

Programming React Native

Dotan Nahum
This book is for sale at http://leanpub.com/programming-react-native

This version was published on 2016-07-01

This is a Leanpub book. Leanpub empowers authors and publishers with
the Lean Publishing process. Lean Publishing is the act of publishing an
in-progress ebook using lightweight tools and many iterations to get
reader feedback, pivot until you have the right book and build traction
once you do.

© 2015 - 2016 Dotan Nahum

http://leanpub.com/programming-react-native
http://leanpub.com
http://leanpub.com/manifesto

Contents

About Me . 1

About This Book . 3
How To Build a Book for Bleeding Edge? 3
How To Read This Book? . 4

Introduction . 5
About Me . 5
The Revolution Has Begun . 5
Cross Platform Mobile . 5
React . 5
React Native . 5
Why This Time? . 5

Book Style . 5
Intended Audience . 5
What This Book Is . 5
What This Book Is Not . 5

Breezing Through React . 5

Getting Started . 6
Project Layout . 6
The React Native Project . 6
Running Your Project . 7
Making Changes . 9

Bundling Your App . 13
The Native iOS Project . 14
The Native Android Project . 17
Tooling . 19
Simulator and Emulator Developer Tools 19
Native Debugging . 23

Summary . 25

Building React Native Components 26
A Squashed History of Javascript Frameworks 26
React.js . 27
React Components . 27
Completing a Kata . 28

CONTENTS

The People App . 36
Features . 36
Product . 36
Technical . 52

Potential (or: Homework) . 54
Summary . 54

Walkthrough . 55
Walkthough Style . 55
Technical Choices . 55
Javascript . 56
React . 56
Flux . 56
Folder Structure . 57
Testing . 58

Dissecting Our First Screen . 58
Mobile List Views . 61

The Groups Screen . 63
Master-Detail . 65

ListView and Our Master View . 67
The Store . 71
Bootstrapping and Navigation . 75
Styling . 81
The Detail Screen . 83
The People (Contacts) Screen . 93
Making Reusable Components . 98
Using Community Components .100
Linking iOS projects .100
Linking Android Projects .105
Javascript Components .108

Summary .109

Navigation and Routing .110
Why navigation .110
Why Navigation is Scary .110
Navigation in React Native .111
Navigator vs. NavigatorIOS .112
Navigator .112
Wiring Navigator .112
ToolbarAndroid and Navigator.NavigationBar114
ToolbarAndroid .115
Android’s Back Button .118

NavigatorIOS .119
Passing Data .121
Patterns .122
Search in Navbar .122

CONTENTS

Custom Content in Title .123
Routed Navbar Content .123
Reactive Navbar Content .124
Getting Input .124
Spreading Props .125

Summary .125

Going Native: Native UI .126
Why go Native? .126
Performance .126
Making use of Existing Work .127
Better Tooling .127
Custom UI and Complex UI Work127
Wrapping Existing Components .127
A General Escape Hatch .127

When Not to Go Native? .128
The Building Blocks of a Custom View128
The ViewManager .129
Our Example: MessagesView .130
Breakdown: iOS .132
MessagesView .132
RCTMessagesViewManager .134
messagesview.ios.js .138
Breakdown: Android .143
MessagesView .143
MessagesViewManager .148
NativeControlsPackage .150
messagesview.android.js .152

Using MessagesView .155
Summary .156

Going Native: Native Modules .157
Our Example: Cryptboard .157
iOS Breakdown .158
Android Breakdown .160
Cryptboard.js .162
Bridging Promises .165
Using a Single Codebase .166

Summary .167

About Me
My name is Dotan Nahum, andmy story with computing started somewhere
around 95’.
While I had an Apple IIe since early childhood, I really started out at 14, in
the then very vibrant demoscene1. I got to join a few groups and found
one group, and most of my coding was in Assembly and C over crappy
14k internet connection, and an ISP ccount that I managed to share with
someone. I spent my days building game mods (when it wasn’t that popular
like today) and nights debugging other people’s painfully opaque assembly
code using hard-core tools, like SoftICE; I guess this was what forged my
personality as a hacker.
During the dotcom boom I did work in C, Perl, Python, VB, Java, to end up
deeply in .NET in 2005, building a .NET based startup in 2007 and finally
joining an enterprise to be the tech lead at around 2008. If you check, in a
hindsight, that timeline of technologies matches each technology’s tipping
point (sounds unbelievable, but once, Java was very unusable).
From there, I moved to the Facebook-era web boom, and joined an Adtech
company to serve as the infrastructure one-man-show. With the years, I
joined a division that built a browser, formed a division that built a rich
content recommendation-based Android lock-screen which competed with
Facebook Home (we started way before Facebook Home), and 3 years after
that, I moved to be the CTO of a company building a platform for DIY mobile
apps: a sort-of Wix for native apps.
Throughout that time, I kept doing open-source2. I started at around 99’,
when most people didn’t know what that was.
The reason I’m telling you all of this is that I spent all of my good years
and free time, for better or worst, getting to be familiar with the high-level
and low-level of an enormous set of technologies whether it is backend,
desktop, or mobile.
Today, you find me buried in another stack of technologies: React and React
Native. It’s not the first cross-platform silver-bullet mobile development
stack I’ve tried either. The mobile platform I’ve talked about being a CTO
of? That’s built on Cordova, and later Native iOS and Native Android, and
it generated around 2 million mobile apps to date. I’ve tried Xamarin,
Appcelerator, and Ruby Motion. I’ve also tried CrossWalk and Cordova. I’ve
also used Cocos-2dx for gaming. And Unity.

1
https://en.wikipedia.org/wiki/Demoscene

2https://github.com/jondot

1

https://en.wikipedia.org/wiki/Demoscene
https://github.com/jondot
https://en.wikipedia.org/wiki/Demoscene
https://github.com/jondot

About Me 2

You want to know what was the general theme of these all? Simply, one of
these three:

1. Bad performance
2. Bad API, docs, and/or support
3. Mismatch and friction against upstreammobile SDK (Android and iOS)
4. Broken or stale samples, APIs

Off the bat, React Native in its 0.19 version, and less than a year of being
cross-platform (i.e. when React Native for Android came about), already
does better on all of these accounts.

About This Book
Writing a book about a bleeding-edge technology is difficult. Some one said:
“If you build with bleeding edge, expect there to be some blood spilt”. While
I wouldn’t go that far, I would say this:

• React Native updated 6 versions while writing this book (several
months)

• The first version of React Native had a completely different project
structure, and the book samples looked completely different

• APIs were broken each time and again, and the samples got rewritten
until they felt a little dirty

At first, this book looked completely different. It used to look like this:

• Introduction
• React principles
• React Native getting started
• A step-by-step build out of the showcase app
• Advanced topics

I soon found out that this structure is highly unreliable, since changes
in React Native and the Javascript ecosystem doomed it to change very
frequently.

How To Build a Book for Bleeding Edge?

Well, this is what I did, eventually.

1. Do away with step-by-step and assume readers are coming with
experience and have a hacker mentality. From my experience writing
this book, I can definitely say that the beginner “walkthrough” and
“learning” type books that are out there right now, by now, are
probably worth nothing (unless they get updated every two weeks).

2. Throw away every Javascript component and library that didn’t di-
rectly serve the purpose of React Native out the door. This meant:

3. Testing doesn’t appear in this book (at the time of writing the way
to test is still being invented. Currently people use Mocha, a custom
React Native mock components, and Enzyme)

3

About This Book 4

4. A Flux framework is not included, however the codebase clearly
resembles a flavor-less Flux

5. Focus on: why, context, how, and patterns. Focus on things that will
remain, while the bleeding edge dust settle even a year from now.

6. Invest more time in advanced, low-level topics, because these will
change less frequently than user-facing API surface-area.

How To Read This Book?

With that out of the way, you can read this book cover to cover, or you
can skim it, or you can just read the advanced chapters and rely on the
various up-to-date tutorials out there that go over the basics of building a
React Native. I maintain the Awesome-React-Native3 list which hold many
of these, so that you can just go that and pick a tutorial or a sample app
you like.

3https://github.com/jondot/awesome-react-native

https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native

Introduction
About Me

The Revolution Has Begun

Cross Platform Mobile

React

React Native

Why This Time?

Book Style

Intended Audience

What This Book Is

What This Book Is Not

Breezing Through React

5

Getting Started
Project Layout

React Native is a cross-platform SDK for mobile development. As such,
you’ll need to know how a project that the React Native CLI generates
looks like in terms of key files, folders and so on; but you’ll undoubtedly
also need to get to know the native sides specific to each platform; iOS and
Android, and you can be certain that each of these are completely different
in terms of build tooling, dependency management, resources management
and project conventions.
We’ll try to cover all of these here in a sufficient way that will carry you
through your future React Native projects. My advise to you, as a React
Native programmer is of acceptance. For example, if you are originally an
iOS developer, be tolerant towards the Android development environment,
tooling and project structure, and the other way around. It’s not easy,
because some things are built better than others and you might have grown
accustomed to using the better things your entire career.

The React Native Project

First, take a moment to set up your environment according to the latest
best practices4 on the official React Native documentation site. That will
walk you through setting up Node.js, the Android SDK, watchman, flow, and
additional tools that make the React Native stack great for development.
Next, to start the discussion, let’s generate a React Native project that we’ll
eventually throw away:

1 $ react-native init projectlayout

Wait a bit, and we’ll get the following superstructure:

4https://facebook.github.io/react-native/docs/getting-started.html

6

https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html

Getting Started 7

1 .

2 ├── android/

3 ├── ios/

4 ├── index.android.js

5 ├── index.ios.js

6 └── package.json

On the first level of the project tree there is no complexity at all, and I
think this is great. React Native does not force any convention or project
structure and only exposes the bare essentials such as our package.json

which is used for dependency and project managment via npm, and the two
starting points for iOS and Android - index.ios.js and index.android.js. Neatly
besides these an android/ and ios/ folders are placed and we’ll touch these
very shortly.
To read up on Javascript dependency management with npm look at this5 and
or a more friendly getting started6 guide.
Both index.ios.js and index.android.js are hardwired into each native project’s
bootstrap code, and each platform knows how to filter its own platform-
specific code by the .ios or .android infixes. In other words, a file tagged
with file.ios.js will never be visible to Android when importing file and
the other way around for the .android infix.
Now would be a good time to read more about Platform Specific Code7 at
the official documentation site.

Where possible, I will refer you to the official documentation. There
is no point re-articulating something that is already perfectly and
freely written elsewhere. Being an indy book allows me to make
the content here to be just about the subject and avoid resorting to
page-inflating tactics the big publishers use.

Running Your Project

By now, you can run both Android and iOS projects from the command line:

1 $ react-native run-ios

For Android, make sure your ANDROID_HOME environment variable is already
set for the session or the user and run like so:

5https://docs.npmjs.com/files/package.json
6https://docs.npmjs.com/getting-started/using-a-package.json
7https://facebook.github.io/react-native/docs/platform-specific-code.html#content

https://docs.npmjs.com/files/package.json
https://docs.npmjs.com/getting-started/using-a-package.json
https://facebook.github.io/react-native/docs/platform-specific-code.html#content
https://docs.npmjs.com/files/package.json
https://docs.npmjs.com/getting-started/using-a-package.json
https://facebook.github.io/react-native/docs/platform-specific-code.html#content

Getting Started 8

1 $ export ANDROID_HOME=<your-android-home-path>

2 $ react-native run-android

To get a hold of your Android home path, you might need to recall where
you installed the Android SDK distribution to if you did it manually, or if you
are using Android Studio take a look at File->Project Structure->Android SDK.
Next up, you should be able to change Javascript code and reload easily with
ctrl-cmd-Z (shake gesture) on iOS simulator which opens the debug action
sheet, or the menu button on Android which does the same. For now, also
feel free to explore the rest of this menu, we’ll get back to it further along.

The Development Menu

If you’ve noticed, you didn’t compile or run any native code, and if you
played with the “Live Reload” option (you should), then you get to see your
app automatically reflect changes in your code once you hit “Save” in your
editor. This magic happens because in development mode React Native

Getting Started 9

communicates with a small packager server and is working in an “RPC8”
mode. This server that you might have noticed popping up uninvited every
time you run your project (don’t kill it!) watches your source files, and
communicates changes back to the native app that runs on your device
or simulator.

Making Changes

Now let’s fiddle a bit with the default generated project. Run your iOS
simulator like so:

1 $ react-native run-ios

This will take a bit, and you’ll see the iOS simulator fire up and a terminal
with the React Native packager pop up as well. You should see the
following:

8https://en.wikipedia.org/wiki/Remote_procedure_call

https://en.wikipedia.org/wiki/Remote_procedure_call
https://en.wikipedia.org/wiki/Remote_procedure_call

Getting Started 10

Now edit index.ios.js, locate the main component called projectlayout and
edit it so that you end up with this, essentially removing a bunch of
components:

1 class projectlayout extends Component {

2 render() {

3 return (

4 <View style={styles.container}>

5 <Text style={styles.welcome}>

6 Welcome to React Native!

7 </Text>

8 </View>

9);

10 }

11 }

Hit Cmd-R when you’re facing the iOS simulator to reload (or, even better
hit Ctrl-Cmd-Z and pick “Enable Live Reload”). When content reloaded, we’ll
end up with this:

Getting Started 11

Let’s see how this looks like from the iOS platform’s point of view. Is this
really native?
Go to your terminal and at your project working directory do this:

1 open ios/projectlayout.xcodeproj

Xcode will open up, now hit Cmd-R to run the same project via Xcode. After
the app runs on the iOS simulator, go back to Xcode and through the
main menu hit Debug -> View Debugging -> Capture View Hierarchy. After a couple
seconds you’ll end up with a 3D model of the view hierarchy, grab and tilt
it, and this is what we get:

Getting Started 12

Looks amazingly clean. From my experience there are plenty of chances
for a cross platform native SDK to really trash the view hierarchy:

• View abstractions made to make life easier for platform developers
- in this case you get a tree with meaningless wrapper and holder
components which the platform developers use to track the tree itself.
Doesn’t exist with React Native, and you get a raw, flat, tree which is
very important for performance.

• Logical abstractions made to make life easier for platform docu-
menters - in this case the platform makers choose to build their own
custom components and that you use these exclusively because it gives
them more control over how the platform performs at-large and also
easier documentation story. React Native doesn’t attempt to solve that
and gives you access to a limited set of controls and each platform’s
bare native components.

• Tree hierarchy errors - simply because such platform may generate
native code from your abstract Javascript code, it may do so without
much intelligence and generate huge obfuscated view trees. Again -

Getting Started 13

React Native doesn’t do that , more over it uses React to help compute
and render trees and diffs.

You’ll find that I’ll talk a lot about the X-factor that holds React Native
apart from every cross-platform mobile SDK that we’ve seen so far - that’s
because I’ve used quite a few of those and the scars still show. React Native
makes a real difference and we’ve just seen another one of these factors.

Bundling Your App

Not relevant for the immediate future, but very relevant for when you want
to ship your application, you don’t really want to rely on a local server when
you run on a real device on a user’s home network. Because of that, React
Native provides a command line utility to bundle your app for production
(or, offline) work:

1 $react-native bundle

2 Options:

3 --entry-file Path to the root JS file, either absolute or relative t\

4 o JS root [required]

5 --platform Either "ios" or "android"

6 --transformer Specify a custom transformer to be used (absolute path)\

7 [default: "/Users/Dotan/projects/\

8 programming-react-native-samples/projectlayout/node_modules/react-native/pack\

9 ager/transformer.js"]

10 --dev If false, warnings are disabled and the bundle is minif\

11 ied [default: true]

12 --prepack If true, the output bundle will use the Prepack format.\

13 [default: false]

14 --bridge-config File name of a a JSON export of __fbBatchedBridgeConfig\

15 . Used by Prepack. Ex. ./bridgeconfig.json

16 --bundle-output File name where to store the resulting bundle, ex. /tmp\

17 /groups.bundle [required]

18 --bundle-encoding Encoding the bundle should be written in (https://nodej\

19 s.org/api/buffer.html#buffer_buffer). [default: "utf8"]

20 --sourcemap-output File name where to store the sourcemap file for resulti\

21 ng bundle, ex. /tmp/groups.map

22 --assets-dest Directory name where to store assets referenced in the \

23 bundle

24 --verbose Enables logging \

25 [default: false]

You will use that tool to create your main.jsbundle which will be packaged
with your application binaries (ipa on iOS and apk on Android), so for iOS
for example - provide the following arguments: --platform ios, --entry-file

index.ios.js, and --bundle-output ios/main.jsbundle. Like so:

Getting Started 14

1 $ react-native bundle --entry-file index.ios.js --platform ios --bundle-outpu\

2 t ios/main.jsbundle

3 bundle: Created ReactPackager

4 bundle: start

5 bundle: finish

6 bundle: Writing bundle output to: ios/main.jsbundle

7 bundle: Closing client

8 Assets destination folder is not set, skipping...

9 bundle: Done writing bundle output

The same process holds for Android (of course, replace ios with android

where appropriate and make sure the bundle output goes into the Android
project).
Needless to say, running from the command line is very convenient and
creates a “zen” flow while developing, since not only you’re not bothered
with the slowness of handling a GUI (pointing and clicking) but you can also
automate command line tasks. However, there comes a time when you’ll
need some more fire power, to debug the native code, add your own native
code, or set up the application shell, resources or permissions. For all of
these, you’ll need to at least get to know each of your individual iOS or
Android projects and tooling.

The Native iOS Project

Below is a dump of the tree that our react-native init command generated
for the iOS part of our project.

1 ├── ios

2 │ ├── projectlayout

3 │ │ ├── AppDelegate.h

4 │ │ ├── AppDelegate.m

5 │ │ ├── Base.lproj

6 │ │ │ └── LaunchScreen.xib

7 │ │ ├── Images.xcassets

8 │ │ │ └── AppIcon.appiconset

9 │ │ │ └── Contents.json

10 │ │ ├── Info.plist

11 │ │ └── main.m

12 │ ├── projectlayout.xcodeproj

13 │ │ ├── project.pbxproj

14 │ │ └── xcshareddata

15 │ │ └── xcschemes

16 │ │ └── projectlayout.xcscheme

17 │ └── projectlayoutTests

Getting Started 15

18 │ ├── Info.plist

19 │ └── projectlayoutTests.m

Our main touch points will be AppDelegate.m for bootstrapping code (in
case we want to customize our loading mechanism, more on that later),
various plists and our xcassets for assets. As expected from a cross-platform
framework like React Native, there’s not much native surface area to
handle.

Xcode Project

The Xcode project layout does not map directly to the directory structure

Getting Started 16

we just reviewd. Xcode keeps a layer of metadata for that. As you can
see there’s the Libraries group which does not exist physically, but does
exist in the project layout within Xcode. Libraries is where you will add new
libraries from community (or own) projects that you want to use that have
a native part to them (we’ll see how to do this in the Using Community
Components subtopic), and main.jsbundle is a file that holds all of your
“compiled” application code statically when you want to ship your app to
production.
Let’s take a detour and view the bootstrapping code iOS uses in order to
load the actual Javascript application.

1 - (BOOL)application:(UIApplication *)application didFinishLaunchingWithOption\

2 s:(NSDictionary *)launchOptions

3 {

4 NSURL *jsCodeLocation;

5 jsCodeLocation = [NSURL URLWithString:@"http://localhost:8081/index.ios.bun\

6 dle?platform=ios&dev=true"];

7 // jsCodeLocation = [[NSBundle mainBundle] URLForResource:@"main" withExten\

8 sion:@"jsbundle"];

9

10 RCTRootView *rootView = [[RCTRootView alloc] initWithBundleURL:jsCodeLocati\

11 on

12 moduleName:@"projectlay\

13 out"

14 initialProperties:nil

15 launchOptions:launchOption\

16 s];

17

18 self.window = [[UIWindow alloc] initWithFrame:[UIScreen mainScreen].bounds];

19 UIViewController *rootViewController = [UIViewController new];

20 rootViewController.view = rootView;

21 self.window.rootViewController = rootViewController;

22 [self.window makeKeyAndVisible];

23 return YES;

24 }

25 @end

I’ve removed the very helpful comments from this file to save pages,
so please do find the time to read it verbatim from your own source
tree. This is a general application events module, designed to handle
application centric events such as didFinishLaunchingWithOptions here, and
events from notifications, background events and so on. React Native plugs
into didFinishLaunchingWithOptions and configures the main window and rootView.
The important part is the jsCodeLocation resolution. In our case, it is rigged
to an IP address, pointing to and assuming this is your local development

Getting Started 17

machine. In other instances this will be the actual bundle file we discussed
before, and if you like to keep things tidy you’ll want to make a compilation
target, environment variable, or pragma to switch between the two (such
as “development” and “release”). For now, keep it as is.
Other than that, if you’re a stranger to iOS, I recommend taking a day to
get to know Xcode9. As far as I know, if you factor the amount of code and
apps that has been generated on that platform, then it is an IDE that packs
so much “air time” that it is probably only second to Visual Studio.
Android is a completely different beast. Let’s take a look at that now.

The Native Android Project

Here’s the listing for our generated React Native project, focusing on the
android/ directory.

1 ├── android

2 │ ├── app

3 │ │ ├── build.gradle

4 │ │ ├── proguard-rules.pro

5 │ │ ├── react.gradle

6 │ │ └── src

7 │ │ └── main

8 │ │ ├── AndroidManifest.xml

9 │ │ └── java

10 │ │ └── com

11 │ │ └── projectlayout

12 │ │ └── MainActivity.java

13 │ ├── build.gradle

14 │ ├── gradle

15 │ │ └── wrapper

16 │ │ ├── gradle-wrapper.jar

17 │ │ └── gradle-wrapper.properties

18 │ ├── gradle.properties

19 │ ├── gradlew

20 │ ├── gradlew.bat

21 │ └── settings.gradle

Android made the move from Eclipse and Ant a year or two ago, into the
new and shiny Android Studio based on the Intellij platform, and less shiny
(but very powerful) Gradle project. If you’re coming from Java, then Gradle
replaces Ant, Maven, and other different Java dependency management
solutions. It provides endless flexibility and power in terms of dependency

9http://www.raywenderlich.com/tutorials

http://www.raywenderlich.com/tutorials
http://www.raywenderlich.com/tutorials

Getting Started 18

management and project configuration, while exposing a fluffy DSL (with
the help of Groovy, the JVM based language).
This is why there’s as many gradle files as normal source files in your
generated project directory (is that a good or a bad thing, then? :-).
Take a moment to explore the contents of settings.gradle, app/build.gradle

and app/react.gradle as these are the key files you’ll be handling during
development with anything that regards dependency management - in
other words, through these we’ll configure external libraries, components
and custom project compilation tasks and settings.
To make sense of it, remember these points:

• settings.gradle - holds pointers to various subprojects we’ll want to
configure. Plainly, this mostly will be external components with native
parts; we’ll point to their node_modules path so that Gradle will consider
their Java projects as part of the general build. This in addition to
definitions within app/build.gradle will resolve any “symbol undefined”
errors.

• app/build.gradle - this is where we will specify our app’s dependencies;
external Jars we’d like to use (in case we’re developing native parts),
libraries and components from the community and so on. We’ll also
want to configure Android specific items there such as the SDK
version, compilation target and so on. This only makes sense if you
already are familiar with the Android platform. If you’re not, please,
spend a day building a hello-world app10 with native Android.

