
 <string name=”app_name”>Earthquake</string>
 <string name=”quake_feed”>
 http://earthquake.usgs.gov/eqcenter/catalogs/1day-M2.5.xml
 </string>
</resources>

7. Before your application can access the Internet, it needs to be granted permission for Internet
access. Add the Internet uses-permission to the manifest:

<uses-permission android:name=”android.permission.INTERNET”/>

8. Returning to the Earthquake List Fragment, create a new refreshEarthquakes method that
connects to and parses the earthquake feed. Extract each earthquake and parse the details to
obtain the date, magnitude, link, and location. As you fi nish parsing each earthquake, pass it
in to a new addNewQuake method. Note that the addNewQuake method is executed within a
Runnable posted from a Handler object. This allows you to execute the refreshEarthquakes
method on a background thread before updating the UI within addNewQuake. This will be
explored in more detail in Chapter 9.

private static final String TAG = “EARTHQUAKE”;
private Handler handler = new Handler();

public void refreshEarthquakes() {
 // Get the XML
 URL url;
 try {
 String quakeFeed = getString(R.string.quake_feed);
 url = new URL(quakeFeed);

 URLConnection connection;
 connection = url.openConnection();

 HttpURLConnection httpConnection = (HttpURLConnection)connection;
 int responseCode = httpConnection.getResponseCode();

c06.indd 207c06.indd 207 4/11/2012 10:12:29 AM4/11/2012 10:12:29 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://earthquake.usgs.gov/eqcenter/catalogs/1day-M2.5.xml

208 x CHAPTER 6 USING INTERNET RESOURCES

 if (responseCode == HttpURLConnection.HTTP_OK) {
 InputStream in = httpConnection.getInputStream();

 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 DocumentBuilder db = dbf.newDocumentBuilder();

 // Parse the earthquake feed.
 Document dom = db.parse(in);
 Element docEle = dom.getDocumentElement();

 // Clear the old earthquakes
 earthquakes.clear();

 // Get a list of each earthquake entry.
 NodeList nl = docEle.getElementsByTagName(”entry”);
 if (nl != null && nl.getLength() > 0) {
 for (int i = 0 ; i < nl.getLength(); i++) {
 Element entry = (Element)nl.item(i);
 Element title = (Element)entry.getElementsByTagName(”title”).item(0);
 Element g = (Element)entry.getElementsByTagName(”georss:point”).item(0);
 Element when = (Element)entry.getElementsByTagName(”updated”).item(0);
 Element link = (Element)entry.getElementsByTagName(”link”).item(0);

 String details = title.getFirstChild().getNodeValue();
 String hostname = “http://earthquake.usgs.gov”;
 String linkString = hostname + link.getAttribute(”href”);

 String point = g.getFirstChild().getNodeValue();
 String dt = when.getFirstChild().getNodeValue();
 SimpleDateFormat sdf = new SimpleDateFormat(”yyyy-MM-dd’T’hh:mm:ss’Z’”);
 Date qdate = new GregorianCalendar(0,0,0).getTime();
 try {
 qdate = sdf.parse(dt);
 } catch (ParseException e) {
 Log.d(TAG, “Date parsing exception.”, e);
 }

 String[] location = point.split(” ”);
 Location l = new Location(”dummyGPS”);
 l.setLatitude(Double.parseDouble(location[0]));
 l.setLongitude(Double.parseDouble(location[1]));

 String magnitudeString = details.split(” ”)[1];
 int end = magnitudeString.length()-1;
 double magnitude = Double.parseDouble(magnitudeString.substring(0, end));

 details = details.split(”,”)[1].trim();

 final Quake quake = new Quake(qdate, details, l, magnitude, linkString);

 // Process a newly found earthquake
 handler.post(new Runnable() {
 public void run() {

c06.indd 208c06.indd 208 4/11/2012 10:12:29 AM4/11/2012 10:12:29 AM

http://earthquake.usgs.gov%E2%80%9D

Downloading and Parsing Internet Resources x 209

 addNewQuake(quake);
 }
 });
 }
 }
 }
 } catch (MalformedURLException e) {
 Log.d(TAG, ”MalformedURLException”);
 } catch (IOException e) {
 Log.d(TAG, ”IOException”);
 } catch (ParserConfigurationException e) {
 Log.d(TAG, ”Parser Configuration Exception”);
 } catch (SAXException e) {
 Log.d(TAG, ”SAX Exception”);
 }
 finally {
 }
}

private void addNewQuake(Quake _quake) {
 // TODO Add the earthquakes to the array list.
}

9. Update the addNewQuake method so that it takes each newly processed quake and adds it to
the earthquake Array List. It should also notify the Array Adapter that the underlying data
has changed.

private void addNewQuake(Quake _quake) {
 // Add the new quake to our list of earthquakes.
 earthquakes.add(_quake);

 // Notify the array adapter of a change.
 aa.notifyDataSetChanged();
}

10. Modify your onActivityCreated method to call refreshEarthquakes on startup.
Network operations should always be performed in a background thread — a requirement
that is enforced in API level 11 onwards.

@Override
public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);

 int layoutID = android.R.layout.simple_list_item_1;
 aa = new ArrayAdapter<Quake>(getActivity(), layoutID , earthquakes);
 setListAdapter(aa);

 Thread t = new Thread(new Runnable() {
 public void run() {
 refreshEarthquakes();
 }
 });
 t.start();
}

c06.indd 209c06.indd 209 4/11/2012 10:12:29 AM4/11/2012 10:12:29 AM

210 x CHAPTER 6 USING INTERNET RESOURCES

If your application is targeting API level 11 or above, attempting to
perform network operations on the main UI thread will cause a
NetworkOnMainThreadException. In this example a simple Thread is used to
post the refreshEarthquakes method on a background thread.

This will be explored in more detail in Chapter 9, where you will learn more
technique for moving expensive or time-consuming operations like this into a
Service and onto background threads.

11. When you run your project, you should see a List View that features the earthquakes from
the last 24 hours with a magnitude greater than 2.5 (Figure 6-1).

FIGURE 6-1

All code snippets in this example are part of the Chapter 6 Earthquake project,
available for download at www.wrox.com.

USING THE DOWNLOAD MANAGER

The Download Manager was introduced in Android 2.3 (API level 9) as a Service to optimize the
handling of long-running downloads. The Download Manager handles the HTTP connection and
monitors connectivity changes and system reboots to ensure each download completes successfully.

c06.indd 210c06.indd 210 4/11/2012 10:12:30 AM4/11/2012 10:12:30 AM

http://www.wrox.com

Using the Download Manager x 211

It’s good practice to use the Download Manager in most situations, particularly where a download
is likely to continue in the background between user sessions, or when successful completion is
important.

To access the Download Manager, request the DOWNLOAD_SERVICE using the getSystemService
method, as follows:

String serviceString = Context.DOWNLOAD_SERVICE;
DownloadManager downloadManager;
downloadManager = (DownloadManager)getSystemService(serviceString);

Downloading Files

To request a download, create a new DownloadManager.Request, specifying the URI of the
fi le to download and passing it in to the Download Manager’s enqueue method, as shown in
Listing 6-3.

LISTING 6-3: Downloading fi les using the Download Manager

String serviceString = Context.DOWNLOAD_SERVICE;
DownloadManager downloadManager;
downloadManager = (DownloadManager)getSystemService(serviceString);

Uri uri = Uri.parse(“http://developer.android.com/shareables/icon_templates-v4.0.zip”);
DownloadManager.Request request = new Request(uri);
long reference = downloadManager.enqueue(request);

code snippet PA4AD_ Ch6_DownloadManager/src/MyActivity.java

You can use the returned reference value to perform future actions or queries on the download,
including checking its status or canceling it.

You can add an HTTP header to your request, or override the mime type returned by the server, by
calling addRequestHeader and setMimeType, respectively, on your Request object.

You can also specify the connectivity conditions under which to execute the download. The setAl-
lowedNetworkTypes method enables you to restrict downloads to either Wi-Fi or mobile networks,
whereas the setAllowedOverRoaming method predictably enables you to prevent downloads while
the phone is roaming.

The following snippet shows how to ensure a large fi le is downloaded only when
connected to Wi-Fi:

request.setAllowedNetworkTypes(Request.NETWORK_WIFI);

Android API level 11 introduced the getRecommendedMaxBytesOverMobile convenience method,
which is useful to determine if you should restrict a download to Wi-Fi by returning a recommended
maximum number of bytes to transfer over a mobile data connection.

After calling enqueue, the download begins as soon as connectivity is available and the Download
Manager is free.

c06.indd 211c06.indd 211 4/11/2012 10:12:31 AM4/11/2012 10:12:31 AM

http://developer.android.com/shareables/icon_templates-v4.0.zip%E2%80%9D%00%00

212 x CHAPTER 6 USING INTERNET RESOURCES

To receive a notifi cation when the download is completed, register a Receiver to receive an ACTION_
DOWNLOAD_COMPLETE broadcast. It will include an EXTRA_DOWNLOAD_ID extra that contains the
reference ID of the download that has completed, as shown in Listing 6-4.

LISTING 6-4: Monitoring downloads for completion

IntentFilter filter = new IntentFilter(DownloadManager.ACTION_DOWNLOAD_COMPLETE);

BroadcastReceiver receiver = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 long reference = intent.getLongExtra(DownloadManager.EXTRA_DOWNLOAD_ID, -1);
 if (myDownloadReference == reference) {
 // Do something with downloaded file.
 }
 }
};

registerReceiver(receiver, filter);

code snippet PA4AD_ Ch6_DownloadManager/src/MyActivity.java

You can use Download Manager’s openDownloadedFile method to receive a Parcel File Descriptor
to your fi le, to query the Download Manager to obtain its location, or to manipulate it directly if
you’ve specifi ed a fi lename and location yourself.

It’s also good practice to register a Receiver for the ACTION_NOTIFICATION_CLICKED action, as
shown in Listing 6-5. This Intent will be broadcast whenever a user selects a download from the
Notifi cation tray or the Downloads app.

LISTING 6-5: Responding to download notifi cation clicks

IntentFilter filter = new IntentFilter(DownloadManager.ACTION_NOTIFICATION_CLICKED);

BroadcastReceiver receiver = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 String extraID = DownloadManager.EXTRA_NOTIFICATION_CLICK_DOWNLOAD_IDS;
 long[] references = intent.getLongArrayExtra(extraID);
 for (long reference : references)
 if (reference == myDownloadReference) {
 // Do something with downloading file.
 }
 }
};

registerReceiver(receiver, filter);

code snippet PA4AD_ Ch6_DownloadManager/src/MyActivity.java

c06.indd 212c06.indd 212 4/11/2012 10:12:31 AM4/11/2012 10:12:31 AM

Using the Download Manager x 213

Customizing Download Manager Notifi cations

By default, ongoing Notifi cations will be displayed for each download managed by the Download
Manager. Each Notifi cation will show the current download progress and the fi lename (Figure 6-2).

FIGURE 6-2

The Download Manager enables you to customize the Notifi cation displayed for each download
request, including hiding it completely. The following snippet shows how to use the setTitle and
setDescription methods to customize the text displayed in the fi le download Notifi cation.
Figure 6-3 sho ws the result.

request.setTitle(“Earthquakes”);
request.setDescription(“Earthquake XML”);

FIGURE 6-3

The setNotificationVisibility method lets you control when, and if, a Notifi cation should be
displayed for your request using one of the following fl ags:

 ‰ Request.VISIBILITY_VISIBLE — An ongoing Notifi cation will be visible for the duration
that the download is in progress. It will be removed when the download is complete. This is
the default option.

 ‰ Request.VISIBILITY_VISIBLE_NOTIFY_COMPLETED — An ongoing Notifi cation will be
displayed during the download and will continue to be displayed (until selected or dismissed)
once the download has completed.

 ‰ Request.VISIBILITY_VISIBLE_NOTIFY_ONLY_COMPLETION — The notifi cation will be dis-
played only after the download is complete.

 ‰ Request.VISIBILITY_HIDDEN — No Notifi cation will be displayed for this download. In
order to set this fl ag, your application must have the DOWNLOAD_WITHOUT_NOTIFICATION
uses-permission specifi ed in its manifest.

You will learn more about creating your own custom Notifi cations in Chapter 9.

Specifying a Download Location

By default, all Download Manager downloads are saved to the shared download cache using system-
generated fi lenames. Each Request object can specify a download location, though all downloads

c06.indd 213c06.indd 213 4/11/2012 10:12:31 AM4/11/2012 10:12:31 AM

214 x CHAPTER 6 USING INTERNET RESOURCES

must be stored somewhere on external storage and the calling application must have the WRITE_
EXTERNAL_STORAGE uses-permission in its manifest:

<uses-permission android:name=”android.permission.WRITE_EXTERNAL_STORAGE”/>

The following code snippet shows how to specify an arbitrary path on external storage:

request.setDestinationUri(Uri.fromFile(f));

If the downloaded fi le is to your application, you may want to place it in your application’s external
storage folder. Note that access control is not applied to this folder, and other applications will be
able to access it. If your application is uninstalled, fi les stored in these folders will also be removed.

The following snippet specifi es storing a fi le in your application’s external downloads folder:

request.setDestinationInExternalFilesDir(this,
 Environment.DIRECTORY_DOWNLOADS, “Bugdroid.png”);

For fi les that can or should be shared with other applications — particularly those you want to scan
with the Media Scanner — you can specify a folder within the public folder on the external storage.
The following snippet requests a fi le be stored in the public music folder:

request.setDestinationInExternalPublicDir(Environment.DIRECTORY_MUSIC,
 “Android_Rock.mp3”);

See Chapter 7, “Files, Saving State, and Preferences,” for more details about
external storage and the Environment static variables you can use to specify
folders within it.

It’s important to note that by default fi les downloaded by the Download Manager are not scanned
by Media Scanner, so they might not appear in apps such as Gallery and Music Player.

To make downloaded fi les scannable, call allowScaningByMediaScanner on the Request object.

If you want your fi les to be visible and manageable by the system’s Downloads app, you need to call
setVisibleInDownloadsUi, passing in true.

Cancelling and Removing Downloads

The Download Manager’s remove method lets you cancel a pending download, abort a download in
progress, or delete a completed download.

As shown in the following code snippet, the remove method accepts download IDs as optional argu-
ments, enabling you to specify one or many downloads to cancel:

downloadManager.remove(REFERENCE_1, REFERENCE_2, REFERENCE_3);

It returns the number of downloads successfully canceled. If a download is canceled, all associated
fi les — both partial and complete — are removed.

c06.indd 214c06.indd 214 4/11/2012 10:12:32 AM4/11/2012 10:12:32 AM

Using the Download Manager x 215

Querying the Download Manager

You can query the Download Manager to fi nd the status, progress, and details of your download
requests by using the query method that returns a Cursor of downloads.

Cursors are a data construct used by Android to return data stored in a Content
Provider or SQLite database. You will learn more about Content Providers,
Cursors, and how to fi nd data stored in them in Chapter 8, “Databases and
Content Providers.”

The query method takes a DownloadManager.Query object as a parameter. Use the setFilterById
method on a Query object to specify a sequence of download reference IDs, or use the
setFilterByStatus method to fi lter on a download status using one of the DownloadManager
.STATUS_* constants to specify running, paused, failed, or successful downloads.

The Download Manager includes a number of COLUMN_* static String constants that you can use to
query the result Cursor. You can fi nd details for each download, including the status, fi les size, bytes
downloaded so far, title, description, URI, local fi lename and URI, media type, and Media Provider
download URI.

Listing 6-6 expands on Listing 6-4 to demonstrate how to fi nd the local fi lename and URI of a com-
pleted downloads from within a Broadcast Receiver registered to listen for download completions.

LISTING 6-6: Finding details of completed downloads

@Override
public void onReceive(Context context, Intent intent) {
 long reference = intent.getLongExtra(DownloadManager.EXTRA_DOWNLOAD_ID, -1);

 if (reference == myDownloadReference) {
 Query myDownloadQuery = new Query();
 myDownloadQuery.setFilterById(reference);

 Cursor myDownload = downloadManager.query(myDownloadQuery);
 if (myDownload.moveToFirst()) {
 int fileNameIdx =
 myDownload.getColumnIndex(DownloadManager.COLUMN_LOCAL_FILENAME);
 int fileUriIdx =
 myDownload.getColumnIndex(DownloadManager.COLUMN_LOCAL_URI);

 String fileName = myDownload.getString(fileNameIdx);
 String fileUri = myDownload.getString(fileUriIdx);

 // TODO Do something with the file.
 }
 myDownload.close();
 }
}

code snippet PA4AD_ Ch6_DownloadManager/src/MyActivity.java

c06.indd 215c06.indd 215 4/11/2012 10:12:33 AM4/11/2012 10:12:33 AM

216 x CHAPTER 6 USING INTERNET RESOURCES

For downloads that are either paused or have failed, you can query the COLUMN_REASON column to
fi nd the cause represented as an integer.

In the case of STATUS_PAUSED downloads, you can interpret the reason code by using one of the
DownloadManager.PAUSED_* static constants to determine if the download has been paused while
waiting for network connectivity, a Wi-Fi connection, or pending a retry.

For STATUS_FAILED downloads, you can determine the cause of failure using the
DownloadManager.ERROR_* codes. Possible error codes include lack of a storage device, insuffi cient
free space, duplicate fi lenames, or HTTP errors.

Listing 6-7 shows how to fi nd a list of the currently paused downloads, extracting the reason the
download was paused, the fi lename, its title, and the current progress.

LISTING 6-7: Finding details of paused downloads

// Obtain the Download Manager Service.
String serviceString = Context.DOWNLOAD_SERVICE;
DownloadManager downloadManager;
downloadManager = (DownloadManager)getSystemService(serviceString);

// Create a query for paused downloads.
Query pausedDownloadQuery = new Query();
pausedDownloadQuery.setFilterByStatus(DownloadManager.STATUS_PAUSED);

// Query the Download Manager for paused downloads.
Cursor pausedDownloads = downloadManager.query(pausedDownloadQuery);

// Find the column indexes for the data we require.
int reasonIdx = pausedDownloads.getColumnIndex(DownloadManager.COLUMN_REASON);
int titleIdx = pausedDownloads.getColumnIndex(DownloadManager.COLUMN_TITLE);
int fileSizeIdx =
 pausedDownloads.getColumnIndex(DownloadManager.COLUMN_TOTAL_SIZE_BYTES);
int bytesDLIdx =
 pausedDownloads.getColumnIndex(DownloadManager.COLUMN_BYTES_DOWNLOADED_SO_FAR);

// Iterate over the result Cursor.
while (pausedDownloads.moveToNext()) {
 // Extract the data we require from the Cursor.
 String title = pausedDownloads.getString(titleIdx);
 int fileSize = pausedDownloads.getInt(fileSizeIdx);
 int bytesDL = pausedDownloads.getInt(bytesDLIdx);

 // Translate the pause reason to friendly text.
 int reason = pausedDownloads.getInt(reasonIdx);
 String reasonString = “Unknown”;
 switch (reason) {
 case DownloadManager.PAUSED_QUEUED_FOR_WIFI :
 reasonString = “Waiting for WiFi”; break;
 case DownloadManager.PAUSED_WAITING_FOR_NETWORK :
 reasonString = “Waiting for connectivity”; break;
 case DownloadManager.PAUSED_WAITING_TO_RETRY :

c06.indd 216c06.indd 216 4/11/2012 10:12:33 AM4/11/2012 10:12:33 AM

Using Internet Services x 217

 reasonString = “Waiting to retry”; break;
 default : break;
 }

 // Construct a status summary
 StringBuilder sb = new StringBuilder();
 sb.append(title).append(“\n”);
 sb.append(reasonString).append(“\n”);
 sb.append(“Downloaded “).append(bytesDL).append(“ / “).append(fileSize);

 // Display the status
 Log.d(“DOWNLOAD”, sb.toString());
}

// Close the result Cursor.
pausedDownloads.close();

code snippet PA4AD_ Ch6_DownloadManager/src/MyActivity.java

USING INTERNET SERVICES

Software as a service (SaaS) and cloud computing are becoming increasingly popular as com-
panies try to reduce the cost overheads associated with installing, upgrading, and maintaining
deployed software. The result is a range of rich Internet services with which you can build thin
mobile applications that enrich online services with the personalization available from your
smartphone or tablet.

The idea of using a middle tier to reduce client-side load is not a novel one, and happily there are
many Internet-based options to supply your applications with the level of service you need.

The sheer volume of Internet services available makes it impossible to list them all here (let alone
look at them in any detail), but the following list shows some of the more mature and interesting
Internet services currently available.

 ‰ Google Services APIs — In addition to the native Google applications, Google offers web
APIs for access to their Calendar, Docs, Blogger, and Picasa Web Albums platforms. These
APIs collectively make use of a form of XML for data communication.

 ‰ Yahoo! Pipes — Yahoo! Pipes offers a graphical web-based approach to XML feed manipu-
lation. Using pipes, you can fi lter, aggregate, analyze, and otherwise manipulate XML feeds
and output them in a variety of formats to be consumed by your applications.

 ‰ Google App Engine — Using the Google App Engine, you can create cloud-hosted web ser-
vices that shift complex processing away from your mobile client. Doing so reduces the load
on your system resources but comes at the price of Internet-connection dependency. Google
also offers Cloud Storage and Prediction API services.

 ‰ Amazon Web Services — Amazon offers a range of cloud-based services, including a rich API
for accessing its media database of books, CDs, and DVDs. Amazon also offers a distributed
storage solution (S3) and Elastic Compute Cloud (EC2).

c06.indd 217c06.indd 217 4/11/2012 10:12:34 AM4/11/2012 10:12:34 AM

218 x CHAPTER 6 USING INTERNET RESOURCES

CONNECTING TO GOOGLE APP ENGINE

To use the Google Play Store, users must be signed in to a Google account on their phones; there-
fore, if your application connects to a Google App Engine backend to store and retrieve data related
to a particular user, you can use the Account Manager to handle the authentication.

The Account Manager enables you to ask users for permission to retrieve an authentication token,
which, in turn, can be used to obtain a cookie from your server that can then be used to make
future authenticated requests.

To retrieve accounts and authentication tokens from the Account Manager, your application
requires the GET_ACCOUNTS uses-permission:

<uses-permission android:name=”android.permission.GET_ACCOUNTS”/>

Making authenticated Google App Engine requests is a three-part process:

 1. Request an auth token.

 2. Use the auth token to request an auth cookie.

 3. Use the auth cookie to make authenticated requests.

Listing 6-8 demonstrates how to request an auth token for Google accounts using the Account
Manager.

LISTING 6-8: Requesting an auth token

String acctSvc = Context.ACCOUNT_SERVICE;
AccountManager accountManager = (AccountManager)getSystemService(acctSvc);

Account[] accounts = accountManager.getAccountsByType(“com.google”);

if (accounts.length > 0)
 accountManager.getAuthToken(accounts[0], “ah”, false,
 myAccountManagerCallback, null);

code snippet PA4AD_Ch6_AppEngine/src/MyActivity.java

The Account Manager then checks to see if the user has approved your request for an auth
token. The result is returned to your application via the Account Manager Callback you specifi ed
when making the request.

In the following extension to Listing 6-8, the returned bundle is inspected for an Intent stored
against the AccountManager.KEY_INTENT key. If this key’s value is null, the user has approved your
application’s request, and you can retrieve the auth token from the bundle.

private static int ASK_PERMISSION = 1;

private class GetAuthTokenCB implements AccountManagerCallback<Bundle> {
 public void run(AccountManagerFuture<Bundle> result) {
 try {
 Bundle bundle = result.getResult();
 Intent launch = (Intent)bundle.get(AccountManager.KEY_INTENT);
 if (launch != null)

c06.indd 218c06.indd 218 4/11/2012 10:12:34 AM4/11/2012 10:12:34 AM

Best Practices for Downloading Data Without Draining the Battery x 219

 startActivityForResult(launch, ASK_PERMISSION);
 else {
 // Extract the auth token and request an auth cookie.
 }
 }
 catch (Exception ex) {}
 }
};

If the key’s value is not null, you must start a new Activity using the bundled Intent to request the
user’s permission. The user will be prompted to approve or deny your request. After control has
been passed back to your application, you should request the auth token again.

The auth token is stored within the Bundle parameter against the AccountManager.KEY_
AUTHTOKEN, as follows:

String auth_token = bundle.getString(AccountManager.KEY_AUTHTOKEN);

You can use this token to request an auth cookie from Google App Engine by confi guring an
httpClient and using it to transmit an HttpGet request, as follows:

DefaultHttpClient http_client = new DefaultHttpClient();
http_client.getParams().setBooleanParameter(ClientPNames.HANDLE_REDIRECTS, false);

String getString = “https://[yourappsubdomain].appspot.com/_ah/login?” +
 “continue=http://localhost/&auth=” +
 auth_token;
HttpGet get = new HttpGet(getString);

HttpResponse response = http_client.execute(get);

If the request was successful, simply iterate over the Cookies stored in the HTTP Client’s Cookie
Store to confi rm the auth cookie has been set. The HTTP Client used to make the request has
the authenticated cookie, and all future requests to Google App Engine using it will be properly
authenticated.

if (response.getStatusLine().getStatusCode() != 302)
 return false;
else {
 for (Cookie cookie : http_client.getCookieStore().getCookies())
 if (cookie.getName().equals(“ACSID”)) {
 // Make authenticated requests to your Google App Engine server.
 }
}

BEST PRACTICES FOR DOWNLOADING DATA WITHOUT

DRAINING THE BATTERY

The timing and techniques you use to download data can have a signifi cant effect on battery
life. The wireless radio on mobile devices draws signifi cant power when active, so it’s important to
consider how your application’s connectivity model may impact the operation of the underlying
radio hardware.

c06.indd 219c06.indd 219 4/11/2012 10:12:34 AM4/11/2012 10:12:34 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://localhost/&auth=%E2%80%9D

220 x CHAPTER 6 USING INTERNET RESOURCES

Every time you create a new connection to download additional data, you risk waking the wireless
radio from standby mode to active mode. In general, it’s good practice to bundle your connections
and associated downloads to perform them concurrently and infrequently.

To use a converse example, creating frequent, short-lived connections that download small amounts
of data can have the most dramatic impact on the battery.

You can use the following techniques to minimize your application’s battery cost.

 ‰ Aggressively prefetch — The more data you download in a single connection, the less fre-
quently the radio will need to be powered up to download more data. This will need to be
balanced with downloading too much data that won’t be used.

 ‰ Bundle your connections and downloads — Rather than sending time-insensitive data
such as analytics as they’re received, bundle them together and schedule them to transmit
concurrently with other connections, such as when refreshing content or prefetching data.
Remember, each new connection has the potential of powering up the radio.

 ‰ Reuse existing connections rather than creating new ones — Using existing connections
rather than initiating new ones for each transfer can dramatically improve network
performance, reduce latency, and allow the network to intelligently react to congestion
and related issues

 ‰ Schedule repeated downloads as infrequently as possible — It’s good practice to set the
default refresh frequency to as low as usability will allow, rather than as fast as possible. For
users who require their updates to be more frequent, provide preferences that allow them to
sacrifi ce battery life in exchange for freshness.

c06.indd 220c06.indd 220 4/11/2012 10:12:34 AM4/11/2012 10:12:34 AM

Meier02275 c07 V2 - 03/19/2012 Page 221

7
Files, Saving State,
and Preferences

WHAT’S IN THIS CHAPTER?

 ‰ Persisting simple application data using Shared Preferences

 ‰ Saving Activity instance data between sessions

 ‰ Managing application preferences and building Preference Screens

 ‰ Saving and loading fi les and managing the local fi lesystem

 ‰ Including static fi les as external resources

This chapter introduces some of the simplest and most versatile data-persistence techniques in
Android: Shared Preferences, instance-state Bundles, and local fi les.

Saving and loading data is essential for most applications. At a minimum, an Activity should
save its user interface (UI) state before it becomes inactive to ensure the same UI is presented
when it restarts. It’s also likely that you’ll need to save user preferences and UI selections.

Android’s nondeterministic Activity and application lifetimes make persisting UI state and
application data between sessions particularly important, as your application process may
have been killed and restarted before it returns to the foreground. Android offers several alter-
natives for saving application data, each optimized to fulfi ll a particular need.

Shared Preferences are a simple, lightweight name/value pair (NVP) mechanism for saving
primitive application data, most commonly a user’s application preferences. Android also
offers a mechanism for recording application state within the Activity lifecycle handlers, as
well as for providing access to the local fi lesystem, through both specialized methods and the
java.io classes.

Android also offers a rich framework for user preferences, allowing you to create settings
screens consistent with the system settings.

c07.indd 221c07.indd 221 4/11/2012 10:13:09 AM4/11/2012 10:13:09 AM

Meier02275 c07 V2 - 03/19/2012 Page 222

222 x CHAPTER 7 FILES, SAVING STATE,AND PREFERENCES

SAVING SIMPLE APPLICATION DATA

The data-persistence techniques in Android provide options for balancing speed, effi ciency,
and robustness.

 ‰ Shared Preferences — When storing UI state, user preferences, or application settings, you
want a lightweight mechanism to store a known set of values. Shared Preferences let you save
groups of name/value pairs of primitive data as named preferences.

 ‰ Saved application UI state — Activities and Fragments include specialized event handlers to
record the current UI state when your application is moved to the background.

 ‰ Files — It’s not pretty, but sometimes writing to and reading from fi les is the only way to go.
Android lets you create and load fi les on the device’s internal or external media, providing
support for temporary caches and storing fi les in publicly accessible folders.

There are two lightweight techniques for saving simple application data for Android applications:
Shared Preferences and a set of event handlers used for saving Activity instance state. Both mecha-
nisms use an NVP mechanism to store simple primitive values. Both techniques support primitive
types Boolean, string, fl oat, long, and integer, making them ideal means of quickly storing default
values, class instance variables, the current UI state, and user preferences.

CREATING AND SAVING SHARED PREFERENCES

Using the SharedPreferences class, you can create named maps of name/value pairs that can be
persisted across sessions and shared among application components running within the same appli-
cation sandbox.

To create or modify a Shared Preference, call getSharedPreferences on the current Context, pass-
ing in the name of the Shared Preference to change.

SharedPreferences mySharedPreferences = getSharedPreferences(MY_PREFS,
 Activity.MODE_PRIVATE);

Shared Preferences are stored within the application’s sandbox, so they can be shared between an
application’s components but aren’t available to other applications.

To modify a Shared Preference, use the SharedPreferences.Editor class. Get the Editor object by
calling edit on the Shared Preferences object you want to change.

SharedPreferences.Editor editor = mySharedPreferences.edit();

Use the put<type> methods to insert or update the values associated with the specifi ed name:

// Store new primitive types in the shared preferences object.
editor.putBoolean(“isTrue”, true);
editor.putFloat(“lastFloat”, 1f);
editor.putInt(“wholeNumber”, 2);
editor.putLong(“aNumber”, 3l);
editor.putString(“textEntryValue”, “Not Empty”);

c07.indd 222c07.indd 222 4/11/2012 10:13:13 AM4/11/2012 10:13:13 AM

Meier02275 c07 V2 - 03/19/2012 Page 223

Creating a Settings Activity for the Earthquake Viewer x 223

To save edits, call apply or commit on the Editor object to save the changes asynchronously or syn-
chronously, respectively.

// Commit the changes.
editor.apply();

The apply method was introduced in Android API level 9 (Android 2.3). Calling
it causes a safe asynchronous write of the Shared Preference Editor object to be
performed. Because it is asynchronous, it is the preferred technique for saving
Shared Preferences.

If you require confi rmation of success or want to support earlier Android
releases, you can call the commit method, which blocks the calling thread and
returns true once a successful write has completed, or false otherwise.

RETRIEVING SHARED PREFERENCES

Accessing Shared Preferences, like editing and saving them, is done using the getSharedPrefer-
ences method.

Use the type-safe get<type> methods to extract saved values. Each getter takes a key and a default
value (used when no value has yet been saved for that key.)

// Retrieve the saved values.
boolean isTrue = mySharedPreferences.getBoolean(“isTrue”, false);
float lastFloat = mySharedPreferences.getFloat(“lastFloat”, 0f);
int wholeNumber = mySharedPreferences.getInt(“wholeNumber”, 1);
long aNumber = mySharedPreferences.getLong(“aNumber”, 0);
String stringPreference =
 mySharedPreferences.getString(“textEntryValue”, “”);

You can return a map of all the available Shared Preferences keys values by calling getAll, and
check for the existence of a particular key by calling the contains method.

Map<String, ?> allPreferences = mySharedPreferences.getAll();
boolean containsLastFloat = mySharedPreferences.contains(“lastFloat”);

CREATING A SETTINGS ACTIVITY FOR THE

EARTHQUAKE VIEWER

In the following example you build an Activity to set application preferences for the earthquake
viewer last seen in the previous chapter. The Activity lets users confi gure settings for a more person-
alized experience. You’ll provide the option to toggle automatic updates, control the frequency of
updates, and fi lter the minimum earthquake magnitude displayed.

c07.indd 223c07.indd 223 4/11/2012 10:13:13 AM4/11/2012 10:13:13 AM

Meier02275 c07 V2 - 03/19/2012 Page 224

224 x CHAPTER 7 FILES, SAVING STATE,AND PREFERENCES

Creating your own Activity to control user preferences is considered bad prac-
tice. Later in this chapter you’ll replace this Activity with a standard settings
screen using the Preferences Screen classes.

1. Open the Earthquake project you created in Chapter 6, “Using Internet Resources.” Add
new string resources to the res/values/strings.xml fi le for the labels to be displayed in
the Preference Screen. Also, add a string for the new Menu Item that will let users open the
Preference Screen:

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
 <string name=”app_name”>Earthquake</string>
 <string name=”quake_feed”>
 http://earthquake.usgs.gov/eqcenter/catalogs/1day-M2.5.xml
 </string>
 <string name=”menu_update”>Refresh Earthquakes</string>
 <string name=”auto_update_prompt”>Auto Update?</string>
 <string name=”update_freq_prompt”>Update Frequency</string>
 <string name=”min_quake_mag_prompt”>Minimum Quake Magnitude</string>
 <string name=”menu_preferences”>Preferences</string>
</resources>

2. Create a new preferences.xml layout resource in the res/layout folder for the
Preferences Activity. Include a check box for indicating the "automatic update" toggle,
and spinners to select the update rate and magnitude fi lter:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>
 <TextView
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/auto_update_prompt”
 />
 <CheckBox android:id=”@+id/checkbox_auto_update”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 />
 <TextView
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/update_freq_prompt”
 />
 <Spinner android:id=”@+id/spinner_update_freq”
 android:layout_width=“fill_parent“
 android:layout_height=“wrap_content“
 android:drawSelectorOnTop=“true“
 />

c07.indd 224c07.indd 224 4/11/2012 10:13:14 AM4/11/2012 10:13:14 AM

http://earthquake.usgs.gov/eqcenter/catalogs/1day-M2.5.xml
http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c07 V2 - 03/19/2012 Page 225

Creating a Settings Activity for the Earthquake Viewer x 225

 <TextView
 android:layout_width=“fill_parent“
 android:layout_height=“wrap_content“
 android:text=“@string/min_quake_mag_prompt“
 />
 <Spinner android:id=”@+id/spinner_quake_mag”
 android:layout_width=“fill_parent“
 android:layout_height=“wrap_content“
 android:drawSelectorOnTop=“true“
 />
 <LinearLayout
 android:orientation=“horizontal“
 android:layout_width=“fill_parent“
 android:layout_height=“wrap_content“>
 <Button android:id=“@+id/okButton“
 android:layout_width=“wrap_content“
 android:layout_height=“wrap_content“
 android:text=“@android:string/ok“
 />
 <Button android:id=“@+id/cancelButton“
 android:layout_width=“wrap_content“
 android:layout_height=“wrap_content“
 android:text=“@android:string/cancel“
 />
 </LinearLayout>
</LinearLayout>

3. Create four array resources in a new res/values/arrays.xml fi le. They will provide the
values to use for the update frequency and minimum magnitude spinners:

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
 <string-array name=”update_freq_options”>
 <item>Every Minute</item>
 <item>5 minutes</item>
 <item>10 minutes</item>
 <item>15 minutes</item>
 <item>Every Hour</item>
 </string-array>

 <string-array name=”magnitude”>
 <item>3</item>
 <item>5</item>
 <item>6</item>
 <item>7</item>
 <item>8</item>
 </string-array>

 <string-array name=”magnitude_options”>
 <item>3</item>
 <item>5</item>
 <item>6</item>
 <item>7</item>
 <item>8</item>
 </string-array>

c07.indd 225c07.indd 225 4/11/2012 10:13:15 AM4/11/2012 10:13:15 AM

Meier02275 c07 V2 - 03/19/2012 Page 226

226 x CHAPTER 7 FILES, SAVING STATE,AND PREFERENCES

 <string-array name=”update_freq_values”>
 <item>1</item>
 <item>5</item>
 <item>10</item>
 <item>15</item>
 <item>60</item>
 </string-array>
</resources>

4. Create a PreferencesActivity Activity. Override onCreate to infl ate the layout you cre-
ated in step 2, and get references to the check box and both the spinner controls. Then make
a call to the populateSpinners stub:

package com.paad.earthquake;

import android.app.Activity;
import android.content.Context;
import android.content.SharedPreferences;
import android.content.SharedPreferences.Editor;
import android.os.Bundle;
import android.preference.PreferenceManager;
import android.view.View;
import android.widget.ArrayAdapter;
import android.widget.Button;
import android.widget.CheckBox;
import android.widget.Spinner;

public class PreferencesActivity extends Activity {

 CheckBox autoUpdate;
 Spinner updateFreqSpinner;
 Spinner magnitudeSpinner;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.preferences);

 updateFreqSpinner = (Spinner)findViewById(R.id.spinner_update_freq);
 magnitudeSpinner = (Spinner)findViewById(R.id.spinner_quake_mag);
 autoUpdate = (CheckBox)findViewById(R.id.checkbox_auto_update);

 populateSpinners();
 }

 private void populateSpinners() {
 }
}

5. Fill in the populateSpinners method, using Array Adapters to bind each spinner to its cor-
responding array:

private void populateSpinners() {
 // Populate the update frequency spinner

c07.indd 226c07.indd 226 4/11/2012 10:13:15 AM4/11/2012 10:13:15 AM

Meier02275 c07 V2 - 03/19/2012 Page 227

Creating a Settings Activity for the Earthquake Viewer x 227

 ArrayAdapter<CharSequence> fAdapter;
 fAdapter = ArrayAdapter.createFromResource(this, R.array.update_freq_options,
 android.R.layout.simple_spinner_item);
 int spinner_dd_item = android.R.layout.simple_spinner_dropdown_item;
 fAdapter.setDropDownViewResource(spinner_dd_item);
 updateFreqSpinner.setAdapter(fAdapter);
 // Populate the minimum magnitude spinner
 ArrayAdapter<CharSequence> mAdapter;
 mAdapter = ArrayAdapter.createFromResource(this,
 R.array.magnitude_options,
 android.R.layout.simple_spinner_item);
 mAdapter.setDropDownViewResource(spinner_dd_item);
 magnitudeSpinner.setAdapter(mAdapter);
}

6. Add public static string values that you’ll use to identify the Shared Preference keys you’ll use
to store each preference value. Update the onCreate method to retrieve the named prefer-
ence and call updateUIFromPreferences. The updateUIFromPreferences method uses the
get<type> methods on the Shared Preference object to retrieve each preference value and
apply it to the current UI.

Use the default application Shared Preference object to save your settings values:

public static final String USER_PREFERENCE = “USER_PREFERENCE”;
public static final String PREF_AUTO_UPDATE = “PREF_AUTO_UPDATE”;
public static final String PREF_MIN_MAG_INDEX = “PREF_MIN_MAG_INDEX”;
public static final String PREF_UPDATE_FREQ_INDEX = “PREF_UPDATE_FREQ_INDEX”;

SharedPreferences prefs;

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.preferences);

 updateFreqSpinner = (Spinner)findViewById(R.id.spinner_update_freq);
 magnitudeSpinner = (Spinner)findViewById(R.id.spinner_quake_mag);
 autoUpdate = (CheckBox)findViewById(R.id.checkbox_auto_update);

 populateSpinners();

 Context context = getApplicationContext();
 prefs = PreferenceManager.getDefaultSharedPreferences(context);
 updateUIFromPreferences();
}

private void updateUIFromPreferences() {
 boolean autoUpChecked = prefs.getBoolean(PREF_AUTO_UPDATE, false);
 int updateFreqIndex = prefs.getInt(PREF_UPDATE_FREQ_INDEX, 2);
 int minMagIndex = prefs.getInt(PREF_MIN_MAG_INDEX, 0);

 updateFreqSpinner.setSelection(updateFreqIndex);
 magnitudeSpinner.setSelection(minMagIndex);
 autoUpdate.setChecked(autoUpChecked);
}

c07.indd 227c07.indd 227 4/11/2012 10:13:15 AM4/11/2012 10:13:15 AM

Meier02275 c07 V2 - 03/19/2012 Page 228

228 x CHAPTER 7 FILES, SAVING STATE,AND PREFERENCES

7. Still in the onCreate method, add event handlers for the OK and Cancel buttons. The Cancel
button should close the Activity, whereas the OK button should call savePreferences fi rst:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.preferences);
 updateFreqSpinner = (Spinner)findViewById(R.id.spinner_update_freq);
 magnitudeSpinner = (Spinner)findViewById(R.id.spinner_quake_mag);
 autoUpdate = (CheckBox)findViewById(R.id.checkbox_auto_update);

 populateSpinners();

 Context context = getApplicationContext();
 prefs = PreferenceManager.getDefaultSharedPreferences(context);
 updateUIFromPreferences();

 Button okButton = (Button) findViewById(R.id.okButton);
 okButton.setOnClickListener(new View.OnClickListener() {

 public void onClick(View view) {
 savePreferences();
 PreferencesActivity.this.setResult(RESULT_OK);
 finish();
 }
 });

 Button cancelButton = (Button) findViewById(R.id.cancelButton);
 cancelButton.setOnClickListener(new View.OnClickListener() {

 public void onClick(View view) {
 PreferencesActivity.this.setResult(RESULT_CANCELED);
 finish();
 }
 });
}

private void savePreferences() {
}

8. Fill in the savePreferences method to record the current preferences, based on the UI selec-
tions, to the Shared Preference object:

private void savePreferences() {
 int updateIndex = updateFreqSpinner.getSelectedItemPosition();
 int minMagIndex = magnitudeSpinner.getSelectedItemPosition();
 boolean autoUpdateChecked = autoUpdate.isChecked();

 Editor editor = prefs.edit();
 editor.putBoolean(PREF_AUTO_UPDATE, autoUpdateChecked);
 editor.putInt(PREF_UPDATE_FREQ_INDEX, updateIndex);
 editor.putInt(PREF_MIN_MAG_INDEX, minMagIndex);
 editor.commit();
}

c07.indd 228c07.indd 228 4/11/2012 10:13:15 AM4/11/2012 10:13:15 AM

Meier02275 c07 V2 - 03/19/2012 Page 229

Creating a Settings Activity for the Earthquake Viewer x 229

9. That completes the Preferences Activity. Make it accessible in the application by adding it
to the manifest:

<activity android:name=”.PreferencesActivity”
 android:label=”Earthquake Preferences”>
</activity>

10. Return to the Earthquake Activity, and add support for the new Shared Preferences
fi le and a Menu Item to display the Preferences Activity. Start by adding the new Menu
Item. Override the onCreateOptionsMenu method to include a new item that opens the
Preferences Activity and another to refresh the earthquake list:

static final private int MENU_PREFERENCES = Menu.FIRST+1;
static final private int MENU_UPDATE = Menu.FIRST+2;

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 super.onCreateOptionsMenu(menu);

 menu.add(0, MENU_PREFERENCES, Menu.NONE, R.string.menu_preferences);

 return true;
}

11. Override the onOptionsItemSelected method to
display the PreferencesActivity Activity when the
new Menu Item is selected. To launch the Preferences
Activity, create an explicit Intent, and pass it in to the
startActivityForResult method. This will launch the
Activity and alert the Earthquake class when the prefer-
ences are saved through the onActivityResult handler:

private static final int SHOW_PREFERENCES = 1;

public boolean onOptionsItemSelected(MenuItem item){
 super.onOptionsItemSelected(item);
 switch (item.getItemId()) {
 case (MENU_PREFERENCES): {
 Intent i = new Intent(this,
 PreferencesActivity.class);
 startActivityForResult(i, SHOW_PREFERENCES);
 return true;
 }
 }
 return false;
}

12. Launch your application and select Preferences from the
Activity menu. The Preferences Activity should be dis-
played, as shown in Figure 7-1. FIGURE 7-1

c07.indd 229c07.indd 229 4/11/2012 10:13:16 AM4/11/2012 10:13:16 AM

Meier02275 c07 V2 - 03/19/2012 Page 230

230 x CHAPTER 7 FILES, SAVING STATE,AND PREFERENCES

13. All that’s left is to apply the preferences to the earthquake functionality. Implementing the
automatic updates will be left until Chapter 9, “Working in the Background,” where you’ll
learn to use Services and background threads. For now you can put the framework in place
and apply the magnitude fi lter. Start by creating a new updateFromPreferences method in
the Earthquake Activity that reads the Shared Preference values and creates instance variables
for each of them:

public int minimumMagnitude = 0;
public boolean autoUpdateChecked = false;
public int updateFreq = 0;

private void updateFromPreferences() {
 Context context = getApplicationContext();
 SharedPreferences prefs =
 PreferenceManager.getDefaultSharedPreferences(context);

 int minMagIndex = prefs.getInt(PreferencesActivity.PREF_MIN_MAG_INDEX, 0);
 if (minMagIndex < 0)
 minMagIndex = 0;

 int freqIndex = prefs.getInt(PreferencesActivity.PREF_UPDATE_FREQ_INDEX, 0);
 if (freqIndex < 0)
 freqIndex = 0;

 autoUpdateChecked = prefs.getBoolean(PreferencesActivity.PREF_AUTO_UPDATE, false);

 Resources r = getResources();
 // Get the option values from the arrays.
 String[] minMagValues = r.getStringArray(R.array.magnitude);
 String[] freqValues = r.getStringArray(R.array.update_freq_values);

 // Convert the values to ints.
 minimumMagnitude = Integer.valueOf(minMagValues[minMagIndex]);
 updateFreq = Integer.valueOf(freqValues[freqIndex]);
}

14. Apply the magnitude fi lter by updating the addNewQuake method from the
EarthquakeListFragment to check a new earthquake’s magnitude before adding it to
the list:

private void addNewQuake(Quake _quake) {
 Earthquake earthquakeActivity = (Earthquake)getActivity();
 if (_quake.getMagnitude() > earthquakeActivity.minimumMagnitude) {
 // Add the new quake to our list of earthquakes.
 earthquakes.add(_quake);

 }

 // Notify the array adapter of a change.
 aa.notifyDataSetChanged();
}

15. Return to the Earthquake Activity and override the onActivityResult handler to call
updateFromPreferences and refresh the earthquakes whenever the Preferences Activity

c07.indd 230c07.indd 230 4/11/2012 10:13:16 AM4/11/2012 10:13:16 AM

Meier02275 c07 V2 - 03/19/2012 Page 231

Introducing the Preference Framework and the Preference Activity x 231

saves changes. Note that once again you are creating a new Thread on which to execute the
earthquake refresh code.

@Override
public void onActivityResult(int requestCode, int resultCode, Intent data) {
 super.onActivityResult(requestCode, resultCode, data);

 if (requestCode == SHOW_PREFERENCES)
 if (resultCode == Activity.RESULT_OK) {
 updateFromPreferences();
 FragmentManager fm = getFragmentManager();
 final EarthquakeListFragment earthquakeList =

(EarthquakeListFragment)fm.findFragmentById(R.id.EarthquakeListFragment);

 Thread t = new Thread(new Runnable() {
 public void run() {
 earthquakeList.refreshEarthquakes();
 }
 });
 t.start();
 }
}

16. Finally, call updateFromPreferences in onCreate of the Earthquake Activity to ensure the
preferences are applied when the Activity starts:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 updateFromPreferences();
}

All code snippets in this example are part of the Chapter 7 Earthquake Part 1
project, available for download at www.wrox.com.

INTRODUCING THE PREFERENCE FRAMEWORK AND THE

PREFERENCE ACTIVITY

Android offers an XML-driven framework to create system-style Preference Screens for your appli-
cations. By using this framework you can create Preference Activities that are consistent with those
used in both native and other third-party applications.

This has two distinct advantages:

 ‰ Users will be familiar with the layout and use of your settings screens.

 ‰ You can integrate settings screens from other applications (including system settings such as
location settings) into your application’s preferences.

c07.indd 231c07.indd 231 4/11/2012 10:13:16 AM4/11/2012 10:13:16 AM

http://www.wrox.com

Meier02275 c07 V2 - 03/19/2012 Page 232

232 x CHAPTER 7 FILES, SAVING STATE,AND PREFERENCES

The preference framework consists of four parts:

 ‰ Preference Screen layout — An XML fi le that defi nes the hierarchy of items displayed in your
Preference screens. It specifi es the text and associated controls to display, the allowed values,
and the Shared Preference keys to use for each control.

 ‰ Preference Activity and Preference Fragment — Extensions of PreferenceActivity and
PreferenceFragment respectively, that are used to host the Preference Screens. Prior to
Android 3.0, Preference Activities hosted the Preference Screen directly; since then, Preference
Screens are hosted by Preference Fragments, which, in turn, are hosted by Preference
Activities.

 ‰ Preference Header defi nition — An XML fi le that defi nes the Preference Fragments for your
application and the hierarchy that should be used to display them.

 ‰ Shared Preference Change Listener — An implementation of the
OnSharedPreferenceChangeListener class used to listen for changes to Shared Preferences.

Android API level 11 (Android 3.0) introduced signifi cant changes to the pref-
erence framework by introducing the concept of Preference Fragments and
Preference Headers. This is now the preferred technique for creating Activity
Preference screens.

As of the time of writing, Preference Fragments are not included in the support
library, restricting their use to devices Android 3.0 and above.

The following sections describe the best practice techniques for creating Activity
screens for Android 3.0+ devices, making note of how to achieve similar func-
tionality for older devices.

Defi ning a Preference Screen Layout in XML

Unlike in the standard UI layout, preference defi nitions are stored in the res/xml resources folder.

Although conceptually they are similar to the UI layout resources described in Chapter 4,
“Building User Interfaces,” Preference Screen layouts use a specialized set of controls designed
specifi cally for preferences. These native preference controls are described in the next
section.

Each preference layout is defi ned as a hierarchy, beginning with a single PreferenceScreen
element:

<?xml version=”1.0” encoding=”utf-8”?>
<PreferenceScreen
 xmlns:android=”http://schemas.android.com/apk/res/android”>
</PreferenceScreen>

You can include additional Preference Screen elements, each of which will be represented as a select-
able element that will display a new screen when clicked.

c07.indd 232c07.indd 232 4/11/2012 10:13:17 AM4/11/2012 10:13:17 AM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c07 V2 - 03/19/2012 Page 233

Introducing the Preference Framework and the Preference Activity x 233

Within each Preference Screen you can include any combina-
tion of PreferenceCategory and Preference<control>
elements. Preference Category elements, as shown in the fol-
lowing snippet, are used to break each Preference Screen into
subcategories using a title bar separator:

<PreferenceCategory
 android:title=”My Preference Category”/>

Figure 7-2 shows the SIM card lock, device administration,
and credential storage Preference Categories used on the
Security Preference Screen.

All that remains is to add the preference controls that will
be used to set the preferences. Although the specifi c attri-
butes available for each preference control vary, each of them
includes at least the following four:

 ‰ android:key — The Shared Preference key against
which the selected value will be recorded.

 ‰ android:title — The text displayed to represent the
preference.

 ‰ android:summary — The longer text description dis-
played in a smaller font below the title text.

 ‰ android:defaultValue — The default value that will be displayed (and selected) if no pref-
erence value has been assigned to the associated preference key.

Listing 7-1 shows a sample Preference Screen that includes a Preference Category and
CheckBox Preference.

LISTING 7-1: A simple Shared Preferences screen

<?xml version=”1.0” encoding=”utf-8”?>
<PreferenceScreen
 xmlns:android=”http://schemas.android.com/apk/res/android”>
 <PreferenceCategory
 android:title=”My Preference Category”>
 <CheckBoxPreference
 android:key=”PREF_CHECK_BOX”
 android:title=”Check Box Preference”
 android:summary=”Check Box Preference Description”
 android:defaultValue=”true”
 />
 </PreferenceCategory>
</PreferenceScreen>

code snippet PA4AD_Ch07_Preferences/res/xml/userpreferences.xml

FIGURE 7-2

c07.indd 233c07.indd 233 4/11/2012 10:13:17 AM4/11/2012 10:13:17 AM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c07 V2 - 03/19/2012 Page 234

234 x CHAPTER 7 FILES, SAVING STATE,AND PREFERENCES

When displayed, this Preference Screen will appear as shown in
Figure 7-3. You’ll learn how to display a Preference Screen later
in this chapter.

Native Preference Controls

Android includes several preference controls to build your
Preference Screens:

 ‰ CheckBoxPreference — A standard preference check box control used to set preferences to
true or false.

 ‰ EditTextPreference — Allows users to enter a string value as a preference. Selecting the
preference text at run time will display a text-entry dialog.

 ‰ ListPreference — The preference equivalent of a spinner. Selecting this preference will
display a dialog box containing a list of values from which to select. You can specify different
arrays to contain the display text and selection values.

 ‰ MultiSelectListPreference — Introduced in Android 3.0 (API level 11), this is the prefer-
ence equivalent of a check box list.

 ‰ RingtonePreference — A specialized List Preference that presents the list of available ring-
tones for user selection. This is particularly useful when you’re constructing a screen to con-
fi gure notifi cation settings.

You can use each preference control to construct your Preference Screen hierarchy. Alternatively, you
can create your own specialized preference controls by extending the Preference class (or any of
the subclasses listed above).

You can fi nd further details about preference controls at http://developer
.android.com/reference/android/preference/Preference.html.

Using Intents to Import System Preferences into Preference Screens

In addition to including your own Preference Screens, preference hierarchies can include Preference
Screens from other applications — including system preferences.

You can invoke any Activity within your Preference Screen using an Intent. If you add an Intent
node within a Preference Screen element, the system will interpret this as a request to call start
Activity using the specifi ed action. The following XML snippet adds a link to the system display
settings:

<?xml version=”1.0” encoding=”utf-8”?>
<PreferenceScreen xmlns:android=”http://schemas.android.com/apk/res/android”
 android:title=”Intent preference”
 android:summary=”System preference imported using an intent”>

FIGURE 7-3

c07.indd 234c07.indd 234 4/11/2012 10:13:18 AM4/11/2012 10:13:18 AM

http://developer
http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c07 V2 - 03/19/2012 Page 235

Introducing the Preference Framework and the Preference Activity x 235

 <intent android:action=”android.settings.DISPLAY_SETTINGS “/>
</PreferenceScreen>

The android.provider.Settings class includes a number of android.settings.* constants that
can be used to invoke the system settings screens. To make your own Preference Screens available
for invocation using this technique, simply add an Intent Filter to the manifest entry for the host
Preference Activity (described in detail in the following section):

<activity android:name=”.UserPreferences” android:label=”My User Preferences”>
 <intent-filter>
 <action android:name=”com.paad.myapp.ACTION_USER_PREFERENCE” />
 </intent-filter>
</activity>

Introducing the Preference Fragment

Since Android 3.0, the PreferenceFragment class has been used to host the preference screens
defi ned by Preferences Screen resources. To create a new Preference Fragment, extend the
PreferenceFragment class, as follows:

public class MyPreferenceFragment extends PreferenceFragment

To infl ate the preferences, override the onCreate handler and call addPreferencesFromResource,
as shown here:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 addPreferencesFromResource(R.xml.userpreferences);
}

Your application can include several different Preference Fragments, which will be grouped accord-
ing to the Preference Header hierarchy and displayed within a Preference Activity, as described in
the following sections.

Defi ning the Preference Fragment Hierarchy
Using Preference Headers

Preference headers are XML resources that describe how your Preference Fragments should be
grouped and displayed within a Preference Activity. Each header identifi es and allows you to select a
particular Preference Fragment.

The layout used to display the headers and their associated Fragments can vary depending on the
screen size and OS version. Figure 7-4 shows examples of how the same Preference Header defi ni-
tion is displayed on a phone and tablet.

Preference Headers are XML resources stored in the res/xml folder of your project hierarchy. The
resource ID for each header is the fi lename (without extension).

c07.indd 235c07.indd 235 4/11/2012 10:13:18 AM4/11/2012 10:13:18 AM

Meier02275 c07 V2 - 03/19/2012 Page 236

236 x CHAPTER 7 FILES, SAVING STATE,AND PREFERENCES

Each header must be associated with a particular Preference Fragment that will be displayed when
its header is selected. You must also specify a title and, optionally, a summary and icon resource to
represent each Fragment and the Preference Screen it contains, as shown in Listing 7-2.

LISTING 7-2: Defi ning a Preference Headers resource

<preference-headers xmlns:android=”http://schemas.android.com/apk/res/android”>
 <header android:fragment=”com.paad.preferences.MyPreferenceFragment”
 android:icon=”@drawable/preference_icon”
 android:title=”My Preferences”
 android:summary=”Description of these preferences” />
</preference-headers>

code snippet PA4AD_Ch07_Preferences/res/xml/preferenceheaders.xml

Like Preference Screens, you can invoke any Activity within your Preference Headers using an
Intent. If you add an Intent node within a header element, as shown in the following snippet, the
system will interpret this as a request to call startActivity using the specifi ed action:

<header android:icon=”@drawable/ic_settings_display”
 android:title=”Intent”
 android:summary=”Launches an Intent.”>
 <intent android:action=”android.settings.DISPLAY_SETTINGS “/>
</header>

Introducing the Preference Activity

The PreferenceActivity class is used to host the Preference Fragment hierarchy defi ned by a pref-
erence headers resource. Prior to Android 3.0, the Preference Activity was used to host Preference
Screens directly. For applications that target devices prior to Android 3.0, you may still need to use
the Preference Activity in this way.

FIGURE 7-4

c07.indd 236c07.indd 236 4/11/2012 10:13:18 AM4/11/2012 10:13:18 AM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c07 V2 - 03/19/2012 Page 237

Introducing the Preference Framework and the Preference Activity x 237

To create a new Preference Activity, extend the PreferenceActivity class as follows:

public class MyFragmentPreferenceActivity extends PreferenceActivity

When using Preference Fragments and headers, override the onBuildHeaders handler, calling load-
HeadersFromResource and specifying your preference headers resource fi le:

public void onBuildHeaders(List<Header> target) {
 loadHeadersFromResource(R.xml.userpreferenceheaders, target);
}

For legacy applications, you can infl ate the Preference Screen directly in the same way as you would
from a Preference Fragment — by overriding the onCreate handler and calling add
PreferencesFromResource, specifying the Preference Screen layout XML resource to display
within that Activity:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 addPreferencesFromResource(R.xml.userpreferences);
}

Like all Activities, the Preference Activity must be included in the application manifest:

<activity android:name=”.MyPreferenceActivity”
 android:label=”My Preferences”>
</activity>

To display the application settings hosted in this Activity, open it by calling startActivity or
startActivityForResult:

Intent i = new Intent(this, MyPreferenceActivity.class);
startActivityForResult(i, SHOW_PREFERENCES);

Backward Compatibility and Preference Screens

As noted earlier, the Preference Fragment and associated Preference Headers are not supported on
Android platforms prior to Android 3.0 (API level 11). As a result, if you want to create applications
that support devices running on both pre- and post-Honeycomb devices, you need to implement
separate Preference Activities to support both, and launch the appropriate Activity at run time, as
shown in Listing 7-3.

LISTING 7-3: Runtime selection of pre- or post-Honeycomb Preference Activities

Class c = Build.VERSION.SDK_INT < Build.VERSION_CODES.HONEYCOMB ?
 MyPreferenceActivity.class : MyFragmentPreferenceActivity.class;

Intent i = new Intent(this, c);
startActivityForResult(i, SHOW_PREFERENCES);

code snippet PA4AD Ch07_Preferences/src/MyActivity.java

c07.indd 237c07.indd 237 4/11/2012 10:13:19 AM4/11/2012 10:13:19 AM

Meier02275 c07 V2 - 03/19/2012 Page 238

238 x CHAPTER 7 FILES, SAVING STATE,AND PREFERENCES

Finding and Using the Shared Preferences
Set by Preference Screens

The Shared Preference values recorded for the options presented in a Preference Activity are stored
within the application’s sandbox. This lets any application component, including Activities, Services,
and Broadcast Receivers, access the values, as shown in the following snippet:

Context context = getApplicationContext();
SharedPreferences prefs = PreferenceManager.getDefaultSharedPreferences(context);
// TODO Retrieve values using get<type> methods.

Introducing On Shared Preference Change Listeners

The onSharedPreferenceChangeListener can be implemented to invoke a callback whenever a
particular Shared Preference value is added, removed, or modifi ed.

This is particularly useful for Activities and Services that use the Shared Preference framework to
set application preferences. Using this handler, your application components can listen for changes
to user preferences and update their UIs or behavior, as required.

Register your On Shared Preference Change Listeners using the Shared Preference you want
to monitor:

public class MyActivity extends Activity implements
 OnSharedPreferenceChangeListener {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Register this OnSharedPreferenceChangeListener
 SharedPreferences prefs =
 PreferenceManager.getDefaultSharedPreferences(this);
 prefs.registerOnSharedPreferenceChangeListener(this);
 }

 public void onSharedPreferenceChanged(SharedPreferences prefs,
 String key) {
 // TODO Check the shared preference and key parameters
 // and change UI or behavior as appropriate.
 }
}

CREATING A STANDARD PREFERENCE ACTIVITY FOR THE

EARTHQUAKE VIEWER

Previously in this chapter you created a custom Activity to let users modify the application settings
for the earthquake viewer. In this example you replace this custom Activity with the standard appli-
cation settings framework described in the previous section.

c07.indd 238c07.indd 238 4/11/2012 10:13:19 AM4/11/2012 10:13:19 AM

Meier02275 c07 V2 - 03/19/2012 Page 239

Creating a Standard Preference Activity for the Earthquake Viewer x 239

This example describes two ways of creating a Preference Activity — fi rst, using the leg-
acy PreferencesActivity, and then a backward-compatible alternative using the newer
PreferenceFragment techniques.

1. Start by creating a new XML resource folder at res/xml. Within it create a new
userpreferences.xml fi le. This fi le will defi ne the settings UI for your earthquake
application settings. Use the same controls and data sources as in the previous Activity, but
this time create them using the standard application settings framework. Note that in this
example difference key names are selected. This is because where you were previously record-
ing integers, you’re now recording strings. To avoid type mismatches when the application
attempts to read the saved preferences, use a different key name.

<?xml version=”1.0” encoding=”utf-8”?>
<PreferenceScreen
 xmlns:android=”http://schemas.android.com/apk/res/android”>
 <CheckBoxPreference
 android:key=”PREF_AUTO_UPDATE”
 android:title=”Auto refresh”
 android:summary=”Select to turn on automatic updating”
 android:defaultValue=”true”
 />
 <ListPreference
 android:key=”PREF_UPDATE_FREQ”
 android:title=”Refresh frequency”
 android:summary=”Frequency at which to refresh earthquake list”
 android:entries=”@array/update_freq_options”
 android:entryValues=”@array/update_freq_values”
 android:dialogTitle=”Refresh frequency”
 android:defaultValue=”60”
 />
 <ListPreference
 android:key=”PREF_MIN_MAG”
 android:title=”Minimum magnitude”
 android:summary=”Select the minimum magnitude earthquake to report”
 android:entries=”@array/magnitude_options”
 android:entryValues=”@array/magnitude”
 android:dialogTitle=”Magnitude”
 android:defaultValue=”3”
 />
</PreferenceScreen>

2. Open the PreferencesActivity Activity and modify its inheritance to extend
PreferenceActivity:

public class PreferencesActivity extends PreferenceActivity {

3. The Preference Activity will handle the controls used in the UI, so you can remove the
variables used to store the check box and spinner objects. You can also remove the popu-
lateSpinners, updateUIFromPreferences, and savePreferences methods. Update the
preference name strings to match those used in the user preferences defi nition in step 1.

public static final String PREF_MIN_MAG = “PREF_MIN_MAG”;
public static final String PREF_UPDATE_FREQ = “PREF_UPDATE_FREQ”;

c07.indd 239c07.indd 239 4/11/2012 10:13:20 AM4/11/2012 10:13:20 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c07 V2 - 03/19/2012 Page 240

240 x CHAPTER 7 FILES, SAVING STATE,AND PREFERENCES

4. Update onCreate by removing all the references to the UI controls and the OK and Cancel
buttons. Instead of using these, infl ate the userpreferences.xml fi le you created in step 1:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 addPreferencesFromResource(R.xml.userpreferences);
}

5. Open the Earthquake Activity and update the updateFromPreferencesMethod. Using this
technique, the selected value itself is stored in the preferences, so there’s no need to perform
the array lookup steps.

private void updateFromPreferences() {
 Context context = getApplicationContext();
 SharedPreferences prefs =
 PreferenceManager.getDefaultSharedPreferences(context);

 minimumMagnitude =
 Integer.parseInt(prefs.getString(PreferencesActivity.PREF_MIN_MAG, “3”));
 updateFreq =
 Integer.parseInt(prefs.getString(PreferencesActivity.PREF_UPDATE_FREQ, “60”));

 autoUpdateChecked = prefs.getBoolean(PreferencesActivity.PREF_AUTO_UPDATE, false);
}

6. Update the onActivityResult handler to remove the check for the return value.
Using this mechanism, all changes to user preferences
are applied as soon as they are made.

public void onActivityResult(int requestCode, int
resultCode, Intent data) {
 super.onActivityResult(requestCode, resultCode,
 data);

 if (requestCode == SHOW_PREFERENCES)
 updateFromPreferences();

 FragmentManager fm = getFragmentManager();
 EarthquakeListFragment earthquakeList =
 (EarthquakeListFragment)
 fm.findFragmentById(R.id.EarthquakeListFragment);

 Thread t = new Thread(new Runnable() {
 public void run() {
 earthquakeList.refreshEarthquakes();
 }
 });
 t.start();
}

7. If you run your application and select the Preferences
Menu Item, your new “native” settings screen should be
visible, as shown in Figure 7-5. FIGURE 7-5

c07.indd 240c07.indd 240 4/11/2012 10:13:20 AM4/11/2012 10:13:20 AM

Meier02275 c07 V2 - 03/19/2012 Page 241

Creating a Standard Preference Activity for the Earthquake Viewer x 241

Now create an backward-compatible alternative implementation using the newer Preference
Fragments and Preference Headers.

1. Start by creating a new UserPreferenceFragment class that extends the Preference
Fragment:

public class UserPreferenceFragment extends PreferenceFragment

2. Override its onCreate handler to populate the Fragment with the Preference screen, as you
did in step 4 above to populate the legacy Preference Activity:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 addPreferencesFromResource(R.xml.userpreferences);
}

3. Add your Preference Fragment to a new preference_headers.xml fi le in the res/xml
folder.

<preference-headers xmlns:android=”http://schemas.android.com/apk/res/android”>
 <header android:fragment=”com.paad.earthquake.UserPreferenceFragment”
 android:title=”Settings”
 android:summary=”Earthquake Refresh Settings” />
</preference-headers>

4. Make a copy of the PreferencesActivity class, naming the copy FragmentPreferences:

public class FragmentPreferences extends PreferenceActivity

5. Add the new User Fragment Preferences Activity to the application manifest.

<activity android:name=”.FragmentPreferences”/>

6. Open the User Fragment Preferences Activity and remove the onCreate handler completely.
Instead, override the onBuildHeaders method, infl ating the headers you defi ned in step 3:

@Override
public void onBuildHeaders(List<Header> target) {
 loadHeadersFromResource(R.xml.preference_headers, target);
}

7. Finally, open the Earthquake Activity and modify the onOptionsItemSelected method to
select the appropriate Preference Activity. Create an explicit Intent based on the host plat-
form version and pass it in to the startActivityForResult method:

private static final int SHOW_PREFERENCES = 1;
public boolean onOptionsItemSelected(MenuItem item){
 super.onOptionsItemSelected(item);
 switch (item.getItemId()) {

 case (MENU_PREFERENCES): {
 Class c = Build.VERSION.SDK_INT < Build.VERSION_CODES.HONEYCOMB ?
 PreferencesActivity.class : FragmentPreferences.class;
 Intent i = new Intent(this, c);

c07.indd 241c07.indd 241 4/11/2012 10:13:21 AM4/11/2012 10:13:21 AM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c07 V2 - 03/19/2012 Page 242

242 x CHAPTER 7 FILES, SAVING STATE,AND PREFERENCES

 startActivityForResult(i, SHOW_PREFERENCES);
 return true;
 }
 }
 return false;
}

All the code snippets in this example are part of the Chapter 7 Earthquake Part 2
project, available for download at www.wrox.com.

PERSISTING THE APPLICATION INSTANCE STATE

To save Activity instance variables, Android offers two specialized variations of Shared Preferences.
The fi rst uses a Shared Preference named specifi cally for your Activity, whereas the other relies on a
series of lifecycle event handlers.

Saving Activity State Using Shared Preferences

If you want to save Activity information that doesn’t need to be shared with other components
(e.g., class instance variables), you can call Activity.getPreferences()without specifying a
Shared Preferences name. This returns a Shared Preference using the calling Activity’s class name as
the Shared Preference name.

// Create or retrieve the activity preference object.
SharedPreferences activityPreferences =
 getPreferences(Activity.MODE_PRIVATE);

// Retrieve an editor to modify the shared preferences.
SharedPreferences.Editor editor = activityPreferences.edit();

// Retrieve the View
TextView myTextView = (TextView)findViewById(R.id.myTextView);

// Store new primitive types in the shared preferences object.
editor.putString(“currentTextValue”,
 myTextView.getText().toString());

// Commit changes.
editor.apply();

Saving and Restoring Activity Instance State Using the
Lifecycle Handlers

Activities offer the onSaveInstanceState handler to persist data associated with UI state across
sessions. It’s designed specifi cally to persist UI state should an Activity be terminated by the run
time, either in an effort to free resources for foreground applications or to accommodate restarts
caused by hardware confi guration changes.

c07.indd 242c07.indd 242 4/11/2012 10:13:21 AM4/11/2012 10:13:21 AM

http://www.wrox.com

Meier02275 c07 V2 - 03/19/2012 Page 243

Persisting the Application Instance State x 243

If an Activity is closed by the user (by pressing the Back button), or programmatically with a call to
finish, the instance state bundle will not be passed in to onCreate or onRestoreInstanceState
when the Activity is next created. Data that should be persisted across user sessions should be stored
using Shared Preferences, as described in the previous sections.

By overriding an Activity’s onSaveInstanceState event handler, you can use its Bundle param-
eter to save UI instance values. Store values using the same put methods as shown for Shared
Preferences, before passing the modifi ed Bundle into the superclass’s handler:

private static final String TEXTVIEW_STATE_KEY = “TEXTVIEW_STATE_KEY”;

@Override
public void onSaveInstanceState(Bundle saveInstanceState) {
 // Retrieve the View
 TextView myTextView = (TextView)findViewById(R.id.myTextView);

 // Save its state
 saveInstanceState.putString(TEXTVIEW_STATE_KEY,
 myTextView.getText().toString());

 super.onSaveInstanceState(saveInstanceState);
}

This handler will be triggered whenever an Activity completes its active lifecycle, but only when
it’s not being explicitly fi nished (with a call to finish). As a result, it’s used to ensure a consistent
Activity state between active lifecycles of a single user session.

The saved Bundle is passed in to the onRestoreInstanceState and onCreate methods if the appli-
cation is forced to restart during a session.

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 TextView myTextView = (TextView)findViewById(R.id.myTextView);

 String text = “”;
 if (savedInstanceState != null &&
 savedInstanceState.containsKey(TEXTVIEW_STATE_KEY))
 text = savedInstanceState.getString(TEXTVIEW_STATE_KEY);

 myTextView.setText(text);
}

Saving and Restoring Fragment Instance State Using the
Lifecycle Handlers

The UI for most applications will be encapsulated within Fragments. Accordingly, Fragments also
include an onSaveInstanceState handler that works in much the same way as its Activity counterpart.

The instance state persisted in the bundle is passed as a parameter to the Fragment’s onCreate,
onCreateView, and onActivityCreated handlers.

c07.indd 243c07.indd 243 4/11/2012 10:13:21 AM4/11/2012 10:13:21 AM

Meier02275 c07 V2 - 03/19/2012 Page 244

244 x CHAPTER 7 FILES, SAVING STATE,AND PREFERENCES

If an Activity is destroyed and restarted to handle a hardware confi guration change, such as the
screen orientation changing, you can request that your Fragment instance be retained. By calling
setRetainInstance within a Fragment’s onCreate handler, you specify that Fragment’s instance
should not be killed and restarted when its associated Activity is re-created.

As a result, the onDestroy and onCreate handlers for a retained Fragment will not be called when
the device confi guration changes and the attached Activity is destroyed and re-created. This can
provide a signifi cant effi ciency improvement if you move the majority of your object creation into
onCreate, while using onCreateView to update the UI with the values stored within those persisted
instance values.

Note that the rest of the Fragment’s lifecycle handlers, including onAttach, onCreateView,
onActivityCreated, onStart, onResume, and their corresponding tear-down handlers, will still
be called.

Listing 7-4 shows how to use the lifecycle handlers to record the current UI state while taking
advantage of the effi ciency gains associated with retaining the Fragment instance.

LISTING 7-4: Persisting UI state by using lifecycle handlers and retaining Fragment instances

public class MyFragment extends Fragment {

 private static String USER_SELECTION = “USER_SELECTION”;
 private int userSelection = 0;
 private TextView tv;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setRetainInstance(true);
 if (savedInstanceState != null)
 userSelection = savedInstanceState.getInt(USER_SELECTION);
 }

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container,
 Bundle savedInstanceState) {
 View v = inflater.inflate(R.layout.mainfragment, container, false);

 tv = (TextView)v.findViewById(R.id.text);
 setSelection(userSelection);

 Button b1 = (Button)v.findViewById(R.id.button1);
 Button b2 = (Button)v.findViewById(R.id.button2);
 Button b3 = (Button)v.findViewById(R.id.button3);

 b1.setOnClickListener(new OnClickListener() {
 public void onClick(View arg0) {
 setSelection(1);
 }

c07.indd 244c07.indd 244 4/11/2012 10:13:22 AM4/11/2012 10:13:22 AM

Meier02275 c07 V2 - 03/19/2012 Page 245

Including Static Files as Resources x 245

 });

 b2.setOnClickListener(new OnClickListener() {
 public void onClick(View arg0) {
 setSelection(2);
 }
 });

 b3.setOnClickListener(new OnClickListener() {
 public void onClick(View arg0) {
 setSelection(3);
 }
 });

 return v;
 }

 private void setSelection(int selection) {
 userSelection = selection;
 tv.setText(“Selected: “ + selection);
 }

 @Override
 public void onSaveInstanceState(Bundle outState) {
 outState.putInt(USER_SELECTION, userSelection);
 super.onSaveInstanceState(outState);
 }
}

code snippet PA4AD_Ch07_Preferences/src/MyFragment.java

INCLUDING STATIC FILES AS RESOURCES

If your application requires extern al fi le resources, you can include them in your distribution pack-
age by placing them in the res/raw folder of your project hierarchy.

To access these read-only fi le resources, call the openRawResource method from your application’s
Resource object to receive an InputStream based on the specifi ed fi le. Pass in the fi lename (without
the extension) as the variable name from the R.raw class, as shown in the following skeleton code:

Resources myResources = getResources();
InputStream myFile = myResources.openRawResource(R.raw.myfilename);

Adding raw fi les to your resources hierarchy is an excellent alternative for large, preexisting data
sources (such as dictionaries) for which it’s not desirable (or even possible) to convert them into
Android databases.

Android’s resource mechanism lets you specify alternative resource fi les for different languages,
locations, and hardware confi gurations. For example, you could create an application that loads a
different dictionary resource based on the user’s language settings.

c07.indd 245c07.indd 245 4/11/2012 10:13:22 AM4/11/2012 10:13:22 AM

Meier02275 c07 V2 - 03/19/2012 Page 246

246 x CHAPTER 7 FILES, SAVING STATE,AND PREFERENCES

WORKING WITH THE FILE SYSTEM

It’s good practice to use Shared Preferences or a database to store your application data, but there
may still be times when you’ll want to use fi les directly rather than rely on Android’s managed
mechanisms — particularly when working with multimedia fi les.

File-Management Tools

Android supplies some basic fi le-management tools to help you deal with the fi le system. Many of
these utilities are located within the java.io.File package.

Complete coverage of Java fi le-management utilities is beyond the scope of this book, but Android
does supply some specialized utilities for fi le management that are available from the
application Context.

 ‰ deleteFile — Enables you to remove fi les created by the current application

 ‰ fileList — Returns a string array that includes all the fi les created by the current
application

These methods are particularly useful for cleaning up temporary fi les left behind if your application
crashes or is killed unexpectedly.

Using Application-Specifi c Folders to Store Files

Many applications will create or download fi les that are specifi c to the application. There are two
options for storing these application-specifi c fi les: internally or externally.

When referring to the external storage, we refer to the shared/media storage that
is accessible by all applications and can typically be mounted to a computer fi le
system when the device is connected via USB. Although it is typically located on
the SD Card, some devices implement this as a separate partition on the internal
storage.

The most important thing to remember when storing fi les on external storage is
that no security is enforced on fi les stored here. Any application can access, over-
write, or delete fi les stored on the external storage.

It’s also important to remember that fi les stored on external storage may not
always be available. If the SD Card is ejected, or the device is mounted for access
via a computer, your application will be unable to read (or create) fi les on the
external storage.

Android offers two corresponding methods via the application Context, getDir and
getExternalFilesDir, both of which return a File object that contains the path to the internal and
external application fi le storage directory, respectively.

c07.indd 246c07.indd 246 4/11/2012 10:13:23 AM4/11/2012 10:13:23 AM

Meier02275 c07 V2 - 03/19/2012 Page 247

Working with the File System x 247

All fi les stored in these directories or the subfolders will be erased when your application is
uninstalled.

The getExternalFilesDir method was introduced in Android API level 8
(Android 2.2). To support earlier platform releases, you can call Environment
.getExternalStorageDirectory to return a path to the root of the external
storage.

It’s good practice to store your application-specifi c data in its own subdirectory
using the same style as getExternalFilesDir — that is, /Android/data/[Your
Package Name]/files.

Note that this work-around will not automatically delete your application fi les
when it is uninstalled.

Both of these methods accept a string parameter that can be used to specify the subdirectory into
which you want to place your fi les. In Android 2.2 (API level 8) the Environment class introduced
a number of DIRECTORY_[Category] string constants that represent standard directory names,
including downloads, images, movies, music, and camera fi les.

Files stored in the application folders should be specifi c to the parent application and are typically
not detected by the media-scanner, and therefore won’t be added to the Media Library automati-
cally. If your application downloads or creates fi les that should be added to the Media Library or
otherwise made available to other applications, consider putting them in the public external storage
directory, as described later in this chapter.

Creating Private Application Files

Android offers the openFileInput and openFileOutput methods to simplify reading and writing
streams from and to fi les stored in the application’s sandbox.

String FILE_NAME = “tempfile.tmp”;

// Create a new output file stream that’s private to this application.
FileOutputStream fos = openFileOutput(FILE_NAME, Context.MODE_PRIVATE);
// Create a new file input stream.
FileInputStream fis = openFileInput(FILE_NAME);

These methods support only those fi les in the current application folder; specifying path separators
will cause an exception to be thrown.

If the fi lename you specify when creating a FileOutputStream does not exist, Android will create
it for you. The default behavior for existing fi les is to overwrite them; to append an existing fi le,
specify the mode as Context.MODE_APPEND.

By default, fi les created using the openFileOutput method are private to the calling application — a
different application will be denied access. The standard way to share a fi le between applications is
to use a Content Provider. Alternatively, you can specify either Context.MODE_WORLD_READABLE or

c07.indd 247c07.indd 247 4/11/2012 10:13:23 AM4/11/2012 10:13:23 AM

Meier02275 c07 V2 - 03/19/2012 Page 248

248 x CHAPTER 7 FILES, SAVING STATE,AND PREFERENCES

Context.MODE_WORLD_WRITEABLE when creating the output fi le, to make it available in other appli-
cations, as shown in the following snippet:

String OUTPUT_FILE = “publicCopy.txt”;
FileOutputStream fos = openFileOutput(OUTPUT_FILE, Context.MODE_WORLD_WRITEABLE);

You can fi nd the location of fi les stored in your sandbox by calling getFilesDir. This method will
return the absolute path to the fi les created using openFileOutput:

File file = getFilesDir();
Log.d(“OUTPUT_PATH_”, file.getAbsolutePath());

Using the Application File Cache

Should your application need to cache temporary fi les, Android offers both a managed internal
cache, and (since Android API level 8) an unmanaged external cache. You can access them by call-
ing the getCacheDir and getExternalCacheDir methods, respectively, from the current Context.

Files stored in either cache location will be erased when the application is uninstalled. Files stored in
the internal cache will potentially be erased by the system when it is running low on available stor-
age; fi les stored on the external cache will not be erased, as the system does not track available stor-
age on external media.

In either case it’s good form to monitor and manage the size and age of your cache, deleting fi les
when a reasonable maximum cache size is exceeded.

Storing Publicly Readable Files

Android 2.2 (API level 8) also includes a convenience method, Environment.getExternal
StoragePublicDirectory, that can be used to fi nd a path in which to store your application fi les.
The returned location is where users will typically place and manage their own fi les of each type.

This is particularly useful for applications that provide functionality that replaces or augments sys-
tem applications, such as the camera, that store fi les in standard locations.

The getExternalStoragePublicDirectory method accepts a String parameter that determines
which subdirectory you want to access using a series of Environment static constants:

 ‰ DIRECTORY_ALARMS — Audio fi les that should be available as user-selectable alarm sounds

 ‰ DIRECTORY_DCIM — Pictures and videos taken by the device

 ‰ DIRECTORY_DOWNLOADS — Files downloaded by the user

 ‰ DIRECTORY_MOVIES — Movies

 ‰ DIRECTORY_MUSIC — Audio fi les that represent music

 ‰ DIRECTORY_NOTIFICATIONS — Audio fi les that should be available as user-selectable notifi -
cation sounds

 ‰ DIRECTORY_PICTURES — Pictures

c07.indd 248c07.indd 248 4/11/2012 10:13:24 AM4/11/2012 10:13:24 AM

Meier02275 c07 V2 - 03/19/2012 Page 249

Working with the File System x 249

 ‰ DIRECTORY_PODCASTS — Audio fi les that represent podcasts

 ‰ DIRECTORY_RINGTONES — Audio fi les that should be available as user-selectable ringtones

Note that if the returned directory doesn’t exit, you must create it before writing fi les to the direc-
tory, as shown in the following snippet:

String FILE_NAME = “MyMusic.mp3”;

File path = Environment.getExternalStoragePublicDirectory(
 Environment.DIRECTORY_MUSIC);

File file = new File(path, FILE_NAME);

try {
 path.mkdirs();
 [... Write Files ...]
} catch (IOException e) {
 Log.d(TAG, “Error writing “ + FILE_NAME, e);
}

c07.indd 249c07.indd 249 4/11/2012 10:13:24 AM4/11/2012 10:13:24 AM

c07.indd 250c07.indd 250 4/11/2012 10:13:24 AM4/11/2012 10:13:24 AM

Meier02275 c08 V2 - 03/20/2012 Page 251

8
Databases and Content
Providers

WHAT’S IN THIS CHAPTER?

 ‰ Creating databases and using SQLite

 ‰ Using Content Providers, Cursors, and Content Values to store,

share, and consume application data

 ‰ Asynchronously querying Content Providers using Cursor Loaders

 ‰ Adding search capabilities to your applications

 ‰ Using the native Media Store, Contacts, and Calendar Content

Providers

This chapter introduces persistent data storage in Android, starting with the SQLite database
library. SQLite offers a powerful SQL database library that provides a robust persistence layer
over which you have total control.

You’ll also learn how to build and use Content Providers to store, share, and consume
structured data within and between applications. Content Providers offer a generic interface to
any data source by decoupling the data storage layer from the application layer. You’ll see how
to query Content Providers asynchronously to ensure your application remains responsive.

Although access to a database is restricted to the application that created it, Content Providers
offer a standard interface your applications can use to share data with and consume data from
other applications — including many of the native data stores.

Having created an application with data to store, you’ll learn how to add search functionality
to your application and how to build Content Providers that can provide real-time search
suggestions.

c08.indd 251c08.indd 251 4/18/2012 3:48:35 PM4/18/2012 3:48:35 PM

Meier02275 c08 V2 - 03/20/2012 Page 252

252 x CHAPTER 8 DATABASES AND CONTENT PROVIDERS

Because Content Providers can be used across application boundaries, you have the opportunity to
integrate your own application with several native Content Providers, including contacts, calendar,
and the Media Store. You’ll learn how to store and retrieve data from these core Android applica-
tions to provide your users with a richer, more consistent, and fully integrated user experience.

INTRODUCING ANDROID DATABASES

Android provides structured data persistence through a combination of SQLite databases and
Content Providers.

SQLite databases can be used to store application data using a managed, structured approach.
Android offers a full SQLite relational database library. Every application can create its own data-
bases over which it has complete control.

Having created your underlying data store, Content Providers offer a generic, well-defi ned interface
for using and sharing data that provides a consistent abstraction from the underlying data source.

SQLite Databases

Using SQLite you can create fully encapsulated relational databases for your applications. Use them
to store and manage complex, structured application data.

Android databases are stored in the /data/data/<package_name>/databases folder on your
device (or emulator). All databases are private, accessible only by the application that created them.

Database design is a big topic that deserves more thorough coverage than is possible within this
book. It is worth highlighting that standard database best practices still apply in Android. In par-
ticular, when you’re creating databases for resource-constrained devices (such as mobile phones), it’s
important to normalize your data to minimize redundancy.

Content Providers

Content Providers provide an interface for publishing and consuming data, based around a simple
URI addressing model using the content:// schema. They enable you to decouple your application
layers from the underlying data layers, making your applications data-source agnostic by abstracting
the underlying data source.

Content Providers can be shared between applications, queried for results, have their existing
records updated or deleted, and have new records added. Any application — with the appropriate
permissions — can add, remove, or update data from any other application, including the native
Android Content Providers.

Several native Content Providers have been made accessible for access by third-party applications,
including the contact manager, media store, and calendar, as described later in this chapter.

By publishing your own Content Providers, you make it possible for you (and other developers) to
incorporate and extend your data in new applications.

c08.indd 252c08.indd 252 4/18/2012 3:48:39 PM4/18/2012 3:48:39 PM

Meier02275 c08 V2 - 03/20/2012 Page 253

Content Values and Cursors x 253

INTRODUCING SQLITE

SQLite is a well-regarded relational database management system (RDBMS). It is:

 ‰ Open-source

 ‰ Standards-compliant

 ‰ Lightweight

 ‰ Single-tier

It has been implemented as a compact C library that’s included as part of the Android
software stack.

By being implemented as a library, rather than running as a separate ongoing process, each SQLite
database is an integrated part of the application that created it. This reduces external dependencies,
minimizes latency, and simplifi es transaction locking and synchronization.

SQLite has a reputation for being extremely reliable and is the database system of choice for many
consumer electronic devices, including many MP3 players and smartphones.

Lightweight and powerful, SQLite differs from many conventional database engines by loosely
typing each column, meaning that column values are not required to conform to a single type;
instead, each value is typed individually in each row. As a result, type checking isn’t necessary when
assigning or extracting values from each column within a row.

For more comprehensive coverage of SQLite, including its particular strengths
and limitations, check out the offi cial site, at www.sqlite.org.

CONTENT VALUES AND CURSORS

Content Values are used to insert new rows into tables. Each ContentValues object represents a
single table row as a map of column names to values.

Database queries are returned as Cursor objects. Rather than extracting and returning a copy of
the result values, Cursors are pointers to the result set within the underlying data. Cursors provide a
managed way of controlling your position (row) in the result set of a database query.

The Cursor class includes a number of navigation functions, including, but not limited to, the
following:

 ‰ moveToFirst — Moves the cursor to the fi rst row in the query result

 ‰ moveToNext — Moves the cursor to the next row

 ‰ moveToPrevious — Moves the cursor to the previous row

c08.indd 253c08.indd 253 4/18/2012 3:48:39 PM4/18/2012 3:48:39 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://www.sqlite.org

Meier02275 c08 V2 - 03/20/2012 Page 254

254 x CHAPTER 8 DATABASES AND CONTENT PROVIDERS

 ‰ getCount — Returns the number of rows in the result set

 ‰ getColumnIndexOrThrow — Returns the zero-based index for the column with the specifi ed
name (throwing an exception if no column exists with that name)

 ‰ getColumnName — Returns the name of the specifi ed column index

 ‰ getColumnNames — Returns a string array of all the column names in the current Cursor

 ‰ moveToPosition — Moves the cursor to the specifi ed row

 ‰ getPosition — Returns the current cursor position

Android provides a convenient mechanism to ensure queries are performed asynchronously.
The CursorLoader class and associated Loader Manager (described later in this chapter) were
 introduced in Android 3.0 (API level 11) and are now also available as part of the support library,
allowing you to leverage them while still supporting earlier Android releases.

Later in this chapter you’ll learn how to query a database and how to extract specifi c row/column
values from the resulting Cursors.

WORKING WITH SQLITE DATABASES

This section shows you how to create and interact with SQLite databases within your applications.

When working with databases, it’s good form to encapsulate the underlying database and expose
only the public methods and constants required to interact with that database, generally using
what’s often referred to as a contract or helper class. This class should expose database constants,
particularly column names, which will be required for populating and querying the database. Later
in this chapter you’ll be introduced to Content Providers, which can also be used to expose these
interaction constants.

Listing 8-1 shows a sample of the type of database constants that should be made public within a
helper class.

LISTING 8-1: Skeleton code for contract class constants

// The index (key) column name for use in where clauses.
public static final String KEY_ID = “_id”;

// The name and column index of each column in your database.
// These should be descriptive.
public static final String KEY_GOLD_HOARD_NAME_COLUMN =
 “GOLD_HOARD_NAME_COLUMN”;
public static final String KEY_GOLD_HOARD_ACCESSIBLE_COLUMN =
 “OLD_HOARD_ACCESSIBLE_COLUMN”;
public static final String KEY_GOLD_HOARDED_COLUMN =
 “GOLD_HOARDED_COLUMN”;
// TODO: Create public field for each column in your table.

code snippet PA4AD_ Ch08_DatabaseSkeleton/src/MyHoardDatabase.java

c08.indd 254c08.indd 254 4/18/2012 3:48:39 PM4/18/2012 3:48:39 PM

Meier02275 c08 V2 - 03/20/2012 Page 255

Working with SQLite Databases x 255

Introducing the SQLiteOpenHelper

SQLiteOpenHelper is an abstract class used to implement the best practice pattern for creating,
opening, and upgrading databases.

By implementing an SQLite Open Helper, you hide the logic used to decide if a database needs to be
created or upgraded before it’s opened, as well as ensure that each operation is completed effi ciently.

It’s good practice to defer creating and opening databases until they’re needed. The SQLite Open
Helper caches database instances after they’ve been successfully opened, so you can make requests
to open the database immediately prior to performing a query or transaction. For the same reason,
there is no need to close the database manually unless you no longer need to use it again.

Database operations, especially opening or creating databases, can be time-
consuming. To ensure this doesn’t impact the user experience, make all database
transactions asynchronous.

Listing 8-2 shows how to extend the SQLiteOpenHelper class by overriding the constructor,
 onCreate, and onUpgrade methods to handle the creation of a new database and upgrading to a
new version, respectively.

LISTING 8-2: Implementing an SQLite Open Helper

private static class HoardDBOpenHelper extends SQLiteOpenHelper {

 private static final String DATABASE_NAME = “myDatabase.db”;
 private static final String DATABASE_TABLE = “GoldHoards”;
 private static final int DATABASE_VERSION = 1;

 // SQL Statement to create a new database.
 private static final String DATABASE_CREATE = “create table “ +
 DATABASE_TABLE + “ (“ + KEY_ID +
 “ integer primary key autoincrement, “ +
 KEY_GOLD_HOARD_NAME_COLUMN + “ text not null, “ +
 KEY_GOLD_HOARDED_COLUMN + “ float, “ +
 KEY_GOLD_HOARD_ACCESSIBLE_COLUMN + “ integer);”;

 public HoardDBOpenHelper(Context context, String name,
 CursorFactory factory, int version) {
 super(context, name, factory, version);
 }

 // Called when no database exists in disk and the helper class needs
 // to create a new one.
 @Override
 public void onCreate(SQLiteDatabase db) {
 db.execSQL(DATABASE_CREATE);
 }

continues

c08.indd 255c08.indd 255 4/18/2012 3:48:40 PM4/18/2012 3:48:40 PM

Meier02275 c08 V2 - 03/20/2012 Page 256

256 x CHAPTER 8 DATABASES AND CONTENT PROVIDERS

 // Called when there is a database version mismatch meaning that
 // the version of the database on disk needs to be upgraded to
 // the current version.
 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion,
 int newVersion) {
 // Log the version upgrade.
 Log.w(“TaskDBAdapter”, “Upgrading from version “ +
 oldVersion + “ to “ +
 newVersion + “, which will destroy all old data”);

 // Upgrade the existing database to conform to the new
 // version. Multiple previous versions can be handled by
 // comparing oldVersion and newVersion values.

 // The simplest case is to drop the old table and create a new one.
 db.execSQL(“DROP TABLE IF IT EXISTS “ + DATABASE_TABLE);
 // Create a new one.
 onCreate(db);
 }
}

code snippet PA4AD_ Ch08_DatabaseSkeleton/src/MyHoardDatabase.java

In this example onUpgrade simply drops the existing table and replaces it with
the new defi nition. This is often the simplest and most practical solution;
however, for important data that is not synchronized with an online service or
is hard to recapture, a better approach may be to migrate existing data into the
new table.

To access a database using the SQLite Open Helper, call getWritableDatabase or
getReadableDatabase to open and obtain a writable or read-only instance of the underlying
database, respectively.

Behind the scenes, if the database doesn’t exist, the helper executes its onCreate handler. If the
database version has changed, the onUpgrade handler will fi re. In either case, the get<read/
writ>ableDatabase call will return the cached, newly opened, newly created, or upgraded
database, as appropriate.

When a database has been successfully opened, the SQLite Open Helper will cache it, so you can
(and should) use these methods each time you query or perform a transaction on the database,
rather than caching the open database within your application.

A call to getWritableDatabase can fail due to disk space or permission issues, so it’s good practice
to fall back to the getReadableDatabase method for database queries if necessary. In most cases
this method will provide the same, cached writeable database instance as getWritableDatabase

LISTING 8-2 (continued)

c08.indd 256c08.indd 256 4/18/2012 3:48:40 PM4/18/2012 3:48:40 PM

Meier02275 c08 V2 - 03/20/2012 Page 257

Working with SQLite Databases x 257

unless it does not yet exist or the same permission or disk space issues occur, in which case a
read-only copy will be returned.

To create or upgrade the database, it must be opened in a writeable form;
therefore, it’s generally good practice to attempt to open a writeable database
fi rst, falling back to a read-only alternative if it fails.

Opening and Creating Databases Without the SQLite
Open Helper

If you would prefer to manage the creation, opening, and version control of your databases
directly, rather than using the SQLite Open Helper, you can use the application Context’s
openOrCreateDatabase method to create the database itself:

SQLiteDatabase db = context.openOrCreateDatabase(DATABASE_NAME,
 Context.MODE_PRIVATE,
 null);

After you have created the database, you must handle the creation and upgrade logic handled within
the onCreate and onUpgrade handlers of the SQLite Open Helper — typically using the database’s
execSQL method to create and drop tables, as required.

It’s good practice to defer creating and opening databases until they’re needed, and to cache
database instances after they’re successfully opened to limit the associated effi ciency costs.

At a minimum, any such operations must be handled asynchronously to avoid impacting the main
application thread.

Android Database Design Considerations

You should keep the following Android-specifi c considerations in mind when designing your
database.

 ‰ Files (such as bitmaps or audio fi les) are not usually stored within database tables. Use a
string to store a path to the fi le, preferably a fully qualifi ed URI.

 ‰ Although not strictly a requirement, it’s strongly recommended that all tables include an
auto-increment key fi eld as a unique index fi eld for each row. If you plan to share your table
using a Content Provider, a unique ID fi eld is required.

Querying a Database

Each database query is returned as a Cursor. This lets Android manage resources more effi ciently
by retrieving and releasing row and column values on demand.

To execute a query on a Database object, use the query method, passing in the following:

 ‰ An optional Boolean that specifi es if the result set should contain only unique values.

 ‰ The name of the table to query.

c08.indd 257c08.indd 257 4/18/2012 3:48:41 PM4/18/2012 3:48:41 PM

Meier02275 c08 V2 - 03/20/2012 Page 258

258 x CHAPTER 8 DATABASES AND CONTENT PROVIDERS

 ‰ A projection, as an array of strings, that lists the columns to include in the result set.

 ‰ A where clause that defi nes the rows to be returned. You can include ? wildcards that will be
replaced by the values passed in through the selection argument parameter.

 ‰ An array of selection argument strings that will replace the ? wildcards in the where clause.

 ‰ A group by clause that defi nes how the resulting rows will be grouped.

 ‰ A having clause that defi nes which row groups to include if you specifi ed a group by clause.

 ‰ A string that describes the order of the returned rows.

 ‰ A string that defi nes the maximum number of rows in the result set.

Listing 8-3 shows how to return a selection of rows from within an SQLite database table.

LISTING 8-3: Querying a database

// Specify the result column projection. Return the minimum set
// of columns required to satisfy your requirements.
String[] result_columns = new String[] {
 KEY_ID, KEY_GOLD_HOARD_ACCESSIBLE_COLUMN, KEY_GOLD_HOARDED_COLUMN };

// Specify the where clause that will limit our results.
String where = KEY_GOLD_HOARD_ACCESSIBLE_COLUMN + “=” + 1;

// Replace these with valid SQL statements as necessary.
String whereArgs[] = null;
String groupBy = null;
String having = null;
String order = null;

SQLiteDatabase db = hoardDBOpenHelper.getWritableDatabase();
Cursor cursor = db.query(HoardDBOpenHelper.DATABASE_TABLE,
 result_columns, where,
 whereArgs, groupBy, having, order);

code snippet PA4AD_ Ch08_GoldHoarder/src/MyHoardDatabase.java

In this Listing 8-3, a database instance is opened using an SQLite Open
Helper implementation. The SQLite Open Helper defers the creation and
opening of database instances until they are fi rst required and caches them
after they are successfully opened.

As a result, it’s good practice to request a database instance each time you
perform a query or transaction on the database. For effi ciency reasons, you
should close your database instance only when you believe you will no longer
require it — typically, when the Activity or Service using it is stopped.

c08.indd 258c08.indd 258 4/18/2012 3:48:41 PM4/18/2012 3:48:41 PM

Meier02275 c08 V2 - 03/20/2012 Page 259

Working with SQLite Databases x 259

Extracting Values from a Cursor

To extract values from a Cursor, fi rst use the moveTo<location> methods described earlier to
position the cursor at the correct row of the result Cursor, and then use the type-safe get<type>
methods (passing in a column index) to return the value stored at the current row for the specifi ed
column. To fi nd the column index of a particular column within a result Cursor, use its
getColumnIndexOrThrow and getColumnIndex methods.

It’s good practice to use getColumnIndexOrThrow when you expect the column to exist in all cases.
Using getColumnIndex and checking for a –1 result, as shown in the following snippet, is a more
effi cient technique than catching exceptions when the column might not exist in every case.

int columnIndex = cursor.getColumnIndex(KEY_COLUMN_1_NAME);
if (columnIndex > -1) {
 String columnValue = cursor.getString(columnIndex);
 // Do something with the column value.
}
else {
 // Do something else if the column doesn’t exist.
}

Database implementations should publish static constants that provide the
column names. These static constants are typically exposed from within the
database contract class or the Content Provider.

Listing 8-4 shows how to iterate over a result Cursor, extracting and averaging a column of
fl oat values.

LISTING 8-4: Extracting values from a Cursor

float totalHoard = 0f;
float averageHoard = 0f;

// Find the index to the column(s) being used.
int GOLD_HOARDED_COLUMN_INDEX =
 cursor.getColumnIndexOrThrow(KEY_GOLD_HOARDED_COLUMN);

// Iterate over the cursors rows.
// The Cursor is initialized at before first, so we can
// check only if there is a “next” row available. If the
// result Cursor is empty this will return false.
while (cursor.moveToNext()) {
 float hoard = cursor.getFloat(GOLD_HOARDED_COLUMN_INDEX);
 totalHoard += hoard;
}

// Calculate an average -- checking for divide by zero errors.
float cursorCount = cursor.getCount();

continues

c08.indd 259c08.indd 259 4/18/2012 3:48:42 PM4/18/2012 3:48:42 PM

Meier02275 c08 V2 - 03/20/2012 Page 260

260 x CHAPTER 8 DATABASES AND CONTENT PROVIDERS

averageHoard = cursorCount > 0 ?
 (totalHoard / cursorCount) : Float.NaN;

// Close the Cursor when you’ve finished with it.
cursor.close();

code snippet PA4AD_ Ch08_GoldHoarder/src/MyHoardDatabase.java

Because SQLite database columns are loosely typed, you can cast individual values into valid types,
as required. For example, values stored as fl oats can be read back as strings.

When you have fi nished using your result Cursor, it’s important to close it to avoid memory leaks
and reduce your application’s resource load:

cursor.close();

Adding, Updating, and Removing Rows

The SQLiteDatabase class exposes insert, delete, and update methods that encapsulate the SQL
statements required to perform these actions. Additionally, the execSQL method lets you execute
any valid SQL statement on your database tables, should you want to execute these (or any other)
 operations manually.

Any time you modify the underlying database values, you should update your Cursors by running a
new query.

Inserting Rows

To create a new row, construct a ContentValues object and use its put methods to add name/value
pairs representing each column name and its associated value.

Insert the new row by passing the Content Values into the insert method called on the target
 database — along with the table name — as shown in Listing 8-5.

LISTING 8-5: Inserting new rows into a database

// Create a new row of values to insert.
ContentValues newValues = new ContentValues();

// Assign values for each row.
newValues.put(KEY_GOLD_HOARD_NAME_COLUMN, hoardName);
newValues.put(KEY_GOLD_HOARDED_COLUMN, hoardValue);
newValues.put(KEY_GOLD_HOARD_ACCESSIBLE_COLUMN, hoardAccessible);
// [... Repeat for each column / value pair ...]

// Insert the row into your table
SQLiteDatabase db = hoardDBOpenHelper.getWritableDatabase();
db.insert(HoardDBOpenHelper.DATABASE_TABLE, null, newValues);

code snippet PA4AD_ Ch08_GoldHoarder/src/MyHoardDatabase.java

LISTING 8-4 (continued)

c08.indd 260c08.indd 260 4/18/2012 3:48:42 PM4/18/2012 3:48:42 PM

Meier02275 c08 V2 - 03/20/2012 Page 261

Working with SQLite Databases x 261

The second parameter used in the insert method shown in Listing 8-5 is known
as the null column hack.

If you want to add an empty row to an SQLite database, by passing in an empty
Content Values object, you must also pass in the name of a column whose value
can be explicitly set to null.

When inserting a new row into an SQLite database, you must always explicitly
specify at least one column and a corresponding value, the latter of which can be
null. If you set the null column hack parameter to null, as shown in Listing 8-5,
when inserting an empty Content Values object SQLite will throw an exception.

It’s generally good practice to ensure that your code doesn’t attempt to insert
empty Content Values into an SQLite database.

Updating Rows

Updating rows is also done with Content Values. Create a new ContentValues object, using the
put methods to assign new values to each column you want to update. Call the update method on
the database, passing in the table name, the updated Content Values object, and a where clause that
specifi es the row(s) to update, as shown in Listing 8-6.

LISTING 8-6: Updating a database row

// Create the updated row Content Values.
ContentValues updatedValues = new ContentValues();

// Assign values for each row.
updatedValues.put(KEY_GOLD_HOARDED_COLUMN, newHoardValue);
// [... Repeat for each column to update ...]

// Specify a where clause the defines which rows should be
// updated. Specify where arguments as necessary.
String where = KEY_ID + “=” + hoardId;
String whereArgs[] = null;

// Update the row with the specified index with the new values.
SQLiteDatabase db = hoardDBOpenHelper.getWritableDatabase();
db.update(HoardDBOpenHelper.DATABASE_TABLE, updatedValues,
 where, whereArgs);

code snippet PA4AD_ Ch08_GoldHoarder/src/MyHoardDatabase.java

Deleting Rows

To delete a row, simply call the delete method on a database, specifying the table name and a
where clause that returns the rows you want to delete, as shown in Listing 8-7.

c08.indd 261c08.indd 261 4/18/2012 3:48:43 PM4/18/2012 3:48:43 PM

Meier02275 c08 V2 - 03/20/2012 Page 262

262 x CHAPTER 8 DATABASES AND CONTENT PROVIDERS

LISTING 8-7: Deleting a database row

// Specify a where clause that determines which row(s) to delete.
// Specify where arguments as necessary.
String where = KEY_GOLD_HOARDED_COLUMN + “=” + 0;
String whereArgs[] = null;

// Delete the rows that match the where clause.
SQLiteDatabase db = hoardDBOpenHelper.getWritableDatabase();
db.delete(HoardDBOpenHelper.DATABASE_TABLE, where, whereArgs);

code snippet PA4AD_ Ch08_GoldHoarder/src/MyHoardDatabase.java

CREATING CONTENT PROVIDERS

Content Providers provide an interface for publishing data that will be consumed using a Content
Resolver. They allow you to decouple the application components that consume data from their
underlying data sources, providing a generic mechanism through which applications can share their
data or consume data provided by others.

To create a new Content Provider, extend the abstract ContentProvider class:

public class MyContentProvider extends ContentProvider

Like the database contract class described in the previous section, it’s good practice to include static
database constants — particularly column names and the Content Provider authority — that will be
required for transacting with, and querying, the database.

You will also need to override the onCreate handler to initialize the underlying data source, as well
as the query, update, delete, insert, and getType methods to implement the interface used by
the Content Resolver to interact with the data, as described in the following sections.

Registering Content Providers

Like Activities and Services, Content Providers must be registered in your application manifest
before the Content Resolver can discover them. This is done using a provider tag that includes a
name attribute describing the Provider’s class name and an authorities tag.

Use the authorities tag to defi ne the base URI of the Provider’s authority. A Content Provider’s
authority is used by the Content Resolver as an address and used to fi nd the database you want to
interact with.

Each Content Provider authority must be unique, so it’s good practice to base the URI path on your
package name. The general form for defi ning a Content Provider’s authority is as follows:

com.<CompanyName>.provider.<ApplicationName>

The completed provider tag should follow the format show in the following XML snippet:

<provider android:name=”.MyContentProvider”
 android:authorities=”com.paad.skeletondatabaseprovider”/>

c08.indd 262c08.indd 262 4/18/2012 3:48:43 PM4/18/2012 3:48:43 PM

Meier02275 c08 V2 - 03/20/2012 Page 263

Creating Content Providers x 263

Publishing Your Content Provider’s URI Address

Each Content Provider should expose its authority using a public static CONTENT_URI property to
make it more easily discoverable. This should include a data path to the primary content — for
example:

public static final Uri CONTENT_URI =
 Uri.parse(“content://com.paad.skeletondatabaseprovider/elements”);

These content URIs will be used when accessing your Content Provider using a Content Resolver.
A query made using this form represents a request for all rows, whereas an appended trailing
/<rownumber>, as shown in the following snippet, represents a request for a single record:

content://com.paad.skeletondatabaseprovider/elements/5

It’s good practice to support access to your provider for both of these forms. The simplest way to do
this is to use a UriMatcher, a useful class that parses URIs and determines their forms.

Listing 8-8 shows the implementation pattern for defi ning a URI Matcher that analyzes the form of
a URI — specifi cally determining if a URI is a request for all data or for a single row.

LISTING 8-8: Defi ning a UriMatcher to determine if a request is for all elements or a single row

// Create the constants used to differentiate between the different URI
// requests.
private static final int ALLROWS = 1;
private static final int SINGLE_ROW = 2;

private static final UriMatcher uriMatcher;

// Populate the UriMatcher object, where a URI ending in
// ‘elements’ will correspond to a request for all items,
// and ‘elements/[rowID]’ represents a single row.
static {
 uriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
 uriMatcher.addURI(“com.paad.skeletondatabaseprovider”,
 “elements”, ALLROWS);
 uriMatcher.addURI(“com.paad.skeletondatabaseprovider”,
 “elements/#”, SINGLE_ROW);
}

code snippet PA4AD_ Ch08_DatabaseSkeleton/src/MyContentProvider.java

You can use the same technique to expose alternative URIs within the same Content Provider that
represent different subsets of data, or different tables within your database.

Having distinguished between full table and single row queries, you can use the
SQLiteQueryBuilder class to easily apply the additional selection condition to a query, as shown in
the following snippet:

SQLiteQueryBuilder queryBuilder = new SQLiteQueryBuilder();

// If this is a row query, limit the result set to the passed in row.

c08.indd 263c08.indd 263 4/18/2012 3:48:43 PM4/18/2012 3:48:43 PM

Meier02275 c08 V2 - 03/20/2012 Page 264

264 x CHAPTER 8 DATABASES AND CONTENT PROVIDERS

switch (uriMatcher.match(uri)) {
 case SINGLE_ROW :
 String rowID = uri.getPathSegments().get(1);
 queryBuilder.appendWhere(KEY_ID + “=” + rowID);
 default: break;
}

You’ll learn how to perform a query using the SQLite Query Builder later in the “Implementing
Content Provider Queries” section.

Creating the Content Provider’s Database

To initialize the data source you plan to access through the Content Provider, override the onCreate
method, as shown in Listing 8-9. This is typically handled using an SQLite Open Helper implemen-
tation, of the type described in the previous section, allowing you to effectively defer creating and
opening the database until it’s required.

LISTING 8-9: Creating the Content Provider’s database

private MySQLiteOpenHelper myOpenHelper;

@Override
public boolean onCreate() {
 // Construct the underlying database.
 // Defer opening the database until you need to perform
 // a query or transaction.
 myOpenHelper = new MySQLiteOpenHelper(getContext(),
 MySQLiteOpenHelper.DATABASE_NAME, null,
 MySQLiteOpenHelper.DATABASE_VERSION);

 return true;
}

code snippet PA4AD_ Ch08_DatabaseSkeleton/src/MyContentProvider.java

When your application is launched, the onCreate handler of each of its Content
Providers is called on the main application thread.

Like the database examples in the previous section, it’s best practice to use an
SQLite Open Helper to defer opening (and where necessary, creating) the under-
lying database until it is required within the query or transaction methods of
your Content Provider.

For effi ciency reasons, it’s preferable to leave your Content Provider open while
your application is running; it’s not necessary to manually close the database at
any stage. If the system requires additional resources, your application will be
killed and the associated databases closed.

Implementing Content Provider Queries

To support queries with your Content Provider, you must implement the query and getType
methods. Content Resolvers use these methods to access the underlying data, without knowing its

c08.indd 264c08.indd 264 4/18/2012 3:48:44 PM4/18/2012 3:48:44 PM

Meier02275 c08 V2 - 03/20/2012 Page 265

Creating Content Providers x 265

structure or implementation. These methods enable applications to share data across application
boundaries without having to publish a specifi c interface for each data source.

The most common scenario is to use a Content Provider to provide access to an SQLite database, but
within these methods you can access any source of data (including fi les or application instance variables).

Notice that the UriMatcher object is used to refi ne the transaction and query requests, and the
SQLite Query Builder is used as a convenient helper for performing row-based queries.

Listing 8-10 shows the skeleton code for implementing queries within a Content Provider using an
underlying SQLite database.

LISTING 8-10: Implementing queries and transactions within a Content Provider

@Override
public Cursor query(Uri uri, String[] projection, String selection,
 String[] selectionArgs, String sortOrder) {

 // Open the database.
 SQLiteDatabase db;
 try {
 db = myOpenHelper.getWritableDatabase();
 } catch (SQLiteException ex) {
 db = myOpenHelper.getReadableDatabase();
 }

 // Replace these with valid SQL statements if necessary.
 String groupBy = null;
 String having = null;

 // Use an SQLite Query Builder to simplify constructing the
 // database query.
 SQLiteQueryBuilder queryBuilder = new SQLiteQueryBuilder();

 // If this is a row query, limit the result set to the passed in row.
 switch (uriMatcher.match(uri)) {
 case SINGLE_ROW :
 String rowID = uri.getPathSegments().get(1);
 queryBuilder.appendWhere(KEY_ID + “=” + rowID);
 default: break;
 }

 // Specify the table on which to perform the query. This can
 // be a specific table or a join as required.
 queryBuilder.setTables(MySQLiteOpenHelper.DATABASE_TABLE);

 // Execute the query.
 Cursor cursor = queryBuilder.query(db, projection, selection,
 selectionArgs, groupBy, having, sortOrder);

 // Return the result Cursor.
 return cursor;
}

code snippet PA4AD_ Ch08_DatabaseSkeleton/src/MyContentProvider.java

c08.indd 265c08.indd 265 4/18/2012 3:48:44 PM4/18/2012 3:48:44 PM

Meier02275 c08 V2 - 03/20/2012 Page 266

266 x CHAPTER 8 DATABASES AND CONTENT PROVIDERS

Having implemented queries, you must also specify a MIME type to identify the data returned.
Override the getType method to return a string that uniquely describes your data type.

The type returned should include two forms, one for a single entry and another for all the entries,
following these forms:

 ‰ Single item:

vnd.android.cursor.item/vnd.<companyname>.<contenttype>

 ‰ All items:

vnd.android.cursor.dir/vnd.<companyname>.<contenttype>

Listing 8-11 shows how to override the getType method to return the correct MIME type based on
the URI passed in.

LISTING 8-11: Returning a Content Provider MIME type

@Override
public String getType(Uri uri) {
 // Return a string that identifies the MIME type
 // for a Content Provider URI
 switch (uriMatcher.match(uri)) {
 case ALLROWS:
 return “vnd.android.cursor.dir/vnd.paad.elemental”;
 case SINGLE_ROW:
 return “vnd.android.cursor.item/vnd.paad.elemental”;
 default:
 throw new IllegalArgumentException(“Unsupported URI: “ +
 uri);
 }
}

code snippet PA4AD_ Ch08_DatabaseSkeleton/src/MyContentProvider.java

Content Provider Transactions

To expose delete, insert, and update transactions on your Content Provider, implement the
 corresponding delete, insert, and update methods.

Like the query method, these methods are used by Content Resolvers to perform transactions on
the underlying data without knowing its implementation — allowing applications to update data
across application boundaries.

When performing transactions that modify the dataset, it’s good practice to call the Content
Resolver’s notifyChange method. This will notify any Content Observers, registered for a given
Cursor using the Cursor.registerContentObserver method, that the underlying table (or a
 particular row) has been removed, added, or updated.

As with Content Provider queries, the most common use case is performing transactions on
an SQLite database, though this is not a requirement. Listing 8-12 shows the skeleton code for
 implementing transactions within a Content Provider on an underlying SQLite database.

c08.indd 266c08.indd 266 4/18/2012 3:48:44 PM4/18/2012 3:48:44 PM

Meier02275 c08 V2 - 03/20/2012 Page 267

Creating Content Providers x 267

LISTING 8-12: Typical Content Provider transaction implementations

@Override
public int delete(Uri uri, String selection, String[] selectionArgs) {
 // Open a read / write database to support the transaction.
 SQLiteDatabase db = myOpenHelper.getWritableDatabase();

 // If this is a row URI, limit the deletion to the specified row.
 switch (uriMatcher.match(uri)) {
 case SINGLE_ROW :
 String rowID = uri.getPathSegments().get(1);
 selection = KEY_ID + “=” + rowID
 + (!TextUtils.isEmpty(selection) ?
 “ AND (“ + selection + ‘)’ : “”);
 default: break;
 }

 // To return the number of deleted items you must specify a where
 // clause. To delete all rows and return a value pass in “1”.
 if (selection == null)
 selection = “1”;

 // Perform the deletion.
 int deleteCount = db.delete(MySQLiteOpenHelper.DATABASE_TABLE,
 selection, selectionArgs);

 // Notify any observers of the change in the data set.
 getContext().getContentResolver().notifyChange(uri, null);

 // Return the number of deleted items.
 return deleteCount;
}

@Override
public Uri insert(Uri uri, ContentValues values) {
 // Open a read / write database to support the transaction.
 SQLiteDatabase db = myOpenHelper.getWritableDatabase();

 // To add empty rows to your database by passing in an empty
 // Content Values object you must use the null column hack
 // parameter to specify the name of the column that can be
 // set to null.
 String nullColumnHack = null;

 // Insert the values into the table
 long id = db.insert(MySQLiteOpenHelper.DATABASE_TABLE,
 nullColumnHack, values);

 // Construct and return the URI of the newly inserted row.
 if (id > -1) {
 // Construct and return the URI of the newly inserted row.
 Uri insertedId = ContentUris.withAppendedId(CONTENT_URI, id);

continues

c08.indd 267c08.indd 267 4/18/2012 3:48:45 PM4/18/2012 3:48:45 PM

Meier02275 c08 V2 - 03/20/2012 Page 268

268 x CHAPTER 8 DATABASES AND CONTENT PROVIDERS

 // Notify any observers of the change in the data set.
 getContext().getContentResolver().notifyChange(insertedId, null);

 return insertedId;
 }
 else
 return null;
}

@Override
public int update(Uri uri, ContentValues values, String selection,
 String[] selectionArgs) {

 // Open a read / write database to support the transaction.
 SQLiteDatabase db = myOpenHelper.getWritableDatabase();

 // If this is a row URI, limit the deletion to the specified row.
 switch (uriMatcher.match(uri)) {
 case SINGLE_ROW :
 String rowID = uri.getPathSegments().get(1);
 selection = KEY_ID + “=” + rowID
 + (!TextUtils.isEmpty(selection) ?
 “ AND (“ + selection + ‘)’ : “”);
 default: break;
 }

 // Perform the update.
 int updateCount = db.update(MySQLiteOpenHelper.DATABASE_TABLE,
 values, selection, selectionArgs);

 // Notify any observers of the change in the data set.
 getContext().getContentResolver().notifyChange(uri, null);

 return updateCount;
}

code snippet PA4AD_ Ch08_DatabaseSkeleton/src/MyContentProvider.java

When working with content URIs, the ContentUris class includes the with-
AppendedId convenience method to easily append a specifi c row ID to the
CONTENT_URI of a Content Provider. This is used in Listing 8-12 to construct the
URI of newly insert rows and will be used in the following sections to address a
particular row when making database queries and transactions.

Storing Files in a Content Provider

Rather than store large fi les within your Content Provider, you should represent them within a table
as fully qualifi ed URIs to a fi le stored somewhere else on the fi lesystem.

LISTING 8-12 (continued)

c08.indd 268c08.indd 268 4/18/2012 3:48:45 PM4/18/2012 3:48:45 PM

Meier02275 c08 V2 - 03/20/2012 Page 269

Creating Content Providers x 269

To support fi les within your table, you must include a column labeled _data that will contain the
path to the fi le represented by that record. This column should not be used by client applications.
Override the openFile handler to provide a ParcelFileDescriptor when the Content Resolver
requests the fi le associated with that record.

It’s typical for a Content Provider to include two tables, one that is used only to store the external
fi les, and another that includes a user-facing column containing a URI reference to the rows in the
fi le table.

Listing 8-13 shows the skeleton code for overriding the openFile handler within a Content
Provider. In this instance, the name of the fi le will be represented by the ID of the row to which
it belongs.

LISTING 8-13: Storing fi les within your Content Provider

@Override
public ParcelFileDescriptor openFile(Uri uri, String mode)
 throws FileNotFoundException {

 // Find the row ID and use it as a filename.
 String rowID = uri.getPathSegments().get(1);

 // Create a file object in the application’s external
 // files directory.
 String picsDir = Environment.DIRECTORY_PICTURES;
 File file =
 new File(getContext().getExternalFilesDir(picsDir), rowID);

 // If the file doesn’t exist, create it now.
 if (!file.exists()) {
 try {
 file.createNewFile();
 } catch (IOException e) {
 Log.d(TAG, “File creation failed: “ + e.getMessage());
 }
 }

 // Translate the mode parameter to the corresponding Parcel File
 // Descriptor open mode.
 int fileMode = 0;
 if (mode.contains(“w”))
 fileMode |= ParcelFileDescriptor.MODE_WRITE_ONLY;
 if (mode.contains(“r”))
 fileMode |= ParcelFileDescriptor.MODE_READ_ONLY;
 if (mode.contains(“+”))
 fileMode |= ParcelFileDescriptor.MODE_APPEND;

 // Return a Parcel File Descriptor that represents the file.
 return ParcelFileDescriptor.open(file, fileMode);
}

code snippet PA4AD_ Ch08_DatabaseSkeleton/src/MyHoardContentProvider.java

c08.indd 269c08.indd 269 4/18/2012 3:48:45 PM4/18/2012 3:48:45 PM

Meier02275 c08 V2 - 03/20/2012 Page 270

270 x CHAPTER 8 DATABASES AND CONTENT PROVIDERS

Because the fi les associated with rows in the database are stored externally,
it’s important to consider what the effect of deleting a row should have on the
underlying fi le.

A Skeleton Content Provider Implementation

Listing 8-14 shows a skeleton implementation of a Content Provider. It uses an SQLite Open Helper
to manage the database, and simply passes each query or transaction directly to the underlying
SQLite database.

LISTING 8-14: A skeleton Content Provider implementation

import android.content.ContentProvider;
import android.content.ContentUris;
import android.content.ContentValues;
import android.content.Context;
import android.content.UriMatcher;
import android.database.Cursor;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteDatabase.CursorFactory;
import android.database.sqlite.SQLiteOpenHelper;
import android.database.sqlite.SQLiteQueryBuilder;
import android.net.Uri;
import android.text.TextUtils;
import android.util.Log;

public class MyContentProvider extends ContentProvider {

 public static final Uri CONTENT_URI =
 Uri.parse(“content://com.paad.skeletondatabaseprovider/elements”);

 // Create the constants used to differentiate between
 // the different URI requests.
 private static final int ALLROWS = 1;
 private static final int SINGLE_ROW = 2;

 private static final UriMatcher uriMatcher;

 // Populate the UriMatcher object, where a URI ending
 // in ‘elements’ will correspond to a request for all
 // items, and ‘elements/[rowID]’ represents a single row.
 static {
 uriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
 uriMatcher.addURI(“com.paad.skeletondatabaseprovider”,
 “elements”, ALLROWS);
 uriMatcher.addURI(“com.paad.skeletondatabaseprovider”,
 “elements/#”, SINGLE_ROW);
 }

c08.indd 270c08.indd 270 4/18/2012 3:48:45 PM4/18/2012 3:48:45 PM

Meier02275 c08 V2 - 03/20/2012 Page 271

Creating Content Providers x 271

 // The index (key) column name for use in where clauses.
 public static final String KEY_ID = “_id”;

 // The name and column index of each column in your database.
 // These should be descriptive.
 public static final String KEY_COLUMN_1_NAME = “KEY_COLUMN_1_NAME”;
 // TODO: Create public field for each column in your table.

 // SQLite Open Helper variable
 private MySQLiteOpenHelper myOpenHelper;

 @Override
 public boolean onCreate() {
 // Construct the underlying database.
 // Defer opening the database until you need to perform
 // a query or transaction.
 myOpenHelper = new MySQLiteOpenHelper(getContext(),
 MySQLiteOpenHelper.DATABASE_NAME, null,
 MySQLiteOpenHelper.DATABASE_VERSION);

 return true;
 }

 @Override
 public Cursor query(Uri uri, String[] projection, String selection,
 String[] selectionArgs, String sortOrder) {
 // Open the database.
 SQLiteDatabase db = myOpenHelper.getWritableDatabase();

 // Replace these with valid SQL statements if necessary.
 String groupBy = null;
 String having = null;

 SQLiteQueryBuilder queryBuilder = new SQLiteQueryBuilder();
 queryBuilder.setTables(MySQLiteOpenHelper.DATABASE_TABLE);

 // If this is a row query, limit the result set to the
 // passed in row.
 switch (uriMatcher.match(uri)) {
 case SINGLE_ROW :
 String rowID = uri.getPathSegments().get(1);
 queryBuilder.appendWhere(KEY_ID + “=” + rowID);
 default: break;
 }

 Cursor cursor = queryBuilder.query(db, projection, selection,
 selectionArgs, groupBy, having, sortOrder);

 return cursor;
 }

 @Override
 public int delete(Uri uri, String selection, String[] selectionArgs)

continues

c08.indd 271c08.indd 271 4/18/2012 3:48:46 PM4/18/2012 3:48:46 PM

Meier02275 c08 V2 - 03/20/2012 Page 272

272 x CHAPTER 8 DATABASES AND CONTENT PROVIDERS

 {
 // Open a read / write database to support the transaction.
 SQLiteDatabase db = myOpenHelper.getWritableDatabase();

 // If this is a row URI, limit the deletion to the specified row.
 switch (uriMatcher.match(uri)) {
 case SINGLE_ROW :
 String rowID = uri.getPathSegments().get(1);
 selection = KEY_ID + “=” + rowID
 + (!TextUtils.isEmpty(selection) ?
 “ AND (“ + selection + ‘)’ : “”);
 default: break;
 }

 // To return the number of deleted items, you must specify a where
 // clause. To delete all rows and return a value, pass in “1”.
 if (selection == null)
 selection = “1”;

 // Execute the deletion.
 int deleteCount = db.delete(MySQLiteOpenHelper.DATABASE_TABLE,
 selection, selectionArgs);

 // Notify any observers of the change in the data set.
 getContext().getContentResolver().notifyChange(uri, null);

 return deleteCount;
 }

 @Override
 public Uri insert(Uri uri, ContentValues values) {
 // Open a read / write database to support the transaction.
 SQLiteDatabase db = myOpenHelper.getWritableDatabase();

 // To add empty rows to your database by passing in an empty
 // Content Values object, you must use the null column hack
 // parameter to specify the name of the column that can be
 // set to null.
 String nullColumnHack = null;

 // Insert the values into the table
 long id = db.insert(MySQLiteOpenHelper.DATABASE_TABLE,
 nullColumnHack, values);

 if (id > -1) {
 // Construct and return the URI of the newly inserted row.
 Uri insertedId = ContentUris.withAppendedId(CONTENT_URI, id);

 // Notify any observers of the change in the data set.
 getContext().getContentResolver().notifyChange(insertedId, null);

LISTING 8-14 (continued)

c08.indd 272c08.indd 272 4/18/2012 3:48:46 PM4/18/2012 3:48:46 PM

Meier02275 c08 V2 - 03/20/2012 Page 273

Creating Content Providers x 273

 return insertedId;
 }
 else
 return null;
 }

 @Override
 public int update(Uri uri, ContentValues values, String selection,
 String[] selectionArgs) {

 // Open a read / write database to support the transaction.
 SQLiteDatabase db = myOpenHelper.getWritableDatabase();

 // If this is a row URI, limit the deletion to the specified row.
 switch (uriMatcher.match(uri)) {
 case SINGLE_ROW :
 String rowID = uri.getPathSegments().get(1);
 selection = KEY_ID + “=” + rowID
 + (!TextUtils.isEmpty(selection) ?
 “ AND (“ + selection + ‘)’ : “”);
 default: break;
 }

 // Perform the update.
 int updateCount = db.update(MySQLiteOpenHelper.DATABASE_TABLE,
 values, selection, selectionArgs);

 // Notify any observers of the change in the data set.
 getContext().getContentResolver().notifyChange(uri, null);

 return updateCount;
 }

 @Override
 public String getType(Uri uri) {
 // Return a string that identifies the MIME type
 // for a Content Provider URI
 switch (uriMatcher.match(uri)) {
 case ALLROWS:
 return “vnd.android.cursor.dir/vnd.paad.elemental”;
 case SINGLE_ROW:
 return “vnd.android.cursor.item/vnd.paad.elemental”;
 default:
 throw new IllegalArgumentException(“Unsupported URI: “ + uri);
 }
 }

 private static class MySQLiteOpenHelper extends SQLiteOpenHelper {
 // [... SQLite Open Helper Implementation ...]
 }
}

code snippet PA4AD_ Ch08_DatabaseSkeleton/src/MyContentProvider.java

c08.indd 273c08.indd 273 4/18/2012 3:48:46 PM4/18/2012 3:48:46 PM

Meier02275 c08 V2 - 03/20/2012 Page 274

274 x CHAPTER 8 DATABASES AND CONTENT PROVIDERS

USING CONTENT PROVIDERS

The following sections introduce the ContentResolver class and how to use it to query and
transact with a Content Provider.

Introducing the Content Resolver

Each application includes a ContentResolver instance, accessible using the getContentResolver
method, as follows:

ContentResolver cr = getContentResolver();

When Content Providers are used to expose data, Content Resolvers are the corresponding class
used to query and perform transactions on those Content Providers. Whereas Content Providers
provide an abstraction from the underlying data, Content Resolvers provide an abstraction from the
Content Provider being queried or transacted.

The Content Resolver includes query and transaction methods corresponding to those defi ned
within your Content Providers. The Content Resolver does not need to know the implementation of
the Content Providers it is interacting with — each query and transaction method simply accepts a
URI that specifi es the Content Provider to interact with.

A Content Provider’s URI is its authority as defi ned by its manifest node and typically published as
a static constant on the Content Provider implementation.

Content Providers usually accept two forms of URI, one for requests against all data and another
that specifi es only a single row. The form for the latter appends the row identifi er (in the form
/<rowID>) to the base URI.

Querying Content Providers

Content Provider queries take a form very similar to that of database queries. Query results are
returned as Cursors over a result set in the same way as described previously in this chapter for
databases.

You can extract values from the result Cursor using the same techniques described in the section
“Extracting Results from a Cursor.”

Using the query method on the ContentResolver object, pass in the following:

 ‰ A URI to the Content Provider you want to query.

 ‰ A projection that lists the columns you want to include in the result set.

 ‰ A where clause that defi nes the rows to be returned. You can include ? wildcards that will be
replaced by the values passed into the selection argument parameter.

 ‰ An array of selection argument strings that will replace the ? wildcards in the where clause.

 ‰ A string that describes the order of the returned rows.

c08.indd 274c08.indd 274 4/18/2012 3:48:46 PM4/18/2012 3:48:46 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Meier02275 c08 V2 - 03/20/2012 Page 275

Using Content Providers x 275

Listing 8-15 shows how to use a Content Resolver to apply a query to a Content Provider.

LISTING 8-15: Querying a Content Provider with a Content Resolver

// Get the Content Resolver.
ContentResolver cr = getContentResolver();

// Specify the result column projection. Return the minimum set
// of columns required to satisfy your requirements.
String[] result_columns = new String[] {
 MyHoardContentProvider.KEY_ID,
 MyHoardContentProvider.KEY_GOLD_HOARD_ACCESSIBLE_COLUMN,
 MyHoardContentProvider.KEY_GOLD_HOARDED_COLUMN };

// Specify the where clause that will limit your results.
String where = MyHoardContentProvider.KEY_GOLD_HOARD_ACCESSIBLE_COLUMN
 + “=” + 1;

// Replace these with valid SQL statements as necessary.
String whereArgs[] = null;
String order = null;

// Return the specified rows.
Cursor resultCursor = cr.query(MyHoardContentProvider.CONTENT_URI,
 result_columns, where, whereArgs, order);

code snippet PA4AD_ Ch08_DatabaseSkeleton/src/DatabaseSkeletonActivity.java

In this example the query is made using static constants provided by the MyHoardContentProvider
class; however, it’s worth noting that a third-party application can perform the same query,
 provided it knows the content URI and column names, and has the appropriate permissions.

Most Content Providers also include a shortcut URI pattern that allows you to address a particular
row by appending a row ID to the content URI. You can use the static withAppendedId method
from the ContentUris class to simplify this, as shown in Listing 8-16.

LISTING 8-16: Querying a Content Provider for a particular row

// Get the Content Resolver.
ContentResolver cr = getContentResolver();

// Specify the result column projection. Return the minimum set
// of columns required to satisfy your requirements.
String[] result_columns = new String[] {
 MyHoardContentProvider.KEY_ID,
 MyHoardContentProvider.KEY_GOLD_HOARD_NAME_COLUMN,
 MyHoardContentProvider.KEY_GOLD_HOARDED_COLUMN };

// Append a row ID to the URI to address a specific row.

continues

c08.indd 275c08.indd 275 4/18/2012 3:48:46 PM4/18/2012 3:48:46 PM

Meier02275 c08 V2 - 03/20/2012 Page 276

276 x CHAPTER 8 DATABASES AND CONTENT PROVIDERS

Uri rowAddress =
 ContentUris.withAppendedId(MyHoardContentProvider.CONTENT_URI,
 rowId);

// These are null as we are requesting a single row.
String where = null;
String whereArgs[] = null;
String order = null;

// Return the specified rows.
Cursor resultCursor = cr.query(rowAddress,
 result_columns, where, whereArgs, order);

code snippet PA4AD_ Ch08_DatabaseSkeleton/src/DatabaseSkeletonActivity.java

To extract values from a result Cursor, use the same techniques described earlier in this chapter,
using the moveTo<location> methods in combination with the get<type> methods to extract
 values from the specifi ed row and column.

Listing 8-17 extends the code from Listing 8-15, by iterating over a result Cursor and displaying the
name of the largest hoard.

LISTING 8-17: Extracting values from a Content Provider result Cursor

float largestHoard = 0f;
String hoardName = “No Hoards”;

// Find the index to the column(s) being used.
int GOLD_HOARDED_COLUMN_INDEX = resultCursor.getColumnIndexOrThrow(
 MyHoardContentProvider.KEY_GOLD_HOARDED_COLUMN);
int HOARD_NAME_COLUMN_INDEX = resultCursor.getColumnIndexOrThrow(
 MyHoardContentProvider.KEY_GOLD_HOARD_NAME_COLUMN);

// Iterate over the cursors rows.
// The Cursor is initialized at before first, so we can
// check only if there is a “next” row available. If the
// result Cursor is empty, this will return false.
while (resultCursor.moveToNext()) {
 float hoard = resultCursor.getFloat(GOLD_HOARDED_COLUMN_INDEX);
 if (hoard > largestHoard) {
 largestHoard = hoard;
 hoardName = resultCursor.getString(HOARD_NAME_COLUMN_INDEX);
 }
}

// Close the Cursor when you’ve finished with it.
resultCursor.close();

code snippet PA4AD_ Ch08_DatabaseSkeleton/src/DatabaseSkeletonActivity.java

LISTING 8-16 (continued)

c08.indd 276c08.indd 276 4/18/2012 3:48:47 PM4/18/2012 3:48:47 PM

Meier02275 c08 V2 - 03/20/2012 Page 277

Using Content Providers x 277

When you have fi nished using your result Cursor it’s important to close it to avoid memory leaks
and reduce your application’s resource load.

resultCursor.close();

You’ll see more examples of querying for content later in this chapter when the native Android
Content Providers are introduced.

Database queries can take signifi cant time to execute. By default, the Content
Resolver will execute queries — as well as other transactions — on the main
application thread.

To ensure your application remains smooth and responsive, you must execute all
queries asynchronously, as described in the following section.

Querying for Content Asynchronously Using the Cursor Loader

Database operations can be time-consuming, so it’s particularly important that any database and
Content Provider queries are not performed on the main application thread.

It can be diffi cult to manage Cursors, synchronize correctly with the UI thread, and ensure all
queries occur on a background. To help simplify the process, Android 3.0 (API level 11) introduced
the Loader class. Loaders are now also available within the Android Support Library, making them
available for use with every Android platform back to Android 1.6.

Introducing Loaders

Loaders are available within every Activity and Fragment via the LoaderManager. They
are designed to asynchronously load data and monitor the underlying data source
for changes.

While loaders can be implemented to load any kind of data from any data source, of particular
interest is the CursorLoader class. The Cursor Loader allows you to perform asynchronous
queries against Content Providers, returning a result Cursor and notifi cations of any updates to the
underlying provider.

To maintain concise and encapsulated code, not all the examples in this chapter
utilize a Cursor Loader when making a Content Provider query. For your own
applications it’s best practice to always use a Cursor Loader to manage Cursors
within your Activities and Fragments.

Using the Cursor Loader

The Cursor Loader handles all the management tasks required to use a Cursor within an Activity or
Fragment, effectively deprecating the managedQuery and startManagingCursor Activity methods.

c08.indd 277c08.indd 277 4/18/2012 3:48:47 PM4/18/2012 3:48:47 PM

Meier02275 c08 V2 - 03/20/2012 Page 278

278 x CHAPTER 8 DATABASES AND CONTENT PROVIDERS

This includes managing the Cursor lifecycle to ensure Cursors are closed when the Activity is
terminated.

Cursor Loaders also observe changes in the underlying query, so you no longer need to implement
your own Content Observers.

Implementing Cursor Loader Callbacks

To use a Cursor Loader, create a new LoaderManager.LoaderCallbacks implementation. Loader
Callbacks are implemented using generics, so you should specify the explicit type being loaded, in
this case Cursors, when implementing your own.

LoaderManager.LoaderCallbacks<Cursor> loaderCallback
 = new LoaderManager.LoaderCallbacks<Cursor>() {

If you require only a single Loader implementation within your Fragment or Activity, this is typi-
cally done by having that component implement the interface.

The Loader Callbacks consist of three handlers:

 ‰ onCreateLoader — Called when the loader is initialized, this handler should create and
return new Cursor Loader object. The Cursor Loader constructor arguments mirror those
required for executing a query using the Content Resolver. Accordingly, when this handler is
executed, the query parameters you specify will be used to perform a query using the Content
Resolver.

 ‰ onLoadFinished — When the Loader Manager has completed the asynchronous query, the
onLoadFinished handler is called, with the result Cursor passed in as a parameter. Use this
Cursor to update adapters and other UI elements.

 ‰ onLoaderReset — When the Loader Manager resets your Cursor Loader, onLoaderRe-
set is called. Within this handler you should release any references to data returned by the
query and reset the UI accordingly. The Cursor will be closed by the Loader Manager, so you
shouldn’t attempt to close it.

The onLoadFinished and onLoaderReset are not synchronized to the UI
thread. If you want to modify UI elements directly, you will fi rst need to
synchronize with the UI thread using a Handler or similar mechanism.
Synchronizing with the UI thread is covered in more details in Chapter 9,
“Working in the Background.”

Listing 8-18 show a skeleton implementation of the Cursor Loader Callbacks.

LISTING 8-18: Implementing Loader Callbacks

public Loader<Cursor> onCreateLoader(int id, Bundle args) {
 // Construct the new query in the form of a Cursor Loader. Use the id
 // parameter to construct and return different loaders.
 String[] projection = null;

c08.indd 278c08.indd 278 4/18/2012 3:48:47 PM4/18/2012 3:48:47 PM

Meier02275 c08 V2 - 03/20/2012 Page 279

Using Content Providers x 279

 String where = null;
 String[] whereArgs = null;
 String sortOrder = null;

 // Query URI
 Uri queryUri = MyContentProvider.CONTENT_URI;

 // Create the new Cursor loader.
 return new CursorLoader(DatabaseSkeletonActivity.this, queryUri,
 projection, where, whereArgs, sortOrder);
}

public void onLoadFinished(Loader<Cursor> loader, Cursor cursor) {
 // Replace the result Cursor displayed by the Cursor Adapter with
 // the new result set.
 adapter.swapCursor(cursor);

 // This handler is not synchronized with the UI thread, so you
 // will need to synchronize it before modifying any UI elements
 // directly.
}

public void onLoaderReset(Loader<Cursor> loader) {
 // Remove the existing result Cursor from the List Adapter.
 adapter.swapCursor(null);

 // This handler is not synchronized with the UI thread, so you
 // will need to synchronize it before modifying any UI elements
 // directly.
}

code snippet PA4AD_ Ch08_DatabaseSkeleton/src/DatabaseSkeletonActivity.java

Initializing and Restarting the Cursor Loader

Each Activity and Fragment provides access to its Loader Manager through a call to
getLoaderManager.

LoaderManager loaderManager = getLoaderManager();

To initialize a new Loader, call the Loader Manager’s initLoader method, passing in a reference to
your Loader Callback implementation, an optional arguments Bundle, and a loader identifi er.

Bundle args = null;
loaderManager.initLoader(LOADER_ID, args, myLoaderCallbacks);

This is generally done within the onCreate method of the host Activity (or the onActivityCreated
handler in the case of Fragments).

If a loader corresponding to the identifi er used doesn’t already exist, it is created within the associ-
ated Loader Callback’s onCreateLoader handler as described in the previous section.

In most circumstances this is all that is required. The Loader Manager will handle the lifecycle of
any Loaders you initialize and the underlying queries and cursors. Similarly, it will manage changes
to the query results.

c08.indd 279c08.indd 279 4/18/2012 3:48:48 PM4/18/2012 3:48:48 PM

Meier02275 c08 V2 - 03/20/2012 Page 280

280 x CHAPTER 8 DATABASES AND CONTENT PROVIDERS

After a Loader has been created, repeated calls to initLoader will simply return the existing Loader.
Should you want to discard the previous Loader and re-create it, use the restartLoader method.

loaderManager.restartLoader(LOADER_ID, args, myLoaderCallbacks);

This is typically necessary where your query parameters change, such as search queries or changes
in sort order.

Adding, Deleting, and Updating Content

To perform transactions on Content Providers, use the insert, delete, and update methods on the
Content Resolver. Like queries, unless moved to a worker thread, Content Provider transactions will
execute on the main application thread.

Database operations can be time-consuming, so it’s important to execute each
transaction asynchronously.

Inserting Content

The Content Resolver offers two methods for inserting new records into a Content Provider:
insert and bulkInsert. Both methods accept the URI of the Content Provider into which you’re
inserting; the insert method takes a single new ContentValues object, and the bulkInsert
method takes an array.

The insert method returns a URI to the newly added record, whereas the bulkInsert method
returns the number of successfully added rows.

Listing 8-19 shows how to use the insert method to add new rows to a Content Provider.

LISTING 8-19: Inserting new rows into a Content Provider

// Create a new row of values to insert.
ContentValues newValues = new ContentValues();

// Assign values for each row.
newValues.put(MyHoardContentProvider.KEY_GOLD_HOARD_NAME_COLUMN,
 hoardName);
newValues.put(MyHoardContentProvider.KEY_GOLD_HOARDED_COLUMN,
 hoardValue);
newValues.put(MyHoardContentProvider.KEY_GOLD_HOARD_ACCESSIBLE_COLUMN,
 hoardAccessible);
// [... Repeat for each column / value pair ...]

// Get the Content Resolver
ContentResolver cr = getContentResolver();

// Insert the row into your table
Uri myRowUri = cr.insert(MyHoardContentProvider.CONTENT_URI,
 newValues);

code snippet PA4AD_ Ch08_DatabaseSkeleton/src/DatabaseSkeletonActivity.java

c08.indd 280c08.indd 280 4/18/2012 3:48:48 PM4/18/2012 3:48:48 PM

Meier02275 c08 V2 - 03/20/2012 Page 281

Using Content Providers x 281

Deleting Content

To delete a single record, call delete on the Content Resolver, passing in the URI of the row you
want to remove. Alternatively, you can specify a where clause to remove multiple rows. Listing 8-20
demonstrates how to delete a number of rows matching a given condition.

LISTING 8-20: Deleting rows from a Content Provider

// Specify a where clause that determines which row(s) to delete.
// Specify where arguments as necessary.
String where = MyHoardContentProvider.KEY_GOLD_HOARDED_COLUMN +
 “=” + 0;
String whereArgs[] = null;

// Get the Content Resolver.
ContentResolver cr = getContentResolver();

// Delete the matching rows
int deletedRowCount =
 cr.delete(MyHoardContentProvider.CONTENT_URI, where, whereArgs);

code snippet PA4AD_ Ch08_DatabaseSkeleton/src/DatabaseSkeletonActivity.java

Updating Content

You can update rows by using the Content Resolver’s update method. The update method takes the
URI of the target Content Provider, a ContentValues object that maps column names to updated
values, and a where clause that indicates which rows to update.

When the update is executed, every row matched by the where clause is updated using the specifi ed
Content Values, and the number of successful updates is returned.

Alternatively, you can choose to update a specifi c row by specifying its unique URI, as shown in
Listing 8-21.

LISTING 8-21: Updating a record in a Content Provider

// Create the updated row content, assigning values for each row.
ContentValues updatedValues = new ContentValues();
updatedValues.put(MyHoardContentProvider.KEY_GOLD_HOARDED_COLUMN,
 newHoardValue);
// [... Repeat for each column to update ...]

// Create a URI addressing a specific row.
Uri rowURI =
 ContentUris.withAppendedId(MyHoardContentProvider.CONTENT_URI,
 hoardId);

// Specify a specific row so no selection clause is required.
String where = null;
String whereArgs[] = null; continues

c08.indd 281c08.indd 281 4/18/2012 3:48:49 PM4/18/2012 3:48:49 PM

Meier02275 c08 V2 - 03/20/2012 Page 282

282 x CHAPTER 8 DATABASES AND CONTENT PROVIDERS

// Get the Content Resolver.
ContentResolver cr = getContentResolver();

// Update the specified row.
int updatedRowCount =
 cr.update(rowURI, updatedValues, where, whereArgs);

code snippet PA4AD_ Ch08_DatabaseSkeleton/src/DatabaseSkeletonActivity.java

Accessing Files Stored in Content Providers

Content Providers represent large fi les as fully qualifi ed URIs rather than raw fi le blobs; however,
this is abstracted away when using the Content Resolver.

To access a fi le stored in, or to insert a new fi le into, a Content Provider, simply use the Content
Resolver’s openOutputStream or openInputStream methods, respectively, passing in the URI to
the Content Provider row containing the fi le you require. The Content Provider will interpret your
request and return an input or output stream to the requested fi le, as shown in Listing 8-22.

LISTING 8-22: Reading and writing fi les from and to a Content Provider

public void addNewHoardWithImage(String hoardName, float hoardValue,
 boolean hoardAccessible, Bitmap bitmap) {

 // Create a new row of values to insert.
 ContentValues newValues = new ContentValues();

 // Assign values for each row.
 newValues.put(MyHoardContentProvider.KEY_GOLD_HOARD_NAME_COLUMN,
 hoardName);
 newValues.put(MyHoardContentProvider.KEY_GOLD_HOARDED_COLUMN,
 hoardValue);
 newValues.put(
 MyHoardContentProvider.KEY_GOLD_HOARD_ACCESSIBLE_COLUMN,
 hoardAccessible);

 // Get the Content Resolver
 ContentResolver cr = getContentResolver();

 // Insert the row into your table
 Uri myRowUri =
 cr.insert(MyHoardContentProvider.CONTENT_URI, newValues);

 try {
 // Open an output stream using the new row’s URI.
 OutputStream outStream = cr.openOutputStream(myRowUri);
 // Compress your bitmap and save it into your provider.

LISTING 8-21 (continued)

c08.indd 282c08.indd 282 4/18/2012 3:48:49 PM4/18/2012 3:48:49 PM

Meier02275 c08 V2 - 03/20/2012 Page 283

Using Content Providers x 283

 bitmap.compress(Bitmap.CompressFormat.JPEG, 80, outStream);
 }
 catch (FileNotFoundException e) {
 Log.d(TAG, “No file found for this record.”);
 }
}

public Bitmap getHoardImage(long rowId) {
 Uri myRowUri =
 ContentUris.withAppendedId(MyHoardContentProvider.CONTENT_URI,
 rowId);

 try {
 // Open an input stream using the new row’s URI.
 InputStream inStream =
 getContentResolver().openInputStream(myRowUri);

 // Make a copy of the Bitmap.
 Bitmap bitmap = BitmapFactory.decodeStream(inStream);
 return bitmap;
 }
 catch (FileNotFoundException e) {
 Log.d(TAG, “No file found for this record.”);
 }

 return null;
}

code snippet PA4AD_ Ch08_DatabaseSkeleton/src/DatabaseSkeletonActivity.java

Creating a To-Do List Database and Content Provider

In Chapter 4, “Building User Interfaces,” you created a To-Do List application. In the following exam-
ple, you’ll create a database and Content Provider to save each of the to-do items added to the list.

1. Start by creating a new ToDoContentProvider class. It will be used to host the data-
base using an SQLiteOpenHelper and manage your database interactions by extending
the ContentProvider class. Include stub methods for the onCreate, query, update,
insert, delete, and getType methods, and a private skeleton implementation of an
SQLiteOpenHelper.

package com.paad.todolist;

import android.content.ContentProvider;
import android.content.ContentUris;
import android.content.ContentValues;
import android.content.Context;
import android.content.UriMatcher;
import android.database.Cursor;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteQueryBuilder;
import android.database.sqlite.SQLiteDatabase.CursorFactory;
import android.database.sqlite.SQLiteOpenHelper;

c08.indd 283c08.indd 283 4/18/2012 3:48:49 PM4/18/2012 3:48:49 PM

Meier02275 c08 V2 - 03/20/2012 Page 284

284 x CHAPTER 8 DATABASES AND CONTENT PROVIDERS

import android.net.Uri;
import android.text.TextUtils;
import android.util.Log;

public class ToDoContentProvider extends ContentProvider {

 @Override
 public boolean onCreate() {
 return false;
 }

 @Override
 public String getType(Uri url) {
 return null;
 }

 @Override
 public Cursor query(Uri url, String[] projection, String selection,
 String[] selectionArgs, String sort) {
 return null;
 }

 @Override
 public Uri insert(Uri url, ContentValues initialValues) {
 return null;
 }

 @Override
 public int delete(Uri url, String where, String[] whereArgs) {
 return 0;
 }

 @Override
 public int update(Uri url, ContentValues values,
 String where, String[]wArgs) {
 return 0;
 }

 private static class MySQLiteOpenHelper extends SQLiteOpenHelper {

 public MySQLiteOpenHelper(Context context, String name,
 CursorFactory factory, int version) {
 super(context, name, factory, version);
 }

 // Called when no database exists in disk and the helper class needs
 // to create a new one.
 @Override
 public void onCreate(SQLiteDatabase db) {
 // TODO Create database tables.
 }

 // Called when there is a database version mismatch meaning that the version
 // of the database on disk needs to be upgraded to the current version.
 @Override

c08.indd 284c08.indd 284 4/18/2012 3:48:49 PM4/18/2012 3:48:49 PM

Meier02275 c08 V2 - 03/20/2012 Page 285

Using Content Providers x 285

 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 // TODO Upgrade database.
 }
 }
}

2. Publish the URI for this provider. This URI will be used to access this Content Provider from
within other application components via the ContentResolver.

public static final Uri CONTENT_URI =
 Uri.parse(“content://com.paad.todoprovider/todoitems”);

3. Create public static variables that defi ne the column names. They will be used within the
SQLite Open Helper to create the database, and from other application components to
extract values from your queries.

public static final String KEY_ID = “_id”;
public static final String KEY_TASK = “task”;
public static final String KEY_CREATION_DATE = “creation_date”;

4. Within the MySQLiteOpenHelper, create variables to store the database name and version,
along with the table name of the to-do list item table.

private static final String DATABASE_NAME = “todoDatabase.db”;
private static final int DATABASE_VERSION = 1;
private static final String DATABASE_TABLE = “todoItemTable”;

5. Still in the MySQLiteOpenHelper, overwrite the onCreate and onUpgrade methods to han-
dle the database creation using the columns from step 3 and standard upgrade logic.

// SQL statement to create a new database.
private static final String DATABASE_CREATE = “create table “ +
 DATABASE_TABLE + “ (“ + KEY_ID +
 “ integer primary key autoincrement, “ +
 KEY_TASK + “ text not null, “ +
 KEY_CREATION_DATE + “long);”;

// Called when no database exists in disk and the helper class needs
// to create a new one.
@Override
public void onCreate(SQLiteDatabase db) {
 db.execSQL(DATABASE_CREATE);
}

// Called when there is a database version mismatch, meaning that the version
// of the database on disk needs to be upgraded to the current version.
@Override
public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 // Log the version upgrade.
 Log.w(“TaskDBAdapter”, “Upgrading from version “ +
 oldVersion + “ to “ +
 newVersion + “, which will destroy all old data”);

 // Upgrade the existing database to conform to the new version. Multiple
 // previous versions can be handled by comparing oldVersion and newVersion

c08.indd 285c08.indd 285 4/18/2012 3:48:49 PM4/18/2012 3:48:49 PM

Meier02275 c08 V2 - 03/20/2012 Page 286

286 x CHAPTER 8 DATABASES AND CONTENT PROVIDERS

 // values.

 // The simplest case is to drop the old table and create a new one.
 db.execSQL(“DROP TABLE IF IT EXISTS “ + DATABASE_TABLE);
 // Create a new one.
 onCreate(db);
}

6. Returning to the ToDoContentProvider, add a private variable to store an instance of the
MySQLiteOpenHelper class, and create it within the onCreate handler.

private MySQLiteOpenHelper myOpenHelper;

@Override
public boolean onCreate() {
 // Construct the underlying database.
 // Defer opening the database until you need to perform
 // a query or transaction.
 myOpenHelper = new MySQLiteOpenHelper(getContext(),
 MySQLiteOpenHelper.DATABASE_NAME, null,
 MySQLiteOpenHelper.DATABASE_VERSION);

 return true;
}

7. Still in the Content Provider, create a new UriMatcher to allow your Content Provider to
differentiate between a query against the entire table and one that addresses a particular row.
Use it within the getType handler to return the correct MIME type, depending on the query
type.

private static final int ALLROWS = 1;
private static final int SINGLE_ROW = 2;

private static final UriMatcher uriMatcher;

//Populate the UriMatcher object, where a URI ending in ‘todoitems’ will
//correspond to a request for all items, and ‘todoitems/[rowID]’
//represents a single row.
static {
 uriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
 uriMatcher.addURI(“com.paad.todoprovider”, “todoitems”, ALLROWS);
 uriMatcher.addURI(“com.paad.todoprovider”, “todoitems/#”, SINGLE_ROW);
}

@Override
public String getType(Uri uri) {
 // Return a string that identifies the MIME type
 // for a Content Provider URI
 switch (uriMatcher.match(uri)) {
 case ALLROWS: return “vnd.android.cursor.dir/vnd.paad.todos”;
 case SINGLE_ROW: return “vnd.android.cursor.item/vnd.paad.todos”;
 default: throw new IllegalArgumentException(“Unsupported URI: “ + uri);
 }
}

c08.indd 286c08.indd 286 4/18/2012 3:48:49 PM4/18/2012 3:48:49 PM

Meier02275 c08 V2 - 03/20/2012 Page 287

Using Content Providers x 287

8. Implement the query method stub. Start by requesting an instance of the database, before
constructing a query based on the parameters passed in. In this simple instance, you need
to apply the same query parameters only to the underlying database — modifying the query
only to account for the possibility of a URI that addresses a single row.

@Override
public Cursor query(Uri uri, String[] projection, String selection,
 String[] selectionArgs, String sortOrder) {
 // Open a read-only database.
 SQLiteDatabase db = myOpenHelper.getWritableDatabase();

 // Replace these with valid SQL statements if necessary.
 String groupBy = null;
 String having = null;

 SQLiteQueryBuilder queryBuilder = new SQLiteQueryBuilder();
 queryBuilder.setTables(MySQLiteOpenHelper.DATABASE_TABLE);

 // If this is a row query, limit the result set to the passed in row.
 switch (uriMatcher.match(uri)) {
 case SINGLE_ROW :
 String rowID = uri.getPathSegments().get(1);
 queryBuilder.appendWhere(KEY_ID + “=” + rowID);
 default: break;
 }

 Cursor cursor = queryBuilder.query(db, projection, selection,
 selectionArgs, groupBy, having, sortOrder);

 return cursor;
}

9. Implement the delete, insert, and update methods using the same approach — pass
through the received parameters while handling the special case of single-row URIs.

@Override
public int delete(Uri uri, String selection, String[] selectionArgs) {
 // Open a read / write database to support the transaction.
 SQLiteDatabase db = myOpenHelper.getWritableDatabase();

 // If this is a row URI, limit the deletion to the specified row.
 switch (uriMatcher.match(uri)) {
 case SINGLE_ROW :
 String rowID = uri.getPathSegments().get(1);
 selection = KEY_ID + “=” + rowID
 + (!TextUtils.isEmpty(selection) ?
 “ AND (“ + selection + ‘)’ : “”);
 default: break;
 }

 // To return the number of deleted items, you must specify a where
 // clause. To delete all rows and return a value, pass in “1”.
 if (selection == null)
 selection = “1”;

c08.indd 287c08.indd 287 4/18/2012 3:48:49 PM4/18/2012 3:48:49 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Meier02275 c08 V2 - 03/20/2012 Page 288

288 x CHAPTER 8 DATABASES AND CONTENT PROVIDERS

 // Execute the deletion.
 int deleteCount = db.delete(MySQLiteOpenHelper.DATABASE_TABLE, selection,
 selectionArgs);

 // Notify any observers of the change in the data set.
 getContext().getContentResolver().notifyChange(uri, null);

 return deleteCount;
}

@Override
public Uri insert(Uri uri, ContentValues values) {
 // Open a read / write database to support the transaction.
 SQLiteDatabase db = myOpenHelper.getWritableDatabase();

 // To add empty rows to your database by passing in an empty Content Values
 // object, you must use the null column hack parameter to specify the name of
 // the column that can be set to null.
 String nullColumnHack = null;

 // Insert the values into the table
 long id = db.insert(MySQLiteOpenHelper.DATABASE_TABLE,
 nullColumnHack, values);

 if (id > -1) {
 // Construct and return the URI of the newly inserted row.
 Uri insertedId = ContentUris.withAppendedId(CONTENT_URI, id);

 // Notify any observers of the change in the data set.
 getContext().getContentResolver().notifyChange(insertedId, null);

 return insertedId;
 }
 else
 return null;
}

@Override
public int update(Uri uri, ContentValues values, String selection,
 String[] selectionArgs) {

 // Open a read / write database to support the transaction.
 SQLiteDatabase db = myOpenHelper.getWritableDatabase();

 // If this is a row URI, limit the deletion to the specified row.
 switch (uriMatcher.match(uri)) {
 case SINGLE_ROW :
 String rowID = uri.getPathSegments().get(1);
 selection = KEY_ID + “=” + rowID
 + (!TextUtils.isEmpty(selection) ?
 “ AND (“ + selection + ‘)’ : “”);
 default: break;
 }

 // Perform the update.

c08.indd 288c08.indd 288 4/18/2012 3:48:50 PM4/18/2012 3:48:50 PM

Meier02275 c08 V2 - 03/20/2012 Page 289

Using Content Providers x 289

 int updateCount = db.update(MySQLiteOpenHelper.DATABASE_TABLE,
 values, selection, selectionArgs);

 // Notify any observers of the change in the data set.
 getContext().getContentResolver().notifyChange(uri, null);

 return updateCount;
}

10. That completes the Content Provider class. Add it to your application Manifest, specifying
the base URI to use as its authority.

<provider android:name=”.ToDoContentProvider”
 android:authorities=”com.paad.todoprovider”/>

11. Return to the ToDoList Activity and update it to persist the to-do list array. Start by modify-
ing the Activity to implement LoaderManager.LoaderCallbacks<Cursor>, and then add
the associated stub methods.

public class ToDoList extends Activity implements
 NewItemFragment.OnNewItemAddedListener, LoaderManager.LoaderCallbacks<Cursor> {

 // [... Existing ToDoList Activity code ...]

 public Loader<Cursor> onCreateLoader(int id, Bundle args) {
 return null;
 }

 public void onLoadFinished(Loader<Cursor> loader, Cursor cursor) {
 }

 public void onLoaderReset(Loader<Cursor> loader) {
 }
}

12. Complete the onCreateLoader handler by building and returning a Loader that queries the
ToDoListContentProvider for all of its elements.

public Loader<Cursor> onCreateLoader(int id, Bundle args) {
 CursorLoader loader = new CursorLoader(this,
 ToDoContentProvider.CONTENT_URI, null, null, null, null);

 return loader;
}

13. When the Loader’s query completes, the result Cursor will be returned to the onLoadFin-
ished handler. Update it to iterate over the result Cursor and repopulate the to-do list Array
Adapter accordingly.

public void onLoadFinished(Loader<Cursor> loader, Cursor cursor) {
 int keyTaskIndex = cursor.getColumnIndexOrThrow(ToDoContentProvider.KEY_TASK);

 todoItems.clear();
 while (cursor.moveToNext()) {
 ToDoItem newItem = new ToDoItem(cursor.getString(keyTaskIndex));
 todoItems.add(newItem);
 }

c08.indd 289c08.indd 289 4/18/2012 3:48:50 PM4/18/2012 3:48:50 PM

Meier02275 c08 V2 - 03/20/2012 Page 290

290 x CHAPTER 8 DATABASES AND CONTENT PROVIDERS

 aa.notifyDataSetChanged();
}

14. Update the onCreate handler to initiate the Loader when the Activity is created, and the
onResume handler to restart the Loader when the Activity is restarted.

public void onCreate(Bundle savedInstanceState) {

 // [... Existing onCreate code …]

 getLoaderManager().initLoader(0, null, this);
}

@Override
protected void onResume() {
 super.onResume();
 getLoaderManager().restartLoader(0, null, this);
}

15. The fi nal step is to modify the behavior of the onNewItemAdded handler. Rather than adding
the item to the to-do Array List directly, use the ContentResolver to add it to the Content
Provider.

public void onNewItemAdded(String newItem) {
 ContentResolver cr = getContentResolver();

 ContentValues values = new ContentValues();
 values.put(ToDoContentProvider.KEY_TASK, newItem);

 cr.insert(ToDoContentProvider.CONTENT_URI, values);
 getLoaderManager().restartLoader(0, null, this);
}

All code snippets in this example are part of the Chapter 8 Todo List project,
available for download at www.wrox.com.

You have now created a database into which to save your to-do items. A better approach than
copying Cursor rows to an Array List is to use a Simple Cursor Adapter. You’ll do this later in the
chapter, in the section “Creating a Searchable Earthquake Provider.”

To make this To-Do List application more useful, consider adding functionality to delete and update
list items, change the sort order, and store additional information.

ADDING SEARCH TO YOUR APPLICATION

Surfacing your application’s content through search is a simple and powerful way to make your
content more discoverable, increase user engagement, and improve the visibility of your application.
On mobile devices speed is everything, and search provides a mechanism for users to quickly fi nd
the content they need.

c08.indd 290c08.indd 290 4/18/2012 3:48:50 PM4/18/2012 3:48:50 PM

http://www.wrox.com

Meier02275 c08 V2 - 03/20/2012 Page 291

Adding Search to Your Application x 291

Android includes a framework that simplifi es the process of
making your Content Providers searchable, adding search
functionality to your Activities, and surfacing application
search results on the home screen.

Until Android 3.0 (API level 11) most Android devices featured
a hardware search key. In more recent releases this has been
replaced with on-screen widgets, typically placed on your
application’s Action Bar.

By implementing search within your application, you can
expose your application-specifi c search functionality whenever
a user presses the search button or uses the search widget.

You can provide search capabilities for your application in
three ways:

 ‰ Search bar — When activated, the search bar (often
referred to as the search dialog) is displayed over the title
bar of your Activity, as shown in Figure 8-1. The search
bar is activated when the user presses the hardware search
button, or it can be initiated programmatically with a call
to your Activity’s onSearchRequested method.

Not all Android devices include a
hardware search key, particularly
newer devices and tablets, so it’s good
practice to also include a software
trigger to initiate search.

 ‰ Search View — Introduced in Android
3.0 (API level 11), the Search View
is a search widget that can be placed
anywhere within your Activity.
Typically represented as an icon in the Action Bar, it is shown expanded in Figure 8-2.

 ‰ Quick Search Box — The Quick Search Box, as shown in Figure 8-3, is a home screen search
Widget that performs searches across all supported applications. You can confi gure your
application’s search results to be surfaced for searches initiated through the Quick Search Box.

The search bar, Search View, and Quick Search Box support the display of search suggestions,
providing a powerful mechanism for improving the responsiveness of your application.

Making Your Content Provider Searchable

Before you can enable the search dialog or use a Search View widget within your application, you
need to defi ne what is searchable.

To do this, the fi rst step is to create a new searchable metadata XML resource in your project’s res/
xml folder. As shown in Listing 8-23, you must specify the android:label attribute (typically your
application name), and best practice suggests you also include an android:hint attribute to help
users understand what they can search for. The hint is typically in the form of “Search for [content
type or product name].”

FIGURE 8-1

FIGURE 8-2

FIGURE 8-3

c08.indd 291c08.indd 291 4/18/2012 3:48:50 PM4/18/2012 3:48:50 PM

Meier02275 c08 V2 - 03/20/2012 Page 292

292 x CHAPTER 8 DATABASES AND CONTENT PROVIDERS

LISTING 8-23: Defi ning application search metadata

<?xml version=”1.0” encoding=”utf-8”?>
<searchable xmlns:android=”http://schemas.android.com/apk/res/android”
 android:label=”@string/app_name”
 android:hint=”@string/search_hint”>
</searchable>

code snippet PA4AD_ Ch08_DatabaseSkeleton/res/xml/searchable.xml

Creating a Search Activity for Your Application

Having defi ned the Content Provider to search, you must now create an Activity that will be used
to display search results. This will most commonly be a simple List View-based Activity, but you
can use any user interface, provided that it has a mechanism for displaying search results.

Users will not generally expect multiple searches to be added to the back stack, so it’s good prac-
tice to set a search Activity as “single top,” ensuring that the same instance will be used repeatedly
rather than creating a new instance for each search.

To indicate that an Activity can be used to provide search results, include an Intent Filter registered
for the android.intent.action.SEARCH action and the DEFAULT category.

You must also include a meta-data tag that includes a name attribute that specifi es android.app
.searchable, and a resource attribute that specifi es a searchable XML resource, as shown in
Listing 8-24.

LISTING 8-24: Registering a search results Activity

<activity android:name=”.DatabaseSkeletonSearchActivity”
 android:label=”Element Search”
 android:launchMode=”singleTop”>
 <intent-filter>
 <action android:name=”android.intent.action.SEARCH” />
 <category android:name=”android.intent.category.DEFAULT” />
 </intent-filter>
 <meta-data
 android:name=”android.app.searchable”
 android:resource=”@xml/searchable”
 />
</activity>

code snippet PA4AD_ Ch08_DatabaseSkeleton/AndroidManifest.xml

To enable the search dialog for a given Activity, you need to specify which search results
Activity should be used to handle search requests. You can do this by adding a meta-data
tag to its activity node in the manifest. Set the name attribute to android.app.

c08.indd 292c08.indd 292 4/18/2012 3:48:51 PM4/18/2012 3:48:51 PM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c08 V2 - 03/20/2012 Page 293

Adding Search to Your Application x 293

default_searchable and specify your search Activity using the value attribute, as shown in
the following snippet:

<meta-data
 android:name=”android.app.default_searchable”
 android:value=”.DatabaseSkeletonSearchActivity”
/>

Searches initiated from within the search results Activity are automatically handled by it, so there’s
no need to annotate it specifi cally.

After users have initiated a search, your Activity will be started and their search queries will be
available from within the Intent that started it, accessible through the SearchManager.QUERY
extra. Searches initiated from within the search results Activity will result in new Intents being
received — you can capture those Intents and extract the new queries from the onNewIntent han-
dler, as shown in Listing 8-25.

LISTING 8-25: Extracting the search query

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Get the launch Intent
 parseIntent(getIntent());
}

@Override
protected void onNewIntent(Intent intent) {
 super.onNewIntent(intent);
 parseIntent(getIntent());
}

private void parseIntent(Intent intent) {
 // If the Activity was started to service a Search request,
 // extract the search query.
 if (Intent.ACTION_SEARCH.equals(intent.getAction())) {
 String searchQuery = intent.getStringExtra(SearchManager.QUERY);
 // Perform the search
 performSearch(searchQuery);
 }
}

code snippet PA4AD_ Ch08_DatabaseSkeleton/src/DatabaseSkeletonSearchActivity.java

Making Your Search Activity the Default Search Provider
for Your Application

It’s generally good practice to use the same search results form for your entire application. To set
a search Activity as the default search result provider for all Activities within your application,

c08.indd 293c08.indd 293 4/18/2012 3:48:51 PM4/18/2012 3:48:51 PM

Meier02275 c08 V2 - 03/20/2012 Page 294

294 x CHAPTER 8 DATABASES AND CONTENT PROVIDERS

add a meta-data tag within the application manifest node. Set the name attribute to android.
app.default_searchable and specify your search Activity using the value attribute, as shown in
Listing 8-26.

LISTING 8-26: Setting a default search result Activity for an application

<meta-data
 android:name=”android.app.default_searchable”
 android:value=”.DatabaseSkeletonSearchActivity”
/>

code snippet PA4AD_ Ch08_DatabaseSkeleton/AndroidManifest.xml

Performing a Search and Displaying the Results

When your search Activity receives a new search query, you must execute the search and display the
results within the Activity. How you choose to implement your search query and display its results
depends on your application, what you’re searching, and where the searchable content is stored.

If you are searching a Content Provider, it’s good practice to use a Cursor Loader to execute a query
whose result Cursor is bound to a List View, as shown in Listing 8-27.

LISTING 8-27: Performing a search and displaying the results

import android.app.ListActivity;
import android.app.LoaderManager;
import android.app.SearchManager;
import android.content.ContentUris;
import android.content.CursorLoader;
import android.content.Intent;
import android.content.Loader;
import android.database.Cursor;
import android.net.Uri;
import android.os.Bundle;
import android.view.View;
import android.widget.ListView;
import android.widget.SimpleCursorAdapter;

public class DatabaseSkeletonSearchActivity extends ListActivity
 implements LoaderManager.LoaderCallbacks<Cursor> {

 private static String QUERY_EXTRA_KEY = “QUERY_EXTRA_KEY”;

 private SimpleCursorAdapter adapter;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Create a new adapter and bind it to the List View
 adapter = new SimpleCursorAdapter(this,
 android.R.layout.simple_list_item_1, null,

c08.indd 294c08.indd 294 4/18/2012 3:48:51 PM4/18/2012 3:48:51 PM

Meier02275 c08 V2 - 03/20/2012 Page 295

Adding Search to Your Application x 295

 new String[] { MyContentProvider.KEY_COLUMN_1_NAME },
 new int[] { android.R.id.text1 }, 0);
 setListAdapter(adapter);

 // Initiate the Cursor Loader
 getLoaderManager().initLoader(0, null, this);

 // Get the launch Intent
 parseIntent(getIntent());
 }

 @Override
 protected void onNewIntent(Intent intent) {
 super.onNewIntent(intent);
 parseIntent(getIntent());
 }

 private void parseIntent(Intent intent) {
 // If the Activity was started to service a Search request,
 // extract the search query.
 if (Intent.ACTION_SEARCH.equals(intent.getAction())) {
 String searchQuery = intent.getStringExtra(SearchManager.QUERY);
 // Perform the search
 performSearch(searchQuery);
 }
 }

 // Execute the search.
 private void performSearch(String query) {
 // Pass the search query as an argument to the Cursor Loader
 Bundle args = new Bundle();
 args.putString(QUERY_EXTRA_KEY, query);

 // Restart the Cursor Loader to execute the new query.
 getLoaderManager().restartLoader(0, args, this);
 }

 public Loader<Cursor> onCreateLoader(int id, Bundle args) {
 String query = “0”;

 // Extract the search query from the arguments.
 if (args != null)
 query = args.getString(QUERY_EXTRA_KEY);

 // Construct the new query in the form of a Cursor Loader.
 String[] projection = {
 MyContentProvider.KEY_ID,
 MyContentProvider.KEY_COLUMN_1_NAME
 };
 String where = MyContentProvider.KEY_COLUMN_1_NAME
 + “ LIKE \”%” + query + “%\””;
 String[] whereArgs = null;
 String sortOrder = MyContentProvider.KEY_COLUMN_1_NAME +
 “ COLLATE LOCALIZED ASC”;

 // Create the new Cursor loader.

continues

c08.indd 295c08.indd 295 4/18/2012 3:48:52 PM4/18/2012 3:48:52 PM

Meier02275 c08 V2 - 03/20/2012 Page 296

296 x CHAPTER 8 DATABASES AND CONTENT PROVIDERS

 return new CursorLoader(this, MyContentProvider.CONTENT_URI,
 projection, where, whereArgs, sortOrder);
 }

 public void onLoadFinished(Loader<Cursor> loader, Cursor cursor) {
 // Replace the result Cursor displayed by the Cursor Adapter with
 // the new result set.
 adapter.swapCursor(cursor);
 }

 public void onLoaderReset(Loader<Cursor> loader) {
 // Remove the existing result Cursor from the List Adapter.
 adapter.swapCursor(null);
 }
}

code snippet PA4AD_ Ch08_DatabaseSkeleton/DatabaseSkeletonSearchActivity.java

This example uses a simple like-based search against a single column in a local
Content Provider. Although outside the scope of this book, it’s often more effec-
tive to perform full text searches on local databases, and to incorporate search
results from cloud-based data sources.

In most circumstances you’ll need to provide some functionality beyond simply displaying the search
results. If you are using a List Activity or List Fragment, you can override the onListItemClick handler
to react to user’s selecting a search result, such as displaying the result details, as shown in Listing 8-28.

LISTING 8-28: Providing actions for search result selection

@Override
protected void onListItemClick(ListView listView, View view, int position, long id) {
 super.onListItemClick(listView, view, position, id);

 // Create a URI to the selected item.
 Uri selectedUri =
 ContentUris.withAppendedId(MyContentProvider.CONTENT_URI, id);

 // Create an Intent to view the selected item.
 Intent intent = new Intent(Intent.ACTION_VIEW);
 intent.setData(selectedUri);

 // Start an Activity to view the selected item.
 startActivity(intent);
}

code snippet PA4AD_ Ch08_DatabaseSkeleton/DatabaseSkeletonSearchActivity.java

LISTING 8-27 (continued)

c08.indd 296c08.indd 296 4/18/2012 3:48:52 PM4/18/2012 3:48:52 PM

Meier02275 c08 V2 - 03/20/2012 Page 297

Adding Search to Your Application x 297

Using the Search View Widget

Android 3.0 (API level 11) introduced the SearchView widget as an alternative to the Activity search
bar. The Search View appears and behaves as an Edit Text View, but it can be confi gured to offer
search suggestions and to initiate search queries within your application in the same way as the
search bar in earlier versions of Android.

You can add the Search View anywhere in your View hierarchy and confi g-
ure it in the same way; however, it’s best practice to add it as an action View
within your Activity’s Action Bar, as described in more detail in Chapter 10,
“Expanding the User Experience.”

To connect your Search View to your search Activity, you must fi rst extract a reference to its
SearchableInfo using the Search Manager’s getSearchableInfo method. Use the Search
View’s setSearchableInfo method to bind this object to your Search View, as shown in
Listing 8-29.

LISTING 8-29: Binding a Search View to your searchable Activity

// Use the Search Manager to find the SearchableInfo related
// to this Activity.
SearchManager searchManager =
 (SearchManager)getSystemService(Context.SEARCH_SERVICE);
SearchableInfo searchableInfo =
 searchManager.getSearchableInfo(getComponentName());

// Bind the Activity’s SearchableInfo to the Search View
SearchView searchView = (SearchView)findViewById(R.id.searchView);
searchView.setSearchableInfo(searchableInfo);

code snippet PA4AD_ Ch08_DatabaseSkeleton/DatabaseSkeletonSearchActivity.java

When connected, your Search View will work like the search bar, providing search suggestions
(where possible) and displaying the Search Activity after a query has been entered.

By default, the Search View will be displayed as an icon that, when clicked, expands to the search
edit box. You can use its setIconifiedByDefault method to disable this and have it always display
as an edit box.

searchView.setIconifiedByDefault(false);

By default a Search View query is initiated when the user presses Enter. You can choose to also dis-
play a button to submit a search using the setSubmitButtonEnabled method.

searchView.setSubmitButtonEnabled(true);

c08.indd 297c08.indd 297 4/18/2012 3:48:52 PM4/18/2012 3:48:52 PM

Meier02275 c08 V2 - 03/20/2012 Page 298

298 x CHAPTER 8 DATABASES AND CONTENT PROVIDERS

Supporting Search Suggestions from a Content Provider

Beyond the simple case of submitting a search and listing the results in your Activities, one of the
most engaging innovations in search is the provision of real-time search suggestions as users type
their queries.

Search suggestions display a simple list of possible search results beneath the search bar/Search View
widget as users enter their queries, allowing them to bypass the search result Activity and jump
directly to the search result.

Although your search Activity can structure its query and display the results Cursor data in any
way, if you want to provide search suggestions, you need to create (or modify) a Content Provider to
receive search queries and return suggestions using the expected projection.

To support search suggestions, you need to confi gure your Content Provider to recognize specifi c
URI paths as search queries. Listing 8-30 shows a URI Matcher that compares a requested URI to
the known search-query path values.

LISTING 8-30: Detecting search suggestion requests in Content Providers

private static final int ALLROWS = 1;
private static final int SINGLE_ROW = 2;
private static final int SEARCH = 3;

private static final UriMatcher uriMatcher;

static {
 uriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
 uriMatcher.addURI(“com.paad.skeletondatabaseprovider”,
 “elements”, ALLROWS);
 uriMatcher.addURI(“com.paad.skeletondatabaseprovider”,
 “elements/#”, SINGLE_ROW);

 uriMatcher.addURI(“com.paad.skeletondatabaseprovider”,
 SearchManager.SUGGEST_URI_PATH_QUERY, SEARCH);
 uriMatcher.addURI(“com.paad.skeletondatabaseprovider”,
 SearchManager.SUGGEST_URI_PATH_QUERY + “/*”, SEARCH);
 uriMatcher.addURI(“com.paad.skeletondatabaseprovider”,
 SearchManager.SUGGEST_URI_PATH_SHORTCUT, SEARCH);
 uriMatcher.addURI(“com.paad.skeletondatabaseprovider”,
 SearchManager.SUGGEST_URI_PATH_SHORTCUT + “/*”, SEARCH);
}

code snippet PA4AD_ Ch08_DatabaseSkeleton/src/MySearchSuggestionsContentProvider.java

Within your Content Provider use the Uri Matcher to return the search suggestion MIME type for
search queries, as shown in Listing 8-31.

c08.indd 298c08.indd 298 4/18/2012 3:48:53 PM4/18/2012 3:48:53 PM

Meier02275 c08 V2 - 03/20/2012 Page 299

Adding Search to Your Application x 299

LISTING 8-31: Returning the correct MIME type for search results

@Override
public String getType(Uri uri) {
 // Return a string that identifies the MIME type
 // for a Content Provider URI
 switch (uriMatcher.match(uri)) {
 case ALLROWS:
 return “vnd.android.cursor.dir/vnd.paad.elemental”;
 case SINGLE_ROW:
 return “vnd.android.cursor.item/vnd.paad.elemental”;
 case SEARCH :
 return SearchManager.SUGGEST_MIME_TYPE;
 default:
 throw new IllegalArgumentException(“Unsupported URI: “ + uri);
 }
}

code snippet PA4AD_ Ch08_DatabaseSkeleton/src/MySearchSuggestionsContentProvider.java

The Search Manager requests your search suggestions by initiating a query on your Content
Provider, passing in the query value as the last element in the URI path. To provide suggestions, you
must return a Cursor using a set of predefi ned columns.

There are two required columns, SUGGEST_COLUMN_TEXT_1, which displays the search result text,
and _id, which indicates the unique row ID. You can supply up to two columns containing text, and
an icon to be displayed on either the left or right of the text results.

It’s also useful to include a SUGGEST_COLUMN_INTENT_DATA_ID column. The value returned in this
column can be appended to a specifi ed URI path and used to populate an Intent that will be fi red if
the suggestion is selected.

As speed is critical for real-time search results, in many cases it’s good practice to create a separate
table specifi cally to store and provide them. Listing 8-32 shows the skeleton code for creating a
 projection that returns a Cursor suitable for search results.

LISTING 8-32: Creating a projection for returning search suggestions

public static final String KEY_SEARCH_COLUMN = KEY_COLUMN_1_NAME;

private static final HashMap<String, String> SEARCH_SUGGEST_PROJECTION_MAP;
static {
 SEARCH_SUGGEST_PROJECTION_MAP = new HashMap<String, String>();
 SEARCH_SUGGEST_PROJECTION_MAP.put(
 “_id”, KEY_ID + “ AS “ + “_id”);
 SEARCH_SUGGEST_PROJECTION_MAP.put(
 SearchManager.SUGGEST_COLUMN_TEXT_1,

continues

c08.indd 299c08.indd 299 4/18/2012 3:48:53 PM4/18/2012 3:48:53 PM

Meier02275 c08 V2 - 03/20/2012 Page 300

300 x CHAPTER 8 DATABASES AND CONTENT PROVIDERS

 KEY_SEARCH_COLUMN + “ AS “ + SearchManager.SUGGEST_COLUMN_TEXT_1);
 SEARCH_SUGGEST_PROJECTION_MAP.put(
 SearchManager.SUGGEST_COLUMN_INTENT_DATA_ID, KEY_ID +
 “ AS “ + “_id”);
}

code snippet PA4AD_ Ch08_DatabaseSkeleton/src/MySearchSuggestionsContentProvider.java

To perform the query that will supply the search suggestions, use the Uri Matcher within your
query implementation, applying the projection map of the form defi ned in the previous listing, as
shown in Listing 8-33.

LISTING 8-33: Returning search suggestions for a query

@Override
public Cursor query(Uri uri, String[] projection, String selection,
 String[] selectionArgs, String sortOrder) {
 // Open a read-only database.
 SQLiteDatabase db = myOpenHelper.getWritableDatabase();

 // Replace these with valid SQL statements if necessary.
 String groupBy = null;
 String having = null;

 SQLiteQueryBuilder queryBuilder = new SQLiteQueryBuilder();
 queryBuilder.setTables(MySQLiteOpenHelper.DATABASE_TABLE);

 // If this is a row query, limit the result set to the passed in row.
 switch (uriMatcher.match(uri)) {
 case SINGLE_ROW :
 String rowID = uri.getPathSegments().get(1);
 queryBuilder.appendWhere(KEY_ID + “=” + rowID);
 break;
 case SEARCH :
 String query = uri.getPathSegments().get(1);
 queryBuilder.appendWhere(KEY_SEARCH_COLUMN +
 “ LIKE \”%” + query + “%\””);
 queryBuilder.setProjectionMap(SEARCH_SUGGEST_PROJECTION_MAP);
 break;
 default: break;
 }

 Cursor cursor = queryBuilder.query(db, projection, selection,
 selectionArgs, groupBy, having, sortOrder);

 return cursor;
}

code snippet PA4AD_ Ch08_DatabaseSkeleton/src/MySearchSuggestionsContentProvider.java

LISTING 8-32 (continued)

c08.indd 300c08.indd 300 4/18/2012 3:48:53 PM4/18/2012 3:48:53 PM

Meier02275 c08 V2 - 03/20/2012 Page 301

Creating a Searchable Earthquake Content Provider x 301

The fi nal step is to update your searchable resource to specify the authority of the Content Provider
that should be used to supply search suggestions for your search bar and/or Search View. This can
be the same Content Provider used to execute regular queries (if you’ve mapped the columns as
required), or an entirely different Provider.

Listing 8-34 shows how to specify the authority, as well as to defi ne the searchSuggestIntentAction
to determine which action to perform if a suggestion is clicked, and the searchSuggestIntentData
attribute to specify the base URI that will be used in the action Intent’s data value.

If you have included an Intent data ID column in your search suggestion result Cursor, it will be
appended to this base URI.

LISTING 8-34: Confi guring a searchable resource for search suggestions

<?xml version=”1.0” encoding=”utf-8”?>
<searchable xmlns:android=”http://schemas.android.com/apk/res/android”
 android:label=”@string/app_name”
 android:searchSuggestAuthority=
 “com.paad.skeletonsearchabledatabaseprovider”
 android:searchSuggestIntentAction=”android.intent.action.VIEW”
 android:searchSuggestIntentData=
 “content://com.paad.skeletonsearchabledatabaseprovider/elements”>
</searchable>

code snippet PA4AD_ Ch08_DatabaseSkeleton/res/xml/searchablewithsuggestions.xml

Surfacing Search Results in the Quick Search Box

The Quick Search Box (QSB) is a home screen Widget designed to provide universal search across
every application installed on the host device, as well as to initiate web searches. Inclusion in QSB
results is opt in — that is, developers can choose to supply search results, and users can select which
supported application’s results they want to see.

To supply results to the QSB, your application must be able to provide search
suggestions, as described in the previous section, “Supporting Search Suggestions
from a Content Provider.” Chapter 14, “Invading the Home Screen,” provides
more details on how to surface your search results to the QSB.

CREATING A SEARCHABLE EARTHQUAKE CONTENT PROVIDER

In this example you will modify the earthquake application you created in Chapter 6, “Using
Internet Resources,” by storing the earthquake data in a Content Provider. In this three-part
 example, you will start by moving the data to a Content Provider, and then update the application
to use that Provider, and, fi nally, add support for search.

c08.indd 301c08.indd 301 4/18/2012 3:48:53 PM4/18/2012 3:48:53 PM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c08 V2 - 03/20/2012 Page 302

302 x CHAPTER 8 DATABASES AND CONTENT PROVIDERS

Creating the Content Provider

Start by creating a new Content Provider that will be used to store each earthquake once it has been
parsed out of the Internet feed.

1. Open the Earthquake project and create a new EarthquakeProvider class that extends
ContentProvider. Include stubs to override the onCreate, getType, query, insert,
delete, and update methods.

package com.paad.earthquake;

import android.content.ContentProvider;
import android.content.ContentUris;
import android.content.ContentValues;
import android.content.Context;
import android.content.UriMatcher;
import android.database.Cursor;
import android.database.SQLException;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteDatabase.CursorFactory;
import android.database.sqlite.SQLiteOpenHelper;
import android.database.sqlite.SQLiteQueryBuilder;
import android.net.Uri;
import android.text.TextUtils;
import android.util.Log;

public class EarthquakeProvider extends ContentProvider {

 @Override
 public boolean onCreate() {
 return false;
 }

 @Override
 public String getType(Uri url) {
 return null;
 }

 @Override
 public Cursor query(Uri url, String[] projection, String selection,
 String[] selectionArgs, String sort) {
 return null;
 }

 @Override
 public Uri insert(Uri _url, ContentValues _initialValues) {
 return null;
 }

 @Override
 public int delete(Uri url, String where, String[] whereArgs) {
 return 0;
 }

c08.indd 302c08.indd 302 4/18/2012 3:48:54 PM4/18/2012 3:48:54 PM

Meier02275 c08 V2 - 03/20/2012 Page 303

Creating a Searchable Earthquake Content Provider x 303

 @Override
 public int update(Uri url, ContentValues values,
 String where, String[]wArgs) {
 return 0;
 }
}

2. Publish the URI for this provider. This URI will be used to access this Content Provider from
within other application components via the ContentResolver.

public static final Uri CONTENT_URI =
 Uri.parse(“content://com.paad.earthquakeprovider/earthquakes”);

3. Create a set of public variables that describe the column names to be used within your data-
base table.

// Column Names
public static final String KEY_ID = “_id”;
public static final String KEY_DATE = “date”;
public static final String KEY_DETAILS = “details”;
public static final String KEY_SUMMARY = “summary”;
public static final String KEY_LOCATION_LAT = “latitude”;
public static final String KEY_LOCATION_LNG = “longitude”;
public static final String KEY_MAGNITUDE = “magnitude”;
public static final String KEY_LINK = “link”;

4. Create the database that will be used to store the earthquakes. Within the
EarthquakeProvider create a new SQLiteOpenHelper implementation that creates and
updates the database.

// Helper class for opening, creating, and managing database version control
private static class EarthquakeDatabaseHelper extends SQLiteOpenHelper {

 private static final String TAG = “EarthquakeProvider”;

 private static final String DATABASE_NAME = “earthquakes.db”;
 private static final int DATABASE_VERSION = 1;
 private static final String EARTHQUAKE_TABLE = “earthquakes”;

 private static final String DATABASE_CREATE =
 “create table “ + EARTHQUAKE_TABLE + “ (“
 + KEY_ID + “ integer primary key autoincrement, “
 + KEY_DATE + “ INTEGER, “
 + KEY_DETAILS + “ TEXT, “
 + KEY_SUMMARY + “ TEXT, “
 + KEY_LOCATION_LAT + “ FLOAT, “
 + KEY_LOCATION_LNG + “ FLOAT, “
 + KEY_MAGNITUDE + “ FLOAT, “
 + KEY_LINK + “ TEXT);”;

 // The underlying database
 private SQLiteDatabase earthquakeDB;

 public EarthquakeDatabaseHelper(Context context, String name,

c08.indd 303c08.indd 303 4/18/2012 3:48:54 PM4/18/2012 3:48:54 PM

Meier02275 c08 V2 - 03/20/2012 Page 304

304 x CHAPTER 8 DATABASES AND CONTENT PROVIDERS

 CursorFactory factory, int version) {
 super(context, name, factory, version);
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 db.execSQL(DATABASE_CREATE);
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 Log.w(TAG, “Upgrading database from version “ + oldVersion + “ to “
 + newVersion + “, which will destroy all old data”);

 db.execSQL(“DROP TABLE IF EXISTS “ + EARTHQUAKE_TABLE);
 onCreate(db);
 }
}

5. Override the Provider’s onCreate handler to create a new instance of the database helper
you created in step 4.

EarthquakeDatabaseHelper dbHelper;

@Override
public boolean onCreate() {
 Context context = getContext();

 dbHelper = new EarthquakeDatabaseHelper(context,
 EarthquakeDatabaseHelper.DATABASE_NAME, null,
 EarthquakeDatabaseHelper.DATABASE_VERSION);

 return true;
}

6. Create a UriMatcher to handle requests using different URIs. Include support for queries
and transactions over the entire dataset (QUAKES) and a single record matching a quake index
value (QUAKE_ID). Also override the getType method to return a MIME type for each of the
URI structures supported.

// Create the constants used to differentiate between the different URI
// requests.
private static final int QUAKES = 1;
private static final int QUAKE_ID = 2;

private static final UriMatcher uriMatcher;

// Allocate the UriMatcher object, where a URI ending in ‘earthquakes’ will
// correspond to a request for all earthquakes, and ‘earthquakes’ with a
// trailing ‘/[rowID]’ will represent a single earthquake row.
static {
 uriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
 uriMatcher.addURI(“com.paad.earthquakeprovider”, “earthquakes”, QUAKES);
 uriMatcher.addURI(“com.paad.earthquakeprovider”, “earthquakes/#”, QUAKE_ID);
}

c08.indd 304c08.indd 304 4/18/2012 3:48:54 PM4/18/2012 3:48:54 PM

Meier02275 c08 V2 - 03/20/2012 Page 305

Creating a Searchable Earthquake Content Provider x 305

@Override
public String getType(Uri uri) {
 switch (uriMatcher.match(uri)) {
 case QUAKES: return “vnd.android.cursor.dir/vnd.paad.earthquake”;
 case QUAKE_ID: return “vnd.android.cursor.item/vnd.paad.earthquake”;
 default: throw new IllegalArgumentException(“Unsupported URI: “ + uri);
 }
}

7. Implement the query and transaction stubs. Start by requesting a read / write version of the
database using the SQLite Open Helper. Then implement the query method, which should
decode the request being made based on the URI (either all content or a single row), and
apply the selection, projection, and sort-order parameters to the database before returning a
result Cursor.

@Override
public Cursor query(Uri uri,
 String[] projection,
 String selection,
 String[] selectionArgs,
 String sort) {

 SQLiteDatabase database = dbHelper.getWritableDatabase();

 SQLiteQueryBuilder qb = new SQLiteQueryBuilder();

 qb.setTables(EarthquakeDatabaseHelper.EARTHQUAKE_TABLE);

 // If this is a row query, limit the result set to the passed in row.
 switch (uriMatcher.match(uri)) {
 case QUAKE_ID: qb.appendWhere(KEY_ID + “=” + uri.getPathSegments().get(1));
 break;
 default : break;
 }

 // If no sort order is specified, sort by date / time
 String orderBy;
 if (TextUtils.isEmpty(sort)) {
 orderBy = KEY_DATE;
 } else {
 orderBy = sort;
 }

 // Apply the query to the underlying database.
 Cursor c = qb.query(database,
 projection,
 selection, selectionArgs,
 null, null,
 orderBy);

 // Register the contexts ContentResolver to be notified if
 // the cursor result set changes.
 c.setNotificationUri(getContext().getContentResolver(), uri);

c08.indd 305c08.indd 305 4/18/2012 3:48:54 PM4/18/2012 3:48:54 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Meier02275 c08 V2 - 03/20/2012 Page 306

306 x CHAPTER 8 DATABASES AND CONTENT PROVIDERS

 // Return a cursor to the query result.
 return c;
}

8. Now implement methods for inserting, deleting, and updating content. In this case the
process is an exercise in mapping Content Provider transaction requests to their database
equivalents.

@Override
public Uri insert(Uri _uri, ContentValues _initialValues) {
 SQLiteDatabase database = dbHelper.getWritableDatabase();

 // Insert the new row. The call to database.insert will return the row number
 // if it is successful.
 long rowID = database.insert(
 EarthquakeDatabaseHelper.EARTHQUAKE_TABLE, “quake”, _initialValues);

 // Return a URI to the newly inserted row on success.
 if (rowID > 0) {
 Uri uri = ContentUris.withAppendedId(CONTENT_URI, rowID);
 getContext().getContentResolver().notifyChange(uri, null);
 return uri;
 }

 throw new SQLException(“Failed to insert row into “ + _uri);
}

@Override
public int delete(Uri uri, String where, String[] whereArgs) {
 SQLiteDatabase database = dbHelper.getWritableDatabase();

 int count;
 switch (uriMatcher.match(uri)) {
 case QUAKES:
 count = database.delete(
 EarthquakeDatabaseHelper.EARTHQUAKE_TABLE, where, whereArgs);
 break;
 case QUAKE_ID:
 String segment = uri.getPathSegments().get(1);
 count = database.delete(EarthquakeDatabaseHelper.EARTHQUAKE_TABLE,
 KEY_ID + “=”
 + segment
 + (!TextUtils.isEmpty(where) ? “ AND (“
 + where + ‘)’ : “”), whereArgs);
 break;

 default: throw new IllegalArgumentException(“Unsupported URI: “ + uri);
 }

 getContext().getContentResolver().notifyChange(uri, null);
 return count;
}

c08.indd 306c08.indd 306 4/18/2012 3:48:54 PM4/18/2012 3:48:54 PM

Meier02275 c08 V2 - 03/20/2012 Page 307

Creating a Searchable Earthquake Content Provider x 307

@Override
public int update(Uri uri, ContentValues values,
 String where, String[] whereArgs) {
 SQLiteDatabase database = dbHelper.getWritableDatabase();

 int count;
 switch (uriMatcher.match(uri)) {
 case QUAKES:
 count = database.update(EarthquakeDatabaseHelper.EARTHQUAKE_TABLE,
 values, where, whereArgs);
 break;
 case QUAKE_ID:
 String segment = uri.getPathSegments().get(1);
 count = database.update(EarthquakeDatabaseHelper.EARTHQUAKE_TABLE,
 values, KEY_ID
 + “=” + segment
 + (!TextUtils.isEmpty(where) ? “ AND (“
 + where + ‘)’ : “”), whereArgs);
 break;
 default: throw new IllegalArgumentException(“Unknown URI “ + uri);
 }

 getContext().getContentResolver().notifyChange(uri, null);
 return count;
}

9. With the Content Provider complete, register it in the manifest by creating a new provider
node within the application tag.

<provider android:name=”.EarthquakeProvider”
 android:authorities=”com.paad.earthquakeprovider” />

All code snippets in this example are part of the Chapter 8 Earthquake Part 1
project, available for download at www.wrox.com.

Using the Earthquake Provider

You can now update the Earthquake List Fragment to store each earthquake using the Earthquake
Provider, and use that Content Provider to populate the associated List View.

1. Within the EarthquakeListFragment, update the addNewQuake method. It should use the
application’s Content Resolver to insert each new Earthquake into the provider.

private void addNewQuake(Quake _quake) {
 ContentResolver cr = getActivity().getContentResolver();
 // Construct a where clause to make sure we don’t already have this
 // earthquake in the provider.
 String w = EarthquakeProvider.KEY_DATE + “ = “ + _quake.getDate().getTime();

 // If the earthquake is new, insert it into the provider.

c08.indd 307c08.indd 307 4/18/2012 3:48:54 PM4/18/2012 3:48:54 PM

http://www.wrox.com

Meier02275 c08 V2 - 03/20/2012 Page 308

308 x CHAPTER 8 DATABASES AND CONTENT PROVIDERS

 Cursor query = cr.query(EarthquakeProvider.CONTENT_URI, null, w, null, null);
 if (query.getCount()==0) {
 ContentValues values = new ContentValues();

 values.put(EarthquakeProvider.KEY_DATE, _quake.getDate().getTime());
 values.put(EarthquakeProvider.KEY_DETAILS, _quake.getDetails());
 values.put(EarthquakeProvider.KEY_SUMMARY, _quake.toString());

 double lat = _quake.getLocation().getLatitude();
 double lng = _quake.getLocation().getLongitude();
 values.put(EarthquakeProvider.KEY_LOCATION_LAT, lat);
 values.put(EarthquakeProvider.KEY_LOCATION_LNG, lng);
 values.put(EarthquakeProvider.KEY_LINK, _quake.getLink());
 values.put(EarthquakeProvider.KEY_MAGNITUDE, _quake.getMagnitude());

 cr.insert(EarthquakeProvider.CONTENT_URI, values);
 }
 query.close();
}

2. Now that you’re storing each earthquake in a Content Provider, you should replace your
Array Adapter with a Simple Cursor Adapter. This adapter will manage applying changes to
the underlying table directly to your List View. Take the opportunity to remove the Array
Adapter and array as well. (You’ll need to remove the reference to the earthquake array from
the refreshEarthquakes method.)

SimpleCursorAdapter adapter;

@Override
public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);

 // Create a new Adapter and bind it to the List View
 adapter = new SimpleCursorAdapter(getActivity(),
 android.R.layout.simple_list_item_1, null,
 new String[] { EarthquakeProvider.KEY_SUMMARY },
 new int[] { android.R.id.text1 }, 0);
 setListAdapter(adapter);

 Thread t = new Thread(new Runnable() {
 public void run() {
 refreshEarthquakes();
 }
 });
 t.start();
}

3. Use a Cursor Loader to query the database and supply a Cursor to the Cursor Adapter
you created in step 2. Start by modifying the Fragment inheritance to implement
LoaderManager.LoaderCallbacks<Cursor> and add the associated method stubs.

public class EarthquakeListFragment extends ListFragment implements
 LoaderManager.LoaderCallbacks<Cursor> {

c08.indd 308c08.indd 308 4/18/2012 3:48:55 PM4/18/2012 3:48:55 PM

Meier02275 c08 V2 - 03/20/2012 Page 309

Creating a Searchable Earthquake Content Provider x 309

 // [... Existing EarthquakeListFragment code ...]

 public Loader<Cursor> onCreateLoader(int id, Bundle args) {
 return null;
 }

 public void onLoadFinished(Loader<Cursor> loader, Cursor cursor) {
 }

 public void onLoaderReset(Loader<Cursor> loader) {
 }
}

4. Complete the onCreateLoader handler by building and returning a Loader that queries
the EarthquakeProvider for all its elements. Be sure to add a where clause that restricts
the result Cursor to only earthquakes of the minimum magnitude specifi ed by the user
preferences.

public Loader<Cursor> onCreateLoader(int id, Bundle args) {
 String[] projection = new String[] {
 EarthquakeProvider.KEY_ID,
 EarthquakeProvider.KEY_SUMMARY
 };

 Earthquake earthquakeActivity = (Earthquake)getActivity();
 String where = EarthquakeProvider.KEY_MAGNITUDE + “ > “ +
 earthquakeActivity.minimumMagnitude;

 CursorLoader loader = new CursorLoader(getActivity(),
 EarthquakeProvider.CONTENT_URI, projection, where, null, null);

 return loader;
}

5. When the Loader’s query completes, the result Cursor will be returned to the onLoad
Finished handler, so you need to swap out the previous Cursor with the new result.
Similarly, remove the reference to the Cursor when the Loader resets.

public void onLoadFinished(Loader<Cursor> loader, Cursor cursor) {
 adapter.swapCursor(cursor);
}

public void onLoaderReset(Loader<Cursor> loader) {
 adapter.swapCursor(null);
}

6. Update the onActivityCreated handler to initiate the Loader when the Activity is created,
and the refreshEarthquakes method to restart it. Note that you must initialize and restart
the loader from the main UI thread, so use a Handler to post the restart from within the
refreshEarthquakes thread.

Handler handler = new Handler();
@Override
public void onActivityCreated(Bundle savedInstanceState) {

c08.indd 309c08.indd 309 4/18/2012 3:48:55 PM4/18/2012 3:48:55 PM

Meier02275 c08 V2 - 03/20/2012 Page 310

310 x CHAPTER 8 DATABASES AND CONTENT PROVIDERS

 super.onActivityCreated(savedInstanceState);

 // Create a new Adapter and bind it to the List View
 adapter = new SimpleCursorAdapter(getActivity(),
 android.R.layout.simple_list_item_1, null,
 new String[] { EarthquakeProvider.KEY_SUMMARY },
 new int[] { android.R.id.text1 }, 0);
 setListAdapter(adapter);

 getLoaderManager().initLoader(0, null, this);

 Thread t = new Thread(new Runnable() {
 public void run() {
 refreshEarthquakes();
 }
 });
 t.start();
}

public void refreshEarthquakes() {
 handler.post(new Runnable() {
 public void run() {
 getLoaderManager().restartLoader(0, null, EarthquakeListFragment.this);
 }
 });

 // [... Existing refreshEarthquakes code ...]
}

All code snippets in this example are part of the Chapter 8 Earthquake Part 2
project, available for download at www.wrox.com.

Searching the Earthquake Provider

In the following example you’ll add search functionality to the Earthquake project and make sure
results are available from the home screen Quick Search Box.

1 Start by adding a new string resource to the strings.xml fi le (in the res/values folder)
that describes the earthquake search description.

<string name=”search_description”>Search earthquake locations</string>

2. Create a new searchable.xml fi le in the res/xml folder that defi nes the metadata for your
Earthquake search results provider. Specify the string from step 1 as the description. Specify
the Earthquake Content Provider’s authority and set the searchSuggestIntentAction and
searchSuggestIntentData attributes.

<searchable xmlns:android=”http://schemas.android.com/apk/res/android”
 android:label=”@string/app_name”
 android:searchSettingsDescription=”@string/search_description”

c08.indd 310c08.indd 310 4/18/2012 3:48:55 PM4/18/2012 3:48:55 PM

http://www.wrox.com
http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c08 V2 - 03/20/2012 Page 311

Creating a Searchable Earthquake Content Provider x 311

 android:searchSuggestAuthority=”com.paad.earthquakeprovider”
 android:searchSuggestIntentAction=”android.intent.action.VIEW”
 android:searchSuggestIntentData=
 “content://com.paad.earthquakeprovider/earthquakes”>
</searchable>

3. Open the Earthquake Content Provider and create a new Hash Map that will be used to sup-
ply a projection to support search suggestions.

private static final HashMap<String, String> SEARCH_PROJECTION_MAP;
static {
 SEARCH_PROJECTION_MAP = new HashMap<String, String>();
 SEARCH_PROJECTION_MAP.put(SearchManager.SUGGEST_COLUMN_TEXT_1, KEY_SUMMARY +
 “ AS “ + SearchManager.SUGGEST_COLUMN_TEXT_1);
 SEARCH_PROJECTION_MAP.put(“_id”, KEY_ID +
 “ AS “ + “_id”);
}

4. Modify the UriMatcher to include search queries.

private static final int QUAKES = 1;
private static final int QUAKE_ID = 2;
private static final int SEARCH = 3;

private static final UriMatcher uriMatcher;

//Allocate the UriMatcher object, where a URI ending in ‘earthquakes’ will
//correspond to a request for all earthquakes, and ‘earthquakes’ with a
//trailing ‘/[rowID]’ will represent a single earthquake row.
static {
 uriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
 uriMatcher.addURI(“com.paad.earthquakeprovider”, “earthquakes”, QUAKES);
 uriMatcher.addURI(“com.paad.earthquakeprovider”, “earthquakes/#”, QUAKE_ID);
 uriMatcher.addURI(“com.paad.earthquakeprovider”,
 SearchManager.SUGGEST_URI_PATH_QUERY, SEARCH);
 uriMatcher.addURI(“com.paad.earthquakeprovider”,
 SearchManager.SUGGEST_URI_PATH_QUERY + “/*”, SEARCH);
 uriMatcher.addURI(“com.paad.earthquakeprovider”,
 SearchManager.SUGGEST_URI_PATH_SHORTCUT, SEARCH);
 uriMatcher.addURI(“com.paad.earthquakeprovider”,
 SearchManager.SUGGEST_URI_PATH_SHORTCUT + “/*”, SEARCH);
}

5. Also modify the getType method to return the appropriate MIME type for the search results.

@Override
public String getType(Uri uri) {
 switch (uriMatcher.match(uri)) {
 case QUAKES : return “vnd.android.cursor.dir/vnd.paad.earthquake”;
 case QUAKE_ID: return “vnd.android.cursor.item/vnd.paad.earthquake”;
 case SEARCH : return SearchManager.SUGGEST_MIME_TYPE;
 default: throw new IllegalArgumentException(“Unsupported URI: “ + uri);
 }
}

c08.indd 311c08.indd 311 4/18/2012 3:48:55 PM4/18/2012 3:48:55 PM

Meier02275 c08 V2 - 03/20/2012 Page 312

312 x CHAPTER 8 DATABASES AND CONTENT PROVIDERS

6. The fi nal change to the Content Provider is to modify the query method to apply the search
term and return the result Cursor using the projection you created in step 3.

@Override
public Cursor query(Uri uri,
 String[] projection,
 String selection,
 String[] selectionArgs,
 String sort) {

 SQLiteDatabase database = dbHelper.getWritableDatabase();

 SQLiteQueryBuilder qb = new SQLiteQueryBuilder();

 qb.setTables(EarthquakeDatabaseHelper.EARTHQUAKE_TABLE);

 // If this is a row query, limit the result set to the passed in row.
 switch (uriMatcher.match(uri)) {
 case QUAKE_ID: qb.appendWhere(KEY_ID + “=” + uri.getPathSegments().get(1));
 break;
 case SEARCH : qb.appendWhere(KEY_SUMMARY + “ LIKE \”%” +
 uri.getPathSegments().get(1) + “%\””);
 qb.setProjectionMap(SEARCH_PROJECTION_MAP);
 break;
 default : break;
 }

 [... existing query method ...]
}

7. Now create a Search Results Activity. Create a simple EarthquakeSearchResults Activity
that extends ListActivity and is populated using a Simple Cursor Adapter. The Activity
will use a Cursor Loader to perform the search query, so it must also implement the Loader
Manager Loader Callbacks.

import android.app.ListActivity;
import android.app.LoaderManager;
import android.app.SearchManager;
import android.content.CursorLoader;
import android.content.Intent;
import android.content.Loader;
import android.database.Cursor;
import android.os.Bundle;
import android.widget.SimpleCursorAdapter;

public class EarthquakeSearchResults extends ListActivity implements
 LoaderManager.LoaderCallbacks<Cursor> {

 private SimpleCursorAdapter adapter;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

c08.indd 312c08.indd 312 4/18/2012 3:48:56 PM4/18/2012 3:48:56 PM

Meier02275 c08 V2 - 03/20/2012 Page 313

Creating a Searchable Earthquake Content Provider x 313

 // Create a new adapter and bind it to the List View
 adapter = new SimpleCursorAdapter(this,
 android.R.layout.simple_list_item_1, null,
 new String[] { EarthquakeProvider.KEY_SUMMARY },
 new int[] { android.R.id.text1 }, 0);
 setListAdapter(adapter);
 }

 public Loader<Cursor> onCreateLoader(int id, Bundle args) {
 return null;
 }

 public void onLoadFinished(Loader<Cursor> loader, Cursor cursor) {
 }

 public void onLoaderReset(Loader<Cursor> loader) {
 }
}

8. Update the onCreate method to initialize the Cursor Loader. Create a new parseIntent
stub method that will be used to parse the Intents containing the search query and pass in the
launch Intents from within onCreate and onNewIntent.

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Create a new adapter and bind it to the List View
 adapter = new SimpleCursorAdapter(this,
 android.R.layout.simple_list_item_1, null,
 new String[] { EarthquakeProvider.KEY_SUMMARY },
 new int[] { android.R.id.text1 }, 0);
 setListAdapter(adapter);

 // Initiate the Cursor Loader
 getLoaderManager().initLoader(0, null, this);

 // Get the launch Intent
 parseIntent(getIntent());
}

@Override
protected void onNewIntent(Intent intent) {
 super.onNewIntent(intent);
 parseIntent(getIntent());
}

private void parseIntent(Intent intent) {
}

9. Update the parseIntent method to extract the search query from within the Intent and
restart the Cursor Loader to apply the new query, passing in the query value using a Bundle.

private static String QUERY_EXTRA_KEY = “QUERY_EXTRA_KEY”;

c08.indd 313c08.indd 313 4/18/2012 3:48:56 PM4/18/2012 3:48:56 PM

Meier02275 c08 V2 - 03/20/2012 Page 314

314 x CHAPTER 8 DATABASES AND CONTENT PROVIDERS

private void parseIntent(Intent intent) {
 // If the Activity was started to service a Search request,
 // extract the search query.
 if (Intent.ACTION_SEARCH.equals(intent.getAction())) {
 String searchQuery = intent.getStringExtra(SearchManager.QUERY);

 // Perform the search, passing in the search query as an argument
 // to the Cursor Loader
 Bundle args = new Bundle();
 args.putString(QUERY_EXTRA_KEY, searchQuery);

 // Restart the Cursor Loader to execute the new query.
 getLoaderManager().restartLoader(0, args, this);
 }
}

10. Implement the Loader Manager Loader Callback handlers to execute the search query, and
assign the results to the Simple Cursor Adapter.

public Loader<Cursor> onCreateLoader(int id, Bundle args) {
 String query = “0”;

 if (args != null) {
 // Extract the search query from the arguments.
 query = args.getString(QUERY_EXTRA_KEY);
 }

 // Construct the new query in the form of a Cursor Loader.
 String[] projection = { EarthquakeProvider.KEY_ID,
 EarthquakeProvider.KEY_SUMMARY };
 String where = EarthquakeProvider.KEY_SUMMARY
 + “ LIKE \”%” + query + “%\””;
 String[] whereArgs = null;
 String sortOrder = EarthquakeProvider.KEY_SUMMARY + “ COLLATE LOCALIZED ASC”;

 // Create the new Cursor loader.
 return new CursorLoader(this, EarthquakeProvider.CONTENT_URI,
 projection, where, whereArgs,
 sortOrder);
}

public void onLoadFinished(Loader<Cursor> loader, Cursor cursor) {
 // Replace the result Cursor displayed by the Cursor Adapter with
 // the new result set.
 adapter.swapCursor(cursor);
}

public void onLoaderReset(Loader<Cursor> loader) {
 // Remove the existing result Cursor from the List Adapter.
 adapter.swapCursor(null);
}

11. Open the application Manifest, and add the new EarthquakeSearchResults Activity. Make
sure you add an Intent Filter for the SEARCH action in the DEFAULT category. You will also need
to add a meta-data tag that specifi es the searchable XML resource you created in step 2.

c08.indd 314c08.indd 314 4/18/2012 3:48:56 PM4/18/2012 3:48:56 PM

Meier02275 c08 V2 - 03/20/2012 Page 315

Creating a Searchable Earthquake Content Provider x 315

<activity android:name=”.EarthquakeSearchResults”
 android:label=”Earthquake Search”
 android:launchMode=”singleTop”>
 <intent-filter>
 <action android:name=”android.intent.action.SEARCH” />
 <category android:name=”android.intent.category.DEFAULT” />
 </intent-filter>
 <meta-data
 android:name=”android.app.searchable”
 android:resource=”@xml/searchable”
 />
</activity>

12. Still in the manifest, add a new meta-data tag to the application node that describes the
Earthquake Search Results Activity as the default search provider for the application.

<application android:icon=”@drawable/icon”
 android:label=”@string/app_name”>
 <meta-data
 android:name=”android.app.default_searchable”
 android:value=”.EarthquakeSearchResults”
 />
 [... existing application node ...]
</application>

13. For Android devices that feature a hardware search key, you’re fi nished. To add support for
devices without hardware search keys, you can add a Search View to the main.xml layout
defi nition for the Earthquake Activity.

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”>
 <SearchView
 android:id=”@+id/searchView”
 android:iconifiedByDefault=”false”
 android:background=”#FFF”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”>
 </SearchView>
 <fragment android:name=”com.paad.earthquake.EarthquakeListFragment”
 android:id=”@+id/EarthquakeListFragment”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 />
</LinearLayout>

14. Return to the Earthquake Activity and connect the Search View to the searchable defi nition
within the onCreate handler of the Earthquake Activity.

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

c08.indd 315c08.indd 315 4/18/2012 3:48:56 PM4/18/2012 3:48:56 PM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c08 V2 - 03/20/2012 Page 316

316 x CHAPTER 8 DATABASES AND CONTENT PROVIDERS

 setContentView(R.layout.main);

 updateFromPreferences();

 // Use the Search Manager to find the SearchableInfo related to this
 // Activity.
 SearchManager searchManager =
 (SearchManager)getSystemService(Context.SEARCH_SERVICE);
 SearchableInfo searchableInfo =
 searchManager.getSearchableInfo(getComponentName());

 // Bind the Activity’s SearchableInfo to the Search View
 SearchView searchView = (SearchView)findViewById(R.id.searchView);
 searchView.setSearchableInfo(searchableInfo);
}

All code snippets in this example are part of the Chapter 8 Earthquake Part 3
project, available for download at www.wrox.com.

NATIVE ANDROID CONTENT PROVIDERS

Android exposes several native Content Providers, which you can access directly using the
techniques described earlier in this chapter. Alternatively, the android.provider package
includes APIs that can simplify access to many of the most useful Content Providers, including the
following:

 ‰ Media Store — Provides centralized, managed access to the multimedia on your device,
including audio, video, and images. You can store your own multimedia within the Media
Store and make it globally available, as shown in Chapter 15, “Audio, Video, and Using the
Camera.”

 ‰ Browser — Reads or modifi es browser and browser search history.

 ‰ Contacts Contract — Retrieves, modifi es, or stores contact details and associated social
stream updates.

 ‰ Calendar — Creates new events, and deletes or updates existing calendar entries. That
includes modifying the attendee lists and setting reminders.

 ‰ Call Log — Views or updates the call history, including incoming and outgoing calls, missed
calls, and call details, including caller IDs and call durations.

These Content Providers, with the exception of the Browser and Call Log, are covered in more detail
in the following sections.

You should use these native Content Providers wherever possible to ensure your application
integrates seamlessly with other native and third-party applications.

c08.indd 316c08.indd 316 4/18/2012 3:48:56 PM4/18/2012 3:48:56 PM

http://www.wrox.com

Meier02275 c08 V2 - 03/20/2012 Page 317

Native Android Content Providers x 317

Using the Media Store Content Provider

The Android Media Store is a managed repository of audio, video, and image fi les.

Whenever you add a new multimedia fi le to the fi lesystem, it should also be added to the Media
Store using the Content Scanner, as described in Chapter 15; this will expose it to other applica-
tions, including media players. In most circumstances it’s not necessary (or recommended) to modify
the contents of the Media Store Content Provider directly.

To access the media available within the Media Store, the MediaStore class includes Audio, Video,
and Images subclasses, which in turn contain subclasses that are used to provide the column names
and content URIs for the corresponding media providers.

The Media Store segregates media kept on the internal and external volumes of the host device.
Each Media Store subclass provides a URI for either the internally or externally stored media using
the forms:

 ‰ MediaStore.<mediatype>.Media.EXTERNAL_CONTENT_URI

 ‰ MediaStore.<mediatype>.Media.INTERNAL_CONTENT_URI

Listing 8-35 shows a simple code snippet used to fi nd the song title and album name for each piece
of audio stored on the external volume.

LISTING 8-35: Accessing the Media Store Content Provider

// Get a Cursor over every piece of audio on the external volume,
// extracting the song title and album name.
String[] projection = new String[] {
 MediaStore.Audio.AudioColumns.ALBUM,
 MediaStore.Audio.AudioColumns.TITLE
};

Uri contentUri = MediaStore.Audio.Media.EXTERNAL_CONTENT_URI;

Cursor cursor =
 getContentResolver().query(contentUri, projection,
 null, null, null);

// Get the index of the columns we need.
int albumIdx =
 cursor.getColumnIndexOrThrow(MediaStore.Audio.AudioColumns.ALBUM);
int titleIdx =
 cursor.getColumnIndexOrThrow(MediaStore.Audio.AudioColumns.TITLE);

// Create an array to store the result set.
String[] result = new String[cursor.getCount()];

// Iterate over the Cursor, extracting each album name and song title.
while (cursor.moveToNext()) {

continues

c08.indd 317c08.indd 317 4/18/2012 3:48:56 PM4/18/2012 3:48:56 PM

Meier02275 c08 V2 - 03/20/2012 Page 318

318 x CHAPTER 8 DATABASES AND CONTENT PROVIDERS

 // Extract the song title.
 String title = cursor.getString(titleIdx);
 // Extract the album name.
 String album = cursor.getString(albumIdx);

 result[cursor.getPosition()] = title + “ (“ + album + “)”;
}

// Close the Cursor.
cursor.close();

code snippet PA4AD_ Ch08_ContentProviders/src/Ch08_ContentProvidersActivity.java

In Chapter 15 you’ll learn how to play audio and video resources stored in the
Media Store by specifying the URI of a particular multimedia item.

Using the Contacts Contract Content Provider

Android makes the full database of contact information available to any application that has been
granted the READ_CONTACTS permission.

The Contacts Contract Provider provides an extensible database of contact-related information.
This allows users to specify multiple sources for their contact information. More importantly, it
allows developers to arbitrarily extend the data stored against each contact, or even become an
alternative provider for contacts and contact details.

Android 2.0 (API level 5) introduced the ContactsContract class, which super-
seded the deprecated Contacts class that had previously been used to store and
manage the contacts stored on the device.

Introducing the Contacts Contract Content Provider

Rather than providing a single, fully defi ned table of contact detail columns, the Contacts Contract
provider uses a three-tier data model to store data, associate it with a contact, and aggregate it to a
single person using the following ContactsContract subclasses:

 ‰ Data — Each row in the underlying table defi nes a set of personal data (phone numbers,
email addresses, and so on), separated by MIME type. Although there is a predefi ned set of
common column names for each personal data-type available (along with the appropriate
MIME types from subclasses within ContactsContract.CommonDataKinds), this table can
be used to store any value.

LISTING 8-35 (continued)

c08.indd 318c08.indd 318 4/18/2012 3:48:57 PM4/18/2012 3:48:57 PM

Meier02275 c08 V2 - 03/20/2012 Page 319

Native Android Content Providers x 319

The kind of data stored in a particular row is determined by the MIME type specifi ed for
that row. A series of generic columns is then used to store up to 15 different pieces of data
varying by MIME type.

When adding new data to the Data table, you specify a Raw Contact to which a set of data
will be associated.

 ‰ RawContacts — From Android 2.0 (API level 5) forward, users can add multiple contact
account providers to their device. Each row in the Raw Contacts table defi nes an account to
which a set of Data values is associated.

 ‰ Contacts — The Contacts table aggregates rows from Raw Contacts that all describe the
same person.

The contents of each of these tables are aggregated as shown in Figure 8-4.

Raw Contact
(e.g., Gmail)

Raw Contact
(e.g., Twitter)

Raw Contact

Data

Data

Data

DataData

DataData

Data

Data

Data
Data

(e.g., Phone)

Data
(e.g., Email)

Contact

FIGURE 8-4

Typically, you will use the Data table to add, delete, or modify data stored against an existing
 contact account, the Raw Contacts table to create and manage accounts, and both the Contact and
Data tables to query the database to extract contact details.

Reading Contact Details

To access any contact details, you need to include the READ_CONTACTS uses-permission in your
 application manifest:

<uses-permission android:name=”android.permission.READ_CONTACTS”/>

Use the Content Resolver to query any of the three Contact Contracts Providers previously described
using their respective CONTENT_URI static constants. Each class includes their column names as static
properties.

c08.indd 319c08.indd 319 4/18/2012 3:48:57 PM4/18/2012 3:48:57 PM

Meier02275 c08 V2 - 03/20/2012 Page 320

320 x CHAPTER 8 DATABASES AND CONTENT PROVIDERS

Listing 8-36 queries the Contacts table for a Cursor to every person in the address book, creating an
array of strings that holds each contact’s name and unique ID.

LISTING 8-36: Accessing the Contacts Contract Contact Content Provider

// Create a projection that limits the result Cursor
// to the required columns.
String[] projection = {
 ContactsContract.Contacts._ID,
 ContactsContract.Contacts.DISPLAY_NAME
};

// Get a Cursor over the Contacts Provider.
Cursor cursor =
 getContentResolver().query(ContactsContract.Contacts.CONTENT_URI,
 projection, null, null, null);

// Get the index of the columns.
int nameIdx =
 cursor.getColumnIndexOrThrow(ContactsContract.Contacts.DISPLAY_NAME);
int idIdx =
 cursor.getColumnIndexOrThrow(ContactsContract.Contacts._ID);

// Initialize the result set.
String[] result = new String[cursor.getCount()];

// Iterate over the result Cursor.
while(cursor.moveToNext()) {
 // Extract the name.
 String name = cursor.getString(nameIdx);
 // Extract the unique ID.
 String id = cursor.getString(idIdx);

 result[cursor.getPosition()] = name + “ (“ + id + “)”;
 }

// Close the Cursor.
cursor.close();

code snippet PA4AD_ Ch08_ContentProviders/src/Ch08_ContentProvidersActivity.java

The ContactsContract.Data Content Provider is used to store all the contact details, such as
addresses, phone numbers, and email addresses. In most cases, you will likely be querying for
 contact details based on a full or partial contact name.

To simplify this lookup, Android provides the ContactsContract.Contacts.CONTENT_FILTER_URI
query URI. Append the full or partial name to this lookup as an additional path segment to the
URI. To extract the associated contact details, fi nd the _ID value from the returned Cursor, and use
it to create a query on the Data table.

The content of each column with a row in the Data table depends on the MIME type specifi ed
for that row. As a result, any query on the Data table must fi lter the rows by MIME type to
 meaningfully extract data.

c08.indd 320c08.indd 320 4/18/2012 3:48:58 PM4/18/2012 3:48:58 PM

Meier02275 c08 V2 - 03/20/2012 Page 321

Native Android Content Providers x 321

Listing 8-37 shows how to use the contact-detail column names available in the CommonDataKinds
subclasses to extract the display name and mobile phone number from the Data table for a
 particular contact.

LISTING 8-37: Finding contact details for a contact name

ContentResolver cr = getContentResolver();
String[] result = null;

// Find a contact using a partial name match
String searchName = “andy”;
Uri lookupUri =
 Uri.withAppendedPath(ContactsContract.Contacts.CONTENT_FILTER_URI,
 searchName);

// Create a projection of the required column names.
String[] projection = new String[] {
 ContactsContract.Contacts._ID
};

// Get a Cursor that will return the ID(s) of the matched name.
Cursor idCursor = cr.query(lookupUri,
 projection, null, null, null);

// Extract the first matching ID if it exists.
String id = null;
if (idCursor.moveToFirst()) {
 int idIdx =
 idCursor.getColumnIndexOrThrow(ContactsContract.Contacts._ID);
 id = idCursor.getString(idIdx);
}

// Close that Cursor.
idCursor.close();

// Create a new Cursor searching for the data associated with the returned Contact ID.
if (id != null) {
 // Return all the PHONE data for the contact.
 String where = ContactsContract.Data.CONTACT_ID +
 “ = “ + id + “ AND “ +
 ContactsContract.Data.MIMETYPE + “ = ‘” +
 ContactsContract.CommonDataKinds.Phone.CONTENT_ITEM_TYPE +
 “’”;

 projection = new String[] {
 ContactsContract.Data.DISPLAY_NAME,
 ContactsContract.CommonDataKinds.Phone.NUMBER
 };

 Cursor dataCursor =
 getContentResolver().query(ContactsContract.Data.CONTENT_URI,
 projection, where, null, null);

 // Get the indexes of the required columns. continues

c08.indd 321c08.indd 321 4/18/2012 3:48:58 PM4/18/2012 3:48:58 PM

Meier02275 c08 V2 - 03/20/2012 Page 322

322 x CHAPTER 8 DATABASES AND CONTENT PROVIDERS

 int nameIdx =
 dataCursor.getColumnIndexOrThrow(ContactsContract.Data.DISPLAY_NAME);
 int phoneIdx =
 dataCursor.getColumnIndexOrThrow(
 ContactsContract.CommonDataKinds.Phone.NUMBER);

 result = new String[dataCursor.getCount()];

 while(dataCursor.moveToNext()) {
 // Extract the name.
 String name = dataCursor.getString(nameIdx);
 // Extract the phone number.
 String number = dataCursor.getString(phoneIdx);

 result[dataCursor.getPosition()] = name + “ (“ + number + “)”;
 }

 dataCursor.close();
}

code snippet PA4AD_ Ch08_ContentProviders/src/Ch08_ContentProvidersActivity.java

The Contacts subclass also offers a phone number lookup URI to help fi nd a contact associated
with a particular phone number. This query is highly optimized to return fast results for caller-ID
notifi cation.

Use ContactsContract.PhoneLookup.CONTENT_FILTER_URI, appending the number to look up as
an additional path segment, as shown in Listing 8-38.

LISTING 8-38: Performing a caller-ID lookup

String incomingNumber = “(650)253-0000”;
String result = “Not Found”;

Uri lookupUri =
 Uri.withAppendedPath(ContactsContract.PhoneLookup.CONTENT_FILTER_URI,
 incomingNumber);

String[] projection = new String[] {
 ContactsContract.Contacts.DISPLAY_NAME
};

Cursor cursor = getContentResolver().query(lookupUri,
 projection, null, null, null);

if (cursor.moveToFirst()) {
 int nameIdx =
 cursor.getColumnIndexOrThrow(ContactsContract.Contacts.DISPLAY_NAME);

LISTING 8-37 (continued)

c08.indd 322c08.indd 322 4/18/2012 3:48:58 PM4/18/2012 3:48:58 PM

Meier02275 c08 V2 - 03/20/2012 Page 323

Native Android Content Providers x 323

 result = cursor.getString(nameIdx);
}

cursor.close();

code snippet PA4AD_ Ch08_ContentProviders/src/Ch08_ContentProvidersActivity.java

Creating and Picking Contacts Using Intents

The Contacts Contract Content Provider includes an Intent-based mechanism that can be used
to view, insert, or select a contact using an existing contact application (typically, the native
application).

This is the best practice approach and has the advantage of presenting the user with a consis-
tent interface for performing the same task, avoiding ambiguity and improving the overall user
experience.

To display a list of contacts for your users to select from, you can use the Intent.ACTION_PICK
action along with the ContactsContract.Contacts.CONTENT_URI, as shown in Listing 8-39.

LISTING 8-39: Picking a contact

private static int PICK_CONTACT = 0;

private void pickContact() {
 Intent intent = new Intent(Intent.ACTION_PICK,
 ContactsContract.Contacts.CONTENT_URI);
 startActivityForResult(intent, PICK_CONTACT);
}

code snippet PA4AD_ Ch08_ContentProviders/src/Ch08_ContentProvidersActivity.java

This will display a List View of the contacts available (as shown in Figure 8-5).

When the user selects a contact, it will be returned as a URI within the data property of the
returned Intent, as shown in this extension to Listing 8-39.

@Override
protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 super.onActivityResult(requestCode, resultCode, data);
 if ((requestCode == PICK_CONTACT) && (resultCode == RESULT_OK)) {
 resultTextView.setText(data.getData().toString());
 }
}

There are two alternatives to insert a new contact, both of which will prepopulate the new contact
form using the values you specify as extras in your Intent.

The ContactsContract.Intents.SHOW_OR_CREATE_CONTACT action will search the contacts
Provider for a particular email address or telephone number URI, offering to insert a new entry only
if a contact with the specifi ed contact address doesn’t exist.

c08.indd 323c08.indd 323 4/18/2012 3:48:58 PM4/18/2012 3:48:58 PM

Meier02275 c08 V2 - 03/20/2012 Page 324

324 x CHAPTER 8 DATABASES AND CONTENT PROVIDERS

FIGURE 8-5

Use the constants in the ContactsContract.Intents.Insert class to include Intent extras that can
be used to prepopulate contact details, including the name, company, email, phone number, notes,
and postal address of the new contact, as shown in Listing 8-40.

LISTING 8-40: Inserting a new contact using an Intent

Intent intent =
 new Intent(ContactsContract.Intents.SHOW_OR_CREATE_CONTACT,
 ContactsContract.Contacts.CONTENT_URI);
intent.setData(Uri.parse(“tel:(650)253-0000”));

intent.putExtra(ContactsContract.Intents.Insert.COMPANY, “Google”);
intent.putExtra(ContactsContract.Intents.Insert.POSTAL,
 “1600 Amphitheatre Parkway, Mountain View, California”);

startActivity(intent);

code snippet PA4AD_ Ch08_ContentProviders/src/Ch08_ContentProvidersActivity.java

Modifying and Augmenting Contact Details Directly

If you want to build your own Sync Adapter to insert server-synchronized contacts into the contacts
Provider, you can modify the contact tables directly.

c08.indd 324c08.indd 324 4/18/2012 3:48:58 PM4/18/2012 3:48:58 PM

Meier02275 c08 V2 - 03/20/2012 Page 325

Native Android Content Providers x 325

You can use the contact Content Providers to modify, delete, or insert contact records after adding
the WRITE_CONTACTS uses-permission to your application manifest.

<uses-permission android:name=”android.permission.WRITE_CONTACTS”/>

The extensible nature of the Contacts Contract provider allows you to add arbitrary Data table rows
to any account stored as a Raw Contact.

In practice it’s inadvisable to extend a Contacts Contract provider belonging to a third-party
account with custom data. Such extensions won’t be synchronized with the data owner’s online
server. It’s better practice to create your own synchronized contact adapter that will be aggregated
with the other accounts within the Contacts Content Provider.

The process for creating your own syncing contact account adapter is beyond the scope of this book.
However, in general terms, by creating a record in the Raw Contacts Provider, it’s possible for you
to create a contacts account type for your own custom data.

You can add new records into the Contacts Contract Content Provider that are associated with your
custom contact account. When added, your custom contact data will be aggregated with the details
provided by native and other third-party contact information adapters and made available when
developers query the Contacts Content Provider, as described in the previous section.

Using the Calendar Content Provider

Android 4.0 (API level 14) introduced a supported API for accessing the Calendar Content Provider.
The Calendar API allows you to insert, view, and edit the complete Calendar database, providing
access to calendars, events, attendees, and event reminders using either Intents or through direct
manipulation of the Calendar Content Providers.

Like the Contacts Contract Content Provider, the Calendar Content Provider is designed to sup-
port multiple synchronized accounts. As a result, you can choose to read from, and contribute to,
existing calendar applications and accounts; develop an alternative Calendar Provider by creating a
calendar Sync Adapter; or create an alternative calendar application.

Querying the Calendar

To access the Calendar Content Provider, you must include the READ_CALENDAR uses-permission in
your application manifest:

<uses-permission android:name=”android.permission.READ_CALENDAR”/>

Use the Content Resolver to query any of the Calendar Provider tables using their CONTENT_URI
static constant. Each table is exposed from within the CalendarContract class, including:

 ‰ Calendars — The Calendar application can display multiple calendars associated with mul-
tiple accounts. This table holds each calendar that can be displayed, as well as details such as
the calendar’s display name, time zone, and color.

 ‰ Events — The Events table includes an entry for each scheduled calendar event, including
the name, description, location, and start/end times.

c08.indd 325c08.indd 325 4/18/2012 3:48:59 PM4/18/2012 3:48:59 PM

Meier02275 c08 V2 - 03/20/2012 Page 326

326 x CHAPTER 8 DATABASES AND CONTENT PROVIDERS

 ‰ Instances — Each event has one or (in the case of recurring events) multiple instances. The
Instances table is populated with entries generated by the contents of the Events table and
includes a reference to the event that generated it.

 ‰ Attendees — Each entry in the Attendees table represents a single attendee of a given event.
Each attendee can include a name, email address, and attendance status, and if they are
optional or required guests.

 ‰ Reminders — Event reminders are represented within the Reminders table, with each row
representing one reminder for a particular event.

Each class includes its column names as static properties.

Listing 8-41 queries the Events table for every event, creating an array of strings that holds each
event’s name and unique ID.

LISTING 8-41: Querying the Events table

// Create a projection that limits the result Cursor
// to the required columns.
String[] projection = {
 CalendarContract.Events._ID,
 CalendarContract.Events.TITLE
};

// Get a Cursor over the Events Provider.
Cursor cursor =
 getContentResolver().query(CalendarContract.Events.CONTENT_URI,
 projection, null, null, null);

// Get the index of the columns.
int nameIdx =
 cursor.getColumnIndexOrThrow(CalendarContract.Events.TITLE);
int idIdx = cursor. getColumnIndexOrThrow(CalendarContract.Events._ID);

// Initialize the result set.
String[] result = new String[cursor.getCount()];

// Iterate over the result Cursor.
while(cursor.moveToNext()) {
 // Extract the name.
 String name = cursor.getString(nameIdx);
 // Extract the unique ID.
 String id = cursor.getString(idIdx);

 result[cursor.getPosition()] = name + “ (“ + id + “)”;
 }

// Close the Cursor.
cursor.close();

code snippet PA4AD_ Ch08_ContentProviders/src/Ch08_ContentProvidersActivity.java

c08.indd 326c08.indd 326 4/18/2012 3:48:59 PM4/18/2012 3:48:59 PM

Meier02275 c08 V2 - 03/20/2012 Page 327

Native Android Content Providers x 327

Creating and Editing Calendar Entries Using Intents

The Calendar Content Provider includes an Intent-based mechanism that allows you to perform
common actions without the need for special permissions using the Calendar application. Using
Intents, you can open the Calendar application to a specifi c time, view event details, insert a new
event, or edit an existing event.

Like the Contacts API, using Intents is the best practice approach for manipulating calendar entries
and should be used in preference to direct manipulation of the underlying tables whenever possible.

Creating New Calendar Events

Using the Intent.ACTION_INSERT action, specifying the CalendarContract.Events. CONTENT_URI,
you can add new events to an existing calendar without requiring any special permissions.

Your Intent can include extras that defi ne each of the event attributes, including the title, start and
end time, location, and description, as shown in Listing 8-42. When triggered, the Intent will be
received by the Calendar application, which will create a new entry prepopulated with the data
provided.

LISTING 8-42: Inserting a new calendar event using an Intent

// Create a new insertion Intent.
Intent intent = new Intent(Intent.ACTION_INSERT, CalendarContract.Events.CONTENT_URI);

// Add the calendar event details
intent.putExtra(CalendarContract.Events.TITLE, “Launch!”);
intent.putExtra(CalendarContract.Events.DESCRIPTION,
 “Professional Android 4 “ +
 “Application Development release!”);
intent.putExtra(CalendarContract.Events.EVENT_LOCATION, “Wrox.com”);

Calendar startTime = Calendar.getInstance();
startTime.set(2012, 2, 13, 0, 30);
intent.putExtra(CalendarContract.EXTRA_EVENT_BEGIN_TIME, startTime.getTimeInMillis());

intent.putExtra(CalendarContract.EXTRA_EVENT_ALL_DAY, true);

// Use the Calendar app to add the new event.
startActivity(intent);

code snippet PA4AD_ Ch08_ContentProviders/src/Ch08_ContentProvidersActivity.java

Editing Calendar Events

To edit a calendar event, you must fi rst know its row ID. To fi nd this, you need to query the Events
Content Provider, as described earlier in this section.

When you have the ID of the event you want to edit, create a new Intent using the Intent.ACTION_
EDIT action and a URI that appends the event’s row ID to the end of the Events table’s
CONTENT_URI, as shown in Listing 8-43.

c08.indd 327c08.indd 327 4/18/2012 3:48:59 PM4/18/2012 3:48:59 PM

Meier02275 c08 V2 - 03/20/2012 Page 328

328 x CHAPTER 8 DATABASES AND CONTENT PROVIDERS

Note that the Intent mechanism provides support only for editing the start and end times of an
event.

LISTING 8-43: Editing a calendar event using an Intent

// Create a URI addressing a specific event by its row ID.
// Use it to create a new edit Intent.
long rowID = 760;
Uri uri = ContentUris.withAppendedId(
 CalendarContract.Events.CONTENT_URI, rowID);

Intent intent = new Intent(Intent.ACTION_EDIT, uri);

// Modify the calendar event details
Calendar startTime = Calendar.getInstance();
startTime.set(2012, 2, 13, 0, 30);
intent.putExtra(CalendarContract.EXTRA_EVENT_BEGIN_TIME, startTime.getTimeInMillis());

intent.putExtra(CalendarContract.EXTRA_EVENT_ALL_DAY, true);

// Use the Calendar app to edit the event.
startActivity(intent);

code snippet PA4AD_ Ch08_ContentProviders/src/Ch08_ContentProvidersActivity.java

Displaying the Calendar and Calendar Events

You can also use Intents to display a particular event or to open the Calendar application to display
a specifi c date and time using the Intent.ACTION_VIEW action.

To view an existing event, specify the Intent’s URI using a row ID, as you would when editing an
event, as shown in Listing 8-43. To view a specifi c date and time, the URI should be of the form
 content://com.android.calendar/time/[milliseconds since epoch], as shown in Listing 8-44.

LISTING 8-44: Displaying a calendar event using an Intent

// Create a URI that specifies a particular time to view.
Calendar startTime = Calendar.getInstance();
startTime.set(2012, 2, 13, 0, 30);

Uri uri = Uri.parse(“content://com.android.calendar/time/” +
 String.valueOf(startTime.getTimeInMillis()));
Intent intent = new Intent(Intent.ACTION_VIEW, uri);

// Use the Calendar app to view the time.
startActivity(intent);

code snippet PA4AD_ Ch08_ContentProviders/src/Ch08_ContentProvidersActivity.java

c08.indd 328c08.indd 328 4/18/2012 3:48:59 PM4/18/2012 3:48:59 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Meier02275 c08 V2 - 03/20/2012 Page 329

Native Android Content Providers x 329

Modifying Calendar Entries Directly

If you are building your own contacts application, or want to build a Sync Adapter to integrate
events from your own cloud-based calendar service, you can use the Calendar Content Providers to
modify, delete, or insert contact records after adding the WRITE_CONTACTS uses-permission to your
application manifest.

<uses-permission android:name=”android.permission.WRITE_CALENDAR”/>

The process for creating your own syncing calendar account adapter is beyond the scope of this
book; however, the process for adding, modifying, and deleting rows from the associated Calendar
Content Providers is the same as that described for your own Content Providers earlier in this
chapter.

You can fi nd further details on performing transactions on the Calendar Content
Providers and building Sync Adapters in the Android Dev Guide (http://
developer.android.com/guide/topics/providers/calendar-provider.

html).

c08.indd 329c08.indd 329 4/18/2012 3:49:00 PM4/18/2012 3:49:00 PM

http://developer.android.com/guide/topics/providers/calendar-provider.html
http://developer.android.com/guide/topics/providers/calendar-provider.html
http://developer.android.com/guide/topics/providers/calendar-provider.html

c08.indd 330c08.indd 330 4/18/2012 3:49:00 PM4/18/2012 3:49:00 PM

Meier02275 c09 V3 - 03/21/2012 Page 331

9
Working in the Background

WHAT’S IN THIS CHAPTER?

 ‰ Creating, starting, and stopping Services

 ‰ Binding Services to Activities

 ‰ Creating ongoing foreground Services

 ‰ Extending the Intent Service

 ‰ Using AsyncTasks to manage background processing

 ‰ Creating background Threads and using Handlers to synchronize

with the GUI Thread

 ‰ Using Alarms to schedule application events

Android offers the Service class to create application components that handle long-lived
operations and include functionality that doesn’t require a user interface.

Android accords Services a higher priority than inactive Activities, so they’re less likely to be
killed when the system requires resources. In fact, should the run time prematurely terminate
a Service that’s been started, it can be confi gured to restart as soon as suffi cient resources
become available. When necessary a Service’s priority can be raised to the equivalent of a
foreground Activity. This is reserved for extreme cases, where the termination of a Service will
noticeably affect the user experience — such as an interruption in music playback.

By using Services, you can ensure that your applications can continue to run even when their
UI isn’t visible.

Although Services run without a dedicated GUI, they still execute in the main Thread of the
application’s process — just like Activities and Broadcast Receivers. To keep your applications
responsive, you’ll learn to move time-consuming processes onto background Threads using the
Thread and AsyncTask classes.

c09.indd 331c09.indd 331 4/18/2012 3:50:32 PM4/18/2012 3:50:32 PM

Meier02275 c09 V3 - 03/21/2012 Page 332

332 x CHAPTER 9 WORKING IN THE BACKGROUND

This chapter also introduces Alarms, a mechanism for fi ring Intents at set intervals or set times,
outside the scope of your application’s lifecycle. You’ll learn to use Alarms to start Services, open
Activities, or broadcast Intents based on either the clock time or the time elapsed since device boot.
An Alarm will fi re even after its owner application has been closed and can (if required) wake a
device from sleep.

INTRODUCING SERVICES

Unlike Activities, which display graphical interfaces, Services run invisibly — doing Internet look-
ups, processing data, updating your Content Providers, fi ring Intents, and triggering Notifi cations.
While Activities are started, stopped, and re-created regularly as part of their lifecycle, Services
are designed to be longer-lived — specifi cally, to perform ongoing and potentially time-consuming
operations.

Services are started, stopped, and controlled from other application components, including Activities,
Broadcast Receivers, and other Services. If your application provides functionality that doesn’t
depend directly on user input, or includes time-consuming operations, Services may be the answer.

Running Services have a higher priority than inactive or invisible (stopped) Activities, making them
less likely to be terminated by the run time’s resource management. The only reason Android will
stop a Service prematurely is to provide additional resources for a foreground component (usually
an Activity). When that happens, your Service can be confi gured to restart automatically when
resources become available.

If your Service is interacting directly with the user (for example, by playing music), it may be neces-
sary to increase its priority by labeling it as a foreground component. This will ensure that your
Service isn’t terminated except in extreme circumstances, but it reduces the run time’s ability to
manage its resources, potentially degrading the overall user experience.

Creating and Controlling Services

The following sections describe how to create a new Service, and how to start and stop it using
Intents with the startService and stopService methods, respectively. Later you’ll learn how to
bind a Service to an Activity to provide a richer interface.

Creating Services

To defi ne a Service, create a new class that extends Service. You’ll need to override the onCreate
and onBind methods, as shown in Listing 9-1.

LISTING 9-1: A skeleton Service class

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;

public class MyService extends Service {
 @Override

c09.indd 332c09.indd 332 4/18/2012 3:50:35 PM4/18/2012 3:50:35 PM

Meier02275 c09 V3 - 03/21/2012 Page 333

Introducing Services x 333

 public void onCreate() {
 super.onCreate();
 // TODO: Actions to perform when service is created.
 }

 @Override
 public IBinder onBind(Intent intent) {
 // TODO: Replace with service binding implementation.
 return null;
 }
}

code snippet PA4AD_Ch09_MyService/src/MyService.java

After you’ve constructed a new Service, you must register it in the application manifest. Do this by
including a service tag within the application node, as shown in Listing 9-2.

LISTING 9-2: Adding a Service node to the application manifest

<service android:enabled=”true” android:name=”.MyService”/>

code snippet PA4AD_Ch09_MyService/AndroidManifest.xml

To ensure your Service can be started and stopped only by your own application, add a permission
attribute to its Service node.

<service android:enabled=”true”
 android:name=”.MyService”
 android:permission=”com.paad.MY_SERVICE_PERMISSION”/>

This will require any third-party applications to include a uses-permission in their manifests in
order to access this Service. You’ll learn more about creating and using permissions in Chapter 18,
“Advanced Android Development.”

Executing a Service and Controlling Its Restart Behavior

Override the onStartCommand event handler to execute the task (or begin the ongoing operation)
encapsulated by your Service. You can also specify your Service’s restart behavior within
this handler.

The onStartCommand method is called whenever the Service is started using startService, so
it may be executed several times within a Service’s lifetime. You should ensure that your Service
accounts for this.

The onStartCommand handler was introduced in Android 2.0 (API level 5) and
replaces the deprecated onStart event. It provides the same functionality as the dep-
recated method, but in addition it enables you specify how to handle restarts if the
Service is killed by the system prior to an explicit call to stopService or stopSelf.

c09.indd 333c09.indd 333 4/18/2012 3:50:36 PM4/18/2012 3:50:36 PM

Meier02275 c09 V3 - 03/21/2012 Page 334

334 x CHAPTER 9 WORKING IN THE BACKGROUND

Services are launched on the main Application Thread, meaning that any processing done in the
onStartCommand handler will happen on the main GUI Thread. The standard pattern for imple-
menting a Service is to create and run a new Thread from onStartCommand to perform the process-
ing in the background, and then stop the Service when it’s been completed. (You will be shown how
to create and manage background Threads later in this chapter.)

Listing 9-3 extends the skeleton code shown in Listing 9-1 by overriding the onStartCommand han-
dler. Note that it returns a value that controls how the system will respond if the Service is restarted
after being killed by the run time.

LISTING 9-3: Overriding Service restart behavior

@Override
public int onStartCommand(Intent intent, int flags, int startId) {
 startBackgroundTask(intent, startId);
 return Service.START_STICKY;
}

code snippet PA4AD_Ch09_MyService/src/MyService.java

This pattern lets onStartCommand complete quickly, and it enables you to control the restart behav-
ior by returning one of the following Service constants:

 ‰ START_STICKY — Describes the standard behavior, which is similar to the way in which
onStart was implemented prior to Android 2.0. If you return this value, onStartCommand
will be called any time your Service restarts after being terminated by the run time. Note that
on a restart the Intent parameter passed in to onStartCommand will be null.

This mode typically is used for Services that handle their own states and that are explic-
itly started and stopped as required (via startService and stopService). This includes
Services that play music or handle other ongoing background tasks.

 ‰ START_NOT_STICKY — This mode is used for Services that are started to process specifi c
actions or commands. Typically, they will use stopSelf to terminate once that command has
been completed.

Following termination by the run time, Services set to this mode restart only if there are
pending start calls. If no startService calls have been made since the Service was termi-
nated, the Service will be stopped without a call being made to onStartCommand.

This mode is ideal for Services that handle specifi c requests, particularly regular process-
ing such as updates or network polling. Rather than restarting the Service during a period
of resource contention, it’s often more prudent to let the Service stop and retry at the next
scheduled interval.

 ‰ START_REDELIVER_INTENT — In some circumstances you will want to ensure that the commands
you have requested from your Service are completed — for example when timeliness is important.

This mode is a combination of the fi rst two; if the Service is terminated by the run time, it
will restart only if there are pending start calls or the process was killed prior to its calling
stopSelf. In the latter case, a call to onStartCommand will be made, passing in the initial
Intent whose processing did not properly complete.

c09.indd 334c09.indd 334 4/18/2012 3:50:36 PM4/18/2012 3:50:36 PM

Meier02275 c09 V3 - 03/21/2012 Page 335

Introducing Services x 335

Note that each mode requires you to explicitly stop your Service, through a call to stopService or
stopSelf, when your processing has completed. Both methods are discussed in more detail later in
this chapter.

Prior to Android SDK 2.0 (API level 5), the Service class triggered the onStart
event handler to let you perform actions when the Service started. Implementing
the onStart handler is now the equivalent of overriding onStartCommand and
returning START_STICKY.

The restart mode you specify in your onStartCommand return value will affect the parameter val-
ues passed in to it on subsequent calls. Initially, the Intent will be the parameter you passed in to
startService to start your Service. After system-based restarts it will be either null, in the case of
START_STICKY mode, or the original Intent if the mode is set to START_REDELIVER_INTENT.

The flag parameter can be used to discover how the Service was started. In particular, you deter-
mine if either of the following cases is true:

 ‰ START_FLAG_REDELIVERY — Indicates that the Intent parameter is a redelivery caused by the
system run time’s having terminated the Service before it was explicitly stopped by a call to
stopSelf.

 ‰ START_FLAG_RETRY — Indicates that the Service has been restarted after an abnormal termi-
nation. It is passed in when the Service was previously set to START_STICKY.

Starting and Stopping Services

To start a Service, call startService. Much like Activities, you can either use an action to implic-
itly start a Service with the appropriate Intent Receiver registered, or you can explicitly specify the
Service using its class. If the Service requires permissions that your application does not have,
the call to startService will throw a SecurityException.

In both cases you can pass values in to the Service’s onStart handler by adding extras to the Intent,
as shown in Listing 9-4, which demonstrates both techniques available for starting a Service.

LISTING 9-4: Starting a Service

private void explicitStart() {
 // Explicitly start My Service
 Intent intent = new Intent(this, MyService.class);
 // TODO Add extras if required.
 startService(intent);
}

private void implicitStart() {
 // Implicitly start a music Service
 Intent intent = new Intent(MyMusicService.PLAY_ALBUM);
 intent.putExtra(MyMusicService.ALBUM_NAME_EXTRA, “United”);

continues

c09.indd 335c09.indd 335 4/18/2012 3:50:36 PM4/18/2012 3:50:36 PM

Meier02275 c09 V3 - 03/21/2012 Page 336

336 x CHAPTER 9 WORKING IN THE BACKGROUND

 intent.putExtra(MyMusicService.ARTIST_NAME_EXTRA, “Pheonix”);
 startService(intent);
}

code snippet PA4AD_Ch9_MyService/src/MyActivity.java

To stop a Service, use stopService, specifying an Intent that defi nes the Service to stop (in the same
way you specifi ed which Service to start), as shown in Listing 9-5.

LISTING 9-5: Stopping a Service

// Stop a service explicitly.
stopService(new Intent(this, MyService.class));

// Stop a service implicitly.
Intent intent = new Intent(MyMusicService.PLAY_ALBUM);
stopService(intent);

code snippet PA4AD_Ch09_MyService/src/MyActivity.java

Calls to startService do not nest, so a single call to stopService will terminate the running
Service it matches, no matter how many times startService has been called.

Self-Terminating Services

Due to the high priority of Services, they are not commonly killed by the run time, so self-termination
can signifi cantly improve the resource footprint of your application.

By explicitly stopping the Service when your processing is complete, you allow the system to recover
the resources otherwise required to keep it running.

When your Service has completed the actions or processing for which it was started, you should ter-
minate it by making a call to stopSelf. You can call stopSelf either without a parameter to force
an immediate stop, or by passing in a startId value to ensure processing has been completed for
each instance of startService called so far.

Binding Services to Activities

Services can be bound to Activities, with the latter maintaining a reference to an instance of the
former, enabling you to make method calls on the running Service as you would on any other
instantiated class.

Binding is useful for Activities that would benefi t from a more detailed interface with a Service. To
support binding for a Service, implement the onBind method, returning the current instance of the
Service being bound, as shown in Listing 9-6.

LISTING 9-4 (continued)

c09.indd 336c09.indd 336 4/18/2012 3:50:37 PM4/18/2012 3:50:37 PM

Meier02275 c09 V3 - 03/21/2012 Page 337

Introducing Services x 337

LISTING 9-6: Implementing binding on a Service

@Override
public IBinder onBind(Intent intent) {
 return binder;
}

public class MyBinder extends Binder {
 MyMusicService getService() {
 return MyMusicService.this;
 }
}
private final IBinder binder = new MyBinder();

code snippet PA4AD_Ch09_MyService/src/MyMusicService.java

The connection between the Service and another component is represented as a
ServiceConnection.

To bind a Service to another application component, you need to implement a new
ServiceConnection, overriding the onServiceConnected and onServiceDisconnected methods
to get a reference to the Service instance after a connection has been established, as shown in
Listing 9-7.

LISTING 9-7: Creating a Service Connection for Service binding

// Reference to the service
private MyMusicService serviceRef;

// Handles the connection between the service and activity
private ServiceConnection mConnection = new ServiceConnection() {
 public void onServiceConnected(ComponentName className,
 IBinder service) {
 // Called when the connection is made.
 serviceRef = ((MyMusicService.MyBinder)service).getService();
 }

 public void onServiceDisconnected(ComponentName className) {
 // Received when the service unexpectedly disconnects.
 serviceRef = null;
 }
};

code snippet PA4AD_Ch09_MyService/src/MyActivity.java

To perform the binding, call bindService within your Activity, passing in an Intent (either explicit
or implicit) that selects the Service to bind to, and an instance of a ServiceConnection implemen-
tation. You can also specify a number of binding fl ags, as shown in Listing 9-8. In this example you
specify that the target Service should be created when the binding is initiated.

c09.indd 337c09.indd 337 4/18/2012 3:50:37 PM4/18/2012 3:50:37 PM

Meier02275 c09 V3 - 03/21/2012 Page 338

338 x CHAPTER 9 WORKING IN THE BACKGROUND

LISTING 9-8: Binding to a Service

// Bind to the service
Intent bindIntent = new Intent(MyActivity.this, MyMusicService.class);
bindService(bindIntent, mConnection, Context.BIND_AUTO_CREATE);

code snippet PA4AD_Ch09_MyService/src/MyActivity.java

Android 4.0 (API level 14) introduced a number of new fl ags that can be used and combined when
binding a Service to an application:

‰ BIND_ADJUST_WITH_ACTIVITY — Causes the Service’s priority to be adjusted based on the
relative importance of the Activity to which it is bound. As a result, the run time will increase
the priority of the Service when the Activity is in the foreground.

‰ BIND_ABOVE_CLIENT and BIND_IMPORTANT — Specify that the bound Service is so impor-
tant to the binding client that it should be become a foreground process when the client is in
the foreground — in the case of BIND_ABOVE_CLIENT, you are specifying that the run time
should terminate the Activity before the bound Service in cases of low memory.

‰ BIND_NOT_FOREGROUND — Ensures the bound Service is never brought to foreground priority.
By default, the act of binding a Service increases its relative priority.

‰ BIND_WAIVE_PRIORITY — Indicates that binding the specifi ed Service shouldn’t alter its priority.

When the Service has been bound, all its public methods and properties are available through the
serviceBinder object obtained from the onServiceConnected handler.

Android applications do not (normally) share memory, but in some cases your application may want
to interact with (and bind to) Services running in different application processes.

You can communicate with a Service running in a different process by using broadcast Intents or
through the extras Bundle in the Intent used to start the Service. If you need a more tightly coupled
connection, you can make a Service available for binding across application boundaries by using
Android Interface Defi nition Language (AIDL). AIDL defi nes the Service’s interface in terms of
OS-level primitives, allowing Android to transmit objects across process boundaries. AIDL defi nitions
are covered in Chapter 18.

An Earthquake-Monitoring Service Example

In this chapter you’ll modify the Earthquake example you started in Chapter 6 (and continued to
enhance in Chapters 7 and 8). In this example you’ll move the earthquake updating and processing
functionality into its own Service component.

In the sections “Using Repeating Alarms to Schedule Network Refreshes”
and “Using the Intent Service to Simplify the Earthquake Update Service,”
you’ll extend this Service by improving its effi ciency and simplifying the
implementation.

c09.indd 338c09.indd 338 4/18/2012 3:50:37 PM4/18/2012 3:50:37 PM

Meier02275 c09 V3 - 03/21/2012 Page 339

Introducing Services x 339

1. Start by creating a new EarthquakeUpdateService that extends Service:

package com.paad.earthquake;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;

public class EarthquakeUpdateService extends Service {

 public static String TAG = “EARTHQUAKE_UPDATE_SERVICE”;

 @Override
 public IBinder onBind(Intent intent) {
 return null;
 }
}

2. Add this new Service to the manifest by adding a new service tag within the application
node:

<service android:enabled=”true” android:name=”.EarthquakeUpdateService”/>

3. Move the addNewQuake method out of the EarthquakeListFragment and into the
EarthquakeUpdateService. Modify the fi rst line in the method to obtain the Content
Resolver from the Service rather than a parent Activity:

private void addNewQuake(Quake quake) {
 ContentResolver cr = getContentResolver();

 // Construct a where clause to make sure we don’t already have this
 // earthquake in the provider.
 String w = EarthquakeProvider.KEY_DATE + “ = “ + quake.getDate().getTime();

 // If the earthquake is new, insert it into the provider.
 Cursor query = cr.query(EarthquakeProvider.CONTENT_URI, null, w, null, null);

 if (query.getCount()==0) {
 ContentValues values = new ContentValues();

 values.put(EarthquakeProvider.KEY_DATE, quake.getDate().getTime());
 values.put(EarthquakeProvider.KEY_DETAILS, quake.getDetails());
 values.put(EarthquakeProvider.KEY_SUMMARY, quake.toString());

 double lat = quake.getLocation().getLatitude();
 double lng = quake.getLocation().getLongitude();
 values.put(EarthquakeProvider.KEY_LOCATION_LAT, lat);
 values.put(EarthquakeProvider.KEY_LOCATION_LNG, lng);
 values.put(EarthquakeProvider.KEY_LINK, quake.getLink());
 values.put(EarthquakeProvider.KEY_MAGNITUDE, quake.getMagnitude());

 cr.insert(EarthquakeProvider.CONTENT_URI, values);
 }
 query.close();
}

c09.indd 339c09.indd 339 4/18/2012 3:50:38 PM4/18/2012 3:50:38 PM

Meier02275 c09 V3 - 03/21/2012 Page 340

340 x CHAPTER 9 WORKING IN THE BACKGROUND

4. Create a new refreshEarthquakes method in the EarthquakeUpdateService. You will
move most of the functionality from the method of the same name in the Earthquake List
Fragment into this new method:

public void refreshEarthquakes() {
}

4.1 Start by moving all the XML processing code into the Service’s refreshEarthquakes
method:

public void refreshEarthquakes() {
 // Get the XML
 URL url;
 try {
 String quakeFeed = getString(R.string.quake_feed);
 url = new URL(quakeFeed);

 URLConnection connection;
 connection = url.openConnection();

 HttpURLConnection httpConnection = (HttpURLConnection)connection;
 int responseCode = httpConnection.getResponseCode();

 if (responseCode == HttpURLConnection.HTTP_OK) {
 InputStream in = httpConnection.getInputStream();

 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 DocumentBuilder db = dbf.newDocumentBuilder();

 // Parse the earthquake feed.
 Document dom = db.parse(in);
 Element docEle = dom.getDocumentElement();

 // Get a list of each earthquake entry.
 NodeList nl = docEle.getElementsByTagName(“entry”);
 if (nl != null && nl.getLength() > 0) {
 for (int i = 0 ; i < nl.getLength(); i++) {
 Element entry = (Element)nl.item(i);
 Element title = (Element)entry.getElementsByTagName(“title”).item(0);
 Element g = (Element)entry.getElementsByTagName(“georss:point”).item(0);
 Element when = (Element)entry.getElementsByTagName(“updated”).item(0);
 Element link = (Element)entry.getElementsByTagName(“link”).item(0);

 String details = title.getFirstChild().getNodeValue();
 String hostname = “http://earthquake.usgs.gov”;
 String linkString = hostname + link.getAttribute(“href”);

 String point = g.getFirstChild().getNodeValue();
 String dt = when.getFirstChild().getNodeValue();
 SimpleDateFormat sdf = new SimpleDateFormat(“yyyy-MM-dd’T’hh:mm:ss’Z’”);
 Date qdate = new GregorianCalendar(0,0,0).getTime();
 try {
 qdate = sdf.parse(dt);
 } catch (ParseException e) {

c09.indd 340c09.indd 340 4/18/2012 3:50:38 PM4/18/2012 3:50:38 PM

http://earthquake.usgs.gov%E2%80%9D

Meier02275 c09 V3 - 03/21/2012 Page 341

Introducing Services x 341

 Log.e(TAG, “Date parsing exception.”, e);
 }

 String[] location = point.split(“ “);
 Location l = new Location(“dummyGPS”);
 l.setLatitude(Double.parseDouble(location[0]));
 l.setLongitude(Double.parseDouble(location[1]));

 String magnitudeString = details.split(“ “)[1];
 int end = magnitudeString.length()-1;
 double magnitude = Double.parseDouble(magnitudeString.substring(0, end));

 details = details.split(“,”)[1].trim();

 Quake quake = new Quake(qdate, details, l, magnitude, linkString);

 // Process a newly found earthquake
 addNewQuake(quake);
 }
 }
 }
 } catch (MalformedURLException e) {
 Log.e(TAG, “Malformed URL Exception”, e);
 } catch (IOException e) {
 Log.e(TAG, “IO Exception”, e);
 } catch (ParserConfigurationException e) {
 Log.e(TAG, “Parser Configuration Exception“, e);
 } catch (SAXException e) {
 Log.e(TAG, “SAX Exception“, e);
 }
 finally {
 }
}

4.2 With the XML processing moved out of the refreshEarthquakes method in
the Earthquake List Fragment, there’s no longer a need to execute it on a back-
ground thread. Update the onActivityCreated handler to remove the Thread
creation code:

@Override
public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);

 // Create a new Adapter and bind it to the List View
 adapter = new SimpleCursorAdapter(getActivity(),
 android.R.layout.simple_list_item_1, null,
 new String[] { EarthquakeProvider.KEY_SUMMARY },
 new int[] { android.R.id.text1 }, 0);
 setListAdapter(adapter);

 getLoaderManager().initLoader(0, null, this);

 refreshEarthquakes();
}

c09.indd 341c09.indd 341 4/18/2012 3:50:38 PM4/18/2012 3:50:38 PM

Meier02275 c09 V3 - 03/21/2012 Page 342

342 x CHAPTER 9 WORKING IN THE BACKGROUND

4.3 The Earthquake List Fragment’s refreshEarthquake method should still contain the
code used to restart the Cursor Loader, but it no longer needs to synchronize it to the
UI thread. Remove that code and add a new call to startService that will explicitly
start the EarthquakeUpdateService:

public void refreshEarthquakes() {
 getLoaderManager().restartLoader(0, null, EarthquakeListFragment.this);

 getActivity().startService(new Intent(getActivity(),
 EarthquakeUpdateService.class));
}

5. Return to the EarthquakeService. Override the onStartCommand and onCreate methods
to refresh the earthquake from the server, and to create a new Timer that will be used to
regularly update the earthquake list.

The onStartCommand handler should return START_STICKY because you are using a timer to
trigger multiple refreshes. This is generally poor form — the Timer behavior should be trig-
gered by Alarms and/or an Intent Service. You’ll learn how to do both of these things later
in this chapter. Use the SharedPreference object created in Chapter 7 to determine if the
earthquakes should be updated regularly.

private Timer updateTimer;

@Override
public int onStartCommand(Intent intent, int flags, int startId) {
 // Retrieve the shared preferences
 Context context = getApplicationContext();
 SharedPreferences prefs =
 PreferenceManager.getDefaultSharedPreferences(context);

 int updateFreq =
 Integer.parseInt(prefs.getString(PreferencesActivity.PREF_UPDATE_FREQ, ”60”));
 boolean autoUpdateChecked =
 prefs.getBoolean(PreferencesActivity.PREF_AUTO_UPDATE, false);

 updateTimer.cancel();
 if (autoUpdateChecked) {
 updateTimer = new Timer(”earthquakeUpdates”);
 updateTimer.scheduleAtFixedRate(doRefresh, 0,
 updateFreq*60*1000);
 }
 else {
 Thread t = new Thread(new Runnable() {
 public void run() {
 refreshEarthquakes();
 }
 });
 t.start();
 }

 return Service.START_STICKY;
};

c09.indd 342c09.indd 342 4/18/2012 3:50:38 PM4/18/2012 3:50:38 PM

Meier02275 c09 V3 - 03/21/2012 Page 343

Introducing Services x 343

private TimerTask doRefresh = new TimerTask() {
 public void run() {
 refreshEarthquakes();
 }
};

@Override
public void onCreate() {
 super.onCreate();
 updateTimer = new Timer(”earthquakeUpdates”);
}

All code snippets in this example are part of the Chapter 9 Earthquake Part 1
project, available for download at www.wrox.com.

Now when the Earthquake Activity is launched, it will start the Earthquake Service. This Service
will then continue to run, updating the Content Provider in the background, even after the Activity
is suspended or closed. Because the Earthquake List Fragment is using a Cursor Loader, each new
Earthquake will automatically be added to the List View.

At this stage the earthquake Service is constantly running, taking up valuable
resources. Later sections will explain how to replace the Timer with Alarms and
the Intent Service.

Creating Foreground Services

As you learned in Chapter 3, “Creating Applications and Activities,” Android uses a dynamic
approach to managing resources that can result in your application’s components being terminated
with little or no warning.

When calculating which applications and application components should be killed, Android assigns
running Services the second-highest priority. Only active, foreground Activities are considered a
higher priority.

In cases where your Service is interacting directly with the user, it may be appropriate to lift its pri-
ority to the equivalent of a foreground Activity’s. You can do this by setting your Service to run in
the foreground by calling its startForeground method.

Because foreground Services are expected to be interacting directly with the user (for example, by
playing music), calls to startForeground must specify an ongoing Notifi cation (described in more
detail in Chapter 10, “Expanding the User Experience”), as shown in Listing 9-9. This notifi cation
will be displayed for as long as your Service is running in the foreground.

c09.indd 343c09.indd 343 4/18/2012 3:50:38 PM4/18/2012 3:50:38 PM

http://www.wrox.com

Meier02275 c09 V3 - 03/21/2012 Page 344

344 x CHAPTER 9 WORKING IN THE BACKGROUND

LISTING 9-9: Moving a Service to the foreground

private void startPlayback(String album, String artist) {
 int NOTIFICATION_ID = 1;

 // Create an Intent that will open the main Activity
 // if the notification is clicked.
 Intent intent = new Intent(this, MyActivity.class);
 PendingIntent pi = PendingIntent.getActivity(this, 1, intent, 0);

 // Set the Notification UI parameters
 Notification notification = new Notification(R.drawable.icon,
 “Starting Playback”, System.currentTimeMillis());
 notification.setLatestEventInfo(this, album, artist, pi);

 // Set the Notification as ongoing
 notification.flags = notification.flags |
 Notification.FLAG_ONGOING_EVENT;

 // Move the Service to the Foreground
 startForeground(NOTIFICATION_ID, notification);
}

code snippet PA4AD_Ch09_MyService/src/MyMusicService.java

Moving a Service to the foreground effectively makes it impossible for the run
time to kill it in order to free resources. Having multiple unkillable Services run-
ning simultaneously can make it extremely diffi cult for the system to recover
from resource-starved situations.

Use this technique only if it is necessary in order for your Service to function
properly, and even then keep the Service in the foreground only as long as abso-
lutely necessary.

It’s good practice to provide a simple way for users to disable a foreground Service — typically
from whichever Activity is opened by clicking the ongoing Notifi cation (or from the Notifi cation
itself).

When your Service no longer requires foreground priority, you can move it back to the background,
and optionally remove the ongoing notifi cation using the stopForeground method, as shown in
Listing 9-10. The Notifi cation will be canceled automatically if your Service stops or is terminated.

LISTING 9-10: Moving a Service back to the background

public void pausePlayback() {
 // Move to the background and remove the Notification
 stopForeground(true);
}

code snippet PA4AD_Ch09_MyService/src/MyMusicService.java

c09.indd 344c09.indd 344 4/18/2012 3:50:38 PM4/18/2012 3:50:38 PM

Meier02275 c09 V3 - 03/21/2012 Page 345

Using Background Threads x 345

Prior to Android 2.0 it was possible to set a Service to the foreground using the
setForeground method. This method has now been deprecated and will result
in a NOP (no operation performed), effectively doing nothing.

USING BACKGROUND THREADS

Responsiveness is one of the most critical attributes of a good Android application. To ensure that
your application responds quickly to any user interaction or system event, it’s vital that you move all
processing and I/O operations off the main application Thread and into a child Thread.

All Android application components — including Activities, Services, and
Broadcast Receivers — start on the main application Thread. As a result, time-
consuming processing in any component will block all other components,
including Services and the visible Activity.

In Android, Activities that don’t respond to an input event (such as a key press) within 5 seconds,
and Broadcast Receivers that don’t complete their onReceive handlers within 10 seconds, are con-
sidered unresponsive.

Not only do you want to avoid this scenario, but you don’t even want to come close. In practice,
users will notice input delays and UI pauses of more than a couple of hundred milliseconds.

It’s important to use background Threads for any nontrivial processing that doesn’t directly inter-
act with the user interface. It’s particularly important to schedule fi le operations, network lookups,
database transactions, and complex calculations on a background Thread.

Android offers a number of alternatives for moving your processing to the background. You can
implement your own Threads and use the Handler class to synchronize with the GUI Thread before
updating the UI. Alternatively, the AsyncTask class lets you defi ne an operation to be performed in
the background and provides event handlers that enable you to monitor progress and post the results
on the GUI Thread.

Using AsyncTask to Run Asynchronous Tasks

The AsyncTask class implements a best practice pattern for moving your time-consuming operations
onto a background Thread and synchronizing with the UI Thread for updates and when the process-
ing is complete. It offers the convenience of event handlers synchronized with the GUI Thread to
let you update Views and other UI elements to report progress or publish results when your task is
complete.

AsyncTask handles all the Thread creation, management, and synchronization, enabling you to cre-
ate an asynchronous task consisting of processing to be done in the background and UI updates to
be performed both during the processing, and once it’s complete.

c09.indd 345c09.indd 345 4/18/2012 3:50:39 PM4/18/2012 3:50:39 PM

Meier02275 c09 V3 - 03/21/2012 Page 346

346 x CHAPTER 9 WORKING IN THE BACKGROUND

AsyncTasks are a good solution for short-lived background processing whose progress and results
need to be refl ected on the UI. However, they aren’t persisted across Activity restarts — meaning
that your AsyncTask will be cancelled if the orientation of the device changes, causing the Activity
to be destroyed and recreated. For longer running background processes, such as downloading data
from the Internet, a Service component is a better approach.

Similarly, Cursor Loaders are better optimized for the use-case of Content Provider or database
results.

Creating New Asynchronous Tasks

Each AsyncTask implementation can specify parameter types that will be used for input parameters,
the progress-reporting values, and result values. If you don’t need or want to take input parameters,
update progress, or report a fi nal result, simply specify Void for any or all the types required.

To create a new asynchronous task, extend the AsyncTask class, specifying the parameter types to
use, as shown in the skeleton code of Listing 9-11.

LISTING 9-11: AsyncTask implementation using a string parameter and result, with an integer

progress value

private class MyAsyncTask extends AsyncTask<String, Integer, String> {
 @Override
 protected String doInBackground(String... parameter) {
 // Moved to a background thread.
 String result = “”;
 int myProgress = 0;

 int inputLength = parameter[0].length();

 // Perform background processing task, update myProgress]
 for (int i = 1; i <= inputLength; i++) {
 myProgress = i;
 result = result + parameter[0].charAt(inputLength-i);
 try {
 Thread.sleep(100);
 } catch (InterruptedException e) { }
 publishProgress(myProgress);
 }

 // Return the value to be passed to onPostExecute
 return result;
 }

 @Override
 protected void onProgressUpdate(Integer... progress) {
 // Synchronized to UI thread.
 // Update progress bar, Notification, or other UI elements
 asyncProgress.setProgress(progress[0]);
 }

c09.indd 346c09.indd 346 4/18/2012 3:50:39 PM4/18/2012 3:50:39 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Meier02275 c09 V3 - 03/21/2012 Page 347

Using Background Threads x 347

 @Override
 protected void onPostExecute(String result) {
 // Synchronized to UI thread.
 // Report results via UI update, Dialog, or notifications
 asyncTextView.setText(result);
 }
}

code snippet PA4AD_Ch09_MyService/src/MyActivity.java

Your subclass should also override the following event handlers:

 ‰ doInBackground — This method will be executed on the background Thread, so place your
long-running code here, and don’t attempt to interact with UI objects from within this
handler. It takes a set of parameters of the type defi ned in your class implementation.

You can use the publishProgress method from within this handler to pass parameter
values to the onProgressUpdate handler, and when your background task is complete, you
can return the fi nal result as a parameter to the onPostExecute handler, which can update
the UI accordingly.

 ‰ onProgressUpdate — Override this handler to update the UI with interim progress updates.
This handler receives the set of parameters passed in to publishProgress (typically from
within the doInBackground handler).

This handler is synchronized with the GUI Thread when executed, so you can safely modify
UI elements.

 ‰ onPostExecute — When doInBackground has completed, the return value from that
method is passed in to this event handler.

Use this handler to update the UI when your asynchronous task has completed. This handler
is synchronized with the GUI Thread when executed, so you can safely modify UI elements.

Running Asynchronous Tasks

After you’ve implemented an asynchronous task, execute it by creating a new instance and calling
execute, as shown in Listing 9-12. You can pass in a number of parameters, each of the type speci-
fi ed in your implementation.

LISTING 9-12: Executing an asynchronous task

String input = “redrum ... redrum”;
new MyAsyncTask().execute(input);

code snippet PA4AD_Ch09_MyService/src/MyActivity.java

Each AsyncTask instance can be executed only once. If you attempt to call
execute a second time, an exception will be thrown.

c09.indd 347c09.indd 347 4/18/2012 3:50:40 PM4/18/2012 3:50:40 PM

Meier02275 c09 V3 - 03/21/2012 Page 348

348 x CHAPTER 9 WORKING IN THE BACKGROUND

Introducing the Intent Service

The Intent Service is a convenient wrapper class that implements the best practice pattern for
background Services that perform set tasks on demand, such as recurring Internet updates or data
processing.

Other application components request an Intent Service complete a task by starting the Service and
passing in an Intent containing the parameters necessary to complete the task.

The Intent Service queues request Intents as they are received and processes them consecutively on
an asynchronous background Thread. After every received Intent has been processed, the Intent
Service will terminate itself.

The Intent Service handles all the complexities around queuing multiple requests, background
Thread creation, and UI Thread synchronization.

To implement a Service as an Intent Service, extend IntentService and override the
onHandleIntent handler, as shown in Listing 9-13.

LISTING 9-13: Implementing an Intent Service

import android.app.IntentService;
import android.content.Intent;

public class MyIntentService extends IntentService {

 public MyIntentService(String name) {
 super(name);
 // TODO Complete any required constructor tasks.
 }

 @Override
 public void onCreate() {
 super.onCreate();
 // TODO: Actions to perform when service is created.
 }

 @Override
 protected void onHandleIntent(Intent intent) {
 // This handler occurs on a background thread.
 // TODO The time consuming task should be implemented here.
 // Each Intent supplied to this IntentService will be
 // processed consecutively here. When all incoming Intents
 // have been processed the Service will terminate itself.
 }
}

code snippet PA4AD_Ch09_MyService/src/MyIntentService.java

The onHandleIntent handler will be executed on a worker Thread, once for each Intent received. The
Intent Service is the best-practice approach to creating Services that perform set tasks either on-demand
or at regular intervals.

c09.indd 348c09.indd 348 4/18/2012 3:50:40 PM4/18/2012 3:50:40 PM

Meier02275 c09 V3 - 03/21/2012 Page 349

Using Background Threads x 349

The “Using the Intent Service to Simplify the Earthquake Update Service” section demonstrates a
practical example of how to use the Intent Service for recurring tasks.

Introducing Loaders

The abstract Loader class was introduced in Android 3.0 (API level 11) to encapsulate the best prac-
tice technique for asynchronous data loading within UI elements, such as Activities and Fragments.
Loaders are also available within the Android Support Library.

The CursorLoader class, discussed in more detail in Chapter 8, is a concrete implementation used
to asynchronously query the Content Resolver and return a Cursor.

When creating your own Loader implementation, it is typically best practice to extend the
AsyncTaskLoader class rather than the Loader class directly. Although a Loader implementation is
outside the scope of this book, in general your custom Loaders should:

 ‰ Asynchronously load data

 ‰ Monitor the source of the loaded data and automatically provide updated results

Manual Thread Creation and GUI Thread Synchronization

Although using Intent Services and creating AsyncTasks are useful shortcuts, there are times when
you will want to create and manage your own Threads to perform background processing. This is
often the case when you have long-running or inter-related Threads that require more subtle or com-
plex management than is provided by the two techniques described so far.

In this section you learn how to create and start new Thread objects, and how to synchronize with
the GUI Thread before updating the UI.

You can create and manage child Threads using Android’s Handler class and the Threading classes
available within java.lang.Thread. Listing 9-14 shows the simple skeleton code for moving pro-
cessing onto a child Thread.

LISTING 9-14: Moving processing to a background Thread

// This method is called on the main GUI thread.
private void backgroundExecution() {
 // This moves the time consuming operation to a child thread.
 Thread thread = new Thread(null, doBackgroundThreadProcessing,
 “Background”);
 thread.start();
}

// Runnable that executes the background processing method.
private Runnable doBackgroundThreadProcessing = new Runnable() {
 public void run() {
 backgroundThreadProcessing();
 }
};

continues

c09.indd 349c09.indd 349 4/18/2012 3:50:41 PM4/18/2012 3:50:41 PM

Meier02275 c09 V3 - 03/21/2012 Page 350

350 x CHAPTER 9 WORKING IN THE BACKGROUND

// Method which does some processing in the background.
private void backgroundThreadProcessing() {
 // [... Time consuming operations ...]
}

code snippet PA4AD_Ch09_MyService/src/MyService.java

Whenever you’re using background Threads in a GUI environment, it’s important to synchronize
child Threads with the main application (GUI) Thread before attempting to create or modify
UI elements.

Within your application components, Notifi cations and Intents are always received and handled on
the GUI Thread. In all other cases, operations that explicitly interact with objects created on the
GUI Thread (such as Views) or that display messages (such as Toasts) must be invoked on the
main Thread.

If you are running within an Activity, you can also use the runOnUiThread method, which lets you
force a method to execute on the same Thread as the Activity UI, as shown in the following code
snippet:

runOnUiThread(new Runnable() {
 public void run() {
 // Update a View or other Activity UI element.
 }
});

You can also use the Handler class to post methods onto the Thread in which the Handler was
created.

Using the Handler class, you can post updates to the user interface from a background Thread using
the Post method. Listing 9-15 updates Listing 9-14 to demonstrate the outline for using the Handler
to update the GUI Thread.

LISTING 9-15: Using a Handler to synchronize with the GUI Thread

//This method is called on the main GUI thread.
private void backgroundExecution() {
 // This moves the time consuming operation to a child thread.
 Thread thread = new Thread(null, doBackgroundThreadProcessing,
 “Background”);
 thread.start();
}

// Runnable that executes the background processing method.
private Runnable doBackgroundThreadProcessing = new Runnable() {
 public void run() {
 backgroundThreadProcessing();
 }
};

LISTING 9-14 (continued)

c09.indd 350c09.indd 350 4/18/2012 3:50:41 PM4/18/2012 3:50:41 PM

Meier02275 c09 V3 - 03/21/2012 Page 351

Using Alarms x 351

// Method which does some processing in the background.
private void backgroundThreadProcessing() {
 // [... Time consuming operations ...]

 // Use the Handler to post the doUpdateGUI
 // runnable on the main UI thread.
 handler.post(doUpdateGUI);
}

//Initialize a handler on the main thread.
private Handler handler = new Handler();

// Runnable that executes the updateGUI method.
private Runnable doUpdateGUI = new Runnable() {
 public void run() {
 updateGUI();
 }
};

// This method must be called on the UI thread.
private void updateGUI() {
 // [... Open a dialog or modify a GUI element ...]
}

code snippet PA4AD_Ch09_MyService/src/MyActivity.java

The Handler class also enables you to delay posts or execute them at a specifi c time, using the
postDelayed and postAtTime methods, respectively:

// Post a method on the UI thread after 1sec.
handler.postDelayed(doUpdateGUI, 1000);

// Post a method on the UI thread after the device has been in
// use for 5mins.
int upTime = 1000*60*5;
handler.postAtTime(doUpdateGUI, SystemClock.uptimeMillis()+upTime);

USING ALARMS

Alarms are a means of fi ring Intents at predetermined times or intervals. Unlike Timers, Alarms oper-
ate outside the scope of your application, so you can use them to trigger application events or actions
even after your application has been closed. Alarms are particularly powerful when used in combina-
tion with Broadcast Receivers, enabling you to set Alarms that fi re broadcast Intents, start Services,
or even open Activities, without your application needing to be open or running.

Alarms are an effective means to reducing your application’s resource requirements, by enabling
you to stop Services and eliminate timers while maintaining the ability to perform scheduled
actions. You can use Alarms to schedule regular updates based on network lookups, to schedule
time-consuming or cost-bound operations at “off-peak” times, or to schedule retries for failed
operations.

c09.indd 351c09.indd 351 4/18/2012 3:50:41 PM4/18/2012 3:50:41 PM

Meier02275 c09 V3 - 03/21/2012 Page 352

352 x CHAPTER 9 WORKING IN THE BACKGROUND

For timing operations that occur only during the lifetime of your applications,
using the Handler class in combination with Timers and Threads is a better
approach than using Alarms, as this allows Android better control over system
resources. Alarms provide a mechanism to reduce the lifetime of your applica-
tions by moving scheduled events out of their control.

Alarms in Android remain active while the device is in sleep mode and can optionally be set to wake
the device; however, all Alarms are canceled whenever the device is rebooted.

Alarm operations are handled through the AlarmManager, a system Service accessed via
getSystemService, as follows:

AlarmManager alarmManager =
 (AlarmManager)getSystemService(Context.ALARM_SERVICE);

Creating, Setting, and Canceling Alarms

To create a new one-shot Alarm, use the set method and specify an alarm type, a trigger time, and
a Pending Intent to fi re when the Alarm triggers. If the trigger time you specify for the Alarm occurs
in the past, the Alarm will be triggered immediately.

The following four alarm types are available:

 ‰ RTC_WAKEUP — Wakes the device from sleep to fi re the Pending Intent at the clock time
specifi ed.

 ‰ RTC — Fires the Pending Intent at the time specifi ed but does not wake the device.

 ‰ ELAPSED_REALTIME — Fires the Pending Intent based on the amount of time elapsed since
the device was booted but does not wake the device. The elapsed time includes any period of
time the device was asleep.

 ‰ ELAPSED_REALTIME_WAKEUP — Wakes the device from sleep and fi res the Pending Intent
after a specifi ed length of time has passed since device boot.

Your selection will determine if the time value passed in the set method represents a specifi c time or
an elapsed wait.

Listing 9-16 shows the Alarm-creation process.

LISTING 9-16: Creating a waking Alarm that triggers in 10 seconds

// Get a reference to the Alarm Manager
AlarmManager alarmManager =
 (AlarmManager)getSystemService(Context.ALARM_SERVICE);

// Set the alarm to wake the device if sleeping.
int alarmType = AlarmManager.ELAPSED_REALTIME_WAKEUP;

// Trigger the device in 10 seconds.

c09.indd 352c09.indd 352 4/18/2012 3:50:41 PM4/18/2012 3:50:41 PM

Meier02275 c09 V3 - 03/21/2012 Page 353

Using Alarms x 353

long timeOrLengthofWait = 10000;

// Create a Pending Intent that will broadcast and action
String ALARM_ACTION = “ALARM_ACTION”;
Intent intentToFire = new Intent(ALARM_ACTION);
PendingIntent alarmIntent = PendingIntent.getBroadcast(this, 0,
 intentToFire, 0);

// Set the alarm
alarmManager.set(alarmType, timeOrLengthofWait, alarmIntent);

code snippet PA4AD_Ch09_MyService/src/MyActivity.java

When the Alarm goes off, the Pending Intent you specifi ed will be broadcast. Setting a second
Alarm using the same Pending Intent replaces the preexisting Alarm.

To cancel an Alarm, call cancel on the Alarm Manager, passing in the Pending Intent you no longer
want to trigger, as shown in the Listing 9-17.

LISTING 9-17: Canceling an Alarm

alarmManager.cancel(alarmIntent);

code snippet PA4AD_Ch09_MyService/src/MyActivity.java

Setting Repeating Alarms

Repeating alarms work in the same way as the one-shot alarms but will trigger repeatedly at the
specifi ed interval.

Because alarms are set outside your Application lifecycle, they are perfect for scheduling regular updates
or data lookups so that they don’t require a Service to be constantly running in the background.

To set a repeating alarm, use the setRepeating or setInexactRepeating method on the Alarm
Manager. Both methods support an alarm type, an initial trigger time, and a Pending Intent to fi re
when the alarm triggers (as described in the previous section).

Use setRepeating when you need fi ne-grained control over the exact interval of your repeating
alarm. The interval value passed in to this method lets you specify an exact interval for your alarm,
down to the millisecond.

The setInexactRepeating method helps to reduce the battery drain associated with waking the
device on a regular schedule to perform updates. At run time Android will synchronize multiple
inexact repeating alarms and trigger them simultaneously.

Rather than specifying an exact interval, the setInexactRepeating method accepts one of the
following Alarm Manager constants:

 ‰ INTERVAL_FIFTEEN_MINUTES

 ‰ INTERVAL_HALF_HOUR

c09.indd 353c09.indd 353 4/18/2012 3:50:42 PM4/18/2012 3:50:42 PM

Meier02275 c09 V3 - 03/21/2012 Page 354

354 x CHAPTER 9 WORKING IN THE BACKGROUND

 ‰ INTERVAL_HOUR

 ‰ INTERVAL_HALF_DAY

 ‰ INTERVAL_DAY

Using an inexact repeating alarm, as shown in Listing 9-18, prevents each application from
separately waking the device in a similar but nonoverlapping period. By synchronizing these alarms,
the system is able to limit the impact of regularly repeating events on battery resources.

LISTING 9-18: Setting an inexact repeating alarm

// Get a reference to the Alarm Manager
AlarmManager alarmManager =
 (AlarmManager)getSystemService(Context.ALARM_SERVICE);

// Set the alarm to wake the device if sleeping.
int alarmType = AlarmManager.ELAPSED_REALTIME_WAKEUP;

// Schedule the alarm to repeat every half hour.
long timeOrLengthofWait = AlarmManager.INTERVAL_HALF_HOUR;

// Create a Pending Intent that will broadcast and action
String ALARM_ACTION = “ALARM_ACTION”;
Intent intentToFire = new Intent(ALARM_ACTION);
PendingIntent alarmIntent = PendingIntent.getBroadcast(this, 0,
 intentToFire, 0);

// Wake up the device to fire an alarm in half an hour, and every
// half-hour after that.
alarmManager.setInexactRepeating(alarmType,
 timeOrLengthofWait,
 timeOrLengthofWait,
 alarmIntent);

code snippet PA4AD_Ch09_MyService/src/MyActivity.java

The battery impact of setting regularly repeating alarms can be signifi cant. It is
good practice to limit your alarm frequency to the slowest acceptable rate, wake
the device only if necessary, and use an inexact repeating alarm whenever possible.

Repeating Alarms are canceled in the same way as one-shot Alarms, by calling cancel on the
Alarm Manager and passing in the Pending Intent you no longer want to trigger.

Using Repeating Alarms to Schedule Network Refreshes

In this modifi cation to the Earthquake example, you use Alarms to replace the Timer curren tly used
to schedule Earthquake network refreshes.

c09.indd 354c09.indd 354 4/18/2012 3:50:42 PM4/18/2012 3:50:42 PM

Meier02275 c09 V3 - 03/21/2012 Page 355

Using Alarms x 355

One of the most signifi cant advantages of this approach is that it allows the Service to stop itself
when it has completed a refresh, freeing signifi cant system resources.

1. Start by creating a new EarthquakeAlarmReceiver class that extends BroadcastReceiver:

package com.paad.earthquake;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;

public class EarthquakeAlarmReceiver extends BroadcastReceiver {

 @Override
 public void onReceive(Context context, Intent intent) {
 }

}

2. Override the onReceive method to explicitly start the EarthquakeUpdateService:

@Override
public void onReceive(Context context, Intent intent) {
 Intent startIntent = new Intent(context, EarthquakeUpdateService.class);
 context.startService(startIntent);
}

3. Create a new public static String to defi ne the action that will be used to trigger this
Broadcast Receiver:

public static final String ACTION_REFRESH_EARTHQUAKE_ALARM =
 “com.paad.earthquake.ACTION_REFRESH_EARTHQUAKE_ALARM”;

4. Add the new EarthquakeAlarmReceiver to the manifest, including an intent-filter tag
that listens for the action defi ned in step 3:

<receiver android:name=”.EarthquakeAlarmReceiver”>
 <intent-filter>
 <action
 android:name=”com.paad.earthquake.ACTION_REFRESH_EARTHQUAKE_ALARM”
 />
 </intent-filter>
</receiver>

5. Within the Earthquake Update Service, override the onCreate method to get a reference to
the AlarmManager, and create a new PendingIntent that will be fi red when the Alarm is
triggered. You can also remove the timerTask initialization.

private AlarmManager alarmManager;
private PendingIntent alarmIntent;

@Override
public void onCreate() {
 super.onCreate();
 alarmManager = (AlarmManager)getSystemService(Context.ALARM_SERVICE);

 String ALARM_ACTION =
 EarthquakeAlarmReceiver.ACTION_REFRESH_EARTHQUAKE_ALARM;

c09.indd 355c09.indd 355 4/18/2012 3:50:42 PM4/18/2012 3:50:42 PM

Meier02275 c09 V3 - 03/21/2012 Page 356

356 x CHAPTER 9 WORKING IN THE BACKGROUND

 Intent intentToFire = new Intent(ALARM_ACTION);
 alarmIntent =
 PendingIntent.getBroadcast(this, 0, intentToFire, 0);
}

6. Modify the onStartCommand handler to set an inexact repeating Alarm rather than use a
Timer to schedule the refreshes (if automated updates are enabled). Setting a new Intent
with the same action automatically cancels any previous Alarms. Take this opportunity
to modify the return result. Rather than setting the Service to sticky, return Service.
START_NOT_STICKY. In step 7 you will stop the Service when the background refresh is
complete; the use of alarms guarantees that another refresh will occur at the specifi ed
update frequency, so there’s no need for the system to restart the Service if it is killed
mid-refresh.

@Override
public int onStartCommand(Intent intent, int flags, int startId) {
 // Retrieve the shared preferences
 Context context = getApplicationContext();
 SharedPreferences prefs =
 PreferenceManager.getDefaultSharedPreferences(context);

 int updateFreq =
 Integer.parseInt(prefs.getString(PreferencesActivity.PREF_UPDATE_FREQ, “60”));
 boolean autoUpdateChecked =
 prefs.getBoolean(PreferencesActivity.PREF_AUTO_UPDATE, false);

 if (autoUpdateChecked) {
 int alarmType = AlarmManager.ELAPSED_REALTIME_WAKEUP;
 long timeToRefresh = SystemClock.elapsedRealtime() +
 updateFreq*60*1000;
 alarmManager.setInexactRepeating(alarmType, timeToRefresh,
 updateFreq*60*1000, alarmIntent);
 }
 else
 alarmManager.cancel(alarmIntent);

 Thread t = new Thread(new Runnable() {
 public void run() {
 refreshEarthquakes();
 }
 });
 t.start();

 return Service.START_NOT_STICKY;
};

7. Within the refreshEarthquakes method, update the last try-fi nally case to call stopSelf
when the background refresh has completed:

private void refreshEarthquakes() {
 [... existing refreshEarthquakes method ...]
 finally {
 stopSelf();

c09.indd 356c09.indd 356 4/18/2012 3:50:43 PM4/18/2012 3:50:43 PM

Meier02275 c09 V3 - 03/21/2012 Page 357

Using the Intent Service to Simplify the Earthquake Update Service x 357

 }
}

8. Remove the updateTimer instance variable and the Timer Task instance doRefresh.

When you run the updated application, the behavior should appear identical to the previous itera-
tion of the application. Behind the scenes, however, the Service is being terminated when each
update is complete, reducing the application’s memory footprint and improving overall performance.

In the next section you’ll use the Intent Service to further simplify and optimize this Service
component.

All code snippets in this example are part of the Chapter 9 Earthquake Part 2
project, available for download at www.wrox.com.

USING THE INTENT SERVICE TO SIMPLIFY THE EARTHQUAKE

UPDATE SERVICE

The following example shows how to further simplify the EarthquakeUpdateService using an
Intent Service.

1. Modify the inheritance of the Earthquake Update Service so that it extends
IntentService:

public class EarthquakeUpdateService extends IntentService {

2. Create a new constructor that passes the name parameter to the super class:

public EarthquakeUpdateService() {
 super(“EarthquakeUpdateService”);
}

public EarthquakeUpdateService(String name) {
 super(name);
}

3. Override the onHandleIntent handler, moving all the code currently within
onStartCommand into this handler. Note that you don’t have to explicitly create a
background Thread to execute the refresh; the Intent Service base class will do this for you.

@Override
protected void onHandleIntent(Intent intent) {
 // Retrieve the shared preferences
 Context context = getApplicationContext();
 SharedPreferences prefs =
 PreferenceManager.getDefaultSharedPreferences(context);

 int updateFreq =

c09.indd 357c09.indd 357 4/18/2012 3:50:43 PM4/18/2012 3:50:43 PM

http://www.wrox.com

Meier02275 c09 V3 - 03/21/2012 Page 358

358 x CHAPTER 9 WORKING IN THE BACKGROUND

 Integer.parseInt(prefs.getString(PreferencesActivity.PREF_UPDATE_FREQ, “60”));
 boolean autoUpdateChecked =
 prefs.getBoolean(PreferencesActivity.PREF_AUTO_UPDATE, false);

 if (autoUpdateChecked) {
 int alarmType = AlarmManager.ELAPSED_REALTIME_WAKEUP;
 long timeToRefresh = SystemClock.elapsedRealtime() +
 updateFreq*60*1000;
 alarmManager.setInexactRepeating(alarmType, timeToRefresh,
 updateFreq*60*1000, alarmIntent);
 }
 else
 alarmManager.cancel(alarmIntent);

 refreshEarthquakes();
}

The Intent Service implementation will queue Intents as they are received and process them
consecutively, so there’s no need to check for stacking refresh requests. After every received
Intent has been processed, the Intent Service will terminate itself.

4. Remove the now empty onStartCommand handler, and remove the call to stopSelf you
added to the finally clause of the refreshEarthquakes method step 7 of the previous
example.

private void refreshEarthquakes() {
 [... existing refreshEarthquakes method ...]
 finally {
 }
}

All code snippets in this example are part of the Chapter 9 Earthquake 3 project,
available for download at www.wrox.com.

c09.indd 358c09.indd 358 4/18/2012 3:50:43 PM4/18/2012 3:50:43 PM

http://www.wrox.com

Meier02275 c10 V3 - 14/04/2012 Page 359

10
Expanding the User Experience

WHAT’S IN THIS CHAPTER?

 ‰ Customizing the Action Bar

 ‰ Using the Action Bar for application navigation

 ‰ Using the Android menu system

 ‰ Choosing Action Bar actions

 ‰ Creating immersive applications

 ‰ Creating and displaying Dialogs

 ‰ Displaying Toasts

 ‰ Using the Notifi cation Manager to notify users of application events

 ‰ Creating insistent and ongoing Notifi cations

In Chapter 4, “Building User Interfaces,” you learned how to use Activities, Fragments, lay-
outs, and Views to construct a user interface (UI). To ensure that your UI is stylish, easy to
use, and provides a user experience consistent with the underlying platform and other applica-
tions running in it, this chapter looks at ways to expand the user experience beyond the UI
elements you design.

You’ll start with the Action Bar, introduced in Android 3.0, a system UI component used to
provide a consistent pattern for branding, navigation, and displaying common actions within
your Activities. You’ll learn how to customize the look of the Action Bar, as well as how to use
it to provide navigation with tabs and drop-down lists.

Action Bar actions, application Menus, and Popup Menus use a new approach to menus, opti-
mized for modern touch screen devices. As part of an examination of the Android UI model,

c10.indd 359c10.indd 359 4/18/2012 3:51:26 PM4/18/2012 3:51:26 PM

Meier02275 c10 V3 - 14/04/2012 Page 360

360 x CHAPTER 10 EXPANDING THE USER EXPERIENCE

this chapter looks at how to create and use them within your applications. In particular, you’ll learn
how to identify which Menu Items should be displayed as actions on your Action Bar.

Android offers several techniques for applications to communicate with users without an Activity.
You’ll learn how to use Notifi cations and Toasts to alert and update users without interrupting the
active application.

A Toast is a transient, nonmodal dialog-box mechanism used to display information to users with-
out stealing focus from the active application. You’ll learn to display Toasts from any application
component to send unobtrusive on-screen messages to your users.

Whereas a Toast is silent and transient, a Notifi cation represents a more robust mechanism for
alerting users. In many cases, when the user isn’t actively using the mobile phone, it sits silent and
unwatched in a pocket or on a desk until it rings, vibrates, or fl ashes. If a user misses these alerts,
status bar icons are used to indicate that an event has occurred. All these attention-grabbing antics
are available to your Android application through Notifi cations.

You’ll also learn how to customize the appearance and functionality of your Notifi cation when it
appears in the notifi cation tray — providing a mechanism for users to interact with your application
without needing to open it fi rst.

INTRODUCING THE ACTION BAR

The Action Bar component, shown in Figure 10-1, was introduced in Android 3.0 (API level 11). It’s
a navigation panel that replaces the title bar at the top of every Activity and that formalizes a com-
mon Android design pattern.

FIGURE 10-1

It’s possible to hide the Action Bar, but best practice is to keep it and customize it to suit the style
and navigation requirements of your application.

The Action Bar can be added to each Activity within your application and is designed to provide a
consistent UI between applications and within a particular application’s Activities.

The Action Bar provides a consistent framework for providing branding, navigation, and sur-
facing the key actions to be performed within an Activity. Although the Action Bar provides a
framework for presenting this functionality consistently across applications, the following sections
describe how you can select which options are suitable for your application — and how they can be
implemented.

The Action Bar is enabled by default in any Activity that uses the (default) Theme.Holo theme and
whose application has a target (or minimum) SDK version of 11 or higher.

Listing 10-1 shows how to enable the Action Bar by setting the target SDK to Android 4.0.3 (API
level 15) and not modifying the default theme.

c10.indd 360c10.indd 360 4/18/2012 3:51:30 PM4/18/2012 3:51:30 PM

Meier02275 c10 V3 - 14/04/2012 Page 361

Introducing the Action Bar x 361

LISTING 10-1: Enabling the Action Bar

<uses-sdk android:targetSdkVersion=”15” />

code snippet PA4AD_Ch10_ActionBar/AndroidManifest.java

To toggle the visibility of the Action Bar at run time, you can use its show and hide methods:

ActionBar actionBar = getActionBar();

// Hide the Action Bar
actionBar.hide();

// Show the Action Bar
actionBar.show();

Alternatively, you can apply a theme that doesn’t include the Action Bar, such as the Theme.Holo
.NoActionBar theme, as shown in Listing 10-2.

LISTING 10-2: Disabling the Action Bar

<activity
 android:name=”.MyNonActionBarActivity”
 android:theme=”@android:style/Theme.Holo.NoActionBar”>

code snippet PA4AD_Ch10_ActionBar/AndroidManifest.java

You can create or customize your own theme that removes the Action Bar by setting the
android:windowActionBar style property to false:

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
 <style name=”NoActionBar” parent=”@style/ActivityTheme”>
 <item name=”android:windowActionBar”>false</item>
 </style>
</resources>

When you apply a theme that excludes the Action Bar from an Activity, you can’t programmatically
display it at run time. A call to getActionBar will return null.

The Action Bar was introduced in Android 3.0 (API level 11) and is not cur-
rently included in the support library. As a result, you can only use the Action
Bar when running on a host platform with at least Android 3.0. One alternative
is to create a different layout for platforms running pre-Android 3.0. The alter-
native layout would need to implement its own custom Action Bar — typically
in the form of a Fragment — to offer similar functionality.

c10.indd 361c10.indd 361 4/18/2012 3:51:31 PM4/18/2012 3:51:31 PM

mailto:theme=%E2%80%9D@android:style/Theme.Holo.NoActionBar%E2%80%9D

Meier02275 c10 V3 - 14/04/2012 Page 362

362 x CHAPTER 10 EXPANDING THE USER EXPERIENCE

Customizing the Action Bar

In addition to controlling the implementation of this standard functionality, each application can
modify the appearance of the Action Bar while maintaining the same consistent behavior and gen-
eral layout.

One of the primary purposes of the Action Bar is to provide a consistent UI between applications.
As such, the customization options are purposefully limited, though you can customize the Action
Bar to provide your own application branding and identity.

You can control your branding by specifying the image to appear (if any) at the far left, the application
title to display, and the background Drawable to use. Figure 10-2 shows a customized Action Bar that
uses a logo bitmap to identify the application and a Gradient Drawable as a background image.

FIGURE 10-2

Modifying the Icon and Title Text

By default, the Action Bar displays the Drawable you specify using your application or Activity’s
android:icon attribute, alongside the corresponding android:label attribute on a black background.

You can specify an alternative graphic using the android:logo attribute. Unlike the square icon,
there is no limit to the width of the logo graphic — though it’s good practice to limit it to approxi-
mately double the width of the icon image.

The logo image typically is used to provide the top-level branding for your application, so it’s good
practice to hide the title label when using a logo image. You can do this at run time by setting the
Action Bar’s setDisplayShowTitleEnabled method to false:

ActionBar actionBar = getActionBar();
actionBar.setDisplayShowTitleEnabled(false);

Where both an icon and logo image are supplied, you can switch between them at run time by using
the setDisplayUseLogoEnabled method:

actionBar.setDisplayUseLogoEnabled(displayLogo);

If you choose to hide the icon and logo, you can do so by setting the setDisplayShowHomeEnabled
method to false:

actionBar.setDisplayShowHomeEnabled(false);

The application icon/logo is typically used as a navigation shortcut to the appli-
cation’s main Activity, so it’s good practice to always have it visible.

You also can use the icon and title text to provide navigation and context cues. Use the setTitle
and setSubTitle methods at run time to modify the text displayed alongside the icon, as demon-
strated in Listing 10-3 and shown in Figure 10-3.

c10.indd 362c10.indd 362 4/18/2012 3:51:31 PM4/18/2012 3:51:31 PM

Meier02275 c10 V3 - 14/04/2012 Page 363

Introducing the Action Bar x 363

LISTING 10-3: Customizing the Action Bar titles

actionBar.setSubtitle(“Inbox”);
actionBar.setTitle(“Label:important”);

code snippet PA4AD_Ch10_ActionBar/src/ActionBarActivity.java

FIGURE 10-3

These text strings can be used to describe the users’ location within the application and the context
within which they’re working. This is particularly useful when using Fragments to change context
rather than the traditional Activity stack. The followings sections provide more details regarding
navigation options.

Customizing the Background

The default background color of the Action Bar depends on the underlying theme. The native
Android Action Bar background is transparent, with the Holo theme background set to black.

You can specify any Drawable as the background image for your Action Bar by using the
setBackgroundDrawable method, as shown in Listing 10-4.