• app/react.gradle - Gradle lets you run custom tasks of your own. It will
show them through the command line. If you $ cd android && ./gradlew

tasks you’ll be able to take a look at every task available to you and
within those tasks there will be react tasks. The react.gradle file is
what defines them; as such you can also tweak (but probably will
never need to) what’s inside: namely the bundleDebugJsAndAssets and
bundleReleaseJsAndAssets tasks.

Our MainActivity.java file is the parallel to iOS’s AppDelegate.m file, which is
nice to see; it is elegant. Let’s take a look:

10https://developer.android.com/training/basics/firstapp/index.html

https://developer.android.com/training/basics/firstapp/index.html
https://developer.android.com/training/basics/firstapp/index.html

Getting Started 19

1 public class MainActivity extends ReactActivity {

2 @Override

3 protected String getMainComponentName() {

4 return "projectlayout";

5 }

6

7 @Override

8 protected boolean getUseDeveloperSupport() {

9 return BuildConfig.DEBUG;

10 }

11

12 @Override

13 protected List<ReactPackage> getPackages() {

14 return Arrays.<ReactPackage>asList(

15 new MainReactPackage()

16);

17 }

18 }

Removing comments, we don’t see much. Most of the work revolves around
getPackages where you’ll be often required to add custom components’ own
packages (in case they have a native part). React Native’s native extension
model and infrastructure is fascinating so don’t worry - we deep dive into
this and into building your own native components (UI and modules) later,
so hold on tight.

Tooling

We went over the React Native CLI, and it covers the run and build phases
of the typical development cycle very well. In addition since we’re really
handling three different codebases: Javascript, and hopefully very little
Objective-C, and Java, we would be wise to have a look at the various
debugging and tooling around those.

Simulator and Emulator Developer Tools

Since its early days React Native provided an unmatched developer experi-
ence on mobile if you factor the fact that it was such a young project. Error
messages that are so helpful it feels telepathic, built-in developer tools,
debugging with Chrome, and inspector and profiling tooling right there
in your device; if you happened to deal with performance problems before,
then you know having the profiling tools right there in your app and in your
device is priceless (external tools may introduce overhead, and obviously
trying to measure performance on a simulator is a no-go).

Getting Started 20

Built-in Debug Tooling

The inspector tool lets you hit-test live UI areas and see a breakdown of
their properties and hierarchy, just like the Chrome inspection tool (go
in your Chrome browser and hit Shift-Cmd-C and then try clicking inside a
website somewhere).
On iOS, you can combine that with Xcode amazing visual debugging tools
(while the app is running through Xcode Cmd-R, go to Debug -> View Debugging

-> Capture View Hierarchy), you can dump the native visual tree like this:

Getting Started 21

Visual Breakdown of Components

And on Android, you can combine that with DDMS (Android’s hard core tooling
for performance, debugging, analysis and so on), by selecting the device in
the devices menu and clicking on the icon which looks like a stack of mobile
devices (don’t ask me why…):

Getting Started 22

Android’s DDMS UI Layout Dump

This technique lets you perform a vice maneuver where you can attack
a visual problem both on the Native and Javascript side and use each to
complement the other for missing information.
Finally, we can use Chrome as a debugger for all of our React Native
Javascript code:

Getting Started 23

Chrome Developer Tools

This means taking a look at log messages, setting breakpoints in actual
React code, watches, stepping through and more. There’s even a way to
dump a trace with systrace and Google’s profiling visualization tools but
let’s leave the spooky stuff for a different kind of book or blog post, chances
are you won’t need that kind of low level performance optimization help :)
We didn’t talk about the simplest thing possible to do - logging. In real life
you’ll be using console.log a lot, and the output is watchable through Xcode
itself while it runs the application, or in the case of Android, either with
Android Studio (the Logcat widget window) or through the command line
with adb, the Android super tool (really, adb is really useful to get to know,
especially if you’re an Android user yourself; you can automate a lot of your
daily tasks with it). Run this on a spare terminal window:

1 $ANDROID_HOME/platform-tools/adb logcat *:S ReactNative:V ReactNativeJS:V

If you dislike both for viewing live logs, we’ve just learned that you can use
Chrome for debugging and also viewing logs - try that instead.

Native Debugging

There were a time where I would cringe before covering such a topic.
Native debugging on a cross-platform mobile SDK. However, this is not
such a time, and the React Native team has done such a great job that
all I have to say is this: if you’re running your app and you use a native
API through Javascript, and you ran the app via the IDE (Xcode or Android
Studio) by simply hitting “Run”, and you set a breakpoint on any native
code - it will break into that code, and it will make total sense (i.e. local
variables, contexts, threads, etc.). Kudos!
Here’s how it looks on Xcode:

Getting Started 24

Debugging with Xcode

And its Android counterpart, Android Studio:

Getting Started 25

Debugging with Android Studio

So, if you recall back when we discussed the run-android and run-ios subcom-
mands on the react-native CLI, this means that there still is great value for
using the IDE behind each mobile platform, so don’t give up on it so quickly.

Summary

In this chapter we covered the React Native project layout, built in
tooling, the native platforms tooling and how it all fits. We also discussed
some techniques you can use to improve your development experience, in
addition to what tooling is available to do that.
All in all, the best thing for you to do now is to init a couple more projects,
trash them down by tweaking with everything that looks tweakable, run
them via Xcode or Android Studio, set breakpoints, and explore these great
IDEs. Really, I can’t remember a time where IDEs were this great – and I’m
a Vim user!. So, feel free to have a go at it and we’ll meet back here for
more.

Building React Native Components
In this chapter, we’ll go through a short history of Javascript frameworks,
highlight how React is different, introduce React Native Katas - a playful
learning experience for React Native I’ve created, and follow along one of
the Katas.

A Squashed History of Javascript Frameworks

React changed how we build Javascript apps. First, there was jQuery which
abstracted out how we work against a browser. jQuery made sure we were
able to manipulate DOM elements without worrying about the entire DOM
at once (Document Object Model), traverse it, change it, stick events and
callbacks onto it, and all with a magnificent API that surprisingly - up until
that point in time, didn’t really exist.
With HTML5 shifting in, changing browsers, standards, and development
practices at around 2011, there was a need to manage even larger apps.
If you still used jQuery for that, you would find yourself managing buckets
of state spilled all around your code, and more importantly, all around the
DOM - and unfortunately, that DOM belonged to the browser, and not you.
And, you can bet each browser liked to have its own quirks around the
DOM. The title “Front-end developer” emerged shortly after, because now
you needed an entire person with a full body of skills to handle that kind of
complexity.
And then started the era of frameworks. Front-end developers needed to
refine their newly born tool-belt. They needed to do efficient work and to
consolidate and abstract away tedious, repetitive tasks they were perform-
ing each day. Frameworks like Backbone.js11, Batman.js12, Ember.js13, and
later Angular.js14 were all becoming mainstream in a span of just 2 years,
creating a massive flood of ideas and solutions.
But also, an impossible mess. These frameworks abstracted out browsers,
DOM work, introduced MVC on the client-side, but in my opinion, apart
from maybe Ember.js, didn’t really ‘solve’ client-side development. Until
React came around.
11http://backbonejs.org
12http://batmanjs.org
13http://emberjs.com
14https://angularjs.org

26

http://backbonejs.org
http://batmanjs.org
http://emberjs.com
https://angularjs.org
http://backbonejs.org
http://batmanjs.org
http://emberjs.com
https://angularjs.org

Building React Native Components 27

React.js

At launch, React took a less ambitious path than any of its heavy-weight
contenders such as Angular.js or Ember.js. On first look, there was only
a view layer, some sort of event mechanism, and JSX - the React flavored
markup language. Many thought React was a View layer replacement in
the then common MVC architecture.
Then, on a second look and a year later, you’d see that React also handled
state, component composition, styling, while performance optimizations
and DOM manipulation were abstracted out and done for you. This is
textbook API bonanza. The pitfall of success.
And, on a third look and a couple years later, we realized that by being
minimal, React allowed for the community to evolve creatively and develop
opinions and a massive ecosystem grew in a velocity never seen before.
With new design patterns such as Flux and functional patterns such as
Redux, all paying homage to things15 that16 already work in software for the
last 30 years. Soon enough, even the enterprise-adopted, Google-backed
framework Angular gets to experience a decline.

React Components

React allows you to make components in a very detached and independent
way. Never before there was a Javascript framework that let you make
declarative yet functional component in such a fun way. You can create
views and not care about the browser or DOM, style and not care about
CSS, and implement functionality in a completely encapsulated way not
caring about any of your dependencies.
While the scope of this book was not to teach you React, I released it with
a “something missing” feeling. I wanted you to experience the playfulness
of building a mobile app that only React Native enables, even before diving
into building a real app - and you can’t do it in a book because it’s not
interactive - it’s too “dry”; don’t let any other book fool you.
That’s why I created React Native Katas17. It is an open-source project that
serves as a complementary learning experience for this book (and also a
stand-alone experience), that you can go through yourself and have your
friends try out - whether they’re designers, beginner programmers, or just
product people (with a minimal intro to Javascript, of course).
React Native Katas is a hands-on, immersive and playful experience, that
teaches you about building React Native Components while doing. You can
15https://bitquabit.com/post/the-more-things-change/
16https://en.wikipedia.org/wiki/Lisp_(programming_language)
17https://github.com/jondot/ReactNativeKatas

https://bitquabit.com/post/the-more-things-change/
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://github.com/jondot/ReactNativeKatas
https://github.com/jondot/ReactNativeKatas
https://github.com/jondot/ReactNativeKatas
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://github.com/jondot/ReactNativeKatas

Building React Native Components 28

check out the repository here18.
We’ll dedicate the rest of this chapter to show you how to work on just one
Kata because the majority of the fun is not on these pages: it’s on Github
and in your editor. You can even ignore the rest of the chapter and have
fantastic time playing with the Katas right now!

Completing a Kata

Let’s go through the first Kata, just to test out the waters. I trust that you’ll
continue on your own after this. I assume you already have a working react-
native setup19.

• Clone project the project with $ git clone https://github.com/jondot/ReactNativeKatas

• cd ReactNativeKatas and npm i for installing the dependencies.
• Run the project via Xcode or react-native run-ios

• After running the project, turn on Live Reload (Ctrl+Cmd+Z for
developer menu on Simulator)

You will then be faced with the first Kata, the test version or the “unsolved”
version:
18https://github.com/jondot/ReactNativeKatas
19https://facebook.github.io/react-native/docs/getting-started.html

https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://github.com/jondot/ReactNativeKatas
https://facebook.github.io/react-native/docs/getting-started.html

Building React Native Components 29

A Kata waiting to be solved

Tap on it anywhere, to see what the solution should look like:

Building React Native Components 30

A solved Kata

And tap again to show the test version:

Building React Native Components 31

A Kata waiting to be solved

Next up, let’s get orientated. Locate bundle.js with the relevant source tree,
under src/katas. This will list all of your pending Katas in various subjects:
styling, flex, and composition.

Building React Native Components 32

The bundle file

Opening the bundle, you’ll find this:

Listing all Katas

And then, we see the first Kata is the FillAll Kata. We want to open the .test

version of it, which is what we should edit.

Code for the test Kata

Building React Native Components 33

If you edit anything and save in that file, React Native will detect it and Live
Reload will kick in and reload your app. The end result: your iOS simulator
will refresh automatically. React Native Katas has a built-in mechanism to
detect if you have solved your Kata properly, and will advance to the next
Kata once you succeeded until all Katas are finished.
Let’s try to solve the first Kata.

1 // Your goal is to make content dead center, and make background fill everyth\

2 ing

3 // Hint: You have to combine multiple properties

So let’s fill everything. Flex is our layout model, so feel free to Google ‘flex
layout’ now. Katas take into account you are not coming prepared, so you’ll
find yourself Googling a lot - this is exactly what we want you to do. This is
how learning by practice is done :)
Pause.
After Googling for flex layout, I’m sure you found out about flex:1. This
is the basic instruction for flex, to let the view under that style take over
any realestate that it can, as long as there are no competing views with
competing weights.
So, we’ll change the styles to this:

1 const styles = StyleSheet.create({

2 container: {

3 backgroundColor: colors[0],

4 flex: 1,

5 },

6 text:{

7 color: 'white',

8 textAlign:'center'

9 }

10 });

Save, and watch the Kata being refreshed. Now the background covers
everything but we are still seeing this Kata - so it means it wasn’t solved. It
did say that we also need to center everything. Google is your friend now,
try ‘flex centering’.
Pause.
Well, that’s justifyContent, but I’m just telling you this now - and you’re not
even supposed to read this part of the chapter because it’s full of spoilers.
I urge you to go ahead and do the Katas solo.
Still here? Alright, let’s keep going!
Fixing the styles again:

Building React Native Components 34

1 const styles = StyleSheet.create({

2 container: {

3 backgroundColor: colors[0],

4 flex: 1,

5 justifyContent: 'center',

6 },

7 text:{

8 color: 'white',

9 textAlign:'center'

10 }

11 });

Save again. That made the content align to center, but not on both axis. The
hint did say we have to combine a few styles to get that. Again, Google.
Pause.
Googling around, we find out that we’re missing alignItems as well!
Surely enough, this is the final fix:

1 const styles = StyleSheet.create({

2 container: {

3 backgroundColor: colors[0],

4 flex: 1,

5 justifyContent: 'center',

6 alignItems: 'center',

7 },

8 text:{

9 color: 'white',

10 textAlign:'center'

11 }

12 });

And we’re done! There’s a new Kata to solve.

Building React Native Components 35

A solved Kata

So we’ve just finished up a fun, learn the hard way, experience of building
a React Native component. And now you’re on your own (not really: you
can always look at the code for the solution Kata!).
Go ahead and have fun, and when you’re done you can go back to reading
this book with more confidence than before! (or you can just keep reading,
and do the Katas later. Or not do the Katas. Uhm.. you get the point :).

The People App
In this chapter we’ll cover the People App, which is the app we’ll use
throughout the “work out” parts of the book. We’ll dissect it, and then
go over it bit by bit so that you will understand every decision and
considerations you need to apply while building a React Native app.
We’ll also cover what makes it tick - its features and technical building
blocks, and we’ll also discuss how far you can take it later on your own. In
the following chapters we’ll start setting up our environment, survey our
app, and make a deep dive.

Features

Let’s go over our features:

• Create and manage groups of contacts
• Customize groups by color coding, custom image, etc.
• Pick an image from camera roll or take a live one
• Select contacts from the phone’s existing address book
• Consistent UI for both iOS and Android with animations and routing
• Swipe to delete (iOS-like)

Product

Let’s breeze through the product, by looking at screen shots, grab on to
something!
Our main app screen. This is the group list, or “Master” view in the master-
detail relationship (more on this later). Notable visuals are color coding
the main group avatar (or cover), a rather complex list cell layout with
embedded contact photos and more.

36

The People App 37

Groups List (Master)

Transitioning to the group editing screen, which is our detail view in the
master-detail relationship. Animations run butter smooth, with typical left
ease-out and fade-out followed by fade-in out of the box.

The People App 38

Transition to Detail

Our group screen ready to be edited. Typical iOS behavior dictate the
“Save” right button on the navbar, we’ll carry this on to the Android version
as well.

The People App 39

Group Screen (Detail)

And this is how the same group screen looks empty, when creating a new
one.

The People App 40

Group Screen, Empty (Detail)

We can edit the group name pretty easily with edit-in-place.

The People App 41

Editing Group Name

And pick an image using something that looks like the standard iOS
actionsheet for selecting an image.

The People App 42

Pick Image

Then, we’re picking an image from iOS’ own camera roll. No need for
custom UI to be developed here.

The People App 43

Select Image from Camera Roll

Hitting the person-plus icon to manage the contacts, we transition to the
contacts screen.

The People App 44

Transition to Contacts

And this is how the contacts screen looks like. It’s quite live and every
contact we select or remove makes the whole view reorder itself based on
selection.

The People App 45

Our Contacts Screen

Back to our groups list, we show off the swipe to delete behavior from iOS,
which we’ll carry to Android as well.

The People App 46

Swipe to Delete

Just so you can believe me, let’s go over the Android screen shots of the
very same codebase. Virtually no effort was made to make the UI look and
behave the same on Android, and this is as raw as it gets. With a few more
hours of fine tuning both UIs could look the same by the pixel, but then
again, should they look the same? Expect fun discussions with your product
managers, but at least you have the power to do both ways!
Our groups list, on Android.

The People App 47

Android: Group List Screen (Master)

The group screen, on Android.

The People App 48

Android: Group Screen (Detail)

And here is how it looks like empty.

The People App 49

Android: Empty Group (Detail)

Picking an image.

The People App 50

Android: Image Picker Sheet

And the contacts screen.

The People App 51

Android: Contacts Screen

Swipe to delete on Android.

The People App 52

Android: Swipe Menu

So, all of the Android screens are very much alike, you’ll notice that the
navigation bar is rendered a bit differently, which is very much expected.
Many mobile platforms have elected to create different navigation systems
and UI and it is so different both in mindset and execution that we’ll cover
navigation as a general subject later. For now, looking at these screen shots
we can say that it is similar and that the differences are intentional.

Technical

In the previous sub topic we’ve covered how the application looks like
and you might have felt a bit how it behaves from the transitions and the
wording. Now, let’s take a moment and cover the technical aspects of what
we did, or what we need to do in order to get to that kind of an app.
First, we get React Native as a full blown off-the-shelf cross platform SDK.
This means we have quite a few components20 already when we start using
20https://github.com/facebook/react-native/tree/master/Libraries/Components

https://github.com/facebook/react-native/tree/master/Libraries/Components
https://github.com/facebook/react-native/tree/master/Libraries/Components

The People App 53

it. This allows us to compose our main screens, our list views (on group list
screen, contacts screen), build the more intensive UI elements such as the
color tag selection, various avatar boxes for contacts and groups and so on.
Next, we use several community contributed components to make imple-
menting UI components easier:

• Swipeout21 - to make the swipe-to-something experience in our groups
list screen. In our case we only swipe to delete

• Listitem22 - to render an iOS-like list item in terms of UI
• Vector icons23 - to pack every free vector icon package to be available
to us easily. This includes fontawesome and more

• Image picker24 - to streamline the image picking actionsheet across
both iOS and Android, using native UI where possible, and this is all
transparent to us

In addition, we use several community contributed modules, that allow us
to reach out into each platform’s (iOS, Android) operating system services
from React Native Javascript code:

• Contacts25 - to grab all of the device’s contacts in a structured manner
• FS26 - to get access to important file system operations as well as
metadata (Documents folder location for our app).

Internally we’re doing amini Flux pipeline with a store and an event emitter
but don’t pay too much attention to that. It seems that there is a lot of
discussion about which Flux framework is the best, but it is way too much
of an opinionated discussion to be able to be contained in this book. In real
life projects you may want to pick alt.js27 for its all-included approach or
Redux28 because it is a framework that lets you build your own framework.
We also didn’t explicitly mention this - you can use almost all React.js Flux
frameworks with React Native, which is quite a community accomplishment
on the road to completely fuzzing the line between these two.
21https://www.npmjs.com/package/react-native-swipeout
22https://www.npmjs.com/package/react-native-listitem
23https://www.npmjs.com/package/react-native-vector-icons
24https://www.npmjs.com/package/react-native-image-picker
25https://www.npmjs.com/package/react-native-contacts
26https://www.npmjs.com/package/react-native-fs
27http://alt.js.org/
28https://github.com/rackt/redux

https://www.npmjs.com/package/react-native-swipeout
https://www.npmjs.com/package/react-native-listitem
https://www.npmjs.com/package/react-native-vector-icons
https://www.npmjs.com/package/react-native-image-picker
https://www.npmjs.com/package/react-native-contacts
https://www.npmjs.com/package/react-native-fs
http://alt.js.org/
https://github.com/rackt/redux
https://www.npmjs.com/package/react-native-swipeout
https://www.npmjs.com/package/react-native-listitem
https://www.npmjs.com/package/react-native-vector-icons
https://www.npmjs.com/package/react-native-image-picker
https://www.npmjs.com/package/react-native-contacts
https://www.npmjs.com/package/react-native-fs
http://alt.js.org/
https://github.com/rackt/redux

The People App 54

Potential (or: Homework)

The app we’re building is completely functional, and is not a made-up or
useless demo app like a weather app or yet-another todo list app. You can
take this as a great starting point for any people based apps: meetups,
chats, events, social network and so on. Some examples:

• By adding a calendar to the group view, this becomes an events app.
Add a notification option as well and you’re golden

• By converting the group view to a chat list and connecting it to a
reactive backend like Firebase29, you just made a chat app

• If you keep the group view as-is but make it more actionable, like
making a tap on a contact’s avatar call him or her, or record an action
on a server which everyone is connected to, you’ve just made a variant
of a social network.

It might help figuring out if you want to make any of these while going over
the book or just follow the book as-is. You might also want to make it a two-
pass, by finishing the book as-is and then hacking in your variant of the app
and treating the book as a desk manual you pick up once in a while.

Summary

I hope you’ve got a glimpse of the power of React Native. We just covered an
app that was built for two platforms. Unlike typical beginner level courses
or books, we cover a real world app that can be made into real apps quite
easily and serve a meaningful purpose (no more weather apps!). This is to
show that finally - a native, performant, cross-platform app really can be
built in 2016 - using React Native.
What you didn’t get from this chapter so far, is that the experience of
building such an app was easy, and even fun. I’m sure you’ll get to feel
it as we go along!
29http://firebase.com

http://firebase.com
http://firebase.com

Walkthrough
In this chapter, we’ll be starting our breakdown of the People app. You’ll
get to understand the formula that most apps are adopting, the technical
choices, the whys, and the hows of building a real world React Native app.
We will then dissect each and every screen and understand how React
and React Native play together, as well as supposedly non-development
concerns such as styling and resource management.

Walkthough Style

Let’s set some expectations and goals from the upcoming walkthrough. As
it stands at the time of the writing, there are plenty of ways to go when
you want to learn how to build an app. You can pick a Udemy or Egghead
course or an online tutorial, or follow a booklet that takes you step by step,
line by line from a blank project to a fully working app.
This book takes a more challenging approach, specifically we’re taking the
dissection approach - you’ve seen a fully working app, and we’re going
to take it apart, understand the whys and hows and extract the distilled
knowledge you need in order to make your own app; that’s because I know
you will continue reading and continue learning through resources like
Udemy and Egghead throughout your career - we never stop learning do
we?
This approach also deals with the volatility of the Javascript world, the
React world and the React Native project (which is still new). In other
words, if I wrote a tutorial style book, chances are within 6 months you
would lose all value for your money because by then either Javascript
changed (ES6, ES7), React changed, or React Native changed. Instead, I’ve
chosen to focus on core principles and patterns that will hold up through
the test of time, and show you old ways as well as new ways to do things
(Javascript, ES6, and so on) should you bump into old or new React Native
code on the Web. This is a pragmatic guide, a distilled knowledge guide.
With that out of the way, let’s start!

Technical Choices

As a reminder, the People app is an app about your people. It is a contacts
management app on steroids which you can take and build your own apps
upon. Currently it holds a list of groups of people, their contacts and several

55

Walkthrough 56

eye candy features to promote easy lookup and personalization. If you’d
like, you can skim the The People App chapter to get a full blown overview
of the app as well as its product and infrastructural building blocks.
By now the Javascript world is known for its churn30, and because of that,
I feel that the first items we need to get off the table are the choices that
we make for the code base we’re about to dissect, so let’s do that now.