LISTING 10-4: Customizing the Action Bar background

ActionBar actionBar = getActionBar();
Resources r = getResources();

Drawable myDrawable = r.getDrawable(R.drawable.gradient_header);

actionBar.setBackgroundDrawable(myDrawable);

code snippet PA4AD_Ch10_ActionBar/src/ActionBarActivity.java

The Action Bar will scale your image, so it’s best practice to create a scalable Drawable, typically
using either a 9-patch or XML defi ned Drawable. Both alternatives are explored in more detail in
Chapter 11, “Advanced User Experience.”

Under normal circumstances the Action Bar will reserve space at the top of your Activity, with your
layout being infl ated into the remaining space. Alternatively, you can choose to overlay the Action
Bar above your Activity layout by requesting the FEATURE_ACTION_BAR_OVERLAY window feature.

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 getWindow().requestFeature(Window.FEATURE_ACTION_BAR_OVERLAY);

 setContentView(R.layout.main);
}

c10.indd 363c10.indd 363 4/18/2012 3:51:32 PM4/18/2012 3:51:32 PM

Meier02275 c10 V3 - 14/04/2012 Page 364

364 x CHAPTER 10 EXPANDING THE USER EXPERIENCE

When the overlay mode is enabled, the Action Bar will fl oat above your Activity, potentially obscur-
ing content at the top of your layout.

Enabling the Split Action Bar Mode

The Action Bar was initially introduced in Android 3.0 — a platform release that was focused on
providing the best user experience possible for tablet devices. Android 4.0 (API level 14) sought to
optimize many of the features initially designed for tablets for use on smaller, smartphone devices.

For the Action Bar, this meant the introduction of the split Action Bar. You can enable the split
Action Bar by setting the android:uiOptions attribute within your application or Activity manifest
nodes to splitActionBarWhenNarrow, as shown in Listing 10-5.

LISTING 10-5: Enabling the split Action Bar

<activity
 android:label=”My Activity”
 android:name=”.ActionBarActivity”
 android:logo=”@drawable/ic_launcher”
 android:uiOptions=”splitActionBarWhenNarrow”>

code snippet PA4AD_Ch10_ActionBar/AndroidManifest.xml

On supported devices with narrow screens (such as a smart-
phone in portrait mode), enabling the split Action Bar mode
will allow the system to split the Action Bar into separate sec-
tions. Figure 10-4 shows an example of an Action Bar that has
been laid out with the branding and navigation sections layered
at the top of the screen, with the action sections aligned to the
bottom of the screen.

The layout is calculated and performed by the run time and
may change depending on the orientation of the host device
and any Action Bar confi guration changes you make at run
time.

Customizing the Action Bar to Control
Application Navigation Behavior

The Action Bar introduces a several options for providing
consistent and predictable navigation within your applica-
tion. Broadly speaking, those options can be divided into two
categories:

 ‰ Application icons — The application icon or logo is used to provide a consistent navigation
path, typically by resetting the application to its home Activity. You can also confi gure the
icon to represent moving “up” one level of context.

FIGURE 10-4

c10.indd 364c10.indd 364 4/18/2012 3:51:32 PM4/18/2012 3:51:32 PM

Meier02275 c10 V3 - 14/04/2012 Page 365

Introducing the Action Bar x 365

 ‰ Tabs and drop-downs — The Action Bar supports built-in tabs or drop-down lists that can
be used to replace the visible Fragments within an Activity.

Icon navigation can be considered a way to navigate the Activity stack, whereas tabs and drop-
downs are used for Fragment transitions within an Activity. In practice, the actions you perform
when the application icon is clicked or a tab is changed will depend on the way you’ve implemented
your UI.

Selecting the application icon should change the overall context of your UI in the same way that an
Activity switch might do, whereas changing a tab or selecting a drop-down should change the data
being displayed.

Confi guring Action Bar Icon Navigation Behavior

In most cases, the application icon should act as a shortcut to return to the “home” Activity, typi-
cally the root of your Activity stack. To make the application icon clickable, you must call the
Action Bar’s setHomeButtonEnabled method:

actionBar.setHomeButtonEnabled(true);

Clicking the application icon/logo is broadcast by the system as a special Menu Item click. Menu
Item selections are handled within the onOptionsItemSelected handler of your Activity, with the
ID of the Menu Item parameter set to android.R.id.home, as shown in Listing 10-6.

The process of creating and handling Menu Item selections is described in more detail later in this
chapter.

LISTING 10-6: Handling application icon clicks

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case (android.R.id.home) :
 Intent intent = new Intent(this, ActionBarActivity.class);
 intent.addFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP);
 startActivity(intent);
 return true;
 default:
 return super.onOptionsItemSelected(item);
 }
}

code snippet PA4AD_Ch10_ActionBar/src/ActionBarActivity.java

Traditionally, Android applications have started a new Activity to transition between different
contexts. In turn, pressing the back button closes the active Activity and returns to the
previous one.

To supplement this behavior, you can confi gure the application icon to offer “up” navigation.

c10.indd 365c10.indd 365 4/18/2012 3:51:32 PM4/18/2012 3:51:32 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Meier02275 c10 V3 - 14/04/2012 Page 366

366 x CHAPTER 10 EXPANDING THE USER EXPERIENCE

The back button should always move the user back through contexts (typically in the form of
Activities) that they have already seen, effectively reversing the navigation path they followed to
arrive at the current Activity or screen. This might result in navigation between “siblings” in your
application structure.

In contrast, “up” navigation should always move users to the parent of the current Activity. As a
result, it can move users to a screen they have not previously visited. This is particularly useful for
applications with multiple entry points, allowing users to navigate within an application without
having to return to the application that spawned it.

To enable up navigation for your application icon, call the Action Bar’s setDisplayHomeAsUp-
Enabled method:

actionBar.setDisplayUseLogoEnabled(false);
actionBar.setDisplayHomeAsUpEnabled(true);

This has the effect of overlaying an “up” graphic over your application icon, as shown in
Figure 10-5. Note that it’s good practice to use the icon rather than the logo when enabling up
navigation.

FIGURE 10-5

Handling the navigation is left to you to implement. The Action Bar will still trigger the onOptions-
ItemSelected handler with a Menu Item that uses android.R.id.home as its identifi er, as shown
in Listing 10-6.

Such behavior introduces certain risks, particularly if there are multiple ways a user may have navi-
gated to a particular Activity. If in doubt, the up behavior should mirror the back button. In all
cases, the navigation behavior should be predictable.

Using Navigation Tabs

In addition to the application icon navigation, the Action Bar also offers navigation tabs and drop-
down lists. Note that only one of these forms of navigation can be enabled at once. These navigation
options are designed to work closely with Fragments, providing a mechanism for altering the con-
text of the current Activity by replacing the visible Fragments.

Navigation tabs (shown in Figure 10-6) can be considered a replacement for the TabWidget
control.

FIGURE 10-6

To confi gure your Action Bar to display tabs, call its setNavigationMode method, specifying
ActionBar.NAVIGATION_MODE_TABS. The tabs should provide the application context, so it’s good
practice to disable the title text as well, as shown in Listing 10-7.

c10.indd 366c10.indd 366 4/18/2012 3:51:33 PM4/18/2012 3:51:33 PM

Meier02275 c10 V3 - 14/04/2012 Page 367

Introducing the Action Bar x 367

LISTING 10-7: Enabling Action Bar navigation tabs

actionBar.setNavigationMode(ActionBar.NAVIGATION_MODE_TABS);
actionBar.setDisplayShowTitleEnabled(false);

code snippet PA4AD_Ch10_ActionBar/src/ActionBarTabActivity.java

Tabs are added to the Action Bar using its addTab method, as shown in Listing 10-8. Start by creat-
ing a new Tab and using its setText and setIcon methods to determine the title and image to be
displayed, respectively. Alternatively, you can use the setCustomView method to replace the stan-
dard text and image layout with your own custom View.

LISTING 10-8: Adding Action Bar navigation tabs

Tab tabOne = actionBar.newTab();

tabOne.setText(“First Tab”)
 .setIcon(R.drawable.ic_launcher)
 .setContentDescription(“Tab the First”)
 .setTabListener(
 new TabListener<MyFragment>
 (this, R.id.fragmentContainer, MyFragment.class));

actionBar.addTab(tabOne);

code snippet PA4AD_Ch10_ActionBar/src/ActionBarTabActivity.java

Android 4.0 (API level 14) introduced the setContentDescription method,
which allows you include a more detailed content description to better support
accessibility.

The tab switching is handled using a TabListener, allowing you to create Fragment Transactions in
response to tabs being selected, unselected, and reselected, as shown in Listing 10-9. Note that you
are not required to execute the Fragment Transaction created in each handler — the Action Bar will
execute it for you when necessary.

LISTING 10-9: Handling Action Bar tab switching

public static class TabListener<T extends Fragment>
 implements ActionBar.TabListener {

 private MyFragment fragment;
 private Activity activity;
 private Class<T> fragmentClass;

continues

c10.indd 367c10.indd 367 4/18/2012 3:51:33 PM4/18/2012 3:51:33 PM

Meier02275 c10 V3 - 14/04/2012 Page 368

368 x CHAPTER 10 EXPANDING THE USER EXPERIENCE

 private int fragmentContainer;

 public TabListener(Activity activity, int fragmentContainer,
 Class<T> fragmentClass) {

 this.activity = activity;
 this.fragmentContainer = fragmentContainer;
 this.fragmentClass = fragmentClass;
 }

 // Called when a new tab has been selected
 public void onTabSelected(Tab tab, FragmentTransaction ft) {
 if (fragment == null) {
 String fragmentName = fragmentClass.getName();
 fragment =
 (MyFragment)Fragment.instantiate(activity, fragmentName);
 ft.add(fragmentContainer, fragment, null);
 fragment.setFragmentText(tab.getText());
 } else {
 ft.attach(fragment);
 }
 }

 // Called on the currently selected tab when a different tag is
 // selected.
 public void onTabUnselected(Tab tab, FragmentTransaction ft) {
 if (fragment != null) {
 ft.detach(fragment);
 }
 }

 // Called when the selected tab is selected.
 public void onTabReselected(Tab tab, FragmentTransaction ft) {
 // TODO React to a selected tab being selected again.
 }
}

code snippet PA4AD_Ch10_ActionBar/src/ActionBarTabActivity.java

The basic workfl ow used within this Tab Listener is to instantiate, confi gure, and then add a new
Fragment to your layout within the onTab-
Selected handler. The Fragment associated with
the unselected tab should be detached from your
layout and recycled if its tab is reselected.

Using Drop-Down Lists for Navigation

You can use an Action Bar drop-down list, as shown
in Figure 10-7, as an alternative to the navigation
tabs or as ideal solutions for applying in-place fi lters
to content being displayed within your Activity.

FIGURE 10-7

LISTING 10-9 (continued)

c10.indd 368c10.indd 368 4/18/2012 3:51:33 PM4/18/2012 3:51:33 PM

Meier02275 c10 V3 - 14/04/2012 Page 369

Introducing the Action Bar x 369

To confi gure your Action Bar to display a drop-down list, call its setNavigationMode method,
specifying ActionBar.NAVIGATION_MODE_LIST:

actionBar.setNavigationMode(ActionBar.NAVIGATION_MODE_LIST);

The drop-down list is implemented much like a Spinner — a view that displays one child at a
time and lets the user pick from among them. Populate the drop-down list by creating a new
Adapter that implements the SpinnerAdapter interface, such as an Array Adapter or Simple
Cursor Adapter:

ArrayList<CharSequence> al = new ArrayList<CharSequence>();
al.add(“Item 1”);
al.add(“Item 2”);

ArrayAdapter<CharSequence> dropDownAdapter =
 new ArrayAdapter<CharSequence>(this,
 android.R.layout.simple_list_item_1,
 al);

To assign the Adapter to your Action Bar, and handle selections, call the Action Bar’s setList-
NavigationCallbacks, passing in your adapter and an OnNavigationListener, as shown in
Listing 10-10.

LISTING 10-10: Creating an Action Bar drop-down list

// Select the drop-down navigation mode.
actionBar.setNavigationMode(ActionBar.NAVIGATION_MODE_LIST);

// Create a new Spinner Adapter that contains the values to
// be displayed in the drop down.
ArrayAdapter dropDownAdapter =
 ArrayAdapter.createFromResource(this,
 R.array.my_dropdown_values,
 android.R.layout.simple_list_item_1);

// Assign the callbacks to handle drop-down selections.
actionBar.setListNavigationCallbacks(dropDownAdapter,
 new OnNavigationListener() {
 public boolean onNavigationItemSelected(int itemPosition,
 long itemId) {
 // TODO Modify your UI based on the position
 // of the drop down item selected.
 return true;
 }
});

code snippet PA4AD_Ch10_ActionBar/src/ActionBarDropDownActivity.java

When a user selects an item from the drop-down list, the onNavigationItemSelected handler will
be triggered. Use the itemPosition and itemId parameters to determine how your UI should be
adapted based on the new selection.

c10.indd 369c10.indd 369 4/18/2012 3:51:34 PM4/18/2012 3:51:34 PM

Meier02275 c10 V3 - 14/04/2012 Page 370

370 x CHAPTER 10 EXPANDING THE USER EXPERIENCE

Drop-down list selections typically are used to refi ne existing content, such as to select a particular
account or label within an email client.

Using Custom Navigation Views

For situations where neither tabs nor drop-down lists are appropriate, the Action Bar allows you to
add your own custom View (including layouts) using the setCustomView method:

actionBar.setDisplayShowCustomEnabled(true);
actionBar.setCustomView(R.layout.my_custom_navigation);

Custom Views will appear in the same place as the tabs or drop-down lists — to the right of the
application icon but to the left of any actions. To ensure consistency between applications, it’s gener-
ally good form to use the standard navigation modes.

Introducing Action Bar Actions

The right side of the Action Bar is used to display “actions” and the associated overfl ow menu, as
shown in Figure 10-8.

Action Menu
Items

Overflow
Menu

FIGURE 10-8

Action Bar actions and the overfl ow menu were introduced, along with the Action Bar itself, in
Android 3.0 (API level 11) as an alternative to the hardware menu button and its associated options
menu. As such, they are populated using the same APIs that were previously used to create and man-
age the options menu. This process is described in detail later in this chapter.

Actions, then, are Menu Items that are important enough to make them visible and easily available
to users at all times. Action items should be menu options that are either most frequently used, most
important for users to discover, or most expected based on the actions available in similar applica-
tions. Generic and seldom used options, such as settings, help, or “about this app” options, should
never be presented as action items.

Generally speaking, action items should be global actions that don’t depend on the current context.
Navigating within an Activity — for example, changing tabs or selecting an item from a navigation
drop-down — should not alter the available action items.

ADDING AN ACTION BAR TO THE EARTHQUAKE MONITOR

In the following example, the earthquake-monitoring application, whose processing you moved to the
background in Chapter 9, “Working in the Background,” will be enhanced to include an Action Bar.

c10.indd 370c10.indd 370 4/18/2012 3:51:34 PM4/18/2012 3:51:34 PM

Meier02275 c10 V3 - 14/04/2012 Page 371

Adding an Action Bar to the Earthquake Monitor x 371

In Chapter 13, “Maps, Geocoding, and Location-Based Services,” you will add a map to the earth-
quake monitor, so take this opportunity to add some navigation elements to the application to sup-
port a map.

1. Start by modifying the manifest. Add a uses-sdk node that specifi es the target SDK as API
level 15 and the minimum SDK level as 11 — the fi rst platform release to support the Action
Bar:

<?xml version=”1.0” encoding=”utf-8”?>
<manifest xmlns:android=”http://schemas.android.com/apk/res/android”
 package=“com.paad.earthquake“
 android:versionCode=“1“
 android:versionName=“1.0“>

 <uses-sdk android:targetSdkVersion=”15”
 android:minSdkVersion=”11” />

 [... Existing Manifest nodes ...]

</manifest>

2. You can take this opportunity to create custom branding by adding a logo and Action
Bar background. Creating the artwork is left as an exercise for you. Enable the split
Action Bar for handset screens by updating the Earthquake Activity node in the
manifest:

<activity
 android:name=”.Earthquake”
 android:label=”@string/app_name”
 android:uiOptions=”splitActionBarWhenNarrow”>
 <intent-filter>
 <action android:name=”android.intent.action.MAIN” />
 <category android:name=”android.intent.category.LAUNCHER” />
 </intent-filter>
</activity>

3. The map will be displayed within its own Fragment. Start by creating a new map_fragment
.xml layout in the res/layout folder. You will update this in Chapter 13 with a Map View,
but for now use a Text View as a placeholder.

<?xml version=”1.0” encoding=”utf-8”?>
<FrameLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”>
 <TextView
 android:id=”@+id/textView1”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:text=”Map Goes Here!”
 />
</FrameLayout>

c10.indd 371c10.indd 371 4/18/2012 3:51:34 PM4/18/2012 3:51:34 PM

http://schemas.android.com/apk/res/android%E2%80%9D
http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c10 V3 - 14/04/2012 Page 372

372 x CHAPTER 10 EXPANDING THE USER EXPERIENCE

4. Create the Map Fragment. Create a new EarthquakeMapFragment class that extends
Fragment and then override the onCreateView handler to infl ate the map_fragment layout.

import android.app.Fragment;
import android.os.Bundle;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;

public class EarthquakeMapFragment extends Fragment {

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {

 View view = inflater.inflate(R.layout.map_fragment, container, false);
 return view;
 }
}

5. Now consider the layouts to use. On handset devices it makes sense to display only the list or
the map at any given time. On tablet devices a multipanel approach that displays both side
by side would create a more engaging UI. Create a variation of the main.xml layout in the
res/layout-sw720dp folder. This folder decoration requires a display to have at least 720
device independent pixels (dp) of screen width available in order to be displayed. The new
layout should display the Earthquake List Fragment and Earthquake Map Fragment side by
side. Limit the width of the list Fragment to half the minimum width for this layout (360dp).

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”horizontal”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”>
 <SearchView
 android:id=”@+id/searchView”
 android:iconifiedByDefault=”false”
 android:background=”#FFF”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”>
 </SearchView>
 <fragment
 android:name=”com.paad.earthquake.EarthquakeListFragment”
 android:id=”@+id/EarthquakeListFragment”
 android:layout_width=”360dp”
 android:layout_height=”match_parent”
 />
 <fragment android:name=”com.paad.earthquake.EarthquakeMapFragment”
 android:id=”@+id/EarthquakeMapFragment”
 android:layout_width=”fill_parent”
 android:layout_height=”match_parent”
 />
</LinearLayout>

c10.indd 372c10.indd 372 4/18/2012 3:51:34 PM4/18/2012 3:51:34 PM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c10 V3 - 14/04/2012 Page 373

Adding an Action Bar to the Earthquake Monitor x 373

6. To support earlier platform releases, copy the new tablet layout into the res/layout-
xlarge folder.

7. For smaller screens, you’ll be switching between the list and map fragments based on Action
Bar tabs. Start by modifying the main.xml layout in the res/layout folder. Replace the
fragment node that contains the Earthquake List Fragment, replacing it with a Frame
Layout that will act as a container for either the list or map Fragments:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”>
 <SearchView
 android:id=”@+id/searchView”
 android:iconifiedByDefault=”false”
 android:background=”#FFF”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”>
 </SearchView>
 <FrameLayout
 android:id=”@+id/EarthquakeFragmentContainer”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”>
 </FrameLayout>
</LinearLayout>

8. Your new layout means that the Earthquake List Fragment won’t always be available, so
return to the Earthquake Activity and update the onActivityResult handler to update the
earthquakes by using the Service directly:

@Override
public void onActivityResult(int requestCode, int resultCode, Intent data) {
 super.onActivityResult(requestCode, resultCode, data);

 if (requestCode == SHOW_PREFERENCES) {
 updateFromPreferences();
 startService(new Intent(this, EarthquakeUpdateService.class));
 }
}

9. Now add navigation support for switching between the list and map when only one is visible
at a time. Start by creating a new TabListener that extends the ActionBar.TabListener. It
should take a container and a Fragment class, expanding the latter into the former when the
tab is selected and detaching it from the UI when the tab is unselected.

public static class TabListener<T extends Fragment>
 implements ActionBar.TabListener {

 private Fragment fragment;
 private Activity activity;
 private Class<T> fragmentClass;

c10.indd 373c10.indd 373 4/18/2012 3:51:34 PM4/18/2012 3:51:34 PM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c10 V3 - 14/04/2012 Page 374

374 x CHAPTER 10 EXPANDING THE USER EXPERIENCE

 private int fragmentContainer;

 public TabListener(Activity activity, int fragmentContainer,
 Class<T> fragmentClass) {

 this.activity = activity;
 this.fragmentContainer = fragmentContainer;
 this.fragmentClass = fragmentClass;
 }

 // Called when a new tab has been selected
 public void onTabSelected(Tab tab, FragmentTransaction ft) {
 if (fragment == null) {
 String fragmentName = fragmentClass.getName();
 fragment = Fragment.instantiate(activity, fragmentName);
 ft.add(fragmentContainer, fragment, fragmentName);
 } else
 ft.attach(fragment);
 }

 // Called on the currently selected tab when a different tag is
 // selected.
 public void onTabUnselected(Tab tab, FragmentTransaction ft) {
 if (fragment != null)
 ft.detach(fragment);
 }

 // Called when the selected tab is selected.
 public void onTabReselected(Tab tab, FragmentTransaction ft) {
 if (fragment != null)
 ft.attach(fragment);
 }
}

10. Still within the Earthquake Activity, modify the onCreate handler to detect if tab navigation
is required; if so, enable tab mode and create new tabs for the list and map Fragments, using
the TabListener created in step 8 to handle the navigation:

TabListener<EarthquakeListFragment> listTabListener;
TabListener<EarthquakeMapFragment> mapTabListener;

@Override
public void onCreate(Bundle savedInstanceState) {
 [... Existing onCreate ...]

 ActionBar actionBar = getActionBar();

 View fragmentContainer = findViewById(R.id.EarthquakeFragmentContainer);

 // Use tablet navigation if the list and map fragments are both available.
 boolean tabletLayout = fragmentContainer == null;

 // If it’s not a tablet, use the tab Action Bar navigation.
 if (!tabletLayout) {
 actionBar.setNavigationMode(ActionBar.NAVIGATION_MODE_TABS);

c10.indd 374c10.indd 374 4/18/2012 3:51:34 PM4/18/2012 3:51:34 PM

Meier02275 c10 V3 - 14/04/2012 Page 375

Adding an Action Bar to the Earthquake Monitor x 375

 actionBar.setDisplayShowTitleEnabled(false);

 // Create and add the list tab.
 Tab listTab = actionBar.newTab();

 listTabListener = new TabListener<EarthquakeListFragment>
 (this, R.id.EarthquakeFragmentContainer, EarthquakeListFragment.class);

 listTab.setText(“List”)
 .setContentDescription(“List of earthquakes”)
 .setTabListener(listTabListener);

 actionBar.addTab(listTab);

 // Create and add the map tab.
 Tab mapTab = actionBar.newTab();

 mapTabListener = new TabListener<EarthquakeMapFragment>
 (this, R.id.EarthquakeFragmentContainer, EarthquakeMapFragment.class);

 mapTab.setText(“Map”)
 .setContentDescription(“Map of earthquakes”)
 .setTabListener(mapTabListener);

 actionBar.addTab(mapTab);
 }
}

11. The Fragment Manager will attempt to restore the Fragments displayed within an Activity
when the Activity is restarted due to a confi guration change. Ensure that the Action Bar tabs
and related tab listeners are synchronized with the visible tabs by overriding the onSaveIn-
stanceState, onRestoreInstanceState, and onResume handlers.

11.1 Start by overriding the onSaveInstanceState handler to save the current Action Bar
tab selection and detach each of the Fragments from the current view:

private static String ACTION_BAR_INDEX = “ACTION_BAR_INDEX”;

@Override
public void onSaveInstanceState(Bundle outState) {
 View fragmentContainer = findViewById(R.id.EarthquakeFragmentContainer);
 boolean tabletLayout = fragmentContainer == null;

 if (!tabletLayout) {
 // Save the current Action Bar tab selection
 int actionBarIndex = getActionBar().getSelectedTab().getPosition();
 SharedPreferences.Editor editor = getPreferences(Activity.MODE_PRIVATE).edit();
 editor.putInt(ACTION_BAR_INDEX, actionBarIndex);
 editor.apply();

 // Detach each of the Fragments
 FragmentTransaction ft = getFragmentManager().beginTransaction();
 if (mapTabListener.fragment != null)
 ft.detach(mapTabListener.fragment);
 if (listTabListener.fragment != null)

c10.indd 375c10.indd 375 4/18/2012 3:51:34 PM4/18/2012 3:51:34 PM

Meier02275 c10 V3 - 14/04/2012 Page 376

376 x CHAPTER 10 EXPANDING THE USER EXPERIENCE

 ft.detach(listTabListener.fragment);
 ft.commit();
 }

 super.onSaveInstanceState(outState);
}

11.2 Override the onRestoreInstanceState handler to fi nd any Fragments that have been
created and assign them to their associated Tab Listeners:

@Override
public void onRestoreInstanceState(Bundle savedInstanceState) {
 super.onRestoreInstanceState(savedInstanceState);

 View fragmentContainer = findViewById(R.id.EarthquakeFragmentContainer);
 boolean tabletLayout = fragmentContainer == null;

 if (!tabletLayout) {
 // Find the recreated Fragments and assign them to their associated Tab Listeners.
 listTabListener.fragment =
 getFragmentManager().findFragmentByTag(EarthquakeListFragment.class.getName());
 mapTabListener.fragment =
 getFragmentManager().findFragmentByTag(EarthquakeMapFragment.class.getName());

 // Restore the previous Action Bar tab selection.
 SharedPreferences sp = getPreferences(Activity.MODE_PRIVATE);
 int actionBarIndex = sp.getInt(ACTION_BAR_INDEX, 0);
 getActionBar().setSelectedNavigationItem(actionBarIndex);
 }
}

11.3 Finally, override the onResume handler to restore the previous Action Bar tab selection:

@Override
public void onResume() {
 super.onResume();
 View fragmentContainer = findViewById(R.id.EarthquakeFragmentContainer);
 boolean tabletLayout = fragmentContainer == null;

 if (!tabletLayout) {
 SharedPreferences sp = getPreferences(Activity.MODE_PRIVATE);
 int actionBarIndex = sp.getInt(ACTION_BAR_INDEX, 0);
 getActionBar().setSelectedNavigationItem(actionBarIndex);
 }
}

All code snippets in this example are part of the Chapter 10 Earthquake Part 1
project, available for download at www.wrox.com.

Running the application on a phone should display the Action Bar with two tabs — one to display
the list of earthquakes, the other a map. On a tablet device it should display two fragments side-by-
side. We’ll return to this example in Chapter 13 to add the Map View itself.

c10.indd 376c10.indd 376 4/18/2012 3:51:34 PM4/18/2012 3:51:34 PM

http://www.wrox.com

Meier02275 c10 V3 - 14/04/2012 Page 377

Creating and Using Menus and Action Bar Action Items x 377

CREATING AND USING MENUS AND ACTION BAR ACTION ITEMS

Menus offer a way to expose application functions without sacrifi cing valuable screen space. Each
Activity can specify its own menu that’s displayed when the device’s hardware menu button is
pressed.

In Android 3.0 (API level 11) the hardware menu button was made optional, and the Activity menu
was deprecated. To replace them, Action Bar actions and the overfl ow menu were introduced.

Android also supports Context Menus and Popup Menus that can be assigned to any View. Context
Menus are normally triggered when a user holds the middle D-pad button, depresses the trackball,
or long-presses the touch screen for approximately 3 seconds when the View has focus.

Actions, Activity Menus, and Context Menus each support a number of different options, including
a subset of submenus, check boxes, radio buttons, shortcut keys, and icons.

Introducing the Android Menu System

If you’ve ever tried to navigate a mobile phone menu system using a stylus or trackball, you know
that traditional menu systems are awkward to use on mobile devices. To improve the usability of
application menus, Android uses a three-stage menu system optimized for small screens. Android 3.0
(API level 11) further refi ned this concept.

 ‰ The icon menu and Action Bar actions — The icon menu is a compact display (shown in
Figure 10-9) that appears along the bottom of the screen when the menu button is pressed on
Android devices earlier than Android 3.0. It displays the icons and text for a limited number
of Menu Items (typically six), selected based on the order in which they were added to the
menu.

The icon menu has been deprecated in Android 3.0, effec-
tively replaced with Action Bar actions (refer to Figure 10-8).
Rather than displaying a subset of all the Menu Items based
on order, you explicitly select which Menu Items should be
displayed as Action Bar actions.

This icon menu and Action Bar actions display icons and, optionally, their associated
text (using the condensed text if it has been specifi ed). By convention, menu icons are
fl at, pictured face on, and are generally grayscale — they should not look three-
dimensional.

Menu Items in the icon menu and Action Bar do not display check boxes, radio buttons, or
shortcut keys, so it’s generally good practice not to depend on check boxes or radio buttons
in icon Menu Items or actions because they will not be visible.

If the Activity menu contains more than the maximum number of visible Menu Items, a
More Menu Item is displayed. When selected, it displays the expanded menu. Pressing the
back button closes the icon menu.

In Android 3.0 and above, any actions that could not fi t into the Action Bar — along with
any Menu Items not fl agged as actions — will be displayed in the overfl ow menu.

FIGURE 10-9

c10.indd 377c10.indd 377 4/18/2012 3:51:35 PM4/18/2012 3:51:35 PM

Meier02275 c10 V3 - 14/04/2012 Page 378

378 x CHAPTER 10 EXPANDING THE USER EXPERIENCE

 ‰ The expanded menu and overfl ow menu — Prior to Android 3.0, the
expanded menu was triggered when a user selected the More Menu Item
from the icon menu. The expanded menu (shown in Figure 10-10) dis-
plays a scrollable list of only the Menu Items that weren’t visible in the
icon menu.

In Android 3.0 the expanded menu is represented by the overfl ow menu
(see Figure 10-11). The overfl ow menu contains any Menu Item not
fl agged as an action and any action that was moved to the overfl ow
menu due to a lack of room on the Action Bar.

The extended and overfl ow menus display the full Menu
Item text, along with any associated check boxes and
radio buttons. They do not, however, display icons.
Pressing back from the expanded menu returns you to the
icon menu. Pressing back when the overfl ow menu is dis-
played closes it.

You cannot force the expanded menu to be displayed instead of the icon menu.
Special care must be taken with Menu Items that feature check boxes or radio
buttons to ensure they aren’t displayed within the icon menu. The maximum
number of icon Menu Items can vary by device, so it’s good practice to ensure
that their state information is also indicated by an icon or a change in text.

 ‰ Submenus — A traditional expanding hierarchical tree can be
awkward to navigate using a mouse, so it’s no surprise that this
metaphor is particularly ill-suited for use on mobile devices. The
Android alternative is to display each submenu in a fl oating win-
dow. For example, when a user selects a submenu, its items are
displayed in a fl oating menu dialog box, as shown in
Figure 10-12.

Note that the name of the submenu is shown in the header bar
and that each Menu Item is displayed with its full text, check-
box (if any) and shortcut key. As with the extended menu, icons

FIGURE 10-10

FIGURE 10-11

FIGURE 10-12

c10.indd 378c10.indd 378 4/18/2012 3:51:36 PM4/18/2012 3:51:36 PM

Meier02275 c10 V3 - 14/04/2012 Page 379

Creating and Using Menus and Action Bar Action Items x 379

are not displayed in the submenu, so it’s good practice to avoid assigning icons to submenu
items.

Because Android does not support nested submenus, you can’t add a submenu to a submenu
(trying to do so will result in an exception), nor can you specify a submenu to be an action.
Pressing the back button closes the fl oating window/menu.

Creating a Menu

To add a menu to an Activity, override its onCreateOptionsMenu handler. Prior to Android 3.0 this
handler is triggered the fi rst time an Activity’s menu is displayed; in Android 3.0 and above it’s trig-
gered as part of creating the Action Bar each time the Activity is laid out.

The onCreateOptionsMenu receives a Menu object as a parameter. You can store a reference to, and
continue to use, the Menu reference elsewhere in your code until the next time onCreateOptions-
Menu is called.

You should always call through to the superclass implementation because it can add additional sys-
tem menu options where appropriate.

Use the add method on the Menu object to populate your menu. For each new Menu Item, you must
specify the following:

 ‰ A group value to separate Menu Items for batch processing and ordering.

 ‰ A unique identifi er for each Menu Item. For effi ciency reasons, Menu Item selections
normally are handled using the onOptionsItemSelected event handler, so this unique
identifi er makes it possible for you to determine which Menu Item was selected. It is con-
ventional to declare each menu ID as a private static variable within the Activity class.
You can use the Menu.FIRST static constant and simply increment that value for each sub-
sequent item.

 ‰ An order value that defi nes the order in which the Menu Items are displayed.

 ‰ The Menu Item display text, either as a character string or as a string resource.

When you have fi nished populating the Menu, return true to indicate that you have handled the
Menu creation.

c10.indd 379c10.indd 379 4/18/2012 3:51:37 PM4/18/2012 3:51:37 PM

Meier02275 c10 V3 - 14/04/2012 Page 380

380 x CHAPTER 10 EXPANDING THE USER EXPERIENCE

Listing 10-11 shows how to add a single Menu Item to an Activity Menu.

LISTING 10-11: Adding a Menu Item

static final private int MENU_ITEM = Menu.FIRST;

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 super.onCreateOptionsMenu(menu);

 // Group ID
 int groupId = 0;
 // Unique Menu Item identifier. Used for event handling
 int menuItemId = MENU_ITEM;
 // The order position of the item
 int menuItemOrder = Menu.NONE;
 // Text to be displayed for this Menu Item
 int menuItemText = R.string.menu_item;

 // Create the Menu Item and keep a reference to it
 MenuItem menuItem = menu.add(groupId, menuItemId,
 menuItemOrder, menuItemText);

 return true;
}

code snippet PA4AD_Ch10_ActionBar/src/ActionBarActivity.java

Like the Menu object, each MenuItem returned by an add call is valid until the next call to onCre-
ateOptionsMenu. Rather than maintaining a reference to each item, you can fi nd a particular Menu
Item by passing its ID into the Menu’s findItem method:

MenuItem menuItem = menu.findItem(MENU_ITEM);

Specifying Action Bar Actions

To specify a Menu Item as an Action Bar action, use its setShowAsActionFlags method, passing in
one of the following options:

 ‰ SHOW_AS_ACTION — Forces the Menu Item to always be displayed as an action.

 ‰ SHOW_AS_IF_SPACE — Specifi es that the Menu Item should be available as an action pro-
vided there is enough space in the Action Bar to display it. It is good practice to always use
this option to provide the system with maximum fl exibility on how to layout the available
actions.

By default, actions display only their associated icon. You can optionally OR either of the preceding
fl ags with SHOW_AS_ACTION_WITH_TEXT to make the Menu Item’s text visible as well, as shown in
Listing 10-12.

c10.indd 380c10.indd 380 4/18/2012 3:51:37 PM4/18/2012 3:51:37 PM

Meier02275 c10 V3 - 14/04/2012 Page 381

Creating and Using Menus and Action Bar Action Items x 381

LISTING 10-12: Making a Menu Item an action

menuItem.setShowAsAction(MenuItem.SHOW_AS_ACTION_IF_ROOM |
 MenuItem.SHOW_AS_ACTION_WITH_TEXT);

code snippet PA4AD_Ch10_ActionBar/src/ActionBarActivity.java

Menu Item Options

Android supports most of the traditional Menu Item options you’re probably familiar with, includ-
ing icons, shortcuts, check boxes, and radio buttons, as listed here:

 ‰ Check boxes — Check boxes on Menu Items are visible in the overfl ow and expanded menus,
as well as within submenus. To set a Menu Item as a check box, use the setCheckable
method. The state of that check box is controlled via setChecked.

// Create a new check box item.
menu.add(0, CHECKBOX_ITEM, Menu.NONE, “CheckBox”).setCheckable(true);

 ‰ Radio buttons — A radio button group is a group of items displaying circular buttons, in
which only one item can be selected at any given time. Checking one of these items will auto-
matically uncheck any checked item in the same group.

To create a radio button group, assign the same group identifi er to each item and then call
Menu.setGroupCheckable, passing in that group identifi er and setting the exclusive param-
eter to true:

// Create a radio button group.
menu.add(RB_GROUP, RADIOBUTTON_1, Menu.NONE, “Radiobutton 1”);
menu.add(RB_GROUP, RADIOBUTTON_2, Menu.NONE, “Radiobutton 2”);
menu.add(RB_GROUP, RADIOBUTTON_3, Menu.NONE,
 “Radiobutton 3”).setChecked(true);

menu.setGroupCheckable(RB_GROUP, true, true);

 ‰ Shortcut keys — You can specify a keyboard shortcut for a Menu Item by using the
setShortcut method. Each call to setShortcut requires two shortcut keys — one for
use with the numeric keypad and another to support a full keyboard. Neither key is
case-sensitive.

// Add a shortcut to this Menu Item, ‘0’ if using the numeric keypad
// or ‘b’ if using the full keyboard.
menuItem.setShortcut(‘0’, ‘b’);

 ‰ Condensed titles — The setTitleCondensed method lets you specify text to be displayed
only in the icon menu or as Action Bar actions. The normal title will only be used when the
Menu Item is displayed in the overfl ow or extended menu.

menuItem.setTitleCondensed(“Short Title”);

c10.indd 381c10.indd 381 4/18/2012 3:51:37 PM4/18/2012 3:51:37 PM

Meier02275 c10 V3 - 14/04/2012 Page 382

382 x CHAPTER 10 EXPANDING THE USER EXPERIENCE

 ‰ Icons — Icons are displayed only in the icon menu or as an action; they are not visible
in the extended menu or submenus. You can specify any Drawable resource as a menu
icon.

menuItem.setIcon(R.drawable.menu_item_icon);

 ‰ Menu item click listener — An event handler that will execute when the Menu Item is
selected. For effi ciency, the use of such an event handler is discouraged; instead, Menu Item
selections should be handled by the onOptionsItemSelected handler, as shown in the
“Handling Menu Selections” section later in this chapter.

menuItem.setOnMenuItemClickListener(new OnMenuItemClickListener() {
 public boolean onMenuItemClick(MenuItem _menuItem) {
 [... execute click handling, return true if handled ...]
 return true;
 }
});

 ‰ Intents — An Intent assigned to a Menu Item is triggered when a Menu Item click isn’t
handled by a MenuItemClickListener or the Activity’s onOptionsItemSelected handler.
When the Intent is triggered, Android will execute startActivity, passing in the specifi ed
Intent.

menuItem.setIntent(new Intent(this, MyOtherActivity.class));

Adding Action Views and Action Providers

The introduction of actions and the Action Bar in Android 3.0 (API level 11) made it possible to add
richer interaction modes to the menu system. In particular, it’s now possible to add interactive Views
to your Action Bar actions in the form of action Views and Action Providers.

You can replace the icon/text used to represent an action with any View or layout using the Menu
Item’s setActionView method, passing in either a View instance or a layout resource, as shown in
Listing 10-13.

LISTING 10-13: Adding an action View

menuItem.setActionView(R.layout.my_action_view)
 .setShowAsActionFlags(MenuItem.SHOW_AS_ACTION_IF_ROOM|
 MenuItem.SHOW_AS_ACTION_COLLAPSE_ACTION_VIEW);

code snippet PA4AD_Ch10_ActionBar/src/ActionBarActivity.java

Once added, the action View will be displayed whenever the associated Menu Item is displayed as
an action in the Action Bar, but will never be displayed if the Menu Item is relegated to the overfl ow
menu.

A better alternative, introduced in Android 4.0 (API level 14), is to add the MenuItem.SHOW_AS_
ACTION_COLLAPSE_ACTION_VIEW fl ag. When this fl ag is set, the Menu Item will be represented using

c10.indd 382c10.indd 382 4/18/2012 3:51:37 PM4/18/2012 3:51:37 PM

Meier02275 c10 V3 - 14/04/2012 Page 383

Creating and Using Menus and Action Bar Action Items x 383

its standard icon and/or text properties until it’s pressed. At that point, it will be expanded to fi ll the
Action Bar, as shown in Figure 10-13.

FIGURE 10-13

In either case, it’s up to you to wire the View’s interaction handlers. Typically, this is done within the
onCreateMenuOptions handler:

View myView = menuItem.getActionView();
Button button = (Button)myView.findViewById(R.id.goButton);

button.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 // TODO React to the button press.
 }
});

Android 4.0 (API level 14) introduced a new alternative to manually creating and confi guring
action Views within each Activity. Instead, you can create Action Providers by extending the
ActionProvider class. Action Providers are similar to action Views but encapsulate both the
appearance and interaction models associated with the View. For example, Android 4.0 includes the
ShareActionProvider to encapsulate the “share” action.

To assign an Action Provider to a Menu Item, use the setActionProvider method, assigning it an
Intent to use to perform the sharing action, as shown in Listing 10-14.

LISTING 10-14: Adding a Share Action Provider to a menu

// Create the sharing Intent
Intent shareIntent = new Intent(Intent.ACTION_SEND);
shareIntent.setType(“image/*”);
Uri uri = Uri.fromFile(new File(getFilesDir(), “test_1.jpg”));
shareIntent.putExtra(Intent.EXTRA_STREAM, uri.toString());

ShareActionProvider shareProvider = new ShareActionProvider(this);
shareProvider.setShareIntent(shareIntent);

menuItem.setActionProvider(shareProvider)
 .setShowAsActionFlags(MenuItem.SHOW_AS_ACTION_ALWAYS);

code snippet PA4AD_Ch10_ActionBar/src/ActionBarActivity.java

Adding Menu Items from Fragments

With most of your UI encapsulated within Fragments, it makes sense to encapsulate any related
Activity Menu Items and Action Bar actions within those Fragments.

c10.indd 383c10.indd 383 4/18/2012 3:51:38 PM4/18/2012 3:51:38 PM

Meier02275 c10 V3 - 14/04/2012 Page 384

384 x CHAPTER 10 EXPANDING THE USER EXPERIENCE

To register your Fragment as a contributor to the options Menu, call setHasOptionsMenu within its
onCreate hander:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setHasOptionsMenu(true);
}

You can then override the onCreateOptionsMenu handler, as described in the previous section, to
populate the menu and Action Bar. At run time, the system will aggregate the Menu Items supplied
by the Activity and each of its component Fragments.

Defi ning Menu Hierarchies in XML

Rather than constructing your Menus in code, it’s best practice to defi ne your Menu hierarchies as
XML resources. As with layouts and other resources, this gives you the ability to create different
Menus for alternative hardware confi gurations, languages, or locations.

Menu resources are stored as XML fi les in the res/menu folder of your project. Each menu hier-
archy must be created as a separate fi le, for which the lowercase fi lename becomes the resource
identifi er.

Create your Menu hierarchy using the menu tag as the root node and a series of item tags to specify
each Menu Item. Each item node supports attributes to specify each of the available Menu Item
options. This includes the text, icon, shortcut, and check box options, as well as collapsible action
Views and Action Providers.

To create a submenu, place a new menu tag as a subnode within an item. Listing 10-15 shows how
to create a simple Menu hierarchy as an XML resource.

LISTING 10-15: Defi ning a Menu Hierarchy in XML

<menu xmlns:android=”http://schemas.android.com/apk/res/android”>
 <item
 android:id=”@+id/action_item”
 android:icon=”@drawable/action_item_icon”
 android:title=”@string/action_item_title”
 android:showAsAction=”ifRoom”>
 </item>
 <item
 android:id=”@+id/action_view_item”
 android:icon=”@drawable/action_view_icon”
 android:title=”@string/action_view_title”
 android:showAsAction=”ifRoom|collapseActionView”
 android:actionLayout=”@layout/my_action_view”>
 </item>
 <item
 android:id=”@+id/action_provider_item”
 android:title=”Share”
 android:showAsAction=”always”

c10.indd 384c10.indd 384 4/18/2012 3:51:38 PM4/18/2012 3:51:38 PM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c10 V3 - 14/04/2012 Page 385

Creating and Using Menus and Action Bar Action Items x 385

 android:actionProviderClass=”android.widget.ShareActionProvider”>
 </item>
 <item
 android:id=”@+id/item02”
 android:checkable=”true”
 android:title=”@string/menu_item_two”>
 </item>
 <item
 android:id=”@+id/item03”
 android:numericShortcut=”3”
 android:alphabeticShortcut=”3”
 android:title=”@string/menu_item_three”>
 </item>
 <item
 android:id=”@+id/item04”
 android:title=”@string/submenu_title”>
 <menu>
 <item
 android:id=”@+id/item05”
 android:title=”@string/submenu_item”>
 </item>
 </menu>
 </item>
</menu>

code snippet PA4AD_Ch10_ActionBar/res/menu/my_menu.xml

To use your Menu resource, use the MenuInflater class within your onCreateOptionsMenu or
onCreateContextMenu event handlers, as shown in Listing 10-16.

LISTING 10-16: Infl ating an XML menu resource

public boolean onCreateOptionsMenu(Menu menu) {
 super.onCreateOptionsMenu(menu);

 MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.my_menu, menu);

 return true;
}

code snippet PA4AD_Ch10_ActionBar/src/ActionBarActivity.java

Updating Menu Items Dynamically

By overriding your Activity’s onPrepareOptionsMenu method, you can modify a Menu based on an
application’s current state immediately before the Menu is displayed. This lets you dynamically dis-
able/enable Menu Items, set visibility, and modify text.

Note that the onPrepareOptionsMenu method is triggered whenever the menu button is clicked, the
overfl ow menu displayed, or the Action Bar is created.

c10.indd 385c10.indd 385 4/18/2012 3:51:38 PM4/18/2012 3:51:38 PM

Meier02275 c10 V3 - 14/04/2012 Page 386

386 x CHAPTER 10 EXPANDING THE USER EXPERIENCE

To modify Menu Items dynamically, you can either record a reference to them from within the
onCreateOptionsMenu method when they’re created, or you can use the findItem method on the
Menu object, as shown in Listing 10-17, where onPrepareOptionsMenu is overridden.

LISTING 10-17: Modifying Menu Items dynamically

@Override
public boolean onPrepareOptionsMenu(Menu menu) {
 super.onPrepareOptionsMenu(menu);

 MenuItem menuItem = menu.findItem(MENU_ITEM);

 [... modify Menu Items ...]

 return true;
}

code snippet PA4AD_Ch10_ActionBar/src/ActionBarActivity.java

Handling Menu Selections

Android handles the Action Bar actions, overfl ow menu, and Activity menu selections using a single
event handler, onOptionsItemSelected. The Menu Item selected is passed in to this method as the
MenuItem parameter.

To react to the menu selection, compare the item.getItemId value to the Menu Item identifi ers you
used when populating the Menu (or their resource identifi ers if defi ning your Menu in XML), as
shown in Listing 10-18, and perform the corresponding action.

LISTING 10-18: Handling Menu Item selections

public boolean onOptionsItemSelected(MenuItem item) {
 super.onOptionsItemSelected(item);

 // Find which Menu Item has been selected
 switch (item.getItemId()) {

 // Check for each known Menu Item
 case (MENU_ITEM):
 [... Perform menu handler actions ...]
 return true;

 // Return false if you have not handled the Menu Item
 default: return false;
 }
}

code snippet PA4AD_Ch10_ActionBar/src/ActionBarActivity.java

c10.indd 386c10.indd 386 4/18/2012 3:51:38 PM4/18/2012 3:51:38 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Meier02275 c10 V3 - 14/04/2012 Page 387

Creating and Using Menus and Action Bar Action Items x 387

If you have supplied Menu Items from within a Fragment, you can choose to handle them within the
onOptionsItemSelected handler of either the Activity or the Fragment. Note that the Activity will
receive the selected Menu Item fi rst, and that the Fragment will not receive it if the Activity handles
it and returns true.

Introducing Submenus and Context Menus

Context Menus use the same fl oating window as the submenus shown in Figure 10-12. Although
their appearance is the same, the two menu types are populated differently.

Although Context Menus are still supported in Android 4.0, their use has
become limited, with long-press functionality now used more commonly to sup-
port operations like drag and drop.

Users are unlikely to fi nd options supplied by the Context Menu, so they should
be used sparingly.

Creating Submenus

Submenus are displayed as regular Menu Items that, when selected, reveal more items. Traditionally,
submenus are displayed in a hierarchical tree layout. Android uses a different approach to simplify
menu navigation for touch-screen devices. Rather than a tree structure, selecting a submenu pres-
ents either a single fl oating window (in the case of the legacy Menu system) or replaces the overfl ow
menu (in the case of Android 3.0 and above), both of which display all its Menu Items.

You can add submenus by using the addSubMenu method. It supports the same parameters as the
add method used to add normal Menu Items, enabling you to specify a group, unique identifi er, and
text string for each submenu. You can also use the setHeaderIcon and setIcon methods to specify
an icon to display in the submenu’s header bar or icon menu, respectively.

The Menu Items within a submenu support the same options as those assigned to the icon or
extended menus, with the exception of the Action Bar action-related properties.

Submenus can’t be used as actions, nor does Android support nested submenus.

The following code snippet shows an extract from an implementation of the onCreateMenuOptions
code that adds a submenu to the main menu, sets the header icon, and then adds a submenu Menu
Item:

SubMenu sub = menu.addSubMenu(0, 0, Menu.NONE, “Submenu”);
sub.setHeaderIcon(R.drawable.icon);
sub.setIcon(R.drawable.icon);

MenuItem submenuItem = sub.add(0, 0, Menu.NONE, “Submenu Item”);

c10.indd 387c10.indd 387 4/18/2012 3:51:39 PM4/18/2012 3:51:39 PM

Meier02275 c10 V3 - 14/04/2012 Page 388

388 x CHAPTER 10 EXPANDING THE USER EXPERIENCE

Using Context Menus and Popup Menus

Context Menus are contextualized by the currently focused View and are triggered when a user
long-presses the trackball, middle D-pad button, or a View (typically for approximately 3 seconds).
A Context Menu is displayed as a fl oating window above your Activity.

Android 3.0 (API level 11) introduced the PopupMenu class, a lighter-weight alternative to the
ContextMenu that anchors itself to a specifi c View.

You defi ne and populate Context Menus and Popup Menus as you defi ne and populate Activity
Menus. There are two options available for creating Context Menus for a particular View.

Creating Context Menus

One option is to create a generic ContextMenu object for a View class by overriding a View’s
onCreateContextMenu handler, as shown here:

@Override
public void onCreateContextMenu(ContextMenu menu) {
 super.onCreateContextMenu(menu);
 menu.add(“ContextMenuItem1”);
}

The Context Menu created here will be available within any Activity that includes this View class.

The more common alternative is to create Activity-specifi c Context Menus by overriding the
Activity’s onCreateContextMenu method, and registering the Views that should use it using the
registerForContextMenu method, as shown in Listing 10-19.

LISTING 10-19: Assigning a Context Menu to a View

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 EditText view = new EditText(this);
 setContentView(view);

 registerForContextMenu(view);
}

code snippet PA4AD_Ch10_ActionBar/src/ActionBarActivity.java

Once a View has been registered, the onCreateContextMenu handler will be triggered the fi rst time
a Context Menu is displayed for that View.

To populate the Context Menu parameter with the appropriate Menu Items, override onCreate
ContextMenu and check which View has triggered the menu creation.

@Override
public void onCreateContextMenu(ContextMenu menu, View v,
 ContextMenu.ContextMenuInfo menuInfo) {
 super.onCreateContextMenu(menu, v, menuInfo);

c10.indd 388c10.indd 388 4/18/2012 3:51:39 PM4/18/2012 3:51:39 PM

Meier02275 c10 V3 - 14/04/2012 Page 389

Creating and Using Menus and Action Bar Action Items x 389

 menu.setHeaderTitle(“Context Menu”);
 menu.add(0, Menu.FIRST, Menu.NONE,
 “Item 1”).setIcon(R.drawable.menu_item);
 menu.add(0, Menu.FIRST+1, Menu.NONE, “Item 2”).setCheckable(true);
 menu.add(0, Menu.FIRST+2, Menu.NONE, “Item 3”).setShortcut(‘3’, ‘3’);
 SubMenu sub = menu.addSubMenu(“Submenu”);
 sub.add(“Submenu Item”);
}

As shown in the preceding code, the ContextMenu class supports the same add method as the
Menu class, so you can populate a Context Menu in the same way that you populate Activity
menus — using the add method. This includes using the add method to add submenus to your
Context Menus. Note that icons will never be displayed; however, you can specify the title and icon
to display in the Context Menu’s header bar.

Android also supports late runtime population of Context Menus via Intent Filters. This mecha-
nism lets you populate a Context Menu by specifying the kind of data presented by the
current View and asking other Android applications if they support any actions for it. The most
common examples of this mechanism are the cut/copy/paste Menu Items available on Edit Text
controls.

Handling Context Menu Selections

Context Menu Item selections are handled much the same as Activity Menu selections. You can
attach an Intent or Menu Item Click Listener directly to each Menu Item or use the preferred tech-
nique of overriding the onContextItemSelected method on the Activity, as follows:

@Override
public boolean onContextItemSelected(MenuItem item) {
 super.onContextItemSelected(item);

 // TODO [... Handle Menu Item selection ...]

 return false;
}

The onContextItemSelected event handler is triggered whenever a Context Menu Item is selected.

Using Popup Menus

An alternative to Context Menus, Popup Menus are displayed
alongside a particular View instance, rather than above the entire
Activity (see Figure 10-14). When targeting devices running
Android 3.0 or above, it’s best practice to use Popup Menus rather
than Context Menus.

To assign a Popup Menu to a View, you must create a new Popup
Menu, specifying the Activity Context and the View to which it
should be anchored:

final PopupMenu popupMenu = new PopupMenu(this,
myView);

FIGURE 10-14

c10.indd 389c10.indd 389 4/18/2012 3:51:39 PM4/18/2012 3:51:39 PM

Meier02275 c10 V3 - 14/04/2012 Page 390

390 x CHAPTER 10 EXPANDING THE USER EXPERIENCE

Assign or infl ate a Menu resource as you would for an Activity or Context Menu, and add a new
OnMenuItemClickListener to handle Menu Item selections, as shown in Listing 10-20.

LISTING 10-20: Assigning a Popup Menu to a View

final PopupMenu popupMenu = new PopupMenu(this, button);

popupMenu.inflate(R.menu.my_popup_menu);
popupMenu.setOnMenuItemClickListener(new OnMenuItemClickListener() {
 public boolean onMenuItemClick(MenuItem item) {
 switch (item.getItemId()) {
 case (POPUP_ITEM_1) :
 // TODO Handle popup menu clicks.
 return true;
 default: return false;
 }
 }
});

code snippet PA4AD_Ch10_ActionBar/src/ActionBarActivity.java

To display the Popup Menu, call its show method:

popupMenu.show();

REFRESHING THE EARTHQUAKE MONITOR

In the following example you’ll add a Menu Item to refresh the Earthquake monitor.

 1. Create a new string resource that defi nes the menu text in the res/values/strings.xml fi le:

<string name=”menu_refresh”>Refresh</string>

 2. Create a new main_menu.xml resource in the res/menu folder that contains the “refresh”
and “preferences” Menu Items. The former should be specifi ed as an action to be displayed
on the Action Bar:

<menu xmlns:android=”http://schemas.android.com/apk/res/android”>
 <item
 android:id=”@+id/menu_refresh”
 android:title=”@string/menu_refresh”
 android:showAsAction=”ifRoom|withText”>
 </item>
 <item
 android:id=”@+id/menu_preferences”
 android:title=”@string/menu_preferences”
 android:showAsAction=”never”>
 </item>
</menu>

c10.indd 390c10.indd 390 4/18/2012 3:51:41 PM4/18/2012 3:51:41 PM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c10 V3 - 14/04/2012 Page 391

Refreshing the Earthquake Monitor x 391

3. Modify the onCreateOptionsMenu method in the Earthquake Activity to infl ate the menu
resource from step 2:

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 super.onCreateOptionsMenu(menu);

 MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.main_menu, menu);

 return true;
}

4. Having populated the Activity Menu and Action Bar actions, the next step is to handle the
selection of these items. Modify the onOptionsItemSelected handler. Update the “prefer-
ences” selection to refer to its resource ID. When the “refresh” item is selected, start the
update Service.

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 super.onOptionsItemSelected(item);

 switch (item.getItemId()) {
 case (R.id.menu_refresh): {
 startService(new Intent(this, EarthquakeUpdateService.class));
 return true;
 }
 case (R.id.menu_preferences): {
 Class c = Build.VERSION.SDK_INT < Build.VERSION_CODES.HONEYCOMB ?
 PreferencesActivity.class : FragmentPreferences.class;
 Intent i = new Intent(this, c);

 startActivityForResult(i, SHOW_PREFERENCES);
 return true;
 }
 default: return false;
 }
}

5. Take this opportunity to move the Search View to the Action Bar. Start by updating the
menu defi nition to include a Search View:

<menu xmlns:android=”http://schemas.android.com/apk/res/android”>
 <item
 android:id=”@+id/menu_search”
 android:icon=”@android:drawable/ic_menu_search”
 android:actionViewClass=”android.widget.SearchView”
 android:showAsAction=”ifRoom|collapseActionView”>
 </item>
 <item
 android:id=”@+id/menu_refresh”
 android:title=”@string/menu_refresh”
 android:showAsAction=”ifRoom|withText”>
 </item>

c10.indd 391c10.indd 391 4/18/2012 3:51:41 PM4/18/2012 3:51:41 PM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c10 V3 - 14/04/2012 Page 392

392 x CHAPTER 10 EXPANDING THE USER EXPERIENCE

 <item
 android:id=”@+id/menu_preferences”
 android:title=”@string/menu_preferences”
 android:showAsAction=”never”>
 </item>
</menu>

6. Modify each of the main.xml layouts, removing the reference to the Search View.

7. Update the onCreateOptionsMenu handler to confi gure the Search View, and remove the
corresponding code from the onCreate handler:

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 super.onCreateOptionsMenu(menu);

 MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.main_menu, menu);

 // Moved from onCreate -- Retreive the Search View and configure/enable it.
 SearchManager searchManager =
 (SearchManager) getSystemService(Context.SEARCH_SERVICE);
 SearchView searchView = (SearchView) menu.findItem(R.id.menu_search).getActionView();
 searchView.setSearchableInfo(searchManager.getSearchableInfo(getComponentName()));

 return true;
}

All code snippets in this example are part of the Chapter 10 Earthquake Part 2
project, available for download at www.wrox.com.

GOING FULL SCREEN

For specifi c situations, it makes sense for your application to occupy the entire screen, hiding or
obscuring navigation controls and status information such as the time and Notifi cations. This is
the case if, and only if, you are building an application that is designed to be fully immersive. Valid
examples of immersive applications include immersive games such as fi rst-person racers or shooters,
eLearning applications, and video.

Hiding status information and navigation cues is a disruptive action likely to
frustrate many users. If you choose to make your application “full screen,” you
should make it easy for users to disable such behavior.

The UI of every Android device includes space managed by the system, dedicated to displaying
status information such as the time, connectivity, and Notifi cations (new and ongoing). The system-
controlled UI elements of Android have changed as the platform has evolved.

c10.indd 392c10.indd 392 4/18/2012 3:51:41 PM4/18/2012 3:51:41 PM

http://www.wrox.com

Meier02275 c10 V3 - 14/04/2012 Page 393

Going Full Screen x 393

Prior to the introduction of tablets, this space was known as the “status bar,” and resided at the top
of the screen for each handset, as shown in Figure 10-15.

FIGURE 10-15

The extra screen real-estate available for tablets, combined with a lack of hardware navigation keys,
led to the introduction of a “system bar” in Android 3.0 — a UI section at the bottom of the screen
that contains both the contents normally displayed in the status bar, as well as software implemen-
tations of the back and home keys, as shown in Figure 10-16.

FIGURE 10-16

Android 4.0 saw the introduction of phone hardware that, like tablets, uses onscreen software
buttons for navigation rather than hardware keys. As a result, a new “navigation bar” was intro-
duced to house the back and home buttons, as shown in Figure 10-17. Unlike tablets, Android
smartphones continue to use the status bar to display status information, just as they did in previ-
ous versions.

FIGURE 10-17

The result is that for tablets a single piece of screen is dedicated to displaying status information and
navigation buttons, whereas on handsets status is displayed separately from the navigation.

To control the visibility of the navigation bar on handsets, or the appearance of the system bar in
tablets, you can use the setSystemUiVisibility method on any View visible within your Activity
hierarchy. Note that any user interaction with the Activity will revert these changes.

In Android 3.0 (API level 11) you can obscure, but not remove, the navigation bar on handsets and
the system bar on tablets using the STATUS_BAR_HIDDEN fl ag.

myView.setSystemUiVisibility(View.STATUS_BAR_HIDDEN);

Android 4.0 (API level 14) deprecated this fl ag, replacing it with the following fl ags to better support
handsets that use a separate navigation and status bar:

 ‰ SYSTEM_UI_FLAG_LOW_PROFILE — Obscures the navigation buttons in the same way as
STATUS_BAR_HIDDEN

 ‰ SYSTEM_UI_FLAG_HIDE_NAVIGATION — Removes the navigation bar on handset devices, and
obscures the navigation buttons used in the system bar on tablets

myView.setSystemUiVisibility(View.SYSTEM_UI_FLAG_LOW_PROFILE);

c10.indd 393c10.indd 393 4/18/2012 3:51:42 PM4/18/2012 3:51:42 PM

Meier02275 c10 V3 - 14/04/2012 Page 394

394 x CHAPTER 10 EXPANDING THE USER EXPERIENCE

It’s generally good practice to synchronize other changes within your UI with changes in navigation
visibility. For example, you may choose to hide and display the Action Bar and other navigational
controls based on entering and exiting “full screen mode.”

You can do this by registering an OnSystemUiVisibilityChangeListener to your View — gener-
ally, the View you are using to control the navigation visibility, as shown in Listing 10-21.

LISTING 10-21: Reacting to changes in system UI visibility

myView.setOnSystemUiVisibilityChangeListener(
 new OnSystemUiVisibilityChangeListener() {

 public void onSystemUiVisibilityChange(int visibility) {
 if (visibility == View.SYSTEM_UI_FLAG_VISIBLE) {
 // TODO Display Action Bar and Status Bar
 }
 else {
 // TODO Hide Action Bar and Status Bar
 }
 }
});

code snippet PA4AD_Ch10_ActionBar/src/ActionBarActivity.java

You also can hide the status bar along the top of all handset devices. This should be done cau-
tiously because it can disrupt how people use their phones. In many cases — particularly for watch-
ing video — it’s best practice to enable and disable the status bar from within an On System UI
Visibility Change Listener.

To hide the status bar, add the LayoutParams.FLAG_FULLSCREEN fl ag to the Window:

myView.setSystemUiVisibility(View.SYSTEM_UI_FLAG_HIDE_NAVIGATION);
getWindow().addFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN);

Note that this will not affect tablet devices, which use a system bar rather than a separate naviga-
tion and status bars.

INTRODUCING DIALOGS

Dialog boxes are a common UI metaphor in desktop, web, and mobile applications. They’re used to
help users answer questions, make selections, and confi rm actions, and to display warning or error
messages. Dialog boxes in Android are partially transparent, fl oating Activities or Fragments that
partially obscure the UI that launched them.

In terms of Android UX design, Dialogs should be used to represent system-level events, such as dis-
playing errors or supporting account selection. It is good practice to limit the use of Dialogs within
your applications, and when using them to limit the degree of customization.

c10.indd 394c10.indd 394 4/18/2012 3:51:42 PM4/18/2012 3:51:42 PM

Meier02275 c10 V3 - 14/04/2012 Page 395

Introducing Dialogs x 395

Depending on the platform and hardware confi guration, dia-
logs may obscure the Activities behind them using a blur or
dim fi lter, as shown in Figure 10-18.

There are three ways to implement a dialog in Android:

 ‰ Using the Dialog class (or its extensions) — In addition
to the general-purpose AlertDialog class, Android
includes a number of classes that extend Dialog. Each
is designed to provide specifi c dialog-box functionality.
A Dialog class-based screen is constructed and con-
trolled entirely within its calling Activity, so it doesn’t
need to be registered in the manifest.

 ‰ Dialog-themed Activities — You can apply the dialog
theme to a regular Activity to give it the appearance of
a standard dialog box.

 ‰ Toasts — Toasts are special nonmodal transient mes-
sage boxes, often used by Broadcast Receivers and
Services to notify users of events occurring in the back-
ground. You learn more about Toasts in the section
“Let’s Make a Toast.”

Creating a Dialog

To create a new Dialog, instantiate a new Dialog instance and set the title and layout, using the
setTitle and setContentView methods, respectively, as shown in Listing 10-22. The set
ContentView method accepts a resource identifi er for a layout that will be infl ated to display the
Dialog’s UI.

Once the Dialog is confi gured to your liking, use the show method to display it.

LISTING 10-22: Creating a new Dialog using the Dialog class

// Create the new Dialog.
Dialog dialog = new Dialog(MyActivity.this);

// Set the title.
dialog.setTitle(“Dialog Title”);

// Inflate the layout.
dialog.setContentView(R.layout.dialog_view);

// Update the Dialog’s contents.
TextView text = (TextView)dialog.findViewById(R.id.dialog_text_view);
text.setText(“This is the text in my dialog”);

FIGURE 10-18

continues

c10.indd 395c10.indd 395 4/18/2012 3:51:43 PM4/18/2012 3:51:43 PM

Meier02275 c10 V3 - 14/04/2012 Page 396

396 x CHAPTER 10 EXPANDING THE USER EXPERIENCE

// Display the Dialog.
dialog.show();

code snippet PA4AD_Ch10_Dialogs/src/MyActivity.java

Using the Alert Dialog Class

The AlertDialog class is one of the most versatile Dialog-class implementations. It offers a number of
options that let you construct dialogs for some of the most common use cases, including the following:

 ‰ Presenting a message to users offering them one to three options in the form of buttons. This
functionality is probably familiar to you if you’ve done any desktop programming for which
the buttons presented are usually a combination of OK, Cancel, Yes, and No.

 ‰ Offering a list of options in the form of check boxes or radio buttons.

 ‰ Providing a text entry box for user input.

To construct the Alert Dialog UI, create a new AlertDialog.Builder object:

AlertDialog.Builder ad = new AlertDialog.Builder(context);

You can then assign values for the title and message to display, and optionally assign values to be
used for any buttons, selection items, and text input boxes you want to display. That includes setting
event listeners to handle user interaction.

Listing 10-23 gives an example of an Alert Dialog used to display a message with two buttons.
Clicking either button will close the Dialog after executing the attached On Click Listeners.

LISTING 10-23: Confi guring an Alert Dialog

Context context = MyActivity.this;
String title = “It is Pitch Black”;
String message = “You are likely to be eaten by a Grue.”;
String button1String = “Go Back”;
String button2String = “Move Forward”;

AlertDialog.Builder ad = new AlertDialog.Builder(context);
ad.setTitle(title);
ad.setMessage(message);

ad.setPositiveButton(
 button1String,
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int arg1) {
 eatenByGrue();
 }
 }
);

LISTING 10-22 (continued)

c10.indd 396c10.indd 396 4/18/2012 3:51:43 PM4/18/2012 3:51:43 PM

Meier02275 c10 V3 - 14/04/2012 Page 397

Introducing Dialogs x 397

ad.setNegativeButton(
 button2String,
 new DialogInterface.OnClickListener(){
 public void onClick(DialogInterface dialog, int arg1) {
 // do nothing
 }
 }
);

code snippet PA4AD_Ch10_Dialogs/src/MyActivity.java

Use the setCancelable method to determine if the user should be able to close the dialog by press-
ing the back button without making a selection. If you choose to make the Dialog cancelable, you
can use the setOnCancelListener method to attach an On Cancel Listener to react to this event:

ad.setCancelable(true);

ad.setOnCancelListener(
 new DialogInterface.OnCancelListener() {
 public void onCancel(DialogInterface dialog) {
 eatenByGrue();
 }
 }
);

Using Specialized Input Dialogs

Android includes several specialized dialog boxes that encapsulate controls designed to facilitate
common user-input requests. In order to maintain consistency, they should be used in preference to
customized Dialogs wherever possible. They include the following:

 ‰ CharacterPickerDialog — Lets users select an accented character based on a regular char-
acter source.

 ‰ DatePickerDialog — Lets users select a date from a DatePicker View. The constructor
includes a callback listener to alert your calling Activity when the date has been set.

 ‰ TimePickerDialog — Similar to the Date Picker Dialog, this dialog lets users select a time
from a TimePicker View.

 ‰ ProgressDialog — Displays a progress bar beneath a message text box. This can be used
to keep users informed of the ongoing progress of a time-consuming operation, though best
practice is to allow users to interact with the application when such long-running processes
are underway.

In each case, to use the specialist Dialog, construct a new instance of it, setting its properties and
event handlers, before displaying the Dialog:

DatePickerDialog datePickerDialog =
 new DatePickerDialog(
 MyActivity.this,

c10.indd 397c10.indd 397 4/18/2012 3:51:43 PM4/18/2012 3:51:43 PM

Meier02275 c10 V3 - 14/04/2012 Page 398

398 x CHAPTER 10 EXPANDING THE USER EXPERIENCE

 new OnDateSetListener() {
 public void onDateSet(DatePicker view, int year,
 int monthOfYear, int dayOfMonth) {
 // TODO Use the selected date.
 }
 },
 1978, 6, 19);

datePickerDialog.show();

Managing and Displaying Dialogs Using Dialog Fragments

You can use the show method of each Dialog instance to display it, but a better alternative is to use
Dialog Fragments. A Dialog Fragment is a Fragment that contains a Dialog.

Dialog Fragments were introduced in Android 3.0 (API level 11) and replace the deprecated
Activity.onCreateDialog and Activity.onPrepareDialog handlers (described in more detail in
the next section). Dialog Fragments are included as part of the Android Support Package, making it
possible to use them for projects targeting all Android platforms down to Android 1.6 (API level 4).

A Dialog Fragment effi ciently encapsulates and manages the Dialog’s lifecycle and ensures that the
Fragment and the containing Dialog states remain consistent.

To use a Dialog Fragment, extend the DialogFragment class, as shown in Listing 10-24. Override
the onCreateDialog handler to return a Dialog constructed as described in the previous sections.

LISTING 10-24: Using the On Create Dialog event handler

public class MyDialogFragment extends DialogFragment {

 private static String CURRENT_TIME = “CURRENT_TIME”;

 public static MyDialogFragment newInstance(String currentTime) {
 // Create a new Fragment instance with the specified
 // parameters.
 MyDialogFragment fragment = new MyDialogFragment();
 Bundle args = new Bundle();
 args.putString(CURRENT_TIME, currentTime);
 fragment.setArguments(args);

 return fragment;
 }

 @Override
 public Dialog onCreateDialog(Bundle savedInstanceState) {
 // Create the new Dialog using the AlertBuilder.
 AlertDialog.Builder timeDialog =
 new AlertDialog.Builder(getActivity());

 // Configure the Dialog UI.
 timeDialog.setTitle(“The Current Time Is...”);
 timeDialog.setMessage(getArguments().getString(CURRENT_TIME));

c10.indd 398c10.indd 398 4/18/2012 3:51:43 PM4/18/2012 3:51:43 PM

Meier02275 c10 V3 - 14/04/2012 Page 399

Introducing Dialogs x 399

 // Return the configured Dialog.
 return timeDialog.create();
 }
}

code snippet PA4AD_Ch10_Dialogs/src/MyDialogFragment.java

You can display the Dialog Fragment using the Fragment Manager and Fragment Transactions the
same way as you would any other Fragment, as described in Chapter 4 and shown in Listing 10-25.
The Fragment’s application appearance will depend on the Dialog it contains.

LISTING 10-25: Displaying a Dialog Fragment

String tag = “my_dialog”;
DialogFragment myFragment =
 MyDialogFragment.newInstance(dateString);

myFragment.show(getFragmentManager(), tag);

code snippet PA4AD_Ch10_Dialogs/src/MyActivity.java

Any listeners you attach to the dialog must be handled within the containing Fragment — typically
by calling a method in the parent Activity.

Alternatively, you can override the onCreateView handler to infl ate a custom Dialog lay-
out within your Dialog Fragment, just as you would your custom Dialog class, as shown in
Listing 10-26.

LISTING 10-26: Using the On Create View handler

@Override
public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {

 // Inflate the Dialog’s UI.
 View view = inflater.inflate(R.layout.dialog_view, container, false);

 // Update the Dialog’s contents.
 TextView text = (TextView)view.findViewById(R.id.dialog_text_view);
 text.setText(“This is the text in my dialog”);

 return view;
}

code snippet PA4AD_Ch10_Dialogs/src/MyDialogFragment.java

Note that you must choose to override only one of onCreateView or onCreateDialog. Overriding
both will result in an exception being thrown.

c10.indd 399c10.indd 399 4/18/2012 3:51:44 PM4/18/2012 3:51:44 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Meier02275 c10 V3 - 14/04/2012 Page 400

400 x CHAPTER 10 EXPANDING THE USER EXPERIENCE

In addition to providing improved resource use, this technique lets your Activity handle the persis-
tence of state information within Dialogs. Any selection or data input (such as item selection and
text entry) will be persisted if the Fragment is re-created due to a confi guration change, such as
screen rotation.

Managing and Displaying Dialogs Using Activity Event Handlers

Prior to the introduction of Fragments, the best practice way to display Dialogs was by overriding
your Activity’s onCreateDialog and onPrepareDialog handlers to prepare each Dialog, and show-
Dialog to display them on demand.

By overriding the onCreateDialog handler, you can specify Dialogs that will be created on demand
when showDialog is used to display a specifi c Dialog. As shown in Listing 10-27, the overridden
method includes a switch statement that lets you determine which dialog is required.

LISTING 10-27: Using the On Create Dialog event handler

static final private int TIME_DIALOG = 1;

@Override
public Dialog onCreateDialog(int id) {
 switch(id) {
 case (TIME_DIALOG) :
 AlertDialog.Builder timeDialog = new AlertDialog.Builder(this);
 timeDialog.setTitle(”The Current Time Is...”);
 timeDialog.setMessage(”Now”);
 return timeDialog.create();
 }
 return null;
}

code snippet PA4AD_Ch10_Dialogs/src/MyActivity.java

After the initial creation, each time showDialog is called, it will trigger the onPrepareDialog han-
dler. By overriding this method you can modify a dialog each time it is displayed. This lets you con-
textualize any of the display values, as shown in Listing 10-28, which assigns the current time to the
dialog created in Listing 10-27.

LISTING 10-28: Using the On Prepare Dialog event handler

@Override
public void onPrepareDialog(int id, Dialog dialog) {
 switch(id) {
 case (TIME_DIALOG) :
 SimpleDateFormat sdf = new SimpleDateFormat(”HH:mm:ss”);
 Date currentTime =
 new Date(java.lang.System.currentTimeMillis());
 String dateString = sdf.format(currentTime);

c10.indd 400c10.indd 400 4/18/2012 3:51:44 PM4/18/2012 3:51:44 PM

Meier02275 c10 V3 - 14/04/2012 Page 401

Let’s Make a Toast x 401

 AlertDialog timeDialog = (AlertDialog)dialog;
 timeDialog.setMessage(dateString);

 break;
 }
}

code snippet PA4AD_Ch10_Dialogs/src/MyActivity.java

After overriding these methods, you can display the Dialogs by calling showDialog:

showDialog(TIME_DIALOG);

Pass in the identifi er for the Dialog you want to display, and Android will create (if necessary) and
prepare the Dialog before displaying it.

Although you can use the onCreateDialog and onPrepareDialog handlers, they have been depre-
cated in favor of Dialog Fragments, as described in the previous section.

Using Activities as Dialogs

Dialogs and Dialog Fragments offer a simple and lightweight technique for displaying screens, but
you can also style an Activity so that it appears as a Dialog.

Note that in must circumstances you can gain the same level of control over the appearance and life-
cycle of your Dialog by using a Dialog Fragment.

The easiest way to make an Activity look like a Dialog is to apply the android:style/Theme.
Dialog theme when you add the Activity to your manifest, as shown in the following XML snippet:

<activity android:name=”MyDialogActivity”
 android:theme=”@android:style/Theme.Dialog”>
</activity>

This will cause your Activity to behave as a Dialog, fl oating on top of, and partially obscuring, the
Activity beneath it.

LET’S MAKE A TOAST

Toasts are transient notifi cations that remain visible for only a few seconds before fading out. Toasts
don’t steal focus and are nonmodal, so they don’t interrupt the active application.

Toasts are perfect for informing your users of events without forcing them to open an Activity or
read a Notifi cation. They provide an ideal mechanism for alerting users to events occurring in back-
ground Services without interrupting foreground applications.

Generally, your application should display Toasts only when one of its Activities is active.

The Toast class includes a static makeText method that creates a standard Toast display window.
To construct a new Toast, pass the current Context, the text message to display, and the length

c10.indd 401c10.indd 401 4/18/2012 3:51:44 PM4/18/2012 3:51:44 PM

mailto:theme=%E2%80%9D@android:style/Theme.Dialog%E2%80%9D

Meier02275 c10 V3 - 14/04/2012 Page 402

402 x CHAPTER 10 EXPANDING THE USER EXPERIENCE

of time to display it (LENGTH_SHORT or LENGTH_LONG) into the makeText method. After creating a
Toast, you can display it by calling show, as shown in Listing 10-29.

LISTING 10-29: Displaying a Toast

Context context = this;
String msg = “To health and happiness!”;
int duration = Toast.LENGTH_SHORT;

Toast toast = Toast.makeText(context, msg, duration);
toast.show();

code snippet PA4AD_Ch10_Dialogs/src/MyActivity.java

Figure 10-19 shows a Toast. It will remain on-screen for approximately 2 seconds before fading out.
The application behind it remains fully responsive and interactive while the Toast is visible.

FIGURE 10-19

Customizing Toasts

The standard Toast message window is often suffi cient, but in many situations you’ll want to cus-
tomize its appearance and screen position. You can modify a Toast by setting its display position
and assigning it alternative Views or layouts.

c10.indd 402c10.indd 402 4/18/2012 3:51:44 PM4/18/2012 3:51:44 PM

Meier02275 c10 V3 - 14/04/2012 Page 403

Let’s Make a Toast x 403

Listing 10-30 shows how to align a Toast to the bottom of the screen using the setGravity method.

LISTING 10-30: Aligning Toast text

Context context = this;
String msg = “To the bride and groom!”;
int duration = Toast.LENGTH_SHORT;
Toast toast = Toast.makeText(context, msg, duration);
int offsetX = 0;
int offsetY = 0;

toast.setGravity(Gravity.BOTTOM, offsetX, offsetY);
toast.show();

code snippet PA4AD_Ch10_Dialogs/src/MyActivity.java

When a text message just isn’t going to get the job done, you can specify a custom View or layout to
use a more complex, or more visual, display. Using setView on a Toast object, you can specify any
View (including a layout) to display using the Toast mechanism. For example, Listing 10-31 assigns
a layout, containing the CompassView Widget from Chapter 4 along with a TextView, to be dis-
played as a Toast.

LISTING 10-31: Using Views to customize a Toast

Context context = getApplicationContext();
String msg = “Cheers!”;
int duration = Toast.LENGTH_LONG;
Toast toast = Toast.makeText(context, msg, duration);
toast.setGravity(Gravity.TOP, 0, 0);

LinearLayout ll = new LinearLayout(context);
ll.setOrientation(LinearLayout.VERTICAL);

TextView myTextView = new TextView(context);
CompassView cv = new CompassView(context);

myTextView.setText(msg);

int lHeight = LinearLayout.LayoutParams.FILL_PARENT;
int lWidth = LinearLayout.LayoutParams.WRAP_CONTENT;

ll.addView(cv, new LinearLayout.LayoutParams(lHeight, lWidth));
ll.addView(myTextView, new LinearLayout.LayoutParams(lHeight, lWidth));

ll.setPadding(40, 50, 0, 50);

toast.setView(ll);
toast.show();

code snippet PA4AD_Ch10_Dialogs/src/MyActivity.java

c10.indd 403c10.indd 403 4/18/2012 3:51:46 PM4/18/2012 3:51:46 PM

Meier02275 c10 V3 - 14/04/2012 Page 404

404 x CHAPTER 10 EXPANDING THE USER EXPERIENCE

The resulting Toast will appear, as shown in Figure 10-20.

FIGURE 10-20

Using Toasts in Worker Threads

As GUI components, Toasts must be created and shown on the GUI thread; otherwise, you risk
throwing a cross-thread exception. In Listing 10-32 a Handler is used to ensure that the Toast is
opened on the GUI thread.

LISTING 10-32: Opening a Toast on the GUI thread

Handler handler = new Handler();

private void mainProcessing() {
 Thread thread = new Thread(null, doBackgroundThreadProcessing,
 ”Background”);
 thread.start();
}

private Runnable doBackgroundThreadProcessing = new Runnable() {
 public void run() {
 backgroundThreadProcessing();
 }
};

c10.indd 404c10.indd 404 4/18/2012 3:51:46 PM4/18/2012 3:51:46 PM

Meier02275 c10 V3 - 14/04/2012 Page 405

Introducing Notifi cations x 405

private void backgroundThreadProcessing() {
 handler.post(doUpdateGUI);
}

// Runnable that executes the update GUI method.
private Runnable doUpdateGUI = new Runnable() {
 public void run() {
 Context context = getApplicationContext();
 String msg = “To open mobile development!”;
 int duration = Toast.LENGTH_SHORT;
 Toast.makeText(context, msg, duration).show();
 }
};

code snippet PA4AD_Ch10_Dialogs/src/MyActivity.java

INTRODUCING NOTIFICATIONS

Your application can use Notifi cations to alert users of events that may require their attention with-
out one of its Activity’s being visible.

Notifi cations are handled by the Notifi cation Manager and currently have the ability to

 ‰ Display a status bar icon

 ‰ Flash the lights/LEDs

 ‰ Vibrate the phone

 ‰ Sound audible alerts (ringtones, Media Store audio)

 ‰ Display additional information within the notifi cation tray

 ‰ Broadcast Intents using interactive controls from within the notifi cation tray

Notifi cations are the preferred mechanism for invisible application components (Broadcast
Receivers, Services, and inactive Activities) to alert users that events have occurred that may require
attention. They are also used to indicate ongoing background Services — and are required to indi-
cate a Service that has foreground priority.

Notifi cations are particularly well suited to mobile devices. It’s likely that your users will have their
phones with them at all times but quite unlikely that they will be paying attention to them, or your
application, at any given time. Generally, users will have several applications open in the back-
ground, and they won’t be paying attention to any of them.

In this environment it’s important that your applications be able to alert users when specifi c events
occur that require their attention.

Notifi cations can be persisted through insistent repetition, being marked ongoing, or simply by dis-
playing an icon on the status bar. Status bar icons can be updated regularly or expanded to show
additional information using the expanded notifi cation tray, as shown in Figure 10-21.

c10.indd 405c10.indd 405 4/18/2012 3:51:47 PM4/18/2012 3:51:47 PM

Meier02275 c10 V3 - 14/04/2012 Page 406

406 x CHAPTER 10 EXPANDING THE USER EXPERIENCE

FIGURE 10-21

To display the expanded notifi cation tray on smartphones, press anywhere on
the status bar and drag it toward the bottom of the screen. On tablet devices,
click the time on the lower-right corner of the system bar.

Introducing the Notifi cation Manager

The NotificationManager is a system Service used to manage Notifi cations. Get a reference to it
using the getSystemService method, as shown in Listing 10-33.

LISTING 10-33: Using the Notifi cation Manager

String svcName = Context.NOTIFICATION_SERVICE;

NotificationManager notificationManager;
notificationManager = (NotificationManager)getSystemService(svcName);

code snippet PA4AD_Ch10_Notifi cations/src/MyActivity.java

Using the Notifi cation Manager, you can trigger new Notifi cations, modify existing ones, or cancel
those that are no longer required.

c10.indd 406c10.indd 406 4/18/2012 3:51:47 PM4/18/2012 3:51:47 PM

Meier02275 c10 V3 - 14/04/2012 Page 407

Introducing Notifi cations x 407

Creating Notifi cations

Android offers a number of ways to convey information to users using Notifi cations:

 ‰ Status bar icon

 ‰ Sounds, lights, and vibrations

 ‰ Details displayed within the extended notifi cation tray

This section examines the fi rst two options. In the section “Setting and Customizing the
Notifi cation Tray UI,” you’ll learn how to confi gure the UI displayed for your Notifi cations within
the notifi cation tray.

Creating a Notifi cation and Confi guring the Status Bar Display

Start by creating a new Notifi cation object, passing in an icon to display on the status bar along
with the ticker text to display on the status bar when the Notifi cation is triggered, as shown in
Listing 10-34.

LISTING 10-34: Creating a Notifi cation

// Choose a drawable to display as the status bar icon
int icon = R.drawable.icon;
// Text to display in the status bar when the notification is launched
String tickerText = “Notification”;
// The extended status bar orders notification in time order
long when = System.currentTimeMillis();

Notification notification = new Notification(icon, tickerText, when);

code snippet PA4AD_Ch10_Notifi cations/src/MyActivity.java

The ticker text should be a short summary that describes what you are notifying the user of
(for example, an SMS message or email subject line).

You also need to specify the timestamp of the Notifi cation; the Notifi cation Manager will sort
Notifi cations in this order.

You can also set the Notifi cation object’s number property to display the number of events a status
bar icon represents. Setting this value to a number greater than 1, as shown in the following line of
code, overlays the values as a small number over the status bar icon:

notification.number++;

Before you can trigger the Notifi cation, you must update its contextual information, as described in
the section, “Setting and Customizing the Notifi cation Tray UI.” Once that’s done you can trigger
the Notifi cation as described in the section, “Triggering, Updating, and Canceling Notifi cations.”
This process will be explored in more detail later in this chapter.

c10.indd 407c10.indd 407 4/18/2012 3:51:48 PM4/18/2012 3:51:48 PM

Meier02275 c10 V3 - 14/04/2012 Page 408

408 x CHAPTER 10 EXPANDING THE USER EXPERIENCE

In the following sections you’ll learn to enhance Notifi cations to provide additional alerts
through hardware, particularly by making the device ring, fl ash, and vibrate. Android 3.0 (API
level 11) introduced the Notification.Builder class to simplify the process of adding these
additional features and will be covered in detail within the “Using the Notifi cation Builder”
section.

To use the Notifi cation techniques described in the following sections without
also displaying the status bar icon, simply cancel the Notifi cation directly after
triggering it. This stops the icon from displaying but doesn’t interrupt the other
effects.

Using the Default Notifi cation Sounds, Lights, and Vibrations

The simplest and most consistent way to add sounds, lights, and vibrations to your Notifi cations
is to use the default settings. Using the defaults property, you can combine the following
constants:

 ‰ Notification.DEFAULT_LIGHTS

 ‰ Notification.DEFAULT_SOUND

 ‰ Notification.DEFAULT_VIBRATE

For example, the following code snippet assigns the default sound and vibration settings to a
Notifi cation:

notification.defaults = Notification.DEFAULT_SOUND |
 Notification.DEFAULT_VIBRATE;

If you want to use all the default values, you can use the Notification.DEFAULT_ALL constant.

Making Sounds

Most native phone events, from incoming calls to new messages and low battery, are announced by
audible ringtones.

Android lets you assign any available audio fi le to signal a Notifi cation. Assign a new sound to a
Notifi cation using its sound property, specifying a URI to the audio fi le, as shown in the following
snippet:

Uri ringURI =
 RingtoneManager.getDefaultUri(RingtoneManager.TYPE_NOTIFICATION);

notification.sound = ringURI;

To use your own custom audio, push the fi le onto your device or include it as a raw resource, as
described in Chapter 15, “Audio, Video, and Using the Camera.”

c10.indd 408c10.indd 408 4/18/2012 3:51:48 PM4/18/2012 3:51:48 PM

Meier02275 c10 V3 - 14/04/2012 Page 409

Introducing Notifi cations x 409

Vibrating the Device

You can use the device’s vibrator to execute a vibration pattern specifi c to your Notifi cation.
Android lets you control the pattern of a vibration; you can use vibration to alert the user to
new information being available, or use a specifi c pattern to convey the information directly.

Before you can use vibration in your application, you need to request the VIBRATE uses-permission
in your manifest:

<uses-permission android:name=”android.permission.VIBRATE”/>

To set a vibration pattern, assign a long[] to the Notifi cation’s vibrate property. Construct the
array so that values representing the length of time (in milliseconds) to vibrate alternate with values
representing the length of time to pause.

The following example shows how to modify a Notifi cation to vibrate in a repeating pattern of
1 second on and 1 second off, for 5 seconds total:

long[] vibrate = new long[] { 1000, 1000, 1000, 1000, 1000 };
notification.vibrate = vibrate;

You can take advantage of this fi ne-grained control to pass contextual information to your users.

Flashing the Lights

Notifi cations also include properties to confi gure the color and fl ash frequency of the device’s LED.

Each device may have different limitations with regard to control over the LED.
If the color you specify is not available, as close an approximation as possible
will be used. When using LEDs to convey information to the user, keep this
limitation in mind and avoid making it the only way such information is made
available.

The ledARGB property can be used to set the LED’s color, whereas the ledOffMS and ledOnMS prop-
erties let you set the frequency and pattern of the fl ashing LED. You can turn on the LED by setting
the ledOnMS property to 1 and the ledOffMS property to 0, or turn it off by setting both properties
to 0.

After confi guring the LED settings, you must also add the FLAG_SHOW_LIGHTS fl ag to the
Notifi cation’s flags property. The following code snippet shows how to turn on the red device LED:

notification.ledARGB = Color.RED;
notification.ledOffMS = 0;
notification.ledOnMS = 1;
notification.flags = notification.flags | Notification.FLAG_SHOW_LIGHTS;

Controlling the color and fl ash frequency gives you another opportunity to pass additional informa-
tion to users.

c10.indd 409c10.indd 409 4/18/2012 3:51:48 PM4/18/2012 3:51:48 PM

Meier02275 c10 V3 - 14/04/2012 Page 410

410 x CHAPTER 10 EXPANDING THE USER EXPERIENCE

Using the Notifi cation Builder

The Notifi cation Builder, introduced in Android 3.0 (API level 11) to simplify the process of confi g-
uring the fl ags, options, content, and layout of Notifi cations, is the preferred alternative when con-
structing Notifi cations for newer Android platforms.

Listing 10-35 shows how to use the Notifi cation Builder to construct a Notifi cation using each of
the options selected in the preceding sections.

LISTING 10-35: Setting Notifi cation options using the Notifi cation Builder

Notification.Builder builder =
 new Notification.Builder(MyActivity.this);

builder.setSmallIcon(R.drawable.ic_launcher)
 .setTicker(“Notification”)
 .setWhen(System.currentTimeMillis())
 .setDefaults(Notification.DEFAULT_SOUND |
 Notification.DEFAULT_VIBRATE)
 .setSound(
 RingtoneManager.getDefaultUri(
 RingtoneManager.TYPE_NOTIFICATION))
 .setVibrate(new long[] { 1000, 1000, 1000, 1000, 1000 })
 .setLights(Color.RED, 0, 1);

Notification notification = builder.getNotification();

code snippet PA4AD_Ch10_Notifi cations/src/MyActivity.java

Setting and Customizing the Notifi cation Tray UI

You can confi gure the appearance of the Notifi cation within the extended notifi cation tray in a
number of ways:

 ‰ Use the setLatestEventInfo method to update the details displayed in the standard notifi -
cation tray display.

 ‰ Use the Notifi cation Builder to create and control one of several alternative notifi cation tray
UIs.

 ‰ Set the contentView and contentIntent properties to assign a custom UI for the extended
status display using a Remote Views object.

 ‰ From Android 3.0 (API level 11) onward, you can assign Broadcast Intents to each View
within the Remote Views object that describes your custom UI to make them fully interactive.

It’s good form to use one Notifi cation icon to represent multiple instances of the same event (e.g.,
receiving multiple SMS messages). To do this, create a new Notifi cation that will update the values
displayed in the notifi cation tray UI to refl ect the most recent message (or a summary of multiple
messages) and retrigger the Notifi cation to update the displayed values.

c10.indd 410c10.indd 410 4/18/2012 3:51:49 PM4/18/2012 3:51:49 PM

Meier02275 c10 V3 - 14/04/2012 Page 411

Introducing Notifi cations x 411

Using the Standard Notifi cation UI

The simplest approach is to use the setLatestE-
ventInfo method to specify the title and text
fi elds used to populate the default notifi cation tray
layout (see Figure 10-22).

notification.setLatestEventInfo(context,
 expandedTitle,
 expandedText,
 launchIntent);

The PendingIntent you specify will be fi red if a user clicks the Notifi cation item. In most cases that
Intent should open your application and navigate to the Activity that provides context for the notifi -
cation (e.g., showing an unread SMS or email message).

Android 3.0 (API level 11) expanded the size used for each Notifi cation, introducing support for a
larger icon to be displayed within the notifi cation tray. You can assign the large icon by assigning it
to the largeIcon property of your Notifi cation.

Alternatively, you can use the Notifi cation Builder
to populate these details, as shown in Listing
10-36. Note that using the Builder provides the
ability to set the info text that will be displayed
at the lower right of the Notifi cation, as shown in
Figure 10-23.

LISTING 10-36: Applying a custom layout to the Notifi cation status window

builder.setSmallIcon(R.drawable.ic_launcher)
 .setTicker(“Notification”)
 .setWhen(System.currentTimeMillis())
 .setContentTitle(“Title”)
 .setContentText(“Subtitle”)
 .setContentInfo(“Info”)
 .setLargeIcon(myIconBitmap)
 .setContentIntent(pendingIntent);

code snippet PA4AD_Ch10_Notifi cations/src/MyActivity.java

The Notifi cation Builder also provides sup-
port for displaying a progress bar within your
Notifi cation. Using the setProgress method,
you can specify the current progress in rela-
tion to a maximum value, as shown in Figure
10-24, or indicate that the progress should be
indeterminate:

builder.setSmallIcon(R.drawable.ic_launcher)
 .setTicker(“Notification”)

FIGURE 10-22

FIGURE 10-23

FIGURE 10-24

c10.indd 411c10.indd 411 4/18/2012 3:51:49 PM4/18/2012 3:51:49 PM

Meier02275 c10 V3 - 14/04/2012 Page 412

412 x CHAPTER 10 EXPANDING THE USER EXPERIENCE

 .setWhen(System.currentTimeMillis())
 .setContentTitle(“Progress”)
 .setProgress(100, 50, false)
 .setContentIntent(pendingIntent);

Creating a Custom Notifi cation UI

If the details available in the standard Notifi cation
display are insuffi cient (or unsuitable) for your
needs, you can create your own layout and assign
it to your Notifi cation using a Remote Views
object, as shown in Figure 10-25.

Listing 10-37 defi nes a custom layout that includes an icon, Text View, and progress bar.

LISTING 10-37: Creating a custom layout for the Notifi cation status window

<?xml version=”1.0” encoding=”utf-8”?>
<RelativeLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:padding=”5dp”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>
 <ImageView
 android:id=”@+id/status_icon”
 android:layout_width=”wrap_content”
 android:layout_height=”fill_parent”
 android:layout_alignParentLeft=”true”
 />
 <RelativeLayout
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 android:paddingLeft=”10dp”
 android:layout_toRightOf=”@id/status_icon”>
 <TextView
 android:id=”@+id/status_text”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:layout_alignParentTop=”true”
 android:textColor=”#000”
 android:textSize=”14sp”
 android:textStyle=”bold”
 />
 <ProgressBar
 android:id=”@+id/status_progress”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:layout_below=”@id/status_text”
 android:progressDrawable=”@android:drawable/progress_horizontal”
 android:indeterminate=”false”
 android:indeterminateOnly=”false”
 />

FIGURE 10-25

c10.indd 412c10.indd 412 4/18/2012 3:51:50 PM4/18/2012 3:51:50 PM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c10 V3 - 14/04/2012 Page 413

Introducing Notifi cations x 413

 </RelativeLayout>
</RelativeLayout>

code snippet PA4AD_Ch10_Notifi cations/res/layout/my_status_window.xml

To use this layout within a Notifi cation, you must package it within a Remote Views object:

RemoteViews myView =
 new RemoteViews(this.getPackageName(),
 R.layout.my_status_window_layout);

Remote Views are a mechanism that enables you to embed and control a layout embedded within
a separate application, most commonly when creating home screen Widgets. There are strict limits
on the Views you can use when creating a layout to be used for Remote Views. These are covered in
some detail in Chapter 14.

If you are using the Notifi cation Builder, you can assign your custom View using the setContent
method, as shown in Listing 10-38.

LISTING 10-38: Applying a custom layout to the Notifi cation status window

RemoteViews myRemoteView =
 new RemoteViews(this.getPackageName(),
 R.layout.my_notification_layout);

builder.setSmallIcon(R.drawable.notification_icon)
 .setTicker(“Notification”)
 .setWhen(System.currentTimeMillis())
 .setContentTitle(“Progress”)
 .setProgress(100, 50, false)
 .setContent(myRemoteView);

code snippet PA4AD_Ch10_Notifi cations/src/MyActivity.java

When targeting platform releases earlier than Android 3.0 (API level 11), you can assign your cus-
tom View to the Notifi cation’s contentView property. You will also need to assign a Pending Intent
to the contentIntent property:

Intent intent = new Intent(this, MyActivity.class);
PendingIntent pendingIntent
 = PendingIntent.getActivity(this, 0, intent, 0);

notification.contentView = new RemoteViews(this.getPackageName(),
 R.layout.my_status_window_layout);

notification.contentIntent = pendingIntent;

When you manually set the contentView property, you must also set the
contentIntent property; otherwise, an exception will be thrown when the noti-
fi cation is triggered.

c10.indd 413c10.indd 413 4/18/2012 3:51:50 PM4/18/2012 3:51:50 PM

Meier02275 c10 V3 - 14/04/2012 Page 414

414 x CHAPTER 10 EXPANDING THE USER EXPERIENCE

You can modify the properties and appearance of the Views used in your Notifi cation layout using
the set* methods on the Remote Views object, as shown in Listing 10-39, which modifi es each
View used in the layout defi ned in Listing 10-38.

LISTING 10-39: Customizing your extended Notifi cation window layout

notification.contentView.setImageViewResource(R.id.status_icon,
 R.drawable.icon);
notification.contentView.setTextViewText(R.id.status_text,
 “Current Progress:”);
notification.contentView.setProgressBar(R.id.status_progress,
 100, 50, false);

code snippet PA4AD_Ch10_Notifi cations/src/MyActivity.java

Note that to modify these views, you will need to broadcast a new Notifi cation with the updated
Remote Views object.

Android 4.0 (API level 14) introduced the ability to attach click listeners to the Views contained
within your custom Notifi cation layout. To assign a click listener to a View within your Remote
Views layout, use the setOnClickPendingIntent method, passing in the resource id of the View to
bind to, and a Pending Intent to broadcast when the View is clicked, as shown in Listing 10-40.

LISTING 10-40: Adding click handlers to your customized extended Notifi cation window layout

Intent newIntent = new Intent(BUTTON_CLICK);
PendingIntent newPendingIntent =
 PendingIntent.getBroadcast(MyActivity.this, 2, newIntent, 0);

notification.contentView.setOnClickPendingIntent(
 R.id.status_progress, newPendingIntent);

code snippet PA4AD_Ch10_Notifi cations/src/MyActivity.java

Clicking anywhere on the Notifi cation layout that isn’t bound in this way will trigger the
Notifi cation’s content Intent.

Using this mechanism, you can make your notifi cations fully interactive — effectively allowing you
to embed a home screen Widget within the Notifi cation tray.

This technique is particularly useful when used with ongoing events such as notifi cations associated
with media players, allowing users to control the playback with the pause and skip buttons.

Customizing the Ticker View

On some devices, particularly tablet devices, you can specify a Remote Views object that will be dis-
played within the system bar instead of the Notifi cation ticker text.

c10.indd 414c10.indd 414 4/18/2012 3:51:50 PM4/18/2012 3:51:50 PM

Meier02275 c10 V3 - 14/04/2012 Page 415

Introducing Notifi cations x 415

Use the setTicker method on the Notifi cation Builder to specify a Remote Views object to display,
as shown in Listing 10-41. Note that you must still specify the ticker text to display on devices that
don’t support the custom ticker view.

LISTING 10-41: Applying a custom layout to the Notifi cation ticker

RemoteViews myTickerView =
 new RemoteViews(this.getPackageName(),
 R.layout.my_ticker_layout);

builder.setSmallIcon(R.drawable.notification_icon)
 .setTicker(“Notification”, myTickerView)
 .setWhen(System.currentTimeMillis())
 .setContent(myRemoteView);

code snippet PA4AD_Ch10_Notifi cations/src/MyActivity.java

Confi guring Ongoing and Insistent Notifi cations

You can confi gure Notifi cations as insistent and/or ongoing by setting the FLAG_INSISTENT and
FLAG_ONGOING_EVENT fl ags, respectively.

Notifi cations fl agged as ongoing are used to represent events that are currently in progress (such as a
download in progress or music playing in the background).

Using the Notifi cation Builder, you can mark a Notifi cation as ongoing using the setOngoing
method, as shown in Listing 10-42.

LISTING 10-42: Setting an ongoing Notifi cation

builder.setSmallIcon(R.drawable.notification_icon)
 .setTicker(“Notification”)
 .setWhen(System.currentTimeMillis())
 .setContentTitle(“Progress”)
 .setProgress(100, 50, false)
 .setContent(myRemoteView)
 .setOngoing(true);

code snippet PA4AD_Ch10_Notifi cations/src/MyActivity.java

If you aren’t using the Notifi cation Builder, you can apply the Notification.FLAG_ONGOING_EVENT
fl ag directly to the Notifi cation’s flags property:

notification.flags = notification.flags |
 Notification.FLAG_ONGOING_EVENT;

An ongoing Notifi cation is a requirement for a foreground Service, as described in Chapter 9.

c10.indd 415c10.indd 415 4/18/2012 3:51:51 PM4/18/2012 3:51:51 PM

Meier02275 c10 V3 - 14/04/2012 Page 416

416 x CHAPTER 10 EXPANDING THE USER EXPERIENCE

Insistent Notifi cations repeat their audio, vibration, and light settings continuously until can-
celed. These Notifi cations should be used only for events that require immediate and timely atten-
tion — such as an incoming call or the ringing of a user-set alarm clock.

To make a Notifi cation insistent, apply the Notification.FLAG_INSISTENT fl ag directly to the
Notifi cation’s flags property:

notification.flags = notification.flags |
 Notification.FLAG_INSISTENT;

Note that insistent Notifi cations are particularly intrusive and should seldom be used within third-
party applications. This is refl ected in the lack of a corresponding Notifi cation Builder method for
setting this fl ag.

Triggering, Updating, and Canceling Notifi cations

To fi re a Notifi cation, pass it in to the notify method of the NotificationManager along with an
integer reference ID, as shown in Listing 10-43. If you’ve used a Notifi cation Builder to construct
the Notifi cation, use its getNotification method to obtain the Notifi cation to broadcast.

LISTING 10-43: Triggering a Notifi cation

String svc = Context.NOTIFICATION_SERVICE;

NotificationManager notificationManager
 = (NotificationManager)getSystemService(svc);

int NOTIFICATION_REF = 1;
Notification notification = builder.getNotification();

notificationManager.notify(NOTIFICATION_REF, notification);

code snippet PA4AD_Ch10_Notifi cations/src/MyActivity.java

To update a Notifi cation that’s already been fi red, including updating the UI of any attached content
View, retrigger it using the Notifi cation Manager, passing the notify method the same reference ID.

You can pass in either the same Notifi cation object or an entirely new one. As long as the ID values
are the same, the new Notifi cation will be used to replace the status icon and extended status win-
dow details.

To update a Notifi cation without triggering any of the associated lights, audio, or vibration settings,
use the Notifi cation Builder’s setOnlyAlertOnce method, as shown in Listing 10-44.

LISTING 10-44: Updating a Notifi cation without replaying the alerts

builder.setSmallIcon(R.drawable.notification_icon)
 .setTicker(“Updated Notification”)
 .setWhen(System.currentTimeMillis())
 .setContentTitle(“More Progress”)
 .setProgress(100, 75, false)

c10.indd 416c10.indd 416 4/18/2012 3:51:51 PM4/18/2012 3:51:51 PM

Meier02275 c10 V3 - 14/04/2012 Page 417

Introducing Notifi cations x 417

 .setContent(myRemoteView)
 .setOngoing(true)
 .setOnlyAlertOnce(true);

Notification notification = builder.getNotification();

notificationManager.notify(NOTIFICATION_REF, notification);

code snippet PA4AD_Ch10_Notifi cations/src/MyActivity.java

Alternatively, you can apply the FLAG_ONLY_ALERT_ONCE fl ag directly to the Notifi cation:

notification.flags = notification.flags |
 Notification.FLAG_ONLY_ALERT_ONCE;

Canceling a Notifi cation removes its icon from the status bar and its extended details from the
Notifi cation tray. It’s good practice to cancel a Notifi cation after the user has acted upon it — typi-
cally either by clicking it or by manually navigating to the application that launched it.

You can confi gure a Notifi cation to automatically cancel itself when it’s clicked by using the
Notifi cation Builder’s setAutoCancel fl ag, as shown in Listing 10-45.

LISTING 10-45: Setting an auto-cancel Notifi cation

builder.setSmallIcon(R.drawable.ic_launcher)
 .setTicker(“Notification”)
 .setWhen(System.currentTimeMillis())
 .setContentTitle(“Title”)
 .setContentText(“Subtitle”)
 .setContentInfo(“Info”)
 .setLargeIcon(myIconBitmap)
 .setContentIntent(pendingIntent)
 .setAutoCancel(true);

code snippet PA4AD_Ch10_Notifi cations/src/MyActivity.java

Alternatively, apply the FLAG_AUTO_CANCEL fl ag when not using the Notifi cation Builder:

notification.flags = notification.flags |
 Notification.FLAG_AUTO_CANCEL;

To cancel the Notifi cation, use the Notifi cation Manager’s cancel method, passing in the reference
id of the Notifi cation you want to cancel, as shown in Listing 10-46.

LISTING 10-46: Canceling a Notifi cation

notificationManager.cancel(NOTIFICATION_REF);

code snippet PA4AD_Ch10_Notifi cations/src/MyActivity.java

Canceling a Notifi cation removes its status bar icon and clears it from the extended status window.

c10.indd 417c10.indd 417 4/18/2012 3:51:51 PM4/18/2012 3:51:51 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Meier02275 c10 V3 - 14/04/2012 Page 418

418 x CHAPTER 10 EXPANDING THE USER EXPERIENCE

ADDING NOTIFICATIONS AND DIALOGS TO THE EARTHQUAKE

MONITOR

The following example enhances the EarthquakeUpdateService to trigger a Notifi cation for
each new earthquake. In addition to displaying a status bar icon, the Notifi cation tray view will
display the magnitude and location of the latest quake, and selecting the notifi cation will open the
Earthquake Activity.

You’ll also update the EarthquakeListFragment to display a summary dialog when an Earthquake
is selected.

1. Start within the EarthquakeUpdateService. Create a new Notifi cation Builder variable to
help construct the Notifi cations that will be used to create each Notifi cation:

private Notification.Builder earthquakeNotificationBuilder;
public static final int NOTIFICATION_ID = 1;

2. Extend the onCreate method to create the Notifi cation Builder object with the standard
Notifi cation items to be used. Note that you will need to create a Notifi cation icon and store
it in your res/drawable folder.

@Override
public void onCreate() {
 super.onCreate();

 alarmManager = (AlarmManager)getSystemService(Context.ALARM_SERVICE);

 String ALARM_ACTION;
 ALARM_ACTION =
 EarthquakeAlarmReceiver.ACTION_REFRESH_EARTHQUAKE_ALARM;
 Intent intentToFire = new Intent(ALARM_ACTION);
 alarmIntent =
 PendingIntent.getBroadcast(this, 0, intentToFire, 0);

 earthquakeNotificationBuilder = new Notification.Builder(this);
 earthquakeNotificationBuilder
 .setAutoCancel(true)
 .setTicker(“Earthquake detected”)
 .setSmallIcon(R.drawable.notification_icon);
}

3. Create a new broadcastNotification method that will update the Notifi cation Builder
instance using a Quake object. Use it to create and broadcast a Notifi cation.

private void broadcastNotification(Quake quake) {
 Intent startActivityIntent = new Intent(this, Earthquake.class);
 PendingIntent launchIntent =
 PendingIntent.getActivity(this, 0, startActivityIntent, 0);

 earthquakeNotificationBuilder
 .setContentIntent(launchIntent)
 .setWhen(quake.getDate().getTime())
 .setContentTitle(“M:” + quake.getMagnitude())

c10.indd 418c10.indd 418 4/18/2012 3:51:51 PM4/18/2012 3:51:51 PM

Meier02275 c10 V3 - 14/04/2012 Page 419

Adding Notifi cations and Dialogs to the Earthquake Monitor x 419

 .setContentText(quake.getDetails());

 NotificationManager notificationManager
 = (NotificationManager)getSystemService(Context.NOTIFICATION_SERVICE);

 notificationManager.notify(NOTIFICATION_ID,
 earthquakeNotificationBuilder.getNotification());
}

4. Update the addNewQuake method to broadcast the Notifi cation. Insert a call the broadcast-
Notification method immediately before the call to insert the new quake into the Content
Provider:

private void addNewQuake(Quake quake) {
 ContentResolver cr = getContentResolver();

 // Construct a where clause to make sure we don’t already have this
 // earthquake in the provider.
 String w = EarthquakeProvider.KEY_DATE + “ = “ + quake.getDate().getTime();

 // If the earthquake is new, insert it into the provider.
 Cursor query = cr.query(EarthquakeProvider.CONTENT_URI, null, w, null, null);

 if (query.getCount()==0) {
 ContentValues values = new ContentValues();

 values.put(EarthquakeProvider.KEY_DATE, quake.getDate().getTime());
 values.put(EarthquakeProvider.KEY_DETAILS, quake.getDetails());
 values.put(EarthquakeProvider.KEY_SUMMARY, quake.toString());

 double lat = quake.getLocation().getLatitude();
 double lng = quake.getLocation().getLongitude();
 values.put(EarthquakeProvider.KEY_LOCATION_LAT, lat);
 values.put(EarthquakeProvider.KEY_LOCATION_LNG, lng);
 values.put(EarthquakeProvider.KEY_LINK, quake.getLink());
 values.put(EarthquakeProvider.KEY_MAGNITUDE, quake.getMagnitude());

 // Trigger a notification.
 broadcastNotification(quake);

 // Add the new quake to the Earthquake provider.
 cr.insert(EarthquakeProvider.CONTENT_URI, values);
 }
 query.close();
}

5. To make the Notifi cation more interesting, modify the broadcastNotification method to
customize the extended Notifi cation settings such as lights and vibration based on the size of
the earthquake.

5.1 Add an audio component to the Notifi cation, ringing the default notifi cation ringtone if
a signifi cant earthquake (one with a magnitude greater than 6) occurs:

if (quake.getMagnitude() > 6) {

c10.indd 419c10.indd 419 4/18/2012 3:51:51 PM4/18/2012 3:51:51 PM

Meier02275 c10 V3 - 14/04/2012 Page 420

420 x CHAPTER 10 EXPANDING THE USER EXPERIENCE

 Uri ringURI =
 RingtoneManager.getDefaultUri(RingtoneManager.TYPE_NOTIFICATION);

 earthquakeNotificationBuilder.setSound(ringURI);
}

5.2 Set the device to vibrate in a pattern based on the power of the quake. Earthquakes are
measured on an exponential scale, so you’ll use the same scale when creating the vibra-
tion pattern.

 For a barely perceptible magnitude 1 quake, the phone will vibrate for a fraction of a
second; for one of magnitude 10, an earthquake that would split the earth in two, your
users will have a head start on the Apocalypse when their devices vibrate for a full 20
seconds.

 Most signifi cant quakes fall between 3 and 7 on the Richter scale, or a more reasonable
200-millisecond-to-4-second range of vibration duration.

double vibrateLength = 100*Math.exp(0.53*quake.getMagnitude());
long[] vibrate = new long[] {100, 100, (long)vibrateLength };
earthquakeNotificationBuilder.setVibrate(vibrate);

5.3 Help your users perceive the nuances of an exponential scale by also using the device’s
LED to help convey the magnitude. Here you color the LED based on the size of the
quake, and the frequency of the fl ashing is inversely related to the power of the quake:

int color;
if (quake.getMagnitude() < 5.4)
 color = Color.GREEN;
else if (quake.getMagnitude() < 6)
 color = Color.YELLOW;
else
 color = Color.RED;

earthquakeNotificationBuilder.setLights(
 color,
 (int)vibrateLength,
 (int)vibrateLength);

6. Add the vibrate uses-permission to your manifest:

<uses-permission android:name=”android.permission.VIBRATE”/>

7. Let users fi nd more details by opening a Dialog when they select an earthquake from the list.
Create a new quake_details.xml layout resource for the Dialog you’ll display when an
item is clicked:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:padding=”10dp”>

c10.indd 420c10.indd 420 4/18/2012 3:51:51 PM4/18/2012 3:51:51 PM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c10 V3 - 14/04/2012 Page 421

Adding Notifi cations and Dialogs to the Earthquake Monitor x 421

 <TextView
 android:id=”@+id/quakeDetailsTextView”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:textSize=”14sp”
 />
</LinearLayout>

8. Create a new EarthquakeDialog class that extends DialogFragment. It should accept a
Quake object and use that to populate the dialog.

package com.paad.earthquake;

import java.text.SimpleDateFormat;
import android.app.Dialog;
import android.app.DialogFragment;
import android.content.Context;
import android.os.Bundle;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.TextView;

public class EarthquakeDialog extends DialogFragment {

 private static String DIALOG_STRING = “DIALOG_STRING”;

 public static EarthquakeDialog newInstance(Context context, Quake quake) {
 // Create a new Fragment instance with the specified
 // parameters.
 EarthquakeDialog fragment = new EarthquakeDialog();
 Bundle args = new Bundle();

 SimpleDateFormat sdf = new SimpleDateFormat(”dd/MM/yyyy HH:mm:ss”);
 String dateString = sdf.format(quake.getDate());
 String quakeText = dateString + ”\n” + ”Magnitude ” + quake.getMagnitude() +
 ”\n” + quake.getDetails() + ”\n” +
 quake.getLink();

 args.putString(DIALOG_STRING, quakeText);
 fragment.setArguments(args);

 return fragment;
 }

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {

 View view = inflater.inflate(R.layout.quake_details, container, false);

 String title = getArguments().getString(DIALOG_STRING);
 TextView tv = (TextView)view.findViewById(R.id.quakeDetailsTextView);

c10.indd 421c10.indd 421 4/18/2012 3:51:52 PM4/18/2012 3:51:52 PM

Meier02275 c10 V3 - 14/04/2012 Page 422

422 x CHAPTER 10 EXPANDING THE USER EXPERIENCE

 tv.setText(title);

 return view;
 }

 @Override
 public Dialog onCreateDialog(Bundle savedInstanceState) {
 Dialog dialog = super.onCreateDialog(savedInstanceState);
 dialog.setTitle(”Earthquake Details”);
 return dialog;
 }
}

9. Finally, open the EarthquakeListFragment and override the onListItemClick handler to
create a new Quake object, and use it to create and show the Earthquake Dialog.

@Override
public void onListItemClick(ListView l, View v, int position, long id) {
 super.onListItemClick(l, v, position, id);

 ContentResolver cr = getActivity().getContentResolver();

 Cursor result =
 cr.query(ContentUris.withAppendedId(EarthquakeProvider.CONTENT_URI, id),
 null, null, null, null);

 if (result.moveToFirst()) {
 Date date =
 new Date(result.getLong(
 result.getColumnIndex(EarthquakeProvider.KEY_DATE)));

 String details =
 result.getString(
 result.getColumnIndex(EarthquakeProvider.KEY_DETAILS));

 double magnitude =
 result.getDouble(
 result.getColumnIndex(EarthquakeProvider.KEY_MAGNITUDE));

 String linkString =
 result.getString(
 result.getColumnIndex(EarthquakeProvider.KEY_LINK));

 double lat =
 result.getDouble(
 result.getColumnIndex(EarthquakeProvider.KEY_LOCATION_LAT));

 double lng =
 result.getDouble(
 result.getColumnIndex(EarthquakeProvider.KEY_LOCATION_LNG));

 Location location = new Location(“db”);
 location.setLatitude(lat);
 location.setLongitude(lng);

c10.indd 422c10.indd 422 4/18/2012 3:51:52 PM4/18/2012 3:51:52 PM

Meier02275 c10 V3 - 14/04/2012 Page 423

Adding Notifi cations and Dialogs to the Earthquake Monitor x 423

 Quake quake = new Quake(date, details, location, magnitude, linkString);

 DialogFragment newFragment = EarthquakeDialog.newInstance(getActivity(), quake);
 newFragment.show(getFragmentManager(), “dialog”);
 }
}

All code snippets in this example are part of the Chapter 10 Earthquake 3 proj-
ect, available for download at www.wrox.com.

With these changes complete, any new earthquake will trigger a Notifi cation, accompanied by fl ash-
ing lights, vibration, and a ringtone. Selecting any of the earthquakes from the list will display their
details in a Dialog.

c10.indd 423c10.indd 423 4/18/2012 3:51:52 PM4/18/2012 3:51:52 PM

http://www.wrox.com

c10.indd 424c10.indd 424 4/18/2012 3:51:52 PM4/18/2012 3:51:52 PM

Meier02275 c11 V3 - 03/22/2012 Page 425

11
Advanced User Experience

WHAT’S IN THIS CHAPTER?

 ‰ Resolution independence and designing for every screen

 ‰ Creating image assets in XML

 ‰ Making applications accessible

 ‰ Using the Text-to-Speech and speech recognition libraries

 ‰ Using animations

 ‰ Controlling hardware acceleration

 ‰ Using Surface Views

 ‰ Copy, paste, and the clipboard

In Chapter 4, “Building User Interfaces,” you learned the basics of creating user interfaces
(UIs) in Android with an introduction to Activities, Fragments, layouts, and Views. In Chapter
10, “Expanding the User Experience,” you expanded the user experience through using the
Action Bar, menu system, Dialogs, and Notifi cations.

It’s important to think beyond the bounds of necessity and create applications that combine
purpose with beauty and simplicity, even when they provide complex functionality.

As you design apps to work with Android, consider these goals: Enchant
me. Simplify my life. Make me amazing.

 — Android Design Creative Vision, http://developer.android.com/design/
get-started/creative-vision.html

This chapter introduces you to some best practices and techniques to create user experiences
that are compelling and aesthetically pleasing on a diverse range of devices and for an equally
diverse range of users.

c11.indd 425c11.indd 425 4/11/2012 10:20:01 AM4/11/2012 10:20:01 AM

http://developer.android.com/design

Meier02275 c11 V3 - 03/22/2012 Page 426

426 x CHAPTER 11 ADVANCED USER EXPERIENCE

You start with an introduction to the best practices for creating resolution- and density-independent
UIs, and how to use Drawables to create scalable image assets, before learning how to ensure your
applications are accessible and use the text-to-speech and speech recognition APIS.

You also discover how to use animations to make your UIs more dynamic, and how to enhance the
custom Views you created in Chapter 4 using advanced canvas-drawing techniques.

When designing and implementing your application’s UX design, be sure to refer to the guidelines
on the Android Design site at http://developer.android.com/design.

DESIGNING FOR EVERY SCREEN SIZE AND DENSITY

The fi rst four Android handsets all featured 3.2” HVGA screens. By the start of 2010, the number
of devices running Android exploded, with the increased diversity of handsets heralding variations
in screen sizes and pixel densities. In 2011, tablets and Google TV introduced further variation with
signifi cantly larger screens and even greater variation in resolution and pixel density.

To provide a great user experience on all Android devices, it’s important to create your UIs knowing
that your applications can run on a broad variety of screen resolutions and physical screen sizes. In
practice, this means that just as with websites and desktop applications, you must design and build
your applications with the expectation that they can run an infi nitely varied set of devices. That
means supplying scalable image assets for a variety of pixel densities, creating layouts that scale to
fi t the available display, and designing layouts optimized for different device categories based on the
screen size and interaction model.

The following sections begin by describing the range of screens you need to consider, and how to
support them, before summarizing some of the best practices to ensure your applications are resolu-
tion- and density-independent, and optimized for different screen sizes and layouts.

The Android Developer site includes some excellent tips for supporting multiple
screen types. You can fi nd this documentation at http://developer.android
.com/guide/practices/screens_support.html.

Resolution Independence

A display’s pixel density is calculated as a function of the physical screen size and resolution, refer-
ring to the number of physical pixels on a display relative to the physical size of that display. It’s
typically measured in dots per inch (dpi).

Using Density-Independent Pixels

As a result of the variations in screen size and resolution for Android devices, the same number
of pixels can correspond to different physical sizes on different devices based on the screen’s DPI.
This makes it impossible to create consistent layouts by specifying pixels. Instead, Android uses

c11.indd 426c11.indd 426 4/11/2012 10:20:04 AM4/11/2012 10:20:04 AM

http://developer.android.com/design
http://developer.android

Meier02275 c11 V3 - 03/22/2012 Page 427

Designing for Every Screen Size and Density x 427

density-independent pixels (dp) to specify screen dimensions that scale to appear the same on screens
of the same size but which use different pixel densities.

In practical terms, one density-independent pixel (dp) is equivalent to one pixel on a 160dpi screen.
For example, a line specifi ed as 2dp wide appears as 3 pixels on a display with 240dpi.

Within your application you should always use density-independent pixels, avoiding specifying any
layout dimensions, View sizes, or Drawable dimensions using pixel values.

In addition to dp units, Android also uses a scale-independent pixel (sp) for the special case of font
sizes. Scale-independent pixels use the same base unit as density-independent pixels but are addi-
tionally scaled according to the user’s preferred text size.

Resource Qualifi ers for Pixel Density

Scaling bitmap images can result in either lost detail (when scaling downward) or pixilation (when
scaling upward). To ensure that your UI is crisp, clear, and devoid of artifacts, it’s good practice to
include multiple image assets for different pixel densities.

Chapter 3, “Creating Applications and Activities,” introduced you to the Android resource frame-
work, which enables you to create a parallel directory structure to store external resources for dif-
ferent host hardware confi gurations.

When using Drawable resources that cannot be dynamically scaled well, you should create and
include image assets optimized for each pixel density category.

 ‰ res/drawable-ldpi — Low-density resources for screens approximately 120dpi

 ‰ res/drawable-mdpi — Medium-density resources for screens approximately 160pi

 ‰ res/drawable-tvdpi — Medium- to high-density resources for screens approximately
213dpi; introduced in API level 13 as a specifi c optimization for applications targeting
televisions

 ‰ res/drawable-hdpi — High-density resources for screens approximately 240dpi

 ‰ res/drawable-xhdpi — Extra-high density resources for screens approximately 320dpi

 ‰ res/drawable-nodpi — Used for resources that must not be scaled regardless of the host
screen’s density

Supporting and Optimizing for Diff erent Screen Sizes

Android devices can come in all shapes and sizes, so when designing your UI it’s important to
ensure that your layouts not only support different screen sizes, orientations, and aspect ratios, but
also that they are optimized for each.

It’s neither possible nor desirable to create a different absolute layout for each specifi c screen con-
fi guration; instead, it’s best practice to take a two-phased approach:

 ‰ Ensure that all your layouts are capable of scaling within a reasonable set of bounds.

 ‰ Create a set of alternative layouts whose bounds overlap such that all possible screen confi gu-
rations are considered.

c11.indd 427c11.indd 427 4/11/2012 10:20:05 AM4/11/2012 10:20:05 AM

Meier02275 c11 V3 - 03/22/2012 Page 428

428 x CHAPTER 11 ADVANCED USER EXPERIENCE

In practice this approach is similar to that taken by most websites and desktop applications. After
a fl ing with fi xed-width pages in the ’90s, websites now scale to fi t the available space on desktop
browsers and offer an alternative CSS defi nition to provide an optimized layout on tablets or mobile
devices.

Using the same approach, you can create optimized layouts for certain categories of screen confi gu-
rations, which are capable of scaling to account for variation within that category.

Creating Scalable Layouts

The layout managers provided by the framework are designed to support the implementation of UIs
that scale to fi t the available space. In all cases, you should avoid defi ning the location of your layout
elements in absolute terms.

Using the Linear Layout you can create layouts represented by simple columns or rows that fi ll the
available width or height of the screen, respectively.

The Relative Layout is a fl exible alternative that enables you to defi ne the position of each UI ele-
ment relative to the parent Activity and the other elements used within the layout.

When defi ning the height or width of your scalable UI elements (such as Buttons and Text Views) it’s
good practice to avoid providing specifi c dimensions. Instead, you can defi ne the height and width
of Views using wrap_content or match_parent attributes, as appropriate.

<Button
 android:id=”@+id/button”
 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/buttonText”
/>

The wrap_content fl ag enables the View to defi ne its size based on the amount of space potentially
available to it, whereas the match_parent fl ag (formally fill_parent) enables the element to
expand as necessary to fi ll the available space.

Deciding which screen element should expand (or contract) when the screen size changes is one of
the most important factors in optimizing your layouts for variable screen dimensions.

Android 4.0 (API level 14) introduced the Grid Layout, a highly fl exible layout designed to reduce
nesting and simplify the creation of adaptive and dynamic layouts.

Optimizing Layouts for Diff erent Screen Types

In addition to providing layouts that scale, you should consider creating alternative layout defi ni-
tions optimized for different screen sizes.

There is a signifi cant difference in screen available on a 3” QVGA smartphone display compared to
a high-resolution 10.1” tablet. Similarly, and particularly for devices with signifi cant aspect ratios,
a layout that works well viewed in landscape mode might be unsuitable when the device is rotated
into portrait.

c11.indd 428c11.indd 428 4/11/2012 10:20:05 AM4/11/2012 10:20:05 AM

Meier02275 c11 V3 - 03/22/2012 Page 429

Designing for Every Screen Size and Density x 429

Creating a layout that scales to accommodate the space available is a good fi rst step; it’s good
practice to consider ways that you can take advantage of the extra space (or consider the effect of
reduced space) to create a better user experience.

This is a similar approach to websites that provide a specialized layout for users on smartphones,
tablets, or desktop browsers. For Android users, the lines between each device category are blurred,
so it’s best practice to optimize your layouts based on the available space rather than the type of
device.

The Android resource framework provides several options to supply different layouts based on the
screen size and properties.

Use the long and notlong decorators to supply layouts optimized for normal versus widescreen dis-
plays, and use the port and land decorators to indicate layouts to be used when the screen is viewed
in portrait or landscape modes, respectively.

res/layout-long-land/ // Layouts for long screens in landscape mode.
res/layout-notlong-port/ // Layouts for not-long screens in portrait mode.

In terms of screen size, two options are available. Android 3.2 (API level 13) introduced the capa-
bility to provide layouts based on the current screen width/height, or the smallest available screen
width:

res/layout-w600dp
res/layout-h720dp
res/layout-sw320dp

These decorators enable you to determine the lowest number of device-independent pixels your
layout requires in terms of height and width, and supply an alternative layout for devices that fall
outside those bounds.

If you plan to make your application available to earlier versions of Android, it’s good practice to
use these modifi ers in conjunction with the small, medium, large, and xlarge decorators.

res/layout-small
res/layout-normal
res/layout-large
res/layout-xlarge

These buckets, although less specifi c, enable you to supply a different layout based on the size of the
host device relative to a “normal” HVGA smartphone display.

Typically, you can use these various decorators together to create layouts optimized for various sizes
and orientations. This can lead to situations in which two or more screen confi gurations should use
the same layout. To avoid duplication, you can defi ne aliases.

An alias enables you to create an empty layout defi nition that can be confi gured to return a specifi c
resource when another one is requested. For example, within your resources hierarchy, you could
include a res/layout/main_multipanel.xml layout that contains a multipanel layout and a res/
layout/main_singlepanel.xml resource that contains a single-panel layout.

c11.indd 429c11.indd 429 4/11/2012 10:20:05 AM4/11/2012 10:20:05 AM

Meier02275 c11 V3 - 03/22/2012 Page 430

430 x CHAPTER 11 ADVANCED USER EXPERIENCE

Create a res/values/layout.xml fi le that uses an alias to select the single panel layout:

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
 <item name=”main” type=”layout”>@layout/main_singlepanel</item>
</resources>

For each specifi c confi guration that should use the multi-panel resource, create a corresponding val-
ues folder:

res/values-large-land
res/values-xlarge

And create and add a new layout.xml resource to them:

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
 <item name=”main” type=”layout”>@layout/main_multipanel</item>
</resources>

Within your code, simply refer to the R.layout.main resource to let the system decide which under-
lying layout resource to use. Note that you cannot use the alias name you specify as resource identi-
fi er for any layouts stored within the res/layout folder; if you do, there will be a naming collision.

Specifying Supported Screen Sizes

For some applications it may not be possible to optimize your UI to support all possible screen sizes.
You can use the supports-screens manifest element to specify on which screens your application
can be run:

<supports-screens android:smallScreens=”false”
 android:normalScreens=”true”
 android:largeScreens=”true”
 android:xlargeScreens=”true”/>

In this context a small screen is any display with a resolution smaller than HVGA; a large screen is
larger than a smartphone; an extra large screen is signifi cantly larger (such as a tablet); and normal
screens encompass the majority of smartphone handsets.

A false value forces Android to use compatibility scaling to attempt to scale your application UI
correctly. This generally results in a UI with degraded image assets that show scaling artifacts.

Mirroring the new resource decorators described in the previous section, Android 3.2 (API level 13)
introduced the requiresSmallestWidthDp, compatibleWidthLimitDp, and largestWidth
LimitDp attributes to the supports-screen node:

<supports-screens android:requiresSmallestWidthDp=”480”
 android:compatibleWidthLimitDp=”600”
 android:largestWidthLimitDp=”720”/>

Although neither the Android run time nor the Google Play Store currently use these parameters
to enforce compatibility, they will eventually be used on the Google Play Store in preference to the
small, normal, large, and extra large parameters on supported devices.

c11.indd 430c11.indd 430 4/11/2012 10:20:05 AM4/11/2012 10:20:05 AM

Meier02275 c11 V3 - 03/22/2012 Page 431

Designing for Every Screen Size and Density x 431

Creating Scalable Graphics Assets

Android includes a number of simple Drawable resource types that can be defi ned entirely in
XML. These include the ColorDrawable, ShapeDrawable, and GradientDrawable classes. These
resources are stored in the res/drawable folder and can be identifi ed in code by their lowercase
XML fi lenames.

When these Drawables are defi ned in XML, and you specify their attributes using density-indepen-
dent pixels, the run time smoothly scales them. Like vector graphics, these Drawables can be scaled
dynamically to display correctly and without scaling artifacts regardless of screen size, resolution, or
pixel density. The notable exceptions to this rule are Gradient Drawables, which require a gradient
radius defi ned in pixels.

As you see later in this chapter, you can use these Drawables in combination with transformative
Drawables and composite Drawables. Together, they can result in dynamic, scalable UI elements
that require fewer resources and appear crisp on any screen. They are ideal to use as backgrounds
for Views, layouts, Activities, and the Action Bar.

Android also supports NinePatch PNG images that enable you to mark the parts of an image that
can be stretched.

Color Drawables

A ColorDrawable, the simplest of the XML-defi ned Drawables, enables you to specify an image
asset based on a single solid color. Color Drawables, such as this solid red Drawable, are defi ned as
XML fi les using the color tag in the res/drawable folder:

<color xmlns:android=”http://schemas.android.com/apk/res/android”
 android:color=”#FF0000”
/>

Shape Drawables

Shape Drawable resources let you defi ne simple primitive shapes by defi ning their dimensions, back-
ground, and stroke/outline using the shape tag.

Each shape consists of a type (specifi ed via the shape attribute), attributes that defi ne the dimen-
sions of that shape, and subnodes to specify padding, stroke (outline), and background color values.

Android currently supports the following shape types as values for the shape attribute:

 ‰ line — A horizontal line spanning the width of the parent View. The line’s width and style
are described by the shape’s stroke.

 ‰ oval — A simple oval shape.

 ‰ rectangle — A simple rectangle shape. Also supports a corners subnode that uses a
radius attribute to create a rounded rectangle.

 ‰ ring — Supports the innerRadius and thickness attributes to let you specify the inner
radius of the ring shape and its thickness, respectively. Alternatively, you can use inner
RadiusRatio and thicknessRatio to defi ne the ring’s inner radius and thickness,
respectively, as a proportion of its width (where an inner radius of a quarter of the width
would use the value 4).

c11.indd 431c11.indd 431 4/11/2012 10:20:05 AM4/11/2012 10:20:05 AM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c11 V3 - 03/22/2012 Page 432

432 x CHAPTER 11 ADVANCED USER EXPERIENCE

Use the stroke subnode to specify an outline for your shapes using width and color
attributes.

You can also include a padding node to offset the positioning of your shape on the canvas.

More usefully, you can include a subnode to specify the background color. The simplest case
involves using the solid node, including the color attribute, to define a solid background
color.

The following snippet shows a rectangular Shape Drawable with a solid fi ll, rounded edges, 10dp
outline, and 10dp of padding around each edge. Figure 11-1 shows the result.

<?xml version=”1.0” encoding=”utf-8”?>
<shape xmlns:android=”http://schemas.android.com/apk/res/android”
 android:shape=”rectangle”>
 <solid
 android:color=”#f0600000”/>
 <stroke
 android:width=”10dp”
 android:color=”#00FF00”/>
 <corners
 android:radius=”15dp” />
 <padding
 android:left=”10dp”
 android:top=”10dp”
 android:right=”10dp”
 android:bottom=”10dp”
 />

</shape>

The following section describes the GradientDrawable class and
how to specify a gradient fi ll for your Shape Drawables.

Gradient Drawables

A GradientDrawable lets you design complex gradient fi lls. Each
gradient defi nes a smooth transition between two or three colors in
a linear, radial, or sweep pattern.

Gradient Drawables are defi ned using the gradient tag as a subnode within a Shape Drawable defi -
nition (such as those defi ned in the preceding section).

Each Gradient Drawable requires at least a startColor and endColor attribute and supports
an optional middleColor. Using the type attribute you can defi ne your gradient as one of the
following:

 ‰ linear — The default gradient type, it draws a straight color transition from startColor to
endColor at an angle defi ned by the angle attribute.

 ‰ radial — Draws a circular gradient from startColor to endColor from the outer edge of
the shape to the center. It requires a gradientRadius attribute that specifi es the radius of the
gradient transition in pixels. It also optionally supports centerX and centerY attributes to
offset the location of the center of the gradient.

FIGURE 11-1

c11.indd 432c11.indd 432 4/11/2012 10:20:05 AM4/11/2012 10:20:05 AM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c11 V3 - 03/22/2012 Page 433

Designing for Every Screen Size and Density x 433

Because the gradient radius is defi ned in pixels, it does not dynamically scale for different
pixel densities. To minimize banding, you may need to specify different gradient radius val-
ues for different screen resolutions and pixel densities.

 ‰ sweep — Draws a sweep gradient that transitions from startColor to endColor along the
outer edge of the parent shape (typically a ring).

The following snippets show the XML for a linear gradient within a rectangle, a radial gradient
within an oval, and a sweep gradient within a ring, as shown in Figure 11-2. Note that each would
need to be created in a separate fi le within the res/drawable folder.

<!-- Rectangle with linear gradient -->
<?xml version=”1.0” encoding=”utf-8”?>
<shape xmlns:android=”http://schemas.android.com/apk/res/android”
 android:shape=”rectangle”
 android:useLevel=”false”>
 <gradient
 android:startColor=”#ffffff”
 android:endColor=”#ffffff”
 android:centerColor=”#000000”
 android:useLevel=”false”
 android:type=”linear”
 android:angle=”45”
 />
</shape>

<!-- Oval with radial gradient -->
<?xml version=”1.0” encoding=”utf-8”?>
<shape xmlns:android=”http://schemas.android.com/apk/res/android”
 android:shape=”oval”
 android:useLevel=”false”>
 <gradient
 android:type=”radial”
 android:startColor=”#ffffff”
 android:endColor=”#ffffff”
 android:centerColor=”#000000”
 android:useLevel=”false”
 android:gradientRadius=”300”
 />
</shape>

<!-- Ring with sweep gradient -->
<?xml version=”1.0” encoding=”utf-8”?>
<shape xmlns:android=”http://schemas.android.com/apk/res/android”
 android:shape=”ring”
 android:useLevel=”false”
 android:innerRadiusRatio=”3”
 android:thicknessRatio=”8”>
 <gradient
 android:startColor=”#ffffff”
 android:endColor=”#ffffff”
 android:centerColor=”#000000”
 android:useLevel=”false”
 android:type=”sweep”
 />
</shape>

c11.indd 433c11.indd 433 4/11/2012 10:20:05 AM4/11/2012 10:20:05 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://schemas.android.com/apk/res/android%E2%80%9D
http://schemas.android.com/apk/res/android%E2%80%9D
http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c11 V3 - 03/22/2012 Page 434

434 x CHAPTER 11 ADVANCED USER EXPERIENCE

FIGURE 11-2

NinePatch Drawables

NinePatch (or stretchable) images are PNG fi les that mark the parts of an image that can be
stretched. They’re stored in your res/drawable folders with names ending in .9.png extensions.

res/drawable/stretchable_background.9.png

NinePatches use a one-pixel border to defi ne the area of the image that can be stretched if the image
is enlarged. This makes them particularly useful for creating backgrounds for Views or Activities
that may have a variable size.

To create a NinePatch, draw single-pixel black lines that represent
stretchable areas along the left and top borders of your image, as
shown in Figure 11-3.

The unmarked sections won’t be resized, and the relative size of each
of the marked sections remains the same as the image size changes, as
shown in Figure 11-4.

To simplify the process to create NinePatch images for your applica-
tion, the Android SDK includes a WYSIWIG draw9patch tool in the
/tools folder.

Creating Optimized, Adaptive,
and Dynamic Designs

When designing your UI, it’s important to ensure that not only are
your assets and layouts scalable, but also that they are optimized for
a variety of different device types and screen sizes. A layout that looks
great on a smartphone may suffer from excessive whitespace or line lengths on a tablet.
Conversely, a layout optimized for a tablet device may appear cramped on a smartphone.

It’s good practice to build optimized layouts for several different screen sizes that take advantage of
their relative size and aspect ratio. The specifi c techniques used to design such UIs are beyond the
scope of this book, but they are covered in detail at the Android Training site: http://developer
.android.com/training/design-navigation/index.html.

FIGURE 11-3

FIGURE 11-4

c11.indd 434c11.indd 434 4/11/2012 10:20:06 AM4/11/2012 10:20:06 AM

http://developer

Meier02275 c11 V3 - 03/22/2012 Page 435

Designing for Every Screen Size and Density x 435

Testing, Testing, Testing

With hundreds of Android devices of varying screen sizes and pixel densities now available,
it’s impractical (and in some cases impossible) to physically test your application on every
device.

Android Virtual Devices (AVDs) are ideal platforms for testing your application with a number of
different screen confi gurations. AVDs also have the advantage to let you confi gure alternative plat-
form releases and hardware confi gurations.

You learned how to create and use AVDs in Chapter 2, “Getting Started,” so this section focuses on
how to create AVDs representative of different screens.

Using Emulator Skins

The simplest way to test your application’s UI is to use the built-in skins. Each skin emulates a
known device confi guration with a resolution, pixel density, and physical screen size.

As of Android 4.0.3, the following built-in skins are available for testing:

 ‰ QVGA — 320 × 240, 120dpi, 3.3”

 ‰ WQVGA43 — 432 × 240, 120dpi, 3.9”

 ‰ WQVGA400 — 240 × 400, 120dpi, 3.9”

 ‰ WSVGA — 1024 × 600, 160dpi, 7”

 ‰ WXGA720 — 720 ×1280, 320dpi, 4.8” (Galaxy Nexus)

 ‰ WXGA800 — 1280 × 800, 160dpi, 10.1” (Motorola Xoom)

 ‰ HVGA — 480 × 320, 160dpi, 3.6”

 ‰ WVGA800 — 800 × 480, 240dpi, 3.9” (Nexus One)

 ‰ WVGA854 — 854 × 480, 240dpi, 4.1”

Testing for Custom Resolutions and Screen Sizes

One of the advantages of using an AVD to evaluate devices is the abil-
ity to defi ne arbitrary screen resolutions and pixel densities.

When you start a new AVD, you see the Launch Options dialog, as
shown in Figure 11-5. If you check the Scale Display to Real Size check
box and specify a screen size for your virtual device, as well as the dpi
of your development monitor, the emulator scales to approximately the
physical size you specifi ed.

This enables you to evaluate your UI against a variety of screen sizes
and pixel densities as well as resolutions and skins — an ideal way to
see how your application appears on a small, high-resolution phone or
a large, low-resolution tablet. FIGURE 11-5

c11.indd 435c11.indd 435 4/11/2012 10:20:06 AM4/11/2012 10:20:06 AM

Meier02275 c11 V3 - 03/22/2012 Page 436

436 x CHAPTER 11 ADVANCED USER EXPERIENCE

ENSURING ACCESSIBILITY

An important part of creating an inclusive and compelling UI is to ensure that it can be used by
people with disabilities that require them to interact with their devices in different ways.

Accessibility APIs were introduced in Android 1.6 (API level 4) to provide alternative interaction
methods for users with visual, physical, or age-related disabilities that make it diffi cult to interact
fully with a touch screen.

In Chapter 4 you learned how to make your custom Views accessible and navigable. This section
summarizes some of the best practices to ensure your entire user experience is accessible.

Supporting Navigation Without a Touch Screen

Directional controllers, such as trackballs, D-pads, and arrow keys, are the primary means of navi-
gation for many users. To ensure that your UI is navigable without requiring a touch screen, it’s
important that your application supports each of these input mechanisms.

The fi rst step is to ensure that each input View is focusable and clickable. Pressing the center or OK
button should then affect the focused control in the same way as touching it using the touch screen.

It’s good practice to visually indicate when a control has the input focus, allowing users to know
which control they are interacting with. All the Views included in the Android SDK are focusable.

The Android run time determines the focus order for each control in your layout based on an algo-
rithm that fi nds the nearest neighbor in a given direction. You can manually override that order
using the android:nextFocusDown, android:nextFocusLeft, android:nextFocusRight, and
android:nextFocusUp attributes for any View within your layout defi nition. It’s good practice to
ensure that consecutive navigation movements in the opposite direction should return you to your
original location.

Providing a Textual Description of Each View

Context is of critical importance when designing your UI. Button images, text labels, or even the
relative location of each control can be used to indicate the purpose of each input View.

To ensure your application is accessible, consider how a user without visual context can navigate
and use your UI. To assist, each View can include an android:contentDescription attribute that
can be read aloud to users who have enabled the accessibility speech tools:

<Button
 android:id=”@+id/pick_contact_button”
 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/pick_contact_button”
 android:contentDescription=”@string/pick_contact_button_description”
/>

Every View within your layout that can hold focus should have a content description that provides
the entire context necessary for a user to act on it.

c11.indd 436c11.indd 436 4/11/2012 10:20:06 AM4/11/2012 10:20:06 AM

Meier02275 c11 V3 - 03/22/2012 Page 437

Introducing Android Text-to-Speech x 437

INTRODUCING ANDROID TEXT-TO-SPEECH

The text-to-speech (TTS) libraries, also known as speech synthesis, enable you to output synthesized
speech from within your applications, allowing them to “talk” to your users.

Android 4.0 (API level 14) introduced the ability for application developers to
implement their own text-to-speech engines and make them available to other
applications. Creating a speech synthesis engine is beyond the scope of this
book and won’t be covered here. You can fi nd further resources on the Android
Developer site, at http://developer.android.com/resources/articles/
tts.html.

Due to storage space constraints on some Android devices, the language packs are not always prein-
stalled on each device. Before using the TTS engine, it’s good practice to confi rm the language packs
are installed.

To check for the TTS libraries, start a new Activity for a result using the ACTION_CHECK_TTS_DATA
action from the TextToSpeech.Engine class:

Intent intent = new Intent(TextToSpeech.Engine.ACTION_CHECK_TTS_DATA);
startActivityForResult(intent, TTS_DATA_CHECK);

The onActivityResult handler receives CHECK_VOICE_DATA_PASS if the voice data has been
installed successfully. If the voice data is not currently available, start a new Activity using the
ACTION_INSTALL_TTS_DATA action from the TTS Engine class to initiate its installation.

Intent installVoice = new Intent(Engine.ACTION_INSTALL_TTS_DATA);
startActivity(installVoice);

After confi rming the voice data is available, you need to create and initialize a new TextToSpeech
instance. Note that you cannot use the new Text To Speech object until initialization is complete.
Pass an OnInitListener into the constructor that will be fi red when the TTS engine has been
initialized.

boolean ttsIsInit = false;
TextToSpeech tts = null;

protected void onActivityResult(int requestCode,
 int resultCode, Intent data) {
 if (requestCode == TTS_DATA_CHECK) {
 if (resultCode == Engine.CHECK_VOICE_DATA_PASS) {
 tts = new TextToSpeech(this, new OnInitListener() {
 public void onInit(int status) {
 if (status == TextToSpeech.SUCCESS) {
 ttsIsInit = true;
 // TODO Speak!
 }
 }

c11.indd 437c11.indd 437 4/11/2012 10:20:06 AM4/11/2012 10:20:06 AM

http://developer.android.com/resources/articles

Meier02275 c11 V3 - 03/22/2012 Page 438

438 x CHAPTER 11 ADVANCED USER EXPERIENCE

 });
 }
 }
}

After initializing Text To Speech, you can use the speak method to synthesize voice data using the
default device audio output:

HashMap parameters = null;
tts.speak(“Hello, Android”, TextToSpeech.QUEUE_ADD, parameters);

The speak method enables you to specify a parameter either to add the new voice output to the
existing queue or to fl ush the queue and start speaking immediately.

You can affect the way the voice output sounds using the setPitch and setSpeechRate methods.
Each method accepts a fl oat parameter that modifi es the pitch and speed, respectively, of the voice
output.

You can also change the pronunciation of your voice output using the setLanguage method. This
method takes a Locale parameter to specify the country and language of the text to speak. This
affects the way the text is spoken to ensure the correct language and pronunciation models are used.

When you have fi nished speaking, use stop to halt voice output and shutdown to free the TTS
resources:

tts.stop();
tts.shutdown();

Listing 11-1 determines whether the TTS voice library is installed, initializes a new TTS engine, and
uses it to speak in UK English.

LISTING 11-1: Using Text-to-Speech

private static int TTS_DATA_CHECK = 1;

private TextToSpeech tts = null;
private boolean ttsIsInit = false;

private void initTextToSpeech() {
 Intent intent = new Intent(Engine.ACTION_CHECK_TTS_DATA);
 startActivityForResult(intent, TTS_DATA_CHECK);
}

protected void onActivityResult(int requestCode,
 int resultCode, Intent data) {
 if (requestCode == TTS_DATA_CHECK) {
 if (resultCode == Engine.CHECK_VOICE_DATA_PASS) {
 tts = new TextToSpeech(this, new OnInitListener() {
 public void onInit(int status) {
 if (status == TextToSpeech.SUCCESS) {
 ttsIsInit = true;
 if (tts.isLanguageAvailable(Locale.UK) >= 0)

c11.indd 438c11.indd 438 4/11/2012 10:20:07 AM4/11/2012 10:20:07 AM

Meier02275 c11 V3 - 03/22/2012 Page 439

Using Speech Recognition x 439

 tts.setLanguage(Locale.UK);
 tts.setPitch(0.8f);
 tts.setSpeechRate(1.1f);
 speak();
 }
 }
 });
 } else {
 Intent installVoice = new Intent(Engine.ACTION_INSTALL_TTS_DATA);
 startActivity(installVoice);
 }
 }
}

private void speak() {
 if (tts != null && ttsIsInit) {
 tts.speak(“Hello, Android”, TextToSpeech.QUEUE_ADD, null);
 }
}

@Override
public void onDestroy() {
 if (tts != null) {
 tts.stop();
 tts.shutdown();
 }
 super.onDestroy();
}

code snippet PA4AD_Ch11_TextToSpeach/src/MyActivity.java

USING SPEECH RECOGNITION

Android supports voice input and speech recognition using the
RecognizerIntent class. This API enables you to accept voice
input into your application using the standard voice input dialog, as
shown in Figure 11-6.

To initialize voice recognition, call startNewActivityFor
Result, passing in an Intent that specifi es the RecognizerIntent
.ACTION_RECOGNIZE_SPEECH or RecognizerIntent.ACTION_WEB_
SEARCH actions. The former action enables you to receive the input
speech within your application, whereas the latter action enables
you to trigger a web search or voice action using the native
providers.

The launch Intent must include the RecognizerIntent.EXTRA_
LANGUAGE_MODEL extra to specify the language model used to parse
the input audio. This can be either LANGUAGE_MODEL_FREE_FORM
or LANGUAGE_MODEL_WEB_SEARCH; both are available as static con-
stants from the RecognizerIntent class. FIGURE 11-6

c11.indd 439c11.indd 439 4/11/2012 10:20:07 AM4/11/2012 10:20:07 AM

Meier02275 c11 V3 - 03/22/2012 Page 440

440 x CHAPTER 11 ADVANCED USER EXPERIENCE

You can also specify a number of optional extras to control the language, potential result count, and
display prompt using the following Recognizer Intent constants:

 ‰ EXTRA_LANGUAGE — Specifi es a language constant from the Locale class to use an input
language other than the device default. You can fi nd the current default by calling the static
getDefault method on the Locale class.

 ‰ EXTRA_MAXRESULTS — Uses an integer value to limit the number of potential recognition
results returned.

 ‰ EXTRA_PROMPT — Specifi es a string that displays in the voice input dialog (shown in Figure
11-6) to prompt the user to speak.

The engine that handles the speech recognition may not be capable of under-
standing spoken input from all the languages available from the Locale class.

Not all devices include support for speech recognition. In such cases it is generally
possible to download the voice recognition library from the Google Play Store.

Using Speech Recognition for Voice Input

When using voice recognition to receive the spoken words, call startNewActivityForResult using
the RecognizerIntent.ACTION_RECOGNIZE_SPEECH action, as shown in Listing 11-2.

LISTING 11-2: Initiating a speech recognition request

Intent intent = new Intent(RecognizerIntent.ACTION_RECOGNIZE_SPEECH);
// Specify free form input
intent.putExtra(RecognizerIntent.EXTRA_LANGUAGE_MODEL,
 RecognizerIntent.LANGUAGE_MODEL_FREE_FORM);
intent.putExtra(RecognizerIntent.EXTRA_PROMPT,
 “or forever hold your peace”);
intent.putExtra(RecognizerIntent.EXTRA_MAX_RESULTS, 1);
intent.putExtra(RecognizerIntent.EXTRA_LANGUAGE, Locale.ENGLISH);
startActivityForResult(intent, VOICE_RECOGNITION);

code snippet PA4AD_Ch11_Speech/src/MyActivity.java

When the user fi nishes speaking, the speech recognition engine analyzes and processes the result-
ing audio and then returns the results through the onActivityResult handler as an Array List of
strings in the EXTRA_RESULTS extra, as shown in Listing 11-3.

LISTING 11-3: Finding the results of a speech recognition request

@Override
protected void onActivityResult(int requestCode,
 int resultCode,
 Intent data) {

c11.indd 440c11.indd 440 4/11/2012 10:20:07 AM4/11/2012 10:20:07 AM

Meier02275 c11 V3 - 03/22/2012 Page 441

Controlling Device Vibration x 441

 if (requestCode == VOICE_RECOGNITION && resultCode == RESULT_OK) {
 ArrayList<String> results;

 results =
 data.getStringArrayListExtra(RecognizerIntent.EXTRA_RESULTS);

 float[] confidence;

 String confidenceExtra = RecognizerIntent.EXTRA_CONFIDENCE_SCORES;
 confidence =
 data.getFloatArrayExtra(confidenceExtra);

 // TODO Do something with the recognized voice strings
 }
 super.onActivityResult(requestCode, resultCode, data);
}

code snippet PA4AD_Ch11_Speech/src/MyActivity.java

Each string returned in the Array List represents a potential match for the spoken input. You can
fi nd the recognition engine’s confi dence in each result using the fl oat array returned in the EXTRA_
CONFIDENCE_SCORES extra. Each value in the array is the confi dence score between 0 (no confi dence)
and 1 (high confi dence) that the speech has been correctly recognized.

Using Speech Recognition for Search

Rather than handling the received speech yourself, you can use the RecognizerIntent.ACTION_
WEB_SEARCH action to display a web search result or to trigger another type of voice action based on
the user’s speech, as shown in Listing 11-4.

LISTING 11-4: Finding the results of a speech recognition request

Intent intent = new Intent(RecognizerIntent.ACTION_WEB_SEARCH);
intent.putExtra(RecognizerIntent.EXTRA_LANGUAGE_MODEL,
 RecognizerIntent.LANGUAGE_MODEL_WEB_SEARCH);
startActivityForResult(intent, 0);

code snippet PA4AD_Ch11_Speech/src/MyActivity.java

CONTROLLING DEVICE VIBRATION

In Chapter 10 you learned how to create Notifi cations that can use vibration to enrich event feed-
back. In some circumstances, you may want to vibrate the device independently of Notifi cations. For
example, vibrating the device is an excellent way to provide haptic user feedback and is particularly
popular as a feedback mechanism for games.

To control device vibration, your applications needs the VIBRATE permission:

<uses-permission android:name=”android.permission.VIBRATE”/>

c11.indd 441c11.indd 441 4/11/2012 10:20:08 AM4/11/2012 10:20:08 AM

Meier02275 c11 V3 - 03/22/2012 Page 442

442 x CHAPTER 11 ADVANCED USER EXPERIENCE

Device vibration is controlled through the Vibrator Service, accessible via the getSystemService
method:

String vibratorService = Context.VIBRATOR_SERVICE;
Vibrator vibrator = (Vibrator)getSystemService(vibratorService);

Call vibrate to start device vibration; you can pass in either a vibration duration or a pattern of
alternating vibration/pause sequences along with an optional index parameter that repeats the pat-
tern starting at the index specifi ed:

long[] pattern = {1000, 2000, 4000, 8000, 16000 };
vibrator.vibrate(pattern, 0); // Execute vibration pattern.
vibrator.vibrate(1000); // Vibrate for 1 second.

To cancel vibration, call cancel; exiting your application automatically cancels any vibration it has
initiated.

vibrator.cancel();

WORKING WITH ANIMATIONS

In Chapter 3, you learned how to defi ne animations as external resources. Now, you get the oppor-
tunity to put them to use.

Android offers three kinds of animation:

 ‰ Tweened View Animations — Tweened animations are applied to Views, letting you defi ne a
series of changes in position, size, rotation, and opacity that animate the View contents.

 ‰ Frame Animations — Traditional cell-based animations in which a different Drawable is
displayed in each frame. Frame-by-frame animations are displayed within a View, using its
Canvas as a projection screen.

 ‰ Interpolated Property Animations — The property animation system enables you to animate
almost anything within your application. It’s a framework designed to affect any object prop-
erty over a period of time using the specifi ed interpolation technique.

Tweened View Animations

Tweened animations offer a simple way to provide depth, movement, or feedback to your users at a
minimal resource cost.

Using animations to apply a set of orientation, scale, position, and opacity changes is much less
resource-intensive than manually redrawing the Canvas to achieve similar effects, not to mention far
simpler to implement.

Tweened animations are commonly used to:

 ‰ Transition between Activities

 ‰ Transition between layouts within an Activity

c11.indd 442c11.indd 442 4/11/2012 10:20:08 AM4/11/2012 10:20:08 AM

Meier02275 c11 V3 - 03/22/2012 Page 443

Working with Animations x 443

 ‰ Transition between different content displayed within the same View

 ‰ Provide user feedback, such as indicating progress or “shaking” an input box to indicate an
incorrect or invalid data entry

Creating Tweened View Animations

Tweened animations are created using the Animation class. The following list explains the anima-
tion types available:

 ‰ AlphaAnimation — Lets you animate a change in the View’s transparency (opacity or alpha
blending)

 ‰ RotateAnimation — Lets you spin the selected View canvas in the XY plane

 ‰ ScaleAnimation — Lets you to zoom in to or out from the selected View

 ‰ TranslateAnimation — Lets you move the selected View around the screen (although it will
only be drawn within its original bounds)

Android offers the AnimationSet class, shown in Listing 11-5, to group and confi gure animations
to be run as a set. You can defi ne the start time and duration of each animation used within a set to
control the timing and order of the animation sequence.

LISTING 11-5: Defi ning an interpolated View animation

<set xmlns:android=”http://schemas.android.com/apk/res/android”
 android:interpolator=”@android:anim/accelerate_interpolator”>
 <scale
 android:fromXScale=”0.0” android:toXScale=”1.0”
 android:fromYScale=”0.0” android:toYScale=”1.0”
 android:pivotX=”50%”
 android:pivotY=”50%”
 android:duration=”1000”
 />
</set>

code snippet PA4AD_Ch11_Animation/res/anim/popin.xml

It’s important to set the start offset and duration for each child animation; oth-
erwise, they will all start and complete at the same time.

Applying Tweened Animations

You can apply animations to any View by calling its startAnimation method and passing in the
Animation or Animation Set to apply.

c11.indd 443c11.indd 443 4/11/2012 10:20:08 AM4/11/2012 10:20:08 AM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c11 V3 - 03/22/2012 Page 444

444 x CHAPTER 11 ADVANCED USER EXPERIENCE

Animation sequences run once and then stop, unless you modify this behavior using the
setRepeatMode and setRepeatCount methods on the Animation or Animation Set. You can
force an animation to loop or repeat in reverse by setting the repeat mode of RESTART or
REVERSE, respectively. Setting the repeat count controls the number of times the animation
repeats.

myAnimation.setRepeatMode(Animation.RESTART);
myAnimation.setRepeatCount(Animation.INFINITE);
myView.startAnimation(myAnimation);

Using Animation Listeners

The AnimationListener lets you create an event handler that’s fi red when an animation begins or
ends. This lets you perform actions before or after an animation has completed, such as changing
the View contents or chaining multiple animations.

Call setAnimationListener on an Animation object, and pass in a new implementation of
AnimationListener, overriding onAnimationEnd, onAnimationStart, and onAnimationRepeat,
as required:

myAnimation.setAnimationListener(new AnimationListener() {
 public void onAnimationEnd(Animation animation) {
 // TODO Do something after animation is complete.
 }

 public void onAnimationStart(Animation animation) {
 // TODO Do something when the animation starts.
 }

 public void onAnimationRepeat(Animation animation) {
 // TODO Do something when the animation repeats.
 }
});

Animating Layouts and View Groups

A LayoutAnimation is used to animate View Groups, applying a single Animation (or Animation
Set) to each child View in a predetermined sequence.

Use a LayoutAnimationController to specify an Animation (or Animation Set) that’s applied
to each child View in a View Group. Each View it contains will have the same animation
applied, but you can use the Layout Animation Controller to specify the order and start time for
each View.

Android includes two LayoutAnimationController classes:

 ‰ LayoutAnimationController — Lets you select the start offset of each View (in millisec-
onds) and the order (forward, reverse, and random) to apply the animation to each child
View.

 ‰ GridLayoutAnimationController — A derived class that lets you assign the animation
sequence of the child Views using grid row and column references.

c11.indd 444c11.indd 444 4/11/2012 10:20:08 AM4/11/2012 10:20:08 AM

Meier02275 c11 V3 - 03/22/2012 Page 445

Working with Animations x 445

Creating Layout Animations

To create a new Layout Animation, start by defi ning the Animation to apply to each child View.
Then create a new LayoutAnimation, either in code or as an external animation resource, that ref-
erences the animation to apply and defi nes the order and timing in which to apply it.

Listing 11-6 shows a Layout Animation defi nition stored as popinlayout.xml. The Layout Animation
applies a simple “pop-in” animation randomly to each child View of any View Group it’s assigned to.

LISTING 11-6: Defi ning a layout animation

<layoutAnimation
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:delay=”0.5”
 android:animationOrder=”random”
 android:animation=”@anim/popin”
/>

code snippet PA4AD_Ch11_Animation/res/anim/popinlayout.xml

Using Layout Animations

After defi ning a Layout Animation, you can apply it to a View Group either in code or in the lay-
out XML resource. In XML this is done using the android:layoutAnimation tag in the layout
defi nition:

android:layoutAnimation=”@anim/popinlayout”

To set a Layout Animation in code, call setLayoutAnimation on the View Group, passing in a
reference to the LayoutAnimation object you want to apply. In each case, the Layout Animation
will execute once, when the View Group is fi rst laid out. You can force it to execute again by calling
scheduleLayoutAnimation on the ViewGroup object. The animation will then be executed the next
time the View Group is laid out. Layout Animations also support Animation Listeners.

aViewGroup.setLayoutAnimationListener(new AnimationListener() {
 public void onAnimationEnd(Animation _animation) {
 // TODO: Actions on animation complete.
 }
 public void onAnimationRepeat(Animation _animation) {}
 public void onAnimationStart(Animation _animation) {}
});

aViewGroup.scheduleLayoutAnimation();

Creating and Using Frame-by-Frame Animations

Frame-by-frame animations are akin to traditional cel-based cartoons in which an image is chosen
for each frame. Whereas tweened animations use the target View to supply the content of the ani-
mation, frame-by-frame animations enable you to specify a series of Drawable objects that are used
as the background to a View.

c11.indd 445c11.indd 445 4/11/2012 10:20:09 AM4/11/2012 10:20:09 AM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c11 V3 - 03/22/2012 Page 446

446 x CHAPTER 11 ADVANCED USER EXPERIENCE

The AnimationDrawable class is used to create a new frame-by-frame animation presented as a
Drawable resource. You can defi ne your Animation Drawable resource as an external resource in
your project’s res/drawable folder using XML.

Use the animation-list tag to group a collection of item nodes, each of which uses a drawable
attribute to defi ne an image to display and a duration attribute to specify the time (in milliseconds)
to display it.

Listing 11-7 shows how to create a simple animation that displays a rocket taking off. (Rocket
images are not included.)

LISTING 11-7: Defi ning a frame-by-frame animation

<animation-list
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:oneshot=”false”>
 <item android:drawable=”@drawable/rocket1” android:duration=”500” />
 <item android:drawable=”@drawable/rocket2” android:duration=”500” />
 <item android:drawable=”@drawable/rocket3” android:duration=”500” />
</animation-list>

code snippet PA4AD_Ch11_Animation/res/drawable/animated_rocket.xml

To display your animation, set it as the background to a View using the setBackgroundResource
method:

ImageView image = (ImageView)findViewById(R.id.my_animation_frame);
image.setBackgroundResource(R.drawable.animated_rocket);

Alternatively, use the setBackgroundDrawable to use a Drawable instance instead of a resource ref-
erence. Run the animation calling its start method.

AnimationDrawable animation = (AnimationDrawable)image.getBackground();
animation.start();

Interpolated Property Animations

Android 3.0 (API level 11) introduced a new animation technique that animates object properties.
Although the tweened View animations described in the earlier section modifi ed the appearance of
the affected view, without modifying the object itself, property animations modify the properties of
the underlying object directly.

As a result, you can modify any property of any object — visual or otherwise — using a property
animator to transition it from one value to another, over a given period of time, using the interpo-
lation algorithm of your choice, and setting the repeat behavior as required. The value can be any
object, from a regular integer to a complex Class instance.

As a result, you can use property animators to create a smooth transition for anything within your
code; the target property doesn’t even need to represent something visual. Property animations
are effectively iterators implemented using a background timer to increment or decrement a value
according to a given interpolation path over a given period of time.

c11.indd 446c11.indd 446 4/11/2012 10:20:09 AM4/11/2012 10:20:09 AM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c11 V3 - 03/22/2012 Page 447

Working with Animations x 447

This is an incredibly powerful tool that can be used for anything from a simple View effect, such as
moving, scaling, or fading a View, to complex animations, including runtime layout changes and
curved transitions.

Creating Property Animations

The simplest technique for creating property animations is using an ObjectAnimator. The Object
Animator class includes the ofFloat, ofInt, and ofObject static methods to easily create an ani-
mation that transitions the specifi ed property of the target object between the values provided:

String propertyName = “alpha”;
float from = 1f;
float to = 0f;
ObjectAnimator anim = ObjectAnimator.ofFloat(targetObject, propertyName, from, to);

Alternatively, you can provide a single value to animate the property from its current value to its
fi nal value:

ObjectAnimator anim = ObjectAnimator.ofFloat(targetObject, propertyName, to);

To animate a given property, there must be associated getter/setter functions on
the underlying object. In the preceding example, the targetObject must include
getAlpha and setAlpha methods that return and accept a fl oat value, respectively.

To target a property of a type other than integer or fl oat, use the ofObject method. This method
requires that you supply an implementation of the TypeEvaluator class. Implement the evaluate
method to return an object that should be returned when the animation is a given fraction of the
way through animating between the start and end objects:

TypeEvaluator<MyClass> evaluator = new TypeEvaluator<MyClass>() {
 public MyClass evaluate(float fraction,
 MyClass startValue,
 MyClass endValue) {
 MyClass result = new MyClass();
 // TODO Modify the new object to represent itself the given
 // fraction between the start and end values.
 return result;
 }
};

// Animate between two instances
ValueAnimator oa
 = ObjectAnimator.ofObject(evaluator, myClassFromInstance, myClassToInstance);

oa.setTarget(myClassInstance);
oa.start();

By default, each animation will run once with a 300ms duration. Use the setDuration method to
alter the amount of time the interpolator should use to complete the transition:

anim.setDuration(500);

c11.indd 447c11.indd 447 4/11/2012 10:20:09 AM4/11/2012 10:20:09 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Meier02275 c11 V3 - 03/22/2012 Page 448

448 x CHAPTER 11 ADVANCED USER EXPERIENCE

You can use the setRepeatMode and setRepeatCount methods to cause the animation to be applied
either a set number of times or infi nitely:

anim.setRepeatCount(ValueAnimator.INFINITE);

You can set the repeat mode either to restart from the beginning or to apply the animation in
reverse:

anim.setRepeatMode(ValueAnimator.REVERSE);

To create the same Object Animator as an XML resource, create a new XML fi le in the res/
animator folder:

<objectAnimator xmlns:android=”http://schemas.android.com/apk/res/android”
 android:valueTo=”0”
 android:propertyName=”alpha”
 android:duration=”500”
 android:valueType=”floatType”
 android:repeatCount=”-1”
 android:repeatMode=”reverse”
/>

The fi lename can then be used as the resource identifi er. To affect a particular object with an XML
animator resource, use the AnimatorInflator.loadAnimator method, passing in the current con-
text and the resource ID of the animation to apply to obtain a copy of the Object Animator, and
then use the setTarget method to apply it to an object:

Animator anim = AnimatorInflater.loadAnimator(context, resID);
anim.setTarget(targetObject);

By default, the interpolator used to transition between the start and end values of each animation
uses a nonlinear AccelerateDecelerateInterpolator, which provides the effect of accelerating at
the beginning of the transition and decelerating when approaching the end.

You can use the setInterpolator method to apply one of the following SDK interpolators:

 ‰ AccelerateDecelerateInterpolator — The rate of change starts and ends slowly but
accelerates through the middle.

 ‰ AccelerateInterpolator — The rate of change starts slowly but accelerates through the
middle.

 ‰ AnticipateInterpolator — The change starts backward and then fl ings forward.

 ‰ AnticipateOvershootInterpolator — The change starts backward, fl ings forward, over-
shoots the target value, and fi nally goes back to the fi nal value.

 ‰ BounceInterpolator — The change bounces at the end.

 ‰ DecelerateInterpolator — The rate of change starts out quickly and then decelerates.

 ‰ LinearInterpolator — The rate of change is constant.

 ‰ OvershootInterpolator — The change fl ings forward, overshoots the last value, and then
comes back.

c11.indd 448c11.indd 448 4/11/2012 10:20:09 AM4/11/2012 10:20:09 AM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c11 V3 - 03/22/2012 Page 449

Working with Animations x 449

anim.setInterpolator(new AnticipateOvershootInterpolator());

You can also extend your own TimeInterpolator class to specify a custom interpolation algorithm.

To execute an animation, call its start method:

anim.start();

Creating Property Animation Sets

Android includes the AnimatorSet class to make it easier to create complex, interrelated
animations.

AnimatorSet bouncer = new AnimatorSet();

To add a new animation to an Animator Set, use the play method. This returns an AnimatorSet
.Builder object that lets you specify when to play the specifi ed animation in relation to another:

AnimatorSet mySet = new AnimatorSet();
mySet.play(firstAnimation).before(concurrentAnim1);
mySet.play(concurrentAnim1).with(concurrentAnim2);
mySet.play(lastAnim).after(concurrentAnim2);

Use the start method to execute the sequence of animations.

mySet.start();

Using Animation Listeners

The Animator.AnimationListener class lets you create event handlers that are fi red when an ani-
mation begins, ends, repeats, or is canceled:

Animator.AnimatorListener l = new AnimatorListener() {

 public void onAnimationStart(Animator animation) {
 // TODO Auto-generated method stub
 }

 public void onAnimationRepeat(Animator animation) {
 // TODO Auto-generated method stub
 }

 public void onAnimationEnd(Animator animation) {
 // TODO Auto-generated method stub
 }

 public void onAnimationCancel(Animator animation) {
 // TODO Auto-generated method stub
 }
};

To apply an Animation Listener to your property animation, use the addListener method:

anim.addListener(l);

c11.indd 449c11.indd 449 4/11/2012 10:20:09 AM4/11/2012 10:20:09 AM

Meier02275 c11 V3 - 03/22/2012 Page 450

450 x CHAPTER 11 ADVANCED USER EXPERIENCE

ENHANCING YOUR VIEWS

The explosive growth in the smartphone and tablet market has led to equally dramatic changes and
improvements to mobile UIs.

This section describes how to use more advanced UI visual effects such as Shaders, translucency,
touch screens with multiple touch, OpenGL, and hardware acceleration to improve the performance
and aesthetics of your Activities and Views.

Advanced Canvas Drawing

You were introduced to the Canvas class in Chapter 4, where you learned how to create your own
Views. The Canvas is also used in Chapter 13, “Maps, Geocoding, and Location-Based Services,” to
annotate Overlays for MapViews.

The concept of the canvas is a common metaphor used in graphics programming and generally con-
sists of three basic drawing components:

 ‰ Canvas — Supplies the draw methods that paint drawing primitives onto the underlying bitmap.

 ‰ Paint — Also referred to as a “brush,” Paint lets you specify how a primitive is drawn on
the bitmap.

 ‰ Bitmap — The surface being drawn on.

Most of the advanced techniques described in this chapter involve variations and modifi cations to
the Paint object that enable you to add depth and texture to otherwise fl at raster drawings.

The Android drawing API supports translucency, gradient fi lls, rounded rectangles, and anti-aliasing.

Owing to resource limitations, Android does not support vector graphics; instead, it uses traditional
raster-style repaints. The result of this raster approach is improved effi ciency, but changing a Paint
object does not affect primitives that have already been drawn; it affects only new elements.

For those of you with a Windows development background, the two-dimensional (2D)
drawing capabilities of Android are roughly equivalent to those available in GDI+.

What Can You Draw?

The Canvas class encapsulates the bitmap used as a surface for your artistic endeavors; it also
exposes the draw* methods used to implement your designs.

Without going into detail about each draw method, the following list provides a taste of the primi-
tives available:

 ‰ drawARGB/drawRGB/drawColor — Fills the canvas with a single color.

 ‰ drawArc — Draws an arc between two angles within an area bounded by a rectangle.

c11.indd 450c11.indd 450 4/11/2012 10:20:10 AM4/11/2012 10:20:10 AM

Meier02275 c11 V3 - 03/22/2012 Page 451

Enhancing Your Views x 451

 ‰ drawBitmap — Draws a bitmap on the Canvas. You can alter the appearance of the target
bitmap by specifying a target size or using a matrix to transform it.

 ‰ drawBitmapMesh — Draws a bitmap using a mesh that lets you manipulate the appearance
of the target by moving points within it.

 ‰ drawCircle — Draws a circle of a specifi ed radius centered on a given point.

 ‰ drawLine(s) — Draws a line (or series of lines) between two points.

 ‰ drawOval — Draws an oval bounded by the rectangle specifi ed.

 ‰ drawPaint — Fills the entire Canvas with the specifi ed Paint.

 ‰ drawPath — Draws the specifi ed Path. A Path object is often used to hold a collection of
drawing primitives within a single object.

 ‰ drawPicture — Draws a Picture object within the specifi ed rectangle (not supported when
using hardware acceleration.)

 ‰ drawPosText — Draws a text string specifying the offset of each character (not supported
when using hardware acceleration).

 ‰ drawRect — Draws a rectangle.

 ‰ drawRoundRect — Draws a rectangle with rounded edges.

 ‰ drawText — Draws a text string on the Canvas. The text font, size, color, and rendering
properties are set in the Paint object used to render the text.

 ‰ drawTextOnPath — Draws text that follows along a specifi ed path (not supported when
using hardware acceleration).

 ‰ drawVertices — Draws a series of tri-patches specifi ed as a series of vertex points (not sup-
ported when using hardware acceleration).

Each drawing method lets you specify a Paint object to render it. In the following sections, you
learn how to create and modify Paint objects to get the most out of your drawings.

Getting the Most from Your Paint

The Paint class represents a paintbrush and palette. It lets you choose how to render the primi-
tives you draw onto the Canvas using the draw methods described in the previous section. By
modifying the Paint object, you can control the color, style, font, and special effects used when
drawing.

Not all the Paint options described here are available if you’re using hardware
acceleration to improve 2D drawing performance. As a result, it’s important to
check how hardware acceleration affects your 2D drawing.

c11.indd 451c11.indd 451 4/11/2012 10:20:10 AM4/11/2012 10:20:10 AM

Meier02275 c11 V3 - 03/22/2012 Page 452

452 x CHAPTER 11 ADVANCED USER EXPERIENCE

Most simply, setColor enables you to select the color of a Paint, whereas the style of a Paint object
(controlled using setStyle) enables you to decide if you want to draw only the outline of a drawing
object (STROKE), just the fi lled portion (FILL), or both (STROKE_AND_FILL).

Beyond these simple controls, the Paint class also supports transparency and can be modifi ed
with a variety of Shaders, fi lters, and effects to provide a rich palette of complex paints and
brushes.

The Android SDK includes several excellent projects that demonstrate most of the features available
in the Paint class. They are available in the graphics subfolder of the API demos at:

[sdk root folder]\samples\android-15\ApiDemos\src\com\example\android\apis\graphics

In the following sections, you learn what some of these features are and how to use them. These
sections outline what can be achieved (such as gradients and edge embossing) without exhaustively
listing all possible alternatives.

Using Translucency

All colors in Android include an opacity component (alpha channel). You defi ne an alpha value for a
color when you create it using the argb or parseColor methods:

// Make color red and 50% transparent
int opacity = 127;
int intColor = Color.argb(opacity, 255, 0, 0);
int parsedColor = Color.parseColor(“#7FFF0000”);

Alternatively, you can set the opacity of an existing Paint object using the setAlpha method:

// Make color 50% transparent
int opacity = 127;
myPaint.setAlpha(opacity);

Creating a paint color that’s not 100 percent opaque means that any primitive drawn with it will be
partially transparent — making whatever is drawn beneath it partially visible.

You can use transparency effects in any class or method that uses colors including Paint colors,
Shaders, and Mask Filters.

Introducing Shaders

Extensions of the Shader class let you create Paints that fi ll drawn objects with more than a single
solid color.

The most common use of Shaders is to defi ne gradient fi lls; gradients are an excellent way to add
depth and texture to 2D drawings. Android includes three gradient Shaders as well as a Bitmap
Shader and a Compose Shader.

Trying to describe painting techniques seems inherently futile, so Figure 11-7 shows how each
Shader works. Represented from left to right are LinearGradient, RadialGradient, and
SweepGradient.

c11.indd 452c11.indd 452 4/11/2012 10:20:10 AM4/11/2012 10:20:10 AM

Meier02275 c11 V3 - 03/22/2012 Page 453

Enhancing Your Views x 453

FIGURE 11-7

Not included in the image in Figure 11-7 is the ComposeShader, which lets you
create a composite of multiple Shaders, nor the BitmapShader, which lets you
create a brush based on a bitmap image.

Creating Gradient Shaders

Gradient Shaders let you fi ll drawings with an interpolated color range. You can defi ne the gradient
in two ways. The fi rst is a simple transition between two colors:

int colorFrom = Color.BLACK;
int colorTo = Color.WHITE;

LinearGradient myLinearGradient =
 new LinearGradient(x1, y1, x2, y2,
 colorFrom, colorTo, TileMode.CLAMP);

The second alternative is to specify a more complex series of colors distributed at set proportions:

int[] gradientColors = new int[3];
gradientColors[0] = Color.GREEN;
gradientColors[1] = Color.YELLOW;
gradientColors[2] = Color.RED;

float[] gradientPositions = new float[3];
gradientPositions[0] = 0.0f;
gradientPositions[1] = 0.5f;
gradientPositions[2] = 1.0f;

RadialGradient radialGradientShader
 = new RadialGradient(centerX, centerY,
 radius,
 gradientColors,
 gradientPositions,
 TileMode.CLAMP);

c11.indd 453c11.indd 453 4/11/2012 10:20:10 AM4/11/2012 10:20:10 AM

Meier02275 c11 V3 - 03/22/2012 Page 454

454 x CHAPTER 11 ADVANCED USER EXPERIENCE

Each gradient Shader (linear, radial, and sweep) lets you defi ne the gradient fi ll using either of these
techniques.

Applying Shaders to Paint

To use a Shader when drawing, apply it to a Paint using the setShader method:

shaderPaint.setShader(myLinearGradient);

Anything you draw with this Paint will be fi lled with the Shader you specifi ed rather than the paint
color.

Using Shader Tile Modes

The brush sizes of the gradient Shaders are defi ned using explicit bounding rectangles or center
points and radius lengths; the Bitmap Shader implies a brush size through its bitmap size.

If the area defi ned by your Shader brush is smaller than the area being fi lled, the TileMode deter-
mines how the remaining area will be covered. You can defi ne which tile mode to use with the fol-
lowing static constants:

 ‰ CLAMP — Uses the edge colors of the Shader to fi ll the extra space

 ‰ MIRROR — Flips the Shader image horizontally and vertically so that each image seams with
the last

 ‰ REPEAT — Repeats the Shader image horizontally and vertically, but doesn’t fl ip it

Using Mask Filters

The MaskFilter classes let you assign edge effects to your Paint. Mask Filters are not supported
when the Canvas is hardware-accelerated.

Extensions to MaskFilter apply transformations to the alpha-channel of a Paint along its outer
edge. Android includes the following Mask Filters:

 ‰ BlurMaskFilter — Specifi es a blur style and radius to feather the edges of your Paint

 ‰ EmbossMaskFilter — Specifi es the direction of the light source and ambient light level to
add an embossing effect

To apply a Mask Filter, use the setMaskFilter method, passing in a MaskFilter object:

// Set the direction of the light source
float[] direction = new float[]{ 1, 1, 1 };
// Set the ambient light level
float light = 0.4f;
// Choose a level of specularity to apply
float specular = 6;
// Apply a level of blur to apply to the mask
float blur = 3.5f;
EmbossMaskFilter emboss = new EmbossMaskFilter(direction, light,
 specular, blur);

c11.indd 454c11.indd 454 4/11/2012 10:20:11 AM4/11/2012 10:20:11 AM

Meier02275 c11 V3 - 03/22/2012 Page 455

Enhancing Your Views x 455

// Apply the mask
if (canvas.isHardwareAccelerated())
 myPaint.setMaskFilter(emboss);

The FingerPaint API demo included in the SDK is an excellent example of how to use
MaskFilters. It demonstrates the effect of both the emboss and blur fi lters.

Using Color Filters

Whereas Mask Filters are transformations of a Paint’s alpha-channel, a ColorFilter applies a
transformation to each of the RGB channels. All ColorFilter-derived classes ignore the alpha-
channel when performing their transformations.

Android includes three Color Filters:

 ‰ ColorMatrixColorFilter — Lets you specify a 4 x 5 ColorMatrix to apply to a Paint.
Color Matrixes are commonly used to perform image processing programmatically and are
useful because they support chaining transformations using matrix multiplication.

 ‰ LightingColorFilter — Multiplies the RGB channels by the fi rst color before adding the
second. The result of each transformation will be clamped between 0 and 255.

 ‰ PorterDuffColorFilter — Lets you use any one of the 16 Porter-Duff rules for digital
image compositing to apply a specifi ed color to the Paint. The Porter-Duff rules are defi ned
here at http://developer.android.com/reference/android/graphics/PorterDuff
.Mode.html.

Apply ColorFilters using the setColorFilter method:

myPaint.setColorFilter(new LightingColorFilter(Color.BLUE, Color.RED));

An excellent example of using a Color Filter and Color Matrixes is in the ColorMatrixSample API
example:

samples\android-15\ApiDemos\src\com\example\android\apis\graphics\ColorMatrixSample.java

Using Path Eff ects

The effects described so far affect the way the Paint fi lls a drawing; Path Effects are used to control
how its outline (or stroke) is drawn.

Path Effects are particularly useful for drawing Path primitives, but they can be applied to any Paint
to affect the way the stroke is drawn.

Using Path Effects, you can change the appearance of a shape’s corners and control the appearance
of the outline. Android includes several Path Effects, including the following:

 ‰ CornerPathEffect — Lets you smooth sharp corners in the shape of a primitive by replac-
ing them with rounded corners.

 ‰ DashPathEffect — Rather than drawing a solid outline, you can use the DashPathEffect
to create an outline of broken lines (dashes/dots). You can specify any repeating pattern of
solid/empty line segments.

c11.indd 455c11.indd 455 4/11/2012 10:20:11 AM4/11/2012 10:20:11 AM

http://developer.android.com/reference/android/graphics/PorterDuff

Meier02275 c11 V3 - 03/22/2012 Page 456

456 x CHAPTER 11 ADVANCED USER EXPERIENCE

 ‰ DiscretePathEffect — Similar to the DashPathEffect, but with added randomness.
Specifi es the length of each segment and a degree of deviation from the original path to use
when drawing it.

 ‰ PathDashPathEffect — Enables you to defi ne a new shape (path) to use as a stamp to out-
line the original path.

The following effects let you combine multiple Path Effects to a single Paint:

 ‰ SumPathEffect — Adds two effects to a path in sequence, such that each effect is applied to
the original path and the two results are combined.

 ‰ ComposePathEffect — Applies fi rst one effect and then applies the second effect to the
result of the fi rst.

Path Effects that modify the shape of the object being drawn change the area of the affected shape.
This ensures that any fi ll effects applied to the same shape are drawn within the new bounds.

Path Effects are applied to Paint objects using the setPathEffect method:

borderPaint.setPathEffect(new CornerPathEffect(5));

The Path Effects API sample gives an excellent guide to how to apply each of these effects:

samples\android-15\ApiDemos\src\com\example\android\apis\graphics\PathEffects.java

Changing the Transfer Mode

Change a Paint’s Xfermode to affect the way it paints new colors on top of what’s already on the
Canvas. Under normal circumstances, painting on top of an existing drawing layers the new shape
on top. If the new Paint is fully opaque, it totally obscures the paint underneath; if it’s partially
transparent, it tints the colors underneath.

The following Xfermode subclasses let you change this behavior:

 ‰ AvoidXfermode — Specifi es a color and tolerance to force your Paint to avoid drawing over
(or only draw over) it.

 ‰ PixelXorXfermode — Applies a simple pixel XOR operation when covering existing colors.

 ‰ PorterDuffXfermode — This is a very powerful transfer mode with which you can use any
of the 16 Porter-Duff rules for image composition to control how the paint interacts with the
existing canvas image.

To apply transfer modes, use the setXferMode method:

AvoidXfermode avoid = new AvoidXfermode(Color.BLUE, 10,
 AvoidXfermode.Mode.AVOID);
borderPen.setXfermode(avoid);

Improving Paint Quality with Anti-Aliasing

When you create a new Paint object, you can pass in several fl ags that affect the way the Paint will
be rendered. One of the most interesting is the ANTI_ALIAS_FLAG, which ensures that diagonal lines
drawn with this paint are anti-aliased to give a smooth appearance (at the cost of performance).

c11.indd 456c11.indd 456 4/11/2012 10:20:11 AM4/11/2012 10:20:11 AM

Meier02275 c11 V3 - 03/22/2012 Page 457

Enhancing Your Views x 457

Anti-aliasing is particularly important when drawing text, as anti-aliased text can be signifi cantly
easier to read. To create even smoother text effects, you can apply the SUBPIXEL_TEXT_FLAG, which
applies subpixel anti-aliasing.

Paint paint = new Paint(Paint.ANTI_ALIAS_FLAG|Paint.SUBPIXEL_TEXT_FLAG);

You can also set both of these fl ags manually using the setSubpixelText and setAntiAlias
methods:

myPaint.setSubpixelText(true);
myPaint.setAntiAlias(true);

Canvas Drawing Best Practice

2D owner-draw operations tend to be expensive in terms of processor use; ineffi cient drawing rou-
tines can block the GUI thread and have a detrimental effect on application responsiveness. This is
particularly true for resource-constrained mobile devices.

In Chapter 4 you learned how to create your own Views by overriding the onDraw method of new
View-derived classes. You need to be aware of the resource drain and CPU-cycle cost of your onDraw
method to ensure you don’t end up with an attractive application that’s unresponsive, laggy, or “janky.”

A lot of techniques exist to help minimize the resource drain associated with owner-drawn con-
trols. Rather than focus on general principles, I’ll describe some Android-specifi c considerations for
ensuring that you can create activities that look good and remain interactive. (Note that list is not
exhaustive.)

 ‰ Consider size and orientation — When you design your Views and Overlays, be sure to con-
sider (and test!) how they look at different resolutions, pixel densities, and sizes.

 ‰ Create static objects once — Object creation and garbage collection are particularly expen-
sive operations. Where possible, create drawing objects such as Paint objects, Paths, and
Shaders once, rather than re-creating them each time the View is invalidated.

 ‰ Remember that onDraw is expensive — Performing the onDraw method is an expensive
process that forces Android to perform several image composition and bitmap construction
operations. Many of the following points suggest ways to modify the appearance of your
Canvas without having to redraw it:

 ‰ Use Canvas transforms — Use Canvas transforms, such as rotate and translate,
to simplify complex relational positioning of elements on your canvas. For example,
rather than positioning and rotating each text element around a clock face, simply
rotate the canvas 22.5 degrees, and draw the text in the same place.

 ‰ Use Animations — Consider using Animations to perform preset transformations
of your View rather than manually redrawing it. Scale, rotation, and transla-
tion Animations can be performed on any View within an Activity and provide a
resource-effi cient way to provide zoom, rotate, or shake effects.

 ‰ Consider using bitmaps, NinePatches, and Drawable resources — If your Views
feature static backgrounds, you should consider using a Drawable such as a bitmap,
scalable NinePatch, or static XML Drawable rather than dynamically creating it.

c11.indd 457c11.indd 457 4/11/2012 10:20:11 AM4/11/2012 10:20:11 AM

Meier02275 c11 V3 - 03/22/2012 Page 458

458 x CHAPTER 11 ADVANCED USER EXPERIENCE

 ‰ Avoid overdrawing — A combination of raster painting and layered Views can result in many
layers being drawn on top of each other. Before drawing a layer or object, check to confi rm
if it will be completely obscured by a layer above it. It’s good practice to avoid drawing more
than 2.5 times the number of pixels on screen per frame. Transparent pixels still count — and
are more expensive to draw than opaque colors.

Advanced Compass Face Example

In Chapter 4, you created a simple compass UI. In the following example, you make some signifi cant
changes to the Compass View’s onDraw method to change it from a simple, fl at compass to a
dynamic artifi cial horizon, as shown in Figure 11-8. Because the image in Figure 11-8 is limited to
black and white, you need to create the control to see the full effect.

1. Start by adding properties to store the pitch and roll
values:

private float pitch;

public void setPitch(float _pitch) {
 pitch = _pitch;
 sendAccessibilityEvent(AccessibilityEvent.TYPE_
VIEW_TEXT_CHANGED);
}

public float getPitch() {
 return pitch;
}

private float roll;

public void setRoll(float _roll) {
 roll = _roll;
 sendAccessibilityEvent(AccessibilityEvent.TYPE_
VIEW_TEXT_CHANGED);
}

public float getRoll() {
 return roll;
}

2. Modify the colors.xml resource fi le to include color values for the border gradient, the glass
compass shading, the sky, and the ground. Also update the colors used for the border and the
face markings:

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
 <color name=”background_color”>#F000</color>
 <color name=”marker_color”>#FFFF</color>
 <color name=”text_color”>#FFFF</color>

<color name=”shadow_color”>#7AAA</color>
 <color name=”outer_border”>#FF444444</color>

FIGURE 11-8

c11.indd 458c11.indd 458 4/11/2012 10:20:11 AM4/11/2012 10:20:11 AM

Meier02275 c11 V3 - 03/22/2012 Page 459

Enhancing Your Views x 459

 <color name=”inner_border_one”>#FF323232</color>
 <color name=”inner_border_two”>#FF414141</color>
 <color name=”inner_border”>#FFFFFFFF</color>
 <color name=”horizon_sky_from”>#FFA52A2A</color>
 <color name=”horizon_sky_to”>#FFFFC125</color>
 <color name=”horizon_ground_from”>#FF5F9EA0</color>
 <color name=”horizon_ground_to”>#FF00008B</color>
</resources>

3. The Paint and Shader objects used for the sky and ground in the artifi cial horizon are
created based on the size of the current View, so they can’t be static like the Paint objects
you created in Chapter 4. Instead of creating Paint objects, update the initCompassView
method in the CompassView class to construct the gradient arrays and colors they use. The
existing method code can be left largely intact, with some changes to the textPaint,
circlePaint, and markerPaint variables, as highlighted in the following code:

int[] borderGradientColors;
float[] borderGradientPositions;

int[] glassGradientColors;
float[] glassGradientPositions;

int skyHorizonColorFrom;
int skyHorizonColorTo;
int groundHorizonColorFrom;
int groundHorizonColorTo;

protected void initCompassView() {
 setFocusable(true);

 // Get external resources
 Resources r = this.getResources();

 circlePaint = new Paint(Paint.ANTI_ALIAS_FLAG);
 circlePaint.setColor(R.color.background_color);
 circlePaint.setStrokeWidth(1);
 circlePaint.setStyle(Paint.Style.STROKE);

 northString = r.getString(R.string.cardinal_north);
 eastString = r.getString(R.string.cardinal_east);
 southString = r.getString(R.string.cardinal_south);
 westString = r.getString(R.string.cardinal_west);

 textPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
 textPaint.setColor(r.getColor(R.color.text_color));
 textPaint.setFakeBoldText(true);
 textPaint.setSubpixelText(true);
 textPaint.setTextAlign(Align.LEFT);

 textHeight = (int)textPaint.measureText(“yY”);

 markerPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
 markerPaint.setColor(r.getColor(R.color.marker_color));
 markerPaint.setAlpha(200);

c11.indd 459c11.indd 459 4/11/2012 10:20:12 AM4/11/2012 10:20:12 AM

Meier02275 c11 V3 - 03/22/2012 Page 460

460 x CHAPTER 11 ADVANCED USER EXPERIENCE

 markerPaint.setStrokeWidth(1);
 markerPaint.setStyle(Paint.Style.STROKE);
 markerPaint.setShadowLayer(2, 1, 1, r.getColor(R.color.shadow_color));
}

3.1 Still within the initCompassView method, create the color and position arrays that
will be used by a radial Shader to paint the outer border:

protected void initCompassView() {
 [... Existing code ...]

 borderGradientColors = new int[4];
 borderGradientPositions = new float[4];

 borderGradientColors[3] = r.getColor(R.color.outer_border);
 borderGradientColors[2] = r.getColor(R.color.inner_border_one);
 borderGradientColors[1] = r.getColor(R.color.inner_border_two);
 borderGradientColors[0] = r.getColor(R.color.inner_border);
 borderGradientPositions[3] = 0.0f;
 borderGradientPositions[2] = 1-0.03f;
 borderGradientPositions[1] = 1-0.06f;
 borderGradientPositions[0] = 1.0f;
}

3.2 Then create the radial gradient color and position arrays that will be used to create the
semitransparent “glass dome” that sits on top of the View to give it the illusion of depth:

protected void initCompassView() {
 [... Existing code ...]

 glassGradientColors = new int[5];
 glassGradientPositions = new float[5];

 int glassColor = 245;
 glassGradientColors[4] = Color.argb(65, glassColor,
 glassColor, glassColor);
 glassGradientColors[3] = Color.argb(100, glassColor,
 glassColor, glassColor);
 glassGradientColors[2] = Color.argb(50, glassColor,
 glassColor, glassColor);
 glassGradientColors[1] = Color.argb(0, glassColor,
 glassColor, glassColor);
 glassGradientColors[0] = Color.argb(0, glassColor,
 glassColor, glassColor);
 glassGradientPositions[4] = 1-0.0f;
 glassGradientPositions[3] = 1-0.06f;
 glassGradientPositions[2] = 1-0.10f;
 glassGradientPositions[1] = 1-0.20f;
 glassGradientPositions[0] = 1-1.0f;
}

3.3 Finally, get the colors you’ll use to create the linear gradients that will represent the sky
and the ground in the artifi cial horizon:

protected void initCompassView() {
 [... Existing code ...]

c11.indd 460c11.indd 460 4/11/2012 10:20:12 AM4/11/2012 10:20:12 AM

Meier02275 c11 V3 - 03/22/2012 Page 461

Enhancing Your Views x 461

 skyHorizonColorFrom = r.getColor(R.color.horizon_sky_from);
 skyHorizonColorTo = r.getColor(R.color.horizon_sky_to);

 groundHorizonColorFrom = r.getColor(R.color.horizon_ground_from);
 groundHorizonColorTo = r.getColor(R.color.horizon_ground_to);
}

4. Before you start drawing the face, create a new enum that stores each of the cardinal
directions:

private enum CompassDirection { N, NNE, NE, ENE,
 E, ESE, SE, SSE,
 S, SSW, SW, WSW,
 W, WNW, NW, NNW }

5. Now you need to completely replace the existing onDraw method. You start by fi guring out
some size-based values, including the center of the View, the radius of the circular control,
and the rectangles that will enclose the outer (heading) and inner (tilt and roll) face elements.
To start, replace the existing onDraw method:

@Override
protected void onDraw(Canvas canvas) {

6. Calculate the width of the outer (heading) ring based on the size of the font used to draw the
heading values:

 float ringWidth = textHeight + 4;

7. Calculate the height and width of the View, and use those values to establish the radius of the
inner and outer face dials, as well as to create the bounding boxes for each face:

int height = getMeasuredHeight();
 int width =getMeasuredWidth();

 int px = width/2;
 int py = height/2;
 Point center = new Point(px, py);

 int radius = Math.min(px, py)-2;

 RectF boundingBox = new RectF(center.x - radius,
 center.y - radius,
 center.x + radius,
 center.y + radius);

 RectF innerBoundingBox = new RectF(center.x - radius + ringWidth,
 center.y - radius + ringWidth,
 center.x + radius - ringWidth,
 center.y + radius - ringWidth);

 float innerRadius = innerBoundingBox.height()/2;

8. With the dimensions of the View established, it’s time to start drawing the faces.

Start from the bottom layer at the outside, and work your way in and up, starting with the
outer face (heading). Create a new RadialGradient Shader using the colors and positions

c11.indd 461c11.indd 461 4/11/2012 10:20:12 AM4/11/2012 10:20:12 AM

Meier02275 c11 V3 - 03/22/2012 Page 462

462 x CHAPTER 11 ADVANCED USER EXPERIENCE

you defi ned in step 3.2, and assign that Shader to a new Paint before using it to draw a
circle:

RadialGradient borderGradient = new RadialGradient(px, py, radius,
borderGradientColors, borderGradientPositions, TileMode.CLAMP);

Paint pgb = new Paint();
pgb.setShader(borderGradient);

Path outerRingPath = new Path();
outerRingPath.addOval(boundingBox, Direction.CW);

canvas.drawPath(outerRingPath, pgb);

9. Now you need to draw the artifi cial horizon. You do this by dividing the circular face into
two sections, one representing the sky and the other the ground. The proportion of each sec-
tion depends on the current pitch.

Start by creating the Shader and Paint objects that will be used to draw the sky and earth:

LinearGradient skyShader = new LinearGradient(center.x,
 innerBoundingBox.top, center.x, innerBoundingBox.bottom,
 skyHorizonColorFrom, skyHorizonColorTo, TileMode.CLAMP);

Paint skyPaint = new Paint();
skyPaint.setShader(skyShader);

LinearGradient groundShader = new LinearGradient(center.x,
 innerBoundingBox.top, center.x, innerBoundingBox.bottom,
 groundHorizonColorFrom, groundHorizonColorTo, TileMode.CLAMP);

Paint groundPaint = new Paint();
groundPaint.setShader(groundShader);

10. Normalize the pitch and roll values to clamp them within ±90 degrees and ±180 degrees,
respectively:

float tiltDegree = pitch;
while (tiltDegree > 90 || tiltDegree < -90)
{
 if (tiltDegree > 90) tiltDegree = -90 + (tiltDegree - 90);
 if (tiltDegree < -90) tiltDegree = 90 - (tiltDegree + 90);
}

float rollDegree = roll;
while (rollDegree > 180 || rollDegree < -180)
{
 if (rollDegree > 180) rollDegree = -180 + (rollDegree - 180);
 if (rollDegree < -180) rollDegree = 180 - (rollDegree + 180);
}

11. Create paths that will fi ll each segment of the circle (ground and sky). The proportion of each
segment should be related to the clamped pitch:

Path skyPath = new Path();
skyPath.addArc(innerBoundingBox,

c11.indd 462c11.indd 462 4/11/2012 10:20:12 AM4/11/2012 10:20:12 AM

Meier02275 c11 V3 - 03/22/2012 Page 463

Enhancing Your Views x 463

 -tiltDegree,
 (180 + (2 * tiltDegree)));

12. Spin the canvas around the center in the opposite direction to the current roll, and draw the
sky and ground paths using the Paints you created in step 4:

canvas.save();
canvas.rotate(-rollDegree, px, py);
canvas.drawOval(innerBoundingBox, groundPaint);
canvas.drawPath(skyPath, skyPaint);
canvas.drawPath(skyPath, markerPaint);

13. Next is the face marking. Start by calculating the start and endpoints for the horizontal
horizon markings:

int markWidth = radius / 3;
int startX = center.x - markWidth;
int endX = center.x + markWidth;

14. To make the horizon values easier to read, you should ensure that the pitch scale always
starts at the current value. The following code calculates the position of the UI between the
ground and sky on the horizon face:

double h = innerRadius*Math.cos(Math.toRadians(90-tiltDegree));
double justTiltY = center.y - h;

15. Find the number of pixels representing each degree of tilt:

float pxPerDegree = (innerBoundingBox.height()/2)/45f;

16. Iterate over 180 degrees, centered on the current tilt value, to give a sliding scale of possible
pitch:

for (int i = 90; i >= -90; i -= 10) {
 double ypos = justTiltY + i*pxPerDegree;

 // Only display the scale within the inner face.
 if ((ypos < (innerBoundingBox.top + textHeight)) ||
 (ypos > innerBoundingBox.bottom - textHeight))
 continue;

 // Draw a line and the tilt angle for each scale increment.
 canvas.drawLine(startX, (float)ypos,
 endX, (float)ypos,
 markerPaint);
 int displayPos = (int)(tiltDegree - i);
 String displayString = String.valueOf(displayPos);
 float stringSizeWidth = textPaint.measureText(displayString);
 canvas.drawText(displayString,
 (int)(center.x-stringSizeWidth/2),
 (int)(ypos)+1,
 textPaint);
}

c11.indd 463c11.indd 463 4/11/2012 10:20:12 AM4/11/2012 10:20:12 AM

Meier02275 c11 V3 - 03/22/2012 Page 464

464 x CHAPTER 11 ADVANCED USER EXPERIENCE

17. Draw a thicker line at the earth/sky interface. Change the stroke thickness of the marker-
Paint object before drawing the line (and then set it back to the previous value):

markerPaint.setStrokeWidth(2);
canvas.drawLine(center.x - radius / 2,
 (float)justTiltY,
 center.x + radius / 2,
 (float)justTiltY,
 markerPaint);
markerPaint.setStrokeWidth(1);

18. To make it easier to read the exact roll, you should draw an arrow and display a text string
that shows the value.

Create a new Path, and use the moveTo/lineTo methods to construct an open arrow that
points straight up. Draw the path and a text string that shows the current roll:

// Draw the arrow
Path rollArrow = new Path();
rollArrow.moveTo(center.x - 3, (int)innerBoundingBox.top + 14);
rollArrow.lineTo(center.x, (int)innerBoundingBox.top + 10);
rollArrow.moveTo(center.x + 3, innerBoundingBox.top + 14);
rollArrow.lineTo(center.x, innerBoundingBox.top + 10);
canvas.drawPath(rollArrow, markerPaint);
// Draw the string
String rollText = String.valueOf(rollDegree);
double rollTextWidth = textPaint.measureText(rollText);
canvas.drawText(rollText,
 (float)(center.x - rollTextWidth / 2),
 innerBoundingBox.top + textHeight + 2,
 textPaint);

19. Spin the canvas back to upright so that you can draw the rest of the face markings:

canvas.restore();

20. Draw the roll dial markings by rotating the canvas 10 degrees at a time, drawing a value
every 30 degrees and otherwise draw a mark. When you’ve completed the face, restore the
canvas to its upright position:

canvas.save();
canvas.rotate(180, center.x, center.y);
for (int i = -180; i < 180; i += 10)
{
 // Show a numeric value every 30 degrees
 if (i % 30 == 0) {
 String rollString = String.valueOf(i*-1);
 float rollStringWidth = textPaint.measureText(rollString);
 PointF rollStringCenter =
 new PointF(center.x-rollStringWidth/2,
 innerBoundingBox.top+1+textHeight);
 canvas.drawText(rollString,
 rollStringCenter.x, rollStringCenter.y,
 textPaint);
 }

c11.indd 464c11.indd 464 4/11/2012 10:20:12 AM4/11/2012 10:20:12 AM

Meier02275 c11 V3 - 03/22/2012 Page 465

Enhancing Your Views x 465

 // Otherwise draw a marker line
 else {
 canvas.drawLine(center.x, (int)innerBoundingBox.top,
 center.x, (int)innerBoundingBox.top + 5,
 markerPaint);
 }

 canvas.rotate(10, center.x, center.y);
}
canvas.restore();

21. The fi nal step in creating the face is drawing the heading markers around the outside edge:

canvas.save();
canvas.rotate(-1*(bearing), px, py);

// Should this be a double?
double increment = 22.5;

for (double i = 0; i < 360; i += increment) {
 CompassDirection cd = CompassDirection.values()
 [(int)(i / 22.5)];
 String headString = cd.toString();

 float headStringWidth = textPaint.measureText(headString);
 PointF headStringCenter =
 new PointF(center.x - headStringWidth / 2,
 boundingBox.top + 1 + textHeight);

 if (i % increment == 0)
 canvas.drawText(headString,
 headStringCenter.x, headStringCenter.y,
 textPaint);
 else
 canvas.drawLine(center.x, (int)boundingBox.top,
 center.x, (int)boundingBox.top + 3,
 markerPaint);

 canvas.rotate((int)increment, center.x, center.y);
}
canvas.restore();

22. With the face complete, you can add some fi nishing touches.

Start by adding a “glass dome” over the top to give the illusion of a watch face.
Using the radial gradient array you constructed earlier, create a new Shader and Paint
object. Use them to draw a circle over the inner face that makes it look like it’s covered
in glass:

RadialGradient glassShader =
 new RadialGradient(px, py, (int)innerRadius,
 glassGradientColors,
 glassGradientPositions,
 TileMode.CLAMP);
Paint glassPaint = new Paint();

c11.indd 465c11.indd 465 4/11/2012 10:20:12 AM4/11/2012 10:20:12 AM

Meier02275 c11 V3 - 03/22/2012 Page 466

466 x CHAPTER 11 ADVANCED USER EXPERIENCE

glassPaint.setShader(glassShader);

canvas.drawOval(innerBoundingBox, glassPaint);

23. All that’s left is to draw two more circles as clean borders for the inner and outer face bound-
aries. Then restore the canvas to upright, and fi nish the onDraw method:

 // Draw the outer ring
 canvas.drawOval(boundingBox, circlePaint);

 // Draw the inner ring
 circlePaint.setStrokeWidth(2);
 canvas.drawOval(innerBoundingBox, circlePaint);
}

If you run the parent activity, you will see an artifi cial horizon, as shown at the beginning of this
example in Figure 11-9.

All code snippets in this example are part of the Chapter 11 Compass project,
available for download at www.wrox.com.

Hardware Acceleration

Android 3.0 (API level 11) introduced a new rendering pipeline to allow applications to benefi t from
hardware-accelerated 2D graphics.

The hardware-accelerated rendering pipeline supports most of the existing Canvas and Paint draw-
ing options, with several exceptions, as described in the preceding sections. All the SDK Views, lay-
outs, and effects support hardware acceleration, so in most cases it is safe to enable for your entire
application — the primary exception being Views that you create yourself.

For a complete list of the unsupported drawing operations see the Android
Developer Guide: http://developer.android.com/guide/topics/graphics/
hardware-accel.html#unsupported.

Managing Hardware Acceleration Use in Your Applications

You can explicitly enable or disable hardware acceleration for your application by adding an
android:hardwareAccelerated attribute to the application node in your manifest:

<application android:hardwareAccelerated=”true”>

To enable or disable hardware acceleration for a specifi c Activity, use the same attribute on that
Activity’s manifest node:

<activity android:name=”.MyActivity”
 android:hardwareAccelerated=”false” />

c11.indd 466c11.indd 466 4/11/2012 10:20:12 AM4/11/2012 10:20:12 AM

http://www.wrox.com
http://developer.android.com/guide/topics/graphics

Meier02275 c11 V3 - 03/22/2012 Page 467

Enhancing Your Views x 467

It’s also possible to disable hardware acceleration for a particular View within an Activity. To do so,
set the layer type of the view to render using software using the setLayerType method:

view.setLayerType(View.LAYER_TYPE_SOFTWARE, null);

Checking If Hardware Acceleration Is Enabled

Not all devices support hardware acceleration, and not all 2D graphics features are supported on
a hardware-accelerated Canvas. As a result, you might choose to alter the UI presented by a View
based on whether hardware acceleration is currently enabled.

You can confi rm hardware acceleration is active by using the isHardwareAccelerated method on
either a View object or its underlying Canvas. If you are checking for hardware acceleration within
your onDraw code, it’s best practice to use the Canvas.isHardwareAccelerated method:

@Override
public void onDraw(Canvas canvas) {
 if (canvas.isHardwareAccelerated()) {
 // TODO Hardware accelerated drawing routine.
 }
 else {
 // TODO Unaccelerated drawing routine.
 }
}

Introducing the Surface View

Under normal circumstances, all your application’s Views are drawn on the same GUI thread. This
main application thread is also used for all user interaction (such as button clicks or text entry).

In Chapter 9, “Working in the Background,” you learned how to move blocking processes onto
background threads. Unfortunately, you can’t do this with the onDraw method of a View; modifying
a GUI element from a background thread is explicitly disallowed.

When you need to update the View’s UI rapidly, or the rendering code blocks the GUI thread for
too long, the SurfaceView class is the answer. A Surface View wraps a Surface object rather than
a Canvas object. This is important because Surfaces can be drawn on from background threads.
This is particularly useful for resource-intensive operations, or where rapid updates or high frame
rates are required, such as when using 3D graphics, creating games, or previewing the camera in real
time.

The ability to draw independently of the GUI thread comes at the price of additional memory con-
sumption, so although it’s a useful — sometimes necessary — way to create custom Views, you
should use Surface Views with caution.

When to Use a Surface View

You can use a Surface View in exactly the same way you use any View-derived class. You can apply
animations and place them in layouts as you would any other View.

The Surface encapsulated by the Surface View supports drawing, using most of the standard
Canvas methods described previously in this chapter, and also supports the full OpenGL ES library.

c11.indd 467c11.indd 467 4/11/2012 10:20:13 AM4/11/2012 10:20:13 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Meier02275 c11 V3 - 03/22/2012 Page 468

468 x CHAPTER 11 ADVANCED USER EXPERIENCE

Surface Views are particularly useful for displaying dynamic 3D images, such as those featured in
interactive games that provide immersive experiences. They’re also the best choice for displaying
real-time camera previews.

Creating Surface Views

To create a new Surface View, create a new class that extends SurfaceView and implements
SurfaceHolder.Callback. The SurfaceHolder callback notifi es the View when the underlying
Surface is created, destroyed, or modifi ed. It passes a reference to the SurfaceHolder object that
contains a valid Surface. A typical Surface View design pattern includes a Thread-derived class that
accepts a reference to the current SurfaceHolder and independently updates it.

Listing 11-8 shows a Surface View implementation for drawing using a Canvas. A new Thread-
derived class is created within the Surface View control, and all UI updates are handled within this
new class.

LISTING 11-8: Surface View skeleton implementation

import android.content.Context;
import android.graphics.Canvas;
import android.view.SurfaceHolder;
import android.view.SurfaceView;

public class MySurfaceView extends SurfaceView implements
 SurfaceHolder.Callback {

 private SurfaceHolder holder;
 private MySurfaceViewThread mySurfaceViewThread;
 private boolean hasSurface;

 MySurfaceView(Context context) {
 super(context);
 init();
 }

 private void init() {
 // Create a new SurfaceHolder and assign this
 // class as its callback.
 holder = getHolder();
 holder.addCallback(this);
 hasSurface = false;
 }

 public void resume() {
 // Create and start the graphics update thread.
 if (mySurfaceViewThread == null) {
 mySurfaceViewThread = new MySurfaceViewThread();

 if (hasSurface == true)
 mySurfaceViewThread.start();
 }
 }

c11.indd 468c11.indd 468 4/11/2012 10:20:13 AM4/11/2012 10:20:13 AM

Meier02275 c11 V3 - 03/22/2012 Page 469

Enhancing Your Views x 469

 public void pause() {
 // Kill the graphics update thread
 if (mySurfaceViewThread != null) {
 mySurfaceViewThread.requestExitAndWait();
 mySurfaceViewThread = null;
 }
 }

 public void surfaceCreated(SurfaceHolder holder) {
 hasSurface = true;
 if (mySurfaceViewThread != null)
 mySurfaceViewThread.start();
 }

 public void surfaceDestroyed(SurfaceHolder holder) {
 hasSurface = false;
 pause();
 }

 public void surfaceChanged(SurfaceHolder holder, int format,
 int w, int h) {
 if (mySurfaceViewThread != null)
 mySurfaceViewThread.onWindowResize(w, h);
 }

 class MySurfaceViewThread extends Thread {
 private boolean done;

 MySurfaceViewThread() {
 super();
 done = false;
 }

 @Override
 public void run() {
 SurfaceHolder surfaceHolder = holder;

 // Repeat the drawing loop until the thread is stopped.
 while (!done) {
 // Lock the surface and return the canvas to draw onto.
 Canvas canvas = surfaceHolder.lockCanvas();
 // TODO: Draw on the canvas!
 // Unlock the canvas and render the current image.
 surfaceHolder.unlockCanvasAndPost(canvas);
 }
 }

 public void requestExitAndWait() {
 // Mark this thread as complete and combine into
 // the main application thread.
 done = true;
 try {
 join();
 } catch (InterruptedException ex) { }

c11.indd 469c11.indd 469 4/11/2012 10:20:13 AM4/11/2012 10:20:13 AM

Meier02275 c11 V3 - 03/22/2012 Page 470

470 x CHAPTER 11 ADVANCED USER EXPERIENCE

 }

 public void onWindowResize(int w, int h) {
 // Deal with a change in the available surface size.
 }
 }
}

code snippet PA4AD_Ch11_SurfaceView/src/MySurfaceView.java

Creating 3D Views with a Surface View

Android includes full support for the OpenGL ES 3D rendering framework, including support for
hardware acceleration on devices that offer it. The SurfaceView provides a Surface onto which you
can render your OpenGL scenes.

OpenGL is commonly used in desktop applications to provide dynamic 3D UIs and animations.
Resource-constrained devices don’t have the capacity for polygon handling that’s available on desk-
top PCs and gaming devices that feature dedicated 3D graphics processors. Within your applications,
consider the load your 3D Surface View will be placing on your processor, and attempt to keep the
total number of polygons being displayed, and the rate at which they’re updated, as low as possible.

Creating a Doom clone for Android is well out of the scope of this book, so I’ll
leave it to you to test the limits of what’s possible in a mobile 3D UI. Check out
the GLSurfaceView API demo example included in the SDK distribution to see
an example of the OpenGL ES framework in action.

Creating Interactive Controls

Anyone who has used a mobile phone is painfully aware of the challenges associated with designing
intuitive UIs for mobile devices. Touch screens have been available on mobiles for many years, but
it’s only recently that touch-enabled UIs have been designed to be used by fi ngers rather than sty-
luses. Full physical keyboards have also become common, with the compact size of the slide-out or
fl ip-out keyboard introducing its own challenges.

As an open framework, Android is available on a wide variety of devices featuring many different
permutations of input technologies, including touch screens, D-pads, trackballs, and keyboards.

The challenge for you as a developer is to create intuitive UIs that make the most of whatever input
hardware is available, while introducing as few hardware dependencies as possible.

The techniques described in this section show how to listen for (and react to) user input from
touch-screen taps, key presses, and trackball events using the following event handlers in Views and
Activities:

 ‰ onTouchEvent — The touch-screen event handler, triggered when the touch screen is
touched, released, or dragged

 ‰ onKeyDown — Called when any hardware key is pressed

c11.indd 470c11.indd 470 4/11/2012 10:20:13 AM4/11/2012 10:20:13 AM

Meier02275 c11 V3 - 03/22/2012 Page 471

Enhancing Your Views x 471

 ‰ onKeyUp — Called when any hardware key is released

 ‰ onTrackballEvent — Triggered by movement on the trackball

Using the Touch Screen

Mobile touch screens have existed since the days of the Apple Newton and the Palm Pilot, although
their usability has had mixed reviews. Modern mobile devices are now all about fi nger input — a
design principle that assumes users will use their fi ngers rather than a specialized stylus to touch the
screen and navigate your UI.

Finger-based touch makes interaction less precise and is often based more on movement than simple
contact. Android’s native applications make extensive use of fi nger-based, touch-screen UIs, includ-
ing the use of dragging motions to scroll through lists, swipe between screens, or perform actions.

To create a View or Activity that uses touch-screen interaction, override the onTouchEvent handler:

@Override
public boolean onTouchEvent(MotionEvent event) {
 return super.onTouchEvent(event);
}

Return true if you have handled the screen press; otherwise, return false to pass events down
through the View stack until the touch has been successfully handled.

Processing Single and Multiple Touch Events

For each gesture, the onTouchEvent handler is fi red several times. Starting when the user touches
the screen, multiple times while the system tracks the current fi nger position, and, fi nally, once more
when the contact ends.

Android 2.0 (API level 5) introduced platform support for processing an arbitrary number of simul-
taneous touch events. Each touch event is allocated a separate pointer identifi er that is referenced in
the Motion Event parameter of the onTouchEvent handler.

Not all touch-screen hardware reports multiple simultaneous screen presses. In
cases in which the hardware does not support multiple touches, the platform
returns a single touch event.

Call getAction on the MotionEvent parameter to fi nd the event type that triggered the handler. For
either a single touch device, or the fi rst touch event on a multitouch device, you can use the ACTION_
UP/DOWN/MOVE/CANCEL/OUTSIDE constants to fi nd the event type:

@Override
public boolean onTouchEvent(MotionEvent event) {
 int action = event.getAction();
 switch (action) {
 case (MotionEvent.ACTION_DOWN):
 // Touch screen pressed
 return true;

c11.indd 471c11.indd 471 4/11/2012 10:20:14 AM4/11/2012 10:20:14 AM

Meier02275 c11 V3 - 03/22/2012 Page 472

472 x CHAPTER 11 ADVANCED USER EXPERIENCE

 case (MotionEvent.ACTION_MOVE):
 // Contact has moved across screen
 return true;
 case (MotionEvent.ACTION_UP):
 // Touch screen touch ended
 return true;
 case (MotionEvent.ACTION_CANCEL):
 // Touch event cancelled
 return true;
 case (MotionEvent.ACTION_OUTSIDE):
 // Movement has occurred outside the
 // bounds of the current screen element
 return true;
 default: return super.onTouchEvent(event);
 }
}

To track touch events from multiple pointers, you need to apply the MotionEvent.ACTION_MASK
and MotionEvent.ACTION_POINTER_ID_MASK constants to fi nd the touch event (either ACTION_
POINTER_DOWN or ACTION_POINTER_UP) and the pointer ID that triggered it, respectively. Call get-
PointerCount to fi nd if this is a multiple-touch event.

@Override
public boolean onTouchEvent(MotionEvent event) {
 int action = event.getAction();

 if (event.getPointerCount() > 1) {
 int actionPointerId = action & MotionEvent.ACTION_POINTER_ID_MASK;
 int actionEvent = action & MotionEvent.ACTION_MASK;
 // Do something with the pointer ID and event.
 }
 return super.onTouchEvent(event);
}

The Motion Event also includes the coordinates of the current screen contact. You can access these
coordinates using the getX and getY methods. These methods return the coordinate relative to the
responding View or Activity.

In the case of multiple-touch events, each Motion Event includes the current position of each
pointer. To fi nd the position of a given pointer, pass its index into the getX or getY methods. Note
that its index is not equivalent to the pointer ID. To fi nd the index for a given pointer, use the find-
PointerIndex method, passing in the pointer ID whose index you need:

int xPos = -1;
int yPos = -1;

if (event.getPointerCount() > 1) {
 int actionPointerId = action & MotionEvent.ACTION_POINTER_ID_MASK;
 int actionEvent = action & MotionEvent.ACTION_MASK;

 int pointerIndex = event.findPointerIndex(actionPointerId);
 xPos = (int)event.getX(pointerIndex);
 yPos = (int)event.getY(pointerIndex);
}

c11.indd 472c11.indd 472 4/11/2012 10:20:14 AM4/11/2012 10:20:14 AM

Meier02275 c11 V3 - 03/22/2012 Page 473

Enhancing Your Views x 473

else {
 // Single touch event.
 xPos = (int)event.getX();
 yPos = (int)event.getY();
}

The Motion Event parameter also includes the pressure being applied to the screen using get
Pressure, a method that returns a value usually between 0 (no pressure) and 1 (normal pressure).

Depending on the calibration of the hardware, it may be possible to return values
greater than 1.

Finally, you can also determine the normalized size of the current contact area by using the getSize
method. This method returns a value between 0 and 1, where 0 suggests a precise measurement and
1 indicates a possible “fat touch” event in which the user may not have intended to press anything.

Tracking Movement

Whenever the current touch contact position, pressure, or size changes, a new onTouchEvent is trig-
gered with an ACTION_MOVE action.

The Motion Event parameter can include historical values, in addition to the fi elds described previ-
ously. This history represents all the movement events that have occurred between the previously
handled onTouchEvent and this one, allowing Android to buffer rapid movement changes to pro-
vide fi ne-grained capture of movement data.

You can fi nd the size of the history by calling getHistorySize, which returns the number of move-
ment positions available for the current event. You can then obtain the times, pressures, sizes, and
positions of each of the historical events by using a series of getHistorical* methods and passing
in the position index. Note that as with the getX and getY methods described earlier, you can pass
in a pointer index value to track historical touch events for multiple cursors.

int historySize = event.getHistorySize();
long time = event.getHistoricalEventTime(i);

if (event.getPointerCount() > 1) {
 int actionPointerId = action & MotionEvent.ACTION_POINTER_ID_MASK;
 int pointerIndex = event.findPointerIndex(actionPointerId);
 for (int i = 0; i < historySize; i++) {
 float pressure = event.getHistoricalPressure(pointerIndex, i);
 float x = event.getHistoricalX(pointerIndex, i);
 float y = event.getHistoricalY(pointerIndex, i);
 float size = event.getHistoricalSize(pointerIndex, i);
 // TODO: Do something with each point
 }
}
else {
 for (int i = 0; i < historySize; i++) {
 float pressure = event.getHistoricalPressure(i);

c11.indd 473c11.indd 473 4/11/2012 10:20:14 AM4/11/2012 10:20:14 AM

Meier02275 c11 V3 - 03/22/2012 Page 474

474 x CHAPTER 11 ADVANCED USER EXPERIENCE

 float x = event.getHistoricalX(i);
 float y = event.getHistoricalY(i);
 float size = event.getHistoricalSize(i);
 // TODO: Do something with each point
 }
}

The normal pattern for handling movement events is to process each of the historical events fi rst,
followed by the current Motion Event values, as shown in Listing 11-9.

LISTING 11-9: Handling touch screen movement events

@Override
public boolean onTouchEvent(MotionEvent event) {

 int action = event.getAction();

 switch (action) {
 case (MotionEvent.ACTION_MOVE):
 {
 int historySize = event.getHistorySize();
 for (int i = 0; i < historySize; i++) {
 float x = event.getHistoricalX(i);
 float y = event.getHistoricalY(i);
 processMovement(x, y);
 }

 float x = event.getX();
 float y = event.getY();
 processMovement(x, y);

 return true;
 }
 }

 return super.onTouchEvent(event);
}

private void processMovement(float _x, float _y) {
 // Todo: Do something on movement.
}

code snippet PA4AD_Ch11_Touch/src/MyView.java

Using an On Touch Listener

You can listen for touch events without subclassing an existing View by attaching an
OnTouchListener to any View object, using the setOnTouchListener method:

myView.setOnTouchListener(new OnTouchListener() {
 public boolean onTouch(View _view, MotionEvent _event) {

c11.indd 474c11.indd 474 4/11/2012 10:20:14 AM4/11/2012 10:20:14 AM

Meier02275 c11 V3 - 03/22/2012 Page 475

Enhancing Your Views x 475

 // TODO Respond to motion events
 return false;
 }
});

Using the Device Keys, Buttons, and D-Pad

Button and key-press events for all hardware keys are handled by the onKeyDown and onKeyUp han-
dlers of the active Activity or the focused View. This includes keyboard keys, the D-pad, and the
volume, back, dial, and hang-up buttons. The only exception is the home key, which is reserved to
ensure that users can never get locked within an application.

To have your View or Activity react to button presses, override the onKeyUp and onKeyDown event
handlers:

@Override
public boolean onKeyDown(int _keyCode, KeyEvent _event) {
 // Perform on key pressed handling, return true if handled
 return false;
}

@Override
public boolean onKeyUp(int _keyCode, KeyEvent _event) {
 // Perform on key released handling, return true if handled
 return false;
}

The keyCode parameter contains the value of the key being pressed; compare it to the static key
code values available from the KeyEvent class to perform key-specifi c processing.

The KeyEvent parameter also includes the isAltPressed, isShiftPressed, and isSymPressed
methods to determine if the alt, shift, or symbols keys are also being held. Android 3.0 (API level
11) introduced the isCtrlPressed and isFunctionPressed methods to determine if the control or
function keys are pressed. The static isModifierKey method accepts the keyCode and determines
whether this key event was triggered by the user pressing one of these modifi er keys.

Using the On Key Listener

To respond to key presses within existing Views in your Activities, implement an OnKeyListener,
and assign it to a View using the setOnKeyListener method. Rather than implementing a separate
method for key-press and key-release events, the OnKeyListener uses a single onKey event.

myView.setOnKeyListener(new OnKeyListener() {
 public boolean onKey(View v, int keyCode, KeyEvent event) {
 // TODO Process key press event, return true if handled
 return false;
 }
});

Use the keyCode parameter to fi nd the key pressed. The KeyEvent parameter is used to determine
if the key has been pressed or released, where ACTION_DOWN represents a key press and ACTION_UP
signals its release.

c11.indd 475c11.indd 475 4/11/2012 10:20:15 AM4/11/2012 10:20:15 AM

Meier02275 c11 V3 - 03/22/2012 Page 476

476 x CHAPTER 11 ADVANCED USER EXPERIENCE

Using the Trackball

Many mobile devices offer a trackball as a useful alternative (or addition) to the touch screen and
D-pad. Trackball events are handled by overriding the onTrackballEvent method in your View or
Activity.

Like touch events, trackball movement is included in a MotionEvent parameter. In this case,
the MotionEvent contains the relative movement of the trackball since the last trackball event,
normalized so that 1 represents the equivalent movement caused by the user pressing the D-pad
key.

You can fi nd the vertical change by using the getY method, and fi nd the horizontal scrolling
through the getX method:

@Override
public boolean onTrackballEvent(MotionEvent _event) {
 float vertical = _event.getY();
 float horizontal = _event.getX();
 // TODO Process trackball movement.
 return false;
}

ADVANCED DRAWABLE RESOURCES

Earlier in this chapter you examined a number of scalable Drawable resources, including
shapes, gradients, and colors. This section introduces a number of additional XML-defined
Drawables.

Composite Drawables

Use composite Drawables to combine and manipulate other Drawable resources. You can use any
Drawable resource within the following composite resource defi nitions, including bitmaps, shapes,
and colors. Similarly, you can use these new Drawables within each other and assign them to Views
in the same way as all other Drawable assets.

Transformative Drawables

You can scale and rotate existing Drawable resources using the aptly named ScaleDrawable and
RotateDrawable classes. These transformative Drawables are particularly useful for creating prog-
ress bars or animating Views.

 ‰ ScaleDrawable — Within the scale tag, use the scaleHeight and scaleWidth attributes
to defi ne the target height and width relative to the bounding box of the original Drawable,
respectively. Use the scaleGravity attribute to control the anchor point for the scaled
image.

<?xml version=”1.0” encoding=”utf-8”?>
<scale xmlns:android=”http://schemas.android.com/apk/res/android”
 android:drawable=”@drawable/icon”

c11.indd 476c11.indd 476 4/11/2012 10:20:15 AM4/11/2012 10:20:15 AM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c11 V3 - 03/22/2012 Page 477

Advanced Drawable Resources x 477

 android:scaleHeight=”100%”
 android:scaleWidth=”100%”
 android:scaleGravity=”center_vertical|center_horizontal”
/>

 ‰ RotateDrawable — Within the rotate tag, use fromDegrees and toDegrees to defi ne the
start and end rotation angle around a pivot point, respectively. Defi ne the pivot using the
pivotX and pivotY attributes, specifying a percentage of the Drawable’s width and height,
respectively, using nn% notation.

<?xml version=”1.0” encoding=”utf-8”?>
<rotate xmlns:android=”http://schemas.android.com/apk/res/android”
 android:drawable=”@drawable/icon”
 android:fromDegrees=”0”
 android:toDegrees=”90”
 android:pivotX=”50%”
 android:pivotY=”50%”
/>

To apply the scaling and rotation at run time, use the setImageLevel method on the View object
hosting the Drawable to move between the start and fi nish values on a scale of 0 to 10,000. This
allows you to defi ne a single Drawable that can be modifi ed to suit particular circumstances — such
as an arrow that can point in multiple directions.

When moving through levels, level 0 represents the start angle (or smallest scale result). Level
10,000 represents the end of the transformation (the fi nish angle or highest scale). If you do not
specify the image level, it will default to 0.

ImageView rotatingImage
 = (ImageView)findViewById(R.id.RotatingImageView);
ImageView scalingImage
 = (ImageView)findViewById(R.id.ScalingImageView);

// Rotate the image 50% of the way to its final orientation.
rotatingImage.setImageLevel(5000);

// Scale the image to 50% of its final size.
scalingImage.setImageLevel(5000);

Layer Drawables

A LayerDrawable lets you composite several Drawable resources on top of one another. If you
defi ne an array of partially transparent Drawables, you can stack them on top of one another to
create complex combinations of dynamic shapes and transformations.

Similarly, you can use Layer Drawables as the source for the transformative Drawable resources
described in the preceding section, or the State List and Level List Drawables that follow.

Layer Drawables are defi ned via the layer-list node tag. Within that tag, create a new item sub-
node using the drawable attribute to specify each Drawables to add. Each Drawable will be stacked
in index order, with the fi rst item in the array at the bottom of the stack.

c11.indd 477c11.indd 477 4/11/2012 10:20:15 AM4/11/2012 10:20:15 AM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c11 V3 - 03/22/2012 Page 478

478 x CHAPTER 11 ADVANCED USER EXPERIENCE

<?xml version=”1.0” encoding=”utf-8”?>
<layer-list xmlns:android=”http://schemas.android.com/apk/res/android”>
 <item android:drawable=”@drawable/bottomimage”/>
 <item android:drawable=”@drawable/image2”/>
 <item android:drawable=”@drawable/image3”/>
 <item android:drawable=”@drawable/topimage”/>
</layer-list>

State List Drawables

A State List Drawable is a composite resource that enables you to specify a different Drawable to
display based on the state of the View to which it has been assigned.

Most native Android Views use State List Drawables, including the image used on Buttons and the
background used for standard List View items.

To defi ne a State List Drawable, create an XML fi le containing a root selector tag. Add a series of
item subnodes, each of which uses an android:state_* attribute and android:drawable attribute
to assign a specifi c Drawable to a particular state:

<selector xmlns:android=”http://schemas.android.com/apk/res/android”>
<item android:state_pressed=”true”
 android:drawable=”@drawable/widget_bg_pressed”/>
 <item android:state_focused=”true”
 android:drawable=”@drawable/widget_bg_selected”/>
 <item android:state_window_focused=”false”
 android:drawable=”@drawable/widget_bg_normal”/>
 <item android:drawable=”@drawable/widget_bg_normal”/>
</selector>

Each state attribute can be set to true or false, allowing you to specify a different Drawable for
each combination of the following list View states:

 ‰ android:state_pressed — Pressed or not pressed.

 ‰ android:state_focused — Has focus or does not have focus.

 ‰ android:state_hovered — Introduced in API level 11, the cursor is hovering over the view
or is not hovering.

 ‰ android:state_selected — Selected or not selected.

 ‰ android:state_checkable — Can or can’t be checked.

 ‰ android:state_checked — Is or isn’t checked.

 ‰ android:state_enabled — Enabled or disabled.

 ‰ android:state_activated — Activated or not activated.

 ‰ android:state_window_focused — The parent window has focus or does not have focus.

When deciding which Drawable to display for a given View, Android will apply the fi rst item in the
state list that matches the current state of the object. As a result, your default value should be the
last in the list.

c11.indd 478c11.indd 478 4/11/2012 10:20:15 AM4/11/2012 10:20:15 AM

http://schemas.android.com/apk/res/android%E2%80%9D
http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c11 V3 - 03/22/2012 Page 479

Copy, Paste, and the Clipboard x 479

Level List Drawables

Using a Level List Drawable you can create an array of Drawable resources, assigning an integer
index value for each layer. Use the level-list node to create a new Level List Drawable, using
item subnodes to defi ne each layer, with android:drawable / android:maxLevel attributes defi n-
ing the Drawable for each layer and its corresponding index.

<level-list xmlns:android=”http://schemas.android.com/apk/res/android”>
 <item android:maxLevel=”0” android:drawable=”@drawable/earthquake_0”/>
 <item android:maxLevel=”1” android:drawable=”@drawable/earthquake_1”/>
 <item android:maxLevel=”2” android:drawable=”@drawable/earthquake_2”/>
 <item android:maxLevel=”4” android:drawable=”@drawable/earthquake_4”/>
 <item android:maxLevel=”6” android:drawable=”@drawable/earthquake_6”/>
 <item android:maxLevel=”8” android:drawable=”@drawable/earthquake_8”/>
 <item android:maxLevel=”10” android:drawable=”@drawable/earthquake_10”/>
</level-list>

To select which image to display in code, call setImageLevel on the View displaying the Level List
Drawable resource, passing in the index of the Drawable you want to display:

imageView.setImageLevel(5);

The View will display the image corresponding to the index with an equal or greater value to the
one specifi ed.

COPY, PASTE, AND THE CLIPBOARD

Android 3.0 (API level 11) introduced support for full copy and paste operations within (and
between) Android applications using the Clipboard Manager:

ClipboardManager clipboard = (ClipboardManager)getSystemService(CLIPBOARD_SERVICE);

The clipboard supports text strings, URIs (typically directed at a Content Provider item), and Intents
(for copying application shortcuts). To copy an object to the clipboard, create a new ClipData
object that contains a ClipDescription that describes the meta data related to the copied object,
and any number of ClipData.Item objects, as described in the following section. Add it to the clip-
board using the setPrimaryClip method:

clipboard.setPrimaryClip(newClip);

The clipboard can contain only one Clip Data object at any time. Copying a new object replaces the
previously held clipboard item. As a result, you can assume neither that your application will be the
last to have copied something to the clipboard nor that it will be the only application that pastes it.

Copying Data to the Clipboard

The ClipData class includes a number of static convenience methods to simplify the creation of
typical Clip Data object. Use the newPlainText method to create a new Clip Data that includes
the specifi ed string, sets the description to the label provided, and sets the MIME type to
MIMETYPE_TEXT_PLAIN:

ClipData newClip = ClipData.newPlainText(“copied text”,”Hello, Android!”);

c11.indd 479c11.indd 479 4/11/2012 10:20:15 AM4/11/2012 10:20:15 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://schemas.android.com/apk/res/android%E2%80%9D

Meier02275 c11 V3 - 03/22/2012 Page 480

480 x CHAPTER 11 ADVANCED USER EXPERIENCE

For Content Provider-based items, use the newUri method, specifying a Content Resolver, label, and
URI from which the data is to be pasted:

ClipData newClip = ClipData.newUri(getContentResolver(),”URI”, myUri);

Pasting Clipboard Data

To provide a good user experience, you should enable and disable the paste option from your UI
based on whether there is data copied to the clipboard. You can do this by querying the clipboard
service using the hasPrimaryClip method:

if (!(clipboard.hasPrimaryClip())) {
 // TODO Disable paste UI option.

It’s also possible to query the data type of the Clip Data object currently in the clipboard. Use the
getPrimaryClipDescription method to extract the metadata for the clipboard data, using its has-
MimeType method to specify the MIME type you support pasting into your application:

if (!(clipboard.getPrimaryClipDescription().hasMimeType(MIMETYPE_TEXT_PLAIN)))
{
 // TODO Disable the paste UI option if the content in
 // the clipboard is not of a supported type.
}
else {
 // TODO Enable the paste UI option if the clipboard contains data
 // of a supported type.
}

To access the data itself, use the getItemAt method, passing in the index of the item you want to
retrieve:

ClipData.Item item = clipboard.getPrimaryClip().getItemAt(0);

You can extract the text, URI, or Intent using the getText, getUri, and getIntent methods,
respectively:

CharSequence pasteData = item.getText();
Intent pastIntent = item.getIntent();
Uri pasteUri = item.getUri();

It’s also possible to paste the content of any clipboard item, even if your application supports only
text. Using the coerceToText method you can transform the contents of a ClipData.Item object
into a string.

CharSequence pasteText = item.coerceToText(this);

c11.indd 480c11.indd 480 4/11/2012 10:20:15 AM4/11/2012 10:20:15 AM

Meier c12.indd V2 - 20/03/2012 Page 481

12
Hardware Sensors

WHAT’S IN THIS CHAPTER?

 ‰ Using the Sensor Manager

 ‰ Introducing the available sensor types

 ‰ Finding a device’s natural orientation

 ‰ Remapping a device’s orientation reference frame

 ‰ Monitoring sensors and interpreting sensor values

 ‰ Using sensors to monitor a device’s movement and orientation

 ‰ Using sensors to monitor a device’s environment

Modern Android devices are much more than simple communications or web browsing
platforms. They are now extra-sensory devices that use hardware sensors, including acceler-
ometers, gyroscopes, and barometers, to provide a platform to extend your perceptions.

Sensors that detect physical and environmental properties offer an exciting avenue for
innovations that enhance the user experience of mobile applications. The incorporation of an
increasingly rich array of sensor hardware in modern devices provides new possibilities for
user interaction and application development, including augmented reality, movement-based
input, and environmental customizations.

In this chapter you’ll be introduced to the sensors currently available in Android and how to
use the Sensor Manager to monitor them.

You’ll take a closer look at the accelerometer, orientation, and gyroscopic sensors, and use
them to determine changes in the device orientation and acceleration, regardless of the natural
orientation of the host device. This is particularly useful for creating motion-based user
interfaces (UIs).

c12.indd 481c12.indd 481 4/18/2012 3:53:02 PM4/18/2012 3:53:02 PM

482 x CHAPTER 12 HARDWARE SENSORS

Meier c12.indd V2 - 20/03/2012 Page 482

You’ll also explore the environmental sensors, including how to use the barometer to detect the
current altitude, the light Sensor to determine the level of cloud cover, and the temperature Sensor
to measure the ambient temperature.

Finally, you’ll learn about the virtual and composite Sensors, which amalgamate the output of
several hardware sensors to provide smoother and more accurate results.

USING SENSORS AND THE SENSOR MANAGER

The Sensor Manager is used to manage the sensor hardware available on Android devices. Use
getSystemService to return a reference to the Sensor Manager Service, as shown in the following
snippet:

String service_name = Context.SENSOR_SERVICE;
SensorManager sensorManager = (SensorManager)getSystemService(service_name);

Rather than interacting with the sensor hardware directly, they are represented by Sensor objects
that describe the properties of the hardware sensor they represent, including its type, name, manu-
facturer, and details on its accuracy and range.

The Sensor class includes a set of constants that describe which type of hardware sensor is being
represented by a particular Sensor object. These constants take the form of Sensor.TYPE_<TYPE>.
The following section describes each supported sensor type, after which you’ll learn how to fi nd and
use these sensors.

Supported Android Sensors

The following sections describe each sensor type currently available. Note that the hardware
available on the host device determines which of these sensors will be available to your application.

 ‰ Sensor.TYPE_AMBIENT_TEMPERATURE — Introduced in Android 4.0 (API level 14) to replace
the ambiguous — and deprecated — Sensor.TYPE_TEMPERATURE. This is a thermometer
that returns the temperature in degrees Celsius; the temperature returned will be the ambient
room temperature.

 ‰ Sensor.TYPE_ACCELEROMETER — A three-axis accelerometer that returns the current
acceleration along three axes in m/s2 (meters per second, per second.) The accelerometer
is explored in greater detail later in this chapter.

 ‰ Sensor.TYPE_GRAVITY — A three-axis gravity sensor that returns the current direction and
magnitude of gravity along three axes in m/s2. The gravity sensor typically is implemented as
a virtual sensor by applying a low-pass fi lter to the accelerometer sensor results.

 ‰ Sensor.TYPE_LINEAR_ACCELERATION — A three-axis linear acceleration Sensor that returns the
acceleration, not including gravity, along three axes in m/s2. Like the gravity sensor, the linear
acceleration typically is implemented as a virtual sensor using the accelerometer output. In this
case, to obtain the linear acceleration, a high-pass fi lter is applied to the accelerometer output.

 ‰ Sensor.TYPE_GYROSCOPE — A three-axis gyroscope that returns the rate of device rotation
along three axes in radians/second. You can integrate the rate of rotation over time to

c12.indd 482c12.indd 482 4/18/2012 3:53:06 PM4/18/2012 3:53:06 PM

Using Sensors and the Sensor Manager x 483

Meier c12.indd V2 - 20/03/2012 Page 483

determine the current orientation of the device; however, it generally is better practice
to use this in combination with other sensors (typically the accelerometers) to provide
asmoothed and corrected orientation. You’ll learn more about the gyroscope Sensor later
in this chapter.

 ‰ Sensor.TYPE_ROTATION_VECTOR — Returns the orientation of the device as a combination of
an angle around an axis. It typically is used as an input to the getRotationMatrixFromVector
method from the Sensor Manager to convert the returned rotation vector into a rotation matrix.
The rotation vector Sensor typically is implemented as a virtual sensor that can combine and
correct the results obtained from multiple sensors, such as the accelerometers and gyroscopes,
to provide a smoother rotation matrix.

 ‰ Sensor.TYPE_MAGNETIC_FIELD — A magnetometer that fi nds the current magnetic fi eld in
microteslas (μT) along three axes.

 ‰ Sensor.TYPE_PRESSURE — An atmospheric pressure sensor, or barometer, that returns the
current atmospheric pressure in millibars (mbars) as a single value. The pressure Sensor can
be used to determine altitude using the getAltitude method on the Sensor Manager to
compare the atmospheric pressure in two locations. Barometers can also be used in weather
forecasting by measuring changes in atmospheric pressure in the same location.

 ‰ Sensor.TYPE_RELATIVE_HUMIDITY — A relative humidity sensor that returns the current
relative humidity as a percentage. This Sensor was introduced in Android 4.0 (API level 14).

 ‰ Sensor.TYPE_PROXIMITY — A proximity sensor that indicates the distance between the
device and the target object in centimeters. How a target object is selected, and the distances
supported, will depend on the hardware implementation of the proximity detector. Some
proximity sensors can return only “near” or “far” results, in which case the latter will be
represented as the Sensor’s maximum range, and the former using any lower value. Typical
uses for the proximity sensor are to detect when the device is being held up against the user’s
ear, to automatically adjust screen brightness, or to initiate a voice command.

 ‰ Sensor.TYPE_LIGHT — An ambient light sensor that returns a single value describing the
ambient illumination in lux. A light sensor commonly is used to control the screen brightness
dynamically.

Introducing Virtual Sensors

Android Sensors typically work independently of each other, each reporting the results obtained
from a particular piece of hardware without applying any fi ltering or smoothing. In some cases it
can be helpful to use virtual Sensors that present simplifi ed, corrected, or composite sensor data in a
way that makes them easier to use within some applications.

The gravity, linear-acceleration, and rotation-vector Sensors described previously are examples
of virtual Sensors provided by the framework. They may use a combination of accelerometers,
magnetic-fi eld sensors, and gyroscopes, rather than the output of a specifi c piece of hardware.

In some cases the underlying hardware will also provide virtual sensors. In such cases both
the framework and hardware virtual Sensors are offered, with the default sensor being the best
available.

c12.indd 483c12.indd 483 4/18/2012 3:53:06 PM4/18/2012 3:53:06 PM

484 x CHAPTER 12 HARDWARE SENSORS

Meier c12.indd V2 - 20/03/2012 Page 484

Corrected gyroscope and orientation Sensors are also available as virtual sensors that attempt to
improve the quality and performance of their respective hardware sensors. This involves using fi lters
and the output of multiple Sensors to smooth, correct, or fi lter the raw output.

To ensure predictability and consistency across platforms and devices, the Sensor Manager always
offers you the hardware Sensors by default. It’s good practice to experiment with all the available
Sensors of a given type to determine the best alternative for your particular application.

Finding Sensors

In addition to including virtual sensors, any Android device potentially could include several hard-
ware implementations of a particular sensor type.

To fi nd every Sensor available on the host platform, use getSensorList on the Sensor Manager,
passing in Sensor.TYPE_ALL:

List<Sensor> allSensors = sensorManager.getSensorList(Sensor.TYPE_ALL);

To fi nd a list of all the available Sensors of a particular type, use getSensorList, specifying
the type of Sensor you require, as shown in the following code that returns all the available
gyroscopes:

List<Sensor> gyroscopes = sensorManager.getSensorList(Sensor.TYPE_GYROSCOPE);

If there are multiple Sensor implementations for a given sensor type, you can decide which of the
returned Sensors to use by querying each returned Sensor object. Each Sensor reports its name,
power use, minimum delay latency, maximum range, resolution, and vendor type. By convention,
any hardware Sensor implementations are returned at the top of the list, with virtual corrected
implementations last.

You can fi nd the default Sensor implementation for a given type by using the Sensor Manager’s
getDefaultSensor method. If no default Sensor exists for the specifi ed type, the method returns null.

The following snippet returns the default pressure sensor:

Sensor defaultBarometer = sensorManager.getDefaultSensor(Sensor.TYPE_PRESSURE);

The following code snippet shows how to select a light sensor with the highest maximum range and
lowest power requirement, and the corrected gyroscope, if it’s available:

List<Sensor> lightSensors
 = sensorManager.getSensorList(Sensor.TYPE_LIGHT);
List<Sensor> gyroscopes
 = sensorManager.getSensorList(Sensor.TYPE_GYROSCOPE);

Sensor bestLightSensor
 = sensorManager.getDefaultSensor(Sensor.TYPE_LIGHT);
Sensor correctedGyro
 = sensorManager.getDefaultSensor(Sensor.TYPE_GYROSCOPE);

if (bestLightSensor != null)
 for (Sensor lightSensor : lightSensors) {

c12.indd 484c12.indd 484 4/18/2012 3:53:06 PM4/18/2012 3:53:06 PM

Using Sensors and the Sensor Manager x 485

Meier c12.indd V2 - 20/03/2012 Page 485

 float range = lightSensor.getMaximumRange();
 float power = lightSensor.getPower();

 if (range >= bestLightSensor.getMaximumRange())
 if (power < bestLightSensor.getPower() ||
 range > bestLightSensor.getMaximumRange())
 bestLightSensor = lightSensor;
 }

if (gyroscopes != null && gyroscopes.size() > 1)
 correctedGyro = gyroscopes.get(gyroscopes.size()-1);

Where the sensor type describes a physical hardware sensor, such as a gyroscope,
the unfi ltered hardware Sensor will be returned as the default in preference
to any virtual implementations. In many cases the smoothing, fi ltering, and
corrections applied to the virtual Sensor will provide better results for your
applications.

It’s also worth noting that some Android devices may also have multiple
 independent hardware sensors.

The default Sensor will always provide a Sensor implementation consistent
with the typical use-case and, in most cases, will be the best alternative for your
application. However, it can be useful to experiment with the available Sensors
or to provide users with the ability to select which sensor to use in order to
 utilize the most appropriate implementation for their needs.

Monitoring Sensors

To monitor a Sensor, implement a SensorEventListener, using the onSensorChanged method to
monitor Sensor values, and onAccuracyChanged to react to changes in a Sensor’s accuracy.

Listing 12-1 shows the skeleton code for implementing a Sensor Event Listener.

LISTING 12-1: Sensor Event Listener skeleton code

final SensorEventListener mySensorEventListener = new SensorEventListener() {
 public void onSensorChanged(SensorEvent sensorEvent) {
 // TODO Monitor Sensor changes.
 }

 public void onAccuracyChanged(Sensor sensor, int accuracy) {
 // TODO React to a change in Sensor accuracy.
 }
};

code snippet PA4AD_Ch12_Sensors/src/MyActivity.java

c12.indd 485c12.indd 485 4/18/2012 3:53:06 PM4/18/2012 3:53:06 PM

486 x CHAPTER 12 HARDWARE SENSORS

Meier c12.indd V2 - 20/03/2012 Page 486

The SensorEvent parameter in the onSensorChanged method includes the following four proper-
ties to describe each Sensor Event:

 ‰ sensor — The Sensor object that triggered the event.

 ‰ accuracy — The accuracy of the Sensor when the event occurred (low, medium, high, or
unreliable, as described in the next list).

 ‰ values — A fl oat array that contains the new value(s) observed. The next section explains
the values returned for each sensor type.

 ‰ timestamp — The time (in nanoseconds) at which the Sensor Event occurred.

You can monitor changes in the accuracy of a Sensor separately, using the onAccuracyChanged method.

In both handlers the accuracy value represents the Sensor’s accuracy, using one of the following
constants:

 ‰ SensorManager.SENSOR_STATUS_ACCURACY_LOW — Indicates that the Sensor is reporting
with low accuracy and needs to be calibrated

 ‰ SensorManager.SENSOR_STATUS_ACCURACY_MEDIUM — Indicates that the Sensor data is of
average accuracy and that calibration might improve the accuracy of the reported results

 ‰ SensorManager.SENSOR_STATUS_ACCURACY_HIGH — Indicates that the Sensor is reporting
with the highest possible accuracy

 ‰ SensorManager.SENSOR_STATUS_UNRELIABLE — Indicates that the Sensor data is unreliable,
meaning that either calibration is required or readings are not currently possible

To listen for Sensor Events, register your Sensor Event Listener with the Sensor Manager. Specify the
Sensor to observe, and the rate at which you want to receive updates.

Remember that not all Sensors will be available on every device, so be sure
to check for the availability of any Sensors you use, and make sure your
applications fail gracefully if they are missing. Where a Sensor is required for
your application to function, you can specify it as a required feature in the
application’s manifest, as described in Chapter 3, “Creating Applications
and Activities.”

Listing 12-2 registers a Sensor Event Listener for the default proximity Sensor at the default
update rate.

LISTING 12-2: Registering a Sensor Event Listener

Sensor sensor = sensorManager.getDefaultSensor(Sensor.TYPE_PROXIMITY);
sensorManager.registerListener(mySensorEventListener,
 sensor,
 SensorManager.SENSOR_DELAY_NORMAL);

code snippet PA4AD_Ch12_Sensors/src/MyActivity.java

c12.indd 486c12.indd 486 4/18/2012 3:53:06 PM4/18/2012 3:53:06 PM

Using Sensors and the Sensor Manager x 487

Meier c12.indd V2 - 20/03/2012 Page 487

The Sensor Manager includes the following static constants (shown in descending order of respon-
siveness) to let you specify a suitable update rate:

 ‰ SENSOR_DELAY_FASTEST — Specifi es the fastest possible update rate

 ‰ SENSOR_DELAY_GAME — Specifi es an update rate suitable for use in controlling games

 ‰ SENSOR_DELAY_NORMAL — Specifi es the default update rate

 ‰ SENSOR_DELAY_UI — Specifi es a rate suitable for updating UI features

The rate you select is not binding; the Sensor Manager may return results faster or slower than you
specify, though it will tend to be faster. To minimize the associated resource cost of using the Sensor
in your application, it is best practice to select the slowest acceptable rate.

It’s also important to unregister your Sensor Event Listeners when your application no longer needs
to receive updates:

sensorManager.unregisterListener(mySensorEventListener);

It’s good practice to register and unregister your Sensor Event Listener in the onResume and onPause
methods of your Activities to ensure they’re being used only when the Activity is active.

Interpreting Sensor Values

The length and composition of the values returned in the onSensorChanged handler vary, depend-
ing on the Sensor being monitored. The details are summarized in Table 12-1. Further details on the
use of the accelerometer, orientation, magnetic fi eld, gyroscopic, and environmental Sensors can be
found in the following sections.

The Android documentation describes the values returned by each sensor
type with some additional commentary at http://developer.android
.com/reference/android/hardware/SensorEvent.html.

TABLE 12-1: Sensor Return Values

SENSOR TYPE VALUE COUNT VALUE COMPOSITION COMMENTARY

TYPE_

ACCELEROMETER

3 value[0] : X-axis

(Lateral)

value[1] : Y-axis

(Longitudinal)

value[2] : Z-axis

(Vertical)

Acceleration along three

axes in m/s2. The Sensor

Manager includes a set of

gravity constants of the form

SensorManager.GRAVITY_*.

continues

c12.indd 487c12.indd 487 4/18/2012 3:53:07 PM4/18/2012 3:53:07 PM

http://developer.android

488 x CHAPTER 12 HARDWARE SENSORS

Meier c12.indd V2 - 20/03/2012 Page 488

SENSOR TYPE VALUE COUNT VALUE COMPOSITION COMMENTARY

TYPE_GRAVITY 3 value[0] : X-axis

(Lateral)

value[1] : Y-axis

(Longitudinal)

value[2] : Z-axis

(Vertical)

Force of gravity along three

axes in m/s2. The Sensor

Manager includes a set of

gravity constants of the form

SensorManager.GRAVITY_*.

TYPE_HUMIDITY 1 value[0]: Relative

humidity

Relative humidity as

a percentage (%).

TYPE_LINEAR_

ACCELERATION

3 value[0] : X-axis

(Lateral)

value[1] : Y-axis

(Longitudinal)

value[2] : Z-axis

(Vertical)

Linear acceleration along three

axes in m/s2 without the force

of gravity.

TYPE_GYROSCOPE 3 value[0] : X-axis

value[1] : Y-axis

value[2] : Z-axis

Rate of rotation around three

axes in radians/second (r/s).

TYPE_ROTATION_

VECTOR

3 (+1 optional) values[0]: x*sin(q/2)

values[1]: y*sin(q/2)

values[2]: z*sin(q/2)

values[3]: cos(q/2)

(optional)

Device orientation described as

an angle of rotation around an

axis (°).

TYPE_MAGNETIC_

FIELD

3 value[0] : X-axis

(Lateral)

value[1] : Y-axis

(Longitudinal)

value[2] : Z-axis

(Vertical)

Ambient magnetic fi eld mea-

sured in microteslas (μT).

TYPE_LIGHT 1 value[0] : Illumination Ambient light measured in

lux (lx). The Sensor Manager

includes a set of constants

representing diff erent stan-

dard illuminations of the form

SensorManager.LIGHT_*.

TABLE 12-1 (continued)

c12.indd 488c12.indd 488 4/18/2012 3:53:07 PM4/18/2012 3:53:07 PM

Monitoring a Device’s Movement and Orientation x 489

Meier c12.indd V2 - 20/03/2012 Page 489

SENSOR TYPE VALUE COUNT VALUE COMPOSITION COMMENTARY

TYPE_PRESSURE 1 value[0] :

Atmospheric

Pressure

Atmospheric pressure measured

in millibars (mbars).

TYPE_PROXIMITY 1 value[0] : Distance Distance from target measured

in centimeters (cm).

TYPE_AMBIENT_

TEMPERATURE

1 value[0] :

Temperature

Ambient temperature measured

in degrees Celsius (°C).

MONITORING A DEVICE’S MOVEMENT AND ORIENTATION

Accelerometers, compasses, and (more recently) gyroscopes offer the ability to provide functionality
based on device direction, orientation, and movement. You can use these Sensors to offer new
and innovative input mechanisms, in addition to (or as an alternative to) traditional touch screen,
trackball, and keyboard input.

The availability of specifi c Sensors depends on the hardware platform on which your application
runs. A 70” fl at screen weighs more than 150 pounds, making it diffi cult to lift and awkward to
maneuver. As a result Android-powered TVs are unlikely to include orientation or movement sen-
sors — so it’s good practice to offer users alternatives in case their devices don’t support such Sensors.

Where they are available, movement and orientation sensors can be used by your application to:

 ‰ Determine the device orientation

 ‰ React to changes in orientation

 ‰ React to movement or acceleration

 ‰ Understand which direction the user is facing

 ‰ Monitor gestures based on movement, rotation, or acceleration

This opens some intriguing possibilities for your applications. By monitoring orientation, direction,
and movement, you can:

 ‰ Use the compass and accelerometers to determine your heading and orientation. Use these
with a map, camera, and location-based service to create augmented-reality UIs that overlay
location-based data over a real-time camera feed.

 ‰ Create UIs that adjust dynamically as the orientation of the device changes. In the most
simple case, Android alters the screen orientation when the device is rotated from portrait
to landscape or vice versa, but applications such as the native Gallery use orientation changes
to provide a 3D effect on stacks of photos.

 ‰ Monitor for rapid acceleration to detect if a device has been dropped or thrown.

c12.indd 489c12.indd 489 4/18/2012 3:53:07 PM4/18/2012 3:53:07 PM

490 x CHAPTER 12 HARDWARE SENSORS

Meier c12.indd V2 - 20/03/2012 Page 490

 ‰ Measure movement or vibration. For example, you could create an application that lets a
user lock his or her device; if any movement is detected while it’s locked, it could send an
alert SMS that includes the current location.

 ‰ Create UI controls that use physical gestures and movement as input.

Determining the Natural Orientation of a Device

Before calculating the device’s orientation, you must fi rst understand its “at rest” (natural) orienta-
tion. The natural orientation of a device is the orientation in which the orientation is 0 on all three
axes. The natural orientation can be either portrait or landscape, but it typically is identifi able by
the placement of branding and hardware buttons.

For a typical smartphone, the natural orientation is with the device lying on its back on a desk, with
the top of the device pointing due north.

More creatively, you can imagine yourself perched on top of a jet fuselage during level fl ight. An
Android device has been strapped to the fuselage in front of you. In its natural orientation the screen
is pointing up into space, the top of the device pointing towards the nose of the plane, and the plane
is heading due north, as shown in Figure 12-1.

Y

Z

X

FIGURE 12-1

Before you head out to an airfi eld, note that this example is contrived to
provide a useful metaphor for understanding the standard reference frame.
The electronic compass and accelerometers included in most Android
devices make them unsuitable for determining the heading, pitch, and roll of
an aircraft in fl ight.

c12.indd 490c12.indd 490 4/18/2012 3:53:08 PM4/18/2012 3:53:08 PM

Monitoring a Device’s Movement and Orientation x 491

Meier c12.indd V2 - 20/03/2012 Page 491

Android can reorient the display for use in any orientation; however, the Sensor axes described in
Table 12-1 do not change as the device rotates. As a result, the display orientation and device orien-
tation can be different.

Sensor values are always returned relative to the natural orientation of the device, whereas your appli-
cation is likely to want the current orientation relative to the display orientation. As a result, if your
application uses device orientation or linear acceleration as an input, it may be necessary to adjust
your Sensor inputs based on the display orientation relative to the natural orientation. This is particu-
larly important because the natural orientation of most early Android phones was portrait; however,
with the range of Android devices having expanded to also include tablets and televisions, many
Android devices (including smartphones) are naturally oriented when the display is in landscape.

To ensure that you are interpreting the orientation correctly, you need to determine the current
 display orientation relative to the natural orientation, rather than relying on the current display
mode being either portrait or landscape.

You can fi nd the current screen rotation using the getRotation method on the default Display
object, as shown in Listing 12-3.

LISTING 12-3: Finding the screen orientation relative to the natural orientation

String windowSrvc = Context.WINDOW_SERVICE;
WindowManager wm = ((WindowManager) getSystemService(windowSrvc));
Display display = wm.getDefaultDisplay();
int rotation = display.getRotation();
switch (rotation) {
 case (Surface.ROTATION_0) : break; // Natural
 case (Surface.ROTATION_90) : break; // On its left side
 case (Surface.ROTATION_180) : break; // Upside down
 case (Surface.ROTATION_270) : break; // On its right side
 default: break;
}

code snippet PA4AD_Ch12_Sensors/src/MyActivity.java

Introducing Accelerometers

Acceleration is defi ned as the rate of change of velocity; that means accelerometers measure how
quickly the speed of the device is changing in a given direction. Using an accelerometer you can
detect movement and, more usefully, the rate of change of the speed of that movement (also known
as linear acceleration).

Accelerometers are also known as gravity sensors because they measure
acceleration caused both by movement and by gravity. As a result, an accel-
erometer detecting acceleration on an axis perpendicular to the earth’s
 surface will read –9.8m/s2 when it’s at rest. (This value is available as the
SensorManager.STANDARD_GRAVITY constant.)

c12.indd 491c12.indd 491 4/18/2012 3:53:08 PM4/18/2012 3:53:08 PM

492 x CHAPTER 12 HARDWARE SENSORS

Meier c12.indd V2 - 20/03/2012 Page 492

Generally, you’ll be interested in acceleration changes relative to a rest state, or rapid movement
(signifi ed by rapid changes in acceleration), such as gestures used for user input. In the former case
you’ll often need to calibrate the device to calculate the initial acceleration to take those effects into
account for future results.

It’s important to note that accelerometers do not measure velocity, so you
can’t measure speed directly based on a single accelerometer reading. Instead,
you need to integrate the acceleration over time to fi nd the velocity. You can
then integrate the velocity over time to determine the distance traveled.

Because accelerometers can also measure gravity, you can use them in combination with the mag-
netic fi eld sensors to calculate the device orientation. You will learn more about how to fi nd the ori-
entation of the device later in this section.

Detecting Acceleration Changes

Acceleration can be measured along three directional axes:

 ‰ Left-right (lateral)

 ‰ Forward-backward (longitudinal)

 ‰ Up-down (vertical)

The Sensor Manager reports accelerometer sensor changes along all three axes.

The sensor values passed in via the values property of the Sensor Event Listener’s Sensor Event
parameter represent lateral, longitudinal, and vertical acceleration, in that order.

Figure 12-2 illustrates the mapping of the three directional acceleration axes in relation to the device
at rest in its natural orientation. Note that for the remainder of this section, I will refer to the move-
ment of the device in relation to its natural orientation, which may be either landscape or portrait.

 ‰ x-axis (lateral) — Sideways (left or right) acceleration, for which positive values represent
movement toward the right, and negative values indicate movement to the left.

 ‰ y-axis (longitudinal) — Forward or backward acceleration, for which forward acceleration,
such as the device being pushed in the direction of the top of the device, is represented by
a positive value and acceleration backwards represented by negative values.

 ‰ z-axis (vertical) — Upward or downward acceleration, for which positive represents upward
movement, such as the device being lifted. While at rest at the device’s natural orientation,
the vertical accelerometer will register –9.8m/s2 as a result of gravity.

As described earlier, you can monitor changes in acceleration using a Sensor Event Listener. Register
an implementation of SensorEventListener with the Sensor Manager, using a Sensor object of
type Sensor.TYPE_ACCELEROMETER to request accelerometer updates. Listing 12-4 registers the
default accelerometer using the default update rate.

c12.indd 492c12.indd 492 4/18/2012 3:53:08 PM4/18/2012 3:53:08 PM

Monitoring a Device’s Movement and Orientation x 493

Meier c12.indd V2 - 20/03/2012 Page 493

y-axis
(longitudinal)

x-axis
(lateral)

z-axis
(vertical)

FIGURE 12-2

LISTING 12-4: Listening to changes to the default accelerometer

SensorManager sm = (SensorManager)getSystemService(Context.SENSOR_SERVICE);
int sensorType = Sensor.TYPE_ACCELEROMETER;
sm.registerListener(mySensorEventListener,
 sm.getDefaultSensor(sensorType),
 SensorManager.SENSOR_DELAY_NORMAL);

code snippet PA4AD_Ch12_Sensors/src/MyActivity.java

Your Sensor Listener should implement the onSensorChanged method, which will be fi red when
acceleration in any direction is measured.

The onSensorChanged method receives a SensorEvent that includes a float array containing the
acceleration measured along all three axes. When a device is held in its natural orientation, the fi rst
element represents lateral acceleration; the second element represents longitudinal acceleration; and
the fi nal element represents vertical acceleration, as shown in the following extension to Listing 12-4:

final SensorEventListener mySensorEventListener = new SensorEventListener() {
 public void onSensorChanged(SensorEvent sensorEvent) {
 if (sensorEvent.sensor.getType() == Sensor.TYPE_ACCELEROMETER) {
 float xAxis_lateralA = sensorEvent.values[0];
 float yAxis_longitudinalA = sensorEvent.values[1];
 float zAxis_verticalA = sensorEvent.values[2];
 // TODO apply the acceleration changes to your application.
 }
 }

 public void onAccuracyChanged(Sensor sensor, int accuracy) {}
};

c12.indd 493c12.indd 493 4/18/2012 3:53:09 PM4/18/2012 3:53:09 PM

494 x CHAPTER 12 HARDWARE SENSORS

Meier c12.indd V2 - 20/03/2012 Page 494

Creating a Gravitational Force Meter

You can create a simple tool to measure gravitational force (g-force) by summing the acceleration in
all three directions. In the following example you’ll create a simple device to measure g-force using
the accelerometers to determine the current force being exerted on the device.

The acceleration force exerted on the device at rest is 9.8 m/s2 toward the center of the Earth. In this
example you’ll negate the force of gravity by accounting for it using the SensorManager.STANDARD_
GRAVITY constant. If you plan to use this application on another planet, you can use an alternative
gravity constant, as appropriate.

1. Start by creating a new GForceMeter project that includes a ForceMeter Activity. Modify
the main.xml layout resource to display two centered lines of large, bold text that will be
used to display the current g-force and maximum observed g-force:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”>
 <TextView android:id=”@+id/acceleration”
 android:gravity=”center”
 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 android:textStyle=”bold”
 android:textSize=”32sp”
 android:text=”Current Acceleration”
 android:editable=”false”
 android:singleLine=”true”
 android:layout_margin=”10dp”/>
 />
 <TextView android:id=”@+id/maxAcceleration”
 android:gravity=”center”
 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 android:textStyle=”bold”
 android:textSize=”40sp”
 android:text=”Maximum Acceleration”
 android:editable=”false”
 android:singleLine=”true”
 android:layout_margin=”10dp”/>
 />
</LinearLayout>

2. Within the ForceMeter Activity, create instance variables to store references to both
TextView instances and the SensorManager. Also create variables to record the current and
maximum detected acceleration values:

private SensorManager sensorManager;
private TextView accelerationTextView;
private TextView maxAccelerationTextView;
private float currentAcceleration = 0;
private float maxAcceleration = 0;

c12.indd 494c12.indd 494 4/18/2012 3:53:09 PM4/18/2012 3:53:09 PM

http://schemas.android.com/apk/res/android%E2%80%9D

Monitoring a Device’s Movement and Orientation x 495

Meier c12.indd V2 - 20/03/2012 Page 495

3. Add a calibration constant that represents the acceleration due to gravity:

private final double calibration = SensorManager.STANDARD_GRAVITY;

4. Create a new SensorEventListener implementation that sums the acceleration detected
along each axis and negates the acceleration due to gravity. It should update the current (and
possibly maximum) acceleration whenever a change in acceleration is detected:

private final SensorEventListener sensorEventListener = new SensorEventListener() {

 public void onAccuracyChanged(Sensor sensor, int accuracy) { }

 public void onSensorChanged(SensorEvent event) {
 double x = event.values[0];
 double y = event.values[1];
 double z = event.values[2];

 double a = Math.round(Math.sqrt(Math.pow(x, 2) +
 Math.pow(y, 2) +
 Math.pow(z, 2)));
 currentAcceleration = Math.abs((float)(a-calibration));

 if (currentAcceleration > maxAcceleration)
 maxAcceleration = currentAcceleration;
 }
};

5. Update the onCreate method to get a reference to the two Text Views and the Sensor
Manager:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 accelerationTextView = (TextView)findViewById(R.id.acceleration);
 maxAccelerationTextView = (TextView)findViewById(R.id.maxAcceleration);
 sensorManager = (SensorManager)getSystemService(Context.SENSOR_SERVICE);
}

6. Override the onResume handler to register your new Listener for accelerometer updates using
the SensorManager:

@Override
protected void onResume() {
 super.onResume();
 Sensor accelerometer = sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
 sensorManager.registerListener(sensorEventListener,
 accelerometer,
 SensorManager.SENSOR_DELAY_FASTEST);
}

c12.indd 495c12.indd 495 4/18/2012 3:53:09 PM4/18/2012 3:53:09 PM

496 x CHAPTER 12 HARDWARE SENSORS

Meier c12.indd V2 - 20/03/2012 Page 496

7. Also override the corresponding onPause method to unregister the sensor listener when the
Activity is no longer active:

@Override
protected void onPause() {
 sensorManager.unregisterListener(sensorEventListener);
 super.onPause();
}

8. The accelerometers can update hundreds of times a second, so updating the Text Views for
every change in acceleration would quickly fl ood the UI event queue. Instead, create a new
updateGUI method that synchronizes with the GUI thread and updates the Text Views:

private void updateGUI() {
 runOnUiThread(new Runnable() {
 public void run() {
 String currentG = currentAcceleration/SensorManager.STANDARD_GRAVITY
 + “Gs”;
 accelerationTextView.setText(currentG);
 accelerationTextView.invalidate();
 String maxG = maxAcceleration/SensorManager.STANDARD_GRAVITY + “Gs”;
 maxAccelerationTextView.setText(maxG);
 maxAccelerationTextView.invalidate();
 }
 });
};

This will be executed regularly using a Timer introduced in the next step.

9. Update the onCreate method to create a timer that triggers the UI update method defi ned in
step 8 every 100 milliseconds:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 accelerationTextView = (TextView)findViewById(R.id.acceleration);
 maxAccelerationTextView = (TextView)findViewById(R.id.maxAcceleration);
 sensorManager = (SensorManager)getSystemService(Context.SENSOR_SERVICE);

 Sensor accelerometer =
 sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
 sensorManager.registerListener(sensorEventListener,
 accelerometer,
 SensorManager.SENSOR_DELAY_FASTEST);

 Timer updateTimer = new Timer(“gForceUpdate”);
 updateTimer.scheduleAtFixedRate(new TimerTask() {
 public void run() {
 updateGUI();
 }
 }, 0, 100);
}

c12.indd 496c12.indd 496 4/18/2012 3:53:09 PM4/18/2012 3:53:09 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Monitoring a Device’s Movement and Orientation x 497

Meier c12.indd V2 - 20/03/2012 Page 497

10. Finally, because this application is functional only when the host device features an acceler-
ometer sensor, modify the manifest to include a uses-feature node specifying the requirement
for accelerometer hardware:

<uses-feature android:name=”android.hardware.sensor.accelerometer” />

All the code snippets in this example are part of the Chapter 12 GForceMeter
project, available for download at www.wrox.com.

When fi nished, you’ll want to test this out. Ideally, you can do this in an F16 while Maverick per-
forms high-g maneuvers over the Atlantic. That’s been known to end badly, so, failing that, you can
experiment with spinning around in circles while holding your phone at arms length. Remember to
grip your phone tightly.

Determining a Device’s Orientation

Calculating a device’s orientation typically is done using the combined output of both the magnetic
fi eld Sensors (which function as an electronic compass) and the accelerometers (which are used to
determine the pitch and roll).

If you’ve done a bit of trigonometry, you’ve got the skills required to calculate the device orienta-
tion based on the accelerometer and magnetometer results along all three axes. If you enjoyed trig as
much as I did, you’ll be happy to learn that Android does these calculations for you.

It is best practice to derive the orientation using the accelerometers and magnetic fi eld Sensors
directly, as this enables you to modify the reference frame used for orientation calculations relative
to the natural orientation and current display orientation.

For legacy reasons, Android also provides an orientation sensor type that provides the rotation
along all three axes directly. This approach has been deprecated, but both techniques are described
in the following sections.

Understanding the Standard Reference Frame

Using the standard reference frame, the device orientation is reported along three dimen-
sions, as illustrated in Figure 12-3. As when using the accelerometers, the standard reference
frame is described relative to the device’s natural orientation, as described earlier in
this chapter.

Continuing the airplane analogy used early, imagining yourself perched on top of a jet fuselage
during level fl ight, the z-axis comes out of the screen towards space; the y-axis comes out of the top
of the device towards the nose of the plane; and the x-axis heads out towards the starboard wing.
Relative to that, pitch, roll, and azimuth can be described as follows:

 ‰ Pitch — The angle of the device around the x-axis. During level fl ight, the pitch will be 0; as
the nose angles upwards, the pitch increases. It will hit 90 when the jet is pointed straight

c12.indd 497c12.indd 497 4/18/2012 3:53:09 PM4/18/2012 3:53:09 PM

http://www.wrox.com

498 x CHAPTER 12 HARDWARE SENSORS

Meier c12.indd V2 - 20/03/2012 Page 498

up. Conversely, as you angle the nose downwards past level, the pitch will decrease until it
reaches –90 as you hurtle towards imminent death. If the plane fl ips onto it’s back the pitch
will +/-180.

 ‰ Roll — The device’s sideways rotation between −90 and 90 degrees around the y-axis.
During level fl ight the roll is zero. As you execute a barrel roll towards the starboard side,
the roll will increase, reaching 90 when the wings are perpendicular to the ground. As you
continue, you will reach 180 when the plane is upside down. Rolling from level towards port
will decrease the roll in the same way.

 ‰ Azimuth — Also heading or yaw, the azimuth is the direction the device is facing around the
z-axis, where 0/360 degrees is magnetic north, 90 east, 180 south, and 270 west. Changes in
the plane’s heading will be refl ected in changes in the azimuth value.

y-axis
(roll)

x-axis
(pitch)

z-axis
(heading)

FIGUR E 12-3

Calculating Orientation Using the Accelerometer and Magnetic Field Sensors

The best way to determine the current device orientation is to calculate it using the accelerometer
and magnetometer results directly. In addition to providing more accurate results, this technique
lets you change the orientation reference frame to remap the x-, y-, and z-axes to suit the device
 orientation you expect during use.

Because you’re using both the accelerometer and magnetometer, you need to create and register
a Sensor Event Listener to monitor each of them. Within the onSensorChanged methods for each
Sensor Event Listener, record the values array property received in two separate fi eld variables,
as shown in Listing 12-5.

c12.indd 498c12.indd 498 4/18/2012 3:53:10 PM4/18/2012 3:53:10 PM

Monitoring a Device’s Movement and Orientation x 499

Meier c12.indd V2 - 20/03/2012 Page 499

LISTING 12-5: Monitoring the accelerometer and magnetometer

private float[] accelerometerValues;
private float[] magneticFieldValues;

final SensorEventListener myAccelerometerListener = new SensorEventListener() {
 public void onSensorChanged(SensorEvent sensorEvent) {
 if (sensorEvent.sensor.getType() == Sensor.TYPE_ACCELEROMETER)
 accelerometerValues = sensorEvent.values;
 }

 public void onAccuracyChanged(Sensor sensor, int accuracy) {}
};

final SensorEventListener myMagneticFieldListener = new SensorEventListener() {
 public void onSensorChanged(SensorEvent sensorEvent) {
 if (sensorEvent.sensor.getType() == Sensor.TYPE_MAGNETIC_FIELD)
 magneticFieldValues = sensorEvent.values;
 }

 public void onAccuracyChanged(Sensor sensor, int accuracy) {}
};

code snippet PA4AD_Ch12_Sensors/src/MyActivity.java

Register both Sensors with the Sensor Manager, as shown in the following code extension to
Listing 12-5; this snippet uses the default hardware and UI update rate for both Sensors:

SensorManager sm = (SensorManager)getSystemService(Context.SENSOR_SERVICE);
Sensor aSensor = sm.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
Sensor mfSensor = sm.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD);

sm.registerListener(myAccelerometerListener,
 aSensor,
 SensorManager.SENSOR_DELAY_UI);

sm.registerListener(myMagneticFieldListener,
 mfSensor,
 SensorManager.SENSOR_DELAY_UI);

To calculate the current orientation from these Sensor values, use the getRotationMatrix and
getOrientation methods from the Sensor Manager, as shown in Listing 12-6.

LISTING 12-6: Finding the current orientation using the accelerometer and magnetometer

float[] values = new float[3];
float[] R = new float[9];
SensorManager.getRotationMatrix(R, null,
 accelerometerValues,

continues

c12.indd 499c12.indd 499 4/18/2012 3:53:10 PM4/18/2012 3:53:10 PM

500 x CHAPTER 12 HARDWARE SENSORS

Meier c12.indd V2 - 20/03/2012 Page 500

 magneticFieldValues);
SensorManager.getOrientation(R, values);

// Convert from radians to degrees if preferred.
values[0] = (float) Math.toDegrees(values[0]); // Azimuth
values[1] = (float) Math.toDegrees(values[1]); // Pitch
values[2] = (float) Math.toDegrees(values[2]); // Roll

code snippet PA4AD_Ch12_Sensors/src/MyActivity.java

Note that getOrientation returns its results in radians, not degrees. The order of the returned val-
ues is also different from the axes used by the accelerometer and magnetometer Sensors. Each result
is in radians, with positive values representing anticlockwise rotation around the axis:

 ‰ values[0] — The azimuth, or rotation around the z-axis, is zero when the device is heading
magnetic north.

 ‰ values[1] — The pitch, or rotation around the x-axis.

 ‰ values[2] — The roll, or rotation around the y-axis.

Remapping the Orientation Reference Frame

To measure the device orientation using a reference frame other than the natural orientation, use the
remapCoordinateSystem method from the Sensor Manager. This typically is done to simplify the
calculations required to create applications that can be used on devices whose natural orientation is
portrait, as well as those that are landscape.

The remapCoordinateSystem method accepts four parameters:

 ‰ The initial rotation matrix, found using getRotationMatrix, as described earlier

 ‰ A variable used to store the output (transformed) rotation matrix

 ‰ The remapped x-axis

 ‰ The remapped y-axis

The Sensor Manager provides a set of constants that let you specify the remapped x- and y-axes
relative to the reference frame: AXIS_X, AXIS_Y, AXIS_Z, AXIS_MINUS_X, AXIS_MINUS_Y, and
AXIS_MINUS_Z.

Listing 12-7 shows how to remap the reference frame so that the current display orientation (either
portrait or landscape) is used as the reference frame for calculating the current device orientation.
This is useful for games or applications that are locked to either landscape or portrait mode, as the
device will report either 0 or 90 degrees based on the natural orientation of the device. By modifying
the reference frame, you can ensure that the orientation values you use already take into account the
orientation of the display relative to the natural orientation.

LISTING 12-6 (continued)

c12.indd 500c12.indd 500 4/18/2012 3:53:10 PM4/18/2012 3:53:10 PM

Monitoring a Device’s Movement and Orientation x 501

Meier c12.indd V2 - 20/03/2012 Page 501

LISTING 12-7: Remapping the orientation reference frame based on the natural orientation

of the device

// Determine the current orientation relative to the natural orientation
String windoSrvc = Context.WINDOW_SERVICE;
WindowManager wm = ((WindowManager) getSystemService(windoSrvc));
Display display = wm.getDefaultDisplay();
int rotation = display.getRotation();

int x_axis = SensorManager.AXIS_X;
int y_axis = SensorManager.AXIS_Y;

switch (rotation) {
 case (Surface.ROTATION_0): break;
 case (Surface.ROTATION_90):
 x_axis = SensorManager.AXIS_Y;
 y_axis = SensorManager.AXIS_MINUS_X;
 break;
 case (Surface.ROTATION_180):
 y_axis = SensorManager.AXIS_MINUS_Y;
 break;
 case (Surface.ROTATION_270):
 x_axis = SensorManager.AXIS_MINUS_Y;
 y_axis = SensorManager.AXIS_X;
 break;
 default: break;
}

SensorManager.remapCoordinateSystem(inR, x_axis, y_axis, outR);

// Obtain the new, remapped, orientation values.
SensorManager.getOrientation(outR, values);

code snippet PA4AD_Ch12_MyActivity.java

Determining Orientation Using the Deprecated Orientation Sensor

The Android framework also offers a virtual orientation Sensor.

The virtual orientation Sensor is available for legacy reasons, having been
deprecated in favor of the technique described in the previous section. It was
deprecated because it does not allow you to alter the reference frame used
when calculating the current orientation.

To use the legacy orientation sensor, create and register a Sensor Event Listener, specifying the
default orientation Sensor, as shown in Listing 12-8.

c12.indd 501c12.indd 501 4/18/2012 3:53:10 PM4/18/2012 3:53:10 PM

502 x CHAPTER 12 HARDWARE SENSORS

Meier c12.indd V2 - 20/03/2012 Page 502

LISTING 12-8: Determining orientation using the deprecated orientation Sensor

SensorManager sm = (SensorManager)getSystemService(Context.SENSOR_SERVICE);
int sensorType = Sensor.TYPE_ORIENTATION;
sm.registerListener(myOrientationListener,
 sm.getDefaultSensor(sensorType),
 SensorManager.SENSOR_DELAY_NORMAL);

code snippet PA4AD_Ch12_MyActivity.java

When the device orientation changes, the onSensorChanged method in your SensorEventListener
implementation is fi red. The SensorEvent parameter includes a values fl oat array that provides the
device’s orientation along three axes. The following extension to Listing 12-8 shows how to con-
struct your Sensor Event Listener:

final SensorEventListener myOrientationListener = new SensorEventListener() {
 public void onSensorChanged(SensorEvent sensorEvent) {
 if (sensorEvent.sensor.getType() == Sensor.TYPE_ORIENTATION) {
 float headingAngle = sensorEvent.values[0];
 float pitchAngle = sensorEvent.values[1];
 float rollAngle = sensorEvent.values[2];
 // TODO Apply the orientation changes to your application.
 }
 }

 public void onAccuracyChanged(Sensor sensor, int accuracy) {}
};

The fi rst element of the values array is the azimuth (heading), the second pitch, and the third roll.

Creating a Compass and Artifi cial Horizon

In Chapter 11, “Advanced User Experience,” you improved the CompassView to display the device
pitch, roll, and heading. In this example, you’ll fi nally connect your Compass View to the hardware
sensors to display the device orientation.

 1. Open the Compass project you last changed in Chapter 11 and open the CompassActivity.
Use the Sensor Manager to listen for orientation changes using the magnetic fi eld and acceler-
ometer Sensors. Start by adding local fi eld variables to store the last magnetic fi eld and accel-
erometer values, as well as variables to store the CompassView, SensorManager, and current
screen rotation values:

private float[] aValues = new float[3];
private float[] mValues = new float[3];
private CompassView compassView;
private SensorManager sensorManager;
private int rotation;

 2. Create a new updateOrientation method that uses new heading, pitch, and roll values to
update the CompassView:

private void updateOrientation(float[] values) {
 if (compassView!= null) {

c12.indd 502c12.indd 502 4/18/2012 3:53:11 PM4/18/2012 3:53:11 PM

Monitoring a Device’s Movement and Orientation x 503

Meier c12.indd V2 - 20/03/2012 Page 503

 compassView.setBearing(values[0]);
 compassView.setPitch(values[1]);
 compassView.setRoll(-values[2]);
 compassView.invalidate();
 }
}

3. Update the onCreate method to get references to the CompassView and SensorManager,
to determine the current screen orientation relative to the natural device orientation, and
to initialize the heading, pitch, and roll:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 compassView = (CompassView)findViewById(R.id.compassView);
 sensorManager = (SensorManager)getSystemService(Context.SENSOR_SERVICE);

 String windoSrvc = Context.WINDOW_SERVICE;
 WindowManager wm = ((WindowManager) getSystemService(windoSrvc));
 Display display = wm.getDefaultDisplay();
 rotation = display.getRotation();

 updateOrientation(new float[] {0, 0, 0});
}

4. Create a new calculateOrientation method to evaluate the device orientation using the
last recorded accelerometer and magnetic fi eld values. Remember to account for the natural
orientation of the device by remapping the reference frame, if necessary.

private float[] calculateOrientation() {
 float[] values = new float[3];
 float[] inR = new float[9];
 float[] outR = new float[9];

 // Determine the rotation matrix
 SensorManager.getRotationMatrix(inR, null, aValues, mValues);

 // Remap the coordinates based on the natural device orientation.
 int x_axis = SensorManager.AXIS_X;
 int y_axis = SensorManager.AXIS_Y;

 switch (rotation) {
 case (Surface.ROTATION_90):
 x_axis = SensorManager.AXIS_Y;
 y_axis = SensorManager.AXIS_MINUS_X;
 break;
 case (Surface.ROTATION_180):
 y_axis = SensorManager.AXIS_MINUS_Y;
 break;
 case (Surface.ROTATION_270):
 x_axis = SensorManager.AXIS_MINUS_Y;
 y_axis = SensorManager.AXIS_X;

c12.indd 503c12.indd 503 4/18/2012 3:53:11 PM4/18/2012 3:53:11 PM

504 x CHAPTER 12 HARDWARE SENSORS

Meier c12.indd V2 - 20/03/2012 Page 504

 break;
 default: break;
 }
 SensorManager.remapCoordinateSystem(inR, x_axis, y_axis, outR);

 // Obtain the current, corrected orientation.
 SensorManager.getOrientation(outR, values);

 // Convert from Radians to Degrees.
 values[0] = (float) Math.toDegrees(values[0]);
 values[1] = (float) Math.toDegrees(values[1]);
 values[2] = (float) Math.toDegrees(values[2]);

 return values;
}

5. Implement a SensorEventListener as a fi eld variable. Within onSensorChanged it
should check for the calling Sensor’s type and update the last accelerometer or magnetic
fi eld values, as appropriate, before making a call to updateOrientation using the
calculateOrientation method.

private final SensorEventListener sensorEventListener = new SensorEventListener() {

 public void onSensorChanged(SensorEvent event) {
 if (event.sensor.getType() == Sensor.TYPE_ACCELEROMETER)
 aValues = event.values;
 if (event.sensor.getType() == Sensor.TYPE_MAGNETIC_FIELD)
 mValues = event.values;

 updateOrientation(calculateOrientation());
 }

 public void onAccuracyChanged(Sensor sensor, int accuracy) {}
};

6. Override onResume and onPause to register and unregister the SensorEventListener when
the Activity becomes visible and hidden, respectively:

@Override
protected void onResume() {
 super.onResume();

 Sensor accelerometer
 = sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
 Sensor magField = sensorManager.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD);

 sensorManager.registerListener(sensorEventListener,
 accelerometer,
 SensorManager.SENSOR_DELAY_FASTEST);
 sensorManager.registerListener(sensorEventListener,
 magField,
 SensorManager.SENSOR_DELAY_FASTEST);
}

c12.indd 504c12.indd 504 4/18/2012 3:53:11 PM4/18/2012 3:53:11 PM

Monitoring a Device’s Movement and Orientation x 505

Meier c12.indd V2 - 20/03/2012 Page 505

@Override
protected void onPause() {
 sensorManager.unregisterListener(sensorEventListener);
 super.onPause();
}

If you run the application now, you should see the Compass View “centered” at 0, 0, 0 when the
device is lying fl at on a table with the top of the device pointing North. Moving the device should
result in the Compass View dynamically updating as the orientation of the device changes.

You will also fi nd that as you rotate the device through 90 degrees, the screen will rotate and
the Compass View will reorient accordingly. You can extend this project by disabling automatic
screen rotation.

All code snippets in this example are part of the Chapter 12 Artifi cial
Horizon project, available for download at www.wrox.com.

Introducing the Gyroscope Sensor

Android devices increasingly are featuring a gyroscope sensor in addition to the traditional accelerom-
eter and magnetometer sensors. The gyroscope sensor is used to measure angular speed around a given
axis in radians per second, using the same coordinate system as described for the acceleration sensor.

Android gyroscopes return the rate of rotation around three axes, where their sensitivity and
high frequency update rates provide extremely smooth and accurate updates. This makes them
 particularly good candidates for applications that use changes in orientation (as opposed to absolute
orientation) as an input mechanism.

Because gyroscopes measure speed rather than direction, their results must be integrated over time
in order to determine the current orientation, as shown in Listing 12-9. The calculated result will
represent a change in orientation around a given axis, so you will need to either calibrate or use
additional Sensors in order to determine the initial orientation.

LISTING 12-9: Calculating an orientation change using the gyroscope Sensor

final float nanosecondsPerSecond = 1.0f / 1000000000.0f;
private long lastTime = 0;
final float[] angle = new float[3];

SensorEventListener myGyroListener = new SensorEventListener() {
 public void onSensorChanged(SensorEvent sensorEvent) {
 if (lastTime != 0) {
 final float dT = (sensorEvent.timestamp - lastTime) *
 nanosecondsPerSecond;
 angle[0] += sensorEvent.values[0] * dT;
 angle[1] += sensorEvent.values[1] * dT;

continues

c12.indd 505c12.indd 505 4/18/2012 3:53:11 PM4/18/2012 3:53:11 PM

http://www.wrox.com

506 x CHAPTER 12 HARDWARE SENSORS

Meier c12.indd V2 - 20/03/2012 Page 506

 angle[2] += sensorEvent.values[2] * dT;
 }
 lastTime = sensorEvent.timestamp;
 }

 public void onAccuracyChanged(Sensor sensor, int accuracy) {}
};

SensorManager sm
 = (SensorManager)getSystemService(Context.SENSOR_SERVICE);
int sensorType = Sensor.TYPE_GYROSCOPE;
sm.registerListener(myGyroListener,
 sm.getDefaultSensor(sensorType),
 SensorManager.SENSOR_DELAY_NORMAL);

code snippet PA4AD_Ch12_Sensors/src/MyActivity.java

It’s worth noting that orientation values derived solely from a gyroscope can become increasingly
inaccurate due to calibration errors and noise. To account for this effect, gyroscopes are often used
in combination with other sensors — particularly accelerometers — to provide smoother and more
accurate orientation results. A virtual gyroscope was introduced in Android 4.0 (API level 14) that
attempts to reduce this drift effect.

INTRODUCING THE ENVIRONMENTAL SENSORS

One of the most exciting areas of innovation in mobile hardware is the inclusion of an increasingly
rich array of sensors. In addition to the orientation and movement sensors described earlier in this
chapter, environmental Sensors are now becoming available in many Android devices.

Like orientation Sensors, the availability of specifi c environmental Sensors depends on the host
hardware. Where they are available, environmental Sensors can be used by your application to:

 ‰ Improve location detection by determining the current altitude

 ‰ Track movements based on changes in altitude

 ‰ Alter the screen brightness or functionality based on ambient light

 ‰ Make weather observations and forecasts

 ‰ Determine on which planetary body the device is currently located

Using the Barometer Sensor

A barometer is used to measure atmospheric pressure. The inclusion of this sensor in some Android
devices makes it possible for a user to determine his or her current altitude and, potentially, to
forecast weather changes.

To monitor changes in atmospheric pressure, register an implementation of SensorEventListener
with the Sensor Manager, using a Sensor object of type Sensor.TYPE_PRESSURE. The current

LISTING 12-9 (continued)

c12.indd 506c12.indd 506 4/18/2012 3:53:12 PM4/18/2012 3:53:12 PM

Introducing the Environmental Sensors x 507

Meier c12.indd V2 - 20/03/2012 Page 507

atmospheric pressure is returned as the fi rst (and only) value in the returned values array in hecto-
pascals (hPa), which is an equivalent measurement to millibars (mbar).

To calculate the current altitude, you can use the static getAltitude method from the Sensor
Manager, as shown in Listing 12-10, supplying it with the current pressure and the local pressure
at sea level.

To ensure accurate results, you should use a local value for sea-level
 atmospheric pressure, although the Sensor Manager provides a value for one
standard atmosphere via the PRESSURE_STANDARD_ATMOSPHERE constant as
a useful approximation.

LISTING 12-10: Finding the current altitude using the barometer Sensor

final SensorEventListener myPressureListener = new SensorEventListener() {
 public void onSensorChanged(SensorEvent sensorEvent) {
 if (sensorEvent.sensor.getType() == Sensor.TYPE_PRESSURE) {
 float currentPressure = sensorEvent.values[0];

 // Calculate altitude
 float altitude = SensorManager.getAltitude(
 SensorManager.PRESSURE_STANDARD_ATMOSPHERE,
 currentPressure);
 }
 }

 public void onAccuracyChanged(Sensor sensor, int accuracy) {}
};

SensorManager sm
 = (SensorManager)getSystemService(Context.SENSOR_SERVICE);
int sensorType = Sensor.TYPE_PRESSURE;
sm.registerListener(myPressureListener,
 sm.getDefaultSensor(sensorType),
 SensorManager.SENSOR_DELAY_NORMAL);

code snippet PA4AD_Ch12_Sensors/src/MyActivity.java

It’s important to note that getAltitude calculates altitude using the current atmospheric pressure
 relative to local sea-level values, not two arbitrary atmospheric pressure values. As a result, to calcu-
late the difference in altitude between two recorded pressure values, you need to determine the altitude
for each pressure and fi nd the difference between those results, as shown in the following snippet:

float altitudeChange =
 SensorManager.getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE,
 newPressure) -
 SensorManager.getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE,
 initialPressure);

c12.indd 507c12.indd 507 4/18/2012 3:53:12 PM4/18/2012 3:53:12 PM

508 x CHAPTER 12 HARDWARE SENSORS

Meier c12.indd V2 - 20/03/2012 Page 508

Creating a Weather Station

To fully explore the environmental Sensors available to Android devices, the following project
implements a simple weather station by monitoring the barometric pressure, ambient temperature,
and ambient light levels.

1. Start by creating a new WeatherStation project that includes a WeatherStation Activity.
Modify the main.xml layout resource to display three centered lines of large, bold text that
will be used to display the current temperature, barometric pressure, and cloud level:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”>
 <TextView android:id=”@+id/temperature”
 android:gravity=”center”
 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 android:textStyle=”bold”
 android:textSize=”28sp”
 android:text=”Temperature”
 android:editable=”false”
 android:singleLine=”true”
 android:layout_margin=”10dp”/>
 />
 <TextView android:id=”@+id/pressure”
 android:gravity=”center”
 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 android:textStyle=”bold”
 android:textSize=”28sp”
 android:text=”Pressure”
 android:editable=”false”
 android:singleLine=”true”
 android:layout_margin=”10dp”/>
 />
 <TextView android:id=”@+id/light”
 android:gravity=”center”
 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 android:textStyle=”bold”
 android:textSize=”28sp”
 android:text=”Light”
 android:editable=”false”
 android:singleLine=”true”
 android:layout_margin=”10dp”/>
 />
</LinearLayout>

2. Within the WeatherStation Activity, create instance variables to store references to each
of the TextView instances and the SensorManager. Also create variables to record the last
recorded value obtained from each sensor:

private SensorManager sensorManager;
private TextView temperatureTextView;

c12.indd 508c12.indd 508 4/18/2012 3:53:12 PM4/18/2012 3:53:12 PM

http://schemas.android.com/apk/res/android%E2%80%9D

Introducing the Environmental Sensors x 509

Meier c12.indd V2 - 20/03/2012 Page 509

private TextView pressureTextView;
private TextView lightTextView;

private float currentTemperature = Float.NaN;
private float currentPressure = Float.NaN;
private float currentLight = Float.NaN;

3. Update the onCreate method to get a reference to the three Text Views and the Sensor
Manager:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 temperatureTextView = (TextView)findViewById(R.id.temperature);
 pressureTextView = (TextView)findViewById(R.id.pressure);
 lightTextView = (TextView)findViewById(R.id.light);
 sensorManager = (SensorManager)getSystemService(Context.SENSOR_SERVICE);
}

4. Create a new SensorEventListener implementation for each of the pressure, temperature,
and light sensors. Each should simply record the last recorded value:

private final SensorEventListener tempSensorEventListener
 = new SensorEventListener() {

 public void onAccuracyChanged(Sensor sensor, int accuracy) { }

 public void onSensorChanged(SensorEvent event) {
 currentTemperature = event.values[0];
 }
};

private final SensorEventListener pressureSensorEventListener
 = new SensorEventListener() {

 public void onAccuracyChanged(Sensor sensor, int accuracy) { }

 public void onSensorChanged(SensorEvent event) {
 currentPressure = event.values[0];
 }
};

private final SensorEventListener lightSensorEventListener
 = new SensorEventListener() {

 public void onAccuracyChanged(Sensor sensor, int accuracy) { }

 public void onSensorChanged(SensorEvent event) {
 currentLight = event.values[0];
 }
};

c12.indd 509c12.indd 509 4/18/2012 3:53:12 PM4/18/2012 3:53:12 PM

510 x CHAPTER 12 HARDWARE SENSORS

Meier c12.indd V2 - 20/03/2012 Page 510

5. Override the onResume handler to register your new Listeners for updates using the
SensorManager. Atmospheric and environmental conditions are likely to change slowly over
time, so you can choose a relatively slow update rate. You should also check to confi rm a
default Sensor exists for each of the conditions being monitored, notifying the user where one
or more Sensors are unavailable.

@Override
protected void onResume() {
 super.onResume();

 Sensor lightSensor = sensorManager.getDefaultSensor(Sensor.TYPE_LIGHT);
 if (lightSensor != null)
 sensorManager.registerListener(lightSensorEventListener,
 lightSensor,
 SensorManager.SENSOR_DELAY_NORMAL);
 else
 lightTextView.setText(“Light Sensor Unavailable”);

 Sensor pressureSensor = sensorManager.getDefaultSensor(Sensor.TYPE_PRESSURE);
 if (pressureSensor != null)
 sensorManager.registerListener(pressureSensorEventListener,
 pressureSensor,
 SensorManager.SENSOR_DELAY_NORMAL);
 else
 pressureTextView.setText(“Barometer Unavailable”);

 Sensor temperatureSensor =
 sensorManager.getDefaultSensor(Sensor.TYPE_AMBIENT_TEMPERATURE);
 if (temperatureSensor != null)
 sensorManager.registerListener(tempSensorEventListener,
 temperatureSensor,
 SensorManager.SENSOR_DELAY_NORMAL);
 else
 temperatureTextView.setText(“Thermometer Unavailable”);
}

6. Override the corresponding onPause method to unregister the Sensor Listeners when the
Activity is no longer active:

@Override
protected void onPause() {
 sensorManager.unregisterListener(pressureSensorEventListener);
 sensorManager.unregisterListener(tempSensorEventListener);
 sensorManager.unregisterListener(lightSensorEventListener);
 super.onPause();
}

7. Create a new updateGUI method that synchronizes with the GUI thread and updates the
Text Views. This will be executed regularly using a Timer introduced in the next step.

private void updateGUI() {
 runOnUiThread(new Runnable() {
 public void run() {
 if (!Float.isNaN(currentPressure) {

c12.indd 510c12.indd 510 4/18/2012 3:53:12 PM4/18/2012 3:53:12 PM

Introducing the Environmental Sensors x 511

Meier c12.indd V2 - 20/03/2012 Page 511

 pressureTextView.setText(currentPressure + “hPa”);
 pressureTextView.invalidate();
 }
 if (!Float.isNaN(currentLight) {
 String lightStr = “Sunny”;
 if (currentLight <= SensorManager.LIGHT_CLOUDY)
 lightStr = “Night”;
 else if (currentLight <= SensorManager.LIGHT_OVERCAST)
 lightStr = “Cloudy”;
 else if (currentLight <= SensorManager.LIGHT_SUNLIGHT)
 lightStr = “Overcast”;
 lightTextView.setText(lightStr);
 lightTextView.invalidate();
 }
 if (!Float.isNaN(currentTemperature) {
 temperatureTextView.setText(currentTemperature + “C”);
 temperatureTextView.invalidate();
 }
 }
 });
};

8. Update the onCreate method to create a Timer that triggers the UI update method defi ned in
step 7 once every second:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 temperatureTextView = (TextView)findViewById(R.id.temperature);
 pressureTextView = (TextView)findViewById(R.id.pressure);
 lightTextView = (TextView)findViewById(R.id.light);
 sensorManager = (SensorManager)getSystemService(Context.SENSOR_SERVICE);

 Timer updateTimer = new Timer(“weatherUpdate”);
 updateTimer.scheduleAtFixedRate(new TimerTask() {
 public void run() {
 updateGUI();
 }
 }, 0, 1000);
}

All code snippets in this example are part of the Chapter 12 WeatherStation
project, available for download at www.wrox.com.

c12.indd 511c12.indd 511 4/18/2012 3:53:13 PM4/18/2012 3:53:13 PM

http://www.wrox.com

Meier c12.indd V2 - 20/03/2012 Page 512

c12.indd 512c12.indd 512 4/18/2012 3:53:13 PM4/18/2012 3:53:13 PM

Meier c13.indd V2 - 20/03/2012 Page 513

13
Maps, Geocoding, and
Location-Based Services

WHAT’S IN THIS CHAPTER?

 ‰ Understanding forward and reverse geocoding

 ‰ Creating interactive maps with Map Views and Map Activities

 ‰ Creating and adding Overlays to maps

 ‰ Finding your location with location-based services

 ‰ Using proximity alerts

One of the defi ning features of mobile phones is their portability, so it’s not surprising that
some of the most enticing APIs are those that enable you to fi nd, contextualize, and map
physical locations.

Using the external Maps library included as part of the Google API package, you can create
map-based Activities using Google Maps as a user interface element. You have full access to
the map, which enables you to control display settings, alter the zoom level, and pan to differ-
ent locations. Using Overlays you can annotate maps and handle user input.

This chapter also covers the location-based services (LBS) that enable you to fi nd the device’s
current location. They include technologies such as GPS and cell- or Wi-Fi-based location-
sensing techniques. You can specify which technology to use explicitly by name, or you can
provide a set of Criteria in terms of accuracy, cost, and other requirements and let Android
select the most appropriate.

Maps and location-based services use latitude and longitude to pinpoint geographic locations,
but your users are more likely to think in terms of a street address. The maps library includes
a geocoder that you can use to convert back and forth between latitude/longitude values and
real-world addresses.

c13.indd 513c13.indd 513 4/18/2012 3:53:35 PM4/18/2012 3:53:35 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

514 x CHAPTER 13 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

Meier c13.indd V2 - 20/03/2012 Page 514

Used together, the mapping, geocoding, and location-based services provide a powerful toolkit for
incorporating your phone’s native mobility into your mobile applications.

USING LOCATION-BASED SERVICES

“Location-based services” is an umbrella term that describes the different technologies you can use
to fi nd a device’s current location. The two main LBS elements are:

 ‰ Location Manager — Provides hooks to the location-based services.

 ‰ Location Providers — Each of these represents a different location-fi nding technology used to
determine the device’s current location.

Using the Location Manager, you can do the following:

 ‰ Obtain your current location

 ‰ Follow movement

 ‰ Set proximity alerts for detecting movement into and out of a specifi ed area

 ‰ Find available Location Providers

 ‰ Monitor the status of the GPS receiver

Access to the location-based services is provided by the Location Manager. To access the Location
Manager, request an instance of the LOCATION_SERVICE using the getSystemService method, as
shown in Listing 13-1.

LISTING 13-1: Accessing the Location Manager

String serviceString = Context.LOCATION_SERVICE;
LocationManager locationManager;
locationManager = (LocationManager)getSystemService(serviceString);

code snippet PA4AD_Ch13_Location/src/MyActivity.java

Before you can use the location-based services, you need to add one or more uses-permission tags
to your manifest.

The following snippet shows how to request the fi ne and coarse permissions in your application
manifest:

<uses-permission android:name=”android.permission.ACCESS_FINE_LOCATION”/>
<uses-permission android:name=”android.permission.ACCESS_COARSE_LOCATION”/>

Fine and coarse permissions will be described in more detail in the following sections. Generally
speaking, they control the level of accuracy your application can use when determining the user’s
location, where fi ne represents high accuracy and coarse less so.

Note that an application that has been granted fi ne permission will have coarse permission
granted implicitly.

c13.indd 514c13.indd 514 4/18/2012 3:53:38 PM4/18/2012 3:53:38 PM

Using the Emulator with Location-Based Services x 515

Meier c13.indd V2 - 20/03/2012 Page 515

USING THE EMULATOR WITH LOCATION-BASED SERVICES

Location-based services are dependent on device hardware used to fi nd the current location. When
you develop and test with the Emulator, your hardware is virtualized, and you’re likely to stay in
pretty much the same location.

To compensate, Android includes hooks that enable you to emulate Location Providers for testing
location-based applications. In this section you learn how to mock the position of the supported
GPS provider.

If you plan to do location-based application development and use the Android
Emulator, this section shows you how to create an environment that simulates
real hardware and location changes. For the remainder of this chapter, it is
assumed that you have used the examples in this section to update the location
for the LocationManager.GPS_PROVIDER within the Emulator, or that you use a
physical device.

Updating Locations in Emulator Location Providers

Use the Location Controls available from the DDMS perspective in Eclipse (Figure 13-1) to push
location changes directly into the Emulator’s GPS Location Provider.

FIGURE 13-1

Figure 13-1 shows the manual and KML tabs. Using the manual tab you can specify particular
latitude/longitude pairs. Alternatively, the KML and GPX tabs enable you to load Keyhole Markup
Language (KML) and GPS Exchange Format (GPX) fi les, respectively. After these load you can
jump to particular waypoints (locations) or play back each sequence of locations.

c13.indd 515c13.indd 515 4/18/2012 3:53:38 PM4/18/2012 3:53:38 PM

516 x CHAPTER 13 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

Meier c13.indd V2 - 20/03/2012 Page 516

Most GPS systems record track-fi les using GPX, whereas KML is used exten-
sively online to defi ne geographic information. You can handwrite your own
KML fi le or generate one by using Google Earth to fi nd directions between two
locations.

All location changes applied using the DDMS location controls will be applied to the GPS receiver,
which must be enabled and active.