Javascript

For our Javascript codebase, we use a mix of both ES5 (probably the
Javascript everyone is familiar with), and ES6 (the sixth edition, introducing
many state of the art construct into the language) interchangeably. This is
to support the old and the new. Often times I was either looking at an old
React style code I needed to support, but it looked strange to me because
I happened to already forget the old way of doing things, and then again I
looked at a new React code and the same thing happened because I wasn’t
yet familiar with another new way of doing things that was introduced in
the mere two weeks I was doing back-end or native mobile code.
Many say that 2014-15 were the years where Javascript became a jungle;
I’d like to show you both ways of doing things in React so you can get your
bearings right when you feel you’re stranded in that jungle.

React

The good news with React Native is that you get a fairly closed-box React.
In my opinion, taking the whole weight of Javascript and React choices and
decisions in addition to mobile development is way too much to bear, that
if it were that way it would be a major turn-off.
With React Native you get the basic components you can build a whole
world with and they’re pretty baked out for you, and you get styling which is
done inline. No hours of fiddling withWebpack (that’s the reality at the time
of writing) to make a complex build pipeline that extracts CSS into its own
files, merges sprites and so on. More over, you get a daemon that watches
your files and packages everything neatly already - so that’s also something
you don’t need to configure. In addition there’s a tight integration with tools
like Flow31 so even though React Native as a software project sees React -
the framework - as upstream, that the whole setup feels quite modern and
up to date.

Flux

Choosing and arguing about which Flux framework is best is all the rage
these days. To keep our focus we’ll define Flux as a structured way of doing
30http://www.breck-mckye.com/blog/2014/12/the-state-of-javascript-in-2015/
31http://flowtype.org/

http://www.breck-mckye.com/blog/2014/12/the-state-of-javascript-in-2015/
http://flowtype.org/
http://www.breck-mckye.com/blog/2014/12/the-state-of-javascript-in-2015/
http://flowtype.org/

Walkthrough 57

event based application architecture, and in my eyes it is an evolution of
message based event handling and I completely agree with this article32.
To keep our focus, I’ve chosen to build a slim version of a Flux pipeline
with a simple event emitter and a store. If you’d like to use a framework,
you can check out alt.js33 or Redux34. So how to choose for your own future
projects? It depends. I hold the opinion that if it is a small enough app,
just go with what ever saves you more work (alt.js), and if its an app that
you’d want to maintain for a long while and that you see a considerably
large roadmap for, choose something simple and small that you can build
on later (Redux).

Folder Structure

We’ll use the following folder structure for our project. In my opinion,
a project’s folder structure should be primarily shaped by the team that
works with it, and only then it is shaped by the technology stack.

1 views/

2 helpers/

3 master/

4 index.js

5 styles.js

6 other.js

7 components/

8 services/

9 [any flux-oriented folders such as actions, stores, etc.]

In our app, I’ve chosen to focus on React Native and not Flux, and this is
why you won’t see the typical mega-structure of folders that is driven by a
Flux project. In our project we’re holding a store in services/ and making
simple actions objects, and that translates to a single file and a framework
such as alt.js to conform to Flux. Yay for simplicity!
For the views/ part, we are holding the main component in an index.js file
so that when we require views/master it will get pulled automatically, and
then in our index.js file when we simply require ./styles it will get fetched
locally from that view’s folder. In other words, we’re keeping the styles
neatly tucked along the component or view that uses it (we’ll talk about
styles and why they’re actually a Javascript file later).
Other ways of doing this? You could hold a central place for styles, in a
single file. You could replace this entire folder structure with one coming
from vanilla Flux, or you could use a structure you’re bringing from React.js
if you’re a React.js developer already - that would be a huge advantage.
32https://bitquabit.com/post/the-more-things-change/
33http://alt.js.org/
34https://github.com/rackt/redux

https://bitquabit.com/post/the-more-things-change/
http://alt.js.org/
https://github.com/rackt/redux
https://bitquabit.com/post/the-more-things-change/
http://alt.js.org/
https://github.com/rackt/redux

Walkthrough 58

Testing

The combination of React and mobile for testing is amazing. In my opinion
React is almost testable by design. Its functional nature lets your test be
clean and free of setups for side-effects, and the fine grainedway of building
things into components supports unit testing very well. That covers all of
the Java or Objective-C code that youmay or may have not written along the
years if you’re a mobile developer, and that grew to be untestable because
it underwent a process of rot, and got labeled as “untestable, we’ll get to
it some day”.
Further along, there’s integration testing, or automation testing. The
mobile world is prospering with tooling for automation testing, even more
so than what theWeb exhibited in its golden ages of automation testing with
tools like Selenium. Apple made their own in-house UI testing framework,
Google pushed their own as well, and both are pretty good, and tools like
Appium35 that aim to provide a single testing codebase for both platforms
are getting to a high level of quality – and we’re here to enjoy it all.
There is so much to say that there is simply way too much to cover and this
topic should really make it into a book of its own. This is why in this book
I’ve chosen not to take sides, and sadly we won’t be covering that.

Dissecting Our First Screen

Let’s take our first screen head on, dissect it and cover all of the material
needed in order to build such a thing.
Here is how it looks like:
35http://appium.io

http://appium.io
http://appium.io

Walkthrough 59

Main App Screen

Before we proceed, let’s see what we’re dealing with:

Walkthrough 60

Main App Screen Annotated

1. The ListView36 component React Native comes with. We’ll cover this
more in-depth shortly.

2. Our list view cell. Every great list view implementation allows you to
make your own cell template (more on this later) and the React Native
one is no different, since it uses the iOS and Android implementations
which already do this. Once clicked, the cell will take us to the detail
view and it will populate it based on the selected item.

3. The group avatar. The image is picked from camera roll or the image
storage on the user’s phone.

4. The group title, and timestamp. Both of these are picked from the JSON
structure representing a group directly, and we use moment.js to get a
human readable “time ago” render for the time.

5. The contacts list. These are rendered live per group, from the set
contacts within each group. We make repeated use of the same

36https://facebook.github.io/react-native/docs/listview.html

https://facebook.github.io/react-native/docs/listview.html
https://facebook.github.io/react-native/docs/listview.html

Walkthrough 61

component for contacts avatars as well as group avatar here and in
other places. We use Flex to make sure everything lays out correctly.

6. This chevron and general item design is a hint at iOS’ default design for
list items. We pick up the chevron symbol and other symbols through-
out the app from the vector-icons community component (more on that
later), so really it is a simple <Icon> element in implementation.

7. The UI knows how to render place holders when no image exists. We
use React’s ability to compute state and spit out a different UI tree
when the data looks different.

8. This navigation button will create a new group and take us to the detail
screen in a “New” routing state. We’ll cover routing as well.

Before we continue, we must cover the list view, the pattern and what it
means on mobile, and how it applies in React Native.

Mobile List Views

The list view is the workhorse of themobile application. Regardless of React
Native, if you take a moment to really look at apps on your phone, you’ll
find that a lot of them are simply pimped-up list views (on iOS it is the
UITableView and on Android the RecyclerView): Gmail is simply managing lists
(inbox, trash, custom filters), Twitter is managing a never ending list, and
even Settings is really a static UITableView on iOS.
Every iOS or Android book about mobile development covers its own list
view variant and today when both platforms matured - the same principles
exist. I’ve managed to distill these principles as they are very important
to know now that you’re at the helm of both platforms, as we’ll see in the
following image and discussion.

Walkthrough 62

Mechanics of a List View

So a list view is a container of items, often accompanied with a wrapping
scroll functionality. It is responsible of the following:

• Layout - making each item render, measuring it and fitting it with the
rest in a chosen layout (list, grid or what have you)

• Rendering - each cell is an independent component, which is a very
good thing. You can build each cell by its own right as if it never needs
to go into a list view eventually, and then plug it in as you see fit.
It helps the development experience, composability and testability. In
React Native such a cell is simply a React Native view - nothing new
to learn! If you’re coming from a native platform then this may ring
a bell - on iOS you can either use the default cell that comes with
UITableView, or design your own xib component which you will rig into
your UITableView later. On Android you would design a new layout XML
file for the cell and inflate that per cell.

Walkthrough 63

• Recycling - on iOS and recently (depends how you define “recent”)
on Android, list views are only holding a fixed amount of cells “live”
proportional to the viewable area of the list view on screen, and
they will trick you into thinking there is a bigger amount of cells by
recycling off-screen cells and pulling them back into circulation as you
scroll. This is why in the drawing some cells are white and some are
gray.

• Lifecycle and events - it will hand out events for each cell in turn. With
the React Native way you set events as you’d set them for any React
Native component, and the lifecycle events are still the same as with
any component
– again, nothing new to learn!

• Data and adapters - since each list view is responsible of the concerns
we just mentioned, it is crucial that it knows how the data looks like -
how many items, their content for deferring the render per cell, and
when content changes. Such a list view need not care about if the data
is coming from a Web service or the local database. This is where the
concept of adapters come into play; so much like Android’s adapters,
the React Native list view has its own.

The Groups Screen

We can now continue to look at the main groups screen. Let’s dump the
code here and discuss it bit by bit.

1 'use strict';

2

3 var React = require('react-native')

4 var {

5 ListView,

6 } = React

7

8 var Cell = require('./cell')

9

10 var Subscribable = require('Subscribable')

11 var R = React.createClass

12

13 var Master = R({

14 mixins: [Subscribable.Mixin],

15

16 store: function(){

17 return this.props.store

18 },

19

20 getInitialState: function() {

Walkthrough 64

21 var ds = new ListView.DataSource({rowHasChanged:

22 (r1, r2) => {

23 //hack, need immutability on store for this to be detected

24 return true

25 }

26 })

27 var list = this.store().list()

28 return {

29 dataSource: ds.cloneWithRows(list),

30 }

31 },

32

33 componentDidMount: function() {

34 this.addListenerOn(this.store().events, 'change', this.onStoreChanged)

35 },

36

37 onStoreChanged: function(){

38 var list = this.store().list()

39 console.log("MASTER: new list, items:", list.length)

40 this.setState({dataSource: this.state.dataSource.cloneWithRows(

41 list

42)})

43 },

44

45 didSelectRow:function(row){

46 this.props.navigator.push({

47 id: 'detail',

48 title: row.title,

49 props: { item: row,

50 store: this.store(),

51 navEvents: this.props.navEvents },

52 })

53 console.log("MASTER: selected", row.title)

54 },

55

56 didDeleteRow:function(row){

57 this.store().remove(row)

58 },

59

60 renderRow:function(row){

61 return (

62 <Cell key={row.id}

63 item={row}

64 onDelete={()=>this.didDeleteRow(row)}

65 onPress={()=> this.didSelectRow(row)}

66 />

Walkthrough 65

67)

68 },

69

70 render: function() {

71 return (

72 <ListView style={{paddingTop: 50, flex:1}}

73 dataSource={this.state.dataSource}

74 renderRow={this.renderRow}

75 />

76)

77 }

78 })

79

80 module.exports = Master

That’s a lot of code, but surprisingly not too much. It’s just logic and not
much UI code, or so dubbed the “Smart Component37”, and I like to call
it “Controller View”, so that people already familiar with MVC and other
frameworks will have something to connect to. As such a view, we make
sure the actual ownership of data takes place here (as opposed to within
cells):

• Navigating to an item
• Deleting an item
• Data sync and notifications

I’ve also named this “Master” intentionally and not “GroupsView”, and I’ve
named the group cell just “Cell” and not “GroupCell” or “GroupItem”. This
is to push forward the idea that we’re not doing anything special here, this
is the same pattern all over again - Master-Detail. Let’s side track to that
now, and come back to the code listing afterwards.

Master-Detail

This pattern existed since the dawn of the ages38, for mainframes, desktop
applications, and now mobile apps. Here is an abstract drawing of what it
means.
37https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0#.mh91y38yq
38https://en.wikipedia.org/wiki/Master%E2%80%93detail_interface

https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0#.mh91y38yq
https://en.wikipedia.org/wiki/Master%E2%80%93detail_interface
https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0#.mh91y38yq
https://en.wikipedia.org/wiki/Master%E2%80%93detail_interface

Walkthrough 66

Typical Master-Detail

Basically we should always have a list of things - the Master view. And in
React Native this will be our ListView component. Then, for each item, once
selected, we render a Detail view. For our app, and in React Native, this
will be a complete view we will transition to, handing it the data item from
the list view in its props, via our routing stack (more on that later).
On iOS, you can generate a live master-detail based app fairly quickly:

Walkthrough 67

Master-Detail Template with Xcode

Go ahead and try it, then run the app that was generated to play with it.
It is essential that you develop the “Native” intuition for how things are
done over at each platform even though you’re focused at making a cross-
platform app.
To wrap it up, in our app we’re demonstrating these concepts:

• Master - the groups screen, at master/index.js
• Cell - the master cell component, at master/cell.js
• Detail - the edit group screen, at detail/index.js

For the rest of the code base we’ll do away this pattern-ish way of naming
things and call components in their semantic name. We’re now ready to
continue looking at the groups screen, or the Master view.

ListView and Our Master View

Since most of our Master view is ListView rigging and eventing, let’s take a
look at what it takes to make a list of objects rendered and reactive within
a React Native ListView. As always, take a look at the official ListView docs39
for a great overview of the ListView component.
39https://facebook.github.io/react-native/docs/listview.html

https://facebook.github.io/react-native/docs/listview.html
https://facebook.github.io/react-native/docs/listview.html

Walkthrough 68

Let’s pick apart our Master view.

1 'use strict';

2

3 var React = require('react-native')

4 var {

5 ListView,

6 } = React

7

8 var Cell = require('./cell')

9

10 var Subscribable = require('Subscribable')

11 var R = React.createClass

12

13 var Master = R({

14 mixins: [Subscribable.Mixin],

15

16 store: function(){

17 return this.props.store

18 },

So this is how it starts, we’re using the “old style” React conventions where
we React.createClass to create a new component. The “new style” is the one
encouraged by ES6, where we extend React.Component andmake a proper ES6
class - we’ll get to that as well. One of the reasons to use the “old style” is to
be able to utilize existing mixins easily; not to say it isn’t possible with ES6
based code, it is just a lot easier and co-exists with code you’ll see around
the Web as of the time of the writing.
Next is our store, which we’ll get to later, and the Subscribable mixin, we’ll
get to those later as well.
Moving on towards the list view.

1 getInitialState: function() {

2 var ds = new ListView.DataSource({rowHasChanged:

3 (r1, r2) => {

4 //hack, need immutability on store for this to be detected

5 return true

6 }

7 })

8 var list = this.store().list()

9 return {

10 dataSource: ds.cloneWithRows(list),

11 }

12 },

Walkthrough 69

As a proper React component, it is wise to provide a getInitialState, and
that’s a great place to set our ListView state. If you recall our discussion
about list views, you’ll remember that a list view expect some kind of
abstract data source; this will be the following:

1 var ds = new ListView.DataSource({rowHasChanged:

2 (r1, r2) => {

3 //hack, need immutability on store for this to be detected

4 return true

5 }

6 })

Your DataSource is what takes a plain collection of items and makes it into
a proper ListView data source. Here we’re initializing it with a change
functionwhich is responsible for helping the ListView to detect changes in it.
However, we must be careful here - if you’re not doing proper immutable
object work, don’t expect it to work since you’ll be changing contents of
existing objects which the ListView already holds. So, given two rows, r1 and
r2 it is supposed to compute if they are equal or not, and mostly that will
mean comparing instance references. Otherwise, it would mean comparing
object IDs or contents, and so on - but that is something you won’t get out
of, and you’ll be paying a penalty for comparison.
The best possible way to do this the React way is to use immutability
and an immutable collection framework such as Immutable.js40. Immutable
collections, also called Persistent Data Structures, compose really well with
React, and you can read more about here41 and if you’re drawn to academic
papers there’s this seminal work about the subject42.
To conclude, when you use tools like Immutable.js, it is enough to just say
r1 === r2 and React Native will be able to pick up changes very efficiently.
Otherwise, if your application architecture isn’t based on immutability you
may see that ListView would not be able to update itself, in which case I
would try to force updates and return true instead of trying to manually
create the concept of immutable collections without proper immutable
collections (such as creating a new object manually when one changes)
as long as you’re feeling confident that there is no performance problem.
For this book, we have immutable collections implementation in a separate
branch of the code; however to keep the discussion simple we’ll need to
keep away from that as we want to focus on the core techniques.
Moving on with the code listing, we see this:

40https://facebook.github.io/immutable-js/
41https://en.wikipedia.org/wiki/Persistent_data_structure
42http://www.cs.cmu.edu/~rwh/theses/okasaki.pdf

https://facebook.github.io/immutable-js/
https://en.wikipedia.org/wiki/Persistent_data_structure
http://www.cs.cmu.edu/~rwh/theses/okasaki.pdf
https://facebook.github.io/immutable-js/
https://en.wikipedia.org/wiki/Persistent_data_structure
http://www.cs.cmu.edu/~rwh/theses/okasaki.pdf

Walkthrough 70

1 didSelectRow:function(row){

2 this.props.navigator.push({

3 id: 'detail',

4 title: row.title,

5 props: { item: row,

6 store: this.store(),

7 navEvents: this.props.navEvents },

8 })

9 console.log("MASTER: selected", row.title)

10 },

11

12 didDeleteRow:function(row){

13 this.store().remove(row)

14 },

15

16 renderRow:function(row){

17 return (

18 <Cell key={row.id}

19 item={row}

20 onDelete={()=>this.didDeleteRow(row)}

21 onPress={()=> this.didSelectRow(row)}

22 />

23)

24 },

25

26 render: function() {

27 return (

28 <ListView style={{paddingTop: 50, flex:1}}

29 dataSource={this.state.dataSource}

30 renderRow={this.renderRow}

31 />

32)

33 }

34 })

We’re skipping the store syncing functionality for now, until we cover the
store itself. Let’s start from bottom upwards. First, our render function
is simply a declarative ListView render, with no logic or no complex UI
composition at all; and that holds for a Smart View pattern quite well. We’re
doing inline styles for demonstration purposes - the purpose of these styles
is to push the list view downwards below the navigation bar, and to make
sure the container view flexes maximally along the view port (we’ll get to
styling later, but for now you can Google “flexbox” to get an idea of the
layout model React Native uses).
We’re supplying the dataSource we cooked up through the aptly named prop,
and that is simply the data source that sits in our state. Additionally we

Walkthrough 71

need to give it a renderRow prop, which is just a function returning the React
Native view that is supposed to represent our list item, in our case - the
Cell.
Moving on to renderRow, we’re simply returning our Cell component with a
few important props:

• key - this property is required for collection of components. It’s how
React Native knows how to track our views. Typically you will set it as
1:1 mapping of the identity of the object it renders. In our case it is
simply row.id

• onDelete - this is our own custom prop. It signals that the user intends
to delete this item

• onPress - this is our own custom prop. It signals that the user wants to
interact with this item

• item - this is how this cell gets the data model it needs to render, our
item.

Note, that the way each interaction method “knows” what item it needs
to handle, is that we simply close over it with a lambda function! These
interaction functions simply delegate to each and every interested party.
In the case of deletion - the store gets notified about it, and in the case of
navigation, well, the navigator gets notified about it. We’ll get to both of
these a bit later.
This completes our overview of theMaster view. But we do have a couple of
holes: our Flux store and navigator. Let’s cover these now, and afterwards
we can move on to the rest of the views.

The Store

Our store is simply a place where our data items are held and shaped. In
addition it receives actions (in the form of methods) and dispatches back
events. The way it inter relates with its environment is simple but powerful:

Walkthrough 72

Our Flux-like Pipeline

Lets take a look how we make such a store by dropping the store listing
and People class listing here fully annotated.

1 'use strict';

2

3 import Emitter from 'EventEmitter'

4 import _ from 'lodash'

5 import uuid from 'uuid-js'

6

7 class Group {

8 static withTitle(title){

9 return new Group(uuid.create(1).toString(), title, new Date)

10 }

11

12 static fromJSON(raw){

13 var h = JSON.parse(raw)

14 h.date = new Date(h.date)

15 return _.merge(new Group(), h)

16 }

17

18 constructor(id, title, date){

19 this.id = id

Walkthrough 73

20 this.title = title

21 this.date = date

22 this.tag = "tag-none"

23 this.contacts = {}

24 }

25 }

So now we’re using ES6, with the new import syntax and proper classes,
static methods and a constructor. We could have also used default param-
eters43, but let’s keep it at that for simplicity.
The Group class is pretty simple, it holds our data and unlike holding a simple
Javascript dictionary for data, we have an option to attach any logic we’d
like directly into the Group class if it belongs there, which is classic OOP. We
also make sure each Group holds a unique global ID, or a UUID, with the
standard UUID V144, which is sufficient for our case.
We also take a reference to the EventEmitter supplied by React Native itself,
no need to get one from an external community module.
Moving on to the store.

1 class Store {

2 constructor(){

3 this.items = []

4 this.events = new Emitter()

5 }

We set up our items and an instance of an emitter. This already states that
we’ll probably need just a single instance of Store to be traveling along
our live objects, since we want everyone to register to the same event
emitter, for otherwise it would nullify the purpose of a central dispatch
event emitter.

1 load(list){

2 this.items = _.map(list, (raw)=>{

3 return Group.fromJSON(raw)

4 })

5 this.sort()

6 this.publish("change", {action: "load"})

7 }

This is how we deserialize our store, a raw JSON is supplied externally
when the app boots up and sets up every central component such as the
43https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/default_parameters
44https://en.wikipedia.org/wiki/Universally_unique_identifier#Version_1_.28MAC_address_.26_date-time.29

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/default_parameters
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/default_parameters
https://en.wikipedia.org/wiki/Universally_unique_identifier#Version_1_.28MAC_address_.26_date-time.29
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/default_parameters
https://en.wikipedia.org/wiki/Universally_unique_identifier#Version_1_.28MAC_address_.26_date-time.29

Walkthrough 74

store. So, we simply load that JSON as an array, and let the Group class
decide how to deserialize pickled objects to live ones. Finally we sort it
just in case we were handed unsorted data, and publish a change event. If
you’re looking at _.map and scratching your head about the _ symbol. Well,
that’s a regular variable, the lodash library (and before it, the underscore
library) were very popular when the Backbone Javascript library made its
debut (the dawn of single page Web apps) and its purpose was to bring
the functional collection handling style to Javascript. So you’ll find many
functional collection operators such as map, each, select, reject and so on.

1 list(){

2 return this.items

3 }

4

5 find(id){

6 return _.find(this.items, this._byId(id))

7 }

8

9 new(){

10 return Group.withTitle('Untitled')

11 }

12

13

14 update(item){

15 _.remove(this.items, this._byId(item.id))

16 this.items.push(item)

17 this.sort()

18 this.publish("change", { action: "update", subject: item})

19 }

20

21

22 remove(item){

23 console.log(`Removing ${item} (${item.id}) from ${this.items} (${_.map(th\

24 is.items, (i)=> i.id)})`)

25 var removed = _.remove(this.items, this._byId(item.id))

26 this.publish("change", { action: "remove", subject: item})

27 }

Next are your typical CRUD operations. We manipulate our internal items
list as a response for any of the update or remove actions, since these are
doing writes, we also publish the appropriate events. In addition we also
provide querying with list and find, where I can already tell you that with
React you only need list - React will know how to find out which of the items
have changed for re-render, which is awesome. This is why frameworks like
Redux don’t bother with fine-grained change events or fine-grained access

Walkthrough 75

to state, they simply hand over the entire store state and let React do the
heavy lifting!

1 sort(){

2 this.items.sort((a,b)=>{

3 return -1*(b.date - a.date)

4 })

5 }

6

7 publish(event, ...args){

8 this.events.emit(event, ...args)

9 }

10

11 _byId(id){

12 return function(candidate){

13 return candidate.id == id

14 }

15 }

16 }

17

18 module.exports = Store

Remaining are some housekeeping functions for sorting, publishing, and
an internal finder function. Note that we export our module the traditional
way and not with export default since at the time of this writing React Native
doesn’t support that yet.

Bootstrapping and Navigation

Let’s dissect our entry point, in this case index.ios.js (which is similar
to our .android one). At the head of the file, is our bootstrapping code.
Here we’ll need to initialize our main stores, navigation (we only got one
of each through the entire app) and any housekeeping that’s needed for
bootstrapping the app. As preparation for wiring the navigation routes we
import all of the relevant views as well.

Walkthrough 76

1 'use strict';

2

3 import React, {

4 AppRegistry,

5 StyleSheet,

6 Text,

7 View,

8 Navigator,

9 TouchableOpacity,

10 } from 'react-native'

11

12 import Master from './views/master'

13 import Detail from './views/detail'

14 import People from './views/people'

15 import Store from './services/store.js'

16 import Storage from './services/storage.js'

17 import Icon from 'react-native-vector-icons/FontAwesome'

18 import Emitter from 'EventEmitter'

19 import styles from './styles'

Import the UI parts that we’ll use later in our navigation mapping, and each
of our app’s building blocks - theMaster, Detail, and People smart views as
well as our storage, styles, and navigation event emitter.

1 var store = new Store()

2 var storage = new Storage()

3 storage.load((err, items)=>{

4 if(err){

5 console.log("STORAGE: storage load error", err)

6 return

7 }

8 store.load(items)

9 })

10

11 storage.syncWhenStoreChanges(store)

Store is our live object store that our app interacts with, and Storage

is a service component that listens to our store, persisting it when it
detects changes automatically for us (we’ll review this simple component
separately). This is a nice benefit of a central event dispatch - the store
doesn’t know how to persist itself, nor does it need to care about that. In
the end, we end up with our store instance, store, which we’ll happily plug
into our routes as we map our navigation stack.
This is the same store instance that our Master view will get, and will
subscribe to with the Subscribable mixin (I promised we’ll tie that one up
eventually).

Walkthrough 77

Next up is a rather heavy subject, but its perhaps the most crucial to our
application. I’ve dedicated a complete chapter for an in-depth look of React
Native routing and navigation stack, so I hope you’ll enjoy that subject on
its own.
For our app, this is how the routing and navigation stack look like, dissected
bit by bit.

1 var navEvents = new Emitter()

2 var _navigator

We’ll need both of these. navEvents is a dispatch event emitter that is
responsible to emit navigation events. For example, if someone tapped
the ‘Save’ button and that button exist on the navigation bar, there is no
guarantee a view will know about it because by design, our navigation bar,
mapping, and routes are separate from any specific view concern. So this
is the recommended way of doing things - keep a dedicate event emitter
for communicating down navigation bar events. When we get to the Detail

view, where you can edit a group, we’ll see how it interacts with the navEvents

emitter when it want to save itself. Tip: architecturally, you can also tie this
communications up with another central entity to your app, can you guess
which is it? (hint - your Store. Well, not really a hint :-)
We keep a _navigator variable global since as it happens (but you don’t see
it here yet), Android can navigate in ways that are different than iOS - via
the hardware (or software) “Back” button. This is how we can grab our
live navigator and wire it through our back button handling logic; this is
described in more detail in the Routing and Navigation chapter.
Next up is our navigation and navigation route mapping. First, what’s the
sense of it all? (you can glimpse at the code listing below and come back
here).

• Navigator - this is a react component. It is the main entry point for the
things React Native needs to know in order to render a fully working
and interactive navigation bar: styles, initial route, route rendering,
navigation bar component, and within it a route mapper

• A route - is a simple dictionary. It would be best to follow a convention
and shape it like below, with a dedicated route id, title and props which
we’ll pass down to our views directly (for more interesting patterns,
jump to the Routing and Navigation chapter)

• An initial route - simply the first route that the app will emit. This
in turn will invoke the renderScene function which will in turn instruct
React Native which actual view component to render

• renderScene - a function that maps a route into an actual React Native
component, full configured and ready to go. Here you’ll typically take
route IDs such as master, detail and perhaps more URI-like such as
app://users/1/carts/2/items - you make the rules.

Walkthrough 78

• navigationBar - with the Navigator you can supply any navigation bar
component to render your actual UI for the navbar, with interactions
included. Here we’re taking the default provided navigation bar:
Navigator.NavigationBar and applying our own routeMapper so that it will
reflect the routes that are currently displayed meaningfully (more on
this on the Routing and Navigation chapter).

• routeMapper - a special function that takes a route and reflects the parts
that are typical to a navbar: the left button, the title, and the right
button.

1 class Navigation extends React.Component {

2 render(){

3 return(

4 <Navigator

5 style={styles.container}

6 initialRoute={{id:'master', title: "People", props:{ navEvents }}}

7 renderScene={this.navigatorRenderScene}

8 navigationBar={

9 <Navigator.NavigationBar

10 routeMapper={NavigationBarRouteMapper}

11 style={styles.navBar}

12 />

13 }

14 />

15)

16 }

Following, this is how our renderScene function looks like.

1 navigatorRenderScene(route, navigator){

2 _navigator = navigator

3 switch(route.id){

4 case 'master':

5 return <Master navigator={navigator}

6 store={store}

7 {...route.props}

8 />

9 case 'detail':

10 return <Detail navigator={navigator}

11 store={store}

12 {...route.props}

13 />

14 case 'people':

15 return <People navigator={navigator}

Walkthrough 79

16 store={store}

17 {...route.props}

18 />

19 }

20 }

21 }

The React Native router and the renderScene function lets you completely
separate the concerns in your app. The Master components has no idea who
is the Detail components and so on. All of the routing is performed with
an abstract route object, and this is the part of the stack that converts that
abstraction into actual implementation detail. Note that we’re passing the
navigator and store to the views that need it - typically all views. This is
easily DRY’d up with some convenience abstraction you can make but I’m
keeping it extra verbatim so it would help to drive the idea at hand. A nice
use of the new spread operator45 is to pass down the props we get through
the route.
Finally here is the piece of logic that makes the navigation bar render itself
correctly as a reflection of the current route:

1 var NavigationBarRouteMapper = {

2 LeftButton: function(route, navigator, index, navState) {

3 if (index === 0) {

4 return null

5 }

6 var previousRoute = navState.routeStack[index - 1]

7 return (

8

9 <TouchableOpacity

10 onPress={() => navigator.pop()}

11 style={styles.navBarLeftButton}>

12 <Text style={[styles.navBarText, styles.navBarButtonText]}>

13 <Icon name="chevron-left"

14 size={18}/>

15 {previousRoute.title}

16 </Text>

17 </TouchableOpacity>

18)

19 },

20

21 RightButton: function(route, navigator, index, navState) {

22 switch(route.id){

23 case 'master':

24 return (

45https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator

Walkthrough 80

25 <TouchableOpacity

26 onPress={() => navigator.push({id: 'detail', title:"New", props\

27 :{ navEvents }}) }

28 style={styles.navBarRightButton}>

29 <Icon style={[styles.navBarText, styles.navBarButtonText]}

30 name="plus"

31 size={18}/>

32 </TouchableOpacity>

33)

34 case 'detail':

35 return (

36 <TouchableOpacity

37 onPress={() => route.props.navEvents.emit("save") }

38 style={styles.navBarRightButton}>

39 <Text style={[styles.navBarText, styles.navBarButtonText]}>

40 Save

41 </Text>

42 </TouchableOpacity>

43)

44 }

45 },

46 Title: function(route, navigator, index, navState) {

47 return <Text style={[styles.navBarText, styles.navBarTitleText]}>{route.t\

48 itle}</Text>

49 },

50 }

This looks a bit messy, since we’re spitting out actual UI bits for the right
button and title (that could easily be extracted out, of course). But if you
squint you’ll see that it really is simple; the left button typically just needs to
pop an item from the navigation stack, and that is what the code describes,
the title needs to pull the title key from our route (thankfully we have
that ready for use right there!), and the right button need to do work as
a function of the route id:

• master - if we’re on the Master view, we want to navigate to the Detail
view for making a new group. So this is a “New” type button and
behavior - navigate to detail view.

• detail - if we’re on the Detail view, we probably want to save it. So
this means emit a “save” event onto the navEvents dispatch emitter. We
know that the Detail view itself is listening on that event, so it in turn
will trigger an actual save (we’ll see that later when we dissect the
Detail view)

This completes the picture of the boostrap, navigation, and Master view
parts of the app. At this point ourMaster view is primed and our navigation
stack will lead us to any other view that we want.

Walkthrough 81

Now, all that is left is to take a look at the so called Detail view, or group
edit screen, and the Contacts screen. This means we’ll discuss UI, styling,
events, and 3rd party component usage and integration.

Styling

Before we continue, let’s take a look at how styling is done with React
Native. I think you’ll be pleasantly surprised.
React Native styling is done with Javascript, but it feels like CSS. If you
noticed the React community at some point in time started moving towards
the inline styles trend, and I remember this deck46 to be an eye opener - I
liked the tought process so much that it kept lingering on for a while, and
I was happy to see the results in React Native when it finally went out.
In order to create a style sheet, or a usable style description, take a look at
the following:

1 var S = StyleSheet.create

2 module.exports = S({

3 messageText: {

4 fontSize: 17,

5 fontWeight: '500',

6 padding: 15,

7 marginTop: 50,

8 marginLeft: 15,

9 },

10 button: {

11 backgroundColor: 'white',

12 padding: 15,

13 borderBottomWidth: StyleSheet.hairlineWidth,

14 borderBottomColor: '#CDCDCD',

15 },

16 :

17 :

18 .

I like to shorthand the React.create and StyleSheet.create functions as R and S

respectively. But to our point, the create function is passed a dictionary that
has the looks of an ordinary CSS stylesheet where dashes are replaced with
camel casing. More over, React Native has a much smaller set of properties
you can play with than with a regular CSS stack in a modern browser,
and for a good reason - it doesn’t have to support broken layout models
or decades of mishaps due to browser wars.
To find out which properties you can use, check out the official style docs47.
46https://speakerdeck.com/vjeux/react-css-in-js
47https://facebook.github.io/react-native/docs/style.html#supported-properties

https://speakerdeck.com/vjeux/react-css-in-js
https://facebook.github.io/react-native/docs/style.html#supported-properties
https://speakerdeck.com/vjeux/react-css-in-js
https://facebook.github.io/react-native/docs/style.html#supported-properties

Walkthrough 82

After you’ve made your stylesheet, you can export it as with the above
listing, and use it as a variable like so:

1 <View style={styles.myCustomStyle} />

Where style is a special prop React Native uses to apply styles, and it exists
in every React Native component that supports styling - you should follow
this convention as well in your own custom components.
In addition you can inline your styles like so:

1 <View style={{padding: 10}} />

And of course, you can pass a variable instead:

1 // somewhere around your code:

2 var viewStyle = { padding: 10 }

3 <View style={viewStyle} />

Here, you’re providing a raw dictionary, so why even use StyleSheet.create?
Well, because it will create an immutable and interned table that is more
lightweight to pass on renders. For more on this, check out the official style
docs48.
The cascading property of CSS isn’t gone either, you can use a limited
cascading effect with React Native as well and it makes for a very useful
construct. Simply supply an array of styles instead of an object, inline or as
a variable:

1 <View style={[{padding:10}, styles.myCustomStyle, {color: "red"}]} />

The order of application of the styles (in case there are conflicting defini-
tions) is left to right. So, keep your base styles at the leftmost corner of the
array.
Another pleasant surprise is - your stylesheet is Javascript. This means you
can do anything a CSS preprocessor such as Sass or Less can do, without
all of that technology. You can define and use variables to indicate primary
and secondary app colors, a theme for your entire app, compute height,
width, and position on the fly, make a stylesheet generator factory and even
compose stylesheets in more interesting ways, like plain Javascript objects,
if you’d like.
The layout model that React Native implements is Flexbox, while we can
chew through pages showing different layouts and how they turn out to be,
48https://facebook.github.io/react-native/docs/style.html

https://facebook.github.io/react-native/docs/style.html
https://facebook.github.io/react-native/docs/style.html
https://facebook.github.io/react-native/docs/style.html

Walkthrough 83

I think it’s a waste of time since Flexbox is so well explained else where by
now. To get the idea of it, check out this Web based Flexbox playground49,
it is a quick and interactive way to get started. Then you can check out the
Flexbox specific properties for React Native on the docs page50 instead of
me just copying and pasting it here and upping the book’s page count for
no reason :-).

The Detail Screen

Or: the edit group screen. In this part we’ll deep dive into more UI
oriented topics such as how to compose views, the different React Native
UI components, 3rd party components and styling.
Let’s start with an annotation of a sample populated view:
49http://the-echoplex.net/flexyboxes/
50https://facebook.github.io/react-native/docs/flexbox.html

http://the-echoplex.net/flexyboxes/
https://facebook.github.io/react-native/docs/flexbox.html
http://the-echoplex.net/flexyboxes/
https://facebook.github.io/react-native/docs/flexbox.html

Walkthrough 84

Detail Screen Annotated

1. A cover image holder. This is a regular React Native Image component.
2. An editable text box. This is a React Native Text component styled to

look neat.
3. A TouchableOpacity component holds a view inside it and functions as

a button. Here we’re embedding an Icon component from the react-

native-vector-icons package.
4. A live timestamp, translated to a “time ago” fashion with the familiar

moment.js Javascript library. This library is commonly used on the
Web, but works flawlessly on React Native, as would other plain
Javascript libraries.

5. The tags section is a generated collection of views that we embed in-
side a holder. These are a series of views wrapped with TouchableOpacity

for interactivity.
6. The contacts section is generated as well, from the description of

contacts that are currently associated with this group. We use our own
Avatar component, which is starring in other views as well.

Walkthrough 85

7. The last item in the contacts section looks like it is a contact, but it
is really not. It’s another view wrapped with TouchableOpacity styled to
flow smoothly with the other real contact views.

8. The “Save” button is actually not part of this view. It is rendered on
the navigation bar (which we reviewed earlier), but we do make sure
to receive events from it within the body of the main detail view.

9. Same here, the “back” functionality of this view is really not on it. It is
on the navbar.

10. Same again. The title is derived from our route mapper, that we’ve
covered earlier. It’s nice to see how it all fits!

Let’s start dissecting the Detail view, this time we’ll start directly with the
render methods:

1 render: function() {

2 let item = this.state.item

3 let contactsViews = _.map(item.contacts, (v, k)=>{

4 return(

5 <Avatar key={k}

6 image={v.thumbnailPath}

7 style={styles.avatar}

8 textStyle={styles.avatarText}

9 firstText={v.firstName}

10 secondText={v.lastName} />

11)

12 })

We’re pulling the item directly from our state which we modified and kept
there and initially got from our props when someone navigated into the
Detail view. Next we’re building the contacts section; this section is simply
mapping item.contacts into a list of our custom Avatar components. It is
important to provide a unique key as with any collection of views as this
helps with React’s reconciliation51. If you missed this, you’ll get a friendly
yellow warning from React Native directly in your app:
51https://facebook.github.io/react/docs/multiple-components.html

https://facebook.github.io/react/docs/multiple-components.html
https://facebook.github.io/react/docs/multiple-components.html

Walkthrough 86

The Yello Box

Try running the sample project and removing the key properties. Then
when you get the yellow box, click on it for more information.
P.S. we’re also using the ES6 new let52 variable declaration for better
scoping semantics.

1 let tagsViews = _.map(tags, (v, k)=>{

2 let selectedStyle = (k == item.tag) ? styles.tagSelected : {}

3 return(

4 <TouchableOpacity key={k} style={[styles.tag, selectedStyle, {backgroun\

5 dColor: v.color}]} onPress={()=> this.onTagSelected(k)} />

6)

7 })

8

9 let placeHolder = null

52https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/let

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/let

Walkthrough 87

10 if(!item.image){

11 placeHolder = (

12 <Icon name="picture-o" size={84} style={styles.placeHolder}/>

13)

14 }

Almost the same as with the avatars section, the tags section renders a
collection of tag selectors and this is how we render them, keeping in
mind that only the currently selected tag (item.tag) should be represented
as selected. We simply pass down the selected style to our TouchableOpacity

component which serves as the tag body and touch gesture responder. This
is also a great chance to show off React Native’s stylesheet composition;
we have a general tag style styles.tag, a possible selected style selectedStyle,
and a specific background color decided by the tag value v.color. As always,
any interaction with such a generated component is simply deferred to the
holding “smart” component.
Next we decide if there’s no image provided with our item, if true, we build a
place holder to cover for the lack of cover image. This would be a huge icon,
covering the space of the cover image. Here, we’re using react-native-vector-

icons which you can get here53. The idea is to pack every vector icon that is
freely available such as Fontawesome and Ionic Framework’s Ionicons, as
well as Foundation’s icons and more. This creates an incredible playground
and saves your resources should you want to invest in an icon set or hire
a designer. To use these icons you simply provide a name and size prop. The
usual styling holds as well:

1 <Icon name="picture-o" size={84} style={styles.placeHolder}/>

To install any 3rd party module, as with any node.js based project you would
use npm:

1 $ npm install react-native-vector-icons --save

However, since this specific module involves some unusual manual work,
such as including the actual font resource files in each of your iOS and
Android platforms, it might be useful for you to be familiar with rnpm, which
is a complementary tool for npm, just for React Native. Do this:

1 $ npm install rnpm -g

And then, after installing React Native module, you can run:

53https://www.npmjs.com/package/react-native-vector-icons

https://www.npmjs.com/package/react-native-vector-icons
https://www.npmjs.com/package/react-native-vector-icons

Walkthrough 88

1 $ rnpm link

Within your project directory. rnpm will look for modules with a native
requirement such as a binary to link against your app, or a resource to
include within either your iOS or Android projects and do that work for you.
You should be aware, though, that some times it misses and includes a stray
example projects someone have put together with the main project, or files
you don’t really need, so be sure to take a look at your native project (iOS
or Android) should your build suddenly malfunction. It is for this reason
I always prefer doing the linking manually and reading the README before
hand.
Next up, we need to compose everything together:

1 let ImageComponent = item.image ? Image : View

2 return (

3 <ScrollView automaticallyAdjustContentInsets={false} contentContainerStyl\

4 e={styles.container}>

5 <ImageComponent source={H.documentsImage(item.image)} style={styles.im\

6 age}>

7 {placeHolder}

8 <View style={styles.toolBar}>

9 <TouchableOpacity style={styles.pickImageIcon} onPress={this.onPic\

10 kImage}>

11 <Icon name='camera' style={styles.pickImageIconText} size={18} />

12 </TouchableOpacity>

13 </View>

14

15 <TextInput

16 style={styles.input}

17 onChangeText={this.onTitleChanged}

18 value={item.title}

19 />

20 </ImageComponent>

21

22 <Text style={styles.date}>

23 {H.capitalize(H.fromNowInWords(item.date))}

24 </Text>

25

26 <View style={styles.tagHolder}>

27 {tagsViews}

28 </View>

29

30 <View style={styles.avatarHolder}>

31 {contactsViews}

32 <TouchableOpacity style={styles.avatarAdd} onPress={this.onPeoplePres\

Walkthrough 89

33 sed}>

34 <Icon style={styles.avatarAddText} name="user-plus" size={18}/>

35 </TouchableOpacity>

36 </View>

37 </ScrollView>

38)

39 }

First, we decide if the main cover component is a live Image when we have
an image to display or a dud View when that image property is null; we call
that ImageComponent.
Next, we wrap everything with ScrollView. The React Native ScrollView is
quite flexible, and you should take amoment to look at the scroll view docs54
before we continue. Here we basically compensate for our navigation bar,
and specify the container style which is usually where you specify flex:1

(note that this is not the usual style prop).
We compose the ImageComponent content. Here, it will be the cover image, the
editable title and the camera button. We also do some Flex styling for this
component, take a look at this stylesheet, pulled from styles.js:

1 image:{

2 flexDirection:'column',

3 justifyContent:'flex-end',

4 alignSelf:'stretch',

5 height: 320,

6 },

So we’re saying content needs to flow as a column, and we also want to stick
everything to the bottom with flex-end. We’re stretching the cover image,
and giving it a fixed height.
Next are the time and the tags section:

1 <Text style={styles.date}>

2 {H.capitalize(H.fromNowInWords(item.date))}

3 </Text>

4

5 <View style={styles.tagHolder}>

6 {tagsViews}

7 </View>

Where H is just a shorthand for our helpers, and the goal is to make the date
into a “time ago” style text. Following is the tags layout, and here as well
we’re doing some Flex layouting:
54https://facebook.github.io/react-native/docs/scrollview.html

https://facebook.github.io/react-native/docs/scrollview.html
https://facebook.github.io/react-native/docs/scrollview.html

Walkthrough 90

1 tagHolder:{

2 marginTop:8,

3 marginBottom:8,

4 padding:8,

5 flexDirection:'row',

6 borderTopWidth: 1,

7 borderBottomWidth: 1,

8 borderColor: '#eee',

9 },

As you can see we’re instructing the Flex layout engine to flow the content
as a row. Finally, our contacts section is rendered as the following:

1 <View style={styles.avatarHolder}>

2 {contactsViews}

3 <TouchableOpacity style={styles.avatarAdd} onPress={this.onPeoplePressed}>

4 <Icon style={styles.avatarAddText} name="user-plus" size={18}/>

5 </TouchableOpacity>

6 </View>

We’re dumping the contactViews variable we built earlier that contains a
list of the contact Avatar components, and then rendering our special “add
contact” button in the same style of the avatars that came before it. Here,
too, you might have guessed, we’re making use of Flex, letting the content
flow as a row:

1 avatarHolder:{

2 flexDirection:'row',

3 flexWrap:'wrap',

4 width: 300,

5 padding: 8,

6 },

That’s it for rendering the detail view. As expected this view, being a detail
view it is heavier on UI. Next up, let’s take a look at the mechanics behind
the view, how the data flows and interactions; which is really everything
except the render function.
This is how our component starts:

Walkthrough 91

1 var Detail = R({

2 mixins: [Subscribable.Mixin],

3

4 componentDidMount: function() {

5 this.addListenerOn(this.getStore().events, 'change', this.onStoreChanged)

6 this.addListenerOn(this.props.navEvents, 'save', this.onSave)

7 },

8

9 onStoreChanged: function(event){

10 if(event.action == "update"){

11 if(event.subject.id == this.state.item.id){

12 this.setState({item: event.subject })

13 }

14 }

15 },

16

17 getStore: function(){

18 return this.props.store

19 },

We mix the Subscribable mixin, so that we enjoy an automatic removal of
listeners safely when the component is unmounting. See more here55 about
Subscribable.
Next we register subscribers on our store (conveniently pulled from our
props), and our navigator for the “save” event. Again, these subscriptions
will conveniently be removed for us when we unmount because we’re going
through the Subscribable addListenerOn function.
When the store changes, we simply do a sanity check to verify that the item
that changed is the one we’re holding. If it is, we simply set state and React
takes care of the rest.
Let’s see how events are handled. In the below listing, we need to handle
save, remove, title change, pick image, and tag selected.