Confi guring the Emulator to Test Location-Based Services

The GPS values returned by getLastKnownLocation do not change unless at least one application
requests location updates. As a result, when the Emulator is fi rst started, the result returned from a
call to getLastKnownLocation is likely to be null, as no application has made a request to receive
location updates.

Further, the techniques used to update the mock location described in the previous section are effec-
tive only when at least one application has requested location updates from the GPS.

Listing 13-2 shows how to enable continuous location updates on the Emulator, allowing you to use
DDMS to update the mock location within the Emulator.

LISTING 13-2: Enabling the GPS provider on the Emulator

locationManager.requestLocationUpdates(
 LocationManager.GPS_PROVIDER, 0, 0,
 new LocationListener() {
 public void onLocationChanged(Location location) {}
 public void onProviderDisabled(String provider) {}
 public void onProviderEnabled(String provider) {}
 public void onStatusChanged(String provider, int status,
 Bundle extras) {}
 }
);

code snippet PA4AD_Ch13_Location/src/MyActivity.java

Note that this code effectively locks the GPS Location Provider into an on state. This is considered
poor practice, as it will quickly drain the battery on a real device; therefore, this technique should
only be used when testing on the Emulator.

SELECTING A LOCATION PROVIDER

Depending on the device, you can use several technologies to determine the current location. Each
technology, available as a Location Provider, offers different capabilities — including differences in
power consumption, accuracy, and the ability to determine altitude, speed, or heading information.

c13.indd 516c13.indd 516 4/18/2012 3:53:39 PM4/18/2012 3:53:39 PM

Selecting a Location Provider x 517

Meier c13.indd V2 - 20/03/2012 Page 517

Finding Location Providers

The LocationManager class includes static string constants that return the provider name for three
Location Providers:

 ‰ LocationManager.GPS_PROVIDER

 ‰ LocationManager.NETWORK_PROVIDER

 ‰ LocationManager.PASSIVE_PROVIDER

The GPS provider requires fi ne permission, as does the passive provider, whereas
the network (Cell ID/Wi-Fi) provider requires only coarse.

To get a list of the names of all the providers available (based on hardware available on the device,
and the permissions granted the application), call getProviders, using a Boolean to indicate if you
want all, or only the enabled, providers to be returned:

boolean enabledOnly = true;
List<String> providers = locationManager.getProviders(enabledOnly);

Finding Location Providers by Specifying Criteria

In most scenarios it’s unlikely that you want to explicitly choose a Location Provider to use. It’s bet-
ter practice to specify your requirements and let Android determine the best technology to use.

Use the Criteria class to dictate the requirements of a provider in terms of accuracy, power use
(low, medium, high), fi nancial cost, and the ability to return values for altitude, speed, and heading.

Listing 13-3 specifi es Criteria requiring coarse accuracy, low power consumption, and no need for
altitude, bearing, or speed. The provider is permitted to have an associated cost.

LISTING 13-3: Specifying Location Provider

Criteria criteria = new Criteria();
criteria.setAccuracy(Criteria.ACCURACY_COARSE);
criteria.setPowerRequirement(Criteria.POWER_LOW);
criteria.setAltitudeRequired(false);
criteria.setBearingRequired(false);
criteria.setSpeedRequired(false);
criteria.setCostAllowed(true);

code snippet PA4AD_Ch13_Location/src/MyActivity.java

The coarse/fi ne values passed in to the setAccuracy represent a subjective level of accuracy, where
fi ne represents GPS or better and coarse any technology signifi cantly less accurate than that.

Android 3.0 introduced several additional properties to the Criteria class, designed for more control
over the level of accuracy you require. The following extension of Listing 13-3 specifi es that a high

c13.indd 517c13.indd 517 4/18/2012 3:53:39 PM4/18/2012 3:53:39 PM

518 x CHAPTER 13 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

Meier c13.indd V2 - 20/03/2012 Page 518

horizontal (latitude/longitude) and medium vertical (elevation) accuracy are required. Requirements
for the accuracy of returned bearing and speed are set to low.

criteria.setHorizontalAccuracy(Criteria.ACCURACY_HIGH);
criteria.setVerticalAccuracy(Criteria.ACCURACY_MEDIUM);

criteria.setBearingAccuracy(Criteria.ACCURACY_LOW);
criteria.setSpeedAccuracy(Criteria.ACCURACY_LOW);

In terms of horizontal and vertical accuracy, high accuracy represents a requirement for results
correct to within 100m. Low accuracy Providers are correct to more than 500m, whereas medium
accuracy Providers represent accuracy between 100 and 500 meters.

When specifying accuracy requirements for bearing and speed, only ACCURACY_LOW and
ACCURACY_HIGH are valid parameters.

Having defi ned the required Criteria, you can use getBestProvider to return the best match-
ing Location Provider or getProviders to return all the possible matches. The following snippet
demonstrates the use of getBestProvider to return the best Provider for your Criteria where the
Boolean enables you restrict the result to a currently enabled Provider:

String bestProvider = locationManager.getBestProvider(criteria, true);

If more than one Location Provider matches your Criteria, the one with the greatest accuracy
is returned. If no Location Providers meet your requirements, the Criteria are loosened, in the
following order, until a provider is found:

 ‰ Power use

 ‰ Accuracy of returned location

 ‰ Accuracy of bearing, speed, and altitude

 ‰ Availability of bearing, speed, and altitude

The criterion for allowing a device with monetary cost is never implicitly relaxed. If no provider is
found, null is returned.

To get a list of names for all the providers matching your Criteria, use getProviders. It accepts
a Criteria object and returns a String list of all Location Providers that match it. As with the
getBestProvider call, if no matching providers are found, this method returns null or an
empty List.

List<String> matchingProviders = locationManager.getProviders(criteria,
 false);

Determining Location Provider Capabilities

To get an instance of a specifi c provider, call getProvider, passing in the name:

String providerName = LocationManager.GPS_PROVIDER;
LocationProvider gpsProvider
 = locationManager.getProvider(providerName);

c13.indd 518c13.indd 518 4/18/2012 3:53:40 PM4/18/2012 3:53:40 PM

Finding Your Current Location x 519

Meier c13.indd V2 - 20/03/2012 Page 519

This is useful only for obtaining the capabilities of a particular provider — specifi cally the accuracy
and power requirements through the getAccuracy and getPowerRequirement methods.

In the following sections, most Location Manager methods require only a provider name or criteria
to perform location-based functions.

FINDING YOUR CURRENT LOCATION

One of the most powerful uses of location-based services is to fi nd the physical location of the
device. The accuracy of the returned location is dependent on the hardware available and the per-
missions requested by your application.

Location Privacy

Privacy is an important consideration when your application uses the user’s location — particularly
when it is regularly updating their current position. Ensure that your application uses the device
location data in a way that respects the user’s privacy by:

 ‰ Only using and updating location when necessary for your application

 ‰ Notifying users of when you track their locations, and if and how that location information
is used, transmitted, and stored

 ‰ Allowing users to disable location updates, and respecting the system settings for LBS
preferences

Finding the Last Known Location

You can fi nd the last location fi x obtained by a particular Location Provider using the getLast-
KnownLocation method, passing in the name of the Location Provider. The following example fi nds
the last location fi x taken by the GPS provider:

String provider = LocationManager.GPS_PROVIDER;
Location location = locationManager.getLastKnownLocation(provider);

getLastKnownLocation does not ask the Location Provider to update the cur-
rent position. If the device has not recently updated the current position, this
value may not exist or be out of date.

The Location object returned includes all the position information available from the provider that
supplied it. This can include the time it was obtained, the accuracy of the location found, and it’s
latitude, longitude, bearing, altitude, and speed. All these properties are available via get methods
on the Location object.

Where Am I Example

The following example — Where Am I — features a new Activity that fi nds the device’s last known
location using the GPS Location Provider.

c13.indd 519c13.indd 519 4/18/2012 3:53:40 PM4/18/2012 3:53:40 PM

520 x CHAPTER 13 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

Meier c13.indd V2 - 20/03/2012 Page 520

This example assumes that you have enabled the GPS_PROVIDER Location
Provider using the techniques shown previously in this chapter, or that you’re
running it on a device that supports GPS and has that hardware enabled.

In order to work, the device or Emulator must have recorded at least one loca-
tion update. In the case of a device, this is most easily achieved by starting the
Google Maps application; on an Emulator, enable location updates as described
earlier in this chapter.

1. Create a new Where Am I project with a WhereAmI Activity. This example uses the GPS
provider, so you need to include the uses-permission tag for ACCESS_FINE_LOCATION in
your application manifest.

<?xml version=”1.0” encoding=”utf-8”?>
<manifest xmlns:android=”http://schemas.android.com/apk/res/android”
 package=“com.paad.whereami“
 android:versionCode=“1“
 android:versionName=“1.0“ >

 <uses-sdk android:minSdkVersion=“4“ />

 <uses-permission
 android:name=”android.permission.ACCESS_FINE_LOCATION”
 />

 <application
 android:icon=”@drawable/ic_launcher”
 android:label=”@string/app_name” >
 <activity
 android:name=”.WhereAmI”
 android:label=”@string/app_name” >
 <intent-filter>
 <action android:name=”android.intent.action.MAIN” />
 <category android:name=”android.intent.category.LAUNCHER” />
 </intent-filter>
 </activity>
 </application>
</manifest>

2. Modify the main.xml layout resource to include an android:ID attribute for the TextView
control so that you can access it from within the Activity.

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”>
 <TextView

c13.indd 520c13.indd 520 4/18/2012 3:53:41 PM4/18/2012 3:53:41 PM

http://schemas.android.com/apk/res/android%E2%80%9D
http://schemas.android.com/apk/res/android%E2%80%9D

Finding Your Current Location x 521

Meier c13.indd V2 - 20/03/2012 Page 521

 android:id=”@+id/myLocationText”
 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/hello”
 />
</LinearLayout>

3. Override the onCreate method of the WhereAmI Activity to get a reference to the Location
Manager. Call getLastKnownLocation to get the last known location, and pass it in to an
updateWithNewLocation method stub.

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 LocationManager locationManager;
 String svcName = Context.LOCATION_SERVICE;
 locationManager = (LocationManager)getSystemService(svcName);

 String provider = LocationManager.GPS_PROVIDER;
 Location l = locationManager.getLastKnownLocation(provider);

 updateWithNewLocation(l);
}

private void updateWithNewLocation(Location location) {}

4. Complete the updateWithNewLocation method to show the passed-in Location in the Text
View by extracting the latitude and longitude values.

private void updateWithNewLocation(Location location) {
 TextView myLocationText;
 myLocationText = (TextView)findViewById(R.id.myLocationText);

 String latLongString = “No location found”;
 if (location != null) {
 double lat = location.getLatitude();
 double lng = location.getLongitude();
 latLongString = “Lat:” + lat + “\nLong:” + lng;
 }

 myLocationText.setText(“Your Current Position is:\n” +
 latLongString);
}

All code snippets in this example are part of the Chapter 13 Where Am I Part 1
project, available for download at www.wrox.com.

c13.indd 521c13.indd 521 4/18/2012 3:53:41 PM4/18/2012 3:53:41 PM

http://www.wrox.com

522 x CHAPTER 13 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

Meier c13.indd V2 - 20/03/2012 Page 522

 5. When running, your Activity should look like Figure 13-2.

FIGURE 13-2

Refreshing the Current Location

In most circumstances getting the last known location is unlikely to be suffi cient for your applica-
tions needs. Not only is the value likely to be out of date, but most location-sensitive applications
need to be reactive to user movement — and querying the Location Manager for the last known
location does not force it to update.

The requestLocationUpdates methods are used to request regular updates of location changes
using a LocationListener. Location Listeners also contain hooks for changes in a provider’s status
and availability.

The requestLocationUpdates method accepts either a specifi c Location Provider name or a set
of Criteria to determine the provider to use. To optimize effi ciency and minimize cost and power
use, you can also specify the minimum time and the minimum distance between location change
updates.

Listing 13-4 shows the skeleton code for requesting regular updates based on a minimum time and
distance using a Location Listener.

LISTING 13-4: Requesting location updates Using a Location Listener

String provider = LocationManager.GPS_PROVIDER;

int t = 5000; // milliseconds
int distance = 5; // meters

LocationListener myLocationListener = new LocationListener() {

 public void onLocationChanged(Location location) {
 // Update application based on new location.
 }

 public void onProviderDisabled(String provider){
 // Update application if provider disabled.
 }

 public void onProviderEnabled(String provider){

c13.indd 522c13.indd 522 4/18/2012 3:53:41 PM4/18/2012 3:53:41 PM

Finding Your Current Location x 523

Meier c13.indd V2 - 20/03/2012 Page 523

 // Update application if provider enabled.
 }

 public void onStatusChanged(String provider, int status,
 Bundle extras){
 // Update application if provider hardware status changed.
 }
};

locationManager.requestLocationUpdates(provider, t, distance,
 myLocationListener);

code snippet PA4AD_Ch13_Location/src/MyActivity.java

When the minimum time and distance values are exceeded, the attached Location Listener executes
its onLocationChanged event.

You can request multiple location updates pointing to the same or different
Location Listeners using different minimum time and distance thresholds or
Location Providers.

Android 3.0 (API level 11) introduced an alternative technique for receiving location changes.
Rather than creating a Location Listener, you can specify a Pending Intent that will be broadcast
whenever the location changes or the location provider status or availability changes. The new
 location is stored as an extra with the key KEY_LOCATION_CHANGED.

This is a particularly useful alternative if you have multiple Activities or Services that require
 location updates as they can listen for the same broadcast Intents.

To ensure your application doesn’t leak sensitive location information, you
need to either target a specifi c Broadcast Receiver, as shown in Listing 13-5,
or require permissions for your location update Intents to be received. More
details on applying permissions to Broadcast Intents are available in Chapter 18,
“Advanced Android Development.”

Listing 13-5 shows how to broadcast a Pending Intent to announce new location updates.

LISTING 13-5: Requesting location updates using a Pending Intent

String provider = LocationManager.GPS_PROVIDER;

int t = 5000; // milliseconds
int distance = 5; // meters

final int locationUpdateRC = 0;

continues

c13.indd 523c13.indd 523 4/18/2012 3:53:41 PM4/18/2012 3:53:41 PM

524 x CHAPTER 13 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

Meier c13.indd V2 - 20/03/2012 Page 524

int flags = PendingIntent.FLAG_UPDATE_CURRENT;

Intent intent = new Intent(this, MyLocationUpdateReceiver.class);
PendingIntent pendingIntent = PendingIntent.getBroadcast(this,
 locationUpdateRC, intent, flags);

locationManager.requestLocationUpdates(provider, t,
 distance, pendingIntent);

code snippet PA4AD_Ch13_Location/src/MyActivity.java

Listing 13-6 shows how to create a Broadcast Receiver that listens for changes in location broadcast
using a Pending Intent as shown in Listing 13-5.

LISTING 13-6: Receiving location updates using a Broadcast Receiver

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.location.Location;
import android.location.LocationManager;

public class MyLocationUpdateReceiver extends BroadcastReceiver {

 @Override
 public void onReceive(Context context, Intent intent) {
 String key = LocationManager.KEY_LOCATION_CHANGED;
 Location location = (Location)intent.getExtras().get(key);
 // TODO [... Do something with the new location ...]
 }

}

code snippet PA4AD_Ch13_Location/src/MyLocationUpdateReceiver.java

Remember that you must add your Broadcast Receiver to the application manifest before it can
begin receiving the Pending Intents.

To stop location updates, call removeUpdates, as shown in the following code. Pass in either the
Location Listener instance or Pending Intent that you no longer want to have triggered.

locationManager.removeUpdates(myLocationListener);
locationManager.removeUpdates(pendingIntent);

To minimize the cost to battery life, you should disable updates whenever possible in your applica-
tion, especially in cases where your application isn’t visible and location changes are used only to
update an Activity’s UI. You can improve performance further by making the minimum time and
distance between updates as large as possible.

LISTING 13-5 (continued)

c13.indd 524c13.indd 524 4/18/2012 3:53:42 PM4/18/2012 3:53:42 PM

Finding Your Current Location x 525

Meier c13.indd V2 - 20/03/2012 Page 525

Where timeliness is not a signifi cant factor, you might consider using the Passive Location Provider
(introduced in Android 2.2, API level 8), as shown in the following snippet.

String passiveProvider = LocationManager.PASSIVE_PROVIDER;
locationManager.requestLocationUpdates(passiveProvider, 0, 0,
 myLocationListener);

The Passive Location Provider receives location updates if, and only if, another application requests
them, letting your application passively receive location updates without activating any Location
Provider.

Because the updates may come from any Location Provider, your application must request the
ACCESS_FINE_LOCATION permission to use the Passive Location Provider. Call getProvider on the
Location received by the registered Location Listener to determine which Location Provider gener-
ated each update.

Its passive nature makes this an excellent alternative for keeping location data fresh within your
application while it is in the background, without draining the battery.

Tracking Your Location in Where Am I

In the following example, the Where Am I project is enhanced to update your current location
by listening for location changes. Updates are restricted to one every 2 seconds, and only when
movement of more than 10 meters has been detected.

Rather than explicitly selecting a provider, you update the application to use a set of Criteria and let
Android fi nd the best provider available.

1. Open the WhereAmI Activity in the Where Am I project. Update the onCreate method to use
Criteria to fi nd a Location Provider that features high accuracy and draws as little power
as possible.

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 LocationManager locationManager;
 String svcName = Context.LOCATION_SERVICE;
 locationManager = (LocationManager)getSystemService(svcName);

 Criteria criteria = new Criteria();
 criteria.setAccuracy(Criteria.ACCURACY_FINE);
 criteria.setPowerRequirement(Criteria.POWER_LOW);
 criteria.setAltitudeRequired(false);
 criteria.setBearingRequired(false);
 criteria.setSpeedRequired(false);
 criteria.setCostAllowed(true);
 String provider = locationManager.getBestProvider(criteria, true);

 Location l = locationManager.getLastKnownLocation(provider);

 updateWithNewLocation(l);
}

c13.indd 525c13.indd 525 4/18/2012 3:53:42 PM4/18/2012 3:53:42 PM

526 x CHAPTER 13 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

Meier c13.indd V2 - 20/03/2012 Page 526

2. Create a new LocationListener instance variable that fi res the existing updateWithNew
Location method whenever a location change is detected.

private final LocationListener locationListener = new LocationListener() {
 public void onLocationChanged(Location location) {
 updateWithNewLocation(location);
 }

 public void onProviderDisabled(String provider) {}
 public void onProviderEnabled(String provider) {}
 public void onStatusChanged(String provider, int status,
 Bundle extras) {}
};

3. Return to onCreate and call requestLocationUpdates, passing in the new Location
Listener object. It should listen for location changes every 2 seconds but fi re only when it
detects movement of more than 10 meters.

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 LocationManager locationManager;
 String svcName = Context.LOCATION_SERVICE;
 locationManager = (LocationManager)getSystemService(svcName);

 Criteria criteria = new Criteria();
 criteria.setAccuracy(Criteria.ACCURACY_FINE);
 criteria.setPowerRequirement(Criteria.POWER_LOW);
 criteria.setAltitudeRequired(false);
 criteria.setBearingRequired(false);
 criteria.setSpeedRequired(false);
 criteria.setCostAllowed(true);
 String provider = locationManager.getBestProvider(criteria, true);

 Location l = locationManager.getLastKnownLocation(provider);

 updateWithNewLocation(l);

 locationManager.requestLocationUpdates(provider, 2000, 10,
 locationListener);
}

If you run the application and start changing the device location, you see the Text View update
accordingly.

All code snippets in this example are part of the Chapter 13 Where Am I Part 2
project, available for download at www.wrox.com.

c13.indd 526c13.indd 526 4/18/2012 3:53:42 PM4/18/2012 3:53:42 PM

http://www.wrox.com

Best Practice for Location Updates x 527

Meier c13.indd V2 - 20/03/2012 Page 527

Requesting a Single Location Update

Not every app requires regular location updates to remain useful. In many cases only a single loca-
tion fi x is required to provide adequate context for the functionality they provide or information
they display.

Although getLastKnownLocation can be used to return the last known position, there’s no guaran-
tee that this location exists, or that it is still relevant. Similarly, you could use the Passive Location
Provider to receive updates when other apps request them, but you have no control over when (or if)
this will happen.

Introduced in Android 2.3 (API level 9), the requestSingleUpdate method enables you to specify a
Provider or Criteria to use when requesting at least one update.

As shown in the snippet following, unlike requesting regular updates this method does not let you
specify the frequency of updates because only a single update will be requested.

Looper looper = null;
locationManager.requestSingleUpdate(criteria, myLocationListener, looper);

When using a Location Listener, you can specify a Looper parameter. This allows you to schedule
the callbacks on a particular thread — setting the parameter to null will force it to return on the
calling thread.

Like the requestLocationUpdates method described earlier, you can choose to receive the single
location update using either a Location Listener as previously shown, or through a Pending Intent as
shown here.

locationManager.requestSingleUpdate(criteria, pendingIntent);

In either case, only one update will be received, so you need to unregister the receiver when that
update occurs.

BEST PRACTICE FOR LOCATION UPDATES

When using Location within your application, consider the following factors:

 ‰ Battery life versus accuracy — The more accurate the Location Provider, the greater its drain
on the battery.

 ‰ Startup time — In a mobile environment the time taken to get an initial location can have a
dramatic effect on the user experience — particularly if your app requires a location to be
used. GPS, for example, can have a signifi cant startup time, which you may need to mitigate.

 ‰ Update rate — The more frequent the update rate, the more dramatic the effect on battery
life. Slower updates can reduce battery drain at the price of less timely updates.

 ‰ Provider availability — Users can toggle the availability of providers, so your application
needs to monitor changes in provider status to ensure the best alternative is used at all times.

c13.indd 527c13.indd 527 4/18/2012 3:53:43 PM4/18/2012 3:53:43 PM

528 x CHAPTER 13 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

Meier c13.indd V2 - 20/03/2012 Page 528

Monitoring Location Provider Status and Availability

Having used Criteria to select the best provider available for receiving location updates, you need
to monitor changes in the availability of Location Providers to ensure that the one selected remains
available and the best alternative.

Listing 13-7 shows how to monitor the status of your selected Provider, dynamically switching to a
new provider should it become unavailable and switching to a better alternative should one
be enabled.

LISTING 13-7: Design pattern for switching Location Providers when a better alternative

becomes available

package com.paad.location;

import java.util.List;

import android.app.Activity;
import android.content.Context;
import android.location.Criteria;
import android.location.Location;
import android.location.LocationListener;
import android.location.LocationManager;
import android.os.Bundle;
import android.util.Log;

public class DynamicProvidersActivity extends Activity {
 private LocationManager locationManager;
 private final Criteria criteria = new Criteria();
 private static int minUpdateTime = 0; // 30 Seconds
 private static int minUpdateDistance = 0; // 100m

 private static final String TAG = “DYNAMIC_LOCATION_PROVIDER”;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 // Get a reference to the Location Manager
 String svcName = Context.LOCATION_SERVICE;
 locationManager = (LocationManager)getSystemService(svcName);

 // Specify Location Provider criteria
 criteria.setAccuracy(Criteria.ACCURACY_FINE);
 criteria.setPowerRequirement(Criteria.POWER_LOW);
 criteria.setAltitudeRequired(true);
 criteria.setBearingRequired(true);
 criteria.setSpeedRequired(true);
 criteria.setCostAllowed(true);

 // Only for Android 3.0 and above

c13.indd 528c13.indd 528 4/18/2012 3:53:43 PM4/18/2012 3:53:43 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Best Practice for Location Updates x 529

Meier c13.indd V2 - 20/03/2012 Page 529

 criteria.setHorizontalAccuracy(Criteria.ACCURACY_HIGH);
 criteria.setVerticalAccuracy(Criteria.ACCURACY_MEDIUM);
 criteria.setBearingAccuracy(Criteria.ACCURACY_LOW);
 criteria.setSpeedAccuracy(Criteria.ACCURACY_LOW);
 // End of Android 3.0 and above only
 }

 @Override
 protected void onPause() {
 unregisterAllListeners();
 super.onPause();
 }

 @Override
 protected void onResume() {
 super.onResume();
 registerListener();
 }

 private void registerListener() {
 unregisterAllListeners();
 String bestProvider =
 locationManager.getBestProvider(criteria, false);
 String bestAvailableProvider =
 locationManager.getBestProvider(criteria, true);

 Log.d(TAG, bestProvider + “ / “ + bestAvailableProvider);

 if (bestProvider == null)
 Log.d(TAG, “No Location Providers exist on device.”);
 else if (bestProvider.equals(bestAvailableProvider))
 locationManager.requestLocationUpdates(bestAvailableProvider,
 minUpdateTime, minUpdateDistance,
 bestAvailableProviderListener);
 else {
 locationManager.requestLocationUpdates(bestProvider,
 minUpdateTime, minUpdateDistance, bestProviderListener);

 if (bestAvailableProvider != null)
 locationManager.requestLocationUpdates(bestAvailableProvider,
 minUpdateTime, minUpdateDistance,
 bestAvailableProviderListener);
 else {
 List<String> allProviders = locationManager.getAllProviders();
 for (String provider : allProviders)
 locationManager.requestLocationUpdates(provider, 0, 0,
 bestProviderListener);
 Log.d(TAG, “No Location Providers currently available.”);
 }
 }
 }

 private void unregisterAllListeners() {
 locationManager.removeUpdates(bestProviderListener);

continues

c13.indd 529c13.indd 529 4/18/2012 3:53:43 PM4/18/2012 3:53:43 PM

530 x CHAPTER 13 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

Meier c13.indd V2 - 20/03/2012 Page 530

 locationManager.removeUpdates(bestAvailableProviderListener);
 }

 private void reactToLocationChange(Location location) {
 // TODO [React to location change]
 }

 private LocationListener bestProviderListener
 = new LocationListener() {

 public void onLocationChanged(Location location) {
 reactToLocationChange(location);
 }

 public void onProviderDisabled(String provider) {
 }

 public void onProviderEnabled(String provider) {
 registerListener();
 }

 public void onStatusChanged(String provider,
 int status, Bundle extras) {}
 };

 private LocationListener bestAvailableProviderListener =
 new LocationListener() {
 public void onProviderEnabled(String provider) {
 }

 public void onProviderDisabled(String provider) {
 registerListener();
 }

 public void onLocationChanged(Location location) {
 reactToLocationChange(location);
 }

 public void onStatusChanged(String provider,
 int status, Bundle extras) {}
 };
}

code snippet PA4AD_Ch13_Location/src/DynamicProvidersActivity.java

USING PROXIMITY ALERTS

Proximity alerts let your app set Pending Intents that are fi red when the device moves within or
beyond a set distance from a fi xed location.

LISTING 13-7 (continued)

c13.indd 530c13.indd 530 4/18/2012 3:53:43 PM4/18/2012 3:53:43 PM

Using Proximity Alerts x 531

Meier c13.indd V2 - 20/03/2012 Page 531

Internally, Android may use different Location Providers depending on how
close you are to the outside edge of your target area. This allows the power use
and cost to be minimized when the alert is unlikely to be fi red based on your dis-
tance from the target area interface.

To set a proximity alert for a given area, select the center point (using longitude and latitude values),
a radius around that point, and an expiry time-out for the alert. The alert fi res if the device crosses
over that boundary, both when it moves from outside to within the radius, and when it moves from
inside to beyond it.

To specify the Intent to fi re, you use a PendingIntent, a class that wraps an Intent in a kind of
method pointer, as described in Chapter 5, “Intents and Broadcast Receivers.”

Listing 13-8 shows how to set a proximity alert that never expires and that is triggered when the
device moves within 10 meters of its target.

LISTING 13-8: Setting a proximity alert

private static final String TREASURE_PROXIMITY_ALERT = “com.paad.treasurealert”;

private void setProximityAlert() {
 String locService = Context.LOCATION_SERVICE;
 LocationManager locationManager;
 locationManager = (LocationManager)getSystemService(locService);

 double lat = 73.147536;
 double lng = 0.510638;
 float radius = 100f; // meters
 long expiration = -1; // do not expire

 Intent intent = new Intent(TREASURE_PROXIMITY_ALERT);
 PendingIntent proximityIntent = PendingIntent.getBroadcast(this, -1,
 intent,
 0);
 locationManager.addProximityAlert(lat, lng, radius,
 expiration,
 proximityIntent);
}

code snippet PA4AD_Ch13_Location/src/MyActivity.java

When the Location Manager detects that you have crossed the radius boundary, the Pending Intent
fi res with an extra keyed as LocationManager.KEY_PROXIMITY_ENTERING set to true or false
accordingly.

To receive proximity alerts, you need to create a BroadcastReceiver, such as the one shown in
Listing 13-9.

c13.indd 531c13.indd 531 4/18/2012 3:53:43 PM4/18/2012 3:53:43 PM

532 x CHAPTER 13 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

Meier c13.indd V2 - 20/03/2012 Page 532

LISTING 13-9: Creating a proximity alert Broadcast Receiver

public class ProximityIntentReceiver extends BroadcastReceiver {

 @Override
 public void onReceive (Context context, Intent intent) {
 String key = LocationManager.KEY_PROXIMITY_ENTERING;

 Boolean entering = intent.getBooleanExtra(key, false);
 // TODO [… perform proximity alert actions …]
 }

}

code snippet PA4AD_Ch13_Location/src/ProximityIntentReceiver.java

To start listening for proximity alerts, register your receiver either by using a tag in your Manifest
or in code as shown here:

IntentFilter filter = new IntentFilter(TREASURE_PROXIMITY_ALERT);
registerReceiver(new ProximityIntentReceiver(), filter);

USING THE GEOCODER

Geocoding enables you to translate between street addresses and longitude/latitude map coordi-
nates. This can give you a recognizable context for the locations and coordinates used in location-
based services and map-based Activities.

The Geocoder classes are included as part of the Google Maps library, so to use them you need to
import it into your application by adding a uses-library node within the application node as
shown here:

<uses-library android:name=”com.google.android.maps”/>

As the geocoding lookups are done on the server, your applications also requires the Internet uses-
permission in your manifest:

<uses-permission android:name=”android.permission.INTERNET”/>

The Geocoder class provides access to two geocoding functions:

 ‰ Forward geocoding — Finds the latitude and longitude of an address

 ‰ Reverse geocoding — Finds the street address for a given latitude and longitude

The results from these calls are contextualized by means of a locale (used to defi ne your usual
location and language). The following snippet shows how you set the locale when creating your
Geocoder. If you don’t specify a locale, it assumes the device’s default.

Geocoder geocoder = new Geocoder(getApplicationContext(),
 Locale.getDefault());

Both geocoding functions return a list of Address objects. Each list can contain several possible
results, up to a limit you specify when making the call.

c13.indd 532c13.indd 532 4/18/2012 3:53:44 PM4/18/2012 3:53:44 PM

Using the Geocoder x 533

Meier c13.indd V2 - 20/03/2012 Page 533

Each Address object is populated with as much detail as the Geocoder was able to resolve. This can
include the latitude, longitude, phone number, and increasingly granular address details from coun-
try to street and house number.

Geocoder lookups are performed synchronously, so they block the calling
thread. It’s good practice to move these lookups into a Service or and/or back-
ground thread, as demonstrated in Chapter 9, “Working in the Background.”

The Geocoder uses a web service to implement its lookups that may not be included on all Android
devices. Android 2.3 (API level 9) introduced the isPresent method to determine if a Geocoder
implementation exists on a given device:

bool geocoderExists = Geocoder.isPresent();

If no Geocoder implementation exists on the device, the forward and reverse geocoding queries
described in the following sections will return an empty list.

Reverse Geocoding

Reverse geocoding returns street addresses for physical locations specifi ed by latitude/longitude
pairs. It’s a useful way to get a recognizable context for the locations returned by location-based
services.

To perform a reverse lookup, pass the target latitude and longitude to a Geocoder object’s getFrom-
Location method. It returns a list of possible address matches. If the Geocoder could not resolve
any addresses for the specifi ed coordinate, it returns null.

Listing 13-10 shows how to reverse-geocode a given location, limiting the number of possible
addresses to the top 10.

LISTING 13-10: Reverse-geocoding a given location

private void reverseGeocode(Location location) {

 double latitude = location.getLatitude();
 double longitude = location.getLongitude();
 List<Address> addresses = null;

 Geocoder gc = new Geocoder(this, Locale.getDefault());
 try {
 addresses = gc.getFromLocation(latitude, longitude, 10);
 } catch (IOException e) {
 Log.e(TAG, “IO Exception”, e);
 }
}

code snippet PA4AD_Ch13_Geocoding/src/MyActivity.java

c13.indd 533c13.indd 533 4/18/2012 3:53:44 PM4/18/2012 3:53:44 PM

534 x CHAPTER 13 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

Meier c13.indd V2 - 20/03/2012 Page 534

The accuracy and granularity of reverse lookups are entirely dependent on the quality of data in
the geocoding database; as a result, the quality of the results may vary widely between different
 countries and locales.

Forward Geocoding

Forward geocoding (or just geocoding) determines map coordinates for a given location.

What constitutes a valid location varies depending on the locale (geographic
area) within which you search. Generally, it includes regular street addresses of
varying granularity (from country to street name and number), postcodes, train
stations, landmarks, and hospitals. As a general guide, valid search terms are
similar to the addresses and locations you can enter into the Google Maps search
bar.

To geocode an address, call getFromLocationName on a Geocoder object. Pass in a string that
describes the address you want the coordinates for, the maximum number of results to return, and
optionally provide a geographic bounding box within which to restrict your search results:

List<Address> result = gc.getFromLocationName(streetAddress, maxResults);

The returned list of Addresses may include multiple possible matches for the named location. Each
Address includes latitude and longitude and any additional address information available for those
coordinates. This is useful to confi rm that the correct location was resolved, and for providing loca-
tion specifi cs in searches for landmarks.

As with reverse geocoding, if no matches are found, null is returned. The avail-
ability, accuracy, and granularity of geocoding results depends entirely on the
database available for the area you search.

When you do forward lookups, the Locale specifi ed when instantiating the Geocoder is particu-
larly important. The Locale provides the geographical context for interpreting your search requests
because the same location names can exist in multiple areas.

Where possible, consider selecting a regional Locale to help avoid place-name ambiguity, and try to
provide as many address details as possible, as shown in Listing 13-11.

LISTING 13-11: Geocoding an address

Geocoder fwdGeocoder = new Geocoder(this, Locale.US);
String streetAddress = “160 Riverside Drive, New York, New York”;

List<Address> locations = null;

c13.indd 534c13.indd 534 4/18/2012 3:53:44 PM4/18/2012 3:53:44 PM

Using the Geocoder x 535

Meier c13.indd V2 - 20/03/2012 Page 535

try {
 locations = fwdGeocoder.getFromLocationName(streetAddress, 5);
} catch (IOException e) {
 Log.e(TAG, “IO Exception”, e);
}

code snippet PA4AD_Ch13_Geocoding/src/MyActivity.java

For even more specifi c results, you can restrict your search to within a geographical area by specify-
ing the lower-left and upper-right latitude and longitude as shown here:

List<Address> locations = null;
try {
 locations = fwdGeocoder.getFromLocationName(streetAddress, 10,
 llLat, llLong, urLat, urLong);
} catch (IOException e) {
 Log.e(TAG, “IO Exception”, e);
}

This overload is particularly useful with a Map View, letting you restrict the search to the visible
map area.

Geocoding Where Am I

In this example you extend the Where Am I project to include and update the current street address
whenever the device moves.

1. Start by modifying the manifest to include the Internet uses-permission:

<uses-permission android:name=”android.permission.INTERNET”/>

2. Then open the WhereAmI Activity. Modify the updateWithNewLocation method to instan-
tiate a new Geocoder object and call the getFromLocation method, passing in the newly
received location and limiting the results to a single address.

3. Extract each line in the street address and the locality, postcode, and country, and append
this information to an existing Text View string.

private void updateWithNewLocation(Location location) {
 TextView myLocationText;
 myLocationText = (TextView)findViewById(R.id.myLocationText);

 String latLongString = “No location found”;
 String addressString = “No address found”;

 if (location != null) {
 double lat = location.getLatitude();
 double lng = location.getLongitude();
 latLongString = “Lat:” + lat + “\nLong:” + lng;

 double latitude = location.getLatitude();
 double longitude = location.getLongitude();

c13.indd 535c13.indd 535 4/18/2012 3:53:45 PM4/18/2012 3:53:45 PM

536 x CHAPTER 13 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

Meier c13.indd V2 - 20/03/2012 Page 536

 Geocoder gc = new Geocoder(this, Locale.getDefault());

 try {
 List<Address> addresses = gc.getFromLocation(latitude, longitude, 1);
 StringBuilder sb = new StringBuilder();
 if (addresses.size() > 0) {
 Address address = addresses.get(0);

 for (int i = 0; i < address.getMaxAddressLineIndex(); i++)
 sb.append(address.getAddressLine(i)).append(“\n”);

 sb.append(address.getLocality()).append(“\n”);
 sb.append(address.getPostalCode()).append(“\n”);
 sb.append(address.getCountryName());
 }
 addressString = sb.toString();
 } catch (IOException e) {}
 }

 myLocationText.setText(“Your Current Position is:\n” +
 latLongString + “\n\n” + addressString);
}

All code snippets in this example are part of the Chapter 13 Where Am I Part 3
project, available for download at www.wrox.com.

If you run the example now, it should appear as shown in Figure 13-3.

FIGURE 13-3

CREATING MAP-BASED ACTIVITIES

One of the most intuitive ways to provide context for a physical location or address is to use a map.
Using a MapView, you can create Activities that include an interactive map.

Map Views support annotation using Overlays and by pinning Views to geographical locations.
Map Views offer full programmatic control of the map display, letting you control the zoom,
location, and display modes — including the option to display a satellite view.

c13.indd 536c13.indd 536 4/18/2012 3:53:45 PM4/18/2012 3:53:45 PM

http://www.wrox.com

Creating Map-Based Activities x 537

Meier c13.indd V2 - 20/03/2012 Page 537

In the following sections you see how to use Overlays and the MapController to create dynamic
map-based Activities. Unlike online mashups, your map Activities run natively on the device, giving
you a more customized and personal user experience.

Introducing Map View and Map Activity

This section introduces several classes used to support Android maps:

 ‰ MapView is the user interface element that displays the map.

 ‰ MapActivity is the base class you extend to create an Activity that can include a Map
View. The MapActivity class handles the application life cycle and background ser-
vice management required for displaying maps. You can only use Map Views within
MapActivity-derived Activities.

 ‰ Overlay is the class used to annotate your maps. Using Overlays, you can use a Canvas to
draw onto any number of layers displayed on top of a Map View.

 ‰ MapController is used to control the map, enabling you to set the center location and
zoom levels.

 ‰ MyLocationOverlay is a special Overlay that can be used to display the current position and
orientation of the device.

 ‰ ItemizedOverlays and OverlayItems are used together to let you create a layer of map
markers, displayed using Drawables and associated text.

Getting Your Maps API Key

To use a Map View in your application, you must fi rst obtain an API key from the Android
developer website at http://code.google.com/android/maps-api-signup.html.

Without an API key the Map View cannot download the tiles used to display the map.

To obtain a key, you need to specify the MD5 fi ngerprint of the certifi cate used to sign your
application. Generally, you sign your application using two certifi cates: a default debug certifi cate
and a production certifi cate. The following sections explain how to obtain the MD5 fi ngerprint of
any signing certifi cate used with your application.

Getting Your Development/Debugging MD5 Fingerprint

If you use Eclipse with the ADT plug-in to debug your applications, they will be signed with the
default debug certifi cate stored in the debug keystore.

You can fi nd the location of your keystore in the Default Debug Keystore textbox after selecting
Windows Í Preferences Í Android Í Build. Typically the debug keystore is stored in the following
platform-specifi c locations:

 ‰ Windows Vista — \users\<username>\.android\debug.keystore

 ‰ Windows XP — \Documents and Settings\<username>\.android\debug.keystore

 ‰ Linux or Mac — </.android/debug.keystore

c13.indd 537c13.indd 537 4/18/2012 3:53:46 PM4/18/2012 3:53:46 PM

http://code.google.com/android/maps-api-signup.html

538 x CHAPTER 13 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

Meier c13.indd V2 - 20/03/2012 Page 538

Each computer you use for development will have a different debug certifi cate
and MD5 value. If you want to debug and develop map applications across mul-
tiple computers, you need to generate and use multiple API keys.

To fi nd the MD5 fi ngerprint of your debug certifi cate, use the keytool command from your Java
installation:

keytool -list -alias androiddebugkey -keystore <keystore_location>.keystore
-storepass android -keypass android

Getting your Production/Release MD5 Fingerprint

Before you compile and sign your application for release, you need to obtain a map API key using
the MD5 fi ngerprint for your release certifi cate.

Find the MD5 fi ngerprint using the keytool command and specify the -list parameter and the
keystore and alias you will use to sign your release application.

keytool -list -alias my-android-alias -keystore my-android-keystore

You will be prompted for your keystore and alias passwords before the MD5 fi ngerprint is returned.

Creating a Map-Based Activity

To use maps in your applications, you need to extend MapActivity. The layout for the new class
must then include a MapView to display a Google Maps interface element.

The Android maps library is not a standard Android package; as an optional API, it must be
explicitly included in the application manifest before it can be used. Add the library to your manifest
using a uses-library tag within the application node, as shown in the following XML snippet:

<uses-library android:name=”com.google.android.maps”/>

The maps package as described here is not part of the standard Android open-
source project (AOSP). It is provided within the Android SDK by Google and
is available on most Android devices. However, be aware that because it is a
nonstandard package, an Android device may not feature this particular library.

The Map View downloads its map tiles on demand; as a result, any application that features a
Map View needs to include a uses-permission for Internet access. To do this, you need to add a
uses-permission tag to your application manifest for INTERNET, as shown here:

<uses-permission android:name=”android.permission.INTERNET”/>

After adding the library and confi guring your permission, you’re ready to create your new
map-based Activity.

c13.indd 538c13.indd 538 4/18/2012 3:53:46 PM4/18/2012 3:53:46 PM

Creating Map-Based Activities x 539

Meier c13.indd V2 - 20/03/2012 Page 539

MapView controls can be used only within an Activity that extends MapActivity. Override the
onCreate method to lay out the screen that includes a MapView, and override isRouteDisplayed to
return true if the Activity will be displaying routing information (such as traffi c directions).

Listing 13-12 shows the framework for creating a new map-based Activity.

LISTING 13-12: A skeleton map Activity

import com.google.android.maps.MapActivity;
import com.google.android.maps.MapController;
import com.google.android.maps.MapView;
import android.os.Bundle;

public class MyMapActivity extends MapActivity {
 private MapView mapView;

 private MapController mapController;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.map_layout);
 mapView = (MapView)findViewById(R.id.map_view);
 }

 @Override
 protected boolean isRouteDisplayed() {
 // IMPORTANT: This method must return true if your Activity
 // is displaying driving directions. Otherwise return false.
 return false;
 }
}

code snippet PA4AD_Ch13_Mapping/src/MyMapActivity.java

The corresponding layout fi le used to include the MapView is shown in Listing 13-13. You need
to include your map API key (as described earlier in this chapter) to use a Map View in your
application.

LISTING 13-13: A map Activity layout resource

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>
 <com.google.android.maps.MapView
 android:id=”@+id/map_view”
 android:layout_width=”fill_parent”

continues

c13.indd 539c13.indd 539 4/18/2012 3:53:47 PM4/18/2012 3:53:47 PM

http://schemas.android.com/apk/res/android%E2%80%9D

540 x CHAPTER 13 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

Meier c13.indd V2 - 20/03/2012 Page 540

 android:layout_height=”fill_parent”
 android:enabled=”true”
 android:clickable=”true”
 android:apiKey=”mymapapikey”
 />
</LinearLayout>

code snippet PA4AD_Ch13_Mapping/res/layout/map_layout.xml

Figure 13-4 shows an example of a basic map-based Activity.

FIGURE 13-4

Android currently supports only one MapActivity and one MapView per
application.

Maps and Fragments

Map Views can be included within Fragments, provided that the Fragment is attached to a Map
Activity. This can be problematic if you are using the Android Support Library to provide support
for Fragments on Android platforms prior to Android 3.0.

In such scenarios, you must choose between having your Activity extend FragmentActivity in
order to provide Fragment support, or MapActivity in order to include a Map View element.

LISTING 13-13 (continued)

c13.indd 540c13.indd 540 4/18/2012 3:53:47 PM4/18/2012 3:53:47 PM

Creating Map-Based Activities x 541

Meier c13.indd V2 - 20/03/2012 Page 541

At the time of writing, the support library did not include a MapFragment or MapFragmentActivity
class to enable the use of Map Views within support library Fragments. As a result, it is not
currently possibly to include Map Views within support library Fragments and Fragment
Activities.

There are several third-party support libraries that attempt to circumvent this restriction.
Alternatively, one approach is to create alternative Activity classes for pre- and post-Honeycomb
devices, such that Maps within Fragments are used only where supported.

For the remainder of this chapter where Fragments are discussed, it will be assumed that they are
native Fragments on devices targeting Android 3.0 (API level 11) or above.

Confi guring and Using Map Views

By default the Map View shows the standard street map (refer to Figure 13-4). In addition you can
choose to display a satellite view and the expected traffi c overlay, as shown in the following code
snippet:

mapView.setSatellite(true);
mapView.setTraffic(true);

You can also query the Map View to fi nd the current and maximum available zoom levels:

int maxZoom = mapView.getMaxZoomLevel();
int currentZoom = mapView.getZoomLevel();

You can also obtain the center point and currently visible longitude and latitude span (in decimal
degrees). This is particularly useful for performing geographically limited Geocoder lookups:

GeoPoint center = mapView.getMapCenter();
int latSpan = mapView.getLatitudeSpan();
int longSpan = mapView.getLongitudeSpan();

You can also choose to display the standard map zoom controls using the setBuiltInZoomCon-
trols method.

mapView.setBuiltInZoomControls(true);

To customize the zoom controls use the getZoomButtonsController method to obtain an instance
of the Zoom Buttons Controller. You can use the controller to customize the zoom speed, enable or
disable the zoom in or out controls, and add additional buttons to the zoom controls layout.

 ZoomButtonsController zoomButtons = mapView.getZoomButtonsController();

Using the Map Controller

Use the Map Controller to pan and zoom a MapView. You can get a reference to a MapView’s
controller using getController.

MapController mapController = mapView.getController();

Map locations in the Android mapping classes are represented by GeoPoint objects, which contain
a latitude and longitude measured in microdegrees. To convert degrees to microdegrees, multiply by
1E6 (1,000,000).

c13.indd 541c13.indd 541 4/18/2012 3:53:48 PM4/18/2012 3:53:48 PM

542 x CHAPTER 13 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

Meier c13.indd V2 - 20/03/2012 Page 542

Before you can use the latitude and longitude values stored in the Location objects returned by loca-
tion-based services, you need to convert them to microdegrees and store them as GeoPoints.

Double lat = 37.422006*1E6;
Double lng = -122.084095*1E6;
GeoPoint point = new GeoPoint(lat.intValue(), lng.intValue());

Recenter and zoom the Map View using the setCenter and setZoom methods available on the Map
View’s MapController.

mapController.setCenter(point);
mapController.setZoom(1);

When you use setZoom, 1 represents the widest (or most distant) zoom and 21 the tightest (nearest)
view.

The actual zoom level available for a specifi c location depends on the resolution of Google’s maps
and imagery for that area and can be found by calling getMaxZoomLevel on the associated Map
View. You can also use zoomIn and zoomOut to change the zoom level by one step or zoomToSpan to
specify a latitude or longitude span to zoom to.

The setCenter method “jumps” to a new location; to show a smooth transition, use animateTo.

mapController.animateTo(point);

Mapping Where Am I

The following code example extends the Where Am I project again. This time you add mapping
functionality by transforming it into a Map Activity. As the device location changes, the map auto-
matically re-centers on the new position.

1. Start by checking your project properties to ensure your project build target is a Google APIs
target rather than an Android Open Source Project target. This is necessary in order to use
the Google mapping components. You can access your project’s build properties by selecting
it in your project hierarchy and selecting File Í Properties and selecting the Android tab.

2. Modify the application manifest to add the maps library:

<?xml version=”1.0” encoding=”utf-8”?>
<manifest xmlns:android=”http://schemas.android.com/apk/res/android”
 package=“com.paad.whereami“
 android:versionCode=“1“
 android:versionName=“1.0“ >

 <uses-sdk android:minSdkVersion=“4“ />
 <uses-permission android:name=“android.permission.INTERNET“/>

 <uses-permission
 android:name=“android.permission.ACCESS_FINE_LOCATION“
 />

 <application
 android:icon=“@drawable/ic_launcher“
 android:label=“@string/app_name“>

c13.indd 542c13.indd 542 4/18/2012 3:53:48 PM4/18/2012 3:53:48 PM

http://schemas.android.com/apk/res/android%E2%80%9D

Creating Map-Based Activities x 543

Meier c13.indd V2 - 20/03/2012 Page 543

 <uses-library android:name=“com.google.android.maps“/>

 <activity
 android:name=“.WhereAmI“
 android:label=“@string/app_name“>
 <intent-filter>
 <action android:name=“android.intent.action.MAIN“ />
 <category android:name=“android.intent.category.LAUNCHER“ />
 </intent-filter>
 </activity>
 </application>
</manifest>

3. Change the inheritance of the WhereAmI Activity to extend MapActivity instead of
Activity. You also need to include an override for the isRouteDisplayed method. Because
this Activity won’t show routing directions, you can return false.

public class WhereAmI extends MapActivity {

 @Override
 protected boolean isRouteDisplayed() {
 return false;
 }

 [... existing Activity code ...]
}

4. Modify the main.xml layout resource to include a MapView using the fully qualifi ed class
name. You need to obtain a maps API key to include within the android:apikey attribute
of the com.android.MapView node.

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”>
 <TextView
 android:id=”@+id/myLocationText”
 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/hello”
 />
 <com.google.android.maps.MapView
 android:id=”@+id/myMapView”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:enabled=”true”
 android:clickable=”true”
 android:apiKey=”myMapKey”
 />
</LinearLayout>

5. Running the application now should display the original address text with a MapView
beneath it, as shown in Figure 13-5.

c13.indd 543c13.indd 543 4/18/2012 3:53:48 PM4/18/2012 3:53:48 PM

http://schemas.android.com/apk/res/android%E2%80%9D

544 x CHAPTER 13 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

Meier c13.indd V2 - 20/03/2012 Page 544

FIGURE 13-5

6. Returning to the WhereAmI Activity, confi gure the Map View and store a reference to its
MapController as an instance variable. Set up the Map View display options to show the
satellite and zoom in for a closer look.

private MapController mapController;

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 // Get a reference to the MapView
 MapView myMapView = (MapView)findViewById(R.id.myMapView);

 // Get the Map View’s controller
 mapController = myMapView.getController();

 // Configure the map display options
 myMapView.setSatellite(true);
 myMapView.setBuiltInZoomControls(true);

 // Zoom in
 mapController.setZoom(17);

 LocationManager locationManager;
 String svcName= Context.LOCATION_SERVICE;
 locationManager = (LocationManager)getSystemService(svcName);

 Criteria criteria = new Criteria();
 criteria.setAccuracy(Criteria.ACCURACY_FINE);

c13.indd 544c13.indd 544 4/18/2012 3:53:48 PM4/18/2012 3:53:48 PM

Creating Map-Based Activities x 545

Meier c13.indd V2 - 20/03/2012 Page 545

 criteria.setPowerRequirement(Criteria.POWER_LOW);
 criteria.setAltitudeRequired(false);
 criteria.setBearingRequired(false);
 criteria.setSpeedRequired(false);
 criteria.setCostAllowed(true);
 String provider = locationManager.getBestProvider(criteria, true);

 Location l = locationManager.getLastKnownLocation(provider);

 updateWithNewLocation(l);

 locationManager.requestLocationUpdates(provider, 2000, 10,
 locationListener);
}

7. The fi nal step is to modify the updateWithNewLocation method to re-center the map on the
current location using the Map Controller:

private void updateWithNewLocation(Location location) {
 TextView myLocationText;
 myLocationText = (TextView)findViewById(R.id.myLocationText);

 String latLongString = “No location found”;
 String addressString = “No address found”;

 if (location != null) {
 // Update the map location.
 Double geoLat = location.getLatitude()*1E6;
 Double geoLng = location.getLongitude()*1E6;
 GeoPoint point = new GeoPoint(geoLat.intValue(),
 geoLng.intValue());
 mapController.animateTo(point);

 double lat = location.getLatitude();
 double lng = location.getLongitude();
 latLongString = “Lat:” + lat + “\nLong:” + lng;

 double latitude = location.getLatitude();
 double longitude = location.getLongitude();
 Geocoder gc = new Geocoder(this, Locale.getDefault());

 if (!Geocoder.isPresent())
 addressString = “No geocoder available”;
 else {
 try {
 List<Address> addresses = gc.getFromLocation(latitude, longitude, 1);
 StringBuilder sb = new StringBuilder();
 if (addresses.size() > 0) {
 Address address = addresses.get(0);

 for (int i = 0; i < address.getMaxAddressLineIndex(); i++)
 sb.append(address.getAddressLine(i)).append(“\n”);

 sb.append(address.getLocality()).append(“\n”);

c13.indd 545c13.indd 545 4/18/2012 3:53:48 PM4/18/2012 3:53:48 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

546 x CHAPTER 13 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

Meier c13.indd V2 - 20/03/2012 Page 546

 sb.append(address.getPostalCode()).append(“\n”);
 sb.append(address.getCountryName());
 }
 addressString = sb.toString();
 } catch (IOException e) {
 Log.d(“WHEREAMI”, “IO Exception”, e);
 }
 }
 }

 myLocationText.setText(“Your Current Position is:\n” +
 latLongString + “\n\n” + addressString);
}

All code snippets in this example are part of the Chapter 13 Where Am I Part 4,
available for download at www.wrox.com.

Creating and Using Overlays

Overlays enable you to add annotations and click handling to MapViews. Each Overlay enables you
to draw 2D primitives, including text, lines, images, and shapes, directly onto a canvas, which is
then overlaid onto a Map View.

You can add several Overlays onto a single map. All the Overlays assigned to a Map View are added
as layers, with newer layers potentially obscuring older ones. User clicks are passed through the
stack until they are either handled by an Overlay or registered as clicks on the Map View itself.

Creating New Overlays

To add a new Overlay, create a class that extends Overlay. Override the draw method to draw the
annotations you want to add, and override onTap to react to user clicks (generally made when the
user taps an annotation added by this Overlay).

Listing 13-14 shows the framework for creating a new Overlay that can draw annotations and han-
dle user clicks.

LISTING 13-14: Creating a new Overlay

import android.graphics.Canvas;
import com.google.android.maps.GeoPoint;
import com.google.android.maps.MapView;
import com.google.android.maps.Overlay;

public class MyOverlay extends Overlay {
 @Override
 public void draw(Canvas canvas, MapView mapView, boolean shadow) {
 if (shadow == false) {
 // TODO [... Draw annotations on main map layer ...]
 }

c13.indd 546c13.indd 546 4/18/2012 3:53:48 PM4/18/2012 3:53:48 PM

http://www.wrox.com

Creating Map-Based Activities x 547

Meier c13.indd V2 - 20/03/2012 Page 547

 else {
 // TODO [... Draw annotations on the shadow layer ...]
 }
 }

 @Override
 public boolean onTap(GeoPoint point, MapView mapView) {
 // Return true if screen tap is handled by this overlay
 return false;
 }
}

code snippet PA4AD_Ch13_Mapping/src/MyOverlay.java

Introducing Projections

The canvas used to draw Overlay annotations is a standard Canvas that represents the visible dis-
play surface. To add annotations based on physical locations, you need to convert between geo-
graphical points and screen coordinates.

The Projection class enables you to translate between latitude/longitude coordinates (stored as
GeoPoints) and x/y screen pixel coordinates (stored as Points).

A map’s Projection may change between subsequent calls to draw, so it’s good practice to get a new
instance each time. Get a Map View’s Projection by calling getProjection.

Projection projection = mapView.getProjection();

Use the fromPixel and toPixel methods to translate from GeoPoints to Points and vice versa.

For performance reasons, you can best use the toPixel Projection method by passing a Point object
to be populated (rather than relying on the return value), as shown in Listing 13-15.

LISTING 13-15: Using map Projections

Point myPoint = new Point();
// To screen coordinates
projection.toPixels(geoPoint, myPoint);
// To GeoPoint location coordinates
GeoPoint gPoint = projection.fromPixels(myPoint.x, myPoint.y);

code snippet PA4AD_Ch13_Mapping/src/MyOverlay.java

Drawing on the Overlay Canvas

You handle Canvas drawing for Overlays by overriding the Overlay’s draw handler.

The passed-in Canvas is the surface on which you draw your annotations, using the same techniques
introduced in Chapter 4, “Building User Interfaces” for creating custom user interfaces for Views.
The Canvas object includes the methods for drawing 2D primitives on your map (including lines,
text, shapes, ellipses, images, and so on). Use Paint objects to defi ne the style and color.

Listing 13-16 uses a Projection to draw text and an ellipse at a given location.

c13.indd 547c13.indd 547 4/18/2012 3:53:49 PM4/18/2012 3:53:49 PM

548 x CHAPTER 13 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

Meier c13.indd V2 - 20/03/2012 Page 548

LISTING 13-16: A simple map Overlay

@Override
public void draw(Canvas canvas, MapView mapView, boolean shadow) {
 Projection projection = mapView.getProjection();

 Double lat = -31.960906*1E6;
 Double lng = 115.844822*1E6;
 GeoPoint geoPoint = new GeoPoint(lat.intValue(), lng.intValue());

 if (shadow == false) {
 Point myPoint = new Point();
 projection.toPixels(geoPoint, myPoint);

 // Create and setup your paint brush
 Paint paint = new Paint();
 paint.setARGB(250, 255, 0, 0);
 paint.setAntiAlias(true);
 paint.setFakeBoldText(true);

 // Create the circle
 int rad = 5;
 RectF oval = new RectF(myPoint.x-rad, myPoint.y-rad,
 myPoint.x+rad, myPoint.y+rad);

 // Draw on the canvas
 canvas.drawOval(oval, paint);
 canvas.drawText(“Red Circle”, myPoint.x+rad, myPoint.y, paint);
 }
}

code snippet PA4AD_Ch13_Mapping/src/MyOverlay.java

For more advanced drawing features see Chapter 11, “Advanced User
Experience,” that introduces gradients, strokes, and fi lters.

Handling Map Tap Events

To handle map taps (user clicks), override the onTap event handler within the Overlay extension
class. The onTap handler receives two parameters:

 ‰ A GeoPoint that contains the latitude/longitude of the map location tapped

 ‰ The MapView that was tapped to trigger this event

When you override onTap, the method should return true if it has handled a particular tap and
false to let another Overlay handle it, as shown in Listing 13-17.

c13.indd 548c13.indd 548 4/18/2012 3:53:49 PM4/18/2012 3:53:49 PM

Creating Map-Based Activities x 549

Meier c13.indd V2 - 20/03/2012 Page 549

LISTING 13-17: Handling map-tap events

@Override
public boolean onTap(GeoPoint point, MapView mapView) {
 // Perform hit test to see if this overlay is handling the click
 if ([... perform hit test ...]) {
 // TODO [... execute on tap functionality ...]
 return true;
 }

 // If not handled return false
 return false;
}

code snippet PA4AD_Ch13_Mapping/src/MyOverlay.java

Adding and Removing Overlays

Each MapView contains a list of Overlays currently displayed. You can get a reference to this list by
calling getOverlays, as shown in the following snippet:

List<Overlay> overlays = mapView.getOverlays();

Adding and removing items from the list is thread-safe and synchronized, so you can modify and
query the list safely. You should still iterate over the list within a synchronization block synchro-
nized on the List.

To add an Overlay onto a Map View, create a new instance of the Overlay and add it to the list, as
shown in the following snippet.

MyOverlay myOverlay = new MyOverlay();
overlays.add(myOverlay);
mapView.postInvalidate();

The added Overlay displays the next time the Map View is redrawn, so it’s usually a good practice
to call postInvalidate after you modify the list to update the changes on the map display.

Annotating Where Am I

This fi nal modifi cation to Where Am I creates and adds a new Overlay that displays a white circle at
the device’s current position.

 1. Create a new MyPositionOverlay Overlay class:

import android.graphics.Canvas;
import android.graphics.Paint;
import android.graphics.Point;
import android.graphics.RectF;
import android.location.Location;
import com.google.android.maps.GeoPoint;
import com.google.android.maps.MapView;

c13.indd 549c13.indd 549 4/18/2012 3:53:49 PM4/18/2012 3:53:49 PM

550 x CHAPTER 13 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

Meier c13.indd V2 - 20/03/2012 Page 550

import com.google.android.maps.Overlay;
import com.google.android.maps.Projection;

public class MyPositionOverlay extends Overlay {
 @Override
 public void draw(Canvas canvas, MapView mapView, boolean shadow) {
 }

 @Override
 public boolean onTap(GeoPoint point, MapView mapView) {
 return false;
 }
}

2. Create a new instance variable to store the current Location, and add setter and getter meth-
ods for it.

Location location;

public Location getLocation() {
 return location;
}
public void setLocation(Location location) {
 this.location = location;
}

3. Override the draw method to add a small white circle at the current location.

private final int mRadius = 5;

@Override
public void draw(Canvas canvas, MapView mapView, boolean shadow) {
 Projection projection = mapView.getProjection();

 if (shadow == false && location != null) {
 // Get the current location
 Double latitude = location.getLatitude()*1E6;
 Double longitude = location.getLongitude()*1E6;
 GeoPoint geoPoint;
 geoPoint = new
 GeoPoint(latitude.intValue(),longitude.intValue());

 // Convert the location to screen pixels
 Point point = new Point();
 projection.toPixels(geoPoint, point);

 RectF oval = new RectF(point.x - mRadius, point.y - mRadius,
 point.x + mRadius, point.y + mRadius);

c13.indd 550c13.indd 550 4/18/2012 3:53:49 PM4/18/2012 3:53:49 PM

Creating Map-Based Activities x 551

Meier c13.indd V2 - 20/03/2012 Page 551

 // Setup the paint
 Paint paint = new Paint();
 paint.setARGB(250, 255, 255, 255);
 paint.setAntiAlias(true);
 paint.setFakeBoldText(true);

 Paint backPaint = new Paint();
 backPaint.setARGB(175, 50, 50, 50);
 backPaint.setAntiAlias(true);

 RectF backRect = new RectF(point.x + 2 + mRadius,
 point.y - 3*mRadius,
 point.x + 65, point.y + mRadius);

 // Draw the marker
 canvas.drawOval(oval, paint);
 canvas.drawRoundRect(backRect, 5, 5, backPaint);
 canvas.drawText(“Here I Am”,
 point.x + 2*mRadius, point.y,
 paint);
 }
 super.draw(canvas, mapView, shadow);
}

4. Now open the WhereAmI Activity class, and add the MyPositionOverlay to the MapView.

Add a new instance variable to store the MyPositionOverlay; then override onCreate to
create a new instance of the class, and add it to the MapView’s Overlay list.

private MyPositionOverlay positionOverlay;

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 // Get a reference to the MapView
 MapView myMapView = (MapView)findViewById(R.id.myMapView);

 // Get the Map View’s controller
 mapController = myMapView.getController();

 // Configure the map display options
 myMapView.setSatellite(true);
 myMapView.setBuiltInZoomControls(true);

 // Zoom in
 mapController.setZoom(17);

c13.indd 551c13.indd 551 4/18/2012 3:53:50 PM4/18/2012 3:53:50 PM

552 x CHAPTER 13 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

Meier c13.indd V2 - 20/03/2012 Page 552

 // Add the MyPositionOverlay
 positionOverlay = new MyPositionOverlay();
 List<Overlay> overlays = myMapView.getOverlays();
 overlays.add(positionOverlay);
 myMapView.postInvalidate();

 LocationManager locationManager;
 String svcName= Context.LOCATION_SERVICE;
 locationManager = (LocationManager)getSystemService(svcName);

 Criteria criteria = new Criteria();
 criteria.setAccuracy(Criteria.ACCURACY_FINE);
 criteria.setPowerRequirement(Criteria.POWER_LOW);
 criteria.setAltitudeRequired(false);
 criteria.setBearingRequired(false);
 criteria.setSpeedRequired(false);
 criteria.setCostAllowed(true);
 String provider = locationManager.getBestProvider(criteria, true);

 Location l = locationManager.getLastKnownLocation(provider);

 updateWithNewLocation(l);

 locationManager.requestLocationUpdates(provider, 2000, 10,
 locationListener);

}

5. Modify the updateWithNewLocation method to update its position when a new location is
received:

private void updateWithNewLocation(Location location) {
 TextView myLocationText;
 myLocationText = (TextView)findViewById(R.id.myLocationText);

 String latLongString = “No location found”;
 String addressString = “No address found”;

 if (location != null) {
 // Update the position overlay.
 positionOverlay.setLocation(location);

 [... Existing updateWithNewLocation method ...]
}

All code snippets in this example are part of the Chapter 13 Where Am I Part 5
project, available for download at www.wrox.com.

When run, your application displays your current device location with a white circle and supporting
text, as shown in Figure 13-6.

c13.indd 552c13.indd 552 4/18/2012 3:53:50 PM4/18/2012 3:53:50 PM

http://www.wrox.com

Creating Map-Based Activities x 553

Meier c13.indd V2 - 20/03/2012 Page 553

FIGURE 13-6

It’s worth noting that this is not the preferred technique for displaying your cur-
rent location on a map. This functionality is implemented natively by Android
through the MyLocationOverlay class. If you want to display and follow your
current location, you should consider using (or extending) this class, as shown in
the next section, instead of implementing it manually as shown here.

Introducing My Location Overlay

The MyLocationOverlay class is a native Overlay designed to show your current location and orien-
tation on a MapView.

To use My Location Overlay you need to create a new instance, passing in the application Context
and target Map View, and add it to the MapView’s Overlay list, as shown here:

List<Overlay> overlays = mapView.getOverlays();
MyLocationOverlay myLocationOverlay = new MyLocationOverlay(this, mapView);
overlays.add(myLocationOverlay);

You can use My Location Overlay to display both your current location and orientation (represented
as a fl ashing blue marker.)

c13.indd 553c13.indd 553 4/18/2012 3:53:50 PM4/18/2012 3:53:50 PM

554 x CHAPTER 13 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

Meier c13.indd V2 - 20/03/2012 Page 554

The following snippet shows how to enable both the compass and marker.

myLocationOverlay.enableCompass();
myLocationOverlay.enableMyLocation();

Introducing Itemized Overlays and Overlay Items

OverlayItems are used to supply simple marker functionality to your Map Views via the
ItemizedOverlay class.

ItemizedOverlays provide a convenient shortcut for adding markers to a map, letting you assign
a marker image and associated text to a particular geographical position. The ItemizedOverlay
instance handles the drawing, placement, click handling, focus control, and layout optimization of
each OverlayItem marker for you.

To add an ItemizedOverlay marker layer to your map, create a new class that extends
ItemizedOverlay<OverlayItem>, as shown in Listing 13-18.

ItemizedOverlay is a generic class that enables you to create extensions based
on any class that implements OverlayItem.

Within the constructor, you need to call through to the superclass after defi ning the bounds for your
default marker. You must then call populate to trigger the creation of each OverlayItem; populate
must be called whenever the data used to create the items changes.

Within your implementation, override size to return the number of markers to display and
 createItem to create a new item based on the index of each marker.

LISTING 13-18: Creating a new Itemized Overlay

import android.graphics.drawable.Drawable;
import com.google.android.maps.GeoPoint;
import com.google.android.maps.ItemizedOverlay;
import com.google.android.maps.OverlayItem;

public class MyItemizedOverlay extends ItemizedOverlay<OverlayItem> {

 public MyItemizedOverlay(Drawable defaultMarker) {
 super(boundCenterBottom(defaultMarker));
 populate();
 }

 @Override
 protected OverlayItem createItem(int index) {
 switch (index) {
 case 0:
 Double lat = 37.422006*1E6;

c13.indd 554c13.indd 554 4/18/2012 3:53:52 PM4/18/2012 3:53:52 PM

Creating Map-Based Activities x 555

Meier c13.indd V2 - 20/03/2012 Page 555

 Double lng = -122.084095*1E6;
 GeoPoint point = new GeoPoint(lat.intValue(), lng.intValue());

 OverlayItem oi;
 oi = new OverlayItem(point, “Marker”, “Marker Text”);
 return oi;
 }
 return null;
 }

 @Override
 public int size() {
 // Return the number of markers in the collection
 return 1;
 }
}

code snippet PA4AD_Ch13_Mapping/MyItemizedOverlay.java

To add an ItemizedOverlay implementation to your map, create a new instance (passing in the
Drawable marker image to use for each marker) and add it to the map’s Overlay list.

List<Overlay> overlays = mapView.getOverlays();
Drawable drawable = getResources().getDrawable(R.drawable.marker);
MyItemizedOverlay markers = new MyItemizedOverlay(drawable);
overlays.add(markers);

The map markers placed by the Itemized Overlay use state to indicate if they are
selected. Use the StateListDrawable described in Chapter 11 to indicate when
a marker has been selected.

In Listing 13-18, the list of Overlay items is static and defi ned in code. More typically your Overlay
items will be a dynamic ArrayList to which you want to add and remove items at run time.

Listing 13-19 shows the skeleton class for a dynamic Itemized Overlay implementation, backed by
an Array List and supporting the addition and removal of items at run time.

LISTING 13-19: Skeleton code for a dynamic Itemized Overlay

public class MyDynamicItemizedOverlay extends
 ItemizedOverlay<OverlayItem> {

 private ArrayList<OverlayItem> items;

 public MyDynamicItemizedOverlay(Drawable defaultMarker) {
 super(boundCenterBottom(defaultMarker));
 items = new ArrayList<OverlayItem>();
 populate();
 }

continues

c13.indd 555c13.indd 555 4/18/2012 3:53:52 PM4/18/2012 3:53:52 PM

556 x CHAPTER 13 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

Meier c13.indd V2 - 20/03/2012 Page 556

 public void addNewItem(GeoPoint location, String markerText,
 String snippet) {
 items.add(new OverlayItem(location, markerText, snippet));
 populate();
 }

 public void removeItem(int index) {
 items.remove(index);
 populate();
 }

 @Override
 protected OverlayItem createItem(int index) {
 return items.get(index);
 }

 @Override
 public int size() {
 return items.size();
 }
}

code snippet PA4AD_Ch13_Mapping/src/MyDynamicItemizedOverlay.java

Pinning Views to the Map and Map Positions

You can pin any View-derived object to a Map View (including layouts and other View Groups),
attaching it to either a screen position or a geographical map location.

In the latter case, the View moves to follow its pinned position on the map, effectively acting
as an interactive map marker. As a more resource-intensive solution, this is usually reserved
for supplying the detail “balloons”often displayed on mashups to provide further detail when a
marker is clicked.

You implement both pinning mechanisms by calling addView on the MapView, usually from the
onCreate or onRestore methods within the MapActivity containing it. Pass in the View you want
to pin and the layout parameters to use.

The MapView.LayoutParams parameters you pass in to addView determine how, and where, the
View is added to the map.

To add a new View to the map relative to the screen, specify a new MapView.LayoutParams, includ-
ing arguments that set the height and width of the View, the x/y screen coordinates to pin to, and
the alignment to use for positioning, as shown in Listing 13-20.

LISTING 13-19 (continued)

c13.indd 556c13.indd 556 4/18/2012 3:53:53 PM4/18/2012 3:53:53 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Creating Map-Based Activities x 557

Meier c13.indd V2 - 20/03/2012 Page 557

LISTING 13-20: Pinning a View to a map

int y = 10;
int x = 10;

EditText editText1 = new EditText(getApplicationContext());
editText1.setText(“Screen Pinned”);

MapView.LayoutParams screenLP;
screenLP = new MapView.LayoutParams(MapView.LayoutParams.WRAP_CONTENT,
 MapView.LayoutParams.WRAP_CONTENT,
 x, y,
 MapView.LayoutParams.TOP_LEFT);
mapView.addView(editText1, screenLP);

code snippet PA4AD_Ch13_Mapping/src/MyMapActivity.java

To pin a View relative to a physical map location, pass four parameters when constructing the new
Map View LayoutParams, representing the height, width, GeoPoint to pin to, and layout alignment,
as shown in Listing 13-21.

LISTING 13-21: Pinning a View to a geographical location

Double lat = 37.422134*1E6;
Double lng = -122.084069*1E6;
GeoPoint geoPoint = new GeoPoint(lat.intValue(), lng.intValue());

MapView.LayoutParams geoLP;
geoLP = new MapView.LayoutParams(MapView.LayoutParams.WRAP_CONTENT,
 MapView.LayoutParams.WRAP_CONTENT,
 geoPoint,
 MapView.LayoutParams.TOP_LEFT);

EditText editText2 = new EditText(getApplicationContext());
editText2.setText(“Location Pinned”);

mapView.addView(editText2, geoLP);

code snippet PA4AD_Ch13_Mapping/src/MyMapActivity.java

Panning the map can leave the fi rst TextView stationary in the upper-left corner, whereas the second
TextView moves to remain pinned to a particular position on the map.

To remove a View from a Map View, call removeView, passing in the View instance you want to
remove, as shown here.

mapView.removeView(editText2);

c13.indd 557c13.indd 557 4/18/2012 3:53:53 PM4/18/2012 3:53:53 PM

558 x CHAPTER 13 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

Meier c13.indd V2 - 20/03/2012 Page 558

MAPPING EARTHQUAKES EXAMPLE

The following step-by-step guide demonstrates how to add a map to the Earthquake project you last
saw in Chapter 10. The map will be used to display a map of recent earthquakes.

In this example you will be adding a MapView to a Fragment. As a result, you
will not be able to complete this example using the support library.

1. Start by ensuring the build target in your project properties refer to an Android build that
includes the Google APIs. Then modify the Earthquake Activity so that it inherits from
MapActivity, and add an implementation for isRouteDisplayed that returns false:

public class Earthquake extends MapActivity {

 @Override
 protected boolean isRouteDisplayed() {
 return false;
 }

 [... Existing class code ...]
}

2. You can add only one Map View to each Activity, so to ensure this is the case, you should
create the Map View within the Earthquake Activity rather than the Fragment. Modify the
onCreate handler to create a new MapView and store it as a public property:

MapView mapView;
String MyMapAPIKey = // TODO [Get Map API Key];

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 mapView = new MapView(this, MyMapAPIKey);

 [... Existing onCreate handler code ...]
}

3. Modify the onCreateView handler within the EarthquakeMapFragment to return the
MapView from the parent Activity:

@Override
public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {

 MapView earthquakeMap = ((Earthquake)getActivity()).mapView;

 return earthquakeMap;
}

c13.indd 558c13.indd 558 4/18/2012 3:53:53 PM4/18/2012 3:53:53 PM

Mapping Earthquakes Example x 559

Meier c13.indd V2 - 20/03/2012 Page 559

4. Update the application manifest to import the map library:

<?xml version=”1.0” encoding=”utf-8”?>
<manifest
 xmlns:android=”http://schemas.android.com/apk/res/android”
 package=“com.paad.earthquake“
 android:versionCode=“1“
 android:versionName=“1.0“ >

 <uses-sdk android:targetSdkVersion=“15“
 android:minSdkVersion=“11“ />

 <uses-permission android:name=“android.permission.INTERNET“/>
 <uses-permission android:name=“android.permission.VIBRATE“/>

 <application
 android:icon=“@drawable/ic_launcher“
 android:label=“@string/app_name“>

 <uses-library android:name=”com.google.android.maps”/>

 [... Existing application nodes ...]

 </application>
</manifest>

At this point, starting your application should make the Map View visible either in the tab-
let view or when the Map tab is selected on Smartphones.

5. Create a new EarthquakeOverlay class that extends Overlay. It draws the position and
magnitude of each earthquake on the Map View:

import java.util.ArrayList;
import android.database.Cursor;
import android.database.DataSetObserver;
import android.graphics.Canvas;
import android.graphics.Paint;
import android.graphics.Point;
import android.graphics.RectF;
import com.google.android.maps.GeoPoint;
import com.google.android.maps.MapView;
import com.google.android.maps.Overlay;
import com.google.android.maps.Projection;

public class EarthquakeOverlay extends Overlay {
 @Override
 public void draw(Canvas canvas, MapView mapView, boolean shadow) {
 Projection projection = mapView.getProjection();

 if (shadow == false) {
 // TODO: Draw earthquakes
 }
 }
}

c13.indd 559c13.indd 559 4/18/2012 3:53:53 PM4/18/2012 3:53:53 PM

http://schemas.android.com/apk/res/android%E2%80%9D

560 x CHAPTER 13 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

Meier c13.indd V2 - 20/03/2012 Page 560

5.1 Add a new constructor that accepts a Cursor to the current earthquake data, and store
that Cursor as an instance variable:

Cursor earthquakes;

public EarthquakeOverlay(Cursor cursor) {
 super();

 earthquakes = cursor;
}

5.2 Create a new refreshQuakeLocations method that iterates over the results Cursor
and extracts the location of each earthquake, extracting the latitude and longitude
before storing each coordinate in a List of GeoPoints:

ArrayList<GeoPoint> quakeLocations;

private void refreshQuakeLocations() {
 quakeLocations.clear();

 if (earthquakes != null && earthquakes.moveToFirst())
 do {
 int latIndex
 = earthquakes.getColumnIndexOrThrow(EarthquakeProvider.KEY_LOCATION_LAT);
 int lngIndex
 = earthquakes.getColumnIndexOrThrow(EarthquakeProvider.KEY_LOCATION_LNG);

 Double lat
 = earthquakes.getFloat(latIndex) * 1E6;
 Double lng
 = earthquakes.getFloat(lngIndex) * 1E6;

 GeoPoint geoPoint = new GeoPoint(lat.intValue(),
 lng.intValue());
 quakeLocations.add(geoPoint);

 } while(earthquakes.moveToNext());
}

5.3 Call refreshQuakeLocations from the Overlay’s constructor:

public EarthquakeOverlay(Cursor cursor) {
 super();
 earthquakes = cursor;

 quakeLocations = new ArrayList<GeoPoint>();
 refreshQuakeLocations();
}

5.4 Create a new public swapCursor method that will allow you to pass in new result
Cursors:

public void swapCursor(Cursor cursor) {
 earthquakes = cursor;
 refreshQuakeLocations();
}

c13.indd 560c13.indd 560 4/18/2012 3:53:53 PM4/18/2012 3:53:53 PM

Mapping Earthquakes Example x 561

Meier c13.indd V2 - 20/03/2012 Page 561

5.5 Complete the EarthquakeOverlay by overriding the draw method to iterate over the
list of GeoPoints, drawing a marker at each earthquake location. In this example a
simple red circle is drawn, but you could easily modify it to include additional informa-
tion, such as by adjusting the size of each circle based on the magnitude of the quake.

int rad = 5;

@Override
public void draw(Canvas canvas, MapView mapView, boolean shadow) {
 Projection projection = mapView.getProjection();

 // Create and setup your paint brush
 Paint paint = new Paint();
 paint.setARGB(250, 255, 0, 0);
 paint.setAntiAlias(true);
 paint.setFakeBoldText(true);
 if (shadow == false) {
 for (GeoPoint point : quakeLocations) {
 Point myPoint = new Point();
 projection.toPixels(point, myPoint);

 RectF oval = new RectF(myPoint.x-rad, myPoint.y-rad,
 myPoint.x+rad, myPoint.y+rad);

 canvas.drawOval(oval, paint);
 }
 }
}

6. Return to the EarthquakeMapFragment and modify the onCreateView handler to create the
Earthquake Overlay and add it to the Map View:

EarthquakeOverlay eo;

@Override
public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {

 MapView earthquakeMap = ((Earthquake)getActivity()).mapView;

 eo = new EarthquakeOverlay(null);
 earthquakeMap.getOverlays().add(eo);

 return earthquakeMap;
}

7. Still in the EarthquakeMapFragment, modify it to implement LoaderManager
.LoaderCallbacks:

public class EarthquakeMapFragment extends Fragment
 implements LoaderManager.LoaderCallbacks<Cursor> {

 EarthquakeOverlay eo;

c13.indd 561c13.indd 561 4/18/2012 3:53:54 PM4/18/2012 3:53:54 PM

562 x CHAPTER 13 MAPS, GEOCODING, AND LOCATION-BASED SERVICES

Meier c13.indd V2 - 20/03/2012 Page 562

 public Loader<Cursor> onCreateLoader(int id, Bundle args) {
 return null;
 }

 public void onLoadFinished(Loader<Cursor> loader, Cursor cursor) {
 }

 public void onLoaderReset(Loader<Cursor> loader) {
 }

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {

 MapView earthquakeMap = ((Earthquake)getActivity()).mapView;
 eo = new EarthquakeOverlay(null);
 earthquakeMap.getOverlays().add(eo);

 return earthquakeMap;
 }
}

8. Implement onCreateLoader to create a Cursor Loader to return all the earthquakes you
want to display on the map:

public Loader<Cursor> onCreateLoader(int id, Bundle args) {
 String[] projection = new String[] {
 EarthquakeProvider.KEY_ID,
 EarthquakeProvider.KEY_LOCATION_LAT,
 EarthquakeProvider.KEY_LOCATION_LNG,
 };

 Earthquake earthquakeActivity = (Earthquake)getActivity();
 String where = EarthquakeProvider.KEY_MAGNITUDE + “ > “ +
 earthquakeActivity.minimumMagnitude;

 CursorLoader loader = new CursorLoader(getActivity(),
 EarthquakeProvider.CONTENT_URI, projection, where, null, null);

 return loader;
}

9. Implement the onLoadFinished and onLoaderReset methods to apply the returned Cursors
to the Earthquake Overlay you created in step 5:

public void onLoadFinished(Loader<Cursor> loader, Cursor cursor) {
 eo.swapCursor(cursor);
}

public void onLoaderReset(Loader<Cursor> loader) {
 eo.swapCursor(null);
}

c13.indd 562c13.indd 562 4/18/2012 3:53:54 PM4/18/2012 3:53:54 PM

Mapping Earthquakes Example x 563

Meier c13.indd V2 - 20/03/2012 Page 563

10. Finally, override the onActivityCreated handler to initiate the Loader:

@Override
public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);
 getLoaderManager().initLoader(0, null, this);
}

All code snippets in this example are part of the Chapter 13 Earthquake Part 6
project, available for download at www.wrox.com.

If you run the application and view the Earthquake Map, your application should appear, as shown
in Figure 13-7.

FIGURE 13-7

c13.indd 563c13.indd 563 4/18/2012 3:53:54 PM4/18/2012 3:53:54 PM

http://www.wrox.com

Meier c13.indd V2 - 20/03/2012 Page 564

c13.indd 564c13.indd 564 4/18/2012 3:53:54 PM4/18/2012 3:53:54 PM

Meier c14.indd V2 - 04/16/2012

14
Invading the Home Screen

WHAT’S IN THIS CHAPTER?

 ‰ Creating home screen Widgets

 ‰ Creating collection-based home screen Widgets

 ‰ Using Content Providers to populate Widgets

 ‰ Surfacing search results to the Quick Search Box

 ‰ Creating Live Wallpaper

Widgets, Live Wallpaper, and the Quick Search Box (QSB) let you populate a piece of the
user’s home screen, providing either a window to your application or a stand-alone source
of information directly on the home screen. They’re exciting innovations for users and
developers:

 ‰ Users get instant access to interesting information without needing to open an
application.

 ‰ Developers get an entry point to their applications directly from the home screen.

A useful home screen Widget or Live Wallpaper increases user engagement, decreasing the
chance that an application will be uninstalled and increasing the likelihood of its being used.
With such power comes responsibility. Widgets run constantly as subprocesses of the home
screen, so you need to be particularly careful when creating them to ensure they remain
responsive and don’t drain system resources.

This chapter demonstrates how to create and use App Widgets and Live Wallpaper, detailing
what they are, how to use them, and some techniques for incorporating interactivity into
these application components. The chapter also describes how to surface search results from
your application through the QSB.

c14.indd 565c14.indd 565 4/18/2012 3:54:50 PM4/18/2012 3:54:50 PM

566 x CHAPTER 14 INVADING THE HOME SCREEN

Meier c14.indd V2 - 04/16/2012

INTRODUCING HOME SCREEN WIDGETS

Home screen Widgets, more properly AppWidgets, are visual application components that can be
added to other applications. The most notable example is the default Android home screen, where
users can add Widgets to their phone-top. This functionality is typically implemented by alternative
home screen replacements, although any application can become an AppHost and support embed-
ding third-party Widgets.

Widgets enable your application to populate a piece of interactive screen real estate, and embed an
entry point, directly on the user’s home screen. A good App Widget provides useful, concise, and
timely information with a minimal resource cost.

Widgets can be either stand-alone applications (such as the native clock) or compact but highly vis-
ible components of larger applications — such as the Calendar and Media Player Apps Widgets.

Figure 14-1 shows fi ve of the standard home screen Widgets available on Android devices: the Quick
Search Box, Power Control, News & Weather, Media Player, and the Photo Gallery.

FIGURE 14-1

To add an App Widget to the home screen prior to Android 3.0, long-press a
piece of empty space and select Widgets. You will be presented with a list of
available Widgets to add to your home screen.

In Android 3.0 and above, App Widgets are added using the application
launcher. Clicking the “Widgets” tab at the top of the launcher tray presents the
list of available Widgets. Click and hold a Widget, and you will be able to posi-
tion it onto your home screen.

After adding a Widget, you can move it by long-pressing it and dragging it
around the screen. To resize (available in Android 3.1 and above), long-press
and release. You’ll see small indicators along the edges of the Widget that can be
dragged to resize the Widget.

Remove Widgets by dragging them into the garbage can icon or “remove” label
at the top or bottom of the screen.

c14.indd 566c14.indd 566 4/18/2012 3:54:54 PM4/18/2012 3:54:54 PM

Creating App Widgets x 567

Meier c14.indd V2 - 04/16/2012

Widgets embedded into an application are hosted within the parent application’s process. They will
wake the device based on their update rates to ensure each Widget is up to date when it’s visible. As
a developer, you need to take extra care when creating your Widgets to ensure that the update rate is
as low as possible, and that the code executed within the update method is lightweight.

The following sections show how to create Widgets and describe some best practices for performing
updates and adding interactivity.

CREATING APP WIDGETS

App Widgets are implemented as BroadcastReceivers. They use RemoteViews to defi ne and
update a view hierarchy hosted within another application process; most commonly that host pro-
cess is the home screen.

To create a Widget for your application, you need to create three components:

1. An XML layout resource that defi nes the UI

2. An XML fi le that describes the meta data associated with the Widget

3. A Broadcast Receiver that defi nes and controls the Widget

You can create as many Widgets as you want for a single application, or you can have an application
that consists of a single Widget. Each Widget can use the same size, layout, refresh rate, and update
logic, or it can use different ones. In many cases it can be useful to offer multiple versions of your
Widgets in different sizes.

Creating the Widget XML Layout Resource

The fi rst step in creating your Widget is to design and implement its user interface (UI).

Construct your Widget’s UI as you would other visual components in Android, as described in
Chapter 4, “Building User Interfaces.” Best practice is to defi ne your Widget layout using XML as
an external layout resource, but it’s also possible to lay out your UI programmatically within the
Broadcast Receiver’s onCreate method.

Widget Design Guidelines

Widgets are often displayed alongside other native and third-party Widgets, so it’s important that
yours conform to design standards — particularly because Widgets are most often used on the home
screen.

There are UI design guidelines for controlling both a Widget’s layout size and its visual styling. The
former is enforced rigidly, whereas the latter is a guide only; both are summarized in the following
sections. You can fi nd additional detail on the Android Developers Widget Design Guidelines site, at
http://developer.android.com/guide/practices/ui_guidelines/widget_design.html.

Widget Layout Sizes

The default Android home screen is divided into a grid of cells, varying in size and number depend-
ing on the device. It’s best practice to specify a minimum height and width for your Widget that is
required to ensure it is displayed in a good default state.

c14.indd 567c14.indd 567 4/18/2012 3:54:55 PM4/18/2012 3:54:55 PM

http://developer.android.com/guide/practices/ui_guidelines/widget_design.html

568 x CHAPTER 14 INVADING THE HOME SCREEN

Meier c14.indd V2 - 04/16/2012

Where your minimum dimensions don’t match the exact dimensions of the home screen cells, your
Widget’s size will be rounded up to fi ll the cells into which it extends.

To determine the approximate minimum height and width limits required to ensure your widget fi ts
within a given number of cells, you can use the following formula:

Min height or width = 70dp * (cell count) – 30dp

Widget dimensions are specifi ed in the Widget settings fi le, as described in the section “Defi ning
Your Widget Settings.”

Widget Visual Styling

The visual styling of your Widget, your application’s presence on the home screen, is very impor-
tant. You should ensure that its style is consistent with that of your application, as well as with those
of the other home screen components.

App Widgets fully support transparent backgrounds and allow the use of NinePatches and partially
transparent Drawable resources. It’s beyond the scope of this book to describe the Widget style promoted
by Google in detail, but note the description available at the Widget UI guidelines link provided earlier.

Also note that an App Widget Template Pack is available for download from the sample page. It
provides NinePatch background graphics, XML, and source Adobe Photoshop fi les for multiple
screen densities, OS version widget styles, and widget colors. It also includes graphics that can be
used within state-list Drawables to make your entire widget or parts of your widget interactive, as
described later in this chapter in the “Using Remote Views to Add Widget Interactivity” section.

Supported Widget Views and Layouts

Because of security and performance considerations, there are several restrictions on the layouts and
Views available for constructing a Widget UI.

The following Views are unavailable for App Widget layouts and will result in a null pointer error
(NPE) if used:

 ‰ All custom Views

 ‰ Most descendant classes of allowed Views

 ‰ EditText

Currently, the layouts available are limited to the following:

 ‰ FrameLayout

 ‰ LinearLayout

 ‰ RelativeLayout

 ‰ GridLayout

The Views they contain are restricted to the following:

 ‰ AnalogClock

 ‰ Button

 ‰ Chronometer

c14.indd 568c14.indd 568 4/18/2012 3:54:56 PM4/18/2012 3:54:56 PM

Creating App Widgets x 569

Meier c14.indd V2 - 04/16/2012

 ‰ ImageButton

 ‰ ImageView

 ‰ ProgressBar

 ‰ TextView

 ‰ ViewFlipper

The Text Views, Image Views, and View Flippers are particularly useful. In the section “Changing
Image Views Based on Selection Focus” you’ll see how to use the Image View in conjunction with
the SelectionStateDrawable resource to create interactive Widgets with little or no code.

Android 3.0 (API level 11) introduced Collection View Widgets, a new class of Widgets designed to
display collections of data in the form of a list, grid, or stack. This Widget type is described in detail
in the section “Introducing Collection View Widgets.”

Listing 14-1 shows an XML layout resource used to defi ne the UI of an App Widget.

LISTING 14-1: App Widget XML layout resource

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”horizontal”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:padding=”5dp”>
 <ImageView
 android:id=”@+id/widget_image”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:src=”@drawable/icon”
 />
 <TextView
 android:id=”@+id/widget_text”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 android:text=”@string/widget_text”
 />
</LinearLayout>

code snippet PA4AD_Ch14_MyWidget/res/layout/my_widget_layout.xml

Defi ning Your Widget Settings

Widget defi nition resources are stored as XML in the res/xml folder of your project. The
 appwidget-provider tag enables you to describe the Widget meta data that defi nes attributes
including the size, layout, and update rate for your Widget using the following attributes:

 ‰ initialLayout — The layout resource to use in constructing the Widget’s UI.

 ‰ minWidth/minHeight — The minimum width and minimum height of the Widget, respec-
tively, as described in the previous section.

c14.indd 569c14.indd 569 4/18/2012 3:54:56 PM4/18/2012 3:54:56 PM

http://schemas.android.com/apk/res/android%E2%80%9D

570 x CHAPTER 14 INVADING THE HOME SCREEN

Meier c14.indd V2 - 04/16/2012

 ‰ resizeMode — Android 3.1 (API level 12) introduced the concept of resizable Widgets.
Setting the resize mode allows you to specify the direction in which the Widget can be
resized, using a combination of horizontal and vertical, or disabling resizing by setting it
to none.

 ‰ label — The title used by your Widget in the App Widget picker.

 ‰ updatePeriodMillis — The minimum period between Widget updates in milliseconds.
Android will wake the device to update your Widget at this rate, so you should specify at
least an hour. The App Widget Manager won’t deliver updates more frequently than once
every 30 minutes. Ideally your Widget shouldn’t use this update technique more than once
or twice daily. More details on this and other update techniques are provided later in this
chapter.

 ‰ configure — You can optionally specify a fully qualifi ed Activity to be launched when your
Widget is added to the home screen. This Activity can be used to specify Widget settings and
user preferences. Using a confi guration Activity is described in the section “Creating and
Using a Widget Confi guration Activity.”

 ‰ icon — By default Android will use your application’s icon when presenting your Widget
within the App Widget picker. Specify a Drawable resource to use a different icon.

 ‰ previewImage — Android 3.0 (API level 11) introduced a new App Widget picker that
displays a preview of Widgets rather than their icon. Specify a Drawable resource here that
accurately depicts how your Widget will appear when added to the home screen.

Listing 14-2 shows the Widget resource fi le for a two-cell-by-two-cell Widget that updates once
every hour and uses the layout resource defi ned in the previous section.

LISTING 14-2: App Widget Provider defi nition

<?xml version=”1.0” encoding=”utf-8”?>
<appwidget-provider
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:initialLayout=”@layout/my_widget_layout”
 android:minWidth=”110dp”
 android:minHeight=”110dp”
 android:label=”@string/widget_label”
 android:updatePeriodMillis=”3600000”
 android:resizeMode=”horizontal|vertical”
 android:previewImage=”@drawable/widget_preview”
/>

code snippet PA4AD_Ch14_MyWidget/res/xml/widget_provider_info.xml

Creating Your Widget Broadcast Receiver and Adding It to the
Application Manifest

Widgets are implemented as Broadcast Receivers. Each Widget’s Broadcast Receiver specifi es Intent
Filters to listen for broadcast Intents requesting Widget updates using the AppWidget.ACTION_
APPWIDGET_UPDATE, DELETED, ENABLED, and DISABLED actions.

c14.indd 570c14.indd 570 4/18/2012 3:54:56 PM4/18/2012 3:54:56 PM

http://schemas.android.com/apk/res/android%E2%80%9D

Creating App Widgets x 571

Meier c14.indd V2 - 04/16/2012

To create a Widget, extend the BroadcastReceiver class and implement a response to each of these
broadcast Intents by overriding the onReceive method.

The AppWidgetProvider class encapsulates this Intent processing and provides you with event han-
dlers for the update, delete, enable, and disable events.

Listing 14-3 shows a skeleton Widget implementation that extends AppWidgetProvider.

LISTING 14-3: App Widget implementation

import android.appwidget.AppWidgetManager;
import android.appwidget.AppWidgetProvider;
import android.widget.RemoteViews;
import android.content.Context;

public class SkeletonAppWidget extends AppWidgetProvider {
 @Override
 public void onUpdate(Context context,
 AppWidgetManager appWidgetManager,
 int[] appWidgetIds) {
 // TODO Update the Widget UI.
 }

 @Override
 public void onDeleted(Context context, int[] appWidgetIds) {
 // TODO Handle deletion of the widget.
 super.onDeleted(context, appWidgetIds);
 }

 @Override
 public void onDisabled(Context context) {
 // TODO Widget has been disabled.
 super.onDisabled(context);
 }

 @Override
 public void onEnabled(Context context) {
 // TODO Widget has been enabled.
 super.onEnabled(context);
 }
}

code snippet PA4AD_Ch14_MyWidget/src/SkeletonAppWidget.java

Widgets must be added to the application manifest, using a receiver tag like other Broadcast
Receivers. To specify a Broadcast Receiver as an App Widget, you need to add the following two
tags to its manifest node, as shown in Listing 14-4.

 ‰ An Intent Filter for the android.appwidget.action.APPWIDGET_UPDATE action

 ‰ A reference to the appwidget-provider meta data XML resource, described in the previous
section, that describes your Widget settings

c14.indd 571c14.indd 571 4/18/2012 3:54:56 PM4/18/2012 3:54:56 PM

572 x CHAPTER 14 INVADING THE HOME SCREEN

Meier c14.indd V2 - 04/16/2012

LISTING 14-4: App Widget manifest node

<receiver android:name=”.MyAppWidget” android:label=”@string/widget_label”>
 <intent-filter>
 <action android:name=”android.appwidget.action.APPWIDGET_UPDATE” />
 </intent-filter>
 <meta-data
 android:name=”android.appwidget.provider”
 android:resource=”@xml/widget_provider_info”
 />
</receiver>

code snippet PA4AD_Ch14_MyWidget/AndroidManifest.xml

Introducing the App Widget Manager and Remote Views

The AppWidgetManager class is used to update App Widgets and provide details related to them.

The RemoteViews class is used as a proxy to a View hierarchy hosted within another application’s
process. This lets you change a property, or run a method, on a View running within another
application. For example, the UIs used by your App Widgets are hosted within their host process
(typically the home screen). To modify those Views from the App Widget Provider running in your
application’s process, use Remote Views.

You can modify the appearance of the Views that form your App Widget UI by creating and
modifying Remote Views and applying those changes using the App Widget Manager. Supported
modifi cations include changing a Views visibility, text, or image values, and adding Click
Listeners.

This section describes how to create new Remote Views and in particular how to use them within
onUpdate method of an App Widget Provider. It also demonstrates how to use Remote Views to
update your App Widget UI and add interactivity to your Widgets.

Creating and Manipulating Remote Views

To create a new Remote View object, pass the name of your application’s package, and the layout
resource you plan to manipulate, into the Remote Views constructor, as shown in Listing 14-5.

LISTING 14-5: Creating Remote Views

RemoteViews views = new RemoteViews(context.getPackageName(),
 R.layout.my_widget_layout);

code Snippet PA4AD_Ch14_MyWidget/src/MyAppWidget.java

Remote Views represent a View hierarchy displayed in another process — in this instance, it will be
used to defi ne a set of changes to be applied to the UI of a running Widget.

c14.indd 572c14.indd 572 4/18/2012 3:54:56 PM4/18/2012 3:54:56 PM

Creating App Widgets x 573

Meier c14.indd V2 - 04/16/2012

The section “Applying Remote Views to Running App Widgets” describes how
to use the App Widget Manager to apply the changes you made in this section
to App Widgets. The modifi cations you apply here will not affect the running
instances of your Widgets until you apply them.

Remote Views include a series of methods that provide access to many of the properties and meth-
ods available on native Views. The most versatile of these is a collection of set methods that let you
specify a target method name to execute on a remotely hosted View. These methods support the
passing of a single-value parameter, one for each primitive type, including Boolean, integer, byte,
char, and fl oat, as well as strings, bitmaps, Bundles, and URI parameters.

Listing 14-6 shows examples of some of the method signatures supported.

LISTING 14-6: Using a Remote View to apply methods to Views within an App Widget

// Set the image level for an ImageView.
views.setInt(R.id.widget_image_view, “setImageLevel”, 2);
// Show the cursor of a TextView.
views.setBoolean(R.id.widget_text_view, “setCursorVisible”, true);
// Assign a bitmap to an ImageButton.
views.setBitmap(R.id.widget_image_button, “setImageBitmap”, myBitmap);

code snippet PA4AD_Ch14_MyWidget/src/FullAppWidget.java

A number of methods specifi c to certain View classes are also available, including methods to mod-
ify Text Views, Image Views, Progress Bars, and Chronometers.

Listing 14-7 shows examples of some of these specialist methods:

LISTING 14-7: Modifying View properties within an App Widget Remote View

// Update a Text View
views.setTextViewText(R.id.widget_text, “Updated Text”);
views.setTextColor(R.id.widget_text, Color.BLUE);
// Update an Image View
views.setImageViewResource(R.id.widget_image, R.drawable.icon);
// Update a Progress Bar
views.setProgressBar(R.id.widget_progressbar, 100, 50, false);
// Update a Chronometer
views.setChronometer(R.id.widget_chronometer,
 SystemClock.elapsedRealtime(), null, true);

code snippet PA4AD_Ch14_MyWidget/src/FullAppWidget.java

You can set the visibility of any View hosted within a Remote Views layout by calling
setViewVisibility, as shown here:

c14.indd 573c14.indd 573 4/18/2012 3:54:57 PM4/18/2012 3:54:57 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

574 x CHAPTER 14 INVADING THE HOME SCREEN

Meier c14.indd V2 - 04/16/2012

views.setViewVisibility(R.id.widget_text, View.INVISIBLE);

Remember that so far you have modifi ed the Remote Views object that represents the View hierar-
chy within the App Widget, but you have not you applied it. For your changes to take effect, you
must use the App Widget Manager to apply your updates.

Applying Remote Views to Running App Widgets

To apply the changes you make to the Remote Views to active Widgets, use the App Widget
Manager’s updateAppWidget method, passing in the identifi ers of one or more Widgets to update
and the Remote View to apply.

appWidgetManager.updateAppWidget(appWidgetIds, remoteViews);

If you’re updating your App Widget UI from within an App Widget Provider’s update handler, the
process is simple. The onUpdate handler receives the App Widget Manager and the array of active
App Widget instance IDs as parameters, allowing you to follow the pattern shown in Listing 14-8.

LISTING 14-8: Using a Remote View within the App Widget Provider’s onUpdate Handler

@Override
public void onUpdate(Context context,
 AppWidgetManager appWidgetManager,
 int[] appWidgetIds) {
 // Iterate through each widget, creating a RemoteViews object and
 // applying the modified RemoteViews to each widget.
 final int N = appWidgetIds.length;
 for (int i = 0; i < N; i++) {
 int appWidgetId = appWidgetIds[i];

 // Create a Remote View
 RemoteViews views = new RemoteViews(context.getPackageName(),
 R.layout.my_widget_layout);

 // TODO Update the UI.

 // Notify the App Widget Manager to update the widget using
 // the modified remote view.
 appWidgetManager.updateAppWidget(appWidgetId, views);
 }
}

code snippet PA4AD_Ch14_MyWidget/src/MyAppWidget.java

It’s best practice to iterate over the Widget ID array. This enables you to apply
different UI values to each Widget based on its identifi er and associated confi gu-
ration settings.

c14.indd 574c14.indd 574 4/18/2012 3:54:57 PM4/18/2012 3:54:57 PM

Creating App Widgets x 575

Meier c14.indd V2 - 04/16/2012

You can also update your Widgets directly from a Service, Activity, or Broadcast Receiver. To do so,
get a reference to the App Widget Manager by calling its static getInstance method, passing in the
current context, as shown in Listing 14-9.

LISTING 14-9: Accessing the App Widget Manager

// Get the App Widget Manager.
AppWidgetManager appWidgetManager
 = AppWidgetManager.getInstance(context);

code snippet PA4AD_Ch14_MyWidget/src/MyReceiver.java

You can then use the getAppWidgetIds method on your App Widget Manager instance to fi nd iden-
tifi ers representing each currently running instance of the specifi ed App Widget, as shown in this
extension to Listing 14-9:

// Retrieve the identifiers for each instance of your chosen widget.
ComponentName thisWidget = new ComponentName(context, MyAppWidget.class);
int[] appWidgetIds = appWidgetManager.getAppWidgetIds(thisWidget);

To update the active Widgets, you can follow the same pattern described in Listing 14-8, as shown
in Listing 14-10.

LISTING 14-10: A standard pattern for updating Widget UI

final int N = appWidgetIds.length;
// Iterate through each widget, creating a RemoteViews object and
// applying the modified RemoteViews to each widget.
for (int i = 0; i < N; i++) {
 int appWidgetId = appWidgetIds[i];
 // Create a Remote View
 RemoteViews views = new RemoteViews(context.getPackageName(),
 R.layout.my_widget_layout);

 // TODO Update the widget UI using the views object.

 // Notify the App Widget Manager to update the widget using
 // the modified remote view.
 appWidgetManager.updateAppWidget(appWidgetId, views);
}

code snippet PA4AD_Ch14_MyWidget/src/MyReceiver.java

Using Remote Views to Add Widget Interactivity

App Widgets inherit the permissions of the processes within which they run, and most home screen
apps run with full permissions, making the potential security risks signifi cant. As a result of these
security implications, Widget interactivity is carefully controlled.

c14.indd 575c14.indd 575 4/18/2012 3:54:58 PM4/18/2012 3:54:58 PM

576 x CHAPTER 14 INVADING THE HOME SCREEN

Meier c14.indd V2 - 04/16/2012

Widget interaction is generally limited to the following:

 ‰ Adding a Click Listener to one or more Views

 ‰ Changing the UI based on selection changes

 ‰ Transitioning between Views within a Collection View Widget

There is no supported technique for entering text directly into an App Widget. If
you need text input from your Widget, best practice is to add a Click Listener to
the Widget that displays an Activity that accepts input.

Using a Click Listener

The simplest and most powerful way to add interactivity to your Widget is by adding a Click
Listener to its Views. This is done using the setOnClickPendingIntent method on a Remote Views
object.

Use this method to specify a Pending Intent that will be fi red when the user clicks the specifi ed View,
as shown in Listing 14-11.

LISTING 14-11: Adding a Click Listener to an App Widget

Intent intent = new Intent(context, MyActivity.class);
PendingIntent pendingIntent =
 PendingIntent.getActivity(context, 0, intent, 0);
views.setOnClickPendingIntent(R.id.widget_text, pendingIntent);

code snippet PA4AD_Ch14_MyWidget/src/MyAppWidget.java

Pending Intents (described in more detail in Chapter 5, “Intents and Broadcast Receivers”) can con-
tain Intents used to start Activities or Services, or that broadcast Intents.

Using this technique you can add Click Listeners to one or more of the Views used within your
Widget, potentially providing support for multiple actions.

For example, the standard Media Player Widget assigns different broadcast Intents to several but-
tons, providing playback control through the play, pause, and next buttons.

When Pending Intents are broadcast, the Intents they wrap operate under the
same permissions as the application that created them. In the case of Widgets,
that means your application rather than the host process.

Changing Image Views Based on Selection Focus

Image Views are one of the most fl exible Views available for your Widget UI, providing support for
some basic user interactivity.

c14.indd 576c14.indd 576 4/18/2012 3:54:58 PM4/18/2012 3:54:58 PM

Creating App Widgets x 577

Meier c14.indd V2 - 04/16/2012

Using a SelectionStateDrawable resource (described in Chapter 3) you can create a Drawable
resource that displays a different image based on the selection state of the View it is assigned to. By
using a Selection State Drawable in your Widget design, you can create a dynamic UI that highlights
the users’ selection as they navigates though the Widget’s controls and makes selections.

This is particularly important to ensure your Widget can be used with the trackball or D-pad in
addition to a touch screen:

<selector xmlns:android=”http://schemas.android.com/apk/res/android”>
 <item android:state_window_focused=”false”
 android:drawable=”@drawable/widget_bg_normal”/>
 <item android:state_focused=”true”
 android:drawable=”@drawable/widget_bg_selected”/>
 <item android:state_pressed=”true”
 android:drawable=”@drawable/widget_bg_pressed”/>
 <item android:drawable=”@drawable/widget_bg_normal”/>
</selector>

The referenced Drawable resources should be stored in low, medium, high, and extra high resolution
in the application’s res/drawable-[ldpi/mdpi/hdpi/xhdpi] folders, respectively. The selection
state XML fi le should be placed in the res/drawable folder.

You can then use the Selection State Drawable directly as the source for an Image View or as the
background image for any Widget View.

Refreshing Your Widgets

Widgets are most commonly displayed on the home screen, so it’s important that they’re always kept
relevant and up to date. It’s just as important to balance that relevance with your Widget’s impact
on system resources — particularly battery life.

The following sections describe several techniques for managing your Widget’s refresh intervals.

Using the Minimum Update Rate

The simplest, but potentially most resource-intensive, technique is to set the minimum update rate
for a Widget using the updatePeriodMillis attribute in the Widget’s XML App Widget Provider
Info defi nition. This is demonstrated in Listing 14-12, where the Widget is updated once every hour.

LISTING 14-12: Setting the App Widget minimum update rate

<?xml version=”1.0” encoding=”utf-8”?>
<appwidget-provider
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:initialLayout=”@layout/my_widget_layout”
 android:minWidth=”110dp”
 android:minHeight=”110dp”
 android:label=”@string/widget_label”
 android:resizeMode=”horizontal|vertical”
 android:previewImage=”@drawable/widget_preview”
 android:updatePeriodMillis=”3600000”
/>

code snippet PA4AD_Ch14_MyWidget/res/xml/widget_provider_info.xml

c14.indd 577c14.indd 577 4/18/2012 3:54:59 PM4/18/2012 3:54:59 PM

http://schemas.android.com/apk/res/android%E2%80%9D
http://schemas.android.com/apk/res/android%E2%80%9D

578 x CHAPTER 14 INVADING THE HOME SCREEN

Meier c14.indd V2 - 04/16/2012

Setting this value will cause the device to broadcast an Intent requesting an update of your Widget
at the rate specifi ed.

The host device will wake up to complete these updates, meaning they are
completed even when the device is on standby. This has the potential to be a
signifi cant resource drain, so it’s very important to consider the implications of
your update rate. In most cases the system will not broadcast a minimum update
broadcast more frequently than every 30 minutes.

This technique should be used to defi ne the absolute minimum rate at which your Widget must be
updated to remain useful. Generally, the update rate should be a minimum of an hour and ideally
not more than once or twice a day.

If your Widget requires more frequent updates, consider using one of the techniques described in the
following sections to perform updates using either a more effi cient scheduled model using Alarms or
an event/Intent-driven model.

Using Intents

App Widgets are implemented as Broadcast Receivers, so you can trigger updates and UI refreshes
by registering Intent Filters against them that listen for additional Broadcast Intents. This is a
dynamic approach to refreshing your Widget that uses a more effi cient event model rather than the
potentially battery-draining method of specifying a short minimum refresh rate.

The XML snippet in Listing 14-13 assigns a new Intent Filter to the manifest entry of the Widget
defi ned earlier.

LISTING 14-13: Listening for Broadcast Intents within App Widgets

<receiver android:name=”.MyAppWidget”
 android:label=”@string/widget_label”>
 <intent-filter>
 <action android:name=”android.appwidget.action.APPWIDGET_UPDATE” />
 </intent-filter>
 <intent-filter>
 <action android:name=”com.paad.mywidget.FORCE_WIDGET_UPDATE” />
 </intent-filter>
 <meta-data
 android:name=”android.appwidget.provider”
 android:resource=”@xml/widget_provider_info”
 />
</receiver>

code snippet PA4AD_Ch14_MyWidget/AndroidManifest.xml

By updating the Widget’s onReceive method handler, as shown in Listing 14-14, you can listen for
this new Broadcast Intent and use it to update your Widget.

c14.indd 578c14.indd 578 4/18/2012 3:54:59 PM4/18/2012 3:54:59 PM

Creating App Widgets x 579

Meier c14.indd V2 - 04/16/2012

LISTING 14-14: Updating App Widgets based on Broadcast Intents

public static String FORCE_WIDGET_UPDATE =
 “com.paad.mywidget.FORCE_WIDGET_UPDATE”;

@Override
public void onReceive(Context context, Intent intent) {
 super.onReceive(context, intent);

 if (FORCE_WIDGET_UPDATE.equals(intent.getAction())) {
 // TODO Update widget
 }
}

code snippet PA4AD_Ch14_MyWidget/src/MyAppWidget.java

This approach is particularly useful for reacting to system, user, or application events — like a data
refresh, or a user action such as clicking buttons on the Widget itself. You can also register for sys-
tem event broadcasts such as changes to network connectivity, battery level, or screen brightness. By
relying on existing events to trigger UI updates, you minimize the impact of Widget updates while
maintaining a fresh UI.

You can also leverage this technique to trigger an update of your Widget at any time by broadcast-
ing an Intent using the action specifi ed in your Intent Filter, as shown in Listing 14-15.

LISTING 14-15: Broadcasting an Intent to update an App Widget

sendBroadcast(new Intent(MyAppWidget.FORCE_WIDGET_UPDATE));

code snippet PA4AD_Ch14_MyWidget/src/MyActivity.java

Using Alarms

Alarms, covered in detail in Chapter 9, “Working in the Background,” provide a fl exible way to
schedule regular events within your application. Using Alarms, you can poll at regular intervals using
the Intent-based update technique described in the previous section to trigger regular Widget updates.

Unlike the minimum refresh rate, Alarms can be confi gured to trigger only when the device is
already awake, providing a more effi cient alternative when regular updates are required.

Using Alarms to refresh your Widgets is similar to using the Intent-driven model described previ-
ously. Add a new Intent Filter to the manifest entry for your Widget, and override its onReceive
method to identify the Intent that triggered it. Within your application, use the Alarm Manager to
create an Alarm that fi res an Intent with the registered action.

Like the minimum update rate, Alarms can be set to wake the device when they trigger — making it
important to minimize their use to conserve battery life.

One alternative is to use either the RTC or ELAPSED_REALTIME modes when constructing your
Alarm. These modes confi gure an Alarm to trigger at a set time or after a specifi ed interval has
elapsed, but only if the device is awake.

c14.indd 579c14.indd 579 4/18/2012 3:54:59 PM4/18/2012 3:54:59 PM

580 x CHAPTER 14 INVADING THE HOME SCREEN

Meier c14.indd V2 - 04/16/2012

Listing 14-16 shows how to schedule a repeating Alarm that broadcasts an Intent used to force a
Widget update.

LISTING 14-16: Updating a Widget using a nonwaking repeating Alarm

PendingIntent pi = PendingIntent.getBroadcast(context, 0,
 new Intent(MyAppWidget.FORCE_WIDGET_UPDATE), 0);

alarmManager.setRepeating(AlarmManager.ELAPSED_REALTIME,
 AlarmManager.INTERVAL_HOUR,
 AlarmManager.INTERVAL_HOUR,
 pi);

code snippet PA4AD_Ch14_MyWidget/src/MyActivity.java

Using this technique will ensure your Widget is updated regularly, without draining the battery
unnecessarily by refreshing the UI when the screen is off.

A better approach is to use inexact repeating Alarms, as shown in this modifi cation to Listing 14-16:

alarmManager.setInexactRepeating(AlarmManager.ELAPSED_REALTIME,
 AlarmManager.INTERVAL_HOUR,
 AlarmManager.INTERVAL_HOUR,
 pi);

As described in Chapter 9, the inexact repeating Alarm will optimize the Alarm triggers by phase-
shifting all the Alarms scheduled to occur at similar times. This ensures the device is awakened only
once, rather than potentially several times within a few minutes.

Creating and Using a Widget Confi guration Activity

In many cases it’s useful for users to have the opportunity to confi gure a Widget before adding it to
their home screen. Done properly, you can make it possible for users to add multiple instances of the
same Widget to their home screen.

An App Widget confi guration Activity is launched immediately when a Widget is added to the
home screen. It can be any Activity within your application, provided it has an Intent Filter for the
APPWIDGET_CONFIGURE action, as shown in Listing 14-17.

LISTING 14-17: App Widget confi guration Activity manifest entry

<activity android:name=”.MyWidgetConfigurationActivity”>
 <intent-filter>
 <action android:name=”android.appwidget.action.APPWIDGET_CONFIGURE”/>
 </intent-filter>
</activity>

code snippet PA4AD_Ch14_MyWidget/AndroidManifest.xml

c14.indd 580c14.indd 580 4/18/2012 3:54:59 PM4/18/2012 3:54:59 PM

Creating App Widgets x 581

Meier c14.indd V2 - 04/16/2012

To assign a confi guration Activity to a Widget, you must add it to the Widget’s App Widget Provider
Info settings fi le using the configure tag. The activity must be specifi ed by its fully qualifi ed pack-
age name, as shown here:

<?xml version=”1.0” encoding=”utf-8”?>
<appwidget-provider
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:initialLayout=”@layout/my_widget_layout”
 android:minWidth=”146dp”
 android:minHeight=”146dp”
 android:label=”My App Widget”
 android:updatePeriodMillis=”3600000”
 android:configure=
 “com.paad.PA4AD_Ch14_MyWidget.MyWidgetConfigurationActivity”
/>

The Intent that launches the confi guration Activity will include an EXTRA_APPWIDGET_ID extra that
provides the ID of the App Widget being confi gured.

Within the Activity, provide a UI to allow the user to complete the confi guration and confi rm. At
this stage the Activity should result to RESULT_OK and return an Intent. The returned Intent must
include an extra that describes the ID of the Widget being confi gured using the EXTRA_APPWIDGET_
ID constant. This skeleton pattern is shown in Listing 14-18.

LISTING 14-18: Skeleton App Widget confi guration Activity

private int appWidgetId = AppWidgetManager.INVALID_APPWIDGET_ID;

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Intent intent = getIntent();
 Bundle extras = intent.getExtras();
 if (extras != null) {
 appWidgetId = extras.getInt(
 AppWidgetManager.EXTRA_APPWIDGET_ID,
 AppWidgetManager.INVALID_APPWIDGET_ID);
 }

 // Set the result to canceled in case the user exits
 // the Activity without accepting the configuration
 // changes / settings.
 setResult(RESULT_CANCELED, null);

 // Configure the UI.
}

private void completedConfiguration() {
 // Save the configuration settings for the Widget ID

continues

c14.indd 581c14.indd 581 4/18/2012 3:55:00 PM4/18/2012 3:55:00 PM

http://schemas.android.com/apk/res/android%E2%80%9D

582 x CHAPTER 14 INVADING THE HOME SCREEN

Meier c14.indd V2 - 04/16/2012

 // Notify the Widget Manager that the configuration has completed.
 Intent result = new Intent();
 result.putExtra(AppWidgetManager.EXTRA_APPWIDGET_ID, appWidgetId);
 setResult(RESULT_OK, result);
 finish();
}

code snippet PA4AD_Ch14_MyWidget/src/ MyWidgetConfi gurationActivity.java

CREATING AN EARTHQUAKE WIDGET

The following instructions, which extend the Earthquake application
from Chapter 13, “Maps, Geocoding, and Location-Based Services,”
show you how to create a new home screen Widget to display details for
the latest earthquake. The UI for this Widget is simple to the point of
being inane — a side effect of keeping the example as concise as possi-
ble. It does not conform to the Widget style guidelines. When completed
and added to the home screen, your Widget will appear, as shown in
Figure 14-2.

Using a combination of the update techniques described previously, this Widget listens for Broadcast
Intents that announce an update has been performed and sets the minimum update rate to ensure it
is updated once per day regardless.

1. Start by creating the layout for the Widget UI as an XML resource. Save the quake_widget
.xml fi le in the res/layout folder. Use a Linear Layout to confi gure Text Views that display
the quake magnitude and location:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”horizontal”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:background=”#F111”
 android:padding=”5dp”>
 <TextView
 android:id=”@+id/widget_magnitude”
 android:text=”---”
 android:layout_width=”wrap_content”
 android:layout_height=”match_parent”
 android:textSize=”24sp”
 android:padding=”3dp”
 android:gravity=”center_vertical”
 />
 <TextView
 android:id=”@+id/widget_details”
 android:text=”Details Unknown”

LISTING 14-18 (continued)

FIGURE 14-2

c14.indd 582c14.indd 582 4/18/2012 3:55:00 PM4/18/2012 3:55:00 PM

http://schemas.android.com/apk/res/android%E2%80%9D

Creating an Earthquake Widget x 583

Meier c14.indd V2 - 04/16/2012

 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:textSize=”14sp”
 android:padding=”3dp”
 android:gravity=”center_vertical”
 />
</LinearLayout>

2. Create a stub for a new EarthquakeWidget class that extends AppWidgetProvider. You’ll
return to this class to update your Widget with the latest quake details.

package com.paad.earthquake;

import android.widget.RemoteViews;
import android.app.PendingIntent;
import android.appwidget.AppWidgetManager;
import android.appwidget.AppWidgetProvider;
import android.content.ComponentName;
import android.content.ContentResolver;
import android.content.Context;
import android.content.Intent;
import android.database.Cursor;

public class EarthquakeWidget extends AppWidgetProvider {
}

3. Create a new Widget defi nition fi le, quake_widget_info.xml, and place it in the res/xml
folder. Set the minimum update rate to once a day and set the Widget dimensions to two cells
wide and one cell high — 110dp × 40dp. Use the Widget layout you created in step 1 for the
initial layout.

<?xml version=”1.0” encoding=”utf-8”?>
<appwidget-provider
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:initialLayout=”@layout/quake_widget”
 android:minWidth=”110dp”
 android:minHeight=”40dp”
 android:label=”Earthquakes”
 android:updatePeriodMillis=”86400000”
/>

4. Add your Widget to the application manifest, including a reference to the Widget defi nition
resource you created in step 3, and registering an Intent Filter for the App Widget update
action.

<receiver android:name=”.EarthquakeWidget” android:label=”Earthquake”>
 <intent-filter>
 <action android:name=”android.appwidget.action.APPWIDGET_UPDATE” />
 </intent-filter>
 <meta-data
 android:name=”android.appwidget.provider”
 android:resource=”@xml/quake_widget_info”
 />
</receiver>

c14.indd 583c14.indd 583 4/18/2012 3:55:00 PM4/18/2012 3:55:00 PM

http://schemas.android.com/apk/res/android%E2%80%9D

584 x CHAPTER 14 INVADING THE HOME SCREEN

Meier c14.indd V2 - 04/16/2012

5. Your Widget is now confi gured and will be available to add to the home screen. You need to
update the EarthquakeWidget class from step 2 to update the Widget to display the details
of the latest earthquake.

5.1 Start by creating a method stub that takes an App Widget Manager and an array of
Widget IDs as well as the context. Later you’ll extend this stub to update the Widget
appearance using Remote Views.

public void updateQuake(Context context,
 AppWidgetManager appWidgetManager,
 int[] appWidgetIds) {
}

5.2 Create a second method stub that takes only the context, using that to obtain an
instance of the AppWidgetManager. Then use the App Widget Manager to fi nd the
Widget IDs of the active Earthquake Widgets, passing both into the method you cre-
ated in step 5.1.

public void updateQuake(Context context) {
 ComponentName thisWidget = new ComponentName(context,
 EarthquakeWidget.class);
 AppWidgetManager appWidgetManager =
 AppWidgetManager.getInstance(context);
 int[] appWidgetIds = appWidgetManager.getAppWidgetIds(thisWidget);
 updateQuake(context, appWidgetManager, appWidgetIds);
}

5.3 Within the updateQuake stub from step 5.1, use the Earthquake Content Provider cre-
ated in Chapter 8 to retrieve the newest quake and extract its magnitude and location:

public void updateQuake(Context context,
 AppWidgetManager appWidgetManager,
 int[] appWidgetIds) {

 Cursor lastEarthquake;
 ContentResolver cr = context.getContentResolver();
 lastEarthquake = cr.query(EarthquakeProvider.CONTENT_URI,
 null, null, null, null);

 String magnitude = “--”;
 String details = “-- None --”;

 if (lastEarthquake != null) {
 try {
 if (lastEarthquake.moveToFirst()) {
 int magColumn
 = lastEarthquake.getColumnIndexOrThrow(EarthquakeProvider.KEY_MAGNITUDE);
 int detailsColumn
 = lastEarthquake.getColumnIndexOrThrow(EarthquakeProvider.KEY_DETAILS);

 magnitude = lastEarthquake.getString(magColumn);
 details = lastEarthquake.getString(detailsColumn);
 }
 }
 finally {

c14.indd 584c14.indd 584 4/18/2012 3:55:00 PM4/18/2012 3:55:00 PM

Creating an Earthquake Widget x 585

Meier c14.indd V2 - 04/16/2012

 lastEarthquake.close();
 }
 }
}

5.4 Create a new RemoteViews object to set the text displayed by the Widget’s Text View
elements to show the magnitude and location of the last quake:

public void updateQuake(Context context,
 AppWidgetManager appWidgetManager,
 int[] appWidgetIds) {

 Cursor lastEarthquake;
 ContentResolver cr = context.getContentResolver();
 lastEarthquake = cr.query(EarthquakeProvider.CONTENT_URI,
 null, null, null, null);

 String magnitude = “--”;
 String details = “-- None --”;

 if (lastEarthquake != null) {
 try {
 if (lastEarthquake.moveToFirst()) {
 int magColumn
 = lastEarthquake.getColumnIndexOrThrow(EarthquakeProvider.KEY_MAGNITUDE);
 int detailsColumn
 = lastEarthquake.getColumnIndexOrThrow(EarthquakeProvider.KEY_DETAILS);

 magnitude = lastEarthquake.getString(magColumn);
 details = lastEarthquake.getString(detailsColumn);
 }
 }
 finally {
 lastEarthquake.close();
 }
 }

 final int N = appWidgetIds.length;
 for (int i = 0; i < N; i++) {
 int appWidgetId = appWidgetIds[i];
 RemoteViews views = new RemoteViews(context.getPackageName(),
 R.layout.quake_widget);
 views.setTextViewText(R.id.widget_magnitude, magnitude);
 views.setTextViewText(R.id.widget_details, details);
 appWidgetManager.updateAppWidget(appWidgetId, views);
 }
}

6. Override the onUpdate handler to call updateQuake:

@Override
public void onUpdate(Context context,
 AppWidgetManager appWidgetManager,
 int[] appWidgetIds) {

 // Update the Widget UI with the latest Earthquake details.
 updateQuake(context, appWidgetManager, appWidgetIds);
}

c14.indd 585c14.indd 585 4/18/2012 3:55:00 PM4/18/2012 3:55:00 PM

586 x CHAPTER 14 INVADING THE HOME SCREEN

Meier c14.indd V2 - 04/16/2012

Your Widget is now ready to be used and will update with new earthquake details when
added to the home screen and once every 24 hours thereafter.

7. Now further enhance the Widget to update whenever the Earthquake Update Service you cre-
ated in Chapter 9, has refreshed the earthquake database:

7.1 Start by updating the onHandleIntent handler in the EarthquakeUpdateService to
broadcast an Intent when it has completed:

public static String QUAKES_REFRESHED =
 “com.paad.earthquake.QUAKES_REFRESHED”;

@Override
protected void onHandleIntent(Intent intent) {
 refreshEarthquakes();
 sendBroadcast(new Intent(QUAKES_REFRESHED));
}

7.2 Override the onReceive method in the EarthquakeWidget class by adding a check
for the QUAKES_REFRESHED action you broadcast in step 7.1 — calling updateQuakes
when it’s received. Be sure to call through to the superclass to ensure that the standard
Widget event handlers are still triggered:

@Override
public void onReceive(Context context, Intent intent){
 super.onReceive(context, intent);

 if (EarthquakeUpdateService.QUAKES_REFRESHED.equals(intent.getAction()))
 updateQuake(context);
}

7.3 Add an Intent Filter for this Intent action to the Widget’s manifest entry:

<receiver android:name=”.EarthquakeWidget” android:label=”Earthquake”>
 <intent-filter>
 <action android:name=”android.appwidget.action.APPWIDGET_UPDATE” />
 </intent-filter>
 <intent-filter>
 <action android:name=”com.paad.earthquake.QUAKES_REFRESHED” />
 </intent-filter>
 <meta-data
 android:name=”android.appwidget.provider”
 android:resource=”@xml/quake_widget_info”
 />
</receiver>

c14.indd 586c14.indd 586 4/18/2012 3:55:01 PM4/18/2012 3:55:01 PM

Introducing Collection View Widgets x 587

Meier c14.indd V2 - 04/16/2012

8. As a fi nal step, add some interactivity to the Widget. Return to the onUpdate handler, and
add a Click Listener to both the Text Views. Clicking the Widget should open the main
Activity.

@Override
public void onUpdate(Context context,
 AppWidgetManager appWidgetManager,
 int[] appWidgetIds) {

 // Create a Pending Intent that will open the main Activity.
 Intent intent = new Intent(context, Earthquake.class);
 PendingIntent pendingIntent =
 PendingIntent.getActivity(context, 0, intent, 0);

 // Apply the On Click Listener to both Text Views.
 RemoteViews views = new RemoteViews(context.getPackageName(),
 R.layout.quake_widget);

 views.setOnClickPendingIntent(R.id.widget_magnitude, pendingIntent);
 views.setOnClickPendingIntent(R.id.widget_details, pendingIntent);

 // Notify the App Widget Manager to update the
 appWidgetManager.updateAppWidget(appWidgetIds, views);

 // Update the Widget UI with the latest Earthquake details.
 updateQuake(context, appWidgetManager, appWidgetIds);
}

Your Widget will now update once per day and every time the Earthquake Update Service performs
an update.

All code snippets in this example are part of the Chapter 14 Earthquake Part 1
project, available for download at www.wrox.com.

INTRODUCING COLLECTION VIEW WIDGETS

Android 3.0 (API level 11) introduced Collection View Widgets, a new style of Widgets designed to
display collections of data as lists, grids, or stacks, as shown in Figure 14-3.

c14.indd 587c14.indd 587 4/18/2012 3:55:01 PM4/18/2012 3:55:01 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://www.wrox.com

588 x CHAPTER 14 INVADING THE HOME SCREEN

Meier c14.indd V2 - 04/16/2012

FIGURE 14-3

As the name suggests, Collection View Widgets are designed to add support for collection-based
Views specifi cally as follows:

 ‰ StackView — A fl ip-card style View that displays its child Views as a stack. The stack will
automatically rotate through its collection, moving the topmost item to the back to reveal the
one beneath it. Users can manually transition between items by swiping up or down to reveal
the previous or next items, respectively.

 ‰ ListView — The traditional List View. Each item in the bound collection is displayed as a
row on a vertical list.

 ‰ GridView — A two-dimensional scrolling grid where each item is displayed within a cell.
You can control the number of columns, their width, and relevant spacing.

The introduction of these dynamic collection-based App Widgets has eliminated
the need for the more limited Live Folders. As a result, Live Folders have been
deprecated as of Android 3.0.

Each of these controls extends the Adapter View class. As a result, the UI used to display each item
within it is defi ned using whatever layout you provide. Depending on the View used to display the
collection, the specifi ed layout will represent each row in a list, each card in a stack, or each cell in a
grid.

The UI used to represent each item is restricted to the same Views and layouts supported by App
Widgets:

 ‰ FrameLayout

 ‰ LinearLayout

 ‰ RelativeLayout

c14.indd 588c14.indd 588 4/18/2012 3:55:01 PM4/18/2012 3:55:01 PM

Introducing Collection View Widgets x 589

Meier c14.indd V2 - 04/16/2012

 ‰ AnalogClock

 ‰ Button

 ‰ Chronometer

 ‰ ImageButton

 ‰ ImageView

 ‰ ProgressBar

 ‰ TextView

 ‰ ViewFlipper

Collection View Widgets can be used to display any collection of data, but they’re particularly use-
ful for creating dynamic Widgets that surface data held within your application’s Content Providers.

Collection View Widgets are implemented in much the same way as regular App Widgets — using
App Widget Provider Info fi les to confi gure the Widget settings, BroadcastReceivers to defi ne
their behavior, and RemoteViews to modify the Widgets at run time.

In addition, collection-based App Widgets require the following components:

 ‰ An additional layout resource that defi nes the UI for each item displayed within the Widget.

 ‰ A RemoteViewsFactory that acts as a de facto Adapter for your Widget by supplying the
Views that will be displayed within your collection View. It creates the Remote Views using the
item layout defi nition and populates its elements using the underlying data you want to display.

 ‰ A RemoteViewsService that instantiates and manages the Remote Views Factory.

With these components complete, you can use the Remote Views Factory to create and update each
of the Views that will represent the items in your collection. You can automate this process by creat-
ing a Remote View and using the setRemoteAdapter method to assign the Remote Views Service to
it. When the Remote View is applied to the collection Widget, the Remote Views Service will create
and update each item, as necessary. This process is described in the section “Populating Collection
View Widgets Using a Remote Views Service.”

Creating Collection View Widget Layouts

Collection View Widgets require two layout defi nitions — one that includes the Stack, List, or Grid
View, and another that describes the layout to be used by each item within the stack, list, or grid.

As with regular App Widgets, it’s best practice to defi ne your layouts as external XML layout
resources, as shown in Listing 14-19.

LISTING 14-19: Defi ning the Widget layout for a Stack Widget

<?xml version=”1.0” encoding=”utf-8”?>
<FrameLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”

continues

c14.indd 589c14.indd 589 4/18/2012 3:55:03 PM4/18/2012 3:55:03 PM

http://schemas.android.com/apk/res/android%E2%80%9D

590 x CHAPTER 14 INVADING THE HOME SCREEN

Meier c14.indd V2 - 04/16/2012

 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:padding=”5dp”>
 <StackView
 android:id=”@+id/widget_stack_view”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 />
</FrameLayout>

code snippet PA4AD_Ch14_MyWidget/res/layout/my_stack_widget_layout.xml

Listing 14-20 shows an example layout resource used to describe the UI of each card displayed by
the Stack View Widget.

LISTING 14-20: Defi ning the layout for each item displayed by the Stack View Widget

<?xml version=”1.0” encoding=”utf-8”?>
<RelativeLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:background=”#FF555555”
 android:padding=”5dp”>
 <TextView
 android:id=”@+id/widget_text”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:layout_alignParentBottom=”true”
 android:gravity=”center_horizontal”
 android:text=”@string/widget_text”
 />
 <TextView
 android:id=”@+id/widget_title_text”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:layout_above=”@id/widget_text”
 android:textSize=”30sp”
 android:gravity=”center”
 android:text=”---”
 />
</RelativeLayout>

 code snippet PA4AD_Ch14_MyWidget/res/layout/my_stack_widget_item_layout.xml

The Widget layout is used within the App Widget Provider Info resource as it would be for any App
Widget. The item layout is used by a Remote Views Factory to create the Views used to represent
each item in the underlying collection.

LISTING 14-19 (continued)

c14.indd 590c14.indd 590 4/18/2012 3:55:03 PM4/18/2012 3:55:03 PM

http://schemas.android.com/apk/res/android%E2%80%9D

Introducing Collection View Widgets x 591

Meier c14.indd V2 - 04/16/2012

Creating the Remote Views Service

The Remote Views Service is used as a wrapper that instantiates and manages a Remote Views Factory,
which, in turn, is used to supply each of the Views displayed within the Collection View Widget.

To create a Remote Views Service, extend the RemoteViewsService class and override the
onGetViewFactory handler to return a new instance of a Remote Views Factory, as shown in
Listing 14-21.

LISTING 14-21: Creating a Remote Views Service

import java.util.ArrayList;
import android.appwidget.AppWidgetManager;
import android.content.Context;
import android.content.Intent;
import android.widget.RemoteViews;
import android.widget.RemoteViewsService;

public class MyRemoteViewsService extends RemoteViewsService {

 @Override
 public RemoteViewsFactory onGetViewFactory(Intent intent) {
 return new MyRemoteViewsFactory(getApplicationContext(), intent);
 }

}

code snippet PA4AD_Ch14_MyWidget/src/MyRemoteViewsService.java

As with any Service, you’ll need to add your Remote Views Service to your application manifest
using a service tag. To prevent other applications from accessing your Widgets, you must specify
the android.permission.BIND_REMOTEVIEWS permission, as shown in Listing 14-22.

LISTING 14-22: Adding a Remote Views Service to the manifest

<service android:name=”.MyRemoteViewsService”
 android:permission=”android.permission.BIND_REMOTEVIEWS”>
</service>

code snippet PA4AD_Ch14_MyWidget/AndroidManifest.xml

Creating a Remote Views Factory

The RemoteViewsFactory acts as a thin wrapper around the Adapter class. It is where you create
and populate the Views that will be displayed in the Collection View Widget — effectively binding
them to the underlying data collection.

To implement your Remote Views Factory, extend the RemoteViewsFactory class. This is normally
done within the enclosing Remote Views Service class.

c14.indd 591c14.indd 591 4/18/2012 3:55:03 PM4/18/2012 3:55:03 PM

592 x CHAPTER 14 INVADING THE HOME SCREEN

Meier c14.indd V2 - 04/16/2012

Your implementation should mirror that of a custom Adapter that will populate the Stack, List, or
Grid View. Listing 14-23 shows a simple implementation of a Remote Views Factory that uses a
static Array List to populate its Views. Note that the Remote Views Factory doesn’t need to know
what kind of Collection View Widget will be used to display each item.

LISTING 14-23: Creating a Remote Views Factory

class MyRemoteViewsFactory implements RemoteViewsFactory {

 private ArrayList<String> myWidgetText = new ArrayList<String>();
 private Context context;
 private Intent intent;
 private int widgetId;

 public MyRemoteViewsFactory(Context context, Intent intent) {
 // Optional constructor implementation.
 // Useful for getting references to the
 // Context of the calling widget
 this.context = context;
 this.intent = intent;

 widgetId = intent.getIntExtra(AppWidgetManager.EXTRA_APPWIDGET_ID,
 AppWidgetManager.INVALID_APPWIDGET_ID);
 }

 // Set up any connections / cursors to your data source.
 // Heavy lifting, like downloading data should be
 // deferred to onDataSetChanged()or getViewAt().
 // Taking more than 20 seconds in this call will result
 // in an ANR.
 public void onCreate() {
 myWidgetText.add(“The”);
 myWidgetText.add(“quick”);
 myWidgetText.add(“brown”);
 myWidgetText.add(“fox”);
 myWidgetText.add(“jumps”);
 myWidgetText.add(“over”);
 myWidgetText.add(“the”);
 myWidgetText.add(“lazy”);
 myWidgetText.add(“droid”);
 }

 // Called when the underlying data collection being displayed is
 // modified. You can use the AppWidgetManager’s
 // notifyAppWidgetViewDataChanged method to trigger this handler.
 public void onDataSetChanged() {
 // TODO Processing when underlying data has changed.
 }

 // Return the number of items in the collection being displayed.
 public int getCount() {
 return myWidgetText.size();

c14.indd 592c14.indd 592 4/18/2012 3:55:03 PM4/18/2012 3:55:03 PM

Introducing Collection View Widgets x 593

Meier c14.indd V2 - 04/16/2012

 }

 // Return true if the unique IDs provided by each item are stable --
 // that is, they don’t change at run time.
 public boolean hasStableIds() {
 return false;
 }

 // Return the unique ID associated with the item at a given index.
 public long getItemId(int index) {
 return index;
 }

 // The number of different view definitions. Usually 1.
 public int getViewTypeCount() {
 return 1;
 }

 // Optionally specify a “loading” view to display. Return null to
 // use the default.
 public RemoteViews getLoadingView() {
 return null;
 }

 // Create and populate the View to display at the given index.
 public RemoteViews getViewAt(int index) {
 // Create a view to display at the required index.
 RemoteViews rv = new RemoteViews(context.getPackageName(),
 R.layout.my_stack_widget_item_layout);

 // Populate the view from the underlying data.
 rv.setTextViewText(R.id.widget_title_text,
 myWidgetText.get(index));
 rv.setTextViewText(R.id.widget_text, “View Number: “ +
 String.valueOf(index));

 // Create an item-specific fill-in Intent that will populate
 // the Pending Intent template created in the App Widget Provider.
 Intent fillInIntent = new Intent();
 fillInIntent.putExtra(Intent.EXTRA_TEXT, myWidgetText.get(index));
 rv.setOnClickFillInIntent(R.id.widget_title_text, fillInIntent);

 return rv;
 }

 // Close connections, cursors, or any other persistent state you
 // created in onCreate.
 public void onDestroy() {
 myWidgetText.clear();
 }
}

code snippet PA4AD_Ch14_MyWidget/src/MyRemoteViewsService.java

c14.indd 593c14.indd 593 4/18/2012 3:55:03 PM4/18/2012 3:55:03 PM

594 x CHAPTER 14 INVADING THE HOME SCREEN

Meier c14.indd V2 - 04/16/2012

Populating Collection View Widgets Using
a Remote Views Service

With your Remote Views Factory complete, all that remains is to bind the List, Grid, or Stack View
within your App Widget Layout to the Remote Views Service. This is done using a Remote View,
typically within the onUpdate handler of your App Widget implementation.

Create a new Remote View instance as you would when updating the UI of a standard App Widget.
Use the setRemoteAdapter method to bind your Remote Views Service to the particular List, Grid,
or Stack View within the Widget layout.

The Remote View Service is specifi ed using an Intent of the following form:

Intent intent = new Intent(context, MyRemoteViewsService.class);

This Intent is received by the onGetViewFactory handler within the Remote Views Service,
enabling you to pass additional parameters into the Service and the Factory it contains.

You also specify the ID of the Widget you are binding to, allowing you to specify a different Service
for different Widget instances.

The setEmptyView method provides a means of specifying a View that should be displayed if (and
only if) the underlying data collection is empty.

After completing the binding process, use the App Widget Manager’s updateAppWidget method to
apply the binding to the specifi ed Widget. Listing 14-24 shows the standard pattern for binding a
Widget to a Remote Views Service.

LISTING 14-24: Binding a Remove Views Service to a Widget

@Override
public void onUpdate(Context context,
 AppWidgetManager appWidgetManager,
 int[] appWidgetIds) {
 // Iterate through each widget, creating a RemoteViews object and
 // applying the modified RemoteViews to each widget.
 final int N = appWidgetIds.length;
 for (int i = 0; i < N; i++) {
 int appWidgetId = appWidgetIds[i];

 // Create a Remote View.
 RemoteViews views = new RemoteViews(context.getPackageName(),
 R.layout.my_stack_widget_layout);

 // Bind this widget to a Remote Views Service.
 Intent intent = new Intent(context, MyRemoteViewsService.class);
 intent.putExtra(AppWidgetManager.EXTRA_APPWIDGET_ID, appWidgetId);
 views.setRemoteAdapter(appWidgetId, R.id.widget_stack_view,
 intent);

 // Specify a View within the Widget layout hierarchy to display
 // when the bound collection is empty.

c14.indd 594c14.indd 594 4/18/2012 3:55:03 PM4/18/2012 3:55:03 PM

Introducing Collection View Widgets x 595

Meier c14.indd V2 - 04/16/2012

 views.setEmptyView(R.id.widget_stack_view, R.id.widget_empty_text);

 // TODO Customize this Widgets UI based on configuration
 // settings etc.

 // Notify the App Widget Manager to update the widget using
 // the modified remote view.
 appWidgetManager.updateAppWidget(appWidgetId, views);
 }
}

 code snippet PA4AD_Ch14_MyWidget/src/MyStackWidget.java

Adding Interactivity to the Items Within a Collection View Widget

For effi ciency reasons, it’s not possible to assign a unique onClickPendingIntent to each item dis-
played as part of a Collection View Widget. Instead, use the setPendingIntentTemplate to assign
a template Intent to your Widget, as shown in Listing 14-25.

LISTING 14-25: Adding a Click Listener to individual items within a Collection View Widget

using a Pending Intent

Intent templateIntent = new Intent(Intent.ACTION_VIEW);
templateIntent.putExtra(AppWidgetManager.EXTRA_APPWIDGET_ID, appWidgetId);
PendingIntent templatePendingIntent = PendingIntent.getActivity(
 context, 0, templateIntent, PendingIntent.FLAG_UPDATE_CURRENT);

views.setPendingIntentTemplate(R.id.widget_stack_view,
 templatePendingIntent);

code snippet PA4AD_Ch14_MyWidget/src/MyStackWidget.java

This Pending Intent can then be “fi lled-in” within the getViewAt handler of your Remote Views
Service implementation using the setOnClickFillInIntent method of your Remote Views object,
as shown in Listing 14-26.

LISTING 14-26: Filling in a Pending Intent template for each item displayed in your Collection

View Widget

// Create the item-specific fill-in Intent that will populate
// the Pending Intent template created in the App Widget Provider.
Intent fillInIntent = new Intent();
fillInIntent.putExtra(Intent.EXTRA_TEXT, myWidgetText.get(index));
rv.setOnClickFillInIntent(R.id.widget_title_text, fillInIntent);

code snippet PA4AD_Ch14_MyWidget/src/MyRemoteViewsService.java

The fi ll-in Intent is applied to the template Intent using the Intent.fillIn method. It copies the
contents of the fi ll-in Intent into the template Intent, replacing any undefi ned fi elds with those
defi ned by the fi ll-in Intent. Fields with existing data will not be overridden.

c14.indd 595c14.indd 595 4/18/2012 3:55:04 PM4/18/2012 3:55:04 PM

596 x CHAPTER 14 INVADING THE HOME SCREEN

Meier c14.indd V2 - 04/16/2012

The resulting Pending Intent will be broadcast when a user clicks that particular item from within
your Widget.

Binding Collection View Widgets to Content Providers

One of the most powerful uses of Collection View Widgets is to surface data from your Content
Providers to the home screen. Listing 14-27 shows the skeleton code for a Remote Views Factory
implementation that binds to a Content Provider — in this case, one that displays the thumbnails of
images stored on the external media store.

LISTING 14-27: Creating a Content Provider–backed Remote Views Factory

class MyRemoteViewsFactory implements RemoteViewsFactory {

 private Context context;
 private ContentResolver cr;
 private Cursor c;

 public MyRemoteViewsFactory(Context context) {
 // Get a reference to the application context and
 // its Content Resolver.
 this.context = context;
 cr = context.getContentResolver();
 }

 public void onCreate() {
 // Execute the query that returns a Cursor over the data
 // to be displayed. Any secondary lookups or decoding should
 // be completed in the onDataSetChanged handler.
 c = cr.query(MediaStore.Images.Thumbnails.EXTERNAL_CONTENT_URI,
 null, null, null, null);
 }

 public void onDataSetChanged() {
 // Any secondary lookups, processing, or decoding can be done
 // here synchronously. The Widget will be updated only after
 // this method has completed.
 }

 public int getCount() {
 // Return the number of items in the Cursor.
 if (c != null)
 return c.getCount();
 else
 return 0;
 }

 public long getItemId(int index) {
 // Return the unique ID associated with a particular item.
 if (c != null)
 return c.getInt(
 c.getColumnIndex(MediaStore.Images.Thumbnails._ID));
 else

c14.indd 596c14.indd 596 4/18/2012 3:55:04 PM4/18/2012 3:55:04 PM

Introducing Collection View Widgets x 597

Meier c14.indd V2 - 04/16/2012

 return index;
 }

 public RemoteViews getViewAt(int index) {
 // Move the Cursor to the requested row position.
 c.moveToPosition(index);

 // Extract the data from the required columns.
 int idIdx = c.getColumnIndex(MediaStore.Images.Thumbnails._ID);
 String id = c.getString(idIdx);
 Uri uri = Uri.withAppendedPath(
 MediaStore.Images.Thumbnails.EXTERNAL_CONTENT_URI, “”
 + id);

 // Create a new Remote Views object using the appropriate
 // item layout
 RemoteViews rv = new RemoteViews(context.getPackageName(),
 R.layout.my_media_widget_item_layout);

 // Assign the values extracted from the Cursor to the Remote Views.
 rv.setImageViewUri(R.id.widget_media_thumbnail, uri);

 // Assign the item-specific fill-in Intent that will populate
 // the Pending Intent template specified in the App Widget
 // Provider. In this instance the template Intent specifies
 // an ACTION_VIEW action.
 Intent fillInIntent = new Intent();
 fillInIntent.setData(uri);
 rv.setOnClickFillInIntent(R.id.widget_media_thumbnail,
 fillInIntent);

 return rv;
 }

 public int getViewTypeCount() {
 // The number of different view definitions to use.
 // For Content Providers, this will almost always be 1.
 return 1;
 }

 public boolean hasStableIds() {
 // Content Provider IDs should be unique and permanent.
 return true;
 }

 public void onDestroy() {
 // Close the result Cursor.
 c.close();
 }

 public RemoteViews getLoadingView() {
 // Use the default loading view.
 return null;
 }
}

code snippet PA4AD_Ch14_MyWidget/src/MyMediaRemoteViewsService.java

c14.indd 597c14.indd 597 4/18/2012 3:55:04 PM4/18/2012 3:55:04 PM

598 x CHAPTER 14 INVADING THE HOME SCREEN

Meier c14.indd V2 - 04/16/2012

This more fl exible alternative for exposing Content Provider data on the home screen is a replace-
ment for Live Folders, which have now been deprecated.

Refreshing Your Collection View Widgets

The App Widget Manager includes the notifyAppWidgetViewDataChanged method, which allows
you to specify a Widget ID (or array of IDs) to update, along with the resource identifi er for the col-
lection View within that Widget whose underlying data source has changed:

appWidgetManager.notifyAppWidgetViewDataChanged(appWidgetIds,
 R.id.widget_stack_view);

This will cause the onDataSetChanged handler within the associated Remote Views Factory to
be executed, followed by the meta-data calls, including getCount, before each of the Views is
re-created.

Alternatively, the techniques used to update App Widgets — altering the minimum refresh rate,
using Intents, and setting Alarms — can also be used to update Collection View Widgets; however,
they will cause the entire Widget to be re-created, meaning that refreshing the collection-based
Views based on changes to the underlying data is more effi cient.

Creating an Earthquake Collection View Widget

In this example you add a second Widget to the Earthquake application. This one will use a
ListView-based Collection View Widget to display a list of the recent earthquakes.

1. Start by creating a layout for the Collection View Widget UI as an XML resource. Save the
quake_collection_widget.xml fi le in the res/layout folder. Use a Frame Layout that
includes the List View for displaying the earthquakes and a Text View to display when the
collection is empty:

<?xml version=”1.0” encoding=”utf-8”?>
<FrameLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:padding=”5dp”>
 <ListView
 android:id=”@+id/widget_list_view”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 />
 <TextView
 android:id=”@+id/widget_empty_text”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:gravity=”center”
 android:text=”No Earthquakes!”
 />
</FrameLayout>

c14.indd 598c14.indd 598 4/18/2012 3:55:04 PM4/18/2012 3:55:04 PM

http://schemas.android.com/apk/res/android%E2%80%9D

Introducing Collection View Widgets x 599

Meier c14.indd V2 - 04/16/2012

2. Create a new EarthquakeListWidget class that extends AppWidgetProvider. You’ll return
to this class to bind your Widget to the Remote Views Service that will provide the Views
that display each earthquake.

package com.paad.earthquake;

import android.app.PendingIntent;
import android.appwidget.AppWidgetManager;
import android.appwidget.AppWidgetProvider;
import android.content.Context;
import android.content.Intent;
import android.widget.RemoteViews;

public class EarthquakeListWidget extends AppWidgetProvider {
}

3. Create a new Widget defi nition fi le, quake_list_widget_info.xml, in the res/xml folder.
Set the minimum update rate to once a day, set the Widget dimensions to two cells wide and
one cell high (110dp × 40dp), and make it vertically resizable. Use the Widget layout you cre-
ated in step 1 for the initial layout.

<?xml version=”1.0” encoding=”utf-8”?>
<appwidget-provider
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:initialLayout=”@layout/quake_collection_widget”
 android:minWidth=”110dp”
 android:minHeight=”40dp”
 android:label=”Earthquakes”
 android:updatePeriodMillis=”86400000”
 android:resizeMode=”vertical”
/>

4. Add your Widget to the application manifest, including a reference to the Widget defi nition
resource you created in step 3. It should also include an Intent Filter for the App Widget
update action.

<receiver android:name=”.EarthquakeListWidget” android:label=”Earthquake List”>
 <intent-filter>
 <action android:name=”android.appwidget.action.APPWIDGET_UPDATE” />
 </intent-filter>
 <meta-data
 android:name=”android.appwidget.provider”
 android:resource=”@xml/quake_list_widget_info”
 />
</receiver>

5. Create a new EarthquakeRemoteViewsService class that extends RemoteViewsService.
It should include an internal EarthquakeRemoteViewsFactory class that extends
RemoteViewsFactory, which should be returned from the Earthquake Remote Views
Service’s onGetViewFactory handler:

package com.paad.earthquake;

import android.content.ContentResolver;

c14.indd 599c14.indd 599 4/18/2012 3:55:04 PM4/18/2012 3:55:04 PM

http://schemas.android.com/apk/res/android%E2%80%9D

600 x CHAPTER 14 INVADING THE HOME SCREEN

Meier c14.indd V2 - 04/16/2012

import android.content.Context;
import android.content.Intent;
import android.database.Cursor;
import android.net.Uri;
import android.provider.MediaStore;
import android.util.Log;
import android.widget.RemoteViews;
import android.widget.RemoteViewsService;

public class EarthquakeRemoteViewsService extends RemoteViewsService {

 @Override
 public RemoteViewsFactory onGetViewFactory(Intent intent) {
 return new EarthquakeRemoteViewsFactory(getApplicationContext());
 }

 class EarthquakeRemoteViewsFactory implements RemoteViewsFactory {

 private Context context;

 public EarthquakeRemoteViewsFactory(Context context) {
 this.context = context;
 }

 public void onCreate() {
 }

 public void onDataSetChanged() {
 }

 public int getCount() {
 return 0;
 }

 public long getItemId(int index) {
 return index;
 }

 public RemoteViews getViewAt(int index) {
 return null;
 }

 public int getViewTypeCount() {
 return 1;
 }

 public boolean hasStableIds() {
 return true;
 }

 public RemoteViews getLoadingView() {
 return null;
 }

c14.indd 600c14.indd 600 4/18/2012 3:55:04 PM4/18/2012 3:55:04 PM

Introducing Collection View Widgets x 601

Meier c14.indd V2 - 04/16/2012

 public void onDestroy() {
 }
 }
}

6. Add a new variable to store the Service Context, and create a new Constructor that accepts
the Context and stores it in this property:

private Context context;

public EarthquakeRemoteViewsFactory(Context context) {
 this.context = context;
}

7. Create a new executeCursor method to query the Earthquake Provider for the current
Earthquake list. Update the onCreate handler to execute that method and store the result a
new class property:

private Cursor c;
private Cursor executeQuery() {
 String[] projection = new String[] {
 EarthquakeProvider.KEY_ID,
 EarthquakeProvider.KEY_MAGNITUDE,
 EarthquakeProvider.KEY_DETAILS
 };

 Context appContext = getApplicationContext();
 SharedPreferences prefs =
 PreferenceManager.getDefaultSharedPreferences(appContext);
 int minimumMagnitude =
 Integer.parseInt(prefs.getString(PreferencesActivity.PREF_MIN_MAG, “3”));

 String where = EarthquakeProvider.KEY_MAGNITUDE + “ > “ + minimumMagnitude;

 return context.getContentResolver().query(EarthquakeProvider.CONTENT_URI,
 projection, where, null, null);
}
public void onCreate() {
 c = executeQuery();
}

8. Update the onDataSetChanged and onDestroy handlers to requery and destroy the Cursor,
respectively:

public void onDataSetChanged() {
 c = executeQuery();
}

public void onDestroy() {
 c.close();
}

c14.indd 601c14.indd 601 4/18/2012 3:55:04 PM4/18/2012 3:55:04 PM

602 x CHAPTER 14 INVADING THE HOME SCREEN

Meier c14.indd V2 - 04/16/2012

9. The Earthquake Remote Views Factory supplies the Views that represent each Earthquake in
the List View. Populate each of the method stubs to use the data from the earthquake Cursor
to populate the View that represents each item in the list.

9.1 Start by updating the getCount and getItemId methods to return the number
of records in the Cursor and the unique identifi er associated with each record,
respectively:

public int getCount() {
 if (c != null)
 return c.getCount();
 else
 return 0;
}

public long getItemId(int index) {
 if (c != null)
 return c.getLong(c.getColumnIndex(EarthquakeProvider.KEY_ID));
 else
 return index;
}

9.2 Then update the getViewAt method. This is where the Views used to represent each
Earthquake in the List View are created and populated. Create a new Remote Views
object using the layout defi nition you created for the previous Earthquake App Widget
example, and populate it with data from the current earthquake. Also create and assign
a fi ll-in Intent that will add the current earthquake’s URI to the template Intent you’ll
defi ne within the Widget provider.

public RemoteViews getViewAt(int index) {
 // Move the Cursor to the required index.
 c.moveToPosition(index);

 // Extract the values for the current cursor row.
 int idIdx = c.getColumnIndex(EarthquakeProvider.KEY_ID);
 int magnitudeIdx = c.getColumnIndex(EarthquakeProvider.KEY_MAGNITUDE);
 int detailsIdx = c.getColumnIndex(EarthquakeProvider.KEY_DETAILS);

 String id = c.getString(idIdx);
 String magnitude = c.getString(magnitudeIdx);
 String details = c.getString(detailsIdx);

 // Create a new Remote Views object and use it to populate the
 // layout used to represent each earthquake in the list.
 RemoteViews rv = new RemoteViews(context.getPackageName(),
 R.layout.quake_widget);

 rv.setTextViewText(R.id.widget_magnitude, magnitude);
 rv.setTextViewText(R.id.widget_details, details);

c14.indd 602c14.indd 602 4/18/2012 3:55:04 PM4/18/2012 3:55:04 PM

Introducing Collection View Widgets x 603

Meier c14.indd V2 - 04/16/2012

 // Create the fill-in Intent that adds the URI for the current item
 // to the template Intent.
 Intent fillInIntent = new Intent();
 Uri uri = Uri.withAppendedPath(EarthquakeProvider.CONTENT_URI, id);
 fillInIntent.setData(uri);

 rv.setOnClickFillInIntent(R.id.widget_magnitude, fillInIntent);
 rv.setOnClickFillInIntent(R.id.widget_details, fillInIntent);

return rv;
}

10. Add the Earthquake Remote Views Service to your application manifest, including a require-
ment for the BIND_REMOTEVIEWS permission:

<service android:name=”.EarthquakeRemoteViewsService”
 android:permission=”android.permission.BIND_REMOTEVIEWS”>
</service>

11. Return to the Earthquake List Widget class and override the onUpdate method. Iterate over
each of the active Widgets, attaching the Earthquake Remote Views Service you created in
step 5. Take this opportunity to create and assign a template Pending Intent to each item that
will start a new Activity to view the URI fi lled in by the fi ll-in Intent you created in step 9.2.

@Override
public void onUpdate(Context context,
 AppWidgetManager appWidgetManager,
 int[] appWidgetIds) {

 // Iterate over the array of active widgets.
 final int N = appWidgetIds.length;
 for (int i = 0; i < N; i++) {
 int appWidgetId = appWidgetIds[i];

 // Set up the intent that starts the Earthquake
 // Remote Views Service, which will supply the views
 // shown in the List View.
 Intent intent = new Intent(context, EarthquakeRemoteViewsService.class);
 // Add the app widget ID to the intent extras.
 intent.putExtra(AppWidgetManager.EXTRA_APPWIDGET_ID, appWidgetId);

 // Instantiate the RemoteViews object for the App Widget layout.
 RemoteViews views = new RemoteViews(context.getPackageName(),
 R.layout.quake_collection_widget);

 // Set up the RemoteViews object to use a RemoteViews adapter.
 views.setRemoteAdapter(R.id.widget_list_view, intent);

 // The empty view is displayed when the collection has no items.
 views.setEmptyView(R.id.widget_list_view, R.id.widget_empty_text);

c14.indd 603c14.indd 603 4/18/2012 3:55:05 PM4/18/2012 3:55:05 PM

604 x CHAPTER 14 INVADING THE HOME SCREEN

Meier c14.indd V2 - 04/16/2012

 // Create a Pending Intent template to provide interactivity to
 // each item displayed within the collection View.
 Intent templateIntent = new Intent(context, Earthquake.class);
 templateIntent.putExtra(AppWidgetManager.EXTRA_APPWIDGET_ID, appWidgetId);
 PendingIntent templatePendingIntent =
 PendingIntent.getActivity(context, 0, templateIntent,
 PendingIntent.FLAG_UPDATE_CURRENT);

 views.setPendingIntentTemplate(R.id.widget_list_view,
 templatePendingIntent);

 // Notify the App Widget Manager to update the widget using
 // the modified remote view.
 appWidgetManager.updateAppWidget(appWidgetId, views);
 }
}

12. As a fi nal step, enhance the Widget to update whenever the Earthquake Update
Service you created in Chapter 9 has refreshed the earthquake database. Do this by
updating the onHandleIntent handler in the EarthquakeUpdateService to call
the App Widget Manager’s notifyAppWidgetViewDataChanged method when it has
completed:

@Override
protected void onHandleIntent(Intent intent) {
 refreshEarthquakes();
 sendBroadcast(new Intent(QUAKES_REFRESHED));

Context context = getApplicationContext();
 AppWidgetManager appWidgetManager = AppWidgetManager.getInstance(context);
 ComponentName earthquakeWidget =
 new ComponentName(context, EarthquakeListWidget.class);
 int[] appWidgetIds = appWidgetManager.getAppWidgetIds(earthquakeWidget);

 appWidgetManager.notifyAppWidgetViewDataChanged(appWidgetIds,
 R.id.widget_list_view);
}

All code snippets in this example are part of the Chapter 14 Earthquake Part 2
project, available for download at www.wrox.com.

Figure 14-4 shows the Earthquake Collection View Widget added to the home screen.

c14.indd 604c14.indd 604 4/18/2012 3:55:05 PM4/18/2012 3:55:05 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://www.wrox.com

Introducing Live Folders x 605

Meier c14.indd V2 - 04/16/2012

FIGURE 14-4

INTRODUCING LIVE FOLDERS

In Android 3.0 Live Folders were deprecated in favor of the
richer, more customizable Collection View Widgets described in
the previous section.

Live Folders provided a similar functionality for earlier versions
of Android — a means by which your application can expose data
from its Content Providers directly on to the home screen.

Although Collection View Widgets are the supported alternative
for devices running Android 3.0 or above, you can still use Live
Folders to provide dynamic home screen shortcuts to information
stored in your application for devices running earlier version of
Android.

When added, a Live Folder is represented on the home screen as
a shortcut icon. Selecting the icon will open the Live Folder, as
shown in Figure 14-5. This fi gure shows a Live Folder open on an
Android home screen — in this case, the starred contacts list.

FIGURE 14-5

c14.indd 605c14.indd 605 4/18/2012 3:55:05 PM4/18/2012 3:55:05 PM

606 x CHAPTER 14 INVADING THE HOME SCREEN

Meier c14.indd V2 - 04/16/2012

To add a Live Folder to the home screen on Android devices prior to Android
3.0, long-press a piece of empty space and select Folders. You will be presented
with a list of available Live Folders; click one to select and add it. After it is
added, click to open the Live Folder, and long-press to move the shortcut. Live
Folders aren’t available on devices running Android 3.0 or higher.

Creating Live Folders

Live Folders are a combination of a Content Provider and an Activity. To create a new Live Folder,
you need to defi ne the following:

 ‰ An Activity responsible for creating and confi guring the Live Folder by generating and
returning a specially formatted Intent

 ‰ A Content Provider that provides the items to be displayed using the required column names

Unlike Collection View Widgets, each Live Folder item can display up to only three pieces of infor-
mation: an icon, a title, and a description.

The Live Folder Content Provider

Any Content Provider can provide the data displayed within a Live Folder. Live Folders use a stan-
dard set of column names:

 ‰ LiveFolders._ID — A unique identifi er used to indicate which item was selected if a user
clicks the Live Folder list.

 ‰ LiveFolders.NAME — The primary text, displayed in a large font. This is the only required
column.

 ‰ LiveFolders.DESCRIPTION — A longer descriptive fi eld in a smaller font, displayed beneath
the name column.

 ‰ LiveFolders.ICON_BITMAP — An image bitmap to be displayed at the left of each item.
Alternatively, you can use a combination of LiveFolders.ICON_PACKAGE and LiveFolder.
ICON_RESOURCE to specify a Drawable resource to use from a particular package.

Rather than renaming the columns within your Content Provider to suit the requirements of Live
Folders, you should apply a projection that maps your existing column names to those required by a
Live Folder, as shown in Listing 14-28.

LISTING 14-28: Creating a projection to support a Live Folder

private static final HashMap<String, String> LIVE_FOLDER_PROJECTION;
static {
 // Create the projection map.
 LIVE_FOLDER_PROJECTION = new HashMap<String, String>();

c14.indd 606c14.indd 606 4/18/2012 3:55:06 PM4/18/2012 3:55:06 PM

Introducing Live Folders x 607

Meier c14.indd V2 - 04/16/2012

 // Map existing column names to those required by a Live Folder.
 LIVE_FOLDER_PROJECTION.put(LiveFolders._ID,
 KEY_ID + “ AS “ +
 LiveFolders._ID);
 LIVE_FOLDER_PROJECTION.put(LiveFolders.NAME,
 KEY_NAME + “ AS “ +
 LiveFolders.NAME);
 LIVE_FOLDER_PROJECTION.put(LiveFolders.DESCRIPTION,
 KEY_DESCRIPTION + “ AS “ +
 LiveFolders.DESCRIPTION);
 LIVE_FOLDER_PROJECTION.put(LiveFolders.ICON_BITMAP,
 KEY_IMAGE + “ AS “ +
 LiveFolders.ICON_BITMAP);
}

code snippet PA4AD_Ch14_MyLiveFolder/src/MyContentProvider.java

Only the ID and name columns are required; the bitmap and description columns can be used or left
unmapped, as required.

The projection typically will be applied within the query method of your Content Provider when
the query request URI matches the pattern you specify for Live Folder request, as shown in Listing
14-29.

LISTING 14-29: Applying a projection to support a Live Folder

public static Uri LIVE_FOLDER_URI
 = Uri.parse(“com.paad.provider.MyLiveFolder”);

public Cursor query(Uri uri, String[] projection, String selection,
 String[] selectionArgs, String sortOrder) {

 SQLiteQueryBuilder qb = new SQLiteQueryBuilder();

 switch (URI_MATCHER.match(uri)) {
 case LIVE_FOLDER:
 qb.setTables(MYTABLE);
 qb.setProjectionMap(LIVE_FOLDER_PROJECTION);
 break;
 default:
 throw new IllegalArgumentException(“Unknown URI “ + uri);
 }

 Cursor c = qb.query(null, projection, selection, selectionArgs,
 null, null, null);

 c.setNotificationUri(getContext().getContentResolver(), uri);

 return c;
}

code snippet PA4AD_Ch14_MyLiveFolder/src/MyContentProvider.java

c14.indd 607c14.indd 607 4/18/2012 3:55:07 PM4/18/2012 3:55:07 PM

608 x CHAPTER 14 INVADING THE HOME SCREEN

Meier c14.indd V2 - 04/16/2012

The Live Folder Activity

The Live Folder is defi ned using an Intent returned as the result of an Activity (typically from within
the onCreate handler).

Use the Intent’s setData method to specify the URI of the Content Provider supplying the data
(with the appropriate projection applied), as described in the previous section.

You can confi gure the Intent further by using a series of extras as follows:

 ‰ LiveFolders.EXTRA_LIVE_FOLDER_DISPLAY_MODE — Specifi es the display mode to use.
This can be either LiveFolders.DISPLAY_MODE_LIST or LiveFolders.DISPLAY_MODE_
GRID to display your Live Folder as a list or grid, respectively.

 ‰ LiveFolders.EXTRA_LIVE_FOLDER_ICON — Provides a Drawable resource that will be used
as the home screen icon that represents the Live Folder when it hasn’t been opened.

 ‰ LiveFolders.EXTRA_LIVE_FOLDER_NAME — Provides a descriptive name to use with the
icon described above to represent the Live Folder on the home screen when it hasn’t been
opened.

Listing 14-30 shows the overridden onCreate method of an Activity used to create a Live Folder.
After the Live Folder defi nition Intent is constructed, it is set as the Activity result using setResult,
and the Activity is closed with a call to finish.

LISTING 14-30: Creating a Live Folder from within an Activity

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Check to confirm this Activity was launched as part
 // of a request to add a new Live Folder to the home screen
 String action = getIntent().getAction();
 if (LiveFolders.ACTION_CREATE_LIVE_FOLDER.equals(action)) {
 Intent intent = new Intent();

 // Set the URI of the Content Provider that will supply the
 // data to display. The appropriate projection must already
 // be applied to the returned data.
 intent.setData(MyContentProvider.LIVE_FOLDER_URI);

 // Set the display mode to a list.
 intent.putExtra(LiveFolders.EXTRA_LIVE_FOLDER_DISPLAY_MODE,
 LiveFolders.DISPLAY_MODE_LIST);

 // Indicate the icon to be used to represent the Live Folder
 // shortcut on the home screen.
 intent.putExtra(LiveFolders.EXTRA_LIVE_FOLDER_ICON,
 Intent.ShortcutIconResource.fromContext(this,
 R.drawable.icon));

 // Provide the name to be used to represent the Live Folder on
 // the home screen.
 intent.putExtra(LiveFolders.EXTRA_LIVE_FOLDER_NAME, “Earthquakes”);

c14.indd 608c14.indd 608 4/18/2012 3:55:07 PM4/18/2012 3:55:07 PM

Introducing Live Folders x 609

Meier c14.indd V2 - 04/16/2012

 // Return the Live Folder Intent as a result.
 setResult(RESULT_OK, intent);
 }
 else
 setResult(RESULT_CANCELED);
 finish();
}

code snippet PA4AD_Ch14_MyLiveFolder/src/MyLiveFolder.java

You can also provide support for selecting items in the Live Folder.

By adding a LiveFolders.EXTRA_LIVE_FOLDER_BASE_INTENT extra to the returned Intent, you can
specify a base Intent to fi re when a Live Folder item is selected. When this value is set, selecting a
Live Folder item will result in startActivity being called with the specifi ed base Intent used as the
Intent parameter.

Best practice (as shown in Listing 14-31) is to set the data parameter of this Intent to the base URI
of the Content Provider that’s supplying the Live Folder’s data. In such cases the Live Folder will
automatically append the value stored in the selected item’s _id column to the Intent’s data value.

LISTING 14-31: Adding a base Intent for Live Folder item selection

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Check to confirm this Activity was launched as part
 // of a request to add a new Live Folder to the home screen
 String action = getIntent().getAction();
 if (LiveFolders.ACTION_CREATE_LIVE_FOLDER.equals(action)) {
 Intent intent = new Intent();

 // Set the URI of the Content Provider that will supply the
 // data to display. The appropriate projection must already
 // be applied to the returned data.
 intent.setData(LiveFolderProvider.CONTENT_URI);

 // Set the display mode to a list.
 intent.putExtra(LiveFolders.EXTRA_LIVE_FOLDER_DISPLAY_MODE,
 LiveFolders.DISPLAY_MODE_LIST);

 // Indicate the icon to be used to represent the Live Folder
 // shortcut on the home screen.
 intent.putExtra(LiveFolders.EXTRA_LIVE_FOLDER_ICON,
 Intent.ShortcutIconResource.fromContext(context,
 R.drawable.icon));

 // Provide the name to be used to represent the Live Folder on
 // the home screen.
 intent.putExtra(LiveFolders.EXTRA_LIVE_FOLDER_NAME,
 “My Live Folder”);

continues

c14.indd 609c14.indd 609 4/18/2012 3:55:07 PM4/18/2012 3:55:07 PM

610 x CHAPTER 14 INVADING THE HOME SCREEN

Meier c14.indd V2 - 04/16/2012

 // Specify a base Intent that will request the responding Activity
 // View the selected item.
 intent.putExtra(LiveFolders.EXTRA_LIVE_FOLDER_BASE_INTENT,
 new Intent(Intent.ACTION_VIEW,
 MyContentProvider.CONTENT_URI));

 // Return the Live Folder Intent as a result.
 setResult(RESULT_OK, intent);
 }
 else
 setResult(RESULT_CANCELED);
 finish();
}

code snippet PA4AD_Ch14_MyLiveFolder/src/MyLiveFolder.java

In order for the system to identify an Activity as a Live Folder, you must include an Intent Filter for
the CREATE_LIVE_FOLDER action when adding the Live Folder Activity to your application manifest,
as shown in Listing 14-32.

LISTING 14-32: ADDING THE LIVE FOLDER ACTIVITY TO THE MANIFEST

<activity android:name=”.MyLiveFolder”
 android:label=”My Live Folder”>
 <intent-filter>
 <action android:name=”android.intent.action.CREATE_LIVE_FOLDER”/>
 </intent-filter>
</activity>

code snippet PA4AD_Ch14_MyLiveFolder/AndroidManifest.xml

Creating an Earthquake Live Folder

In the following example you extend the Earthquake application again — this time to include a Live
Folder that displays the magnitude and location of each quake. The resulting Live Folder is very
similar to the Collection View Widget you created earlier in this chapter, making it a useful alterna-
tive for devices running Android releases prior to Android 3.0.

 1. Start by modifying the EarthquakeProvider class. Create a new static URI defi nition that
will be used to return the Live Folder items:

public static final Uri LIVE_FOLDER_URI =
 Uri.parse(“content://com.paad.provider.earthquake/live_folder”);

 2. Modify the uriMatcher object, and getType method to check for this new URI request:

private static final int QUAKES = 1;
private static final int QUAKE_ID = 2;

LISTING 14-31 (continued)

c14.indd 610c14.indd 610 4/18/2012 3:55:08 PM4/18/2012 3:55:08 PM

Introducing Live Folders x 611

Meier c14.indd V2 - 04/16/2012

private static final int SEARCH = 3;
private static final int LIVE_FOLDER = 4;

private static final UriMatcher uriMatcher;

//Allocate the UriMatcher object, where a URI ending in ‘earthquakes’ will
//correspond to a request for all earthquakes, and ‘earthquakes’ with a
//trailing ‘/[rowID]’ will represent a single earthquake row.
static {
 uriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
 uriMatcher.addURI(“com.paad.earthquakeprovider”, “earthquakes”, QUAKES);
 uriMatcher.addURI(“com.paad.earthquakeprovider”, “earthquakes/#”, QUAKE_ID);
 uriMatcher.addURI(“com.paad.provider.Earthquake”, “live_folder”, LIVE_FOLDER);
 uriMatcher.addURI(“com.paad.earthquakeprovider”,
 SearchManager.SUGGEST_URI_PATH_QUERY, SEARCH);
 uriMatcher.addURI(“com.paad.earthquakeprovider”,
 SearchManager.SUGGEST_URI_PATH_QUERY + “/*”, SEARCH);
 uriMatcher.addURI(“com.paad.earthquakeprovider”,
 SearchManager.SUGGEST_URI_PATH_SHORTCUT, SEARCH);
 uriMatcher.addURI(“com.paad.earthquakeprovider”,
 SearchManager.SUGGEST_URI_PATH_SHORTCUT + “/*”, SEARCH);
}

@Override
public String getType(Uri uri) {
 switch (uriMatcher.match(uri)) {
 case QUAKES|LIVE_FOLDER: return “vnd.android.cursor.dir/vnd.paad.earthquake”;
 case QUAKE_ID: return “vnd.android.cursor.item/vnd.paad.earthquake”;
 case SEARCH : return SearchManager.SUGGEST_MIME_TYPE;
 default: throw new IllegalArgumentException(“Unsupported URI: “ + uri);
 }
}

3. Create a new hash map that defi nes a projection suitable for a Live Folder. It should return
the magnitude and location details as the description and name columns, respectively:

static final HashMap<String, String> LIVE_FOLDER_PROJECTION;
static {
 LIVE_FOLDER_PROJECTION = new HashMap<String, String>();
 LIVE_FOLDER_PROJECTION.put(LiveFolders._ID,
 KEY_ID + “ AS “ + LiveFolders._ID);
 LIVE_FOLDER_PROJECTION.put(LiveFolders.NAME,
 KEY_DETAILS + “ AS “ + LiveFolders.NAME);
 LIVE_FOLDER_PROJECTION.put(LiveFolders.DESCRIPTION,
 KEY_DATE + “ AS “ + LiveFolders.DESCRIPTION);
}

4. Update the query method to apply the projection map from step 3 to the returned earth-
quake query for Live Folder requests:

@Override
public Cursor query(Uri uri,
 String[] projection,
 String selection,
 String[] selectionArgs,
 String sort) {

c14.indd 611c14.indd 611 4/18/2012 3:55:08 PM4/18/2012 3:55:08 PM

612 x CHAPTER 14 INVADING THE HOME SCREEN

Meier c14.indd V2 - 04/16/2012

 SQLiteDatabase database = dbHelper.getWritableDatabase();

 SQLiteQueryBuilder qb = new SQLiteQueryBuilder();

 qb.setTables(EarthquakeDatabaseHelper.EARTHQUAKE_TABLE);

 // If this is a row query, limit the result set to the passed in row.
 switch (uriMatcher.match(uri)) {
 case QUAKE_ID: qb.appendWhere(KEY_ID + “=” + uri.getPathSegments().get(1));
 break;
 case SEARCH : qb.appendWhere(KEY_SUMMARY + “ LIKE \”%” +
 uri.getPathSegments().get(1) + “%\””);
 qb.setProjectionMap(SEARCH_PROJECTION_MAP);
 break;
 case LIVE_FOLDER : qb.setProjectionMap(LIVE_FOLDER_PROJECTION);
 break;
 default : break;
 }

 [... existing query method ...]
}

5. Create a new EarthquakeLiveFolders class that contains a static EarthquakeLiveFolder
Activity:

package com.paad.earthquake;

import android.app.Activity;
import android.content.Context;
import android.content.Intent;
import android.os.Bundle;
import android.provider.LiveFolders;

public class EarthquakeLiveFolders extends Activity {
 public static class EarthquakeLiveFolder extends Activity {
 }
}

6. Add a new method that builds the Intent used to create the Live Folder. It should use the query
URI you created in step 1, set the display mode to list, and defi ne the icon and title string to
use. Also set the base Intent to the individual item query from the Earthquake Provider:

private static Intent createLiveFolderIntent(Context context) {
 Intent intent = new Intent();
 intent.setData(EarthquakeProvider.LIVE_FOLDER_URI);
 intent.putExtra(LiveFolders.EXTRA_LIVE_FOLDER_BASE_INTENT,
 new Intent(Intent.ACTION_VIEW,
 EarthquakeProvider.CONTENT_URI));
 intent.putExtra(LiveFolders.EXTRA_LIVE_FOLDER_DISPLAY_MODE,
 LiveFolders.DISPLAY_MODE_LIST);
 intent.putExtra(LiveFolders.EXTRA_LIVE_FOLDER_ICON,
 Intent.ShortcutIconResource.fromContext(context,
 R.drawable.ic_launcher));
 intent.putExtra(LiveFolders.EXTRA_LIVE_FOLDER_NAME, “Earthquakes”);
 return intent;
}

c14.indd 612c14.indd 612 4/18/2012 3:55:08 PM4/18/2012 3:55:08 PM

Introducing Live Folders x 613

Meier c14.indd V2 - 04/16/2012

7. Override the onCreate method of the EarthquakeLiveFolder class to return the Intent
defi ned in step 6:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 String action = getIntent().getAction();
 if (LiveFolders.ACTION_CREATE_LIVE_FOLDER.equals(action))
 setResult(RESULT_OK, createLiveFolderIntent(this));
 else
 setResult(RESULT_CANCELED);
 finish();
}

8. Add the EarthquakeLiveFolder Activity to the application manifest, including an Intent
Filter for the action android.intent.action.CREATE_LIVE_FOLDER:

<activity android:name=”.EarthquakeLiveFolders$EarthquakeLiveFolder”
 android:label=”All Earthquakes”>
 <intent-filter>
 <action android:name=”android.intent.action.CREATE_LIVE_FOLDER”/>
 </intent-filter>
</activity>

Figure 14-6 shows the earthquake Live Folder open on the home screen.

FIGURE 14-6

All code snippets in this example are part of the Chapter 14 Earthquake Part 3
project, available for download at www.wrox.com.

c14.indd 613c14.indd 613 4/18/2012 3:55:08 PM4/18/2012 3:55:08 PM

http://www.wrox.com

614 x CHAPTER 14 INVADING THE HOME SCREEN

Meier c14.indd V2 - 04/16/2012

SURFACING APPLICATION SEARCH RESULTS

USING THE QUICK SEARCH BOX

The QSB (shown in Figure 14-7) is positioned prominently
on the home screen. The user can launch it at any time by
clicking it or pressing the hardware search key, where one is
available.

Android 1.6 (API level 4) introduced the ability to serve your
application search results through the universal QSB. By surfacing search results from your applica-
tion through this mechanism, you provide users with an additional access point to your application
through live search results.

Surfacing Search Results to the Quick Search Box

To serve your search results to the QSB, you must fi rst implement search functionality within your
application, as described in Chapter 8, “Databases and Content Providers.”

To make your results available globally, modify the searchable.xml fi le that describes the applica-
tion search meta data and add two new attributes:

 ‰ searchSettingsDescription — Used to describe your search results in the Settings menu.
This is what the users will see when browsing to include application results in their searches.

 ‰ includeInGlobalSearch — Set this to true to surface these results to the QSB.

<searchable xmlns:android=”http://schemas.android.com/apk/res/android”
 android:label=”@string/search_label”

 android:searchSuggestAuthority=”com.paad.provider.mysearch”
 android:searchSuggestIntentAction=”android.intent.action.VIEW”
 android:searchSettingsDescription=”@string/search_description”
 android:includeInGlobalSearch=”true”>
</searchable>

To avoid the possibility of misuse, adding new search providers requires users to opt-in, so your
search results will not be automatically surfaced directly to the QSB.

For users to add your application’s search results to their QSB search, they must opt-in using the sys-
tem settings, as shown in Figure 14-8. From the QSB Activity, they must select Menu Í Settings Í
Searchable Items and tick the check boxes alongside each Provider they want to enable.

Because search result surfacing in the QSB is strictly opt-in, you should consider
notifying your users that this additional functionality is available.

FIGURE 14-7

c14.indd 614c14.indd 614 4/18/2012 3:55:08 PM4/18/2012 3:55:08 PM

http://schemas.android.com/apk/res/android%E2%80%9D

Surfacing Application Search Results Using the Quick Search Box x 615

Meier c14.indd V2 - 04/16/2012

FIGURE 14-8

Adding the Earthquake Example Search
Results to the Quick Search Box

To surface search results from the Earthquake project to the QSB, edit the searchable.xml fi le in
your res/xml resources folder. Add a new attribute, setting includeInGlobalSearch to true:

<searchable xmlns:android=”http://schemas.android.com/apk/res/android”
 android:label=”@string/app_name”
 android:searchSettingsDescription=”@string/search_description”
 android:searchSuggestAuthority=”com.paad.earthquakeprovider”
 android:searchSuggestIntentAction=”android.intent.action.VIEW”
 android:searchSuggestIntentData=
 “content://com.paad.earthquakeprovider/earthquakes”
 android:includeInGlobalSearch=”true”>
</searchable>

All code snippets in this example are part of the Chapter 14 Earthquake Part 4
project, available for download at www.wrox.com.

c14.indd 615c14.indd 615 4/18/2012 3:55:09 PM4/18/2012 3:55:09 PM

http://schemas.android.com/apk/res/android%E2%80%9D
http://www.wrox.com

616 x CHAPTER 14 INVADING THE HOME SCREEN

Meier c14.indd V2 - 04/16/2012

CREATING LIVE WALLPAPER

Live Wallpaper was introduced in Android 2.1 (API level 7) as a way to create dynamic, interac-
tive home screen backgrounds. They offer an exciting alternative for displaying information to your
users directly on their home screen.

Live Wallpapers use a Surface View to render a dynamic display that can be interacted with in real
time. Your Live Wallpaper can listen for, and reach to, screen touch events — letting users engage
directly with the background of their home screen.

To create a new Live Wallpaper, you need the following three components:

 ‰ An XML resource that describes the metadata associated with the Live Wallpaper — specifi -
cally its author, description, and a thumbnail used to represent it from the Live Wallpaper
picker.

 ‰ A Wallpaper Service implementation that will wrap, instantiate, and manage your Wallpaper
Engine.

 ‰ A Wallpaper Service Engine implementation (returned through the Wallpaper Service) that
defi nes the UI and interactive behavior of your Live Wallpaper. The Wallpaper Service
Engine represents where the bulk of your Live Wallpaper implementation will live.

Creating a Live Wallpaper Defi nition Resource

The Live Wallpaper resource defi nition is an XML fi le stored in the res/xml folder. Its resource
identifi er is its fi lename without the XML extension. Use attributes within a wallpaper tag to defi ne
the author name, description, and thumbnail to display in the Live Wallpaper gallery.

Listing 14-33 shows a sample Live Wallpaper resource defi nition.

LISTING 14-33: Sample Live Wallpaper resource defi nition

<wallpaper xmlns:android=”http://schemas.android.com/apk/res/android”
 android:author=”@string/author”
 android:description=”@string/description”
 android:thumbnail=”@drawable/wallpapericon”
/>

code snippet PA4AD_Ch14_LiveWallpaper/res/xml/mylivewallpaper.xml

Note that you must use references to existing string resources for the author and description
attribute values. String literals are not valid.

You can also use the settingsActivity tag to specify an Activity that should be launched to con-
fi gure the Live Wallpaper’s settings, much like the confi guration Activity used to confi gure Widget
settings:

<wallpaper xmlns:android=”http://schemas.android.com/apk/res/android”
 android:author=”@string/author”

c14.indd 616c14.indd 616 4/18/2012 3:55:10 PM4/18/2012 3:55:10 PM

http://schemas.android.com/apk/res/android%E2%80%9D
http://schemas.android.com/apk/res/android%E2%80%9D

Creating Live Wallpaper x 617

Meier c14.indd V2 - 04/16/2012

 android:description=”@string/description”
 android:thumbnail=”@drawable/wallpapericon”
 android:settingsActivity=”com.paad.mylivewallpaper.WallpaperSettings”
/>

This Activity will be launched immediately before the Live Wallpaper is added to the home screen,
allowing the user to confi gure the Wallpaper.

Creating a Wallpaper Service

Extend the WallpaperService class to create a wrapper Service that instantiates and manages the
Wallpaper Service Engine class.

All the drawing and interaction for Live Wallpaper is handled in the Wallpaper Service Engine class
described in the next section. Override the onCreateEngine handler to return a new instance of
your custom Wallpaper Service Engine, as shown in Listing 14-34.

LISTING 14-34: Creating a Wallpaper Service

import android.service.wallpaper.WallpaperService;
import android.service.wallpaper.WallpaperService.Engine;

public class MyWallpaperService extends WallpaperService {
 @Override
 public Engine onCreateEngine() {
 return new MyWallpaperServiceEngine();
 }
}

code snippet PA4AD_Ch14_LiveWallpaper/src/MyWallpaperService.java

After creating the Wallpaper Service, add it to your application manifest using a service tag.

A Wallpaper Service must include an Intent Filter to listen for the android.service.wallpaper
.WallpaperService action and a meta-data node that specifi es android.service.wallpaper as
the name attribute and associates it with the resource fi le described in the previous section using a
resource attribute.

An application that includes a Wallpaper Service must also require the android.permission.BIND_
WALLPAPER permission. Listing 14-35 shows how to add the Wallpaper Service from Listing 14-34 to
the manifest.

LISTING 14-35: Adding a Wallpaper Service to the manifest

<application
 android:icon=”@drawable/icon”
 android:label=”@string/app_name”
 android.permission=”android.permission.BIND_WALLPAPER”>

continues

c14.indd 617c14.indd 617 4/18/2012 3:55:10 PM4/18/2012 3:55:10 PM

618 x CHAPTER 14 INVADING THE HOME SCREEN

Meier c14.indd V2 - 04/16/2012

 <service android:name=”.MyWallpaperService”>
 <intent-filter>
 <action android:name=
 “android.service.wallpaper.WallpaperService” />
 </intent-filter>
 <meta-data
 android:name=”android.service.wallpaper”
 android:resource=”@xml/mylivewallpaper”
 />
 </service>
</application>

code snippet PA4AD_Ch14_LiveWallpaper/AndroidManifest.xml

Creating a Wallpaper Service Engine

The WallpaperService.Engine class is where you defi ne the behavior of the Live Wallpaper. The
Wallpaper Service Engine includes the Surface View onto which you will draw your Live Wallpaper
and handlers notifying you of touch events and home screen offset changes and is where you should
implement your redraw loop.

The Surface View, introduced in Chapter 11, is a specialized drawing canvas that supports updates
from background threads, making it ideal for creating smooth, dynamic, and interactive graphics.

To implement your own Wallpaper Service engine, extend the WallpaperService.Engine class
within an enclosing Wallpaper Service class, as shown in the skeleton code in Listing 14-36.

LISTING 14-36: Wallpaper Service Engine skeleton code

public class MyWallpaperServiceEngine extends WallpaperService.Engine {

 private static final int FPS = 30;
 private final Handler handler = new Handler();

 @Override
 public void onCreate(SurfaceHolder surfaceHolder) {
 super.onCreate(surfaceHolder);
 // TODO Handle initialization.
 }

 @Override
 public void onOffsetsChanged(float xOffset, float yOffset,
 float xOffsetStep, float yOffsetStep,
 int xPixelOffset, int yPixelOffset) {
 super.onOffsetsChanged(xOffset, yOffset, xOffsetStep, yOffsetStep,
 xPixelOffset, yPixelOffset);
 // Triggered whenever the user swipes between multiple
 // home-screen panels.
 }

LISTING 14-35 (continued)

c14.indd 618c14.indd 618 4/18/2012 3:55:10 PM4/18/2012 3:55:10 PM

Creating Live Wallpaper x 619

Meier c14.indd V2 - 04/16/2012

 @Override
 public void onTouchEvent(MotionEvent event) {
 super.onTouchEvent(event);
 // Triggered when the Live Wallpaper receives a touch event
 }

 @Override
 public void onSurfaceCreated(SurfaceHolder holder) {
 super.onSurfaceCreated(holder);
 // TODO Surface has been created, begin the update loop that will
 // update the Live Wallpaper.
 drawFrame();
 }

 private void drawFrame() {
 final SurfaceHolder holder = getSurfaceHolder();

 Canvas canvas = null;
 try {
 canvas = holder.lockCanvas();
 if (canvas != null) {
 // Draw on the Canvas!
 }
 } finally {
 if (canvas != null)
 holder.unlockCanvasAndPost(canvas);
 }

 // Schedule the next frame
 handler.removeCallbacks(drawSurface);
 handler.postDelayed(drawSurface, 1000 / FPS);
 }

 // Runnable used to allow you to schedule frame draws.
 private final Runnable drawSurface = new Runnable() {
 public void run() {
 drawFrame();
 }
 };

}

code snippet PA4AD_Ch14_LiveWallpaper/src/ MyWallpaperSkeletonService.java

You must wait for the Surface to complete its initialization — indicated by the onSurfaceCreated
handler being called — before you can begin drawing on it.

After the Surface has been created, you can begin the drawing loop that updates the Live
Wallpaper’s UI. In Listing 14-36 this is done by scheduling a new frame to be drawn at the comple-
tion of the drawing of the previous frame. The rate of redraws in this example is determined by the
desired frame rate.

You can use the onTouchEvent and the onOffsetsChanged handlers to add interactivity to your
Live Wallpapers.

c14.indd 619c14.indd 619 4/18/2012 3:55:11 PM4/18/2012 3:55:11 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Meier c14.indd V2 - 04/16/2012

c14.indd 620c14.indd 620 4/18/2012 3:55:11 PM4/18/2012 3:55:11 PM

Meier c15.indd V2 - 03/21/2012 Page 621

15
Audio, Video, and Using the
Camera

WHAT’S IN THIS CHAPTER?

 ‰ Playing audio and video with the Media Player

 ‰ Handling audio focus and media button presses

 ‰ Using the Remote Control Client

 ‰ Applying audio and video eff ects

 ‰ Recording audio and video with the Media Recorder

 ‰ Recording video and taking pictures using Intents

 ‰ Previewing recorded video and displaying live camera streams

 ‰ Taking pictures and controlling the camera

 ‰ Manipulating raw audio

 ‰ Using face and feature recognition

The increasing popularity of cloud-based music players, combined with the ubiquity of
modern phones with ever-increasing storage capacities, is leading to mobile devices becoming
the de facto portable digital media player.

This chapter introduces you to the Android APIs for controlling audio and video playback,
controlling the audio focus of the device, and reacting appropriately when other applications
take focus or the output channel is changed (for example, when headphones are unplugged).

You’ll also learn how to use the Remote Control Client, introduced in Android 4.0. It provides
a mechanism for showing users details on the media they’re playing and allows them to
control the playback from the device’s lock screen.

c15.indd 621c15.indd 621 4/18/2012 3:55:57 PM4/18/2012 3:55:57 PM

622 x CHAPTER 15 AUDIO, VIDEO, AND USING THE CAMERA

Meier c15.indd V2 - 03/21/2012 Page 622

With many devices now including two high-resolution cameras, mobiles have also begun to take the
place of non-SLR digital cameras. You’ll learn to use the Android camera APIs to take photos and
record video using any camera available to the device, as well as displaying the live camera feed.
New media effects APIs provide a way to modify and enhance video images in real time from within
your applications.

Android’s open platform and provider-agnostic philosophy ensures that it offers a multimedia API
capable of playing and recording a wide range of image, audio, and video formats, both locally
and streamed.

You’ll also learn how to manipulate raw audio fi les using the Audio Track and Audio Record classes,
to create a Sound Pool, and to add newly recorded media fi les to the Media Store.

PLAYING AUDIO AND VIDEO

Android 4.0.3 (API level 15) supports the following multimedia formats for playback as part of the
base framework. Note that some devices may support playback of additional fi le formats:

 ‰ Audio

 ‰ AAC LC/LTP

 ‰ HE-AACv1 (AAC+)

 ‰ HE-AACv2 (Enhanced AAC+)

 ‰ AMR-NB

 ‰ AMR-WB

 ‰ MP3

 ‰ MIDI

 ‰ Ogg Vorbis

 ‰ PCM/WAVE

 ‰ FLAC (on devices running Android 3.1 or above)

 ‰ Image

 ‰ JPEG

 ‰ PNG

 ‰ WEBP (on devices running Android 4.0 or above)

 ‰ GIF

 ‰ BMP

 ‰ Video

 ‰ H.263

 ‰ H.264 AVC

c15.indd 622c15.indd 622 4/18/2012 3:56:01 PM4/18/2012 3:56:01 PM

Playing Audio and Video x 623

Meier c15.indd V2 - 03/21/2012 Page 623

 ‰ MPEG-4 SP

 ‰ VP8 (on devices running Android 2.3.3 or above)

The following network protocols are supported for streaming media:

 ‰ RTSP (RTP, SDP)

 ‰ HTTP/HTTPS progressive streaming

 ‰ HTTP/HTTPS live streaming (on devices running Android 3.0 or above)

For full details on the currently supported media formats and recommendations
for video encoding and audio streaming, see the Android Dev Guide, at http://
developer.android.com/guide/appendix/media-formats.html.

Introducing the Media Player

The playback of audio and video within Android applications is handled primarily through the
MediaPlayer class. Using the Media Player, you can play media stored in application resources,
local fi les, Content Providers, or streamed from a network URL.

The Media Player’s management of audio and video fi les and streams is handled as a state machine.
In the most simplistic terms, transitions through the state machine can be described as follows:

1. Initialize the Media Player with media to play.

2. Prepare the Media Player for playback.

3. Start the playback.

4. Pause or stop the playback prior to its completing.

5. The playback is complete.

A more detailed and thorough description of the Media Player state machine is
provided at the Android developer site, at http://developer.android.com/
reference/android/media/MediaPlayer.html#StateDiagram.

To play a media resource, you need to create a new MediaPlayer instance, initialize it with a media
source, and prepare it for playback.

The following section describes how to initialize and prepare the Media Player. After that, you’ll
learn to control the playback to start, pause, stop, or seek the prepared media.

To stream Internet media using the Media Player, your application must include the INTERNET
permission:

<uses-permission android:name=”android.permission.INTERNET”/>

c15.indd 623c15.indd 623 4/18/2012 3:56:01 PM4/18/2012 3:56:01 PM

http://developer.android.com/guide/appendix/media-formats.html
http://developer.android.com/guide/appendix/media-formats.html
http://developer.android.com

624 x CHAPTER 15 AUDIO, VIDEO, AND USING THE CAMERA

Meier c15.indd V2 - 03/21/2012 Page 624

Android supports a limited number of simultaneous Media Player objects;
not releasing them can cause runtime exceptions when the system runs out.
When you fi nish playback, call release on your Media Player object to free the
associated resources:

mediaPlayer.release();

Preparing Audio for Playback

There are a number of ways you can play audio content through the Media Player. You can include it as
an application resource, play it from local fi les or Content Providers, or stream it from a remote URL.

To include audio content as an application resource, add it to the res/raw folder of your resources
hierarchy. Raw resources are not compressed or manipulated in any way when packaged into your
application, making them an ideal way to store precompressed fi les such as audio fi les.

Initializing Audio Content for Playback

To play back audio content using a Media Player, you need to create a new Media Player object and
set the data source of the audio in question. You can do this by using the static create method,
passing in the Activity Context and any one of the following audio sources:

 ‰ A resource identifi er (typically for an audio fi le stored in the res/raw resource folder)

 ‰ A URI to a local fi le (using the file:// schema)

 ‰ A URI to an online audio resource (as a URL)

 ‰ A URI to a row within a Content Provider that returns an audio fi le

// Load an audio resource from a package resource.
MediaPlayer resourcePlayer =
 MediaPlayer.create(this, R.raw.my_audio);

// Load an audio resource from a local file.
MediaPlayer filePlayer = MediaPlayer.create(this,
 Uri.parse(“file:///sdcard/localfile.mp3”));

// Load an audio resource from an online resource.
MediaPlayer urlPlayer = MediaPlayer.create(this,
 Uri.parse(“http://site.com/audio/audio.mp3”));

// Load an audio resource from a Content Provider.
MediaPlayer contentPlayer = MediaPlayer.create(this,
 Settings.System.DEFAULT_RINGTONE_URI);

The Media Player objects returned by these create methods have already had
prepare called. It’s important that you do not call it again.

c15.indd 624c15.indd 624 4/18/2012 3:56:01 PM4/18/2012 3:56:01 PM

file://schema
file:///sdcard/localfile.mp3%E2%80%9D%00%00%00
http://site.com/audio/audio.mp3%E2%80%9D%00%00

Playing Audio and Video x 625

Meier c15.indd V2 - 03/21/2012 Page 625

Alternatively, you can use the setDataSource method on an existing Media Player instance, as
shown in Listing 15-1. This method accepts a fi le path, Content Provider URI, streaming media
URL path, or File Descriptor. When using the setDataSource method, it is vital that you call
 prepare on the Media Player before you begin playback.

LISTING 15-1: Audio playback using the Media Player

MediaPlayer mediaPlayer = new MediaPlayer();
mediaPlayer.setDataSource(“/sdcard/mydopetunes.mp3”);
mediaPlayer.prepare();

code snippet PA4AD_Ch15_Media_Player/src/VideoViewActivity.java

Preparing Video for Playback

Playback of video content is slightly more involved than audio. To play a video, you fi rst must have a
Surface on which to show it.

There are two alternatives for the playback of video content. The fi rst technique, using the
VideoView class, encapsulates the creation of a Surface and allocation and preparation of video con-
tent using a Media Player.

The second technique allows you to specify your own Surface and manipulate the underlying
Media Player instance directly.

Playing Video Using the Video View

The simplest way to play back video is to use the Video View. The Video View includes a Surface on
which the video is displayed and encapsulates and manages a Media Player instance that handles the
playback.

After placing the Video View within the UI, get a reference to it within your code. You can then
assign a video to play by calling its setVideoPath or setVideoURI methods to specify the path to a
local fi le, or the URI of either a Content Provider or remote video stream:

final VideoView videoView = (VideoView)findViewById(R.id.videoView);

// Assign a local file to play
videoView.setVideoPath(“/sdcard/mycatvideo.3gp”);

// Assign a URL of a remote video stream
videoView.setVideoUri(myAwesomeStreamingSource);

When the video is initialized, you can control its playback using the start, stopPlayback, pause,
and seekTo methods. The Video View also includes the setKeepScreenOn method to apply a screen
Wake Lock that will prevent the screen from being dimmed while playback is in progress without
requiring a special permission.

Listing 15-2 shows the skeleton code used to assign a video to a Video View. It uses a Media
Controller to control playback, as described in the section “Controlling the Media Player Playback.”

c15.indd 625c15.indd 625 4/18/2012 3:56:02 PM4/18/2012 3:56:02 PM

626 x CHAPTER 15 AUDIO, VIDEO, AND USING THE CAMERA

Meier c15.indd V2 - 03/21/2012 Page 626

LISTING 15-2: Video playback using a Video View

// Get a reference to the Video View.
final VideoView videoView = (VideoView)findViewById(R.id.videoView);

// Configure the video view and assign a source video.
videoView.setKeepScreenOn(true);
videoView.setVideoPath(“/sdcard/mycatvideo.3gp”);

// Attach a Media Controller
MediaController mediaController = new MediaController(this);
videoView.setMediaController(mediaController);

code snippet PA4AD_Ch15_Media_Player/src/VideoViewActivity.java

Creating a Surface for Video Playback

The fi rst step to using the Media Player directly to view video content is to prepare a Surface onto
which the video will be displayed.

This is generally handled using a SurfaceView object. The Surface View class is a wrapper around
the Surface Holder object, which, in turn, is a wrapper around the Surface that is used to support
visual updates from background threads.

The Media Player uses a SurfaceHolder object to display video content, assigned using the
 setDisplay method. To include a Surface Holder in your UI layout, use the SurfaceView class, as
shown in the sample layout XML in Listing 15-3.

LISTING 15-3: Sample layout using a Surface View

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:orientation=”vertical” >
 <SurfaceView
 android:id=”@+id/surfaceView”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:layout_weight=”30”
 />
 <LinearLayout
 android:id=”@+id/linearLayout1”
 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 android:layout_weight=”1”>
 <Button
 android:id=”@+id/buttonPlay”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”

c15.indd 626c15.indd 626 4/18/2012 3:56:02 PM4/18/2012 3:56:02 PM

http://schemas.android.com/apk/res/android%E2%80%9D

Playing Audio and Video x 627

Meier c15.indd V2 - 03/21/2012 Page 627

 android:text=”Play”
 />
 <Button
 android:id=”@+id/buttonPause”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”Pause”
 />
 <Button
 android:id=”@+id/buttonSkip”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”Skip”
 />
 </LinearLayout>
</LinearLayout>

code snippet PA4AD_Ch15_Media_Player/res/layout/surfaceviewvideoviewer.xml

Surface Holders are created asynchronously, so you must wait until the surfaceCreated handler
has been fi red before assigning the returned Surface Holder object to the Media Player by imple-
menting the SurfaceHolder.Callback interface.

After creating and assigning the Surface Holder to your Media Player, use the setDataSource
method to specify the path, URL, or Content Provider URI of the video resource to play.

After you select your media source, call prepare to initialize the Media Player in preparation
for playback. Listing 15-4 shows the skeleton code used to initialize a Surface View within your
Activity and assigns it as a display target for a Media Player.

LISTING 15-4: Initializing and assigning a Surface View to a Media Player

import java.io.IOException;
import android.app.Activity;
import android.media.MediaPlayer;
import android.os.Bundle;
import android.util.Log;
import android.view.SurfaceHolder;
import android.view.SurfaceView;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;

public class SurfaceViewVideoViewActivity extends Activity
 implements SurfaceHolder.Callback {

 static final String TAG = “SurfaceViewVideoViewActivity”;

 private MediaPlayer mediaPlayer;

 public void surfaceCreated(SurfaceHolder holder) {
 try {

continues

c15.indd 627c15.indd 627 4/18/2012 3:56:02 PM4/18/2012 3:56:02 PM

628 x CHAPTER 15 AUDIO, VIDEO, AND USING THE CAMERA

Meier c15.indd V2 - 03/21/2012 Page 628

 // When the surface is created, assign it as the
 // display surface and assign and prepare a data
 // source.
 mediaPlayer.setDisplay(holder);
 mediaPlayer.setDataSource(“/sdcard/test2.3gp”);
 mediaPlayer.prepare();
 } catch (IllegalArgumentException e) {
 Log.e(TAG, “Illegal Argument Exception”, e);
 } catch (IllegalStateException e) {
 Log.e(TAG, “Illegal State Exception“, e);
 } catch (SecurityException e) {
 Log.e(TAG, “Security Exception“, e);
 } catch (IOException e) {
 Log.e(TAG, “IO Exception“, e);
 }
 }

 public void surfaceDestroyed(SurfaceHolder holder) {
 mediaPlayer.release();
 }

 public void surfaceChanged(SurfaceHolder holder,
 int format, int width, int height) { }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.surfaceviewvideoviewer);

 // Create a new Media Player.
 mediaPlayer = new MediaPlayer();

 // Get a reference to the Surface View.
 final SurfaceView surfaceView =
 (SurfaceView)findViewById(R.id.surfaceView);

 // Configure the Surface View.
 surfaceView.setKeepScreenOn(true);

 // Configure the Surface Holder and register the callback.
 SurfaceHolder holder = surfaceView.getHolder();
 holder.addCallback(this);
 holder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);
 holder.setFixedSize(400, 300);

 // Connect a play button.
 Button playButton = (Button)findViewById(R.id.buttonPlay);
 playButton.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 mediaPlayer.start();

LISTING 15-4 (continued)

c15.indd 628c15.indd 628 4/18/2012 3:56:03 PM4/18/2012 3:56:03 PM

Playing Audio and Video x 629

Meier c15.indd V2 - 03/21/2012 Page 629

 }
 });

 // Connect a pause button.
 Button pauseButton = (Button)findViewById(R.id.buttonPause);
 pauseButton.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 mediaPlayer.pause();
 }
 });

 // Add a skip button.
 Button skipButton = (Button)findViewById(R.id.buttonSkip);
 skipButton.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 mediaPlayer.seekTo(mediaPlayer.getDuration()/2);
 }
 });
 }
}

code snippet PA4AD_Ch15_Media_Player/src/SurfaceViewVideoViewActivity.java

Controlling Media Player Playback

When a Media Player is prepared, call start to begin playback of the associated media:

mediaPlayer.start();

Use the stop and pause methods to stop or pause playback, respectively.

The Media Player also provides the getDuration method to fi nd the length of the media being
played and the getCurrentPosition method to fi nd the playback position. Use the seekTo method
to jump to a specifi c position in the media (refer to Listing 15-4).

To ensure a consistent media control experience, Android
includes the MediaController — a standard control that
provides the common media control buttons, as shown in
Figure 15-1.

If you are using the Media Controller to control video play-
back, it’s good practice to instantiate it in code and associate it with the video playback View, rather
than including it within your layout. When created this way, the Media Controller will be visible
only when you set it to visible, touch its host Video View, or are interacting with it.

If you’re using a Video View to display your video content, you can use the Media Controller simply
by the Video View’s setMediaController method:

// Attach a Media Controller
MediaController mediaController = new MediaController(this);
videoView.setMediaController(mediaController);

You can use a Media Controller to control any Media Player and associate it with any View in
your UI.

FIGURE 15-1

c15.indd 629c15.indd 629 4/18/2012 3:56:03 PM4/18/2012 3:56:03 PM

630 x CHAPTER 15 AUDIO, VIDEO, AND USING THE CAMERA

Meier c15.indd V2 - 03/21/2012 Page 630

To control a Media Player, or other audio or video source directly, you need to implement a new
MediaController.MediaPlayerControl, as shown in Listing 15-5.

LISTING 15-5: Controlling playback using the Media Controller

MediaController mediaController = new MediaController(this);
mediaController.setMediaPlayer(new MediaPlayerControl() {

 public boolean canPause() {
 return true;
 }

 public boolean canSeekBackward() {
 return true;
 }

 public boolean canSeekForward() {
 return true;
 }

 public int getBufferPercentage() {
 return 0;
 }

 public int getCurrentPosition() {
 return mediaPlayer.getCurrentPosition();
 }

 public int getDuration() {
 return mediaPlayer.getDuration();
 }

 public boolean isPlaying() {
 return mediaPlayer.isPlaying();
 }

 public void pause() {
 mediaPlayer.pause();
 }

 public void seekTo(int pos) {
 mediaPlayer.seekTo(pos);
 }

 public void start() {
 mediaPlayer.start();
 }

});

code snippet PA4AD_Ch15_Media_Player/src/SurfaceViewVideoViewActivity.java

c15.indd 630c15.indd 630 4/18/2012 3:56:03 PM4/18/2012 3:56:03 PM

Playing Audio and Video x 631

Meier c15.indd V2 - 03/21/2012 Page 631

Use the setAnchorView method to determine which view should anchor the Media Controller when
it’s visible, and call show or hide to show or hide the controller, respectively:

mediaController.setAnchorView(myView);
mediaController.show();

Note that you must associate a Media Player Control before attempting to display the Media
Controller.

Managing Media Playback Output

The Media Player provides methods to control the volume of the output, lock the screen brightness
during playback, and set the looping status.

You can control the volume for each channel during playback using the setVolume method. It takes
a scalar fl oat value between 0 and 1 for both the left and right channels (where 0 is silent and 1 is
maximum volume).

mediaPlayer.setVolume(0.5f, 0.5f);

To force the screen to stay on during video playback, use the setScreenOnWhilePlaying method:

mediaPlayer.setScreenOnWhilePlaying(true);

This is preferred to using Wake Locks because it doesn’t require any additional permissions. Wake
Locks are described in more detail in Chapter 18, “Advanced Android Development.”

Use the isLooping method to determine the current loop status, and the setLooping method to
specify if the media being played should loop when it completes:

if (!mediaPlayer.isLooping())
 mediaPlayer.setLooping(true);

It is currently not possible to play audio into a phone conversation; the Media
Player always plays audio using the standard output device — the speaker or
connected headset.

Responding to the Volume Controls

To ensure a consistent user experience, it’s important that your application correctly handles users
pressing the volume and any attached media playback control keys.

By default, using the volume keys, on either the device or an attached headset, changes the volume
of whichever audio stream is currently playing. If no stream is active, the volume keys will alter the
ringtone volume.

If your Activity is expected to play audio for a signifi cant proportion of its visible lifetime (for
example, a music player or game with a soundtrack and audio effects), it’s reasonable for users to
expect that the volume keys will alter the music volume even if no music is currently playing.

c15.indd 631c15.indd 631 4/18/2012 3:56:03 PM4/18/2012 3:56:03 PM

632 x CHAPTER 15 AUDIO, VIDEO, AND USING THE CAMERA

Meier c15.indd V2 - 03/21/2012 Page 632

Using the Activity’s setVolumeControlStream method — typically within its onCreate method,
as shown in Listing 15-6 — allows you to specify which audio stream should be controlled by the
 volume keys while the current Activity is active.

You can specify any of the available audio streams, but when using the Media Player, you should
specify the STREAM_MUSIC stream to make it the focus of the volume keys.

LISTING 15-6: Setting the volume control stream for an Activity

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.audioplayer);

 setVolumeControlStream(AudioManager.STREAM_MUSIC);
}

code snippet PA4AD_Ch15_Media_Player/src/AudioPlayerActivity.java

Although it’s also possible to listen for volume key presses directly, this is gener-
ally considered poor practice. There are several ways a user can modify the audio
volume, including the hardware buttons as well as software controls. Triggering
volume changes manually based only on the hardware buttons is likely to make
your application respond unexpectedly.

Responding to the Media Playback Controls

If your application plays audio and/or video in a way users would associate with a media player, it
should respond predictably to media button presses.

Some devices, as well as attached or Bluetooth headsets, feature play, stop, pause, skip, and previ-
ous media playback keys. When users press these keys, the system broadcasts an Intent with the
ACTION_MEDIA_BUTTON action. To receive this broadcast, you must have a Broadcast Receiver
declared in your manifest that listens for this action, as shown in Listing 15-7.

LISTING 15-7: Media button press Broadcast Receiver manifest declaration

<receiver android:name=”.MediaControlReceiver”>
 <intent-filter>
 <action android:name=”android.intent.action.MEDIA_BUTTON”/>
 </intent-filter>
</receiver>

code snippet PA4AD_Ch15_Media_Player/AndroidManifest.xml

c15.indd 632c15.indd 632 4/18/2012 3:56:03 PM4/18/2012 3:56:03 PM

Playing Audio and Video x 633

Meier c15.indd V2 - 03/21/2012 Page 633

In Listing 15-8 this Broadcast Receiver is implemented such that when it receives the media but-
ton key presses, it simply creates a new Intent that includes the same extras and broadcasts it to the
Activity playing the audio.

LISTING 15-8: A media button press Manifest Broadcast Receiver implementation

public class MediaControlReceiver extends BroadcastReceiver {

 public static final String ACTION_MEDIA_BUTTON =
 “com.paad.ACTION_MEDIA_BUTTON”;

 @Override
 public void onReceive(Context context, Intent intent) {
 if (Intent.ACTION_MEDIA_BUTTON.equals(intent.getAction())) {
 Intent internalIntent = new Intent(ACTION_MEDIA_BUTTON);
 internalIntent.putExtras(intent.getExtras());
 context.sendBroadcast(internalIntent);
 }
 }
}

code snippet PA4AD_Ch15_Media_Player/src/MediaControlReceiver.java

The key code of the media button pressed is stored within the received Intent within the EXTRA_KEY_
EVENT extra, as shown in Listing 15-9.

LISTING 15-9: Media button press Broadcast Receiver implementation

public class ActivityMediaControlReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 if (MediaControlReceiver.ACTION_MEDIA_BUTTON.equals(
 intent.getAction())) {
 KeyEvent event =
 (KeyEvent)intent.getParcelableExtra(Intent.EXTRA_KEY_EVENT);

 switch (event.getKeyCode()) {
 case (KeyEvent.KEYCODE_MEDIA_PLAY_PAUSE) :
 if (mediaPlayer.isPlaying())
 pause();
 else
 play();
 break;
 case (KeyEvent.KEYCODE_MEDIA_PLAY) :
 play(); break;
 case (KeyEvent.KEYCODE_MEDIA_PAUSE) :
 pause(); break;
 case (KeyEvent.KEYCODE_MEDIA_NEXT) :
 skip(); break;
 case (KeyEvent.KEYCODE_MEDIA_PREVIOUS) :

continues

c15.indd 633c15.indd 633 4/18/2012 3:56:04 PM4/18/2012 3:56:04 PM

634 x CHAPTER 15 AUDIO, VIDEO, AND USING THE CAMERA

Meier c15.indd V2 - 03/21/2012 Page 634

 previous(); break;
 case (KeyEvent.KEYCODE_MEDIA_STOP) :
 stop(); break;
 default: break;
 }
 }
 }
}

code snippet PA4AD_Ch15_Media_Player/src/AudioPlayerActivity.java

If your application intends to continue playing audio in the background when the Activity isn’t
 visible, a good approach is to keep your Media Player within a Service, controlling the media
 playback using Intents.

Multiple applications might be installed on a given device, each confi gured to receive media key
presses; therefore, you must also use the Audio Manager’s registerMediaButtonEventReceiver
method to register your Receiver as the exclusive handler of media button presses, as shown in
Listing 15-10, which both registers the media button event Receiver declared in your manifest and
the local Broadcast Receiver that interprets the Intent when it’s passed through to the Activity.

LISTING 15-10: Media button press Receiver manifest declaration

// Register the Media Button Event Receiver to
// listen for media button presses.
AudioManager am =
 (AudioManager)getSystemService(Context.AUDIO_SERVICE);
ComponentName component =
 new ComponentName(this, MediaControlReceiver.class);

am.registerMediaButtonEventReceiver(component);

// Register a local Intent Receiver that receives media button
// presses from the Receiver registered in the manifest.
activityMediaControlReceiver = new ActivityMediaControlReceiver();
IntentFilter filter =
 new IntentFilter(MediaControlReceiver.ACTION_MEDIA_BUTTON);

registerReceiver(activityMediaControlReceiver, filter);

code snippet PA4AD_Ch15_Media_Player/src/AudioPlayerActivity.java

Calls to registerMediaButtonEventReceiver are respected in the order in
which they’re received, so it’s good practice to register and unregister your
Receiver based on when you have (and lose) audio focus, as described in the
next section.

LISTING 15-9 (continued)

c15.indd 634c15.indd 634 4/18/2012 3:56:04 PM4/18/2012 3:56:04 PM

Playing Audio and Video x 635

Meier c15.indd V2 - 03/21/2012 Page 635

Requesting and Managing Audio Focus

In some cases (particularly for media players) your application should continue to respond to media
buttons when it isn’t visible or active. Users may have multiple media players on their devices, so it’s
important that your application pause playback and cede control of the media buttons when another
media application takes focus.

Similarly, when your application becomes active, it should notify other audio playback applications
that they should pause playback and allow it to become the focus for media button clicks. Such del-
egation is handled through the audio focus, a set of APIs introduced in Android 2.2 (API level 8).

To request audio focus before beginning playback, use the Audio Manager’s requestAudioFocus
method. When requesting the audio focus, you can specify which stream you require (typically
STREAM_MUSIC), and for how long you expect to require focus — either permanently (such as when
playing music) or transiently (such as when providing navigation instructions). In the latter case you
can also specify if your transient interruption can be handled by the currently focused application
“ducking” (lowering its volume) until your interruption is complete.

Specifying the nature of the audio focus you require allows other applications to better react to their
own loss of audio focus, as described later in this section.

Listing 15-11 shows the skeleton code for an Activity that requests permanent audio focus for the
music stream. You must also specify an Audio Focus Change Listener. This lets you monitor for loss
of audio focus and respond accordingly (and is described in more detail later in this section).

LISTING 15-11: Requesting the audio focus

AudioManager am = (AudioManager)getSystemService(Context.AUDIO_SERVICE);

// Request audio focus for playback
int result = am.requestAudioFocus(focusChangeListener,
 // Use the music stream.
 AudioManager.STREAM_MUSIC,
 // Request permanent focus.
 AudioManager.AUDIOFOCUS_GAIN);

if (result == AudioManager.AUDIOFOCUS_REQUEST_GRANTED) {
 mediaPlayer.start();
}

code snippet PA4AD_Ch15_Media_Player/src/AudioPlayerActivity.java

Audio focus is assigned in turn to each application that requests it. This means that if another
 application requests audio focus, your application will lose it. You will be notifi ed of the loss of
audio focus through the onAudioFocusChange handler of the Audio Focus Change Listener you
 registered when requesting the audio focus, as shown in Listing 15-12.

The focusChange parameter indicates the nature of the focus loss — either transient or perma-
nent — and whether ducking is permitted.

c15.indd 635c15.indd 635 4/18/2012 3:56:04 PM4/18/2012 3:56:04 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

636 x CHAPTER 15 AUDIO, VIDEO, AND USING THE CAMERA

Meier c15.indd V2 - 03/21/2012 Page 636

It’s best practice to pause your media playback whenever you lose audio focus, or, in the case of a
transient loss that supports ducking, to lower the volume of your audio output.

In the case of a transient focus loss, you will be notifi ed when you have regained focus, at which
point you can return to playing your audio at the previous volume.

For a permanent focus loss, you should stop playback and restart it only through a user interaction
(such as pressing the play button within your UI). In such circumstances you should also take this
opportunity to unregister the media button Receiver.

LISTING 15-12: Responding to the loss of audio focus

private OnAudioFocusChangeListener focusChangeListener =
 new OnAudioFocusChangeListener() {

 public void onAudioFocusChange(int focusChange) {
 AudioManager am =
 (AudioManager)getSystemService(Context.AUDIO_SERVICE);

 switch (focusChange) {
 case (AudioManager.AUDIOFOCUS_LOSS_TRANSIENT_CAN_DUCK) :
 // Lower the volume while ducking.
 mediaPlayer.setVolume(0.2f, 0.2f);
 break;

 case (AudioManager.AUDIOFOCUS_LOSS_TRANSIENT) :
 pause();
 break;

 case (AudioManager.AUDIOFOCUS_LOSS) :
 stop();
 ComponentName component =
 new ComponentName(AudioPlayerActivity.this,
 MediaControlReceiver.class);
 am.unregisterMediaButtonEventReceiver(component);
 break;

 case (AudioManager.AUDIOFOCUS_GAIN) :
 // Return the volume to normal and resume if paused.
 mediaPlayer.setVolume(1f, 1f);
 mediaPlayer.start();
 break;

 default: break;
 }
 }
};

code snippet PA4AD_Ch15_Media_Player/src/AudioPlayerActivity.java

c15.indd 636c15.indd 636 4/18/2012 3:56:05 PM4/18/2012 3:56:05 PM

Playing Audio and Video x 637

Meier c15.indd V2 - 03/21/2012 Page 637

When you have completed your audio playback, you may choose to abandon the audio focus, as
shown in Listing 15-13.

LISTING 15-13: Abandoning audio focus

AudioManager am =
 (AudioManager)getSystemService(Context.AUDIO_SERVICE);

am.abandonAudioFocus(focusChangeListener);

code snippet PA4AD_Ch15_Media_Player/src/AudioPlayerActivity.java

Typically, this is only necessary when your application takes only transient audio focus. In the case
of a media player, it is reasonable to maintain the audio focus whenever the music is playing or your
Activity is in the foreground.

Pausing Playback When the Output Changes

If the current output stream is an attached headset, disconnecting it will result in the system
 automatically switching output to the device’s speakers. It’s considered good practice to pause (or
reduce the volume of) your audio output in these circumstances.

To do so, create a Broadcast Receiver that listens for the AudioManager. ACTION_AUDIO_BECOMING_
NOISY broadcast and pauses your playback, as shown in Listing 15-14.

LISTING 15-14: Pausing output when the headset is disconnected

private class NoisyAudioStreamReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 if (AudioManager.ACTION_AUDIO_BECOMING_NOISY.equals
 (intent.getAction())) {
 pause();
 }
 }
}

code snippet PA4AD_Ch15_Media_Player/src/AudioPlayerActivity.java

Introducing the Remote Control Client

Android 4.0 (API level 14) introduced the Remote Control Client. Using the Remote Control Client,
your application can provide data, and respond, to remote controls capable of displaying metadata,
artwork, and media transport control buttons — such as the lock screen on Android 4.0 devices, as
shown in Figure 15-2.

c15.indd 637c15.indd 637 4/18/2012 3:56:05 PM4/18/2012 3:56:05 PM

638 x CHAPTER 15 AUDIO, VIDEO, AND USING THE CAMERA

Meier c15.indd V2 - 03/21/2012 Page 638

To add support for the Remote Control Client in your application, you must have a Receiver
 implementation that has been registered as a Media Button Event Receiver, as described earlier in
the “Responding to the Media Playback Controls” section.

Create a Pending Intent containing the ACTION_MEDIA_BUTTON action that is targeted at your
Receiver, and use it to create a new Remote Control Client. You register it with the Audio Manager
using the registerRemoteControlClient method, as shown in Listing 15-15.

FIGURE 15-2

LISTING 15-15: Registering a Remote Control Client

AudioManager am =
 (AudioManager)getSystemService(Context.AUDIO_SERVICE);

// Create a Pending Intent that will broadcast the
// media button press action. Set the target component
// to your Broadcast Receiver.
Intent mediaButtonIntent = new Intent(Intent.ACTION_MEDIA_BUTTON);
ComponentName component =
 new ComponentName(this, MediaControlReceiver.class);

mediaButtonIntent.setComponent(component);
PendingIntent mediaPendingIntent =
 PendingIntent.getBroadcast(getApplicationContext(), 0,

c15.indd 638c15.indd 638 4/18/2012 3:56:05 PM4/18/2012 3:56:05 PM

Playing Audio and Video x 639

Meier c15.indd V2 - 03/21/2012 Page 639

 mediaButtonIntent, 0);

// Create a new Remote Control Client using the
// Pending Intent and register it with the
// Audio Manager
myRemoteControlClient =
 new RemoteControlClient(mediaPendingIntent);

am.registerRemoteControlClient(myRemoteControlClient);

code snippet PA4AD_Ch15_Media_Player/src/AudioPlayerActivity.java

In this example, the Remote Control Client button presses will be received by the Media Control
Receiver, which, in turn, will broadcast them to the Receiver registered within the Activity.

After registering your Remote Control Client, you can use it to modify the metadata displayed on
the associated display.

Use the setTransportControlFlags method to defi ne which playback controls your application
supports, as shown in Listing 15-16.

LISTING 15-16: Confi guring the Remote Control Client playback controls

myRemoteControlClient.setTransportControlFlags(
 RemoteControlClient.FLAG_KEY_MEDIA_PLAY_PAUSE|
 RemoteControlClient.FLAG_KEY_MEDIA_STOP);

code snippet PA4AD_Ch15_Media_Player/src/AudioPlayerActivity.java

It’s also possible to use the setPlaybackState method to update the current state of playback by
using one of the RemoteControlClient.PLAYBACK_* constants:

myRemoteControlClient.setPlaybackState(RemoteControlClient.PLAYSTATE_PLAYING);

You can supply a bitmap, text string, and numeric value associated with the currently playing
audio — typically the album artwork, track name, and elapsed track time, respectively. To do so,
use the MetadataEditor, accessible from the Remote Control Client’s editMetadata method as
shown in Listing 15-17.

Using the putBitmap on the MetadataEditor object, you can specify an associated bitmap using the
MetadataEditor.BITMAP_KEY_ARTWORK key.

Using the putLong method you can add the track number, CD number, year of recording, and
elapsed duration using the MediaMetadataRetriever.METADATA_KEY_* constants.

Similarly, the putString method lets you specify the album, album artist, track title, track title,
author, compilation, composer, release data, genre, and writer of the current audio — specifying
null where no such data is available.

c15.indd 639c15.indd 639 4/18/2012 3:56:06 PM4/18/2012 3:56:06 PM

640 x CHAPTER 15 AUDIO, VIDEO, AND USING THE CAMERA

Meier c15.indd V2 - 03/21/2012 Page 640

To apply changes to the displayed metadata, call the apply method.

LISTING 15-17: Applying changes to the Remote Control Client metadata

MetadataEditor editor = myRemoteControlClient.editMetadata(false);

editor.putBitmap(MetadataEditor.BITMAP_KEY_ARTWORK, artwork);
editor.putString(MediaMetadataRetriever.METADATA_KEY_ALBUM, album);
editor.putString(MediaMetadataRetriever.METADATA_KEY_ARTIST, artist);
editor.putLong(MediaMetadataRetriever.METADATA_KEY_CD_TRACK_NUMBER,
 trackNumber);

editor.apply();

code snippet PA4AD_Ch15_Media_Player/src/AudioPlayerActivity.java

MANIPULATING RAW AUDIO

The AudioTrack and AudioRecord classes let you record audio directly from the audio input
 hardware and stream PCM audio buffers directly to the audio hardware for playback.

Using Audio Track streaming, you can process and play back incoming audio in near real time,
 letting you manipulate incoming or outgoing audio and perform signal processing on raw audio.

Although a detailed account of raw audio processing and manipulation is beyond the scope of this
book, the following sections offer an introduction to recording and playing back raw PCM data.

Recording Sound with Audio Record

Use the AudioRecord class to record audio directly from the hardware buffers. Create a new Audio
Record object, specifying the source, frequency, channel confi guration, audio encoding, and buffer size:

int bufferSize = AudioRecord.getMinBufferSize(frequency,
 channelConfiguration,
 audioEncoding);

AudioRecord audioRecord = new AudioRecord(MediaRecorder.AudioSource.MIC,
 frequency, channelConfiguration,
 audioEncoding, bufferSize);

The frequency, audio encoding, and channel confi guration values will affect the size and quality of
the recorded audio. None of this meta data is associated with the recorded fi les.

For privacy reasons, Android requires that the RECORD_AUDIO permission be included in your
manifest:

<uses-permission android:name=”android.permission.RECORD_AUDIO”/>

When your Audio Record object is initialized, run the startRecording method to begin
 asynchronous recording, and use the read method to add raw audio data into the recording buffer:

audioRecord.startRecording();
while (isRecording) {

c15.indd 640c15.indd 640 4/18/2012 3:56:06 PM4/18/2012 3:56:06 PM

Manipulating Raw Audio x 641

Meier c15.indd V2 - 03/21/2012 Page 641

 [... populate the buffer ...]
 int bufferReadResult = audioRecord.read(buffer, 0, bufferSize);
}

Listing 15-18 records raw audio from a microphone to a fi le stored on an SD card. The next section
shows you how to use an Audio Track to play this audio.

LISTING 15-18: Recording raw audio with Audio Record

int frequency = 11025;
int channelConfiguration = AudioFormat.CHANNEL_CONFIGURATION_MONO;
int audioEncoding = AudioFormat.ENCODING_PCM_16BIT;

File file =
 new File(Environment.getExternalStorageDirectory(), “raw.pcm”);

// Create the new file.
try {
 file.createNewFile();
} catch (IOException e) {
 Log.d(TAG, “IO Exception”, e);
}

try {
 OutputStream os = new FileOutputStream(file);
 BufferedOutputStream bos = new BufferedOutputStream(os);
 DataOutputStream dos = new DataOutputStream(bos);

 int bufferSize = AudioRecord.getMinBufferSize(frequency,
 channelConfiguration,
 audioEncoding);
 short[] buffer = new short[bufferSize];

 // Create a new AudioRecord object to record the audio.
 AudioRecord audioRecord =
 new AudioRecord(MediaRecorder.AudioSource.MIC,
 frequency,
 channelConfiguration,
 audioEncoding, bufferSize);
 audioRecord.startRecording();

 while (isRecording) {
 int bufferReadResult = audioRecord.read(buffer, 0, bufferSize);
 for (int i = 0; i < bufferReadResult; i++)
 dos.writeShort(buffer[i]);
 }

 audioRecord.stop();
 dos.close();
} catch (Throwable t) {
 Log.d(TAG, “An error occurred during recording”, t);
}

code snippet PA4AD_Ch15_Raw_Audio/src/RawAudioActivity.java

c15.indd 641c15.indd 641 4/18/2012 3:56:06 PM4/18/2012 3:56:06 PM

642 x CHAPTER 15 AUDIO, VIDEO, AND USING THE CAMERA

Meier c15.indd V2 - 03/21/2012 Page 642

Playing Sound with Audio Track

Use the AudioTrack class to play raw audio directly into the hardware buffers. Create a new Audio
Track object, specifying the streaming mode, frequency, channel confi guration, and the audio
encoding type and length of the audio to play back:

 AudioTrack audioTrack = new AudioTrack(AudioManager.STREAM_MUSIC,
 frequency,
 channelConfiguration,
 audioEncoding,
 audioLength,
 AudioTrack.MODE_STREAM);

Because this is raw audio, no metadata is associated with the recorded fi les, so it’s important to cor-
rectly set the audio data properties to the same values as those used when recording the fi le.

After initializing your Audio Track, run the play method to begin asynchronous playback, and use
the write method to add raw audio data into the playback buffer:

 audioTrack.play();
 audioTrack.write(audio, 0, audioLength);

You can write audio into the Audio Track buffer either before or after play has been called. In the
former case, playback will commence as soon as play is called; in the latter case, playback will
begin as soon as you write data to the Audio Track buffer.

Listing 15-19 plays back the raw audio recorded in Listing 15-18 but does so at double speed by
halving the expected frequency of the audio fi le.

LISTING 15-19: Playing raw audio with Audio Track

int frequency = 11025/2;
int channelConfiguration = AudioFormat.CHANNEL_CONFIGURATION_MONO;
int audioEncoding = AudioFormat.ENCODING_PCM_16BIT;

File file =
 new File(Environment.getExternalStorageDirectory(), “raw.pcm”);

// Short array to store audio track (16 bit so 2 bytes per short)
int audioLength = (int)(file.length()/2);
short[] audio = new short[audioLength];

try {
 InputStream is = new FileInputStream(file);
 BufferedInputStream bis = new BufferedInputStream(is);
 DataInputStream dis = new DataInputStream(bis);

 int i = 0;
 while (dis.available() > 0) {
 audio[i] = dis.readShort();
 i++;
 }

 // Close the input streams.
 dis.close();

c15.indd 642c15.indd 642 4/18/2012 3:56:06 PM4/18/2012 3:56:06 PM

Creating a Sound Pool x 643

Meier c15.indd V2 - 03/21/2012 Page 643

 // Create and play a new AudioTrack object
 AudioTrack audioTrack = new AudioTrack(AudioManager.STREAM_MUSIC,
 frequency,
 channelConfiguration,
 audioEncoding,
 audioLength,
 AudioTrack.MODE_STREAM);
 audioTrack.play();
 audioTrack.write(audio, 0, audioLength);
} catch (Throwable t) {
 Log.d(TAG, “An error occurred during playback”, t);
}

code snippet PA4AD_Ch15_Raw_Audio/src/RawAudioActivity.java

CREATING A SOUND POOL

You can use the SoundPool class to manage audio when your application requires low audio latency
and/or will be playing multiple audio streams simultaneously (such as a game with multiple sound
effects and background music).

Creating a Sound Pool preloads the audio tracks used by your application, such as each level within
a game, and optimizes their resource management.

As you add each track to the Sound Pool, it is decompressed and decoded into raw 16-bit PCM
streams, allowing you to package compressed audio resources without suffering from the latency
and CPU effects of decompression during playback.

When creating a Sound Pool, you can specify the maximum number of concurrent streams to play,
allowing it to minimize the effect of the audio mixing by automatically stopping the oldest, lowest
priority stream within the pool when the limit is reached.

When creating a new Sound Pool, you specify the target stream (almost always STREAM_MUSIC)
and the maximum number of simultaneous streams that should be played concurrently as shown in
Listing 15-20.

The Sound Pool supports loading audio resources from an Asset File Descriptor, package resource,
fi le path, or File Descriptor, using a series of overloaded load methods. Loading a new audio
resource returns an integer that is used to uniquely identify that sample and must be used to alter its
playback settings or initiate or pause playback, as shown in Listing 15-21.

LISTING 15-20: Creating a Sound Pool

int maxStreams = 10;
SoundPool sp = new SoundPool(maxStreams, AudioManager.STREAM_MUSIC, 0);

int track1 = sp.load(this, R.raw.track1, 0);
int track2 = sp.load(this, R.raw.track2, 0);
int track3 = sp.load(this, R.raw.track3, 0);

code snippet PA4AD_Ch15_Media_Player/src/SoundPoolActivity.java

c15.indd 643c15.indd 643 4/18/2012 3:56:06 PM4/18/2012 3:56:06 PM

644 x CHAPTER 15 AUDIO, VIDEO, AND USING THE CAMERA

Meier c15.indd V2 - 03/21/2012 Page 644

Use the play, pause, resume, and stop methods to control the playback of each audio stream.
When your audio samples are playing, you can use the setLoop method to alter the number of times
the specifi ed sample should repeat, the setRate method to modify the playback frequency, and the
setVolume method to alter the playback volume. Some of these playback controls are shown in
Listing 15-21.

LISTING 15-21: Controlling playback of Sound Pool audio

track1Button.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 sp.play(track1, 1, 1, 0, -1, 1);
 }
});

track2Button.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 sp.play(track2, 1, 1, 0, 0, 1);
 }
});

track3Button.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 sp.play(track3, 1, 1, 0, 0, 0.5f);
 }
});

stopButton.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 sp.stop(track1);
 sp.stop(track2);
 sp.stop(track3);
 }
});

chipmunkButton.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 sp.setRate(track1, 2f);
 }
});

code snippet PA4AD_Ch15_Media_Player/src/SoundPoolActivity.java

Android 2.2 (API level 8) introduced two convenience methods, autoPause and autoResume, that
will pause and resume, respectively, all the active audio streams.

If you are creating a game, or other application that should play audio only when visible, it’s good
practice to pause all the active audio unless your application is active and visible, and restart it only
after the user has begun interacting with it again — typically by touching the screen.

c15.indd 644c15.indd 644 4/18/2012 3:56:07 PM4/18/2012 3:56:07 PM

Using Audio Eff ects x 645

Meier c15.indd V2 - 03/21/2012 Page 645

When you no longer require the audio collected within a Sound Pool, call its release method to
free the resources:

soundPool.release();

USING AUDIO EFFECTS

Android 2.3 (API level 9) introduced a suite of audio effects that can be applied to the audio output
of any Audio Track or Media Player. After applying the effects, you can modify the effect settings
and parameters to alter how they affect the audio being output within your application.

As of Android 4.0.3, the following fi ve AudioEffect subclasses are available:

 ‰ Equalizer — Lets you modify the frequency response of your audio output. Use the
 setBandLevel method to assign a gain value to a specifi c frequency band.

 ‰ Virtualizer — Makes audio appear to be more three-dimensional. Its implementation will
vary depending on the confi guration of the output device. Use the setStrength method to
set the strength of the effect between 0 and 1000.

 ‰ BassBoost — Boosts the low frequencies of your audio output. Use the setStrength
method to set the strength of the effect between 0 and 1000.

 ‰ PresetReverb — Allows you to specify one of a number of reverb presets, designed to make
your audio sound as though it were being played in one of the specifi ed room types. Use the
setPreset method to apply reverb equivalent to a medium or large hall, or small, medium,
or large room using a PresetReverb.PRESET_* constant.

 ‰ EnvironmentalReverb — Like the Preset Reverb, the Environmental Reverb allows you to
control the audio output to simulate the effect of a different environment. Unlike the Preset
Reverb, this subclass lets you specify each of the reverb parameters yourself to create a cus-
tom effect.

To apply one of these effects to your Audio Track or Media Player, fi nd its unique audio session ID
using the getAudioSessionId method on either object. Use the value to construct a new instance of
the Audio Effect subclass you want to use, modify its settings as desired, and enable it, as shown in
Listing 15-22.

LISTING 15-22: Applying audio eff ects

int sessionId = mediaPlayer.getAudioSessionId();
short boostStrength = 500;
int priority = 0;

BassBoost bassBoost = new BassBoost (priority, sessionId);
bassBoost.setStrength(boostStrength);
bassBoost.setEnabled(true);

code snippet PA4AD_Ch15_Media_Player/src/AudioPlayerActivity.java

c15.indd 645c15.indd 645 4/18/2012 3:56:07 PM4/18/2012 3:56:07 PM

646 x CHAPTER 15 AUDIO, VIDEO, AND USING THE CAMERA

Meier c15.indd V2 - 03/21/2012 Page 646

USING THE CAMERA FOR TAKING PICTURES

The T-Mobile G1 was released in 2008 with a 3.2-megapixel camera. Today, most devices feature
at least a 5-megapixel camera, with some models sporting 8.1-megapixel cameras. The ubiquity of
smartphones featuring increasingly high-quality cameras has made camera applications popular
additions to Google Play.

The following sections demonstrate the mechanisms you can use to control the camera and take
photos within your applications.

Using Intents to Take Pictures

The easiest way to take a picture from within your application is to fi re an Intent using the
MediaStore.ACTION_IMAGE_CAPTURE action:

startActivityForResult(
 new Intent(MediaStore.ACTION_IMAGE_CAPTURE), TAKE_PICTURE);

This launches a Camera application to take the photo, providing your users with the full suite of
camera functionality without you having to rewrite the native Camera application.

Once users are satisfi ed with the image, the result is returned to your application within the Intent
received by the onActivityResult handler.

By default, the picture taken will be returned as a thumbnail, available as a raw bitmap within the
data extra within the returned Intent.

To obtain a full image, you must specify a target fi le in which to store it, encoded as a URI passed in
using the MediaStore.EXTRA_OUTPUT extra in the launch Intent, as shown in Listing 15-23.

LISTING 15-23: Requesting a full-size picture using an Intent

// Create an output file.
File file = new File(Environment.getExternalStorageDirectory(),
 “test.jpg”);
Uri outputFileUri = Uri.fromFile(file);

// Generate the Intent.
Intent intent = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);
intent.putExtra(MediaStore.EXTRA_OUTPUT, outputFileUri);

// Launch the camera app.
startActivityForResult(intent, TAKE_PICTURE);

code snippet PA4AD_Ch15_Intent_Camera/src/CameraActivity.java

The full-size image taken by the camera will then be saved to the specifi ed location. No thumbnail
will be returned in the Activity result callback, and the received Intent’s data will be null.

Listing 15-24 shows how to use getParcelableExtra to extract a thumbnail where one is returned,
or to decode the saved fi le when a full-size image is taken.

c15.indd 646c15.indd 646 4/18/2012 3:56:07 PM4/18/2012 3:56:07 PM

Using the Camera for Taking Pictures x 647

Meier c15.indd V2 - 03/21/2012 Page 647

LISTING 15-24: Receiving pictures from an Intent

@Override
protected void onActivityResult(int requestCode,
 int resultCode, Intent data) {
 if (requestCode == TAKE_PICTURE) {
 // Check if the result includes a thumbnail Bitmap
 if (data != null) {
 if (data.hasExtra(“data”)) {
 Bitmap thumbnail = data.getParcelableExtra(“data”);
 imageView.setImageBitmap(thumbnail);
 }
 } else {
 // If there is no thumbnail image data, the image
 // will have been stored in the target output URI.

 // Resize the full image to fit in out image view.
 int width = imageView.getWidth();
 int height = imageView.getHeight();

 BitmapFactory.Options factoryOptions = new
 BitmapFactory.Options();

 factoryOptions.inJustDecodeBounds = true;
 BitmapFactory.decodeFile(outputFileUri.getPath(),
 factoryOptions);

 int imageWidth = factoryOptions.outWidth;
 int imageHeight = factoryOptions.outHeight;

 // Determine how much to scale down the image
 int scaleFactor = Math.min(imageWidth/width,
 imageHeight/height);

 // Decode the image file into a Bitmap sized to fill the View
 factoryOptions.inJustDecodeBounds = false;
 factoryOptions.inSampleSize = scaleFactor;
 factoryOptions.inPurgeable = true;

 Bitmap bitmap =
 BitmapFactory.decodeFile(outputFileUri.getPath(),
 factoryOptions);

 imageView.setImageBitmap(bitmap);
 }
 }
}

code snippet PA4AD_Ch15_Intent_Camera/src/CameraActivity.java

To make photos you save available to other applications, including the native Gallery app, it’s good
practice to add them Media Store — as described in the section “Adding Media to the Media Store.”

c15.indd 647c15.indd 647 4/18/2012 3:56:07 PM4/18/2012 3:56:07 PM

648 x CHAPTER 15 AUDIO, VIDEO, AND USING THE CAMERA

Meier c15.indd V2 - 03/21/2012 Page 648

Controlling the Camera Directly

To access the camera hardware directly, you need to add the CAMERA permission to your application
manifest:

<uses-permission android:name=”android.permission.CAMERA”/>

Use the Camera class to adjust camera settings, specify image preferences, and take pictures. To
access the Camera, use the static open method on the Camera class:

Camera camera = Camera.open();

When you are fi nished with the Camera, remember to relinquish your hold on it by calling release:

camera.release();

The Camera.open method will turn on and initialize the Camera. At this point
it is ready for you to modify settings, confi gure the preview surface, and take
 pictures, as shown in the following sections.

Camera Properties

The Camera settings are stored using a Camera.Parameters object, accessible by calling the
 getParameters method on the Camera object:

Camera.Parameters parameters = camera.getParameters();

Using the Camera Parameters you can fi nd many of the properties of the Camera and currently
focused scene; the parameters available depend on the platform version.

You can fi nd the focal length and related horizontal and vertical angle of view using the-
getFocalLength and get[Horizontal/Vertical]ViewAngle methods, respectively, introduced in
Android 2.2 (API level 8).

Android 2.3 (API level 9) introduced the getFocusDistances method, which you can use to estimate
the distance between the lens and the objects currently believed to be in focus. Rather than returning
a value, this method populates an array of fl oats corresponding to the near, far, and optimal focus
 distances, as shown in Listing 15-25. The object most sharply focused will be at the optimal distance.

LISTING 15-25: Finding the distance to focused objects

float[] focusDistances = new float[3];

parameters.getFocusDistances(focusDistances);

float near =
 focusDistances[Camera.Parameters.FOCUS_DISTANCE_NEAR_INDEX];

c15.indd 648c15.indd 648 4/18/2012 3:56:07 PM4/18/2012 3:56:07 PM

Using the Camera for Taking Pictures x 649

Meier c15.indd V2 - 03/21/2012 Page 649

float far =
 focusDistances[Camera.Parameters.FOCUS_DISTANCE_FAR_INDEX];
float optimal =
 focusDistances[Camera.Parameters.FOCUS_DISTANCE_OPTIMAL_INDEX];

code snippet PA4AD_Ch15_Camera/src/CameraActivity.java

Camera Settings and Image Parameters

To change the Camera settings, use the set* methods to modify the Parameters object. Android
2.0 (API level 5) introduced a wide range of Camera Parameters, each with a setter and getter.
Before attempting to modify any camera parameter, it’s important to confi rm that the Camera
implementation on the host device supports the change.

After modifying the Parameters, pass them back into the Camera, using its setParameters method
to apply the changes:

camera.setParameters(parameters);

Most of the following parameters are useful primarily if you are replacing the native Camera appli-
cation. That said, they can also be useful for customizing the way the live preview is displayed,
allowing you to customize the live stream for augmented reality applications.

 ‰ [get/set]SceneMode — Returns/sets the type of scene being photographed using one of
several SCENE_MODE_* static constants. Each scene mode optimally confi gures the Camera
parameters (fl ash, white balance, focus mode, and so on) for a particular scene type (party,
beach, sunset, and so on).

 ‰ [get/set]FlashMode — Returns/sets the current fl ash mode (typically one of on, off, red-eye
reduction, or fl ashlight mode) using the FLASH_MODE_* static constants. Before attempting to
set the fl ash mode, use the getSupportedFlashModes method to confi rm which modes
are available.

 ‰ [get/set]WhiteBalance — Returns/sets the white balance correction used to correct the
scene, using one of the WHITE_BALANCE_* static constants. Before setting the white balance,
use the getSupportedWhiteBalance method to confi rm which settings are available.

 ‰ [get/set]AutoWhiteBalanceLock — Introduced in Android 4.0 (API level 14). When
using automatic white balancing, enabling the auto white balance lock will pause the color
correction algorithm, ensuring that multiple sequential photos use the same color balance
settings. This is particularly effective when taking panoramic images or exposure bracketing
for high dynamic range images. Use the isAutoWhiteBalanceLockSupported method to
confi rm this functionality is available on the host device.

 ‰ [get/set]ColorEffect — Returns/sets any special color effects to apply to the
image using an EFFECT_* static constant. The color effects available (including sepia
tone, posterize, and blackboard effects) vary by device and platform version. Use the
getSupportedColorEffects method to fi nd which color effects are available.

c15.indd 649c15.indd 649 4/18/2012 3:56:08 PM4/18/2012 3:56:08 PM

650 x CHAPTER 15 AUDIO, VIDEO, AND USING THE CAMERA

Meier c15.indd V2 - 03/21/2012 Page 650

 ‰ [get/set]FocusMode — Returns/sets how the camera should attempt to focus using a
FOCUS_MODE_* static constant. The available focus modes vary depending on the platform
version. (For example, continuous autofocus was introduced in Android 4.0.) Use the
getSupportedFocusModes method to fi nd which modes are available.

 ‰ [get/set]Antibanding — Returns/sets the screen refresh frequency that should
be used to reduce banding effects using an ANTIBANDING_* static constant. Use the
getSupportedAntibanding method to fi nd which frequencies are available.

You can also use Camera Parameters to read or specify size, quality, and format parameters for the
image, thumbnail, and camera preview. The following list explains how to set some of these values:

 ‰ JPEG and thumbnail quality — Use the setJpegQuality and setJpegThumbnailQuality
methods, respectively, passing in an integer value between 0 and 100, where 100 is the
best quality.

 ‰ Image, preview, and thumbnail sizes — Use setPictureSize, setPreviewSize,
and setJpegThumbnailSize to specify a height and width for the image,
preview, and thumbnail, respectively. In each case, you should use the cor-
responding getSupportedPictureSizes, getSupportedPreviewSizes, and
getSupportedJpegThumbnailSizes methods to determine valid values. Each method
returns a List of Camera.Size objects that specify valid height/width combinations.

 ‰ Image and preview pixel format — Use setPictureFormat and setPreviewFormat

to set the image format using a static constant from the PixelFormat class. Use the
getSupportedPictureFormats and getSupportedPreviewFormats methods to return a
list of the supported formats before using either of these setters.

 ‰ Preview frame rate — The setPreviewFpsRange method replaces the
setPreviewFrameRate method that was deprecated in Android 2.3 (API level 9).
Use it to specify your preferred frame rate range to use for previews. Use the
getSupportedPreviewFpsRange method to fi nd the minimum and maximum supported
frame rate. Both methods represent the frame rate as an integer multiplied by 1000, so a
range of 24 to 30 FPS becomes 24000 to 30000.

Checking for supported parameter values is particularly important when selecting valid preview or
image sizes, as each device’s camera will potentially support a different subset.

Controlling Auto Focus, Focus Areas, and Metering Areas

If the host Camera supports auto focus, you can specify the focus mode using the setFocusMode
method, passing in one of the Camera.Parameters.FOCUS_MODE_* constants. The available focus
modes will depend on the capabilities of the hardware and the version of the Android platform it
runs. Use the getSupportedFocusModes method to fi nd which modes are available.

To be notifi ed when the auto focus operation has completed, initiate auto focus using the autofocus
method, specifying an AutoFocusCallback implementation:

Camera.Parameters parameters = camera.getParameters();
if (parameters.getSupportedFocusModes().contains(
 Camera.Parameters.FOCUS_MODE_CONTINUOUS_PICTURE)) {
 parameters.setFocusMode(

c15.indd 650c15.indd 650 4/18/2012 3:56:08 PM4/18/2012 3:56:08 PM

Using the Camera for Taking Pictures x 651

Meier c15.indd V2 - 03/21/2012 Page 651

 Camera.Parameters.FOCUS_MODE_CONTINUOUS_PICTURE);

 camera.autoFocus(new AutoFocusCallback() {
 public void onAutoFocus(boolean success, Camera camera) {
 Log.d(TAG, “AutoFocus: “ + (success ? “Succeeded” : “Failed”));
 }
 });
}

Android 4.0 (API level 14) introduced two additional focus APIs that enable you to specify the focus
areas and metering areas to use when focusing your pictures or determining the white balance and
brightness of your scene.

Not all devices support defi ning focus areas. To confi rm that this is available on the host device, use
the Camera’s getMaxNumFocusAreas method:

int focusAreaCount = camera.getMaxNumFocusAreas()

This will return the maximum number of focus areas the device camera is capable of detecting. If
the result is 0, focus area specifi cation is not supported.

Specifying Focus Areas allows you to instruct the camera driver as to the relative importance of
different areas of the scene when attempting to focus the image. This is typically used to focus on
faces or to allow users to manually select a focal point.

To defi ne your focus areas, use the setFocusAreas method, passing in a List of Camera.Area objects.
Each Camera Area consists of a rectangle that defi nes the boundary of that focus area (between –1000
and 1000, measured from the upper-left corner) relative to the currently visible scene and the relative
weight of that focus area. The camera driver will multiply the area of each focus area with its weight
to calculate the relative weight of each area when attempting to focus the scene.

You can use the same approach to set the metering areas using setMeteringAreas. As
with focus area support, not all devices will support multiple metering areas — use the
getMaxNumMeteringAreas to determine if the host camera supports one or more metering areas.

Using the Camera Preview

If you are implementing your own camera, you will need to display a preview of what’s being cap-
tured by the camera to allow users to compose their photos. It’s not possible to take a picture using
the Camera object without fi rst displaying a preview.

Being able to display the camera’s streaming video also means that you can incorporate live video
into your applications, such as implementing augmented reality (the process of overlaying dynamic
contextual data — such as details for landmarks or points of interest — on top of a live
camera feed).

The camera preview is displayed using a SurfaceHolder, so to view the live camera stream
within your application, you must include a Surface View within your UI hierarchy. Implement a
SurfaceHolder.Callback to listen for the construction of a valid surface before passing it in to the
setPreviewDisplay method of your Camera object.

A call to startPreview will begin the streaming, and stopPreview will end it, as shown in
Listing 15-26.

c15.indd 651c15.indd 651 4/18/2012 3:56:08 PM4/18/2012 3:56:08 PM

652 x CHAPTER 15 AUDIO, VIDEO, AND USING THE CAMERA

Meier c15.indd V2 - 03/21/2012 Page 652

LISTING 15-26: Previewing a real-time camera stream

public class CameraActivity extends Activity implements
 SurfaceHolder.Callback {

 private static final String TAG = “CameraActivity”;

 private Camera camera;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 SurfaceView surface = (SurfaceView)findViewById(R.id.surfaceView);
 SurfaceHolder holder = surface.getHolder();
 holder.addCallback(this);
 holder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);
 holder.setFixedSize(400, 300);
 }

 public void surfaceCreated(SurfaceHolder holder) {
 try {
 camera.setPreviewDisplay(holder);
 camera.startPreview();
 // TODO Draw over the preview if required.
 } catch (IOException e) {
 Log.d(TAG, “IO Exception”, e);
 }
 }

 public void surfaceDestroyed(SurfaceHolder holder) {
 camera.stopPreview();
 }

 public void surfaceChanged(SurfaceHolder holder, int format,
 int width, int height) {
 }

 @Override
 protected void onPause() {
 super.onPause();
 camera.release();
 }

 @Override
 protected void onResume() {
 super.onResume();
 camera = Camera.open();
 }
}

code snippet PA4AD_Ch15_Camera/src/CameraActivity.java

c15.indd 652c15.indd 652 4/18/2012 3:56:08 PM4/18/2012 3:56:08 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Using the Camera for Taking Pictures x 653

Meier c15.indd V2 - 03/21/2012 Page 653

The Android SDK includes an excellent example of using a SurfaceView to
display the camera preview in real time. It can be found at http://developer
.android.com/resources/samples/ApiDemos/src/com/example/android/

apis/graphics/CameraPreview.html.

You can also assign a PreviewCallback to be fi red for each preview frame, allowing you to
manipulate or perform analysis of each preview frame in real time. Call the setPreviewCallback
method on the Camera object, passing in a new PreviewCallback implementation overriding the
onPreviewFrame method.

Each frame will be received by the onPreviewFrame event with the image passed in as a Bitmap
represented as a byte array:

camera.setPreviewCallback(new PreviewCallback() {
 public void onPreviewFrame(byte[] data, Camera camera) {
 int quality = 60;

 Size previewSize = camera.getParameters().getPreviewSize();
 YuvImage image = new YuvImage(data, ImageFormat.NV21,
 previewSize.width, previewSize.height, null);
 ByteArrayOutputStream outputStream = new ByteArrayOutputStream();

 image.compressToJpeg(
 new Rect(0, 0,previewSize.width, previewSize.height),
 quality, outputStream);

 // TODO Do something with the preview image.
 }
});

Detecting Faces and Facial Features

Android 4.0 (API level 14) introduced APIs that you can use to detect faces and facial features within a
scene. This feature is most useful for tweaking the focus areas, metering areas, and determining white
balance when taking photos featuring people, but it can also be used creatively when applying effects.

Face detection is not necessarily available on every device, even those running Android 4.0 or above.
To confi rm that face detection is available on the host device, use the Camera’s getMaxNumDetect-
edFaces method:

int facesDetectable = camera.getParameters().getMaxNumDetectedFaces()

This will return the maximum number of faces the device camera is capable of detecting. If the
result is 0, face detection is not supported.

Before you begin monitoring a camera for faces, you need to assign a new FaceDetectionListener,
overriding the onFaceDetection method. You will receive an array containing a Face object for
each face detected within the scene (up to the maximum supported number).

Each Face object includes a unique identifi er that can be used to track each face while it remains
in the scene, a confi dence score between 0 and 100 that indicates the likelihood that what’s been

c15.indd 653c15.indd 653 4/18/2012 3:56:08 PM4/18/2012 3:56:08 PM

http://developer

654 x CHAPTER 15 AUDIO, VIDEO, AND USING THE CAMERA

Meier c15.indd V2 - 03/21/2012 Page 654

detected is actually a face, the bounding rectangle containing the face, and the coordinates of each
eye and the mouth:

camera.setFaceDetectionListener(new FaceDetectionListener() {
 public void onFaceDetection(Face[] faces, Camera camera) {
 if (faces.length > 0){
 Log.d(“FaceDetection”, “face detected: “+ faces.length +
 “ Face 1 Location X: “ + faces[0].rect.centerX() +
 “Y: “ + faces[0].rect.centerY());
 }
 }
});

To begin detecting and tracking faces, call the Camera’s startFaceDetection method. This must
be called each time you start (or restart) the Camera preview, as it will be automatically stopped
whenever the preview ends.

public void surfaceCreated(SurfaceHolder holder) {
 try {
 camera.setPreviewDisplay(holder);
 camera.startPreview();
 camera.startFaceDetection();
 // TODO Draw over the preview if required.
 } catch (IOException e) {
 Log.d(TAG, “IO Exception”, e);
 }
}

You can stop face detection by calling stopFaceDetection:

public void surfaceDestroyed(SurfaceHolder holder) {
 camera.stopFaceDetection();
 camera.stopPreview();
}

Taking a Picture

After you have confi gured the camera settings, and a preview is active, you can take a picture
by calling takePicture on the Camera object and passing in a ShutterCallback and two
PictureCallback implementations (one for the RAW and one for JPEG-encoded images). Each
picture callback will receive a byte array representing the image in the appropriate format, while the
shutter callback is triggered immediately after the shutter is closed.

Listing 15-27 shows the skeleton code for taking a picture and saving the JPEG image to an SD card.

LISTING 15-27: Taking a picture

private void takePicture() {
 camera.takePicture(shutterCallback, rawCallback, jpegCallback);
}

ShutterCallback shutterCallback = new ShutterCallback() {

c15.indd 654c15.indd 654 4/18/2012 3:56:09 PM4/18/2012 3:56:09 PM

Using the Camera for Taking Pictures x 655

Meier c15.indd V2 - 03/21/2012 Page 655

 public void onShutter() {
 // TODO Do something when the shutter closes.
 }
};

PictureCallback rawCallback = new PictureCallback() {
 public void onPictureTaken(byte[] data, Camera camera) {
 // TODO Do something with the image RAW data.
 }
};

PictureCallback jpegCallback = new PictureCallback() {
 public void onPictureTaken(byte[] data, Camera camera) {
 // Save the image JPEG data to the SD card
 FileOutputStream outStream = null;
 try {
 String path = Environment.getExternalStorageDirectory() +
 “\test.jpg”;

 outStream = new FileOutputStream(path);
 outStream.write(data);
 outStream.close();
 } catch (FileNotFoundException e) {
 Log.e(TAG, “File Note Found”, e);
 } catch (IOException e) {
 Log.e(TAG, “IO Exception”, e);
 }
 }
};

code snippet PA4AD_Ch15_Camera/src/CameraActivity.java

Reading and Writing JPEG EXIF Image Details

The ExifInterface class provides mechanisms for you to read and modify the Exchangeable Image
File Format (EXIF) meta data stored within a JPEG fi le. Create a new ExifInterface instance by
passing the full fi lename of the target JPEG in to the constructor:

 ExifInterface exif = new ExifInterface(jpegfilename);

EXIF data is used to store a wide range of meta data on photographs, including date and time, cam-
era settings (such as make and model), and image settings (such as aperture and shutter speed), as
well as image descriptions and locations.

To read an EXIF attribute, call getAttribute on the ExifInterface object, passing in the name
of the attribute to read. The Exifinterface class includes a number of static TAG_* constants that
can be used to access common EXIF meta data. To modify an EXIF attribute, use setAttribute,
passing in the name of the attribute to read and the value to set it to.

Listing 15-28 shows how to read the location coordinates and camera model from a fi le stored on an
SD card, before modifying the camera manufacturer details.

c15.indd 655c15.indd 655 4/18/2012 3:56:09 PM4/18/2012 3:56:09 PM

656 x CHAPTER 15 AUDIO, VIDEO, AND USING THE CAMERA

Meier c15.indd V2 - 03/21/2012 Page 656

LISTING 15-28: Reading and modifying EXIF data

File file = new File(Environment.getExternalStorageDirectory(),
 “test.jpg”);

try {
 ExifInterface exif = new ExifInterface(file.getCanonicalPath());
 // Read the camera model and location attributes
 String model = exif.getAttribute(ExifInterface.TAG_MODEL);
 Log.d(TAG, “Model: “ + model);
 // Set the camera make
 exif.setAttribute(ExifInterface.TAG_MAKE, “My Phone”);
} catch (IOException e) {
 Log.e(TAG, “IO Exception”, e);
}

code snippet PA4AD_Ch15_Camera/src/CameraActivity.java

RECORDING VIDEO

Android offers two options for recording video within your application.

The simplest technique is to use Intents to launch the video camera application. This option lets
you specify the output location and video recording quality, while letting the native video recording
application handle the user experience and error handling. This is the best practice approach and
should be used in most circumstances, unless you are building your own replacement video recorder.

In cases where you want to replace the native application or simply need more fi ne-grained control
over the video capture UI or recording settings, you can use the Media Recorder class.

Using Intents to Record Video

The easiest, and best practice, way to initiate video recording is using the MediaStore.ACTION_
VIDEO_CAPTURE action Intent.

Starting a new Activity with this Intent launches the native video recorder, allowing users to start,
stop, review, and retake their video. When they’re satisfi ed, a URI to the recorded video is provided
to your Activity as the data parameter of the returned Intent:

The video capture action Intent can contain the following three optional extras:

 ‰ MediaStore.EXTRA_OUTPUT — By default, the video recorded by the video capture action will
be stored in the default Media Store. If you want to record it elsewhere, you can specify an
alternative URI using this extra.

 ‰ MediaStore.EXTRA_VIDEO_QUALITY — The video capture action allows you to specify an
image quality using an integer value. There are currently two possible values: 0 for low
(MMS) quality videos, or 1 for high (full resolution) videos. By default, the high-resolution
mode is used.

 ‰ MediaStore.EXTRA_DURATION_LIMIT — The maximum length of the recorded video (in
seconds).

c15.indd 656c15.indd 656 4/18/2012 3:56:09 PM4/18/2012 3:56:09 PM

Recording Video x 657

Meier c15.indd V2 - 03/21/2012 Page 657

Listing 15-29 shows how to use the video capture action to record a new video.

LISTING 15-29: Recording video using an Intent

private static final int RECORD_VIDEO = 0;

private void startRecording() {
 // Generate the Intent.
 Intent intent = new Intent(MediaStore.ACTION_VIDEO_CAPTURE);

 // Launch the camera app.
 startActivityForResult(intent, RECORD_VIDEO);
}

@Override
protected void onActivityResult(int requestCode,
 int resultCode, Intent data) {
 if (requestCode == RECORD_VIDEO) {
 VideoView videoView = (VideoView)findViewById(R.id.videoView);
 videoView.setVideoURI(data.getData());
 videoView.start()
 }
}

code snippet PA4AD_Ch15_Intent_Video_Camera/src/VideoCameraActivity.java

Using the Media Recorder to Record Video

You can use the MediaRecorder class to record audio and/or video fi les that can be used in your
own applications or added to the Media Store.

To record any media in Android, your application needs the CAMERA and RECORD_AUDIO and/or
RECORD_VIDEO permissions as applicable:

<uses-permission android:name=”android.permission.RECORD_AUDIO”/>
<uses-permission android:name=”android.permission.RECORD_VIDEO”/>
<uses-permission android:name=”android.permission.CAMERA”/>

The Media Recorder lets you specify the audio and video source, the output fi le format, and
the audio and video encoders to use when recording your fi le. Android 2.2 (API level 8) intro-
duced the concept of profi les, which can be used to apply a predefi ned set of Media Recorder
confi gurations.

Much like the Media Player, the Media Recorder manages recording as a state machine. This means
that the order in which you confi gure and manage the Media Recorder is important. In the simplest
terms, the transitions through the state machine can be described as follows:

 1. Create a new Media Recorder.

 2. Unlock the Camera and assign it to the Media Recorder.

 3. Specify the input sources to record from.

c15.indd 657c15.indd 657 4/18/2012 3:56:09 PM4/18/2012 3:56:09 PM

658 x CHAPTER 15 AUDIO, VIDEO, AND USING THE CAMERA

Meier c15.indd V2 - 03/21/2012 Page 658

4. Select a profi le to use for Android 2.2 and above, or defi ne the output format and specify the
audio and video encoder, frame rate, and output size.

5. Select an output fi le.

6. Assign a preview Surface.

7. Prepare the Media Recorder for recording.

8. Record.

9. End the recording.

A more detailed and thorough description of the Media Recorder state machine
is provided at the Android developer site, at http://developer.android.com/
reference/android/media/MediaRecorder.html.

When you fi nish recording your media, call release on your Media Recorder object to free the
associated resources:

mediaRecorder.release();

Confi guring the Video Recorder

As described in the preceding section, before recording you must allocate the camera to use, specify
the input sources, choose a profi le (or output format, audio, and video encoder), and assign an
output fi le — in that order.

Start by unlocking the Camera and assigning it to the Media Recorder using the setCamera method.

The setAudioSource and setVideoSource methods let you specify a MediaRecorder
.AudioSource.* and MediaRecorder.VideoSource.* static constant that defi ne the audio and
video source, respectively.

After selecting your input sources, you need to specify the recording profi le to use. Android
2.2 (API level 8) introduced the setProfile method, which uses a profi le created using the
CamcorderProfile class’s get method, specifying a quality profi le using the CamcorderProfile
.QUALITY_* constants. Not all profi les are supported on every device, so use the CamcorderProfile
.hasProfile method to confi rm the availability of profi le before applying it to your Media Recorder:

if (CamcorderProfile.hasProfile(CamcorderProfile.QUALITY_1080P)) {
 CamcorderProfile profile = CamcorderProfile.get(CamcorderProfile.QUALITY_1080P);
 mediaRecorder.setProfile(profile);
}

Alternatively, you can specify the recording profi le manually by selecting the output format, using
the setOutputFormat method to specify a MediaRecorder.OutputFormat constant and using
the set[audio/video]Encoder methods to specify an audio or video encoder constant from the
MediaRecorder.[Audio/Video]Encoder class. Take this opportunity to set the frame rate or video
output size, if desired.

c15.indd 658c15.indd 658 4/18/2012 3:56:10 PM4/18/2012 3:56:10 PM

http://developer.android.com

Recording Video x 659

Meier c15.indd V2 - 03/21/2012 Page 659

Finally, assign a fi le to store the recorded media using the setOutputFile method before allocating
a preview surface and calling prepare.

Listing 15-30 shows how to confi gure a Media Recorder to record audio and video from the
 microphone and camera, using the 1080p quality profi le, to a fi le in your application’s external
 storage folder.

LISTING 15-30: Preparing to record audio and video using the Media Recorder

// Unlock the Camera to allow the Media Recorder to own it.
camera.unlock();

// Assign the Camera to the Media Recorder.
mediaRecorder.setCamera(camera);

// Configure the input sources.
mediaRecorder.setAudioSource(MediaRecorder.AudioSource.CAMCORDER);
mediaRecorder.setVideoSource(MediaRecorder.VideoSource.CAMERA);

// Set the recording profile.
CamcorderProfile profile = null;

if (CamcorderProfile.hasProfile(CamcorderProfile.QUALITY_1080P))
 profile = CamcorderProfile.get(CamcorderProfile.QUALITY_1080P);
else if (CamcorderProfile.hasProfile(CamcorderProfile.QUALITY_720P))
 profile = CamcorderProfile.get(CamcorderProfile.QUALITY_720P);
else if (CamcorderProfile.hasProfile(CamcorderProfile.QUALITY_480P))
 profile = CamcorderProfile.get(CamcorderProfile.QUALITY_480P);
else if (CamcorderProfile.hasProfile(CamcorderProfile.QUALITY_HIGH))
 profile = CamcorderProfile.get(CamcorderProfile.QUALITY_HIGH);

if (profile != null)
 mediaRecorder.setProfile(profile);

// Specify the output file
mediaRecorder.setOutputFile(“/sdcard/myvideorecording.mp4”);

// Prepare to record
mediaRecorder.prepare();

code snippet PA4AD_Ch15_Intent_Video_Camera/src/VideoCameraActivity.java

The setOutputFile method must be called before prepare and after
 setOutputFormat; otherwise, it will throw an Illegal State Exception.

Android 4.0 (API level 14) introduced a technique to improve the performance of the Media
Recorder by reducing startup time. When your Activity is being used only to record audio/video

c15.indd 659c15.indd 659 4/18/2012 3:56:10 PM4/18/2012 3:56:10 PM

660 x CHAPTER 15 AUDIO, VIDEO, AND USING THE CAMERA

Meier c15.indd V2 - 03/21/2012 Page 660

(rather than to take still pictures), you can use the Camera.Parameters.setRecordingHint method
to tell the Camera you only want to record audio/video, as shown in Listing 15-31.

LISTING 15-31: Using the Camera recording hint

Camera.Parameters parameters = camera.getParameters();
parameters.setRecordingHint(true);
camera.setParameters(parameters);

code snippet PA4AD_Ch15_Intent_Video_Camera/src/VideoCameraActivity.java

Previewing the Video Stream

When recording video, it’s considered good practice to display a preview of the recorded video in
real time. Like the Camera preview, you can assign a Surface to display the video stream using the
setPreviewDisplay method on your Media Recorder object. The preview display will be hosted
within a SurfaceView that must be initialized within a SurfaceHolder.Callback
interface implementation.

After creating the Surface Holder, assign it to the Media Recorder using the setPreviewDisplay
method — after specifying the recording sources and output fi le but before calling prepare:

mediaRecorder.setPreviewDisplay(holder.getSurface());

The live video preview stream will begin as soon as you make a call to prepare:

mediaRecorder.prepare();

Controlling the Recording

After confi guring the Media Recorder and setting up the preview, you can begin recording at any
time by calling the start method:

mediaRecorder.start();

When you fi nish recording, call stop to end the playback, followed by reset and release to free
the Media Recorder resources, as shown in Listing 15-32). At this point, you should also lock
the camera.

LISTING 15-32: Stopping a video recording

mediaRecorder.stop();

// Reset and release the media recorder.
mediaRecorder.reset();
mediaRecorder.release();
camera.lock();

code snippet PA4AD_Ch15_Intent_Video_Camera/src/VideoCameraActivity.java

c15.indd 660c15.indd 660 4/18/2012 3:56:10 PM4/18/2012 3:56:10 PM

Using Media Eff ects x 661

Meier c15.indd V2 - 03/21/2012 Page 661

Android 4.0.3 (API level 15) introduced the ability to apply image stabilization to your video record-
ings. To toggle image stabilization, modify the Camera parameters using the setVideoStabilization
method, as shown in Listing 15-33. Not all camera hardware will support image stabilization, so be
sure to check that it’s available using the isVideoStabilizationSupported method.

LISTING 15-33: Image stabilization

Camera.Parameters parameters = camera.getParameters();
if (parameters.isVideoStabilizationSupported())
 parameters.setVideoStabilization(true);
camera.setParameters(parameters);

code snippet PA4AD_Ch15_Intent_Video_Camera/src/VideoCameraActivity.java

Creating a Time-Lapse Video

Android 2.2 (API level 8) enhanced the Media Recorder to provide support for creating time-lapse
videos. To confi gure a Media Recorder object to create a time-lapse effect, use the setCaptureRate
to set the required frame capture rate:

// Capture an image every 30 seconds.
mediaRecorder.setCaptureRate(0.03);

The Media Recorder must also be set using one of a number of predefi ned profi les optimized for
time-lapse video capture. Use the setProfile method to use one of the QUALITY_TIME_LAPSE_*
profi les:

CamcorderProfile profile =
 CamcorderProfile.get(CamcorderProfile.QUALITY_TIME_LAPSE_HIGH);

mediaRecorder.setProfile(profile);

USING MEDIA EFFECTS

Android 4.0 (API level 14) introduced a new media effects API that can be used to apply a number
of real-time visual effects to video content using the GPU via OpenGL textures.

You can apply media effects to bitmaps, videos, or the live camera previews, provided that the
source images are bound to a GL_TEXTURE_2D texture image and contain at least one mipmap level.

Although a full examination of how to use these media effects is outside the scope of this book,
generally speaking, to apply an effect to an image or video frame, you need to create a new
EffectContext, using the EffectContext.createWithCurrentGlContext method from within an
OpenGL ES 2.0 context.

The effects are created using an EffectFactory, which can be created by calling getFactory on
the returned EffectContext. To create a particular effect, call createEffect, passing in one of the
EffectFactory.EFFECT_* constants. Each Effect supports different parameters, which you can con-
fi gure by calling setParameter and passing the name of the setting to change and the value to apply.

c15.indd 661c15.indd 661 4/18/2012 3:56:11 PM4/18/2012 3:56:11 PM

662 x CHAPTER 15 AUDIO, VIDEO, AND USING THE CAMERA

Meier c15.indd V2 - 03/21/2012 Page 662

More than 25 effects are currently supported. The full list — including the parameters they
 support — is available at http://developer.android.com/reference/android/media/effect/
EffectFactory.html.

After confi guring the effect you want to apply, use its apply method, passing in the input texture, its
dimensions, and the target texture to apply it.

ADDING MEDIA TO THE MEDIA STORE

By default, media fi les created by your application that are stored in private application folders will
be unavailable to other applications. To make them visible, you need to insert them into the Media
Store. Android provides two options for this. The preferred approach is to use the Media Scanner
to interpret your fi le and insert it automatically. Or you can manually insert a new record in the
 appropriate Content Provider. Using the Media Scanner is almost always the better approach.

Inserting Media Using the Media Scanner

If you have recorded new media of any kind, the MediaScannerConnection class provides the
scanFile method as a simple way for you to add it to the Media Store without needing to construct
the full record for the Media Store Content Provider.

Before you can use the scanFile method to initiate a content scan on your fi le, you must call
 connect and wait for the connection to the Media Scanner to complete. This call is asynchronous,
so you will need to implement a MediaScannerConnectionClient to notify you when the connec-
tion has been made. You can use this same class to notify you when the scan is complete, at which
point you can disconnect your Media Scanner Connection.

This sounds more complex than it is. Listing 15-34 shows the skeleton code for creating a new
MediaScannerConnectionClient that defi nes a MediaScannerConnection, which is used to add a
new fi le to the Media Store.

LISTING 15-34: Adding fi les to the Media Store using the Media Scanner

private void mediaScan(final String filePath) {

 MediaScannerConnectionClient mediaScannerClient = new
 MediaScannerConnectionClient() {

 private MediaScannerConnection msc = null;

 {
 msc = new MediaScannerConnection(
 VideoCameraActivity.this, this);
 msc.connect();
 }

 public void onMediaScannerConnected() {
 // Optionally specify a MIME Type, or
 // have the Media Scanner imply one based
 // on the filename.

c15.indd 662c15.indd 662 4/18/2012 3:56:11 PM4/18/2012 3:56:11 PM

http://developer.android.com/reference/android/media/effect

Adding Media to the Media Store x 663

Meier c15.indd V2 - 03/21/2012 Page 663

 String mimeType = null;
 msc.scanFile(filePath, mimeType);
 }

 public void onScanCompleted(String path, Uri uri) {
 msc.disconnect();
 Log.d(TAG, “File Added at: “ + uri.toString());
 }
 };
}

code snippet PA4AD_Ch15_Intent_Video_Camera/src/VideoCameraActivity.java

Inserting Media Manually

Rather than relying on the Media Scanner, you can add new media to the Media Store directly by
creating a new ContentValues object and inserting it into the appropriate Media Store Content
Provider yourself.

The meta data you specify here can include the title, timestamp, and geocoding information for your
new media fi le:

ContentValues content = new ContentValues(3);
content.put(Audio.AudioColumns.TITLE, “TheSoundandtheFury”);
content.put(Audio.AudioColumns.DATE_ADDED,
 System.currentTimeMillis() / 1000);
content.put(Audio.Media.MIME_TYPE, “audio/amr”);

You must also specify the absolute path of the media fi le being added:

content.put(MediaStore.Audio.Media.DATA, “/sdcard/myoutputfile.mp4”);

Get access to the application’s ContentResolver, and use it to insert this new row into the
Media Store:

ContentResolver resolver = getContentResolver();
Uri uri = resolver.insert(MediaStore.Video.Media.EXTERNAL_CONTENT_URI,
 content);

After inserting the media fi le into the Media Store, you should announce its availability using a
Broadcast Intent, as follows:

sendBroadcast(new Intent(Intent.ACTION_MEDIA_SCANNER_SCAN_FILE, uri));

c15.indd 663c15.indd 663 4/18/2012 3:56:11 PM4/18/2012 3:56:11 PM

Meier c15.indd V2 - 03/21/2012 Page 664

c15.indd 664c15.indd 664 4/18/2012 3:56:11 PM4/18/2012 3:56:11 PM

Meier c16.indd V2 - 04/16/2012 Page 665

16
Bluetooth, NFC, Networks,
and Wi-Fi

WHAT’S IN THIS CHAPTER?

 ‰ Managing Bluetooth devices and discoverability mode

 ‰ Discovering remote Bluetooth devices

 ‰ Communicating over Bluetooth

 ‰ Monitoring Internet connectivity

 ‰ Monitoring Wi-Fi and network details

 ‰ Confi guring Wi-Fi and scanning for access points

 ‰ Transferring data using Wi-Fi Direct

 ‰ Scanning NFC tags

 ‰ Transferring data using Android Beam

This chapter begins to explore Android’s hardware communications APIs by examining the
Bluetooth, network, Wi-Fi, and Near Field Communication (NFC) packages.

Android offers APIs to manage and monitor your Bluetooth settings: to control discoverability,
to discover nearby Bluetooth devices, and to use Bluetooth as a proximity-based, peer-to-peer
transport layer for your applications.

A full network and Wi-Fi package is also available. Using these APIs, you can scan for
hotspots, create and modify Wi-Fi confi guration settings, monitor your Internet connectivity,

c16.indd 665c16.indd 665 4/18/2012 3:56:55 PM4/18/2012 3:56:55 PM

Meier c16.indd V2 - 04/16/2012 Page 666

666 x CHAPTER 16 BLUETOOTH, NFC, NETWORKS, AND WI-FI

and control and monitor Internet settings and preferences. The introduction of Wi-Fi Direct offers a
peer-to-peer solution for communicating between devices using Wi-Fi.

Android 2.3 (API level 9) introduced support for NFC, including the support for reading smart tags,
and Android 4.0 (API level 14) added the ability to communicate with other NFC-enabled Android
devices using Android Beam.

USING BLUETOOTH

Bluetooth is a communications protocol designed for short-range, low-bandwidth peer-to-peer
communications.

Using the Bluetooth APIs, you can search for, and connect to, other Bluetooth devices within range.
By initiating a communications link using Bluetooth Sockets, you can then transmit and receive
streams of data between devices from within your applications.

At the time of writing, only encrypted communication is supported between
devices, meaning that you can form connections only between devices that have
been paired.

Managing the Local Bluetooth Device Adapter

The local Bluetooth device is controlled via the BluetoothAdapter class, which represents the host
Android device on which your application is running.

To access the default Bluetooth Adapter, call getDefaultAdapter, as shown in Listing 16-1. Some
Android devices feature multiple Bluetooth adapters, though it is currently only possible to access
the default device.

LISTING 16-1: Accessing the default Bluetooth Adapter

BluetoothAdapter bluetooth = BluetoothAdapter.getDefaultAdapter();

code snippet PA4AD_Ch16_Bluetooth/src/BluetoothActivity.java

To read any of the local Bluetooth Adapter properties, initiate discovery, or fi nd bonded devices, you
need to include the BLUETOOTH permission in your application manifest. To modify any of the local
device properties, the BLUETOOTH_ADMIN permission is also required:

<uses-permission android:name=”android.permission.BLUETOOTH”/>
<uses-permission android:name=”android.permission.BLUETOOTH_ADMIN”/>

The Bluetooth Adapter offers methods for reading and setting properties of the local Bluetooth
hardware.

c16.indd 666c16.indd 666 4/18/2012 3:56:59 PM4/18/2012 3:56:59 PM

Meier c16.indd V2 - 04/16/2012 Page 667

Using Bluetooth x 667

The Bluetooth Adapter properties can be read and changed only if the Bluetooth
Adapter is currently turned on — that is, if its device state is enabled. If the
device is off, these methods will return null.

Use the isEnabled method to confi rm the device is enabled, after which you can access the
Bluetooth Adapter’s friendly name (an arbitrary string that users can set to identify a particular
device) and hardware address, using the getName and getAddress methods, respectively:

if (bluetooth.isEnabled()) {
 String address = bluetooth.getAddress();
 String name = bluetooth.getName();
}

If you have the BLUETOOTH_ADMIN permission, you can change the friendly name of the Bluetooth
Adapter using the setName method:

bluetooth.setName(“Blackfang”);

To fi nd a more detailed description of the current Bluetooth Adapter state, use the getState
method, which will return one of the following BluetoothAdapter constants:

 ‰ STATE_TURNING_ON

 ‰ STATE_ON

 ‰ STATE_TURNING_OFF

 ‰ STATE_OFF

To conserve battery life and optimize security, most users will keep Bluetooth disabled until they
plan to use it.

To enable the Bluetooth Adapter, you can start a system Preference Activity using the
BluetoothAdapter.ACTION_REQUEST_ENABLE static constant as a startActivityForResult
action string:

startActivityForResult(
 new Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE), 0);

Figure 16-1 shows the resulting Preference Activity.

FIGURE 16-1

c16.indd 667c16.indd 667 4/18/2012 3:56:59 PM4/18/2012 3:56:59 PM

Meier c16.indd V2 - 04/16/2012 Page 668

668 x CHAPTER 16 BLUETOOTH, NFC, NETWORKS, AND WI-FI

It prompts the user to turn on Bluetooth and asks for confi rmation. If the user agrees, the sub-
Activity will close and return to the calling Activity when the Bluetooth Adapter has turned on (or
has encountered an error). If the user selects no, the sub-Activity will close and return immediately.
Use the result code parameter returned in the onActivityResult handler to determine the success
of this operation, as shown in Listing 16-2.

LISTING 16-2: Enabling Bluetooth

private static final int ENABLE_BLUETOOTH = 1;

private void initBluetooth() {
 if (!bluetooth.isEnabled()) {
 // Bluetooth isn’t enabled, prompt the user to turn it on.
 Intent intent = new Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE);
 startActivityForResult(intent, ENABLE_BLUETOOTH);
 } else {
 // Bluetooth is enabled, initialize the UI.
 initBluetoothUI();
 }
}

protected void onActivityResult(int requestCode,
 int resultCode, Intent data) {
 if (requestCode == ENABLE_BLUETOOTH)
 if (resultCode == RESULT_OK) {
 // Bluetooth has been enabled, initialize the UI.
 initBluetoothUI();
 }
}

code snippet PA4AD_Ch16_Bluetooth/src/BluetoothActivity.java

Enabling and disabling the Bluetooth Adapter are somewhat time-consuming, asynchronous opera-
tions. Rather than polling the Bluetooth Adapter, your application should register a Broadcast
Receiver that listens for ACTION_STATE_CHANGED. The Broadcast Intent will include two extras,
EXTRA_STATE and EXTRA_PREVIOUS_STATE, which indicate the current and previous Bluetooth
Adapter states, respectively:

BroadcastReceiver bluetoothState = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 String prevStateExtra = BluetoothAdapter.EXTRA_PREVIOUS_STATE;
 String stateExtra = BluetoothAdapter.EXTRA_STATE;
 int state = intent.getIntExtra(stateExtra, −1);
 int previousState = intent.getIntExtra(prevStateExtra, −1);

 String tt = “”;
 switch (state) {
 case (BluetoothAdapter.STATE_TURNING_ON) :
 tt = “Bluetooth turning on”; break;
 case (BluetoothAdapter.STATE_ON) :

c16.indd 668c16.indd 668 4/18/2012 3:57:00 PM4/18/2012 3:57:00 PM

Meier c16.indd V2 - 04/16/2012 Page 669

Using Bluetooth x 669

 tt = “Bluetooth on”; break;
 case (BluetoothAdapter.STATE_TURNING_OFF) :
 tt = “Bluetooth turning off”; break;
 case (BluetoothAdapter.STATE_OFF) :
 tt = “Bluetooth off”; break;
 default: break;
 }
 Log.d(TAG, tt);
 }
};

String actionStateChanged = BluetoothAdapter.ACTION_STATE_CHANGED;
registerReceiver(bluetoothState,
 new IntentFilter(actionStateChanged));

You can also turn the Bluetooth Adapter on and off directly, using the enable
and disable methods, respectively, if you include the BLUETOOTH_ADMIN
permission in your manifest.

This should be done only when absolutely necessary, and the user should
always be notifi ed if you are manually changing the Bluetooth Adapter status
on the user’s behalf. In most cases you should use the Intent mechanism
described earlier.

Being Discoverable and Remote Device Discovery

The process of two devices fi nding each other to connect is called discovery. Before you can
establish a Bluetooth Socket for communications, the local Bluetooth Adapter must bond with the
remote device. Before two devices can bond and connect, they fi rst need to discover each other.

Although the Bluetooth protocol supports ad-hoc connections for data transfer,
this mechanism is not currently available in Android. Android Bluetooth com-
munication is currently supported only between bonded devices.

Managing Device Discoverability

For an Android device to fi nd your local Bluetooth Adapter during a discovery scan, you need to
ensure that it’s discoverable. The Bluetooth Adapter’s discoverability is indicated by its scan mode,
found using the getScanMode method on the BluetoothAdapter object.

It will return one of the following BluetoothAdapter constants:

 ‰ SCAN_MODE_CONNECTABLE_DISCOVERABLE — Inquiry scan and page scan are both
enabled, meaning that the device is discoverable from any Bluetooth device performing
a discovery scan.

c16.indd 669c16.indd 669 4/18/2012 3:57:00 PM4/18/2012 3:57:00 PM

Meier c16.indd V2 - 04/16/2012 Page 670

670 x CHAPTER 16 BLUETOOTH, NFC, NETWORKS, AND WI-FI

 ‰ SCAN_MODE_CONNECTABLE — Page scan is enabled but inquiry scan is not. This means that
devices that have previously connected and bonded to the local device can fi nd it during
 discovery, but new devices can’t.

 ‰ SCAN_MODE_NONE — Discoverability is turned off. No remote devices can fi nd the local
Bluetooth Adapter during discovery.

For privacy reasons, Android devices will default to having discoverability disabled. To turn on
 discovery, you need to obtain explicit permission from the user; you do this by starting a new
Activity using the ACTION_REQUEST_DISCOVERABLE action, as shown in Listing 16-3.

LISTING 16-3: Enabling discoverability

startActivityForResult(
 new Intent(BluetoothAdapter.ACTION_REQUEST_DISCOVERABLE),
 DISCOVERY_REQUEST);

code snippet PA4AD_Ch16_Bluetooth/src/BluetoothActivity.java

By default, discoverability will be enabled for 2 minutes. You can modify this setting by adding an
EXTRA_DISCOVERABLE_DURATION extra to the launch Intent, specifying the number of seconds you
want discoverability to last.

When the Intent is broadcast, the user will be prompted by the dialog, as shown in Figure 16-2, to
turn on discoverability for the specifi ed duration.

FIGURE 16-2

To learn if the user has allowed or rejected your discovery request, override the onActivityResult
handler, as shown in Listing 16-4. The returned resultCode parameter indicates the duration of
discoverability, or a negative number if the user has rejected your request.

LISTING 16-4: Monitoring discoverability request approval

@Override
protected void onActivityResult(int requestCode,
 int resultCode, Intent data) {
 if (requestCode == DISCOVERY_REQUEST) {

c16.indd 670c16.indd 670 4/18/2012 3:57:01 PM4/18/2012 3:57:01 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Meier c16.indd V2 - 04/16/2012 Page 671

Using Bluetooth x 671

 if (resultCode == RESULT_CANCELED) {
 Log.d(TAG, “Discovery canceled by user”);
 }
 }
}

code snippet PA4AD_Ch16_Bluetooth/src/BluetoothActivity.java

Alternatively, you can monitor changes in discoverability by receiving the ACTION_SCAN_MODE_CHANGED
broadcast action. The Broadcast Intent includes the current and previous scan modes as extras:

registerReceiver(new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 String prevScanMode = BluetoothAdapter.EXTRA_PREVIOUS_SCAN_MODE;
 String scanMode = BluetoothAdapter.EXTRA_SCAN_MODE;

 int currentScanMode = intent.getIntExtra(scanMode, −1);
 int prevMode = intent.getIntExtra(prevScanMode, −1);

 Log.d(TAG, “Scan Mode: “ + currentScanMode +
 “. Previous: “ + prevMode);
 }
},
new IntentFilter(BluetoothAdapter.ACTION_SCAN_MODE_CHANGED));

Discovering Remote Devices

In this section you’ll learn how to initiate discovery from your local Bluetooth Adapter to fi nd
discoverable devices nearby.

The discovery process can take some time to complete (up to 12 seconds).
During this time, performance of your Bluetooth Adapter communications will
be seriously degraded. Use the techniques in this section to check and monitor
the discovery status of the Bluetooth Adapter, and avoid doing high-bandwidth
operations (including connecting to a new remote Bluetooth Device) while
discovery is in progress.

You can check if the local Bluetooth Adapter is already performing a discovery scan by using the
isDiscovering method.

To initiate the discovery process, call startDiscovery on the Bluetooth Adapter:

if (bluetooth.isEnabled())
 bluetooth.startDiscovery();

To cancel a discovery in progress, call cancelDiscovery.

The discovery process is asynchronous. Android uses broadcast Intents to notify you of the start and
end of discovery as well as remote devices discovered during the scan.

c16.indd 671c16.indd 671 4/18/2012 3:57:01 PM4/18/2012 3:57:01 PM

Meier c16.indd V2 - 04/16/2012 Page 672

672 x CHAPTER 16 BLUETOOTH, NFC, NETWORKS, AND WI-FI

You can monitor changes in the discovery process by creating Broadcast Receivers to listen for the
ACTION_DISCOVERY_STARTED and ACTION_DISCOVERY_FINISHED Broadcast Intents:

BroadcastReceiver discoveryMonitor = new BroadcastReceiver() {

 String dStarted = BluetoothAdapter.ACTION_DISCOVERY_STARTED;
 String dFinished = BluetoothAdapter.ACTION_DISCOVERY_FINISHED;

 @Override
 public void onReceive(Context context, Intent intent) {
 if (dStarted.equals(intent.getAction())) {
 // Discovery has started.
 Log.d(TAG, “Discovery Started...”);
 }
 else if (dFinished.equals(intent.getAction())) {
 // Discovery has completed.
 Log.d(TAG, “Discovery Complete.”);
 }
 }
};

registerReceiver(discoveryMonitor,
 new IntentFilter(dStarted));
registerReceiver(discoveryMonitor,
 new IntentFilter(dFinished));

Discovered Bluetooth Devices are returned via Broadcast Intents by means of the ACTION_FOUND
broadcast action.

As shown in Listing 16-5, each Broadcast Intent includes the name of the remote device in an
extra indexed as BluetoothDevice.EXTRA_NAME, and an immutable representation of the remote
Bluetooth device as a BluetoothDevice parcelable object stored under the BluetoothDevice
.EXTRA_DEVICE extra.

LISTING 16-5: Discovering remote Bluetooth Devices

private ArrayList<BluetoothDevice> deviceList =
 new ArrayList<BluetoothDevice>();

private void startDiscovery() {
 registerReceiver(discoveryResult,
 new IntentFilter(BluetoothDevice.ACTION_FOUND));

 if (bluetooth.isEnabled() && !bluetooth.isDiscovering())
 deviceList.clear();
 bluetooth.startDiscovery();
}

BroadcastReceiver discoveryResult = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 String remoteDeviceName =

c16.indd 672c16.indd 672 4/18/2012 3:57:01 PM4/18/2012 3:57:01 PM

Meier c16.indd V2 - 04/16/2012 Page 673

Using Bluetooth x 673

 intent.getStringExtra(BluetoothDevice.EXTRA_NAME);

 BluetoothDevice remoteDevice =
 intent.getParcelableExtra(BluetoothDevice.EXTRA_DEVICE);

 deviceList.add(remoteDevice);

 Log.d(TAG, “Discovered “ + remoteDeviceName);
 }
};

code snippet PA4AD_Ch16_Bluetooth/src/BluetoothActivity.java

Each BluetoothDevice object returned through the discovery broadcasts represents a remote
Bluetooth Device discovered.

In the following sections you will use Bluetooth Device objects to create a connection, bond, and
ultimately transfer data between the local Bluetooth Adapter and remote Bluetooth Devices.

Bluetooth Communications

The Android Bluetooth communications APIs are wrappers around RFCOMM, the Bluetooth radio
frequency communications protocol. RFCOMM supports RS232 serial communication over the
Logical Link Control and Adaptation Protocol (L2CAP) layer.

In practice, this alphabet soup provides a mechanism for opening communication sockets between
two paired Bluetooth devices.

Before your application can communicate between devices, the devices must be
paired (bonded). If users attempt to connect two unpaired devices, they will be
prompted to pair them before the connection is established.

You can establish an RFCOMM communication channel for bidirectional communications using
the following classes.

 ‰ BluetoothServerSocket — Used to establish a listening socket for initiating a link between
devices. To establish a handshake, one device acts as a server to listen for, and accept,
incoming connection requests.

 ‰ BluetoothSocket — Used to create a new client to connect to a listening Bluetooth Server
Socket. Also returned by the Bluetooth Server Socket after a connection is established. Once a
connection is established, Bluetooth Sockets are used by both the server and client to transfer
data streams.

When creating an application that uses Bluetooth as a peer-to-peer transport layer, you’ll need
to implement both a Bluetooth Server Socket to listen for connections and a Bluetooth Socket to
initiate a new channel and handle communications.

c16.indd 673c16.indd 673 4/18/2012 3:57:01 PM4/18/2012 3:57:01 PM

Meier c16.indd V2 - 04/16/2012 Page 674

674 x CHAPTER 16 BLUETOOTH, NFC, NETWORKS, AND WI-FI

When connected, the Bluetooth Server Socket returns a Bluetooth Socket that’s then used by the
server device to send and receive data. This server-side Bluetooth Socket is used in exactly the same
way as the client socket. The designations of server and client are relevant only to how the connec-
tion is established; they don’t affect how data fl ows after that connection is made.

Opening a Bluetooth Server Socket Listener

A Bluetooth Server Socket is used to listen for incoming Bluetooth Socket connection requests from
remote Bluetooth Devices. In order for two Bluetooth devices to be connected, one must act as a
server (listening for and accepting incoming requests) and the other as a client (initiating the request
to connect to the server). After the two are connected, the communications between the server and
host device are handled through a Bluetooth Socket at both ends.

To have your Bluetooth Adapter act as a server, call its listenUsingRfcommWithServiceRecord
method to listen for incoming connection requests. Pass in a name to identify your server and a uni-
versally unique identifi er (UUID). The method will return a BluetoothServerSocket object — note
that the client Bluetooth Socket that connects to this listener will need to know its UUID in order to
connect.

Call accept on the Server Socket, optionally passing in a timeout duration, to have it start listening
for connections. The Server Socket will now block until a remote Bluetooth Socket client with a
matching UUID attempts to connect.

If a connection request is made from a remote device that is not yet paired with the local Bluetooth
Adapter, the user will be prompted to accept a pairing request before the accept call returns. This
prompt is made via a Notifi cation, or a Dialog, as shown in Figure 16-3.

FIGURE 16-3

If an incoming connection request is successful, accept will return a Bluetooth Socket connected to
the client device. You can use this socket to transfer data, as shown later in this section.

Note that accept is a blocking operation, so it’s best practice to listen for
incoming connection requests on a background thread rather than block the
UI thread until a connection has been made.

c16.indd 674c16.indd 674 4/18/2012 3:57:02 PM4/18/2012 3:57:02 PM

Meier c16.indd V2 - 04/16/2012 Page 675

Using Bluetooth x 675

It’s also important to note that your Bluetooth Adapter must be discoverable for remote Bluetooth
Devices to connect to it. Listing 16-6 shows some typical skeleton code that uses the ACTION_
REQUEST_DISCOVERABLE broadcast to request that the device be made discoverable, before listening
for incoming connection requests for the returned discoverability duration.

LISTING 16-6: Listening for Bluetooth Socket connection requests

private BluetoothSocket transferSocket;

private UUID startServerSocket(BluetoothAdapter bluetooth) {
 UUID uuid = UUID.fromString(“a60f35f0-b93a-11de-8a39-08002009c666”);
 String name = “bluetoothserver”;

 try {
 final BluetoothServerSocket btserver =
 bluetooth.listenUsingRfcommWithServiceRecord(name, uuid);

 Thread acceptThread = new Thread(new Runnable() {
 public void run() {
 try {
 // Block until client connection established.
 BluetoothSocket serverSocket = btserver.accept();
 // Start listening for messages.
 listenForMessages(serverSocket);
 // Add a reference to the socket used to send messages.
 transferSocket = serverSocket;
 } catch (IOException e) {
 Log.e(“BLUETOOTH”, “Server connection IO Exception”, e);
 }
 }
 });
 acceptThread.start();
 } catch (IOException e) {
 Log.e(“BLUETOOTH”, “Socket listener IO Exception”, e);
 }
 return uuid;
}

code snippet PA4AD_Ch16_Bluetooth/src/BluetoothActivity.java

Selecting Remote Bluetooth Devices for Communications

The BluetoothSocket class can be used on the client device to initiate a communications channel
from within your application to a listening Bluetooth Server Socket. It is also returned by the
Bluetooth Server Socket Listener after a connection to a client device has been established.

Create a client-side Bluetooth Socket by calling createRfcommSocketToServiceRecord on a
BluetoothDevice object that represents the target remote server device. The target device should
have a Bluetooth Server Socket listening for connection requests (as described in the previous section).

There are a number of ways to obtain a reference to a remote Bluetooth Device, and some important
caveats regarding the devices with which you can create a communications link.

c16.indd 675c16.indd 675 4/18/2012 3:57:02 PM4/18/2012 3:57:02 PM

Meier c16.indd V2 - 04/16/2012 Page 676

676 x CHAPTER 16 BLUETOOTH, NFC, NETWORKS, AND WI-FI

Bluetooth Device Connection Requirements

In order for a Bluetooth Socket to establish a connection to a remote Bluetooth Device, the
following conditions must be true:

 ‰ The remote device must be discoverable.

 ‰ The remote device must be accepting connections through a Bluetooth Server Socket.

 ‰ The local and remote devices must be paired (bonded). If the devices are not paired, the users
of each device will be prompted to pair them when the connection request is initiated.

Finding a Bluetooth Device to Connect To

Bluetooth Device objects are used to represents remote devices. You can query them for the
properties of each remote device, and to initiate Bluetooth Socket connections.

There are several ways for you to obtain BluetoothDevices in code. In each case you should check
to ensure that the device you intend to connect to is discoverable and (optionally) determine whether
you are bonded to it. If you can’t discover the remote device, you should prompt the user to enable
discoverability on it.

You learned one technique for fi nding discoverable Bluetooth Devices earlier in this section. Using
the startDiscovery method and monitoring ACTION_FOUND broadcasts allows you to receive
Broadcast Intents that include a BluetoothDevice.EXTRA_DEVICE extra containing the discovered
Bluetooth Device.

You can also use the getRemoteDevice method on your local Bluetooth Adapter, specifying the
hardware address of the remote Bluetooth Device you want to connect to:

BluetoothDevice device = bluetooth.getRemoteDevice(“01:23:77:35:2F:AA”);

This is particularly useful when you know the hardware address of the target device, such as when
using a technology such as Android Beam to share this information between devices.

To fi nd the set of currently paired devices, call getBondedDevices on the local Bluetooth Adapter.
You can query the returned set to fi nd out if the target Bluetooth Device is already paired with the
local Bluetooth Adapter.

final BluetoothDevice knownDevice =
 bluetooth.getRemoteDevice(“01:23:77:35:2F:AA”);

Set<BluetoothDevice> bondedDevices = bluetooth.getBondedDevices();

if (bondedDevices.contains(knownDevice))
 // TODO Target device is bonded / paired with the local device.

Opening a Client Bluetooth Socket Connection

To initiate a communications channel to a remote device, create a Bluetooth Socket using the
BluetoothDevice object that represents it.

c16.indd 676c16.indd 676 4/18/2012 3:57:03 PM4/18/2012 3:57:03 PM

Meier c16.indd V2 - 04/16/2012 Page 677

Using Bluetooth x 677

To create a new connection, call createRfcommSocketToServiceRecord on the Bluetooth
Device object representing the target device. Pass in the UUID of its open Bluetooth Server Socket
listener.

The returned Bluetooth Socket can then be used to initiate the connection with a call to connect, as
shown in Listing 16-7.

Note that connect is a blocking operation, so it’s best practice to initiate
 connection requests on a background thread rather than block the UI thread
until a connection has been made.

LISTING 16-7: Creating a Bluetooth client socket

private void connectToServerSocket(BluetoothDevice device, UUID uuid) {
 try{
 BluetoothSocket clientSocket
 = device.createRfcommSocketToServiceRecord(uuid);

 // Block until server connection accepted.
 clientSocket.connect();

 // Start listening for messages.
 listenForMessages(clientSocket);

 // Add a reference to the socket used to send messages.
 transferSocket = clientSocket;

 } catch (IOException e) {
 Log.e(“BLUETOOTH”, “Bluetooth client I/O Exception”, e);
 }
}

code snippet PA4AD_Ch16_Bluetooth/src/BluetoothActivity.java

If users attempt to connect to a Bluetooth Device that has not yet been paired (bonded) with the
host device, they will be prompted to accept the pairing before the connect call completes. The
users must accept the pairing request on both the host and remote devices for the connection to
be established.

Transmitting Data Using Bluetooth Sockets

After a connection has been established, you will have a Bluetooth Socket on both the client and
the server devices. From this point onward there is no signifi cant distinction between them; you can
send and receive data using the Bluetooth Socket on both devices.

c16.indd 677c16.indd 677 4/18/2012 3:57:03 PM4/18/2012 3:57:03 PM

Meier c16.indd V2 - 04/16/2012 Page 678

678 x CHAPTER 16 BLUETOOTH, NFC, NETWORKS, AND WI-FI

Data transfer across Bluetooth Sockets is handled via standard Java InputStream and
OutputStream objects, which you can obtain from a Bluetooth Socket using the appropriately
named getInputStream and getOutputStream methods, respectively.

Listing 16-8 shows two simple skeleton methods — the fi rst used to send a string to a remote device
using an Output Stream, and the second to listen for incoming strings using an Input Stream. The
same technique can be used to transfer any streamable data.

LISTING 16-8: Sending and receiving strings using Bluetooth Sockets

private void listenForMessages(BluetoothSocket socket,
 StringBuilder incoming) {
 listening = true;
 int bufferSize = 1024;
 byte[] buffer = new byte[bufferSize];
 try {
 InputStream instream = socket.getInputStream();
 int bytesRead = -1;
 while (listening) {
 bytesRead = instream.read(buffer);
 if (bytesRead != -1) {
 String result = “”;
 while ((bytesRead == bufferSize) &&
 (buffer[bufferSize-1] != 0)){
 result = result + new String(buffer, 0, bytesRead - 1);
 bytesRead = instream.read(buffer);
 }
 result = result + new String(buffer, 0, bytesRead - 1);
 incoming.append(result);
 }
 socket.close();
 }
 } catch (IOException e) {
 Log.e(TAG, “Message received failed.”, e);
 }
 finally {
 }
 }

code snippet PA4AD_Ch16_Bluetooth/src/BluetoothActivity.java

MANAGING NETWORK AND INTERNET CONNECTIVITY

With the speed, reliability, and cost of Internet connectivity being dependent on the network
 technology used (Wi-Fi, GPRS, 3G, LTE, and so on), letting your applications know and manage
these connections can help to ensure they run effi ciently and responsively.

c16.indd 678c16.indd 678 4/18/2012 3:57:03 PM4/18/2012 3:57:03 PM

Meier c16.indd V2 - 04/16/2012 Page 679

Managing Network and Internet Connectivity x 679

Android broadcasts Intents that allow you to monitor changes in network connectivity and offers
APIs that provide control over network settings and connections.

Android networking is principally handled via the ConnectivityManager, a Service that lets
you monitor the connectivity state, set your preferred network connection, and manage connectivity
failover.

The section “Managing Wi-Fi” describes how to use the WifiManager to monitor and control the
device’s Wi-Fi connectivity specifi cally. The WifiManager lets you create new Wi-Fi confi gura-
tions, monitor and modify the existing Wi-Fi network settings, manage the active connection, and
 perform access point scans.

Introducing the Connectivity Manager

The ConnectivityManager represents the Network Connectivity Service. It’s used to monitor the
state of network connections, confi gure failover settings, and control the network radios.