1 onSave: function(){

2 let item = this.state.item

3 this.getStore().update(item)

4 this.props.navigator.pop()

5 },

This event comes from our navEvents event dispatcher that we saw during
our discussion of the bootstrap and navigation code earlier. Here we simply
get our store and tell it to update the item. More over, once saved we want
to go back to theMaster view or which ever view that called us - so we pop
the navigation stack, as simple as that!
55https://github.com/facebook/react-native/blob/master/Libraries/Components/Subscribable.js

https://github.com/facebook/react-native/blob/master/Libraries/Components/Subscribable.js
https://github.com/facebook/react-native/blob/master/Libraries/Components/Subscribable.js

Walkthrough 92

1 onTitleChanged: function(text){

2 let item = this.state.item

3 item.title = text

4 this.setState({item: item})

5 },

This is a simple handler for when the title changed and it is bound to our
Text component. We only modify the state, and when the use hits “Save”
we’ll commit everything to our store.
Next up, let’s see how we’re picking an image. For this we use a 3rd party
module called react-native-image-picker. To install and link it we’ll do:

1 $ npm install react-native-image-picker --save && rnpm link

Now for the handler:

1 onPickImage: function(){

2 UIImagePickerManager.showImagePicker(pickerOptions, (response) => {

3 console.log(`DETAIL: picked image, response `, response)

4 if (!response.didCancel) {

5 this.state.item.image = {uri: response.uri}

6 this.setState({

7 item: this.state.item

8 })

9 }

10 })

11 },

Since this is a native module, it isn’t really a UI component we include,
but something that looks like a system service. UIImagePickerManager is that
module and we tell it to display the picker interface using our pickerOptions

(take a look here56 for these options) and we get a suitable response only
after the use have picked an image (or cancelled). If the user didn’t cancel
we plug the response.uri into our image property within item, which we’ll
later directly inject into a React Native Image component. We then force an
update with setState.

56https://github.com/marcshilling/react-native-image-picker

https://github.com/marcshilling/react-native-image-picker
https://github.com/marcshilling/react-native-image-picker

Walkthrough 93

1 onTagSelected:function(tag){

2 let item = this.state.item

3 item.tag = tag

4 this.setState({item:item})

5 },

6 onPeoplePressed:function(){

7 this.getStore().update(this.state.item)

8 this.props.navigator.push({

9 id: 'people',

10 title: "Select People",

11 props: {

12 itemId: this.state.item.id,

13 },

14 })

15 },

Both of the remaining handlers deal with the contacts or tags selection.
However when a contact is selected (onPeoplePressed) we navigate to a
completely different screen - the People screen, which will list out the
contacts on the user’s phone. If you squint, you can tell that the push

function actually pushes a route onto the navigator, which gets fed back
to our navigation and route mapping code. Correct or not, from a product
perspective, we save the changes the user made so far before navigating
out to the new screen.

The People (Contacts) Screen

The last “smart component” we’re going to dissect is the contacts screen,
where a user is able to pick the contacts that should belong to a given
group. Let’s take a look now.

Walkthrough 94

Contacts Screen

1. As before with our Master view, this is a ListView

2. And again, each ListView holds a prototype cell, and this is our cell
3. Within each cell, we have our Avatar component again, playing a

different role but still the same reusable component
4. We render a check mark with our Icon component for items that are

selected, the entire list is refreshed and rebuilt so that the selected
contacts are always on top.

5. Avatars can either hold an image, or if missing, display a first letter
from each part of the contact name (first and last).

6. The navbar can go back to the group we came from, this is done
automatically for us by our navigation mapping

7. Same for the title
8. And no right button here, we have no were else to go

Walkthrough 95

Let’s start going over the code for the contacts screen, this will again be
a Master-Detail pattern, so we’ll start with the Master part. Let’s do this
upside down as well, starting at the render function.

1 render: function() {

2 return (

3 <ListView style={{paddingTop: 50, flex:1}}

4 dataSource={this.state.contacts}

5 renderRow={this.renderRow}

6 />

7);

8 }

Nothing new here, our data source is now the more properly named contacts

(if you’d like a review of ListView and data sources, refer back to theMaster
view dissection). Let’s continue on to our renderRow function.

1 renderRow:function(row){

2 return (

3 <Cell key={this.state.item.id} item={this.state.item} contact={row} onP\

4 ress={()=> this.didSelectRow(row) }/>

5)

6 },

Good news here, this also looks the same. A master-detail pattern would
probably always look the same, like this. You’re thinking what I’m thinking?
Yes. You could make a MaterComponent that embeds this pattern, giving it just
two things:

1 // Imaginary MasterComponent

2 class People extends MasterComponent{

3 didMountListView(){

4 return {

5 data: contacts,

6 row: (item)=> <Cell .../>

7 }

8 }

9 // Now just handle regular smart components events.

10 }

This makes sense, because iOS has embedded a pattern like this with
UITableViewController57 as well, since this infrastructure doesn’t really
exist for React Native yet, I’ll leave this as homework :-).
Let’s see what happens when we mount this view, specifically, we need to
fetch contacts.
57https://developer.apple.com/library/ios/documentation/UIKit/Reference/UITableViewController_Class/

https://developer.apple.com/library/ios/documentation/UIKit/Reference/UITableViewController_Class/
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UITableViewController_Class/

Walkthrough 96

1 componentDidMount: function() {

2 this.addListenerOn(this.getStore().events, 'change', this.onStoreChanged)

3

4 Contacts.getAll((err, contacts) => {

5 console.log("Contacts", contacts)

6 _.each(contacts, (contact)=>{

7 contact.firstName = emo(contact.givenName || contact.firstName || "")

8 contact.lastName = emo(contact.familyName || contact.lastName || "")

9 })

10 if(err && err.type === 'permissionDenied'){

11 console.log("PEOPLE: no contacts permissions")

12 }

13 else{

14 contacts.sort(this.sortBySelectionAndName)

15 this.setState({contactsArray: contacts, contacts: this.state.contacts\

16 .cloneWithRows(contacts)})

17 }

18 })

19

20 },

First, we add a listener on the store. Remember the store have been passed
to this component by our navigation stack. Next, we use the Contactsmodule,
which is a 3rd party npm module we use to get a hold of each platform’s
contacts facility. You might imagine that not only iOS and Android don’t
share the same API for retrieving contacts, but the data model and the
naming things might be different as well. This is where react-native-contacts

fills the gap. To install it:

1 $ npm install react-native-contacts --save && rnpm link

Now you should get at an API which looks like this58 in your regular
Javascript code. If you’re wondering how this magic is done, we cover how
to make native modules, native UI components and more in this book (and
at the time of writing, that might be the only place to read about it other
than the official docs, which unfortunately provide a partial coverage).
Moving on, a getAll fetches all of the contacts for the device, and hands out
nifty Javascript dictionaries with populated fields about every contact. We
strip out emoji because we’d like to keep it business (you can leave as is and
keep the emoji), using the emoji-strip npm library, and that’s a completely
plain Javascript library that works out of the box with React Native. After
fixing up the contacts, we sort them and set them to our state.
Next up we handle onStoreChanged by refreshing our contacts in case the
group itself changed, but this is just a safeguard since this scenario doesn’t
really exist. We also handle row selection like so:
58https://github.com/rt2zz/react-native-contacts

https://github.com/rt2zz/react-native-contacts
https://github.com/rt2zz/react-native-contacts

Walkthrough 97

1 didSelectRow:function(row){

2 var item = this.state.item

3 var rowId = row.recordID

4 if(item.contacts[rowId]){

5 delete item.contacts[rowId]

6 }else {

7 item.contacts[row.recordID] = row

8 }

9 this.getStore().update(item)

10 },

This basically means we either insert that contact’s ID into our group or
remove it completely. Either way we push back our changes to our store.
Let’s move on to our list view cell. It so happens that our cell is a functional
component59. I love functional (or, “pure”) components because they make
a pitfall of success; they force you into the right way of doing things without
side effects, leading to lighter weight and more composable components.

1 module.exports = (props) =>{

2 let icon = null

3 let contact = props.contact

4 if(props.item.contacts[contact.recordID]){

5 icon = <Icon style={styles.check} name='check-circle' size={22} />

6 }

7

8 let firstname = contact.firstName

9 let lastname = contact.lastName

10 let avatar = <Avatar

11 firstText={firstname}

12 secondText={lastname}

13 image={contact.thumbnailPath}

14 textStyle={styles.avatarText}

15 style={styles.avatar}

16 />

17

18 return (

19 <ListItem onPress={props.onPress}>

20 <View style={styles.holder}>

21 <View style={styles.avatarHolder}>

22 {avatar}

23 </View>

24 <View style={styles.content}>

25 <Text style={styles.text}>{firstname} {lastname}</Text>

26 </View>

59https://facebook.github.io/react/blog/2015/10/07/react-v0.14.html#stateless-functional-components

https://facebook.github.io/react/blog/2015/10/07/react-v0.14.html#stateless-functional-components
https://facebook.github.io/react/blog/2015/10/07/react-v0.14.html#stateless-functional-components
https://facebook.github.io/react/blog/2015/10/07/react-v0.14.html#stateless-functional-components

Walkthrough 98

27 {icon}

28 </View>

29 </ListItem>

30)

31 }

In this view, we’re composing a list item. We’re starting out with the
decision – do we or do we not draw a check sign? The check sign itself
is rendered with our all time favorite react-native-vector-icons module, and
the Icon component. Next we’re composing the Avatar with everything that
it needs from our contact, and finally the ListItem itself, and remember,
being a “dumb view” we’re simply firing off handlers that were passed to
us through our props.
The completes our review of the entire app screens. Next, you might have
noticed we’re using components such as Icon and Avatar all over in many
different situations, which is great, because we’re reusing components.
One of these components, Avatar is one we built for ourselves. Let’s see
how make sure a reusable component next.

Making Reusable Components

During our review, we bumped into Avatar several times. It’s now times to
see how it works, and what’s the reasoning behind making such a reusable
component.
First let’s describe it. The avatar will:

• Render an image when it exists, and apply general styles to itself, and
specific image styles if exists.

• Render a synthetic “image” which is composing the first letter and
last letter of the contact’s full name (which is quite common on mobile
phones), and then apply specific textual styles to that as well as
general avatar styles.

From this definition we arrive at three different sets of styles:

1. Component style
2. Text avatar style
3. Image avatar style

We’ll take these as style (no surprise here), textStyle and imageStyle. we will
have to wire each of the last two on top of style, but that’s easy because we
already saw React Native styles are easily composable.
Now that we’re zeroed out on the logic, let’s take a look at the code:

Walkthrough 99

1 class Avatar extends React.Component{

2 constructor(props){

3 super(props)

4 _.map(Object.getOwnPropertyNames(Object.getPrototypeOf(this)),

5 (x)=>{

6 if(x.match(/^__[a-z]/)){

7 console.log(x)

8 this[x] = this[x].bind(this)

9 }

10 })

11 }

12 __signature(first="",second=""){

13 return `${(first[0] || "?").toUpperCase()}${second && second.length > 0 ?\

14 second[0].toUpperCase() : ""}`

15 }

16 render(){

17 var avatar = null

18 if(this.props.image){

19 avatar = <Image source={{ uri: this.props.image }}

20 style={[styles.image, this.props.style, this.props.imag\

21 eStyle]} />

22 }else{

23 avatar = (<View style={[styles.view, this.props.style]}>

24 <Text style={this.props.textStyle}>

25 {this.__signature(this.props.firstText, this.props.second\

26 Text)}

27 </Text>

28 </View>)

29 }

30 return avatar

31 }

32 }

First, there’s a super strange block of code at the constructor isn’t there?
This is some generic code you can use to automatically bind class methods’
this. With Javascript you’ll find some semantics are sort of broken, like
the treatment of this. While most of that is being fixed with ES6 and
probably ES7, there is still some impedence mismatch when you want
to use the new style of React components (class) and not the old style
(React.createComponent); see more here60. So here, we’re telling the
component to bind any method that starts with __, by convention (our
convention). This is just to show you how you can save up on that boilerplate
code; you can adopt that approach if you like.
Next, we compose the view with toggling between our Image or Text based
60http://egorsmirnov.me/2015/08/16/react-and-es6-part3.html

http://egorsmirnov.me/2015/08/16/react-and-es6-part3.html
http://egorsmirnov.me/2015/08/16/react-and-es6-part3.html

Walkthrough 100

view. Take note of the style composition, in case of Image:

1 style={[styles.image, this.props.style, this.props.imageStyle]}

And the Text based view:

1 avatar = (<View style={[styles.view, this.props.style]}>

2 <Text style={this.props.textStyle}>

We are also keeping the styles in-line in the same file so that our component
is truly stand-alone and can be self-contained. It also makes sense to use
as few external libraries as possible (unlike what we did here, by including
lodash - but that’s just a convenience and can be easily replaced with plain
Javascript).
As homework, try converting the Avatar component into a pure functional
component.

Using Community Components

So far we’ve used community component pretty easily with npm to install
these and rnpm to link them up. While rnpm is useful (and very new at the
moment), it is important to see what you need to do in order to “link”
components to your iOS and Android projects. Hopefully in the future, rnpm
will be so bullet proof that you won’t need that knowledge at all.

Linking iOS projects

Some components have a native part to them, and that needs to be linked
against your native project. For iOS these are the steps you need to follow
after you install that component with npm:

Walkthrough 101

Locate your Libraries groupwithin your project outline, and pop the context
menu with right-clicking it. Then select “Add New File”.

Walkthrough 102

In your project source tree, find your main node_modules folder, and drill down
to the library that you want to link. In our example we’ll be linking the
react-native-contacts library. You need to find the iOS Xcode project (ends
with .xcodeproj). Once found, select it.

Walkthrough 103

Next, go to your project build settings, in the “General” tab. Scroll down-
wards and find the “Linked Frameworks and Libraries” section.

Walkthrough 104

At the bottom of this section you’ll find a “+” button. Click that.

Walkthrough 105

You’ll need to find the .a library to link, it usually will appear first, and
libraries that are not linked are listed there, so it should be very obvious.
Here we’re seeing the libRCTContacts.a binary that we need to add.
That’s basically it. Build to make sure everything passes successfully.

Linking Android Projects

Luckily, Android adopted Gradle a couple years back. This makes life very
simple for us.

Walkthrough 106

Locate the settings.gradle file at the root of your project, and add the
above lines to it. We’re basically saying there’s a new software project,
and its location is somewhere within node_modules; you’ll have to locate that
manually. Here, again we’re linking the react-native-contacts module.

Walkthrough 107

Next find your app/build.gradle file, and declare that project as a compilation
source. This is how Gradle takes dependencies and knows to include a
subproject’s source into the main compiled target. Now, the contacts native
code can be visible within our own.

Walkthrough 108

Register the package (you can read more on packages and native modules
in the dedicate native modules chapter) within the main (and only) activity
like the above. You’ll need to include any missing Java imports (Intellij/An-
droid Studio will happily request to do this for you).
That’s it, build and make sure everything passes.

Javascript Components

There’s nothing to link here as almost every project that’s on npm will be
available to you. It’s a good idea to read the entire project’s README to try to
find out if there’s any native part you need to know. At the time of writing,
there is no standard way of declaring:

• If the project has native parts
• If it supports both iOS and Android, or just one of these

Walkthrough 109

• If there are any additional steps to do (such as including resources, as
in the case of react-native-vector-icons)

And again, I hope rnpm is destined to change that and make these concerns
transparent to you, however without a standardized project layout - it is
wise as me and you, or less, about any given project.
Another concern when evaluating Javascript components, is to take into
account the risk that it uses some Node.js functionality that isn’t available
with the React Native engine (try using the popular node-uuid to generate
UUIDs instead of uuid-js the we used). In this case just find the pure
Javascript variant of the library.
All in all I’ve briefed you on how to find those edge cases that will for sure
be a time wasters, however you should know that most libraries work well
without any special treatment. And of course there’s the convention of a
library that is prefixed with react-native-. You can find many of those and
more in my awesome-react-native61 repository on Github.

Summary

This has been our most intensive, action packed chapter yet. In it, you’ve
learned about a powerhouse pattern in mobile applications (Master-Detail),
and you’ve seen how to build your own smart components, dumb com-
ponents. We’ve also learned about bootstrapping your app in your entry
file and how central concerns like navigation and stores come into play.
We’ve also seen how to make reusable components and use community
components; this richness is directly driven by React being such a great
framework for composition, and the ecosystem it enabled to create. We also
got to know the tooling, the IDEs, npm and rnpm. We definitely covered a lot,
and you may be surprised that the following chapters are not lowering the
bar; we will deep dive into topics that are notoriously difficult for mobile
app development.
61https://github.com/jondot/awesome-react-native

https://github.com/jondot/awesome-react-native
https://github.com/jondot/awesome-react-native

Navigation and Routing

Why navigation

You might ask yourself: why do you need navigation? What’s a navigation
stack? Well, navigation on mobile apps covers these concerns:

• Situational awareness: know where you’re at, and possibly, where you
came from

• Functional: be able to navigate. Go back, undo, skip, or “deep link”
into some functionality of the app

• Infrastructural: consolidate ceremonies that need to be done before
rendering a new screen.

• Maintainability: to realize the above concern, often, you’ll need to
build a state machine. A navigation stack is a state machine. Platforms
may let you code this state machine declaratively or visually, and
promote maintainability by keeping all of that logic in one place.

Why Navigation is Scary

In my opinion, one of the scariest topics in mobile application development
is routing and navigation.
Navigation infrastructure typically holds a navigation stack, which holds
screens, which hold components and data. Often, this state is not repre-
sented anywhere; it is a transient state that the user have created bymerely
navigating around, which is why it makes it hard to reason about.

110

Navigation and Routing 111

Navigation flows are also hard to reproduce, should you bump into bugs
in that area, and often these bugs carry memory leaks and the sorts (we
did just mention a navigator stack holds reference to screens, which hold
reference to components, which holds reference to data, and so on).
Navigation UX deals with how each operating system brought with it its
own truth as to how to properly do navigation, as well as how to facilitate
it: Android’s implicit back button behavior, and iOS with its purely explicit
text navigation bar.
And lastly, each platform has its own tooling and how to ease up all
said pains. Android has the traditional approach, where you build screens
and code transitions with the omnipotent Intent, and lately iOS offered a
more intuitive approach with Storyboards and almost physically connecting
screens.

Navigation in React Native

The bad news is that navigation doesn’t get less scary to me, even with
React Native. I guess that for me the saying “the more you know, the more
you worry” painfully applies.
However, the good news, or maybe the great news is - that with the React,
Javascript, and React Native combo everything becomes amazingly more
predictable.

• React sports one-way binding, which helps us reason about our code.
So to find memory leaks we travel a one-directional dependency tree
(YMMV).

• Javascript brings about the Chrome Devtools, which by now are one
of the most powerful toolsets for developers. If you’re going to build
something complex, you’re lucky to be living in 2015 (at least, that’s
when this book was written, consider yourself luckier if you’re from
the future!).

• React Native gives us plenty of escape hatches. This is the case where
we want to use NavigatorIOS, the native iOS navigation stack, in order to
minimize the element of surprise by not emulating a navigation stack,
or simply put - sticking to the host OS best practices.

In addition, if what you’re building is really painfully complex (years of
effort and complexity), I guess at this stage you probably don’t really need
this book and should build your app on each platform separately using
dedicated tooling and approaches, just to be safe.
Let’s take a look at the two React Native navigation solutions.

Navigation and Routing 112

Navigator vs. NavigatorIOS

React Native started on iOS, and this is why the best-in-class or perhaps
most used navigation stack is NavigatorIOS. If you’re building an iOS only app
and want to play it safe, use it. However, if a year or more passed from the
writing of the book, it might be possible that the generic Navigator dwarfed
NavigatorIOS in features and stability, so allow yourself to evaluate that again
by Googling around.
Navigator is React Native’s attempt to abstract the concept of navigation. At
the time of writing, it is good-but-not-great a bet for a smooth ride if you
want to keep a common navigation codebase for iOS and Android.
We’ll use NavigatorIOS for iOS and Navigator for Android. Even if reality
changes and Navigator becomes the be-all-end-all navigation solution for
both platforms, I would want to keep it apart. It feels that navigation on
iOS and Android will always want to be different, somehow, either UX or
hardware-wise, so it makes sense to future-proof this and make room for
code to evolve differently.

Navigator

Let’s go through a brief Navigator example. For this, we’ll assume the
common master-detail pattern, where we have a master view containing
a list of items, and then when tapping an item we want to navigate to a
child (or detail) item.

Wiring Navigator

This is what you probably wanted to read before I filled your head with back
button craze.
The Navigator is a React component that deals with two main concerns:

Navigation and Routing 113

1. Returning a properly configured Navigator component, with icon, back
icon, colors, initial route and more. In addition, it should wire a
renderScene handler, which we talk about next.

2. A renderScene handler implementation, which is a function that takes
care of mapping a route (which just a Javascript object) to a screen of
our choosing. The goal is similar in concept to backend routing with
frameworks like Express or Rails, which deals with separating routing
from destination.

Here is how we set that up, for a simple two-screen (“first” to “second”)
navigation flow:

1 class Navigation extends React.Component{

2 render() {

3 return (

4 <Navigator

5 style={styles.container}

6 initialRoute={{id: 'first'}}

7 renderScene={this.navigatorRenderScene}/>

8);

9 }

10

11 navigatorRenderScene(route, navigator) {

12 _navigator = navigator;

13 switch (route.id) {

14 case 'first':

15 return (<First navigator={navigator} title="first"/>);

16 case 'second':

17 return (<Second navigator={navigator} title="second" />);

18 }

19 }

20 }

In the render function, we set up a Navigator, in which the most important
properties to specify are the initialRoute and renderScene. Note that a route
is simply any Javascript object that will be carried from screen to screen.
Here, we make a convention to have our main routing concern exist behind
an id property; if we have anything else to pass, we’ll use a suitable payload,
within the same object. However, let’s agree that id will always be reserved
for routing.
The good news is that we passed the clunky part of declaring a Navigator

component and then wiring up screens. It can become less clunky, maybe,
some day. It can have some sort of a DSLish feel to it such as:

Navigation and Routing 114

1 // This doesn't really exist, but you can make it

2 var Navigation = routes({

3 'first': (route, navigator)=>{

4 <First title="foobar">

5 }

6 })

But this kind of experience doesn’t exist yet. It’s quite a low-hanging fruit,
so think of it as a nice weekend project to do :)

ToolbarAndroid and Navigator.NavigationBar

It is important to notice that Navigator comes with a pre-baked piece of
UI that functions as your top Android navigation bar as well as the iOS
navigation bar. If you’ll dig into UIExplorer62 within the facebook/react-native

Github repo, you’ll see these kinds of things:

1 var NavigationBarRouteMapper = {

2

3 LeftButton: function(route, navigator, index, navState) {

4 if (index === 0) {

5 return null;

6 }

7

8 var previousRoute = navState.routeStack[index - 1];

9 return (

10 ...

11);

12 },

13

14 RightButton: function(route, navigator, index, navState) {

15 return (

16 ...

17);

18 },

19

20 Title: function(route, navigator, index, navState) {

21 return (

22 ...