To use the Connectivity Manager, your application needs read and write network state access
permissions:

<uses-permission android:name=”android.permission.ACCESS_NETWORK_STATE”/>
<uses-permission android:name=”android.permission.CHANGE_NETWORK_STATE”/>

To access the Connectivity Manager, use getSystemService, passing in Context.CONNECTIVITY_
SERVICE as the service name, as shown in Listing 16-9.

LISTING 16-9: Accessing the Connectivity Manager

String service = Context.CONNECTIVITY_SERVICE;

ConnectivityManager connectivity =
 (ConnectivityManager)getSystemService(service);

code snippet PA4AD_Ch16_Data_Transfer/src/MyActivity.java

Supporting User Preferences for Background Data Transfers

Until Android 4.0 (API level 14), user preferences for background data transfers were enforced at the
application level — meaning that for pre-Android 4.0 platforms, you are responsible for adhering to
the user’s preference for allowing background data transfers.

To obtain the background data setting, call the getBackgroundDataSetting method on the
Connectivity Manager object:

boolean backgroundEnabled = connectivity.getBackgroundDataSetting();

c16.indd 679c16.indd 679 4/18/2012 3:57:03 PM4/18/2012 3:57:03 PM

Meier c16.indd V2 - 04/16/2012 Page 680

680 x CHAPTER 16 BLUETOOTH, NFC, NETWORKS, AND WI-FI

If the background data setting is disabled, your application should transfer data only when it
is active and in the foreground. By turning off this value, the user explicitly requests that your
 application does not transfer data when it is not visible and in the foreground.

If your application requires background data transfer to function, it’s best practice to notify users of
this requirement and offer to take them to the settings page to alter their preference.

If the user does change the background data preference, the system will send a Broadcast Intent with
the Connectivity Manager’s ACTION_BACKGROUND_DATA_SETTING_CHANGED action.

To monitor changes in the background data setting, create and register a new Broadcast Receiver
that listens for this Broadcast Intent, as shown in Listing 16-10.

LISTING 16-10: Monitoring the background data setting

registerReceiver(
 new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 boolean backgroundEnabled =
 connectivity.getBackgroundDataSetting();
 setBackgroundData(backgroundEnabled);
 }
 },
 new IntentFilter(
 ConnectivityManager.ACTION_BACKGROUND_DATA_SETTING_CHANGED)
);

code snippet PA4AD_Ch16_Data_Transfer/src/MyActivity.java

In Android 4.0 and above, getBackgroundDataSetting has been deprecated and will always return
true. Users now have much more control over the network data usage of applications, including
 setting individual data limits and restricting background data.

These preferences are now enforced at the system level, meaning that if data transfer is unavailable
for your application, attempts to transfer data or check the network connectivity status will fail,
with the device appearing to be offl ine.

The best way to prevent users from limiting or disabling your applications data transfer is to:

 ‰ Minimize the data you transfer

 ‰ Modify your data usage based on the connection type (as described in the next section)

 ‰ Provide user preferences for modifying your data usage (for example, background update
frequency)

If you create a Preference Activity to allow users to modify your application’s data usage, you can
make it available from within the system settings when a user inspects your application’s data usage.

Add a MANAGE_NETWORK_USAGE Intent Filter to the Preference Activity’s manifest node, as shown
in Listing 16-11.

c16.indd 680c16.indd 680 4/18/2012 3:57:04 PM4/18/2012 3:57:04 PM

Meier c16.indd V2 - 04/16/2012 Page 681

Managing Network and Internet Connectivity x 681

LISTING 16-11: Making your application’s data usage preferences available from system

settings

<activity android:name=”.MyPreferences”
 android:label=”@string/preference_title”>
 <intent-filter>
 <action
 android:name=”android.intent.action.MANAGE_NETWORK_USAGE”
 />
 <category android:name=”android.intent.category.DEFAULT” />
 </intent-filter>
</activity>

code snippet PA4AD_Ch16_Data_Transfer/AndroidManifest.xml

Once set, the View Application Settings button in the system settings will launch your Preference
Activity, allowing users to refi ne your application’s data usage rather than restricting or disabling it.

Finding and Monitoring Network Connectivity

The Connectivity Manager provides a high-level view of the available network connections. The
getActiveNetworkInfo method returns a NetworkInfo object that includes details on the currently
active network:

// Get the active network information.
NetworkInfo activeNetwork = connectivity.getActiveNetworkInfo();

You can also use the getNetworkInfo method to fi nd details on an inactive network of the type
specifi ed.

Use the returned NetworkInfo to fi nd the connection status, network type, and detailed state
 information of the returned network.

Before attempting to transfer data, confi gure a repeating alarm, or schedule a background
 service that performs data transfer, use the Connectivity Manager to check that you’re actually
connected to the Internet, and if so, to verify which type of connection is in place, as shown in
Listing 16-12.

LISTING 16-12: Determining connectivity

NetworkInfo activeNetwork = connectivity.getActiveNetworkInfo();

boolean isConnected = ((activeNetwork != null) &&
 (activeNetwork.isConnectedOrConnecting()));

boolean isWiFi = activeNetwork.getType() ==
 ConnectivityManager.TYPE_WIFI;

code snippet PA4AD_Ch16_Data_Transfer/src/MyActivity.java

c16.indd 681c16.indd 681 4/18/2012 3:57:04 PM4/18/2012 3:57:04 PM

Meier c16.indd V2 - 04/16/2012 Page 682

682 x CHAPTER 16 BLUETOOTH, NFC, NETWORKS, AND WI-FI

By querying the connectivity status and network type, you can temporarily disable down-
loads and updates, alter your refresh frequency, or defer large downloads based on the
bandwidth available.

Mobile data costs, and the impact of data transfer on battery life, tend to be
signifi cantly higher than Wi-Fi, so it’s good practice to lower your application’s
update rate on mobile connections and to defer downloads of signifi cant size
until you have a Wi-Fi connection.

To monitor network connectivity, create a Broadcast Receiver that listens for
ConnectivityManager.CONNECTIVITY_ACTION Broadcast Intents, as shown in Listing 16-13.

LISTING 16-13: Monitoring connectivity

<receiver android:name=”.ConnectivityChangedReceiver” >
 <intent-filter >
 <action android:name=”android.net.conn.CONNECTIVITY_CHANGE”/>
 </intent-filter>
</receiver>

code snippet PA4AD_Ch16_Data_Transfer/AndroidManifest.xml

These Intents include extras that provide additional details on the change to the connec-
tivity state. You can access each extra using one of the static constants available from the
ConnectivityManager class. Most usefully, the EXTRA_NO_CONNECTIVITY extra contains a Boolean
that returns true if the device is not connected to any network. Where EXTRA_NO_CONNECTIVITY
is false (meaning there is an active connection), it’s good practice to use getActiveNetworkInfo
to fi nd further details about the new connectivity status and modify your download schedule,
as appropriate.

MANAGING WI-FI

The WifiManager, which represents the Android Wi-Fi Connectivity Service, can be used to
 confi gure Wi-Fi network connections, manage the current Wi-Fi connection, scan for access points,
and monitor changes in Wi-Fi connectivity.

To use the Wi-Fi Manager, your application must have uses-permissions for accessing and
 changing the Wi-Fi state included in its manifest:

<uses-permission android:name=”android.permission.ACCESS_WIFI_STATE”/>
<uses-permission android:name=”android.permission.CHANGE_WIFI_STATE”/>

Access the Wi-Fi Manager using the getSystemService method, passing in the Context.WIFI_
SERVICE constant, as shown in Listing 16-14.

c16.indd 682c16.indd 682 4/18/2012 3:57:04 PM4/18/2012 3:57:04 PM

Meier c16.indd V2 - 04/16/2012 Page 683

Managing Wi-Fi x 683

LISTING 16-14: Accessing the Wi-Fi Manager

String service = Context.WIFI_SERVICE;
WifiManager wifi = (WifiManager)getSystemService(service);

code snippet PA4AD_Ch16_WiFi/src/MyActivity.java

You can use the Wi-Fi Manager to enable or disable your Wi-Fi hardware using the setWifiEnabled
method, or to request the current Wi-Fi state using the getWifiState or isWifiEnabled methods,
as shown in Listing 16-15.

LISTING 16-15: Monitoring and changing Wi-Fi state

if (!wifi.isWifiEnabled())
 if (wifi.getWifiState() != WifiManager.WIFI_STATE_ENABLING)
 wifi.setWifiEnabled(true);

code snippet PA4AD_Ch16_WiFi/src/MyActivity.java

The following sections begin with tracking the current Wi-Fi connection status and monitoring
changes in signal strength. Later you’ll also learn how to scan for and connect to specifi c access points.

Monitoring Wi-Fi Connectivity

In most cases it’s best practice to use the Connectivity Manager to monitor changes in Wi-Fi
 connectivity; however, the Wifi Manager does broadcast Intents whenever the connectivity status
of the Wi-Fi network changes, using an action from one of the following constants defi ned in the
WifiManager class:

 ‰ WIFI_STATE_CHANGED_ACTION — Indicates that the Wi-Fi hardware status has changed,
moving between enabling, enabled, disabling, disabled, and unknown. It includes two extra
values keyed on EXTRA_WIFI_STATE and EXTRA_PREVIOUS_STATE that provide the new and
previous Wi-Fi states, respectively.

 ‰ SUPPLICANT_CONNECTION_CHANGE_ACTION — This Intent is broadcast whenever the
 connection state with the active supplicant (access point) changes. It is fi red when a new
 connection is established or an existing connection is lost, using the EXTRA_NEW_STATE
Boolean extra, which returns true in the former case.

 ‰ NETWORK_STATE_CHANGED_ACTION — Fired whenever the Wi-Fi connectivity state changes.
This Intent includes two extras: the fi rst, EXTRA_NETWORK_INFO, includes a NetworkInfo
object that details the current network state, whereas the second, EXTRA_BSSID, includes the
BSSID of the access point you’re connected to.

 ‰ RSSI_CHANGED_ACTION — You can monitor the current signal strength of the connected
Wi-Fi network by listening for the RSSI_CHANGED_ACTION Intent. This Broadcast Intent
includes an integer extra, EXTRA_NEW_RSSI, that holds the current signal strength. To use
this signal strength, you should use the calculateSignalLevel static method on the Wi-Fi
Manager to convert it to an integer value on a scale you specify.

c16.indd 683c16.indd 683 4/18/2012 3:57:05 PM4/18/2012 3:57:05 PM

Meier c16.indd V2 - 04/16/2012 Page 684

684 x CHAPTER 16 BLUETOOTH, NFC, NETWORKS, AND WI-FI

Monitoring Active Wi-Fi Connection Details

When an active Wi-Fi connection has been established, you can use the getConnectionInfo
method on the Wi-Fi Manager to fi nd information on the connection’s status. The returned
WifiInfo object includes the SSID, BSSID, MAC address, and IP address of the current access
point, as well as the current link speed and signal strength, as shown in Listing 16-16.

LISTING 16-16: Querying the active network connection

WifiInfo info = wifi.getConnectionInfo();
if (info.getBSSID() != null) {
 int strength = WifiManager.calculateSignalLevel(info.getRssi(), 5);
 int speed = info.getLinkSpeed();
 String units = WifiInfo.LINK_SPEED_UNITS;
 String ssid = info.getSSID();

 String cSummary = String.format(“Connected to %s at %s%s.
 Strength %s/5”,
 ssid, speed, units, strength);
 Log.d(TAG, cSummary);
}

code snippet PA4AD_Ch16_WiFi/src/MyActivity.java

Scanning for Hotspots

You can also use the Wi-Fi Manager to conduct access point scans using the startScan method.
An Intent with the SCAN_RESULTS_AVAILABLE_ACTION action will be broadcast to asynchronously
announce that the scan is complete and results are available.

Call getScanResults to get those results as a list of ScanResult objects. Each Scan Result includes
the details retrieved for each access point detected, including link speed, signal strength, SSID, and
the authentication techniques supported.

Listing 16-17 shows how to initiate a scan for access points that displays a Toast indicating the total
number of access points found and the name of the access point with the strongest signal.

LISTING 16-17: Conducting a scan for Wi-Fi access points

// Register a broadcast receiver that listens for scan results.
registerReceiver(new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 List<ScanResult> results = wifi.getScanResults();
 ScanResult bestSignal = null;
 for (ScanResult result : results) {
 if (bestSignal == null ||
 WifiManager.compareSignalLevel(
 bestSignal.level,result.level) < 0)
 bestSignal = result;
 }

c16.indd 684c16.indd 684 4/18/2012 3:57:05 PM4/18/2012 3:57:05 PM

Meier c16.indd V2 - 04/16/2012 Page 685

Managing Wi-Fi x 685

 String connSummary = String.format(“%s networks found. %s is
 the strongest.”,
 results.size(),
 bestSignal.SSID);

 Toast.makeText(MyActivity.this,
 connSummary, Toast.LENGTH_LONG).show();
 }
}, new IntentFilter(WifiManager.SCAN_RESULTS_AVAILABLE_ACTION));

// Initiate a scan.
wifi.startScan();

code snippet PA4AD_Ch16_WiFi/src/MyActivity.java

Managing Wi-Fi Confi gurations

You can use the Wifi Manager to manage the confi gured network settings and control which
networks to connect to. When connected, you can interrogate the active network connection to get
additional details of its confi guration and settings.

Get a list of the current network confi gurations using getConfiguredNetworks. The list of
WifiConfiguration objects returned includes the network ID, SSID, and other details for each
confi guration.

To use a particular network confi guration, use the enableNetwork method, passing in the network
ID to use and specifying true for the disableAllOthers parameter:

// Get a list of available configurations
List<WifiConfiguration> configurations = wifi.getConfiguredNetworks();
// Get the network ID for the first one.
if (configurations.size() > 0) {
 int netID = configurations.get(0).networkId;
 // Enable that network.
 boolean disableAllOthers = true;
 wifi.enableNetwork(netID, disableAllOthers);
}

Creating Wi-Fi Network Confi gurations

To connect to a Wi-Fi network, you need to create and register a confi guration. Normally, your
users would do this using the native Wi-Fi confi guration settings, but there’s no reason you can’t
expose the same functionality within your own applications or, for that matter, replace the native
Wi-Fi confi guration Activity entirely.

Network confi gurations are stored as WifiConfiguration objects. The following is a nonexhaus-
tive list of some of the public fi elds available for each Wi-Fi confi guration:

 ‰ BSSID — The BSSID for an access point

 ‰ SSID — The SSID for a particular network

c16.indd 685c16.indd 685 4/18/2012 3:57:05 PM4/18/2012 3:57:05 PM

Meier c16.indd V2 - 04/16/2012 Page 686

686 x CHAPTER 16 BLUETOOTH, NFC, NETWORKS, AND WI-FI

 ‰ networkId — A unique identifi er used to identify this network confi guration on the
current device

 ‰ priority — The network confi guration’s priority to use when ordering the list of potential
access points to connect to

 ‰ status — The current status of this network connection, which will be one of the following:
WifiConfiguration.Status.ENABLED, WifiConfiguration.Status.DISABLED, or
WifiConfiguration.Status.CURRENT

The Wifi Confi guration object also contains the supported authentication techniques, as well as the
keys used previously to authenticate with this access point.

The addNetwork method lets you specify a new confi guration to add to the current list; similarly,
updateNetwork lets you update a network confi guration by passing in a WifiConfiguration that’s
sparsely populated with a network ID and the values you want to change.

You can also use removeNetwork, passing in a network ID, to remove a confi guration.

To persist any changes made to the network confi gurations, you must call saveConfiguration.

TRANSFERRING DATA USING WI-FI DIRECT

Wi-Fi Direct is a communications protocol designed for medium-range, high-bandwidth
peer-to-peer communications. Support for Wi-Fi Direct was added to Android 4.0 (API level 14).
Compared to Bluetooth, Wi-Fi Direct is faster and more reliable, and works over greater distances.

Using the Wi-Fi Direct APIs, you can search for, and connect to, other Wi-Fi Direct devices within
range. By initiating a communications link using sockets, you can then transmit and receive streams
of data between supported devices (including some printers, scanners, cameras, and televisions) and
between instances of your application running on different devices.

As a high bandwidth alternative to Bluetooth, Wi-Fi Direct is particularly suitable for operations
such as media sharing and live media streaming.

Initializing the Wi-Fi Direct Framework

To use Wi-Fi Direct, your application requires the ACCESS_WIFI_STATE, CHANGE_WIFI_STATE, and
INTERNET permissions:

<uses-permission android:name=”android.permission.ACCESS_WIFI_STATE”/>
<uses-permission android:name=”android.permission.CHANGE_WIFI_STATE”/>
<uses-permission android:name=”android.permission.INTERNET”/>

Wi-Fi Direct connections are initiated and managed using the WifiP2pManager system service,
which you can access using the getSystemService method, passing in the Context.WIFI_P2P_
SERVICE constant:

 wifiP2pManager =
 (WifiP2pManager)getSystemService(Context.WIFI_P2P_SERVICE);

c16.indd 686c16.indd 686 4/18/2012 3:57:05 PM4/18/2012 3:57:05 PM

Meier c16.indd V2 - 04/16/2012 Page 687

Transferring Data Using Wi-Fi Direct x 687

Before you can use the WiFi P2P Manager, you must create a channel to the Wi-Fi Direct framework
using the Wifi P2P Manager’s initialize method. Pass in the current Context, the Looper on
which to receive Wi-Fi Direct events, and a ChannelListener to listen for the loss of your channel
connection, as shown in Listing 16-18.

LISTING 16-18: Initializing Wi-Fi Direct

private WifiP2pManager wifiP2pManager;
private Channel wifiDirectChannel;

private void initializeWiFiDirect() {
 wifiP2pManager =
 (WifiP2pManager)getSystemService(Context.WIFI_P2P_SERVICE);

 wifiDirectChannel = wifiP2pManager.initialize(this, getMainLooper(),
 new ChannelListener() {
 public void onChannelDisconnected() {
 initializeWiFiDirect();
 }
 }
);
}

code snippet PA4AD_Ch16_WiFiDirect/src/WiFiDirectActivity.java

You will use this Channel whenever you interact with the Wi-Fi Direct framework, so initializing
the WiFi P2P Manager will typically be done within the onCreate handler of your Activity.

Most actions performed using the WiFi P2P Manager (such as peer discovery and connection
attempts) will immediately indicate their success (or failure) using an ActionListener, as shown in
Listing 16-19. When successful, the return values associated with those actions are obtained by
receiving Broadcast Intents, as described in the following sections.

LISTING 16-19: Creating a WiFi P2P Manager Action Listener

private ActionListener actionListener = new ActionListener() {
 public void onFailure(int reason) {
 String errorMessage = “WiFi Direct Failed: “;
 switch (reason) {
 case WifiP2pManager.BUSY :
 errorMessage += “Framework busy.”; break;
 case WifiP2pManager.ERROR :
 errorMessage += “Internal error.”; break;
 case WifiP2pManager.P2P_UNSUPPORTED :
 errorMessage += “Unsupported.”; break;
 default:
 errorMessage += “Unknown error.”; break;
 }
 Log.d(TAG, errorMessage);
 }
 continues

c16.indd 687c16.indd 687 4/18/2012 3:57:05 PM4/18/2012 3:57:05 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Meier c16.indd V2 - 04/16/2012 Page 688

688 x CHAPTER 16 BLUETOOTH, NFC, NETWORKS, AND WI-FI

 public void onSuccess() {
 // Success!
 // Return values will be returned using a Broadcast Intent
 }
};

code snippet PA4AD_Ch16_WiFiDirect/src/WiFiDirectActivity.java

Enabling Wi-Fi Direct and Monitoring Its Status

For an Android Device to fi nd other Wi-Fi Direct devices, or to be discoverable by them, users must
fi rst enable Wi-Fi Direct. You can launch the settings screen, for users to change this setting, by
starting a new Activity using the android.provider.Settings.ACTION_WIRELESS_SETTINGS class,
as shown in Listing 16-20.

LISTING 16-20: Enabling Wi-Fi Direct on a device

Intent intent = new Intent(
 android.provider.Settings.ACTION_WIRELESS_SETTINGS);

startActivity(intent);

code snippet PA4AD_Ch16_WiFiDirect/src/WiFiDirectActivity.java

Wi-Fi Direct will remain enabled only until you have made a connection and transferred data. It will
be disabled automatically after a short period of inactivity.

You will be able to perform Wi-Fi Direct operations only while Wi-Fi Direct is enabled on the
device, so it’s important to listen for changes in its status, modifying your UI to disable actions that
aren’t available.

You can monitor the Wi-Fi Direct status by registering a Broadcast Receiver that receives the
WifiP2pManager.WIFI_P2P_STATE_CHANGED_ACTION action:

IntentFilter p2pEnabledFilter = new
 IntentFilter(WifiP2pManager.WIFI_P2P_STATE_CHANGED_ACTION);

registerReceiver(p2pStatusReceiver, p2pEnabledFilter);

The Intent received by the associated Broadcast Receiver, as shown in Listing 16-21, will include a
WifiP2pManager.EXTRA_WIFI_STATE extra that will be set to either WIFI_P2P_STATE_ENABLED or
WIFI_P2P_STATE_DISABLED.

LISTING 16-21: Receiving a Wi-Fi Direct status change

BroadcastReceiver p2pStatusReceiver = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 int state = intent.getIntExtra(

LISTING 16-19 (continued)

c16.indd 688c16.indd 688 4/18/2012 3:57:06 PM4/18/2012 3:57:06 PM

Meier c16.indd V2 - 04/16/2012 Page 689

Transferring Data Using Wi-Fi Direct x 689

 WifiP2pManager.EXTRA_WIFI_STATE,
 WifiP2pManager.WIFI_P2P_STATE_DISABLED);

 switch (state) {
 case (WifiP2pManager.WIFI_P2P_STATE_ENABLED):
 buttonDiscover.setEnabled(true);
 break;
 default:
 buttonDiscover.setEnabled(false);
 }
 }
};

code snippet PA4AD_Ch16_WiFiDirect/src/WiFiDirectActivity.java

Within the onReceive handler, you can modify your UI accordingly based on the change in state.

After creating a channel to the Wi-Fi Direct framework and enabling Wi-Fi Direct on the host and
its peer device(s), you can begin the process of discovering and connecting to peers.

Discovering Peers

To initiate a scan for peers, call the WiFi P2P Manager’s discoverPeers method, passing in the
active channel and an Action Listener. Changes to the peer list will be broadcast as an Intent using
the WifiP2pManager.WIFI_P2P_PEERS_CHANGED_ACTION action. Peer discovery will remain active
until a connection is established or a group is created.

When you receive an Intent notifying you of a change to the peer list, you can request the current list
of discovered peers using the WifiP2pManager.requestPeers method, as shown in Listing 16-22.

LISTING 16-22: Discovering Wi-Fi Direct peers

private void discoverPeers() {
 wifiP2pManager.discoverPeers(wifiDirectChannel, actionListener);
}

BroadcastReceiver peerDiscoveryReceiver = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 wifiP2pManager.requestPeers(wifiDirectChannel,
 new PeerListListener() {
 public void onPeersAvailable(WifiP2pDeviceList peers) {
 deviceList.clear();
 deviceList.addAll(peers.getDeviceList());
 aa.notifyDataSetChanged();
 }
 });
 }
};

code snippet PA4AD_Ch16_WiFiDirect/src/WiFiDirectActivity.java

c16.indd 689c16.indd 689 4/18/2012 3:57:06 PM4/18/2012 3:57:06 PM

Meier c16.indd V2 - 04/16/2012 Page 690

690 x CHAPTER 16 BLUETOOTH, NFC, NETWORKS, AND WI-FI

The requestPeers method accepts a PeerListListener whose onPeersAvailable handler will exe-
cute when the peer list has been retrieved. The list of peers will be available as a WifiP2pDeviceList,
which you can then query to fi nd the name and address of all the available peer devices.

Connecting with Peers

To form a Wi-Fi Direct connection with a peer device, use the WiFi P2P Manager’s connect
method, passing in the active channel, an Action Listener, and a WifiP2pConfig object that speci-
fi es the address of the peer to connect to, as shown in Listing 16-23.

LISTING 16-23: Requesting a connection to a Wi-Fi Direct peer

private void connectTo(WifiP2pDevice device) {
 WifiP2pConfig config = new WifiP2pConfig();
 config.deviceAddress = device.deviceAddress;

 wifiP2pManager.connect(wifiDirectChannel, config, actionListener);
}

code snippet PA4AD_Ch16_WiFiDirect/src/WiFiDirectActivity.java

When you attempt to establish a connection, the remote device will be prompted to accept it. On
Android devices this requires the user to manually accept the connection request using the dialog
shown in Figure 16-4.

FIGURE 16-4

If the device accepts the connection request, the successful connection is broadcast on both devices
using the WifiP2pManager.WIFI_P2P_CONNECTION_CHANGED_ACTION Intent action.

The Broadcast Intent will include a NetworkInfo object parceled within the WifiP2pManager
.EXTRA_NETWORK_INFO extra. You can query the Network Info to confi rm whether the change in
connection status represents a new connection or a disconnection:

boolean connected = networkInfo.isConnected();

In the former case, you can request further details on the connection using the WifiP2pManager
.requestConnectionInfo method, passing in the active channel and a ConnectionInfoListener,
as shown in Listing 16-24.

c16.indd 690c16.indd 690 4/18/2012 3:57:06 PM4/18/2012 3:57:06 PM

Meier c16.indd V2 - 04/16/2012 Page 691

Transferring Data Using Wi-Fi Direct x 691

LISTING 16-24: Connecting to a Wi-Fi Direct peer

BroadcastReceiver connectionChangedReceiver = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {

 // Extract the NetworkInfo
 String extraKey = WifiP2pManager.EXTRA_NETWORK_INFO;
 NetworkInfo networkInfo =
 (NetworkInfo)intent.getParcelableExtra(extraKey);

 // Check if we’re connected
 if (networkInfo.isConnected()) {
 wifiP2pManager.requestConnectionInfo(wifiDirectChannel,
 new ConnectionInfoListener() {
 public void onConnectionInfoAvailable(WifiP2pInfo info) {
 // If the connection is established
 if (info.groupFormed) {
 // If we’re the server
 if (info.isGroupOwner) {
 // TODO Initiate server socket.
 }
 // If we’re the client
 else if (info.groupFormed) {
 // TODO Initiate client socket.
 }
 }
 }
 });
 } else {
 Log.d(TAG, “Wi-Fi Direct Disconnected”);
 }
 }
};

code snippet PA4AD_Ch16_WiFiDirect/src/WiFiDirectActivity.java

The ConnectionInfoListener will fi re its onConnectionInfoAvailable handler when
the connection details become available, passing in a WifiP2pInfo object that includes
those details.

When a collection is established, a group consisting of the peers connected is formed. The initiator
of the connection will be returned as the group owner and would typically (but not necessarily) take
on the role of server for further communications.

Each P2P connection is regarded as a group, even if that connection is
 exclusively between two peers. If you need to connect with legacy devices that
don’t support Wi-Fi Direct, you can manually create groups to create a virtual
access point to which they can connect.

c16.indd 691c16.indd 691 4/18/2012 3:57:06 PM4/18/2012 3:57:06 PM

Meier c16.indd V2 - 04/16/2012 Page 692

692 x CHAPTER 16 BLUETOOTH, NFC, NETWORKS, AND WI-FI

Having established a connection, you can use standard TCP/IP sockets to transmit data between
devices, as described later in the next section.

Transferring Data Between Peers

Although the specifi cs of any particular data transfer implementation is beyond the scope of this
book, this section describes the basic process of transmitting data between connected devices using
standard Java sockets.

To establish a socket connection, one device must create a ServerSocket that listens for connection
requests, and the other device must create a client Socket that makes connection requests. This
distinction is relevant only in terms of establishing the connection — after that connection is
 established, the data can fl ow in either direction.

Create a new server-side socket using the ServerSocket class, specifying a port on which
to listen for requests. Call its accept method to listen for incoming requests, as shown in
Listing 16-25.

LISTING 16-25: Creating a Server Socket

ServerSocket serverSocket = new ServerSocket(8666);
Socket serverClient = serverSocket.accept();

code snippet PA4AD_Ch16_WiFiDirect/src/WiFiDirectActivity.java

To request a connection from the client device, create a new Socket and use its connect method,
specifying the host address of the target device, a port to connect on, and a timeout for the
 connection request, as shown in Listing 16-36.

LISTING 16-26: Creating a client Socket

int timeout = 10000;
int port = 8666;

InetSocketAddress socketAddress
 = new InetSocketAddress(hostAddress, port);

try {
 Socket socket = new Socket();
 socket.bind(null);
 socket.connect(socketAddress, timeout);
} catch (IOException e) {
 Log.e(TAG, “IO Exception.”, e);
}

code snippet PA4AD_Ch16_WiFiDirect/src/WiFiDirectActivity.java

c16.indd 692c16.indd 692 4/18/2012 3:57:07 PM4/18/2012 3:57:07 PM

Meier c16.indd V2 - 04/16/2012 Page 693

Near Field Communication x 693

Like the Server Socket call to accept, the call to connect is a blocking call that will return after the
Socket connection has been established.

Network communications such as those described here should always be handled
on a background thread to avoid blocking the UI thread. This is particularly
the case when establishing the network connection because both the server- and
client-side logic includes blocking calls that will disrupt the UI.

After the sockets have been established, you can create Input Streams and Output Streams on either
the server- or client-side sockets to transmit and receive data bidirectionally.

NEAR FIELD COMMUNICATION

Android 2.3 (API level 9) introduced Near Field Communication (NFC) APIs. NFC is a contact-
less technology used to transmit small amounts of data across short distances (typically less than
4 centimeters).

NFC transfers can occur between two NFC-enabled devices, or between a device and an NFC
“tag.” Tags can range from passive tags that transmit a URL when scanned to complex systems such
as those used in NFC payment solutions, such as Google Wallet.

NFC messages in Android are handled using the NFC Data Exchange Format (NDEF).

In order to read, write, or broadcast NFC messages, your application requires the NFC manifest
permission:

<uses-permission android:name=”android.permission.NFC” />

Reading NFC Tags

When an Android device is used to scan an NFC tag, the system will decode the incoming payload
using its own tag dispatch system, which analyzes the tag, categorizes the data, and uses an Intent to
launch an application to receive the data.

For an application to receive NFC data, you need to add an Activity Intent Filter that listens for one
of the following Intent actions:

 ‰ NfcAdapter.ACTION_NDEF_DISCOVERED — The highest priority, and most specifi c, of the
NFC messages. Intents using this action include MIME types and/or URI data. It’s best
practice to listen for this broadcast whenever possible because the extra data allows you to be
more specifi c in defi ning which tags to respond to.

 ‰ NfcAdapter.ACTION_TECH_DISCOVERED — This action is broadcast when the NFC
technology is known but the tag contains no data — or contains data that can’t be mapped
to a MIME type or URI.

 ‰ NfcAdapter.ACTION_TAG_DISCOVERED — If a tag is received from an unknown technology,
it will be broadcast using this action.

c16.indd 693c16.indd 693 4/18/2012 3:57:07 PM4/18/2012 3:57:07 PM

Meier c16.indd V2 - 04/16/2012 Page 694

694 x CHAPTER 16 BLUETOOTH, NFC, NETWORKS, AND WI-FI

Listing 16-27 shows how to register an Activity that will respond only to NFC tags that correspond
to a URI that points to my blog.

LISTING 16-27: Listening for NFC tags

<activity android:name=”.BlogViewer”>
 <intent-filter>
 <action android:name=”android.nfc.action.NDEF_DISCOVERED”/>
 <category android:name=”android.intent.category.DEFAULT”/>
 <data android:scheme=”http”
 android:host=”blog.radioactiveyak.com”/>
 </intent-filter>
</activity>

code snippet PA4AD_Ch16_NFC/AndoridManifest.xml

It’s good practice to make your NFC Intent Filters as specifi c as possible to minimize the
 number of applications available to respond to a given NFC tag and provide the best, fastest
user experience.

In many cases the Intent data/URI and MIME type are suffi cient for your application to respond
accordingly. However, if required, the payload delivered from an NFC message is available through
extras within the Intent that started your Activity.

The NfcAdapter.EXTRA_TAG extra includes a raw Tag object that represents the scanned tag. The
NfcAdapter.EXTRA_TNDEF_MESSAGES extra contains an array of NDEF Messages, as shown in
Listing 16-28.

LISTING 16-28: Extracting NFC tag payloads

String action = getIntent().getAction();

if (NfcAdapter.ACTION_NDEF_DISCOVERED.equals(action)) {
 Parcelable[] messages =
 intent.getParcelableArrayExtra(NfcAdapter.EXTRA_NDEF_MESSAGES);

 for (int i = 0; i < messages.length; i++) {
 NdefMessage message = (NdefMessage)messages[i];
 NdefRecord[] records = message.getRecords();

 for (int j = 0; j < records.length; j++) {
 NdefRecord record = records[j];
 // TODO Process the individual records.
 }
 }
}

code snippet PA4AD_Ch16_NFC/src/BeamerActivity.java

c16.indd 694c16.indd 694 4/18/2012 3:57:08 PM4/18/2012 3:57:08 PM

Meier c16.indd V2 - 04/16/2012 Page 695

Near Field Communication x 695

Using the Foreground Dispatch System

By default, the tag dispatch system will determine which application should receive a particular tag
based on the standard process of Intent resolution. In that process, the foreground Activity has no
priority over other applications; so, if several applications are all registered to receive a tag of the
type scanned, the user will be prompted to select which to use, even if your application is in the
foreground at the time.

Using the foreground dispatch system, you can specify a particular Activity as having priority,
allowing it to become the default receiver when it is in the foreground. Foreground dispatching
can be toggled using the enable/disableForegroundDispatch methods on the NFC Adapter.
Foreground dispatching can be used only while an Activity is in the foreground, so it should be
enabled and disabled from within your onResume and onPause handlers, respectively, as shown in
Listing 16-29. The parameters to enableForegroundDispatch are described following the example.

LISTING 16-29: Using the foreground dispatch system

public void onPause() {
 super.onPause();

 nfcAdapter.disableForegroundDispatch(this);
}

@Override
public void onResume() {
 super.onResume();
 nfcAdapter.enableForegroundDispatch(
 this,
 // Intent that will be used to package the Tag Intent.
 nfcPendingIntent,
 // Array of Intent Filters used to declare the Intents you
 // wish to intercept.
 intentFiltersArray,
 // Array of Tag technologies you wish to handle.
 techListsArray);

 String action = getIntent().getAction();
 if (NfcAdapter.ACTION_NDEF_DISCOVERED.equals(action)) {
 processIntent(getIntent());
 }
}

code snippet PA4AD_Ch16_NFC/src/BeamerActivity.java

The Intent Filters array should declare the URIs or MIME types you want to intercept — any
received tags that don’t match these criteria will be handled using the standard tag dispatching
system. To ensure a good user experience, it’s important that you specify only the tag content your
application handles.

c16.indd 695c16.indd 695 4/18/2012 3:57:08 PM4/18/2012 3:57:08 PM

Meier c16.indd V2 - 04/16/2012 Page 696

696 x CHAPTER 16 BLUETOOTH, NFC, NETWORKS, AND WI-FI

You can further refi ne the tags you receive by explicitly indicating the technologies you want to
handle, typically represented by adding the NfcF class.

Finally, the Pending Intent will be populated by the NFC Adapter to transmit the received tag
directly to your application.

Listing 16-30 shows the Pending Intent, MIME type array, and technologies array used to enable
the foreground dispatching in Listing 16-29.

LISTING 16-30: Confi guring foreground dispatching parameters

PendingIntent nfcPendingIntent;
IntentFilter[] intentFiltersArray;
String[][] techListsArray;

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 [... Existing onCreate logic ...]

 // Create the Pending Intent.
 int requestCode = 0;
 int flags = 0;

 Intent nfcIntent = new Intent(this, getClass());
 nfcIntent.addFlags(Intent.FLAG_ACTIVITY_SINGLE_TOP);

 nfcPendingIntent =
 PendingIntent.getActivity(this, requestCode, nfcIntent, flags);

 // Create an Intent Filter limited to the URI or MIME type to
 // intercept TAG scans from.
 IntentFilter tagIntentFilter =
 new IntentFilter(NfcAdapter.ACTION_NDEF_DISCOVERED);
 tagIntentFilter.addDataScheme(“http”);
 tagIntentFilter.addDataAuthority(“blog.radioactiveyak.com”, null);
 intentFiltersArray = new IntentFilter[] { tagIntentFilter };

 // Create an array of technologies to handle.
 techListsArray = new String[][] {
 new String[] {
 NfcF.class.getName()
 }
 };
}

code snippet PA4AD_Ch16_NFC/src/BeamerActivity.java

c16.indd 696c16.indd 696 4/18/2012 3:57:08 PM4/18/2012 3:57:08 PM

Meier c16.indd V2 - 04/16/2012 Page 697

Near Field Communication x 697

Introducing Android Beam

Android Beam, introduced in Android 4.0 (API level 14), provides a simple API for an application to
transmit data between two devices using NFC, simply by placing them back-to-back. For example,
the native contacts, browser, and YouTube applications use Android Beam to share the currently
viewed contact, web page, and video, respectively, with other devices.

To beam messages, your application must be in the foreground and the device
receiving the data must not be locked.

Android Beam is initiated by tapping two NFC-enabled Android devices
together. Users are presented with a “touch to beam” UI, at which point they
can choose to “beam” the foreground application to the other device.

Android Beam uses NFC to push NDEF messages between devices when they are physically placed
together.

By enabling Android Beam within your application, you can defi ne the payload of the beamed
message. If you don’t customize the message, the default action for your application will be to
launch it on the target device. If your application isn’t installed on the target device, the Google Play
Store will launch and display your application’s details page.

To defi ne the message your application beams, you need to request the NFC permission in the
manifest:

<uses-permission android:name=”android.permission.NFC”/>

The process to defi ne your own custom payload is described as follows:

1. Create an NdefMessage object that contains an NdefRecord that contains your message
payload.

2. Assign your Ndef Message to the NFC Adapter as your Android Beam payload.

3. Confi gure your application to listen for incoming Android Beam messages.

Creating Android Beam Messages

To create a new Ndef Message, create a new NdefMessage object that contains at least one
NdefRecord containing the payload you want to beam to your application on the target device.

When creating a new Ndef Record, you must specify the type of record it represents, a MIME
type, an ID, and a payload. There are several common types of Ndef Record that can be used to
transmit data using Android Beam; note that they should always be the fi rst record added to each
beamed message.

c16.indd 697c16.indd 697 4/18/2012 3:57:08 PM4/18/2012 3:57:08 PM

Meier c16.indd V2 - 04/16/2012 Page 698

698 x CHAPTER 16 BLUETOOTH, NFC, NETWORKS, AND WI-FI

Using the NdefRecord.TNF_MIME_MEDIA type, you can transmit an absolute URI:

NdefRecord uriRecord = new NdefRecord(
 NdefRecord.TNF_ABSOLUTE_URI,
 “http://blog.radioactiveyak.com”.getBytes(Charset.forName(“US-ASCII”)),
 new byte[0], new byte[0]);

This is the most common Ndef Record transmitted using Android Beam because the received Intent
will be of the same form as any Intent used to start an Activity. The Intent Filter used to decide
which NFC messages a particular Activity should receive can use the scheme, host, and path
Prefix attributes.

If you need to transmit messages that contain information that can’t be easily interpreted as a URI,
the NdefRecord.TNF_MIME_MEDIA type supports the creation of an application-specifi c MIME type
and the inclusion of associated payload data:

byte[] mimeType = “application/com.paad.nfcbeam”.getBytes(Charset.forName(“US-ASCII”));
byte[] tagId = new byte[0];
byte[] payload = “Not a URI”.getBytes(Charset.forName(“US-ASCII”));

NdefRecord mimeRecord = new NdefRecord(
 NdefRecord.TNF_MIME_MEDIA,
 mimeType,
 tagId,
 payload);

A more complete examination of the available NDEF record types and how to use them can be
found in the Android Developer Guide (http://developer.android.com/guide/topics/nfc/
nfc.html#creating-records).

It’s good practice to also include an Ndef Record in the form of an Android Application Record
(AAR). This guarantees that your application will be launched on the target device, and that if your
application isn’t installed, the Google Play Store will be lunched for the user to install it.

To create an AAR Ndef Record, use the createApplicationRecord static method on the Ndef
Record class, specifying the package name of your application, as shown in Listing 16-31.

LISTING 16-31: Creating an Android Beam NDEF message

String payload = “Two to beam across”;

String mimeType = “application/com.paad.nfcbeam”;
byte[] mimeBytes = mimeType.getBytes(Charset.forName(“US-ASCII”));

NdefMessage nfcMessage = new NdefMessage(new NdefRecord[] {
 // Create the NFC payload.
 new NdefRecord(
 NdefRecord.TNF_MIME_MEDIA,
 mimeBytes,
 new byte[0],
 payload.getBytes()),

 // Add the AAR (Android Application Record)

c16.indd 698c16.indd 698 4/18/2012 3:57:08 PM4/18/2012 3:57:08 PM

http://blog.radioactiveyak.com%E2%80%9D.getBytes
http://developer.android.com/guide/topics/nfc/nfc.html#creating-records
http://developer.android.com/guide/topics/nfc/nfc.html#creating-records
http://developer.android.com/guide/topics/nfc/nfc.html#creating-records
http://developer.android.com/guide/topics/nfc/nfc.html#creating-records

Meier c16.indd V2 - 04/16/2012 Page 699

Near Field Communication x 699

 NdefRecord.createApplicationRecord(“com.paad.nfcbeam”)
});

code snippet PA4AD_Ch16_NFCBeam/src/BeamerActivity.java

Assigning the Android Beam Payload

You specify your Android Beam payload using the NFC adapter. You can access the default NFC
adapter using the static getDefaultAdapter method on the NfcAdapter class:

NfcAdapter nfcAdapter = NfcAdapter.getDefaultAdapter(this);

There are two alternatives for specifying the NDEF Message created in Listing 16-31 as your
application’s Android Beam payload. The simplest way is to use the setNdefPushMessage
method to assign a message that should always be sent from the current Activity if Android
Beam is initiated. You would typically make this assignment once, from within your Activity’s
onResume method:

nfcAdapter.setNdefPushMessage(nfcMessage, this);

A better alternative is to use the setNdefPushMessageCallback method. This handler will fi re
immediately before your message is beamed, allowing you to dynamically set the payload content
based on the application’s current context — for example, which video is being watched, which web
page is being browsed, or which map coordinates are centered, as shown in Listing 16-32.

LISTING 16-32: Setting your Android Beam message dynamically

nfcAdapter.setNdefPushMessageCallback(new CreateNdefMessageCallback() {
 public NdefMessage createNdefMessage(NfcEvent event) {
 String payload = “Beam me up, Android!\n\n” +
 “Beam Time: “ + System.currentTimeMillis();

 NdefMessage message = createMessage(payload);

 return message;
 }
}, this);

code snippet PA4AD_Ch16_NFCBeam/src/BeamerActivity.java

If you set both a static message and a dynamic message using the callback hander, only the latter
will be transmitted.

Receiving Android Beam Messages

Android Beam messages are received much like NFC tags, as described earlier in this chapter. To
receive the payload you packaged in the previous section, start by adding a new Intent Filter to your
Activity, as shown in Listing 16-33.

c16.indd 699c16.indd 699 4/18/2012 3:57:09 PM4/18/2012 3:57:09 PM

Meier c16.indd V2 - 04/16/2012 Page 700

700 x CHAPTER 16 BLUETOOTH, NFC, NETWORKS, AND WI-FI

LISTING 16-33: Android Beam Intent Filter

<intent-filter>
 <action android:name=”android.nfc.action.NDEF_DISCOVERED”/>
 <category android:name=”android.intent.category.DEFAULT”/>
 <data android:mimeType=”application/com.paad.nfcbeam”/>
</intent-filter>

code snippet PA4AD_Ch16_NFCBeam/AndroidManifest.xml

The Activity will be launched on the recipient device when an Android Beam has been initiated,
or, if your application isn’t installed, the Google Play Store will be launched to allow the user to
download it.

The beam data will be delivered to your Activity using an Intent with the NfcAdapter.ACTION_
NDEF_DISCOVERED action and the payload available as an array of NdfMessages stored against the
NfcAdapter.EXTRA_NDEF_MESSAGES extra, as shown in Listing 16-34.

LISTING 16-34: Extracting the Android Beam payload

Parcelable[] messages = intent.getParcelableArrayExtra(
 NfcAdapter.EXTRA_NDEF_MESSAGES);

NdefMessage message = (NdefMessage)messages[0];
NdefRecord record = message.getRecords()[0];

String payload = new String(record.getPayload());

code snippet PA4AD_Ch16_NFCBeam/src/BeamerActivity.java

Typically, the payload string will be in the form of a URI, allowing you to extract and handle it as
you would the data encapsulated within an Intent to display the appropriate video, web page, or
map coordinates.

c16.indd 700c16.indd 700 4/18/2012 3:57:09 PM4/18/2012 3:57:09 PM

Meier c17.indd V2 - 04/14/2012 Page 701

17
Telephony and SMS

WHAT’S IN THIS CHAPTER?

 ‰ Initiating phone calls

 ‰ Reading the phone, network, data connectivity, and SIM states

 ‰ Monitoring changes to the phone, network, data connectivity, and

SIM states

 ‰ Using Intents to send SMS and MMS messages

 ‰ Using the SMS Manager to send SMS messages

 ‰ Handling incoming SMS messages

In this chapter, you’ll learn to use Android’s telephony APIs to monitor mobile voice and data
connections as well as incoming and outgoing calls, and to send and receive short messaging
service (SMS) messages.

You’ll take a look at the communication hardware by examining the telephony package for
monitoring phone state and phone calls, as well as initiating calls and monitoring incoming
call details.

Android also offers full access to SMS functionality, letting you send and receive SMS
messages from within your applications. Using the Android APIs, you can create your own
SMS client application to replace the native clients available as part of the software stack.
Alternatively, you can incorporate the messaging functionality within your own applications.

HARDWARE SUPPORT FOR TELEPHONY

With the arrival of Wi-Fi-only Android devices, you can no longer assume that telephony will
be supported on all the hardware on which your application may be available.

c17.indd 701c17.indd 701 4/18/2012 3:57:47 PM4/18/2012 3:57:47 PM

Meier c17.indd V2 - 04/14/2012 Page 702

702 x CHAPTER 17 TELEPHONY AND SMS

Marking Telephony as a Required Hardware Feature

Some applications don’t make sense on devices that don’t have telephony support. An application
that provides reverse-number lookup for incoming calls or a replacement SMS client simply won’t
work on a Wi-Fi-only device.

To specify that your application requires telephony support to function, you can add a uses-feature
node to your application manifest:

<uses-feature android:name=”android.hardware.telephony”
 android:required=”true”/>

Marking telephony as a required feature prevents your application from being
found on Google Play using a device without telephony hardware. It also pre-
vents your application from being installed on such devices from the Google
Play website.

Checking for Telephony Hardware

If you use telephony APIs but they aren’t strictly necessary for your application to be used, you can
check for the existence of telephony hardware before attempting to make use of the related APIs.

Use the Package Manager’s hasSystemFeature method, specifying the FEATURE_TELEPHONY feature.
The Package Manager also includes constants to query the existence of CDMA- and GSM-specifi c
hardware.

PackageManager pm = getPackageManager();

boolean telephonySupported =
 pm.hasSystemFeature(PackageManager.FEATURE_TELEPHONY);
boolean gsmSupported =
 pm.hasSystemFeature(PackageManager.FEATURE_TELEPHONY_CDMA);
boolean cdmaSupported =
 pm.hasSystemFeature(PackageManager.FEATURE_TELEPHONY_GSM);

It’s good practice to check for telephony support early in your application’s lifecycle and adjust its UI
and behavior accordingly.

USING TELEPHONY

The Android telephony APIs let your applications access the underlying telephone hardware stack,
making it possible to create your own dialer — or integrate call handling and phone state monitor-
ing into your applications.

Because of security concerns, the current Android SDK does not allow you to
create your own in-call Activity — the screen that is displayed when an incoming
call is received or an outgoing call has been placed.

c17.indd 702c17.indd 702 4/18/2012 3:57:50 PM4/18/2012 3:57:50 PM

Meier c17.indd V2 - 04/14/2012 Page 703

Using Telephony x 703

The following sections focus on how to monitor and control phone, service, and cell events in your
applications to augment and manage the native phone-handling functionality. You can use the same
techniques to implement a replacement dialer application.

Initiating Phone Calls

Best practice for initiating phone calls is to use an Intent.ACTION_DIAL Intent, specifying the
number to dial by setting the Intents data using a tel: schema:

Intent whoyougonnacall = new Intent(Intent.ACTION_DIAL,
 Uri.parse(“tel:555-2368”));
startActivity(whoyougonnacall);

This starts a dialer Activity that should be prepopulated with the number you specifi ed. The default
dialer Activity allows the user to change the number before explicitly initiating the call. As a result,
using the ACTION_DIAL Intent action doesn’t require any special permissions.

By using an Intent to announce your intention to dial a number, your application stays decoupled
from the dialer implementation used to initiate the call. For example, if users have installed a new
dialer that supports IP-based telephony, using Intents to dial a number from your application lets
them use this new dialer.

Replacing the Native Dialer

Replacing the native dialer application involves two steps:

1. Intercept Intents serviced by the native dialer.

2. Initiate and manage outgoing calls.

The native dialer application responds to Intent actions corresponding to a user pressing the
hardware call button, asking to view data using the tel: schema, or making an ACTION_DIAL
request using the tel: schema, as shown in the previous section.

To intercept these requests, include intent-filter tags on the manifest entries for your
replacement dialer Activity that listens for the following actions:

 ‰ Intent.ACTION_CALL_BUTTON — This action is broadcast when the device’s hardware call
button is pressed. Create an Intent Filter that listens for this action as a default action.

 ‰ Intent.ACTION_DIAL — This Intent action, described in the previous section, is used by appli-
cations that want to initiate a phone call. The Intent Filter used to capture this action should be
both default and browsable (to support dial requests from the browser) and must specify the
tel: schema to replace existing dialer functionality (though it can support additional schemes).

 ‰ Intent.ACTION_VIEW — The view action is used by applications wanting to view a piece of
data. Ensure that the Intent Filter specifi es the tel: schema to allow your new Activity to be
used to view telephone numbers.

The manifest snippet in Listing 17-1 shows an Activity with Intent Filters that will capture each of
these actions.

c17.indd 703c17.indd 703 4/18/2012 3:57:51 PM4/18/2012 3:57:51 PM

Meier c17.indd V2 - 04/14/2012 Page 704

704 x CHAPTER 17 TELEPHONY AND SMS

LISTING 17-1: Manifest entry for a replacement dialer Activity

<activity
 android:name=”.MyDialerActivity”
 android:label=”@string/app_name”>
 <intent-filter>
 <action android:name=”android.intent.action.CALL_BUTTON” />
 <category android:name=”android.intent.category.DEFAULT” />
 </intent-filter>
 <intent-filter>
 <action android:name=”android.intent.action.VIEW” />
 <action android:name=”android.intent.action.DIAL” />
 <category android:name=”android.intent.category.DEFAULT” />
 <category android:name=”android.intent.category.BROWSABLE” />
 <data android:scheme=”tel” />
 </intent-filter>
</activity>

code snippet PA3AD_Ch17_Replacement_Dialer/AndroidManifest.xml

After your Activity has been started, it should provide a UI that allows users to enter or modify the
number to dial and to initiate the outgoing call. At that point you need to place the call — using
either the existing telephony stack or your own alternative.

The simplest technique is to use the existing telephony stack using the Intent.ACTION_CALL action,
as shown in Listing 17-2.

LISTING 17-2: Initiating a call using the system telephony stack

Intent whoyougonnacall = new Intent(Intent.ACTION_CALL,
 Uri.parse(“tel:555-2368”));
startActivity(whoyougonnacall);

code snippet PA3AD_Ch17_Replacement_Dialer/AndroidManifest.xml

This will initiate a call using the system in-call Activity and will let the system manage the dialing,
connection, and voice handling.

To use this action, your application must request the CALL_PHONE uses-permission:

<uses-permission android:name=”android.permission.CALL_PHONE”/>

Alternatively, you can completely replace the outgoing telephony stack by implementing your own
dialing and voice-handling framework. This is the perfect alternative if you are implementing a
VOIP (voice over IP) application.

Note, also, that you can use the preceding techniques to intercept outgoing call Intents and
modify outgoing numbers or to block outgoing calls as an alternative to completely replacing
the dialer.

c17.indd 704c17.indd 704 4/18/2012 3:57:51 PM4/18/2012 3:57:51 PM

Meier c17.indd V2 - 04/14/2012 Page 705

Using Telephony x 705

Accessing Telephony Properties and Phone State

Access to the telephony APIs is managed by the Telephony Manager, accessible using the
getSystemService method:

String srvcName = Context.TELEPHONY_SERVICE;
TelephonyManager telephonyManager =
 (TelephonyManager)getSystemService(srvcName);

The Telephony Manager provides direct access to many of the phone properties, including device,
network, subscriber identity module (SIM), and data state details. You can also access some connec-
tivity status information, although this is usually done using the Connectivity Manager, as described
in the previous chapter.

Reading Phone Device Details

Using the Telephony Manager, you can obtain the phone type (GSM CDMA, or SIP), unique ID
(IMEI or MEID), software version, and the phone’s phone number:

String phoneTypeStr = “unknown”;

int phoneType = telephonyManager.getPhoneType();
switch (phoneType) {
 case (TelephonyManager.PHONE_TYPE_CDMA):
 phoneTypeStr = “CDMA”;
 break;
 case (TelephonyManager.PHONE_TYPE_GSM) :
 phoneTypeStr = “GSM”;
 break;
 case (TelephonyManager.PHONE_TYPE_SIP):
 phoneTypeStr = “SIP”;
 break;
 case (TelephonyManager.PHONE_TYPE_NONE):
 phoneTypeStr = “None”;
 break;
 default: break;
}

// -- These require READ_PHONE_STATE uses-permission --
// Read the IMEI for GSM or MEID for CDMA
String deviceId = telephonyManager.getDeviceId();
// Read the software version on the phone (note -- not the SDK version)
String softwareVersion = telephonyManager.getDeviceSoftwareVersion();
// Get the phone’s number (if available)
String phoneNumber = telephonyManager.getLine1Number();

Note that, except for the phone type, reading each of these properties requires that the READ_PHONE_
STATE uses-permission be included in the application manifest:

<uses-permission android:name=”android.permission.READ_PHONE_STATE”/>

You can also determine the type of network you’re connected to, along with the name and country
of the SIM or connected carrier network.

c17.indd 705c17.indd 705 4/18/2012 3:57:51 PM4/18/2012 3:57:51 PM

Meier c17.indd V2 - 04/14/2012 Page 706

706 x CHAPTER 17 TELEPHONY AND SMS

Reading Network Details

When your device is connected to a network, you can use the Telephony Manager to read the
Mobile Country Code and Mobile Network Code (MCC+MNC), the country ISO code, the net-
work operator name, and the type of network you’re connected to using the getNetworkOperator,
getNetworkCountryIso, getNetworkOperatorName, and getNetworkType methods:

// Get connected network country ISO code
String networkCountry = telephonyManager.getNetworkCountryIso();
// Get the connected network operator ID (MCC + MNC)
String networkOperatorId = telephonyManager.getNetworkOperator();
// Get the connected network operator name
String networkName = telephonyManager.getNetworkOperatorName();

// Get the type of network you are connected to
int networkType = telephonyManager.getNetworkType();
switch (networkType) {
 case (TelephonyManager.NETWORK_TYPE_1xRTT) : [… do something …]
 break;
 case (TelephonyManager.NETWORK_TYPE_CDMA) : [… do something …]
 break;
 case (TelephonyManager.NETWORK_TYPE_EDGE) : [… do something …]
 break;
 case (TelephonyManager.NETWORK_TYPE_EHRPD) : [… do something …]
 break;
 case (TelephonyManager.NETWORK_TYPE_EVDO_0) : [… do something …]
 break;
 case (TelephonyManager.NETWORK_TYPE_EVDO_A) : [… do something …]
 break;
 case (TelephonyManager.NETWORK_TYPE_EVDO_B) : [… do something …]
 break;
 case (TelephonyManager.NETWORK_TYPE_GPRS) : [… do something …]
 break;
 case (TelephonyManager.NETWORK_TYPE_HSDPA) : [… do something …]
 break;
 case (TelephonyManager.NETWORK_TYPE_HSPA) : [… do something …]
 break;
 case (TelephonyManager.NETWORK_TYPE_HSPAP) : [… do something …]
 break;
 case (TelephonyManager.NETWORK_TYPE_HSUPA) : [… do something …]
 break;
 case (TelephonyManager.NETWORK_TYPE_IDEN) : [… do something …]
 break;
 case (TelephonyManager.NETWORK_TYPE_LTE) : [… do something …]
 break;
 case (TelephonyManager.NETWORK_TYPE_UMTS) : [… do something …]
 break;
 case (TelephonyManager.NETWORK_TYPE_UNKNOWN) : [… do something …]
 break;
 default: break;
}

These commands work only when you are connected to a mobile network and can be unreliable if
it is a CDMA network. Use the getPhoneType method, as shown in the preceding code snippet, to
determine which phone type is being used.

c17.indd 706c17.indd 706 4/18/2012 3:57:51 PM4/18/2012 3:57:51 PM

Meier c17.indd V2 - 04/14/2012 Page 707

Using Telephony x 707

Reading SIM Details

If your application is running on a GSM device, it will usually have a SIM. You can query the SIM
details from the Telephony Manager to obtain the ISO country code, operator name, and operator
MCC and MNC for the SIM installed in the current device. These details can be useful if you need
to provide specialized functionality for a particular carrier.

If you have included the READ_PHONE_STATE uses-permission in your application manifest, you can
also obtain the serial number for the current SIM using the getSimSerialNumber method when the
SIM is in a ready state.

Before you can use any of these methods, you must ensure that the SIM is in a ready state. You can
determine this using the getSimState method:

int simState = telephonyManager.getSimState();
switch (simState) {
 case (TelephonyManager.SIM_STATE_ABSENT): break;
 case (TelephonyManager.SIM_STATE_NETWORK_LOCKED): break;
 case (TelephonyManager.SIM_STATE_PIN_REQUIRED): break;
 case (TelephonyManager.SIM_STATE_PUK_REQUIRED): break;
 case (TelephonyManager.SIM_STATE_UNKNOWN): break;
 case (TelephonyManager.SIM_STATE_READY): {
 // Get the SIM country ISO code
 String simCountry = telephonyManager.getSimCountryIso();
 // Get the operator code of the active SIM (MCC + MNC)
 String simOperatorCode = telephonyManager.getSimOperator();
 // Get the name of the SIM operator
 String simOperatorName = telephonyManager.getSimOperatorName();
 // -- Requires READ_PHONE_STATE uses-permission --
 // Get the SIM’s serial number
 String simSerial = telephonyManager.getSimSerialNumber();
 break;
 }
 default: break;
}

Reading Data Connection and Transfer State Details

Using the getDataState and getDataActivity methods, you can fi nd the current data connection
state and data transfer activity, respectively:

int dataActivity = telephonyManager.getDataActivity();
int dataState = telephonyManager.getDataState();

switch (dataActivity) {
 case TelephonyManager.DATA_ACTIVITY_IN : break;
 case TelephonyManager.DATA_ACTIVITY_OUT : break;
 case TelephonyManager.DATA_ACTIVITY_INOUT : break;
 case TelephonyManager.DATA_ACTIVITY_NONE : break;
}

switch (dataState) {
 case TelephonyManager.DATA_CONNECTED : break;
 case TelephonyManager.DATA_CONNECTING : break;

c17.indd 707c17.indd 707 4/18/2012 3:57:51 PM4/18/2012 3:57:51 PM

Meier c17.indd V2 - 04/14/2012 Page 708

708 x CHAPTER 17 TELEPHONY AND SMS

 case TelephonyManager.DATA_DISCONNECTED : break;
 case TelephonyManager.DATA_SUSPENDED : break;
}

The Telephony Manager indicates only telephony-based data connectivity (mobile
data as opposed to Wi-Fi). As a result, in most circumstances the Connectivity
Manager is a better alternative to determine the current connectivity state.

Monitoring Changes in Phone State Using the Phone
State Listener

The Android telephony APIs lets you monitor changes to phone state and associated details such as
incoming phone numbers.

Changes to the phone state are monitored using the PhoneStateListener class, with some state
changes also broadcast as Intents. This section describes how to use the Phone State Listener, and
the following section describes which Broadcast Intents are available.

To monitor and manage phone state, your application must specify the READ_PHONE_STATE
uses-permission:

<uses-permission android:name=”android.permission.READ_PHONE_STATE”/>

Create a new class that implements the Phone State Listener to monitor, and respond to, phone state
change events, including call state (ringing, off hook, and so on), cell location changes, voice-mail
and call-forwarding status, phone service changes, and changes in mobile signal strength.

Within your Phone State Listener implementation, override the event handlers of the events you
want to react to. Each handler receives parameters that indicate the new phone state, such as the
current cell location, call state, or signal strength.

After creating your own Phone State Listener, register it with the Telephony Manager using
a bitmask to indicate the events you want to listen for:

telephonyManager.listen(phoneStateListener,
 PhoneStateListener.LISTEN_CALL_FORWARDING_INDICATOR |
 PhoneStateListener.LISTEN_CALL_STATE |
 PhoneStateListener.LISTEN_CELL_LOCATION |
 PhoneStateListener.LISTEN_DATA_ACTIVITY |
 PhoneStateListener.LISTEN_DATA_CONNECTION_STATE |
 PhoneStateListener.LISTEN_MESSAGE_WAITING_INDICATOR |
 PhoneStateListener.LISTEN_SERVICE_STATE |
 PhoneStateListener.LISTEN_SIGNAL_STRENGTHS);

To unregister a listener, call listen and pass in PhoneStateListener.LISTEN_NONE as the bitmask
parameter:

telephonyManager.listen(phoneStateListener,
 PhoneStateListener.LISTEN_NONE);

c17.indd 708c17.indd 708 4/18/2012 3:57:52 PM4/18/2012 3:57:52 PM

Meier c17.indd V2 - 04/14/2012 Page 709

Using Telephony x 709

Your Phone State Listener will receive phone state change notifi cations only
while your application is running.

Monitoring Incoming Phone Calls

If your application should respond to incoming phone calls only while it is running, you can over-
ride the onCallStateChanged method in your Phone State Listener implementation, and register it
to receive notifi cations when the call state changes:

PhoneStateListener callStateListener = new PhoneStateListener() {
 public void onCallStateChanged(int state, String incomingNumber) {
 String callStateStr = “Unknown”;

 switch (state) {
 case TelephonyManager.CALL_STATE_IDLE :
 callStateStr = “idle”; break;
 case TelephonyManager.CALL_STATE_OFFHOOK :
 callStateStr = “offhook”; break;
 case TelephonyManager.CALL_STATE_RINGING :
 callStateStr = “ringing. Incoming number is: “
 + incomingNumber;
 break;
 default : break;
 }

 Toast.makeText(MyActivity.this,
 callStateStr, Toast.LENGTH_LONG).show();
 }
};

telephonyManager.listen(callStateListener,
 PhoneStateListener.LISTEN_CALL_STATE);

The onCallStateChanged handler receives the phone number associated with incoming
calls, and the state parameter represents the current call state as one of the following
three values:

 ‰ TelephonyManager.CALL_STATE_IDLE — When the phone is neither ringing nor in a call

 ‰ TelephonyManager.CALL_STATE_RINGING — When the phone is ringing

 ‰ TelephonyManager.CALL_STATE_OFFHOOK — When the phone is currently in a call

Note that as soon as the state changes to CALL_STATE_RINGING, the system will display the incom-
ing call screen, asking users if they want to answer the call.

Your application must be running to receive this callback. If your application should be started
whenever the phone state changes, you can register an Intent Receiver that listens for a Broadcast
Intent signifying a change in phone state. This is described in the “Using Intent Receivers to
Monitor Incoming Phone Calls” section later in this chapter.

c17.indd 709c17.indd 709 4/18/2012 3:57:52 PM4/18/2012 3:57:52 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Meier c17.indd V2 - 04/14/2012 Page 710

710 x CHAPTER 17 TELEPHONY AND SMS

Tracking Cell Location Changes

You can get notifi cations whenever the current cell location changes by overriding
onCellLocationChanged on a Phone State Listener implementation. Before you can register
to listen for cell location changes, you need to add the ACCESS_COARSE_LOCATION permission to
your application manifest:

<uses-permission android:name=”android.permission.ACCESS_COARSE_LOCATION”/>

The onCellLocationChanged handler receives a CellLocation object that includes methods for
extracting different location information based on the type of phone network. In the case of a
GSM network, the cell ID (getCid) and the current location area code (getLac) are available. For
CDMA networks, you can obtain the current base station ID (getBaseStationId) and the latitude
(getBaseStationLatitude) and longitude (getBaseStationLongitude) of that base station.

The following code snippet shows how to implement a Phone State Listener to monitor cell location
changes, displaying a Toast that includes the received network location details.

PhoneStateListener cellLocationListener = new PhoneStateListener() {
 public void onCellLocationChanged(CellLocation location) {
 if (location instanceof GsmCellLocation) {
 GsmCellLocation gsmLocation = (GsmCellLocation)location;
 Toast.makeText(getApplicationContext(),
 String.valueOf(gsmLocation.getCid()),
 Toast.LENGTH_LONG).show();
 }
 else if (location instanceof CdmaCellLocation) {
 CdmaCellLocation cdmaLocation = (CdmaCellLocation)location;
 StringBuilder sb = new StringBuilder();
 sb.append(cdmaLocation.getBaseStationId());
 sb.append(“\n@”);
 sb.append(cdmaLocation.getBaseStationLatitude());
 sb.append(cdmaLocation.getBaseStationLongitude());

 Toast.makeText(getApplicationContext(),
 sb.toString(),
 Toast.LENGTH_LONG).show();
 }
 }
};
telephonyManager.listen(cellLocationListener,
 PhoneStateListener.LISTEN_CELL_LOCATION);

Tracking Service Changes

The onServiceStateChanged handler tracks the service details for the device’s cell service. Use the
ServiceState parameter to fi nd details of the current service state.

The getState method on the Service State object returns the current service state as one of the
following ServiceState constants:

 ‰ STATE_IN_SERVICE — Normal phone service is available.

 ‰ STATE_EMERGENCY_ONLY — Phone service is available but only for emergency calls.

c17.indd 710c17.indd 710 4/18/2012 3:57:52 PM4/18/2012 3:57:52 PM

Meier c17.indd V2 - 04/14/2012 Page 711

Using Telephony x 711

 ‰ STATE_OUT_OF_SERVICE — No cell phone service is currently available.

 ‰ STATE_POWER_OFF — The phone radio is turned off (usually when airplane mode is enabled).

A series of getOperator* methods is available to retrieve details on the operator supplying the cell
phone service, whereas getRoaming tells you if the device is currently using a roaming profi le:

PhoneStateListener serviceStateListener = new PhoneStateListener() {
 public void onServiceStateChanged(ServiceState serviceState) {
 if (serviceState.getState() == ServiceState.STATE_IN_SERVICE) {
 String toastText = “Operator: “ + serviceState.getOperatorAlphaLong();
 Toast.makeText(MyActivity.this, toastText, Toast.LENGTH_SHORT);
 }
 }
};

telephonyManager.listen(serviceStateListener,
 PhoneStateListener.LISTEN_SERVICE_STATE);

Monitoring Data Connectivity and Data Transfer Status Changes

You can use a Phone State Listener to monitor changes in mobile data connectivity and mobile data
transfer. Note that this does not include data transferred using Wi-Fi. For more comprehensive
monitoring of data connectivity and transfers, use the Connectivity Manager, as described in the
previous chapter.

The Phone State Listener includes two event handlers for monitoring the device’s data connection.
Override onDataActivity to track data transfer activity, and onDataConnectionStateChanged
to request notifi cations for data connection state changes:

PhoneStateListener dataStateListener = new PhoneStateListener() {
 public void onDataActivity(int direction) {
 String dataActivityStr = “None”;

 switch (direction) {
 case TelephonyManager.DATA_ACTIVITY_IN :
 dataActivityStr = “Downloading”; break;
 case TelephonyManager.DATA_ACTIVITY_OUT :
 dataActivityStr = “Uploading”; break;
 case TelephonyManager.DATA_ACTIVITY_INOUT :
 dataActivityStr = “Uploading/Downloading”; break;
 case TelephonyManager.DATA_ACTIVITY_NONE :
 dataActivityStr = “No Activity”; break;
 }

 Toast.makeText(MyActivity.this,
 “Data Activity is “ + dataActivityStr,
 Toast.LENGTH_LONG).show();
 }

 public void onDataConnectionStateChanged(int state) {
 String dataStateStr = “Unknown”;

 switch (state) {

c17.indd 711c17.indd 711 4/18/2012 3:57:52 PM4/18/2012 3:57:52 PM

Meier c17.indd V2 - 04/14/2012 Page 712

712 x CHAPTER 17 TELEPHONY AND SMS

 case TelephonyManager.DATA_CONNECTED :
 dataStateStr = “Connected”; break;
 case TelephonyManager.DATA_CONNECTING :
 dataStateStr = “Connecting”; break;
 case TelephonyManager.DATA_DISCONNECTED :
 dataStateStr = “Disconnected”; break;
 case TelephonyManager.DATA_SUSPENDED :
 dataStateStr = “Suspended”; break;
 }

 Toast.makeText(MyActivity.this,
 “Data Connectivity is “ + dataStateStr,
 Toast.LENGTH_LONG).show();
 }
};

telephonyManager.listen(dataStateListener,
 PhoneStateListener.LISTEN_DATA_ACTIVITY |
 PhoneStateListener.LISTEN_DATA_CONNECTION_STATE);

Using Intent Receivers to Monitor Incoming Phone Calls

When the phone state changes as a result of an incoming, accepted, or terminated phone call, the
Telephony Manager will broadcast an ACTION_PHONE_STATE_CHANGED Intent.

By registering a manifest Intent Receiver that listens for this Broadcast Intent, as shown in the
snippet below, you can listen for incoming phone calls at any time, even if your application isn’t
running. Note that your application needs to request the READ_PHONE_STATE permission to receive
the phone state changed Broadcast Intent.

<receiver android:name=”PhoneStateChangedReceiver”>
 <intent-filter>
 <action android:name=”android.intent.action.PHONE_STATE”></action>
 </intent-filter>
</receiver>

The Phone State Changed Broadcast Intent includes up to two extras. All such broadcasts will
include the EXTRA_STATE extra, whose value will be one of the TelephonyManager.CALL_STATE_*
actions described earlier to indicate the new phone state. If the state is ringing, the Broadcast
Intent will also include the EXTRA_INCOMING_NUMBER extra, whose value represents the incoming
call number.

The following skeleton code can be used to extract the current phone state and incoming call num-
ber where it exists:

public class PhoneStateChangedReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 String phoneState = intent.getStringExtra(TelephonyManager.EXTRA_STATE);
 if (phoneState.equals(TelephonyManager.EXTRA_STATE_RINGING)) {
 String phoneNumber =
 intent.getStringExtra(TelephonyManager.EXTRA_INCOMING_NUMBER);
 Toast.makeText(context,
 “Incoming Call From: “ + phoneNumber,

c17.indd 712c17.indd 712 4/18/2012 3:57:53 PM4/18/2012 3:57:53 PM

Meier c17.indd V2 - 04/14/2012 Page 713

Introducing SMS and MMS x 713

 Toast.LENGTH_LONG).show();
 }
 }
}

INTRODUCING SMS AND MMS

If you own a mobile phone that’s less than two decades old, chances are you’re familiar with SMS
messaging. SMS is now one of the most-used communication mechanisms on mobile phones.

SMS technology is designed to send short text messages between mobile phones. It provides support
for sending both text messages (designed to be read by people) and data messages (meant to be
consumed by applications). Multimedia messaging service (MMS) messages allow users to send and
receive messages that include multimedia attachments such as photos, videos, and audio.

Because SMS and MMS are mature mobile technologies, there’s a lot of information out there that
describes the technical details of how an SMS or MMS message is constructed and transmitted over
the air. Rather than rehash that information here, the following sections focus on the practicalities
of sending and receiving text, data, and multimedia messages from within Android applications.

Using SMS and MMS in Your Application

Android provides support for sending both SMS and MMS messages using a messaging application
installed on the device with the SEND and SEND_TO Broadcast Intents.

Android also supports full SMS functionality within your applications through the SmsManager
class. Using the SMS Manager, you can replace the native SMS application to send text messages,
react to incoming texts, or use SMS as a data transport layer.

At this time, the Android API does not include simple support for creating MMS messages from
within your applications.

This chapter demonstrates how to use both the SMS Manager and Intents to send messages from
within your applications.

SMS message delivery is not timely. Compared to using an IP- or socket-based transport, using SMS
to pass data messages between applications is slow, possibly expensive, and can suffer from high
latency. As a result, SMS is not suitable for anything that requires real-time responsiveness. That
said, the widespread adoption and resiliency of SMS networks make it a particularly good tool for
delivering content to non-Android users and reducing the dependency on third-party servers.

Sending SMS and MMS from Your Application Using Intents

In most cases it’s best practice to use an Intent to send SMS and MMS messages using another
application — typically the native SMS application — rather than implementing a full SMS client.

To do so, call startActivity with an Intent.ACTION_SENDTO action Intent. Specify a target
number using sms: schema notation as the Intent data. Include the message you want to send within
the Intent payload using an sms_body extra:

Intent smsIntent = new Intent(Intent.ACTION_SENDTO,
 Uri.parse(“sms:55512345”));

c17.indd 713c17.indd 713 4/18/2012 3:57:53 PM4/18/2012 3:57:53 PM

Meier c17.indd V2 - 04/14/2012 Page 714

714 x CHAPTER 17 TELEPHONY AND SMS

smsIntent.putExtra(“sms_body”, “Press send to send me”);
startActivity(smsIntent);

To attach fi les to your message (effectively creating an MMS message), add an Intent.EXTRA_
STREAM with the URI of the resource to attach, and set the Intent type to the MIME type of the
attached resource.

Note that the native MMS application doesn’t include an Intent Receiver for ACTION_SENDTO with
a type set. Instead, you need to use ACTION_SEND and include the target phone number as an
address extra:

// Get the URI of a piece of media to attach.
Uri attached_Uri
 = Uri.parse(“content://media/external/images/media/1”);

// Create a new MMS intent
Intent mmsIntent = new Intent(Intent.ACTION_SEND, attached_Uri);
mmsIntent.putExtra(“sms_body”, “Please see the attached image”);
mmsIntent.putExtra(“address”, “07912355432”);
mmsIntent.putExtra(Intent.EXTRA_STREAM, attached_Uri);
mmsIntent.setType(“image/jpeg”);
startActivity(mmsIntent);

When running the MMS example shown in Listing 17-18, users are likely to be
prompted to select one of a number of applications capable of fulfi lling the send
request, including the Gmail, email, and SMS applications.

Sending SMS Messages Using the SMS Manager

SMS messaging in Android is handled by the SmsManager class. You can get a reference to the SMS
Manager using the static SmsManager.getDefault method:

SmsManager smsManager = SmsManager.getDefault();

Prior to Android 1.6 (SDK level 4), the SmsManager and SmsMessage classes
were provided by the android.telephony.gsm package. These have since been
deprecated and the SMS classes moved to android.telephony to ensure generic
support for GSM and CDMA devices.

To send SMS messages, your application must specify the SEND_SMS uses-permission:

<uses-permission android:name=”android.permission.SEND_SMS”/>

c17.indd 714c17.indd 714 4/18/2012 3:57:53 PM4/18/2012 3:57:53 PM

Meier c17.indd V2 - 04/14/2012 Page 715

Introducing SMS and MMS x 715

Sending Text Messages

To send a text message, use sendTextMessage from the SMS Manager, passing in the address
(phone number) of your recipient and the text message you want to send:

SmsManager smsManager = SmsManager.getDefault();

String sendTo = “5551234”;
String myMessage = “Android supports programmatic SMS messaging!”;

smsManager.sendTextMessage(sendTo, null, myMessage, null, null);

The second parameter can be used to specify the SMS service center to use. If you enter null, the
default service center for the device’s carrier will be used.

The fi nal two parameters let you specify Intents to track the transmission and successful delivery
of your messages. To react to these Intents, create and register Broadcast Receivers, as shown in the
section “Tracking and Confi rming SMS Message Delivery.”

The Android debugging bridge supports sending SMS messages among multiple
emulator instances. To send an SMS from one emulator to another, specify the
port number of the target emulator as the “to” address when sending a new
message. Android will route your message to the target emulator instance, where
it will be received as a normal SMS.

Tracking and Confi rming SMS Message Delivery

To track the transmission and delivery success of your outgoing SMS messages, implement and
register Broadcast Receivers that listen for the actions you specify when creating the Pending Intents
you pass in to the sendTextMessage method.

The fi rst Pending Intent parameter is fi red when the message is either successfully sent or fails to
send. The result code for the Broadcast Receiver that receives this Intent will be one of the following:

 ‰ Activity.RESULT_OK — To indicate a successful transmission

 ‰ SmsManager.RESULT_ERROR_GENERIC_FAILURE — To indicate a nonspecifi c failure

 ‰ SmsManager.RESULT_ERROR_RADIO_OFF — To indicate the phone radio is turned off

 ‰ SmsManager.RESULT_ERROR_NULL_PDU — To indicate a PDU (protocol description unit)
failure

 ‰ SmsManager.RESULT_ERROR_NO_SERVICE — To indicate that no cellular service is currently
available

The second Pending Intent parameter is fi red only after the recipient receives your SMS message.

c17.indd 715c17.indd 715 4/18/2012 3:57:53 PM4/18/2012 3:57:53 PM

Meier c17.indd V2 - 04/14/2012 Page 716

716 x CHAPTER 17 TELEPHONY AND SMS

The following code snippet shows the typical pattern for sending an SMS and monitoring the
success of its transmission and delivery.

String SENT_SMS_ACTION = “com.paad.smssnippets.SENT_SMS_ACTION”;
String DELIVERED_SMS_ACTION = “com.paad.smssnippets.DELIVERED_SMS_ACTION”;

// Create the sentIntent parameter
Intent sentIntent = new Intent(SENT_SMS_ACTION);
PendingIntent sentPI = PendingIntent.getBroadcast(getApplicationContext(),
 0,
 sentIntent,
 PendingIntent.FLAG_UPDATE_CURRENT);

// Create the deliveryIntent parameter
Intent deliveryIntent = new Intent(DELIVERED_SMS_ACTION);
PendingIntent deliverPI =
 PendingIntent.getBroadcast(getApplicationContext(),
 0,
 deliveryIntent,
 PendingIntent.FLAG_UPDATE_CURRENT);

// Register the Broadcast Receivers
registerReceiver(new BroadcastReceiver() {
 @Override
 public void onReceive(Context _context, Intent _intent)
 {
 String resultText = “UNKNOWN”;

 switch (getResultCode()) {
 case Activity.RESULT_OK:
 resultText = “Transmission successful”; break;
 case SmsManager.RESULT_ERROR_GENERIC_FAILURE:
 resultText = “Transmission failed”; break;
 case SmsManager.RESULT_ERROR_RADIO_OFF:
 resultText = “Transmission failed: Radio is off”;
 break;
 case SmsManager.RESULT_ERROR_NULL_PDU:
 resultText = “Transmission Failed: No PDU specified”;
 break;
 case SmsManager.RESULT_ERROR_NO_SERVICE:
 resultText = “Transmission Failed: No service”;
 break;
 }
 Toast.makeText(_context, resultText,
 Toast.LENGTH_LONG).show();
 }
 },
 new IntentFilter(SENT_SMS_ACTION));

registerReceiver(new BroadcastReceiver() {
 @Override
 public void onReceive(Context _context, Intent _intent)
 {
 Toast.makeText(_context, “SMS Delivered”,
 Toast.LENGTH_LONG).show();

c17.indd 716c17.indd 716 4/18/2012 3:57:54 PM4/18/2012 3:57:54 PM

Meier c17.indd V2 - 04/14/2012 Page 717

Introducing SMS and MMS x 717

 }
 },
 new IntentFilter(DELIVERED_SMS_ACTION));

// Send the message
SmsManager smsManager = SmsManager.getDefault();
String sendTo = “5551234”;
String myMessage = “Android supports programmatic SMS messaging!”;

smsManager.sendTextMessage(sendTo, null, myMessage, sentPI, deliverPI);

Conforming to the Maximum SMS Message Size

The maximum length of each SMS text message can vary by carrier, but are typically limited to
160 characters. As a result longer messages need to be broken into a series of smaller parts. The
SMS Manager includes the divideMessage method, which accepts a string as an input and breaks it
into an Array List of messages, wherein each is less than the maximum allowable size.

You can then use the sendMultipartTextMessage method on the SMS Manager to transmit the
array of messages:

ArrayList<String> messageArray = smsManager.divideMessage(myMessage);
ArrayList<PendingIntent> sentIntents = new ArrayList<PendingIntent>();
for (int i = 0; i < messageArray.size(); i++)
 sentIntents.add(sentPI);

smsManager.sendMultipartTextMessage(sendTo,
 null,
 messageArray,
 sentIntents, null);

The sentIntent and deliveryIntent parameters in the sendMultipartTextMessage method are
Array Lists that can be used to specify different Pending Intents to fi re for each message part.

Sending Data Messages

You can send binary data via SMS using the sendDataMessage method on an SMS Manager. The
sendDataMessage method works much like sendTextMessage but includes additional parameters
for the destination port and an array of bytes that constitutes the data you want to send.

String sendTo = “5551234”;
short destinationPort = 80;
byte[] data = [… your data …];

smsManager.sendDataMessage(sendTo, null, destinationPort,
 data, null, null);

Listening for Incoming SMS Messages

When a device receives a new SMS message, a new Broadcast Intent is fi red with the android.pro-
vider.Telephony.SMS_RECEIVED action. Note that this is a string literal; the SDK currently doesn’t
include a reference to this string, so you must specify it explicitly when using it in your applications.

c17.indd 717c17.indd 717 4/18/2012 3:57:54 PM4/18/2012 3:57:54 PM

Meier c17.indd V2 - 04/14/2012 Page 718

718 x CHAPTER 17 TELEPHONY AND SMS

The SMS received action string is hidden — and therefore an unsupported API.
As such, it is subject to change with any future platform release. It is not good
practice to use unsupported APIs because doing so carries signifi cant risk. Be
cautious when using unsupported platform features because they are subject to
change in future platform releases.

For an application to listen for SMS Broadcast Intents, it needs to specify the RECEIVE_SMS manifest
permission:

<uses-permission
 android:name=”android.permission.RECEIVE_SMS”
/>

The SMS Broadcast Intent includes the incoming SMS details. To extract the array of SmsMessage
objects packaged within the SMS Broadcast Intent bundle, use the pdu key to extract an array of
SMS PDUs (protocol data units — used to encapsulate an SMS message and its metadata), each of
which represents an SMS message, from the extras Bundle. To convert each PDU byte array into an
SMS Message object, call SmsMessage.createFromPdu, passing in each byte array:

Bundle bundle = intent.getExtras();
if (bundle != null) {
 Object[] pdus = (Object[]) bundle.get(“pdus”);
 SmsMessage[] messages = new SmsMessage[pdus.length];
 for (int i = 0; i < pdus.length; i++)
 messages[i] = SmsMessage.createFromPdu((byte[]) pdus[i]);
}

Each SmsMessage contains the SMS message details, including the originating address (phone num-
ber), timestamp, and the message body, which can be extracted using the getOriginatingAddress,
getTimestampMillis, and getMessageBody methods, respectively:

public class MySMSReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 Bundle bundle = intent.getExtras();
 if (bundle != null) {
 Object[] pdus = (Object[]) bundle.get(“pdus”);
 SmsMessage[] messages = new SmsMessage[pdus.length];
 for (int i = 0; i < pdus.length; i++)
 messages[i] = SmsMessage.createFromPdu((byte[]) pdus[i]);

 for (SmsMessage message : messages) {
 String msg = message.getMessageBody();
 long when = message.getTimestampMillis();
 String from = message.getOriginatingAddress();

 Toast.makeText(context, from + “ : “ + msg,
 Toast.LENGTH_LONG).show();
 }
 }
 }
}

c17.indd 718c17.indd 718 4/18/2012 3:57:54 PM4/18/2012 3:57:54 PM

Meier c17.indd V2 - 04/14/2012 Page 719

Introducing SMS and MMS x 719

To listen for incoming messages, register your SMS Broadcast Receiver using an Intent Filter that
listens for the android.provider.Telephony.SMS_RECEIVED action String. In most circumstances
you’ll want to register this in the application manifest to ensure your application can always respond
to incoming SMS messages.

<receiver android:name=”MySMSReceiver”>
 <intent-filter>
 <action android:name=”android.provider.Telephony.SMS_RECEIVED”/>
 </intent-filter>
</receiver>

Simulating Incoming SMS Messages in the Emulator

Two techniques are available for simulating incoming SMS messages in the emulator. The fi rst was
described previously in this section: you can send an SMS message from one emulator to another by
using its port number as its phone number.

Alternatively, you can use the Android debug tools (introduced in Chapter 2, “Getting Started”) to
simulate incoming SMS messages from arbitrary numbers, as shown in Figure 17-1.

FIGURE 17-1

Handling Data SMS Messages

Data messages are received in the same way as normal SMS text messages, and are extracted in the
same way as shown in the preceding section. To extract the data transmitted within a data SMS, use
the getUserData method:

byte[] data = msg.getUserData();

The getUserData method returns a byte array of the data included in the message.

c17.indd 719c17.indd 719 4/18/2012 3:57:54 PM4/18/2012 3:57:54 PM

Meier c17.indd V2 - 04/14/2012 Page 720

720 x CHAPTER 17 TELEPHONY AND SMS

Emergency Responder SMS Example

In this example, you’ll create an SMS application that turns an Android phone into an emergency
response beacon.

When fi nished, the next time you’re in an unfortunate proximity to an alien invasion or fi nd your-
self in a robot-uprising scenario, you can set your phone to automatically respond to your friends’
and family members’ pleas for a status update with a friendly message (or a desperate cry for help).

To make things easier for your would-be saviors, you can use location-based services to tell your
rescuers exactly where to fi nd you. The robustness of SMS network infrastructure makes SMS an
excellent option for applications like this, for which reliability is critical.

1. Start by creating a new EmergencyResponder project that features an EmergencyResponder
Activity:

package com.paad.emergencyresponder;

import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.Locale;
import java.util.concurrent.locks.ReentrantLock;

import android.app.Activity;
import android.app.PendingIntent;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.content.IntentFilter;
import android.location.Address;
import android.location.Geocoder;
import android.location.Location;
import android.location.LocationManager;
import android.os.Bundle;
import android.telephony.SmsManager;
import android.telephony.SmsMessage;
import android.util.Log;
import android.view.View;
import android.widget.ArrayAdapter;
import android.widget.Button;
import android.widget.CheckBox;
import android.widget.ListView;

public class EmergencyResponder extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

}

c17.indd 720c17.indd 720 4/18/2012 3:57:55 PM4/18/2012 3:57:55 PM

Meier c17.indd V2 - 04/14/2012 Page 721

Introducing SMS and MMS x 721

2. Add permissions for fi nding your location, and for sending and receiving incoming SMS
messages to the manifest:

<?xml version=”1.0” encoding=”utf-8”?>
<manifest xmlns:android=”http://schemas.android.com/apk/res/android”
 package=“com.paad.emergencyresponder“
 android:versionCode=“1“
 android:versionName=“1.0“ >

 <uses-permission android:name=”android.permission.RECEIVE_SMS”/>
 <uses-permission android:name=”android.permission.SEND_SMS”/>
 <uses-permission
 android:name=”android.permission.ACCESS_FINE_LOCATION”/>

 <uses-sdk android:targetSdkVersion=”15”/>

 <application
 android:icon=”@drawable/ic_launcher”
 android:label=”@string/app_name” >
 <activity
 android:name=”.EmergencyResponder”
 android:label=”@string/app_name” >
 <intent-filter>
 <action android:name=”android.intent.action.MAIN” />
 <category android:name=”android.intent.category.LAUNCHER” />
 </intent-filter>
 </activity>
 </application>

</manifest>

3. Update the res/values/strings.xml resource to include the text to display within the
“all clear” and “mayday” buttons, as well as their associated default response messages.
You should also defi ne an incoming message text that the application will use to detect
requests for a status response:

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
 <string name=”app_name”>Emergency Responder</string>
 <string name=”allClearButtonText”>I am Safe and Well
 </string>
 <string name=”maydayButtonText”>MAYDAY! MAYDAY! MAYDAY!
 </string>
 <string name=”setupautoresponderButtonText”>Setup Auto Responder</string>
 <string name=”allClearText”>I am safe and well. Worry not!
 </string>
 <string name=”maydayText”>Tell my mother I love her.
 </string>
 <string name=”querystring”>are you OK?</string>
 <string name=”querylistprompt”>These people want to know if you\’re ok</string>
 <string name=”includelocationprompt”>Include Location in Reply</string>
</resources>

c17.indd 721c17.indd 721 4/18/2012 3:57:55 PM4/18/2012 3:57:55 PM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier c17.indd V2 - 04/14/2012 Page 722

722 x CHAPTER 17 TELEPHONY AND SMS

4. Modify the main.xml layout resource. Include a ListView to display the list of people
requesting a status update and a series of buttons that will allow the user to send response
SMS messages:

<?xml version=”1.0” encoding=”utf-8”?>
<RelativeLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”>
 <TextView
 android:id=”@+id/labelRequestList”
 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/querylistprompt”
 android:layout_alignParentTop=”true”
 />
 <LinearLayout
 android:id=”@+id/buttonLayout”
 android:orientation=”vertical”
 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 android:padding=”5dp”
 android:layout_alignParentBottom=”true”>
 <CheckBox
 android:id=”@+id/checkboxSendLocation”
 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/includelocationprompt”/>
 <Button
 android:id=”@+id/okButton”
 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/allClearButtonText”/>
 <Button
 android:id=”@+id/notOkButton”
 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/maydayButtonText”/>
 <Button
 android:id=”@+id/autoResponder”
 android:layout_width=”match_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/setupautoresponderButtonText”/>
 </LinearLayout>
 <ListView
 android:id=”@+id/myListView”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:layout_below=”@id/labelRequestList”
 android:layout_above=”@id/buttonLayout”/>
</RelativeLayout>

At this point, the GUI will be complete, so starting the application should show you the
screen in Figure 17-2.

c17.indd 722c17.indd 722 4/18/2012 3:57:55 PM4/18/2012 3:57:55 PM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier c17.indd V2 - 04/14/2012 Page 723

Introducing SMS and MMS x 723

FIGURE 17-2

5. Now create a new Array List of Strings within the EmergencyResponder Activity to store
the phone numbers of the incoming requests for your status. Bind the Array List to the
List View using an Array Adapter in the Activity’s onCreate method, and create a new
ReentrantLock object to ensure thread-safe handling of the Array List. Take this opportu-
nity to get a reference to the check box and to add Click Listeners for each response button.
Each button should call the respond method, whereas the Setup Auto Responder button
should call the startAutoResponder stub.

ReentrantLock lock;
CheckBox locationCheckBox;
ArrayList<String> requesters;
ArrayAdapter<String> aa;

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 lock = new ReentrantLock();
 requesters = new ArrayList<String>();
 wireUpControls();
}

private void wireUpControls() {
 locationCheckBox = (CheckBox)findViewById(R.id.checkboxSendLocation);
 ListView myListView = (ListView)findViewById(R.id.myListView);

c17.indd 723c17.indd 723 4/18/2012 3:57:55 PM4/18/2012 3:57:55 PM

Meier c17.indd V2 - 04/14/2012 Page 724

724 x CHAPTER 17 TELEPHONY AND SMS

 int layoutID = android.R.layout.simple_list_item_1;
 aa = new ArrayAdapter<String>(this, layoutID, requesters);
 myListView.setAdapter(aa);

 Button okButton = (Button)findViewById(R.id.okButton);
 okButton.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 respond(true, locationCheckBox.isChecked());
 }
 });

 Button notOkButton = (Button)findViewById(R.id.notOkButton);
 notOkButton.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 respond(false, locationCheckBox.isChecked());
 }
 });

 Button autoResponderButton =
 (Button)findViewById(R.id.autoResponder);
 autoResponderButton.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 startAutoResponder();
 }
 });
}

public void respond(boolean ok, boolean includeLocation) {}

private void startAutoResponder() {}

6. Create a Broadcast Receiver that will listen for incoming SMS messages. Start by creating a
new static string variable to store the incoming SMS message intent action, and then create
a new Broadcast Receiver as a variable in the EmergencyResponder Activity. The receiver
should listen for incoming SMS messages and call the requestReceived method when it sees
SMS messages containing the @string/querystring resource you defi ned in step 4.

public static final String SMS_RECEIVED =
 “android.provider.Telephony.SMS_RECEIVED”;

BroadcastReceiver emergencyResponseRequestReceiver =
 new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 if (intent.getAction().equals(SMS_RECEIVED)) {
 String queryString = getString(R.string.querystring).toLowerCase();

 Bundle bundle = intent.getExtras();
 if (bundle != null) {
 Object[] pdus = (Object[]) bundle.get(“pdus”);
 SmsMessage[] messages = new SmsMessage[pdus.length];
 for (int i = 0; i < pdus.length; i++)
 messages[i] =
 SmsMessage.createFromPdu((byte[]) pdus[i]);

c17.indd 724c17.indd 724 4/18/2012 3:57:55 PM4/18/2012 3:57:55 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Meier c17.indd V2 - 04/14/2012 Page 725

Introducing SMS and MMS x 725

 for (SmsMessage message : messages) {
 if (message.getMessageBody().toLowerCase().contains
 (queryString))
 requestReceived(message.getOriginatingAddress());
 }
 }
 }
 }
 };

public void requestReceived(String from) {}

7. Override the onResume and onPause methods to register and unregister the Broadcast
Receiver created in step 6 when the Activity resumes and pauses, respectively:

@Override
public void onResume() {
 super.onResume();
 IntentFilter filter = new IntentFilter(SMS_RECEIVED);
 registerReceiver(emergencyResponseRequestReceiver, filter);
}

@Override
public void onPause() {
 super.onPause();
 unregisterReceiver(emergencyResponseRequestReceiver);
}

8. Update the requestReceived method stub so that it adds the originating number of each
status request’s SMS to the “requesters” Array List:

public void requestReceived(String from) {
 if (!requesters.contains(from)) {
 lock.lock();
 requesters.add(from);
 aa.notifyDataSetChanged();
 lock.unlock();
 }
}

9. The Emergency Responder Activity should now be listening for status request SMS messages
and adding them to the List View as they arrive. Start the application and send SMS messages
to the device or emulator on which it’s running. When they’ve arrived, they should be dis-
played as shown in Figure 17-3.

10. Update the Activity to let users respond to these status requests. Start by completing the
respond method stub you created in step 5. It should iterate over the Array List of status
requesters and send a new SMS message to each. The SMS message text should be based on
the response strings you defi ned as resources in step 4. Fire the SMS using an overloaded
respond method (which you’ll complete in the next step):

public void respond(boolean ok, boolean includeLocation) {
 String okString = getString(R.string.allClearText);

c17.indd 725c17.indd 725 4/18/2012 3:57:55 PM4/18/2012 3:57:55 PM

Meier c17.indd V2 - 04/14/2012 Page 726

726 x CHAPTER 17 TELEPHONY AND SMS

 String notOkString = getString(R.string.maydayText);
 String outString = ok ? okString : notOkString;

 ArrayList<String> requestersCopy =
 (ArrayList<String>)requesters.clone();

 for (String to : requestersCopy)
 respond(to, outString, includeLocation);
}

private void respond(String to, String response,
 boolean includeLocation) {}

FIGURE 17-3

11. Complete the respond method to handle sending of each response SMS. Start by removing
each potential recipient from the “requesters” Array List before sending the SMS. If you are
responding with your current location, use the Location Manager to fi nd it before sending
a second SMS with your current position as both a raw longitude/latitude and a geocoded
address:

public void respond(String to, String response,
 boolean includeLocation) {
 // Remove the target from the list of people we
 // need to respond to.
 lock.lock();
 requesters.remove(to);
 aa.notifyDataSetChanged();

c17.indd 726c17.indd 726 4/18/2012 3:57:55 PM4/18/2012 3:57:55 PM

Meier c17.indd V2 - 04/14/2012 Page 727

Introducing SMS and MMS x 727

 lock.unlock();

 SmsManager sms = SmsManager.getDefault();

 // Send the message
 sms.sendTextMessage(to, null, response, null, null);

 StringBuilder sb = new StringBuilder();

 // Find the current location and send it
 // as SMS messages if required.
 if (includeLocation) {
 String ls = Context.LOCATION_SERVICE;
 LocationManager lm = (LocationManager)getSystemService(ls);
 Location l =
 lm.getLastKnownLocation(LocationManager.GPS_PROVIDER);

 if (l == null)
 sb.append(“Location unknown.”);
 else {
 sb.append(“I’m @:\n”);
 sb.append(l.toString() + “\n”);

 List<Address> addresses;
 Geocoder g = new Geocoder(getApplicationContext(),
 Locale.getDefault());
 try {
 addresses = g.getFromLocation(l.getLatitude(),
 l.getLongitude(), 1);
 if (addresses != null) {
 Address currentAddress = addresses.get(0);
 if (currentAddress.getMaxAddressLineIndex() > 0) {
 for (int i = 0;
 i < currentAddress.getMaxAddressLineIndex();
 i++) {
 sb.append(currentAddress.getAddressLine(i));
 sb.append(“\n”);
 }
 }
 else {
 if (currentAddress.getPostalCode() != null)
 sb.append(currentAddress.getPostalCode());
 }
 }
 } catch (IOException e) {
 Log.e(“SMS_RESPONDER”, “IO Exception.”, e);
 }

 ArrayList<String> locationMsgs =
 sms.divideMessage(sb.toString());
 for (String locationMsg : locationMsgs)
 sms.sendTextMessage(to, null, locationMsg, null, null);
 }
 }
}

c17.indd 727c17.indd 727 4/18/2012 3:57:56 PM4/18/2012 3:57:56 PM

Meier c17.indd V2 - 04/14/2012 Page 728

728 x CHAPTER 17 TELEPHONY AND SMS

12. In emergencies it’s important that messages get through. Improve the robustness of the appli-
cation by including auto-retry functionality. Monitor the success of your SMS transmissions
so that you can rebroadcast a message if it doesn’t successfully send.

12.1 Start by creating a new public static String in the Emergency Responder Activity to be
used within Broadcast Intents to indicate the SMS has been sent.

public static fi nal String SENT_SMS =
 “com.paad.emergencyresponder.SMS_SENT”;

12.2 Update the respond method to include a new PendingIntent that broadcasts the
action created in the previous step when the SMS transmission has completed. The
packaged Intent should include the intended recipient’s number as an extra.

Intent intent = new Intent(SENT_SMS);
 intent.putExtra(“recipient”, to);

 PendingIntent sentPI =
 PendingIntent.getBroadcast(getApplicationContext(),
 0, intent, 0);

 // Send the message
 sms.sendTextMessage(to, null, response, sentPI, null);

12.3 Implement a new Broadcast Receiver to listen for this Broadcast Intent. Override its
onReceive handler to confi rm that the SMS was successfully delivered; if it wasn’t,
put the intended recipient back onto the requester Array List.

private BroadcastReceiver attemptedDeliveryReceiver = new
BroadcastReceiver() {
 @Override
 public void onReceive(Context _context, Intent _intent) {
 if (_intent.getAction().equals(SENT_SMS)) {
 if (getResultCode() != Activity.RESULT_OK) {
 String recipient = _intent.getStringExtra(“recipient”);
 requestReceived(recipient);
 }
 }
 }
};

12.4 Finally, register and unregister the new Broadcast Receiver by extending the onResume
and onPause handlers of the Emergency Responder Activity:

@Override
public void onResume() {
 super.onResume();
 IntentFilter fi lter = new IntentFilter(SMS_RECEIVED);
 registerReceiver(emergencyResponseRequestReceiver, fi lter);

 IntentFilter attemptedDeliveryfilter = new IntentFilter(SENT_SMS);
 registerReceiver(attemptedDeliveryReceiver,
 attemptedDeliveryfilter);
}

c17.indd 728c17.indd 728 4/18/2012 3:57:56 PM4/18/2012 3:57:56 PM

Meier c17.indd V2 - 04/14/2012 Page 729

Introducing SMS and MMS x 729

@Override
public void onPause() {
 super.onPause();
 unregisterReceiver(emergencyResponseRequestReceiver);

 unregisterReceiver(attemptedDeliveryReceiver);
}

All code snippets in this example are part of the Chapter 12 Emergency
Responder Part 1 project, available for download at www.wrox.com.

This example has been simplifi ed to focus on the SMS-based functionality it is attempting to demon-
strate. Keen-eyed observers should have noticed at least three areas where it could be improved:

 ‰ The Broadcast Receiver created and registered in steps 6 and 7 would be better registered
within the manifest to allow the application to respond to incoming SMS messages even
when it isn’t running.

 ‰ The parsing of the incoming SMS messages performed by the Broadcast Receiver in steps
6 and 8 should be moved into a Service and executed on a background thread. Similarly,
step 12, sending the response SMS messages, would be better executed on a background
thread within a Service.

 ‰ The UI should be implemented using Fragments within Activities, with the UI optimized for
tablet and smartphone layouts.

The implementation of these improvements is left as an exercise for the reader.

Automating the Emergency Responder

In the following example, you’ll fi ll in the code behind the Setup Auto Responder button
added in the previous example, to let the Emergency Responder automatically respond to status
update requests.

1. Start by updating the application’s string.xml resource to defi ne a name for the
SharedPreferences to use to save the user’s auto-response preferences, and strings to use
for each of its Views:

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
 <string name=”app_name”>Emergency Responder</string>
 <string name=”allClearButtonText”>I am Safe and Well
 </string>
 <string name=”maydayButtonText”>MAYDAY! MAYDAY! MAYDAY!
 </string>
 <string name=”setupautoresponderButtonText”>Setup Auto Responder</string>
 <string name=”allClearText”>I am safe and well. Worry not!
 </string>
 <string name=”maydayText”>Tell my mother I love her.

c17.indd 729c17.indd 729 4/18/2012 3:57:56 PM4/18/2012 3:57:56 PM

http://www.wrox.com

Meier c17.indd V2 - 04/14/2012 Page 730

730 x CHAPTER 17 TELEPHONY AND SMS

 </string>
 <string name=”querystring”>are you OK?</string>
 <string name=”querylistprompt”>These people want to know if you\’re ok</string>
 <string name=”includelocationprompt”>Include Location in Reply</string>

 <string
 name=”user_preferences”>com.paad.emergencyresponder.preferences
 </string>
 <string name=”respondWithPrompt”>Respond with</string>
 <string name=”transmitLocationPrompt”>Transmit location</string>
 <string name=”autoRespondDurationPrompt”>Auto-respond for</string>
 <string name=”enableButtonText”>Enable</string>
 <string name=”disableButtonText”>Disable</string>
</resources>

2. Create a new autoresponder.xml layout resource that will be used to lay out the
automatic response confi guration window. Include an EditText View for entering a
status message to send, a Spinner View for choosing the auto-response expiry time, and a
CheckBox View to let users decide whether they want to include their location in the
automated responses:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>
 <TextView
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/respondWithPrompt”/>
 <EditText
 android:id=”@+id/responseText”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:hint=”@string/respondWithPrompt”/>
 <CheckBox
 android:id=”@+id/checkboxLocation”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/includelocationprompt”/>
 <TextView
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/autoRespondDurationPrompt”/>
 <Spinner
 android:id=”@+id/spinnerRespondFor”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:drawSelectorOnTop=”true”/>
 <LinearLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”horizontal”
 android:layout_width=”fill_parent”

c17.indd 730c17.indd 730 4/18/2012 3:57:56 PM4/18/2012 3:57:56 PM

http://schemas.android.com/apk/res/android%E2%80%9D
http://schemas.android.com/apk/res/android%E2%80%9D

Meier c17.indd V2 - 04/14/2012 Page 731

Introducing SMS and MMS x 731

 android:layout_height=”wrap_content”>
 <Button
 android:id=”@+id/okButton”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”@string/enableButtonText”/>
 <Button
 android:id=”@+id/cancelButton”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”@string/disableButtonText”/>
 </LinearLayout>
</LinearLayout>

3. Create a new res/values/arrays.xml resource, and create arrays to use for populating the
Spinner:

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
 <string-array name=”respondForDisplayItems”>
 <item>- Disabled -</item>
 <item>Next 5 minutes</item>
 <item>Next 15 minutes</item>
 <item>Next 30 minutes</item>
 <item>Next hour</item>
 <item>Next 2 hours</item>
 <item>Next 8 hours</item>
 </string-array>

 <array name=”respondForValues”>
 <item>0</item>
 <item>5</item>
 <item>15</item>
 <item>30</item>
 <item>60</item>
 <item>120</item>
 <item>480</item>
 </array>
</resources>

4. Create a new AutoResponder Activity, populating it with the layout you created in step 1:

package com.paad.emergencyresponder;

import android.app.Activity;
import android.app.AlarmManager;
import android.app.PendingIntent;
import android.content.res.Resources;
import android.content.Context;
import android.content.Intent;
import android.content.IntentFilter;
import android.content.BroadcastReceiver;
import android.content.SharedPreferences;
import android.content.SharedPreferences.Editor;
import android.os.Bundle;

c17.indd 731c17.indd 731 4/18/2012 3:57:56 PM4/18/2012 3:57:56 PM

Meier c17.indd V2 - 04/14/2012 Page 732

732 x CHAPTER 17 TELEPHONY AND SMS

import android.view.View;
import android.widget.ArrayAdapter;
import android.widget.Button;
import android.widget.CheckBox;
import android.widget.EditText;
import android.widget.Spinner;

public class AutoResponder extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.autoresponder);
 }
}

5. Update the onCreate method to get references to each of the controls in the layout and wire
up the Spinner using the arrays defi ned in step 3. Create two new stub methods, save
Preferences and updateUIFromPreferences, that will be updated to save the
auto-responder settings to a named SharedPreferences and apply the saved
SharedPreferences to the current UI, respectively.

Spinner respondForSpinner;
CheckBox locationCheckbox;
EditText responseTextBox;

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.autoresponder);

 respondForSpinner = (Spinner)findViewById(R.id.spinnerRespondFor);
 locationCheckbox = (CheckBox)findViewById(R.id.checkboxLocation);
 responseTextBox = (EditText)findViewById(R.id.responseText);

 ArrayAdapter<CharSequence> adapter =
 ArrayAdapter.createFromResource(this,
 R.array.respondForDisplayItems,
 android.R.layout.simple_spinner_item);

 adapter.setDropDownViewResource(
 android.R.layout.simple_spinner_dropdown_item);
 respondForSpinner.setAdapter(adapter);

 Button okButton = (Button) findViewById(R.id.okButton);
 okButton.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 savePreferences();
 setResult(RESULT_OK, null);
 finish();
 }
 });

 Button cancelButton = (Button) findViewById(R.id.cancelButton);
 cancelButton.setOnClickListener(new View.OnClickListener() {

c17.indd 732c17.indd 732 4/18/2012 3:57:56 PM4/18/2012 3:57:56 PM

Meier c17.indd V2 - 04/14/2012 Page 733

Introducing SMS and MMS x 733

 public void onClick(View view) {
 respondForSpinner.setSelection(-1);
 savePreferences();
 setResult(RESULT_CANCELED, null);
 finish();
 }
 });

 // Load the saved preferences and update the UI
 updateUIFromPreferences();
}

private void updateUIFromPreferences() {}
private void savePreferences() {}

6. Complete the two stub methods from step 5. Start with updateUIFromPreferences; it
should read the current saved AutoResponder preferences and apply them to the UI:

public static final String autoResponsePref = “autoResponsePref”;
public static final String responseTextPref = “responseTextPref”;
public static final String includeLocPref = “includeLocPref”;
public static final String respondForPref = “respondForPref”;
public static final String defaultResponseText = “All clear”;

private void updateUIFromPreferences() {
 // Get the saves settings
 String preferenceName = getString(R.string.user_preferences);
 SharedPreferences sp = getSharedPreferences(preferenceName, 0);

 boolean autoRespond = sp.getBoolean(autoResponsePref, false);
 String respondText = sp.getString(responseTextPref, defaultResponseText);
 boolean includeLoc = sp.getBoolean(includeLocPref, false);
 int respondForIndex = sp.getInt(respondForPref, 0);

 // Apply the saved settings to the UI
 if (autoRespond)
 respondForSpinner.setSelection(respondForIndex);
 else
 respondForSpinner.setSelection(0);

 locationCheckbox.setChecked(includeLoc);
 responseTextBox.setText(respondText);
}

7. Complete the savePreferences stub to save the current UI settings to a Shared Preferences fi le:

private void savePreferences() {
 // Get the current settings from the UI
 boolean autoRespond =
 respondForSpinner.getSelectedItemPosition() > 0;
 int respondForIndex = respondForSpinner.getSelectedItemPosition();
 boolean includeLoc = locationCheckbox.isChecked();
 String respondText = responseTextBox.getText().toString();

 // Save them to the Shared Preference file

c17.indd 733c17.indd 733 4/18/2012 3:57:56 PM4/18/2012 3:57:56 PM

Meier c17.indd V2 - 04/14/2012 Page 734

734 x CHAPTER 17 TELEPHONY AND SMS

 String preferenceName = getString(R.string.user_preferences);
 SharedPreferences sp = getSharedPreferences(preferenceName, 0);

 Editor editor = sp.edit();
 editor.putBoolean(autoResponsePref,
 autoRespond);
 editor.putString(responseTextPref,
 respondText);
 editor.putBoolean(includeLocPref,
 includeLoc);
 editor.putInt(respondForPref, respondForIndex);
 editor.commit();

 // Set the alarm to turn off the autoresponder
 setAlarm(respondForIndex);
}

private void setAlarm(int respondForIndex) {}

8. The setAlarm stub from step 7 is used to create a new Alarm that fi res an Intent when the
auto responder expires, which should result in the auto responder being disabled. You’ll need
to create a new Alarm object and a BroadcastReceiver that listens for it before disabling
the auto responder accordingly.

8.1 Start by creating the action String that will represent the Alarm Intent:

public static fi nal String alarmAction =
 “com.paad.emergencyresponder.AUTO_RESPONSE_EXPIRED”;

8.2 Create a new Broadcast Receiver instance that listens for an Intent that includes the
action specifi ed in step 8.1. When this Intent is received, it should modify the auto-
responder settings to disable the automatic response.

private BroadcastReceiver stopAutoResponderReceiver
 = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 if (intent.getAction().equals(alarmAction)) {
 String preferenceName = getString(R.string.user_preferences);
 SharedPreferences sp = getSharedPreferences(preferenceName, 0);

 Editor editor = sp.edit();
 editor.putBoolean(autoResponsePref, false);
 editor.commit();
 }
 }
};

8.3 Then complete the setAlarm method. It should cancel the existing alarm if the auto
responder is turned off; otherwise, it should update the alarm with the latest expiry time.

PendingIntent intentToFire;

private void setAlarm(int respondForIndex) {

c17.indd 734c17.indd 734 4/18/2012 3:57:57 PM4/18/2012 3:57:57 PM

Meier c17.indd V2 - 04/14/2012 Page 735

Introducing SMS and MMS x 735

 // Create the alarm and register the alarm intent receiver.

 AlarmManager alarms =
 (AlarmManager)getSystemService(ALARM_SERVICE);

 if (intentToFire == null) {
 Intent intent = new Intent(alarmAction);
 intentToFire =
 PendingIntent.getBroadcast(getApplicationContext(),
 0,intent,0);

 IntentFilter fi lter = new IntentFilter(alarmAction);

 registerReceiver(stopAutoResponderReceiver, fi lter);
 }

 if (respondForIndex < 1)
 // If “disabled” is selected, cancel the alarm.
 alarms.cancel(intentToFire);

 else {
 // Otherwise fi nd the length of time represented
 // by the selection and set the alarm to
 // trigger after that time has passed.
 Resources r = getResources();
 int[] respondForValues =
 r.getIntArray(R.array.respondForValues);
 int respondFor = respondForValues [respondForIndex];

 long t = System.currentTimeMillis();
 t = t + respondFor*1000*60;

 // Set the alarm.
 alarms.set(AlarmManager.RTC_WAKEUP, t, intentToFire);
 }
}

9. That completes the AutoResponder. Before you can use it, however, you need to add it to
your application manifest:

<?xml version=”1.0” encoding=”utf-8”?>
<manifest xmlns:android=”http://schemas.android.com/apk/res/android”
 package=”com.paad.emergencyresponder”
 android:versionCode=”1”
 android:versionName=”1.0” >

 <uses-permission android:name=”android.permission.RECEIVE_SMS”/>
 <uses-permission android:name=”android.permission.SEND_SMS”/>
 <uses-permission
 android:name=”android.permission.ACCESS_FINE_LOCATION”/>

 <uses-sdk android:targetSdkVersion=”15”/>

 <application

c17.indd 735c17.indd 735 4/18/2012 3:57:57 PM4/18/2012 3:57:57 PM

http://schemas.android.com/apk/res/android%E2%80%9D

Meier c17.indd V2 - 04/14/2012 Page 736

736 x CHAPTER 17 TELEPHONY AND SMS

 android:icon=”@drawable/ic_launcher”
 android:label=”@string/app_name” >
 <activity
 android:name=”.EmergencyResponder”
 android:label=”@string/app_name” >
 <intent-filter>
 <action android:name=”android.intent.action.MAIN” />
 <category android:name=”android.intent.category.LAUNCHER” />
 </intent-filter>
 </activity>
 <activity
 android:name=”.AutoResponder”
 android:label=”Auto Responder Setup”
 />
 </application>

</manifest>

10. To enable the auto-responder, return to the Emergency Responder Activity and update the
startAutoResponder method stub that you created in the previous example. It should open
the AutoResponder Activity you just created.

private void startAutoResponder() {
 startActivityForResult(new Intent(EmergencyResponder.this,
 AutoResponder.class), 0);
}

11. If you start your project, you should now be able to bring up the Auto Responder Setup win-
dow to set the auto-response settings (see Figure 17-4).

FIGURE 17-4

12. The fi nal step is to update the requestReceived method in the Emergency Responder
Activity to check if the auto-responder has been enabled.

If it has, the requestReceived method should automatically execute the respond method,
using the message and location settings defi ned in the application’s Shared Preferences:

public void requestReceived(String from) {
 if (!requesters.contains(from)) {
 lock.lock();

c17.indd 736c17.indd 736 4/18/2012 3:57:57 PM4/18/2012 3:57:57 PM

Meier c17.indd V2 - 04/14/2012 Page 737

Introducing SIP and VOIP x 737

 requesters.add(from);
 aa.notifyDataSetChanged();
 lock.unlock();

 // Check for auto-responder
 String preferenceName = getString(R.string.user_preferences);
 SharedPreferences prefs
 = getSharedPreferences(preferenceName, 0);

 boolean autoRespond = prefs.getBoolean(AutoResponder.autoResponsePref, false);

 if (autoRespond) {
 String respondText = prefs.getString(AutoResponder.responseTextPref,
 AutoResponder.defaultResponseText);
 boolean includeLoc = prefs.getBoolean(AutoResponder.includeLocPref, false);

 respond(from, respondText, includeLoc);
 }
 }
}

All code snippets in this example are part of the Chapter 12 Emergency
Responder Part 2 project, available for download at www.wrox.com.

You should now have a fully functional interactive and automated emergency responder.

INTRODUCING SIP AND VOIP

Session Initiation Protocol (SIP) is a signaling protocol used for managing communication sessions
over IP connections — typically, voice (VOIP) and video calls.

SIP APIs were introduced in Android 2.3 (API level 9), allowing you to include Internet-based tele-
phony features in your applications without needing to manage the underling client-side media and
communications stack.

Android 4.0 (API level 14) introduced the capability for applications to add voice mail entries from
their underlying services to the system. If you are planning to build your own SIP client, these new
voice mail APIs provide a method for integrating messages left by callers seamlessly into the device’s
voice mail.

The instructions for building your own SIP client are beyond the scope of this
book. You can fi nd a detailed introduction to creating SIP clients — including
a full working example — at the Android Developer site: http://developer
.android.com/guide/topics/network/sip.html.

c17.indd 737c17.indd 737 4/18/2012 3:57:57 PM4/18/2012 3:57:57 PM

http://www.wrox.com
http://developer

c17.indd 738c17.indd 738 4/18/2012 3:57:58 PM4/18/2012 3:57:58 PM

Meier c18.indd V2 - 04/14/2012

18
Advanced Android Development

WHAT’S IN THIS CHAPTER?

 ‰ Securing Android using permissions

 ‰ Sending server pushes with Cloud to Device Messaging

 ‰ Adding copy protection with the License Verifi cation Library

 ‰ Monetizing with In-App Billing

 ‰ Using Wake Locks

 ‰ Inter-process communication (IPC) using AIDL and Parcelables

 ‰ Improving application performance using Strict Mode

 ‰ Ensuring backward and forward hardware and software compatibility

This chapter both returns to some of the possibilities touched on in previous chapters and
introduces some of the more advanced options available for Android developers.

The chapter starts by taking a closer look at security — in particular, how permissions work
and how to use them to secure your own applications and the data they contain.

Next, you’ll be introduced to Android’s Cloud to Device Messaging (C2DM) service and learn
how to use it to eliminate polling within your application, replacing it with server-initiated
pushes.

You’ll also be introduced to the License Verifi cation Library (LVL) and In-App Billing services.
These services enable you to protect your applications from piracy and monetize them by
selling virtual content.

The chapter then examines Wake Locks and the Android Interface Defi nition Language (AIDL).
You’ll use AIDL to create rich application interfaces that support full object-based inter-process
communication (IPC) between Android applications running in different processes.

c18.indd 739c18.indd 739 4/18/2012 3:47:27 PM4/18/2012 3:47:27 PM

Meier c18.indd V2 - 04/14/2012

740 x CHAPTER 18 ADVANCED ANDROID DEVELOPMENT

Finally, you’ll learn how to build applications that are backward and forward compatible across
a range of hardware and software platforms, and then investigate the use of Strict Mode for
discovering ineffi ciencies within your applications.

PARANOID ANDROID

Much of Android’s security is supplied by its underlying Linux kernel. Application fi les and
resources are sandboxed to their owners, making them inaccessible by other applications. Android
uses Intents, Services, and Content Providers to let you relax these strict process boundaries, using
permissions to maintain application-level security.

You’ve already used the permission system to request access to native system services — including
location-based services, native Content Providers, and the camera — using uses-permission
manifest tags.

The following sections provide a more detailed look at the Linux security model and the Android
permission system. For a comprehensive view, the Android documentation provides an excellent
resource that describes the security features in depth: developer.android.com/guide/topics/
security/security.html.

Linux Kernel Security

Each Android package has a unique Linux user ID assigned to it during installation. This has the
effect of sandboxing the process and the resources it creates, so that it can’t affect (or be affected by)
other applications.

Because of this kernel-level security, you need to take additional steps to communicate
between applications, or access the fi les and resources they contain. Content Providers,
Intents, Services, and AIDL interfaces are designed to open tunnels through which informa-
tion can fl ow between applications. To ensure information doesn’t “leak” beyond the intended
recipients, you can use Android permissions to act as border guards at either end to control the
traffi c fl ow.

Introducing Permissions

Permissions are an application-level security mechanism that lets you restrict access to application
components. Permissions are used to prevent malicious applications from corrupting data, gaining
access to sensitive information, or making excessive (or unauthorized) use of hardware resources or
external communication channels.

As you learned in earlier chapters, many of Android’s native components have permission
requirements. The native permission strings used by native Android Activities and Services can be
found as static constants in the android.Manifest.permission class.

To use permission-protected components, you need to add uses-permission tags to your
application manifests, specifying the permission strings your application requires.

c18.indd 740c18.indd 740 4/18/2012 3:47:32 PM4/18/2012 3:47:32 PM

Meier c18.indd V2 - 04/14/2012

Paranoid Android x 741

When a package is installed, the permissions requested in its manifest are analyzed and granted
(or denied) by checks with trusted authorities and user feedback. All Android permission checks
are done at installation. Once an application is installed, users will not be prompted to reevaluate
those permissions.

Declaring and Enforcing Permissions

Before you can assign a permission to an application component, you need to defi ne it within your
manifest using the permission tag, as shown in the Listing 18-1.

LISTING 18-1: Declaring a new permission

<permission
 android:name=”com.paad.DETONATE_DEVICE”
 android:protectionLevel=”dangerous”
 android:label=”Self Destruct”
 android:description=”@string/detonate_description”>
</permission>

code snippet PA4AD_Ch18_Permissions/AndroidManifest.xml

Within the permission tag, you can specify the level of access that the permission will permit
 (normal, dangerous, signature, signatureOrSystem), a label, and an external resource
 containing the description that explains the risks of granting this permission.

To defi ne custom permissions for components within your application, use the permission attribute
in the manifest. Permission constraints can be enforced throughout your application, most usefully
at application interface boundaries — for example:

 ‰ Activities — Add a permission to limit the ability of other applications to launch a particular
Activity.

 ‰ Broadcast Receivers — Add a permission to control which applications can send Broadcast
Intents to your Receiver.

 ‰ Intents — Add a permission to control which Broadcast Receivers can receive a Broadcast
Intent.

 ‰ Content Providers — Add a permission to limit read access and/or write operations on your
Content Providers.

 ‰ Services — Add a permission to limit the ability of other applications to start or bind to
a Service.

In each case, you can add a permission attribute to the application component in the manifest,
specifying a required permission string to access each component. Listing 18-2 shows a mani-
fest excerpt that requires the permission defi ned in Listing 18-1 to start an Activity, Service, and
Broadcast Receiver.

c18.indd 741c18.indd 741 4/18/2012 3:47:32 PM4/18/2012 3:47:32 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Meier c18.indd V2 - 04/14/2012

742 x CHAPTER 18 ADVANCED ANDROID DEVELOPMENT

LISTING 18-2: Enforcing a permission requirements

<activity
 android:name=”.MyActivity”
 android:label=”@string/app_name”
 android:permission=”com.paad.DETONATE_DEVICE”>
</activity>

<service
 android:name=”.MyService”
 android:permission=”com.paad.DETONATE_DEVICE”>
</service>

<receiver
 android:name=”.MyReceiver”
 android:permission=”com.paad.DETONATE_DEVICE”>
 <intent-filter>
 <action android:name=”com.paad.ACTION_DETONATE_DEVICE”/>
 </intent-filter>
</receiver>

code snippet PA4AD_Ch18_Permissions/AndroidManifest.xml

Content Providers let you set readPermission and writePermission attributes to offer a more
granular control over read/write access:

<provider
 android:name=”.HitListProvider”
 android:authorities=”com.paad.hitlistprovider”
 android:writePermission=”com.paad.ASSIGN_KILLER”
 android:readPermission=”com.paad.LICENSED_TO_KILL”
/>

Enforcing Permissions when Broadcasting Intents

In addition to requiring permissions for Intents to be received by your Broadcast Receivers, you can
attach a permission requirement to each Intent you broadcast. This is good practice when broad-
casting Intents that contain sensitive information, such as location updates that should only be used
within your application.

In such cases it’s best practice to require a signature permission to ensure that only applications
signed with the same signature as the host application can receive the broadcast:

<permission
 android:name=”com.paad.LOCATION_DATA”
 android:protectionLevel=”signature”
 android:label=”Location Transfer”
 android:description=”@string/location_data_description”>
</permission>

When calling sendIntent, you can supply the permission string required for a Broadcast Receivers
to receive the Intent.

sendBroadcast(myIntent, “com.paad.LOCATION_DATA”);

c18.indd 742c18.indd 742 4/18/2012 3:47:32 PM4/18/2012 3:47:32 PM

Meier c18.indd V2 - 04/14/2012

Introducing Cloud to Device Messaging x 743

INTRODUCING CLOUD TO DEVICE MESSAGING

The Cloud to Device Messaging (C2DM) service provides an alternative to regularly polling a server
for updates; instead, your server can “push” messages to a specifi c client.

The frequency of your application’s background polling can have a dramatic impact on the host
device’s battery life, so you always need to compromise between data freshness and the resulting
power drain.

Introduced in Android 2.2 (API level 8), C2DM allows you to eliminate background polling, and
instead have your server notify a particular device when new data is available for it.

On the client side, C2DM is implemented using Intents and Broadcast Receivers. As a result, your
application does not need to be active in order to receive C2DM messages. On the server side, C2DM
messages area transmitted from your server to each target device by way of the C2DM service.

The C2DM service maintains an open TCP/IP connection with each device, allowing it to transmit
information instantly whenever required. The C2DM service takes care of maintaining and restoring
that connection, queuing messages, and retrying failed deliveries.

In the following sections you’ll learn how to:

 ‰ Register each device on which your application is running with the Android C2DM server.

 ‰ Notify your server of the C2DM address of your application running on a particular device.

 ‰ Transmit messages from your server to the C2DM service.

 ‰ Receive your server messages within your application once they’re relayed through the
C2DM service.

C2DM is a Google service, so its documentation is available at http://code
.google.com/android/c2dm/.

C2DM Restrictions

C2DM is not designed as a blanket replacement for background polling. It is best used in situa-
tions where only one device (or a small, distinct group of devices) requires updates at any given
time — such as email or voicemail services.

The real-time nature of each push makes C2DM an ideal alternative for situations where the
updates are unlikely to be at predictable intervals; however, successful message delivery, latency, and
delivery order are not guaranteed. As a result, you should not rely on C2DM for critical messages or
where timeliness is important. It’s also good practice to implement a traditional polling mechanism
at long intervals as a fail-safe.

The transmitted messages should be lightweight and are limited to 1024 bytes. They should carry
very little payload, instead containing only the information required for the client application to
effi ciently query your server for the data directly.

c18.indd 743c18.indd 743 4/18/2012 3:47:32 PM4/18/2012 3:47:32 PM

http://code

Meier c18.indd V2 - 04/14/2012

744 x CHAPTER 18 ADVANCED ANDROID DEVELOPMENT

C2DM is based around existing Google services and requires Google Play to be installed on the
device, and for the user to have a Google account confi gured.

At the time of writing, new C2DM accounts receive a development quota of up to 200,000 messages
per day. If your production requirements demand more, you can request an increase — details on
that process will be emailed to you after you sign up.

Signing Up to Use C2DM

The fi rst step is to view and agree to the terms of the C2DM service at http://code.google.com/
android/c2dm/signup.html.

As part of the registration process, you will be asked for your application’s package name, an
estimate of the total number of daily messages you plan to send, and the estimated peak queries per
second (QPS). The C2DM team uses this information to help identify applications that may need to
be granted larger quotas.

You will also be asked to supply three email addresses: your contact details, an escalation email
address for urgent issues, and a role account that will be used to authenticate with the C2DM
service and send messages from your server.

The role account should be a Google account used specifi cally for use with the C2DM service.
Because you will be providing a server with authentication details for this account, it’s good practice
to create a new account rather than use a personal Gmail or Google Play account.

After receiving confi rmation that your account has been enabled for sending C2DM messages, you
can update your application to register itself, and each device it’s running on, with the C2DM service.

Registering Devices with a C2DM Server

In order for your application to receive C2DM messages, it must fi rst register each installed instance
of itself with the C2DM service. Start by adding a com.google.android.c2dm.permission
.RECEIVE uses-permission node to your manifest:

 <uses-permission android:name=”com.google.android.c2dm.permission.RECEIVE” />

You should also defi ne (and request) a signature-level permission that restricts the receipt of C2DM
messages targeted at your application to applications signed with the same key:

<permission android:name=”com.example.myapp.permission.C2D_MESSAGE”
 android:protectionLevel=”signature” />

<uses-permission android:name=”com.example.myapp.permission.C2D_MESSAGE” />

Registering an application for C2DM is a three-step process, as shown in Figure 18-1.

The process of registering your application on each device with the C2DM service associates each
installed instance of your application with the device on which it is installed. Once registered, the
C2DM service returns a registration ID that uniquely identifi es that particular installation. Your
application should send that ID, along with a way to identify each installation (typically a username
or anonymous UUID) to your server.

c18.indd 744c18.indd 744 4/18/2012 3:47:34 PM4/18/2012 3:47:34 PM

http://code.google.com

Meier c18.indd V2 - 04/14/2012

Introducing Cloud to Device Messaging x 745

Cloud to Device
Messaging Server

My Server

1. Register
application instance

3. Register registration
ID with your server

2. Receive registration ID
Android App

on Device

FIGURE 18-1

Begin by starting a Service using an Intent that includes the com.google.android.c2dm.intent
.REGISTER action. It must include extras to identify your application and specify your sender
account, as shown in Listing 18-3.

LISTING 18-3: Registering an application instance with the C2DM server

Intent registrationIntent =
 new Intent(“com.google.android.c2dm.intent.REGISTER”);

registrationIntent.putExtra(“app”,
 PendingIntent.getBroadcast(this, 0, new Intent(), 0));

registrationIntent.putExtra(“sender”,
 “myC2DMaccount@gmail.com”);

startService(registrationIntent);

code snippet PA4AD_Ch18_C2DM/src/MyActivity.java

Your application is identifi ed using the app extra key and a Pending Broadcast Intent that will be
populated by the C2DM service to send your application messages when they are received.

The sender extra is used to specify the role account you registered when signing up for C2DM, and
will be used by your server to transmit messages.

The platform will transmit this information to the C2DM server, which will return a registration ID.
To receive this, you need to register a Broadcast Receiver that listens for the com.google.android.
c2dm.intent.REGISTRATION action, requires the com.google.android.c2dm.permission.SEND
permission, and includes your application package name as a category, as shown in Listing 18-4.

c18.indd 745c18.indd 745 4/18/2012 3:47:34 PM4/18/2012 3:47:34 PM

mailto:myC2DMaccount@gmail.com%E2%80%9D%00%00

Meier c18.indd V2 - 04/14/2012

746 x CHAPTER 18 ADVANCED ANDROID DEVELOPMENT

LISTING 18-4: Listening for C2DM registration IDs

<receiver
 android:name=”.MyC2DMReceiver”
 android:permission=”com.google.android.c2dm.permission.SEND”>

 <intent-filter>
 <action
 android:name=”com.google.android.c2dm.intent.REGISTRATION”
 />
 <category android:name=”com.mypackage.myc2dmAppName”/>
 </intent-filter>
</receiver>

code snippet PA4AD_Ch18_C2DM/AndroidManifest.xml

The registration ID for each application/device pair may be changed at any time, so it’s important
that your application continue listening for new REGISTRATION Broadcast Intents.

The registration ID itself is included in the registration_id extra, as shown in Listing 18-5. If the
registration process fails, the error code will be included as an error extra, and successful deregis-
tration requests will be signaled using the unregistered extra.

LISTING 18-5: Extracting the C2DM registration ID

public void onReceive(Context context, Intent intent) {
 if (intent.getAction().equals(
 “com.google.android.c2dm.intent.REGISTRATION”)) {

 String registrationId = intent.getStringExtra(“registration_id”);
 String error = intent.getStringExtra(“error”);
 String unregistered = intent.getStringExtra(“unregistered”);

 if (error != null) {
 // Registration failed.
 if (error.equals(“SERVICE_NOT_AVAILABLE”)) {
 Log.e(TAG, “Service not available.”);
 // Retry using exponential back off.
 }
 else if (error.equals(“ACCOUNT_MISSING”)) {
 Log.e(TAG, “No Google account on device.”);
 // Ask the user to create / add a Google account
 }
 else if (error.equals(“AUTHENTICATION_FAILED”)) {
 Log.e(TAG, “Incorrect password.”);
 // Ask the user to re-enter their Google account password.
 }
 else if (error.equals(“TOO_MANY_REGISTRATIONS”)) {
 Log.e(TAG, “Too many applications registered.”);
 // Ask the user to unregister / uninstall some applications.
 }

c18.indd 746c18.indd 746 4/18/2012 3:47:34 PM4/18/2012 3:47:34 PM

Meier c18.indd V2 - 04/14/2012

Introducing Cloud to Device Messaging x 747

 else if (error.equals(“INVALID_SENDER”)) {
 Log.e(TAG, “Invalid sender account.”);
 // The sender account specified has not been registered
 // with the C2DM server.
 }
 else if (error.equals(“PHONE_REGISTRATION_ERROR”)) {
 Log.e(TAG, “Phone registration failed.”);
 // The phone doesn’t currently support C2DM.
 }
 } else if (unregistered != null) {
 // Unregistration complete. The application should stop
 // processing any further received messages.
 Log.d(TAG, “Phone deregistration completed successfully.”);
 } else if (registrationId != null) {
 Log.d(TAG, “C2DM registration ID received.”);
 // Send the registration ID to your server.
 }
 }
}

code snippet PA4AD_Ch18_C2DM/src/MyC2DMReceiver.java

The received registration ID becomes the address your server uses to target a message at this par-
ticular device/application instance. Accordingly, you need to transmit this ID to your server, along
with an identifi er it can use to identify the user associated with this installation. This will allow you
to look up the device address based on a particular user in order to transmit data to him or her. In
the case of email, this might be the username; for voicemail, the phone number; or for a game, a
generated UUID.

It’s good practice to create a server-side hash to simplify the lookup. Keep in mind that a single user
may have multiple devices, so you may need to include a collision algorithm that determines which
device should receive the message (or if multiple devices should receive them).

Also remember that the registration ID may subsequently change, so be sure to retransmit the
identifi er/ID pair should that happen.

You can unregister a device by calling startService, passing in an Intent that
uses the com.google.android.c2dm.intent.UNREGISTER action, and including
an app extra that uses a Pending Intent to identify your application:

PendingIntent pi =
 PendingIntent.getBroadcast(this, 0, new Intent(), 0);
Intent unregister =
 new Intent(“com.google.android.c2dm.intent.UNREGISTER”);

unregister.putExtra(“app”, pi);

startService(unregister);

c18.indd 747c18.indd 747 4/18/2012 3:47:34 PM4/18/2012 3:47:34 PM

Meier c18.indd V2 - 04/14/2012

748 x CHAPTER 18 ADVANCED ANDROID DEVELOPMENT

Sending C2DM Messages to Devices

Once you’ve recorded a particular device’s registration ID on your server, it’s possible for it to
 transmit messages to that device. Sending messages is a two-step process, as shown in Figure 18-2.

2. Send message to
a particular device

1. Send message addressed
using a registration IDMy Server

Cloud to Device
Messaging Server

Android App
on Device

FIGURE 18-2

Creating the server-side implementation of C2DM is beyond the scope of this
book. If your server is an AppEngine application, the Chrome 2 Phone project
(http://code.google.com/p/chrometophone/) includes a server-side imple-
mentation that can be used to greatly simplify the process of authentication and
message transmission to the C2DM service.

Your server transmits a message to the C2DM service using POST requests to https://android
.apis.google.com/c2dm/send that include the following parameters:

 ‰ registration_id — The address of the target device/application pair.

 ‰ collapse_key — When the target device is offl ine, messages transmitted to it will be queued.
By specifying a collapse key, you can effectively collapse that queue, causing each message
with the same key to override the previous so that only the last message gets sent to the
target device.

 ‰ data.[key] — Payload data in the form of key/value pairs. They will be passed in to
your application as extras within the C2DM message Intent, using the keys you specify.
Each C2DM message is limited to 1024 bytes, so payload data should be kept to the
bare minimum — typically only the information required for the client to perform an
effi cient lookup.

c18.indd 748c18.indd 748 4/18/2012 3:47:35 PM4/18/2012 3:47:35 PM

http://code.google.com/p/chrometophone
https://android

Meier c18.indd V2 - 04/14/2012

Introducing Cloud to Device Messaging x 749

 ‰ delay_while_idle — By default, messages transmitted to a device will be sent as quickly as
possible. By setting this parameter to true, you can delay the transmission until the device is
active. This is similar to setting a non-waking alarm, and can be useful for prolonging battery
life where messages don’t need to be received immediately. The collapse key you specify will
be used to collapse the queue of pending messages so that only one message is transmitted/
received when the device becomes active.

In addition to the POST parameters, you must include a header with a Google ClientLogin auth
token whose cookie must be associated with the Android C2DM service.

The auth token should be generated for the C2DM Google account that your client applications
used when registering with the C2DM server.

Details for implementing a server-side ClientLogin process is beyond the scope
of this book. You can fi nd details on generating a Google auth token at http://
code.google.com/apis/accounts/docs/AuthForInstalledApps.html.

Receiving C2DM Messages

After your server transmits messages to the C2DM service, they are, in turn, sent to the device to
which they are addressed. The target device then delivers each message to its recipient application as
a Broadcast Intent.

To receive these Intents, you must register a Broadcast Receiver that includes the com.google
.android.c2dm.permission.SEND permission, a fi lter for the com.google.android.c2dm
.intent.RECEIVE action, and the category set to the application’s package name, as shown in
Listing 18-6.

LISTING 18-6: Registering to receive C2DM messages

<receiver
 android:name=”.C2DMMessageReceiver”
 android:permission=”com.google.android.c2dm.permission.SEND”>

 <intent-filter>
 <action
 android:name=”com.google.android.c2dm.intent.RECEIVE”
 />
 <category android:name=”com.mypackage.myc2dmAppName”/>
 </intent-filter>
</receiver>

code snippet PA4AD_Ch18_C2DM/AndroidManifest.xml

Within the associated Broadcast Receiver implementation, you can extract any extras using the keys
you specifi ed when sending the associated server message, as shown in Listing 18-7.

c18.indd 749c18.indd 749 4/18/2012 3:47:36 PM4/18/2012 3:47:36 PM

http://code.google.com/apis/accounts/docs/AuthForInstalledApps.html
http://code.google.com/apis/accounts/docs/AuthForInstalledApps.html

Meier c18.indd V2 - 04/14/2012

750 x CHAPTER 18 ADVANCED ANDROID DEVELOPMENT

LISTING 18-7: Extracting C2DM message details

public void onReceive(Context context, Intent intent) {
 if (intent.getAction().equals(
 “com.google.android.c2dm.intent.RECEIVE”)) {
 Bundle extras = intent.getExtras();

 // Extract any extras included in the server messages.
 int newVoicemailCount = extras.getInt(“VOICEMAIL_COUNT”, 0);
 }
}

code snippet PA4AD_Ch18_C2DM/src/C2DMMessageReceiver.xml

Due to the payload data limit, it’s generally considered good practice to include as little payload data
as possible and to use an incoming C2DM message as a tickle to indicate that the application should
perform a server update.

IMPLEMENTING COPY PROTECTION USING THE LICENSE

VERIFICATION LIBRARY

Android 1.5 (API level 3) introduced a network-based solution for implementing copy protection for
your applications. The License Verifi cation Library (LVL) is a Google service that works together
with Google Play to allow your application to query the license status of your application for a
given user.

Full details for implementing an LVL solution for copy protection is outside the
scope of this book. This section aims to provide an introduction to the LVL,
 outlining its concepts and best-practice implementation patterns.

The Android Developer Guide has a detailed guide to using the LVL, including a
sample implementation: http://developer.android.com/guide/publishing/
licensing.html.

Installing the License Verifi cation Library

The LVL provides a series of APIs that handle the interaction with the licensing service to request
licensing confi rmation and return the results to your applications. It also simplifi es and encap-
sulates the process of defi ning policies for caching and offl ine license verifi cation. It includes the
ServerManagedPolicy implementation that encapsulates the best-practice policy settings.

The LVL is distributed as an “extras” SDK package as the “Google Market Licensing package,” and
can be downloaded using the Android SDK Manager, as described in Chapter 2, “Getting Started.”

c18.indd 750c18.indd 750 4/18/2012 3:47:37 PM4/18/2012 3:47:37 PM

http://developer.android.com/guide/publishing

Meier c18.indd V2 - 04/14/2012

Implementing Copy Protection Using the License Verifi cation Library x 751

After downloading the LVL, add it to Eclipse as a library project, and then import it into your
existing applications. Details for creating and using Eclipse library packages using the ADT plug-in
are available at http://developer.android.com/guide/developing/projects/
projects-eclipse.html.

To use the LVL, you need to add the com.android.vending.CHECK_LICENSE permission to your
application manifest:

<uses-permission android:name=”com.android.vending.CHECK_LICENSE”/>

Finding Your License Verifi cation Public Key

In order to perform LVL checks, you need to include a public key for validation requests. You must
fi rst create a sign-in to the Android Developer Console.

Select the Edit Profi le link from https://play.google.com/apps/publish/ and scroll down to
the Licensing & In-app Billing heading, as shown in Figure 18-3.

FIGURE 18-3

From here, you can also specify a number of test accounts that will receive the static response
you specify.

Confi guring Your License Validation Policy

The license validation Policy specifi es the confi guration options that will be used to execute license
checks and determine their effects. It should manage caching of requests, handling of error codes,
retries, and offl ine verifi cation checks.

c18.indd 751c18.indd 751 4/18/2012 3:47:38 PM4/18/2012 3:47:38 PM

http://developer.android.com/guide/developing/projects
https://play.google.com/apps/publish

Meier c18.indd V2 - 04/14/2012

752 x CHAPTER 18 ADVANCED ANDROID DEVELOPMENT

Although it’s possible to create your own implementation of the Policy class, the LVL
includes a best-practice policy whose settings are managed by the Licensing Service — the
ServerManagedPolicy.

In order to support caching and offl ine validation support, the Server Managed Policy requires an
obfuscator to obfuscate the cached values. The LVL includes the AESObfuscator, which seeds the
encryption using the following:

 ‰ A salt — An array of random bytes.

 ‰ A package name — The application’s full (and unique) package name.

 ‰ A unique device identifi er — Typically a UUID created the fi rst time the application is run.

Performing License Validation Checks

Start by creating a new LicenseChecker object in the onCreate handler of your Activity, specifying
the Context, a Policy instance, and your public key, as shown in Listing 18-8.

LISTING 18-8: Creating a new License Checker

// Generate 20 random bytes, and put them here.
private static final byte[] SALT = new byte[] {
 -56, 42, 12, -18, -10, -34, 78, -75, 54, 88,
 -13, -12, 36, 17, -34, 114, 77, 12, -23, -20};

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Construct the LicenseChecker with a Policy.
 licenseChecker =
 new LicenseChecker(this, new ServerManagedPolicy(this,
 new AESObfuscator(SALT, getPackageName(), deviceID)),
 PUBLIC_KEY);
}

code snippet PA4AD_Ch18_LVS/src/MyActivity.xml

To perform the license check, call the License Checker object’s checkAccess method, passing in an
implementation of the LicenseCheckerCallback interface, as shown in Listing 18-9. Successful
validation will result in the allow handler being triggered, whereas failure will trigger dontAllow.

LISTING 18-9: Performing a license check

licenseChecker.checkAccess(new LicenseCheckerCallback(){
 public void allow() {
 // License verified.
 }

c18.indd 752c18.indd 752 4/18/2012 3:47:38 PM4/18/2012 3:47:38 PM

Meier c18.indd V2 - 04/14/2012

Introducing In-App Billing x 753

 public void dontAllow() {
 // License verification failed.
 }

 public void applicationError(ApplicationErrorCode errorCode) {
 // Handle associated error code.
 }
});

code snippet PA4AD_Ch18_LVS/src/MyActivity.xml

Both License Checker handlers will always return on a background thread. If
you plan to update the UI based on license verifi cation callbacks, you will fi rst
need to synchronize with the main application thread.

It’s up to you to determine where in your application, and how frequently, you want to make license
validation checks — and how to react to failure. It’s generally considered best practice to be as
unpredictable as possible. This makes it more diffi cult for hackers to determine where your applica-
tion is making checks and whether their attempts at circumventing your checks have been successful.

Many developers have found it useful to only partially disable an application that fails the license
checks — for example, by limiting the number of levels available, increasing the diffi culty level, or
otherwise providing a less complete product. As a result, they can then direct users to Google Play
at a later point to encourage them to purchase the full version.

INTRODUCING IN-APP BILLING

Introduced in Android 1.6 (API level 4), In-App Billing (IAB) is a Google Play service that can be
used as an alternative (or addendum) to charging up-front for an application.

Using IAB, you can charge users for digital content within your applications, including virtual
in-game content, such as upgrading to the “full” version, purchasing additional levels, or buying
weaponry, armor, or other in-game artifacts. You can also use IAB (though you aren’t required to)
when charging for downloadable content, such as music, video, books, or images.

The IAB service operates using the Google Play Store, which handles all transaction processing and
operates under the same revenue-sharing model as for paid applications — specifi cally, requiring a
30 percent transaction fee.

IAB has proven to be a powerful new monetization option for application developers. Despite the
relatively low cost of mobile games and applications, consumers are wary of paying for applications
without a guarantee of their quality. By implementing an IAB solution, you provide prospective
users with a risk-free way to experience the quality and usefulness of your application, along with
a simple way to upgrade their experience once they’re satisfi ed that the additional functionality is
worth the cost.

c18.indd 753c18.indd 753 4/18/2012 3:47:38 PM4/18/2012 3:47:38 PM

Meier c18.indd V2 - 04/14/2012

754 x CHAPTER 18 ADVANCED ANDROID DEVELOPMENT

Similarly, rather than charging users once for access, IAB provides an avenue for providing users
with ongoing or renewable resources — particularly in games — such as the ability to skip levels or
simplify their in-game experience through the purchase of virtual goods they would otherwise need
to invest signifi cant time to earn.

Full details for implementing an IAB solution is beyond the scope of this book.
This section aims to provide an introduction to using IAB, outlining its concepts
and best-practice implementation patterns.

The Android Developer Guide has a detailed guide to integrating IAB, including
a sample implementation: http://developer.android.com/guide/market/
billing/index.html.

In-App Billing Restrictions

IAB is a Google service implemented using the Google Play Store client. As a result, before using
IAB within your applications, you must have Google Checkout Merchant account, and your IAB
applications must be published on Google Play.

As a server-based solution, IAB is available only on devices that have a network connection.

IAB is only available for selling virtual goods, including in-game artifacts or downloadable digital
content. It can’t be used to sell physical goods or serves.

Installing the In-App Billing Library

The IAB library and sample source is distributed as an “extras” SDK package, and can be
downloaded using the Android SDK Manager, as described in Chapter 2.

To use IAB, you need to specify the com.android.vending.BILLING permission in your application
manifest:

<uses-permission android:name=”com.android.vending.BILLING” />

Finding Your Public Key and Defi ning Your Purchasable Items

Like license verifi cation checks, in order to perform IAB transactions, you need to include
a public key.

You can fi nd your public key from your Google Play publisher account. Once you’ve signed in,
select the Edit Profi le link from https://play.google.com/apps/publish and scroll down to the
Licensing & In-app Billing heading (refer to Figure 18-3).

To specify the items that can be purchased within each of your applications, click the In-App
Products link beneath its listing in the Android Developer Console. The link will be available if you
have a Google Checkout Merchant account, and only for applications whose manifest includes the
com.android.vending.BILLING permission.

c18.indd 754c18.indd 754 4/18/2012 3:47:39 PM4/18/2012 3:47:39 PM

http://developer.android.com/guide/market
https://play.google.com/apps/publish

Meier c18.indd V2 - 04/14/2012

Introducing In-App Billing x 755

The product list is used to store the metadata describing each product you are selling, including its
unique ID and price. The content itself must be stored either within the application or on your own
servers. The product ID will be used within your application when initiating an in-app purchase.

Initiating In-App Billing Transactions

To use IAB, your application sends a billing request for a specifi c in-app product to the IAB service;
that service then handles the transaction before sending an Intent to your application containing the
purchase details.

In order to execute billing requests, your application must bind to the MarketBillingService
class. The sample application included as part of the IAB library package includes the AIDL fi le that
defi nes the interface with this service, so before attempting to bind to the Market Billing Service,
copy the AIDL defi nition into your project.

It’s best practice to perform all IAB transactions within a Service, ensuring that an Activity closing
or restarting does not interfere with an IAB transaction.

You can bind to the Market Billing Service from your own Service. Implement a new
ServiceConnection to obtain a reference to the IMarketBillingService, as shown in
Listing 18-10.

LISTING 18-10: Binding to the Market Billing Service

IMarketBillingService billingService;

private void bindService() {
 try {
 String bindString =
 “com.android.vending.billing.MarketBillingService.BIND”;

 boolean result = context.bindService(new Intent(bindString),
 serviceConnection, Context.BIND_AUTO_CREATE);

 } catch (SecurityException e) {
 Log.e(TAG, ”Security Exception.”, e);
 }
}

private ServiceConnection serviceConnection = new ServiceConnection() {
 public void onServiceConnected(ComponentName className,
 IBinder service) {
 billingService = IMarketBillingService.Stub.asInterface(service);
 }

 public void onServiceDisconnected(ComponentName className) {
 billingService = null;
 }
};

code snippet PA4AD_Ch18_IAB/src/MyService.xml

c18.indd 755c18.indd 755 4/18/2012 3:47:40 PM4/18/2012 3:47:40 PM

Meier c18.indd V2 - 04/14/2012

756 x CHAPTER 18 ADVANCED ANDROID DEVELOPMENT

You can now use this Market Billing Service reference to make billing request calls using the send-
BillingRequest method. Note that this must be performed on the main application thread.

To make a billing request, you must pass in a Bundle parameter that specifi es the type of transac-
tion you want to execute, the version of the IAB API you are using, your package name, and the
product ID to be purchased, as shown in Listing 18-11.

LISTING 18-11: Creating a billing request

protected Bundle makeRequestBundle(String transactionType,
 String itemId) {
 Bundle request = new Bundle();
 request.putString(“BILLING_REQUEST”, transactionType);
 request.putInt(“API_VERSION”, 1);
 request.putString(“PACKAGE_NAME”, getPackageName());
 if (itemId != null)
 request.putString(“ITEM_ID”, itemId);
 return request;
}

code snippet PA4AD_Ch18_IAB/src/MyService.xml

The following fi ve billing request types are supported:

 ‰ REQUEST_PURCHASE — Initiates a purchase request.

 ‰ CHECK_BILLING_SUPPORTED — Verifi es that IAB is supported on the host device.

 ‰ GET_PURCHASE_INFORMATION — Requests the transaction information for a prior purchase
or a refund.

 ‰ CONFIRM_NOTIFICATIONS — Acknowledges the receipt of the transaction information related
to a purchase or refund.

 ‰ RESTORE_TRANSACTIONS — Retrieves a user’s transaction history for his or her managed
purchases.

To initiate the billing request, call the Market Billing Service’s sendBillingRequest method, pass-
ing in the Bundle:

Bundle response = billingService.sendBillingRequest(request);

The sendBillingRequest method will return a Bundle response that contains a response code,
request ID, and a Pending Intent that you use to launch the checkout UI.

Handling In-App Billing Purchase Request Responses

When your billing request type is REQUEST_PURCHASE, your application must listen for
two Broadcast Intents — one containing a response code and another containing an IAB
 notifi cation — to determine the success of your attempted transaction:

<receiver android:name=”IABReceiver”>
 <intent-filter>

c18.indd 756c18.indd 756 4/18/2012 3:47:40 PM4/18/2012 3:47:40 PM

Meier c18.indd V2 - 04/14/2012

Using Wake Locks x 757

 <action android:name=”com.android.vending.billing.IN_APP_NOTIFY” />
 <action android:name=”com.android.vending.billing.RESPONSE_CODE” />
 <action android:name=”com.android.vending.billing.PURCHASE_STATE_CHANGED”/>
 </intent-filter>
</receiver>

After the Market Billing Service successfully receives your billing request, it broadcasts a RESPONSE_
CODE Intent whose result is set to RESULT_OK.

When the transaction itself has been executed, the Market Billing Service broadcasts an IN_
APP_NOTIFY Intent. This Broadcast Intent contains a notifi cation ID that, along with a nonce, is
used to retrieve the purchase information for a given purchase request using the GET_PURCHASE_
INFORMATION request type.