23);

24 },

25

26 };

62https://github.com/facebook/react-native/tree/master/Examples/UIExplorer/Navigator

https://github.com/facebook/react-native/tree/master/Examples/UIExplorer/Navigator
https://github.com/facebook/react-native/tree/master/Examples/UIExplorer/Navigator

Navigation and Routing 115

That is a concept of a NavigationBarRouteMapper or in other words, you’re telling
your Navigator how to compose the NavigationBar’s UI on each and every route.
Then, you stick an actual NavigationBar into your Navigator this way:

1 <Navigator

2 ...

3 navigationBar={

4 <Navigator.NavigationBar

5 routeMapper={NavigationBarRouteMapper}

6 />

7 }

So what you’ve got here, is a Navigator which we learned how to configure
and tell it how to render itself as a response to a given route, and a
NavigationBar that pretty much does the same.

Immediately, you start thinking - why separate the two? Your
NavigationBar and Navigator rendering is spread out through two dif-
ferent mappers, and also, why not make a route a first-class citizen
and making itself render? something like ShowCartRoute.render(), and
then ShowCartRoute.renderBar()? well, this is what Exponentjs/ex-navigator
solves exactly, and more or less feels like. I recommend checking it
out63. Also, you might imagine that this is not going to be the only
flavor people would like to do their routing with, so keep watching
out for new things.

Should you use a ToolbarAndroid or a Navigator’s own NavigationBar? The answer
is again - tradeoff. The NavigationBar is strongly tied to routes, ToolbarAndroid
is tied to your view. ToolbarAndroid is, well, Android, and you could probably
implement such a thing yourself generically.
So bottom line, if you’re implementing something simple, then go with
iOS’s NavigatorIOS for iOS (coming in the next section), and ToolbarAndroid

for Android. Otherwise, use a Navigator for both, and either NavigationBar, or
your own piece of bar that you construct manually. And, of course, do a
quick browse on my awesome-react-native64 list for any fancier bar that
you’d like.

ToolbarAndroid

So Navigator and NavigationBar aside, let’s give ToolbarAndroid a decent cover-
age in case you’d pick this option. In that case our screens will be normal
views that take care of massaging a ToolbarAndroid subview to their needs.
63https://github.com/exponentjs/ex-navigator
64https://github.com/jondot/awesome-react-native

https://github.com/exponentjs/ex-navigator
https://github.com/exponentjs/ex-navigator
https://github.com/jondot/awesome-react-native
https://github.com/exponentjs/ex-navigator
https://github.com/jondot/awesome-react-native

Navigation and Routing 116

A ToolbarAndroid is our top navigation bar, and with React Native, it is quite
flexible. So flexible, in fact, that we need to code every decision point such
as when to show the back icon, what kind of title to display and so on, based
on our current and past screens.
A ToolbarAndroid is also the real Android Toolbar widget (see here65) which, in
accordance to our theme here (showing the platform-specific way first) is
an Android-specific component.

Flexibility can be good and bad. Good since on each screen, we
can specify exactly how we want things to be had on the navbar.
Bad, because we need to be defensive here since it can become a
maintenance overhead or a state machine of the worst kind - the
one that is spread out through out our entire codebase.

Here is our Second screen:

1 class Second extends React.Component{

2 render() {

3 return (

4 <View style={styles.container}>

5 <ToolbarAndroid style={styles.toolbar}

6 title={this.props.title}

7 navIcon={require('image!ic_arrow_back_white_24dp')}

8 onIconClicked={this.props.navigator.pop}

9 titleColor={'#FFFFFF'}/>

10 <Text>

11 Second screen

12 </Text>

13 </View>

14);

15 }

16 };

If you’re trying this out, make sure that ic_arrow_back_white_24dp is an icon
you’ve dropped in your resources folder - in this case Android. For the sake
of the experiment you can use a single hi-res image for all size variants.
Note here, that we specify our navIcon explicitly. We want users to be able
to tap a back icon right on the navbar.
Next up, our First screen:

65https://developer.android.com/intl/zh-tw/reference/android/support/v7/widget/Toolbar.html

https://developer.android.com/intl/zh-tw/reference/android/support/v7/widget/Toolbar.html
https://developer.android.com/intl/zh-tw/reference/android/support/v7/widget/Toolbar.html

Navigation and Routing 117

1 class First extends React.Component{

2 navSecond(){

3 this.props.navigator.push({

4 id: 'second'

5 })

6 }

7 render() {

8 return (

9 <View style={styles.container}>

10 <ToolbarAndroid style={styles.toolbar}

11 title={this.props.title}

12 titleColor={'#FFFFFF'}/>

13 <TouchableHighlight onPress={this.navSecond.bind(this)}>

14 <Text>Navigate to second screen</Text>

15 </TouchableHighlight>

16 </View>

17);

18 }

19 }

Here, we don’t specify a back button, because we recognize it as the root
screen. The most important (and fun) piece of code here is how we navigate
to the Second screen. We just push a new object which happens to contain an
id that we agreed is our routing property that we base our routing on. Note
that we don’t specify the screen type, object, or tag here - this is the essence
of separating routing from destination or implementation, which is a Good
Thing.
On Android, we’ll have to take care of navigation, and also the back button.

Navigation and Routing 118

Android’s Back Button

Tapping into the back button is unique to Android devices, in that it is on
occasion a “hardware” button on a dedicated touch area of the glass as in
Samsung phones or HTC phones, or a software button that renders at the
lower part of the screen (common on the Nexus family of devices).
The following boilerplate is more or less needed verbatim in our app to
support responding to the back button. Note that the _navigator variable is
scope-global, and it gets filled on first navigation. First read this snippet of
code to understand what’s going on, and then I’d recommend tracking the
_navigator variable throughout as well.

1 var {

2 ...,

3 ...,

4 ...,

5 BackAndroid

6 } = React;

7

8 var _navigator; // we fill this up upon on first navigation.

9

10 BackAndroid.addEventListener('hardwareBackPress', () => {

11 if (_navigator.getCurrentRoutes().length === 1) {

12 return false;

13 }

14 _navigator.pop();

Navigation and Routing 119

15 return true;

16 });

BackAndroid is a simple library that binds to the native events of the host
device.
Deep dive alert!: here’s how it works (notice the special exitApp case):

1 RCTDeviceEventEmitter.addListener(DEVICE_BACK_EVENT, function() {

2 var invokeDefault = true;

3 _backPressSubscriptions.forEach((subscription) => {

4 if (subscription()) {

5 invokeDefault = false;

6 }

7 });

8 if (invokeDefault) {

9 BackAndroid.exitApp();

10 }

11 });

On iOS you need not worry if you’re mistakenly (or if you lazily want to use
the exact same code) using the BackAndroid module - all of the functions it
carries are no-ops.

As with any event listener, when you add a listener, you must
immediately ask yourself how you are going to remove it - does the
subscribe method return a special handle you need to provide when
canceling?, or do you have to do the bookkeeping yourself and come
up with the same reference to the handler you provided?

In the BackAndroid case, when we subscribe we must keep a reference to the
handler function we give it. However, do we really see ourselves disabling
the back button in real life?

NavigatorIOS

If you’re not making an Android version of your app, or you didn’t choose to
implement Navigator and NavigationBar then this NavigatorIOS is a lot simpler,
and relies on the native iOS navigation stack. The iOS navigation stack is a
powerful beast, it is only encouraging that it is hidden under such a simple
React Native component, however be sure that if we wanted to do more
involved things (custom Segues and such) it might have become trickier.
For now, let’s implement the same Navigator example with NavigatorIOS.

Navigation and Routing 120

1 class Navigation extends React.Component{

2 render() {

3 return (

4 <NavigatorIOS

5 style={styles.container}

6 initialRoute={{

7 title: 'first',

8 component: First

9 }} />

10);

11 }

12 }

Our Navigation component is simple and explicit, and the initial route
specifies the verbatim component (here First) that we want to run. As a
side note, you might also like to call this component Router or Handler or
anything that represents a concept of a routing shell component.
Next, we take a look at both our screens, First and Second.

1 class First extends React.Component{

2 navSecond(){

3 this.props.navigator.push({

4 title: 'second',

5 component: Second

6 })

7 }

8 render() {

9 return (

10 <View style={styles.content}>

11 <TouchableHighlight onPress={this.navSecond.bind(this)}>

12 <Text>Navigate to second screen</Text>

13 </TouchableHighlight>

14 </View>

15);

16 }

Somewhat similar in structure to Navigator, however again we see explicit
mention of the Second screen.

Note that when we use a NavigatorIOS and a plain child View as in this
case, we will need to handle the height of a typical iOS navigation
bar. In other words, we need to add a paddingTop property to our
View such that the content will be offset from under the navigation
bar. On more advanced components, such as the ScrollView, we
might want to look for the automaticallyAdjustContentInsets property
that allows the component to handle this for us automatically.

Navigation and Routing 121

The Second screen looks at least as simple:

1 class Second extends React.Component{

2 render() {

3 return (

4 <View style={styles.container}>

5 <Text>

6 Second screen

7 </Text>

8 </View>

9);

10 }

11 };

As mentioned during the Navigator overview, NavigatorIOS is simpler - we
don’t have any navigation bar to tweak here, and in this case the view is
completely vanilla - reusable and clean as-is.

Passing Data

Often when doing navigation, in addition to the route, we want to pass an
additional data, for the new screen-to-be to root on.
In the generic Navigator component, data is passed as part of the plain
Javascript object (in this example, the data property), so we can do some-
thing like this:

1 switch (route.id) {

2 case 'first':

3 return (<First navigator={navigator} data={route.data} title="first"/\

4 >);

With NavigationBar it will mostly be the same, if you take care to pass
your data within your routeMapper route object, and picking it apart in your
routeMapper callbacks.
With NavigatorIOS we need to use the special passProps property:

Navigation and Routing 122

1 <NavigatorIOS

2 initialRoute={{

3 component: First,

4 title: 'first',

5 passProps: { data: 'some-data' },

6 }}

7 />

And the receiving component will get both the data property and a special
route and navigator props it can use to make decisions and to navigate
further.

There is a fascinating question about when a new screen is born
due to a new navigation. Is the data that the screen just got from
the route a pointer to data it needs to fetch?, or the actual data
it needed to fetch verbatim?. No answer is wrong: it is a trade-off
between being implicit and explicit, or defensive rather than naive,
respectively.

Patterns

Search in Navbar

• NavigatorIOS - Can’t do this.
• Navigator, with Navigator.NavigationBar - make sure that your Navigation-
Bar mapper will render your variant of a title like this:

Navigation and Routing 123

1 Title: function(route, navigator, index, navState) {

2 return (

3 <AwesomeSearchbar .../>

4)

• Navigator and ToolbarAndroid - make sure that the screen you are routing
to, which is supposed to contain the search bar inlined within the
navbar, should now render a single child which is your searchbar,
prefer not providing a title in this case (styling and others are cut for
brevity):

1 <ToolbarAndroid>

2 <AwesomeSearchbar .../>

3 </ToolbarAndroid>

A searchbar is interactive - it is completely OK to make the AwesomeSearchbar

component interactive by supplying callbacks via props. You can pull these
callbacks in two ways:

1. NavigatorBar renderer - from your route, or by making the renderer take
parameters.

2. ToolbarAndroid - since it is rendered within a container view, simply the
callbacks of the neareset smart component will do.

Custom Content in Title

As in the previous pattern, the idea is similar sans the callbacks.

• NavigatorIOS - content is string only
• NavigatorBar and ToolbarAndroid - as with the previous pattern, simply
hand over the component you want to render, this time no callbacks
or interactivity needed.

Routed Navbar Content

We saw this while handling NavigatorBar mapper - the content can change as
a function of the route you are not traveling into.

• NavigatorIOS - each time you push a navigation, you can define how the
coming-to-be navbar will look like, so this is a simple matter of using
a new title:

Navigation and Routing 124

1 this.props.navigator.push({

2 title: "some new title",

3 ...

4 })

• Navigator and NavigationBar - use the route mapper, as we’ve seen before.
• ToolbarAndroid - this is trivial since you’re rendering it as part of the view,
so you can couple the rendering to the view itself. Meaning, don’t fuss
with the route, but with the actual view component content.

Reactive Navbar Content

There comes a time where your navbar changes, but not as a reaction
to route changes, but to some kind of an external event, timed event, or
anything reactive in nature.
The way to solve it right now, which is gaining consensus, is to inject an
event emitter to your app flows, and make sure that components on that
navbar know to use it.

• NavigatorIOS - again, not possible
• Navigator.NavigationBar and ToolbarAndroid - make sure that the content
you give each, will be able to use your global event emitter:

1 <ToolbarAndroid>

2 <AwesomeSearchbar emitter={this.emitter} .../>

3 </ToolbarAndroid>

You can also not use an explicit emitter but a Flux dispatcher, or do
use an explicit emitter and inject it via something similar to React’s
context66, an so on. Since this is an advanced/thought material topic
(under the “lightbulb” category) I’ll leave it to you for exploration.

Getting Input

If you want to just go to a screen to collect input (i.e. modals), you can
either use the actual Modal component (see here67), or send off a view with
a callback within the renderScene logic block. At extreme cases you can use
event emitter, or if you’re using Flux than a Flux action trivially solves it.
66https://facebook.github.io/react/docs/context.html
67https://facebook.github.io/react-native/docs/modal.html

https://facebook.github.io/react/docs/context.html
https://facebook.github.io/react-native/docs/modal.html
https://facebook.github.io/react/docs/context.html
https://facebook.github.io/react-native/docs/modal.html

Navigation and Routing 125

Spreading Props

If we scratch our head for a moment, we remember that routing in Navigator

is done with a plain Javascript object. We can actually be opinionated and
define this object as such:

1 {

2 id: 'route-id'

3 props: {

4 some: 'props'

5 }

6 }

And this way we can then do something like this, within our renderScene:

1 navigatorRenderScene(route, navigator) {

2 _navigator = navigator;

3 return (<First navigator={navigator}

4 {...route.props}/>);

5 }

Using the new spread operator ..., we easily inline the entire props bag
of properties into our component. Remember React will go left-to-right on
various props so you can enjoy a cascading effect (provide defaults and
then override them with specific data)

Summary

This concludes our discussion about routing. In summary, we’ve learned
the following:

• Routing is hard, however at least on mobile, we have less rope to hang
ourselves with by adopting the best practices of each mobile platform.

• React Native offers the generic and flexible Navigator for a general case
use, and the older NavigatorIOS for iOS specific work. Choose the latter
if you don’t need flexibility and want to run fast by getting the default
iOS navigation stack behavior.

• Routing is either defined implicitly with Navigator and routes, or explic-
itly with NavigatorIOS and the specific components we route to.

• Remember to compensate for various UI glitches when using a navbar.
Some content may vanish under the navbar because it is not padded.

• Passing data is easy through both Navigator and NavigatorIOS.
• NavigationBar is a common to both concept, it has its own tradeoffs.

Going Native: Native UI
Why go Native?

React Native allows you to build a custom, fully native UI, and mix it into
your existing app. It does this by introducing a clever series of abstractions
and building blocks we’ll be using throughout this chapter.
But first, if you’re reading this book from start to finish, there is a chance
you’d like to explore the reasons for using pure native controls with React
Native. After all, the primary reason for using React Native is to improve
dealing with each and every mobile platform, its tooling, and developer
experience.
Otherwise, if you’re landing on this chapter with the intent of figuring out
how to do this kind of voodoo, then you have probably bumped into one of
the motivations I list out below.

Performance

There are two kinds of people trying out performance optimizations - those
that actually have a performance problem and are spending each day trying
to alleviate the pain by identifying performance hogs, memory leaks, and
bad UI trees, and – those who heard about such problems.
First, don’t be the latter; if you think you have a performance problem,
try to create an isolated example that demonstrates it. Rip out that part
from your app, isolate it, and try to reproduce. A lot of times during this
process alone you find out the root causer of your problem; and even if you
didn’t, you now have an example that is shareable with others. It’s been
said that premature optimization is the root of all evil68, and if you solve
invisible problems thinking you are really fixing a performance problem,
you probably are creating a bigger performance problem instead.
Lastly, yes. If you have a performance problem, using and mixing in a native
UI component will be great for you. I’m willing to make a bet that you’re
having this problem on Android.
Hence, as a general rule of thumb - you’ll be probably mixing in custom
native controls on Android, involving lists and animations, which are the
two most notorious issues on that platform.
68http://c2.com/cgi/wiki?PrematureOptimization

126

http://c2.com/cgi/wiki?PrematureOptimization
http://c2.com/cgi/wiki?PrematureOptimization

Going Native: Native UI 127

Making use of Existing Work

If you already built native iOS apps, and trying to make a new app that
will be cross-platform with React Native, then you probably want to use
any of that existing iOS infrastructure and UI components that you’ve built
already. Of course, the same is true if you already have Android apps and
want to expand to the iOS platform. This makes it a very trivial decision,
use those existing components and ship things faster.

Better Tooling

It’s not a secret that Xcode is pretty darn good. In some cases, you might
find yourself building your UIs a lot faster in Interface Builder. For Android,
it is less true since Android Studio is fairly young - but you may have your
reasons to appreciate Android Studio better. Mixing in native controls is
quite smart actually since React Native doesn’t need a ViewController (iOS)
or an Activity/Fragment (Android) – it just needs a simple View. So once
you’ve designed it, you’ll be implementing all logic in Javascript - this is
how React Native takes away the bad choices and leaves you with one good
way to do things.

Custom UI and Complex UI Work

This would probably be the best reason to use native controls. While React
Native does aim to provide an all-encompassing solution for all of your
mobile challenges, you should strive to be practical. Always think about
that square peg into round hole69 – if you are trying to do something no
one had done before with React Native for too long, it might make sense to
do away with that and build it in the relevant native platform as a custom
view.

Wrapping Existing Components

You might want to pick out a control you’ve been using in your native work
for a while, but that doesn’t exist for React Native. If you’d like, you can
put the time and effort to “wrap” it so that it will be available to you in
Javascript land. If you do that, it would probably be very kind of you to
share it with the community70 :).

A General Escape Hatch

Every closed architectural solution should have escape hatches. Some may
use the fancy “extension points” term, but the core reasoning is the same:
69http://history.nasa.gov/SP-350/ch-13-4.html
70https://github.com/jondot/awesome-react-native

http://history.nasa.gov/SP-350/ch-13-4.html
https://github.com/jondot/awesome-react-native
http://history.nasa.gov/SP-350/ch-13-4.html
https://github.com/jondot/awesome-react-native

Going Native: Native UI 128

you need to be sure you always have a solution should you need it. Having
a native escape hatch is powerful because you obviously can do everything
that is possible to be done there. This contributes to the feeling of safety and
commitment that you carry when entering a new project, and it is definitely
not always true for other cross-platform mobile SDKs. Also, this is also how
Facebook did it.

When Not to Go Native?

Well, basically the answer to that lies with what you’re making. If you’re
making a standard looking app, some variation of a master-detail or a
document oriented app, with regular or standard (by means of the relevant
mobile platform) UX, then by all means try to avoid making custom native
controls. Take a look at the React Native Showcase71 to find out if someone
“had done it before”.
Remember that when you look at the showcase, certain apps are edge
cases - Chats, VR, Cameras and Effects, and so on are demanding apps
that probably have performance or edge case concerns already, and there
is a chance that they themselves use native controls. So when you try to
compare the app you want to build with those and judge how “standard” it
is, know which ones to avoid when comparing.

The Building Blocks of a Custom View

If we think about it, we can define what makes a custom view in a simple
way:

• UI - The native UI hierarchy that is handed over to React Native. In
the end, this can be anything that conforms to a UIView (iOS) or View

(Android); be it a custom-drawing view of your own, or a composite
view with many subviews.

• Props - The way React always strives to hand over state. Even with
native UI, there is proper way to define React-ish props on your native
view, and let React Native find it.

• Events - Your native view may emit events. OnChange, or any other event
you can think of.

• Commands - Less React-ful, a command is an API that sits on top of
your view, that orders it to do things. An example would be ScrollView’s
scrollTo. It is less a “React way”, because obviously the position of the
scrollbar is also a sort of a state, and that specific detail isn’t modeled
with a prop. There will be situations, in reality, when you’ll need these.

71https://facebook.github.io/react-native/showcase.html

https://facebook.github.io/react-native/showcase.html
https://facebook.github.io/react-native/showcase.html

Going Native: Native UI 129

Also, it may help to keep this mental image in mind (or at your desk), where
it shows each “world” - native and Javascript, and its responsibilities.

The ViewManager

A custom native view will receive props, emit events, and accept com-
mands. The way React Native glues these all up is by creating the concept of
a ViewManager, which is responsible for creating our custom view, maintaining
instances and the lifecycle of such views, and making sure messages are
being passed back and forth from our React Native Javascript based view
and our purely native iOS or Android view.

ViewManager’s Bridging Boundaries

With this diagram in mind, let’s go over what the ViewManager does:

Going Native: Native UI 130

• Create and set up our native viewwhen it is requested by React Native,
maintain an instance of it such that we don’t pay the heavy price of
recreating such a view on each render. This is referred to as “vending”
the view.

• Implement the property setting bridge for the managed view. Often
this will be just a simple delegation, but sometimes we’ll want to create
custom types from the simple types that are being passed across
the remoting boundaries. Then reflect the React Native Javascript
view prop changes through these back to the native view that’s being
managed.

• On iOS, implement an event bridge from managed view to React
Native’s dispatcher, and on Android this kind of logic can also belong
to the managed view itself if you’d prefer. Then, receive events from
the native view and move these along to the React Native Javascript
view through the dispatcher.

• On iOS, declare commands as an exported method (more on this later),
and on Android, define the available commands and implement a
command dispatcher that will bridge a given command to themanaged
view. Then, accept command from React Native’s Javascript view
wrapper and move these along to the native view.

So basically, every time your native view needs to communicate, we’re
crossing the chasm with the help of the view manager:

Now that you know how this “voodoo” works, it will be fun, rather than
strange, to see it working.

Our Example: MessagesView

The example native component we’ll implement is a messages view. A
composite view that has a ListView, and a Label. Specifically on iOS it is a

Going Native: Native UI 131

UITableView and a UILabel and on Android it is the performance optimized
RecyclerView and a simple TextView.
Our messages view will:

• List messages in a performant way
• Scroll to last message when a new one is added (Android)
• Bind the label to a last message prop
• Accept a command to add a message (we’re modeling state out of
React which is a Bad Thing, but this is only for demonstration)

This messages view can be a chat conversation view, a todo list item view, or
what ever that fits the list-and-infinite-items pattern which often presents
performance problems for rendering the list and a non-trivial manipulation
of it that only works well when you break the abstraction and have a reach
at the native implementation.
Next, let’s take a look at the nativecontrols sample and break it down to its
parts together.

Going Native: Native UI 132

Breakdown: iOS

Our hybrid iOS + React Native UI

Lacking a proper design, these examples are made to serve a single
purpose: so that we figure out how to rinse-and-repeat wrapping or creating
our own custom native components.

MessagesView

There are several ways to build composite or custom views on iOS.
Programmatically, with Interface Builder, or a combination. We’ll use a
combination: use Interface Builder to sketch out your UI, and tweak it up
through code. It is best to simply use the samples provided, rather build it
from scratch if you didn’t have that much experience with iOS so far, for
more about this rather advanced topic, see this great guide72.
72https://guides.codepath.com/ios/Custom-Views-Quickstart

https://guides.codepath.com/ios/Custom-Views-Quickstart
https://guides.codepath.com/ios/Custom-Views-Quickstart

Going Native: Native UI 133

Some times, you’ll already have a view that you’d simply want to wrap up.
In this case, the procedure is quite the same and we’ll focus on that part as
well.
First, let’s take a look at such a custom view’s inner workings. We’ll try to
point out the strange stuff that would be unfamiliar to anyone that has been
working with iOS for a while.
As a side note - we’ll be using Swift to build our view, and Objective-C for
the ViewManager.

1 import Foundation

2 import UIKit

3

4 @objc protocol MessagesViewDelegate: class{

5 func messagesView(messagesView: MessagesView, didSelectIndex index: Int)

6 }

7

8 @objc class MessagesView : UIView, UITableViewDelegate, UITableViewDataSource{

9 @IBOutlet weak var tblView: UITableView!

10 @IBOutlet weak var lastMessageLbl: UILabel!

11 @IBOutlet var contentView: UIView!

12

13 var lastMessage:String {

14 get {

15 return lastMessageLbl.text!

16 }

17 set(msg){

18 lastMessageLbl.text=msg

19 }

20 }

21

22 var items: [String] = ["React", "Native", "With iOS Native Views"]

23

24 weak var delegate: MessagesViewDelegate?

25

26 func addItem(item: String){

27 self.items.append(item)

28 tblView.reloadData()

29 }

30

31 func initViews(){

32 // rig up our nib/xib with the current view

33 }

34

35 func tableView(tableView: UITableView, numberOfRowsInSection section: Int) \

36 -> Int {

Going Native: Native UI 134

37 return self.items.count;

38 }

39

40 func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath: NSI\

41 ndexPath) -> UITableViewCell {

42 let cell:UITableViewCell = self.tblView.dequeueReusableCellWithIdentifier\

43 ("cell")! as UITableViewCell

44 cell.textLabel?.text = self.items[indexPath.row]

45 return cell

46 }

47

48 func tableView(tableView: UITableView, didSelectRowAtIndexPath indexPath: N\

49 SIndexPath) {

50 delegate?.messagesView(self as MessagesView, didSelectIndex: indexPath.ro\

51 w)

52 }

53 }

I’ve removed the view rigging code in initViews because it’s not relevant
(you can take a look at the sample code) and the standard constructors
for brevity. So, take a good look at this view. See anything React Native
specific? The answer is that there is none. To us, this is a plain iOS view,
and this is good news since there are no leaky abstractions that litter our
view, and if we had views from our existing codebase - this is a guarantee
that we’d probably wouldn’t need to modify them in order to repurpose
them for React Native.

RCTMessagesViewManager

This is where most of our React Native specific code lives. And even then,
we’ll use React Native’s infrastructure that it uses itself for everything that
you’ve used so far (i.e. Text, View and so on), and we’ll see that it feels quite
baked and doesn’t require that much coding.
Let’s break down RCTMessagesViewManager into pieces and discuss each piece
separately.

1 @interface RCTMessagesViewManager<MessagesViewDelegate> : RCTViewManager

2 @end

Here we obviously want to inherit from RCTViewManagerwhich is the base view
manager that React Native supplies, and conform to MessagesViewDelegate

which is by convention our own way of saying that we want the view man-
ager to take responsibility of for things happening inside MessagesView.

Going Native: Native UI 135

1 @implementation RCTMessagesViewManager

2

3 RCT_EXPORT_MODULE()

Using RCT_EXPORT_MODULEwe’re declaring our implementation of RCTMessagesView-
Manager as a React Native Native module. This is something you’ll do for any
component you want to expose to React Native, be it a UI component or a
service module.

1 - (UIView *)view

2 {

3 MessagesView *v = [MessagesView new];

4 v.delegate = self;

5 return v;

6 }

This is the “vending” part. Here, in addition to creating a view, we’re also
setting it up with a delegate (which is the view manager itself).
Next upwe go over theEvents, Props and Actions building blocks of a native
component.

1 - (void) messagesView:(MessagesView *)messagesView didSelectIndex:(int)indexP\

2 ath

3 {

4 NSDictionary *event = @{

5 @"target": messagesView.reactTag,

6 @"index": @(indexPath)

7 };

8 [self.bridge.eventDispatcher sendInputEventWithName:@"topChange" body: even\

9 t];

10 }

Starting out with Events. When we declared our RCTMessagesView as a delegate
for MessagesView, we were conforming to didSelectIndex as one of the delegated
methods. Here, we are implementing it, and in the end we want our
Javascript wrapper view to be able to receive such an event from our native
MessagesView component.
We use topChange as a name of an event which is internally mapped to onChange

within the Javascript part of our view. Next up, we define the payload that
would be passed to it. It is highly important to shape this payload properly,
and not just throw a bunch of key/values onto it. It has a target key which
you should leave as is, with the matching messagesView.reactTag value, or
anyOfYouViews.reactTag as will happen with any view (remember to import the
correct header files to get a hold of that - advise the samples).

Going Native: Native UI 136

In this example, for brevity and simplicity of the example our payload is an
int (indexPath). For the general case I would recommend to shape this as a
structured object, for example:

1 "type": "messagesview#didselectindex/1"

2 "payload" : {

3 "key": "value"

4 :

5 :

6 }

7 }

Where type is a directive that points to which method sent this event. The
way I chose to depict it here is much like how Ruby notes a method (#),
and Erlang notes methods with arity (number of parameters) in the name
(/), to allow for overloads, and to help with tracing back to the right native
method in a moment of need.
If you’re using Flux, this event should be shaped just like your events
generated from Flux actions73, and the type field would be your SPECIFIC_-

REACT_ACTION; that would make a very elegant architecture. Incidentally, this
is how the example data above is shaped, excluding the sneaky naming of
the action as a way of making a better debugging experience.

1 RCT_CUSTOM_VIEW_PROPERTY(lastMessage, NSString, MessagesView)

2 {

3 [view setLastMessage: json];

4 }

Moving onwith Props. This is where we define our prop: it is called lastMessage

and this is how it will appear to you in Javascript world, it is typed as a string
(NSString) and the target view is a MessagesViewwhich is exactly what we want.
This is also where we implement setting the prop from the outside world
into our native component. Note that something magical is going on here
as we have two magic variables: view and json, and obviously, we’re tasked
with merging the two together. So in our case, json would be an NSString but
in other cases it can be a more complex object which you’ll need to parse
out and build a real structured object74 from exactly here.
If you know the prop type is simple: String, Boolean, Integer, and so on,
you are allowed to not provide an implementation part. Just use RCT_EXPORT_-

VIEW_PROPERTY with the same definition parts. Obviously, you can define all of
your properties this way and get very far.

73https://github.com/acdlite/flux-standard-action
74https://github.com/facebook/react-native/blob/master/React/Views/RCTMapManager.m#L106

https://github.com/acdlite/flux-standard-action
https://github.com/facebook/react-native/blob/master/React/Views/RCTMapManager.m#L106
https://github.com/facebook/react-native/blob/master/React/Views/RCTMapManager.m#L106
https://github.com/acdlite/flux-standard-action
https://github.com/facebook/react-native/blob/master/React/Views/RCTMapManager.m#L106

Going Native: Native UI 137

1 RCT_EXPORT_METHOD(addItem:(nonnull NSNumber *)reactTag

2 item: (NSString *)item)

3 {

4 [self.bridge.uiManager addUIBlock:

5 ^(__unused RCTUIManager *uiManager, NSDictionary<NSNumber *, MessagesView \

6 *> *viewRegistry) {

7

8 MessagesView *view = viewRegistry[reactTag];

9 if (!view || ![view isKindOfClass:[MessagesView class]]) {

10 RCTLogError(@"Cannot find RCTMessagesView with tag #%@", reactTag);

11 return;

12 }

13

14 [view addItem: item];

15 }];

16 }

17 @end

Ending with Commands. This is where we define a command that we’d like to
expose out to the Javascript world on an instance of the view it holds (use a
ref to get a hold of it). While somewhat complex, if we squint, we’ll be able
to identify a very simple structure:

• reactTag is passed and being used later to fetch our instance of the
managed view

• Running code is preceded by a little ceremony: The code should be
supplied to the UIManager which will probably decided on which thread
queue to run it.

• When we want to run code against our view (the command), we need
to find it first, and we need to do that sort of “manually.”

So if we walk through this piece of code, we see we are accessing the
bridge.uiManager instance to addUIBlock:

1 [self.bridge.uiManager addUIBlock:

2 ^(__unused RCTUIManager *uiManager, NSDictionary<NSNumber *, MessagesView \

3 *> *viewRegistry) {

Keep a snippet of that block signature to yourself and just apply it each
time when needed. Then within the block we are fetching our instance from
the special viewRegistry variable, with our reactTag (which is just an interned
number):

Going Native: Native UI 138

1 MessagesView *view = viewRegistry[reactTag];

Make the required hoola-hooping by validating the view not to be nil and
of the correct class, and we’re in.

1 if (!view || ![view isKindOfClass:[MessagesView class]]) {

2 RCTLogError(@"Cannot find RCTMessagesView with tag #%@", reactTag);

3 return;

4 }

Finally, call anything you want on the view and use the parameters passed
through RCT_EXPORT_METHOD, in this case item.

1 [view addItem: item];

This completes our in-depth analysis of the ViewManager!. Next up, let’s see
what is required to glue a Javascript view, or view wrapper onto it.

messagesview.ios.js

What’s left to do now, is make sure we create a Javascript view, that knows
how to bind to our MessagesViewManager, and do our custom mapping between
“raw” manager events and more beautiful Javascript events.
Note that I intentionally named this messagesview.ios.js, with the ios infix.
This means that this file will only be visible on iOS builds, but that is not to
say you must build a different Javascript view for iOS and Android - on the
contrary - in the end we’ll see that it is virtually the same, which completely
drives home the fact that React Native is so great at promoting code sharing
between platforms.
The reason I start out “pessimistic” is because intuition dictates that when
you’re building native components, there are going to be differences that
are a bit immaterial - UX, custom props, events, or commands. You want
to leave that hatch open, and not prematurely optimize the codebase by
forcing it to be the same for both platforms. In the end, when I finish, I
can easily gauge the similarity between the iOS and Android Javascript
views, and I can then make a deliberate decision to merge the codebase,
as well easily identify and separate the platform specific parts perhaps to
a different Javascript module.
Now, let’s go over the solution bit by bit.

Going Native: Native UI 139

1 import React,

2 { requireNativeComponent, View }

3 from 'react-native'

4 var MessagesViewManager = require('NativeModules').MessagesViewManager

Here we’re pulling out the MessagesViewManager. This is our contact into the
native RCTMessagesViewManagerwe’ve just implemented. React Native took care
of the names. We’ll use requireNativeComponent to do the final binding and View

to drop a set of required props directly into our custom view.

1 class MessagesView extends React.Component {

2 _onChange(event){

3 this.props.onChange(event)

4 }

Remeber the native topChange part? This is where we’re reaching into the
event that we’ve supplied. This so called internal _onChange is responsible for
making the mapping into perhaps various many different kinds of change
events. So, typically instead of directly delegating like in this example, we’ll
implement some switching logic over the event.type field.

1 addItem(item){

2 MessagesViewManager.addItem(

3 React.findNodeHandle(this),

4 item

5)

6 }

Our command implementation. Remember that we are applying methods
from Javascript land and hope they get beamed up to the native land by
way of commands. This means we have everything we’ve exposed in our
native MessagesViewManager, and you can simply access it here. Note that a
special findNodeHandle(this) is needed in order find and beam up that reactTag
we’ve been discussing before.

1 render() {

2 return <RCTMessagesView {...this.props} onChange={this._onChange.bind(thi\

3 s)} />

4 }

5 }

This should be trivial, we’re using an RCTMessagesView that we’re going to
create in a few more lines, and rigging up props and events. So far, so
good.

Going Native: Native UI 140

1 MessagesView.propTypes = {

2 ...View.propTypes,

3 lastMessage: React.PropTypes.string,

4 };

Like with normal React code, we are defining the required props and their
types. However please note that his is important and not optional so that
React Native can discover these and bind them.

1 var RCTMessagesView = requireNativeComponent('RCTMessagesView', MessagesView);

2 module.exports = MessagesView;

Finally, we’re calling requireNativeComponent to make sure React Native binds
MessagesView and RCTMessagesView together. The object that is created is the
actual view we can use in our render method. Note that it feels a bit strange
to define a class, which uses a dependency that is only defined in the future,
with that class itself. This is a circular dependency which in software is
always seen as bad, however the semantics here dictate that this is actually
what we’re doing - these two components are symbiotic.
To refresh your memory, below is the call chain sketch from before, and
you can pretty much see how the native component relies on the Javascript
component and the other way around. This image shows you howwonderful
that synergy turns out to be:

Breakdown of iOS UI: Native highlighted, React Native in white

Going Native: Native UI 141

This concludes our entire voyage into the iOS native UI component. It may
have felt “heavy” to learn all of the low-level stuff, but remember that React
Native is only at 0.19 (at the time of writing), and in my opinion, when
you decide to adopt a technology at such an early (relatively) stage, you
should be able to reason about how it works behind the scenes. And more
importantly, you should have that native component escape hatch when you
need it.
All in all, once you walk through this one time and work with the sample
code, you’ll feel confident that wrapping native UI components which
sounds and feels advanced, is actually easy and almost a mechanical thing
to do.
Eventually, we get this:

Input is React Native, saying “Hello”

And adding an item adds the item to our item list, and label:

Going Native: Native UI 142

Clicking “Add” adds an item

Fun!

Going Native: Native UI 143

Breakdown: Android

Our hybrid Android + React Native UI

Again, note we’re cheap on theUI style and design part. Remember: we only
care about figuring out how to make our own custom native components
here.
Let’s take a look on our MessagesView fully blown, and as before, try to identify
anything React Native specific that has leaked into our view.

MessagesView

Going Native: Native UI 144

1 public class MessagesView extends LinearLayout implements MessageViewDelegate\

2 {

3 private RecyclerView listView;

4 private TextView lastMessage;

5

6 public MessagesView(Context context) {

7 super(context);

8 init();

9 }

10

11 private void init() {

12 inflate(getContext(), R.layout.messages_view,this);

13 this.listView = (RecyclerView)findViewById(R.id.listView);

14 this.lastMessage = (TextView)findViewById(R.id.lastMessage);

15

16 LinearLayoutManager llm = new LinearLayoutManager(getContext());

17 llm.setOrientation(LinearLayoutManager.VERTICAL);

18 listView.setLayoutManager(llm);

19 listView.setAdapter(new MessagesViewRecyclerViewAdapter(DummyContent.\

20 ITEMS, this));

21 }

22

23 @Override

24 public void onItemTap(DummyContent.DummyItem item) {

25 WritableMap event = Arguments.createMap();

26 event.putString("item", item.toString());

27 ReactContext reactContext = (ReactContext)getContext();

28 reactContext.getJSModule(RCTEventEmitter.class).receiveEvent(

29 getId(),

30 "topChange",

31 event);

32 }

33

34 public void addItem(final String content) {

35 DummyContent.ITEMS.add(new DummyContent.DummyItem(content, content, c\

36 ontent));

37 listView.getAdapter().notifyDataSetChanged();

38 final int position = DummyContent.ITEMS.size() - 1;

39 RecyclerView.LayoutManager layoutManager = listView.getLayoutManager(\

40);

41 //layoutManager.smoothScrollToPosition(listView, null, position);

42 layoutManager.scrollToPosition(position);

43 }

44

45 public void setLastMessage(String msg){

46 lastMessage.setText(msg);

Going Native: Native UI 145

47 }

48 }

See anything? Well, this time there is something: onItemTap reaches out and
pulls the React Native event emitter in order to push out events. That detail
was made intentionally, to show you that in Android you can do both. We
can leave this code for convenience here, and we can also pull it out to our
view manager (we’ll take a look at that in a bit).
I’ve taken the liberty to use the same idioms as the iOS codebase. We’re
using a delegate and our MessagesView hands over that delegate to our adapter.
Some Android developers would frown upon this selection of concepts, but
it does not come from the fact that I’m originally an iOS programmer - on
the contrary, I’ve started doing Android when it first went out and only a
few years later I’ve done native iOS programming. So really the idea here
is that React Native lets you adopt even the same ideas as means to an end
on different platforms, as long as it works for you and your team, because
the crux of your productivity will ideally happen within React Native itself.
Back to our code, what we’re doing here is creating a compound view75,
which is Android’s composite view - a view that holds one or more other
subviews. For convenience (or laziness) we build a root view, that inflates
a layout that has been designed visually in Android Studio.
75http://developer.android.com/guide/topics/ui/custom-components.html

http://developer.android.com/guide/topics/ui/custom-components.html
http://developer.android.com/guide/topics/ui/custom-components.html

Going Native: Native UI 146

Android Studio UI Editor showing MessagesView

And this is the view initialization code:

1 private void init() {

2 inflate(getContext(), R.layout.messages_view,this);

3 this.listView = (RecyclerView)findViewById(R.id.listView);

4 this.lastMessage = (TextView)findViewById(R.id.lastMessage);

5

6 LinearLayoutManager llm = new LinearLayoutManager(getContext());

7 llm.setOrientation(LinearLayoutManager.VERTICAL);

8 listView.setLayoutManager(llm);

9 listView.setAdapter(new MessagesViewRecyclerViewAdapter(DummyContent.\

10 ITEMS, this));

11 }

Feel free to build this again as we walk through the code (if you’re an

Going Native: Native UI 147

Android developer originally), or simply use the samples provided. Since
we’re using the fancy RecyclerView in our layout, we need to provide a
layout manager, in this case a LinearLayoutManager - and in other words, we’re
making a list. The Android RecyclerView is able to optimize a list of things in
various layouts (list, grid, etc.) in a way that it can move away items that
are not displayed in order to improve performance.
What’s left is as with the iOS part, walk through our Events, Props and
Commands. In that order, let’s continue with Events:

1 @Override

2 public void onItemTap(DummyContent.DummyItem item) {

3 WritableMap event = Arguments.createMap();

4 event.putString("item", item.toString());

5 ReactContext reactContext = (ReactContext)getContext();

6 reactContext.getJSModule(RCTEventEmitter.class).receiveEvent(

7 getId(),

8 "topChange",

9 event);

10 }

Implementing the MessagesViewDelegate interface, we’re bumping into onItem-

Tap each time a user taps an item in our list. In it, we’re building our payload
that needs to be transmitted back to the Javascript view, and again here the
same advice is correct - it is wise make sure that payload looks standard or
effectively is a Flux action if you’re into that. For the sake of the example,
the payload here is nothing but a simple key and value for the item itself.
The context which you’re given within the activity or fragment that even-
tually holds this native view, will be a special ReactContext, so any time you
want to reach out and do something React Native specific, be sure to case
to that context instead of the general Android Context. Here we’re pulling
the RCTEventEmitter so that we can instruct it to accept an event, and we’re
supplying a React tag IDwith getId, and again using topChangewith our events
- this should be very similar but a bit different as with the iOS example.
Moving on to Props, let’s observe the following:

1 public void setLastMessage(String msg){

2 lastMessage.setText(msg);

3 }

This is something we’ll use later when we introduce the view manager, so
for now keep in mind that it is just a simple setter.
And finally Commands, take a look at this:

Going Native: Native UI 148

1 public void addItem(final String content) {

2 DummyContent.ITEMS.add(new DummyContent.DummyItem(content, content, c\

3 ontent));

4 listView.getAdapter().notifyDataSetChanged();

5 final int position = DummyContent.ITEMS.size() - 1;

6 RecyclerView.LayoutManager layoutManager = listView.getLayoutManager(\

7);

8 //layoutManager.smoothScrollToPosition(listView, null, position);

9 layoutManager.scrollToPosition(position);

10 }

This command is exposed out as public and - you guessed it - will later
be used in our view manager. Note that we’re reaching our to our own
view, infrastructure (adapter) and our layout manager in order to perform
scrolling. Commented out is a smoothScroll variant of scrolling - think how
hard would it be to implement that with React Native in a performant way?
If you want a hint, take a look at this discussion76 in the excellent gifted-

messenger project.

MessagesViewManager

Let’s break down ourMessagesViewManager, bit by bit (you can take a look
at the complete class in the provided samples):

1 public class MessagesViewManager extends SimpleViewManager<MessagesView> {

2 public static final String REACT_CLASS = "RCTMessagesView";

3 private static final int CMD_ADDITEM = 1;

4

5 @Override

6 public String getName() {

7 return REACT_CLASS;

8 }

This is howwe start. Inherit from SimpleViewManager, that takes our MessagesView
as a generic parameter, and define various constants for later use. REACT_-
CLASS to supply through getName, and CMD_ADDITEM for our command map (more
on this later). This is just a ceremony to comply with the bridging that React
Native will want to do on our behalf.

76https://github.com/FaridSafi/react-native-gifted-messenger/issues/3

https://github.com/FaridSafi/react-native-gifted-messenger/issues/3
https://github.com/FaridSafi/react-native-gifted-messenger/issues/3

Going Native: Native UI 149

1 @Override

2 protected MessagesView createViewInstance(ThemedReactContext reactContext\

3) {

4 return new MessagesView(reactContext);

5 }

Here we vend our view, just like with the iOS example. Nothing too exciting
except that we’re looking at a ThemedReactContext that is special (I encourage
you to take a look and see how different it is from a regular Context).

1 @ReactProp(name="lastMessage")

2 public void setLastMessage(MessagesView view, @Nullable String msg){

3 view.setLastMessage(msg);

4 }

Moving on to Props, this is how we expose a prop in Android’s version of
React Native. While a personal opinion - it does look cleaner. Obviously,
lastMessage is the name of the prop we’re exposing here.

1 @Override

2 public void receiveCommand(MessagesView root, int commandId, @Nullable Re\

3 adableArray args) {

4 switch(commandId){

5 case CMD_ADDITEM:

6 root.addItem(args.getString(0));

7 }

8 super.receiveCommand(root, commandId, args);

9 }

10

11 @Nullable

12 @Override

13 public Map<String, Integer> getCommandsMap() {

14 return MapBuilder.of(

15 "addItem", CMD_ADDITEM

16);

17 }

18 }

Lastly, Commands. We’re saying two things here. First, we’re implementing
a generic looking receiveCommandwhich will accept a view, a command ID, and
zero or more arguments. Our job is to make sure we map each commandId to
its actual command (did someone say flux actions? :-). Second, we need
to tell React Native what commands are we allowing and what are their
names and values, and this is done via getCommandsMap. This is how you can
make sure that no one gives you an unfamiliar commandId in receiveCommand.

Going Native: Native UI 150

NativeControlsPackage

In the Android world of React Native, we need to explicitly tell it how to
find our MessagesViewManager. This is best done by supplying a ReactPackage,
which you can look at as a bundle of custom modules you want React
Native to know about. It is also wise to invest and make your own
NativeControlsPackage which will specify this MessagesViewManager as well as any
future managers you’d want to build.

1 public class NativeControlsPackage implements ReactPackage{

2 @Override

3 public List<NativeModule> createNativeModules(ReactApplicationContext rea\

4 ctContext) {

5 return Collections.emptyList();

6 }

7

8 @Override

9 public List<Class<? extends JavaScriptModule>> createJSModules() {

10 return Collections.emptyList();

11 }

12

13 @Override

14 public List<ViewManager> createViewManagers(ReactApplicationContext react\

15 Context) {

16 return Arrays.<ViewManager>asList(new MessagesViewManager());

17 }

18 }

The only place we care about so far, is createViewManagers where we return
a list with a single item - our MessagesViewManager instantiated. If you want to
see a full blown ReactPackage, take a look at the MainReactPackage class within
React Native itself:

1 public class MainReactPackage implements ReactPackage {

2

3 @Override

4 public List<NativeModule> createNativeModules(ReactApplicationContext react\

5 Context) {

6 return Arrays.<NativeModule>asList(

7 new AsyncStorageModule(reactContext),

8 new ClipboardModule(reactContext),

9 new DialogModule(reactContext),

10 new FrescoModule(reactContext),

11 new IntentModule(reactContext),

12 new LocationModule(reactContext),

Going Native: Native UI 151

13 new NetworkingModule(reactContext),

14 new NetInfoModule(reactContext),

15 new WebSocketModule(reactContext),

16 new ToastModule(reactContext));

17 }

18

19 @Override

20 public List<Class<? extends JavaScriptModule>> createJSModules() {

21 return Collections.emptyList();

22 }

23

24 @Override

25 public List<ViewManager> createViewManagers(ReactApplicationContext reactCo\

26 ntext) {

27 return Arrays.<ViewManager>asList(

28 ARTRenderableViewManager.createARTGroupViewManager(),

29 ARTRenderableViewManager.createARTShapeViewManager(),

30 ARTRenderableViewManager.createARTTextViewManager(),

31 new ARTSurfaceViewManager(),

32 new ReactDrawerLayoutManager(),

33 new ReactHorizontalScrollViewManager(),

34 new ReactImageManager(),

35 new ReactProgressBarViewManager(),

36 new ReactRawTextManager(),

37 new RecyclerViewBackedScrollViewManager(),

38 new ReactScrollViewManager(),

39 new ReactSwitchManager(),

40 new ReactTextInputManager(),

41 new ReactTextViewManager(),

42 new ReactToolbarManager(),

43 new ReactViewManager(),

44 new ReactViewPagerManager(),

45 new ReactTextInlineImageViewManager(),

46 new ReactVirtualTextViewManager(),

47 new SwipeRefreshLayoutManager(),

48 new ReactWebViewManager());

49 }

50 }

Obviously there’s a lot more going on there, but you can also verify to
yourself that you are using the very same technology React Native is using
behind the scenes in order to extend it. The React Native team is showing
us dogfooding at its best!
With this, we conclude our discussion of the Android view manager.

Going Native: Native UI 152

messagesview.android.js

Let’s move on to the Javascript world, and see how to bind that view to our
native components view.
I’m boldly stating this: both the .ios and .android view versions of mes-
sagesview can be (quite amazingly) converged to the same class! (or file, or
codebase). I’m keeping an .android version here so that we can prove this to
ourselves, now, let’s see how this unfolds by breaking down the MessagesView

class (again, you can get the full listing from the samples provided):

1 import React,

2 { requireNativeComponent,

3 PropTypes }

4 from 'react-native'

5 import UIManager from 'UIManager'

6 import View from 'View'

Nothing quite new here, so moving along.

1 class MessagesView extends React.Component {

2 constructor(props){

3 super(props)

4 this._onChange = this._onChange.bind(this)

5 }

Still, nothing new. Let’s take a look at _onChange:

1 _onChange(event){

2 if(!this.props.onItemTapped){

3 return

4 }

5 this.props.onItemTapped(event.item)

6 }

Still no change, we’re only showing a bit of a different flavor. We’re naming
the target prop differently and making sure the prop exists.

1 addItem(item){

2 UIManager.dispatchViewManagerCommand(

3 React.findNodeHandle(this),

4 UIManager.RCTMessagesView.Commands.addItem,

5 [item])

6 }

Going Native: Native UI 153

Here is our first practical difference between the .android and .ios versions.
We’re using a UIManager.dispatchViewManagerCommand in order to relay our com-
mand (in iOS, we used the MessagesViewManager nativemodule that we required
from the native-modules package).
If we wanted to converge the codebase, both versions could be easily
abstracted away with a service class that might have been called Commands.

1 render(){

2 return(

3 <RCTMessagesView {...this.props} onChange={this._onChange} />

4)

5 }

6

7 }

8 MessagesView.propTypes = {

9 ...View.propTypes,

10 onItemAdded: PropTypes.func,

11 lastMessage: PropTypes.string,

12 }

13

14 let RCTMessagesView = requireNativeComponent('RCTMessagesView',

15 MessagesView,

16 {nativeOnly:{onChange:true}});

17 module.exports = MessagesView

The last part shows that again, a minimal-to-no difference between both
the .ios and .android versions exists. Just for the sake of the example, here
lastMessage is bound through props. Also, propTypes is set differently. None of
these are a deal breaker for converging the code, and some of them are
here just to show that you have more than one way to do things.
And here is how it all behaves, on Android:

Going Native: Native UI 154

Input is React Native, saying “Hello”

Going Native: Native UI 155

Clicking “Add” adds an item

Using MessagesView

And now, to enjoy the cherry on the top. To use MessagesView in our container
views, we can treat it like any other view, and even better, we get to
keep a single codebase for both Android and iOS, using a different native
implementation at once!
Here’s how it looks:

1 <MessagesView

2 ref="messages"

3 lastMessage={this.state.lastMessage}

4 style={{flex:1}}

5 onChange={(ev)=>console.log(ev)} />

And, anywhere you’d like, you can send commands to this view like so:

Going Native: Native UI 156

1 addMessage(){

2 this.refs.messages.addItem(this.state.text)

3 this.setState({lastMessage:this.state.text})

4 }

Summary

In this chapter, we covered one of themost hard-core topics of React Native,
this is a topic that touches on how React Native itself is built and allows you
to make a good use of the same building blocks in order to make your own
escape hatches, and make sure your app carries on by implementing UI
natively per platform, if you suddenly find that React Native doesn’t have
all of the answers.
We’ve learnt that to do this kind of bridging, React Native expects:

• A custom view of your own, per platform
• A view manager that takes that view, and takes care of vending it
• Remoting and the concepts of: Props, Events, and Commands and
making sure the view manager knows how to glue these up.

And that’s basically it. If you like to dial things up to eleven, make sure
to read the code for ScrollView and WebView77 for iOS, and the same on
Android78.
77https://github.com/facebook/react-native/tree/master/React/Views
78https://github.com/facebook/react-native/tree/master/ReactAndroid/src/main/java/com/facebook/react/

views

https://github.com/facebook/react-native/tree/master/React/Views
https://github.com/facebook/react-native/tree/master/ReactAndroid/src/main/java/com/facebook/react/views
https://github.com/facebook/react-native/tree/master/ReactAndroid/src/main/java/com/facebook/react/views
https://github.com/facebook/react-native/tree/master/React/Views
https://github.com/facebook/react-native/tree/master/ReactAndroid/src/main/java/com/facebook/react/views
https://github.com/facebook/react-native/tree/master/ReactAndroid/src/main/java/com/facebook/react/views

Going Native: Native Modules
In this chapter we’ll see how to expose native platform capabilities on iOS
and Android, and that you can make available to your Javascript by building
and exposing a React Native module.
If you didn’t read the previous Going Native: Native UI chapter, please take
the time to do it now. You don’t have to, but even if you’re not building a
native UI component, much of the material in that chapter is relevant since
by way of building the native UI component we had to also build a native
module.
If you really only want to make a module I’ll explain everything as well -
so no worries; when you feel that you want to know how everything works
behind the scenes, check out the previous chapter.

Our Example: Cryptboard

Since we’ve already gone through quite a lengthy road in the previous
sample, every thing you want to do should already be clear to you in terms
of React Native plumbing and remoting. All you should be missing is to
validate that building a module is quite the same, and to see how to rig up
such a module into the application infrastructure.
Since modules are simple to make, a lot, if not all of the common native
facilities such as contacts, geolocation, notifications, storage, and so on
are already covered either by React Native or by the community and you
probably wouldn’t find yourself making one from scratch. You might, how-
ever, find yourself improving or tweaking one and for that, the knowledge
you’ve gained in the previous chapter should be enough.
So given that, let’s expose the native clipboard as a module with a twist - it
will store the contents encrypted using AES. We want to reach out and grab
the clipboard’s content from iOS or Android, and then to be able to encrypt
and set a content of our own. As with any module, we’ll be accessing this
as a pure Javascript API with no UI.
The code will be very identical to the existing RCTClipboard module already
provided with React; should you ever want to compare and see how a clear-
text clipboard module would behave :-).
In this example, we’ll insist on having a single javascript codebase, which
means both iOS and Android will load the very same files, with no .ios or
.android qualifiers!

157

Going Native: Native Modules 158

iOS Breakdown

We’ll show a few things on iOS:

• Building a module
• Configuring the project for external libraries with Cocoapods
• Pointing the project at a single index bundle, no .ios qualifier

Let’s start with adding an AES capable library. I’ve chosen AESCrypt79 to
start with for its simplicity. Using Cocoapods let’s do this:

1 [nativemodules] $ cd ios

2 [nativemodules/ios] $ pod init

Then edit your Podfile to be this one:

1 target 'nativemodules' do

2 pod 'AESCrypt'

3 end

4

5 target 'nativemodulesTests' do

6

7 end

Finally run pod install and open the newly generated nativemodules.xcworkspace

rather than the existing nativemodules.xcproject. You should now have access
to the AESCrypt library from your Objective-C code.
Let’s proceed with our native Cryptboard module:

1 // RCTCryptboard.m

2

3 #import "RCTBridgeModule.h"

4 #import "RCTUtils.h"

5 #import <UIKit/UIKit.h>

6 #import "AESCrypt.h"

7

8

9 #define CRYPT_PASS @"jondot/awesome-react-native"

10

11 @interface RCTCryptboard : NSObject <RCTBridgeModule>

12 @end

So far, if you’ve read the previous chapter this should be familiar. If
not, then this is just a ceremony we have to perform: inherit from NSOb-

ject<RCTBridgeModule>. We also import the bridge, utils, and our AESCrypt

headers
79https://github.com/Gurpartap/AESCrypt-ObjC

https://github.com/Gurpartap/AESCrypt-ObjC
https://github.com/Gurpartap/AESCrypt-ObjC

Going Native: Native Modules 159

1 @implementation RCTCryptboard

2

3 RCT_EXPORT_MODULE()

4

5 - (dispatch_queue_t)methodQueue

6 {

7 return dispatch_get_main_queue();

8 }

With this, we’re registering our module and telling which thread queue
React Native should use. Not all tasks are made equal and we have the
liberty of telling React Native what priority to run our tasks at by supplying
the matching queue. This should make sense to you if you’re originally an
iOS developer, and if not, I recommend reading about the various dispatch
queues iOS offers and the threading model and reasoning behind these
here80.

1 RCT_EXPORT_METHOD(set:(NSString *)content)

2 {

3 UIPasteboard *clipboard = [UIPasteboard generalPasteboard];

4 clipboard.string = [AESCrypt encrypt:content password:CRYPT_PASS];

5 }

6

7 RCT_EXPORT_METHOD(get:(RCTPromiseResolveBlock)resolve

8 rejecter:(__unused RCTPromiseRejectBlock)reject)

9 {

10 UIPasteboard *clipboard = [UIPasteboard generalPasteboard];

11 resolve(@[RCTNullIfNil([AESCrypt decrypt:clipboard.string password:CRYPT_PA\

12 SS])]);

13 }

14 @end

This should also be very familiar, we’re using the same EXPORT_METHOD macros
that we’ve used before, and these tell React Native to expose our methods
on the bridge. Note that the get method makes use of RCTPromiseResolveBlock

which will appear as a regular Javascript promise on the other end.
We’re also making use of the AESCrypt library to encrypt the clipboard data
but that’s not especially related to React Native itself.
That’s it. From my experience making a module is really easy, and feels
more enjoyable than wrapping a full-blown native component with UI and
logic.
Since we’re using a single Javascript codebase for both platforms this time,
we’ll leave it for the end as a dessert. Let’s move on to the Android part.
80https://developer.apple.com/library/ios/documentation/General/Conceptual/

ConcurrencyProgrammingGuide/OperationQueues/OperationQueues.html

https://developer.apple.com/library/ios/documentation/General/Conceptual/ConcurrencyProgrammingGuide/OperationQueues/OperationQueues.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/ConcurrencyProgrammingGuide/OperationQueues/OperationQueues.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/ConcurrencyProgrammingGuide/OperationQueues/OperationQueues.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/ConcurrencyProgrammingGuide/OperationQueues/OperationQueues.html

Going Native: Native Modules 160

Android Breakdown

Let’s go over the Java part. In my opinion it looks cleaner and more
structured than our iOS counterpart.

1 // CryptboardModule.java

2 public class CryptboardModule extends ReactContextBaseJavaModule {

3 final private String CRYPT_PASS = "awesome-react-native/jondot";

4

5 public CryptboardModule(ReactApplicationContext reactContext) {

6 super(reactContext);

7 }

8

9 @Override

10 public String getName() {

11 return "Cryptboard";

12 }

13

14 private ClipboardManager getClipboardService() {

15 return (ClipboardManager) getReactApplicationContext().getSystemServi\

16 ce(getReactApplicationContext().CLIPBOARD_SERVICE);

17 }

For the initialization, the most important part is to extend ReactContextBase-

JavaModule and to provide a module name, here we choose Cryptboard so that it
will deliberately match the iOS part. The rest is the typical Android pattern
of grabbing a system service such as the clipboard.

1 @ReactMethod

2 public void get(Promise promise){

3 try {

4 ClipboardManager clipboard = getClipboardService();

5 ClipData clipData = clipboard.getPrimaryClip();

6 if (clipData == null) {

7 promise.resolve("");

8 }

9 if (clipData.getItemCount() >= 1) {

10 ClipData.Item firstItem = clipboard.getPrimaryClip().getItemA\

11 t(0);

12 promise.resolve("" + firstItem.getText());

13 } else {

14 promise.resolve("");

15 }

16 } catch(Exception e) {

17 promise.reject(e);

Going Native: Native Modules 161

18 }

19 }

20

21 @SuppressLint("DeprecatedMethod")

22 @ReactMethod

23 public void set(String text) {

24 ClipData clipdata = ClipData.newPlainText(null, text);

25 ClipboardManager clipboard = getClipboardService();

26 clipboard.setPrimaryClip(clipdata);

27 }

28 }

Still everything here looks not surprising. We’re marking methods that will
be exposed to the Javascript world with the @ReactMethod annotation. Other
than that, the only thing I can think of that is worth mentioning is the use
of Promise in the get method; keep that in mind as we will have to discuss it
separately further down below.
Next up let’s make React Native for Android know about this module. This
done by creating and registering a ReactPackage.

1 public class NativeModulesPackage implements ReactPackage{

2 @Override

3 public List<NativeModule> createNativeModules(ReactApplicationContext rea\

4 ctContext) {

5 return Arrays.<NativeModule>asList(

6 new CryptboardModule(reactContext)

7);

8 }

9

10 @Override

11 public List<Class<? extends JavaScriptModule>> createJSModules() {

12 return Collections.emptyList();

13 }

14

15 @Override

16 public List<ViewManager> createViewManagers(ReactApplicationContext react\

17 Context) {

18 return Collections.emptyList();

19 }

20 }

Here, we’re plainly giving out a list of one item, our CryptboardModule in the
createNativeModules override, while the rest of the overrides hand out empty
lists - we don’t have anything that React Native needs to know about there.
Let’s rig that package up with our main activity (take a look at getPackages

in your activity):

Going Native: Native Modules 162

1 protected List<ReactPackage> getPackages() {

2 return Arrays.<ReactPackage>asList(

3 new MainReactPackage(),

4 new NativeModulesPackage()

5);

6 }

That completes the cycle! Now, we’ll be able to use our native module from
both iOS and Android. The great thing is that we’re going to use the very
same Javascript codebase with no change for both.

Cryptboard.js

This part is going to be a surprise for you. Ready? Here we go:

1 import { Cryptboard } from 'NativeModules'

2

3 class CryptboardModule{

4 get(){

5 return Cryptboard.get()

6 }

7

8 set(str){

9 // optional: do fancy stuff on str?

10 Cryptboard.set(str)

11 }

12 }

13

14 module.exports = new CryptboardModule

That’s it. And this works both for Android and iOS. If you ever wondered
about what is the X-Factor with React Native as opposed to other cross-
platform SDKs; well, this is it.
Now, let’s see how we use this module from actual application code:

1 import Cryptboard from './cryptboard'

2

3 class nativemodules extends Component {

4 constructor(props){

5 super(props)

6 this.state = { text: "hello modules" }

7 this.copy = this.copy.bind(this)

8 this.paste = this.paste.bind(this)

9 }

Going Native: Native Modules 163

10 copy(){

11 Cryptboard.set(this.state.text)

12 }

13 paste(){

14 Cryptboard.get().then((args)=>{

15 // unfortunately, an iOS promise is different from an Android promise.

16 // The iOS one returns a single variable which is an array of objects

17 // while the Android one returns a single object.

18 var text = args

19 if(args instanceof Array){

20 text = args[0]

21 }

22 this.setState({text})

23 })

24 }

25 render() {

26 return (

27 <View style={styles.container}>

28 <TextInput

29 style={{height: 40, borderWidth: 1}}

30 value={this.state.text}

31 onChangeText={(text)=>this.setState({ text })} />

32 <TouchableOpacity onPress={this.copy}>

33 <Text>Copy</Text>

34 </TouchableOpacity>

35 <TouchableOpacity onPress={this.paste}>

36 <Text>Paste</Text>

37 </TouchableOpacity>

38 </View>

39);

40 }

41 }

I’ve omitted redundant imports and style definitions, but this should be it.
Again this is the same codebase for iOS and Android. This is where React
Native shines as it makes a hard thing - remember we’re getting our hands
dirty with native code here, not necessarily React Native code - trivially
easy.
And finally, this is how it should behave for both iOS and Android:

Going Native: Native Modules 164

Our Simplistic Clipboard UI

Copy and Paste works, they copy and paste out the very same text, on both
platforms. Let’s paste directly from the clipboard without hitting Paste:

Going Native: Native Modules 165

Our Encrypted Text (Base64)

So encryption works. This means no one besides us can understand
anything that is being copied or pasted from this app. Now all we need
is a tinfoil hat!

Bridging Promises

But hold on a second. There’s one thing left to talk about, which is probably
just a sign that React Native is at 0.19, and is still very young. The way it
bridges the concept of a promise is different between iOS and Android,
unfortunately. On iOS React Native will pass an array with objects on a
promise callback, while on Android it will pass a single object.
For now, such friction is dealt with explicitly as you can see in our code.
Hopefully these differences will be ironed out - the encouraging thing is
that it should be quite easy to iron out as well (as you can see from our
small fix there).

Going Native: Native Modules 166

Using a Single Codebase

In this example, we’re using a single React Native codebase, with just two
files:

• index.js

• cryptboard.js

Normally, your React Native projects will load an index.[platform].js and
expect a Javascript bundle that is also infixed with the platform qualifier.
Let’s see how to disable that and make it load the very same codebase both
on iOS and Android.
On iOS the solution is quite simple. Within AppDelegate.m locate and change
jsCodeLocation to this (we’ve removed the .ios infix):

1 jsCodeLocation = [NSURL URLWithString:@"http://localhost:8081/index.bundle?\

2 platform=ios&dev=true"];

On Android, we have to change few places. First, in your MainActivity,
override getBundleAssetName and getJSMainModuleName:

1 @Override

2 protected String getBundleAssetName() {

3 return "index.bundle";

4 }

5

6 @Override

7 protected String getJSMainModuleName() {

8 return "index";

9 }

This allow you to conveniently instruct React Native which file and bundle
to fetch. Next, since the Android part includes Gradle, you can also tweak
the build tasks for your convenience. Locate your app/build.gradle file and
within it uncomment and set this part as the following:

1 // app/build.gradle

2 project.ext.react = [

3 bundleAssetName: "index.bundle",

4 entryFile: "index.js"

5]

Now, both your iOS and Android builds will use the same codebase
configuration.

Going Native: Native Modules 167

Summary

In this chapter, we’ve breezed through implementing nativemodules. These
are the kinds of modules that you need when you want to expose part of
the native specific capabilities to your React Native Javascript code.
This is a recap of what we did:

• We’ve implemented a fun example - a Cryptboard. A clipboard that
saves its data encrypted with the symmetric AES encryption algorithm

• By that way, we’ve seen how to take in dependencies for iOS with
Cocoapods, and for Android with Gradle

• We’ve learnt that it is much simpler than building a full-blown native
UI component

• It boils down to registering the module, exposing methods and option-
ally using promises

• When using native modules, there’s a greater chance the way you use
these from both iOS and Android Javascript modules will be exactly the
same. We’ve seen how to force React Native to use the same codebase
on each platform from the get-go.

• implement the clipboard service in both plats.
• go over them.
• the difference between promise blocks - iOS and Android
• how to make iOS and Android use a single index.js (ios - appmodule,
android - overriding activity and fixing the gradle build tasks)

• screenshots - copy, paste, paste encrypted

	Table of Contents
	About Me
	About This Book
	How To Build a Book for Bleeding Edge?
	How To Read This Book?

	Introduction
	About Me
	The Revolution Has Begun
	Cross Platform Mobile
	React
	React Native
	Why This Time?

	Book Style
	Intended Audience
	What This Book Is
	What This Book Is Not

	Breezing Through React

	Getting Started
	Project Layout
	The React Native Project
	Running Your Project
	Making Changes

	Bundling Your App
	The Native iOS Project
	The Native Android Project
	Tooling
	Simulator and Emulator Developer Tools
	Native Debugging

	Summary

	Building React Native Components
	A Squashed History of Javascript Frameworks
	React.js
	React Components
	Completing a Kata

	The People App
	Features
	Product
	Technical

	Potential (or: Homework)
	Summary

	Walkthrough
	Walkthough Style
	Technical Choices
	Javascript
	React
	Flux
	Folder Structure
	Testing

	Dissecting Our First Screen
	Mobile List Views

	The Groups Screen
	Master-Detail

	ListView and Our Master View
	The Store
	Bootstrapping and Navigation
	Styling
	The Detail Screen
	The People (Contacts) Screen
	Making Reusable Components
	Using Community Components
	Linking iOS projects
	Linking Android Projects
	Javascript Components

	Summary

	Navigation and Routing
	Why navigation
	Why Navigation is Scary
	Navigation in React Native
	Navigator vs. NavigatorIOS
	Navigator
	Wiring Navigator
	ToolbarAndroid and Navigator.NavigationBar
	ToolbarAndroid
	Android's Back Button

	NavigatorIOS
	Passing Data
	Patterns
	Search in Navbar
	Custom Content in Title
	Routed Navbar Content
	Reactive Navbar Content
	Getting Input
	Spreading Props

	Summary

	Going Native: Native UI
	Why go Native?
	Performance
	Making use of Existing Work
	Better Tooling
	Custom UI and Complex UI Work
	Wrapping Existing Components
	A General Escape Hatch

	When Not to Go Native?
	The Building Blocks of a Custom View
	The ViewManager
	Our Example: MessagesView
	Breakdown: iOS
	MessagesView
	RCTMessagesViewManager
	messagesview.ios.js
	Breakdown: Android
	MessagesView
	MessagesViewManager
	NativeControlsPackage
	messagesview.android.js

	Using MessagesView
	Summary

	Going Native: Native Modules
	Our Example: Cryptboard
	iOS Breakdown
	Android Breakdown
	Cryptboard.js
	Bridging Promises
	Using a Single Codebase

	Summary