Making a purchase information request returns a Bundle containing a response code and request
ID, as well as triggering two further asynchronous Broadcasts Intents. The fi rst, a RESPONSE_CODE
Intent, returns the success and error status associated with your purchase request, using the nonce
you specifi ed in the request as an identifi er.

If the purchase is successful, a PURCHASE_STATE_CHANGED broadcast will also be broadcast, contain-
ing detailed transaction information as a signed JSON string.

USING WAKE LOCKS

In order to prolong battery life, when an Android device is left idle, it will fi rst dim, then turn off
the screen, and, fi nally, turn off the CPU.

WakeLocks are a Power Manager system Service feature that your application can use to control the
power state of the host device.

Wake Locks can be used to keep the CPU running, prevent the screen from dimming, prevent the
screen from turning off, and prevent the keyboard backlight from turning off.

Creating and holding Wake Locks can have a dramatic impact on the host
device’s battery life. It’s good practice to use Wake Locks sparingly, creating them
only when strictly necessary and holding them for as short a time as possible.

Because of the dramatic impact Wake Locks can have on battery life, your application needs to
request a WAKE_LOCK permission in order to create them:

<uses-permission android:name=”android.permission.WAKE_LOCK”/>

To create a Wake Lock, call newWakeLock on the Power Manager, specifying one of the following
Wake Lock types.

 ‰ FULL_WAKE_LOCK — Keeps the screen at full brightness, the keyboard backlight illuminated,
and the CPU running.

 ‰ SCREEN_BRIGHT_WAKE_LOCK — Keeps the screen at full brightness and the CPU running.

c18.indd 757c18.indd 757 4/18/2012 3:47:40 PM4/18/2012 3:47:40 PM

Meier c18.indd V2 - 04/14/2012

758 x CHAPTER 18 ADVANCED ANDROID DEVELOPMENT

 ‰ SCREEN_DIM_WAKE_LOCK — Keeps the screen on (but lets it dim) and the CPU running.

 ‰ PARTIAL_WAKE_LOCK — Keeps the CPU running.

Screen dim Wake Locks typically are used to prevent the screen from dimming during applications
that are likely to involve little user interaction — for example, a video player.

Partial Wake Locks (or CPU Wake Locks) are used to prevent the device from going to sleep until
an action has completed. This is most commonly used by Services started within Intent Receivers,
which may receive Intents while the device is asleep. It’s worth noting that in this case the system
will hold a CPU Wake Lock throughout the onReceive handler of the Broadcast Receiver.

If you start a Service, or broadcast an Intent within the onReceive handler of
a Broadcast Receiver, it is possible that the Wake Lock it holds will be released
before your Service has started or your Intent received. To ensure the Service exe-
cution is completed, you will need to put in place a separate Wake Lock policy.

After creating a Wake Lock, acquire it by calling acquire.

You can optionally specify a timeout to ensure the maximum duration the Wake Lock will be held
for. When the action for which you’re holding the Wake Lock completes, call release to let the
 system manage the power state.

Listing 18-12 shows the typical use pattern for creating, acquiring, and releasing a Wake Lock.

LISTING 18-12: Using a Wake Lock

WakeLock wakeLock;

private class MyAsyncTask extends AsyncTask<Void, Void, Void> {
 @Override
 protected Void doInBackground(Void... parameters) {
 PowerManager pm =
 (PowerManager)getSystemService(Context.POWER_SERVICE);

 wakeLock =
 pm.newWakeLock(PowerManager.PARTIAL_WAKE_LOCK, “MyWakeLock”);

 wakeLock.acquire();

 // TODO Do things in the background

 return null;
 }

 @Override
 protected void onPostExecute(Void parameters) {
 wakeLock.release();
 }
}

code snippet PA4AD_Ch18_Wakelocks/src/MyActivity.xml

c18.indd 758c18.indd 758 4/18/2012 3:47:41 PM4/18/2012 3:47:41 PM

Meier c18.indd V2 - 04/14/2012

Using AIDL to Support Inter-Process Communication for Services x 759

USING AIDL TO SUPPORT INTER-PROCESS COMMUNICATION

FOR SERVICES

In Chapter 9, “Working in the Background,” you learned how to create Services for your
applications. Here, you’ll learn how to use the Android Interface Defi nition Language (AIDL) to
support rich inter-process communication (IPC) between Services and other application compo-
nents, including components running within different applications or within separate processes.
This gives your Services the capability to support multiple applications across process boundaries.

To pass objects between processes, you need to deconstruct them into OS-level primitives that the
underlying OS can then marshal across application boundaries. This is done by implementing them
as Parcelables.

AIDL is used to simplify the code that lets your processes exchange objects. It’s similar to interfaces
like COM or Corba in that it lets you create public methods within your Services that can accept
and return object parameters and return values between processes.

Implementing an AIDL Interface

AIDL supports the following data types:

 ‰ Java language primitives (int, boolean, float, char, etc.).

 ‰ String and CharSequence values.

 ‰ List objects (including generics), where each element is a supported type. The receiving class
will always receive the List object instantiated as an ArrayList.

 ‰ Map objects (not including generics), where every key and element is of a supported type. The
receiving class will always receive the Map object instantiated as a HashMap.

 ‰ AIDL-generated interfaces (covered later). An import statement is always needed for these.

 ‰ Classes that implement the Parcelable interface (covered next). An import statement is
always needed for these.

The following sections demonstrate how to make your classes Parcelable, create an AIDL
Service defi nition, and implement and expose that Service defi nition for use by other application
components.

Making Classes Parcelable

In order for non-native classes to be passed between processes, they must implement the
Parcelable interface. This lets you decompose the properties within your classes into primitive
types stored within a Parcel that can be marshaled across process boundaries.

Implement the writeToParcel method to decompose your class object, using the write* methods
to save object properties into the outgoing Parcel object:

public void writeToParcel(Parcel out, int flags) {
 out.writeLong(myLong);
 out.writeString(myString);
 out.writeDouble(myDouble);
}

c18.indd 759c18.indd 759 4/18/2012 3:47:42 PM4/18/2012 3:47:42 PM

Meier c18.indd V2 - 04/14/2012

760 x CHAPTER 18 ADVANCED ANDROID DEVELOPMENT

To re-create an object that’s been saved as a parcel, implement the public static Creator fi eld
(which implements a new Parcelable.Creator class) to create a new object based on an incoming
Parcel by reading the incoming parcel using its read* methods:

 private MyClass(Parcel in) {
 myLong = in.readLong();
 myString = in.readString();
 myDouble = in.readDouble();
 }

Listing 18-13 shows a basic example of using the Parcelable interface for the Quake class you’ve
been using in the ongoing Earthquake example.

LISTING 18-13: Making the Quake class a Parcelable

package com.paad.earthquake;

import java.text.SimpleDateFormat;
import java.util.Date;

import android.location.Location;
import android.os.Parcel;
import android.os.Parcelable;

public class Quake implements Parcelable {
 private Date date;
 private String details;
 private Location location;
 private double magnitude;
 private String link;
 public Date getDate() { return date; }
 public String getDetails() { return details; }
 public Location getLocation() { return location; }
 public double getMagnitude() { return magnitude; }
 public String getLink() { return link; }

 public Quake(Date _d, String _det, Location _loc,
 double _mag, String _link) {
 date = _d;
 details = _det;
 location = _loc;
 magnitude = _mag;
 link = _link;
 }

 @Override
 public String toString(){
 SimpleDateFormat sdf = new SimpleDateFormat(“HH.mm”);
 String dateString = sdf.format(date);
 return dateString + “:” + magnitude + “ “ + details;
 }

c18.indd 760c18.indd 760 4/18/2012 3:47:42 PM4/18/2012 3:47:42 PM

Meier c18.indd V2 - 04/14/2012

Using AIDL to Support Inter-Process Communication for Services x 761

 private Quake(Parcel in) {
 date.setTime(in.readLong());
 details = in.readString();
 magnitude = in.readDouble();
 Location location = new Location(“generated”);
 location.setLatitude(in.readDouble());
 location.setLongitude(in.readDouble());
 link = in.readString();
 }

 public void writeToParcel(Parcel out, int flags) {
 out.writeLong(date.getTime());
 out.writeString(details);
 out.writeDouble(magnitude);
 out.writeDouble(location.getLatitude());
 out.writeDouble(location.getLongitude());
 out.writeString(link);
 }

 public static final Parcelable.Creator<Quake> CREATOR =
 new Parcelable.Creator<Quake>() {
 public Quake createFromParcel(Parcel in) {
 return new Quake(in);
 }

 public Quake[] newArray(int size) {
 return new Quake[size];
 }
 };

 public int describeContents() {
 return 0;
 }
}

code snippet PA4AD_Ch18_Earthquake/src/Quake.java

Now that you have a Parcelable class, you need to create a corresponding AIDL defi nition to make it
available when defi ning your Service’s AIDL interface.

Listing 18-14 shows the contents of the Quake.aidl fi le you need to create for the Quake Parcelable
defi ned in the preceding listing.

LISTING 18-14: The Quake class AIDL defi nition

package com.paad.earthquake;

parcelable Quake;

code snippet PA4AD_Ch18_Earthquake/src/Quake.aidl

c18.indd 761c18.indd 761 4/18/2012 3:47:42 PM4/18/2012 3:47:42 PM

Meier c18.indd V2 - 04/14/2012

762 x CHAPTER 18 ADVANCED ANDROID DEVELOPMENT

When passing class objects between processes, remember that AIDL objects aren’t self-describing,
so the client process must understand the defi nition of the object being passed.

Creating an AIDL Service Defi nition

In this section you will be defi ning a new AIDL interface defi nition for a Service you’d like to use
across processes.

Start by creating a new .aidl fi le within your project. This will defi ne the methods and fi elds to
include in an interface that your Service will implement.

The syntax for creating AIDL defi nitions is similar to that used for standard Java interface
defi nitions.

Specify a fully qualifi ed package name, then import all the packages required. Unlike normal Java
interfaces, AIDL defi nitions need to import packages for any class or interface that isn’t a native
Java type, even if it’s defi ned in the same project.

Defi ne a new interface, adding the properties and methods you want to make available. Methods
can take zero or more parameters and return void or a supported type. If you defi ne a method that
takes one or more parameters, you need to use a directional tag (one of in, out, and inout) to indi-
cate whether the each parameter is a value or reference type.

Where possible, you should limit the direction of each parameter, as marshaling
parameters is an expensive operation.

Listing 18-15 shows a basic AIDL defi nition for the earthquake sample project you last modifi ed in
Listing 18-14. It should be implemented within the IEarthquakeService.aidl fi le.

LISTING 18-15: An Earthquake Service AIDL interface defi nition

package com.paad.earthquake;

import com.paad.earthquake.Quake;

interface IEarthquakeService {
 List<Quake> getEarthquakes();
 void refreshEarthquakes();
}

code snippet PA4AD_Ch18_IPC/src/IEarthquakeService.aidl

Implementing and Exposing the AIDL Service Defi nition

If you’re using the ADT plug-in, saving the AIDL fi le will automatically code-generate a Java
Interface fi le. This interface will include an inner Stub class that implements the interface as an
abstract class.

c18.indd 762c18.indd 762 4/18/2012 3:47:42 PM4/18/2012 3:47:42 PM

Meier c18.indd V2 - 04/14/2012

Using AIDL to Support Inter-Process Communication for Services x 763

Have your Service extend the Stub and implement the functionality required. Typically, you’ll do
this using a private fi eld variable within the Service whose functionality you’ll be exposing.

Listing 18-16 shows an implementation of the IEarthquakeService AIDL defi nition created in
Listing 18-15.

LISTING 18-16: Implementing the AIDL Interface defi nition within a Service

IBinder myEarthquakeServiceStub = new IEarthquakeService.Stub() {
 public void refreshEarthquakes() throws RemoteException {
 EarthquakeUpdateService.this.refreshEarthquakes();
 }

 public List<Quake> getEarthquakes() throws RemoteException {
 ArrayList<Quake> result = new ArrayList<Quake>();

 ContentResolver cr
 = EarthquakeUpdateService.this.getContentResolver();
 Cursor c = cr.query(EarthquakeProvider.CONTENT_URI,
 null, null, null, null);

 if (c != null)
 if (c.moveToFirst()) {
 int latColumn = c.getColumnIndexOrThrow(
 EarthquakeProvider.KEY_LOCATION_LAT);
 int lngColumn = c.getColumnIndexOrThrow(
 EarthquakeProvider.KEY_LOCATION_LNG);
 int detailsColumn = c.getColumnIndexOrThrow(
 EarthquakeProvider.KEY_DETAILS);
 int dateColumn = c.getColumnIndexOrThrow(
 EarthquakeProvider.KEY_DATE);
 int linkColumn = c.getColumnIndexOrThrow(
 EarthquakeProvider.KEY_LINK);
 int magColumn = c.getColumnIndexOrThrow(
 EarthquakeProvider.KEY_MAGNITUDE);

 do {
 Double lat = c.getDouble(latColumn);
 Double lng = c.getDouble(lngColumn);
 Location location = new Location(“dummy”);
 location.setLatitude(lat);
 location.setLongitude(lng);

 String details =
 c.getString(detailsColumn);

 String link = c.getString(linkColumn);

 double magnitude =
 c.getDouble(magColumn);

 long datems = c.getLong(dateColumn);
 Date date = new Date(datems);

c18.indd 763c18.indd 763 4/18/2012 3:47:43 PM4/18/2012 3:47:43 PM

Meier c18.indd V2 - 04/14/2012

764 x CHAPTER 18 ADVANCED ANDROID DEVELOPMENT

 result.add(new Quake(date, details,
 location, magnitude, link));
 } while(c.moveToNext());
 }
 c.close();
 return result;
 }
};

code snippet PA4AD_Ch18_Earthquake/src/EarthquakeUpdateService.java

When implementing these methods, be aware of the following:

 ‰ All exceptions will remain local to the implementing process; they will not be propagated to
the calling application.

 ‰ All IPC calls are synchronous. If you know that the process is likely to be time-consuming,
you should consider wrapping the synchronous call in an asynchronous wrapper or moving
the processing on the receiver side onto a background thread.

With the functionality implemented, you need to expose this interface to client applications. Expose
the IPC-enabled Service interface by overriding the onBind method within your Service implementa-
tion to return an instance of the interface. Listing 18-17 demonstrates the onBind implementation
for the EarthquakeUpdateService.

LISTING 18-17: Exposing an AIDL interface implementation to Service clients

@Override
public IBinder onBind(Intent intent) {
 return myEarthquakeServiceStub;
}

code snippet PA4AD_Ch18_IPC/src/EarthquakeUpdateService.java

To use the AIDL-enabled Service from within an Activity, you must bind it, as shown in
Listing 18-18.

LISTING 18-18: Binding to an AIDL Service

IEarthquakeService earthquakeService = null;

private void bindService() {
 bindService(new Intent(IEarthquakeService.class.getName()),
 serviceConnection, Context.BIND_AUTO_CREATE);
}

private ServiceConnection serviceConnection = new ServiceConnection() {
 public void onServiceConnected(ComponentName className,
 IBinder service) {

c18.indd 764c18.indd 764 4/18/2012 3:47:43 PM4/18/2012 3:47:43 PM

Meier c18.indd V2 - 04/14/2012

Dealing with Diff erent Hardware and Software Availability x 765

 earthquakeService = IEarthquakeService.Stub.asInterface(service);
 }

 public void onServiceDisconnected(ComponentName className) {
 earthquakeService = null;
 }
};

code snippet PA4AD_Ch18_IPC/src/BoundEarthquakeActivity.java

DEALING WITH DIFFERENT HARDWARE AND SOFTWARE

AVAILABILITY

From smartphones to tablets to televisions, Android is now being used on an increasingly diverse
collection of hardware. Each new device potentially represents a variation in hardware confi guration
or software platform. This fl exibility is a signifi cant factor in Android’s success, but as a result, you
can’t make assumptions regarding the hardware or software running on the host platform.

To mitigate this, Android platform releases are forward compatible — meaning that applications
designed before a particular hardware or software innovation is available will be able to take advan-
tage of it without requiring changes.

One example of this forward-compatibility is the location-based services described in Chapter 13,
“Maps, Geocoding, and Location-Based Services.” Rather than specifying a particular hardware
provider, you choose a set of conditions and allow the system to select the best alternative using a
generic interface. Should future hardware and software provide a better alternative, your applica-
tion can take advantage without requiring an update.

Android platform releases are also backward compatible, meaning your application will con-
tinue to work on new hardware and platform releases — again without you needing to upgrade
it each time.

By combining forward and backward compatibility, your Android application will continue to work,
and even take advantage of new hardware and software features, as the platform evolves without
requiring updates.

That said, each platform release includes new APIs and platform features. Similarly, new hardware
may become available (such as NFC technology). Either advance could provide features that might
improve the features and user experience of your application.

Attempting to use APIs that aren’t available on a given host platform will cause a runtime exception.
To take advantage of these new features without losing support for hardware running earlier plat-
forms, you need to ensure your application is also backward compatible.

Similarly, the wide range of different Android device hardware platforms means that you can’t make
assumptions over what hardware might be available.

The following sections explain how to specify certain hardware as required, check for hardware
availability at run time, and build applications that are backward compatible.

c18.indd 765c18.indd 765 4/18/2012 3:47:43 PM4/18/2012 3:47:43 PM

Meier c18.indd V2 - 04/14/2012

766 x CHAPTER 18 ADVANCED ANDROID DEVELOPMENT

Specifying Hardware as Required

Application hardware requirements generally fall into two categories: hardware that is
required for your application to have utility, and hardware that is useful if it is available but
isn’t strictly necessary. The former accounts for applications built around a particular piece
of hardware — for example, a replacement camera application isn’t useful on a device without
a camera.

To specify a particular hardware feature as a requirement to install your application, add a uses-
feature node to its manifest:

<uses-feature android:name=”android.hardware.sensor.compass”/>
<uses-feature android:name=”android.hardware.camera”/>

This can also be used for applications that don’t necessarily require a particular piece of hardware,
but which haven’t been designed to support certain hardware confi gurations — for example, a game
that requires tilt sensors or a touch screen to control.

The more hardware restrictions you place on your applications, the smaller the
potential target audience becomes, so it’s good practice to limit your hardware
restrictions to those required to support core functionality.

Confi rming Hardware Availability

For hardware that would be useful but isn’t necessary, you need to query the host hardware plat-
form at run time to determine what hardware is available. The Package Manager includes a
hasSystemFeature method that accepts FEATURE_* static constants.

PackageManager pm = getPackageManager();
pm.hasSystemFeature(PackageManager.FEATURE_SENSOR_COMPASS);

The Package Manager includes a constant for every piece of optional hardware, making it possible
to customize your UI and functionality based on the hardware available.

Building Backward-Compatible Applications

Each new Android SDK release brings with it a raft of new hardware support, APIs, bug fi xes,
and performance improvements. It’s best practice to update your applications as soon as possible
following a new SDK release in order to take advantage of these new features and ensure the best
possible user experience for new Android owners.

At the same time, ensuring your applications are backward compatible is critical to ensure users of
devices running earlier Android platform versions can continue to use them — particularly as this is
likely to be a signifi cantly larger share of the market than that held by new devices.

c18.indd 766c18.indd 766 4/18/2012 3:47:43 PM4/18/2012 3:47:43 PM

Meier c18.indd V2 - 04/14/2012

Dealing with Diff erent Hardware and Software Availability x 767

Many of the convenience classes and UI improvements (such as Cursors and Fragments) are distrib-
uted as a stand-alone support library. Where features aren’t available as part of the support library,
this means incorporating new features and using the techniques described here to support multiple
platform versions within the same package.

Importing a class or attempting to call a method not available in the underlying
platform will cause a runtime exception when the enclosing class is instantiated
or the method is called.

For each technique described, it’s important to know the API level associated with the underlying
platform. To fi nd this at run time, you can use the android.os.Build.VERSION.SDK_INT constant:

private static boolean nfc_beam_supported =
 android.os.Build.VERSION.SDK_INT > 14;

This can then be used within the techniques described below to decide which components to start or
interfaces to implement.

Alternatively, you can use refl ection or use exceptions — as shown in the following snippet — to
check if a particular class or method is supported on the current device:

private static boolean fragmentsSupported = true;

private static void checkFragmentsSupported()throws NoClassDefFoundError {
 fragmentsSupported = android.app.Fragment.class != null;
}

static {
 try {
 checkFragmentsSupported();
 } catch (NoClassDefFoundError e) {
 fragmentsSupported = false;
 }
}

Both refl ection and exceptions are particularly slow operations on Android, so it’s best practice to
use the SDK version to determine which classes are available.

The easiest way to determine which API level is required for a given class or method is to progres-
sively lower your project’s build target and note which classes break the build.

Parallel Activities

The simplest, though least effi cient, alternative is to create separate sets of parallel Activities,
Services, and Broadcast Receivers, based on a base class compatible with the minimum Android
platform version you support.

c18.indd 767c18.indd 767 4/18/2012 3:47:44 PM4/18/2012 3:47:44 PM

Meier c18.indd V2 - 04/14/2012

768 x CHAPTER 18 ADVANCED ANDROID DEVELOPMENT

When using explicit Intents to start Services or Activities, you can select the right set of components
at run time by checking the platform version and targeting the appropriate Services and Activities
accordingly:

private static boolean nfc_beam_supported =
 android.os.Build.VERSION.SDK_INT > 14;

Intent startActivityIntent = null;

if (nfc_beam_supported)
 startActivityIntent = new Intent(this, NFCBeamActivity.class);
else
 startActivityIntent = new Intent(this, NonNFCBeamActivity.class);

startActivity(startActivityIntent);

In the case of implicit Intents and Broadcast Receivers, you can add an android:enabled tag to
their manifest entries that refers to a Boolean resource:

<receiver
 android:name=”.MediaControlReceiver”
 android:enabled=”@bool/supports_remote_media_controller”>
 <intent-filter>
 <action android:name=”android.intent.action.MEDIA_BUTTON”/>
 </intent-filter>
</receiver>

You can then create alternative resource entries based on API level:

res/values/bool.xml
 <bool name=”supports_remote_media_controller”>false</bool>

res/values-v14/bool.xml
 <bool name=”supports_remote_media_controller”>true</bool>

Interfaces and Fragments

Interfaces are the traditional way to support multiple implementations of the same functional-
ity. For functionality that you want to implement differently based on newly available APIs,
create an interface that defi nes the action to be performed, and then create API level-specifi c
implementations.

At run time, check the current platform version and instantiate the appropriate class and use its
methods:

IP2PDataXfer dataTransfer;

if (android.os.Build.VERSION.SDK_INT > 14)
 dataTransfer = new NFCBeamP2PDataXfer();
else
 dataTransfer = new NonNFCBeamP2PDataXfer();

dataTransfer.initiateP2PDataXfer();

c18.indd 768c18.indd 768 4/18/2012 3:47:45 PM4/18/2012 3:47:45 PM

Meier c18.indd V2 - 04/14/2012

Optimizing UI Performance with Strict Mode x 769

With Fragments now available as part of the Android support library, they provide a more encapsu-
lated alternative to parallelized components.

Rather than duplicating Activities, use Fragments — combined with the resource hierarchy — to
create a consistent UI that’s optimized for different platform releases and hardware confi gurations.

Most of the UI logic for your Activities should be contained within individual Fragments rather
than the Activity itself. As a result, you need only create alternative Fragments to expose and utilize
different functionality and infl ate different versions of the same layout stored within their respective
res/layout-v[API level] folders.

Interaction between and within Fragments is usually maintained within each Fragment, so only code
related to missing APIs will need to be changed within the Activity. If each variation of a Fragment
implements the same interface defi nition and ID, you shouldn’t need to create multiple Activities to
support multiple layouts and Fragment defi nitions.

OPTIMIZING UI PERFORMANCE WITH STRICT MODE

The resource-constrained nature of mobile devices amplifi es the effect of performing time-consum-
ing operations on the main application thread. Accessing network resources, reading or writing fi les,
or accessing databases while blocking the UI thread can have a dramatic impact on the user experi-
ence, causing your application to become less smooth, more laggy, and, in the most extreme case,
unresponsive.

You learned how to move such time-consuming operations onto background threads in Chapter 9.
Strict Mode (introduced in Android 2.3 (API level 9) is a tool that helps you identify cases you may
have missed.

Using the Strict Mode APIs, you can assign a set of policies that monitor actions within your appli-
cation and defi ne how you should be alerted. You can defi ne policies related to either the current
application thread or to your application’s virtual machine (VM) process. The former is perfect for
detecting slow operations being performed on the UI thread, whereas the latter helps you detect
memory and Context leaks.

To use Strict Mode, create a new ThreadPolicy class and a new VmPolicy class, using their static
builder classes with the detect* methods to defi ne the actions to monitor. The corresponding
penalty* methods control how the system should react to detecting those actions.

The Thread Policy can be used to detect disk reads/writes and network access, whereas the Vm
Policy can monitor your application for Activity, SQLite, and closeable object leaks.

The penalties available to both policies include logging or application death, while the Thread Policy
also supports displaying an on-screen dialog or fl ashing screen border.

Both builder classes also include a detectAll method that includes all the possible monitoring
options supported by the host platform. You can also use the StrictMode.enableDefaults method
to apply the default monitoring and penalty options.

To enable Strict Mode across your entire application, you should extend the Application class,
as shown in Listing 18-19.

c18.indd 769c18.indd 769 4/18/2012 3:47:45 PM4/18/2012 3:47:45 PM

Meier c18.indd V2 - 04/14/2012

770 x CHAPTER 18 ADVANCED ANDROID DEVELOPMENT

LISTING 18-19 : Enabling Strict Mode for an application

public class MyApplication extends Application {

 public static final boolean DEVELOPER_MODE = true;

 @Override
 public final void onCreate() {
 super.onCreate();

 if (DEVELOPER_MODE) {
 StrictMode.enableDefaults();
 }
 }
}

code snippet PA4AD_Ch18_StrictMode/src/MyApplication.java

To enable Strict Mode (or customize its settings) for a particular Activity, Service, or other
 application component, simply use the same pattern within that component’s onCreate method.

c18.indd 770c18.indd 770 4/18/2012 3:47:45 PM4/18/2012 3:47:45 PM

Meier02275 c19 V3 - 03/21/2012 Page 771

19
Monetizing, Promoting, and
Distributing Applications

WHAT’S IN THIS CHAPTER?

 ‰ Creating a signing certifi cate

 ‰ Signing your applications for distribution

 ‰ Publishing on Google Play

 ‰ Monetization strategies

 ‰ Application promotion strategies

 ‰ Using Google Analytics

Having created a compelling new Android application, the next step is to share it with the
world. In this fi nal chapter you’ll learn how to create and use a signing certifi cate to sign your
applications and distribute them.

You’ll be introduced to the application launch process and gain some insight into your
options for monetizing and promoting your application, and how to ensure you have
a successful launch.

You’ll also be introduced to Google Play (which expands and replaces the Android Market),
learn how to create a developer profi le, and how to create your application listing. You’ll then
be shown how to access the distribution reporting statistics, user comments, and error reports
in the Android Developer Console.

After a look at some of the best practices for launch and promotion, you’ll learn how to use
Google Analytics to gain critical insight into the demographics of your users and how they use
your application.

c19.indd 771c19.indd 771 4/11/2012 10:36:45 AM4/11/2012 10:36:45 AM

Meier02275 c19 V3 - 03/21/2012 Page 772

772 x CHAPTER 19 MONETIZING, PROMOTING, AND DISTRIBUTING APPLICATIONS

SIGNING AND PUBLISHING APPLICATIONS

Android applications are distributed as Android package fi les (.APK). In order to be installed on
a device or emulator, Android packages need to be signed.

During development, your applications will be signed using a debug key that is automatically
generated by the ADT tools. Before distributing your application beyond your testing environment,
you must compile it as a release build and sign it using a private release key — typically using a self-
signed certifi cate.

The JDK includes the Keytool and Jarsigner command-line tools necessary to create a new
keystore/signing certifi cate, and to sign your APK, respectively. Alternatively, you can use the
Export Android Application wizard, as described in the next section.

The importance of maintaining the security of your signing certifi cate can’t be
overstated. Android uses this certifi cate as the means of identifying the authen-
ticity of application updates, and applying inter-process security boundaries
between installed applications.

Using a stolen key, a third party could sign and distribute applications that
maliciously replace your authentic applications.

Similarly, your certifi cate is the only way you can upgrade your applications.
If you lose your certifi cate, it is impossible to perform a seamless update on a
device or from within Google Play. In the latter case, you would need to create
a new listing, losing all the reviews, ratings, and comments associated with your
previous package, as well as making it impossible to provide updates to the
existing users of your application.

Signing Applications Using the Export Android Application Wizard

The Export Android Application wizard simplifi es the process of creating and signing a release build
of your application package. Once the wizard is complete, your signed package will be ready for
distribution.

To launch the wizard, open the Package Explorer and select File Í Export, open the Android folder,
select Export Android Application, and then click Next. Alternatively, select Use the Export Wizard
from the manifest GUI, as shown in Figure 19-1. The wizard will prompt you to either select a new
keystore or create one, as shown in Figure 19-2.

FIGURE 19-1

c19.indd 772c19.indd 772 4/11/2012 10:36:49 AM4/11/2012 10:36:49 AM

Meier02275 c19 V3 - 03/21/2012 Page 773

Signing and Publishing Applications x 773

FIGURE 19-2

To apply an upgrade to an installed application, it must be signed with the same key, so you must
always sign an application using the same release key.

The Android guidelines further suggest that you sign all your application packages using the same
certifi cate, as applications signed with the same certifi cate can be confi gured to run in the same pro-
cess, and signature-based permissions can be used to expose functionality between trusted applica-
tions signed with the same certifi cate.

As described earlier, the security of your keystore is extremely important, so be sure to use a strong
password to secure it.

After creating or selecting your keystore, you’ll be asked to create or select a signing certifi cate. If
you’ve created a new keystore, you’ll need to create a new signing certifi cate, as shown in Figure 19-3.

FIGURE 19-3

c19.indd 773c19.indd 773 4/11/2012 10:36:49 AM4/11/2012 10:36:49 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Meier02275 c19 V3 - 03/21/2012 Page 774

774 x CHAPTER 19 MONETIZING, PROMOTING, AND DISTRIBUTING APPLICATIONS

Applications published on Google Play require a certifi cate with a validity period ending after
October 22, 2033. More generally, your certifi cate will be used through the lifetime of your applica-
tion and is necessary to perform upgrades, so you should ensure your signing certifi cate will outlast
your application.

Having selected a signing certifi cate, the next step is to select an output destination for your pack-
age. The wizard will then compile, sign, and zip-align the package.

Your package is now ready for distribution. Before doing anything else, back up your keystore.

DISTRIBUTING APPLICATIONS

One of the advantages of Android’s open ecosystem is the freedom to publish and distribute your
applications however, and wherever, you choose. The most common and popular distribution
channel is Google Play; however, you are free to distribute your applications using alternative
markets, your own website, social media, or any other distribution channel.

In addition to Google Play, there are several alternatives of varying reach, including OEM and
carrier pre-installs, the Amazon App Store, and carrier-specifi c stores.

When distributing your application, it’s important to note that application package names are used
as unique identifi ers for each application. As a result, each application — including variations that
you plan to distribute separately — must each have a unique package name. Note that the fi lename
of your APK does not have to be unique — it will be discarded during the installation process (only
the package name is used).

Introducing Google Play

The Google Play Store is the largest and most popular Android application distribution point. At
the time of writing this book, it has been reported that there are in excess of 450,000 applications in
Google Play, with more than 10 billion application downloads from users in 130 countries — and with
a growth rate of more than a billion new downloads each month.

The Google Play Store is a marketplace — that is, Google Play acts as a mechanism for you to sell
and distribute your application rather than as a merchant reselling it on your behalf. That means
there are far fewer controls restricting what you distribute and how you choose to promote, mone-
tize, and distribute it. Those restrictions are detailed within the Google Play Developer Distribution
Agreement (DDA) (www.android.com/us/developer-distribution-agreement.html) and the
Google Play Developer Program Policies (DPP) (www.android.com/us/developer-content-
policy.html).

Unlike the Apple App Store and Windows Phone Marketplace, there is no review process for appli-
cations before they are listed in Google Play. This applies both to new application listings and
updates, allowing you to publish and update your applications at whatever time you choose, without
needing to wait for approval.

Applications that are suspected of breaching the DDA or DPP are reviewed, and if found to
have breached those agreements and policies, are suspended and the developer notifi ed. In
extreme cases of malware, the Google Play Store can remotely uninstall malicious applications
from devices.

c19.indd 774c19.indd 774 4/11/2012 10:36:49 AM4/11/2012 10:36:49 AM

http://www.android.com/us/developer-distribution-agreement.html
http://www.android.com/us/developer-content-policy.html
http://www.android.com/us/developer-content-policy.html
http://www.android.com/us/developer-content-policy.html

Meier02275 c19 V3 - 03/21/2012 Page 775

Distributing Applications x 775

A lack of a review and approval process does not imply a carte blanche for applica-
tions distributed in Google Play. Before publishing your applications, it’s important
to carefully review the DDA and DPP to ensure your application is compliant.
Applications that are in breach of these policies will be suspended, and multiple
infringements can result in the suspension or banning of your developer account.

If your application can’t be distributed through Google Play, you can still dis-
tribute it using an alternative distribution platform.

Google Play provides all the tools and mechanisms required to handle application distribution,
updates, sales (domestic and international), and promotion. Once listed, your application will begin
to appear in search results and category lists, as well as potentially within promotional categories
described later in this chapter.

Getting Started with Google Play

To publish on Google Play, create a developer account at https://play.google.com/apps/
publish/signup, as shown in Figure 19-4.

FIGURE 19-4

Your Android Developer Profi le will be associated with whichever Google account (if
any) you are currently signed in to. It’s common that multiple people will need access
to this account, particularly if you’re distributing applications on behalf of a company.

It’s good practice to create a new Google account specifi cally for your Android
Developer Profi le.

c19.indd 775c19.indd 775 4/11/2012 10:36:49 AM4/11/2012 10:36:49 AM

https://play.google.com/apps

Meier02275 c19 V3 - 03/21/2012 Page 776

776 x CHAPTER 19 MONETIZING, PROMOTING, AND DISTRIBUTING APPLICATIONS

You will be asked to provide a “Developer Name” — typically your company name — that will be
used within Google Play to identify the developer of your applications. Note that it is not a require-
ment that the developer name used here represents the company or individual who actually wrote
the code — it simply identifi es the company or individual distributing it.

Completing the registration includes paying a US $25.00 fee and agreeing to the terms of the
Android DDA.

Publishing Applications

After creating your Android Developer Profi le, you are ready to upload your application. Select the
Upload Application button on the Android Developer Console. You’ll be prompted to upload your
signed release package

The package name (not the fi le name) must be unique. Google Play uses appli-
cation package names as unique identifi ers and will not allow you to upload a
duplicate package name.

After the application is uploaded, you’ll be asked to enter your application’s assets and listing
details, as shown in Figures 19-5 and 19-6.

FIGURE 19-5

c19.indd 776c19.indd 776 4/11/2012 10:36:50 AM4/11/2012 10:36:50 AM

Meier02275 c19 V3 - 03/21/2012 Page 777

Distributing Applications x 777

FIGURE 19-6

It’s important that you supply all the assets available — even those that may be listed as optional.
Each asset is used throughout Google Play, including the website, Google Play Store clients, and
promotional campaigns. Not including some assets may prevent your application from being fea-
tured or promoted.

The title, description, and category determine how and where your application will be displayed
within Google Play. It’s important to provide high quality, descriptive titles and application descrip-
tions in this section to make it easier for users to discover your application and make an informed
choice on its suitability.

Do not engage in keyword stuffi ng or other SEO spam in your title or description, as doing so will
likely result in your application being suspended.

It’s also possible to supply the title and description in multiple languages.

The listing page also lets you specify the availability of your application, providing mechanisms to
set its maturity level and the countries in which you want it to be available.

Finally, you can supply application-specifi c contact details for users of your applications, as shown
in Figure 19-7.

These details will be published alongside your application’s listing in Google Play, so the email and
phone number provided should point to a managed support queue rather than to your personal
email address.

When your listing details are complete, click the Publish button. Your application will be live and
available for download almost immediately.

c19.indd 777c19.indd 777 4/11/2012 10:36:51 AM4/11/2012 10:36:51 AM

Meier02275 c19 V3 - 03/21/2012 Page 778

778 x CHAPTER 19 MONETIZING, PROMOTING, AND DISTRIBUTING APPLICATIONS

FIGURE 19-7

Application Reports Within the Developer Console

Once your applications are listed, your publisher page will list each application, along with the
number of users and installs, average rating, and total number of ratings, as shown in Figure 19-8.

FIGURE 19-8

Your publisher page also provides a link to reader comments. Direct feedback from users is invalu-
able, but such feedback can be unreliable and contradictory. It’s good practice to use analytics (as
described later in this chapter) to reconcile user comments with statistical analysis.

The Statistics link provides access to a more detailed breakdown of your application’s installation
statistics, including a graph-based timeline of the application’s active installs.

The statistics page also provides some analytical insight into your users, and how they compare to
the average for all applications in the same category. This includes the percentage of users running
on or in each:

 ‰ Platform release

 ‰ Hardware device

 ‰ Country and language

This information can be extremely useful for deciding where to allocate your resources, which ver-
sions of the Android platform you want to support, and in which areas your application is under-
performing. For example, you might fi nd that despite Japan being a top 3 country for applications in
your category, it doesn’t feature in your top 5. This would suggest that a Japanese translation might
be a worthwhile investment.

Accessing Application Error Reports

The Android Developer Console provides anonymous error reports and stack traces received from
users who experience crashes and freezes while running your application.

When the Android system detects a freeze or crash, users have the option to anonymously upload
the error and the associated stack trace. New errors are shown on your applications listing on your
publisher site list.

c19.indd 778c19.indd 778 4/11/2012 10:36:51 AM4/11/2012 10:36:51 AM

Meier02275 c19 V3 - 03/21/2012 Page 779

An Introduction to Monetizing Your Applications x 779

Clicking the Errors link will show you a summary of the errors received, as shown in Figure 19-9,
indicating the number of new freezes and crashes, along with rate at which new reports are received
each week.

FIGURE 19-9

You can drill down into new or old freezes/crashes to get further details on each error, as shown in
Figure 19-10. Each error is described in terms of the exception at the head of the stack, along with
the class that threw it and the number/frequency of reports that match those criteria.

FIGURE 19-10

Drilling down further into each error will provide access to any user messages submitted along
with the error, the distribution of devices on which the errors occurred, and the full stack trace for
each error.

These error reports are invaluable for debugging your application in the wild. With hundreds of dif-
ferent Android devices being used in dozens of countries and languages, it’s impossible to test every
variation. These error reports make it possible for you to determine which edge cases you’ve missed
and rectify them as quickly as possible.

AN INTRODUCTION TO MONETIZING YOUR APPLICATIONS

As an open ecosystem, Android enables you to monetize your applications using whatever mecha-
nism you choose. If you choose to distribute and monetize your applications using Google Play,
three options typically are available:

 ‰ Paid applications — Charge users an upfront fee before they download and install your
application.

c19.indd 779c19.indd 779 4/11/2012 10:36:51 AM4/11/2012 10:36:51 AM

Meier02275 c19 V3 - 03/21/2012 Page 780

780 x CHAPTER 19 MONETIZING, PROMOTING, AND DISTRIBUTING APPLICATIONS

 ‰ Free applications with In-App Billing (IAB) — Make the download and installation of the
application free, but charge within the application for virtual goods, upgrades, and other
value-adds.

 ‰ Advertising-supported applications — Distribute the application for free, and monetize it by
displaying advertising.

Although paid applications and advertising-supported applications are the traditional mechanisms for
monetizing mobile applications, IAB has emerged as an extremely effective alternative. In March 2012,
19 of the top 20 Google Play applications in terms of revenue were free downloads with IAB.

If you choose to charge for your applications on Google Play, either through upfront charges or IAB,
the revenue is split between you and Google Play in the form of a transaction fee. At the time of
writing this book, that revenue split is set at 70 percent for the developer.

In order to use either approach, you must fi rst create a Google Checkout Merchant Account — you
can do this from your Android publisher account. Your application listings will then include the
option to set a price for the application and the items sold using IAB (described in Chapter 18).

In each case you are the application distributor and merchant of record, so you are responsible for
any legal or taxation obligations associated with the sale of your application, subject to the terms
described in the DDA.

You can also monetize your application using in-app advertising. The specifi c process required to set
up advertising within your application will vary depending on the ads provider you choose.

It’s beyond the scope of this book to describe the setup process for any particular advertising API;
however, the general process could be described as follows:

1. Create a publisher account.

2. Download and install the associated ads SDK.

3. Update your Fragment or Activity layouts to include an add banner.

It’s important to ensure that any ads included within your application are as unobtrusive as possible
and don’t detract signifi cantly from the user experience of your application. It’s also important to
ensure that your user interaction model doesn’t encourage accidental clicks on the ad banner.

In many cases, developers have chosen to offer a paid alternative (either using up-front payment
or IAB) to allow users to eliminate ad banners from their applications.

APPLICATION MARKETING, PROMOTION, AND DISTRIBUTION

STRATEGIES

The fi rst step in effectively marketing and promoting your application is ensuring that you provide
the full set of high quality assets for your Google Play listing.

Several promotional opportunities are available within Google Play (described in the next section).
However, with more than 450,000 other applications available, it’s important that you consider
alternative avenues for marketing and promotion rather than simply launching your application.

c19.indd 780c19.indd 780 4/11/2012 10:36:52 AM4/11/2012 10:36:52 AM

Meier02275 c19 V3 - 03/21/2012 Page 781

Application Marketing, Promotion, and Distribution Strategies x 781

While your marketing and promotion strategies will vary widely depending on your goals and
budget, the following list details some of the most effective techniques to consider:

 ‰ Offl ine cross promotion — If you have a signifi cant offl ine presence (such as a stores or
branches), or a large media presence (such as within newspapers, magazines, or on TV),
cross promoting your application through those channels can be a particularly effective way
to increase awareness and help to ensure users trust the download. Traditional advertising
techniques such as TV and newspaper advertisements can be extremely effective in raising
awareness of your application.

 ‰ Online cross promotion — If you have a signifi cant web presence, promoting your appli-
cation through direct links to Google Play can be an effective way to drive downloads. If
your application provides a better user experience than your mobile website, you can detect
browser visitors from Android devices and direct them to Google Play to download your
native app.

 ‰ Third-party promotion — Distributing a promotional video on YouTube and leveraging
social networks, blogs, press releases, and online review sites can help provide positive word
of mouth.

 ‰ Online advertising — Online advertising using in-app ad networks (such as AdMob) or tra-
ditional search-based advertising (such as Google AdWords) can drive signifi cant impressions
and downloads for your application.

Application Launch Strategies

Ratings and reviews can have a signifi cant impact on your application’s ranking in category lists and
within Google Play search results. As a result, it can be diffi cult to recover from a poor launch. The
following list describes some of the strategies you can use to ensure a successful launch:

 ‰ Iterate on features not quality — A poorly implemented but feature-rich application will
receive worse reviews than a well-polished application that doesn’t do everything. If you are
using an agile approach of releasing early and often, ensure each release is of the same high
quality, adding new features as part of each release. Similarly, each release should be more
polished and stable than the last.

 ‰ Create high quality Google Play assets — The fi rst impression your application makes
is through its appearance in Google Play. Maximize the likelihood of that impres-
sion resulting in an installation by creating assets that represent the quality of your
application.

 ‰ Be honest and descriptive — Disappointed users who fi nd your application is not as it was
described are likely to uninstall it, rate it poorly, and leave negative comments.

Promotion Within Google Play

In addition to the effect of reviews, downloads, and installs will have on your Google Play listing,
there are several automated and curated lists that are used by the Google Play editorial team to
highlight high quality applications.

c19.indd 781c19.indd 781 4/11/2012 10:36:52 AM4/11/2012 10:36:52 AM

Meier02275 c19 V3 - 03/21/2012 Page 782

782 x CHAPTER 19 MONETIZING, PROMOTING, AND DISTRIBUTING APPLICATIONS

Additionally, a small number of applications are chosen as “featured” applications, receiving prior-
ity placement in Google Play. Featured applications typically receive a signifi cant boost in download
numbers, making featuring highly prized goal.

While the criteria used to determine which applications become featured is not publicly avail-
able, there are certain criteria that have generally become associated with featured applications,
including:

 ‰ High quality and innovative — The featured applications in Google Play act as a showcase
for the platform. As a result, the easiest way to be featured is by creating a high quality
application that is useful and innovative.

 ‰ A high degree of fi t-and-fi nish — The listings for featured applications include all the
requisite promotional assets, while the applications themselves have few bugs and a high
quality user interface.

 ‰ Broad device and platform support — Featured applications typically support a broad range
of device types and platform versions, including both handsets and tablets.

 ‰ Use of newly released features — Applications that leverage hardware features and software
APIs from new Android platform releases offer an opportunity for the Google Play team to
highlight those new features to reviewers and early adopters.

 ‰ Consistency with the platform user experience — Featured applications provide a compelling
user experience that is consistent with the UI and interaction models offered by the Android
platform.

Internationalization

At the time of writing, Google Play was available in more than 190 countries. While the exact
breakdown varies by application category, in most cases more than 50 percent of application instal-
lations are downloaded from countries outside the United States on devices whose language is set to
non-English.

Japan and South Korea represent the two largest consumers of applications outside the United
States, while on a per capita basis South Korea, Taiwan, and Hong Kong represent the most vora-
cious consumers of Android applications.

Externalizing all your application’s string (and where appropriate, image) resources, as described
in Chapter 2, makes it easy to localize your applications by providing alternative translated
resources.

In addition to the application itself, Google Play provides support for adding local language titles
and descriptions for your applications, as shown in Figure 19-11.

While non-native speakers may be able to use your applications, there is a very good chance that
they’ll search and browse Google Play using their native language. To maximize the discoverabil-
ity of your application, it’s good practice to invest in creating translations for at least the title and
description of your application.

c19.indd 782c19.indd 782 4/11/2012 10:36:52 AM4/11/2012 10:36:52 AM

Meier02275 c19 V3 - 03/21/2012 Page 783

Analytics and Referral Tracking x 783

FIGURE 19-11

The process of providing fully localized translations for your application can be
expensive and time-consuming, so it’s often useful to use the Android Developer
Console statistics to prioritize the languages to localize for.

Anecdotally, it has been found by many developers that bad translations are con-
sidered worse than no translation.

ANALYTICS AND REFERRAL TRACKING

Mobile application analytics packages, such as Google Analytics and Flurry, can be effective tools for
you to better understand who is using your application and how they are using it. Understanding this
information can help you make objective decisions on where to focus your development resources.

While the statistics provided by the Android Developer Console (described earlier in this chapter)
offer valuable insight into your users’ language, country, and handsets, using detailed analytics can
provide a much richer source of information, from which you can discover bugs, prioritize your fea-
ture list, and decide where best to allocate your development resources.

Broadly speaking, you can track three types of data within your application:

 ‰ User analytics — Understand the geographic locations (and language settings) of your users,
as well as the speed of their Internet connections, their screen sizes and resolutions, and the
orientation of their displays. Use this information to prioritize your translation efforts and
optimize your layout and assets for different screen sizes and resolutions.

 ‰ Application usage patterns — The fi rst step in integrating analytics is to record each Activity
as you would a web site. This will help you understand the way your application is being
used, and will help you to optimize your workfl ows in the same way you would a web site.

c19.indd 783c19.indd 783 4/11/2012 10:36:52 AM4/11/2012 10:36:52 AM

Meier02275 c19 V3 - 03/21/2012 Page 784

784 x CHAPTER 19 MONETIZING, PROMOTING, AND DISTRIBUTING APPLICATIONS

Taken one step further, you can record any action — which options were changed, which
menu items or Action Bar actions were selected, which popup menus were displayed, if a
Widget was added, and which buttons were pressed. Using this information, you can deter-
mine exactly how your application is being used, allowing you to better understand how
well the assumptions you made during design match actual usage.

When building games, you can use the same process to gain insight into players’
progress though the game. You can track how far people progress before quitting, iden-
tify levels that are more diffi cult (or easier) than you expected, and then modify your
game accordingly.

 ‰ Exception tracking — In addition to printing an error into the log output, post each
unique exception thrown using your analytics. Not only does this alert you to which
exceptions are being thrown, you will also gain insight into their context. Specifi cally,
you’ll be able to see if there are particular devices, locations, or usage patterns that lead to
particular exceptions.

While it’s important to track as much analytic information as possible, care must be taken when
transmitting that data back to the analytics server. Every time a new data connection is created, the
wireless radio may be activated — and it will continue to draw power for up to 20 seconds on a typi-
cal 3G wireless radio. As a result it’s important to bundle the analytics information you collect and
queue it for transfer the next time your application transfers data, rather than transmitting it as it’s
collected.

Using Google Analytics for Mobile Applications

Google provides an SDK for using Google Analytics on mobile devices. You can download the
Google Analytics for Mobile Apps SDK from http://code.google.com/apis/analytics/docs/
mobile/download.html#Google_Analytics_SDK_for_Android.

There are no restrictions on which analytics packages you can use within your
Android applications. Although this section describes the process for confi guring
and using Google Analytics specifi cally, the same general process is applicable
for most alternatives.

After downloading the SDK, you need to copy the libGoogleAnalytics.jar into your applica-
tion’s /lib folder and add it to the project’s build path.

The Google Analytics library requires access to the Internet and the network state, so add the
INTERNET and ACCESS_NETWORK_STATE permissions to your manifest:

<uses-permission android:name=”android.permission.INTERNET” />
<uses-permission android:name=”android.permission.ACCESS_NETWORK_STATE” />

c19.indd 784c19.indd 784 4/11/2012 10:36:52 AM4/11/2012 10:36:52 AM

http://code.google.com/apis/analytics/docs

Meier02275 c19 V3 - 03/21/2012 Page 785

Analytics and Referral Tracking x 785

The use of Google Analytics is governed by its Terms of Service, available at
www.google.com/analytics/tos.html. Also note that you must indicate to
your users — either within the application or in your Terms of Service — that
you reserve the right to anonymously track and report their activity within your
application.

Each application uses a web property ID (a UA number) for tracking within Google Analytics. It’s
generally good practice to use the Google account used to maintain your Google Play listing to con-
trol the related Google Analytics account.

To create a new UA number for your application, create a new web property at google.com/analytics,
using a dummy web site URL that represents your application. It’s good practice to use your reversed
package name (for example, http://earthquake.paad.com). Once you’ve created the new property,
note the UA number.

The use of Google Analytics within your application is handled by the GoogleAnalyticsTracker
class. You can get an instance of this service using its getInstance method:

GoogleAnalyticsTracker tracker = GoogleAnalyticsTracker.getInstance();

To begin tracking, use the start method, passing in the UA number in the form
UA-MY_CODE-[UA Code] (without the brackets) and the current context:

tracker.start(“UA-MY_CODE-XX”, this);

For every action you want to track, use the trackPageView method, passing in a descriptive text
string alias to represent it:

tracker.trackPageView(“/list_activity”);

Note that the page names you’re tracking are totally arbitrary, letting you create a new page for
every action you want to track.

Each update is recorded in a private SQLite database, so to minimize the battery impact of activat-
ing the wireless radio to transmit analytics data, it’s best practice to batch the updates and dispatch
them the next time your application accesses the Internet. To send your updates to the Google
Analytics server, use the dispatch method:

tracker.dispatch();

Google Analytics also supports tracking events and ecommerce transactions. Further details on
their use are available at http://code.google.com/apis/analytics/docs/mobile/android
.html#trackingModes.

c19.indd 785c19.indd 785 4/11/2012 10:36:53 AM4/11/2012 10:36:53 AM

http://www.google.com/analytics/tos.html
http://earthquake.paad.com
http://code.google.com/apis/analytics/docs/mobile/android

Meier02275 c19 V3 - 03/21/2012 Page 786

786 x CHAPTER 19 MONETIZING, PROMOTING, AND DISTRIBUTING APPLICATIONS

Referral Tracking with Google Analytics

It’s possible to use Google Analytics for Android to track application installation referrals using the
referrer URL parameter in links to Google Play. You can track the source of each installation and
associate future actions with it. This is particularly useful for evaluating the effectiveness of a par-
ticular marketing technique.

To add referral tracking to your applications, create a new receiver tag in your manifest:

<receiver
 android:name=”com.google.android.apps.analytics.AnalyticsReceiver”
 android:exported=”true”>
 <intent-filter>
 <action android:name=”com.android.vending.INSTALL_REFERRER” />
 </intent-filter>
</receiver>

You can generate a referral link for Google Analytics campaign tracking at http://code.google
.com/apis/analytics/docs/mobile/android.html#android-market-tracking.

c19.indd 786c19.indd 786 4/11/2012 10:36:53 AM4/11/2012 10:36:53 AM

http://code.google

787

INDEX

Numbers

3D views, Surface Views, 470
3G network, 6, 202
4G network, 6, 202

A

AAPT (Android Asset Packaging Tool), 48
AccelerateDecelerateInterpolator,

448
accelerometers, 491

change detection, 492–493
linear acceleration, 491
x-axis acceleration, 492
y-axis acceleration, 492
z-axis acceleration, 492

accessibility
events, broadcasting, 148–149
navigation, non-touch screen, 436
textual description, 436
Views, 148–149

AccessibilityEvents, 148
accuracy in Location Providers, 517–518
Action Bar

actions, 370
specifying, 380–381

Activities and, 360
background, customizing, 363–364
disabling, 361
Earthquake Monitor, 370–376
enabling, 360–361
icon, 362–363
menu bar and, 377

navigation and, 364–370
drop-down lists, 368–370
icon navigation, 365–366
tabs, 366–368
views, 370

split mode, 364
title text, 362–363

Action Providers, menu system, 383
action tag, 184
ActionProvider class, 383
active lifetime of an Activity, 93–94
active processes, 82
Activities, 54

Action Bar and, 360
actions, anonymous, 193
App Widget confi guration Activities,

580–582
contact data, 187–193
creating, skeleton code, 86
Dialogs and, 400–401
displaying, 166
Earthquake Monitor, settings,

223–231
ForceMeter, 494
Fragments and, 114

adding, 120–125
attaching/detaching, 119
references, 126

instance state, lifecycle handlers and,
242–243

Intents, resolving, 168–169
launch Intent, 186–187
launching

Intents and, 166–174
native applications, 172–174

bindex.indd 787bindex.indd 787 4/11/2012 10:02:56 AM4/11/2012 10:02:56 AM

788

Activity class – analytics

lifecycle
Activity stacks, 88
state changes, 89–91
state event handlers, 90–91
states, 88–89

lifetimes
active, 92–93
full lifetime, 92
visible lifetime, 92

Live Folder Activity, 608–610
map-based, 536–537

creating, 538–540
Map Activity, 536
Map View, 536
Where Am I and, 542–546

passing responsibility, 187
Preference Activities, 231, 232

Earthquake Monitor, 238–242
PreferencesActivity, 226
registering as Intent handler, 184–185
request codes, 169
results, returning, 169–172
searches, 292–293

default provider, 293–296
SearchView widget, 297

Services, binding, 336–338
startActivity method, 166–167
starting explicitly, 167
states, Shared Preferences and, 242
sub-Activities

launching, 169–170
results, 171–172

UI assignment, 87, 97–988
UI design, 96
WeatherStation, 508–511
WhereAmI, 520

Activity class, 54
creating, 86
ExpandableListActivity subclass, 93
ListActivity subclass, 93
MapActivity subclass, 93

Activity Intents, 172–174
Activity Manager, 17
activity tag, 61–62

adapters
Array Adapter, customzing, 156–158
native

ArrayAdapters, 156
SimpleCursorAdapter, 156

SimpleCursorAdapter, 162–163
Views, binding data to, 158–163

ADB (Android Debug Bridge), 48, 51
ADT (Android Developer Tools), 23

Android Project Wizard, 24
Android Virtual Device manager, 24
automation, 24
DDMS (Dalvik Debug Monitoring

Service), 24
debugging, 24
emulator, 24
forms-based editors, 24
installation, 24–26
updates, 27

ADT Wizard, 65
advertising-supported applications, 780
AIDL (Android Interface Defi nition

Language), 338
binding, 764–765
classes, parcelable, 759–762
data types supported, 759
IPC (inter-process communication),

759
service defi nition, 762

exposing, 764
implementing, 762–764

Alarms, 351–352
creating, 352–353
repeating, 353–354

network refreshes, 354–357
Widget refreshing, 579–580

Alert Dialogs, confi guring,
396–397

AlertDialog class, 396
Alpha animations, 71
AlphaAnimation, 443
altitude calculation, 507
Amazon Web Services, 217
analytics, 783–785. See also Google Analytics

bindex.indd 788bindex.indd 788 4/11/2012 10:02:57 AM4/11/2012 10:02:57 AM

789

Android – applications

Android
adoption drivers, 12
as mobile handset, 3
components, 4
dependent parts, 4–5
development

barriers to entry, 11
reasons for, 11–13

features unique to platform,
12–13

OHA (Open Handset Alliance), 4
open-source software stack, 4
original handset, 10–11
Rubin, Andy, on, 4

Android Beam, 13
message creation, 697–699
message receipt, 699–670
payload, assigning, 699

Android Developer Console
error reports, 778–779
statistics, 778
uploading applications, 776–777

Android Developer website, 426
Android Developers Widget Design

Guidelines, 567
Android New Project Wizard,

28–30
Android SDK. See SDK (software

development kit)
Android Training website, 434
AndroidManifest.xml, 55–56
Animation class, 443
AnimationDrawable class, 446
AnimationListener, 444
AnimationResources, 75
animations

Alpha, 71
AlphaAnimation, 443
attributes, 71
folder, 65
Fragment transactions, 125
Frame animations, 442
frame-by-frame, 72–73,

445–446

Interpolated Property animation,
442

Layout Animations, 444–445
layouts, 444–445
listeners, 449
property animations, 70–71,

446–449
Rotate, 71
RotateAnimation, 443
Scale, 71
ScaleAnimation, 443
Translate, 71
TranslateAnimation, 443
Tweened View animation, 442
view animations, 71–72
View Groups, 444–445

anti-aliasing, 456–457
anonymous actions, 193

as menu items, 195–196
AOSP (Android Open Source

Project), 5
maps package, 538

APIs (application programming interfaces), 6
Bluetooth communications, 673
Google, 22–23
Maps API key, 537–538
SDK inclusion, 14

App Widget confi guration Activity,
580–582

App Widgets, 566–569
Application class

extending, 83–84
overriding lifecycle events, 84–85
skeleton, 84
using, 83

application layers, 3, 16
application tag, 61
application-specifi c folders, 246–247
applications

Activities, 54
advertising-supported, 780
anonymous actions, 193

as menu items, 195–196
background, 37

bindex.indd 789bindex.indd 789 4/11/2012 10:02:57 AM4/11/2012 10:02:57 AM

790

AppWidgets – background

backward compatibility, 765
building, 766–769

Broadcast Receivers, 55
components, 54–55

reuse, 6
Content Providers, 54
data, saving, 222
debugging, 33
distribution

Google Play Store, 774–776
strategies, 780–783

equality among, 13
error repots, 778–779
examples, to-do list, 107–114
feedback, 778
fi les

cache, 248
private, 247–248

foreground, 36–37
free, In-App Billing and, 780
full screen, 392–394
Google, 5
Intents, 54
intermittent, 37
internationalization, 782–783
launch strategies, 781
lifecycle, 81
marketing, 780–781
monetizing, 779–780
native, 5–6

Intents, 172–174
Notifi cations, 55
paid, 779
pre-installed, 4
priority, 82
processes, 82
promotion, 780–781
publishing, 776–778
running, 33
Services, 54
signing

Export Android Application wizard,
772–774

upgrades, 773

statistics, 778
storage, external versus internal, 55–56
UI state, saved, 222
upgrades, 773
usage patterns, 783–784
Widgets, 55

AppWidgets, 566
Array Adapter, customizing, 156–158
ArrayAdapter, 156

To-Do List application, 158–162
arrow keys, 436
asynchronous tasks, 345–349
AsyncTask, 345–347
audio, 58

effects, 645
focus, 635–637
formats supported, 622
playback initialization, 624–625
raw, 640–643

Audio Manager
audio focus, 635–637
registeredMediaButtonEventReceiver

method, 634
Audio Record, recording with, 640–641
Audio Track, 640

effects, 645
playing audio, 642–643

authorities tag, 262
AVD (Android Virtual Device), 20, 47,

48–49
AVD Manager, 14
creating, 30
emulators, skins, 435
manager, 24
resolution, custom, 435
screen size, custom, 435

azimuth, device orientation and, 498

B

back stack, Fragment Manager, 124–125
background

Action Bar, 363–364
applications, 37

bindex.indd 790bindex.indd 790 4/11/2012 10:02:57 AM4/11/2012 10:02:57 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

791

backward compatibility – camera

data transfers
getBackgroundDataSetting, 680
user preferences support,

679–681
processes, 83
services, 6, 7, 12
threads, 345–351

backward compatibility, 765
building applications with, 766–769
Preference Screens and, 237

barometer sensor, 506–507
battery

Bluetooth and, 667
changes, listening for, 197–198
downloads and, 219–220
Location Providers and, 527
Wake Locks, 757

beginTransaction method, 122
binding data

runtime, implicit Intents, 167–168
to Views, adapters and, 158–163

Bluetooth, 7, 58
battery life and, 667
communications, APIs, 673
description, 666
device discoverability, 669–671

isDiscovering method, 671–672
remote devices, 671–673

enabling, 668
RFCOMM, 673–674

Bluetooth Adapter
discoverability and, 669–671
getState method, 667
management, 666–669

Bluetooth Server Socket, listener,
674–675

Bluetooth Socket
client connection, 676–677
data transmission, 677–678

BluetoothAdapter class, 666
BluetoothServerSocket class,

673–674
BluetoothSocket class, 673–674
Broadcast Receivers. See Receivers
Browser, 316

bundles, battery and, 220
Button control, 132

C

C/C++, 2
C2DM (Cloud to Device Messaging),

9–10
messages

receiving, 749–750
sending to devices, 748–749

overview, 743
registration, 744

device registration, 744–747
restrictions, 743–744

Calendar, 316
entries

displaying events, 328
editing events, 327–328
modifying directly, 329
new events, 327

queries, 325–326
Call Log, 316
callbacks, Cursor Loaders, 278–279
camera, 58

auto focus, 650–651
distance to focused objects,

648–649
EXIF (Exchangeable Image File Format),

655–656
face detection, 653–654
facial features, 653–654
focus area, 650–651
hardware, 59
images

format, 650
parameters, 649–650
size, 650

JPEG quality, 650
metering area, 650–651
picture taking, Intents, 646–647
preview, 651–653
preview frame rate, 650
properties, 648–649
settings, 649–650

bindex.indd 791bindex.indd 791 4/11/2012 10:02:57 AM4/11/2012 10:02:57 AM

792

Camera Parameters – code

taking pictures, 654–655
thumbnail quality, 650

Camera Parameters, 648–649
Canvas

advanced drawing, 450–466
best practices for drawing, 457–458
color, translucency, 452
Overlays, 547–548
Paint class, 451–456
painter’s algorithm, 143
Shaders, 452–453

Color Filters, 455
gradient shaders, 453–454
Mask Filters, 454–455
Paint, 454
Path Effects, 455–456
tile modes, 454
Transfer Mode, 456

Canvas class, 143–144
capacity limits, design and, 38–39
category tag, 184
CDD (Compatibility Defi nition Document), 4
CDMA networks, cell location changes, 710
cell location changes, 710
CharacterPickerDialog, 397
check boxes, 381
CheckBox control, 132
CheckBoxPreference control, 234
Chronometer control, 132
classes

ActionProvider, 383
Activity, 54, 86
AlertDialog, 396
Animation, 443
AnimationDrawable, 446
Application, 83
AsyncTask, 345–347
BluetoothAdapter, 666
BluetoothServerSocket, 673–674
BluetoothSocket, 673–674
Canvas, 143–144
ClipData, 479–480
CompassView, 150–155
ContentValues, 253–354
Criteria, 517–518

Cursor, 253–354
Dialog, 395–396
Drawables, 143–144
EarthquakeWidget, 583
Environment, 247
ExifInterface, 655–656
Fragment, 115–116
Geocoder, 532
IntentFilter, 179–180
layout classes, 98
LocationManager, 517–518
MarketBillingService,

755–756
ObjectAnimator, 447–449
Paint, 143–144,

451–456
PendingIntent, 182–183, 531
PreferenceActivity,

236–237
PreferenceFragment, 235
RecognizerIntent, 439
Resources, 74–75
Sensor, 482
Service, 331
Shader, 452–453
SharedPreferences,

222–223
SQLiteOpenHelper, 255–257
SurfaceView, 141, 467–470
Toast, 401–405
ToDoContentProvider, 283
ToDoListItemView, 136–138
UriMatcher, 263–264
ViewGroup, 97

click listener, in menus, 382
client Sockets, creating, 692–693
Clip Data object, 480
Clipboard Manager

ClipData class, 479–480
pasting data, 480

ClipData class, 479–480
cloud computing, 217.

See also C2DM
coarse permissions, 514
code, resources in, 74–75

bindex.indd 792bindex.indd 792 4/11/2012 10:02:57 AM4/11/2012 10:02:57 AM

793

Collection View Widgets – Content Providers

Collection View Widgets, 587–589
binding to Content Providers,

596–598
Earthquake Widget, 598–605
interactivity among items, 595–596
layouts, creating, 589–590
Live Folders and, 605
populating, Remote Views Service,

594–595
refreshing, 598
Remote Views Factory, 591–593
Remote Views Service, 591

color, 67
folder, 65
Paint class, 452
translucency, 452

Color Drawables, 431
Color Filters, Shaders, 455
color tag, 67
communication, inter-process, 13
Compass View, 149–155

device orientation and, 502–505
onDraw method, 458–466

CompassView class, 150–155
compatibleWidthLimitDp tag, 60
composite Drawables, transformative

Drawables
Layer Drawables, 477–478
Level List Drawables, 478
State List Drawables, 478

compound controls, 138–141
condensed titles in menus, 381
connection reuse, 220
ConnectionInfoListener, 691
connectivity. See also Connectivity Manager;

Wi-Fi Manager
changes, listening for, 198–199
Mobile Internet, 202
Wi-Fi, 202

Connectivity Manager
accessing, 679
determining connectivity, 681–682
monitoring connectivity, 682
Wi-Fi connectivity and, 683

ConnectivityManager, 679

constants, SQLite databases, public, 254
Contacts Contract, 316, 318–319

details, 319–323
direct editing, 324–325

Intents and, 323–324
contacts, ContactPicker Activity,

187–192
container views, Fragment layouts, 121
Content Providers, 8, 17, 54

adding content, 280
Browser, 316
Calendar, 316

entries, 327–328
modifying entries directly, 329
queries, 325–326

Call Log, 316
Collection View Widgets, binding,

596–598
Contacts Contract, 316, 318–325
database, creating, 264
deleting content, 281
Earthquake Monitor, 301–316
fi les

access, 282–283
storage, 268–270

implementation, skeleton, 270–273
Live Folders and, 606–607
Media Store, 316, 317–318
overview, 252
provider tag, 62
queries

Content Resolver, 274–277
Cursor Loader, 277–280
implementing, 264–266

registering, 262
searches

metadata, 291–292
Quick Search Box, 291
Search bar, 291
Search View, 291
suggestions, 298–301

To-Do List application, 283–290
transactions, 266–268
updating content, 281–282
URI address, publishing, 263–264

bindex.indd 793bindex.indd 793 4/11/2012 10:02:57 AM4/11/2012 10:02:57 AM

794

Content Resolver – DDMS

Content Resolver, 274
adding content, 280
Content Providers, queries, 274–277
deleting content, 281
updating content, 281–282

Content Values, 253–354
ContentValues class, 253–354
Context Menus, 387

creating, 388–389
selections, 389
Views, 388–389

controllers, directional, 436
controls, 97

Button, 132
CheckBox, 132
CheckBoxPreference, 234
Chronometer, 132
compound, 138–141

layouts and, 141
custom, 155
EditTextPreferences, 234
EditView, 132
ImageButton, 132
interactive, 470–476
ListPreferences, 234
ListView, 132
MultiSelectListPreferences, 234
onDraw method, 143–144
preferences, 234
QuickContactBadge, 132
RadioButton, 132
RingtonePreferences, 234
sizing, 144–146
Spinner, 132
TextView, 132
ToggleButton, 132
touch screen, 471
VideoView, 132
ViewFlipper, 132
ViewPager, 133

copy protection, License Verifi cation Library
and, 750–753

core libraries, 15
costs, development and, 41–42
Criteria class, 517–518

current location, privacy, 519
Cursor

columns, 259
values, extracting, 259–260

Cursor class, 253–354
Cursor Loader

callbacks, 278–279
Content Providers, queries, 277–280
initializing, 280
restarting, 280

custom controls, 155

D

D-pads, 436
Dalvik Debug Monitoring Service, 48, 50
Dalvik VM, 4, 16–17

bytecode, 19
Linux kernel and, 14
run time, 15

data
shared, 13
shared stores, 6, 8–9

data stream, opening, 203
data tag, 184
data transfer, 7

background
getBackgroundDataSetting, 680
user preferences support,

679–681
peers, 692–693
Wi-Fi Direct, framework initialization,

686–688
databases. See also Content Providers

Content Values, 253–354
opening

openOrCreateDatabase method,
257

SQLite Open Helper, 256
SQLite, 252, 253
To-Do List application, 283–290

DatePickerDialog, 397
DDMS (Dalvik Debug Monitoring Service),

20, 48, 50

bindex.indd 794bindex.indd 794 4/11/2012 10:02:57 AM4/11/2012 10:02:57 AM

795

debugging – downloads

debugging, 33
ADT and, 24
Dalvik Debug Monitoring Service, 48, 50
Debug Confi gurations, 110
Default Debug Keystore, 537
MD5 fi ngerprint, 537–538

Default Debug Keystore, 537
delete method, 261–262
density-independent pixels, 68, 426–427
deprecated orientation sensor, 501–502
design

Android Developers Widget Design
Guidelines, 567

challenges, 20
Android specifi cs, 43–47
costs, 41–42
hardware-imposed, 38–42
speed, 40–41
user environment, 42–43

databases, SQLite, 257
UI, 96–97
Widgets, 567–568

development
Android

barriers to entry, 11
reasons for, 11–13
specifi cs, 43–47

design challenges, 20
hardware-imposed, 38–42

platform, 4
reasons for, 11
user environment, 42–43

device
GForceMeter project, 494–497
movement, 489
orientation, 489

azimuth, 498
Compass View and, 502–505
deprecated orientation sensor, 501–

502
detecting, 492–493
gyroscope, 505–506
magnetometer, 498–500
natural, 490–491
pitch, 497–498

roll, 498
standard reference frame,

497–498
remapping, 500–501

state changes, 197–199
dialer application, replacing, 703–704
Dialog class, 395–396
Dialogs, 394–395

Activity event handlers, 400–401
Alert Dialogs, confi guring, 396–397
AlertDialog class, 396
CharacterPickerDialog, 397
creating, 395–396
DatePickerDialog, 397
Dialog Fragments, 398–400
Earthquake Monitor, 418–423
input, 397–398
ProgressDialog, 397
TimePickerDialog, 397

dimen tag, 67–68
dimensions, 67–68
directional controllers, 436
distribution, Google Play Store, 21,

774–776
dmtracedump, 48
Dock mode, 78
docking changes, 199
documentation, SDK, 14
Download Manager, 210–211

cancelling downloads, 214
completed downloads, 215
downloading fi les, 211–212
locations, 213–214
Notifi cations, 212–213
paused downloads, 216–217
querying, 215–217
removing downloads, 214

downloads
bettery drain and, 219–220
cancelling, 214
completed, 215
fi les, 211–212
location, 213–214
Notifi cations, 212–213
paused, 216–217

bindex.indd 795bindex.indd 795 4/11/2012 10:02:57 AM4/11/2012 10:02:57 AM

796

Draw9patch – ExpandableListActivity class

removing, 214
repeated, 220

Draw9patch, 48
Drawable resources, 427

Color Drawables, 431
composite Drawables

Layer Drawables, 477–478
Level List Drawables, 479
State List Drawables, 478
transformative Drawables,

476–477
Gradient Drawables, 432–434
NinePatch images, 434
Shape Drawables, 431–432

drawables, 68–69
Drawables class, 143–144
Drawables folder, 65
drawing

best practices, 457–458
Canvas, advanced, 450–466

drop-down lists, navigation with Action Bar,
368–370

Dx, 48
dynamic layouts, populating, 123–124

E

Earthquake Monitor, 205–210
Action Bar, 370–376
Activities, settings, 223–231
AIDL interface defi nition, 762
Dialogs, 418–423
Earthquake Update Service, 357–358

repeating alarms, 355–357
Live Folder, 610–613
maps, 558–563
Menu Items, 390–392
Notifi cations, 418–423
Preference Activities, 238–242
search results in QSB, 615
searchable earthquake Content Provider,

301–316
Services, 338–343

Earthquake Widget, 582–587
Collection View Widgets, 598–605

EarthquakeListFragment, 205
EarthquakeUpdateService, 339
EarthquakeWidget class, 583
Eclipse, 19

ADT plug-in, 23
Eclipse Java Development Tools, 23
Indigo, 23
WST (Web Standard Tools), 23

EDGE network, 6, 202
EditTextPreference control, 234
EditView control, 132
effects, media, EffectFactory, 661
effi ciency in development, 38–39
embedded devices, developing for, 38–47
Emergency Responder SMS example,

720–729
automating, 729–737

empty processes, 83
Emulator, 24, 47, 50

AVDs, skins, 435
LBSs, testing, 516
Location Providers

GPS, 516
updating locations, 515–516

SMS messages, 719
Environment class, 247
environmental sensors, barometer,

506–507
error reports, 778–779
events

accessibility, broadcasting, 148–149
broadcasting, Intents and, 177–181
Motion Event, 471–472
onActivityCreated, 127
onAttach, 127
onCreateView, 127
onDetach, 127

evolution of mobile phone, 2–3
EXIF (Exchangeable Image File Format),

655–656
ExifInterface class, 655–656
ExpandableListActivity class, 93

bindex.indd 796bindex.indd 796 4/11/2012 10:02:57 AM4/11/2012 10:02:57 AM

797

Export Android Application wizard – Frame animation

Export Android Application wizard,
772–774

external storage, 55–56, 246

F

fi le resources, static fi les as, 245
fi le-management tools, 246
fi les

application
cache, 248
private, 247–248

Content Providers and, 268–270, 282–
283

databases and, SQLite, 257
downloading, 211–212
folders, application-specifi c, 246–247
public, 248–249
static, as resources, 245

fi lters
Intent fi lters

implicit Intents and, 183–193
intent resolution, 185–186
plug-ins, 193–196

Match Filter, 176
Transform Filter, 176

findFragmentById method, 122–123
fi ne permissions, 514
fl ashing light Notifi cation, 409
folders. See also Live Folders

application-specifi c, 246–247
res, 77
resources, 65

fonts, size, 80
ForceMeter Activity, 494
foreground

applications, 36–37
dispatch system, 695–696
Services, 343–345

forward geocoding, 532, 534–535
Fragment class, 115–116
Fragment Manager, 17

Activities, adding to Fragments, 120–125

adding Fragments, 122
back stack and, 124–125
Dialog Fragment, 399
findFragmentById method,

122–123
Fragment Transactions, 121–122
getFragmentManager method, 120
layouts, dynamic, populating,

123–124
removing Fragments, 122
replacing Fragments, 122
transactions, animating, 125

Fragments, 96. See also Fragment Manager
Activities and, 114

attaching/detaching, 119
references, 126

creating, 115–116, 119
destroying, 119
Dialog Fragments, 398–400
DialogFragment subclass, 128
event callback interfaces, 126
event handlers, 116–118
hiding, 124
instance state, lifecycle handlers and,

243–245
layouts, container views and, 121
lifecycle, 116–118

events, 119
ListFragment subclass, 128
Map Views, 540–541
Menu Items, 383–384
navigation and, 366
NewItemFragment, 128–129
Preference Fragments, 232
skeleton code, 115
states, 119–120
to-do list application, 128–132
UIs

creating, 119
design, 96
destroying, 119
lack of, 126–128

WebViewFragment subclass, 128
Frame animation, 442

bindex.indd 797bindex.indd 797 4/11/2012 10:02:57 AM4/11/2012 10:02:57 AM

798

frame-by-frame animation – GridLayout class

frame-by-frame animation, 72–73,
445–446

FrameLayout class, 98
framework, 14, 15, 16
free applications, In-App Billing and, 780
full lifetime of an Activity, 92
full screen applications, 392–394

G

Geocoder, 532
forward geocoding, 532, 534–535
Geocoder class, 532
reverse geocoding, 532, 533–534
Where Am I, 535–536

getActivity method, 126
getAntibanding camera parameter, 650
getAutoWhiteBalanceLook camera

parameter, 649
getBackgroundDataSetting method, 679–

680
getBestProvider method, 518
getCacheDir method, 248
getColorEffect camera parameter, 649
getColumnIndexOrThrow function, 254
getColumnIndexOrThrow method, 259
getColumnName function, 254
getColumnNames function, 254
getCount function, 254
getDefaultSensor method, 484
getExternalCacheDir method, 248
getExternalFilesDir method, 247
getExternalStoragePublicDirectory

method, 248–249
getFlashMode camera parameter, 650
getFocusMode camera parameter, 650
getFragmentManager method, 120
getIntent method, 186–187
getLastKnownLocation method, 516, 519
getPosition function, 254
getProviders method, 517
getReadableDatabase method, 256
getResources method, 74–75
getSceneMode camera parameter, 649

getSensorList method, 484
getSharedPreferences method,

222–223
getString method, 76
getSystemService method, 482, 705
getType method, 264–266
getWhiteBalance camera parameter, 649
getWritableDatabase method, 256
GForceMeter project, 494–497
Gmail client, 5
Google

APIs, 22–23
applications

Gmail client, 5
Google Maps, 5
Google Talk, 5
YouTube, 5

Google Analytics, 784–786
Google APIs, Internet resources, 201
Google App Engine, 217–219
Google Maps, 5, 7, 12
Google Play Store

client, 5
DDA (Developer Distribution

Agreement), 774–776
developer account creation, 775–776
distributing applications, 774–776
distributing to, 21
promotion in, 781–782

Google Services APIs, 217
Google Talk, 5
GPRS network, 202
GPS, 7, 513

Location Provider, 516
Gradient Drawables, 432–434
gradient shaders, 453–454
graphics, 6

hardware-acceleration, 466–467
libraries, 9
NinePatch images, 434
scalable assets, 431–434
stretchable, 434

gravity sensors. See accelerometers
Grid Layout, 102–103
GridLayout class, 99

bindex.indd 798bindex.indd 798 4/11/2012 10:02:57 AM4/11/2012 10:02:57 AM

799

GSM network – Intent Receivers

GSM network, 6
cell location changes, 710

gyroscope sensor, 505–506

H

hardware
accelerated graphics, 6
access, 6–7
availability issues, 765–766
camera, 59
multimedia, 6
optional features, 58
resources, 77–79
sensors (See sensors)
specifying as required, 766
telephony support, 701–702
uses-feature tag, 58

hardware-acceleration in graphics,
466–467

hardware-imposed design considerations,
38–42

headers, Preference Fragments, 234–235
heightMeasureSpec method stub, 145
Hello World project, 33–35

layout, 69–70
Hierarchy Viewer, 48, 51–52
home screen. See also screens

Live Wallpaper, 565
QSB (Quick Search Box), 565
Widgets, 565

App Widgets, 566, 567–582
Honeycomb MR2, attributes, 58
Hprof-conv, 48
HTML5 WebKit, browser, 6

I

IAB. See In-App Billing
icon navigation, 365–366
icons

Action Bar, 362–363
menu system, 377, 382

ImageButton control, 132
images

EXIF (Exchangeable Image File Format),
655–656

formats supported, 622
NinePatch, 434
stretchable, 434

implicit Intents
fi lters, 183–193
late runtime binding, 167–168

In-App Billing
billing requests, 756
free applications, 780
library installation, 754
MarketBillingService class,

755–756
overview, 753–754
public key, 754–755
purchasable items, 754–755
purchase requests, responses,

756–757
restrictions, 754
transactions, initiating, 755–756

include tag, 104
incoming phone calls

Intent Receivers and, 712–713
Phone State Listener, 709

input
devices, 57, 436

keyboard type, 78
trackballs, 476

Dialogs, 397–398
events, Views, 147–148
voice, 440–441

insert method, 260–261
insistent Notifi cations, 415–416
installationLocation attribute, 55–56
instance state

Activities, lifecycle handlers and,
242–243

Fragments, lifecycle handlers, 243–245
instrumentation tag, 61
Intent Receivers

third-party, 194–195
Widgets, 570–572

bindex.indd 799bindex.indd 799 4/11/2012 10:02:58 AM4/11/2012 10:02:58 AM

800

Intent Service – launch confi gurations

Intent Service
Earthquake Update Service and, 357–358
implementing, 348

IntentFilter class, 179–180
Intents, 8, 17, 54

Activities
launch Intent, 186–187
launching, 166–174
native applications, 172–174
resolving to, 168–169
results, 169–172

battery changes, 197–198
broadcast, native, listening for, 196–197
broadcasting

events, 177–181
ordered, 180–181
sticky, 181

connectivity changes, 198–199
Contacts Contract and, 323–324
docking changes, 199
fi lters

implicit Intents and, 183–193
intent resolution, 185–186
plug-ins, 193–196

implicit, late runtime binding,
167–168

importing system preferences,
234–235

menus, 382
MMS messages, sending, 713–714
permissions, enforcing, 742
picture taking, 646–647
SMS messages, sending, 713–714
uses, 166
video recording and, 656–657
Widget refresh and, 578–579

interactive controls, 470–476
intermittent applications, 37
internal storage, 55–56
Internet data stream, opening, 203
Internet resources

bandwidth and, 202
battery and, 202
caching and, 202
connecting to, 202–203

Google APIs, 201
native features and, 202
WebView, 201

Internet services
Amazon Web Services, 217
Google App Engine, 217
Google Services APIs, 217
Yahoo! Pipes, 217

Interpolated Property animation, 442
IPC (inter-process communication),

759
message passing, 6

isDiscovering method, 671–672
ItemizedOverlays, 554–556

J

Jarsigner command-line tool, 772
Java, IDE (integrated development

environment), 19
Java ME, 3
JDK (Java development kit), 19
JVM (Java virtual machine),

MIDLets, 2–3

K

keyboard
availability, 78
exposed, 80
hidden, 80
input type, 78
type change, 80

KeyEvent parameter, 475
Keytool command-line tool, 772
KML (Keyhole Markup Language), 515–516

L

languages, 77
resources, 77–79
user changes settings, 79

largestWidthLimitDp tag, 60
launch confi gurations, 30–33

bindex.indd 800bindex.indd 800 4/11/2012 10:02:58 AM4/11/2012 10:02:58 AM

801

Layer Drawables – Linkify

Layer Drawables, 477–478
Layout Animations, 444–445
layout classes, 98

FrameLayout, 98
GridLayout, 99
LinearLayout, 98
RelativeLayout, 98

Layout Managers, 98
LayoutAnimationController, 444
LayoutOpt, 48, 51–52
LayoutParameters, 100
layouts, 69–70, 97.

animating, 444–445
Collection View Widgets, 589–590
compound controls and, 141
compound Views, 138–140
defi ning, 99–100
dynamic, populating, 123–124
Fragments, container views and, 121
Grid Layout, 102–103
Hello World, 69–70
implementing, 100
Linear Layout, 100–101, 428
Lint tool, 106
optimizing for screen types, 428–429
Preference Screens, 232
redundant, 103–104
Relative Layout, 101–102, 428
resources, 76

directory names, 79
scalable, 428
UIs, device independent, 100–103
View Stubs, 105–106
Widgets, 567

size, 567–568
supported, 568–569
visual styling, 568

XML, 99–100
layouts folder, 65
LBS (location-based services), 6, 58, 513

current location
privacy, 519
refreshing, 522–525

Emulator and
Location Providers, 515–516

testing, 516
last location, 519
Location Manager, 514
Location Providers, 514

accuracy, 517–518
availability, 528–530
getLastKnownLocation method,

519
Passive Location Provider, 525
status monitoring, 528–530
Where Am I, 519–520

My Location Overlay, 553–554
requestLocationUpdates method, 526
update best practices, 527–530
updateWithNewLocation method, 521

Level List Drawables, 478
libraries, 16, 18

Bluetooth, 6
core, 15
graphics, 9
media, 6
NFC hardware, 6
shared, uses-library tag, 62
software stack, 15

License Verifi cation Library
checks, 752–753
installation, 750–751
policy confi guration, 751–752
public key, 751

lifecycle handlers, instance state and
Activities, 242–243
Fragments, 243–245

lifecycles
application, 81
Fragments, 116–118

events, 119
Linear Layout, 100–101, 428
LinearLayout class, 98
Linkify

addLinks method, 174
link strings, custom, 175–176
Match Filter, 176
native link types, 174–175
RegEx pattern matching and, 174
Transform Filter, 176

bindex.indd 801bindex.indd 801 4/11/2012 10:02:58 AM4/11/2012 10:02:58 AM

802

Lint tool – map-based Activities

Lint tool, 106
Linux kernel, 4, 16

Dalvik VM, 14
security and, 740
software stack, 15

LiPS (Linux Phone Standards Forum), 3
ListActivity class, 93
ListPreference control, 234
ListView control, 132
Live Folder Activity, 608–610
Live Folders, 605–606

Collection View Widgets and, 605
Content Provider, 606–607
Earthquake project, 610–613

Live Wallpaper, 6, 9, 13, 37, 565
creating, 616
resource defi nition, 616–617
Wallpaper Service, 617–618
Wallpaper Service engine, 618–619

Loaders, 349
Local Broadcast Manager

Intents, transmitting, 182
Receivers, registering, 182
sendBroadcastSync method, 182

localization, 6
Location Listener, 522–523
Location Manager, 514

accessing, 514
current location

Broadcast Receiver, 524
Pending Intent, 523–524
refreshing, 522–525

Location Providers, 514
accuracy, 517–518
availability and, 527

monitoring, 528–530
battery life and, 527
capabilities, determining, 518–519
Emulator and

GPS, 516
updating locations, 515–516

fi nding, 517
criteria, 517–518

getBestProvider method, 518

getLastKnownLocation method, 519
getProviders method, 518
Passive Location Provider, 525
startup time and, 527
status monitoring, 528–530
update rate and, 527
Where Am I, 519–520

tracking location in, 525–526
location-based services. See LBS
LocationManager class, 517–518
logcat, 48
LTE network, 6, 202

M

magnetometer, device orientation and, 498–
500

Manifest Editor, 63–64
manifest node, 56–63
manifest Receivers, 178

managing at run time, 199–200
manifest tag, sub-node tags, 56–57
Map Activity, 536

Where Am I and, 542–546
Map Controller, Map Views and, 541–542
map taps, 548–549
Map View, 536

confi guration, 541
Earthquake Monitor, 558–563
Fragments, 540–541
Map Controller and, 541–542
map tiles download, 538
Overlays

adding/removing, 549
creating, 546–547
map taps, 548–549
My Location Overlay, 553–554

pinning Views to, 556–557
uses, 541

map-based Activities, 536–537
creating, 538–540
Map Activity, 536
Map View, 536

bindex.indd 802bindex.indd 802 4/11/2012 10:02:58 AM4/11/2012 10:02:58 AM

803

MapActivity class – menus

MapActivity class, 93
Maps, 7, 513
Maps API key, 537–538
MarketBillingService class,

755–756
Mask Filters, Shaders, 454–455
Match Filter, 176
MCC/MNC (Mobile Country Code and

Mobile Network Code), 77
MD5 fi ngerprint, debugging and,

537–538
measureHeight method stub, 145
measureWidth method stub, 145
media

adding to Media Store, 662–663
effects, EffectFactory, 661–662
libraries, 6
streaming

network protocols, 623
video preview, 660

Media Player
BassBoost class, 645
Broadcast Receivers and,

632–634
effects, 645
EnvironmentalReverb class, 645
Equalizer class, 645
Media Controller, 629–631
MediaPlayer instance, 623
output, 631
playback control, 629–631

pausing at output change, 637
responding to, 632–634

PresetReverb class, 645
setMediaController method,

629–630
setVolumeControlStream method,

632
state machine, 623
streaming media, INTERNET permission,

623
Virtualizer class, 645
volume controls, 631–632
Wake Locks, 631

Media Recorder
confi guration, 658–660
setCamera method, 658
time-lapse, 661
video recording, 657–661

controlling, 660–661
Media Scanner, adding media to Media Store,

662–663
Media Store, 316, 317–318

adding media, 662–663
MediaPlayer instance, 623
MediaScannerConnection, 662
MediaScannerConnectionClient, 662
memory, optimized, 10
Menu Item

adding, 379–380
check boxes, 381
click listener, 382
condensed titles, 381
Earthquake Monitor, 390–392
Fragments, 383–384
icons, 382
Intents, 382
radio buttons, 381
selections, 386–387
shortcut keys, 381
updating, dynamically, 385–386

menu system
Action Bar actions, 377
Action Providers, 383
Context Menus, 387

creating, 388–389
selections, 389

expanded menu, 378
hierarchies, XML and, 384–385
icon menu, 377
overfl ow menu, 378
Popup Menus, 389–390
selections, 386–387
submenus, 378–379

creating, 387
Views, 382–383

menus, 73
anonymous actions, 195–196

bindex.indd 803bindex.indd 803 4/11/2012 10:02:58 AM4/11/2012 10:02:58 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

804

merge tag – methods

creating, 379–380
folder, 65

merge tag, 104
messaging, C2DM (Cloud to Device

Messaging), 9–10
methods

beginTransaction, 122
delete, 261–262
findFragmentById, 122–123
getActivity, 126
getBackgroundDataSetting, 679–680
getCacheDir, 248
getColumnIndexOrThrow, 259
getDefaultSensor, 484
getExternalCacheDir, 248
getExternalFilesDir, 247
getExternalStoragePublicDirectory,

248–249
getFragmentManager, 120
getIntent, 186–187
getLastKnownLocation, 516, 519
getProviders, 517
getReadableDatabase, 256
getResources, 74–75
getSharedPreferences, 222–223
getString, 76
getSystemService, 705
getType, 264–266
getWritableDatabase, 256
insert, 260–261
isDiscovering, 671–672
onAccuracyChanged, 486
onConfigurationChanged, 85
onContextItemSelected, 389
onCreate, 34, 84
onDraw, 142, 143–144
onLowMemory, 85
onMeasure, 142, 144–146
OnNavigationListener, 369–370
onReceive, 178
onSensorChanged, 486
onStartCommand, 333–335
onTrackBallEvent, 476
onTrimMemory, 85

openFileInput, 247–248
openFileOutput, 247–248
openInputStream, 282–283
openOrCreateDatabase, 257
openOutputStream, 282–283
openRawResources, 245
overriding, 84–85
query, 215–217, 257–258, 264–266
refreshEarthquakes, 340–343
registeredMediaButtonEvent

Receiver, 634
registerRemoteControlClient, 638
remapCoordinateSystem, 500–501
requestLocationUpdates, 522, 526
sendAccessbilityEvent, 148
sendBroadcastSync, 182
sendOrderedBroadcast, 180–181
sendStickyBroadcast, 181
setCamera, 658
setCancelable, 397
setContentView, 87, 97–98
setDisplayUseLogoEnabled,

362–363
setInexactRepeating, 353
setLanguage, 438
setLayoutParams, 100
setListNavigationCallbacks,

369–370
setMeasuredDimension, 145
setMediaController, 629–630
setNavigationMode, 366–367
setNotificationVisibility, 213
setRepeating, 353
setResult, 170
setRetainInstance, 127
setShowAsActionFlags, 380–381
setTransition, 125
setTransportControlFlags, 639
setVideoPath, 625
setVideoURI, 625
setVolumeControlStream, 632
speak, 438
startActivity, 166–167, 234
startActivityForResult, 169

bindex.indd 804bindex.indd 804 4/11/2012 10:02:58 AM4/11/2012 10:02:58 AM

805

microphone – On Shared Preferences Change Listeners

startForeground, 343–345
updateWithNewLocation, 521

microphone, 58
MIDlets, 2–3
MkSDCard, 48
MMS (multimedia messaging service), 713–

714
mobile development, reasons for, 11
mobile devices, developing for, 38–47
mobile handset, Android as, 3
Mobile Internet, 202
mobile phone evolution, 2–3
monetizing applications, 779–780
Monkey, 48, 52
Monkey Runner, 48, 52
Motion Event, 471–472

movement tracking, 473–474
movement tracking on touch screen, 473–474
moveToFirst function, 253
moveToNext function, 253
movetoPosition function, 254
moveToPrevious function, 253
multimedia, hardware, 6
MultiSelectListPreference control, 234
My Location Overlay, 553–554

N

native adapters
ArrayAdapter, 156
SimpleCursorAdapter, 156

native applications, 5–6
native broadcast Intents, 196–197
native dialer application, replacing, 703–704
navigation

Action Bar, 364–365
drop-down lists, 368–370
icon navigation, 365–366
tabs, 366–368
views, 370

Fragments and, 366
icon, 365–366
non-touch screen, 436

navigation key availability, 78
NDEF message creation, 698–699
Ndef Records, 697
NDK (native development kit), 16
Network Connectivity Service, Connectivity

Manager and, 679
network protocols, streaming media, 623
network-based location detection, 6
NewItemFragment, 128–129
NFC (near-fi eld communications)

NFC Beam, 7
support, 58
tags

payload extraction, 694
reading, 693–694

Night mode, 78
NinePatch images, 434
Notifi cation Builder, 410
Notifi cation Manager, 7, 17, 405–406
Notifi cation Tray UI, 410–415
NotificationManager, 406
Notifi cations, 7, 55, 405

canceling, 417
creating, 407–410
defaults, 408
downloads, 212–213
Earthquake Monitor, 418–423
fl ashing lights, 409
insistent, 415–416
ongoing, 415–416
sounds, 408
status bar and, 407–410
ticker text, 414–415
triggering, 416
updating, 416–417
vibrating phone, 409

NPE (null pointer error), 568

O

ObjectAnimator class, 447–449
OHA (Open Handset Alliance), 4, 10
OMA (Open Mobile Alliance), 3
On Shared Preferences Change Listeners, 238

bindex.indd 805bindex.indd 805 4/11/2012 10:02:58 AM4/11/2012 10:02:58 AM

806

onActivityCreated event – paid applications

onActivityCreated event, 127
onActivityResult event handler, 169, 171
onAttach event, 127
onConfigurationChanged method, 85
onConnectionInfoAvailable handler, 691
onContextItemSelected method, 389
onCreate method, 34, 84
onCreateDialog handler, 398–399, 400
onCreateLoader handler, 278
onCreateOptionsMenu, 379–380
onCreateView event, 127
onCreateView handler, 399
onDetach event, 127
onDraw method, 142

Compass View, 458–466
controls, 143–144

ongoing Notifi cations, 415–416
onKeyDown handler, 470
OnKeyListener, 475
onKeyUp handler, 471
onLoaderReset handler, 278
onLoadFinished handler, 278
onLowMemory method, 85
onMeasure method, 142, 144–146
OnNavigationListener method, 369–370
onReceive method, 178
onSaveInstanceState handler, 242–243
onSensorChanged method, 486
onStartCommand method, 333–335
onTap event handler, 548–549
onTouchEvent handler, 470
OnTouchListener, 474–475
onTrackballEvent handler, 471
onTrackBallEvent method, 476
onTrimMemory method, 85
Open Mobile Alliance (OMA), 3
open philosophy, 5
open platform, 4–5
open-source libraries

OpenGL, 4
SQLite, 4
WebKit, 4

open-source philosophy, 13
openFileInput method, 247–248

openFileOutput method, 247–248
OpenGL, 4
openInputStream method, 282–283
openOrCreateDatabase method, 257
openOutputStream method, 282–283
openRawResources method, 245
optimized memory, 10
optional hardware features, 58
ordered Intents, broadcasting,

180–181
orientation

device, 489
azimuth, 498
Compass View and, 502–505
deprecated orientation sensor, 501–

502
gyroscope, 505–506
magnetometer, 498–500
natural, 490–491
pitch, 497–498
roll, 498
standard reference frame,

497–498
remapping, 500–501

rotation, 80
Overlays, 513

adding/removing, 549
Canvas drawing, 547–548
creating, 546–547
ItemizedOverlays, 554–556
map taps, 548–549
maps and, 546–553
My Location Overlay, 553–554
Projections, 547
Where Am I and, 549–553

overriding methods, Application class,
84–85

P

Package Manager
Activity launching, 168–169
telephony support and, 702

paid applications, 779

bindex.indd 806bindex.indd 806 4/11/2012 10:02:58 AM4/11/2012 10:02:58 AM

807

Paint – process management

Paint
anti-aliasing, 456–457
Color Filters, 455
Mask Filters, 454–455
Path Effects, 455–456
Shaders, 454
Transfer Mode, 456

Paint class, 143–144, 451–456
Passive Location Provider, 525
Path Effect, 455–456
Pending Intent, 523–524

proximity alerts, 530–532
PendingIntent class, 182–183, 531
permission tag, 60–61
permissions, 740–741

coarse, 514
declaring, 741
enforcing, 742
fi ne, 514
Intents, enforcing, 742
permission tag, 60–61
uses-permissions tag, 60

phone calls
incoming

Intent Receivers and, 712–713
Phone State Listener, 709

initiating, 703
system telephony stack, 704

MCC+MNC (Mobile Country Code and
Mobile Network Code), 706

Phone State Listener, 708–709
cell location changes, 710
data connectivity, monitoring,

711–712
data transfer, status changes, 711–712
event handlers, 708
incoming phone calls, 709
onCallStateChanged method, 709
service changes, tracking, 710–711
unregistering, 708

PhoneStateListener, 708
picture taking, Intents, 646–647
pitch, device orientation and, 497–498
pixels

density, resource qualifi ers, 427
density-independent, 68, 426–427
scale-independent, 68
screen pixel density, 78

platforms, 20
open, 4–5
release nodes, 22
Symbian, 2
version, 79

plug-ins, Intent fi lters, 193–196
Popup Menus, 389–390
POST requests, C2DM messages,

748–749
pre-installed applications, 4
Preference Activities, 231, 232

Earthquake Monitor, 238–242
Preference Fragments, 232

headers and, 235–236
Preference Headers, 232
Preference Screens, 231

backward compatibility and, 237
controls, 234
layout, 232

XML defi nition, 232–235
system preferences, importing with

Intents, 234–235
PreferenceActivity class, 236–237
PreferenceCategory class, 233–234
PreferenceFragment class, 235
preferences

controls, native, 234
importing using Intents, 234–235
shared, 222, 238

Change Listener, 232
creating, 222–223
On Shared Preferences Change

Listeners, 238
retrieving, 223
saving, 222–223

PreferencesActivity class, 226
prefetching, battery and, 220
priority of applications, 82
private application fi les, 247–248
process management, 10

bindex.indd 807bindex.indd 807 4/11/2012 10:02:58 AM4/11/2012 10:02:58 AM

808

processes – remote devices

processes, 82–83
ProgressDialog, 397
ProGuard, 48
Projections, 547
promotion, 781

Google Play Store, 781–782
property animations, 70–71, 446–449

sets, 449
provider tag, 262
proximity alerts, Pending Intents, 530–532
public fi les, 248–249
publishing applications, 776–778

Q

QSB (Quick Search Box), 301, 565
Earthquake Monitor, search results, 615
search results, 614–615

queries
Calendar, 325–326
Content Providers

Content Resolver, 274–277
Cursor Loader, 277–280
implementing, 264–266

databases, SQLite, 257–258
Download Manager, 215–217

query method, 215–217, 257–258,
264–266

Quick Search Box. See QSB
QuickContactBadge control, 132

R

radio buttons, 381
RadioButton control, 132
raw audio, 640–643
raw resources folder, 65
RDBMS (relational database management

system), 253
receiver tag, 62
Receivers, 55

current location, 524

implementing, 178–179
listening for broadcasts, 178–180
manifest Receivers, 178

managing at run time,
199–200

media playback, 632–634
proximity alerts, 531–532
receiver tag, 62
registering

application manifest, 180
in code, 179–180

Recognizer Intent, 439
constants, 440

RecognizerIntent class, 439
redundant layouts, 103–105
references

Activities, 126
resources, in resources, 75–76
styles in current theme, 76–77

referral tracking, 783–784
Google Analytics, 786

refreshEarthquakes method,
340–343

RegEx pattern matching
Linkify and, 174
Match Filter, 176

regions, 77
registeredMediaButtonEventReceiver

method, 634
registerRemoteControlClient method,

638
Relative Layout, 101–102, 428
RelativeLayout class, 98
remapCoordinateSystem method,

500–501
Remote Control Client, 637

registering, 638–639
registerRemoteControlClient

method, 638
remote devices

Bluetooth discovery, 671–673
selecting for communications,

675–676

bindex.indd 808bindex.indd 808 4/11/2012 10:02:58 AM4/11/2012 10:02:58 AM

809

Remote Views – screens

Remote Views
App Widget Manager, 572–574

interactivity, 575–577
Collection View Widgets, 591

populating, 594–595
Remote Views Factory, Collection View

Widgets, 591–593
repeated downloads, 220
repeating Alarms, network refreshes, 354–

357
request codes, launching Activities, 169
requestLocationUpdates method, 522, 526
requiresSmallestWidthDp tag, 60
res folder, 77
resolution

graphics, scalable assets, 431–434
independence, 426–427
pixels, density-independent,

426–427
testing, 435

Resource Manager, 17
resources

animations
frame-by-frame, 72–73
property animations, 70–71
view animations, 72

customizing, 77–78
drawables, 68–69
dynamic changes, 80
folders, 65
hardware, 77–79
in code, 74–75
Internet (See Internet resources)
languages, 77–79
layouts, 69–70, 76

directory names, 79
menus, 73
references, styles in current theme, 76–77
referencing within resources, 75–76
simple values, 65–66

colors, 67
dimensions, 67–68
strings, 66–67

styles, 68
system resources, 76
themes, 68

Resources class, 74–75
results from Activities, 169–172
reverse geocoding, 532, 533–534
RFCOMM, Bluetooth and, 673–674
RingtonePreference control, 234
roll, device orientation and, 498
Rotate animations, 71
RotateAnimation, 443
Rubin, Andy, on Android, 4
Run Confi gurations, 110
run time, 4

core libraries, 15
Dalvik VM, 15

runtime binding, implicit Intents,
167–168

runtime confi guration changes, 79–80

S

S60 application layer, 3
SaaS (software as a service), 217
scalable layouts, 428
Scale animations, 71
scale-independent pixels, 68
ScaleAnimation, 443
screens. See also home screen

aspect ratio, 78
design for, 39–40
height, available, 78
layout change, 80
orientation, 78
pixel density, 78
Preference Screens, 231

backward compatibility and, 237
layout, 232–235

resolution, independence, 426–427
size, 78, 80, 96

optimizing, 427–430
scalable layouts, 428

bindex.indd 809bindex.indd 809 4/11/2012 10:02:59 AM4/11/2012 10:02:59 AM

810

SDK – Sensors

supporting, 427–430
testing, 435

supports-screens tag, 59–60
ttouch screens, type, 78
width supported, 60

available, 77–78
smallest, 77

SDK (software development kit)
Android APIs, 14
AVD (Android Virtual Device) Manager,

14
development tools, 14

AAPT (Android Asset Packaging
Tool), 48

ADB (Android Debug Bridge), 48
AVD (Android Virtual Device), 47
DDMS (Dalvik Debug Monitoring

Service), 48
dmtracedump, 48
Draw9patch, 48
Dx, 48
Emulator (See Emulator)
Hierarchy Viewer, 48, 51–52
Hprof-conv, 48
LayoutOpt, 48, 51–52
logcat, 48
MkSDCard, 48
Monkey, 48, 51-52
Monkey Runner, 48, 51–52
ProGuard, 48
SDK managers, 47
SQLite3, 48
Traceview, 48

documentation, 14
downloading, 21–23
features, 6
installation, 21–23
online support, 15
sample code, 14
starter package, 19

SDK Manager, 20, 49–50

searches
Activities, 292–293

default provider, 293–296
application results in system search, 6
Content Providers

metadata, 291–292
Quick Search Box, 291
Search bar, 291
Search View, 291
suggestions, 298–301

QSB (Quick Search Box), 301,
614–615

results, displaying, 294–296
SearchView widget, 297
speech recognition, 441

SearchView widget, 297
security

Linux kernel-level security, 740
permissions, 740–741

declaring, 741
enforcing, 742
Intents, 742

self-terminating Services, 336
sendAccessbilityEvent method, 148
sendBroadcastSync method, 182
sendOrderedBroadcast method, 180–181
sendStickyBroadcast method, 181
Sensor class, 482
Sensor Event Listener, implementation, 485–

487
Sensor Manager, 481

accelerometer, changes, 492–493
getDefaultSensor method, 484
getSensorList method, 484
getSystemService method, 482
listing Sensors, 484
onAccuracyChanged method, 486

SensorEventListener, 485–487
Sensors, 58

accuracy, 486
environmental, barometer, 506–507

bindex.indd 810bindex.indd 810 4/11/2012 10:02:59 AM4/11/2012 10:02:59 AM

811

Server Sockets – Shared Preferences

fi nding, 484–485
gyroscope sensor, 505–506
monitoring, SensorEventListener,

485–487
TYPE_ACCELEROMETER, 482
TYPE_AMBIENT_TEMPERATURE, 482
TYPE_GRAVITY, 482
TYPE_GYROSCOPE, 482–483
TYPE_LIGHT, 483
TYPE_LINEAR_ACCELERATION, 482
TYPE_MAGNETIC_FIELD, 483
TYPE_PRESSURE, 483
TYPE_PROXIMITY, 483
TYPE_RELATIVE_HUMIDITY, 483
TYPE_ROTATION_VECTOR, 483
values, 487–489
virtual, 483–484

Server Sockets, creating, 692
Service class, 331

skeleton, 332–333
service tag, 62
ServiceConnection, 337
Services, 54

Activities, binding, 336–338
creating, 332–333
Earthquake Monitor, 338–343
executing, 333–335
foreground, 343–345
Intent Service, implementing, 348
Loaders, 349
node, adding to manifest, 333
registering as Intent handler, 184–185
restart behavior, 333–335
self-terminating, 336
starting, 335–336
stopping, 335–336
Vibrator Service, 442
Wallpaper Service, 617–618

setAntibanding camera parameter, 650
setAutoWhiteBalanceLook camera

parameter, 649

setCamera method, 658
setCancelable method, 397
setColorEffect camera parameter, 649
setContentView method, 87, 97–98
setDisplayUseLogoEnabled method, 362–

363
setFocusMode camera parameter, 650
setInexactRepeating method, 353
setLanguage method, 438
setLayoutParams method, 100
setListNavigationCallbacks method,

369–370
setMeasuredDimension method, 145
setMediaController method, 629–630
setNavigationMode method, 366–367
setNotificationVisibility method, 213
setRepeating method, 353
setResult method, 170
setRetainInstance method, 127
setSceneMode camera parameter, 649
setShowAsActionFlags method,

380–381
setTransition method, 125
setTransportControlFlags method, 639
setVideoPath method, 625
setVideoURI method, 625
setVolumeControlStream method, 632
setWhiteBalance camera parameter, 649
Shader class, 452–453

gradient shaders, 453–454
Shaders, 452–453

Color Filters, 455
Mask Filters, 454–455
Paint, 454
tile modes, 454

Shape Drawables, 431–432
shared libraries, uses-library tag, 62
Shared Preferences, 222, 238

Activity state, 242
Change Listener, 232
creating, 222–223

bindex.indd 811bindex.indd 811 4/11/2012 10:02:59 AM4/11/2012 10:02:59 AM

812

SharedPreferences class – static fi les as resources

On Shared Preferences Change Listeners,
238

retrieving, 223
saving, 222–223

SharedPreferences class, 222–223
short messaging service. See SMS
shortcut keys, 381
signing applications, Export Android

Application wizard, 772–774
SIM

detecting, 79
querying details, 707

simple values, 65–66
colors, 67
dimensions, 67–68
strings, 66–67
XML, 65–66

simple values folder, 65
SimpleCursorAdapter, 156, 162–163
SIP (Session Initiation Protocol), 737
sizing, controls, 144–146
SKD (software development kit), 5
SMS (short messaging service), 701

Emergency Responder, 720–729
messages

data, 717, 719
emulator and, 719
incoming, 717–719
Intents and, 713–714
maximum size, 717

overview, 713
SMS Broadcast Intents, 717–719
SMS Manager

message delivery, tracking/confi rming,
715–717

messages
data messages, 717, 719
maximum size, 717

sending messages, 714–715
software availability, 765
software stack

application framework, 15

application layer, 15
libraries, 15
Linux kernel, 15
run time, 15

Sound Pool, 643–645
sounds, Notifi cations, 408
speak method, 438
speech recognition

initializing, 439
Recognizer Intents, 439
RecognizerIntent class, 439
searches, 441
voice input, 440–441

speed, design challenges, 40–41
speed synthesis, 437. See also TTS (text-to-

speech)
Spinner control, 132
split Action Bar, 364
SQLite, 4, 7

databases
auto-increment key, 257
constants, public, 254
design, 257
fi le storage, 257
null column hack, 261
querying, 257–258
rows, 260–262
SQLiteOpenHelper class, 255–257

introduction, 252, 253
SQLite Open Helper, 255–256

opening databases, 256
SQLite3, 48
SQLiteOpenHelper class, 255–257
standard reference frame

device orientation and, 497–498
remapping, 500–501

startActivity method, 166–167, 234
startActivityForResult method, 169
startForeground method, 343–345
startup, Location Providers and, 527
State List Drawables, 478
static fi les as resources, 245

bindex.indd 812bindex.indd 812 4/11/2012 10:02:59 AM4/11/2012 10:02:59 AM

813

sticky Intents – ToDoContentProvider class

sticky Intents, broadcasting, 181
storage

external, 55–56, 246
internal, 55–56
public fi les, 248–249

streaming media
audio, playback initialization, 624–625
Media Player, INTERNET permission, 623
network protocols, 623
video

playback initialization, 625
playback surface, 626–629
preview, 660
Video View, 625–626

stretchable images, 434
Strict Mode, 769–770
strings, 66–67

link strings, 175–176
style tag, 68
styles, 68
styles folder, 65
sub-Activities

launching, 169–170
results, 171–172

submenus, 378–379
creating, 387

support package, 27–28
supports-gl-texture tag, 60
supports-screens tag, 59–60
Surface Holders, 626–629
Surface Views, 467–470
SurfaceHolder object, 626–629
SurfaceView class, 141, 467–470
Symbian, 2
system resources, 76

T

tasks, asynchronous, 345–349
telephony, 58, 702–703

hardware support, 701–702
phone call initiation, 704

Telephony Manager
data connection, 707–708
data transfer activity, 707–708
getSimSerialNumber method,

707
getSystemService method, 705
Intent Receivers, incoming phone calls,

712–713
network details, 706
phone device details, 705
SIM, querying details, 707

textual descriptions, 436
texture, supports-gl-texture tag,

60
TextView control, 132
themes, 68

styles, referencing, 76–77
Thread Policy, 769
threads

background, 345–351
creating, manually, 349–351
GUI, synchronization, 349–351
Toasts, 404–405

ticker text in Notifi cations,
414–415

time-lapse video, 661
TimePickerDialog, 397
To-Do List application, 107–114

ArrayAdapter, 158–162
Content Provider, 283–290
database, 283–290
Fragments, 128–132
views, 135–138

Toast class, 401–405
Toasts, 401–402

displaying, 402
GUI threads, 404–405
text alignment, 403
Views, 403–404

ToDoContentProvider class, 283

bindex.indd 813bindex.indd 813 4/11/2012 10:02:59 AM4/11/2012 10:02:59 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

814

ToDoListItemView class – uses-sdk tag

ToDoListItemView class, 136–138
ToggleButton control, 132
touch screen, 58

KeyEvent parameter, 475
movement tracking, 473–474
multiple touch events, 471
non-touch screen navigation, 436
onKeyDown event, 475
OnKeyListener, 475
onKeyUp event, 475
onTouchEvent handler, 471
OnTouchListener, 474–475
single touch events, 471
type, 78

Traceview, 48
trackballs, 436, 476
Transfer Mode, 456
Transform Filter, 176
Translate animations, 71
TranslateAnimation, 443
translucent colors, 452
TTS (text-to-speech), 437–439
Tweened View animation, 442

applying, 443–444
creating, 443
uses, 442–443

TYPE_ACCELEROMETER sensor, 482,
492–493

TYPE_AMBIENT_TEMPERATURE sensor,
482

TYPE_GRAVITY sensor, 482
TYPE_GYROSCOPE sensor, 482–483
TYPE_LIGHT sensor, 483
TYPE_LINEAR_ACCELERATION sensor,

482
TYPE_MAGNETIC_FIELD sensor, 483
TYPE_PRESSURE sensor, 483, 506–507
TYPE_PROXIMITY sensor, 483

TYPE_RELATIVE_HUMIDITY sensor, 483
TYPE_ROTATION_VECTOR sensor, 483

U

UI (user interface)
Activities, assigning, 87, 97–98
customization, 5
design, 96–97
device independent, layouts, 100–103
Fragments, 96

creating, 119
destroying, 119
lack, 126–128

framework, 4
Layout Managers, 95
mode change, 80
navigation type, 78
saved state, 222
screen sizes, 96
Strict Mode, 769–770

UIQ application layer, 3
update method, 261
updateWithNewLocation method, 521
URI addresses, Content Providers, publishing,

263–264
UriMatcher class, 263–264
usage patterns, 783–784
USB, 58
user environment, 42–43
user experience, Action Bar, 360–370
user interface. See UI (user interface)
uses-configuration tag, 57
uses-feature tag, 58
uses-library tag, 62
uses-permission tags, 740–741
uses-permissions tag, 60
uses-sdk tag, 56

bindex.indd 814bindex.indd 814 4/11/2012 10:02:59 AM4/11/2012 10:02:59 AM

815

values – Wake Locks

V

values
Cursor, extracting, 259–260
Sensors, 487–489
simple values, 65–66

VIBRATE permission, 441
vibration, VIBRATE permission, 441
Vibrator Service, 442
video

formats supported, 622–623
Media Recorder and, 657–661

confi guration, 658–660
controlling recording, 660–661
time-lapse, 661

playback initialization, 625
playback surface, 626–629
recording, Intents and, 656–657
stream, previewing, 660
Video View, 625–626

Video View, 625–626
VideoView control, 132
view animations, 71–72
View Groups, 86, 97

animating, 444–445
layouts, 97
UI design and, 96

View Stub, 105–106
ViewFlipper control, 132
ViewGroup class, 97

extending, 138–141
layouts, 98

ViewPager control, 133
Views, 34

accessibility, 148–149
binding data to, adapters and, 158–163
Compass View, 149–155
compound, 138–140
Context Menus, 388–389

controls, 97
creating, 142–146
custom, 141–155
input events, 147–148
Map Views, 536
measurement implementation, 146–147
menu system, 382–383
minimizing use, 105–106
modifying, 133–138
pinning to Map View, 556–557
Remote Views, App Widget Manager,

572–577
size, 100
subclasses, 133
Toasts, 403–404
UI design and, 96
user interaction events, 147–148
widgets, 97

views, 17
container views, Fragment layouts, 121
navigation, 370
Surface Views, 467–470
to-do list application example, 135–138
Video View, 625–626

virtual Sensors, 483–484
visible lifetime of an Activity, 92
visible processes, 83
Vm Policy, 769
voice input, 440–441
VOIP (voice over Internet protocol), 737
volume control in Media Player, 631–632

W

Wake Locks, 631
battery and, 757
calling, 758

bindex.indd 815bindex.indd 815 4/11/2012 10:02:59 AM4/11/2012 10:02:59 AM

816

wallpaper – Widgets

creating, 757–758
FULL_WAKE_LOCK, 757
PARTIAL_WAKE_LOCK, 758
SCREEN_BRIGHT_WAKE_LOCK, 757
SCREEN_DIM_WAKE_LOCK, 758

wallpaper, Live Wallpaper, 6, 9, 13, 37, 565
creating, 616
resource defi nition, 616–617
Wallpaper Service engine, 618–619

Wallpaper Service, 617–618
Wallpaper Service engine, 618–619
WeatherStation Activity, 508–511
WeatherStation project, 508–511
WebKit, 4
WebView, Internet resources, 201
Where Am I, 519–520

geocoding and, 535–536
Map Activities and, 542–546
Overlays, 549–553
tracking location, 525–526

WhereAmI Activity, 520
Wi-Fi, 7, 58, 202

hardware access, 6
network confi gurations, 685–686

Wi-Fi Direct, 13
enabling, 688
framework initialization,

686–688
status change, 688–689

Wi-Fi Manager
access, 682–683
confi gurations, managing, 685
connection details, 684
hotspots, scanning for, 684–685
monitoring connectivity, 683–684

Widgets, 9, 13, 37, 55, 565
Android Developers Widget Design

Guidelines, 567
App Widget confi guration Activity,

580–582
App Widget Manager, Remote Views,

572–577

App Widgets
adding, 566
creating, 567–582

Button control, 132
CheckBox control, 132
Chronometer control, 132
Collection View Widgets, 587–589

binding to Content Providers, 596–
598

interactivity among items,
595–596

layout creation, 589–590
populating, 594–595
refreshing, 598
Remote Views Factory,

591–593
Remote Views Service, 591

design guidelines, 567–568
Earthquake Widget, 582–587
EditText control, 132
home-screen, 6
ImageButton control, 132
Intent Receivers, 570–572
interactivity, 575–577
layouts, 567

size, 567–568
supported, 568–569
visual styling, 568

ListView control, 132
QuickConnectBadge control, 132
RadioButton control, 132
refreshing

Alarms, 579–580
Intents, 578–579
minimum update rate,

577–578
SearchView, 297
settings, 569–570
Spinner control, 132
TextView control, 132
ToggleButton control, 132
VideoView control, 132

bindex.indd 816bindex.indd 816 4/11/2012 10:02:59 AM4/11/2012 10:02:59 AM

817

width supported – z-axis acceleration

ViewFlipper control, 132
ViewPager control, 133
Views and, 97, 568–569

width supported, 60
available
smallest, 77

widthHeightSpec method stub, 145
WiFi P2P Manager, 687–688

data transfer, peers, 692–693
peer connections, 690–692
peer discovery, 689–692

WifiManager, 679
Windows, installer, 21
wizards

ADT Wizard, 65
Android New Project Wizard,

28–30
Export Android Application,

772–774

X

x-axis acceleration, 492
XML (eXtensible Markup Language), 65

Earthquake Monitor, 205–210
layouts, 99–100
menu hierarchies, 384–385

Object Animator and, 448
parsing, 203–205
Preference Screen layout, 232–235
simple values, 65–66
XML Pull Parser, 203–205

XML fi les folder, 65

Y

y-axis acceleration, 492
Yahoo! Pipes, 217
YouTube, 5

Z

z-axis acceleration, 492

bindex.indd 817bindex.indd 817 4/11/2012 10:02:59 AM4/11/2012 10:02:59 AM

bindex.indd 818bindex.indd 818 4/11/2012 10:02:59 AM4/11/2012 10:02:59 AM

bindex.indd 819bindex.indd 819 4/11/2012 10:02:59 AM4/11/2012 10:02:59 AM

Try Safari Books Online FREE
for 15 days + 15% off
for up to 12 Months*

With Safari Books Online, you can experience
searchable, unlimited access to thousands of
technology, digital media and professional
development books and videos from dozens of
leading publishers. With one low monthly or yearly
subscription price, you get:

• Access to hundreds of expert-led instructional
videos on today’s hottest topics.

• Sample code to help accelerate a wide variety
of software projects

• Robust organizing features including favorites,
highlights, tags, notes, mash-ups and more

• Mobile access using any device with a browser

• Rough Cuts pre-published manuscripts

Read this book for free online—along with thousands of others—
with this 15-day trial offer.with this 15 d

START YOUR FREE TRIAL TODAY!
Visit www.safaribooksonline.com/wrox44 to get started.

*Available to new subscribers only. Discount applies to the
Safari Library and is valid for fi rst 12 consecutive monthly
billing cycles. Safari Library is not available in all countries.

badvert-colour.indd 1badvert-colour.indd 1 4/11/2012 10:37:56 AM4/11/2012 10:37:56 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://www.safaribooksonline.com/wrox44

Related Wrox Books

Ivor Horton’s Beginning Java, Java 7 Edition
ISBN:	978-0-470-40414-0
Whether	you’re	a	beginner	or	an	experienced	programmer	switching	to	Java,	
you’ll	learn	how	to	build	real-world	Java	applications	using	Java	SE	7.	

Professional Android Programming
with Mono for Android and .NET/C#
ISBN:	978-1-118-02643-4
For	the	millions	of	.NET/C#	developers	who	have	been	eagerly	awaiting	the	
book	that	will	guide	them	through	the	white-hot	field	of	Android	application	
programming,	this	is	the	book.	This	must-have	resource	dives	into	writing	
applications	against	Mono	with	C#	and	compiling	executables	that	run	on	
the	Android	family	of	devices.

Ivor Horton

Beginning
Ivor Horton’s

Java®

Java 7 Edition

Wrox Programmer to Programmer™Join the discussion @ p2p.wrox.com

Wrox Programmer to Programmer™Join the discussion @ p2p.wrox.com

Wallace B. McClure, Nathan Blevins, John J. Croft IV, Jonathan Dick, Chris Hardy

Professional
Android™ Programming
with Mono for Android and .NET/C#

	Professional Android™ 4 Application Development
	Contents���������������
	Chapter 1: Hello, Android
	A Little Background��������������������������
	The Not-So-Distant Past������������������������������
	Living in the Future���������������������������

	What Android Isn’t�������������������������
	Android: An Open Platform for Mobile Development���
	Native Android Applications����������������������������������
	Android SDK Features���������������������������
	Access to Hardware, Including Camera, GPS, and Sensors���
	Data Transfers Using Wi-Fi, Bluetooth, and NFC���
	Maps, Geocoding, and Location-Based Services���
	Background Services��������������������������
	SQLite Database for Data Storage and Retrieval���
	Shared Data and Inter-Application Communication��
	Using Widgets and Live Wallpaper to Enhance the Home Screen��
	Extensive Media Support and 2D/3D Graphics���
	Cloud to Device Messaging��������������������������������
	Optimized Memory and Process Management��

	Introducing the Open Handset Alliance��
	What Does Android Run On?��������������������������������
	Why Develop for Mobile?������������������������������
	Why Develop for Android?�������������������������������
	Factors Driving Android’s Adoption���
	What Android Has That Other Platforms Don’t Have���
	The Changing Mobile Development Landscape��

	Introducing the Development Framework��
	What Comes in the Box����������������������������
	Understanding the Android Software Stack���
	The Dalvik Virtual Machine���������������������������������
	Android Application Architecture���������������������������������������
	Android Libraries������������������������

	Chapter 2: Getting Started
	Developing for Android�����������������������������
	What You Need to Begin�����������������������������
	Downloading and Installing the Android SDK���
	Downloading and Installing Updates to the SDK��
	Developing with Eclipse������������������������������
	Using the Android Developer Tools Plug-In for Eclipse��
	Using the Support Package��������������������������������

	Creating Your First Android Application��
	Creating a New Android Project�������������������������������������
	Creating an Android Virtual Device���
	Creating Launch Configurations�������������������������������������
	Running and Debugging Your Android Application���
	Understanding Hello World��������������������������������

	Types of Android Applications������������������������������������
	Foreground Applications������������������������������
	Background Applications������������������������������
	Intermittent Applications��������������������������������
	Widgets and Live Wallpapers����������������������������������

	Developing for Mobile and Embedded Devices���
	Hardware-Imposed Design Considerations���
	Be Efficient�������������������
	Expect Limited Capacity������������������������������
	Design for Different Screens�����������������������������������
	Expect Low Speeds, High Latency��������������������������������������
	At What Cost?��������������������

	Considering the User’s Environment���
	Developing for Android�����������������������������
	Being Fast and Efficient�������������������������������
	Being Responsive�����������������������
	Ensuring Data Freshness������������������������������
	Developing Secure Applications�������������������������������������
	Ensuring a Seamless User Experience��
	Providing Accessibility������������������������������

	Android Development Tools��������������������������������
	The Android Virtual Device Manager���
	Android SDK Manager��������������������������
	The Android Emulator���������������������������
	The Dalvik Debug Monitor Service���������������������������������������
	The Android Debug Bridge�������������������������������
	The Hierarchy Viewer and Lint Tool���
	Monkey and Monkey Runner�������������������������������

	Chapter 3: Creating Applications and Activities
	What Makes an Android Application?���
	Introducing the Application Manifest File��
	A Closer Look at the Application Manifest��

	Using the Manifest Editor��������������������������������
	Externalizing Resources������������������������������
	Creating Resources�������������������������
	Simple Values��������������������
	Styles and Themes������������������������
	Drawables����������������
	Layouts��������������
	Animations�����������������
	Menus������������

	Using Resources����������������������
	Using Resources in Code������������������������������
	Referencing Resources Within Resources���
	Using System Resources�����������������������������
	Referring to Styles in the Current Theme���

	Creating Resources for Different Languages and Hardware��
	Runtime Configuration Changes������������������������������������

	The Android Application Lifecycle��
	Understanding an Application’s Priority and Its Process’ States��
	Introducing the Android Application Class��
	Extending and Using the Application Class��
	Overriding the Application Lifecycle Events��

	A Closer Look at Android Activities��
	Creating Activities��������������������������
	The Activity Lifecycle�����������������������������
	Activity Stacks����������������������
	Activity States����������������������
	Monitoring State Changes�������������������������������
	Understanding Activity Lifetimes���������������������������������������

	Android Activity Classes�������������������������������

	Chapter 4: Building User Interfaces
	Fundamental Android UI Design������������������������������������
	Android User Interface Fundamentals��
	Assigning User Interfaces to Activities��

	Introducing Layouts��������������������������
	Defining Layouts�����������������������
	Using Layouts to Create Device Independent User Interfaces���
	Using a Linear Layout����������������������������
	Using a Relative Layout������������������������������
	Using a Grid Layout��������������������������

	Optimizing Layouts�������������������������
	Redundant Layout Containers Are Redundant��
	Avoid Using Excessive Views����������������������������������
	Using Lint to Analyze Your Layouts���

	To-Do List Example�������������������������
	Introducing Fragments����������������������������
	Creating New Fragments�����������������������������
	The Fragment Lifecycle�����������������������������
	Fragment-Specific Lifecycle Events���
	Fragment States����������������������

	Introducing the Fragment Manager���������������������������������������
	Adding Fragments to Activities�������������������������������������
	Using Fragment Transactions����������������������������������
	Adding, Removing, and Replacing Fragments��
	Using the Fragment Manager to Find Fragments���
	Populating Dynamic Activity Layouts with Fragments���
	Fragments and the Back Stack�����������������������������������
	Animating Fragment Transactions��������������������������������������

	Interfacing Between Fragments and Activities���
	Fragments Without User Interfaces��
	Android Fragment Classes�������������������������������
	Using Fragments for Your To-Do List��

	The Android Widget Toolbox���������������������������������
	Creating New Views�������������������������
	Modifying Existing Views�������������������������������
	Customizing Your To-Do List����������������������������������

	Creating Compound Controls���������������������������������
	Creating Simple Compound Controls Using Layouts��
	Creating Custom Views����������������������������
	Creating a New Visual Interface��������������������������������������
	Handling User Interaction Events���������������������������������������
	Supporting Accessibility in Custom Views���
	Creating a Compass View Example��������������������������������������

	Using Custom Controls����������������������������

	Introducing Adapters���������������������������
	Introducing Some Native Adapters���������������������������������������
	Customizing the Array Adapter������������������������������������
	Using Adapters to Bind Data to a View��
	Customizing the To-Do List Array Adapter���
	Using the Simple Cursor Adapter��������������������������������������

	Chapter 5: Intents and Broadcast Receivers
	Introducing Intents��������������������������
	Using Intents to Launch Activities���
	Explicitly Starting New Activities���
	Implicit Intents and Late Runtime Binding��
	Determining If an Intent Will Resolve��
	Returning Results from Activities��
	Native Android Actions�����������������������������

	Introducing Linkify��������������������������
	Native Linkify Link Types��������������������������������
	Creating Custom Link Strings�����������������������������������
	Using the Match Filter�����������������������������
	Using the Transform Filter���������������������������������

	Using Intents to Broadcast Events��
	Broadcasting Events with Intents���������������������������������������
	Listening for Broadcasts with Broadcast Receivers��
	Broadcasting Ordered Intents�����������������������������������
	Broadcasting Sticky Intents����������������������������������

	Introducing the Local Broadcast Manager��
	Introducing Pending Intents����������������������������������

	Creating Intent Filters and Broadcast Receivers��
	Using Intent Filters to Service Implicit Intents���
	How Android Resolves Intent Filters��
	Finding and Using Intents Received Within an Activity��
	Passing on Responsibility��������������������������������
	Selecting a Contact Example����������������������������������

	Using Intent Filters for Plug-Ins and Extensibility��
	Supplying Anonymous Actions to Applications��
	Discovering New Actions from Third-Party Intent Receivers��
	Incorporating Anonymous Actions as Menu Items��

	Listening for Native Broadcast Intents���
	Monitoring Device State Changes Using Broadcast Intents��
	Listening for Battery Changes������������������������������������
	Listening for Connectivity Changes���
	Listening for Docking Changes������������������������������������

	Managing Manifest Receivers at Run Time��

	Chapter 6: Using Internet Resources
	Downloading and Parsing Internet Resources���
	Connecting to an Internet Resource���
	Parsing XML Using the XML Pull Parser��
	Creating an Earthquake Viewer������������������������������������

	Using the Download Manager���������������������������������
	Downloading Files������������������������
	Customizing Download Manager Notifications���
	Specifying a Download Location�������������������������������������
	Cancelling and Removing Downloads��
	Querying the Download Manager������������������������������������

	Using Internet Services������������������������������
	Connecting to Google App Engine��������������������������������������
	Best Practices for Downloading Data Without Draining the Battery���

	Chapter 7: Files, Saving State, and Preferences
	Saving Simple Application Data�������������������������������������
	Creating and Saving Shared Preferences���
	Retrieving Shared Preferences������������������������������������
	Creating a Settings Activity for the Earthquake Viewer���
	Introducing the Preference Framework and the Preference Activity���
	Defining a Preference Screen Layout in XML���
	Native Preference Controls���������������������������������
	Using Intents to Import System Preferences into Preference Screens���

	Introducing the Preference Fragment��
	Defining the Preference Fragment Hierarchy Using Preference Headers��
	Introducing the Preference Activity��
	Backward Compatibility and Preference Screens��
	Finding and Using the Shared Preferences Set by Preference Screens���
	Introducing On Shared Preference Change Listeners��

	Creating a Standard Preference Activity for the Earthquake Viewer��
	Persisting the Application Instance State��
	Saving Activity State Using Shared Preferences���
	Saving and Restoring Activity Instance State Using the Lifecycle Handlers��
	Saving and Restoring Fragment Instance State Using the Lifecycle Handlers��

	Including Static Files as Resources��
	Working with the File System�����������������������������������
	File-Management Tools����������������������������
	Using Application-Specific Folders to Store Files��
	Creating Private Application Files���
	Using the Application File Cache���������������������������������������
	Storing Publicly Readable Files��������������������������������������

	Chapter 8: Databases and Content Providers
	Introducing Android Databases������������������������������������
	SQLite Databases�����������������������
	Content Providers������������������������

	Introducing SQLite�������������������������
	Content Values and Cursors���������������������������������
	Working with SQLite Databases������������������������������������
	Introducing the SQLiteOpenHelper���������������������������������������
	Opening and Creating Databases Without the SQLite Open Helper��
	Android Database Design Considerations���
	Querying a Database��������������������������
	Extracting Values from a Cursor��������������������������������������
	Adding, Updating, and Removing Rows��
	Inserting Rows���������������������
	Updating Rows��������������������
	Deleting Rows��������������������

	Creating Content Providers���������������������������������
	Registering Content Providers������������������������������������
	Publishing Your Content Provider’s URI Address���
	Creating the Content Provider’s Database���
	Implementing Content Provider Queries��
	Content Provider Transactions������������������������������������
	Storing Files in a Content Provider��
	A Skeleton Content Provider Implementation���

	Using Content Providers������������������������������
	Introducing the Content Resolver���������������������������������������
	Querying Content Providers���������������������������������
	Querying for Content Asynchronously Using the Cursor Loader��
	Introducing Loaders��������������������������
	Using the Cursor Loader������������������������������

	Adding, Deleting, and Updating Content���
	Inserting Content������������������������
	Deleting Content�����������������������
	Updating Content�����������������������

	Accessing Files Stored in Content Providers��
	Creating a To-Do List Database and Content Provider��

	Adding Search to Your Application��
	Making Your Content Provider Searchable��
	Creating a Search Activity for Your Application��
	Making Your Search Activity the Default Search Provider for Your Application���
	Performing a Search and Displaying the Results���

	Using the Search View Widget�����������������������������������
	Supporting Search Suggestions from a Content Provider��
	Surfacing Search Results in the Quick Search Box���

	Creating a Searchable Earthquake Content Provider��
	Creating the Content Provider������������������������������������
	Using the Earthquake Provider������������������������������������
	Searching the Earthquake Provider��

	Native Android Content Providers���������������������������������������
	Using the Media Store Content Provider���
	Using the Contacts Contract Content Provider���
	Introducing the Contacts Contract Content Provider���
	Reading Contact Details������������������������������
	Creating and Picking Contacts Using Intents��
	Modifying and Augmenting Contact Details Directly��

	Using the Calendar Content Provider��
	Querying the Calendar����������������������������
	Creating and Editing Calendar Entries Using Intents��
	Modifying Calendar Entries Directly��

	Chapter 9: Working in the Background
	Introducing Services���������������������������
	Creating and Controlling Services��
	Creating Services������������������������
	Executing a Service and Controlling Its Restart Behavior���
	Starting and Stopping Services�������������������������������������
	Self-Terminating Services��������������������������������

	Binding Services to Activities�������������������������������������
	An Earthquake-Monitoring Service Example���
	Creating Foreground Services�����������������������������������

	Using Background Threads�������������������������������
	Using AsyncTask to Run Asynchronous Tasks��
	Creating New Asynchronous Tasks��������������������������������������
	Running Asynchronous Tasks���������������������������������

	Introducing the Intent Service�������������������������������������
	Introducing Loaders��������������������������
	Manual Thread Creation and GUI Thread Synchronization��

	Using Alarms�������������������
	Creating, Setting, and Canceling Alarms��
	Setting Repeating Alarms�������������������������������
	Using Repeating Alarms to Schedule Network Refreshes���

	Using the Intent Service to Simplify the Earthquake Update Service���

	Chapter 10: Expanding the User Experience
	Introducing the Action Bar���������������������������������
	Customizing the Action Bar���������������������������������
	Modifying the Icon and Title Text��
	Customizing the Background���������������������������������
	Enabling the Split Action Bar Mode���

	Customizing the Action Bar to Control Application Navigation Behavior��
	Configuring Action Bar Icon Navigation Behavior��
	Using Navigation Tabs����������������������������
	Using Drop-Down Lists for Navigation���
	Using Custom Navigation Views������������������������������������

	Introducing Action Bar Actions�������������������������������������

	Adding an Action Bar to the Earthquake Monitor���
	Creating and Using Menus and Action Bar Action Items���
	Introducing the Android Menu System��
	Creating a Menu����������������������
	Specifying Action Bar Actions������������������������������������
	Menu Item Options������������������������
	Adding Action Views and Action Providers���
	Adding Menu Items from Fragments���������������������������������������
	Defining Menu Hierarchies in XML���������������������������������������
	Updating Menu Items Dynamically��������������������������������������
	Handling Menu Selections�������������������������������
	Introducing Submenus and Context Menus���
	Creating Submenus������������������������
	Using Context Menus and Popup Menus��

	Refreshing the Earthquake Monitor��
	Going Full Screen������������������������
	Introducing Dialogs��������������������������
	Creating a Dialog������������������������
	Using the Alert Dialog Class�����������������������������������
	Using Specialized Input Dialogs��������������������������������������
	Managing and Displaying Dialogs Using Dialog Fragments���
	Managing and Displaying Dialogs Using Activity Event Handlers��
	Using Activities as Dialogs����������������������������������

	Let’s Make a Toast�������������������������
	Customizing Toasts�������������������������
	Using Toasts in Worker Threads�������������������������������������

	Introducing Notifications��������������������������������
	Introducing the Notification Manager���
	Creating Notifications�����������������������������
	Creating a Notification and Configuring the Status Bar Display���
	Using the Default Notification Sounds, Lights, and Vibrations��
	Making Sounds��������������������
	Vibrating the Device���������������������������
	Flashing the Lights��������������������������
	Using the Notification Builder�������������������������������������

	Setting and Customizing the Notification Tray UI���
	Using the Standard Notification UI���
	Creating a Custom Notification UI��
	Customizing the Ticker View����������������������������������

	Configuring Ongoing and Insistent Notifications��
	Triggering, Updating, and Canceling Notifications��

	Adding Notifications and Dialogs to the Earthquake Monitor���

	Chapter 11: Advanced User Experience
	Designing for Every Screen Size and Density��
	Resolution Independence������������������������������
	Using Density-Independent Pixels���������������������������������������
	Resource Qualifiers for Pixel Density��

	Supporting and Optimizing for Different Screen Sizes���
	Creating Scalable Layouts��������������������������������
	Optimizing Layouts for Different Screen Types��
	Specifying Supported Screen Sizes��

	Creating Scalable Graphics Assets��
	Color Drawables����������������������
	Shape Drawables����������������������
	Gradient Drawables�������������������������
	NinePatch Drawables��������������������������

	Creating Optimized, Adaptive, and Dynamic Designs��
	Testing, Testing, Testing��������������������������������
	Using Emulator Skins���������������������������
	Testing for Custom Resolutions and Screen Sizes��

	Ensuring Accessibility�����������������������������
	Supporting Navigation Without a Touch Screen���
	Providing a Textual Description of Each View���

	Introducing Android Text-to-Speech���
	Using Speech Recognition�������������������������������
	Using Speech Recognition for Voice Input���
	Using Speech Recognition for Search��

	Controlling Device Vibration�����������������������������������
	Working with Animations������������������������������
	Tweened View Animations������������������������������
	Creating Tweened View Animations���������������������������������������
	Applying Tweened Animations����������������������������������
	Using Animation Listeners��������������������������������
	Animating Layouts and View Groups��

	Creating and Using Frame-by-Frame Animations���
	Interpolated Property Animations���������������������������������������
	Creating Property Animations�����������������������������������
	Creating Property Animation Sets���������������������������������������
	Using Animation Listeners��������������������������������

	Enhancing Your Views���������������������������
	Advanced Canvas Drawing������������������������������
	What Can You Draw?�������������������������
	Getting the Most from Your Paint���������������������������������������
	Improving Paint Quality with Anti-Aliasing���
	Canvas Drawing Best Practice�����������������������������������
	Advanced Compass Face Example������������������������������������

	Hardware Acceleration����������������������������
	Managing Hardware Acceleration Use in Your Applications��
	Checking If Hardware Acceleration Is Enabled���

	Introducing the Surface View�����������������������������������
	When to Use a Surface View���������������������������������
	Creating Surface Views�����������������������������
	Creating 3D Views with a Surface View��

	Creating Interactive Controls������������������������������������
	Using the Touch Screen�����������������������������
	Using the Device Keys, Buttons, and D-Pad��
	Using the On Key Listener��������������������������������
	Using the Trackball��������������������������

	Advanced Drawable Resources����������������������������������
	Composite Drawables��������������������������
	Transformative Drawables�������������������������������
	Layer Drawables����������������������
	State List Drawables���������������������������
	Level List Drawables���������������������������

	Copy, Paste, and the Clipboard�������������������������������������
	Copying Data to the Clipboard������������������������������������
	Pasting Clipboard Data�����������������������������

	Chapter 12: Hardware Sensors
	Using Sensors and the Sensor Manager���
	Supported Android Sensors��������������������������������
	Introducing Virtual Sensors����������������������������������
	Finding Sensors����������������������
	Monitoring Sensors�������������������������
	Interpreting Sensor Values���������������������������������

	Monitoring a Device’s Movement and Orientation���
	Determining the Natural Orientation of a Device��
	Introducing Accelerometers���������������������������������
	Detecting Acceleration Changes�������������������������������������
	Creating a Gravitational Force Meter���
	Determining a Device’s Orientation���
	Understanding the Standard Reference Frame���
	Calculating Orientation Using the Accelerometer and Magnetic Field Sensors���
	Remapping the Orientation Reference Frame��
	Determining Orientation Using the Deprecated Orientation Sensor��

	Creating a Compass and Artificial Horizon��
	Introducing the Gyroscope Sensor���������������������������������������

	Introducing the Environmental Sensors��
	Using the Barometer Sensor���������������������������������
	Creating a Weather Station���������������������������������

	Chapter 13: Maps, Geocoding, and Location-Based Services
	Using Location-Based Services������������������������������������
	Using the Emulator with Location-Based Services��
	Updating Locations in Emulator Location Providers��
	Configuring the Emulator to Test Location-Based Services���

	Selecting a Location Provider������������������������������������
	Finding Location Providers���������������������������������
	Finding Location Providers by Specifying Criteria��
	Determining Location Provider Capabilities���

	Finding Your Current Location������������������������������������
	Location Privacy�����������������������
	Finding the Last Known Location��������������������������������������
	Where Am I Example�������������������������
	Refreshing the Current Location��������������������������������������
	Tracking Your Location in Where Am I���
	Requesting a Single Location Update��

	Best Practice for Location Updates���
	Monitoring Location Provider Status and Availability���

	Using Proximity Alerts�����������������������������
	Using the Geocoder�������������������������
	Reverse Geocoding������������������������
	Forward Geocoding������������������������
	Geocoding Where Am I���������������������������

	Creating Map-Based Activities������������������������������������
	Introducing Map View and Map Activity��
	Getting Your Maps API Key��������������������������������
	Getting Your Development/Debugging MD5 Fingerprint���
	Getting your Production/Release MD5 Fingerprint��

	Creating a Map-Based Activity������������������������������������
	Maps and Fragments�������������������������
	Configuring and Using Map Views��������������������������������������
	Using the Map Controller�������������������������������
	Mapping Where Am I�������������������������
	Creating and Using Overlays����������������������������������
	Creating New Overlays����������������������������
	Introducing Projections������������������������������
	Drawing on the Overlay Canvas������������������������������������
	Handling Map Tap Events������������������������������
	Adding and Removing Overlays�����������������������������������
	Annotating Where Am I����������������������������

	Introducing My Location Overlay��������������������������������������
	Introducing Itemized Overlays and Overlay Items��
	Pinning Views to the Map and Map Positions���

	Mapping Earthquakes Example����������������������������������

	Chapter 14: Invading the Home Screen
	Introducing Home Screen Widgets��������������������������������������
	Creating App Widgets���������������������������
	Creating the Widget XML Layout Resource��
	Widget Design Guidelines�������������������������������
	Supported Widget Views and Layouts���

	Defining Your Widget Settings������������������������������������
	Creating Your Widget Intent Receiver and Adding It to the Application Manifest���
	Introducing the App Widget Manager and Remote Views��
	Creating and Manipulating Remote Views���
	Applying Remote Views to Running App Widgets���
	Using Remote Views to Add Widget Interactivity���

	Refreshing Your Widgets������������������������������
	Using the Minimum Update Rate������������������������������������
	Using Intents��������������������
	Using Alarms�������������������

	Creating and Using a Widget Configuration Activity���

	Creating an Earthquake Widget������������������������������������
	Introducing Collection View Widgets��
	Creating Collection View Widget Layouts��
	Creating the Remote Views Service��
	Creating a Remote Views Factory��������������������������������������
	Populating Collection View Widgets Using a Remote Views Service��
	Adding Interactivity to the Items Within a Collection View Widget��
	Binding Collection View Widgets to Content Providers���
	Refreshing Your Collection View Widgets��
	Creating an Earthquake Collection View Widget���

	Introducing Live Folders�������������������������������
	Creating Live Folders����������������������������
	The Live Folder Content Provider���������������������������������������
	The Live Folder Activity�������������������������������

	Creating an Earthquake Live Folder���

	Surfacing Application Search Results Using the Quick Search Box��
	Surfacing Search Results to the Quick Search Box���
	Adding the Earthquake Example Search Results to the Quick Search Box���

	Creating Live Wallpaper������������������������������
	Creating a Live Wallpaper Definition Resource��
	Creating a Wallpaper Service�����������������������������������
	Creating a Wallpaper Service Engine��

	Chapter 15: Audio, Video, and Using the Camera
	Playing Audio and Video������������������������������
	Introducing the Media Player�����������������������������������
	Preparing Audio for Playback�����������������������������������
	Initializing Audio Content for Playback��

	Preparing Video for Playback�����������������������������������
	Playing Video Using the Video View���
	Creating a Surface for Video Playback��

	Controlling Media Player Playback��
	Managing Media Playback Output�������������������������������������
	Responding to the Volume Controls��
	Responding to the Media Playback Controls��
	Requesting and Managing Audio Focus��
	Pausing Playback When the Output Changes���
	Introducing the Remote Control Client��

	Manipulating Raw Audio�����������������������������
	Recording Sound with Audio Record��
	Playing Sound with Audio Track�������������������������������������

	Creating a Sound Pool����������������������������
	Using Audio Effects��������������������������
	Using the Camera for Taking Pictures���
	Using Intents to Take Pictures�������������������������������������
	Controlling the Camera Directly��������������������������������������
	Camera Properties������������������������
	Camera Settings and Image Parameters���
	Controlling Auto Focus, Focus Areas, and Metering Areas��
	Using the Camera Preview�������������������������������
	Detecting Faces and Facial Features��
	Taking a Picture�����������������������

	Reading and Writing JPEG EXIF Image Details��

	Recording Video����������������������
	Using Intents to Record Video������������������������������������
	Using the Media Recorder to Record Video���
	Configuring the Video Recorder�������������������������������������
	Previewing the Video Stream����������������������������������
	Controlling the Recording��������������������������������
	Creating a Time-Lapse Video����������������������������������

	Using Media Effects��������������������������
	Adding Media to the Media Store��������������������������������������
	Inserting Media Using the Media Scanner��
	Inserting Media Manually�������������������������������

	Chapter 16: Bluetooth, NFC, Networks, and Wi-Fi
	Using Bluetooth����������������������
	Managing the Local Bluetooth Device Adapter��
	Being Discoverable and Remote Device Discovery���
	Managing Device Discoverability��������������������������������������
	Discovering Remote Devices���������������������������������

	Bluetooth Communications�������������������������������
	Opening a Bluetooth Server Socket Listener���
	Selecting Remote Bluetooth Devices for Communications��
	Opening a Client Bluetooth Socket Connection���
	Transmitting Data Using Bluetooth Sockets��

	Managing Network and Internet Connectivity���
	Introducing the Connectivity Manager���
	Supporting User Preferences for Background Data Transfers��
	Finding and Monitoring Network Connectivity��

	Managing Wi-Fi���������������������
	Monitoring Wi-Fi Connectivity������������������������������������
	Monitoring Active Wi-Fi Connection Details���
	Scanning for Hotspots����������������������������
	Managing Wi-Fi Configurations������������������������������������
	Creating Wi-Fi Network Configurations��

	Transferring Data Using Wi-Fi Direct���
	Initializing the Wi-Fi Direct Framework��
	Enabling Wi-Fi Direct and Monitoring Its Status��
	Discovering Peers������������������������
	Connecting with Peers����������������������������
	Transferring Data Between Peers��������������������������������������

	Near Field Communication�������������������������������
	Reading NFC Tags�����������������������
	Using the Foreground Dispatch System���
	Introducing Android Beam�������������������������������
	Creating Android Beam Messages�������������������������������������
	Assigning the Android Beam Payload���
	Receiving Android Beam Messages��������������������������������������

	Chapter 17: Telephony and SMS
	Hardware Support for Telephony�������������������������������������
	Marking Telephony as a Required Hardware Feature���
	Checking for Telephony Hardware��������������������������������������

	Using Telephony����������������������
	Initiating Phone Calls�����������������������������
	Replacing the Native Dialer����������������������������������
	Accessing Telephony Properties and Phone State���
	Reading Phone Device Details�����������������������������������
	Reading Network Details������������������������������
	Reading SIM Details��������������������������
	Reading Data Connection and Transfer State Details���

	Monitoring Changes in Phone State Using the Phone State Listener���
	Monitoring Incoming Phone Calls��������������������������������������
	Tracking Cell Location Changes�������������������������������������
	Tracking Service Changes�������������������������������
	Monitoring Data Connectivity and Data Transfer Status Changes��

	Using Intent Receivers to Monitor Incoming Phone Calls���

	Introducing SMS and MMS������������������������������
	Using SMS and MMS in Your Application��
	Sending SMS and MMS from Your Application Using Intents��
	Sending SMS Messages Using the SMS Manager���
	Sending Text Messages����������������������������
	Tracking and Confirming SMS Message Delivery���
	Conforming to the Maximum SMS Message Size���
	Sending Data Messages����������������������������

	Listening for Incoming SMS Messages��
	Simulating Incoming SMS Messages in the Emulator���
	Handling Data SMS Messages���������������������������������

	Emergency Responder SMS Example��������������������������������������
	Automating the Emergency Responder���

	Introducing SIP and VOIP�������������������������������

	Chapter 18: Advanced Android Development
	Paranoid Android�����������������������
	Linux Kernel Security����������������������������
	Introducing Permissions������������������������������
	Declaring and Enforcing Permissions��
	Enforcing Permissions when Broadcasting Intents��

	Introducing Cloud to Device Messaging��
	C2DM Restrictions������������������������
	Signing Up to Use C2DM�����������������������������
	Registering Devices with a C2DM Server���
	Sending C2DM Messages to Devices���������������������������������������
	Receiving C2DM Messages������������������������������

	Implementing Copy Protection Using the License Verification Library��
	Installing the License Verification Library��
	Finding Your License Verification Public Key���
	Configuring Your License Validation Policy���
	Performing License Validation Checks���

	Introducing In-App Billing���������������������������������
	In-App Billing Restrictions����������������������������������
	Installing the In-App Billing Library��
	Finding Your Public Key and Defining Your Purchasable Items��
	Initiating In-App Billing Transactions���
	Handling In-App Billing Purchase Request Responses���

	Using Wake Locks�����������������������
	Using AIDL to Support Inter-Process Communication for Services���
	Implementing an AIDL Interface�������������������������������������
	Making Classes Parcelable��������������������������������
	Creating an AIDL Service Definition��
	Implementing and Exposing the AIDL Service Definition��

	Dealing with Different Hardware and Software Availability��
	Specifying Hardware as Required��������������������������������������
	Confirming Hardware Availability���������������������������������������
	Building Backward-Compatible Applications��
	Parallel Activities��������������������������
	Interfaces and Fragments�������������������������������

	Optimizing UI Performance with Strict Mode���

	Chapter 19: Monetizing, Promoting, and Distributing Applications
	Signing and Publishing Applications��
	Signing Applications Using the Export Android Application Wizard���

	Distributing Applications��������������������������������
	Introducing the Google Play Store��
	Getting Started on the Google Play Store���
	Publishing Applications������������������������������
	Application Reports Within the Developer Console���
	Accessing Application Error Reports��

	An Introduction to Monetizing Your Applications��
	Application Marketing, Promotion, and Distribution Strategies��
	Application Launch Strategies������������������������������������
	Promotion Within the Google Play Store���
	Internationalization���������������������������

	Analytics and Referral Tracking��������������������������������������
	Using Google Analytics for Mobile Applications���
	Referral Tracking with Google Analytics��

	Index������������

