

©2011 O’Reilly Media, Inc. O’Reilly logo is a registered trademark of O’Reilly Media, Inc.

Learn how to turn
data into decisions.

From startups to the Fortune 500,
smart companies are betting on
data-driven insight, seizing the
opportunities that are emerging
from the convergence of four
powerful trends:

n New methods of collecting, managing, and analyzing data

n Cloud computing that offers inexpensive storage and flexible,
 on-demand computing power for massive data sets

n Visualization techniques that turn complex data into images
 that tell a compelling story

n Tools that make the power of data available to anyone

Get control over big data and turn it into insight with
O’Reilly’s Strata offerings. Find the inspiration and
information to create new products or revive existing ones,
understand customer behavior, and get the data edge.

Visit oreilly.com/data to learn more.

Richard Cotton

Learning R

Learning R
by Richard Cotton

Copyright © 2013 Richard Cotton. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Meghan Blanchette
Production Editor: Kristen Brown
Copyeditor: Rachel Head
Proofreader: Jilly Gagnon

Indexer: WordCo Indexing Services
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Rebecca Demarest

September 2013: First Edition

Revision History for the First Edition:

2013-09-06: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449357108 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Learning R, the image of a roe deer, and related trade dress are trademarks of O’Reilly Media,
Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-35710-8

[LSI]

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449357108

Table of Contents

Preface. xiii

Part I. The R Language

1. Introduction. 3
Chapter Goals 3
What Is R? 3
Installing R 4
Choosing an IDE 5

Emacs + ESS 5
Eclipse/Architect 6
RStudio 6
Revolution-R 7
Live-R 7
Other IDEs and Editors 7

Your First Program 8
How to Get Help in R 8
Installing Extra Related Software 11
Summary 11
Test Your Knowledge: Quiz 12
Test Your Knowledge: Exercises 12

2. A Scientific Calculator. 13
Chapter Goals 13
Mathematical Operations and Vectors 13
Assigning Variables 17
Special Numbers 19
Logical Vectors 20
Summary 22

v

Test Your Knowledge: Quiz 22
Test Your Knowledge: Exercises 23

3. Inspecting Variables and Your Workspace. 25
Chapter Goals 25
Classes 25
Different Types of Numbers 26
Other Common Classes 27
Checking and Changing Classes 30
Examining Variables 33
The Workspace 36
Summary 37
Test Your Knowledge: Quiz 37
Test Your Knowledge: Exercises 37

4. Vectors, Matrices, and Arrays. 39
Chapter Goals 39
Vectors 39

Sequences 41
Lengths 42
Names 42
Indexing Vectors 43
Vector Recycling and Repetition 45

Matrices and Arrays 46
Creating Arrays and Matrices 46
Rows, Columns, and Dimensions 48
Row, Column, and Dimension Names 50
Indexing Arrays 51
Combining Matrices 51
Array Arithmetic 52

Summary 54
Test Your Knowledge: Quiz 55
Test Your Knowledge: Exercises 55

5. Lists and Data Frames. 57
Chapter Goals 57
Lists 57

Creating Lists 57
Atomic and Recursive Variables 60
List Dimensions and Arithmetic 60
Indexing Lists 61
Converting Between Vectors and Lists 64

vi | Table of Contents

Combining Lists 65
NULL 66
Pairlists 70
Data Frames 70

Creating Data Frames 71
Indexing Data Frames 74
Basic Data Frame Manipulation 75

Summary 77
Test Your Knowledge: Quiz 77
Test Your Knowledge: Exercises 78

6. Environments and Functions. 79
Chapter Goals 79
Environments 79
Functions 82

Creating and Calling Functions 82
Passing Functions to and from Other Functions 86
Variable Scope 89

Summary 91
Test Your Knowledge: Quiz 91
Test Your Knowledge: Exercises 91

7. Strings and Factors. 93
Chapter Goals 93
Strings 93

Constructing and Printing Strings 94
Formatting Numbers 95
Special Characters 97
Changing Case 98
Extracting Substrings 98
Splitting Strings 99
File Paths 100

Factors 101
Creating Factors 101
Changing Factor Levels 103
Dropping Factor Levels 103
Ordered Factors 104
Converting Continuous Variables to Categorical 105
Converting Categorical Variables to Continuous 106
Generating Factor Levels 107
Combining Factors 107

Summary 108

Table of Contents | vii

Test Your Knowledge: Quiz 108
Test Your Knowledge: Exercises 108

8. Flow Control and Loops. 111
Chapter Goals 111
Flow Control 111

if and else 112
Vectorized if 114
Multiple Selection 115

Loops 116
repeat Loops 116
while Loops 118
for Loops 120

Summary 122
Test Your Knowledge: Quiz 122
Test Your Knowledge: Exercises 122

9. Advanced Looping. 125
Chapter Goals 125
Replication 125
Looping Over Lists 127
Looping Over Arrays 132
Multiple-Input Apply 135

Instant Vectorization 136
Split-Apply-Combine 136
The plyr Package 138
Summary 141
Test Your Knowledge: Quiz 141
Test Your Knowledge: Exercises 141

10. Packages. 143
Chapter Goals 143
Loading Packages 144

The Search Path 146
Libraries and Installed Packages 146

Installing Packages 148
Maintaining Packages 150
Summary 150
Test Your Knowledge: Quiz 151
Test Your Knowledge: Exercises 151

11. Dates and Times. 153

viii | Table of Contents

Chapter Goals 153
Date and Time Classes 154

POSIX Dates and Times 154
The Date Class 155
Other Date Classes 156

Conversion to and from Strings 156
Parsing Dates 156
Formatting Dates 157

Time Zones 158
Arithmetic with Dates and Times 160
Lubridate 161
Summary 165
Test Your Knowledge: Quiz 165
Test Your Knowledge: Exercises 166

Part II. The Data Analysis Workflow

12. Getting Data. 169
Chapter Goals 169
Built-in Datasets 169
Reading Text Files 170

CSV and Tab-Delimited Files 170
Unstructured Text Files 175
XML and HTML Files 175
JSON and YAML Files 176

Reading Binary Files 179
Reading Excel Files 179
Reading SAS, Stata, SPSS, and MATLAB Files 181
Reading Other File Types 181

Web Data 182
Sites with an API 182
Scraping Web Pages 184

Accessing Databases 185
Summary 188
Test Your Knowledge: Quiz 189
Test Your Knowledge: Exercises 189

13. Cleaning and Transforming. 191
Chapter Goals 191
Cleaning Strings 191
Manipulating Data Frames 196

Table of Contents | ix

Adding and Replacing Columns 196
Dealing with Missing Values 197
Converting Between Wide and Long Form 198
Using SQL 200

Sorting 201
Functional Programming 202
Summary 204
Test Your Knowledge: Quiz 205
Test Your Knowledge: Exercises 205

14. Exploring and Visualizing. 207
Chapter Goals 207
Summary Statistics 207
The Three Plotting Systems 211
Scatterplots 212

Take 1: base Graphics 213
Take 2: lattice Graphics 218
Take 3: ggplot2 Graphics 224

Line Plots 230
Histograms 238
Box Plots 249
Bar Charts 253
Other Plotting Packages and Systems 260
Summary 261
Test Your Knowledge: Quiz 261
Test Your Knowledge: Exercises 262

15. Distributions and Modeling. 263
Chapter Goals 263
Random Numbers 264

The sample Function 264
Sampling from Distributions 265

Distributions 266
Formulae 267
A First Model: Linear Regressions 268

Comparing and Updating Models 271
Plotting and Inspecting Models 276

Other Model Types 280
Summary 282
Test Your Knowledge: Quiz 282

x | Table of Contents

Test Your Knowledge: Exercises 282

16. Programming. 285
Chapter Goals 285
Messages, Warnings, and Errors 286
Error Handling 289
Debugging 292
Testing 294

RUnit 295
testthat 298

Magic 299
Turning Strings into Code 299
Turning Code into Strings 301

Object-Oriented Programming 302
S3 Classes 303
Reference Classes 305

Summary 310
Test Your Knowledge: Quiz 310
Test Your Knowledge: Exercises 311

17. Making Packages. 313
Chapter Goals 313
Why Create Packages? 313
Prerequisites 313
The Package Directory Structure 314
Your First Package 315
Documenting Packages 317
Checking and Building Packages 320
Maintaining Packages 321
Summary 323
Test Your Knowledge: Quiz 323
Test Your Knowledge: Exercises 324

Part III. Appendixes

A. Properties of Variables. 327

B. Other Things to Do in R. 331

C. Answers to Quizzes. 333

Table of Contents | xi

D. Solutions to Exercises. 341

Bibliography. 365

Index. 367

xii | Table of Contents

Preface

R is a programming language and a software environment for data analysis and statistics.
It is a GNU project, which means that it is free, open source software. It is growing
exponentially by most measures—most estimates count over a million users, and it has
over 4,000 add-on packages contributed by the community, with that number increasing
by about 25% each year. The Tiobe Programming Community Index of language pop‐
ularity places it at number 24 at the time of this writing, roughly on a par with SAS and
MATLAB.

R is used in almost every area where statistics or data analyses are needed. Finance,
marketing, pharmaceuticals, genomics, epidemiology, social sciences, and teaching are
all covered, as well as dozens of other smaller domains.

About This Book
Since R is primarily designed to let you do statistical analyses, many of the books written
about R focus on teaching you how to calculate statistics or model datasets. This un‐
fortunately misses a large part of the reality of analyzing data. Unless you are doing
cutting-edge research, the statistical techniques that you use will often be routine, and
the modeling part of your task may not be the largest one. The complete workflow for
analyzing data looks more like this:

1. Retrieve some data.
2. Clean the data.
3. Explore and visualize the data.
4. Model the data and make predictions.
5. Present or publish your results.

xiii

http://bit.ly/184JctZ

Of course at each stage your results may generate interesting questions that lead you to
look for more data, or for a different way to treat your existing data, which can send you
back a step. The workflow can be iterative, but each of the steps needs to be undertaken.

The first part of this book is designed to teach you R from scratch—you don’t need any
experience in the language. In fact, no programming experience at all is necessary, but
if you have some basic programming knowledge, it will help. For example, the book
explains how to comment your code and how to write a for loop, but doesn’t explain
in great detail what they are. If you want a really introductory text on how to program,
then Python for Kids by Jason R. Briggs is as good a place to start as any!

The second part of the book takes you through the complete data analysis workflow in
R. Here, some basic statistical knowledge is assumed. For example, you should under‐
stand terms like mean and standard deviation, and what a bar chart is.

The book finishes with some more advanced R topics, like object-oriented program‐
ming and package creation. Garrett Grolemund’s Data Analysis with R picks up where
this book leaves off, covering data analysis workflow in more detail.

A word of warning: this isn’t a reference book, and many of the topics aren’t covered in
great detail. This book provides tutorials to give you ideas about what you can do in R
and let you practice. There isn’t enough room to cover all 4,000 add-on packages, but
by the time you’ve finished reading, you should be able to find the ones that you need,
and get the help you need to start using them.

What Is in This Book
This is a book of two halves. The first half is designed to provide you with the technical
skills you need to use R; each chapter is a short introduction to a different set of data
types (for example, Chapter 4 covers vectors, matrices, and arrays) or a concept (for
example, Chapter 8 covers branching and looping).

The second half of the book ramps up the fun: you get to see real data analysis in action.
Each chapter covers a section of the standard data analysis workflow, from importing
data to publishing your results.

Here’s what you’ll find in Part I, The R Language:

• Chapter 1, Introduction, tells you how to install R and where to get help.
• Chapter 2, A Scientific Calculator, shows you how to use R as a scientific calculator.
• Chapter 3, Inspecting Variables and Your Workspace, lets you inspect variables in

different ways.
• Chapter 4, Vectors, Matrices, and Arrays, covers vectors, matrices, and arrays.

xiv | Preface

• Chapter 5, Lists and Data Frames, covers lists and data frames (for spreadsheet-like
data).

• Chapter 6, Environments and Functions, covers environments and functions.
• Chapter 7, Strings and Factors, covers strings and factors (for categorical data).
• Chapter 8, Flow Control and Loops, covers branching (if and else), and basic

looping.
• Chapter 9, Advanced Looping, covers advanced looping with the apply function

and its variants.
• Chapter 10, Packages, explains how to install and use add-on packages.
• Chapter 11, Dates and Times, covers dates and times.

Here are the topics covered in Part II, The Data Analysis Workflow:

• Chapter 12, Getting Data, shows you how to import data into R.
• Chapter 13, Cleaning and Transforming, explains cleaning and manipulating data.
• Chapter 14, Exploring and Visualizing, lets you explore data by calculating statistics

and plotting.
• Chapter 15, Distributions and Modeling, introduces modeling.
• Chapter 16, Programming, covers a variety of advanced programming techniques.
• Chapter 17, Making Packages, shows you how to package your work for others.

Lastly, there are useful references in Part III, Appendixes:

• Appendix A, Properties of Variables, contains tables comparing the properties of
different types of variables.

• Appendix B, Other Things to Do in R, describes some other things that you can do
in R.

• Appendix C, Answers to Quizzes, contains the answers to the end-of-chapter
quizzes.

• Appendix D, Solutions to Exercises, contains the answers to the end of chapter pro‐
gramming exercises.

Which Chapters Should I Read?
If you have never used R before, then start at the beginning and work through chapter
by chapter. If you already have some experience with R, you may wish to skip the first
chapter and skim the chapters on the R core language.

Preface | xv

1. Andrie’s book covers much the same ground as Learning R, and in many ways is almost as good as this work,
so I won’t be offended if you want to read it too.

Each chapter deals with a different topic, so although there is a small amount of de‐
pendency from one chapter to the next, it is possible to pick and choose chapters that
interest you.

I recently discussed this matter with Andrie de Vries, author of R For Dummies. He
suggested giving up and reading his book instead!1

Conventions Used in This Book
The following font conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, file and pathnames, and file extensions.

Constant width

Used for code samples that should be copied verbatim, as well as within paragraphs
to refer to program elements such as variable or function names, data types, envi‐
ronment variables, statements, and keywords. Output from blocks of code is also
in constant width, preceded by a double hash (##).

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

There is a style guide for the code used in this book at http://4dpiecharts.com/r-code-
style-guide.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Goals, Summaries, Quizzes, and Exercises
Each chapter begins with a list of goals to let you know what to expect in the forthcoming
pages, and finishes with a summary that reiterates what you’ve learned. You also get a
quiz, to make sure you’ve been concentrating (and not just pretending to read while
watching telly). The answers to the questions can be found within the chapter (or at the

xvi | Preface

http://4dpiecharts.com/r-code-style-guide
http://4dpiecharts.com/r-code-style-guide

end of the book, if you want to cheat). Finally, each chapter concludes with some exer‐
cises, most of which involve you writing some R code. After each exercise description
there is a number in square brackets, denoting a generous estimate of how many minutes
it might take you to complete it.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
http://cran.r-project.org/web/packages/learningr.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: "Learning R by Richard Cotton (O’Reilly).
Copyright 2013 Richard Cotton, 978-1-449-35710-8.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that delivers
expert content in both book and video form from the world’s lead‐
ing authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

Preface | xvii

http://cran.r-project.org/web/packages/learningr
mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/learningR.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Many amazing people have helped with the making of this book, not least my excellent
editor Meghan Blanchette, who is full of sensible advice.

Data was donated by several wonderful people:

• Bill Hogan of AMD found and cleaned the Alpe d’Huez cycling dataset, and pointed
me toward the CDC gonorrhoea dataset. He wanted me to emphasize that he’s
disease-free, ladies.

• Ewan Hunter of CEFAS provided the North Sea crab dataset.
• Corina Logan of the University of Cambridge compiled and provided the deer skull

data.
• Edwin Thoen of Leiden University compiled and provided the Obama vs. McCain

dataset.
• Gwern Branwen compiled the hafu dataset by watching and reading an inordinate

amount of manga. Kudos.

xviii | Preface

http://oreil.ly/learningR
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Many other people sent me datasets; there wasn’t room for them all, but thank you
anyway!

Bill Hogan also reviewed the book, as did Daisy Vincent of Marin Software, and JD
Long. I don’t know where JD works, but he lives in Bermuda, so it probably involves
triangles. Additional comments and feedback were provided by James White, Ben
Hanks, Beccy Smith, and Guy Bourne of TDX Group; Alex Hogg and Adrian Kelsey of
HSL; Tom Hull, Karen Vanstaen, Rachel Beckett, Georgina Rimmer, Ruth Wortham,
Bernardo Garcia-Carreras, and Joana Silva of CEFAS; Tal Galili of Tel Aviv University;
Garrett Grolemund of RStudio; and John Verzani of the City University of New York.
David Maxwell of CEFAS wonderfully recruited more or less everyone else in CEFAS
to review my book.

John Verzani also deserves much credit for helping conceive this book, and for providing
advice on the structure.

Sanders Kleinfeld of O’Reilly provided great tech support when I was pulling my hair
out over character encodings in the manuscript. Yihui Xie went above and beyond the
call of duty helping me get knitr to generate AsciiDoc. Rachel Head single-handedly
spotted over 4,000 bugs, typos, and mistakes while copyediting.

Garib Murshudov was the lecturer who first taught me R, back in 2004.

Finally, Janette Bowler deserves a medal for her endless patience and support while I’ve
been busy writing.

Preface | xix

PART I

The R Language

CHAPTER 1

Introduction

Congratulations! You’ve just begun your quest to become an R programmer. So you
don’t pull any mental muscles, this chapter starts you off gently with a nice warm-up.
Before you begin coding, we’re going to talk about what R is, and how to install it and
begin working with it. Then you’ll try writing your first program and learn how to get
help.

Chapter Goals
After reading this chapter, you should:

• Know some things that you can use R to do
• Know how to install R and an IDE to work with it
• Be able to write a simple program in R
• Know how to get help in R

What Is R?
Just to confuse you, R refers to two things. There is R, the programming language, and
R, the piece of software that you use to run programs written in R. Fortunately, most of
the time it should be clear from the context which R is being referred to.

R (the language) was created in the early 1990s by Ross Ihaka and Robert Gentleman,
then both working at the University of Auckland. It is based upon the S language that
was developed at Bell Laboratories in the 1970s, primarily by John Chambers. R (the
software) is a GNU project, reflecting its status as important free and open source soft‐
ware. Both the language and the software are now developed by a group of (currently)
20 people known as the R Core Team.

3

1. Intelligently designed?

2. A look in the Internet Archive’s Wayback Machine suggests that the front page hasn’t changed much since
May 2004.

The fact that R’s history dates back to the 1970s is important, because it has evolved over
the decades, rather than having been designed from scratch (contrast this with, for
example, Microsoft’s .NET Framework, which has a much more “created”1 feel). As with
life-forms, the process of evolution has led to some quirks and inconsistencies. The
upside of the more free-form nature of R (and the free license in particular) is that if
you don’t like how something in R is done, you can write a package to make it do things
the way that you want. Many people have already done that, and the common question
now is not “Can I do this in R?” but “Which of the three implementations should I use?”

R is an interpreted language (sometimes called a scripting language), which means that
your code doesn’t need to be compiled before you run it. It is a high-level language in
that you don’t have access to the inner workings of the computer you are running your
code on; everything is pitched toward helping you analyze data.

R supports a mixture of programming paradigms. At its core, it is an imperative language
(you write a script that does one calculation after another), but it also supports object-
oriented programming (data and functions are combined inside classes) and functional
programming (functions are first-class objects; you treat them like any other variable,
and you can call them recursively). This mix of programming styles means that R code
can bear a lot of similarity to several other languages. The curly braces mean that you
can write imperative code that looks like C (but the vectorized nature of R that we’ll
discuss in Chapter 2 means that you have fewer loops). If you use reference classes, then
you can write object-oriented code that looks a bit like C# or Java. The functional pro‐
gramming constructs are Lisp-inspired (the variable-scoping rules are taken from the
Lisp dialect, Scheme), but there are fewer brackets. All this is a roundabout way of saying
that R follows the Perl ethos:

There is more than one way to do it.
— Larry Wall

Installing R
If you are using a Linux machine, then it is likely that your package manager will have
R available, though possibly not the latest version. For everyone else, to install R you
must first go to http://www.r-project.org. Don’t be deceived by the slightly archaic web‐
site;2 it doesn’t reflect on the quality of R. Click the link that says “download R” in the
“Getting Started” pane at the bottom of the page.

4 | Chapter 1: Introduction

http://web.archive.org/web/20040415000000*/http://www.r-project.org/
http://web.archive.org/web/20040415000000*/http://www.r-project.org/
http://bit.ly/148zbcF
http://www.r-project.org
http://cran.r-project.org/mirrors.html

3. You don’t need to limit yourself to just one way of using R. I have IDE commitment issues and use a mix of
Eclipse + StatET, RStudio, Live-R, Tinn-R, Notepad++, and R GUI. Experiment, and find something that
works for you.

Once you’ve chosen a mirror close to you, choose a link in the “Download and Install
R” pane at the top of the page that’s appropriate to your operating system. After that
there are one or two OS-specific clicks that you need to make to get to the download.

If you are a Windows user who doesn’t like clicking, there is a cheeky shortcut to the
setup file at http://<CRAN MIRROR>/bin/windows/base/release.htm.

Choosing an IDE
If you use R under Windows or Mac OS X, then a graphical user interface (GUI) is
available to you. This consists of a command-line interpreter, facilities for displaying
plots and help pages, and a basic text editor. It is perfectly possible to use R in this way,
but for serious coding you’ll at least want to use a more powerful text editor. There are
countless text editors for programmers; if you already have a favorite, then take a look
to see if you can get syntax highlighting of R code for it.

If you aren’t already wedded to a particular editor, then I suggest that you’ll get the best
experience of R by using an integrated development environment (IDE). Using an IDE
rather than a separate text editor gives you the benefit of only using one piece of software
rather than two. You get all the facilities of the stock R GUI, but with a better editor, and
in some cases things like integrated version control.

The following sections introduce five popular choices, but this is by no means an ex‐
haustive list (a few additional suggestions follow). It is worth trying several IDEs; a
development environment is a piece of software that you could be spending thousands
of hours using, so it’s worth taking the time to find one3 that you like. A few additional
suggestions follow this selection.

Emacs + ESS
Although Emacs calls itself a text editor, 36 years (and counting) of development have
given it an unparalleled number of features. If you’ve been programming for any sub‐
stantial length of time, you probably already know whether or not you want to use it.
Converts swear by its limitless customizability and raw editing power; others complain
that it overcomplicates things and that the key chords give them repetitive strain injury.
There is certainly a steep learning curve, so be willing to spend a month or two getting
used to it. The other big benefit is that Emacs is not R-specific, so you can use it for
programming in many languages. The original version of Emacs is (like R) a GNU
project, available from http://www.gnu.org/software/emacs/.

Choosing an IDE | 5

http://www.gnu.org/software/emacs/

Another popular fork is XEmacs, available from http://www.xemacs.org/.

Emacs Speaks Statistics (ESS) is an add-on for Emacs that assists you in writing R code.
Actually, it works with S-Plus, SAS, and Stata, too, so you can write statistical code with
whichever package you like (choose R!). Several of the authors of ESS are also R Core
Team members, so you are guaranteed good integration with R. It is available through
the Emacs package management system, or you can download it from http://ess.r-
project.org/.

Use it if you want to write code in multiple languages, you want the most powerful editor
available, and you are fearless with learning curves.

Eclipse/Architect
Eclipse is another cross-platform IDE, widely used in the Java community. Like Emacs,
it is very powerful, and its plug-in system makes it highly customizable. The learning
curve is shallower, though, and it allows for more pointing and clicking than the heavily
keyboard-driven Emacs.

Architect is an R-oriented variant of Eclipse developed by statistics consultancy Open
Analytics. It includes the StatET plug-in for integration with R, including a debugger
that is superior to the one built into R GUI. Download it from http://www.openanalyt
ics.eu/downloads/architect.

Alternatively, you can get the standard Eclipse IDE from http://eclipse.org and use its
package manager to download the StatET plug-in from http://www.walware.de/goto/
statet.

Use it if you want to write code in multiple languages, you don’t have time to learn
Emacs, and you don’t mind a several-hundred-megabyte install.

RStudio
RStudio is an R-specific IDE. That means that you lose the ability to code (easily) in
multiple languages, but you do get some features especially for R. For example, the plot
windows are better than the R GUI originals, and there are facilities for publishing code.
The editor is more basic than either Emacs or Eclipse, but it’s good enough for most
purposes, and is easier to get started with than the other two. RStudio’s party trick is
that you can run it remotely through a browser, so you can run R on a powerful server,
then access it from a netbook (or smartphone) without loss of computational power.
Download it from http://www.rstudio.org.

Use it if you mainly write R code, don’t need advanced editor features, and want a shallow
learning curve or the ability to run remotely.

6 | Chapter 1: Introduction

http://www.xemacs.org/
http://ess.r-project.org/
http://ess.r-project.org/
http://www.openanalytics.eu/downloads/architect
http://www.openanalytics.eu/downloads/architect
http://eclipse.org
http://www.walware.de/goto/statet
http://www.walware.de/goto/statet
http://www.rstudio.org

Revolution-R
Revolution-R comes in two flavors: the free (as in beer) community edition and the
paid-for enterprise edition. Both take a different tack from the other IDEs mentioned
so far: whereas Emacs, Eclipse, and RStudio are pure graphical frontends that let you
connect to any version of R, Revolution-R ships with its own customized version of R.
Typically this is a stable release, one or two versions back from the most current. It also
has some enhancements for working with big data, and some enterprise-related features.
Download it from http://www.revolutionanalytics.com/products/revolution-r.php.

Use it if you mainly write R code, you work with big data or want a paid support contract,
or you require extra stability in your R platform.

Live-R
Live-R is a new player, in invite-only beta at the time this book is going to press. It
provides an IDE for R as a web application. This avoids all the hassle of installing soft‐
ware on your machine and, like RStudio’s remote installation, gives you the ability to
run R calculations from an underpowered machine. Live-R also includes a number of
features for collaboration, including a shared editor and code publishing, as well as some
admin tools for running courses based upon R. The main downside is that not all the
add-on packages for R are available; you are currently limited to about 200 or so that
are compatible with the web application. Sign up at http://live-analytics.com/.

Use it if you mainly write R code, don’t want to install any software, or want to teach a
class based upon R.

Other IDEs and Editors
There are many more editors that you can use to write R code. Here’s a quick roundup
of a few more possibilities:

• JGR [pronounced “Jaguar”] is a Java-based GUI for R, essentially a souped-up ver‐
sion of the stock R GUI.

• Tinn-R is a fork of the editor TINN that has extensions specifically to help you write
R code.

• SciViews-K, from the same team that makes Tinn-R, is an extension for the Komodo
IDE to work with R.

• Vim-R is a plug-in for Vim that provides R integration.
• NppToR plugs into Notepad++ to give R integration.

Choosing an IDE | 7

http://www.revolutionanalytics.com/products/revolution-r.php
http://live-analytics.com/
http://rforge.net/JGR
http://www.sciviews.org/Tinn-R
http://www.sciviews.org/SciViews-K
http://www.vim.org/scripts/script.php?script_id=2628
http://sourceforge.net/projects/npptor

Your First Program
It is a law of programming books that the first example shall be a program to print the
phrase “Hello world!” In R that’s really boring, since you just type “Hello world!” at the
command prompt, and it will parrot it back to you. Instead, we’re going to write the
simplest statistical program possible.

Open up R GUI, or whichever IDE you’ve decided to use, find the command prompt
(in the code editor window), and type:

mean(1:5)

Hit Enter to run the line of code. Hopefully, you’ll get the answer 3. As you might have
guessed, this code is calculating the arithmetic mean of the numbers from 1 to 5. The
colon operator, :, creates a sequence of numbers from the first number, in this case 1,
to the second number (5), each separated by 1. The resulting sequence is called a vector.
mean is a function (that calculates the arithmetic mean), and the vector that we enclose
inside the parentheses is called an argument to the function.

Well done! You’ve calculated a statistic using R.

In R GUI and most of the IDEs mentioned here, you can press the up
arrow key to cycle back through previous commands.

How to Get Help in R
Before you get started writing R code, the most important thing to know is how to get
help. There are lots of ways to do this. Firstly, if you want help on a function or a dataset
that you know the name of, type ? followed by the name of the function. To find func‐
tions, type two question marks (??) followed by a keyword related to the problem to
search. Special characters, reserved words, and multiword search terms need enclosing
in double or single quotes. For example:

?mean #opens the help page for the mean function
?"+" #opens the help page for addition
?"if" #opens the help page for if, used for branching code
??plotting #searches for topics containing words like "plotting"
??"regression model" #searches for topics containing phrases like this

That # symbol denotes a comment. It means that R will ignore the rest
of the line. Use comments to document your code, so that you can
remember what you were doing six months ago.

8 | Chapter 1: Introduction

4. apropos is Latin for “A Unix program that finds manpages.”

The functions help and help.search do the same things as ? and ??, respectively, but
with these you always need to enclose your arguments in quotes. The following com‐
mands are equivalent to the previous lot:

help("mean")
help("+")
help("if")
help.search("plotting")
help.search("regression model")

The apropos function4 finds variables (including functions) that match its input. This
is really useful if you can only half-remember the name of a variable that you’ve created,
or a function that you want to use. For example, suppose you create a variable a_vector:

a_vector <- c(1, 3, 6, 10)

You can then recall this variable using apropos:

apropos("vector")

[1] ".__C__vector" "a_vector" "as.data.frame.vector"
[4] "as.vector" "as.vector.factor" "is.vector"
[7] "vector" "Vectorize"

The results contain the variable you just created, a_vector, and all other variables that
contain the string vector. In this case, all the others are functions that are built into R.

Just finding variables that contain a particular string is fine, but you can also do fancier
matching with apropos using regular expressions.

Regular expressions are a cross-language syntax for matching
strings. The details will only be touched upon in this book, but you
need to learn to use them; they’ll change your life. Start at http://
www.regular-expressions.info/quickstart.html, and then try Mi‐
chael Fitzgerald’s Introducing Regular Expressions.

A simple usage of apropos could, for example, find all variables that end in z, or to find
all variables containing a number between 4 and 9:

apropos("z$")

[1] "alpe_d_huez" "alpe_d_huez" "force_tz" "indexTZ" "SSgompertz"
[6] "toeplitz" "tz" "unz" "with_tz"

How to Get Help in R | 9

http://www.regular-expressions.info/quickstart.html
http://www.regular-expressions.info/quickstart.html

apropos("[4-9]")

[1] ".__C__S4" ".__T__xmlToS4:XML" ".parseISO8601"
[4] ".SQL92Keywords" ".TAOCP1997init" "asS4"
[7] "assert_is_64_bit_os" "assert_is_S4" "base64"
[10] "base64Decode" "base64Encode" "blues9"
[13] "car90" "enc2utf8" "fixPre1.8"
[16] "Harman74.cor" "intToUtf8" "is_64_bit_os"
[19] "is_S4" "isS4" "seemsS4Object"
[22] "state.x77" "to.minutes15" "to.minutes5"
[25] "utf8ToInt" "xmlToS4"

Most functions have examples that you can run to get a better idea of how they work.
Use the example function to run these. There are also some longer demonstrations of
concepts that are accessible with the demo function:

example(plot)
demo() #list all demonstrations
demo(Japanese)

R is modular and is split into packages (more on this later), some of which contain
vignettes, which are short documents on how to use the packages. You can browse all
the vignettes on your machine using browseVignettes:

browseVignettes()

You can also access a specific vignette using the vignette function (but if your memory
is as bad as mine, using browseVignettes combined with a page search is easier than
trying to remember the name of a vignette and which package it’s in):

vignette("Sweave", package = "utils")

The help search operator ?? and browseVignettes will only find things in packages
that you have installed on your machine. If you want to look in any package, you can
use RSiteSearch, which runs a query at http://search.r-project.org. Multiword terms
need to be wrapped in braces:

RSiteSearch("{Bayesian regression}")

Learning to help yourself is extremely important. Think of a key‐
word related to your work and try ?, ??, apropos, and RSiteSearch
with it.

There are also lots of R-related resources on the Internet that are worth trying. There
are too many to list here, but start with these:

• R has a number of mailing lists with archives containing years’ worth of questions
on the language. At the very least, it is worth signing up to the general-purpose list,
R-help.

10 | Chapter 1: Introduction

http://search.r-project.org
http://www.r-project.org/mail.html

• RSeek is a web search engine for R that returns functions, posts from the R mailing
list archives, and blog posts.

• R-bloggers is the main R blogging community, and the best way to stay up to date
with news and tips about R.

• The programming question and answer site Stack Overflow also has a vibrant R
community, providing an alternative to the R-help mailing list. You also get points
and badges for answering questions!

Installing Extra Related Software
There are a few other bits of software that R can use to extend its functionality. Under
Linux, your package manager should be able to retrieve them. Under Windows, rather
than hunting all over the Internet to track down this software, you can use the installr
add-on package to automatically install these extra pieces of software. None of this
software is compulsory, so you can skip this section now if you want, but it’s worth
knowing that the package exists when you come to need the additional software. In‐
stalling and loading packages is discussed in detail in Chapter 10, so don’t worry if you
don’t understand the commands yet:

install.packages("installr") #download and install the package named installr
library(installr) #load the installr package
install.RStudio() #download and install the RStudio IDE
install.Rtools() #Rtools is needed for building your own packages
install.git() #git provides version control for your code

Summary
• R is a free, open source language for data analysis.
• It’s also a piece of software used to run programs written in R.
• You can download R from http://www.r-project.org.
• You can write R code in any text editor, but there are several IDEs that make de‐

velopment easier.
• You can get help on a function by typing ? then its name.
• You can find useful functions by typing ?? then a search string, or by calling the
apropos function.

• There are many online resources for R.

Installing Extra Related Software | 11

http://rseek.org
http://www.r-bloggers.com
http://www.stackoverflow.com
http://www.r-project.org

Test Your Knowledge: Quiz
Question 1-1

Which language is R an open source version of?

Question 1-2
Name at least two programming paradigms in which you can write R code.

Question 1-3
What is the command to create a vector of the numbers from 8 to 27?

Question 1-4
What is the name of the function used to search for help within R?

Question 1-5
What is the name of the function used to search for R-related help on the Internet?

Test Your Knowledge: Exercises
Exercise 1-1

Visit http://www.r-project.org, download R, and install it. For extra credit, download
and install one of the IDEs mentioned in “Other IDEs and Editors” on page 7. [30]

Exercise 1-2
The function sd calculates the standard deviation. Calculate the standard deviation
of the numbers from 0 to 100. Hint: the answer should be about 29.3. [5]

Exercise 1-3
Watch the demonstration on mathematical symbols in plots, using demo(plot
math). [5]

12 | Chapter 1: Introduction

http://www.r-project.org

CHAPTER 2

A Scientific Calculator

R is at heart a supercharged scientific calculator, so it has a fairly comprehensive set of
mathematical capabilities built in. This chapter will take you through the arithmetic
operators, common mathematical functions, and relational operators, and show you
how to assign a value to a variable.

Chapter Goals
After reading this chapter, you should:

• Be able to use R as a scientific calculator
• Be able to assign a variable and view its value
• Be able to use infinite and missing values
• Understand what logical vectors are and how to manipulate them

Mathematical Operations and Vectors
The + operator performs addition, but it has a special trick: as well as adding two num‐
bers together, you can use it to add two vectors. A vector is an ordered set of values.
Vectors are tremendously important in statistics, since you will usually want to analyze
a whole dataset rather than just one piece of data.

The colon operator, :, which you have seen already, creates a sequence from one number
to the next, and the c function concatenates values, in this case to create vectors (con‐
catenate is a Latin word meaning “connect together in a chain”).

13

1. There are a few other name clashes: filter and Filter, find and Find, gamma and Gamma, nrow/ncol and
NROW/NCOL. This is an unfortunate side effect of R being an evolved rather than a designed language.

Variable names are case sensitive in R, so we need to be a bit careful in this next example.
The C function does something completely different to c:1

1:5 + 6:10 #look, no loops!

[1] 7 9 11 13 15

c(1, 3, 6, 10, 15) + c(0, 1, 3, 6, 10)

[1] 1 4 9 16 25

The colon operator and the c function are used almost every‐
where in R code, so it’s good to practice using them. Try creat‐
ing some vectors of your own now.

If we were writing in a language like C or Fortran, we would need to write a loop to
perform addition on all the elements in these vectors. The vectorized nature of R’s ad‐
dition makes things easy, letting us avoid the loop. Vectors will be discussed more in
“Logical Vectors” on page 20.

Vectorized has several meanings in R, the most common of which is that an operator
or a function will act on each element of a vector without the need for you to explicitly
write a loop. (This built-in implicit looping over elements is also much faster than ex‐
plicitly writing your own loop.) A second meaning of vectorization is when a function
takes a vector as an input and calculates a summary statistic:

sum(1:5)

[1] 15

median(1:5)

[1] 3

A third, much less common case of vectorization is vectorization over arguments. This
is when a function calculates a summary statistic from several of its input arguments.
The sum function does this, but it is very unusual. median does not:

sum(1, 2, 3, 4, 5)

[1] 15

median(1, 2, 3, 4, 5) #this throws an error

Error: unused arguments (3, 4, 5)

14 | Chapter 2: A Scientific Calculator

All the arithmetic operators in R, not just plus (+), are vectorized. The following exam‐
ples demonstrate subtraction, multiplication, exponentiation, and two kinds of division,
as well as remainder after division:

c(2, 3, 5, 7, 11, 13) - 2 #subtraction

[1] 0 1 3 5 9 11

-2:2 * -2:2 #multiplication

[1] 4 1 0 1 4

identical(2 ^ 3, 2 ** 3) #we can use ^ or ** for exponentiation
 #though ^ is more common

[1] TRUE

1:10 / 3 #floating point division

[1] 0.3333 0.6667 1.0000 1.3333 1.6667 2.0000 2.3333 2.6667 3.0000 3.3333

1:10 %/% 3 #integer division

[1] 0 0 1 1 1 2 2 2 3 3

1:10 %% 3 #remainder after division

[1] 1 2 0 1 2 0 1 2 0 1

R also contains a wide selection of mathematical functions. You get trigonometry (sin,
cos, tan, and their inverses asin, acos, and atan), logarithms and exponents (log and
exp, and their variants log1p and expm1 that calculate log(1 + x) and exp(x - 1) more
accurately for very small values of x), and almost any other mathematical function you
can think of. The following examples provide a hint of what is on offer. Again, notice
that all the functions naturally operate on vectors rather than just single values:

cos(c(0, pi / 4, pi / 2, pi)) #pi is a built-in constant

[1] 1.000e+00 7.071e-01 6.123e-17 -1.000e+00

exp(pi * 1i) + 1 #Euler's formula

[1] 0+1.225e-16i

factorial(7) + factorial(1) - 71 ^ 2 #5041 is a great number

[1] 0

choose(5, 0:5)

[1] 1 5 10 10 5 1

To compare integer values for equality, use ==. Don’t use a single = since that is used for
something else, as we’ll see in a moment. Just like the arithmetic operators, == and the
other relational operators are vectorized. To check for inequality, the “not equals” op‐
erator is !=. Greater than and less than are as you might expect: > and < (or >= and <=
if equality is allowed). Here are a few examples:

Mathematical Operations and Vectors | 15

c(3, 4 - 1, 1 + 1 + 1) == 3 #operators are vectorized too

[1] TRUE TRUE TRUE

1:3 != 3:1

[1] TRUE FALSE TRUE

exp(1:5) < 100

[1] TRUE TRUE TRUE TRUE FALSE

(1:5) ^ 2 >= 16

[1] FALSE FALSE FALSE TRUE TRUE

Comparing nonintegers using == is problematic. All the numbers we have dealt with so
far are floating point numbers. That means that they are stored in the form a * 2 ^
b, for two numbers a and b. Since this whole form has to be stored in 32 bits, the resulting
number is only an approximation of what you really want. This means that rounding
errors often creep into calculations, and the answers you expected can be wildly wrong.
Whole books have been written on this subject; there is too much to worry about here.
Since this is such a common mistake, the FAQ on R has an entry about it, and it’s a good
place to start if you want to know more.

Consider these two numbers, which should be the same:

sqrt(2) ^ 2 == 2 #sqrt is the square-root function

[1] FALSE

sqrt(2) ^ 2 - 2 #this small value is the rounding error

[1] 4.441e-16

R also provides the function all.equal for checking equality of numbers. This provides
a tolerance level (by default, about 1.5e-8), so that rounding errors less than the toler‐
ance are ignored:

all.equal(sqrt(2) ^ 2, 2)

[1] TRUE

If the values to be compared are not the same, all.equal returns a report on the dif‐
ferences. If you require a TRUE or FALSE value, then you need to wrap the call to
all.equal in a call to isTRUE:

all.equal(sqrt(2) ^ 2, 3)

[1] "Mean relative difference: 0.5"

isTRUE(all.equal(sqrt(2) ^ 2, 3))

[1] FALSE

16 | Chapter 2: A Scientific Calculator

http://bit.ly/17jZFfE

To check that two numbers are the same, don’t use ==. Instead, use the
all.equal function.

We can also use == to compare strings. In this case the comparison is case sensitive, so
the strings must match exactly. It is also theoretically possible to compare strings using
greater than or less than (> and <):

c(
 "Can", "you", "can", "a", "can", "as",
 "a", "canner", "can", "can", "a", "can?"
) == "can"

[1] FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE TRUE TRUE FALSE
[12] FALSE

c("A", "B", "C", "D") < "C"

[1] TRUE TRUE FALSE FALSE

c("a", "b", "c", "d") < "C" #your results may vary

[1] TRUE TRUE TRUE FALSE

In practice, however, the latter approach is almost always an awful idea, since the results
depend upon your locale (different cultures are full of odd sorting rules for letters; in
Estonian, “z” comes between “s” and “t”). More powerful string matching functions will
be discussed in “Cleaning Strings” on page 191.

The help pages ?Arithmetic, ?Trig, ?Special, and ?Comparison have
more examples, and explain the gory details of what happens in edge
cases. (Try 0 ^ 0 or integer division on nonintegers if you are curious.)

Assigning Variables
It’s all very well calculating things, but most of the time we want to store the results for
reuse. We can assign a (local) variable using either <- or =, though for historical reasons,
<- is preferred:

x <- 1:5
y = 6:10

Now we can reuse these values in our further calculations:

x + 2 * y - 3

[1] 10 13 16 19 22

Assigning Variables | 17

Notice that we didn’t have to declare what types of variables x and y were going to be
before we assigned them (unlike in most compiled languages). In fact, we couldn’t have
declared the type, since no such concept exists in R.

Variable names can contain letters, numbers, dots, and underscores, but they can’t start
with a number, or a dot followed by a number (since that looks too much like a number).
Reserved words like “if ” and “for” are not allowed. In some locales, non-ASCII letters
are allowed, but for code portability it is better to stick to “a” to “z” (and “A” to “Z”). The
help page ?make.names gives precise details about what is and isn’t allowed.

The spaces around the assignment operators aren’t compulsory, but they help readabil‐
ity, especially with <-, so we can easily distinguish assignment from less than:

x <- 3
x < -3
x<-3 #is this assignment or less than?

We can also do global assignment using <<-. There’ll be more on what this means when
we cover environments and scoping in “Environments” on page 79 in Chapter 6; for now,
just think of it as creating a variable available anywhere:

x <<- exp(exp(1))

There is one more method of variable assignment, via the assign function. It is much
less common than the other methods, but very occasionally it is useful to have a function
syntax for assigning variables. Local (“normal”) assignment takes two arguments—the
name of the variable to assign to and the value you want to give it:

assign("my_local_variable", 9 ^ 3 + 10 ^ 3)

Global assignment (like the <<- operator does) takes an extra argument:

assign("my_global_variable", 1 ^ 3 + 12 ^ 3, globalenv())

Don’t worry about the globalenv bit for now; as with scoping, it will be explained in
Chapter 6.

Using the assign function makes your code less readable compared to
<-, so you should use it sparingly. It occasionally makes things easier
in some advanced programming cases involving environments, but if
your code is filled with calls to assign, you are probably doing some‐
thing wrong.
Also note that the assign function doesn’t check its first argument to
see if it is a valid variable name: it always just creates it.

Notice that when you assign a variable, you don’t see the value that has been given to it.
To see what value a variable contains, simply type its name at the command prompt to
print it:

18 | Chapter 2: A Scientific Calculator

2. Since the numbers are random, expect to get different values if you try this yourself.

x

[1] 1 2 3 4 5

Under some systems, for example running R from a Linux terminal,
you may have to explicitly call the print function to see the value. In
this case, type print(x).

If you want to assign a value and print it all in one line, you have two possibilities. Firstly,
you can put multiple statements on one line by separating them with a semicolon, ;.
Secondly, you can wrap the assignment in parentheses, (). In the following examples,
rnorm generates random numbers from a normal distribution, and rlnorm generates
them from a lognormal distribution:2

z <- rnorm(5); z

[1] 1.8503 -0.5787 -1.4797 -0.1333 -0.2321

(zz <- rlnorm(5))

[1] 1.0148 4.2476 0.3574 0.2421 0.3163

Special Numbers
To help with arithmetic, R supports four special numeric values: Inf, -Inf, NaN, and
NA. The first two are, of course, positive and negative infinity, but the second pair need
a little more explanation. NaN is short for “not-a-number,” and means that our calculation
either didn’t make mathematical sense or could not be performed properly. NA is short
for “not available” and represents a missing value—a problem all too common in data
analysis. In general, if our calculation involves a missing value, then the results will also
be missing:

c(Inf + 1, Inf - 1, Inf - Inf)

[1] Inf Inf NaN

c(1 / Inf, Inf / 1, Inf / Inf)

[1] 0 Inf NaN

c(sqrt(Inf), sin(Inf))

Warning: NaNs produced

[1] Inf NaN

c(log(Inf), log(Inf, base = Inf))

Special Numbers | 19

Warning: NaNs produced

[1] Inf NaN

c(NA + 1, NA * 5, NA + Inf)

[1] NA NA NA

When arithmetic involves NA and NaN, the answer is one of those two values, but which
of those two is system dependent:

c(NA + NA, NaN + NaN, NaN + NA, NA + NaN)

[1] NA NaN NaN NA

There are functions available to check for these special values. Notice that NaN and NA
are neither finite nor infinite, and NaN is missing but NA is a number:

x <- c(0, Inf, -Inf, NaN, NA)
is.finite(x)

[1] TRUE FALSE FALSE FALSE FALSE

is.infinite(x)

[1] FALSE TRUE TRUE FALSE FALSE

is.nan(x)

[1] FALSE FALSE FALSE TRUE FALSE

is.na(x)

[1] FALSE FALSE FALSE TRUE TRUE

Logical Vectors
In addition to numbers, scientific calculation often involves logical values, particularly
as a result of using the relational operators (<, etc.). Many programming languages use
Boolean logic, where the values can be either TRUE or FALSE. In R, the situation is a little
bit more complicated, since we can also have missing values, NA. This three-state system
is sometimes call troolean logic, although that’s a bad etymological joke, since the “Bool”
in “Boolean” comes from George Bool, rather than anything to do with the word binary.

TRUE and FALSE are reserved words in R: you cannot create a variable with either of
those names (lower- or mixed-case versions like True are fine, though). When you start
R the variables T and F are already defined for you, taking the values TRUE and FALSE,
respectively. This can save you a bit of typing, but it can also cause big problems. T and
F are not reserved words, so users can redefine them. This means that it is OK to use
the abbreviated names if you are tapping away at the command line, but not if your code
is going to interact with someone else’s (especially if their code involves Times or
Temperatures or mathematical Functions).

20 | Chapter 2: A Scientific Calculator

There are three vectorized logical operators in R:

• ! is used for not.
• & is used for and.
• | is used for or.

(x <- 1:10 >= 5)

[1] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE

!x

[1] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

(y <- 1:10 %% 2 == 0)

[1] FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE

x & y

[1] FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE TRUE

x | y

[1] FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

We can conjure up some truth tables to see how they work (don’t worry if this code
doesn’t make sense yet; just concentrate on understanding why each value occurs in the
truth table):

x <- c(TRUE, FALSE, NA) #the three logical values
xy <- expand.grid(x = x, y = x) #get all combinations of x and y
within(#make the next assignments within xy
 xy,
 {
 and <- x & y
 or <- x | y
 not.y <- !y
 not.x <- !x
 }
)

x y not.x not.y or and
1 TRUE TRUE FALSE FALSE TRUE TRUE
2 FALSE TRUE TRUE FALSE TRUE FALSE
3 NA TRUE NA FALSE TRUE NA
4 TRUE FALSE FALSE TRUE TRUE FALSE
5 FALSE FALSE TRUE TRUE FALSE FALSE
6 NA FALSE NA TRUE NA FALSE
7 TRUE NA FALSE NA TRUE NA
8 FALSE NA TRUE NA NA FALSE
9 NA NA NA NA NA NA

Logical Vectors | 21

Two other useful functions for dealing with logical vectors are any and all, which return
TRUE if the input vector contains at least one TRUE value or only TRUE values, respectively:

none_true <- c(FALSE, FALSE, FALSE)
some_true <- c(FALSE, TRUE, FALSE)
all_true <- c(TRUE, TRUE, TRUE)
any(none_true)

[1] FALSE

any(some_true)

[1] TRUE

any(all_true)

[1] TRUE

all(none_true)

[1] FALSE

all(some_true)

[1] FALSE

all(all_true)

[1] TRUE

Summary
• R can be used as a very powerful scientific calculator.
• Assigning variables lets you reuse values.
• R has special values for positive and negative infinity, not-a-number, and missing

values, to assist with mathematical operations.
• R uses troolean logic.

Test Your Knowledge: Quiz
Question 2-1

What is the operator used for integer division?

Question 2-2
How would you check if a variable, x, is equal to pi?

Question 2-3
Describe at least two ways of assigning a variable.

22 | Chapter 2: A Scientific Calculator

Question 2-4
Which of the five numbers 0, Inf, -Inf, NaN, and NA are infinite?

Question 2-5
Which of the five numbers 0, Inf, -Inf, NaN, and NA are considered not missing?

Test Your Knowledge: Exercises
Exercise 2-1

1. Calculate the inverse tangent (a.k.a. arctan) of the reciprocal of all integers from
1 to 1,000. Hint: take a look at the ?Trig help page to find the inverse tangent
function. You don’t need a function to calculate reciprocals. [5]

2. Assign the numbers 1 to 1,000 to a variable x. Calculate the inverse tangent of
the reciprocal of x, as in part (a), and assign it to a variable y. Now reverse the
operations by calculating the reciprocal of the tangent of y and assigning this
value to a variable z. [5]

Exercise 2-2
Compare the variables x and z from Exercise 2-1 (b) using ==, identical, and
all.equal. For all.equal, try changing the tolerance level by passing a third ar‐
gument to the function. What happens if the tolerance is set to 0? [10]

Exercise 2-3
Define the following vectors:

1. true_and_missing, with the values TRUE and NA (at least one of each, in any
order)

2. false_and_missing, with the values FALSE and NA
3. mixed, with the values TRUE, FALSE, and NA

Apply the functions any and all to each of your vectors. [5]

Test Your Knowledge: Exercises | 23

CHAPTER 3

Inspecting Variables and Your Workspace

So far, we’ve run some calculations and assigned some variables. In this chapter, we’ll
find out ways to examine the properties of those variables and to manipulate the user
workspace that contains them.

Chapter Goals
After reading this chapter, you should:

• Know what a class is, and the names of some common classes
• Know how to convert a variable from one type to another
• Be able to inspect variables to find useful information about them
• Be able to manipulate the user workspace

Classes
All variables in R have a class, which tells you what kinds of variables they are. For
example, most numbers have class numeric (see the next section for the other types),
and logical values have class logical. Actually, being picky about it, vectors of numbers
are numeric and vectors of logical values are logical, since R has no scalar types. The
“smallest” data type in R is a vector.

You can find out what the class of a variable is using class(my_variable):

class(c(TRUE, FALSE))

[1] "logical"

It’s worth being aware that as well as a class, all variables also have an internal storage
type (accessed via typeof), a mode (see mode), and a storage mode (storage.mode). If

25

this sounds complicated, don’t worry! Types, modes, and storage modes mostly exist
for legacy purposes, so in practice you should only ever need to use an object’s class
(at least until you join the R Core Team). Appendix A has a reference table showing the
relationships between class, type, and (storage) mode for many sorts of variables. Don’t
bother memorizing it, and don’t worry if you don’t recognize some of the classes. It is
simply worth browsing the table to see which things are related to which other things.

From now on, to make things easier, I’m going to use “class” and “type” synonymously
(except where noted).

Different Types of Numbers
All the variables that we created in the previous chapter were numbers, but R contains
three different classes of numeric variable: numeric for floating point values; integer
for, ahem, integers; and complex for complex numbers. We can tell which is which by
examining the class of the variable:

class(sqrt(1:10))

[1] "numeric"

class(3 + 1i) #"i" creates imaginary components of complex numbers

[1] "complex"

class(1) #although this is a whole number, it has class numeric

[1] "numeric"

class(1L) #add a suffix of "L" to make the number an integer

[1] "integer"

class(0.5:4.5) #the colon operator returns a value that is numeric...

[1] "numeric"

class(1:5) #unless all its values are whole numbers

[1] "integer"

Note that as of the time of writing, all floating point numbers are 32-bit numbers (“dou‐
ble precision”), even when installed on a 64-bit operating system, and 16-bit (“single
precision”) numbers don’t exist.

Typing .Machine gives you some information about the properties of R’s numbers. Al‐
though the values, in theory, can change from machine to machine, for most builds,
most of the values are the same. Many of the values returned by .Machine need never
concern you. It’s worth knowing that the largest floating point number that R can rep‐
resent at full precision is about 1.8e308. This is big enough for everyday purposes, but
a lot smaller than infinity! The smallest positive number that can be represented is

26 | Chapter 3: Inspecting Variables and Your Workspace

1. If these limits aren’t good enough for you, higher-precision values are available via the Rmpfr package, and
very large numbers are available in the brobdingnab package. These are fairly niche requirements, though;
the three built-in classes of R numbers should be fine for almost all purposes.

2.2e-308. Integers can take values up to 2 ^ 31 - 1, which is a little over two billion,
(or down to -2 ^ 31 + 1).1

The only other value of much interest is ε, the smallest positive floating point number
such that |ε + 1| != 1. That’s a fancy way of saying how close two numbers can be so
that R knows that they are different. It’s about 2.2e-16. This value is used by all.equal
when you compare two numeric vectors.

In fact, all of this is even easier than you think, since it is perfectly possible to get away
with not (knowingly) using integers. R is designed so that anywhere an integer is needed
—indexing a vector, for example—a floating point “numeric” number can be used just
as well.

Other Common Classes
In addition to the three numeric classes and the logical class that we’ve seen already,
there are three more classes of vectors: character for storing text, factors for storing
categorical data, and the rarer raw for storing binary data.

In this next example, we create a character vector using the c operator, just like we did
for numeric vectors. The class of a character vector is character:

class(c("she", "sells", "seashells", "on", "the", "sea", "shore"))

[1] "character"

Note that unlike some languages, R doesn’t distinguish between whole strings and in‐
dividual characters—a string containing one character is treated the same as any other
string. Unlike with some other lower-level languages, you don’t need to worry about
terminating your strings with a null character (\0). In fact, it is an error to try to include
such a character in your strings.

In many programming languages, categorical data would be represented by integers.
For example, gender could be represented as 1 for females and 2 for males. A slightly
better solution would be to treat gender as a character variable with the choices “female”
and “male.” This is still semantically rather dubious, though, since categorical data is a
different concept to plain old text. R has a more sophisticated solution that combines
both these ideas in a semantically correct class—factors are integers with labels:

(gender <- factor(c("male", "female", "female", "male", "female")))

[1] male female female male female
Levels: female male

Other Common Classes | 27

2. Or hood, if you prefer.

The contents of the factor look much like their character equivalent—you get readable
labels for each value. Those labels are confined to specific values (in this case “female”
and “male”) known as the levels of the factor:

levels(gender)

[1] "female" "male"

nlevels(gender)

[1] 2

Notice that even though “male” is the first value in gender, the first level is “female.” By
default, factor levels are assigned alphabetically.

Underneath the bonnet,2 the factor values are stored as integers rather than characters.
You can see this more clearly by calling as.integer:

as.integer(gender)

[1] 2 1 1 2 1

This use of integers for storage makes them very memory-efficient compared to char‐
acter text, at least when there are lots of repeated strings, as there are here. If we exag‐
gerate the situation by generating 10,000 random genders (using the sample function
to sample the strings “female” and “male” 10,000 times with replacement), we can see
that a factor containing the values takes up less memory than the character equivalent.
In the following code, sample returns a character vector—which we convert into a factor
using as.factor--and object.size returns the memory allocation for each object:

gender_char <- sample(c("female", "male"), 10000, replace = TRUE)
gender_fac <- as.factor(gender_char)
object.size(gender_char)

80136 bytes

object.size(gender_fac)

40512 bytes

Variables take up different amounts of memory on 32-bit and
64-bit systems, so object.size will return different values in
each case.

For manipulating the contents of factor levels (a common case would be cleaning up
names, so all your men have the value “male” rather than “Male”) it is typically best to

28 | Chapter 3: Inspecting Variables and Your Workspace

3. It is unclear what a cooked byte would entail.

convert the factors to strings, in order to take advantage of string manipulation func‐
tions. You can do this in the obvious way, using as.character:

as.character(gender)

[1] "male" "female" "female" "male" "female"

There is much more to learn about both character vectors and factors; they will be
covered in depth in Chapter 7.

The raw class stores vectors of “raw” bytes.3 Each byte is represented by a two-digit
hexadecimal value. They are primarily used for storing the contents of imported binary
files, and as such are reasonably rare. The integers 0 to 255 can be converted to raw using
as.raw. Fractional and imaginary parts are discarded, and numbers outside this range
are treated as 0. For strings, as.raw doesn’t work; you must use charToRaw instead:

as.raw(1:17)

[1] 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11

as.raw(c(pi, 1 + 1i, -1, 256))

Warning: imaginary parts discarded in coercion

Warning: out-of-range values treated as 0 in coercion to raw

[1] 03 01 00 00

(sushi <- charToRaw("Fish!"))

[1] 46 69 73 68 21

class(sushi)

[1] "raw"

As well as the vector classes that we’ve seen so far, there are many other types of variables;
we’ll spend the next few chapters looking at them.

Arrays contain multidimensional data, and matrices (via the matrix class) are the special
case of two-dimensional arrays. They will be discussed in Chapter 4.

So far, all these variable types need to contain the same type of thing. For example, a
character vector or array must contain all strings, and a logical vector or array must
contain only logical values. Lists are flexible in that each item in them can be a different
type, including other lists. Data frames are what happens when a matrix and a list have
a baby. Like matrices, they are rectangular, and as in lists, each column can have a
different type. They are ideal for storing spreadsheet-like data. Lists and data frames are
discussed in Chapter 5.

Other Common Classes | 29

The preceding classes are all for storing data. Environments store the variables that store
the data. As well as storing data, we clearly want to do things with it, and for that we
need functions. We’ve already seen some functions, like sin and exp. In fact, operators
like + are secretly functions too! Environments and functions will be discussed further
in Chapter 6.

Chapter 7 discusses strings and factors in more detail, along with some options for
storing dates and times.

There are some other types in R that are a little more complicated to understand, and
we’ll leave these until later. Formulae will be discussed in Chapter 15, and calls and
expressions will be discussed in the section “Magic” on page 299 in Chapter 16. Classes
will be discussed again in more depth in the section “Object-Oriented Programming”
on page 302.

Checking and Changing Classes
Calling the class function is useful to interactively examine our variables at the com‐
mand prompt, but if we want to test an object’s type in our scripts, it is better to use the
is function, or one of its class-specific variants. In a typical situation, our test will look
something like:

if(!is(x, "some_class"))
{
 #some corrective measure
}

Most of the common classes have their own is.* functions, and calling these is usually
a little bit more efficient than using the general is function. For example:

is.character("red lorry, yellow lorry")

[1] TRUE

is.logical(FALSE)

[1] TRUE

is.list(list(a = 1, b = 2))

[1] TRUE

We can see a complete list of all the is functions in the base package using:

ls(pattern = "^is", baseenv())

[1] "is.array" "is.atomic"
[3] "is.call" "is.character"
[5] "is.complex" "is.data.frame"
[7] "is.double" "is.element"
[9] "is.environment" "is.expression"
[11] "is.factor" "is.finite"

30 | Chapter 3: Inspecting Variables and Your Workspace

4. Disclosure: I wrote it.

[13] "is.function" "is.infinite"
[15] "is.integer" "is.language"
[17] "is.list" "is.loaded"
[19] "is.logical" "is.matrix"
[21] "is.na" "is.na.data.frame"
[23] "is.na.numeric_version" "is.na.POSIXlt"
[25] "is.na<-" "is.na<-.default"
[27] "is.na<-.factor" "is.name"
[29] "is.nan" "is.null"
[31] "is.numeric" "is.numeric.Date"
[33] "is.numeric.difftime" "is.numeric.POSIXt"
[35] "is.numeric_version" "is.object"
[37] "is.ordered" "is.package_version"
[39] "is.pairlist" "is.primitive"
[41] "is.qr" "is.R"
[43] "is.raw" "is.recursive"
[45] "is.single" "is.symbol"
[47] "is.table" "is.unsorted"
[49] "is.vector" "isatty"
[51] "isBaseNamespace" "isdebugged"
[53] "isIncomplete" "isNamespace"
[55] "isOpen" "isRestart"
[57] "isS4" "isSeekable"
[59] "isSymmetric" "isSymmetric.matrix"
[61] "isTRUE"

In the preceding example, ls lists variable names, "^is" is a regular expression that
means “match strings that begin with ‘is,”’ and baseenv is a function that simply returns
the environment of the base package. Don’t worry what that means right now, since
environments are quite an advanced topic; we’ll return to them in Chapter 6.

The assertive package4 contains more is functions with a consistent naming scheme.

One small oddity is that is.numeric returns TRUE for integers as well as floating
point values. If we want to test for only floating point numbers, then we must use
is.double. However, this isn’t usually necessary, as R is designed so that floating point
and integer values can be used more or less interchangeably. In the following examples,
note that adding an L suffix makes the number into an integer:

is.numeric(1)

[1] TRUE

is.numeric(1L)

[1] TRUE

is.integer(1)

[1] FALSE

Checking and Changing Classes | 31

is.integer(1L)

[1] TRUE

is.double(1)

[1] TRUE

is.double(1L)

[1] FALSE

Sometimes we may wish to change the type of an object. This is called casting, and most
is* functions have a corresponding as* function to achieve it. The specialized as*
functions should be used over plain as when available, since they are usually more
efficient, and often contain extra logic specific to that class. For example, when con‐
verting a string to a number, as.numeric is slightly more efficient than plain as, but
either can be used:

x <- "123.456"
as(x, "numeric")

[1] 123.5

as.numeric(x)

[1] 123.5

The number of decimal places that R prints for numbers depends upon
your R setup. You can set a global default using options(digits =n),
where n is between 1 and 22. Further control of printing numbers is
discussed in Chapter 7.

In this next example, however, note that when converting a vector into a data frame (a
variable for spreadsheet-like data), the general as function throws an error:

y <- c(2, 12, 343, 34997) #See http://oeis.org/A192892
as(y, "data.frame")
as.data.frame(y)

In general, the class-specific variants should always be used over stan‐
dard as, if they are available.

It is also possible to change the type of an object by directly assigning it a new class,
though this isn’t recommended (class assignment has a different use; see the section
“Object-Oriented Programming” on page 302):

32 | Chapter 3: Inspecting Variables and Your Workspace

5. Except for the value being returned from the function.

6. Like in Exercise 16-3, perhaps.

x <- "123.456"
class(x) <- "numeric"
x

[1] 123.5

is.numeric(x)

[1] TRUE

Examining Variables
Whenever we’ve typed a calculation or the name of a variable at the console, the result
has been printed. This happens because R implicitly calls the print method of the object.

As a side note on terminology: “method” and “function” are basical‐
ly interchangeable. Functions in R are sometimes called methods in an
object-oriented context. There are different versions of the print
function for different types of object, making matrices print different‐
ly from vectors, which is why I said “print method” here.

So, typing 1 + 1 at the command prompt does the same thing as print(1 + 1).

Inside loops or functions,5 the automatic printing doesn’t happen, so we have to explic‐
itly call print:

ulams_spiral <- c(1, 8, 23, 46, 77) #See http://oeis.org/A033951
for(i in ulams_spiral) i #uh-oh, the values aren't printed
for(i in ulams_spiral) print(i)

[1] 1
[1] 8
[1] 23
[1] 46
[1] 77

This is also true on some systems if you run R from a terminal rather than using a GUI
or IDE. In this case you will always need to explicitly call the print function.

Most print functions are built upon calls to the lower-level cat function. You should
almost never have to call cat directly (print and message are the user-level equivalents),
but it is worth knowing in case you ever need to write your own print function.6

Examining Variables | 33

7. These days, 30 rows isn’t usually considered to be “big data,” but it’s still a screenful when printed.

Both the c and cat functions are short for concatenate, though they
perform quite different tasks! cat is named after a Unix function.

As well as viewing the printout of a variable, it is often helpful to see some sort of
summary of the object. The summary function does just that, giving appropriate infor‐
mation for different data types. Numeric variables are summarized as mean, median,
and some quantiles. Here, the runif function generates 30 random numbers that are
uniformly distributed between 0 and 1:

num <- runif(30)
summary(num)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0211 0.2960 0.5060 0.5290 0.7810 0.9920

Categorical and logical vectors are summarized by the counts of each value. In this next
example, letters is a built-in constant that contains the lowercase values from “a” to
“z” (LETTERS contains the uppercase equivalents, “A” to “Z”). Here, letters[1:5] uses
indexing to restrict the letters to “a” to “e.” The sample function randomly samples these
values, with replace, 30 times:

fac <- factor(sample(letters[1:5], 30, replace = TRUE))
summary(fac)

a b c d e
6 7 5 9 3

bool <- sample(c(TRUE, FALSE, NA), 30, replace = TRUE)
summary(bool)

Mode FALSE TRUE NA's
logical 12 11 7

Multidimensional objects, like matrices and data frames, are summarized by column
(we’ll look at these in more detail in the next two chapters). The data frame dfr that we
create here is quite large to display, having 30 rows. For large objects like this,7 the head
function can be used to display only the first few rows (six by default):

dfr <- data.frame(num, fac, bool)
head(dfr)

num fac bool
1 0.47316 b NA
2 0.56782 d FALSE
3 0.46205 d FALSE
4 0.02114 b TRUE

34 | Chapter 3: Inspecting Variables and Your Workspace

5 0.27963 a TRUE
6 0.46690 a TRUE

The summary function for data frames works like calling summary on each individual
column:

summary(dfr)

num fac bool
Min. :0.0211 a:6 Mode :logical
1st Qu.:0.2958 b:7 FALSE:12
Median :0.5061 c:5 TRUE :11
Mean :0.5285 d:9 NA's :7
3rd Qu.:0.7808 e:3
Max. :0.9916

Similarly, the str function shows the object’s structure. It isn’t that interesting for vectors
(since they are so simple), but str is exceedingly useful for data frames and nested lists:

str(num)

num [1:30] 0.4732 0.5678 0.462 0.0211 0.2796 ...

str(dfr)

'data.frame': 30 obs. of 3 variables:
$ num : num 0.4732 0.5678 0.462 0.0211 0.2796 ...
$ fac : Factor w/ 5 levels "a","b","c","d",..: 2 4 4 2 1 1 4 2 1 4 ...
$ bool: logi NA FALSE FALSE TRUE TRUE TRUE ...

As mentioned previously, each class typically has its own print method that controls
how it is displayed to the console. Sometimes this printing obscures its internal struc‐
ture, or omits useful information. The unclass function can be used to bypass this,
letting you see how a variable is constructed. For example, calling unclass on a factor
reveals that it is just an integer vector, with an attribute called levels:

unclass(fac)

[1] 2 4 4 2 1 1 4 2 1 4 3 3 1 5 4 5 1 5 1 2 2 3 4 2 4 3 4 2 3 4
attr(,"levels")
[1] "a" "b" "c" "d" "e"

We’ll look into attributes later on, but for now, it is useful to know that the attributes
function gives you a list of all the attributes belonging to an object:

attributes(fac)

$levels
[1] "a" "b" "c" "d" "e"
##
$class
[1] "factor"

Examining Variables | 35

For visualizing two-dimensional variables such as matrices and data frames, the View
function (notice the capital “V”) displays the variable as a (read-only) spreadsheet. The
edit and fix functions work similarly to View, but let us manually change data values.
While this may sound more useful, it is usually a supremely awful idea to edit data in
this way, since we lose all traceability of where our data came from. It is almost always
better to edit data programmatically:

View(dfr) #no changes allowed
new_dfr <- edit(dfr) #changes stored in new_dfr
fix(dfr) #changes stored in dfr

A useful trick is to view the first few rows of a data frame by combining View with head:

View(head(dfr, 50)) #view first 50 rows

The Workspace
While we’re working, it’s often nice to know the names of the variables that we’ve created
and what they contain. To list the names of existing variables, use the function ls. This
is named after the equivalent Unix command, and follows the same convention: by
default, variable names that begin with a . are hidden. To see them, pass the argument
all.names = TRUE:

#Create some variables to find
peach <- 1
plum <- "fruity"
pear <- TRUE
ls()

[1] "a_vector" "all_true" "bool"
[4] "dfr" "fac" "fname"
[7] "gender" "gender_char" "gender_fac"
[10] "i" "input" "my_local_variable"
[13] "none_true" "num" "output"
[16] "peach" "pear" "plum"
[19] "remove_package" "some_true" "sushi"
[22] "ulams_spiral" "x" "xy"
[25] "y" "z" "zz"

ls(pattern = "ea")

[1] "peach" "pear"

For more information about our workspace, we can see the structure of our variables
using ls.str. This is, as you might expect, a combination of the ls and str functions,
and is very useful during debugging sessions (see “Debugging” on page 292 in Chap‐
ter 16). browseEnv provides a similar capability, but displays its output in an HTML
page in our web browser:

browseEnv()

36 | Chapter 3: Inspecting Variables and Your Workspace

After working for a while, especially while exploring data, our workspace can become
quite cluttered. We can clean it up by using the rm function to remove variables:

rm(peach, plum, pear)
rm(list = ls()) #Removes everything. Use with caution!

Summary
• All variables have a class.
• You test if an object has a particular class using the is function, or one of its class-

specific variants.
• You can change the class of an object using the as function, or one of its class-

specific variants.
• There are several functions that let you inspect variables, including summary, head,
str, unclass, attributes, and View.

• ls lists the names of your variables and ls.str lists them along with their structure.
• rm removes your variables.

Test Your Knowledge: Quiz
Question 3-1

What are the names of the three built-in classes of numbers?

Question 3-2
What function would you call to find out the number of levels of a factor?

Question 3-3
How might you convert the string “6.283185” to a number?

Question 3-4
Name at least three functions for inspecting the contents of a variable.

Question 3-5
How would you remove all the variables in the user workspace?

Test Your Knowledge: Exercises
Exercise 3-1

Find the class, type, mode, and storage mode of the following values: Inf, NA, NaN,
"". [5]

Summary | 37

Exercise 3-2
Randomly generate 1,000 pets, from the choices “dog,” “cat,” “hamster,” and “gold‐
fish,” with equal probability of each being chosen. Display the first few values of the
resultant variable, and count the number of each type of pet. [5]

Exercise 3-3
Create some variables named after vegetables. List the names of all the variables in
the user workspace that contain the letter “a.” [5]

38 | Chapter 3: Inspecting Variables and Your Workspace

CHAPTER 4

Vectors, Matrices, and Arrays

In Chapters 1 and 2, we saw several types of vectors for logical values, character strings,
and of course numbers. This chapter shows you more manipulation techniques for
vectors and introduces their multidimensional brethren, matrices and arrays.

Chapter Goals
After reading this chapter, you should:

• Be able to create new vectors from existing vectors
• Understand lengths, dimensions, and names
• Be able to create and manipulate matrices and arrays

Vectors
So far, you have used the colon operator, :, for creating sequences from one number to
another, and the c function for concatenating values and vectors to create longer vectors.
To recap:

8.5:4.5 #sequence of numbers from 8.5 down to 4.5

[1] 8.5 7.5 6.5 5.5 4.5

c(1, 1:3, c(5, 8), 13) #values concatenated into single vector

[1] 1 1 2 3 5 8 13

The vector function creates a vector of a specified type and length. Each of the values
in the result is zero, FALSE, or an empty string, or whatever the equivalent of “nothing”
is:

39

vector("numeric", 5)

[1] 0 0 0 0 0

vector("complex", 5)

[1] 0+0i 0+0i 0+0i 0+0i 0+0i

vector("logical", 5)

[1] FALSE FALSE FALSE FALSE FALSE

vector("character", 5)

[1] "" "" "" "" ""

vector("list", 5)

[[1]]
NULL
##
[[2]]
NULL
##
[[3]]
NULL
##
[[4]]
NULL
##
[[5]]
NULL

In that last example, NULL is a special “empty” value (not to be confused with NA, which
indicates a missing data point). We’ll look at NULL in detail in Chapter 5. For convenience,
wrapper functions exist for each type to save you typing when creating vectors in this
way. The following commands are equivalent to the previous ones:

numeric(5)

[1] 0 0 0 0 0

complex(5)

[1] 0+0i 0+0i 0+0i 0+0i 0+0i

logical(5)

[1] FALSE FALSE FALSE FALSE FALSE

character(5)

[1] "" "" "" "" ""

As we’ll see in the next chapter, the list function does not work the
same way. list(5) creates something a little different.

40 | Chapter 4: Vectors, Matrices, and Arrays

Sequences
Beyond the colon operator, there are several functions for creating more general se‐
quences. The seq function is the most general, and allows you to specify sequences in
many different ways. In practice, though, you should never need to call it, since there
are three other specialist sequence functions that are faster and easier to use, covering
specific use cases.

seq.int lets us create a sequence from one number to another. With two inputs, it works
exactly like the colon operator:

seq.int(3, 12) #same as 3:12

[1] 3 4 5 6 7 8 9 10 11 12

seq.int is slightly more general than :, since it lets you specify how far apart inter‐
mediate values should be:

seq.int(3, 12, 2)

[1] 3 5 7 9 11

seq.int(0.1, 0.01, -0.01)

[1] 0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01

seq_len creates a sequence from 1 up to its input, so seq_len(5) is just a clunkier way
of writing 1:5. However, the function is extremely useful for situations when its input
could be zero:

n <- 0
1:n #not what you might expect!

[1] 1 0

seq_len(n)

integer(0)

seq_along creates a sequence from 1 up to the length of its input:

pp <- c("Peter", "Piper", "picked", "a", "peck", "of", "pickled", "peppers")
for(i in seq_along(pp)) print(pp[i])

[1] "Peter"
[1] "Piper"
[1] "picked"
[1] "a"
[1] "peck"
[1] "of"
[1] "pickled"
[1] "peppers"

For each of the preceding examples, you can replace seq.int, seq_len, or seq_along
with plain seq and get the same answer, though there is no need to do so.

Vectors | 41

1. Lengths are limited to 2^31-1 elements on 32-bit systems and versions of R prior to 3.0.0.

Lengths
I’ve just sneakily introduced a new concept related to vectors. That is, all vectors have
a length, which tells us how many elements they contain. This is a nonnegative inte‐
ger1 (yes, zero-length vectors are allowed), and you can access this value with the length
function. Missing values still count toward the length:

length(1:5)

[1] 5

length(c(TRUE, FALSE, NA))

[1] 3

One possible source of confusion is character vectors. With these, the length is the
number of strings, not the number of characters in each string. For that, we should use
nchar:

sn <- c("Sheena", "leads", "Sheila", "needs")
length(sn)

[1] 4

nchar(sn)

[1] 6 5 6 5

It is also possible to assign a new length to a vector, but this is an unusual thing to do,
and probably indicates bad code. If you shorten a vector, the values at the end will be
removed, and if you extend a vector, missing values will be added to the end:

poincare <- c(1, 0, 0, 0, 2, 0, 2, 0) #See http://oeis.org/A051629
length(poincare) <- 3
poincare

[1] 1 0 0

length(poincare) <- 8
poincare

[1] 1 0 0 NA NA NA NA NA

Names
A great feature of R’s vectors is that each element can be given a name. Labeling the
elements can often make your code much more readable. You can specify names when
you create a vector in the form name = value. If the name of an element is a valid variable
name, it doesn’t need to be enclosed in quotes. You can name some elements of a vector
and leave others blank:

42 | Chapter 4: Vectors, Matrices, and Arrays

c(apple = 1, banana = 2, "kiwi fruit" = 3, 4)

apple banana kiwi fruit
1 2 3 4

You can add element names to a vector after its creation using the names function:

x <- 1:4
names(x) <- c("apple", "bananas", "kiwi fruit", "")
x

apple bananas kiwi fruit
1 2 3 4

This names function can also be used to retrieve the names of a vector:

names(x)

[1] "apple" "bananas" "kiwi fruit" ""

If a vector has no element names, then the names function returns NULL:

names(1:4)

NULL

Indexing Vectors
Oftentimes we may want to access only part of a vector, or perhaps an individual element.
This is called indexing and is accomplished with square brackets, []. (Some people also
call it subsetting or subscripting or slicing. All these terms refer to the same thing.) R has
a very flexible system that gives us several choices of index:

• Passing a vector of positive numbers returns the slice of the vector containing the
elements at those locations. The first position is 1 (not 0, as in some other languages).

• Passing a vector of negative numbers returns the slice of the vector containing the
elements everywhere except at those locations.

• Passing a logical vector returns the slice of the vector containing the elements where
the index is TRUE.

• For named vectors, passing a character vector of names returns the slice of the
vector containing the elements with those names.

Consider this vector:

x <- (1:5) ^ 2

[1] 1 4 9 16 25

These three indexing methods return the same values:

x[c(1, 3, 5)]

x[c(-2, -4)]

Vectors | 43

x[c(TRUE, FALSE, TRUE, FALSE, TRUE)]

[1] 1 9 25

After naming each element, this method also returns the same values:

names(x) <- c("one", "four", "nine", "sixteen", "twenty five")
x[c("one", "nine", "twenty five")]

one nine twenty five
1 9 25

Mixing positive and negative values is not allowed, and will throw an error:

x[c(1, -1)] #This doesn't make sense!

Error: only 0's may be mixed with negative subscripts

If you use positive numbers or logical values as the index, then missing indices corre‐
spond to missing values in the result:

x[c(1, NA, 5)]

one <NA> twenty five
1 NA 25

x[c(TRUE, FALSE, NA, FALSE, TRUE)]

one <NA> twenty five
1 NA 25

Missing values don’t make any sense for negative indices, and cause an error:

x[c(-2, NA)] #This doesn't make sense either!

Error: only 0's may be mixed with negative subscripts

Out of range indices, beyond the length of the vector, don’t cause an error, but instead
return the missing value NA. In practice, it is usually better to make sure that your indices
are in range than to use out of range values:

x[6]

<NA>
NA

Noninteger indices are silently rounded toward zero. This is another case where R is
arguably too permissive. If you find yourself passing fractions as indices, you are prob‐
ably writing bad code:

x[1.9] #1.9 rounded to 1

one
1

x[-1.9] #-1.9 rounded to -1

four nine sixteen twenty five
4 9 16 25

44 | Chapter 4: Vectors, Matrices, and Arrays

Not passing any index will return the whole of the vector, but again, if you find yourself
not passing any index, then you are probably doing something odd:

x[]

one four nine sixteen twenty five
1 4 9 16 25

The which function returns the locations where a logical vector is TRUE. This can be
useful for switching from logical indexing to integer indexing:

which(x > 10)

sixteen twenty five
4 5

which.min and which.max are more efficient shortcuts for which(min(x)) and
which(max(x)), respectively:

which.min(x)

one
1

which.max(x)

twenty five
5

Vector Recycling and Repetition
So far, all the vectors that we have added together have been the same length. You may
be wondering, “What happens if I try to do arithmetic on vectors of different lengths?”

If we try to add a single number to a vector, then that number is added to each element
of the vector:

1:5 + 1

[1] 2 3 4 5 6

1 + 1:5

[1] 2 3 4 5 6

When adding two vectors together, R will recycle elements in the shorter vector to match
the longer one:

1:5 + 1:15

[1] 2 4 6 8 10 7 9 11 13 15 12 14 16 18 20

If the length of the longer vector isn’t a multiple of the length of the shorter one, a
warning will be given:

Vectors | 45

1:5 + 1:7

Warning: longer object length is not a multiple of shorter object length

[1] 2 4 6 8 10 7 9

It must be stressed that just because we can do arithmetic on vectors of different lengths,
it doesn’t mean that we should. Adding a scalar value to a vector is okay, but otherwise
we are liable to get ourselves confused. It is much better to explicitly create equal-length
vectors before we operate on them.

The rep function is very useful for this task, letting us create a vector with repeated
elements:

rep(1:5, 3)

[1] 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

rep(1:5, each = 3)

[1] 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5

rep(1:5, times = 1:5)

[1] 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5

rep(1:5, length.out = 7)

[1] 1 2 3 4 5 1 2

Like the seq function, rep has a simpler and faster variant, rep.int, for the most com‐
mon case:

rep.int(1:5, 3) #the same as rep(1:5, 3)

[1] 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Recent versions of R (since v3.0.0) also have rep_len, paralleling seq_len, which lets
us specify the length of the output vector:

rep_len(1:5, 13)

[1] 1 2 3 4 5 1 2 3 4 5 1 2 3

Matrices and Arrays
The vector variables that we have looked at so far are one-dimensional objects, since
they have length but no other dimensions. Arrays hold multidimensional rectangular
data. “Rectangular” means that each row is the same length, and likewise for each col‐
umn and other dimensions. Matrices are a special case of two-dimensional arrays.

Creating Arrays and Matrices
To create an array, you call the array function, passing in a vector of values and a vector
of dimensions. Optionally, you can also provide names for each dimension:

46 | Chapter 4: Vectors, Matrices, and Arrays

(three_d_array <- array(
 1:24,
 dim = c(4, 3, 2),
 dimnames = list(
 c("one", "two", "three", "four"),
 c("ein", "zwei", "drei"),
 c("un", "deux")
)
))

, , un
##
ein zwei drei
one 1 5 9
two 2 6 10
three 3 7 11
four 4 8 12
##
, , deux
##
ein zwei drei
one 13 17 21
two 14 18 22
three 15 19 23
four 16 20 24

class(three_d_array)

[1] "array"

The syntax for creating matrices is similar, but rather than passing a dim argument, you
specify the number of rows or the number of columns:

(a_matrix <- matrix(
 1:12,
 nrow = 4, #ncol = 3 works the same
 dimnames = list(
 c("one", "two", "three", "four"),
 c("ein", "zwei", "drei")
)
))

ein zwei drei
one 1 5 9
two 2 6 10
three 3 7 11
four 4 8 12

class(a_matrix)

[1] "matrix"

This matrix could also be created using the array function. The following two-
dimensional array is identical to the matrix that we just created (it even has class matrix):

Matrices and Arrays | 47

(two_d_array <- array(
 1:12,
 dim = c(4, 3),
 dimnames = list(
 c("one", "two", "three", "four"),
 c("ein", "zwei", "drei")
)
))

ein zwei drei
one 1 5 9
two 2 6 10
three 3 7 11
four 4 8 12

identical(two_d_array, a_matrix)

[1] TRUE

class(two_d_array)

[1] "matrix"

When you create a matrix, the values that you passed in fill the matrix column-wise. It
is also possible to fill the matrix row-wise by specifying the argument byrow = TRUE:

matrix(
 1:12,
 nrow = 4,
 byrow = TRUE,
 dimnames = list(
 c("one", "two", "three", "four"),
 c("ein", "zwei", "drei")
)
)

ein zwei drei
one 1 2 3
two 4 5 6
three 7 8 9
four 10 11 12

Rows, Columns, and Dimensions
For both matrices and arrays, the dim function returns a vector of integers of the di‐
mensions of the variable:

dim(three_d_array)

[1] 4 3 2

dim(a_matrix)

[1] 4 3

48 | Chapter 4: Vectors, Matrices, and Arrays

For matrices, the functions nrow and ncol return the number of rows and columns,
respectively:

nrow(a_matrix)

[1] 4

ncol(a_matrix)

[1] 3

nrow and ncol also work on arrays, returning the first and second dimensions, respec‐
tively, but it is usually better to use dim for higher-dimensional objects:

nrow(three_d_array)

[1] 4

ncol(three_d_array)

[1] 3

The length function that we have previously used with vectors also works on matrices
and arrays. In this case it returns the product of each of the dimensions:

length(three_d_array)

[1] 24

length(a_matrix)

[1] 12

We can also reshape a matrix or array by assigning a new dimension with dim. This
should be used with caution since it strips dimension names:

dim(a_matrix) <- c(6, 2)
a_matrix

[,1] [,2]
[1,] 1 7
[2,] 2 8
[3,] 3 9
[4,] 4 10
[5,] 5 11
[6,] 6 12

nrow, ncol, and dim return NULL when applied to vectors. The functions NROW and NCOL
are counterparts to nrow and ncol that pretend vectors are matrices with a single column
(that is, column vectors in the mathematical sense):

identical(nrow(a_matrix), NROW(a_matrix))

[1] TRUE

identical(ncol(a_matrix), NCOL(a_matrix))

[1] TRUE

Matrices and Arrays | 49

recaman <- c(0, 1, 3, 6, 2, 7, 13, 20)
nrow(recaman)
NULL
NROW(recaman)
[1] 8
ncol(recaman)
NULL
NCOL(recaman)
[1] 1
dim(recaman)

Row, Column, and Dimension Names
In the same way that vectors have names for the elements, matrices have rownames and
colnames for the rows and columns. For historical reasons, there is also a function
row.names, which does the same thing as rownames, but there is no corresponding
col.names, so it is better to ignore it and use rownames instead. As with the case of nrow,
ncol, and dim, the equivalent function for arrays is dimnames. The latter returns a list
(see “Lists” on page 57) of character vectors. In the following code chunk, a_matrix has
been restored to its previous state, before its dimensions were changed:

rownames(a_matrix)

[1] "one" "two" "three" "four"

colnames(a_matrix)

[1] "ein" "zwei" "drei"

dimnames(a_matrix)

[[1]]
[1] "one" "two" "three" "four"
##
[[2]]
[1] "ein" "zwei" "drei"

rownames(three_d_array)

[1] "one" "two" "three" "four"

colnames(three_d_array)

[1] "ein" "zwei" "drei"

dimnames(three_d_array)

50 | Chapter 4: Vectors, Matrices, and Arrays

[[1]]
[1] "one" "two" "three" "four"
##
[[2]]
[1] "ein" "zwei" "drei"
##
[[3]]
[1] "un" "deux"

Indexing Arrays
Indexing works just like it does with vectors, except that now we have to specify an index
for more than one dimension. As before, we use square brackets to denote an index,
and we still have four choices for specifying the index (positive integers, negative inte‐
gers, logical values, and element names). It is perfectly permissible to specify the indices
for different dimensions in different ways. The indices for each dimension are separated
by commas:

a_matrix[1, c("zwei", "drei")] #elements in 1st row, 2nd and 3rd columns

zwei drei
5 9

To include all of a dimension, leave the corresponding index blank:

a_matrix[1,] #all of the first row

ein zwei drei
1 5 9

a_matrix[, c("zwei", "drei")] #all of the second and third columns

zwei drei
one 5 9
two 6 10
three 7 11
four 8 12

Combining Matrices
The c function converts matrices to vectors before concatenating them:

(another_matrix <- matrix(
 seq.int(2, 24, 2),
 nrow = 4,
 dimnames = list(
 c("five", "six", "seven", "eight"),
 c("vier", "funf", "sechs")
)
))

Matrices and Arrays | 51

vier funf sechs
five 2 10 18
six 4 12 20
seven 6 14 22
eight 8 16 24

c(a_matrix, another_matrix)

[1] 1 2 3 4 5 6 7 8 9 10 11 12 2 4 6 8 10 12 14 16 18 20 22
[24] 24

More natural combining of matrices can be achieved by using cbind and rbind, which
bind matrices together by columns and rows:

cbind(a_matrix, another_matrix)

ein zwei drei vier funf sechs
one 1 5 9 2 10 18
two 2 6 10 4 12 20
three 3 7 11 6 14 22
four 4 8 12 8 16 24

rbind(a_matrix, another_matrix)

ein zwei drei
one 1 5 9
two 2 6 10
three 3 7 11
four 4 8 12
five 2 10 18
six 4 12 20
seven 6 14 22
eight 8 16 24

Array Arithmetic
The standard arithmetic operators (+, -, *, /) work element-wise on matrices and
arrays, just they like they do on vectors:

a_matrix + another_matrix

ein zwei drei
one 3 15 27
two 6 18 30
three 9 21 33
four 12 24 36

a_matrix * another_matrix

ein zwei drei
one 2 50 162
two 8 72 200
three 18 98 242
four 32 128 288

52 | Chapter 4: Vectors, Matrices, and Arrays

2. qr.solve(m) and chol2inv(chol(m)) provide alternative algorithms for inverting matrices, but solve
should be your first port of call.

When performing arithmetic on two arrays, you need to make sure that they are of an
appropriate size (they must be “conformable,” in linear algebra terminology). For ex‐
ample, both arrays must be the same size when adding, and for multiplication the num‐
ber of rows in the first matrix must be the same as the number of columns in the second
matrix:

(another_matrix <- matrix(1:12, nrow = 2))
a_matrix + another_matrix #adding nonconformable matrices throws an error

If you try to add a vector to an array, then the usual vector recycling rules apply, but the
dimension of the results is taken from the array.

The t function transposes matrices (but not higher-dimensional arrays, where the con‐
cept isn’t well defined):

t(a_matrix)

one two three four
ein 1 2 3 4
zwei 5 6 7 8
drei 9 10 11 12

For inner and outer matrix multiplication, we have the special operators %*% and %o%.
In each case, the dimension names are taken from the first input, if they exist:

a_matrix %*% t(a_matrix) #inner multiplication

one two three four
one 107 122 137 152
two 122 140 158 176
three 137 158 179 200
four 152 176 200 224

1:3 %o% 4:6 #outer multiplication

[,1] [,2] [,3]
[1,] 4 5 6
[2,] 8 10 12
[3,] 12 15 18

outer(1:3, 4:6) #same

[,1] [,2] [,3]
[1,] 4 5 6
[2,] 8 10 12
[3,] 12 15 18

The power operator, ^, also works element-wise on matrices, so to invert a matrix you
cannot simply raise it to the power of minus one. Instead, this can be done using the
solve function:2

Matrices and Arrays | 53

(m <- matrix(c(1, 0, 1, 5, -3, 1, 2, 4, 7), nrow = 3))

[,1] [,2] [,3]
[1,] 1 5 2
[2,] 0 -3 4
[3,] 1 1 7

m ^ -1

[,1] [,2] [,3]
[1,] 1 0.2000 0.5000
[2,] Inf -0.3333 0.2500
[3,] 1 1.0000 0.1429

(inverse_of_m <- solve(m))

[,1] [,2] [,3]
[1,] -25 -33 26
[2,] 4 5 -4
[3,] 3 4 -3

m %*% inverse_of_m

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

Summary
• seq and its variants let you create sequences of numbers.
• Vectors have a length that can be accessed or set with the length function.
• You can name elements of vectors, either when they are created or with the names

function.
• You can access slices of a vector by passing an index into square brackets. The rep

function creates a vector with repeated elements.
• Arrays are multidimensional objects, with matrices being the special case of

two-dimensional arrays.
• nrow, ncol, and dim provide ways of accessing the dimensions of an array.
• Likewise, rownames, colnames, and dimnames access the names of array dimensions.

54 | Chapter 4: Vectors, Matrices, and Arrays

Test Your Knowledge: Quiz
Question 4-1

How would you create a vector containing the values 0, 0.25, 0.5, 0.75, and 1?

Question 4-2
Describe two ways of naming elements in a vector.

Question 4-3
What are the four types of index for a vector?

Question 4-4
What is the length of a 3-by-4-by-5 array?

Question 4-5
Which operator would you use to perform an inner product on two matrices?

Test Your Knowledge: Exercises
Exercise 4-1

The nth triangular number is given by n * (n + 1) / 2. Create a sequence of the
first 20 triangular numbers. R has a built-in constant, letters, that contains the
lowercase letters of the Roman alphabet. Name the elements of the vector that you
just created with the first 20 letters of the alphabet. Select the triangular numbers
where the name is a vowel. [10]

Exercise 4-2
The diag function has several uses, one of which is to take a vector as its input and
create a square matrix with that vector on the diagonal. Create a 21-by-21 matrix
with the sequence 10 to 0 to 11 (i.e., 11, 10, … , 1, 0, 1, …, 11). [5]

Exercise 4-3
By passing two extra arguments to diag, you can specify the dimensions of the
output. Create a 20-by-21 matrix with ones on the main diagonal. Now add a row
of zeros above this to create a 21-by-21 square matrix, where the ones are offset a
row below the main diagonal.

Create another matrix with the ones offset one up from the diagonal.

Add these two matrices together, then add the answer from Exercise 4-2. The re‐
sultant matrix is called a Wilkinson matrix.

The eigen function calculates eigenvalues and eigenvectors of a matrix. Calculate
the eigenvalues for your Wilkinson matrix. What do you notice about them? [20]

Test Your Knowledge: Quiz | 55

CHAPTER 5

Lists and Data Frames

The vectors, matrices, and arrays that we have seen so far contain elements that are all
of the same type. Lists and data frames are two types that let us combine different types
of data in a single variable.

Chapter Goals
After reading this chapter, you should:

• Be able to create lists and data frames
• Be able to use length, names, and other functions to inspect and manipulate these

types
• Understand what NULL is and when to use it
• Understand the difference between recursive and atomic variables
• Know how to perform basic manipulation of lists and data frames

Lists
A list is, loosely speaking, a vector where each element can be of a different type. This
section concerns how to create, index, and manipulate lists.

Creating Lists
Lists are created with the list function, and specifying the contents works much like
the c function that we’ve seen already. You simply list the contents, with each argument
separated by a comma. List elements can be any variable type—vectors, matrices, even
functions:

57

(a_list <- list(
 c(1, 1, 2, 5, 14, 42), #See http://oeis.org/A000108
 month.abb,
 matrix(c(3, -8, 1, -3), nrow = 2),
 asin
))

[[1]]
[1] 1 1 2 5 14 42
##
[[2]]
[1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov"
[12] "Dec"
##
[[3]]
[,1] [,2]
[1,] 3 1
[2,] -8 -3
##
[[4]]
function (x) .Primitive("asin")

As with vectors, you can name elements during construction, or afterward using the
names function:

names(a_list) <- c("catalan", "months", "involutary", "arcsin")
a_list

$catalan
[1] 1 1 2 5 14 42
##
$months
[1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov"
[12] "Dec"
##
$involutary
[,1] [,2]
[1,] 3 1
[2,] -8 -3
##
$arcsin
function (x) .Primitive("asin")

(the_same_list <- list(
 catalan = c(1, 1, 2, 5, 14, 42),
 months = month.abb,
 involutary = matrix(c(3, -8, 1, -3), nrow = 2),
 arcsin = asin
))

$catalan
[1] 1 1 2 5 14 42
##
$months

58 | Chapter 5: Lists and Data Frames

[1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov"
[12] "Dec"
##
$involutary
[,1] [,2]
[1,] 3 1
[2,] -8 -3
##
$arcsin
function (x) .Primitive("asin")

It isn’t compulsory, but it helps if the names that you give elements are valid variable
names.

It is even possible for elements of lists to be lists themselves:

(main_list <- list(
 middle_list = list(
 element_in_middle_list = diag(3),
 inner_list = list(
 element_in_inner_list = pi ^ 1:4,
 another_element_in_inner_list = "a"
)
),
 element_in_main_list = log10(1:10)
))

$middle_list
$middle_list$element_in_middle_list
[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1
##
$middle_list$inner_list
$middle_list$inner_list$element_in_inner_list
[1] 3.142
##
$middle_list$inner_list$another_element_in_inner_list
[1] "a"
##
##
##
$element_in_main_list
[1] 0.0000 0.3010 0.4771 0.6021 0.6990 0.7782 0.8451 0.9031 0.9542 1.0000

In theory, you can keep nesting lists forever. In practice, current versions of R will throw
an error once you start nesting your lists tens of thousands of levels deep (the exact
number is machine specific). Luckily, this shouldn’t be a problem for you, since real-
world code where nesting is deeper than three or four levels is extremely rare.

Lists | 59

Atomic and Recursive Variables
Due to this ability to contain other lists within themselves, lists are considered to be
recursive variables. Vectors, matrices, and arrays, by contrast, are atomic. (Variables can
either be recursive or atomic, never both; Appendix A contains a table explaining which
variable types are atomic, and which are recursive.) The functions is.recursive and
is.atomic let us test variables to see what type they are:

is.atomic(list())

[1] FALSE

is.recursive(list())

[1] TRUE

is.atomic(numeric())

[1] TRUE

is.recursive(numeric())

[1] FALSE

List Dimensions and Arithmetic
Like vectors, lists have a length. A list’s length is the number of top-level elements that
it contains:

length(a_list)

[1] 4

length(main_list) #doesn't include the lengths of nested lists

[1] 2

Again, like vectors, but unlike matrices, lists don’t have dimensions. The dim function
correspondingly returns NULL:

dim(a_list)

NULL

nrow, NROW, and the corresponding column functions work on lists in the same way as
on vectors:

nrow(a_list)

NULL

ncol(a_list)

NULL

NROW(a_list)

[1] 4

60 | Chapter 5: Lists and Data Frames

NCOL(a_list)

[1] 1

Unlike with vectors, arithmetic doesn’t work on lists. Since each element can be of a
different type, it doesn’t make sense to be able to add or multiply two lists together. It is
possible to do arithmetic on list elements, however, assuming that they are of an ap‐
propriate type. In that case, the usual rules for the element contents apply. For example:

l1 <- list(1:5)
l2 <- list(6:10)
l1[[1]] + l2[[1]]

[1] 7 9 11 13 15

More commonly, you might want to perform arithmetic (or some other operation) on
every element of a list. This requires looping, and will be discussed in Chapter 8.

Indexing Lists
Consider this test list:

l <- list(
 first = 1,
 second = 2,
 third = list(
 alpha = 3.1,
 beta = 3.2
)
)

As with vectors, we can access elements of the list using square brackets, [], and positive
or negative numeric indices, element names, or a logical index. The following four lines
of code all give the same result:

l[1:2]

$first
[1] 1
##
$second
[1] 2

l[-3]

$first
[1] 1
##
$second
[1] 2

Lists | 61

l[c("first", "second")]

$first
[1] 1
##
$second
[1] 2

l[c(TRUE, TRUE, FALSE)]

$first
[1] 1
##
$second
[1] 2

The result of these indexing operations is another list. Sometimes we want to access the
contents of the list elements instead. There are two operators to help us do this. Double
square brackets ([[]]) can be given a single positive integer denoting the index to return,
or a single string naming that element:

l[[1]]

[1] 1

l[["first"]]

[1] 1

The is.list function returns TRUE if the input is a list, and FALSE otherwise. For com‐
parison, take a look at the two indexing operators:

is.list(l[1])

[1] TRUE

is.list(l[[1]])

[1] FALSE

For named elements of lists, we can also use the dollar sign operator, $. This works
almost the same way as passing a named string to the double square brackets, but has
two advantages. Firstly, many IDEs will autocomplete the name for you. (In R GUI,
press Tab for this feature.) Secondly, R accepts partial matches of element names:

l$first

[1] 1

l$f #partial matching interprets "f" as "first"

[1] 1

To access nested elements, we can stack up the square brackets or pass in a vector, though
the latter method is less common and usually harder to read:

62 | Chapter 5: Lists and Data Frames

l[["third"]]["beta"]

$beta
[1] 3.2

l[["third"]][["beta"]]

[1] 3.2

l[[c("third", "beta")]]

[1] 3.2

The behavior when you try to access a nonexistent element of a list varies depending
upon the type of indexing that you have used. For the next example, recall that our list,
l, has only three elements.

If we use single square-bracket indexing, then the resulting list has an element with the
value NULL (and name NA, if the original list has names). Compare this to bad indexing
of a vector where the return value is NA:

l[c(4, 2, 5)]

$<NA>
NULL
##
$second
[1] 2
##
$<NA>
NULL

l[c("fourth", "second", "fifth")]

$<NA>
NULL
##
$second
[1] 2
##
$<NA>
NULL

Trying to access the contents of an element with an incorrect name, either with double
square brackets or a dollar sign, returns NULL:

l[["fourth"]]

NULL

l$fourth

NULL

Lists | 63

Finally, trying to access the contents of an element with an incorrect numerical index
throws an error, stating that the subscript is out of bounds. This inconsistency in be‐
havior is something that you just need to accept, though the best defense is to make sure
that you check your indices before you use them:

l[[4]] #this throws an error

Converting Between Vectors and Lists
Vectors can be converted to lists using the function as.list. This creates a list with each
element of the vector mapping to a list element containing one value:

busy_beaver <- c(1, 6, 21, 107) #See http://oeis.org/A060843
as.list(busy_beaver)

[[1]]
[1] 1
##
[[2]]
[1] 6
##
[[3]]
[1] 21
##
[[4]]
[1] 107

If each element of the list contains a scalar value, then it is also possible to convert that
list to a vector using the functions that we have already seen (as.numeric, as.charac
ter, and so on):

as.numeric(list(1, 6, 21, 107))

[1] 1 6 21 107

This technique won’t work in cases where the list contains nonscalar elements. This is
a real issue, because as well as storing different types of data, lists are very useful for
storing data of the same type, but with a nonrectangular shape:

(prime_factors <- list(
 two = 2,
 three = 3,
 four = c(2, 2),
 five = 5,
 six = c(2, 3),
 seven = 7,
 eight = c(2, 2, 2),
 nine = c(3, 3),
 ten = c(2, 5)
))

64 | Chapter 5: Lists and Data Frames

$two
[1] 2
##
$three
[1] 3
##
$four
[1] 2 2
##
$five
[1] 5
##
$six
[1] 2 3
##
$seven
[1] 7
##
$eight
[1] 2 2 2
##
$nine
[1] 3 3
##
$ten
[1] 2 5

This sort of list can be converted to a vector using the function unlist (it is sometimes
technically possible to do this with mixed-type lists, but rarely useful):

unlist(prime_factors)

two three four1 four2 five six1 six2 seven eight1 eight2
2 3 2 2 5 2 3 7 2 2
eight3 nine1 nine2 ten1 ten2
2 3 3 2 5

Combining Lists
The c function that we have used for concatenating vectors also works for concatenating
lists:

c(list(a = 1, b = 2), list(3))

$a
[1] 1
##
$b
[1] 2
##
[[3]]
[1] 3

Lists | 65

If we use it to concatenate lists and vectors, the vectors are converted to lists (as though
as.list had been called on them) before the concatenation occurs:

c(list(a = 1, b = 2), 3)

$a
[1] 1
##
$b
[1] 2
##
[[3]]
[1] 3

It is also possible to use the cbind and rbind functions on lists, but the resulting objects
are very strange indeed. They are matrices with possibly nonscalar elements, or lists
with dimensions, depending upon which way you want to look at them:

(matrix_list_hybrid <- cbind(
 list(a = 1, b = 2),
 list(c = 3, list(d = 4))
))

[,1] [,2]
a 1 3
b 2 List,1

str(matrix_list_hybrid)

List of 4
$: num 1
$: num 2
$: num 3
$:List of 1
..$ d: num 4
- attr(*, "dim")= int [1:2] 2 2
- attr(*, "dimnames")=List of 2
..$: chr [1:2] "a" "b"
..$: NULL

Using cbind and rbind in this way is something you shouldn’t do often, and probably
not at all. It’s another case of R being a little too flexible and accommodating, instead of
telling you that you’ve done something silly by throwing an error.

NULL
NULL is a special value that represents an empty variable. Its most common use is in lists,
but it also crops up with data frames and function arguments. These other uses will be
discussed later.

66 | Chapter 5: Lists and Data Frames

1. Bank holidays are public holidays.

When you create a list, you may wish to specify that an element should exist, but should
have no contents. For example, the following list contains UK bank holidays1 for 2013
by month. Some months have no bank holidays, so we use NULL to represent this absence:

(uk_bank_holidays_2013 <- list(
 Jan = "New Year's Day",
 Feb = NULL,
 Mar = "Good Friday",
 Apr = "Easter Monday",
 May = c("Early May Bank Holiday", "Spring Bank Holiday"),
 Jun = NULL,
 Jul = NULL,
 Aug = "Summer Bank Holiday",
 Sep = NULL,
 Oct = NULL,
 Nov = NULL,
 Dec = c("Christmas Day", "Boxing Day")
))

$Jan
[1] "New Year's Day"
##
$Feb
NULL
##
$Mar
[1] "Good Friday"
##
$Apr
[1] "Easter Monday"
##
$May
[1] "Early May Bank Holiday" "Spring Bank Holiday"
##
$Jun
NULL
##
$Jul
NULL
##
$Aug
[1] "Summer Bank Holiday"
##
$Sep
NULL
##
$Oct
NULL
##

NULL | 67

$Nov
NULL
##
$Dec
[1] "Christmas Day" "Boxing Day"

It is important to understand the difference between NULL and the special missing value
NA. The biggest difference is that NA is a scalar value, whereas NULL takes up no space at
all—it has length zero:

length(NULL)

[1] 0

length(NA)

[1] 1

You can test for NULL using the function is.null. Missing values are not null:

is.null(NULL)

[1] TRUE

is.null(NA)

[1] FALSE

The converse test doesn’t really make much sense. Since NULL has length zero, we have
nothing to test to see if it is missing:

is.na(NULL)

Warning: is.na() applied to non-(list or vector) of type 'NULL'

logical(0)

NULL can also be used to remove elements of a list. Setting an element to NULL (even if
it already contains NULL) will remove it. Suppose that for some reason we want to switch
to an old-style Roman 10-month calendar, removing January and February:

uk_bank_holidays_2013$Jan <- NULL
uk_bank_holidays_2013$Feb <- NULL
uk_bank_holidays_2013

$Mar
[1] "Good Friday"
##
$Apr
[1] "Easter Monday"
##
$May
[1] "Early May Bank Holiday" "Spring Bank Holiday"
##
$Jun
NULL
##

68 | Chapter 5: Lists and Data Frames

$Jul
NULL
##
$Aug
[1] "Summer Bank Holiday"
##
$Sep
NULL
##
$Oct
NULL
##
$Nov
NULL
##
$Dec
[1] "Christmas Day" "Boxing Day"

To set an existing element to be NULL, we cannot simply assign the value of NULL, since
that will remove the element. Instead, it must be set to list(NULL). Now suppose that
the UK government becomes mean and cancels the summer bank holiday:

uk_bank_holidays_2013["Aug"] <- list(NULL)
uk_bank_holidays_2013

$Mar
[1] "Good Friday"
##
$Apr
[1] "Easter Monday"
##
$May
[1] "Early May Bank Holiday" "Spring Bank Holiday"
##
$Jun
NULL
##
$Jul
NULL
##
$Aug
NULL
##
$Sep
NULL
##
$Oct
NULL
##
$Nov
NULL
##

NULL | 69

2. R also stores some global settings in a pairlist variable called .Options in the base environment. You shouldn’t
access this variable directly, but instead use the function options, which returns a list.

$Dec
[1] "Christmas Day" "Boxing Day"

Pairlists
R has another sort of list, the pairlist. Pairlists are used internally to pass arguments into
functions, but you should almost never have to actively use them. Possibly the only
time2 that you are likely to explicitly see a pairlist is when using formals. That function
returns a pairlist of the arguments of a function.

Looking at the help page for the standard deviation function, ?sd, we see that it takes
two arguments, a vector x and a logical value na.rm, which has a default value of FALSE:

(arguments_of_sd <- formals(sd))

$x
##
##
$na.rm
[1] FALSE

class(arguments_of_sd)

[1] "pairlist"

For most practical purposes, pairlists behave like lists. The only difference is that a
pairlist of length zero is NULL, but a list of length zero is just an empty list:

pairlist()

NULL

list()

list()

Data Frames
Data frames are used to store spreadsheet-like data. They can either be thought of as
matrices where each column can store a different type of data, or nonnested lists where
each element is of the same length.

70 | Chapter 5: Lists and Data Frames

Creating Data Frames
We create data frames with the data.frame function:

(a_data_frame <- data.frame(
 x = letters[1:5],
 y = rnorm(5),
 z = runif(5) > 0.5
))

x y z
1 a 0.17581 TRUE
2 b 0.06894 TRUE
3 c 0.74217 TRUE
4 d 0.72816 TRUE
5 e -0.28940 TRUE

class(a_data_frame)

[1] "data.frame"

Notice that each column can have a different type than the other columns, but that all
the elements within a column are the same type. Also notice that the class of the object
is data.frame, with a dot rather than a space.

In this example, the rows have been automatically numbered from one to five. If any of
the input vectors had names, then the row names would have been taken from the first
such vector. For example, if y had names, then those would be given to the data frame:

y <- rnorm(5)
names(y) <- month.name[1:5]
data.frame(
 x = letters[1:5],
 y = y,
 z = runif(5) > 0.5
)

x y z
January a -0.9373 FALSE
February b 0.7314 TRUE
March c -0.3030 TRUE
April d -1.3307 FALSE
May e -0.6857 FALSE

This behavior can be overridden by passing the argument row.names = NULL to the
data.frame function:

data.frame(
 x = letters[1:5],
 y = y,
 z = runif(5) > 0.5,
 row.names = NULL
)

Data Frames | 71

x y z
1 a -0.9373 FALSE
2 b 0.7314 FALSE
3 c -0.3030 TRUE
4 d -1.3307 TRUE
5 e -0.6857 FALSE

It is also possible to provide your own row names by passing a vector to row.names.
This vector will be converted to character, if it isn’t already that type:

data.frame(
 x = letters[1:5],
 y = y,
 z = runif(5) > 0.5,
 row.names = c("Jackie", "Tito", "Jermaine", "Marlon", "Michael")
)

x y z
Jackie a -0.9373 TRUE
Tito b 0.7314 FALSE
Jermaine c -0.3030 TRUE
Marlon d -1.3307 FALSE
Michael e -0.6857 FALSE

The row names can be retrieved or changed at a later date, in the same manner as with
matrices, using rownames (or row.names). Likewise, colnames and dimnames can be used
to get or set the column and dimension names, respectively. In fact, more or less all the
functions that can be used to inspect matrices can also be used with data frames. nrow,
ncol, and dim also work in exactly the same way as they do in matrices:

rownames(a_data_frame)

[1] "1" "2" "3" "4" "5"

colnames(a_data_frame)

[1] "x" "y" "z"

dimnames(a_data_frame)

[[1]]
[1] "1" "2" "3" "4" "5"
##
[[2]]
[1] "x" "y" "z"

nrow(a_data_frame)

[1] 5

ncol(a_data_frame)

[1] 3

dim(a_data_frame)

[1] 5 3

72 | Chapter 5: Lists and Data Frames

There are two quirks that you need to be aware of. First, length returns the same value
as ncol, not the total number of elements in the data frame. Likewise, names returns the
same value as colnames. For clarity of code, I recommend that you avoid these two
functions, and use ncol and colnames instead:

length(a_data_frame)

[1] 3

names(a_data_frame)

[1] "x" "y" "z"

It is possible to create a data frame by passing different lengths of vectors, as long as the
lengths allow the shorter ones to be recycled an exact number of times. More technically,
the lowest common multiple of all the lengths must be equal to the longest vector:

data.frame(#lengths 1, 2, and 4 are OK
 x = 1, #recycled 4 times
 y = 2:3, #recycled twice
 z = 4:7 #the longest input; no recycling
)

x y z
1 1 2 4
2 1 3 5
3 1 2 6
4 1 3 7

If the lengths are not compatible, then an error will be thrown:

data.frame(#lengths 1, 2, and 3 cause an error
 x = 1, #lowest common multiple is 6, which is more than 3
 y = 2:3,
 z = 4:6
)

One other consideration when creating data frames is that by default the column names
are checked to be unique, valid variable names. This feature can be turned off by passing
check.names = FALSE to data.frame:

data.frame(
 "A column" = letters[1:5],
 "!@#$%^&*()" = rnorm(5),
 "..." = runif(5) > 0.5,
 check.names = FALSE
)

A column !@#$%^&*() ...
1 a 0.32940 TRUE
2 b -1.81969 TRUE
3 c 0.22951 FALSE
4 d -0.06705 TRUE
5 e -1.58005 TRUE

Data Frames | 73

In general, having nonstandard column names is a bad idea. Duplicating column names
is even worse, since it can lead to hard-to-find bugs once you start taking subsets. Turn
off the column name checking at your own peril.

Indexing Data Frames
There are lots of different ways of indexing a data frame. To start with, pairs of the four
different vector indices (positive integers, negative integers, logical values, and charac‐
ters) can be used in exactly the same way as with matrices. These commands both select
the second and third elements of the first two columns:

a_data_frame[2:3, -3]

x y
2 b 0.06894
3 c 0.74217

a_data_frame[c(FALSE, TRUE, TRUE, FALSE, FALSE), c("x", "y")]

x y
2 b 0.06894
3 c 0.74217

Since more than one column was selected, the resultant subset is also a data frame. If
only one column had been selected, the result would have been simplified to be a vector:

class(a_data_frame[2:3, -3])

[1] "data.frame"

class(a_data_frame[2:3, 1])

[1] "factor"

If we only want to select one column, then list-style indexing (double square brackets
with a positive integer or name, or the dollar sign operator with a name) can also be
used. These commands all select the second and third elements of the first column:

a_data_frame$x[2:3]

[1] b c
Levels: a b c d e

a_data_frame[[1]][2:3]

[1] b c
Levels: a b c d e

a_data_frame[["x"]][2:3]

[1] b c
Levels: a b c d e

74 | Chapter 5: Lists and Data Frames

If we are trying to subset a data frame by placing conditions on columns, the syntax can
get a bit clunky, and the subset function provides a cleaner alternative. subset takes
up to three arguments: a data frame to subset, a logical vector of conditions for rows to
include, and a vector of column names to keep (if this last argument is omitted, then all
the columns are kept). The genius of subset is that it uses special evaluation techniques
to let you avoid doing some typing: instead of you having to type a_data_frame$y to
access the y column of a_data_frame, it already knows which data frame to look in, so
you can just type y. Likewise, when selecting columns, you don’t need to enclose the
names of the columns in quotes; you can just type the names directly. In this next
example, recall that | is the operator for logical or:

a_data_frame[a_data_frame$y > 0 | a_data_frame$z, "x"]

[1] a b c d e
Levels: a b c d e

subset(a_data_frame, y > 0 | z, x)

x
1 a
2 b
3 c
4 d
5 e

Basic Data Frame Manipulation
Like matrices, data frames can be transposed using the t function, but in the process all
the columns (which become rows) are converted to the same type, and the whole thing
becomes a matrix:

t(a_data_frame)

[,1] [,2] [,3] [,4] [,5]
x "a" "b" "c" "d" "e"
y " 0.17581" " 0.06894" " 0.74217" " 0.72816" "-0.28940"
z "TRUE" "TRUE" "TRUE" "TRUE" "TRUE"

Data frames can also be joined together using cbind and rbind, assuming that they have
the appropriate sizes. rbind is smart enough to reorder the columns to match. cbind
doesn’t check column names for duplicates, though, so be careful with it:

another_data_frame <- data.frame(#same cols as a_data_frame, different order
 z = rlnorm(5), #lognormally distributed numbers
 y = sample(5), #the numbers 1 to 5, in some order
 x = letters[3:7]
)
rbind(a_data_frame, another_data_frame)

Data Frames | 75

x y z
1 a 0.17581 1.0000
2 b 0.06894 1.0000
3 c 0.74217 1.0000
4 d 0.72816 1.0000
5 e -0.28940 1.0000
6 c 1.00000 0.8714
7 d 3.00000 0.2432
8 e 5.00000 2.3498
9 f 4.00000 2.0263
10 g 2.00000 1.7145

cbind(a_data_frame, another_data_frame)

x y z z y x
1 a 0.17581 TRUE 0.8714 1 c
2 b 0.06894 TRUE 0.2432 3 d
3 c 0.74217 TRUE 2.3498 5 e
4 d 0.72816 TRUE 2.0263 4 f
5 e -0.28940 TRUE 1.7145 2 g

Where two data frames share columns, they can be merged together using the merge
function. merge provides a variety of options for doing database-style joins. To join two
data frames, you need to specify which columns contain the key values to match up. By
default, the merge function uses all the common columns from the two data frames, but
more commonly you will just want to use a single shared ID column. In the following
examples, we specify that the x column contains our IDs using the by argument:

merge(a_data_frame, another_data_frame, by = "x")

x y.x z.x z.y y.y
1 c 0.7422 TRUE 0.8714 1
2 d 0.7282 TRUE 0.2432 3
3 e -0.2894 TRUE 2.3498 5

merge(a_data_frame, another_data_frame, by = "x", all = TRUE)

x y.x z.x z.y y.y
1 a 0.17581 TRUE NA NA
2 b 0.06894 TRUE NA NA
3 c 0.74217 TRUE 0.8714 1
4 d 0.72816 TRUE 0.2432 3
5 e -0.28940 TRUE 2.3498 5
6 f NA NA 2.0263 4
7 g NA NA 1.7145 2

Where a data frame has all numeric values, the functions colSums and colMeans can be
used to calculate the sums and means of each column, respectively. Similarly, rowSums
and rowMeans calculate the sums and means of each row:

colSums(a_data_frame[, 2:3])

y z
1.426 5.000

76 | Chapter 5: Lists and Data Frames

colMeans(a_data_frame[, 2:3])

y z
0.2851 1.0000

Manipulating data frames is a huge topic, and is covered in more depth in Chapter 13.

Summary
• Lists can contain different sizes and types of variables in each element.
• Lists are recursive variables, since they can contain other lists.
• You can index lists using [], [[]], or $.
• NULL is a special value that can be used to create “empty” list elements.
• Data frames store spreadsheet-like data.
• Data frames have some properties of matrices (they are rectangular), and some of

lists (different columns can contain different sorts of variables).
• Data frames can be indexed like matrices or like lists.
• merge lets you do database-style joins on data frames.

Test Your Knowledge: Quiz
Question 5-1

What is the length of this list?

list(alpha = 1, list(beta = 2, gamma = 3, delta = 4), eta = NULL)

$alpha
[1] 1
##
[[2]]
[[2]]$beta
[1] 2
##
[[2]]$gamma
[1] 3
##
[[2]]$delta
[1] 4
##
##
$eta
NULL

Summary | 77

3. By some definitions of fame.

Question 5-2
Where might you find a pairlist being used?

Question 5-3
Name as many ways as you can think of to create a subset of a data frame.

Question 5-4
How would you create a data frame where the column names weren’t unique, valid
variable names?

Question 5-5
Which function would you use to append one data frame to another?

Test Your Knowledge: Exercises
Exercise 5-1

Create a list variable that contains all the square numbers in the range 0 to 9 in the
first element, in the range 10 to 19 in the second element, and so on, up to a final
element with square numbers in the range 90 to 99. Elements with no square num‐
bers should be included! [10]

Exercise 5-2
R ships with several built-in datasets, including the famous3 iris (flowers, not eyes)
data collected by Anderson and analyzed by Fisher in the 1930s. Type iris to see
the dataset. Create a new data frame that consists of the numeric columns of the
iris dataset, and calculate the means of its columns. [5]

Exercise 5-3
The beaver1 and beaver2 datasets contain body temperatures of two beavers. Add
a column named id to the beaver1 dataset, where the value is always 1. Similarly,
add an id column to beaver2, with value 2. Vertically concatenate the two data
frames and find the subset where either beaver is active. [10]

78 | Chapter 5: Lists and Data Frames

CHAPTER 6

Environments and Functions

We’ve already used a variety of the functions that come with R. In this chapter, you’ll
learn what a function is, and how to write your own. Before that, we’ll take a look at
environments, which are used to store variables.

Chapter Goals
After reading this chapter, you should:

• Know what an environment is, and how to create one
• Be able to create, access, and list variables within an environment
• Understand the components that make up a function
• Be able to write your own functions
• Understand variable scope

Environments
All the variables that we create need to be stored somewhere, and that somewhere is an
environment. Environments themselves are just another type of variable—we can assign
them, manipulate them, and pass them into functions as arguments, just like we would
any other variable. They are closely related to lists in that they are used for storing
different types of variables together. In fact, most of the syntax for lists also works for
environments, and we can coerce a list to be an environment (and vice versa).

Usually, you won’t need to explicitly deal with environments. For example, when you
assign a variable at the command prompt, it will automatically go into an environment
called the global environment (also known as the user workspace). When you call a
function, an environment is automatically created to store the function-related

79

variables. Understanding the basics of environments can be useful, however, in under‐
standing the scope of variables, and for examining the call stack when debugging your
code.

Slightly annoyingly, environments aren’t created with the environment function (that
function returns the environment that contains a particular function). Instead, what we
want is new.env:

an_environment <- new.env()

Assigning variables into environments works in exactly the same way as with lists. You
can either use double square brackets or the dollar sign operator. As with lists, the
variables can be of different types and sizes:

an_environment[["pythag"]] <- c(12, 15, 20, 21) #See http://oeis.org/A156683
an_environment$root <- polyroot(c(6, -5, 1))

The assign function that we saw in “Assigning Variables” on page 17 takes an optional
environment argument that can be used to specify where the variable is stored:

assign(
 "moonday",
 weekdays(as.Date("1969/07/20")),
 an_environment
)

Retrieving the variables works in the same way—you can either use list-indexing syntax,
or assign’s opposite, the get function:

an_environment[["pythag"]]

[1] 12 15 20 21

an_environment$root

[1] 2+0i 3-0i

get("moonday", an_environment)

[1] "Sunday"

The ls and ls.str functions also take an environment argument, allowing you to list
their contents:

ls(envir = an_environment)

[1] "moonday" "pythag" "root"

ls.str(envir = an_environment)

moonday : chr "Sunday"
pythag : num [1:4] 12 15 20 21
root : cplx [1:2] 2+0i 3-0i

We can test to see if a variable exists in an environment using the exists function:

80 | Chapter 6: Environments and Functions

exists("pythag", an_environment)

[1] TRUE

Conversion from environment to list and back again uses the obvious functions,
as.list and as.environment. In the latter case, there is also a function list2env that
allows for a little more flexibility in the creation of the environment:

#Convert to list
(a_list <- as.list(an_environment))

$pythag
[1] 12 15 20 21
##
$moonday
[1] "Sunday"
##
$root
[1] 2+0i 3-0i

#...and back again. Both lines of code do the same thing.
as.environment(a_list)

<environment: 0x000000004a6fe290>

list2env(a_list)

<environment: 0x000000004ad10288>

All environments are nested, meaning that they must have a parent environment (the
exception is a special environment called the empty environment that sits at the top of
the chain). By default, the exists and get functions will also look for variables in the
parent environments. Pass inherits = FALSE to them to change this behavior so that
they will only look in the environment that you’ve specified:

nested_environment <- new.env(parent = an_environment)
exists("pythag", nested_environment)

[1] TRUE

exists("pythag", nested_environment, inherits = FALSE)

[1] FALSE

The word “frame” is used almost interchangeably with “environment.”
(See section 2.1.10 of the R Language Definition manual that ships with
R for the technicalities.) This means that some functions that work
with environments have “frame” in their name, parent.frame being
the most common of these.

Shortcut functions are available to access both the global environment (where variables
that you assign from the command prompt are stored) and the base environment (this

Environments | 81

1. If the definition is a single line that says something like UseMethod("my_function") or standardGene
ric("my_function"), see “Object-Oriented Programming” on page 302 in Chapter 16. If R complains that the
object is not found, try getAnywhere(my_function).

contains functions and other variables from R’s base package, which provides basic
functionality):

non_stormers <<- c(3, 7, 8, 13, 17, 18, 21) #See http://oeis.org/A002312
get("non_stormers", envir = globalenv())

[1] 3 7 8 13 17 18 21

head(ls(envir = baseenv()), 20)

[1] "-" "-.Date" "-.POSIXt"
[4] "!" "!.hexmode" "!.octmode"
[7] "!=" "$" "$.data.frame"
[10] "$.DLLInfo" "$.package_version" "$<-"
[13] "$<-.data.frame" "%%" "%*%"
[16] "%/%" "%in%" "%o%"
[19] "%x%" "&"

There are two other situations where we might encounter environments. First, whenever
a function is called, all the variables defined by the function are stored in an environment
belonging to that function (a function plus its environment is sometimes called a clo‐
sure). Second, whenever we load a package, the functions in that package are stored in
an environment on the search path. This will be discussed in Chapter 10.

Functions
While most variable types are for storing data, functions let us do things with data—
they are “verbs” rather than “nouns.” Like environments, they are just another data type
that we can assign and manipulate and even pass into other functions.

Creating and Calling Functions
In order to understand functions better, let’s take a look at what they consist of.

Typing the name of a function shows you the code that runs when you call it. This is
the rt function, which generates random numbers from a t-distribution:1

rt

function (n, df, ncp)
{
if (missing(ncp))
.External(C_rt, n, df)
else rnorm(n, ncp)/sqrt(rchisq(n, df)/df)
}

82 | Chapter 6: Environments and Functions

<bytecode: 0x0000000019738e10>
<environment: namespace:stats>

As you can see, rt takes up to three input arguments: n is the number of random numbers
to generate, df is the number of degrees of freedom, and ncp is an optional noncentrality
parameter. To be technical, the three arguments n, df, and ncp are the formal argu‐
ments of rt. When you are calling the function and passing values to it, those values are
just called arguments.

The difference between arguments and formal arguments isn’t very
important, so the rest of the book doesn’t make an effort to differen‐
tiate between the two concepts.

In between the curly braces, you can see the lines of code that constitute the body of the
function. This is the code that is executed each time you call rt.

Notice that there is no explicit “return” keyword to state which value should be returned
from the function. In R, the last value that is calculated in the function is automatically
returned. In the case of rt, if the ncp argument is omitted, some C code is called to
generate the random numbers, and those are returned. Otherwise, the function calls
the rnorm, rchisq, and sqrt functions to generate the numbers, and those are returned.

To create our own functions, we just assign them as we would any other variable. As an
example, let’s create a function to calculate the length of the hypotenuse of a right-angled
triangle (for simplicity, we’ll use the obvious algorithm; for real-world code, this doesn’t
work well with very big and very small numbers, so you shouldn’t calculate hypotenuses
this way):

hypotenuse <- function(x, y)
{
 sqrt(x ^ 2 + y ^ 2)
}

Here, hypotenuse is the name of the function we are creating, x and y are its (formal)
arguments, and the contents of the braces are the function body.

Actually, since our function body is only one line of code, we can omit the braces:

hypotenuse <- function(x, y) sqrt(x ^ 2 + y ^ 2) #same as before

Functions | 83

R is very permissive about how you space your code, so “one line of
code” can be stretched to run over several lines. The amount of code
that can be included without braces is one statement. The exact defi‐
nition of a statement is technical, but from a practical point of view, it
is the amount of code that you can type at the command line before it
executes.

We can now call this function as we would any other:

hypotenuse(3, 4)

[1] 5

hypotenuse(y = 24, x = 7)

[1] 25

When we call a function, if we don’t name the arguments, then R will match them based
on position. In the case of hypotenuse(3, 4), 3 comes first so it is mapped to x, and 4
comes second so it is mapped to y.

If we want to change the order that we pass the arguments, or omit some of them, then
we can pass named arguments. In the case of hypotenuse(y = 24, x = 7), although
we pass the variables in the “wrong” order, R still correctly determines which variable
should be mapped to x, and which to y.

It doesn’t make much sense for a hypotenuse-calculating function, but if we wanted, we
could provide default values for x and y. In this new version, if we don’t pass anything
to the function, x takes the value 5 and y takes the value 12:

hypotenuse <- function(x = 5, y = 12)
{
 sqrt(x ^ 2 + y ^ 2)
}
hypotenuse() #equivalent to hypotenuse(5, 12)

[1] 13

We’ve already seen the formals function for retrieving the arguments of a function as
a (pair)list. The args function does the same thing in a more human-readable, but less
programming-friendly, way. formalArgs returns a character vector of the names of the
arguments:

formals(hypotenuse)

$x
[1] 5
##
$y
[1] 12

84 | Chapter 6: Environments and Functions

args(hypotenuse)

function (x = 5, y = 12)
NULL

formalArgs(hypotenuse)

[1] "x" "y"

The body of a function is retrieved using the body function. This isn’t often very useful
on its own, but we may sometimes want to examine it as text—to find functions that
call another function, for example. We can use deparse to achieve this:

(body_of_hypotenuse <- body(hypotenuse))

{
sqrt(x^2 + y^2)
}

deparse(body_of_hypotenuse)

[1] "{" " sqrt(x^2 + y^2)" "}"

The default values given to formal arguments of functions can be more than just con‐
stant values—we can pass any R code into them, and even use other formal arguments.
The following function, normalize, scales a vector. The arguments m and s are, by de‐
fault, the mean and standard deviation of the first argument, so that the returned vector
will have mean 0 and standard deviation 1:

normalize <- function(x, m = mean(x), s = sd(x))
{
 (x - m) / s
}
normalized <- normalize(c(1, 3, 6, 10, 15))
mean(normalized) #almost 0!

[1] -5.573e-18

sd(normalized)

[1] 1

There is a little problem with our normalize function, though, which we can see if some
of the elements of x are missing:

normalize(c(1, 3, 6, 10, NA))

[1] NA NA NA NA NA

If any elements of a vector are missing, then by default, mean and sd will both return
NA. Consequently, our normalize function returns NA values everywhere. It might be
preferable to have the option of only returning NA values where the input was NA. Both
mean and sd have an argument, na.rm, that lets us remove missing values before any
calculations occur. To avoid all the NA values, we could include such an argument in
normalize:

Functions | 85

normalize <- function(x, m = mean(x, na.rm = na.rm),
 s = sd(x, na.rm = na.rm), na.rm = FALSE)
{
 (x - m) / s
}
normalize(c(1, 3, 6, 10, NA))

[1] NA NA NA NA NA

normalize(c(1, 3, 6, 10, NA), na.rm = TRUE)

[1] -1.0215 -0.5108 0.2554 1.2769 NA

This works, but the syntax is a little clunky. To save us having to explicitly type the names
of arguments that aren’t actually used by the function (na.rm is only being passed to
mean and sd), R has a special argument, ..., that contains all the arguments that aren’t
matched by position or name:

normalize <- function(x, m = mean(x, ...), s = sd(x, ...), ...)
{
 (x - m) / s
}
normalize(c(1, 3, 6, 10, NA))

[1] NA NA NA NA NA

normalize(c(1, 3, 6, 10, NA), na.rm = TRUE)

[1] -1.0215 -0.5108 0.2554 1.2769 NA

Now in the call normalize(c(1, 3, 6, 10, NA), na.rm = TRUE), the argument na.rm
does not match any of the formal arguments of normalize, since it isn’t x or m or s. That
means that it gets stored in the ... argument of normalize. When we evaluate m, the
expression mean(x, ...) is now mean(x, na.rm = TRUE).

If this isn’t clear right now, don’t worry. How this works is an advanced topic, and most
of the time we don’t need to worry about it. For now, you just need to know that ...
can be used to pass arguments to subfunctions.

Passing Functions to and from Other Functions
Functions can be used just like other variable types, so we can pass them as arguments
to other functions, and return them from functions. One common example of a function
that takes another function as an argument is do.call. This function provides an al‐
ternative syntax for calling other functions, letting us pass the arguments as a list, rather
than one at a time:

do.call(hypotenuse, list(x = 3, y = 4)) #same as hypotenuse(3, 4)

[1] 5

Perhaps the most common use case for do.call is with rbind. You can use these two
functions together to concatenate several data frames or matrices together at once:

86 | Chapter 6: Environments and Functions

dfr1 <- data.frame(x = 1:5, y = rt(5, 1))
dfr2 <- data.frame(x = 6:10, y = rf(5, 1, 1))
dfr3 <- data.frame(x = 11:15, y = rbeta(5, 1, 1))
do.call(rbind, list(dfr1, dfr2, dfr3)) #same as rbind(dfr1, dfr2, dfr3)

x y
1 1 1.10440
2 2 0.87931
3 3 -1.18288
4 4 -1.04847
5 5 0.90335
6 6 0.27186
7 7 2.49953
8 8 0.89534
9 9 4.21537
10 10 0.07751
11 11 0.31153
12 12 0.29114
13 13 0.01079
14 14 0.97188
15 15 0.53498

It is worth spending some time getting comfortable with this idea. In Chapter 9, we’re
going to make a lot of use of passing functions to other functions with apply and its
derivatives.

When using functions as arguments, it isn’t necessary to assign them first. In the same
way that we could simplify this:

menage <- c(1, 0, 0, 1, 2, 13, 80) #See http://oeis.org/A000179
mean(menage)

[1] 13.86

to:

mean(c(1, 0, 0, 1, 2, 13, 80))

[1] 13.86

we can also pass functions anonymously:

x_plus_y <- function(x, y) x + y
do.call(x_plus_y, list(1:5, 5:1))

[1] 6 6 6 6 6

#is the same as
do.call(function(x, y) x + y, list(1:5, 5:1))

[1] 6 6 6 6 6

Functions that return functions are rarer, but no less valid for it. The ecdf function
returns the empirical cumulative distribution function of a vector, as seen in Figure 6-1:

Functions | 87

(emp_cum_dist_fn <- ecdf(rnorm(50)))

Empirical CDF
Call: ecdf(rnorm(50))
x[1:50] = -2.2, -2.1, -2, ..., 1.9, 2.6

is.function(emp_cum_dist_fn)

[1] TRUE

plot(emp_cum_dist_fn)

Figure 6-1. An empirical cumulative distribution function

88 | Chapter 6: Environments and Functions

Variable Scope
A variable’s scope is the set of places from which you can see the variable. For example,
when you define a variable inside a function, the rest of the statements in that function
will have access to that variable. In R (but not S), subfunctions will also have access to
that variable. In this next example, the function f takes a variable x and passes it to the
function g. f also defines a variable y, which is within the scope of g, since g is a sub‐
function of f. So, even though y isn’t defined inside g, the example works:

f <- function(x)
{
 y <- 1
 g <- function(x)
 {
 (x + y) / 2 #y is used, but is not a formal argument of g
 }
 g(x)
}
f(sqrt(5)) #It works! y is magically found in the environment of f

[1] 1.618

If we modify the example to define g outside of f, so it is not a subfunction of f, the
example will throw an error, since R cannot find y:

f <- function(x)
{
 y <- 1
 g(x)
}
g <- function(x)
{
 (x + y) / 2
}
f(sqrt(5))

January February March April May
0.6494 1.4838 0.9665 0.4527 0.7752

In the section “Environments” on page 79, we saw that the get and exists functions
look for variables in parent environments as well as the current one. Variable scope
works in exactly the same way: R will try to find variables in the current environment,
and if it doesn’t find them it will look in the parent environment, and then that envi‐
ronment’s parent, and so on until it reaches the global environment. Variables defined
in the global environment can be seen from anywhere, which is why they are called
global variables.

In our first example, the environment belonging to f is the parent environment of the
environment belonging to g, which is why y can be found. In the second example, the

Functions | 89

parent environment of g is the global environment, which doesn’t contain a variable y,
which is why an error is thrown.

This system of scoping where variables can be found in parent environments is often
useful, but also brings the potential for mischief and awful, unmaintainable code. Con‐
sider the following function, h:

h <- function(x)
{
 x * y
}

It looks like it shouldn’t work, since it accepts a single argument, x, but uses two argu‐
ments, x and y, in its body. Let’s try it, with a clean user workspace:

h(9)

January February March April May
-8.436 6.583 -2.727 -11.976 -6.171

So far, our intuition holds. y is not defined, so the function throws an error. Now look
at what happens if we define y in the user workspace:

y <- 16
h(9)

[1] 144

When R fails to find a variable named y in the environment belonging to h, it looks in
h’s parent—the user workspace (a.k.a. global environment), where y is defined—and
the product is correctly calculated.

Global variables should be used sparingly, since they make it very easy to write appalling
code. In this modified function, h2, y is randomly locally defined half the time. With y
defined in the user workspace, when we evaluate it y will be randomly local or global!

h2 <- function(x)
{
 if(runif(1) > 0.5) y <- 12
 x * y
}

Let’s use replicate to run the code several times to see the result:

replicate(10, h2(9))

[1] 144 144 144 108 144 108 108 144 108 108

When the uniform random number (between 0 and 1) generated by runif is greater
than 0.5, a local variable y is assigned the value 12. Otherwise, the global value of 16 is
used.

90 | Chapter 6: Environments and Functions

As I’m sure you’ve noticed, it is very easy to create obscure bugs in code by doing things
like this. Usually it is better to explicitly pass all the variables that we need into a function.

Summary
• Environments store variables and can be created with new.env.
• You can treat environments like lists most of the time.
• All environments have a parent environment (except the empty environment at the

top).
• Functions consist of formal arguments and a body.
• You can assign and use functions just as you would any other variable type.
• R will look for variables in the current environment and its parents.

Test Your Knowledge: Quiz
Question 6-1

What is another name for the global environment?

Question 6-2
How would you convert a list to an environment?

Question 6-3
How do you print the contents of a function to the console?

Question 6-4
Name three functions that tell you the names of the formal arguments of a function.

Question 6-5
What does the do.call function do?

Test Your Knowledge: Exercises
Exercise 6-1

Create a new environment named multiples_of_pi. Assign these variables into
the environment:

1. two_pi, with the value 2 * π, using double square brackets
2. three_pi, with the value 3 * π, using the dollar sign operator
3. four_pi, with the value 4 * π, using the assign function

List the contents of the environment, along with their values. [10]

Summary | 91

Exercise 6-2
Write a function that accepts a vector of integers (for simplicity, you don’t have to
worry about input checking) and returns a logical vector that is TRUE whenever the
input is even, FALSE whenever the input is odd, and NA whenever the input is non‐
finite (nonfinite means anything that will make is.finite return FALSE: Inf, -Inf,
NA, and NaN). Check that the function works with positive, negative, zero, and non‐
finite inputs. [10]

Exercise 6-3
Write a function that accepts a function as an input and returns a list with two
elements: an element named args that contains a pairlist of the input’s formal ar‐
guments, and an element named body that contains the input’s body. Test it by
calling the function with a variety of inputs. [10]

92 | Chapter 6: Environments and Functions

CHAPTER 7

Strings and Factors

As well as dealing with numbers and logical values, at some point you will almost cer‐
tainly need to manipulate text. This is particularly common when you are retrieving or
cleaning datasets. Perhaps you are trying to turn the text of a log file into meaningful
values, or correct the typos in your data. These data-cleaning activities will be discussed
in more depth in Chapter 13, but for now, you will learn how to manipulate character
vectors.

Factors are used to store categorical data like gender (“male” or “female”) where there
are a limited number of options for a string. They sometimes behave like character
vectors and sometimes like integer vectors, depending upon context.

Chapter Goals
After reading this chapter, you should:

• Be able to construct new strings from existing strings
• Be able to format how numbers are printed
• Understand special characters like tab and newline
• Be able to create and manipulate factors

Strings
Text data is stored in character vectors (or, less commonly, character arrays). It’s im‐
portant to remember that each element of a character vector is a whole string, rather
than just an individual character. In R, “string” is an informal term that is used because
“element of a character vector” is quite a mouthful.

93

The fact that the basic unit of text is a character vector means that most string manip‐
ulation functions operate on vectors of strings, in the same way that mathematical op‐
erations are vectorized.

Constructing and Printing Strings
As you’ve already seen, character vectors can be created with the c function. We can use
single or double quotes around our strings, as long as they match, though double quotes
are considered more standard:

c(
 "You should use double quotes most of the time",
 'Single quotes are better for including " inside the string'
)

[1] "You should use double quotes most of the time"
[2] "Single quotes are better for including \" inside the string"

The paste function combines strings together. Each vector passed to it has its elements
recycled to reach the length of the longest input, and then the strings are concatenated,
with a space separating them. We can change the separator by passing an argument
called sep, or use the related function paste0 to have no separator. After all the strings
are combined, the result can be collapsed into one string containing everything using
the collapse argument:

paste(c("red", "yellow"), "lorry")

[1] "red lorry" "yellow lorry"

paste(c("red", "yellow"), "lorry", sep = "-")

[1] "red-lorry" "yellow-lorry"

paste(c("red", "yellow"), "lorry", collapse = ", ")

[1] "red lorry, yellow lorry"

paste0(c("red", "yellow"), "lorry")

[1] "redlorry" "yellowlorry"

The function toString is a variation of paste that is useful for printing vectors. It
separates each element with a comma and a space, and can limit how much we print.
In the following example, width = 40 limits the output to 40 characters:

x <- (1:15) ^ 2
toString(x)

[1] "1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225"

toString(x, width = 40)

[1] "1, 4, 9, 16, 25, 36, 49, 64, 81, 100...."

94 | Chapter 7: Strings and Factors

1. Pedantically, it accepts a path to a file, or a connection to a file, as returned by the file function.

cat is a low-level function that works similarly to paste, but with less formatting. You
should rarely need to call it directly yourself, but it is worth being aware of, since it is
the basis for most of the print functions. cat can also accept a file argument1 to write
its output to a file:

cat(c("red", "yellow"), "lorry")

red yellow lorry

Usually, when strings are printed to the console they are shown wrapped in double
quotes. By wrapping a variable in a call to the noquote function, we can suppress those
quotes. This can make the text more readable in some instances:

x <- c(
 "I", "saw", "a", "saw", "that", "could", "out",
 "saw", "any", "other", "saw", "I", "ever", "saw"
)
y <- noquote(x)
x

[1] "I" "saw" "a" "saw" "that" "could" "out" "saw"
[9] "any" "other" "saw" "I" "ever" "saw"

y

[1] I saw a saw that could out saw any other saw
[12] I ever saw

Formatting Numbers
There are several functions for formatting numbers. formatC uses C-style formatting
specifications that allow you to specify fixed or scientific formatting, the number of
decimal places, and the width of the output. Whatever the options, the input should be
one of the numeric types (including arrays), and the output is a character vector or
array:

pow <- 1:3
(powers_of_e <- exp(pow))

[1] 2.718 7.389 20.086

formatC(powers_of_e)

[1] "2.718" "7.389" "20.09"

formatC(powers_of_e, digits = 3) #3 sig figs

[1] "2.72" "7.39" "20.1"

formatC(powers_of_e, digits = 3, width = 10) #preceding spaces

[1] " 2.72" " 7.39" " 20.1"

Strings | 95

formatC(powers_of_e, digits = 3, format = "e") #scientific formatting

[1] "2.718e+00" "7.389e+00" "2.009e+01"

formatC(powers_of_e, digits = 3, flag = "+") #precede +ve values with +

[1] "+2.72" "+7.39" "+20.1"

R also provides slightly more general C-style formatting with the function sprintf. This
works in the same way as sprintf in every other language: the first argument contains
placeholders for string or number variables, and further arguments are substituted into
those placeholders. Just remember that most numbers in R are floating-point values
rather than integers.

The first argument to sprintf specifies a formatting string, with placeholders for other
values. For example, %s denotes another string, %f and %e denote a floating-point num‐
ber in fixed or scientific format, respectively, and %d represents an integer. Additional
arguments specify the values to replace the placeholders. As with the paste function,
shorter inputs are recycled to match the longest input:

sprintf("%s %d = %f", "Euler's constant to the power", pow, powers_of_e)

[1] "Euler's constant to the power 1 = 2.718282"
[2] "Euler's constant to the power 2 = 7.389056"
[3] "Euler's constant to the power 3 = 20.085537"

sprintf("To three decimal places, e ^ %d = %.3f", pow, powers_of_e)

[1] "To three decimal places, e ^ 1 = 2.718"
[2] "To three decimal places, e ^ 2 = 7.389"
[3] "To three decimal places, e ^ 3 = 20.086"

sprintf("In scientific notation, e ^ %d = %e", pow, powers_of_e)

[1] "In scientific notation, e ^ 1 = 2.718282e+00"
[2] "In scientific notation, e ^ 2 = 7.389056e+00"
[3] "In scientific notation, e ^ 3 = 2.008554e+01"

Alternative syntaxes for formatting numbers are provided with the format and pretty
Num functions. format just provides a slightly different syntax for formatting strings,
and has similar usage to formatC. prettyNum, on the other hand, is best for pretty for‐
matting of very big or very small numbers:

format(powers_of_e)

[1] " 2.718" " 7.389" "20.086"

format(powers_of_e, digits = 3) #at least 3 sig figs

[1] " 2.72" " 7.39" "20.09"

format(powers_of_e, digits = 3, trim = TRUE) #remove leading zeros

[1] "2.72" "7.39" "20.09"

96 | Chapter 7: Strings and Factors

format(powers_of_e, digits = 3, scientific = TRUE)

[1] "2.72e+00" "7.39e+00" "2.01e+01"

prettyNum(
 c(1e10, 1e-20),
 big.mark = ",",
 small.mark = " ",
 preserve.width = "individual",
 scientific = FALSE
)

[1] "10,000,000,000" "0.00000 00000 00000 00001"

Special Characters
There are some special characters that can be included in strings. For example, we can
insert a tab character using \t. In the following example, we use cat rather than
print, since print performs an extra conversion to turn \t from a tab character into a
backslash and a “t.” The argument fill = TRUE makes cat move the cursor to a new
line after it is finished:

cat("foo\tbar", fill = TRUE)

foo bar

Moving the cursor to a new line is done by printing a newline character, \n (this is true
on all platforms; don’t try to use \r or \r\n for printing newlines to the R command
line, since \r will just move the cursor to the start of the current line and overwrite what
you have written):

cat("foo\nbar", fill = TRUE)

foo
bar

Null characters, \0, are used to terminate strings in R’s internal code. It is an error to
explicitly try to include them in a string (older versions of R will discard the contents
of the string after the null character):

cat("foo\0bar", fill = TRUE) #this throws an error

Backslash characters need to be doubled up so that they aren’t mistaken for a special
character. In this next example, the two input backslashes make just one backslash in
the resultant string:

cat("foo\\bar", fill = TRUE)

foo\bar

If we are using double quotes around our string, then double quote characters need to
be preceded by a backslash to escape them. Similarly, if we use single quotes around our
strings, then single quote characters need to be escaped:

Strings | 97

cat("foo\"bar", fill = TRUE)

foo"bar

cat('foo\'bar', fill = TRUE)

foo'bar

In the converse case, including single quotes in double-quoted strings or double quotes
inside single-quoted strings, we don’t need an escape backslash:

cat("foo'bar", fill = TRUE)

foo'bar

cat('foo"bar', fill = TRUE)

foo"bar

We can make our computer beep by printing an alarm character, \a, though the function
alarm will do this in a more readable way. This can be useful to add to the end of a long
analysis to notify you that it’s finished (as long as you aren’t in an open-plan office):

cat("\a")
alarm()

Changing Case
Strings can be converted to contain all uppercase or all lowercase values using the func‐
tions toupper and tolower:

toupper("I'm Shouting")

[1] "I'M SHOUTING"

tolower("I'm Whispering")

[1] "i'm whispering"

Extracting Substrings
There are two related functions for extracting substrings: substring and substr. In
most cases, it doesn’t matter which you use, but they behave in slightly different ways
when you pass vectors of different lengths as arguments. For substring, the output is
as long as the longest input; for substr, the output is as long as the first input:

woodchuck <- c(
 "How much wood would a woodchuck chuck",
 "If a woodchuck could chuck wood?",
 "He would chuck, he would, as much as he could",
 "And chuck as much wood as a woodchuck would",
 "If a woodchuck could chuck wood."
)

98 | Chapter 7: Strings and Factors

substring(woodchuck, 1:6, 10)

[1] "How much w" "f a woodc" " would c" " chuck " " woodc"
[6] "uch w"

substr(woodchuck, 1:6, 10)

[1] "How much w" "f a woodc" " would c" " chuck " " woodc"

Splitting Strings
The paste function and its friends combine strings together. strsplit does the oppo‐
site, breaking them apart at specified cut points. We can break the woodchuck tongue
twister up into words by splitting it on the spaces. In the next example, fixed = TRUE
means that the split argument is a fixed string rather than a regular expression:

strsplit(woodchuck, " ", fixed = TRUE)

[[1]]
[1] "How" "much" "wood" "would" "a" "woodchuck"
[7] "chuck"
##
[[2]]
[1] "If" "a" "woodchuck" "could" "chuck" "wood?"
##
[[3]]
[1] "He" "would" "chuck," "he" "would," "as" "much"
[8] "as" "he" "could"
##
[[4]]
[1] "And" "chuck" "as" "much" "wood" "as"
[7] "a" "woodchuck" "would"
##
[[5]]
[1] "If" "a" "woodchuck" "could" "chuck" "wood."

Notice that strsplit returns a list (not a character vector or matrix). This is because
its result consists of character vectors of possibly different lengths. When you only pass
a single string as an input, this fact is easy to overlook. Be careful!

In our example, the trailing commas on some words are a little annoying. It would be
better to split on an optional comma followed by a space. This is easily specified using
a regular expression. ? means “make the previous character optional”:

strsplit(woodchuck, ",? ")

[[1]]
[1] "How" "much" "wood" "would" "a" "woodchuck"
[7] "chuck"
##
[[2]]
[1] "If" "a" "woodchuck" "could" "chuck" "wood?"
##

Strings | 99

[[3]]
[1] "He" "would" "chuck" "he" "would" "as" "much" "as"
[9] "he" "could"
##
[[4]]
[1] "And" "chuck" "as" "much" "wood" "as"
[7] "a" "woodchuck" "would"
##
[[5]]
[1] "If" "a" "woodchuck" "could" "chuck" "wood."

File Paths
R has a working directory, which is the default place that files will be read from or written
to. You can see its location with getwd and change it with setwd:

getwd()

[1] "d:/workspace/LearningR"

setwd("c:/windows")
getwd()

[1] "c:/windows"

Notice that the directory components of each path are separated by forward slashes,
even though they are Windows pathnames. For portability, in R you can always specify
paths with forward slashes, and the file handling functions will magically replace them
with backslashes if the operating system needs them.

You can also specify a double backslash to denote Windows paths, but forward slashes
are preferred:

"c:\\windows" #remember to double up the slashes
"\\\\myserver\\mydir" #UNC names need four slashes at the start

Alternatively, you can construct file paths from individual directory names using
file.path. This automatically puts forward slashes between directory names. It’s like
a simpler, faster version of paste for paths:

file.path("c:", "Program Files", "R", "R-devel")

[1] "c:/Program Files/R/R-devel"

R.home() #same place: a shortcut to the R installation dir

[1] "C:/PROGRA~1/R/R-devel"

Paths can be absolute (starting from a drive name or network share), or relative to the
current working directory. In the latter case, . can be used for the current directory
and .. can be used for the parent directory. ~ is shorthand for your user home directory.
path.expand converts relative paths to absolute paths:

100 | Chapter 7: Strings and Factors

path.expand(".")

[1] "."

path.expand("..")

[1] ".."

path.expand("~")

[1] "C:\\Users\\richie\\Documents"

basename returns the name of a file without the preceding directory location. Con‐
versely, dirname returns the name of the directory that a file is in:

file_name <- "C:/Program Files/R/R-devel/bin/x64/RGui.exe"
basename(file_name)

[1] "RGui.exe"

dirname(file_name)

[1] "C:/Program Files/R/R-devel/bin/x64"

Factors
Factors are a special variable type for storing categorical variables. They sometimes
behave like strings, and sometimes like integers.

Creating Factors
Whenever you create a data frame with a column of text data, R will assume by default
that the text is categorical data and perform some conversion. The following example
dataset contains the heights of 10 random adults:

(heights <- data.frame(
 height_cm = c(153, 181, 150, 172, 165, 149, 174, 169, 198, 163),
 gender = c(
 "female", "male", "female", "male", "male",
 "female", "female", "male", "male", "female"
)
))

height_cm gender
1 153 female
2 181 male
3 150 female
4 172 male
5 165 male
6 149 female
7 174 female
8 169 male
9 198 male
10 163 female

Factors | 101

By inspecting the class of the gender column we can see that it is not, as you may have
expected, a character vector, but is in fact a factor:

class(heights$gender)

[1] "factor"

Printing the column reveals a little more about the nature of this factor:

heights$gender

[1] female male female male male female female male male female
Levels: female male

Each value in the factor is a string that is constrained to be either “female,” “male,” or
missing. This constraint becomes obvious if we try to add a different string to the
genders:

heights$gender[1] <- "Female" #notice the capital "F"

Warning: invalid factor level, NA generated

heights$gender

[1] <NA> male female male male female female male male female
Levels: female male

The choices “female” and “male” are called the levels of the factor and can be retrieved
with the levels function:

levels(heights$gender)

[1] "female" "male"

The number of these levels (equivalent to the length of the levels of the factor) can
be retrieved with the nlevels function:

nlevels(heights$gender)

[1] 2

Outside of their automatic creation inside data frames, you can create factors using the
factor function. The first (and only compulsory) argument is a character vector:

gender_char <- c(
 "female", "male", "female", "male", "male",
 "female", "female", "male", "male", "female"
)
(gender_fac <- factor(gender_char))

[1] female male female male male female female male male female
Levels: female male

102 | Chapter 7: Strings and Factors

Changing Factor Levels
We can change the order of the levels when the factor is created by specifying a levels
argument:

factor(gender_char, levels = c("male", "female"))

[1] female male female male male female female male male female
Levels: male female

If we want to change the order of the factor levels after creation, we again use the factor
function, this time passing in the existing factor (rather than a character vector):

factor(gender_fac, levels = c("male", "female"))

[1] female male female male male female female male male female
Levels: male female

What we shouldn’t do is directly change the levels using the levels
function. This will relabel each level, changing data values, which is
usually undesirable.

In the next example, directly setting the levels of the factor changes male data to female
data, and female data to male data, which isn’t what we want:

levels(gender_fac) <- c("male", "female")
gender_fac

[1] male female male female female male male female female male
Levels: male female

The relevel function is an alternative way of changing the order of factor levels. In this
case, it just lets you specify which level comes first. As you might imagine, the use case
for this function is rather niche—it can come in handy for regression models where you
want to compare different categories to a reference category. Most of the time you will
be better off calling factor if you want to set the levels:

relevel(gender_fac, "male")

[1] male female male female female male male female female male
Levels: male female

Dropping Factor Levels
In the process of cleaning datasets, you may end up removing all the data corresponding
to a factor level. Consider this dataset of times to travel into work using different modes
of transport:

getting_to_work <- data.frame(
 mode = c(
 "bike", "car", "bus", "car", "walk",

Factors | 103

2. This is sometimes called a Likert scale.

 "bike", "car", "bike", "car", "car"
),
 time_mins = c(25, 13, NA, 22, 65, 28, 15, 24, NA, 14)
)

Not all the times have been recorded, so our first task is to remove the rows where
time_mins is NA:

(getting_to_work <- subset(getting_to_work, !is.na(time_mins)))

mode time_mins
1 bike 25
2 car 13
4 car 22
5 walk 65
6 bike 28
7 car 15
8 bike 24
10 car 14

Looking at the mode column, there are now just three different values, but we still have
the same four levels in the factor. We can see this with the unique function (the levels
function will, of course, also tell us the levels of the factor):

unique(getting_to_work$mode)

[1] bike car walk
Levels: bike bus car walk

If we want to drop the unused levels of the factor, we can use the droplevels function.
This accepts either a factor or a data frame. In the latter case, it drops the unused levels
in all the factors of the input. Since there is only one factor in our example data frame,
the two lines of code in the next example are equivalent:

getting_to_work$mode <- droplevels(getting_to_work$mode)
getting_to_work <- droplevels(getting_to_work)
levels(getting_to_work$mode)

[1] "bike" "car" "walk"

Ordered Factors
Some factors have levels that are semantically greater than or less than other levels. This
is common with multiple-choice survey questions. For example, the survey question
“How happy are you?” could have the possible responses “depressed,” “grumpy,” “so-so,”
“cheery,” and ‘`ecstatic.’'2 The resulting variable is categorical, so we can create a factor
with the five choices as levels. Here we generate ten thousand random responses using
the sample function:

104 | Chapter 7: Strings and Factors

happy_choices <- c("depressed", "grumpy", "so-so", "cheery", "ecstatic")
happy_values <- sample(
 happy_choices,
 10000,
 replace = TRUE
)
happy_fac <- factor(happy_values, happy_choices)
head(happy_fac)

[1] grumpy depressed cheery ecstatic grumpy grumpy
Levels: depressed grumpy so-so cheery ecstatic

In this case, the five choices have a natural ordering to them: “grumpy” is happier than
“depressed,” “so-so” is happier than “grumpy,” and so on. This means that it is better to
store the responses in an ordered factor. We can do this using the ordered function (or
by passing the argument ordered = TRUE to factor):

happy_ord <- ordered(happy_values, happy_choices)
head(happy_ord)

[1] grumpy depressed cheery ecstatic grumpy grumpy
Levels: depressed < grumpy < so-so < cheery < ecstatic

An ordered factor is a factor, but a normal factor isn’t ordered:

is.factor(happy_ord)

[1] TRUE

is.ordered(happy_fac)

[1] FALSE

For most purposes, you don’t need to worry about using ordered factors—you will only
see a difference in some models—but they can be useful for analyzing survey data.

Converting Continuous Variables to Categorical
A useful way of summarizing a numeric variable is to count how many values fall into
different “bins.” The cut function cuts a numeric variable into pieces, returning a factor.
It is commonly used with the table function to get counts of numbers in different
groups. (The hist function, which draws histograms, provides an alternative way of
doing this, as does count in the plyr package, which we will see later.)

In the next example, we randomly generate the ages of ten thousand workers (from 16
to 66, using a beta distribution) and put them in 10-year-wide groups:

ages <- 16 + 50 * rbeta(10000, 2, 3)
grouped_ages <- cut(ages, seq.int(16, 66, 10))
head(grouped_ages)

[1] (26,36] (16,26] (26,36] (26,36] (26,36] (46,56]
Levels: (16,26] (26,36] (36,46] (46,56] (56,66]

Factors | 105

table(grouped_ages)

grouped_ages
(16,26] (26,36] (36,46] (46,56] (56,66]
1844 3339 3017 1533 267

In this case, the bulk of the workforce falls into the 26-to-36 and 36-to-46 categories (as
a direct consequence of the shape of our beta distribution).

Notice that ages is a numeric variable and grouped_ages is a factor:

class(ages)

[1] "numeric"

class(grouped_ages)

[1] "factor"

Converting Categorical Variables to Continuous
The converse case of converting a factor into a numeric variable is most useful during
data cleaning. If you have dirty data where numbers are mistyped, R may interpret them
as strings and convert them to factors during the import process. In this next example,
one of the numbers has a double decimal place. Import functions such as read.table,
which we will look at in Chapter 12, would fail to parse such a string into numeric format,
and default to making the column a character vector:

dirty <- data.frame(
 x = c("1.23", "4..56", "7.89")
)

To convert the x column to be numeric, the obvious solution is to call as.numeric.
Unfortunately, it gives the wrong answer:

as.numeric(dirty$x)

[1] 1 2 3

Calling as.numeric on a factor reveals the underlying integer codes that the factor uses
to store its data. In general, a factor f can be reconstructed from levels(f)[as.inte
ger(f)].

To correctly convert the factor to numeric, we can first retrieve the values by converting
the factor to a character vector. The second value is NA because 4..56 is not a genuine
number:

as.numeric(as.character(dirty$x))

Warning: NAs introduced by coercion

[1] 1.23 NA 7.89

106 | Chapter 7: Strings and Factors

This is slightly inefficient, since repeated values have to be converted multiple times. As
the FAQ on R notes, it is better to convert the factor’s levels to be numeric, then recon‐
struct the factor as above:

as.numeric(levels(dirty$x))[as.integer(dirty$x)]

Warning: NAs introduced by coercion

[1] 1.23 NA 7.89

Since this is not entirely intuitive, if you want to do this task regularly, you can wrap it
into a function for convenience:

factor_to_numeric <- function(f)
{
 as.numeric(levels(f))[as.integer(f)]
}

Generating Factor Levels
For balanced data, where there are an equal number of data points for each level, the gl
function can be used to generate a factor. In its simplest form, the function takes an
integer for the number of levels in the resultant factor, and another integer for how many
times each level should be repeated. More commonly, you will want to set the names of
the levels, which is achieved by passing a character vector to the labels argument. More
complex level orderings, such as alternating values, can be created by also passing a
length argument:

gl(3, 2)

[1] 1 1 2 2 3 3
Levels: 1 2 3

gl(3, 2, labels = c("placebo", "drug A", "drug B"))

[1] placebo placebo drug A drug A drug B drug B
Levels: placebo drug A drug B

gl(3, 1, 6, labels = c("placebo", "drug A", "drug B")) #alternating

[1] placebo drug A drug B placebo drug A drug B
Levels: placebo drug A drug B

Combining Factors
Where we have multiple categorical variables, it is sometimes useful to combine them
into a single factor, where each level consists of the interactions of the individual
variables:

treatment <- gl(3, 2, labels = c("placebo", "drug A", "drug B"))
gender <- gl(2, 1, 6, labels = c("female", "male"))
interaction(treatment, gender)

Factors | 107

http://bit.ly/13ZJ69Q

[1] placebo.female placebo.male drug A.female drug A.male
[5] drug B.female drug B.male
6 Levels: placebo.female drug A.female drug B.female ... drug B.male

Summary
• You can combine strings together using paste and its derivatives.
• There are many functions for formatting numbers.
• Categorical data is stored in factors (or ordered factors).
• Each possible category in a factor is called a level.
• Continuous variables can be cut into categorical variables.

Test Your Knowledge: Quiz
Question 7-1

Name as many functions as you can think of for formatting numbers.

Question 7-2
How might you make your computer beep?

Question 7-3
What are the classes of the two types of categorical variable?

Question 7-4
What happens if you add a value to a factor that isn’t one of the levels?

Question 7-5
How do you convert a numeric variable to categorical?

Test Your Knowledge: Exercises
Exercise 7-1

Display the value of pi to 16 significant digits. [5]

Exercise 7-2
Split these strings into words, removing any commas or hyphens:

x <- c(
 "Swan swam over the pond, Swim swan swim!",
 "Swan swam back again - Well swum swan!"
)

[5]

108 | Chapter 7: Strings and Factors

Exercise 7-3
For your role-playing game, each of your adventurer’s character attributes is cal‐
culated as the sum of the scores from three six-sided dice rolls. To save arm-ache,
you decide to use R to generate the scores. Here’s a helper function to generate them:

#n specifies the number of scores to generate.
#It should be a natural number.
three_d6 <- function(n)
{
 random_numbers <- matrix(
 sample(6, 3 * n, replace = TRUE),
 nrow = 3
)
 colSums(random_numbers)
}

Big scores give characters bonuses, and small scores give characters penalties, ac‐
cording to the following table:

Score Bonus

3 –3

4, 5 –2

6 to 8 –1

9 to 12 0

13 to 15 +1

16, 17 +2

18 +3

Use the three_d6 function to generate 1,000 character attribute scores. Create a
table of the number of scores with different levels of bonus. [15]

Test Your Knowledge: Exercises | 109

CHAPTER 8

Flow Control and Loops

In R, as with other languages, there are many instances where we might want to con‐
ditionally execute code, or to repeatedly execute similar code.

The if and switch functions of R should be familiar if you have programmed in other
languages, though the fact that they are functions may be new to you. Vectorized con‐
ditional execution via the ifelse function is also an R speciality.

We’ll look at all of these in this chapter, as well as the three simplest loops (for, while,
and repeat), which again should be reasonably familiar from other languages. Due to
the vectorized nature of R, and some more aesthetic alternatives, these loops are less
commonly used in R than you may expect.

Chapter Goals
After reading this chapter, you should:

• Be able to branch the flow of execution
• Be able to repeatedly execute code with loops

Flow Control
There are many occasions where you don’t just want to execute one statement after
another: you need to control the flow of execution. Typically this means that you only
want to execute some code if a condition is fulfilled.

111

if and else
The simplest form of flow control is conditional execution using if. if takes a logical
value (more precisely, a logical vector of length one) and executes the next statement
only if that value is TRUE:

if(TRUE) message("It was true!")

It was true!

if(FALSE) message("It wasn't true!")

Missing values aren’t allowed to be passed to if; doing so throws an error:

if(NA) message("Who knows if it was true?")

Error: missing value where TRUE/FALSE needed

Where you may have a missing value, you should test for it using is.na:

if(is.na(NA)) message("The value is missing!")

The value is missing!

Of course, most of the time, you won’t be passing the actual values TRUE or FALSE. Instead
you’ll be passing a variable or expression—if you knew that the statement was going
to be executed in advance, you wouldn’t need the if clause. In this next example,
runif(1) generates one uniformly distributed random number between 0 and 1. If that
value is more than 0.5, then the message is displayed:

if(runif(1) > 0.5) message("This message appears with a 50% chance.")

If you want to conditionally execute several statements, you can wrap them in curly
braces:

x <- 3
if(x > 2)
{
 y <- 2 * x
 z <- 3 * y
}

For clarity of code, some style guides recommend always using curly braces, even if you
only want to conditionally execute one statement.

The next step up in complexity from if is to include an else statement. Code that
follows an else statement is executed if the if condition was FALSE:

112 | Chapter 8: Flow Control and Loops

if(FALSE)
{
 message("This won't execute...")
} else
{
 message("but this will.")
}

but this will.

One important thing to remember is that the else statement must occur on the same
line as the closing curly brace from the if clause. If you move it to the next line, you’ll
get an error:

if(FALSE)
{
 message("This won't execute...")
}
else
{
 message("and you'll get an error before you reach this.")
}

Multiple conditions can be defined by combining if and else repeatedly. Notice that
if and else remain two separate words—there is an ifelse function but it means
something slightly different, as we’ll see in a moment:

(r <- round(rnorm(2), 1))

[1] -0.1 -0.4

(x <- r[1] / r[2])

[1] 0.25

if(is.nan(x))
{
 message("x is missing")
} else if(is.infinite(x))
{
 message("x is infinite")
} else if(x > 0)
{
 message("x is positive")
} else if(x < 0)
{
 message("x is negative")
} else
{
 message("x is zero")
}

x is positive

Flow Control | 113

R, unlike many languages, has a nifty trick that lets you reorder the code and do con‐
ditional assignment. In the next example, Re returns the real component of a complex
number (Im returns the imaginary component):

x <- sqrt(-1 + 0i)
(reality <- if(Re(x) == 0) "real" else "imaginary")

[1] "real"

Vectorized if
The standard if statement takes a single logical value. If you pass a logical vector with
a length of more than one (don’t do this!), then R will warn you that you’ve given multiple
options, and only the first one will be used:

if(c(TRUE, FALSE)) message("two choices")

Warning: the condition has length > 1 and only the first element will be
used

two choices

Since much of R is vectorized, you may not be surprised to learn that it also has vec‐
torized flow control, in the form of the ifelse function. ifelse takes three arguments.
The first is a logical vector of conditions. The second contains values that are returned
when the first vector is TRUE. The third contains values that are returned when the first
vector is FALSE. In the following example, rbinom generates random numbers from a
binomial distribution to simulate a coin flip:

ifelse(rbinom(10, 1, 0.5), "Head", "Tail")

[1] "Head" "Head" "Head" "Tail" "Tail" "Head" "Head" "Head" "Tail" "Head"

ifelse can also accept vectors in the second and third arguments. These should be the
same size as the first vector (if the vectors aren’t the same size, then elements in the
second and third arguments are recycled or ignored to make them the same size as the
first):

(yn <- rep.int(c(TRUE, FALSE), 6))

[1] TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE
[12] FALSE

ifelse(yn, 1:3, -1:-12)

[1] 1 -2 3 -4 2 -6 1 -8 3 -10 2 -12

If there are missing values in the condition argument, then the corresponding values in
the result will be missing:

yn[c(3, 6, 9, 12)] <- NA
ifelse(yn, 1:3, -1:-12)

[1] 1 -2 NA -4 2 NA 1 -8 NA -10 2 NA

114 | Chapter 8: Flow Control and Loops

Multiple Selection
Code with many else statements can quickly become cumbersome to read. In such
circumstances, prettier code can sometimes be achieved with a call to the switch func‐
tion. The most common usage takes for its first argument an expression that returns a
string, followed by several named arguments that provide results when the name
matches the first argument. The names must match the first argument exactly (since R
2.11.0), and you can execute multiple expressions by enclosing them in curly braces:

(greek <- switch(
 "gamma",
 alpha = 1,
 beta = sqrt(4),
 gamma =
 {
 a <- sin(pi / 3)
 4 * a ^ 2
 }
))

[1] 3

If no names match, then switch (invisibly) returns NULL:

(greek <- switch(
 "delta",
 alpha = 1,
 beta = sqrt(4),
 gamma =
 {
 a <- sin(pi / 3)
 4 * a ^ 2
 }
))

NULL

For these circumstances, you can provide an unnamed argument that matches when
nothing else does:

(greek <- switch(
 "delta",
 alpha = 1,
 beta = sqrt(4),
 gamma =
 {
 a <- sin(pi / 3)
 4 * a ^ 2
 },
 4
))

[1] 4

Flow Control | 115

1. If these examples make no sense, please watch the movie.

switch can also take a first argument that returns an integer. In this case the remaining
arguments do not need names—the next argument is executed if the first argument
resolves to 1, the argument after that is executed if the first argument resolves to 2, and
so on:

switch(
 3,
 "first",
 "second",
 "third",
 "fourth"
)

[1] "third"

As you may have noticed, no default argument is possible in this case. It’s also rather
cumbersome if you want to test for large integers, since you’ll need to provide many
arguments. Under those circumstances it is best to convert the first argument to a string
and use the first syntax:

switch(
 as.character(2147483647),
 "2147483647" = "a big number",
 "another number"
)

[1] "a big number"

Loops
There are three kinds of loops in R: repeat, while, and for. Although vectorization
means that you don’t need them as much in R as in other languages, they can still come
in handy for repeatedly executing code.

repeat Loops
The easiest loop to master in R is repeat. All it does is execute the same code over and
over until you tell it to stop. In other languages, it often goes by the name do while, or
something similar. The following example1 will execute until you press Escape, quit R,
or the universe ends, whichever happens soonest:

116 | Chapter 8: Flow Control and Loops

http://www.imdb.com/title/tt0107048

repeat
{
 message("Happy Groundhog Day!")
}

In general, we want our code to complete before the end of the universe, so it is possible
to break out of the infinite loop by including a break statement. In the next example,
sample returns one action in each iteration of the loop:

repeat
{
 message("Happy Groundhog Day!")
 action <- sample(
 c(
 "Learn French",
 "Make an ice statue",
 "Rob a bank",
 "Win heart of Andie McDowell"
),
 1
)
 message("action = ", action)
 if(action == "Win heart of Andie McDowell") break
}

Happy Groundhog Day!

action = Rob a bank

Happy Groundhog Day!

action = Rob a bank

Happy Groundhog Day!

action = Rob a bank

Happy Groundhog Day!

action = Win heart of Andie McDowell

Sometimes, rather than breaking out of the loop we just want to skip the rest of the
current iteration and start the next iteration:

Loops | 117

repeat
{
 message("Happy Groundhog Day!")
 action <- sample(
 c(
 "Learn French",
 "Make an ice statue",
 "Rob a bank",
 "Win heart of Andie McDowell"
),
 1
)
 if(action == "Rob a bank")
 {
 message("Quietly skipping to the next iteration")
 next
 }
 message("action = ", action)
 if(action == "Win heart of Andie McDowell") break
}

Happy Groundhog Day!

action = Learn French

Happy Groundhog Day!

Quietly skipping to the next iteration

Happy Groundhog Day!

Quietly skipping to the next iteration

Happy Groundhog Day!

action = Make an ice statue

Happy Groundhog Day!

action = Make an ice statue

Happy Groundhog Day!

Quietly skipping to the next iteration

Happy Groundhog Day!

action = Win heart of Andie McDowell

while Loops
while loops are like backward repeat loops. Rather than executing some code and then
checking to see if the loop should end, they check first and then (maybe) execute. Since
the check happens at the beginning, it is possible that the contents of the loop will never
be executed (unlike in a repeat loop). The following example behaves similarly to the

118 | Chapter 8: Flow Control and Loops

repeat example, except that if Andie McDowell’s heart is won straightaway, then the
Groundhog Day loop is completely avoided:

action <- sample(
 c(
 "Learn French",
 "Make an ice statue",
 "Rob a bank",
 "Win heart of Andie McDowell"
),
 1
)
while(action != "Win heart of Andie McDowell")
{
 message("Happy Groundhog Day!")
 action <- sample(
 c(
 "Learn French",
 "Make an ice statue",
 "Rob a bank",
 "Win heart of Andie McDowell"
),
 1
)
 message("action = ", action)
}

Happy Groundhog Day!

action = Make an ice statue

Happy Groundhog Day!

action = Learn French

Happy Groundhog Day!

action = Make an ice statue

Happy Groundhog Day!

action = Learn French

Happy Groundhog Day!

action = Make an ice statue

Happy Groundhog Day!

action = Win heart of Andie McDowell

With some fiddling, it is always possible to convert a repeat loop to a while loop or a
while loop to a repeat loop, but usually the syntax is much cleaner one way or the other.
If you know that the contents must execute at least once, use repeat; otherwise, use
while.

Loops | 119

for Loops
The third type of loop is to be used when you know exactly how many times you want
the code to repeat. The for loop accepts an iterator variable and a vector. It repeats the
loop, giving the iterator each element from the vector in turn. In the simplest case, the
vector contains integers:

for(i in 1:5) message("i = ", i)

i = 1

i = 2

i = 3

i = 4

i = 5

If you wish to execute multiple expressions, as with other loops they must be surrounded
by curly braces:

for(i in 1:5)
{
 j <- i ^ 2
 message("j = ", j)
}

j = 1

j = 4

j = 9

j = 16

j = 25

R’s for loops are particularly flexible in that they are not limited to integers, or even
numbers in the input. We can pass character vectors, logical vectors, or lists:

for(month in month.name)
{
 message("The month of ", month)
}

The month of January

The month of February

The month of March

The month of April

The month of May

The month of June

The month of July

120 | Chapter 8: Flow Control and Loops

2. There is widespread agreement that if you write R code that looks like Fortran, you lose the right to complain
that R is too slow.

The month of August

The month of September

The month of October

The month of November

The month of December

for(yn in c(TRUE, FALSE, NA))
{
 message("This statement is ", yn)
}

This statement is TRUE

This statement is FALSE

This statement is NA

l <- list(
 pi,
 LETTERS[1:5],
 charToRaw("not as complicated as it looks"),
 list(
 TRUE
)
)
for(i in l)
{
 print(i)
}

[1] 3.142
[1] "A" "B" "C" "D" "E"
[1] 6e 6f 74 20 61 73 20 63 6f 6d 70 6c 69 63 61 74 65 64 20 61 73 20 69
[24] 74 20 6c 6f 6f 6b 73
[[1]]
[1] TRUE

Since for loops operate on each element of a vector, they provide a sort of “pretend
vectorization.” In fact, the vectorized operations in R will generally use some kind of
for loop in internal C code. But be warned: R’s for loops will almost always run much
slower than their vectorized equivalents, often by an order of magnitude or two. This
means that you should try to use the vectorization capabilities wherever possible.2

Loops | 121

Summary
• You can conditionally execute statements using if and else.
• The ifelse function is a vectorized equivalent of these.
• R has three kinds of loops: repeat, while, and for.

Test Your Knowledge: Quiz
Question 8-1

What happens if you pass NA as a condition to if?

Question 8-2
What happens if you pass NA as a condition to ifelse?

Question 8-3
What types of variables can be passed as the first argument to the switch function?

Question 8-4
How do you stop a repeat loop executing?

Question 8-5
How do you jump to the next iteration of a loop?

Test Your Knowledge: Exercises
Exercise 8-1

In the game of craps, the player (the “shooter”) throws two six-sided dice. If the
total is 2, 3, or 12, then the shooter loses. If the total is 7 or 11, she wins. If the total
is any other score, then that score becomes the new target, known as the “point.”
Use this utility function to generate a craps score:

two_d6 <- function(n)
{
 random_numbers <- matrix(
 sample(6, 2 * n, replace = TRUE),
 nrow = 2
)
 colSums(random_numbers)
}

Write code that generates a craps score and assigns the following values to the
variables game_status and point:

122 | Chapter 8: Flow Control and Loops

score game_status point

2, 3, 11 FALSE NA

7, 11 TRUE NA

4, 5, 6, 8, 9, 10 NA Same as score

[10]

Exercise 8-2
If the shooter doesn’t immediately win or lose, then he must keep rolling the dice
until he scores the point value and wins, or scores a 7 and loses. Write code that
checks to see if the game status is NA, and if so, repeatedly generates a craps score
until either the point value is scored (set game_status to TRUE) or a 7 is scored (set
game_status to FALSE). [15]

Exercise 8-3
This is the text for the famous “sea shells” tongue twister:

sea_shells <- c(
 "She", "sells", "sea", "shells", "by", "the", "seashore",
 "The", "shells", "she", "sells", "are", "surely", "seashells",
 "So", "if", "she", "sells", "shells", "on", "the", "seashore",
 "I'm", "sure", "she", "sells", "seashore", "shells"
)

Use the nchar function to calculate the number of letters in each word. Now loop
over possible word lengths, displaying a message about which words have that
length. For example, at length six, you should state that the words “shells” and
“surely” have six letters. [10]

Test Your Knowledge: Exercises | 123

CHAPTER 9

Advanced Looping

R’s looping capability goes far beyond the three standard-issue loops seen in the last
chapter. It gives you the ability to apply functions to each element of a vector, list, or
array, so you can write pseudo-vectorized code where normal vectorization isn’t possi‐
ble. Other loops let you calculate summary statistics on chunks of data.

Chapter Goals
After reading this chapter, you should:

• Be able to apply a function to every element of a list or vector, or to every row or
column of a matrix

• Be able to solve split-apply-combine problems
• Be able to use the plyr package

Replication
Cast your mind back to Chapter 4 and the rep function. rep repeats its input several
times. Another related function, replicate, calls an expression several times. Mostly,
they do exactly the same thing. The difference occurs when random number generation
is involved. Pretend for a moment that the uniform random number generation func‐
tion, runif, isn’t vectorized. rep will repeat the same random number several times, but
replicate gives a different number each time (for historical reasons, the order of the
arguments is annoyingly back to front):

125

1. Lognormal distributions occasionally throw out very big numbers, thus approximating rush hour gridlock.

rep(runif(1), 5)

[1] 0.04573 0.04573 0.04573 0.04573 0.04573

replicate(5, runif(1))

[1] 0.5839 0.3689 0.1601 0.9176 0.5388

replicate comes into its own in more complicated examples: its main use is in Monte
Carlo analyses, where you repeat an analysis a known number of times, and each iter‐
ation is independent of the others.

This next example estimates a person’s time to commute to work via different methods
of transport. It’s a little bit complicated, but that’s on purpose because that’s when
replicate is most useful.

The time_for_commute function uses sample to randomly pick a mode of transport
(car, bus, train, or bike), then uses rnorm or rlnorm to find a normally or lognormal‐
ly1 distributed travel time (with parameters that depend upon the mode of transport):

time_for_commute <- function()
{
 #Choose a mode of transport for the day
 mode_of_transport <- sample(
 c("car", "bus", "train", "bike"),
 size = 1,
 prob = c(0.1, 0.2, 0.3, 0.4)
)
 #Find the time to travel, depending upon mode of transport
 time <- switch(
 mode_of_transport,
 car = rlnorm(1, log(30), 0.5),
 bus = rlnorm(1, log(40), 0.5),
 train = rnorm(1, 30, 10),
 bike = rnorm(1, 60, 5)
)
 names(time) <- mode_of_transport
 time
}

The presence of a switch statement makes this function very hard to vectorize. That
means that to find the distribution of commuting times, we need to repeatedly call
time_for_commute to generate data for each day. replicate gives us instant vectoriza‐
tion:

replicate(5, time_for_commute())

bike car train bus bike
66.22 35.98 27.30 39.40 53.81

126 | Chapter 9: Advanced Looping

2. Since the vectorization happens at the R level rather than by calling internal C code, you don’t get the per‐
formance benefits of the vectorization, only more readable code.

Looping Over Lists
By now, you should have noticed that an awful lot of R is vectorized. In fact, your default
stance should be to write vectorized code. It’s often cleaner to read, and invariably gives
you performance benefits when compared to a loop. In some cases, though, trying to
achieve vectorization means contorting your code in unnatural ways. In those cases, the
apply family of functions can give you pretend vectorization,2 without the pain.

The simplest and most commonly used family member is lapply, short for “list apply.”
lapply takes a list and a function as inputs, applies the function to each element of the
list in turn, and returns another list of results. Recall our prime factorization list from
Chapter 5:

prime_factors <- list(
 two = 2,
 three = 3,
 four = c(2, 2),
 five = 5,
 six = c(2, 3),
 seven = 7,
 eight = c(2, 2, 2),
 nine = c(3, 3),
 ten = c(2, 5)
)
head(prime_factors)

$two
[1] 2
##
$three
[1] 3
##
$four
[1] 2 2
##
$five
[1] 5
##
$six
[1] 2 3
##
$seven
[1] 7

Trying to find the unique value in each list element is difficult to do in a vectorized way.
We could write a for loop to examine each element, but that’s a little bit clunky:

Looping Over Lists | 127

unique_primes <- vector("list", length(prime_factors))
for(i in seq_along(prime_factors))
{
 unique_primes[[i]] <- unique(prime_factors[[i]])
}
names(unique_primes) <- names(prime_factors)
unique_primes

$two
[1] 2
##
$three
[1] 3
##
$four
[1] 2
##
$five
[1] 5
##
$six
[1] 2 3
##
$seven
[1] 7
##
$eight
[1] 2
##
$nine
[1] 3
##
$ten
[1] 2 5

lapply makes this so much easier, eliminating the nasty boilerplate code for worrying
about lengths and names:

lapply(prime_factors, unique)

$two
[1] 2
##
$three
[1] 3
##
$four
[1] 2
##
$five
[1] 5
##
$six

128 | Chapter 9: Advanced Looping

[1] 2 3
##
$seven
[1] 7
##
$eight
[1] 2
##
$nine
[1] 3
##
$ten
[1] 2 5

When the return value from the function is the same size each time, and you know what
that size is, you can use a variant of lapply called vapply. vapply stands for “list apply
that returns a vector.” As before, you pass it a list and a function, but vapply takes a
third argument that is a template for the return values. Rather than returning a list, it
simplifies the result to be a vector or an array:

vapply(prime_factors, length, numeric(1))

two three four five six seven eight nine ten
1 1 2 1 2 1 3 2 2

If the output does not fit the template, then vapply will throw an error. This makes it
less flexible than lapply, since the output must be the same size for each element and
must be known in advance.

There is another function that lies in between lapply and vapply: namely sapply, which
stands for “simplifying list apply.” Like the two other functions, sapply takes a list and
a function as inputs. It does not need a template, but will try to simplify the result to an
appropriate vector or array if it can:

sapply(prime_factors, unique) #returns a list

$two
[1] 2
##
$three
[1] 3
##
$four
[1] 2
##
$five
[1] 5
##
$six
[1] 2 3
##
$seven

Looping Over Lists | 129

[1] 7
##
$eight
[1] 2
##
$nine
[1] 3
##
$ten
[1] 2 5

sapply(prime_factors, length) #returns a vector

two three four five six seven eight nine ten
1 1 2 1 2 1 3 2 2

sapply(prime_factors, summary) #returns an array

two three four five six seven eight nine ten
Min. 2 3 2 5 2.00 7 2 3 2.00
1st Qu. 2 3 2 5 2.25 7 2 3 2.75
Median 2 3 2 5 2.50 7 2 3 3.50
Mean 2 3 2 5 2.50 7 2 3 3.50
3rd Qu. 2 3 2 5 2.75 7 2 3 4.25
Max. 2 3 2 5 3.00 7 2 3 5.00

For interactive use, this is wonderful because you usually automatically get the result in
the form that you want. This function does require some care if you aren’t sure about
what your inputs might be, though, since the result is sometimes a list and sometimes
a vector. This can trip you up in some subtle ways. Our previous length example re‐
turned a vector, but look what happens when you pass it an empty list:

sapply(list(), length)

list()

If the input list has length zero, then sapply always returns a list, regardless of the
function that is passed. So if your data could be empty, and you know the return value,
it is safer to use vapply:

vapply(list(), length, numeric(1))

numeric(0)

Although these functions are primarily designed for use with lists, they can also accept
vector inputs. In this case, the function is applied to each element of the vector in turn.
The source function is used to read and evaluate the contents of an R file. (That is, you
can use it to run an R script.) Unfortunately it isn’t vectorized, so if we wanted to run
all the R scripts in a directory, then we need to wrap the directory in a call to lapply.

In this next example, dir returns the names of files in a given directory, defaulting to
the current working directory. (Recall that you can find this with getwd.) The argument
pattern = "\\.R$" means “only return filenames that end with .R”:

130 | Chapter 9: Advanced Looping

r_files <- dir(pattern = "\\.R$")
lapply(r_files, source)

You may have noticed that in all of our examples, the functions passed to lapply,
vapply, and sapply have taken just one argument. There is a limitation in these func‐
tions in that you can only pass one vectorized argument (more on how to circumvent
that later), but you can pass other scalar arguments to the function. To do this, just pass
in named arguments to the lapply (or sapply or vapply) call, and they will be passed
to the inner function. For example, if rep.int takes two arguments, but the times
argument is allowed to be a single (scalar) number, you’d type:

complemented <- c(2, 3, 6, 18) #See http://oeis.org/A000614
lapply(complemented, rep.int, times = 4)

[[1]]
[1] 2 2 2 2
##
[[2]]
[1] 3 3 3 3
##
[[3]]
[1] 6 6 6 6
##
[[4]]
[1] 18 18 18 18

What if the vector argument isn’t the first one? In that case, we have to create our own
function to wrap the function that we really wanted to call. You can do this on a separate
line, but it is common to include the function definition within the call to lapply:

rep4x <- function(x) rep.int(4, times = x)
lapply(complemented, rep4x)

[[1]]
[1] 4 4
##
[[2]]
[1] 4 4 4
##
[[3]]
[1] 4 4 4 4 4 4
##
[[4]]
[1] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

This last code chunk can be made a little simpler by passing an anonymous function to
lapply. This is the trick we saw in Chapter 5, where we don’t bother with a separate
assignment line and just pass the function to lapply without giving it a name:

Looping Over Lists | 131

lapply(complemented, function(x) rep.int(4, times = x))

[[1]]
[1] 4 4
##
[[2]]
[1] 4 4 4
##
[[3]]
[1] 4 4 4 4 4 4
##
[[4]]
[1] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Very, very occasionally, you may want to loop over every variable in an environment,
rather than in a list. There is a dedicated function, eapply, for this, though in recent
versions of R you can also use lapply:

env <- new.env()
env$molien <- c(1, 0, 1, 0, 1, 1, 2, 1, 3) #See http://oeis.org/A008584
env$larry <- c("Really", "leery", "rarely", "Larry")
eapply(env, length)

$molien
[1] 9
##
$larry
[1] 4

lapply(env, length) #same

$molien
[1] 9
##
$larry
[1] 4

rapply is a recursive version of lapply that allows you to loop over nested lists. This is
a niche requirement, and code is often simpler if you flatten the data first using unlist.

Looping Over Arrays
lapply, and its friends vapply and sapply, can be used on matrices and arrays, but their
behavior often isn’t what we want. The three functions treat the matrices and arrays as
though they were vectors, applying the target function to each element one at a time
(moving down columns). More commonly, when we want to apply a function to an
array, we want to apply it by row or by column. This next example uses the matlab
package, which gives some functionality ported from the rival language.

To run the next example, you first need to install the matlab package:

132 | Chapter 9: Advanced Looping

3. Though the matrixStats package tries to do exactly that.

install.packages("matlab")

library(matlab)

Attaching package: 'matlab'

The following object is masked from 'package:stats':
##
reshape

The following object is masked from 'package:utils':
##
find, fix

The following object is masked from 'package:base':
##
sum

When you load the matlab package, it overrides some functions in the
base, stats, and utils packages to make them behave like their
MATLAB counterparts. After these examples that use the matlab
package, you may wish to restore the usual behavior by unloading the
package. Call detach("package:matlab") to do this.

The magic function creates a magic square—an n-by-n square matrix of the numbers
from 1 to n^2, where each row and each column has the same total:

(magic4 <- magic(4))

[,1] [,2] [,3] [,4]
[1,] 16 2 3 13
[2,] 5 11 10 8
[3,] 9 7 6 12
[4,] 4 14 15 1

A classic problem requiring us to apply a function by row is calculating the row totals.
This can be achieved using the rowSums function that we saw briefly in Chapter 5:

rowSums(magic4)

[1] 34 34 34 34

But what if we want to calculate a different statistic for each row? It would be cumber‐
some to try to provide a function for every such possibility.3 The apply function provides
the row/column-wise equivalent of lapply, taking a matrix, a dimension number, and
a function as arguments. The dimension number is 1 for “apply the function across each
row,” or 2 for “apply the function down each column” (or bigger numbers for higher-
dimensional arrays):

Looping Over Arrays | 133

apply(magic4, 1, sum) #same as rowSums

[1] 34 34 34 34

apply(magic4, 1, toString)

[1] "16, 2, 3, 13" "5, 11, 10, 8" "9, 7, 6, 12" "4, 14, 15, 1"

apply(magic4, 2, toString)

[1] "16, 5, 9, 4" "2, 11, 7, 14" "3, 10, 6, 15" "13, 8, 12, 1"

apply can also be used on data frames, though the mixed-data-type nature means that
this is less common (for example, you can’t sensibly calculate a sum or a product when
there are character columns):

(baldwins <- data.frame(
 name = c("Alec", "Daniel", "Billy", "Stephen"),
 date_of_birth = c(
 "1958-Apr-03", "1960-Oct-05", "1963-Feb-21", "1966-May-12"
),
 n_spouses = c(2, 3, 1, 1),
 n_children = c(1, 5, 3, 2),
 stringsAsFactors = FALSE
))

name date_of_birth n_spouses n_children
1 Alec 1958-Apr-03 2 1
2 Daniel 1960-Oct-05 3 5
3 Billy 1963-Feb-21 1 3
4 Stephen 1966-May-12 1 2

apply(baldwins, 1, toString)

[1] "Alec, 1958-Apr-03, 2, 1" "Daniel, 1960-Oct-05, 3, 5"
[3] "Billy, 1963-Feb-21, 1, 3" "Stephen, 1966-May-12, 1, 2"

apply(baldwins, 2, toString)

name
"Alec, Daniel, Billy, Stephen"
date_of_birth
"1958-Apr-03, 1960-Oct-05, 1963-Feb-21, 1966-May-12"
n_spouses
"2, 3, 1, 1"
n_children
"1, 5, 3, 2"

When applied to a data frame by column, apply behaves identically to sapply (remem‐
ber that data frames can be thought of as nonnested lists where the elements are of the
same length):

sapply(baldwins, toString)

name
"Alec, Daniel, Billy, Stephen"
date_of_birth

134 | Chapter 9: Advanced Looping

"1958-Apr-03, 1960-Oct-05, 1963-Feb-21, 1966-May-12"
n_spouses
"2, 3, 1, 1"
n_children
"1, 5, 3, 2"

Of course, simply printing a dataset in different forms isn’t that interesting. Using sapply
combined with range, on the other hand, is a great way to quickly determine the extent
of your data:

sapply(baldwins, range)

name date_of_birth n_spouses n_children
[1,] "Alec" "1958-Apr-03" "1" "1"
[2,] "Stephen" "1966-May-12" "3" "5"

Multiple-Input Apply
One of the drawbacks of lapply is that it only accepts a single vector to loop over.
Another is that inside the function that is called on each element, you don’t have access
to the name of that element.

The function mapply, short for “multiple argument list apply,” lets you pass in as many
vectors as you like, solving the first problem. A common usage is to pass in a list in one
argument and the names of that list in another, solving the second problem. One little
annoyance is that in order to accommodate an arbitrary number of vector arguments,
the order of the arguments has been changed. For mapply, the function is passed as the
first argument:

msg <- function(name, factors)
{
 ifelse(
 length(factors) == 1,
 paste(name, "is prime"),
 paste(name, "has factors", toString(factors))
)
}
mapply(msg, names(prime_factors), prime_factors)

two three
"two is prime" "three is prime"
four five
"four has factors 2, 2" "five is prime"
six seven
"six has factors 2, 3" "seven is prime"
eight nine
"eight has factors 2, 2, 2" "nine has factors 3, 3"
ten
"ten has factors 2, 5"

Multiple-Input Apply | 135

By default, mapply behaves in the same way as sapply, simplifying the output if it thinks
it can. You can turn this behavior off (so it behaves more like lapply) by passing the
argument SIMPLIFY = FALSE.

Instant Vectorization
The function Vectorize is a wrapper to mapply that takes a function that usually accepts
a scalar input, and returns a new function that accepts vectors. This next function is not
vectorized because of its use of switch, which requires a scalar input:

baby_gender_report <- function(gender)
{
 switch(
 gender,
 male = "It's a boy!",
 female = "It's a girl!",
 "Um..."
)
}

If we pass a vector into the function, it will throw an error:

genders <- c("male", "female", "other")
baby_gender_report(genders)

While it is theoretically possible to do a complete rewrite of a function that is inherently
vectorized, it is easier to use the Vectorize function:

vectorized_baby_gender_report <- Vectorize(baby_gender_report)
vectorized_baby_gender_report(genders)

male female other
"It's a boy!" "It's a girl!" "Um..."

Split-Apply-Combine
A really common problem when investigating data is how to calculate some statistic on
a variable that has been split into groups. Here are some scores on the classic road safety
awareness computer game, Frogger:

(frogger_scores <- data.frame(
 player = rep(c("Tom", "Dick", "Harry"), times = c(2, 5, 3)),
 score = round(rlnorm(10, 8), -1)
))

player score
1 Tom 2250
2 Tom 1510
3 Dick 1700
4 Dick 410
5 Dick 3720

136 | Chapter 9: Advanced Looping

6 Dick 1510
7 Dick 4500
8 Harry 2160
9 Harry 5070
10 Harry 2930

If we want to calculate the mean score for each player, then there are three steps. First,
we split the dataset by player:

(scores_by_player <- with(
 frogger_scores,
 split(score, player)
))

$Dick
[1] 1700 410 3720 1510 4500
##
$Harry
[1] 2160 5070 2930
##
$Tom
[1] 2250 1510

Next we apply the (mean) function to each element:

(list_of_means_by_player <- lapply(scores_by_player, mean))

$Dick
[1] 2368
##
$Harry
[1] 3387
##
$Tom
[1] 1880

Finally, we combine the result into a single vector:

(mean_by_player <- unlist(list_of_means_by_player))

Dick Harry Tom
2368 3387 1880

The last two steps can be condensed into one by using vapply or sapply, but split-apply-
combine is such a common task that we need something easier. That something is the
tapply function, which performs all three steps in one go:

with(frogger_scores, tapply(score, player, mean))

Dick Harry Tom
2368 3387 1880

There are a few other wrapper functions to tapply, namely by and aggregate. They
perform the same function with a slightly different interface.

Split-Apply-Combine | 137

SQL fans may note that split-apply-combine is the same as a GROUP BY
operation.

The plyr Package
The *apply family of functions are mostly wonderful, but they have three drawbacks
that stop them being as easy to use as they could be. Firstly, the names are a bit obscure.
The “l” in lapply for lists makes sense, but after using R for nine years, I still don’t know
what the “t” in tapply stands for.

Secondly, the arguments aren’t entirely consistent. Most of the functions take a data
object first and a function argument second, but mapply swaps the order, and tapply
takes the function for its third argument. The data argument is sometimes X and some‐
times object, and the simplification argument is sometimes simplify and sometimes
SIMPLIFY.

Thirdly, the form of the output isn’t as controllable as it could be. Getting your results
as a data frame—or discarding the result—takes a little bit of effort.

This is where the plyr package comes in handy. The package contains a set of functions
named **ply, where the blanks (asterisks) denote the form of the input and output,
respectively. So, llply takes a list input, applies a function to each element, and returns
a list, making it a drop-in replacement for lapply:

library(plyr)
llply(prime_factors, unique)

$two
[1] 2
##
$three
[1] 3
##
$four
[1] 2
##
$five
[1] 5
##
$six
[1] 2 3
##
$seven
[1] 7
##
$eight
[1] 2

138 | Chapter 9: Advanced Looping

##
$nine
[1] 3
##
$ten
[1] 2 5

laply takes a list and returns an array, mimicking sapply. In the case of an empty input,
it does the smart thing and returns an empty logical vector (unlike sapply, which returns
an empty list):

laply(prime_factors, length)

[1] 1 1 2 1 2 1 3 2 2

laply(list(), length)

logical(0)

raply replaces replicate (not rapply!), but there are also rlply and rdply functions
that let you return the result in list or data frame form, and an r_ply function that
discards the result (useful for drawing plots):

raply(5, runif(1)) #array output

[1] 0.009415 0.226514 0.133015 0.698586 0.112846

rlply(5, runif(1)) #list output

[[1]]
[1] 0.6646
##
[[2]]
[1] 0.2304
##
[[3]]
[1] 0.613
##
[[4]]
[1] 0.5532
##
[[5]]
[1] 0.3654

rdply(5, runif(1)) #data frame output

.n V1
1 1 0.9068
2 2 0.0654
3 3 0.3788
4 4 0.5086
5 5 0.3502

r_ply(5, runif(1)) #discarded output

NULL

The plyr Package | 139

Perhaps the most commonly used function in plyr is ddply, which takes data frames
as inputs and outputs and can be used as a replacement for tapply. Its big strength is
that it makes it easy to make calculations on several columns at once. Let’s add a level
column to the Frogger dataset, denoting the level the player reached in the game:

frogger_scores$level <- floor(log(frogger_scores$score))

There are several different ways of calling ddply. All methods take a data frame, the
name of the column(s) to split by, and the function to apply to each piece. The column
is passed without quotes, but wrapped in a call to the . function.

For the function, you can either use colwise to tell ddply to call the function on every
column (that you didn’t mention in the second argument), or use summarize and specify
manipulations of specific columns:

ddply(
 frogger_scores,
 .(player),
 colwise(mean) #call mean on every column except player
)

player score level
1 Dick 2368 7.200
2 Harry 3387 7.333
3 Tom 1880 7.000

ddply(
 frogger_scores,
 .(player),
 summarize,
 mean_score = mean(score), #call mean on score
 max_level = max(level) #... and max on level
)

player mean_score max_level
1 Dick 2368 8
2 Harry 3387 8
3 Tom 1880 7

colwise is quicker to specify, but you have to do the same thing with each column,
whereas summarize is more flexible but requires more typing.

There is no direct replacement for mapply, though the m*ply functions allow looping
with multiple arguments. Likewise, there is no replacement for vapply or rapply.

140 | Chapter 9: Advanced Looping

Summary
• The apply family of functions provide cleaner code for looping.
• Split-apply-combine problems, where you manipulate data split into groups, are

really common.
• The plyr package is a syntactically cleaner replacement for many apply functions.

Test Your Knowledge: Quiz
Question 9-1

Name as many members of the apply family of functions as you can.

Question 9-2
What is the difference between lapply, vapply, and sapply?

Question 9-3
How might you loop over tree-like data?

Question 9-4
Given some height data, how might you calculate a mean height by gender?

Question 9-5
In the plyr package, what do the asterisks mean in a name like **ply?

Test Your Knowledge: Exercises
Exercise 9-1

Loop over the list of children in the celebrity Wayans family. How many children
does each of the first generation of Wayanses have?

wayans <- list(
 "Dwayne Kim" = list(),
 "Keenen Ivory" = list(
 "Jolie Ivory Imani",
 "Nala",
 "Keenen Ivory Jr",
 "Bella",
 "Daphne Ivory"
),
 Damon = list(
 "Damon Jr",
 "Michael",
 "Cara Mia",
 "Kyla"
),

Summary | 141

 Kim = list(),
 Shawn = list(
 "Laila",
 "Illia",
 "Marlon"
),
 Marlon = list(
 "Shawn Howell",
 "Arnai Zachary"
),
 Nadia = list(),
 Elvira = list(
 "Damien",
 "Chaunté"
),
 Diedre = list(
 "Craig",
 "Gregg",
 "Summer",
 "Justin",
 "Jamel"
),
 Vonnie = list()
)

[5]

Exercise 9-2
state.x77 is a dataset that is supplied with R. It contains information about the
population, income, and other factors for each US state. You can see its values by
typing its name, just as you would with datasets that you create yourself:

state.x77

1. Inspect the dataset using the method that you learned in Chapter 3.
2. Find the mean and standard deviation of each column.

[10]

Exercise 9-3
Recall the time_for_commute function from earlier in the chapter. Calculate the
75th-percentile commute time by mode of transport:

commute_times <- replicate(1000, time_for_commute())
commute_data <- data.frame(
 time = commute_times,
 mode = names(commute_times)
)

[5]

142 | Chapter 9: Advanced Looping

1. Named after CPAN, the Comprehensive Perl Archive Network.

2. You can find a list of the most popular packages on the R-statistics blog.

CHAPTER 10

Packages

R is not limited to the code provided by the R Core Team. It is very much a community
effort, and there are thousands of add-on packages available to extend it. The majority
of R packages are currently installed in an online repository called CRAN (the Com‐
prehensive R Archive Network1), which is maintained by the R Core Team. Installing
and using these add-on packages is an important part of the R experience.

We’ve just seen the plyr package for advanced looping. Throughout the rest of the book,
we’ll see many more common packages: lubridate for date and time manipulation,
xlsx for importing Excel files, reshape2 for manipulating the shape of data frames,
ggplot2 for plotting, and dozens of others.2

Chapter Goals
After reading this chapter, you should:

• Be able to load packages that are installed on your machine
• Know how to install new packages from local files and via the Internet
• Understand how to manage the packages on your machine

143

http://www.r-statistics.com/2013/06/top-100-r-packages-for-2013-jan-may

3. Be warned that some people on the R-help mailing list consider confusing the two pieces of terminology a
capital offense.

Loading Packages
To load a package that is already installed on your machine, you call the library func‐
tion. It is widely agreed that calling this function library was a mistake, and that calling
it load_package would have saved a lot of confusion, but the function has existed long
enough that it is too late to change it now. To clarify the terminology, a package is a
collection of R functions and datasets, and a library is a folder on your machine that
stores the files for a package.3

If you have a standard version of R—that is, you haven’t built some custom version from
the source code—the lattice package should be installed, but it won’t automatically
be loaded. We can load it with the library function:

library(lattice)

We can now use all the functions provided by lattice. For example, Figure 10-1 displays
a fancy dot plot of the famous Immer’s barley dataset:

dotplot(
 variety ~ yield | site,
 data = barley,
 groups = year
)

The lattice package is covered in detail in Chapter 14.

Notice that the name of the package is passed to library without being enclosed in
quotes. If you want to programmatically pass the name of the package to library, then
you can set the argument character.only = TRUE. This is mildly useful if you have a
lot of packages to load:

pkgs <- c("lattice", "utils", "rpart")
for(pkg in pkgs)
{
 library(pkg, character.only = TRUE)
}

144 | Chapter 10: Packages

Figure 10-1. A dot plot of Immer’s barley data using lattice

If you use library to try to load a package that isn’t installed, then it will throw an
error. Sometimes you might want to handle the situation differently, in which case the
require function provides an alternative. Like library, require loads a package, but
rather than throwing an error it returns TRUE or FALSE, depending upon whether or not
the package was successfully loaded:

if(!require(apackagethatmightnotbeinstalled))
{
 warning("The package 'apackagethatmightnotbeinstalled' is not available.")
 #perhaps try to download it
 #...
}

Loading Packages | 145

The Search Path
You can see the packages that are loaded with the search function:

search()

[1] ".GlobalEnv" "package:stats" "package:graphics"
[4] "package:grDevices" "package:utils" "package:datasets"
[7] "package:methods" "Autoloads" "package:base"

This list shows the order of places that R will look to try to find a variable. The global
environment always comes first, followed by the most recently loaded packages. The
last two values are always a special environment called Autoloads, and the base package.
If you define a variable called var in the global environment, R will find that before it
finds the usual variance function in the stats package, because the global environment
comes first in the search list. If you create any environments (see Chapter 6), they will
also appear on the search path.

Libraries and Installed Packages
The function installed.packages returns a data frame with information about all the
packages that R knows about on your machine. If you’ve been using R for a while, this
can easily be several hundred packages, so it is often best to view the results away from
the console:

View(installed.packages())

installed.packages gives you information about which version of each package is
installed, where it lives on your hard drive, and which other packages it depends upon,
amongst other things. The LibPath column that provides the file location of the package
tells you the library that contains the package. At this point, you may be wondering how
R decides which folders are considered libraries.

The following explanation is a little bit technical, so don’t worry about
remembering the minutiae of how R finds its packages. This informa‐
tion can save you administration effort when you choose to upgrade
R, or when you have problems with packages loading, but it isn’t re‐
quired for day-to-day use of R.

The packages that come with the R install (base, stats, and nearly 30 others) are stored
in the library subdirectory of wherever you installed R. You can retrieve the location of
this with:

R.home("library") #or

[1] "C:/PROGRA~1/R/R-devel/library"

146 | Chapter 10: Packages

4. If you are deploying R code as part of an application, then the situation is different. Compatibility trumps
convenience in that case.

5. You can have multiple locations separated by semicolons, but this is usually overkill.

.Library

[1] "C:/PROGRA~1/R/R-devel/library"

You also get a user library for installing packages that will only be accessible by you.
(This is useful if you install on a family PC and don’t want your six-year-old to update
packages and break compatibility in your code.) The location is OS dependent. Under
Windows, for R version x.y.z, it is in the R/win-library/x.y subfolder of the home di‐
rectory, where the home directory can be found via:

path.expand("~") #or

[1] "C:\\Users\\richie\\Documents"

Sys.getenv("HOME")

[1] "C:\\Users\\richie\\Documents"

Under Linux, the folder is similarly located in the R/R.version$platform-library/x.y
subfolder of the home directory. R.version$platform will typically return a string like
“i686-pc-linux-gnu,” and the home directory is found in the same way as under Win‐
dows. Under Mac OS X, it is found in Library/R/x.y/library.

One problem with the default setup of library locations is that when you upgrade R, you
need to reinstall all your packages. This is the safest behavior, since different versions
of R will often need different versions of packages. In practice, on a development ma‐
chine the convenience of not having to reinstall packages often outweighs versioning
worries.4 To make life easier for yourself, it’s a very good idea to create your own library
that can be used by all versions of R. The simplest way of doing this is to define an
environment variable named R_LIBS that contains a path5 to your desired library loca‐
tion. Although you can define environment variables programmatically with R, they
are only available to R, and only for the rest of the session—define them from within
your operating system instead.

You can see a character vector of all the libraries that R knows about using the .lib
Paths function:

.libPaths()

[1] "D:/R/library"
[2] "C:/Program Files/R/R-devel/library"

The first value in this vector is the most important, as this is where packages will be
installed by default.

Loading Packages | 147

Installing Packages
Factory-fresh installs of R are set up to access the CRAN package repository (via a mirror
—you’ll be prompted to pick the one nearest to you), and CRANextra if you are running
Windows. CRANextra contains a handful of packages that need special attention to
build under Windows, and cannot be hosted on the usual CRAN servers. To access
additional repositories, type setRepositories() and select the repositories that you
want. Figure 10-2 shows the available options.

Figure 10-2. List of available package repositories

Bioconductor contains packages related to genomics and molecular biology, while R-
Forge and RForge.net mostly contain development versions of packages that eventually
appear on CRAN. You can see information about all the packages that are available in
the repositories that you have set using available.packages (be warned—there are
thousands, so this takes several seconds to run):

View(available.packages())

As well as these repositories, there are many R packages in online repositories such as
GitHub, Bitbucket, and Google Code. Retrieving packages from GitHub is particularly
easy, as discussed below.

Many IDEs have a point-and-click method of installing packages. In R GUI, the Pack‐
ages menu has the option “Install package(s)…” to install from a repository and “Install
package(s) from local zip files…” to install packages that you downloaded earlier.
Figure 10-3 shows the R GUI menu.

You can also install packages using the install.packages function. Calling it without
any arguments gives you the same GUI interface as if you’d clicked the “Install pack‐
age(s)…” menu option. Usually, you would want to specify the names of the packages
that you want to download and the URL of the repository to retrieve them from. A list
of URLs for CRAN mirrors is available on the main CRAN site.

148 | Chapter 10: Packages

http://cran.r-project.org/mirrors.html

Figure 10-3. Installing packages in R GUI

This command will (try to) download the time-series analysis packages xts and zoo
and all the dependencies for each, and then install them into the default library location
(the first value returned by .libPaths):

install.packages(
 c("xts", "zoo"),
 repos = "http://www.stats.bris.ac.uk/R/"
)

To install to a different location, you can pass the lib argument to install.packages:

install.packages(
 c("xts", "zoo"),
 lib = "some/other/folder/to/install/to",
 repos = "http://www.stats.bris.ac.uk/R/"
)

Obviously, you need a working Internet connection for R to be able to download pack‐
ages, and you need sufficient permissions to be able to write files to the library folder.
Inside corporate networks, R’s access to the Internet may be restricted. Under Windows,
you can get R to use internet2.dll to access the Internet, making it appear as though it
is Internet Explorer and often bypassing restrictions. To achieve this, type:

setInternet2()

If all else fails, you can visit http://<cran mirror>web/packages/available_pack‐
ages_by_name.html and manually download the packages that you want (remember to
download all the dependencies too), then install the resultant tar.gz/tgz/zip file:

install.packages(
 "path/to/downloaded/file/xts_0.8-8.tar.gz",
 repos = NULL, #NULL repo means "package already downloaded"
 type = "source" #this means "build the package now"
)

install.packages(
 "path/to/downloaded/file/xts_0.8-8.zip",
 repos = NULL, #still need this

Installing Packages | 149

 type = "win.binary" #Windows only!
)

To install a package directly from GitHub, you first need to install the devtools package:

install.packages("devtools")

The install_github function accepts the name of the GitHub repository that contains
the package (usually the same as the name of the package itself) and the name of the
user that maintains that repository. For example, to get the development version of the
reporting package knitr, type:

library(devtools)
install_github("knitr", "yihui")

Maintaining Packages
After your packages are installed, you will usually want to update them in order to keep
up with the latest versions. This is done with update.packages. By default, this function
will prompt you before updating each package. This can become unwieldy after a while
(having several hundred packages installed is not uncommon), so setting ask =
FALSE is recommended:

update.packages(ask = FALSE)

Very occasionally, you may want to delete a package. It is possible to do this by simply
deleting the folder containing the package contents from your filesystem, or you can do
it programmatically:

remove.packages("zoo")

Summary
• There are thousands of R packages available from online repositories.
• You can install these packages with install.packages, and load them with library

or require.
• When you load packages, they are added to the search path, which lets R find their

variables.
• You can view the installed packages with installed.packages, keep them up-to-

date with update.packages, and clean your system with remove.packages.

150 | Chapter 10: Packages

Test Your Knowledge: Quiz
Question 10-1

What are the names of some R package repositories?

Question 10-2
What is the difference between the library and require functions?

Question 10-3
What is a package library?

Question 10-4
How might you find the locations of package libraries on your machine?

Question 10-5
How do you get R to pretend that it is Internet Explorer?

Test Your Knowledge: Exercises
Exercise 10-1

Using R GUI, install the Hmisc package. [10]

Exercise 10-2
Using the install.packages function, install the lubridate package. [10]

Exercise 10-3
Count the number of packages that are installed on your machine in each library.
[5]

Test Your Knowledge: Quiz | 151

1. The spin of the Earth is slowing down, so it takes slightly longer than 86,400 seconds for a day to happen.
This is especially obvious when you are waiting for payday. Leap seconds have been added since 1972 to
correct for this. Type .leap.seconds to see when they have happened.

CHAPTER 11

Dates and Times

Dates and times are very common in data analysis—not least for time-series analysis.
The bad news is that with different numbers of days in each month, leap years, leap
seconds,1 and time zones, they can be fairly awful to deal with programmatically. The
good news is that R has a wide range of capabilities for dealing with times and dates.
While these concepts are fairly fundamental to R programming, they’ve been left until
now because some of the best ways of using them appear in add-on packages. As you
begin reading this chapter, you may feel an awkward sensation that the code is grating
on you. At this point, we’ll seek lubrication from the lubridate package, which makes
your date-time code more readable.

Chapter Goals
After reading this chapter, you should:

• Understand the built-in date classes POSIXct, POSIXlt, and Date
• Be able to convert a string into a date
• Know how to display dates in a variety of formats
• Be able to specify and manipulate time zones
• Be able to use the lubridate package

153

2. UTC’s acronym is the wrong way around to make it match other universal time standards (UT0, UT1, etc.).
It is essentially identical to (civil) Greenwich Mean Time (GMT), except that Greenwich Mean Time isn’t a
scientific standard, and the British government can’t change UTC.

Date and Time Classes
There are three date and time classes that come with R: POSIXct, POSIXlt, and Date.

POSIX Dates and Times
POSIX dates and times are classic R: brilliantly thorough in their implementation, nav‐
igating all sorts of obscure technical issues, but with awful Unixy names that make
everything seem more complicated than it really is.

The two standard date-time classes in R are POSIXct and POSIXlt. (I said the names
were awful!) POSIX is a set of standards that defines compliance with Unix, including
how dates and times should be specified. ct is short for “calendar time,” and the POSIXct
class stores dates as the number of seconds since the start of 1970, in the Coordinated
Universal Time (UTC) zone.2 POSIXlt stores dates as a list, with components for sec‐
onds, minutes, hours, day of month, etc. POSIXct is best for storing dates and calculating
with them, whereas POSIXlt is best for extracting specific parts of a date.

The function Sys.time returns the current date and time in POSIXct form:

(now_ct <- Sys.time())

[1] "2013-07-17 22:47:01 BST"

The class of now_ct has two elements. It is a POSIXct variable, and POSIXct is inherited
from the class POSIXt:

class(now_ct)

[1] "POSIXct" "POSIXt"

When a date is printed, you just see a formatted version of it, so it isn’t obvious how the
date is stored. By using unclass, we can see that it is indeed just a number:

unclass(now_ct)

[1] 1.374e+09

When printed, the POSIXlt date looks exactly the same, but underneath the storage
mechanism is very different:

(now_lt <- as.POSIXlt(now_ct))

[1] "2013-07-17 22:47:01 BST"

class(now_lt)

[1] "POSIXlt" "POSIXt"

154 | Chapter 11: Dates and Times

3. Researchers of historical data might like to note that dates are always in the Gregorian calendar, so you need
to double-check your code for anything before 1752.

unclass(now_lt)

$sec
[1] 1.19
##
$min
[1] 47
##
$hour
[1] 22
##
$mday
[1] 17
##
$mon
[1] 6
##
$year
[1] 113
##
$wday
[1] 3
##
$yday
[1] 197
##
$isdst
[1] 1
##
attr(,"tzone")
[1] "" "GMT" "BST"

You can use list indexing to access individual components of a POSIXlt date:

now_lt$sec

[1] 1.19

now_lt[["min"]]

[1] 47

The Date Class
The third date class in base R is slightly better-named: it is the Date class. This stores
dates as the number of days since the start of 1970.3 The Date class is best used when
you don’t care about the time of day. Fractional days are possible (and can be generated
by calculating a mean Date, for example), but the POSIX classes are better for those
situations:

Date and Time Classes | 155

(now_date <- as.Date(now_ct))

[1] "2013-07-17"

class(now_date)

[1] "Date"

unclass(now_date)

[1] 15903

Other Date Classes
There are lots of other date and time classes scattered through other R classes. If you
have a choice of which date-time class to use, you should usually stick to one of the three
base classes (POSIXct, POSIXlt, and Date), but you need to be aware of the other classes
if you are using other people’s code that may depend upon them.

Other date and time classes from add-on packages include date, dates, chron, year
mon, yearqtr, timeDate, ti, and jul.

Conversion to and from Strings
Many text file formats for data don’t explicitly support specific date types. For example,
in a CSV file, each value is just a string. In order to access date functionality in R, you
must convert your date strings into variables of one of the date classes. Likewise, to write
back to CSV, you must convert the dates back into strings.

Parsing Dates
When we read in dates from a text or spreadsheet file, they will typically be stored as a
character vector or factor. To convert them to dates, we need to parse these strings. This
can be done with another appallingly named function, strptime (short for “string parse
time”), which returns POSIXlt dates. (There are as.POSIXct and as.POSIXlt functions
too. If you call them on character inputs, then they are just wrappers around
strptime.) To parse the dates, you must tell strptime which bits of the string correspond
to which bits of the date. The date format is specified using a string, with components
specified with a percent symbol followed by a letter. For example, the day of the month
as a number is specified as %d. These components can be combined with other fixed
characters—such as colons in times, or dashes and slashes in dates—to form a full spec‐
ification. The time zone specification varies depending upon your operating system. It
can get complicated, so the minutiae are discussed later, but you usually want "UTC" for
universal time or "" to use the time zone in your current locale (as determined from
your operating system’s locale settings).

156 | Chapter 11: Dates and Times

In the following example, %H is the hour (24-hour system), %M is the minute, %S is the
second, %m is the number of the month, %d (as previously discussed) is the day of the
month, and %Y is the four-digit year. The complete list of component specifiers varies
from system to system. See the ?strptime help page for the details:

moon_landings_str <- c(
 "20:17:40 20/07/1969",
 "06:54:35 19/11/1969",
 "09:18:11 05/02/1971",
 "22:16:29 30/07/1971",
 "02:23:35 21/04/1972",
 "19:54:57 11/12/1972"
)
(moon_landings_lt <- strptime(
 moon_landings_str,
 "%H:%M:%S %d/%m/%Y",
 tz = "UTC"
))

[1] "1969-07-20 20:17:40 UTC" "1969-11-19 06:54:35 UTC"
[3] "1971-02-05 09:18:11 UTC" "1971-07-30 22:16:29 UTC"
[5] "1972-04-21 02:23:35 UTC" "1972-12-11 19:54:57 UTC"

If a string does not match the format in the format string, it takes the value NA. For
example, specifying dashes instead of slashes makes the parsing fail:

strptime(
 moon_landings_str,
 "%H:%M:%S %d-%m-%Y",
 tz = "UTC"
)

[1] NA NA NA NA NA NA

Formatting Dates
The opposite problem of parsing is turning a date variable into a string—that is, for‐
matting it. In this case, we use the same system for specifying a format string, but now
we call strftime (“string format time”) to reverse the parsing operation. In case you
struggle to remember the name strftime, these days the format function will also
happily format dates in a nearly identical manner to strftime.

In the following example, %I is the hour (12-hour system), %p is the AM/PM indicator,
%A is the full name of the day of the week, and %B is the full name of the month. strftime
works with both POSIXct and POSIXlt inputs:

strftime(now_ct, "It's %I:%M%p on %A %d %B, %Y.")

[1] "It's 10:47PM on Wednesday 17 July, 2013."

Conversion to and from Strings | 157

Time Zones
Time zones are horrible, complicated things from a programming perspective. Coun‐
tries often have several, and change the boundaries when some (but not all) switch to
daylight savings time. Many time zones have abbreviated names, but they often aren’t
unique. For example, “EST” can refer to “Eastern Standard Time” in the United States,
Canada, or Australia.

You can specify a time zone when parsing a date string (with strptime) and change it
again when you format it (with strftime). During parsing, if you don’t specify a time
zone (the default is ""), R will give the dates a default time zone. This is the value returned
by Sys.timezone, which is in turn guessed from your operating system locale settings.
You can see the OS date-time settings with Sys.getlocale("LC_TIME").

The easiest way to avoid the time zone mess is to always record and then analyze your
times in the UTC zone. If you can achieve this, congratulations! You are very lucky. For
everyone else—those who deal with other people’s data, for example—the easiest-to-
read and most portable way of specifying time zones is to use the Olson form, which is
“Continent/City” or similar:

strftime(now_ct, tz = "America/Los_Angeles")

[1] "2013-07-17 14:47:01"

strftime(now_ct, tz = "Africa/Brazzaville")

[1] "2013-07-17 22:47:01"

strftime(now_ct, tz = "Asia/Kolkata")

[1] "2013-07-18 03:17:01"

strftime(now_ct, tz = "Australia/Adelaide")

[1] "2013-07-18 07:17:01"

A list of possible Olson time zones is shipped with R in the file returned by
file.path(R.home("share"), "zoneinfo", "zone.tab"). (That’s a file called
zone.tab in a folder called zoneinfo inside the share directory where you installed R.)
The lubridate package described later in this chapter provides convenient access to
this file.

The next most reliable method is to give a manual offset from UTC, in the form "UTC"+n"
or "UTC"-n". Negative times are east of UTC, and positive times are west. The manual
nature at least makes it clear how the times are altered, but you have to manually do the
daylight savings corrections too, so this method should be used with care. Recent ver‐
sions of R will warn that the time zone is unknown, but will perform the offset correctly:

strftime(now_ct, tz = "UTC-5")

Warning: unknown timezone 'UTC-5'

158 | Chapter 11: Dates and Times

[1] "2013-07-18 02:47:01"

strftime(now_ct, tz = "GMT-5") #same

Warning: unknown timezone 'GMT-5'

[1] "2013-07-18 02:47:01"

strftime(now_ct, tz = "-5") #same, if supported on your OS

Warning: unknown timezone '-5'

[1] "2013-07-18 02:47:01"

strftime(now_ct, tz = "UTC+2:30")

Warning: unknown timezone 'UTC+2:30'

[1] "2013-07-17 19:17:01"

The third method of specifying time zones is to use an abbreviation—either three letters
or three letters, a number, and three more letters. This method is the last resort, for three
reasons. First, abbreviations are harder to read, and thus more prone to errors. Second,
as previously mentioned, they aren’t unique, so you may not get the time zone that you
think you have. Finally, different operating systems support different sets of abbrevia‐
tions. In particular, the Windows OS’s knowledge of time zone abbreviations is patchy:

strftime(now_ct, tz = "EST") #Canadian Eastern Standard Time

[1] "2013-07-17 16:47:01"

strftime(now_ct, tz = "PST8PDT") #Pacific Standard Time w/ daylight savings

[1] "2013-07-17 14:47:01"

One last word of warning about time zones: strftime ignores time zone changes for
POSIXlt dates. It is best to explicitly convert your dates to POSIXct before printing:

strftime(now_ct, tz = "Asia/Tokyo")

[1] "2013-07-18 06:47:01"

strftime(now_lt, tz = "Asia/Tokyo") #no zone change!

[1] "2013-07-17 22:47:01"

strftime(as.POSIXct(now_lt), tz = "Asia/Tokyo")

[1] "2013-07-18 06:47:01"

Another last warning (really the last one!): if you call the concatenation function, c, with
a POSIXlt argument, it will change the time zone to your local time zone. Calling c on
a POSIXct argument, by contrast, will strip its time zone attribute completely. (Most
other functions will assume that the date is now local, but be careful!)

Time Zones | 159

Arithmetic with Dates and Times
R supports arithmetic with each of the three base classes. Adding a number to a POSIX
date shifts it by that many seconds. Adding a number to a Date shifts it by that many
days:

now_ct + 86400 #Tomorrow. I wonder what the world will be like!

[1] "2013-07-18 22:47:01 BST"

now_lt + 86400 #Same behavior for POSIXlt

[1] "2013-07-18 22:47:01 BST"

now_date + 1 #Date arithmetic is in days

[1] "2013-07-18"

Adding two dates together doesn’t make much sense, and throws an error. Subtraction
is supported, and calculates the difference between the two dates. The behavior is the
same for all three date types. In the following example, note that as.Date will automat‐
ically parse dates of the form %Y-%m-%d or %Y/%m/%d, if you don’t specify a format:

the_start_of_time <- #according to POSIX
 as.Date("1970-01-01")
the_end_of_time <- #according to Mayan conspiracy theorists
 as.Date("2012-12-21")
(all_time <- the_end_of_time - the_start_of_time)

Time difference of 15695 days

We can use the now (hopefully) familiar combination of class and unclass to see how
the difference in time is stored:

class(all_time)

[1] "difftime"

unclass(all_time)

[1] 15695
attr(,"units")
[1] "days"

The difference has class difftime, and the value is stored as a number with a unit
attribute of days. Days were automatically chosen as the “most sensible” unit due to the
difference between the times. Differences shorter than one day are given in hours, mi‐
nutes, or seconds, as appropriate. For more control over the units, you can use the
difftime function:

difftime(the_end_of_time, the_start_of_time, units = "secs")

Time difference of 1.356e+09 secs

160 | Chapter 11: Dates and Times

difftime(the_end_of_time, the_start_of_time, units = "weeks")

Time difference of 2242 weeks

The seq function for generating sequences also works with dates. This can be particu‐
larly useful for creating test datasets of artificial dates. The choice of units in the by
argument differs between the POSIX and Date types. See the ?seq.POSIXt

and ?seq.Date help pages for the choices in each case:

seq(the_start_of_time, the_end_of_time, by = "1 year")

[1] "1970-01-01" "1971-01-01" "1972-01-01" "1973-01-01" "1974-01-01"
[6] "1975-01-01" "1976-01-01" "1977-01-01" "1978-01-01" "1979-01-01"
[11] "1980-01-01" "1981-01-01" "1982-01-01" "1983-01-01" "1984-01-01"
[16] "1985-01-01" "1986-01-01" "1987-01-01" "1988-01-01" "1989-01-01"
[21] "1990-01-01" "1991-01-01" "1992-01-01" "1993-01-01" "1994-01-01"
[26] "1995-01-01" "1996-01-01" "1997-01-01" "1998-01-01" "1999-01-01"
[31] "2000-01-01" "2001-01-01" "2002-01-01" "2003-01-01" "2004-01-01"
[36] "2005-01-01" "2006-01-01" "2007-01-01" "2008-01-01" "2009-01-01"
[41] "2010-01-01" "2011-01-01" "2012-01-01"

seq(the_start_of_time, the_end_of_time, by = "500 days") #of Summer

[1] "1970-01-01" "1971-05-16" "1972-09-27" "1974-02-09" "1975-06-24"
[6] "1976-11-05" "1978-03-20" "1979-08-02" "1980-12-14" "1982-04-28"
[11] "1983-09-10" "1985-01-22" "1986-06-06" "1987-10-19" "1989-03-02"
[16] "1990-07-15" "1991-11-27" "1993-04-10" "1994-08-23" "1996-01-05"
[21] "1997-05-19" "1998-10-01" "2000-02-13" "2001-06-27" "2002-11-09"
[26] "2004-03-23" "2005-08-05" "2006-12-18" "2008-05-01" "2009-09-13"
[31] "2011-01-26" "2012-06-09"

Many other base functions allow manipulation of dates. You can repeat them, round
them, and cut them. You can also calculate summary statistics with mean and
summary. Many of the possibilities can be seen with methods(class = "POSIXt") and
methods(class = "Date"), although some other functions will handle dates without
having specific date methods.

Lubridate
If you’ve become disheartened with dates and are considering skipping the rest of the
chapter, do not fear! Help is at hand. lubridate, as the name suggests, adds some much-
needed lubrication to the process of date manipulation. It doesn’t add many new features
over base R, but it makes your code more readable, and helps you avoid having to think
too much.

To replace strptime, lubridate has a variety of parsing functions with predetermined
formats. ymd accepts dates in the form year, month, day. There is some flexibility in the
specification: several common separators like hyphens, forward and backward slashes,

Lubridate | 161

4. In fact, most punctuation is allowed.

colons, and spaces can be used;4 months can be specified by number or by full or ab‐
breviated name; and the day of the week can optionally be included. The real beauty is
that different elements in the same vector can have different formats (as long as the year
is followed by the month, which is followed by the day):

library(lubridate)

Attaching package: 'lubridate'

The following object is masked from 'package:chron':
##
days, hours, minutes, seconds, years

john_harrison_birth_date <- c(#He invented the marine chronometer
 "1693-03 24",
 "1693/03\\24",
 "Tuesday+1693.03*24"
)
ymd(john_harrison_birth_date) #All the same

[1] "1693-03-24 UTC" "1693-03-24 UTC" "1693-03-24 UTC"

The important thing to remember with ymd is to get the elements of the date in the right
order. If your date data is in a different form, then lubridate provides other functions
(ydm, mdy, myd, dmy, and dym) to use instead. Each of these functions has relatives that
allow the specification of times as well, so you get ymd_h, ymd_hm, and ymd_hms, as well
as the equivalents for the other five date orderings. If your dates aren’t in any of these
formats, then the lower-level parse_date_time lets you give a more exact specification.

All the parsing functions in lubridate return POSIXct dates and have a default time
zone of UTC. Be warned: these behaviors are different from base R’s strptime! (Al‐
though usually more convenient.) In lubridate terminology, these individual dates are
“instants.”

For formatting dates, lubridate provides stamp, which lets you specify a format in a
more human-readable manner. You specify an example date, and it returns a function
that you can call to format your dates:

date_format_function <-
 stamp("A moon landing occurred on Monday 01 January 1900 at 18:00:00.")

Multiple formats matched: "A moon landing occurred on %A %m January %d%y
at %H:%M:%OS"(1), "A moon landing occurred on %A %m January %Y at
%d:%H:%M."(1), "A moon landing occurred on %A %d %B %Y at %H:%M:%S."(1)

Using: "A moon landing occurred on %A %d %B %Y at %H:%M:%S."

date_format_function(moon_landings_lt)

[1] "A moon landing occurred on Sunday 20 July 1969 at 20:17:40."

162 | Chapter 11: Dates and Times

For dealing with ranges of times, lubridate has three different variable types. “Dura‐
tions” specify time spans as multiples of seconds, so a duration of a day is always 86,400
seconds (60 * 60 * 24), and a duration of a year is always 31,536,000 seconds (86,400 *
365). This makes it easy to specify ranges of dates that are exactly evenly spaced, but
leap years and daylight savings time put them out of sync from clock time. In the fol‐
lowing example, notice that the date slips back one day every time there is a leap year.
today gives today’s date:

(duration_one_to_ten_years <- dyears(1:10))

[1] "31536000s (~365 days)" "63072000s (~730 days)"
[3] "94608000s (~1095 days)" "126144000s (~1460 days)"
[5] "157680000s (~1825 days)" "189216000s (~2190 days)"
[7] "220752000s (~2555 days)" "252288000s (~2920 days)"
[9] "283824000s (~3285 days)" "315360000s (~3650 days)"

today() + duration_one_to_ten_years

[1] "2014-07-17" "2015-07-17" "2016-07-16" "2017-07-16" "2018-07-16"
[6] "2019-07-16" "2020-07-15" "2021-07-15" "2022-07-15" "2023-07-15"

Other functions for creating durations are dseconds, dminutes, and so forth, as well as
new_duration for mixed-component specification.

“Periods” specify time spans according to clock time. That means that their exact length
isn’t apparent until you add them to an instant. For example, a period of one year can
be 365 or 366 days, depending upon whether or not it is a leap year. In the following
example, notice that the date stays the same across leap years:

(period_one_to_ten_years <- years(1:10))

[1] "1y 0m 0d 0H 0M 0S" "2y 0m 0d 0H 0M 0S" "3y 0m 0d 0H 0M 0S"
[4] "4y 0m 0d 0H 0M 0S" "5y 0m 0d 0H 0M 0S" "6y 0m 0d 0H 0M 0S"
[7] "7y 0m 0d 0H 0M 0S" "8y 0m 0d 0H 0M 0S" "9y 0m 0d 0H 0M 0S"
[10] "10y 0m 0d 0H 0M 0S"

today() + period_one_to_ten_years

[1] "2014-07-17" "2015-07-17" "2016-07-17" "2017-07-17" "2018-07-17"
[6] "2019-07-17" "2020-07-17" "2021-07-17" "2022-07-17" "2023-07-17"

In addition to years, you can create periods with seconds, minutes, etc., as well as
new_period for mixed-component specification.

“Intervals” are defined by the instants at their beginning and end. They aren’t much use
on their own—they are most commonly used for specifying durations and periods when
you known the start and end dates (rather than how long they should last). They can
also be used for converting between durations and periods. For example, given a dura‐
tion of one year, direct conversion to a period can only be estimated, since periods of a
year can be 365 or 366 days (possibly plus a few leap seconds, and possibly plus or minus
an hour or two if the rules for daylight savings change):

Lubridate | 163

a_year <- dyears(1) #exactly 60*60*24*365 seconds
as.period(a_year) #only an estimate

estimate only: convert durations to intervals for accuracy

[1] "1y 0m 0d 0H 0M 0S"

If we know the start (or end) date of the duration, we can use an interval and an
intermediary to convert exactly from the duration to the period:

start_date <- ymd("2016-02-28")
(interval_over_leap_year <- new_interval(
 start_date,
 start_date + a_year
))

[1] 2016-02-28 UTC--2017-02-27 UTC

as.period(interval_over_leap_year)

[1] "11m 30d 0H 0M 0S"

Intervals also have some convenience operators, namely %--% for defining intervals and
%within% for checking if a date is contained within an interval:

ymd("2016-02-28") %--% ymd("2016-03-01") #another way to specify interval

[1] 2016-02-28 UTC--2016-03-01 UTC

ymd("2016-02-29") %within% interval_over_leap_year

[1] TRUE

For dealing with time zones, with_tz lets you change the time zone of a date without
having to print it (unlike strftime). It also correctly handles POSIXlt dates (again,
unlike strftime):

with_tz(now_lt, tz = "America/Los_Angeles")

[1] "2013-07-17 14:47:01 PDT"

with_tz(now_lt, tz = "Africa/Brazzaville")

[1] "2013-07-17 22:47:01 WAT"

with_tz(now_lt, tz = "Asia/Kolkata")

[1] "2013-07-18 03:17:01 IST"

with_tz(now_lt, tz = "Australia/Adelaide")

[1] "2013-07-18 07:17:01 CST"

force_tz is a variant of with_tz used for updating incorrect time zones.

olson_time_zones returns a list of all the Olson-style time zone names that R knows
about, either alphabetically or by longitude:

164 | Chapter 11: Dates and Times

head(olson_time_zones())

[1] "Africa/Abidjan" "Africa/Accra" "Africa/Addis_Ababa"
[4] "Africa/Algiers" "Africa/Asmara" "Africa/Bamako"

head(olson_time_zones("longitude"))

[1] "Pacific/Midway" "America/Adak" "Pacific/Chatham"
[4] "Pacific/Wallis" "Pacific/Tongatapu" "Pacific/Enderbury"

Some other utilities are available for arithmetic with dates, particularly floor_date and
ceiling_date:

floor_date(today(), "year")

[1] "2013-01-01"

ceiling_date(today(), "year")

[1] "2014-01-01"

Summary
• There are three built-in classes for storing dates and times: POSIXct, POSIXlt, and
Date.

• Parsing turns a string into a date; it can be done with strptime.
• Formatting turns a date back into a string; it can be done with strftime.
• Time zones can be specified using an Olson name or an offset from UTC, or (some‐

times) with a three-letter abbreviation.
• The lubridate package makes working with dates a bit easier.

Test Your Knowledge: Quiz
Question 11-1

Which of the three built-in classes would you use to store dates with times in a data
frame?

Question 11-2
When is the origin (time 0) for POSIXct and Date dates?

Question 11-3
What formatting string would you use to display a date as the complete month name
followed by the four-digit year number?

Question 11-4
How would you shift a POSIXct date one hour into the future?

Summary | 165

Question 11-5
Using the lubridate package, consider two intervals starting on January 1, 2016.
Which will finish later, a duration of one year or a period of one year?

Test Your Knowledge: Exercises
Exercise 11-1

Parse the birth dates of the Beatles, and print them in the form “AbbreviatedWeek‐
day DayOfMonth AbbreviatedMonthName TwoDigitYear” (for example, “Wed 09
Oct 40”). Their dates of birth are given in the following table.

Beatle Birth date

Ringo Starr 1940-07-07

John Lennon 1940-10-09

Paul McCartney 1942-06-18

George Harrison 1943-02-25

[10]

Exercise 11-2
Programmatically read the file that R uses to find Olson time zone names. The
examples in the ?Sys.timezone help page demonstrate how to do this. Find the
name of the time zone for your location. [10]

Exercise 11-3
Write a function that accepts a date as an input and returns the astrological sign of
the zodiac corresponding to that date. The date ranges for each sign are given in
the following table. [15]

Zodiac sign Start date End date

Aries March 21 April 19

Taurus April 20 May 20

Gemini May 21 June 20

Cancer June 21 July 22

Leo July 23 August 22

Virgo August 23 September 22

Libra September 23 October 22

Scorpio October 23 November 21

Sagittarius November 22 December 21

Capricorn December 22 January 19

Aquarius January 20 February 18

Pisces February 19 March 20

166 | Chapter 11: Dates and Times

PART II

The Data Analysis Workflow

CHAPTER 12

Getting Data

Data can come from many sources. R comes with many datasets built in, and there is
more data in many of the add-on packages. R can read data from a wide variety of sources
and in a wide variety of formats. This chapter covers importing data from text files
(including spreadsheet-like data in comma- or tab-delimited format, XML, and JSON),
binary files (Excel spreadsheets and data from other analysis software), websites, and
databases.

Chapter Goals
After reading this chapter, you should:

• Be able to access datasets provided with R packages
• Be able to import data from text files
• Be able to import data from binary files
• Be able to download data from websites
• Be able to import data from a database

Built-in Datasets
One of the packages in the base R distribution is called datasets, and it is entirely filled
with example datasets. While you’ll be lucky if any of them are suited to your particular
area of research, they are ideal for testing your code and for exploring new techniques.
Many other packages also contain datasets. You can see all the datasets that are available
in the packages that you have loaded using the data function:

data()

169

For a more complete list, including data from all packages that have been installed, use
this invocation:

data(package = .packages(TRUE))

To access the data in any of these datasets, call the data function, this time passing the
name of the dataset and the package where the data is found (if the package has been
loaded, then you can omit the package argument):

data("kidney", package = "survival")

Now the kidney data frame can be used just like your own variables:

head(kidney)

id time status age sex disease frail
1 1 8 1 28 1 Other 2.3
2 1 16 1 28 1 Other 2.3
3 2 23 1 48 2 GN 1.9
4 2 13 0 48 2 GN 1.9
5 3 22 1 32 1 Other 1.2
6 3 28 1 32 1 Other 1.2

Reading Text Files
There are many, many formats and standards of text documents for storing data. Com‐
mon formats for storing data are delimiter-separated values (CSV or tab-delimited),
eXtensible Markup Language (XML), JavaScript Object Notation (JSON), and YAML
(which recursively stands for YAML Ain’t Markup Language). Other sources of text data
are less well-structured—a book, for example, contains text data without any formal
(that is, standardized and machine parsable) structure.

The main advantage of storing data in text files is that they can be read by more or less
all other data analysis software and by humans. This makes your data more widely
reusable by others.

CSV and Tab-Delimited Files
Rectangular (spreadsheet-like) data is commonly stored in delimited-value files, par‐
ticularly comma-separated values (CSV) and tab-delimited values files. The read.table
function reads these delimited files and stores the results in a data frame. In its simplest
form, it just takes the path to a text file and imports the contents.

RedDeerEndocranialVolume.dlm is a whitespace-delimited file containing measure‐
ments of the endocranial volume of some red deer, measured using different techniques.
(For those of you with an interest in deer skulls, the methods are computer tomography;
filling the skull with glass beads; measuring the length, width, and height with calipers;
and using Finarelli’s equation. A second measurement was taken in some cases to get

170 | Chapter 12: Getting Data

an idea of the accuracy of the techniques. I’ve been assured that the deer were already
long dead before they had their skulls filled with beads!) The data file can be found
inside the extdata folder in the learningr package. The first few rows are shown in
Table 12-1.

Table 12-1. Sample data from RedDeerEndocranialVolume.dlm
SkullID VolCT VolBead VolLWH VolFinarelli VolCT2 VolBead2 VolLWH2

DIC44 389 375 1484 337

B11 389 370 1722 377

DIC90 352 345 1495 328

DIC83 388 370 1683 377

DIC787 375 355 1458 328

DIC1573 325 320 1363 291

C120 346 335 1250 289 346 330 1264

C25 302 295 1011 250 303 295 1009

F7 379 360 1621 347 375 365 1647

The data has a header row, so we need to pass the argument header = TRUE to
read.table. Since a second measurement wasn’t always taken, not all the lines are
complete. Passing the argument fill = TRUE makes read.table substitute NA values
for the missing fields. The system.file function in the following example is used to
locate files that are inside a package (in this case, the RedDeerEndocranialVolume.dlm
file in the extdata folder of the package learningr).

library(learningr)
deer_file <- system.file(
 "extdata",
 "RedDeerEndocranialVolume.dlm",
 package = "learningr"
)
deer_data <- read.table(deer_file, header = TRUE, fill = TRUE)
str(deer_data, vec.len = 1) #vec.len alters the amount of output

'data.frame': 33 obs. of 8 variables:
$ SkullID : Factor w/ 33 levels "A4","B11","B12",..: 14 ...
$ VolCT : int 389 389 ...
$ VolBead : int 375 370 ...
$ VolLWH : int 1484 1722 ...
$ VolFinarelli: int 337 377 ...
$ VolCT2 : int NA NA ...
$ VolBead2 : int NA NA ...
$ VolLWH2 : int NA NA ...

Reading Text Files | 171

1. Or periods, if you are American.

2. Specifically, migrating from the eastern North Sea near Germany to the western North Sea near the UK.

head(deer_data)

SkullID VolCT VolBead VolLWH VolFinarelli VolCT2 VolBead2 VolLWH2
1 DIC44 389 375 1484 337 NA NA NA
2 B11 389 370 1722 377 NA NA NA
3 DIC90 352 345 1495 328 NA NA NA
4 DIC83 388 370 1683 377 NA NA NA
5 DIC787 375 355 1458 328 NA NA NA
6 DIC1573 325 320 1363 291 NA NA NA

Notice that the class of each column has been automatically determined, and row and
column names have been automatically assigned. The column names are (by default)
forced to be valid variable names (via make.names), and if row names aren’t provided
the rows are simply numbered 1, 2, 3, and so on.

There are lots of arguments to specify how the file will be read; perhaps the most im‐
portant is sep, which determines the character to use as a separator between fields. You
can also specify how many lines of data to read via nrow, and how many lines at the start
of the file to skip. More advanced options include the ability to override the default row
names, column names, and classes, and to specify the character encoding of the input
file and how string input columns should be declared.

There are several convenience wrapper functions to read.table. read.csv sets the
default separator to a comma, and assumes that the data has a header row. read.csv2
is its European cousin, using a comma for decimal places and a semicolon as a separator.
Likewise read.delim and read.delim2 import tab-delimited files with full stops1 or
commas for decimal places, respectively.

Back in August 2008, scientists from the Centre for Environment, Fisheries, and Aqua‐
culture Science (CEFAS) in Lowestoft, UK, attached a tag with a pressure sensor and a
temperature sensor to a brown crab and dropped it into the North Sea. The crab then
spent just over a year doing crabby things2 before being caught by fishermen, who re‐
turned the tag to CEFAS.

The data from this tag is stored in a CSV file, along with some metadata. The first few
rows of the file look like this:

172 | Chapter 12: Getting Data

Comment :- clock reset to download data

The following data are the ID block contents

Firmware Version No 2

Firmware Build Level 70

The following data are the Tag notebook contents

Mission Day 405

Last Deployment Date 08/08/2008 09:55:00

Deployed by Host Version 5.2.0

Downloaded by Host Version 6.0.0

Last Clock Set Date 05/01/2010 10:34:00

The following data are the Lifetime notebook contents

Tag ID A03401

Pressure Range 10

No of sensors 2

In this case, we can’t just read everything with a single call to read.csv, since different
pieces of data have different numbers of fields, and indeed different fields. We need to
use the skip and nrow arguments of read.csv to specify which bits of the file to read:

crab_file <- system.file(
 "extdata",
 "crabtag.csv",
 package = "learningr"
)
(crab_id_block <- read.csv(
 crab_file,
 header = FALSE,
 skip = 3,
 nrow = 2
))

V1 V2
1 Firmware Version No 2
2 Firmware Build Level 70

(crab_tag_notebook <- read.csv(
 crab_file,
 header = FALSE,
 skip = 8,
 nrow = 5
))

V1 V2
1 Mission Day 405
2 Last Deployment Date 08/08/2008 09:55:00
3 Deployed by Host Version 5.2.0

Reading Text Files | 173

4 Downloaded by Host Version 6.0.0
5 Last Clock Set Date 05/01/2010 10:34:00

(crab_lifetime_notebook <- read.csv(
 crab_file,
 header = FALSE,
 skip = 15,
 nrow = 3
))

V1 V2
1 Tag ID A03401
2 Pressure Range 10
3 No of sensors 2

The colbycol and sqldf packages contain functions that allow you to
read part of a CSV file into R. This can provide a useful speed-up if
you don’t need all the columns or all the rows.

For really low-level control when importing this sort of file, you can use the scan
function, on which read.table is based. Ordinarily, you should never have to resort to
scan, but it can be useful for malformed or nonstandard files.

If your data has been exported from another language, you may need
to pass the na.strings argument to read.table. For data exported
from SQL, use na.strings = "NULL". For data exported from SAS or
Stata, use na.strings = ".". For data exported from Excel, use
na.strings = c("", "#N/A", "#DIV/0!", "#NUM!").

The opposite task, writing files, is generally simpler than reading files, since you don’t
need to worry about oddities in the file—you usually want to create something standard.
read.table and read.csv have the obviously named counterparts write.table and
write.csv.

Both functions take a data frame and a file path to write to. They also provide a few
options to customize the output (whether or not to include row names and what the
character encoding of the output file should be, for example):

write.csv(
 crab_lifetime_notebook,
 "Data/Cleaned/crab lifetime data.csv",
 row.names = FALSE,
 fileEncoding = "utf8"
)

174 | Chapter 12: Getting Data

Unstructured Text Files
Not all text files have a well-defined structure like delimited files do. If the structure of
the file is weak, it is often easier to read in the file as lines of text and then parse or
manipulate the contents afterward. readLines (notice the capital “L”) provides such a
facility. It accepts a path to a file (or a file connection) and, optionally, a maximum
number of lines to read. Here we import the Project Gutenberg version of Shakespeare’s
The Tempest:

text_file <- system.file(
 "extdata",
 "Shakespeare's The Tempest, from Project Gutenberg pg2235.txt",
 package = "learningr"
)
the_tempest <- readLines(text_file)
the_tempest[1926:1927]

[1] " Ste. Foure legges and two voyces; a most delicate"
[2] "Monster: his forward voyce now is to speake well of"

writeLines performs the reverse operation to readLines. It takes a character vector
and a file to write to:

writeLines(
 rev(text_file), #rev reverses vectors
 "Shakespeare's The Tempest, backwards.txt"
)

XML and HTML Files
XML files are widely used for storing nested data. Many standard file types and protocols
are based upon it, such as RSS (Really Simple Syndication) for news feeds, SOAP (Simple
Object Access Protocol) for passing structured data across computer networks, and the
XHTML flavor of web pages.

Base R doesn’t ship with the capability to read XML files, but the XML package is devel‐
oped by an R Core member. Install it now!

install.packages("XML")

When you import an XML file, the XML package gives you a choice of storing the result
using internal nodes (that is, objects are stored with C code, the default) or R nodes.
Usually you want to store things with internal nodes, because it allows you to query the
node tree using XPath (more on this in a moment).

There are several functions for importing XML data, such as xmlParse and some other
wrapper functions that use slightly different defaults:

library(XML)
xml_file <- system.file("extdata", "options.xml", package = "learningr")
r_options <- xmlParse(xml_file)

Reading Text Files | 175

One of the problems with using internal nodes is that summary functions like str and
head don’t work with them. To use R-level nodes, set useInternalNodes = FALSE (or
use xmlTreeParse, which sets this as the default):

xmlParse(xml_file, useInternalNodes = FALSE)
xmlTreeParse(xml_file) #the same

XPath is a language for interrogating XML documents, letting you find nodes that cor‐
respond to some filter. In this next example we look anywhere in the document (//) for
a node named variable where ([]) the name attribute (@) contains the string warn.

xpathSApply(r_options, "//variable[contains(@name, 'warn')]")

[[1]]
<variable name="nwarnings" type="numeric">
<value>50</value>
</variable>
##
[[2]]
<variable name="warn" type="numeric">
<value>0</value>
</variable>
##
[[3]]
<variable name="warning_length" type="numeric">
<value>1000</value>
</variable>

This sort of querying is very useful for extracting data from web pages. The equivalent
functions for importing HTML pages are named as you might expect, htmlParse and
htmlTreeParse, and they behave in the same way.

XML is also very useful for serializing (a.k.a. “saving”) objects in a format that can be
read by most other pieces of software. The XML package doesn’t provide serialization
functionality, but it is available via the makexml function in the Runiversal package.
The options.xml file was created with this code:

library(Runiversal)
ops <- as.list(options())
cat(makexml(ops), file = "options.xml")

JSON and YAML Files
The main problems with XML are that it is very verbose, and you need to explicitly
specify the type of the data (it can’t tell the difference between a string and a number by
default), which makes it even more verbose. When file sizes are important (such as when
you are transferring big datasets across a network), this verbosity becomes problematic.

YAML and its subset JSON were invented to solve these problems. They are much better
suited to transporting many datasets—particularly numeric data and arrays—over

176 | Chapter 12: Getting Data

networks. JSON is the de facto standard for web applications to pass data between
themselves.

There are two packages for dealing with JSON data: RJSONIO and rjson. For a long time
rjson had performance problems, so the only package that could be recommended was
RJSONIO. The performance issues have now been fixed, so it’s a much closer call. For
most cases, it now doesn’t matter which package you use. The differences occur when
you encounter malformed or nonstandard JSON.

RJSONIO is generally more forgiving than rjson when reading incorrect JSON. Whether
this is a good thing or not depends upon your use case. If you think it is better to import
JSON data with minimal fuss, then RJSONIO is best. If you want to be alerted to problems
with the JSON data (perhaps it was generated by a colleague—I’m sure you would never
generate malformed JSON), then rjson is best.

Fortunately, both packages have identically named functions for reading and writing
JSON data, so it is easy to swap between them. In the following example, the double
colons, ::, are used to distinguish which package each function should be taken from
(if you only load one of the two packages, then you don’t need the double colons):

library(RJSONIO)
library(rjson)
jamaican_city_file <- system.file(
 "extdata",
 "Jamaican Cities.json",
 package = "learningr"
)
(jamaican_cities_RJSONIO <- RJSONIO::fromJSON(jamaican_city_file))

$Kingston
$Kingston$population
[1] 587798
##
$Kingston$coordinates
longitude latitude
17.98 76.80
##
##
$`Montego Bay`
$`Montego Bay`$population
[1] 96488
##
$`Montego Bay`$coordinates
longitude latitude
18.47 77.92

Reading Text Files | 177

(jamaican_cities_rjson <- rjson::fromJSON(file = jamaican_city_file))

$Kingston
$Kingston$population
[1] 587798
##
$Kingston$coordinates
$Kingston$coordinates$longitude
[1] 17.98
##
$Kingston$coordinates$latitude
[1] 76.8
##
##
##
$`Montego Bay`
$`Montego Bay`$population
[1] 96488
##
$`Montego Bay`$coordinates
$`Montego Bay`$coordinates$longitude
[1] 18.47
##
$`Montego Bay`$coordinates$latitude
[1] 77.92

Notice that RJSONIO simplifies the coordinates for each city to be a vector. This behavior
can be turned off with simplify = FALSE, resulting in exactly the same object as the
one generated by rjson.

Annoyingly, the JSON spec doesn’t allow infinite or NaN values, and it’s a little fuzzy on
what a missing number should look like. The two packages deal with these values dif‐
ferently—RJSONIO maps NaN and NA to JSON’s null value but preserves positive and
negative infinity, while rjson converts all these values to strings:

special_numbers <- c(NaN, NA, Inf, -Inf)
RJSONIO::toJSON(special_numbers)

[1] "[null, null, Inf, -Inf]"

rjson::toJSON(special_numbers)

[1] "[\"NaN\",\"NA\",\"Inf\",\"-Inf\"]"

Since both these methods are hacks to deal with JSON’s limited spec, if you find yourself
dealing with these special number types a lot (or want to write comments in your data
object), then you are better off using YAML. The yaml package has two functions for
importing YAML data. yaml.load accepts a string of YAML and converts it to an R
object, and yaml.load_file does the same, but treats its string input as a path to a file
containing YAML:

178 | Chapter 12: Getting Data

library(yaml)
yaml.load_file(jamaican_city_file)

$Kingston
$Kingston$population
[1] 587798
##
$Kingston$coordinates
$Kingston$coordinates$longitude
[1] 17.98
##
$Kingston$coordinates$latitude
[1] 76.8
##
##
##
$`Montego Bay`
$`Montego Bay`$population
[1] 96488
##
$`Montego Bay`$coordinates
$`Montego Bay`$coordinates$longitude
[1] 18.47
##
$`Montego Bay`$coordinates$latitude
[1] 77.92

as.yaml performs the opposite task, converting R objects to YAML strings.

Reading Binary Files
Many pieces of software store their data in binary formats (some proprietary, some
conforming to publically defined standards). The binary formats are often smaller than
their text equivalents, so performance gains are usually possible by using a binary for‐
mat, at the expense of human readability.

Many binary file formats are proprietary, which goes against free software principles.
If you have the option, it is usually best to avoid such formats in order to stop your data
being locked into a platform over which you lack control.

Reading Excel Files
Microsoft Excel is the world’s most popular spreadsheet package, and very possibly the
world’s most popular data analysis tool. Unfortunately, its document formats, XLS and
XLSX, don’t play very nicely with other software, especially outside of a Windows en‐
vironment. This means that some experimenting may be required to find a setup that
works for your choice of operating system and the particular type of Excel file.

Reading Binary Files | 179

That said , the xlsx package is Java-based and cross-platform, so at least in theory it can
read any Excel file on any system. It provides a choice of functions for reading Excel
files: spreadsheets can be imported with read.xlsx and read.xlsx2, which do more
processing in R and in Java, respectively. The choice of two engines is rather superfluous;
you want read.xlsx2, since it’s faster and the underlying Java library is more mature
than the R code.

The next example features the fastest times from the Alpe d’Huez mountain stage of the
Tour de France bike race, along with whether or not each cyclist has been found guilty
of using banned performance-enhancing drugs. The colClasses argument determines
what class each column should have in the resulting data frame. It isn’t compulsory, but
it saves you having to manipulate the resulting data afterward:

library(xlsx)
bike_file <- system.file(
 "extdata",
 "Alpe d'Huez.xls",
 package = "learningr"
)
bike_data <- read.xlsx2(
 bike_file,
 sheetIndex = 1,
 startRow = 2,
 endRow = 38,
 colIndex = 2:8,
 colClasses = c(
 "character", "numeric", "character", "integer",
 "character", "character", "character"
)
)
head(bike_data)

Time NumericTime Name Year Nationality DrugUse
1 37' 35" 37.58 Marco Pantani 1997 Italy Y
2 37' 36" 37.60 Lance Armstrong 2004 United States Y
3 38' 00" 38.00 Marco Pantani 1994 Italy Y
4 38' 01" 38.02 Lance Armstrong 2001 United States Y
5 38' 04" 38.07 Marco Pantani 1995 Italy Y
6 38' 23" 38.38 Jan Ullrich 1997 Germany Y
Allegations
1 Alleged drug use during 1997 due to high haematocrit levels.
2 2004 Tour de France title stripped by USADA in 2012.
3 Alleged drug use during 1994 due to high haematocrit levels.
4 2001 Tour de France title stripped by USADA in 2012.
5 Alleged drug use during 1995 due to high haematocrit levels.
6 Found guilty of a doping offense by the CAS.

180 | Chapter 12: Getting Data

3. There isn’t currently a method of importing the older SAS SD2 files into R. The easiest way of dealing with a
file in this format is to open it with the free SAS Universal Viewer and resave it as CSV.

The xlsReadWrite package provides an alternative to xlsx, but it currently only works
with 32-bit R installations, and only on Windows. There are also some other packages
designed to work with Excel. RExcel and excel.link use COM connections to control
Excel from R, and WriteXLS uses Perl to write to Excel files. The gnumeric package
provides functions for reading Gnumeric spreadsheets.

The counterpart to read.xlsx2 is (you guessed it) write.xlsx2. It works the same way
as write.csv, taking a data frame and a filename. Unless you really need to use Excel
spreadsheets, you are better off saving your data in a text format for portability, so use
this with caution.

Reading SAS, Stata, SPSS, and MATLAB Files
If you are collaborating with statisticians in other organizations, they may try to send
you files from another statistical package. The foreign package contains methods to
read SAS permanent datasets3 (SAS7BDAT files) using read.ssd, Stata DTA files with
read.dta, and SPSS data files with read.spss. Each of these files can be written with
write.foreign.

MATLAB binary data files (Level 4 and Level 5) can be read and written using read
Mat and writeMat in the R.matlab package.

Reading Other File Types
R can read data from many other types of files.

It can read Hierarchical Data Format v5 [HDF5] files via the h5r package (and the rdhf5
package on Bioconductor), and Network Common Data Format [NetCDF] files via the
ncdf package.

It can read ESRI ArcGIS spatial data files via the maptools and shapefiles packages
(and older ArcInfo files via the RArcInfo package).

It can read raster picture formats via the jpeg, png, tiff, rtiff, and readbitmap
packages.

It can read a variety of genomics data formats using packages on Bioconductor. Most
notably, it can read microarray data in GenePix GPR files (a.k.a. axon text files) via the
RPPanalyzer package; Variant Call Format (VCF) files for gene sequence variants via
the vcf2geno package; binary sequence alignment data via rbamtools (which provides
an interface to SAMtools); and Luminex bead array assay files via the lxb package.

Reading Binary Files | 181

http://bit.ly/1dqSmrB
http://www.hdfgroup.org/HDF5/
http://www.unidata.ucar.edu/software/netcdf

Finally, there are loads of miscellaneous formats scattered in other packages. A nonex‐
haustive list includes the 4dfp and tractor.base packages for MRI images, the IgorR
package for WaveMetrics Igor binary format files, the GENEAread package for GENEAc‐
tiv watch accelerometer data, the emme2 package for Inro Software EMME v2 databank
files, the SEER2R package for SEER cancer datasets, the rprotobuf package for Google’s
protocol buffers, the readBrukerFlexData package for mass spectrometry data in
Bruker flex format, the M3 package for community multiscale air quality models in
Models-3 files, and the Read.isi package for ISI codebooks from the World Fertility
Survey.

While most of these packages are completely useless to most people, the fact that R can
access so many niches in so many different areas is rather astounding.

Web Data
The Internet contains a wealth of data, but it’s hard work (and not very scalable) to
manually visit a website, download a data file, and then read it into R from your hard
drive.

Fortunately, R has a variety of ways to import data from web sources; retrieving the data
programmatically makes it possible to collect much more of it with much less effort.

Sites with an API
Several packages exist that download data directly into R using a website’s application
programming interface (API). For example, the World Bank makes its World Devel‐
opment Indicators data publically available, and the WDI package lets you easily import
the data without leaving R. To run the next example, you first need to install the WDI
package:

install.packages("WDI")

library(WDI)
#list all available datasets
wdi_datasets <- WDIsearch()
head(wdi_datasets)

indicator
[1,] "BG.GSR.NFSV.GD.ZS"
[2,] "BM.KLT.DINV.GD.ZS"
[3,] "BN.CAB.XOKA.GD.ZS"
[4,] "BN.CUR.GDPM.ZS"
[5,] "BN.GSR.FCTY.CD.ZS"
[6,] "BN.KLT.DINV.CD.ZS"
name
[1,] "Trade in services (% of GDP)"
[2,] "Foreign direct investment, net outflows (% of GDP)"
[3,] "Current account balance (% of GDP)"

182 | Chapter 12: Getting Data

http://seer.cancer.gov/seerstat
http://code.google.com/p/protobuf
http://code.google.com/p/protobuf
http://strimmerlab.org/software/maldiquant/
http://strimmerlab.org/software/maldiquant/
http://bit.ly/15xrAIa
http://bit.ly/15xrAIa
http://data.worldbank.org/data-catalog/world-development-indicators
http://data.worldbank.org/data-catalog/world-development-indicators

[4,] "Current account balance excluding net official capital grants (% of GDP)"
[5,] "Net income (% of GDP)"
[6,] "Foreign direct investment (% of GDP)"

#retrieve one of them
wdi_trade_in_services <- WDI(
 indicator = "BG.GSR.NFSV.GD.ZS"
)

str(wdi_trade_in_services)

'data.frame': 984 obs. of 4 variables:
$ iso2c : chr "1A" "1A" "1A" ...
$ country : chr "Arab World" "Arab World" "Arab World" ...
$ BG.GSR.NFSV.GD.ZS: num 17.5 NA NA NA ...
$ year : num 2005 2004 2003 2002 ...

The SmarterPoland package provides a similar wrapper to Polish government data.
quantmod provides access to stock tickers (Yahoo!’s by default, though several other
sources are available):

library(quantmod)
#If you are using a version before 0.5.0 then set this option
#or pass auto.assign = FALSE to getSymbols.
options(getSymbols.auto.assign = FALSE)
microsoft <- getSymbols("MSFT")

head(microsoft)

MSFT.Open MSFT.High MSFT.Low MSFT.Close MSFT.Volume
2007-01-03 29.91 30.25 29.40 29.86 76935100
2007-01-04 29.70 29.97 29.44 29.81 45774500
2007-01-05 29.63 29.75 29.45 29.64 44607200
2007-01-08 29.65 30.10 29.53 29.93 50220200
2007-01-09 30.00 30.18 29.73 29.96 44636600
2007-01-10 29.80 29.89 29.43 29.66 55017400
MSFT.Adjusted
2007-01-03 25.83
2007-01-04 25.79
2007-01-05 25.64
2007-01-08 25.89
2007-01-09 25.92
2007-01-10 25.66

The twitteR package provides access to Twitter’s users and their tweets. There’s a little
bit of setup involved (due to Twitter’s API requiring you to create an application and
register it using OAuth; read the vignette for the package for setup instructions), but
after that the package makes it easy to import Twitter data for network analysis, or simply
look at tweets while pretending to work.

Web Data | 183

Scraping Web Pages
R has its own web server built in, so some functions for reading data are Internet-enabled
by default. read.table (and its derivatives, like read.csv) can accept a URL rather than
a local file, and will download a copy to a temp file before importing the data. For
example, economic researcher Justin Rao’s website has NBA basketball salary data for
2002 through 2008:

salary_url <- "http://www.justinmrao.com/salary_data.csv"
salary_data <- read.csv(salary_url)
str(salary_data)

Since accessing a large file over the Internet can be slow, if the file is going to be used
often, a better strategy is to download the file using download.file to create a local
copy, and then import that:

salary_url <- "http://www.justinmrao.com/salary_data.csv"
local_copy <- "my local copy.csv"
download.file(salary_url, local_copy)
salary_data <- read.csv(local_copy)

More advanced access to web pages can be achieved through the RCurl package, which
provides access to the libcurl network client interface library. This is particularly useful
if your data is contained inside an HTML or XML page, rather than a standard data
format (like CSV) that just happens to be on the Web.

The next example retrieves the current date and time in several time zones from the
United States Naval Observatory Time Service Department web page. The function
getURL retrieves the page as a character string:

library(RCurl)
time_url <- "http://tycho.usno.navy.mil/cgi-bin/timer.pl"
time_page <- getURL(time_url)
cat(time_page)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final"//EN>
<html>
<body>
<TITLE>What time is it?</TITLE>
<H2> US Naval Observatory Master Clock Time</H2> <H3><PRE>

Jul. 17, 20:43:37 UTC Universal Time

Jul. 17, 04:43:37 PM EDT Eastern Time

Jul. 17, 03:43:37 PM CDT Central Time

Jul. 17, 02:43:37 PM MDT Mountain Time

Jul. 17, 01:43:37 PM PDT Pacific Time

Jul. 17, 12:43:37 PM AKDT Alaska Time

Jul. 17, 10:43:37 AM HAST Hawaii-Aleutian Time
</PRE></H3><P> US Naval Observatory
##
</body></html>

184 | Chapter 12: Getting Data

The next step is almost always to parse the page using htmlParse (or a related function)
from the XML package. That allows you to extract the useful nodes. In the next example,
splitting on \n (newlines) retrieves each time line, and splitting on \t (tabs) retrieves
time/time zone pairs:

library(XML)
time_doc <- htmlParse(time_page)
pre <- xpathSApply(time_doc, "//pre")[[1]]
values <- strsplit(xmlValue(pre), "\n")[[1]][-1]
strsplit(values, "\t+")

[[1]]
[1] "Jul. 17, 20:43:37 UTC" "Universal Time"
##
[[2]]
[1] "Jul. 17, 04:43:37 PM EDT" "Eastern Time"
##
[[3]]
[1] "Jul. 17, 03:43:37 PM CDT" "Central Time"
##
[[4]]
[1] "Jul. 17, 02:43:37 PM MDT" "Mountain Time"
##
[[5]]
[1] "Jul. 17, 01:43:37 PM PDT" "Pacific Time"
##
[[6]]
[1] "Jul. 17, 12:43:37 PM AKDT" "Alaska Time"
##
[[7]]
[1] "Jul. 17, 10:43:37 AM HAST" "Hawaii-Aleutian Time"

The httr package is based on RCurl and provides syntactic sugar to make some tasks
go down easier. The httr equivalent of RCurl’s getURL is GET, and the content function
retrieves the page’s content, parsing it in the process. In the next example, we pass
useInternalNodes = TRUE to mimic the behavior of htmlParse and repeat the action
of the previous example:

library(httr)
time_page <- GET(time_url)
time_doc <- content(page, useInternalNodes = TRUE)

Accessing Databases
Where data has to be accessed by many people, it is often best stored in a relational
database. There are many database management systems (DBMSs) for working with
relational databases, and R can connect to all the common ones. The DBI package pro‐
vides a unified syntax for accessing several DBMSs—currently SQLite, MySQL/
MariaDB, PostgreSQL, and Oracle are supported, as well as a wrapper to the Java

Accessing Databases | 185

4. Any database administrators worth their salt will tell you that writing SELECT * is lazy, and you should jolly
well explicitly name your columns before that code goes anywhere near their servers, thank you very much.

Database Connectivity (JDBC) API. (Connections to SQL Server use a different system,
as we’ll see below.)

To connect to an SQLite database, you must first install and load the DBI package and
the backend package RSQLite:

library(DBI)
library(RSQLite)

Then you define the database driver to be of type “SQLite” and set up a connection to
the database, in this case by naming the file:

driver <- dbDriver("SQLite")
db_file <- system.file(
 "extdata",
 "crabtag.sqlite",
 package = "learningr"
)
conn <- dbConnect(driver, db_file)

The equivalent for a MySQL database would be to load the RMySQL package and set the
driver type to be “MySQL”:

driver <- dbDriver("MySQL")
db_file <- "path/to/MySQL/database"
conn <- dbConnect(driver, db_file)

The PostgreSQL, Oracle, and JDBC equivalents require the PostgreSQL, ROracle, and
RJDBC packages, respectively, and their database names are the driver names, just as with
SQLite and MySQL.

To retrieve data from the databases you write a query, which is just a string containing
SQL commands, and send it to the database with dbGetQuery. In this next example,
SELECT * FROM IdBlock means “get every column of the table named IdBlock”:4

query <- "SELECT * FROM IdBlock"
(id_block <- dbGetQuery(conn, query))

Tag ID Firmware Version No Firmware Build Level
1 A03401 2 70

Then, after you’ve finished manipulating the database, you need to clean up by discon‐
necting and unloading the driver:

dbDisconnect(conn)

[1] TRUE

186 | Chapter 12: Getting Data

dbUnloadDriver(driver)

[1] TRUE

It is very easy to accidentally leave connections open, especially if an error occurs while
you are connected. One way to avoid this is to wrap your database code into a function,
and use on.exit to make sure that the cleanup code always runs. on.exit runs R code
whenever its parent function exits, whether it finishes correctly or throws an error. We
can rewrite the previous example with safer code as follows:

query_crab_tag_db <- function(query)
{
 driver <- dbDriver("SQLite")
 db_file <- system.file(
 "extdata",
 "crabtag.sqlite",
 package = "learningr"
)
 conn <- dbConnect(driver, db_file)
 on.exit(
 {
 #this code block runs at the end of the function,
 #even if an error is thrown
 dbDisconnect(conn)
 dbUnloadDriver(driver)
 }
)
 dbGetQuery(conn, query)
}

We can pass any SQL code to the function to query the crab tag database:

query_crab_tag_db("SELECT * FROM IdBlock")

Tag ID Firmware Version No Firmware Build Level
1 A03401 2 70

In this case, the DBI package provides a convenience function that saves us having to
write our own SQL code. dbReadTable does as you might expect: it reads a table from
the connected database (use dbListTables(conn) if you can’t remember the name of
the table that you want):

dbReadTable(conn, "idblock")

Tag.ID Firmware.Version.No Firmware.Build.Level
1 A03401 2 70

[1] TRUE

[1] TRUE

If your database isn’t one of the types listed here, the RODBC package is an alternative
that uses ODBC database connections—this is particularly useful for connecting to SQL
Server or Access databases. The functions have different names than their DBI coun‐

Accessing Databases | 187

terparts, but the principles are very similar. You need to set up an ODBC data source
on your machine (via the Control Panel under Windows; search for “ODBC” in the
Start Menu) before R can connect. Figure 12-1 shows the OBDC registration wizard
from Windows 7.

Figure 12-1. Registering an ODBC data source with the ODBC Data Source Adminis‐
trator

Then call odbcConnect to connect, sqlQuery to run a query, and odbcClose to clean up
afterward:

library(RODBC)
conn <- odbcConnect("my data source name")
id_block <- sqlQuery(conn, "SELECT * FROM IdBlock")
odbcClose(conn)

Methods for accessing NoSQL databases (short for “Not only SQL”; lightweight data
stores that are more easily scalable than traditional SQL relational databases) from R
are less mature. MongoDB can be accessed via the RMongo or rmongodb packages, Cas‐
sandra can be accessed from the RCassandra package, and CouchDB can be accessed
from the R4CouchDB package [not yet on CRAN but available on GitHub].

Summary
• Datasets supplied with R or packages can be made available with the data function.
• You can import data into R from a very wide range of external sources.

188 | Chapter 12: Getting Data

https://github.com/wactbprot/R4CouchDB

• read.table and its variants read rectangular data.
• readLines reads text files with nonstandard structures.
• You can read HTML and XML data with the XML package.
• The RJSONIO, rjson, and yaml packages read JSON/YAML.
• There are lots of packages for reading Excel files, including xlsx.
• The foreign package reads data from other statistics software.
• There are lots of packages for manipulating databases, including DBI and RODBC.

Test Your Knowledge: Quiz
Question 12-1

How do you find all the datasets built into R and the packages on your machine?

Question 12-2
What is the difference between the read.csv and read.csv2 functions?

Question 12-3
How would you import data from an Excel spreadsheet into R?

Question 12-4
How would you import data from a CSV file found on the Internet?

Question 12-5
The DBI package provides a consistent interface to several database management
systems. Which ones are supported?

Test Your Knowledge: Exercises
Exercise 12-1

In the extdata folder of the learningr package, there is a file named hafu.csv, con‐
taining data on mixed-race manga characters. Import the data into a data frame.
[5]

Exercise 12-2
Also in the extdata folder of learningr is an Excel file named multi-drug-resistant
gonorrhoea infection.xls. Import the data from the first (and only) sheet into a data
frame. Hint: this is a little easier if you view the file in a spreadsheet program first.
LibreOffice is free and accomplishes this task easily. [10]

Exercise 12-3
From the crab tag SQLite database described in this chapter, import the contents
of the Daylog table into a data frame. [10]

Test Your Knowledge: Quiz | 189

https://www.libreoffice.org

CHAPTER 13

Cleaning and Transforming

No matter what format you are given data in, it’s almost always the wrong one for what
you want to do with it, and no matter who gave it to you, it’s almost always dirty. Cleaning
and transforming data may not be the fun part of data analysis, but you’ll probably spend
more of your life than you care to doing it. Fortunately, R has a wide selection of tools
to help with these tasks.

Chapter Goals
After reading this chapter, you should:

• Know how to manipulate strings and clean categorical variables
• Be able to subset and transform data frames
• Be able to change the shape of a data frame from wide to long and back again
• Understand sorting and ordering

Cleaning Strings
Back in Chapter 7, we looked at some simple string manipulation tasks like combining
strings together using paste, and extracting sections of a string using substring.

One really common problem is when logical values have been encoded in a way that R
doesn’t understand. In the alpe_d_huez cycling dataset, the DrugUse column (denoting
whether or not allegations of drug use have been made about each rider’s performance),
values have been encoded as "Y" and "N" rather than TRUE or FALSE. For this sort of
simple matching, we can directly replace each string with the correct logical value:

191

1. See the assertive package for some pre-canned regular expressions for this purpose.

yn_to_logical <- function(x)
{
 y <- rep.int(NA, length(x))
 y[x == "Y"] <- TRUE
 y[x == "N"] <- FALSE
 y
}

Setting values to NA by default lets us deal with strings that don’t match "Y" or "N". We
call the function in the obvious way:

alpe_d_huez$DrugUse <- yn_to_logical(alpe_d_huez$DrugUse)

This direct replacement of one string with another doesn’t scale very well to having lots
of choices of string. If you have ten thousand possible inputs, then a function to change
each one would be very hard to write without errors, and even harder to maintain.

Fortunately, much more sophisticated manipulation is possible, and it is relatively easy
to detect, extract, and replace parts of strings that match a pattern. R has a suite of built-
in functions for handling these tasks, (loosely) based upon the Unix grep tool. They
accept a string to manipulate and a regular expression to match. As mentioned in
Chapter 1, regular expressions are patterns that provide a flexible means of describing
the contents of a string. They are very useful for matching complex string-data types
like phone numbers or email addresses.1

The grep, grepl, and regexpr functions all find strings that match a pattern, and sub
and gsub replace matching strings. In classic R style, these functions are meticulously
correct and very powerful, but suffer from funny naming conventions, quirky argument
ordering, and odd return values that have arisen for historical reasons. Fortunately, in
the same way that plyr provides a consistent wrapper around apply functions and
lubridate provides a consistent wrapper around the date-time functions, the stringr
package provides a consistent wrapper around the string manipulation functions. The
difference is that while you will occasionally need to use a base apply or date-time
function, stringr is advanced enough that you shouldn’t need to bother with grep at
all. So, take a look at the ?grep help page, but don’t devote too much of your brain to it.

These next examples use the english_monarchs dataset from the learningr package.
It contains the names and dates of rulers from post-Roman times (in the fifth century
CE), when England was split into seven regions known as the heptarchy, until England
took over Ireland in the early thirteenth century:

data(english_monarchs, package = "learningr")
head(english_monarchs)

192 | Chapter 13: Cleaning and Transforming

name house start.of.reign end.of.reign domain
1 Wehha Wuffingas NA 571 East Anglia
2 Wuffa Wuffingas 571 578 East Anglia
3 Tytila Wuffingas 578 616 East Anglia
4 Rædwald Wuffingas 616 627 East Anglia
5 Eorpwald Wuffingas 627 627 East Anglia
6 Ricberht Wuffingas 627 630 East Anglia
length.of.reign.years reign.was.more.than.30.years
1 NA NA
2 7 FALSE
3 38 TRUE
4 11 FALSE
5 0 FALSE
6 3 FALSE

One of the problems with history is that there is an awful lot of it. Fortunately, odd or
messy data can be a really good indicator of the interesting bits of history, so we can
narrow it down to the good stuff. For example, although there were seven territories
that came together to form England, their boundaries were far from fixed, and some‐
times one kingdom would conquer another. We can find these convergences by search‐
ing for commas in the domain column. To detect a pattern, we use the str_detect
function. The fixed function tells str_detect that we are looking for a fixed string (a
comma) rather than a regular expression. str_detect returns a logical vector that we
can use for an index:

library(stringr)
multiple_kingdoms <- str_detect(english_monarchs$domain, fixed(","))
english_monarchs[multiple_kingdoms, c("name", "domain")]

name domain
17 Offa East Anglia, Mercia
18 Offa East Anglia, Kent, Mercia
19 Offa and Ecgfrith East Anglia, Kent, Mercia
20 Ecgfrith East Anglia, Kent, Mercia
22 Cœnwulf East Anglia, Kent, Mercia
23 Cœnwulf and Cynehelm East Anglia, Kent, Mercia
24 Cœnwulf East Anglia, Kent, Mercia
25 Ceolwulf East Anglia, Kent, Mercia
26 Beornwulf East Anglia, Mercia
82 Ecgbehrt and Æthelwulf Kent, Wessex
83 Ecgbehrt and Æthelwulf Kent, Mercia, Wessex
84 Ecgbehrt and Æthelwulf Kent, Wessex
85 Æthelwulf and Æðelstan I Kent, Wessex
86 Æthelwulf Kent, Wessex
87 Æthelwulf and Æðelberht III Kent, Wessex
88 Æðelberht III Kent, Wessex
89 Æthelred I Kent, Wessex
95 Oswiu Mercia, Northumbria

Cleaning Strings | 193

Similarly, it was quite common for power over a kingdom to be shared between several
people, rather than having a single ruler. (This was especially common when a powerful
king had several sons.) We can find these instances by looking for either a comma or
the word “and” in the name column. This time, since we are looking for two things, it is
easier to specify a regular expression rather than a fixed string. The pipe character, |,
has the same meaning in regular expressions as it does in R: it means “or.”

In this next example, to prevent excessive output we just return the name column and
ignore missing values (with is.na):

multiple_rulers <- str_detect(english_monarchs$name, ",|and")
english_monarchs$name[multiple_rulers & !is.na(multiple_rulers)]

[1] Sigeberht and Ecgric
[2] Hun, Beonna and Alberht
[3] Offa and Ecgfrith
[4] Cœnwulf and Cynehelm
[5] Sighere and Sebbi
[6] Sigeheard and Swaefred
[7] Eorcenberht and Eormenred
[8] Oswine, Swæfbehrt, Swæfheard
[9] Swæfbehrt, Swæfheard, Wihtred
[10] Æðelberht II, Ælfric and Eadberht I
[11] Æðelberht II and Eardwulf
[12] Eadberht II, Eanmund and Sigered
[13] Heaberht and Ecgbehrt II
[14] Ecgbehrt and Æthelwulf
[15] Ecgbehrt and Æthelwulf
[16] Ecgbehrt and Æthelwulf
[17] Æthelwulf and Æðelstan I
[18] Æthelwulf and Æðelberht III
[19] Penda and Eowa
[20] Penda and Peada
[21] Æthelred, Lord of the Mercians
[22] Æthelflæd, Lady of the Mercians
[23] Ælfwynn, Second Lady of the Mercians
[24] Hálfdan and Eowils
[25] Noðhelm and Watt
[26] Noðhelm and Bryni
[27] Noðhelm and Osric
[28] Noðhelm and Æðelstan
[29] Ælfwald, Oslac and Osmund
[30] Ælfwald, Ealdwulf, Oslac and Osmund
[31] Ælfwald, Ealdwulf, Oslac, Osmund and Oswald
[32] Cenwalh and Seaxburh
211 Levels: Adda Æðelbehrt Æðelberht I ... Wulfhere

If we wanted to split the name column into individual rulers, then we could use
str_split (or strsplit from base R, which does the same thing) in much the same
way. str_split accepts a vector and returns a list, since each input string can be split
into a vector of possibly differing lengths. If each input must return the same number

194 | Chapter 13: Cleaning and Transforming

of splits, we could use str_split_fixed instead, which returns a matrix. The output
shows the first few examples of multiple rulers:

individual_rulers <- str_split(english_monarchs$name, ", | and ")
head(individual_rulers[sapply(individual_rulers, length) > 1])

[[1]]
[1] "Sigeberht" "Ecgric"
##
[[2]]
[1] "Hun" "Beonna" "Alberht"
##
[[3]]
[1] "Offa" "Ecgfrith"
##
[[4]]
[1] "Cœnwulf" "Cynehelm"
##
[[5]]
[1] "Sighere" "Sebbi"
##
[[6]]
[1] "Sigeheard" "Swaefred"

Many of the Anglo-Saxon rulers during this period had Old English characters in their
names, like “æ” (“ash”), which represents “ae,” or “ð” and “þ” (“eth” and “thorn,” respec‐
tively), which both represent “th.” The exact spelling of each ruler’s name isn’t standar‐
dized in many cases, but to identify a particular ruler it is necessary to be consistent.

Let’s take a look at how many times th, ð, and þ are used to form the letters “th.” We can
count the number of times each one occurs in each name using str_count, then sum
over all rulers to calculate the total number of occurrences:

th <- c("th", "ð", "þ
sapply(#can also use laply from plyr
 th,
 function(th)
 {
 sum(str_count(english_monarchs$name, th))
 }
)

th ð þ
74 26 7

It looks like the standard modern Latin spelling is most common in this dataset. If we
want to replace the eths and thorns, we can use str_replace_all. (A variant function,
str_replace, replaces only the first match.) Placing eth and thorn in square brackets
means “match either of these characters”:

english_monarchs$new_name <- str_replace_all(english_monarchs$name, "[ðþ]", "th")

Cleaning Strings | 195

2. Or an environment.

This sort of trick can be very useful for cleaning up levels of a categorical variable. For
example, genders can be specified in several ways in English, but we usually only want
two of them. In the next example, we match on a string that starts with (^) “m” and is
followed by an optional (?) “ale”, which ends the string ($):

gender <- c(
 "MALE", "Male", "male", "M", "FEMALE",
 "Female", "female", "f", NA
)
clean_gender <- str_replace(
 gender,
 ignore.case("^m(ale)?$"),
 "Male"
)
(clean_gender <- str_replace(
 clean_gender,
 ignore.case("^f(emale)?$"),
 "Female"
))

[1] "Male" "Male" "Male" "Male" "Female" "Female" "Female" "Female"
[9] NA

Manipulating Data Frames
Much of the task of cleaning data involves manipulating data frames to get them into
the desired form. We’ve already seen indexing and the subset function for selecting a
subset of a data frame. Other common tasks include augmenting a data frame with
additional columns (or replacing existing columns), dealing with missing values, and
converting between the wide and long forms of a data frame. There are several functions
available for adding or replacing columns in a data frame.

Adding and Replacing Columns
Suppose we want to add a column to the english_monarchs data frame denoting the
number of years the rulers were in power. We can use standard assignment to achieve
this:

english_monarchs$length.of.reign.years <-
 english_monarchs$end.of.reign - english_monarchs$start.of.reign

This works, but the repetition of the data frame variable names makes this a lot of effort
to type and to read. The with function makes things easier by letting you call variables
directly. It takes a data frame2 and an expression to evaluate:

196 | Chapter 13: Cleaning and Transforming

3. The transform function from base R is a precursor to mutate, and is now obsolete.

english_monarchs$length.of.reign.years <- with(
 english_monarchs,
 end.of.reign - start.of.reign
)

The within function works in a similar way, but returns the whole data frame:

english_monarchs <- within(
 english_monarchs,
 {
 length.of.reign.years <- end.of.reign - start.of.reign
 }
)

Although within requires more effort in this example, it becomes more useful if you
want to change multiple columns:

english_monarchs <- within(
 english_monarchs,
 {
 length.of.reign.years <- end.of.reign - start.of.reign
 reign.was.more.than.30.years <- length.of.reign.years > 30
 }
)

A good heuristic is that if you are creating or changing one column, then use with; if
you want to manipulate several columns at once, then use within.

An alternative approach is taken by the mutate function in the plyr package, which
accepts new and revised columns as name-value pairs:3

english_monarchs <- mutate(
 english_monarchs,
 length.of.reign.years = end.of.reign - start.of.reign,
 reign.was.more.than.30.years = length.of.reign.years > 30
)

Dealing with Missing Values
The red deer dataset that we saw in the previous chapter contains measurements of the
endocranial volume for each deer using four different techniques. For some but not all
of the deer, a second measurement was taken to test the repeatability of the technique.
This means that some of the rows have missing values. The complete.cases function
tells us which rows are free of missing values:

data("deer_endocranial_volume", package = "learningr")
has_all_measurements <- complete.cases(deer_endocranial_volume)
deer_endocranial_volume[has_all_measurements,]

Manipulating Data Frames | 197

4. na.exclude does the same thing as na.omit; their dual existence is mostly for legacy purposes.

SkullID VolCT VolBead VolLWH VolFinarelli VolCT2 VolBead2 VolLWH2
7 C120 346 335 1250 289 346 330 1264
8 C25 302 295 1011 250 303 295 1009
9 F7 379 360 1621 347 375 365 1647
10 B12 410 400 1740 387 413 395 1728
11 B17 405 395 1652 356 408 395 1639
12 B18 391 370 1835 419 394 375 1825
13 J7 416 405 1834 408 417 405 1876
15 A4 336 330 1224 283 345 330 1192
20 K2 349 355 1239 286 354 365 1243

The na.omit function provides a shortcut to this, removing any rows of a data frame
where there are missing values:4

na.omit(deer_endocranial_volume)

SkullID VolCT VolBead VolLWH VolFinarelli VolCT2 VolBead2 VolLWH2
7 C120 346 335 1250 289 346 330 1264
8 C25 302 295 1011 250 303 295 1009
9 F7 379 360 1621 347 375 365 1647
10 B12 410 400 1740 387 413 395 1728
11 B17 405 395 1652 356 408 395 1639
12 B18 391 370 1835 419 394 375 1825
13 J7 416 405 1834 408 417 405 1876
15 A4 336 330 1224 283 345 330 1192
20 K2 349 355 1239 286 354 365 1243

By contrast, na.fail will throw an error if your data frame contains any missing values:

na.fail(deer_endocranial_volume)

Both these functions can accept vectors as well, removing missing values or failing, as
in the data frame case.

You can use multiple imputation to fill in missing values in a
statistically sound way. This is beyond the scope of the book, but
the mice and mix packages are good places to start.

Converting Between Wide and Long Form
The red deer dataset contains measurements of the volume of deer skulls obtained in
four different ways. Each measurement for a particular deer is given in its own column.
(For simplicity, let’s ignore the columns for repeat measurements.) This is known as the
wide form of a data frame:

deer_wide <- deer_endocranial_volume[, 1:5]

198 | Chapter 13: Cleaning and Transforming

5. The terminology of “melting” and its opposite, “casting,” is borrowed from the steel industry.

An alternative point of view is that each skull measurement is the same type of thing (a
measurement), just a different measurement. So, a different way of representing the data
would be to have four rows for each deer, with a column for the skull ID, as before (so
each value would be repeated four times), a column containing all the measurements,
and a factor column explaining what type of measurement is contained in that particular
row. This is called the long form of a data frame.

There is a function in base R for converting between wide and long form, called
reshape. It’s very powerful, but not entirely intuitive; a better alternative is to use the
functionality of the reshape2 package.

The melt function available in this package converts from wide form to long.5 We choose
SkullID as the ID column (with everything else being classed as a measurement):

library(reshape2)
deer_long <- melt(deer_wide, id.vars = "SkullID")
head(deer_long)

SkullID variable value
1 DIC44 VolCT 389
2 B11 VolCT 389
3 DIC90 VolCT 352
4 DIC83 VolCT 388
5 DIC787 VolCT 375
6 DIC1573 VolCT 325

You can, alternatively, supply the measure.vars argument, which is all the columns that
aren’t included in id.vars. In this case it is more work, but it can be useful if you have
many ID variables and few measurement variables:

melt(deer_wide, measure.vars = c("VolCT", "VolBead", "VolLWH", "VolFinarelli"))

The dcast function converts back from long to wide and returns the result as a data
frame (the related function acast returns a vector, matrix, or array):

deer_wide_again <- dcast(deer_long, SkullID ~ variable)

Our reconstituted dataset, deer_wide_again, is identical to the original, deer_wide,
except that it is now ordered alphabetically by SkullID.

Spreadsheet aficionados might note that acast and dcast are
effectively creating pivot tables.

Manipulating Data Frames | 199

Using SQL
The sqldf package provides a way of manipulating data frames using SQL. In general,
native R functions are more concise and readable than SQL code, but if you come from
a database background this package can ease your transition to R:

install.packages("sqldf")

The next example compares the native R and sqldf versions of a subsetting query:

library(sqldf)

Loading required package: DBI

Loading required package: gsubfn

Loading required package: proto

Loading required namespace: tcltk

Loading required package: chron

Loading required package: RSQLite

Loading required package: RSQLite.extfuns

subset(
 deer_endocranial_volume,
 VolCT > 400 | VolCT2 > 400,
 c(VolCT, VolCT2)
)

VolCT VolCT2
10 410 413
11 405 408
13 416 417
16 418 NA

query <-
 "SELECT
 VolCT,
 VolCT2
 FROM
 deer_endocranial_volume
 WHERE
 VolCT > 400 OR
 VolCT2 > 400"
sqldf(query)

Loading required package: tcltk

VolCT VolCT2
1 410 413
2 405 408
3 416 417
4 418 NA

200 | Chapter 13: Cleaning and Transforming

6. Sorting algorithm geeks may like to note that the sort function uses a shellsort by default, but you can use
method = "quick" to use a quicksort instead. Radix sorting is also available for factors.

Sorting
It’s often useful to have numeric data in size order, since the interesting values are often
the extremes. The sort function sorts vectors from smallest to largest (or largest to
smallest):6

x <- c(2, 32, 4, 16, 8)
sort(x)

[1] 2 4 8 16 32

sort(x, decreasing = TRUE)

[1] 32 16 8 4 2

Strings can also be sorted, but the sort order depends upon locale. Usually letters are
ordered from “a” through to “z,” but there are oddities: in Estonian, “z” comes after “s”
and before “t,” for example. More of these quirks are listed in the ?Comparison help
page. In an English or North American locale, you’ll see results like this:

sort(c("I", "shot", "the", "city", "sheriff"))

[1] "city" "I" "sheriff" "shot" "the"

The order function is a kind of inverse to sort. The ith element of the order contains
the index of the element of x that will end up in the ith position after sorting. That takes
a bit of getting your head around, but mostly what you need to know is that x[or
der(x)] returns the same result as sort(x):

order(x)

[1] 1 3 5 4 2

x[order(x)]

[1] 2 4 8 16 32

identical(sort(x), x[order(x)])

[1] TRUE

order is most useful for sorting data frames, where sort cannot be used directly. For
example, to sort the english_monarchs data frame by the year of the start of the reign,
we can use:

year_order <- order(english_monarchs$start.of.reign)
english_monarchs[year_order,]

The arrange function from the plyr package provides a one-line alternative for order‐
ing data frames:

Sorting | 201

7. For the curious, there’s a good introduction at wordIQ.com.

8. Technically, a predicate is a function that returns a single logical value, so we’re abusing the term, but the
word for the vector equivalent hasn’t been coined yet. I rather like the Schwarzenegger-esque “predicator,”
but until that catches on, we’ll use plain old predicate.

arrange(english_monarchs, start.of.reign)

The rank function gives the rank of each element in a dataset, providing a few ways of
dealing with ties:

(x <- sample(3, 7, replace = TRUE))

[1] 1 2 1 3 3 3 2

rank(x)

[1] 1.5 3.5 1.5 6.0 6.0 6.0 3.5

rank(x, ties.method = "first")

[1] 1 3 2 5 6 7 4

Functional Programming
Several concepts from functional programming languages like LISP and Haskell have
been introduced into R. You don’t need to know anything at all about functional pro‐
gramming to use them;7 you just need to know that these functions can be useful for
manipulating data.

The Negate function accepts a predicate (that is, a function that returns a logical vector),
and returns another predicate that does the opposite.8 It returns TRUE when the input
returns FALSE and FALSE when the input returns TRUE:

ct2 <- deer_endocranial_volume$VolCT2 #for convenience of typing
isnt.na <- Negate(is.na)
identical(isnt.na(ct2), !is.na(ct2))

[1] TRUE

Filter takes a function that returns a logical vector and an input vector, and returns
only those values where the function returns TRUE:

Filter(isnt.na, ct2)

[1] 346 303 375 413 408 394 417 345 354

The Position function behaves a little bit like which, which we saw in “Vectors” on page
39 in Chapter 4. It returns the first index where applying a predicate to a vector returns
TRUE:

Position(isnt.na, ct2)

[1] 7

202 | Chapter 13: Cleaning and Transforming

http://bit.ly/17mnkKs

Find is similar to Position, but it returns the first value rather than the first index:

Find(isnt.na, ct2)

[1] 346

Map applies a function element-wise to its inputs. It’s just a wrapper to mapply, with
SIMPLIFY = FALSE. In this next example, we retrieve the average measurement using
each method for each deer in the red deer dataset. First, we need a function to pass to
Map to find the volume of each deer skull:

get_volume <- function(ct, bead, lwh, finarelli, ct2, bead2, lwh2)
{
 #If there is a second measurement, take the average
 if(!is.na(ct2))
 {
 ct <- (ct + ct2) / 2
 bead <- (bead + bead2) / 2
 lwh <- (lwh + lwh2) / 2
 }
 #Divide lwh by 4 to bring it in line with other measurements
 c(ct = ct, bead = bead, lwh.4 = lwh / 4, finarelli = finarelli)
}

Then Map behaves like mapply—it takes a function and then each argument to pass to
that function:

measurements_by_deer <- with(
 deer_endocranial_volume,
 Map(
 get_volume,
 VolCT,
 VolBead,
 VolLWH,
 VolFinarelli,
 VolCT2,
 VolBead2,
 VolLWH2
)
)
head(measurements_by_deer)

[[1]]
ct bead lwh.4 finarelli
389 375 371 337
##
[[2]]
ct bead lwh.4 finarelli
389.0 370.0 430.5 377.0
##
[[3]]
ct bead lwh.4 finarelli
352.0 345.0 373.8 328.0

Functional Programming | 203

##
[[4]]
ct bead lwh.4 finarelli
388.0 370.0 420.8 377.0
##
[[5]]
ct bead lwh.4 finarelli
375.0 355.0 364.5 328.0
##
[[6]]
ct bead lwh.4 finarelli
325.0 320.0 340.8 291.0

The Reduce function turns a binary function into one that accepts multiple inputs. For
example, the + operator calculates the sum of two numbers, but the sum function cal‐
culates the sum of multiple inputs. sum(a, b, c, d, e) is (roughly) equivalent to
Reduce("+", list(a, b, c, d, e)).

We can define a simple binary function that calculates the (parallel) maximum of two
inputs:

pmax2 <- function(x, y) ifelse(x >= y, x, y)

If we reduce this function, then it will accept a list of many inputs (like the pmax function
in base R does):

Reduce(pmax2, measurements_by_deer)

ct bead lwh.4 finarelli
418.0 405.0 463.8 419.0

One proviso is that Reduce repeatedly calls the binary function on pairs of inputs, so:

Reduce("+", list(a, b, c, d, e))

is the same as:

((((a + b) + c) + d) + e)

This means that you can’t use it for something like calculating the mean, since:

mean(mean(mean(mean(a, b), c), d), e) != mean(a, b, c, d, e)

Summary
• The stringr package is useful for manipulating strings.
• Columns of a data frame can be added, subtracted, or manipulated.
• Data frames can exist in wide or long form.
• Vectors can be sorted, ranked, and ordered.

204 | Chapter 13: Cleaning and Transforming

• R has some functional programming capabilities, including Map and Reduce.

Test Your Knowledge: Quiz
Question 13-1

How would you count the number of times the word “thou” appears in Shake‐
speare’s The Tempest?

Question 13-2
Name as many functions as you can think of for adding columns to data frames.

Question 13-3
What is the opposite of melting?

Question 13-4
How would you reorder a data frame by one if its columns?

Question 13-5
How would you find the first positive number in a vector?

Test Your Knowledge: Exercises
Exercise 13-1

1. Load the hafu dataset from the learningr package. In the Father and Moth
er columns, some values have question marks after the country name, indi‐
cating that the author was uncertain about the nationality of the parent. Create
two new columns in the hafu data frame, denoting whether or not there was a
question mark in the Father or Mother column, respectively.

2. Remove those question marks from the Father and Mother columns. [10]

Exercise 13-2
The hafu dataset has separate columns for the nationality of each parent. Convert
the data frame from wide form to long form, with a single column for the parents’
nationality and a column indicating which parent the nationality refers to. [5]

Exercise 13-3
Write a function that returns the 10 most common values in a vector, along with
their counts. Try the function on some columns from the hafu dataset. [10]

Test Your Knowledge: Quiz | 205

CHAPTER 14

Exploring and Visualizing

Once you’ve imported your data and cleaned and transformed it into a suitable state,
you get to start asking questions like “what does it all mean?” The two main tools at
your disposal are summary statistics and plots. (Modeling comes later, because you need
to understand your data before you can model it properly.) R is well served by a com‐
prehensive set of functions for calculating statistics, and a choice of three different
graphics systems.

Chapter Goals
After reading this chapter, you should:

• Be able to calculate a range of summary statistics on numeric data
• Be able to draw standard plots in R’s three plotting systems
• Be able to manipulate those plots in simple ways

Summary Statistics
We’ve already come across many of the functions for calculating summary statistics, so
this section is partly a recap. Most are fairly obvious in their naming and their usage;
for example, mean and median calculate their respective measures of location. There isn’t
a function for the mode, but it can be calculated from the results of the table function,
which gives counts of each element. (If you haven’t already, have a go at Exercise 13-3
now.)

In the following examples, the obama_vs_mccain dataset contains the fractions of people
voting for Obama and McCain in the 2008 US presidential elections, along with some
contextual background information on demographics:

207

data(obama_vs_mccain, package = "learningr")
obama <- obama_vs_mccain$Obama
mean(obama)

[1] 51.29

median(obama)

[1] 51.38

The table function doesn’t make a great deal of sense for the obama variable (or many
numeric variables) since each value is unique. By combining it with cut, we can see how
many values fall into different bins:

table(cut(obama, seq.int(0, 100, 10)))

##
(0,10] (10,20] (20,30] (30,40] (40,50] (50,60] (60,70] (70,80]
0 0 0 8 16 16 9 1
(80,90] (90,100]
0 1

var and sd calculate the variance and standard deviation, respectively. Slightly less
common is the mad function for calculating the mean absolute deviation:

var(obama)

[1] 123.1

sd(obama)

[1] 11.09

mad(obama)

[1] 11.49

There are several functions for getting the extremes of numeric data. min and max are
the most obvious, giving the smallest and largest values of all their inputs, respectively.
pmin and pmax (the “parallel” equivalents) calculate the smallest and largest values at
each point across several vectors of the same length. Meanwhile, the range function
gives the minimum and maximum in a single function call:

min(obama)

[1] 32.54

with(obama_vs_mccain, pmin(Obama, McCain))

[1] 38.74 37.89 44.91 38.86 36.91 44.71 38.22 6.53 36.93 48.10 46.90
[12] 26.58 35.91 36.74 48.82 44.39 41.55 41.15 39.93 40.38 36.47 35.99
[23] 40.89 43.82 43.00 49.23 47.11 41.60 42.65 44.52 41.61 41.78 36.03
[34] 49.38 44.50 46.80 34.35 40.40 44.15 35.06 44.90 44.75 41.79 43.63
[45] 34.22 30.45 46.33 40.26 42.51 42.31 32.54

range(obama)

[1] 32.54 92.46

208 | Chapter 14: Exploring and Visualizing

cummin and cummax provide the smallest and largest values so far in a vector. Similarly,
cumsum and cumprod provide sums and products of the values to date. These functions
make most sense when the input has been ordered in a useful way:

cummin(obama)

[1] 38.74 37.89 37.89 37.89 37.89 37.89 37.89 37.89 37.89 37.89 37.89
[12] 37.89 35.91 35.91 35.91 35.91 35.91 35.91 35.91 35.91 35.91 35.91
[23] 35.91 35.91 35.91 35.91 35.91 35.91 35.91 35.91 35.91 35.91 35.91
[34] 35.91 35.91 35.91 34.35 34.35 34.35 34.35 34.35 34.35 34.35 34.35
[45] 34.22 34.22 34.22 34.22 34.22 34.22 32.54

cumsum(obama)

[1] 38.74 76.63 121.54 160.40 221.34 275.00 335.59 428.05
[9] 489.96 540.87 587.77 659.62 695.53 757.38 807.23 861.16
[17] 902.71 943.86 983.79 1041.50 1103.42 1165.22 1222.55 1276.61
[25] 1319.61 1368.84 1415.95 1457.55 1512.70 1566.83 1623.97 1680.88
[33] 1743.76 1793.46 1837.96 1889.34 1923.69 1980.44 2034.91 2097.77
[41] 2142.67 2187.42 2229.21 2272.84 2307.06 2374.52 2427.15 2484.49
[49] 2527.00 2583.22 2615.76

cumprod(obama)

[1] 3.874e+01 1.468e+03 6.592e+04 2.562e+06 1.561e+08 8.377e+09 5.076e+11
[8] 4.693e+13 2.905e+15 1.479e+17 6.937e+18 4.984e+20 1.790e+22 1.107e+24
[15] 5.519e+25 2.976e+27 1.237e+29 5.089e+30 2.032e+32 1.173e+34 7.261e+35
[22] 4.487e+37 2.572e+39 1.391e+41 5.980e+42 2.944e+44 1.387e+46 5.769e+47
[29] 3.182e+49 1.722e+51 9.841e+52 5.601e+54 3.522e+56 1.750e+58 7.789e+59
[36] 4.002e+61 1.375e+63 7.801e+64 4.249e+66 2.671e+68 1.199e+70 5.367e+71
[43] 2.243e+73 9.785e+74 3.349e+76 2.259e+78 1.189e+80 6.817e+81 2.898e+83
[50] 1.629e+85 5.302e+86

The quantile function provides, as you might expect, quantiles (median, min, and max
are special cases). It defaults to the median, minimum, maximum, and lower and upper
quartiles, and in an impressive feat of overengineering, it gives a choice of nine different
calculation algorithms:

quantile(obama)

0% 25% 50% 75% 100%
32.54 42.75 51.38 57.34 92.46

quantile(obama, type = 5) #to reproduce SAS results

0% 25% 50% 75% 100%
32.54 42.63 51.38 57.34 92.46

quantile(obama, c(0.9, 0.95, 0.99))

90% 95% 99%
61.92 65.17 82.16

IQR wraps quantile to give the interquartile range (the 75th percentile minus the 25th
percentile):

Summary Statistics | 209

IQR(obama)

[1] 14.58

fivenum provides a faster, greatly simplified alternative to quantile. You only get one
algorithm, and only the default quantiles can be calculated. It has a niche use where
speed matters:

fivenum(obama)

[1] 32.54 42.75 51.38 57.34 92.46

There are some shortcuts for calculating multiple statistics at once. You’ve already met
the summary function, which accepts vectors or data frames:

summary(obama_vs_mccain)

State Region Obama McCain
Alabama : 1 IV : 8 Min. :32.5 Min. : 6.53
Alaska : 1 I : 6 1st Qu.:42.8 1st Qu.:40.39
Arizona : 1 III : 6 Median :51.4 Median :46.80
Arkansas : 1 V : 6 Mean :51.3 Mean :47.00
California: 1 VIII : 6 3rd Qu.:57.3 3rd Qu.:55.88
Colorado : 1 VI : 5 Max. :92.5 Max. :65.65
(Other) :45 (Other):14
Turnout Unemployment Income Population
Min. :50.8 Min. :3.40 Min. :19534 Min. : 563626
1st Qu.:61.0 1st Qu.:5.05 1st Qu.:23501 1st Qu.: 1702662
Median :64.9 Median :5.90 Median :25203 Median : 4350606
Mean :64.1 Mean :6.01 Mean :26580 Mean : 6074128
3rd Qu.:68.0 3rd Qu.:7.25 3rd Qu.:28978 3rd Qu.: 6656506
Max. :78.0 Max. :9.40 Max. :40846 Max. :37341989
NA's :4
Catholic Protestant Other Non.religious Black
Min. : 6.0 Min. :26.0 Min. :0.00 Min. : 5 Min. : 0.4
1st Qu.:12.0 1st Qu.:46.0 1st Qu.:2.00 1st Qu.:12 1st Qu.: 3.1
Median :21.0 Median :54.0 Median :3.00 Median :15 Median : 7.4
Mean :21.7 Mean :53.8 Mean :3.29 Mean :16 Mean :11.1
3rd Qu.:29.0 3rd Qu.:62.0 3rd Qu.:4.00 3rd Qu.:19 3rd Qu.:15.2
Max. :46.0 Max. :80.0 Max. :8.00 Max. :34 Max. :50.7
NA's :2 NA's :2 NA's :2 NA's :2
Latino Urbanization
Min. : 1.2 Min. : 1
1st Qu.: 4.3 1st Qu.: 46
Median : 8.2 Median : 101
Mean :10.3 Mean : 386
3rd Qu.:12.1 3rd Qu.: 221
Max. :46.3 Max. :9856
##

The cor function calculates correlations between numeric vectors. As you would expect,
there was an almost perfect negative correlation between the fraction of people voting
for Obama and the fraction of people voting for McCain. (The slight imperfection is

210 | Chapter 14: Exploring and Visualizing

caused by voters for independent candidates.) The cancor function (short for “canonical
correlation”) provides extra details, and the cov function calculates covariances:

with(obama_vs_mccain, cor(Obama, McCain))

[1] -0.9981

with(obama_vs_mccain, cancor(Obama, McCain))

$cor
[1] 0.9981
##
$xcoef
[,1]
[1,] 0.01275
##
$ycoef
[,1]
[1,] -0.01287
##
$xcenter
[1] 51.29
##
$ycenter
[1] 47

with(obama_vs_mccain, cov(Obama, McCain))

[1] -121.7

The Three Plotting Systems
Over its lifetime, R has accumulated three different plotting systems. base graphics are
the oldest system, having been around as long as R itself. base graphs are easy to get
started with, but they require a lot of fiddling and magic incantations to polish, and are
very hard to extend to new graph types.

To remedy some of the limitations of base, the grid graphics system was developed to
allow more flexible plotting. grid lets you draw things at a very low level, specifying
where to draw each point, line, or rectangle. While this is wonderful, none of us have
time to write a couple of hundred lines of code each time we want to draw a scatterplot.

The second plotting system, lattice, is built on top of the grid system, providing high-
level functions for all the common plot types. It has two standout features that aren’t
available in base graphics. First, the results of each plot are saved into a variable, rather
than just being drawn on the screen. This means that you can draw something, edit it,
and draw it again; groups of related plots are easier to draw, and plots can be saved
between sessions. The second great feature is that plots can contain multiple panels in

The Three Plotting Systems | 211

1. There are several terms for this. Edward Tufte called the idea “small multiples” in Envisioning Information;
Bill Cleveland and Rick Becker of Bell Labs coined the term “trellising”; Deepayan Sarkar renamed it “lat‐
ticing” in the lattice package to avoid a Bell Labs trademark; and Leland Wilkinson named it “faceting,” a
term that is used in ggplot2.

2. The concept was devised by Leland Wilkinson in the book of the same name. The book is brilliant, but not
suitable for bedtime reading, being densely packed with equations.

3. Books on plotting have the advantage that even if you can’t be bothered to read them, they are pretty to flick
through.

a lattice,1 so you can split up your data into categories and compare the differences
between groups. This solves the plotting equivalent of the split-apply-combine problem
that we discussed in Chapter 9.

The ggplot2 system, also built on top of grid, is the most modern of the three plotting
systems. The “gg” stands for “grammar of graphics,''2 which aims to break down graphs
into component chunks. The result is that code for a ggplot looks a bit like the English
way of articulating what you want in the graph.

The three systems are, sadly, mostly incompatible (there are ways to combine base and
grid graphics, but they should be considered a last resort). The good news is that you
can do almost everything you want in ggplot2, so learning all three systems is mostly
overkill. There are a couple of rare use cases where ggplot2 isn’t appropriate: it does
more calculation than other graphics systems, so for quick and dirty plots of very large
datasets it can be more convenient to use another system. Also, many plotting packages
are based on one of the other two systems, so using those packages requires a little
knowledge of base or lattice.

The following examples demonstrate all three systems; if you are pushed for time, then
just take note of the ggplot2 parts. Due to space constraints, this chapter can only give
a taste of some of the possibilities on offer. Fortunately, there are three excellent and
easy to read books on graph drawing in R, namely R Graphics, ggplot2, and Lattice, by
the authors of the grid, ggplot2, and lattice systems, respectively.3

Scatterplots
Perhaps the most common of all plots is the scatterplot, used for exploring the rela‐
tionships between two continuous variables. The obama_vs_mccain dataset has lots of
numeric variables that we can compare, but we’ll start by asking, “Does voter income
affect turnout at the polls?”

212 | Chapter 14: Exploring and Visualizing

4. Predates as in “comes before,” not “hunts and eats.”

Take 1: base Graphics
The base graphic function to draw a scatterplot is simply plot. The best-practice code
style these days is to keep all the variables you want for a plot together inside a data
frame (or possibly several), rather than having them scattered in individual vectors.
Unfortunately, plot predates4 this idea, so we have to wrap it in a call to with to access
the columns.

Although plot will simply ignore missing values, for tidiness let’s remove the rows with
missing Turnout values:

obama_vs_mccain <- obama_vs_mccain[!is.na(obama_vs_mccain$Turnout),]

We can then create a simple scatterplot, shown in Figure 14-1:

with(obama_vs_mccain, plot(Income, Turnout))

Figure 14-1. A simple scatterplot using base graphics

Scatterplots | 213

5. Read the ?points help page and try plot(1:25, pch = 1:25, bg = "blue") to see the different shapes.

plot has many arguments for customizing the output, some of which are more intuitive
than others. col changes the color of the points. It accepts any of the named colors
returned by colors, or an HTML-style hex value like "#123456". You can change the
shape of the points with the pch argument (short for “plot character”).5 Figure 14-2
shows an updated scatterplot, changing the point color to violet and the point shape to
filled-in circles:

with(obama_vs_mccain, plot(Income, Turnout, col = "violet", pch = 20))

Figure 14-2. Setting color and point shape using base graphics

214 | Chapter 14: Exploring and Visualizing

Log scales are possible by setting the log argument. log = "x" means use a logarithmic
x-scale, log = "y" means use a logarithmic y-scale, and log = "xy" makes both scales
logarithmic. Figures 14-3 and 14-4 display some options for log-scaled axes:

with(obama_vs_mccain, plot(Income, Turnout, log = "y"))
#Fig. 14-3

with(obama_vs_mccain, plot(Income, Turnout, log = "xy"))
#Fig. 14-4

Figure 14-3. Log y-scale using base graphics

Scatterplots | 215

Figure 14-4. Log x- and y-scales using base graphics

We can see that there is a definite positive correlation between income and turnout, and
it’s stronger on the log-log scale. A further question is, “Does the relationship hold across
all of the USA?” To answer this, we can split the data up into the 10 Standard Federal
Regions given in the Region column, and plot each of the subsets in a “matrix” in one
figure. The layout function is used to control the layout of the multiple plots in the
matrix. Don’t feel obliged to spend a long time trying to figure out the meaning of the
next code chunk; it only serves to show that drawing multiple related plots together in
base graphics is possible. Sadly, the code invariably looks like it fell out of the proverbial
ugly tree, so this technique should only be used as a last resort. Figure 14-5 shows the
result:

216 | Chapter 14: Exploring and Visualizing

par(mar = c(3, 3, 0.5, 0.5), oma = rep.int(0, 4), mgp = c(2, 1, 0))
regions <- levels(obama_vs_mccain$Region)
plot_numbers <- seq_along(regions)
layout(matrix(plot_numbers, ncol = 5, byrow = TRUE))
for(region in regions)
{
 regional_data <- subset(obama_vs_mccain, Region == region)
 with(regional_data, plot(Income, Turnout))
}

Figure 14-5. Multiple plots in the same figure using base graphics

Scatterplots | 217

Take 2: lattice Graphics
The lattice equivalent of plot is xyplot. It uses a formula interface to specify the
variables for the x and y coordinates. Formulae will be discussed in more depth in
“Formulae” on page 267, but for now just note that you need to type yvar ~ xvar. Con‐
veniently, xyplot (and other lattice functions) takes a data argument that tells it which
data frame to look for variables in. Figure 14-6 shows the lattice equivalent of
Figure 14-1:

library(lattice)
xyplot(Turnout ~ Income, obama_vs_mccain)

Figure 14-6. A simple scatterplot using lattice graphics

218 | Chapter 14: Exploring and Visualizing

Many of the options for changing plot features are the same as those in base graphics.
Figure 14-7 changes the color and point shape, mimicking Figure 14-2:

xyplot(Turnout ~ Income, obama_vs_mccain, col = "violet", pch = 20)

Figure 14-7. Setting color and point shape using lattice graphics

Axis scales, however, are specified in a different way. lattice plots take a scales ar‐
gument, which must be a list. The contents of this list must be name = value pairs; for
example, log = TRUE sets a log scale for both axes. The scales list can also take further
(sub)list arguments named x and y that specify settings for only those axes. Don’t panic,
it isn’t as complicated as it sounds. Figures 14-8 and 14-9 show examples of scaled axes:

Scatterplots | 219

xyplot(
 Turnout ~ Income,
 obama_vs_mccain,
 scales = list(log = TRUE) #both axes log scaled (Fig. 14-8)
)

xyplot(
 Turnout ~ Income,
 obama_vs_mccain,
 scales = list(y = list(log = TRUE)) #y-axis log scaled (Fig. 14-9)
)

Figure 14-8. Log x- and y-scales using lattice graphics

220 | Chapter 14: Exploring and Visualizing

Figure 14-9. Log y-scale using lattice graphics

The formula interface makes splitting the data by region vastly easier. All we have to do
is to append a | (that’s a “pipe” character; the same one that is used for logical “or”) and
the variable that we want to split by, in this case Region. Using the argument relation
= "same" means that each panel shares the same axes. Axis ticks for each panel are
drawn on alternating sides of the plot when the alternating argument is TRUE (the
default), or just the left and bottom otherwise. The output is shown in Figure 14-10;
notice the improvement over Figure 14-5:

Scatterplots | 221

xyplot(
 Turnout ~ Income | Region,
 obama_vs_mccain,
 scales = list(
 log = TRUE,
 relation = "same",
 alternating = FALSE
),
 layout = c(5, 2)
)

Figure 14-10. Multiple plots in the same figure using lattice graphics

Another benefit is that lattice plots are stored in variables, (as opposed to base plots,
which are just drawn in a window) so we can sequentially update them. Figure 14-11
shows a lattice plot that is updated in Figure 14-12:

222 | Chapter 14: Exploring and Visualizing

(lat1 <- xyplot(
 Turnout ~ Income | Region,
 obama_vs_mccain
))
#Fig. 14-11

(lat2 <- update(lat1, col = "violet", pch = 20))
#Fig. 14-12

Figure 14-11. This plot is stored as a variable that is reused in Figure 14-12

Scatterplots | 223

Figure 14-12. This plot reuses a lattice variable from Figure 14-11

Take 3: ggplot2 Graphics
ggplot2 (the “2” is because it took a couple of attempts to get it right) takes many of the
good ideas in lattice and builds on them. So, splitting plots up into panels is easy, and
sequentially building plots is also possible. Beyond that, ggplot2 has a few special tricks
of its own. Most importantly, its “grammatical” nature means that it consists of small
building blocks, so it’s easier to create brand new plot types, if you feel so inclined.

The syntax is a very different to other plotting code, so mentally prepare yourself to
look at something new. Each plot is constructed with a call to the ggplot function, which
takes a data frame as its first argument and an aesthetic as its second. In practice, that

224 | Chapter 14: Exploring and Visualizing

means passing the columns for the x and y variables to the aes function. We then add
a geom to tell the plot to display some points. Figure 14-13 shows the result:

library(ggplot2)
ggplot(obama_vs_mccain, aes(Income, Turnout)) +
 geom_point()

Figure 14-13. A simple scatterplot using ggplot2 graphics

ggplot2 recognizes the commands from base for changing the color and shape of the
points, but also has its own set of more human-readable names. In Figure 14-14, “shape”
replaces “pch,” and color can be specified using either “color” or “colour”:

ggplot(obama_vs_mccain, aes(Income, Turnout)) +
 geom_point(color = "violet", shape = 20)

Scatterplots | 225

Figure 14-14. Setting color and point shape using ggplot2 graphics

To set a log scale, we add a scale for each axis, as seen in Figure 14-15. The breaks
argument specifies the locations of the axis ticks. It is optional, but used here to replicate
the behavior of the base and +lattice examples:

ggplot(obama_vs_mccain, aes(Income, Turnout)) +
 geom_point() +
 scale_x_log10(breaks = seq(2e4, 4e4, 1e4)) +
 scale_y_log10(breaks = seq(50, 75, 5))

226 | Chapter 14: Exploring and Visualizing

Figure 14-15. Log scales using ggplot2 graphics

To split the plot into individual panels, we add a facet. Like the lattice plots, facets
take a formula argument. Figure 14-16 demonstrates the facet_wrap function. For easy
reading, the x-axis ticks have been rotated by 30 degrees and right-justified using the
theme function:

ggplot(obama_vs_mccain, aes(Income, Turnout)) +
 geom_point() +
 scale_x_log10(breaks = seq(2e4, 4e4, 1e4)) +
 scale_y_log10(breaks = seq(50, 75, 5)) +
 facet_wrap(~ Region, ncol = 4)

Scatterplots | 227

Figure 14-16. Multiple plots in the same figure using ggplot2 graphics

To split by multiple variables, we would specify a formula like ~ var1 + var2 +
var3. For the special case of splitting by exactly two variables, facet_grid provides an
alternative that puts one variable in rows and one in columns.

As with lattice, ggplots can be stored in variables and added to sequentially. The next
example redraws Figure 14-13 and stores it as a variable. As usual, wrapping the ex‐
pression in parentheses makes it auto-print:

(gg1 <- ggplot(obama_vs_mccain, aes(Income, Turnout)) +
 geom_point()
)

Figure 14-17 shows the output. We can then update it as follows, with the result shown
in Figure 14-18:

(gg2 <- gg1 +
 facet_wrap(~ Region, ncol = 5) +
 theme(axis.text.x = element_text(angle = 30, hjust = 1))
)

228 | Chapter 14: Exploring and Visualizing

Figure 14-17. This plot is stored as a variable that is reused in Figure 14-18

Scatterplots | 229

6. Insert your own Australia/upside-down joke here.

Figure 14-18. This plot reuses a ggplot2 variable from Figure 14-17

Line Plots
For exploring how a continuous variable changes over time, a line plot often provides
more insight than a scatterplot, since it displays the connections between sequential
values. These next examples examine a year in the life of the crab in the crab_tag dataset,
and how deep in the North Sea it went.

In base, line plots are created in the same way as scatterplots, except that they take the
argument type = "l". To avoid any dimensional confusion6 we plot the depth as a
negative number rather than using the absolute values given in the dataset.

230 | Chapter 14: Exploring and Visualizing

Ranges in the plot default to the ranges of the data (plus a little bit more; see the xaxs
section of the ?par help page for the exact details). To get a better sense of perspective,
we’ll manually set the y-axis limit to run from the deepest point that the crab went in
the sea up to sea level, by passing a ylim argument. Figure 14-19 displays the resulting
line plot:

with(
 crab_tag$daylog,
 plot(Date, -Max.Depth, type = "l", ylim = c(-max(Max.Depth), 0))
)

Figure 14-19. A line plot using base graphics

Line Plots | 231

At the moment, this only shows half the story. The Max.Depth argument is the deepest
point in the sea that the crab reached on a given day. We also need to add a line for the
Min.Depth to see the shallowest point on each day. Additional lines can be drawn on an
existing plot using the lines function. The equivalent for scatterplots is points.
Figure 14-20 shows the additional line:

with(
 crab_tag$daylog,
 lines(Date, -Min.Depth, col = "blue")
)

Figure 14-20. Adding a second line using base graphics

232 | Chapter 14: Exploring and Visualizing

Line plots in lattice follow a similar pattern to base. They use xyplot, as with scat‐
terplots, and require the same type = "l" argument. Specifying multiple lines is bliss‐
fully easy using the formula interface. Notice the + in the formula used to create the plot
in Figure 14-21:

xyplot(-Min.Depth + -Max.Depth ~ Date, crab_tag$daylog, type = "l")

Figure 14-21. A line plot using lattice graphics

In ggplot2, swapping a scatterplot for a line plot is as simple as swapping geom_plot
for geom_line (Figure 14-22 shows the result):

ggplot(crab_tag$daylog, aes(Date, -Min.Depth)) +
 geom_line()

Line Plots | 233

Figure 14-22. A line plot using ggplot2 graphics

There’s a little complication with drawing multiple lines, however. When you specify
aesthetics in the call to ggplot, you specify them for every geom. That is, they are “global”
aesthetics for the plot. In this case, we want to specify the maximum depth in one line
and the minimum depth in another, as shown in Figure 14-23. One solution to this is
to specify the y-aesthetic inside each call to geom_line:

ggplot(crab_tag$daylog, aes(Date)) +
 geom_line(aes(y = -Max.Depth)) +
 geom_line(aes(y = -Min.Depth))

234 | Chapter 14: Exploring and Visualizing

Figure 14-23. Two lines with separate geoms using ggplot2 graphics

This is a bit clunky, though, as we have to call geom_line twice, and actually it isn’t a
very idiomatic solution. The “proper” ggplot2 way of doing things, shown in
Figure 14-24, is to melt the data to long form and then group the lines:

library(reshape2)
crab_long <- melt(
 crab_tag$daylog,
 id.vars = "Date",
 measure.vars = c("Min.Depth", "Max.Depth")
)
ggplot(crab_long, aes(Date, -value, group = variable)) +
 geom_line()

Line Plots | 235

Figure 14-24. Two lines with grouping using ggplot2 graphics

In this case, where there are only two lines, there is an even better solution that doesn’t
require any data manipulation. geom_ribbon plots two lines, and the contents in be‐
tween. For prettiness, we pass the color and fill argument to the geom, specifying the
color of the lines and the bit in between. Figure 14-25 shows the result:

ggplot(crab_tag$daylog, aes(Date, ymin = -Min.Depth, ymax = -Max.Depth)) +
 geom_ribbon(color = "black", fill = "white")

236 | Chapter 14: Exploring and Visualizing

Figure 14-25. A ribbon plot using ggplot2 graphics

Whichever system you use to draw the plot, the behavior of the crab is clear. In Sep‐
tember it lives in shallow waters for the mating season, then it spends a few months
migrating into deeper territory. Through winter, spring, and summer it happily sits on
the North Sea seabed (except for an odd, brief trip to the surface at the start of June—
dodgy data, or a narrow escape from a fishing boat?), then it apparently falls off a cliff
in mid-July, before making its way back to shallow climes for another round of rumpy-
pumpy, at which point it is caught.

Line Plots | 237

7. Dataviz purists often note that kernel density plots generally give a “better” representation of the underlying
distribution. The downside is that every time you show them to a non-statistician, you have to spend 15
minutes explaining what a kernel density plot is.

Histograms
If you want to explore the distribution of a continuous variable, histograms are the
obvious choice.7

For the next examples we’ll return to the obama_vs_mccain dataset, this time looking at
the distribution of the percentage of votes for Obama. In base, the hist function draws
a histogram, as shown in Figure 14-26. Like plot, it doesn’t have a data argument, so
we have to wrap it inside a call to with:

with(obama_vs_mccain, hist(Obama))

Figure 14-26. A histogram using base graphics

238 | Chapter 14: Exploring and Visualizing

The number of breaks is calculated by default by Sturges’s algorithm. It is good practice
to experiment with the width of bins in order to get a more complete understanding of
the distribution. This can be done in a variety of ways: you can pass hist a single number
to specify the number of bins, or a vector of bin edges, or the name of a different algo‐
rithm for calculating the number of bins ("scott" and "fd" are currently supported on
top of the default of "sturges"), or a function that calculates one of the first two options.
It’s really flexible. In the following examples, the results of which are shown in Figures
14-27 to 14-31, the main argument creates a main title above the plot. It works for the
plot function too:

with(obama_vs_mccain,
 hist(Obama, 4, main = "An exact number of bins")
)
#Fig. 14-27

Figure 14-27. Specifying histogram breaks using an exact number of bins with base
graphics

Histograms | 239

with(obama_vs_mccain,
 hist(Obama, seq.int(0, 100, 5), main = "A vector of bin edges")
)
#Fig. 14-28

Figure 14-28. Specifying histogram breaks using an exact number of bins with base
graphics

240 | Chapter 14: Exploring and Visualizing

with(obama_vs_mccain,
 hist(Obama, "FD", main = "The name of a method")
)
#Fig. 14-29

Figure 14-29. Specifying histogram breaks using the name of a method with base
graphics

Histograms | 241

with(obama_vs_mccain,
 hist(Obama, nclass.scott, main = "A function for the number of bins")
)
#Fig. 14-30

Figure 14-30. Specifying histogram breaks using a function for the number of bins with
base graphics

binner <- function(x)
{
 seq(min(x, na.rm = TRUE), max(x, na.rm = TRUE), length.out = 50)
}
with(obama_vs_mccain,
 hist(Obama, binner, main = "A function for the bin edges")
)
#Fig. 14-31

242 | Chapter 14: Exploring and Visualizing

Figure 14-31. Specifying histogram breaks using a function for the bin edges with base
graphics

The freq argument controls whether or not the histogram shows counts or probability
densities in each bin. It defaults to TRUE if and only if the bins are equally spaced.
Figure 14-32 shows the output:

with(obama_vs_mccain, hist(Obama, freq = FALSE))

Histograms | 243

Figure 14-32. A probability density histogram using base graphics

lattice histograms behave in a similar manner to base ones, except for the usual ben‐
efits of taking a data argument, allowing easy splitting into panels, and saving plots as
a variable. The breaks argument behaves in the same way as with hist. Figures 14-33
and 14-34 show lattice histograms and the specification of breaks:

histogram(~ Obama, obama_vs_mccain)
#Fig. 14-33

histogram(~ Obama, obama_vs_mccain, breaks = 10)
#Fig. 14-34

244 | Chapter 14: Exploring and Visualizing

Figure 14-33. Histogram using lattice graphics

Histograms | 245

Figure 14-34. Specifying histogram breaks using lattice graphics

lattice histograms support counts, probability densities, and percentage y-axes via the
type argument, which takes the string "count", "density", or "percent". Figure 14-35
shows the "percent" style:

histogram(~ Obama, obama_vs_mccain, type = "percent")

246 | Chapter 14: Exploring and Visualizing

Figure 14-35. A percentage-scaled histogram using lattice graphics

ggplot2 histograms are created by adding a histogram geom. Bin specification is simple:
just pass a numeric bin width to geom_histogram. The rationale is to force you to man‐
ually experiment with different numbers of bins, rather than settling for the default.
Figure 14-36 shows the usage:

ggplot(obama_vs_mccain, aes(Obama)) +
 geom_histogram(binwidth = 5)

Histograms | 247

Figure 14-36. A histogram using ggplot2 graphics

You can choose between counts and densities by passing the special names ..count..
or ..density.. to the y-aesthetic. Figure 14-37 demonstrates the use of ..density..:

ggplot(obama_vs_mccain, aes(Obama, ..density..)) +
 geom_histogram(binwidth = 5)

248 | Chapter 14: Exploring and Visualizing

Figure 14-37. A probability density histogram using ggplot2 graphics

Box Plots
If you want to explore the distribution of lots of related variables, you could draw lots
of histograms. For example, if you wanted to see the distribution of Obama votes by US
region, you could use latticing/faceting to draw 10 histograms. This is just about feasible,
but it doesn’t scale much further. If you need a hundred histograms, the space require‐
ments can easily overwhelm the largest monitor. Box plots (sometimes called box and
whisker plots) are a more space-efficient alternative that make it easy to compare many
distributions at once. You don’t get as much detail as with a histogram or kernel density
plot, but simple higher-or-lower and narrower-or-wider comparisons can easily be
made.

Box Plots | 249

The base function for drawing box plots is called boxplot; it is heavily inspired by
lattice, insofar as it uses a formula interface and has a data argument. Figure 14-38
shows the usage:

boxplot(Obama ~ Region, data = obama_vs_mccain)

Figure 14-38. A box plot using base graphics

This type of plot is often clearer if we reorder the box plots from smallest to largest, in
some sense. The reorder function changes the order of a factor’s levels, based upon
some numeric score. In Figure 14-39 we score the Region levels by the median Obama
value for each region:

250 | Chapter 14: Exploring and Visualizing

ovm <- within(
 obama_vs_mccain,
 Region <- reorder(Region, Obama, median)
)
boxplot(Obama ~ Region, data = ovm)

Figure 14-39. Ordering boxes using base graphics

The switch from base to lattice is very straightforward. In this simplest case, we can
make a straight swap of boxplot for bwplot (“bw” is short for “b (box) and w (whisker),”
in case you hadn’t figured it out). Notice the similarity of Figure 14-40 to Figure 14-38:

bwplot(Obama ~ Region, data = ovm)

Box Plots | 251

Figure 14-40. A box plot using lattice graphics

The ggplot2 equivalent box plot, shown in Figure 14-41, just requires that we add a
geom_boxplot:

ggplot(ovm, aes(Region, Obama)) +
 geom_boxplot()

252 | Chapter 14: Exploring and Visualizing

8. More specifically, they have to be counts or lengths or other numbers that can be compared to zero. For log-
scaled things where the bar would extend to minus infinity, you want a dot plot instead.

Figure 14-41. A box plot using ggplot2 graphics

Bar Charts
Bar charts (a.k.a. bar plots) are the natural way of displaying numeric variables8 split by
a categorical variable. In the next examples, we look at the distribution of religious
identification across the US states. Data for Alaska and Hawaii are not included in the
dataset, so we can remove those records:

ovm <- ovm[!(ovm$State %in% c("Alaska", "Hawaii")),]

Bar Charts | 253

In base, bar charts are created with the barplot function. As with the plot function,
there is no argument to specify a data frame, so we need to wrap it in a call to with. The
first argument to barplot contains the lengths of the bars. If that is a named vector
(which it won’t be if you are doing things properly and accessing data from inside a data
frame), then those names are used for the bar labels. Otherwise, as we do here, you need
to pass an argument called names.arg to specify the labels. By default the bars are ver‐
tical, but in order to make the state names readable we want horizontal bars, which can
be generated with horiz = TRUE.

To display the state names in full, we also need to do some fiddling with the plot pa‐
rameters, via the par function. For historical reasons, most of the parameter names are
abbreviations rather than human-readable values, so the code can look quite terse. It’s
a good idea to read the ?par help page before you modify a base plot.

The las parameter (short for “label axis style”) controls whether labels are horizontal,
vertical, parallel, or perpendicular to the axes. Plots are usually more readable if you set
las = 1, for horizontal. The mar parameter is a numeric vector of length 4, giving the
width of the plot margins at the bottom/left/top/right of the plot. We want a really wide
lefthand side to fit the state names. Figure 14-42 shows the output of the following code:

par(las = 1, mar = c(3, 9, 1, 1))
with(ovm, barplot(Catholic, names.arg = State, horiz = TRUE))

Simple bar charts like this are fine, but more interesting are bar charts of several variables
at once. We can visualize the split of religions by state by plotting the Catholic, Prot
estant, Non.religious, and Other columns. For plotting multiple variables, we must
place them into a matrix, one in each row (rbind is useful for this).

The column names of this matrix are used for the names of the bars; if there are no
column names we must pass a names.arg like we did in the last example. By default, the
bars for each variable are drawn next to each other, but since we are examining the split
between the variables, a stacked bar chart is more appropriate. Passing beside =
FALSE achieves this, as illustrated in Figure 14-43:

religions <- with(ovm, rbind(Catholic, Protestant, Non.religious, Other))
colnames(religions) <- ovm$State
par(las = 1, mar = c(3, 9, 1, 1))
barplot(religions, horiz = TRUE, beside = FALSE)

254 | Chapter 14: Exploring and Visualizing

Figure 14-42. A bar chart using base graphics

Bar Charts | 255

Figure 14-43. A stacked bar chart using base graphics

The lattice equivalent of barplot, shown in Figure 14-44, is barchart. The formula
interface is the same as those we saw with scatterplots, yvar ~ xvar:

barchart(State ~ Catholic, ovm)

256 | Chapter 14: Exploring and Visualizing

Figure 14-44. A bar chart using lattice graphics

Extending this to multiple variables just requires a tweak to the formula, and passing
stack = TRUE to make a stacked plot (see Figure 14-45):

barchart(
 State ~ Catholic + Protestant + Non.religious + Other,
 ovm,
 stack = TRUE
)

Bar Charts | 257

Figure 14-45. A stacked bar chart using lattice graphics

ggplot2 requires a tiny bit of work be done to the data to replicate this plot. We need
the data in long form, so we must first melt the columns that we need:

religions_long <- melt(
 ovm,
 id.vars = "State",
 measure.vars = c("Catholic", "Protestant", "Non.religious", "Other")
)

Like base, gplot2 defaults to vertical bars; adding coord_flip swaps this. Finally, since
we already have the lengths of each bar in the dataset (without further calculation) we
must pass stat = "identity" to the geom. Bars are stacked by default, as shown in
Figure 14-46:

258 | Chapter 14: Exploring and Visualizing

ggplot(religions_long, aes(State, value, fill = variable)) +
 geom_bar(stat = "identity") +
 coord_flip()

Figure 14-46. A stacked bar chart using ggplot2 graphics

To avoid the bars being stacked, we would have to pass the argument position =
"dodge" to geom_bar. Figure 14-47 shows this:

ggplot(religions_long, aes(State, value, fill = variable)) +
 geom_bar(stat = "identity", position = "dodge") +
 coord_flip()

Bar Charts | 259

Figure 14-47. A dodged bar chart using ggplot2 graphics

The other possibility for that argument is position = "fill", which creates stacked
bars that are all the same height, ranging from 0 to 100%. Try it!

Other Plotting Packages and Systems
There are many packages that contain plotting capabilities based on one or more of the
three systems. For example, the vcd package has lots of plots for visualizing categorical
data, such as mosaic plots and association plots. plotrix has loads of extra plot types,
and there are specialist plots scattered in many other packages.

latticeExtra and GGally extend the lattice and ggplot2 packages, and grid pro‐
vides access to the underlying framework that supports both these systems.

260 | Chapter 14: Exploring and Visualizing

9. Dynamic means animation; interactive means point and click to change them.

You may have noticed that all the plots covered so far are static. There have in fact been
a number of attempts to provide dynamic and interactive plots.9 There is no perfect
solution yet, but there are many interesting and worthy packages that attempt this.

gridSVG lets you write grid-based plots (lattice or ggplot2) to SVG files. These can
be made interactive, but it requires some knowledge of JavaScript. playwith allows
pointing and clicking to interact with base or lattice plots. iplots provides a whole
extra system of plots with even more interactivity. It isn’t easily extensible, but the com‐
mon plots types are there, and you can explore the data very quickly via mouse inter‐
action. googleVis provides an R wrapper around Google Chart Tools, creating plots
that can be displayed in a browser. rggobi provides an interface to GGobi (for visualizing
high-dimensional data), and rgl provides an interface to OpenGL for interactive 3D
plots. The animation package lets you make animated GIFs or SWF animations.

The rCharts package provides wrappers to half a dozen JavaScript plotting libraries
using a lattice syntax. It isn’t yet available via CRAN, so you’ll need to install it from
GitHub:

library(devtools)
install_github("rCharts", "ramnathv")

Summary
• There are loads of summary statistics that can be calculated.
• R has three plotting systems: base, lattice, and ggplot2.
• All the common plot types are supported in every system.
• There is some support in R for dynamic and interactive plotting.

Test Your Knowledge: Quiz
Question 14-1

What is the difference between the min and pmin functions?

Question 14-2
How would you change the shape of the points in a base plot?

Question 14-3
How do you specify the x and y variables in a lattice plot?

Summary | 261

Question 14-4
What is a ggplot2 aesthetic?

Question 14-5
Name as many plot types as you can think of for exploring the distribution of a
continuous variable.

Test Your Knowledge: Exercises
Exercise 14-1

1. In the obama_vs_mccain dataset, find the (Pearson) correlation between the
percentage of unemployed people within the state and the percentage of people
that voted for Obama. [5]

2. Draw a scatterplot of the two variables, using a graphics system of your choice.
(For bonus points, use all three systems.) [10] for one plot, [30] for all three

Exercise 14-2
In the alpe_d_huez2 dataset, plot the distributions of fastest times, split by whether
or not the rider (allegedly) used drugs. Display this using a) histograms and b) box
plots. [10]

Exercise 14-3
The gonorrhoea dataset contains gonorrhoea infection rates in the US by year, age,
ethnicity, and gender. Explore how infection rates change with age. Is there a time
trend? Do ethnicity and gender affect the infection rates? [30]

262 | Chapter 14: Exploring and Visualizing

1. If you’ve just started casually doodling a biplot, then well done, have some geek points. Plots of lots of variables
are possible if you use a dimension-reduction technique like principal component analysis or factor analysis
to give you fewer variables in practice.

CHAPTER 15

Distributions and Modeling

Using summary statistics and plots to understand data is great, but they have their
limitations. Statistics don’t give you the shape of data, and plots aren’t scalable to many
variables (with more than five or six, things start to get confusing),1 nor are they scalable
in number (since you have to physically look at each one). Neither statistics nor plots
are very good at giving you predictions from the data.

This is where models come in: if you understand enough about the structure of the data
to be able to run a suitable model, then you can pass quantitative judgments about the
data and make predictions.

There are lots of different statistical models, with more being invented as fast as uni‐
versity statistics departments can think of them. In order to avoid turning into a statistics
course, this chapter is just going to deal with some really simple regression models. If
you want to learn some stats, I recommend The R Book or Discovering Statistics Using
R, both of which explain statistical concepts in glorious slow motion.

Before we get to running any models, we need a bit of background on generating random
numbers, different kinds of distributions, and formulae.

Chapter Goals
After reading this chapter, you should:

• Be able to generate random numbers from many distributions
• Be able to find quantiles and inverse quantiles from those distributions

263

• Know how to write a model formula
• Understand how to run, update, and plot a linear regression

Random Numbers
Random numbers are critical to many analyses, and consequently R has a wide variety
of functions for sampling from different distributions.

The sample Function
We’ve seen the sample function a few times already (it was first introduced in Chapter
3). It’s an important workhorse function for generating random values, and its behavior
has a few quirks, so it’s worth getting to know it more thoroughly. If you just pass it a
number, n, it will return a permutation of the natural numbers from 1 to n:

sample(7)

[1] 1 2 5 7 4 6 3

If you give it a second value, it will return that many random numbers between 1 and n:

sample(7, 5)

[1] 7 2 3 1 5

Notice that all those random numbers are different. By default, sample samples without
replacement. That is, each value can only appear once. To allow sampling with replace‐
ment, pass replace = TRUE:

sample(7, 10, replace = TRUE)

[1] 4 6 1 7 5 3 6 7 4 2

Of course, returning natural numbers isn’t that interesting most of the time, but sample
is flexible enough to let us sample from any vector that we like. Most commonly, we
might want to pass it a character vector:

sample(colors(), 5) #a great way to pick the color scheme for your house

[1] "grey53" "deepskyblue2" "gray94" "maroon2"
[5] "gray18"

If we were feeling more adventurous, we could pass it some dates:

sample(.leap.seconds, 4)

[1] "2012-07-01 01:00:00 BST" "1994-07-01 01:00:00 BST"
[3] "1981-07-01 01:00:00 BST" "1990-01-01 00:00:00 GMT"

264 | Chapter 15: Distributions and Modeling

We can also weight the probability of each input value being returned by passing a prob
argument. In the next example, we use R to randomly decide which month to go on
holiday, then fudge it to increase our chances of a summer break:

weights <- c(1, 1, 2, 3, 5, 8, 13, 21, 8, 3, 1, 1)
sample(month.abb, 1, prob = weights)

[1] "Jul"

Sampling from Distributions
Oftentimes, we want to generate random numbers from a probability distribution. R
has functions available for sampling from almost one hundred distributions, mixtures,
and copulas across the various packages. The ?Distribution help page documents the
facilities available in base R, and the CRAN Task View on distributions gives extensive
directions about which package to look in if you want something more esoteric.

Most of the random number generation functions have the name r<distn>. For exam‐
ple, we’ve already seen runif, which generates uniform random numbers, and rnorm,
which generates normally distributed random numbers. The first parameter for each
of these functions is the number of random numbers to generate, and further parameters
affect the shape of the distribution. For example, runif allows you to set the lower and
upper bounds of the distribution:

runif(5) #5 uniform random numbers between 0 and 1
runif(5, 1,10) #5 uniform random numbers between 1 and 10
rnorm(5) #5 normal random numbers with mean 0 and std dev 1
rnorm(5, 3, 7) #5 normal random numbers with mean 3 and std dev 7

Random numbers generated by R are, like with any other software, actually
pseudorandom. That is, they are generated by an algorithm rather than a genuinely
random process. R supports several algorithms out of the box, as described on the ?
RNG page, and more specialist algorithms (for parallel number generation, for example)
in other packages. The CRAN Task View on distributions mentioned above also de‐
scribes where to find more algorithms. You can see which algorithms are used for uni‐
form and normal random number generation with the RNGkind function (sampling
from other distributions typically uses some function of uniform or normal random
numbers):

RNGkind()

[1] "Mersenne-Twister" "Inversion"

Random number generators require a starting point to generate numbers from, known
as a “seed.” By setting the seed to a particular value, you can guarantee that the same
random numbers will be generated each time you run the same piece of code. For ex‐
ample, this book fixes the seed so that the examples are the same each time the book is
built. You can set the seed with the set.seed function. It takes a positive integer as an

Random Numbers | 265

http://cran.r-project.org/web/views/Distributions.html

input. Which integer you choose doesn’t matter; different seeds just give different ran‐
dom numbers:

set.seed(1)
runif(5)

[1] 0.2655 0.3721 0.5729 0.9082 0.2017

set.seed(1)
runif(5)

[1] 0.2655 0.3721 0.5729 0.9082 0.2017

set.seed(1)
runif(5)

[1] 0.2655 0.3721 0.5729 0.9082 0.2017

You can also specify different generation algorithms, though this is very advanced usage,
so don’t do that unless you know what you are doing.

Distributions
As well as a function for generating random numbers, most distributions also have
functions for calculating their probability density function (PDF), cumulative density
function (CDF), and inverse CDF.

Like the RNG functions with names beginning with r, these functions have names
beginning with d, p, and q, respectively. For example, the normal distribution has func‐
tions dnorm, pnorm, and qnorm. These functions are perhaps best demonstrated visually,
and are shown in Figure 15-1. (The code is omitted, on account of being rather fiddly.)

Figure 15-1. PDF, CDF, and inverse CDF of a normal distribution

266 | Chapter 15: Distributions and Modeling

Formulae
We’ve already seen the use of formulae in lattice plots and ggplot2 facets. Many
statistical models use formulae in a similar way, in order to specify the structure of the
variables in the model. The exact meaning of the formula depends upon the model
function that it gets passed to (in the same way that a formula in a lattice plot means
something different to a formula in a ggplot2 facet), but there is a common pattern that
most models satisfy: the lefthand side specifies the response variable, the righthand side
specifies independent variables, and the two are separated by a tilde. Returning to the
gonorrhoea dataset as an example, we have:

Rate ~ Year + Age.Group + Ethnicity + Gender

Here, Rate is the response, and we have chosen to include four independent variables
(year/age group/ethnicity/gender). For models that can include an intercept (that’s more
or less all regression models), a formula like this will implicitly include that intercept.
If we passed it into a linear regression model, it would mean:

Rate = α0 + α1 * Year + α2 * Age.Group + α3 * Ethnicity + α4 * Gender + ϵ

where each αi is a constant to be determined by the model, and ϵ is a normally distributed
error term.

If we didn’t want the intercept term, we could add a zero to the righthand side to suppress
it:

Rate ~ 0 + Year + Age.Group + Ethnicity + Gender

The updated equation given by this formula is:

Rate = α1 * Year + α2 * Age.Group + α3 * Ethnicity + α4 * Gender + ϵ

Each of these formulae includes only the individual independent variables, without any
interactions between them. To include interactions, we can replace the plusses with
asterisks:

Rate ~ Year * Age.Group * Ethnicity * Gender

This adds in all possible two-way interactions (year and age group, year and ethnicity,
etc.), and three-way interactions (year and age group and ethnicity, etc.), all the way up
to an every-way interaction between all independent variables (year and age group and
ethnicity and gender). This is very often overkill, since a every-way interaction is usually
meaningless.

Formulae | 267

There are two ways of restricting the level of interaction. First, you can add individual
interactions using colons. In the following example, Year:Ethnicity is a two-way in‐
teraction between those terms, and Year:Ethnicity:Gender is a three-way interaction:

Rate ~ Year + Ethnicity + Gender + Year:Ethnicity + Year:Ethnicity:Gender

This fine-grained approach can become cumbersome to type if you have more than
three or four variables, though, so an alternate syntax lets you include all interactions
up to a certain level using carets (^). The next example includes the year, ethnicity, and
gender, and the three two-way interactions:

Rate ~ (Year + Ethnicity + Gender) ^ 2

You can also include modified versions of variables. For example, a surprising number
of environmental processes generate lognormally distributed variables, which you may
want to include in a linear regression as log(var). Terms like this can be included
directly, but you may have spotted a problem with including var ^ 2. That syntax is
reserved for interactions, so if you want to include powers of things, wrap them in I():

Rate ~ I(Year ^ 2) #year squared, not an interaction

A First Model: Linear Regressions
Ordinary least squares linear regressions are the simplest in an extensive family of re‐
gression models. The function for calculating them is concisely if not clearly named:
lm, short for “linear model.” It accepts a formula of the type we’ve just discussed, and a
data frame that contains the variables to model. Let’s take a look at the gonorrhoea
dataset. For simplicity, we’ll ignore interactions:

model1 <- lm(Rate ~ Year + Age.Group + Ethnicity + Gender, gonorrhoea)

If we print the model variable, it lists the coefficients for each input variable (the αi
values). If you look closely, you’ll notice that for both of the categorical variables that
we put into the model (age group and ethnicity), one category has no coefficient. For
example, the 0 to 4 age group is missing, and the American Indians & Alaskan
Natives ethnicity is also missing.

These “missing” categories are included in the intercept. In the following output, the
intercept value of 5,540 people infected with gonorrhoea per 100,000 people applies to
0- to 4-year-old female American Indians and Alaskan Natives in the year 0. To predict
infection rates in the years up to 2013, we would add 2013 times the coefficient for Year,
-2.77. To predict the effect on 25- to 29-year-olds of the same ethnicity, we would add
the coefficient for that age group, 291:

268 | Chapter 15: Distributions and Modeling

model1

##
Call:
lm(formula = Rate ~ Year + Age.Group + Ethnicity + Gender, data = gonorrhoea)
##
Coefficients:
(Intercept) Year
5540.496 -2.770
Age.Group5 to 9 Age.Group10 to 14
-0.614 15.268
Age.Group15 to 19 Age.Group20 to 24
415.698 546.820
Age.Group25 to 29 Age.Group30 to 34
291.098 155.872
Age.Group35 to 39 Age.Group40 to 44
84.612 49.506
Age.Group45 to 54 Age.Group55 to 64
27.364 8.684
Age.Group65 or more EthnicityAsians & Pacific Islanders
1.178 -82.923
EthnicityHispanics EthnicityNon-Hispanic Blacks
-49.000 376.204
EthnicityNon-Hispanic Whites GenderMale
-68.263 -17.892

The “0- to 4-year-old female American Indians and Alaskan Natives” group was chosen
because it consists of the first level of each of the factor variables. We can see those factor
levels by looping over the dataset and calling levels:

lapply(Filter(is.factor, gonorrhoea), levels)

$Age.Group
[1] "0 to 4" "5 to 9" "10 to 14" "15 to 19" "20 to 24"
[6] "25 to 29" "30 to 34" "35 to 39" "40 to 44" "45 to 54"
[11] "55 to 64" "65 or more"
##
$Ethnicity
[1] "American Indians & Alaskan Natives"
[2] "Asians & Pacific Islanders"
[3] "Hispanics"
[4] "Non-Hispanic Blacks"
[5] "Non-Hispanic Whites"
##
$Gender
[1] "Female" "Male"

As well as knowing the size of the effect of each input variable, we usually want to know
which variables were significant. The summary function is overloaded to work with lm
to do just that. The most exciting bit of the output from summary is the coefficients table.
The Estimate column shows the coefficients that we’ve seen already, and the fourth
column, Pr(>|t|), shows the p-values. The fifth column gives a star rating: where the

A First Model: Linear Regressions | 269

p-value is less than 0.05 a variable gets one star, less than 0.01 is two stars, and so on.
This makes it easy to quickly see which variables had a significant effect:

summary(model1)

##
Call:
lm(formula = Rate ~ Year + Age.Group + Ethnicity + Gender, data = gonorrhoea)
##
Residuals:
Min 1Q Median 3Q Max
-376.7 -130.6 37.1 90.7 1467.1
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5540.496 14866.406 0.37 0.7095
Year -2.770 7.400 -0.37 0.7083
Age.Group5 to 9 -0.614 51.268 -0.01 0.9904
Age.Group10 to 14 15.268 51.268 0.30 0.7660
Age.Group15 to 19 415.698 51.268 8.11 3.0e-15
Age.Group20 to 24 546.820 51.268 10.67 < 2e-16
Age.Group25 to 29 291.098 51.268 5.68 2.2e-08
Age.Group30 to 34 155.872 51.268 3.04 0.0025
Age.Group35 to 39 84.612 51.268 1.65 0.0994
Age.Group40 to 44 49.506 51.268 0.97 0.3346
Age.Group45 to 54 27.364 51.268 0.53 0.5937
Age.Group55 to 64 8.684 51.268 0.17 0.8656
Age.Group65 or more 1.178 51.268 0.02 0.9817
EthnicityAsians & Pacific Islanders -82.923 33.093 -2.51 0.0125
EthnicityHispanics -49.000 33.093 -1.48 0.1392
EthnicityNon-Hispanic Blacks 376.204 33.093 11.37 < 2e-16
EthnicityNon-Hispanic Whites -68.263 33.093 -2.06 0.0396
GenderMale -17.892 20.930 -0.85 0.3930
##
(Intercept)
Year
Age.Group5 to 9
Age.Group10 to 14
Age.Group15 to 19 ***
Age.Group20 to 24 ***
Age.Group25 to 29 ***
Age.Group30 to 34 **
Age.Group35 to 39 .
Age.Group40 to 44
Age.Group45 to 54
Age.Group55 to 64
Age.Group65 or more
EthnicityAsians & Pacific Islanders *
EthnicityHispanics
EthnicityNon-Hispanic Blacks ***
EthnicityNon-Hispanic Whites *
GenderMale

270 | Chapter 15: Distributions and Modeling

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 256 on 582 degrees of freedom
Multiple R-squared: 0.491, Adjusted R-squared: 0.476
F-statistic: 33.1 on 17 and 582 DF, p-value: <2e-16

Comparing and Updating Models
Rather than just accepting the first model that we think of, we often want to find a “best”
model, or a small set of models that provide some insight.

This section demonstrates some metrics for measuring the quality of a model, such as
p-values and log-likelihood measures. By using these metrics to compare models, you
can automatically keep updating your model until you get to a “best” one.

Unfortunately, automatic updating of models like this (“stepwise regression”) is a poor
method for choosing a model, and it gets worse as you increase the number of input
variables.

Better methods for model selection, like model training or model averaging, are beyond
the scope of this book. The CrossValidated statistics Q&A site has a good list of possi‐
bilities.

It is often a mistake to try to find a single “best” model. A good mod‐
el is one that gives you insight into your problem—there may be sev‐
eral that do this.

In order to sensibly choose a model for our dataset, we need to understand a little about
the things that affect gonorrhoea infection rates. Gonorrhoea is primarily sexually
transmitted (with some transmission from mothers to babies during childbirth), so the
big drivers are related to sexual culture: how much unprotected sex people have, and
with how many partners.

The p-value for Year is 0.71, meaning not even close to significant. Over such a short
time series (five years of data), I’d be surprised if there were any changes in sexual culture
big enough to have an important effect on infection rates, so let’s see what happens when
we remove it.

Rather than having to completely respecify the model, we can update it using the update
function. This accepts a model and a formula. We are just updating the righthand side
of the formula, so the lefthand side stays blank. In the next example, . means “the terms
that were already in the formula,” and – (minus) means “remove this next term”:

model2 <- update(model1, ~ . - Year)
summary(model2)

A First Model: Linear Regressions | 271

http://bit.ly/1a5q6IQ

##
Call:
lm(formula = Rate ~ Age.Group + Ethnicity + Gender, data = gonorrhoea)
##
Residuals:
Min 1Q Median 3Q Max
-377.6 -128.4 34.6 92.2 1472.6
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -25.103 43.116 -0.58 0.5606
Age.Group5 to 9 -0.614 51.230 -0.01 0.9904
Age.Group10 to 14 15.268 51.230 0.30 0.7658
Age.Group15 to 19 415.698 51.230 8.11 2.9e-15
Age.Group20 to 24 546.820 51.230 10.67 < 2e-16
Age.Group25 to 29 291.098 51.230 5.68 2.1e-08
Age.Group30 to 34 155.872 51.230 3.04 0.0025
Age.Group35 to 39 84.612 51.230 1.65 0.0992
Age.Group40 to 44 49.506 51.230 0.97 0.3343
Age.Group45 to 54 27.364 51.230 0.53 0.5934
Age.Group55 to 64 8.684 51.230 0.17 0.8655
Age.Group65 or more 1.178 51.230 0.02 0.9817
EthnicityAsians & Pacific Islanders -82.923 33.069 -2.51 0.0124
EthnicityHispanics -49.000 33.069 -1.48 0.1389
EthnicityNon-Hispanic Blacks 376.204 33.069 11.38 < 2e-16
EthnicityNon-Hispanic Whites -68.263 33.069 -2.06 0.0394
GenderMale -17.892 20.915 -0.86 0.3926
##
(Intercept)
Age.Group5 to 9
Age.Group10 to 14
Age.Group15 to 19 ***
Age.Group20 to 24 ***
Age.Group25 to 29 ***
Age.Group30 to 34 **
Age.Group35 to 39 .
Age.Group40 to 44
Age.Group45 to 54
Age.Group55 to 64
Age.Group65 or more
EthnicityAsians & Pacific Islanders *
EthnicityHispanics
EthnicityNon-Hispanic Blacks ***
EthnicityNon-Hispanic Whites *
GenderMale

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 256 on 583 degrees of freedom
Multiple R-squared: 0.491, Adjusted R-squared: 0.477
F-statistic: 35.2 on 16 and 583 DF, p-value: <2e-16

272 | Chapter 15: Distributions and Modeling

The anova function computes ANalysis Of VAriance tables for models, letting you see
if your simplified model is significantly different from the fuller model:

anova(model1, model2)

Analysis of Variance Table
##
Model 1: Rate ~ Year + Age.Group + Ethnicity + Gender
Model 2: Rate ~ Age.Group + Ethnicity + Gender
Res.Df RSS Df Sum of Sq F Pr(>F)
1 582 38243062
2 583 38252272 -1 -9210 0.14 0.71

The p-value in the righthand column is 0.71, so removing the year term didn’t signif‐
icantly affect the model’s fit to the data.

The Akaike and Bayesian information criteria provide alternate methods of comparing
models, via the AIC and BIC functions. They use log-likelihood values, which tell you
how well the models fit the data, and penalize them depending upon how many terms
there are in the model (so simpler models are better than complex models). Smaller
numbers roughly correspond to “better” models:

AIC(model1, model2)

df AIC
model1 19 8378
model2 18 8376

BIC(model1, model2)

df BIC
model1 19 8462
model2 18 8456

You can see the effects of these functions better if we create a silly model. Let’s remove
age group, which appears to be a powerful predictor of gonorrhoea infection rates (as
it should be, since children and the elderly have much less sex than young adults):

silly_model <- update(model1, ~ . - Age.Group)
anova(model1, silly_model)

Analysis of Variance Table
##
Model 1: Rate ~ Year + Age.Group + Ethnicity + Gender
Model 2: Rate ~ Year + Ethnicity + Gender
Res.Df RSS Df Sum of Sq F Pr(>F)
1 582 38243062
2 593 57212506 -11 -1.9e+07 26.2 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

A First Model: Linear Regressions | 273

AIC(model1, silly_model)

df AIC
model1 19 8378
silly_model 8 8598

BIC(model1, silly_model)

df BIC
model1 19 8462
silly_model 8 8633

In the silly model, anova notes a significant difference between the models, and both
the AIC and the BIC have gone up by a lot.

Returning to our quest for a non-silly model, notice that gender is nonsignificant (p =
0.39). If you did Exercise 14-3 (you did, right?), then this might be interesting to you
because it looked like infection rates were higher in women from a plot. Hold that
thought until the exercises at the end of this chapter. For now, let’s trust the p-value and
remove the gender term from the model:

model3 <- update(model2, ~ . - Gender)
summary(model3)

##
Call:
lm(formula = Rate ~ Age.Group + Ethnicity, data = gonorrhoea)
##
Residuals:
Min 1Q Median 3Q Max
-380.1 -136.1 35.8 87.4 1481.5
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -34.050 41.820 -0.81 0.4159
Age.Group5 to 9 -0.614 51.218 -0.01 0.9904
Age.Group10 to 14 15.268 51.218 0.30 0.7657
Age.Group15 to 19 415.698 51.218 8.12 2.9e-15
Age.Group20 to 24 546.820 51.218 10.68 < 2e-16
Age.Group25 to 29 291.098 51.218 5.68 2.1e-08
Age.Group30 to 34 155.872 51.218 3.04 0.0024
Age.Group35 to 39 84.612 51.218 1.65 0.0991
Age.Group40 to 44 49.506 51.218 0.97 0.3342
Age.Group45 to 54 27.364 51.218 0.53 0.5934
Age.Group55 to 64 8.684 51.218 0.17 0.8654
Age.Group65 or more 1.178 51.218 0.02 0.9817
EthnicityAsians & Pacific Islanders -82.923 33.061 -2.51 0.0124
EthnicityHispanics -49.000 33.061 -1.48 0.1389
EthnicityNon-Hispanic Blacks 376.204 33.061 11.38 < 2e-16
EthnicityNon-Hispanic Whites -68.263 33.061 -2.06 0.0394
##
(Intercept)
Age.Group5 to 9

274 | Chapter 15: Distributions and Modeling

2. Please remind me to change this for the second edition!

Age.Group10 to 14
Age.Group15 to 19 ***
Age.Group20 to 24 ***
Age.Group25 to 29 ***
Age.Group30 to 34 **
Age.Group35 to 39 .
Age.Group40 to 44
Age.Group45 to 54
Age.Group55 to 64
Age.Group65 or more
EthnicityAsians & Pacific Islanders *
EthnicityHispanics
EthnicityNon-Hispanic Blacks ***
EthnicityNon-Hispanic Whites *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 256 on 584 degrees of freedom
Multiple R-squared: 0.491, Adjusted R-squared: 0.477
F-statistic: 37.5 on 15 and 584 DF, p-value: <2e-16

Finally, the intercept term looks to be nonsignificant. This is because the default group
is 0- to 4-year-old American Indians and Alaskan Natives, and they don’t have much
gonorrhoea.

We can set a different default with the relevel function. As a non-Hispanic white
person in the 30- to 34-year-old group,2 I’m going to arbitrarily set those as the defaults.
In this next example, notice that we can use the update function to update the data
frame as well as the formula:

g2 <- within(
 gonorrhoea,
 {
 Age.Group <- relevel(Age.Group, "30 to 34")
 Ethnicity <- relevel(Ethnicity, "Non-Hispanic Whites")
 }
)
model4 <- update(model3, data = g2)
summary(model4)

##
Call:
lm(formula = Rate ~ Age.Group + Ethnicity, data = g2)
##
Residuals:
Min 1Q Median 3Q Max
-380.1 -136.1 35.8 87.4 1481.5
##
Coefficients:

A First Model: Linear Regressions | 275

Estimate Std. Error t value
(Intercept) 53.6 41.8 1.28
Age.Group0 to 4 -155.9 51.2 -3.04
Age.Group5 to 9 -156.5 51.2 -3.06
Age.Group10 to 14 -140.6 51.2 -2.75
Age.Group15 to 19 259.8 51.2 5.07
Age.Group20 to 24 390.9 51.2 7.63
Age.Group25 to 29 135.2 51.2 2.64
Age.Group35 to 39 -71.3 51.2 -1.39
Age.Group40 to 44 -106.4 51.2 -2.08
Age.Group45 to 54 -128.5 51.2 -2.51
Age.Group55 to 64 -147.2 51.2 -2.87
Age.Group65 or more -154.7 51.2 -3.02
EthnicityAmerican Indians & Alaskan Natives 68.3 33.1 2.06
EthnicityAsians & Pacific Islanders -14.7 33.1 -0.44
EthnicityHispanics 19.3 33.1 0.58
EthnicityNon-Hispanic Blacks 444.5 33.1 13.44
Pr(>|t|)
(Intercept) 0.2008
Age.Group0 to 4 0.0024 **
Age.Group5 to 9 0.0024 **
Age.Group10 to 14 0.0062 **
Age.Group15 to 19 5.3e-07 ***
Age.Group20 to 24 9.4e-14 ***
Age.Group25 to 29 0.0085 **
Age.Group35 to 39 0.1647
Age.Group40 to 44 0.0383 *
Age.Group45 to 54 0.0124 *
Age.Group55 to 64 0.0042 **
Age.Group65 or more 0.0026 **
EthnicityAmerican Indians & Alaskan Natives 0.0394 *
EthnicityAsians & Pacific Islanders 0.6576
EthnicityHispanics 0.5603
EthnicityNon-Hispanic Blacks < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 256 on 584 degrees of freedom
Multiple R-squared: 0.491, Adjusted R-squared: 0.477
F-statistic: 37.5 on 15 and 584 DF, p-value: <2e-16

The coefficients and p-values have changed because the reference point is now different,
but there are still a lot of stars on the righthand side of the summary output, so we know
that age and ethnicity have an impact on infection rates.

Plotting and Inspecting Models
lm models have a plot method that lets you check the goodness of fit in six different
ways. In its simplest form, you can just call plot(the_model), and it draws several plots
one after another. A slightly better approach is to use the layout function to see all the
plots together, as demonstrated in Figure 15-2:

276 | Chapter 15: Distributions and Modeling

plot_numbers <- 1:6
layout(matrix(plot_numbers, ncol = 2, byrow = TRUE))
plot(model4, plot_numbers)

Figure 15-2. Diagnostic plots for a linear model

At the top end, there are some values that are too high (notice the large positive residuals
at the righthand side of the “Residuals vs Fitted” plot, the points far above the line in
the “Normal Q-Q” plot, and the spikes in the “Cook’s distance” plot). In particular, rows
40, 41, and 160 have been singled out as outliers:

gonorrhoea[c(40, 41, 160),]

Year Age.Group Ethnicity Gender Rate
40 2007 15 to 19 Non-Hispanic Blacks Female 2239
41 2007 20 to 24 Non-Hispanic Blacks Female 2200
160 2008 15 to 19 Non-Hispanic Blacks Female 2233

A First Model: Linear Regressions | 277

These large values all refer to non-Hispanic black females, suggesting that we are per‐
haps missing an interaction term with ethnicity and gender.

The model variable that is returned by lm is a fairly complex beast. The output isn’t
included here for brevity, but you can explore the structure of these model variables in
the usual way:

str(model4)
unclass(model4)

There are many convenience functions for accessing the various components of the
model, such as formula, nobs, residuals, fitted, and coefficients:

formula(model4)

Rate ~ Age.Group + Ethnicity
<environment: 0x000000004ed4e110>

nobs(model4)

[1] 600

head(residuals(model4))

1 2 3 4 5 6
102.61 102.93 87.25 -282.38 -367.61 -125.38

head(fitted(model4))

1 2 3 4 5 6
-102.31 -102.93 -87.05 313.38 444.51 188.78

head(coefficients(model4))

(Intercept) Age.Group0 to 4 Age.Group5 to 9 Age.Group10 to 14
53.56 -155.87 -156.49 -140.60
Age.Group15 to 19 Age.Group20 to 24
259.83 390.95

Beyond these, there are more functions for diagnosing the quality of linear regression
models (listed on the ?influence.measures page), and you can access the R^2 value
(“the fraction of variance explained by the model”) from the summary:

head(cooks.distance(model4))

1 2 3 4 5 6
0.0002824 0.0002842 0.0002042 0.0021390 0.0036250 0.0004217

summary(model4)$r.squared

[1] 0.4906

These utility functions are great for providing alternative diagnostics. For example, if
you don’t want a base graphics plot of a model, you could roll your own ggplot2 version.
Figure 15-3 shows an example plot of residuals versus fitted values:

278 | Chapter 15: Distributions and Modeling

diagnostics <- data.frame(
 residuals = residuals(model4),
 fitted = fitted(model4)
)
ggplot(diagnostics, aes(fitted, residuals)) +
 geom_point() +
 geom_smooth(method = "loess")

Figure 15-3. A ggplot2-based diagnostic plot of residuals vs. fitted values

The real beauty of using models is that you can predict outcomes based on whatever
model inputs interest you. It’s more fun when you have a time variable in the model so
that you can predict the future, but in this case we can take a look at infection rates for
specific demographics. In a completely self-interested fashion, I’m going to look at the
infection rates for 30- to 34-year-old non-Hispanic white people:

A First Model: Linear Regressions | 279

new_data <- data.frame(
 Age.Group = "30 to 34",
 Ethnicity = "Non-Hispanic Whites"
)
predict(model4, new_data)

1
53.56

The model predicts an infection rate of 54 people per 100,000. Let’s compare it to the
data for that group:

subset(
 gonorrhoea,
 Age.Group == "30 to 34" & Ethnicity == "Non-Hispanic Whites"
)

Year Age.Group Ethnicity Gender Rate
7 2007 30 to 34 Non-Hispanic Whites Male 41.0
19 2007 30 to 34 Non-Hispanic Whites Female 45.6
127 2008 30 to 34 Non-Hispanic Whites Male 35.1
139 2008 30 to 34 Non-Hispanic Whites Female 40.8
247 2009 30 to 34 Non-Hispanic Whites Male 34.6
259 2009 30 to 34 Non-Hispanic Whites Female 33.8
367 2010 30 to 34 Non-Hispanic Whites Male 40.8
379 2010 30 to 34 Non-Hispanic Whites Female 38.5
487 2011 30 to 34 Non-Hispanic Whites Male 48.0
499 2011 30 to 34 Non-Hispanic Whites Female 40.7

The data points range from 34 to 48, so the prediction is a little bit high.

Other Model Types
Linear regression is barely a hairline scratch on the surface of R’s modeling capabilities.
As R is now the tool of choice in many university statistical departments, more or less
every model conceived is available in R or one of its packages. There are many books
that focus on the statistical side of using R, so this section only provides brief pointers
on where to look for further information.

The modeling capabilities of R are spread across many packages writ‐
ten by many people, and consequently their syntax varies. The caret
package provides wrappers to about 150 models to give them a con‐
sistent interface, along with some tools for model training and valida‐
tion. Max Kuhn’s Applied Predictive Modeling is the definitive refer‐
ence to this package.

The lm function for linear (ordinary least squares regression) models has a generaliza‐
tion, glm, that lets you specify different distributions for error terms and transformations

280 | Chapter 15: Distributions and Modeling

3. Mixed-effects models are regressions where some of your predictor variables affect the variance of the re‐
sponse rather than the mean. For example, if you measure oxygen levels in people’s bloodstreams, you might
want to know how much variation there is between people and between measurements for a person, but you
don’t care that oxygen levels are higher or lower for a specific person.

on the response variable. You can use it for logistic regression (where the response
variable is logical or categorical), amongst other things, and the syntax is almost identical
to that of lm:

glm(true_or_false ~ some + predictor + variables, data, family = binomial())

John Fox’s An R Companion to Applied Regression is basically 472 pages of cool things
you can do with the glm function.

The nlme package (which ships with R) contains the lme function for linear mixed-
effects models and nlme for nonlinear mixed-effects models.3 Again, the syntax is more
or less the same as with lm:

lme(y ~ some + fixed + effects, data, random = ~ 1 | random / effects)

Mixed-Effects Models in S and S-PLUS by José Pinheiro and Doug Bates is the canonical
reference, with loads of examples.

For response variables that are proportions, the betareg package contains a function
of the same name that allows beta regression. This is especially important for Exercise
15-3.

For data miners (and others with high-dimensional datasets), the rpart package, which
also ships with R, creates regression trees (a.k.a. decision trees). Even more excitingly,
the randomForest package lets you create a whole forest of regression trees. C50 and
mboost provide gradient boosting, which many regard as even better than random
forests.

kmeans lets you do k-means clustering, and there are several packages that provide
specialist extensions, such as kernlab for weighted k-means, kml for longitudinal k-
means, trimclust for trimmed k-means, and skmeans for spherical k-means.

If you do a lot of data mining, you may be interested in Rattle, a GUI that gives easy
access to R’s data-mining models. Graham Williams has written a book about it, Data
Mining with Rattle and R, but start by visiting the website to see if it takes your fancy.

Social scientists may appreciate traditional dimension-reduction models: factor analysis
is supported through the factanal method, and principal components analysis has two
methods (princomp provides S-Plus compatibility, and prcomp uses a more modern,
numerically stable algorithm).

The deSolve package contains many methods for solving systems of ordinary/partial/
delay differential equations.

Other Model Types | 281

http://rattle.togaware.com/

Summary
• You can generate random numbers from pretty much any distribution ever

conceived.
• Most distributions also have functions available for calculating their PDF/CDF/

inverse CDF.
• Many modeling functions use formulae to specify the form of the model.
• lm runs a linear regression, and there are many support functions for updating,

diagnosing, and predicting with these models.
• R can run a wide range of statistical models.

Test Your Knowledge: Quiz
Question 15-1

How would you create the same set of random numbers twice?

Question 15-2
What is the naming convention for PDF, CDF, and inverse CDF functions?

Question 15-3
What does a colon (:) mean in the context of model formulae?

Question 15-4
Which functions can you use to compare linear regression models?

Question 15-5
How do you determine the fraction of variance explained by a linear model?

Test Your Knowledge: Exercises
Exercise 15-1

1. While typing this book, I make about three typos per paragraph. Use the PDF
of the Poisson distribution, dpois, to find the probability that I make exactly
three typos in a given paragraph. [5]

2. A healthy 25-year-old woman having unprotected sex at the right time has a
25% chance of getting pregnant each month. Use the CDF for the negative
binomial distribution, pnbinom, to calculate the probability that she will have
become pregnant after a year. [5]

3. You need 23 people to have a 50% chance that two or more of them share the
same birthday. Use the inverse CDF of the birthday distribution, qbirthday,

282 | Chapter 15: Distributions and Modeling

to calculate how many people you need to have a 90% chance of a shared
birthday. [5]

Exercise 15-2
Re-run the linear regression analysis on the gonorrhoea dataset, considering only
15- to 34-year-olds. Are the significant predictor variables different this time? [15]

For bonus points, explore adding interaction terms into the model. [15]

Exercise 15-3
Install and load the betareg package. Explore the obama_vs_mccain dataset using
beta regression, via the betareg function in that package. Use the Obama column as
the response variable.

To keep things simple, remove the “District of Columbia” outlier, don’t bother with
interactions, and only include one ethnicity and one religion column. (The ethnicity
and religion columns aren’t independent because they represent fractions of a total.)
In the absence of political understanding, you may trust the p-values for the pur‐
poses of updating models. Hint: You need to rescale the Obama column to range
from 0 to 1. [30]

Test Your Knowledge: Exercises | 283

CHAPTER 16

Programming

Writing data analysis code is hard. This chapter is about what happens when things go
wrong, and how to avoid that happening in the first place. We start with the different
types of feedback that you can give to indicate a problem, working up to errors. Then
we look at how to handle those errors when they are thrown, and how to debug code
to eliminate the bad errors. A look at unit testing frameworks gives you the skills to
avoid writing buggy code.

Next, we see some magic tricks: converting strings into code and code into strings (“Just
like that!” as Tommy Cooper used to say). The chapter concludes with an introduction
to some of the object-oriented programming systems in R.

Chapter Goals
After reading this chapter, you should:

• Know how to provide feedback to the user through messages, warnings, and errors
• Be able to gracefully handle errors
• Understand a few techniques for debugging code
• Be able to use the RUnit and testthat unit testing frameworks
• Know how to convert strings to R expressions and back again
• Understand the basics of the S3 and reference class object-oriented programming

systems

285

Messages, Warnings, and Errors
We’ve seen the print function on many occasions for displaying variables to the console.
For displaying diagnostic information about the state of the program, R has three func‐
tions. In increasing order of severity, they are message, warning, and stop.

message concatenates its inputs without spaces and writes them to the console. Some
common uses are providing status updates for long-running functions, notifying users
of new behavior when you’ve changed a function, and providing information on default
arguments:

f <- function(x)
{
 message("'x' contains ", toString(x))
 x
}
f(letters[1:5])

'x' contains a, b, c, d, e

[1] "a" "b" "c" "d" "e"

The main advantage of using message over print (or the lower-level cat) is that the
user can turn off their display. It may seem trivial, but when you are repeatedly running
the same code, not seeing the same message 100 times can have a wonderful effect on
morale:

suppressMessages(f(letters[1:5]))

[1] "a" "b" "c" "d" "e"

Warnings behave very similarly to messages, but have a few extra features to reflect their
status as indicators of bad news. Warnings should be used when something has gone
wrong, but not so wrong that your code should just give up. Common use cases are bad
user inputs, poor numerical accuracy, or unexpected side effects:

g <- function(x)
{
 if(any(x < 0))
 {
 warning("'x' contains negative values: ", toString(x[x < 0]))
 }
 x
}
g(c(3, -7, 2, -9))

Warning: 'x' contains negative values: -7, -9

[1] 3 -7 2 -9

As with messages, warnings can be suppressed:

286 | Chapter 16: Programming

suppressWarnings(g(c(3, -7, 2, -9)))

[1] 3 -7 2 -9

There is a global option, warn, that determines how warnings are handled. By default
warn takes the value 0, which means that warnings are displayed when your code has
finished running.

You can see the current level of the warn option using getOption:

getOption("warn")

[1] 1

If you change this value to be less than zero, all warnings are ignored:

old_ops <- options(warn = -1)
g(c(3, -7, 2, -9))

[1] 3 -7 2 -9

It is usually dangerous to completely turn off warnings, though, so you should reset the
options to their previous state using:

options(old_ops)

Setting warn to 1 means that warnings are displayed as they occur, and a warn value of
2 or more means that all warnings are turned into errors.

You can access the last warning by typing last.warning.

I mentioned earlier that if the warn option is set to 0, then warnings are shown when
your code finishes running. Actually, it’s a little more complicated than that. If 10 or
fewer warnings were generated, then this is what happens. But if there were more than
10 warnings, you get a message stating how many warnings were generated, and you
have to type warnings() to see them. This is demonstrated in Figure 16-1.

Figure 16-1. Where there are more than 10 warnings, use warnings to see them

Messages, Warnings, and Errors | 287

Errors are the most serious condition, and throwing them halts further execution. Errors
should be used when a mistake has occurred or you know a mistake will occur. Common
reasons include bad user input that can’t be corrected (by using an as.* function, for
example), the inability to read from or write to a file, or a severe numerical error:

h <- function(x, na.rm = FALSE)
{
 if(!na.rm && any(is.na(x)))
 {
 stop("'x' has missing values.")
 }
 x
}
h(c(1, NA))

Error: 'x' has missing values.

stopifnot throws an error if any of the expressions passed to it evaluate to something
that isn’t true. It provides a simple way of checking that the state of your program is as
expected:

h <- function(x, na.rm = FALSE)
{
 if(!na.rm)
 {
 stopifnot(!any(is.na(x)))
 }
 x
}
h(c(1, NA))

Error: !any(is.na(x)) is not TRUE

For a more extensive set of human-friendly tests, use the assertive package:

library(assertive)
h <- function(x, na.rm = FALSE)
{
 if(!na.rm)
 {
 assert_all_are_not_na(x)
 }
 x
}
h(c(1, NA))

Error: x contains NAs.

288 | Chapter 16: Programming

1. OK, connecting to a file isn’t wrestling an angry bear, but it’s high-risk in programming terms.

Error Handling
Some tasks are inherently risky. Reading from and writing to files or databases is no‐
toriously error prone, since you don’t have complete control over the filesystem, or the
network or database. In fact, any time that R interacts with other software (Java code
via rJava, WinBUGS via R2WinBUGS, or any of the hundreds of other pieces of software
that R can connect to), there is an inherent risk that something will go wrong.

For these dangerous tasks,1 you need to decide what to do when problems occur. Some‐
times it isn’t useful to stop execution when an error is thrown. For example, if you are
looping over files importing them, then if one import fails you don’t want to just stop
executing and lose all the data that you’ve successfully imported already.

In fact, this point generalizes: any time you are doing something risky in a loop, you
don’t want to discard your progress if one of the iterations fails. In this next example,
we try to convert each element of a list into a data frame:

to_convert <- list(
 first = sapply(letters[1:5], charToRaw),
 second = polyroot(c(1, 0, 0, 0, 1)),
 third = list(x = 1:2, y = 3:5)
)

If we run the code nakedly, it fails:

lapply(to_convert, as.data.frame)

Error: arguments imply differing number of rows: 2, 3

Oops! The third element fails to convert because of differing element lengths, and we
lose everything.

The simplest way of protecting against total failure is to wrap the failure-prone code
inside a call to the try function:

result <- try(lapply(to_convert, as.data.frame))

Now, although the error will be printed to the console (you can suppress this by passing
silent = TRUE), execution of code won’t stop.

If the code passed to a try function executes successfully (without throwing an error),
then result will just be the result of the calculation, as usual. If the code fails, then
result will be an object of class try-error. This means that after you’ve written a line
of code that includes try, the next line should always look something like this:

Error Handling | 289

2. Don’t underestimate the importance of pretty code. You’ll spend more time reading code than writing it.

if(inherits(result, "try-error"))
{
 #special error handling code
} else
{
 #code for normal execution
}

NULL

Since you have to include this extra line every time, code using the try function is a bit
ugly. A prettier alternative2 is to use tryCatch. tryCatch takes an expression to safely
run, just as try does, but also has error handling built into it.

To handle an error, you pass a function to an argument named error. This error
argument accepts an error (technically, an object of class simpleError) and lets you
manipulate, print, or ignore it as you see fit. If this sounds complicated, don’t worry: it’s
easier in practice. In this next example, when an error is thrown, we print the error
message and return an empty data frame:

tryCatch(
 lapply(to_convert, as.data.frame),
 error = function(e)
 {
 message("An error was thrown: ", e$message)
 data.frame()
 }
)

An error was thrown: arguments imply differing number of rows: 2, 3

data frame with 0 columns and 0 rows

tryCatch has one more trick: you can pass an expression to an argument named
finally, which runs whether an error was thrown or not (just like the on.exit function
we saw when we were connecting to databases).

Despite having played with try and tryCatch, we still haven’t solved our problem: when
looping over things, if an error is thrown, we want to keep the results of the iterations
that worked.

To achieve this, we need to put try or tryCatch inside the loop:

290 | Chapter 16: Programming

lapply(
 to_convert,
 function(x)
 {
 tryCatch(
 as.data.frame(x),
 error = function(e) NULL
)
 }
)

$first
x
a 61
b 62
c 63
d 64
e 65
##
$second
x
1 0.7071+0.7071i
2 -0.7071+0.7071i
3 -0.7071-0.7071i
4 0.7071-0.7071i
##
$third
NULL

Since this is a common piece of code, the plyr package contains a function, tryapply,
that deals with exactly this case in a cleaner fashion:

tryapply(to_convert, as.data.frame)

$first
x
a 61
b 62
c 63
d 64
e 65
##
$second
x
1 0.7071+0.7071i
2 -0.7071+0.7071i
3 -0.7071-0.7071i
4 0.7071-0.7071i

Eagle-eyed observers may notice that the failures are simply removed in this case.

Error Handling | 291

3. Space shuttle software was reputed to contain just one bug in 420,000 lines of code, but that level of formal
development methodology, code peer-reviewing, and extensive testing doesn’t come cheap.

Debugging
All nontrivial software contains errors.3 When problems happen, you need to be able
to find where they occur, and hopefully find a way to fix them. This is especially true if
it’s your own code. If the problem occurs in the middle of a simple script, you usually
have access to all the variables, so it is trivial to locate the problem.

More often than not, problems occur somewhere deep inside a function inside another
function inside another function. In this case, you need a strategy to inspect the state
of the program at each level of the call stack. (“Call stack” is just jargon for the list of
functions that have been called to get you to this point in the code.)

When an error is thrown, the traceback function tells you where the last error occurred.
First, let’s define some functions in which the error can occur:

outer_fn <- function(x) inner_fn(x)
inner_fn <- function(x) exp(x)

Now let’s call outer_fn (which then calls inner_fn) with a bad input:

outer_fn(list(1))

Error: non-numeric argument to mathematical function

traceback now tells us the functions that we called before tragedy struck (see
Figure 16-2).

Figure 16-2. Call stack using traceback

In general, if it isn’t an obvious bug, we don’t know where in the call stack the problem
occurred. One reasonable strategy is to start in the function where the error was thrown,
and work our way up the stack if we need to. To do this, we need a way to stop execution
of the code close to the point where the error was thrown. One way to do this is to add
a call to the browser function just before the error point (we know where the error
occurred because we used traceback):

292 | Chapter 16: Programming

http://www.fastcompany.com/28121/they-write-right-stuff

inner_fn <- function(x)
{
 browser() #execution pauses here
 exp(x)
}

browser halts execution when it is reached, giving us time to inspect the program. A
really good idea in most cases is to call ls.str to see the values of all the variables that
are in play at the time. In this case we see that x is a list, not a numeric vector, causing
exp to fail.

An alternative strategy for spotting errors is to set the global error option. This strategy
is preferable when the error lies inside someone else’s package, where it is harder to stick
a call to browser. (You can alter functions inside installed packages using the fixInNa
mespace function. The changes persist until you close R.)

The error option accepts a function with no arguments, and is called whenever an error
is thrown. As a simple example, we can set it to print a message after the error has
occurred, as shown in Figure 16-3.

Figure 16-3. Overriding the global error option

While a sympathetic message may provide a sliver of consolation for the error, it isn’t
very helpful in terms of fixing the problem. A much more useful alternative is provided
in the recover function that ships with R. recover lets you step into any function in
the call stack after an error has been thrown (see Figure 16-4).

Figure 16-4. Call stack using error = recover

Debugging | 293

4. As Tobias Verbeke of Open Analytics once quipped, "debugonce is a very optimistic function. I think de
bugtwice might have been better.”

You can also step through a function line by line using the debug function. This is a bit
boring with trivial single-line functions like inner and outer, so we’ll test it on a more
substantial offering. buggy_count, included in the learningr package, is a buggy ver‐
sion of the count function from the plyr package that fails in an obscure way when you
pass it a factor. Pressing Enter at the command line without typing anything lets us step
through it until we find the problem:

debug(buggy_count)
x <- factor(sample(c("male", "female"), 20, replace = TRUE))
buggy_count(x)

count (and by extension, our buggy_count) accepts a data frame or a vector as its first
argument. If the df argument is a vector, then the function inserts it into a data frame.

Figure 16-5 shows what happens when we reach this part of the code. When df is a
factor, we want it to be placed inside a data frame. Unfortunately, is.vector returns
FALSE for factors, and the step is ignored. Factors aren’t considered to be vectors, because
they have attributes other than names. What the code really should contain (and does
in the proper version of plyr) is a call to is.atomic, which is TRUE for factors as well as
other vector types, like numeric.

Figure 16-5. Debugging the buggy_count function

To exit the debugger, type Q at the command line. With the debug function, the debugger
will be started every time that function is called. To turn off debugging, call undebug:

undebug(buggy_count)

As an alternative, use debugonce, which only calls the debugger the first time a function
is called.4

Testing
To make sure that your code isn’t buggy and awful, it is important to test it. Unit test‐
ing is the concept of testing small chunks of code; in R this means testing at the functional

294 | Chapter 16: Programming

5. If you’ve just recoiled in horror at the phrase “pen and paper calculations,” congratulations! You are well on
your way to becoming an R user.

level. (System or integration testing is the larger-scale testing of whole pieces of software,
but that is more useful for application development than data analysis.)

Each time you change a function, you can break code in other functions that rely on it.
This means that each time you change a function, you need to test everything that it
could affect. Attempted manually, this is impossible, or at least time-consuming and
boring enough that you won’t do it. Consequently, you need to automate the task. In R,
you have two choices for this:

1. RUnit has “xUnit” syntax, meaning that it’s very similar to Java’s JUnit, .NET’s
NUnit, Python’s PyUnit, and a whole other family of unit testing suites. This makes
it easiest to learn if you’ve done unit testing in any other language.

2. testthat has its own syntax, and a few extra features. In particular, the caching of
tests makes it much faster for large projects.

Let’s test the hypotenuse function we wrote when we first learned about functions in
“Functions” on page 82. It uses the obvious algorithm that you might use for pen and
paper calculations.5 The function is included in the learningr package:

hypotenuse <- function(x, y)
{
 sqrt(x ^ 2 + y ^ 2)
}

RUnit
In RUnit, each test is a function that takes no inputs. Each test compares the actual result
of running some code (in this case, calling hypotenuse) to an expected value, using one
of the check* functions contained in the package. In this next example we use
checkEqualsNumeric, since we are comparing two numbers:

library(RUnit)
test.hypotenuse.3_4.returns_5 <- function()
{
 expected <- 5
 actual <- hypotenuse(3, 4)
 checkEqualsNumeric(expected, actual)
}

Testing | 295

There is no universal naming convention for tests, but RUnit looks for
functions with names beginning with test by default. The conven‐
tion used here is designed to maximize clarity. Tests take the name
form of test.name_of_function.description_of_inputs.re

turns_a_value.

Sometimes we want to make sure that a function fails in the correct way. For example,
we can test that hypotenuse fails if no inputs are provided:

test.hypotenuse.no_inputs.fails <- function()
{
 checkException(hypotenuse())
}

Many algorithms suffer loss of precision when given very small or very large inputs, so
it is good practice to test those conditions. The smallest and largest positive numeric
values that R can represent are given by the double.xmin and double.xmax components
of the built-in .Machine constant:

.Machine$double.xmin

[1] 2.225e-308

.Machine$double.xmax

[1] 1.798e+308

For the small and large tests, we pick values close to these limits. In the case of small
numbers, we need to manually tighten the tolerance of the test. By default, checkE
qualsNumeric considers its test passed when the actual result is within about 1e-8 of
the expected result (it uses absolute, not relative differences). We set this value to be
a few orders of magnitude smaller than the inputs to make sure that the test fails
appropriately:

test.hypotenuse.very_small_inputs.returns_small_positive <- function()
{
 expected <- sqrt(2) * 1e-300
 actual <- hypotenuse(1e-300, 1e-300)
 checkEqualsNumeric(expected, actual, tolerance = 1e-305)
}
test.hypotenuse.very_large_inputs.returns_large_finite <- function()
{
 expected <- sqrt(2) * 1e300
 actual <- hypotenuse(1e300, 1e300)
 checkEqualsNumeric(expected, actual)
}

296 | Chapter 16: Programming

There are countless more possible tests; for example, what happens if we pass missing
values or NULL or infinite values or character values or vectors or matrices or data frames,
or we expect an answer in non-Euclidean space? Thorough testing works your imagi‐
nation hard. Unleash your inner two-year-old and contemplate breaking stuff. On this
occasion, we’ll stop here. Save all your tests into a file; RUnit defaults to looking for files
with names that begin with “runit” and have a .R file extension. These tests can be found
in the tests directory of the learningr package.

Now that we have some tests, we need to run them. This is a two-step process.

First, we define a test suite with defineTestSuite. This function takes a string for a
name (used in its output), and a path to the directory where your tests are contained.
If you’ve named your test functions or files in a nonstandard way, you can provide a
pattern to identify them:

test_dir <- system.file("tests", package = "learningr")
suite <- defineTestSuite("hypotenuse suite", test_dir)

The second step is to run them with runTestSuite (additional line breaks have been
added here as needed, to fit the formatting of the book):

runTestSuite(suite)

##
##
Executing test function test.hypotenuse.3_4.returns_5 ...
done successfully.
##
##
##
Executing test function test.hypotenuse.no_inputs.fails ...
done successfully.
##
##
##
Executing test function
test.hypotenuse.very_large_inputs.returns_large_finite ...
Timing stopped at: 0 0 0 done successfully.
##
##
##
Executing test function
test.hypotenuse.very_small_inputs.returns_small_positive ...
Timing stopped at: 0 0 0 done successfully.

Number of test functions: 4
Number of errors: 0
Number of failures: 2

This runs each test that it finds and displays whether it passed, failed, or threw an error.
In this case, you can see that the small and large input tests failed. So what went wrong?

Testing | 297

The problem with our algorithm is that we have to square each input. Squaring big
numbers makes them larger than the largest (double-precision) number that R can
represent, so the result comes back as infinity. Squaring very small numbers makes them
even smaller, so that R thinks they are zero. (There are better algorithms that avoid this
problem; see the ?hypotenuse help page for links to a discussion of better algorithms
for real-world use.)

RUnit has no built-in checkWarning function to test for warnings. To test that a warning
has been thrown, we need a trick: we set the warn option to 2 so that warnings
become errors, and then restore it to its original value when the test function exits using
on.exit. Recall that code inside on.exit is run when a function exits, regardless of
whether it completed successfully or an error was thrown:

test.log.minus1.throws_warning <- function()
{
 old_ops <- options(warn = 2) #warnings become errors
 on.exit(old_ops) #restore old behavior
 checkException(log(-1))
}

testthat
Though testthat has a different syntax, the principles are almost the same. The main
difference is that rather than each test being a function, it is a call to one of the expect_*
functions in the package. For example, expect_equal is the equivalent of RUnit’s check
EqualsNumeric. The translated tests (also available in the tests directory of the lear
ningr package) look like this:

library(testthat)
expect_equal(hypotenuse(3, 4), 5)
expect_error(hypotenuse())
expect_equal(hypotenuse(1e-300, 1e-300), sqrt(2) * 1e-300, tol = 1e-305)
expect_equal(hypotenuse(1e300, 1e300), sqrt(2) * 1e300)

To run this, we call test_file with the name of the file containing tests, or test_dir
with the name of the directory containing the files containing the tests. Since we have
only one file, we’ll use test_file:

filename <- system.file(
 "tests",
 "testthat_hypotenuse_tests.R",
 package = "learningr"
)
test_file(filename)

..12
##
1. Failure: (unknown) ---
learningr::hypotenuse(1e-300, 1e-300) not equal to sqrt(2) * 1e-300

298 | Chapter 16: Programming

Mean relative difference: 1
##
2. Failure: (unknown) ---
learningr::hypotenuse(1e+300, 1e+300) not equal to sqrt(2) * 1e+300
Mean relative difference: Inf

There are two variations for running the tests: test_that tests code that you type at the
command line (or, more likely, copy and paste), and test_package runs all tests from
a package, making it easier to test nonexported functions.

Unlike with RUnit, warnings can be tested for directly via expect_warning:

expect_warning(log(-1))

Magic
The source code that we write, as it exists in a text editor, is just a bunch of strings. When
we run that code, R needs to interpret what those strings contain and perform the
appropriate action. It does that by first turning the strings into one of several lan‐
guage variable types. And sometimes we want to do the opposite thing, converting
language variables into strings.

Both these tasks are rather advanced, dark magic. As is the case with magic in every
movie ever, if you use it without understanding what you are doing, you’ll inevitably
suffer nasty, unexpected consequences. On the other hand, used knowledgeably and
sparingly, there are some useful tricks that you can put up your sleeve.

Turning Strings into Code
Whenever you type a line of code at the command line, R has to turn that string into
something it understands. Here’s a simple call to the arctangent function:

atan(c(-Inf, -1, 0, 1, Inf))

[1] -1.5708 -0.7854 0.0000 0.7854 1.5708

We can see what happens to this line of code in slow motion by using the quote function.
quote takes a function call like the one in the preceding line, and returns an object of
class call, which represents an “unevaluated function call”:

(quoted_r_code <- quote(atan(c(-Inf, -1, 0, 1, Inf))))

atan(c(-Inf, -1, 0, 1, Inf))

class(quoted_r_code)

[1] "call"

The next step that R takes is to evaluate that call. We can mimic this step using the eval
function:

Magic | 299

eval(quoted_r_code)

[1] -1.5708 -0.7854 0.0000 0.7854 1.5708

The general case, then, is that to execute code that you type, R does something like
eval(quote(the stuff you typed at the command line)).

To understand the call type a little better, let’s convert it to a list:

as.list(quoted_r_code)

[[1]]
atan
##
[[2]]
c(-Inf, -1, 0, 1, Inf)

The first element is the function that was called, and any additional elements contain
the arguments that were passed to it.

One important thing to remember is that in R, more or less everything is a function.
That’s a slight exaggeration, but operators like +; language constructs like switch, if,
and for; and assignment and indexing are functions:

vapply(
 list(`+`, `if`, `for`, `<-`, `[`, `[[`),
 is.function,
 logical(1)
)

[1] TRUE TRUE TRUE TRUE TRUE TRUE

The upshot of this is that anything that you type at the command line is really a function
call, which is why this input is turned into call objects.

All of this was a long-winded way of saying that sometimes we want to take text that is
R code and get R to execute it. In fact, we’ve already seen two functions that do exactly
that for special cases: assign takes a string and assigns a value to a variable with that
name, and its reverse, get, retrieves a variable based upon a string input.

Rather than just limiting ourselves to assigning and retrieving variables, we might oc‐
casionally decide that we want to take an arbitrary string of R code and execute it. You
may have noticed that when we use the quote function, we just type the R code directly
into it, without wrapping it in—ahem—quotes. If our input is a string (as in a character
vector of length one), then we have a slightly different problem: we must “parse” the
string. Naturally, this is done with the parse function.

parse returns an expression object rather than a call. Before you get frightened, note
that an expression is basically just a list of calls.

300 | Chapter 16: Programming

The exact nature of calls and expressions is deep, dark magic, and I
don’t want to be responsible for the ensuing zombie apocalypse when
you try to raise the dead using R. If you are interested in arcana, read
Chapter 6 of the R Language Definition manual that ships with R.

When we call parse in this way, we must explicitly name the text argument:

parsed_r_code <- parse(text = "atan(c(-Inf, -1, 0, 1, Inf))")
class(parsed_r_code)

[1] "expression"

Just as with the quoted R code, we use eval to evaluate it:

eval(parsed_r_code)

[1] -1.5708 -0.7854 0.0000 0.7854 1.5708

This sort of mucking about with evaluating strings is a handy trick,
but the resulting code is usually fragile and fiendish to debug, mak‐
ing your code unmaintainable. This is the zombie (code) apocalypse
mentioned above.

Turning Code into Strings
There are a few occasions when we want to solve the opposite problem: turning code
into a string. The most common reason for this is to use the name of a variable that was
passed into a function. The base histogram-drawing function, hist, includes a default
title that tells you the name of the data variable:

random_numbers <- rt(1000, 2)
hist(random_numbers)

To replicate this technique ourselves, we need two functions: substitute and deparse.
substitute takes some code and returns a language object. That usually means a
call, like we would have created using quote, but occasionally it’s a name object, which
is a special type that holds variable names. (Don’t worry about the details, this section
is called “Magic” for a reason.)

The next step is to turn this language object into a string. This is called deparsing. The
technique can be very useful for providing helpful error messages when you check user
inputs to functions. Let’s see the deparse-substitute combination in action:

Magic | 301

divider <- function(numerator, denominator)
{
 if(denominator == 0)
 {
 denominator_name <- deparse(substitute(denominator))
 warning("The denominator, ", sQuote(denominator_name), ", is zero.")
 }
 numerator / denominator
}
top <- 3
bottom <- 0
divider(top, bottom)

Warning: The denominator, 'bottom', is zero.

[1] Inf

substitute has one more trick up its sleeve when used in conjunction with eval. eval
lets you pass it an environment or a data frame, so you can tell R where to look to evaluate
the expression.

As a simple example, we can use this trick to retrieve the levels of the Gender column
of the hafu dataset:

eval(substitute(levels(Gender)), hafu)

[1] "F" "M"

This is exactly how the with function works:

with(hafu, levels(Gender))

[1] "F" "M"

In fact, many functions use the technique: subset uses it in several places, and lattice
plots use the trick to parse their formulae. There are a few variations on the trick de‐
scribed in Thomas Lumley’s “Standard nonstandard evaluation rules.”

Object-Oriented Programming
Most R code that we’ve seen so far is functional-programming-inspired imperative
programming. That is, functions are first-class objects, but we usually end up with a
data-analysis script that executes one line at a time.

In a few circumstances, it is useful to use an object-oriented programming (OOP) style.
This means that data is stored inside a class along with the functions that are allowed
to act on it. It is an excellent tool for managing complexity in larger programs, and is
particularly suited to GUI development (in R or elsewhere). See Michael Lawrence’s
Programming Graphical User Interfaces in R for more on that topic.

R has six (count ‘em) different OOP systems, but don’t let that worry you—there are
only two of them that you’ll need for new projects.

302 | Chapter 16: Programming

Three systems are built into R:

1. S3 is a lightweight system for overloading functions (i.e., calling a different version
of the function depending upon the type of input).

2. S4 is a fully featured OOP system, but it’s clunky and tricky to debug. Only use it
for legacy code.

3. Reference classes are the modern replacement for S4 classes.

Three other systems are available in add-on packages (but for new code, you will usually
want to use reference classes instead):

1. proto is a lightweight wrapper around environments for prototype-based pro‐
gramming.

2. R.oo extends S3 into a fully fledged OOP system.
3. OOP is a precursor to reference classes, now defunct.

In many object-oriented programming languages, functions are called
methods. In R, the two words are interchangeable, but “method” is
often used in an OOP context.

S3 Classes
Sometimes we want a function to behave differently depending upon the type of input.
A classic example is the print function, which gives a different style of output for dif‐
ferent variables. S3 lets us call a different function for printing different kinds of vari‐
ables, without having to remember the names of each one.

The print function is very simple—just one line, in fact:

print

function (x, ...)
UseMethod("print")
<bytecode: 0x0000000018fad228>
<environment: namespace:base>

It takes an input, x (and ...; the ellipsis is necessary), and calls UseMethod("print").
UseMethod checks the class of x and looks for another function named
print.class_of_x, calling it if it is found. If it can’t find a function of that name, it tries
to call print.default.

For example, if we want to print a Date variable, then we can just type:

Object-Oriented Programming | 303

today <- Sys.Date()
print(today)

[1] "2013-07-17"

print calls the Date-specific function print.Date:

print.Date

function (x, max = NULL, ...)
{
if (is.null(max))
max <- getOption("max.print", 9999L)
if (max < length(x)) {
print(format(x[seq_len(max)]), max = max, ...)
cat(" [reached getOption(\"max.print\") -- omitted",
length(x) - max, "entries]\n")
}
else print(format(x), max = max, ...)
invisible(x)
}
<bytecode: 0x0000000006dc19f0>
<environment: namespace:base>

Inside print.Date, our date is converted to a character vector (via format), and then
print is called again. There is no print.character function, so this time UseMethod
delegates to print.default, at which point our date string appears in the console.

If a class-specific method can’t be found, and there is no default meth‐
od, then an error is thrown.

You can see all the available methods for a function with the methods function. The
print function has over 100 methods, so here we just show the first few:

head(methods(print))

[1] "print.abbrev" "print.acf" "print.AES"
[4] "print.anova" "print.Anova" "print.anova.loglm"

methods(mean)

[1] mean.Date mean.default mean.difftime mean.POSIXct mean.POSIXlt
[6] mean.times* mean.yearmon* mean.yearqtr* mean.zoo*
##
Non-visible functions are asterisked

304 | Chapter 16: Programming

If you use dots in your function names, like data.frame, then it
can get confusing as to which S3 method gets called. For example,
print.data.frame could mean a print.data method for a frame in‐
put, as well as the correct sense of a print method for a data.frame
object. Consequently, using lower_under_case or lowerCamelCase is
preferred for new function names.

Reference Classes
Reference classes are closer to a classical OOP system than S3 and S4, and should be
moderately intuitive to anyone who has used classes in C++ or its derivatives.

A class is the general template for how the variables should be struc‐
tured. An object is a particular instance of the class. For example, 1:10
is an object of class numeric.

The setRefClass function creates the template for a class. In R terminology, it’s called
a class generator. In some other languages, it would be called a class factory.

Let’s try to build a class for a 2D point as an example. A call to setRefClass looks like
this:

my_class_generator <- setRefClass(
 "MyClass",
 fields = list(
 #data variables are defined here
),
 methods = list(
 #functions to operate on that data go here
 initialize = function(...)
 {
 #initialize is a special function called
 #when an object is created.
 }
)
)

Our class needs x and y coordinates to store its location, and we want these to be numeric.

In the following example, we declare x and y to be numeric:

If we didn’t care about the class of x and y, we could declare them with
the special value ANY.

Object-Oriented Programming | 305

6. In case you were wondering, NA_real_ is a missing number. Usually for missing values we just use NA and
let R figure out the type that it needs to be, but in this case, because we specified that the fields must be numeric,
we need to explicitly state the type.

point_generator <- setRefClass(
 "point",
 fields = list(
 x = "numeric",
 y = "numeric"
),
 methods = list(
 #TODO
)
)

This means that if we try to assign them values of another type, an error will be thrown.
Purposely restricting user input may sound counterintuitive, but it can save you from
having more obscure bugs further down the line.

Next we need to add an initialize method. This is called every time we create a point
object. This method takes x and y input numbers and assigns them to our x and y fields.
There are three interesting things to note about it:

1. If the first line of a method is a string, then it is considered to be help text for that
method.

2. The global assignment operator, <<-, is used to assign to a field. Local assignment
(using <-) just creates a local variable inside the method.

3. It is best practice to let initialize work without being passed any arguments, since
it makes inheritance easier, as we’ll see in a moment. This is why the x and y
arguments have default values.6

With the initialize method, our class generator now looks like this:

point_generator <- setRefClass(
 "point",
 fields = list(
 x = "numeric",
 y = "numeric"
),
 methods = list(
 initialize = function(x = NA_real_, y = NA_real_)
 {
 "Assign x and y upon object creation."
 x <<- x
 y <<- y
 }
)
)

306 | Chapter 16: Programming

Our point class generator is finished, so we can now create a point object. Every gen‐
erator has a new method for this purpose. The new method calls initialize (if it exists)
as part of the object creation process:

(a_point <- point_generator$new(5, 3))

Reference class object of class "point"
Field "x":
[1] 5
Field "y":
[1] 3

Generators also have a help method that returns the help string for a method that you
specify:

point_generator$help("initialize")

Call:
$initialize(x = , y =)
##
##
Assign x and y upon object creation.

You can provide a more traditional interface to object-oriented code by wrapping class
methods inside other functions. This can be useful if you want to distribute your code
to other people without having to teach them about OOP:

create_point <- function(x, y)
{
 point_generator$new(x, y)
}

At the moment, the class isn’t very interesting because it doesn’t do anything. Let’s re‐
define it with some more methods:

point_generator <- setRefClass(
 "point",
 fields = list(
 x = "numeric",
 y = "numeric"
),
 methods = list(
 initialize = function(x = NA_real_, y = NA_real_)
 {
 "Assign x and y upon object creation."
 x <<- x
 y <<- y
 },
 distanceFromOrigin = function()
 {
 "Euclidean distance from the origin"
 sqrt(x ^ 2 + y ^ 2)
 },

Object-Oriented Programming | 307

 add = function(point)
 {
 "Add another point to this point"
 x <<- x + point$x
 y <<- y + point$y
 .self
 }
)
)

These additional methods belong to point objects, unlike new and help, which belong
to the class generator (in OOP terminology, new and help are static methods):

a_point <- create_point(3, 4)
a_point$distanceFromOrigin()

[1] 5

another_point <- create_point(4, 2)
(a_point$add(another_point))

Reference class object of class "point"
Field "x":
[1] 7
Field "y":
[1] 6

As well as new and help, generator classes have a few more methods. fields and methods
respectively list the fields and methods of that class, and lock makes a field read-only:

point_generator$fields()

x y
"numeric" "numeric"

point_generator$methods()

[1] "add" "callSuper" "copy"
[4] "distanceFromOrigin" "export" "field"
[7] "getClass" "getRefClass" "import"
[10] "initFields" "initialize" "show"
[13] "trace" "untrace" "usingMethods"

Some other methods can be called either from the generator object or from instance
objects. show prints the object, trace and untrace let you use the trace function on a
method, export converts the object to another class type, and copy makes a copy.

Reference classes support inheritance, where classes can have children to extend their
functionality. For example, we can create a three-dimensional point class that contains
our original point class, but includes an extra z coordinate.

308 | Chapter 16: Programming

A class inherits fields and methods from another class by using the contains argument:

three_d_point_generator <- setRefClass(
 "three_d_point",
 fields = list(
 z = "numeric"
),
 contains = "point", #this line lets us inherit
 methods = list(
 initialize = function(x, y, z)
 {
 "Assign x and y upon object creation."
 x <<- x
 y <<- y
 z <<- z
 }
)
)
a_three_d_point <- three_d_point_generator$new(3, 4, 5)

At the moment, our distanceFromOrigin function is wrong, since it doesn’t take the z
dimension into account:

a_three_d_point$distanceFromOrigin() #wrong!

[1] 5

We need to override it in order for it to make sense in the new class. This is done by
adding a method with the same name to the class generator:

three_d_point_generator <- setRefClass(
 "three_d_point",
 fields = list(
 z = "numeric"
),
 contains = "point",
 methods = list(
 initialize = function(x, y, z)
 {
 "Assign x and y upon object creation."
 x <<- x
 y <<- y
 z <<- z
 },
 distanceFromOrigin = function()
 {
 "Euclidean distance from the origin"
 sqrt(x ^ 2 + y ^ 2 + z ^ 2)
 }
)
)

Object-Oriented Programming | 309

To use the updated definition, we need to recreate our point:

a_three_d_point <- three_d_point_generator$new(3, 4, 5)
a_three_d_point$distanceFromOrigin()

[1] 7.071

Sometimes we want to use methods from the parent class (a.k.a. superclass). The call
Super method does exactly this, so we could have written our 3D distanceFromOri
gin (inefficiently) like this:

distanceFromOrigin = function()
{
 "Euclidean distance from the origin"
 two_d_distance <- callSuper()
 sqrt(two_d_distance ^ 2 + z ^ 2)
}

OOP is a big topic, and even limited to reference classes, it’s worth a book in itself. John
Chambers (creator of the S language, R Core member, and author of the reference classes
code) is currently writing a book on OOP in R. Until that materializes, the ?Reference
Classes help page is currently the definitive reference-class reference.

Summary
• R has three levels of feedback about problems: messages, warnings, and errors.
• Wrapping code in a call to try or tryCatch lets you control how you handle errors.
• The debug function and its relatives help you debug functions.
• The RUnit and testthat packages let you do unit testing.
• R code consists of language objects known as calls and expressions.
• You can turn strings into language objects and vice versa.
• There are six different object-oriented programming systems in R, though only S3

and reference classes are needed for new projects.

Test Your Knowledge: Quiz
Question 16-1

If your code generates more than 10 warnings, which function would you use to
view them?

Question 16-2
What is the class of the return value from a call to try if an error was thrown?

310 | Chapter 16: Programming

Question 16-3
To test that an error is correctly thrown in an RUnit test, you call the checkExcep
tion function. What is the testthat equivalent?

Question 16-4
Which two functions do you need to mimic executing code typed at the command
line?

Question 16-5
How do you make the print function do different things for different types of input?

Test Your Knowledge: Exercises
Exercise 16-1

The harmonic mean is defined as the reciprocal of the arithmetic mean of the re‐
ciprocal of the data, or 1 / mean(1 / x), where x contains positive numbers. Write
a harmonic mean function that gives appropriate feedback when the input is not
numeric or contains nonpositive values. [10]

Exercise 16-2
Using either RUnit or testthat, write some tests for your harmonic mean function.
You should check that the harmonic mean of 1, 2, and 4 equals 12 / 7; that passing
no inputs throws an error; that passing missing values behaves correctly; and that
it behaves as you intended for nonnumeric and nonpositive inputs. Keep testing
until all the tests pass! [15]

Exercise 16-3
Modify your harmonic mean function so that the return value has the class
harmonic. Now write an S3 print method for this class that displays the message
“The harmonic mean is y,” where y is the harmonic mean. [10]

Test Your Knowledge: Exercises | 311

CHAPTER 17

Making Packages

R’s success lies in its community. While the R Core Team does a fantastic job, it’s im‐
portant to realize that most R code is written by users. In this chapter, you’re going to
learn how to create your own packages to share your code with your colleagues, friends,
and the wider world. Even if you’re a lone-working hermit who doesn’t like sharing,
packages are a great way to organize code for your own use.

Chapter Goals
After reading this chapter, you should:

• Be able to create a package
• Know how to document its functions and datasets
• Be able to release the package to CRAN

Why Create Packages?
The natural way to share R code and make it reusable by others (or even just yourself)
is to package it up. In my experience, a lot of R users delay learning about how to create
their own packages, perceiving it to be an advanced topic. In reality, it’s a simple task—
as long as you follow the prescribed rules. These rules are laid out in the “Writing R
Extensions” manual that ships with R. If things go wrong, the answer is invariably buried
within that document.

Prerequisites
Building packages requires a bunch of tools that are standard under Linux and other
Unix derivatives, but not on Windows. All the tools have been collected together in a

313

1. NEWS is a pain in the ass, and you’ll inevitably forget to update it.

single download, available at http://cran.r-project.org/bin/windows/Rtools (or the bin/
windows/Rtools directory of your nearest CRAN mirror). For even easier installation,
use install.Rtools in the installr package.

While you’re installing things, you’ll want the devtools and roxygen2 packages as well:

install.packages(c("devtools", "roxygen2"))

The Package Directory Structure
Creating a package is mostly just a case of putting the right files in the right places. Inside
your package directory, there are two compulsory files:

1. DESCRIPTION contains details about the package’s version, its author, and what it
does.

2. NAMESPACE describes which functions will be exported (made available to users).

Three other files are optionally allowed:

1. LICENSE (or LICENCE, depending upon which side of The Pond you hail from)
contains the package license.

2. NEWS contains details on those exciting changes that you’ve made to the package.
3. INDEX contains names and descriptions for all the interesting objects in the

package.

Before you start panicking at the thought of having to write five whole administrative
files, take a deep breath. NAMESPACE and INDEX are completely autogenerated, DE‐
SCRIPTION is partially autogenerated, and you don’t need a license file if you use one
of several common, standard, licenses.1

At the top level, there are two directories that must be included:

1. R contains your R code.
2. man contains help files.

There are also some optional directories:

1. src contains C, C++, or Fortran source code.
2. demo contains R code demos to be run by the demo function.
3. vignettes contains longer documents explaining how to use the package, as found

via browseVignettes.

314 | Chapter 17: Making Packages

http://cran.r-project.org/bin/windows/Rtools

4. doc contains help documents in other formats.
5. data contains data files.
6. inst contains anything else.

The first optional directories are beyond the scope of this quick introduction to package
creation. Of the three compiled languages, C++ is easiest to use with R, thanks to the
Rcpp package (see Dirk Eddelbuettel’s Seamless R and C++ Integration with Rcpp). Cre‐
ating vignettes isn’t hard, especially if you use the knitr package (read Yihui Xie’s
Dynamic Documents with R and knitr).

Data files are things that will be made available via the data function (as we saw in
“Built-in Datasets” on page 169 in Chapter 12). The preferred format is for them to
be .RData files—the result of a call to save—though other formats are possible.

Although inst is the free-range folder that can contain anything, there are some standard
contents that may be included:

1. inst/tests contains your RUnit or testthat tests.
2. inst/python, inst/matlab, and inst/someotherscriptinglanguage contain code from

other scripting languages. (The three compiled languages that are supported go in
src, as discussed above.)

3. CITATION describes how you would like the package to be cited, although this
information is usually autogenerated from the description file.

Your First Package
OK, enough theory—let’s make a package already. First, we need some contents: the
hypotenuse function from the last chapter will do nicely. To demonstrate including data
in a package, we can use some Pythagorean triples:

hypotenuse <- function(x, y)
{
 sqrt(x ^ 2 + y ^ 2)
}
pythagorean_triples <- data.frame(
 x = c(3, 5, 8, 7, 9, 11, 12, 13, 15, 16, 17, 19),
 y = c(4, 12, 15, 24, 40, 60, 35, 84, 112, 63, 144, 180),
 z = c(5, 13, 17, 25, 41, 61, 37, 85, 113, 65, 145, 181)
)

So now we need to create a load of directories to try and remember where to put things,
right? Actually, it’s easier than that. The package.skeleton function creates (almost)
everything we need. It needs a name for the package (“pythagorus” will do nicely), and
a character vector naming the variables to add to it:

Your First Package | 315

package.skeleton(
 "pythagorus",
 c("hypotenuse", "pythagorean_triples")
)

Running package.skeleton creates the R, man, and data directories and the DE‐
SCRIPTION and NAMESPACE files, as well as a file named Read-and-delete-me that
contains further instructions. Its output can be seen in Figure 17-1.

Figure 17-1. Using package.skeleton to create the pythagorus package

The DESCRIPTION file has a strict structure of Name: value pairs. All we need to do
is to update the Title, Author, Maintainer, Description, and License fields to some‐
thing appropriate. The basic file format, created by package.skeleton, is shown in
Figure 17-2.

Figure 17-2. The DESCRIPTION file created by package.skeleton

The License field must be one of “file” (in which case a LICENCE or LICENSE file must
be included), “Unlimited” (no restriction), or one of these standard licenses: “GPL-2,”
“GPL-3,” “LGPL-2,” “LGPL-2.1,” “LGPL-3,” “AGPL-3,” “Artistic-2.0,” “BSD_2_clause,”
“BSD_3_clause,” or “MIT.”

The NAMESPACE file contains the text exportPattern("^[[:alpha:]]+"). This
means “make any variable whose name begins with a letter available to the users.”

316 | Chapter 17: Making Packages

Modern best practice is to write an export statement for each variable that you want to
make available, rather than specifying a pattern.

We’ll see how to automate creation of NAMESPACE in the next section, but for now,
replace the text with export(hypotenuse).

The man directory contains some automatically generated .Rd files: one for each func‐
tion, one for each dataset, and another named pythagorus-package.Rd. These .Rd files
contain LaTeX markup that will be used to create the help pages once the package is
built. pythagorus-package.Rd contains a general help page for the whole package, where
you can introduce the rest of the package. An example of an autogenerated .Rd file is
given in Figure 17-3.

Figure 17-3. Autogenerated help page source file for the hypotenuse function

While the basic format is automatically created for you, R does not know what the
function is for, so you need to manually fill in some of the details. There is a hard way
to do this and an easy way, the latter of which is described next.

Documenting Packages
The big problem with having the help page for a function stuck in a different directory
than the actual content is that it is very easy for the content to get out of sync. A typical
example of this is when you add, remove, or rename the arguments that go into a func‐
tion. R is not able to automatically change the corresponding help file to match the
function, and you have to flit backward and forward between the two files to make sure
that everything stays up to date.

The roxygen2 package solves this problem by letting you write help text in comments
next to the R code that you are trying to document. As a bonus, it uses a simple markup

Documenting Packages | 317

that reduces the amount of LaTeX that you need to know. roxygen2 is derived from
Doxygen, which provides a similar documentation generation facility for C++, C, Java,
Fortran, Python, and other languages. This makes it worthwhile learning the syntax,
since you can then document code in many languages.

Each line of roxygen2 markup starts with #'. Some sections, like the title and descrip‐
tion, are marked by their position at the start of the block. Other sections are denoted
with a keyword. For example, the section describing the return values begins with
@return. A full help block for a function would look like this:

#' Help page title
#'
#' A couple of lines of description about the function(s).
#' If you want to include code, use \code{my_code()}.
#' @param x Description of the first argument.
#' @param y Description of the second argument.
#' @return Description of the return value from a function.
#' If it returns a list, use
#' \itemize{
#' \item{item1}{A description of item1.}
#' \item{item2}{A description of item2.}
#' }
#' @note Describe how the algorithm works, or if the function has
#' any quirks here.
#' @author Your name here!
#' @references Journal papers, algorithms, or other inspiration here.
#' You can include web links like this
#' \url{http://www.thewebsiteyouarelinkingto.com}
#' @seealso Link to functions in the same package with
#' \code{\link{a_function_or_dataset}}
#' and functions in other packages with
#' \code{\link[another_package]{a_function_or_dataset}}
#' @examples
#' #R code run by the example function
#' \dontrun{
#' #R code that isn't run by example or when the package is built
#' }
#' @keywords misc
#' @export
f <- function(x, y)
{
 #Function content goes here, as usual
}

In the preceding example, there are a few things to pay special attention to.

The arguments are announced with the @param keyword. (The term “param” is standard
throughout the Doxygen variants, so changing it to “arg” for R would cause more con‐
fusion than it would remove.) After @param comes a space, the name of the argument,
and another space before the description of that argument.

318 | Chapter 17: Making Packages

Anything in the examples should be legal R code, since it is automatically run when you
build the package. If you want to add commentary, use an extra hash (on top of the
existing #' for roxygen2) to create R comments. If you want to add examples that may
fail (demonstrating errors or creating files, for example), then wrap them in a
\dontrun{} block.

Help files can contain keywords, but not just anything. To see the list of possible values,
install the R.oo package, and run this snippet:

library(R.oo)
Rdoc$getKeywords()

(Alternatively, open the KEYWORDS file in the directory returned by R.home("doc").)

Adding the @export keyword lists the function in the NAMESPACE file, which in turn
means that users should be able to call that function from the package, rather than it
being an internal helper function.

The documentation for the whole package belongs in a file named packagename-
package.R. It is similar to function documentation, but possibly even easier to write
since there is less of it:

#' Help page title. Probably the package name and tagline.
#'
#' A description of what the package does, why you might want to use it,
#' which functions to look at first, and anything else that the user
#' really, absolutely, must look at because you've created it and it is
#' astonishing.
#'
#' @author You again!
#' @docType package
#' @name packagename
#' @aliases packagename packagename-package
#' @keywords package
NULL

The two really important bits of function documentation are the @docType package
line, which tells roxygen2 that this is whole-package documentation, and the NULL value
afterward. This is needed for technical reasons—errors will result if you omit it.

Documenting datasets is almost the same as documenting the whole package. There is
no standard place for this documentation; you can either append it to the package
documentation file, or create a separate packagename-data.R file:

#' Help page title
#'
#' Explain the contents of each column here in the description.
#' \itemize{
#' \item{column1}{Description of column1.}
#' \item{column2}{Description of column2.}
#' }

Documenting Packages | 319

2. Spoiler: the answer is usually, “No, you forgot something.”

#'
#' @references Where you found the data.
#' @docType data
#' @keywords datasets
#' @name datasetname
#' @usage data(datasetname)
#' @format A data frame with m rows of n variables
NULL

As with packages, the two important bits are the @docType data line, which tells roxy
gen2 that this is function documentation, and the NULL value afterward.

Once you’ve written documentation for each function, each dataset, and the whole
package, call the roxygenize function to generate your help files and update the
NAMESPACE and DESCRIPTION files (roxygenise is an identical alternative to
roxygenize provided for those who prefer British spellings):

roxygenize("path/to/root/of/package")

Checking and Building Packages
Now you’ve created all the required directories, added R code and datasets, and docu‐
mented them. You’re nearly ready to build your package—the last task is to check that
everything works.2

R has a built-in check tool, R CMD check, available from your OS command line. It’s
incredibly thorough and is the main reason that most packages you download from
CRAN actually work. Of course, using a DOS or bash command line is so 20th century
—a better alternative is to use the check function in the devtools package, the output
of which is shown in Figure 17-4:

library(devtools)
check("path/to/root/of/package")

This provides several pages of output and will warn on a variety of things, like docu‐
mentation not matching the corresponding function, names not being portable across
OSs, examples not running correctly, and whether it thought your coding style was a
bit old-fashioned. (OK, the last one is made up, but there are lots of checks.)

320 | Chapter 17: Making Packages

Figure 17-4. Output when checking a package

Read the output, fix the errors and warnings, and repeat. Once you are satisfied that
your package files are mistake-free, you can finally build it! As with check, there is a
command-line version of build built into R, but it is much easier to use the function
in the devtools package. You get a choice of building to source (portable across OSs;
the standard format for Linux) or binary (specific to your current OS):

build("path/to/root/of/package")

That’s it—you now have your own package! Although, wouldn’t it be great if other peo‐
ple had your package too? To release your package to CRAN, use the devtools release
function:

release("path/to/root/of/package")

This asks you lots of questions to make sure that you’re really, really, really sure you’ve
done everything you need to before you send your package.

When you upload a package to CRAN, R Core members will check
that your package builds without warnings. Their time is precious, so
it’s important that you run the check function and that you fix all the
errors and warnings before uploading to CRAN.

Maintaining Packages
Functions act like a black box to users. They pass in some arguments and a value gets
returned, without the user needing to be aware of what happens inside the function (at
least in theory). This means that the signature of a function (the names and order of the

Maintaining Packages | 321

function’s arguments) should not be changed without warning the user. R provides
several functions to help notify users of changes to signatures.

If you are planning to add a new feature but haven’t had the chance to implement it, or
you want to give your users advance notice that this feature is coming, use the .NotYe
tUsed function. This causes an error or a warning that the argument is not yet in use,
which will be thrown if a user tries to use it prematurely. In this next example, we’re
going to extend the hypotenuse to work as a two-dimensional p-norm. Before we add
the new functionality, we’re just going to change the signature, and throw an error if the
user tries to use the p argument:

hypotenuse <- function(x, y, p = 2)
{
 if(!missing(p))
 {
 .NotYetUsed("p")
 }
 sqrt(x ^ 2 + y ^ 2)
}
hypotenuse(5, 12) #behavior as before

[1] 13

hypotenuse(5, 12, 1)

Error: argument 'p' is not used (yet)

Once we add the new functionality, we can remove the call to .NotYetUsed:

hypotenuse <- function(x, y, p = 2)
{
 (x ^ p + y ^ p) ^ (1 / p)
}

If you want to add a whole new function (rather than just an argument), the equivalent
function is .NotYetImplemented. This is brilliant when you are first creating a package,
or adding a large block of functionality. Writing a single function can be time-
consuming, so by the time you’ve written a few you may have forgotten which others
you were going to add. Sometimes it’s better to work at a high level and fill in the details
later. Simply create a placeholder for each function, making the body a call
to .NotYetImplemented. One day the function in the next example will calculate trian‐
gular numbers, but for now it just throws an error:

triangular <- function(n)
{
 .NotYetImplemented()
}
triangular()

Error: 'triangular' is not implemented yet

322 | Chapter 17: Making Packages

If you want to remove a function, it is polite to do it in stages. The first step is to add a
call to .Deprecated, with the name of an alternative function to call instead. The rest
of the function should remain unchanged, so that the existing behavior is preserved:

hypotenuse <- function(x, y, p = 2)
{
 .Deprecated("p_norm")
 (x ^ p + y ^ p) ^ (1 / p)
}
hypotenuse(5, 12)

Warning: 'hypotenuse' is deprecated. Use 'p_norm' instead. See
help("Deprecated")

[1] 13

After a suitable length of time—long enough for your users to have noticed the messages
about deprecation—you can change the contents of the function to a call to .Defunct,
which throws an error:

hypotenuse <- function(x, y, p = 2)
{
 .Defunct("p_norm")
}
hypotenuse(5, 12)

Error: 'hypotenuse' is defunct. Use 'p_norm' instead. See help("Defunct")

Summary
• Making packages mostly involves organizing your files into a specific structure.
• package.skeleton creates much of this structure for you.
• The roxygen2 package makes documenting packages easy.
• The devtools package makes checking and building packages easy.
• NotYetImplemented, Deprecated, and Defunct help you maintain your packages.

Test Your Knowledge: Quiz
Question 17-1

Which of the five files in the top-level directory of an R package are compulsory?
The files are DESCRIPTION, INDEX, LICENSE, NAMESPACE, and NEWS.

Question 17-2
Which of the eight directories in an R package are compulsory? The directories are
data, demo, doc, inst, man, R, src, and vignettes.

Summary | 323

Question 17-3
Why might you include a CITATION file in your package?

Question 17-4
Which function must you call to generate help files from roxygen2 markup?

Question 17-5
What’s the recommended way to politely remove a function from a package?

Test Your Knowledge: Exercises
Exercise 17-1

1. Write a function, sum_of_squares, that calculates the sum of the first n square
numbers. (Hint: the formula is n * (n + 1) * (2 * n + 1) / 6.) [5]

2. Create a data frame, squares_data, with two columns. The x column should
contain the numbers 1 to 10. The y column should contain the sum of the
square numbers up to the corresponding x value—that is, the result of
sum_of_squares(1:10). [5]

3. Use package.skeleton to create the squares package, containing the
sum_of_squares function and the squares_data data frame. [5]

Exercise 17-2
Document the sum_of_squares function, the squares_data data frame, and the
whole squares package using roxygen2 markup, and generate the help files.

Exercise 17-3
Use the devtools package to check and build the squares package.

324 | Chapter 17: Making Packages

PART III

Appendixes

APPENDIX A

Properties of Variables

R has four different functions that tell you the type of a variable, namely class, typeof,
mode, and storage.mode. For some variable types they all give the same answer, but for
others they differ, and it gets a little bit complicated.

For the vast majority of code you write, you’ll only ever care about the class. The only
time class can’t help you is when you are examining matrices or arrays, and you care
about whether the variable contains numbers or characters (or some other type). In this
case, you can use one of the other three type functions, or call one of the is.* functions
(is.numeric, for example).

Table A-1 shows the values returned by class, typeof, mode, and storage.mode for
various variable types.

Table A-1. Comparison of variable class, type, mode, and storage mode

class typeof mode storage.mode

Logical logical logical logical logical

Integer integer integer numeric integer

Floating Point numeric double numeric double

Complex complex complex complex complex

String character character character character

Raw byte raw raw raw raw

Categorical factor integer numeric integer

Null NULL NULL NULL NULL

Logical Matrix matrix logical logical logical

Numeric Matrix matrix double numeric double

Character Matrix matrix character character character

Logical Array array logical logical logical

327

class typeof mode storage.mode

Numeric Array array double numeric double

Character Array array character character character

List list list list list

Data Frame data.frame list list list

Function function closure function function

Environment environment environment environment environment

Expression expression expression expression expression

Call call language call language

Formula formula language call language

In R, vectors are variable types with a length, but no dimension (that is, dim returns
NULL) and no attributes other than names. Vector types include numeric, logical, and
character types, but also lists and expressions. The rule about no attributes means that
factors are not vectors.

Lists are vectors. Factors are not vectors.

Related to vectors are atomic types. Atomic means that a type cannot contain other
instances of that type within itself. The opposite of atomic is recursive: lists are the
canonical example, since they can contain other lists. An object can only ever be atomic
or recursive, never both.

Matrices and arrays are atomic.

Some objects are known as language objects. These variable types can be evaluated to
run R code.

Table A-2 shows the values returned by is.vector, is.atomic, is.recursive, and
is.language for various variable types.

328 | Appendix A: Properties of Variables

Table A-2. Comparison of which variable types are vectors, atomic, recursive, or
language objects

is.vector is.atomic is.recur

sive

is.language

Logical TRUE TRUE FALSE FALSE

Integer TRUE TRUE FALSE FALSE

Floating Point TRUE TRUE FALSE FALSE

Complex TRUE TRUE FALSE FALSE

String TRUE TRUE FALSE FALSE

Raw Byte TRUE TRUE FALSE FALSE

Categorical FALSE TRUE FALSE FALSE

Null FALSE TRUE FALSE FALSE

Logical Matrix FALSE TRUE FALSE FALSE

Numeric Matrix FALSE TRUE FALSE FALSE

Character Matrix FALSE TRUE FALSE FALSE

Logical Array FALSE TRUE FALSE FALSE

Numeric Array FALSE TRUE FALSE FALSE

Character Array FALSE TRUE FALSE FALSE

List TRUE FALSE TRUE FALSE

Data Frame FALSE FALSE TRUE FALSE

Function FALSE FALSE TRUE FALSE

Environment FALSE FALSE TRUE FALSE

Expression TRUE FALSE TRUE TRUE

Call FALSE FALSE TRUE TRUE

Formula FALSE FALSE TRUE TRUE

Properties of Variables | 329

APPENDIX B

Other Things to Do in R

There are lots of things that R can do that didn’t make it into this book, either because
they are niche requirements, because they’re too advanced, or because there are really
good books out there already dealing with those topics. This appendix is intended to
point you in the direction of further resources. Several of the subjects covered here are
dealt with in more detail in the CRAN Task Views, which are well worth browsing.

You can make GUIs for your R code to help less technical users. The gWidgets frame‐
work allows high-level access to several graphics toolkits, including tcl/tk, qt, GTK2,
and HTML. (Low-level access is also possible via tcltk/tcltk2, qtbase, RGtk2, and several
HTML-generation packages.) Read Programming Graphical User Interfaces in R by Mi‐
chael Lawrence and John Verzani for more information. The Java-based Deducer pack‐
age provides an alternative, and RStudio’s shiny package makes it simple to make web
apps with R.

You can call code in compiled languages (C, C++, and FORTRAN) via the .Call func‐
tion. By far the easiest way of using these languages is to write C++ in conjunction with
the Rcpp package. Read Seamless R and C++ Integration with Rcpp by Dirk Eddelbuettel
for more on this subject.

R is single threaded, but there are several ways of making it use multiple cores or multiple
machines to parallelize your code. The parallel package ships with R, and under
POSIX-compliant operating systems (that’s most OSs that aren’t Windows) you can
simply replace calls to lapply with mclapply to run loops over all the cores on your
machine. Multicore capabilities using (MPI, SOCK, or other) socket-based clusters are
possible using the snow and parallel packages. You can also connect to a Hadoop
cluster using the RHIPE and rmr packages, or Hadoop in an Amazon Web Services using
segue, not available for Windows. Read Parallel R by Q. Ethan McCallum and Stephen
Weston for more details. The Enterprise edition of Revolution R has some parallelization
features built into it.

331

http://cran.r-project.org/web/views/
http://www.datadr.org
http://code.google.com/p/segue/

The ff and bigmemory packages allow you to store R variables in files (like SAS does),
avoiding the limitations of RAM. On a related note, the data.table package provides
an enhanced data frame variable type that has faster indexing, assignment, and merging
capabilities.

There are dozens of spatial statistics packages: sp provides a standard way of storing
spatial data objects; maps, maptools, and mapproj provide helper functions for reading
and writing maps; spatstat provides functions for (you guessed it) spatial statistics;
OpenStreetMap retrieves raster images from http://openstreetmap.com; and so on.

Finally, R has a tool for combining code and output with regular text in a report (some‐
times called literate programming or reproducible research), called Sweave. This has been
improved upon and extended by the knitr package, which allows you to create reports
using a variety of markup languages. In fact, this book was written using knitr to create
AsciiDoc markup, which in turn was used to create PDF, HTML, and ebook documents.
Yihui Xie’s Dynamic Documents with R and knitr explains how to use it.

The R ecosystem is big, and getting bigger all the time. These are just a few of the things
that you might want to explore; take a look in the bibliography for some more ideas.
Have fun exploring!

332 | Appendix B: Other Things to Do in R

http://openstreetmap.com

APPENDIX C

Answers to Quizzes

Question 1-1
R is an open source reworking of the S programming language.

Question 1-2
Choices include imperative, object-oriented, and functional.

Question 1-3
8:27

Question 1-4
help.search (which does the same as ??)

Question 1-5
RSiteSearch

Question 2-1
%/%

Question 2-2
all.equal(x, pi) or, even better, isTRUE(all.equal(x, pi))

Question 2-3
At least two of the following:

1. <-

2. + =
3. + <<-
4. assign

Question 2-4
Just Inf and -Inf

333

Question 2-5
0, Inf, and -Inf

Question 3-1
numeric, integer, and complex

Question 3-2
nlevels

Question 3-3
as.numeric("6.283185")

Question 3-4
Any three of summary, head, str, unclass, attributes, or View. Bonus points if
you’ve discovered tail, the counterpart to head that prints the last few rows.

Question 3-5
rm(list = ls())

Question 4-1
seq.int(0, 1, 0.25)

Question 4-2
Either by using name = value pairs when the vector is created, or by calling the
names function afterward.

Question 4-3
Positive integers for locations to retrieve, negative integers for locations to avoid,
logical values, or names of elements.

Question 4-4
3 * 4 * 5 = 60

Question 4-5
%*%

Question 5-1
3. The inner list counts as one element, and so does the NULL element.

Question 5-2
When passing arguments to functions, when calling formals, or in the global en‐
vironment variable .Options.

Question 5-3
You can use matrix-style indexing with pairs of positive integers/negative integers/
logical values/characters in single square brackets. You can also use list-style

334 | Appendix C: Answers to Quizzes

indexing with one index value inside single or double square brackets, or the dollar
sign ($) operator. Thirdly, you can call the subset function.

Question 5-4
By passing check.names = FALSE to data.frame.

Question 5-5
rbind for appending vertically or cbind for appending horizontally.

Question 6-1
The user workspace.

Question 6-2
list2env is the best solution, but as.environment also works.

Question 6-3
Just type its name.

Question 6-4
formals, args, and formalArgs.

Question 6-5
do.call calls a function with its arguments in a list form.

Question 7-1
format, formatC, sprintf, and prettyNum are the main ones.

Question 7-2
Using alarm, or printing an \a character to the console.

Question 7-3
factor and ordered

Question 7-4
The value is counted as missing (NA).

Question 7-5
Use cut to bin it.

Question 8-1
if will throw an error if you pass NA to it.

Question 8-2
ifelse will return NA values in the corresponding positions where NA is passed to
it.

Question 8-3
switch will conditionally execute code based upon a character or integer argument.

Answers to Quizzes | 335

Question 8-4
Insert the keyword break into your loop code.

Question 8-5
Insert the keyword next into your loop code.

Question 9-1
lapply, vapply, sapply, apply, mapply, and tapply were all discussed in the chap‐
ter, with eapply and rapply getting brief mentions too. Try apropos("apply") to
see all of them.

Question 9-2
All three functions accept a list and apply a function to each element in turn. The
difference is in the return value. lapply always returns a list, vapply always returns
a vector or array as specified by a template, and sapply can return either.

Question 9-3
rapply is recursive, and ideal for deeply nested objects like trees.

Question 9-4
This is a classic split-apply-combine problem. Use tapply (or something from the
plyr package).

Question 9-5
In a name like **ply, the first asterisk denotes the type of the first input argument
and the second asterisk denotes the type of the return value.

Question 10-1
CRAN is by far the biggest package repository. Bioconductor, R-Forge, and
RForge.net are others. There are also many packages on GitHub, Bitbucket, and
Google Code.

Question 10-2
Both functions load a package, but library throws an error if it fails, whereas
require returns a logical value (letting you do custom error handling).

Question 10-3
A package library is just a folder on your machine that contains R packages.

Question 10-4
.libPaths returns a list of libraries.

Question 10-5
R doesn’t do a great impression of Internet Explorer, but you can make it use Internet
Explorer’s internet2.dll library for connecting to the Internet.

336 | Appendix C: Answers to Quizzes

Question 11-1
POSIXct classes must be used. Dates don’t store the time information, and POS
IXlt dates store their data as lists, which won’t fit inside a data frame.

Question 11-2
Midnight at the start of January 1, 1970.

Question 11-3
"%B %Y"

Question 11-4
Add 3,600 seconds to it. For example:

x <- Sys.time()
x + 3600

[1] "2013-07-17 22:44:55 BST"

Question 11-5
The period will be longer, because 2016 is a leap year. A duration is always exactly
60 * 60 * 24 * 365 seconds. A period of one year will be 366 days in a leap year.

Question 12-1
Call the data function with no arguments.

Question 12-2
read.csv assumes that a decimal place is represented by a full stop (period) and
that each item is separated by a comma, whereas read.csv2 assumes that a decimal
place is represented by a comma and that each item is separated by a semicolon.
read.csv is used for data created in locales where a period is used as a decimal place
(most English-speaking locales, for example). read.csv2 is for data created in lo‐
cales where a comma is used (most European locales, for example). If you are un‐
sure, simply open your data file in a text editor.

Question 12-3
read.xlsx2 from the xlsx package is a good first choice, but there is also read.xlsx
in the same package, and different functions in several other packages.

Question 12-4
You can simply pass the URL to read.csv, or use download.file to get a local copy.

Question 12-5
Currently SQLite, MySQL, PostgreSQL, and Oracle databases are supported.

Question 13-1
Read in the text as a character vector wih readLines, call str_count to count the
number of instances in each line, and sum the total.

Answers to Quizzes | 337

Question 13-2
with, within, transform, and mutate all allow manipulating columns and adding
columns to data frames, as well as standard assignment.

Question 13-3
Casting. Not freezing!

Question 13-4
Use order or arrange.

Question 13-5
Define a function that reads TRUE when you have a positive number—for example,
is.positive <- function(x) x > 0—and call Find(is.positive, x).

Question 14-1
min returns the single smallest value of all its inputs. pmin accepts several vectors
that are the same length, and returns the smallest at each point along them.

Question 14-2
Pass the pch (“plot character”) argument.

Question 14-3
Use a formula of the form y ~ x.

Question 14-4
An aesthetic specifies a variable that you will look at a variation in. Most plots take
an x and a y aesthetic for x and y coordinates, respectively. You can also specify
color aesthetics or shape aesthetics (where more than two variables are to be looked
at at once, for example).

Question 14-5
Histograms, box plots, and kernel density plots were all mentioned in the chapter.
There are some other weirdly esoteric plots, like violin plots, rug plots, bean plots,
and stem-and-leaf plots, that weren’t mentioned. Have 100 geek points for each of
these that you guessed.

Question 15-1
Set the seed (with set.seed), generate the numbers, then reset the seed to the same
value.

Question 15-2
PDF functions have a name beginning with d, followed by the name of the distri‐
bution. For example, the PDF for the binomial distribution is dbinom. CDF func‐
tions start with p followed by the name of the distribution, and inverse CDF func‐
tions begin with q followed by the name of the distribution.

338 | Appendix C: Answers to Quizzes

Question 15-3
Colons represent an interaction between variables.

Question 15-4
anova, AIC, and BIC are common functions for comparing models.

Question 15-5
The R^2 value is available via summary(model)$r.squared.

Question 16-1
The warnings function shows the previous warnings.

Question 16-2
Upon failure, try returns an object of class try-error.

Question 16-3
The testthat equivalent of checkException is expect_exception. Say that 10
times fast.

Question 16-4
quote turns a string into a call, then eval evaluates it.

Question 16-5
Overload functions using the S3 system. A function print.foo will be called for
objects of class foo.

Question 17-1
DESCRIPTION and NAMESPACE are compulsory.

Question 17-2
man and R are compulsory in all packages. src is required if you include C, C++,
or Fortran code.

Question 17-3
CITATION files let you explain who made and maintains the package, if that in‐
formation is too long and complicated to go in the DESCRIPTION file.

Question 17-4
roxygenise or roxygenize

Question 17-5
First warn the user that it is deprecated by adding a call to .Deprecated. Later,
replace the body completely with a call to .Defunct.

Answers to Quizzes | 339

APPENDIX D

Solutions to Exercises

Exercise 1-1
If you get stuck, ask your system administrator, or ask on the R-help mailing list.

Exercise 1-2
Use the colon operator to create a vector, and the sd function:

sd(0:100)

Exercise 1-3
Type demo(plotmath) and hit Enter, or click the plots to see what’s on offer.

Exercise 2-1
1. Simple division gets the reciprocal, and atan calculates the inverse (arc)

tangent:
atan(1 / 1:1000)

2. Assign variables using <-:
x <- 1:1000
y <- atan(1 / x)
z <- 1 / tan(y)

Exercise 2-2
For comparing two vectors that should contain the same numbers, all.equal is
usually what you need:

x == z
identical(x, z)
all.equal(x, z)
all.equal(x, z, tolerance = 0)

341

Exercise 2-3
The exact values contained in the following three vectors may vary:

true_and_missing <- c(NA, TRUE, NA)
false_and_missing <- c(FALSE, FALSE, NA)
mixed <- c(TRUE, FALSE, NA)

any(true_and_missing)
any(false_and_missing)
any(mixed)
all(true_and_missing)
all(false_and_missing)
all(mixed)

Exercise 3-1
class(Inf)
class(NA)
class(NaN)
class("")

Repeat with typeof, mode, and storage.mode.

Exercise 3-2
pets <- factor(sample(
 c("dog", "cat", "hamster", "goldfish"),
 1000,
 replace = TRUE
))
head(pets)
summary(pets)

Converting to factors is recommended but not compulsory.

Exercise 3-3
carrot <- 1
potato <- 2
swede <- 3
ls(pattern = "a")

Your vegetables may vary.

Exercise 4-1
There are several possibilities for creating sequences, including the colon operator.
This solution uses seq_len and seq_along:

n <- seq_len(20)
triangular <- n * (n + 1) / 2
names(triangular) <- letters[seq_along(n)]
triangular[c("a", "e", "i", "o")]

Exercise 4-2
Again, there are many different ways of creating a sequence from -11 to 0 to 11. abs
gives you the absolute value of a number:

342 | Appendix D: Solutions to Exercises

diag(abs(seq.int(-11, 11)))

Exercise 4-3
Wilkinson matrices have the interesting property that most of their eigenvalues
form pairs of nearly equal numbers. The 21-by-21 matrix is the most frequently
used:

identity_20_by_21 <- diag(rep.int(1, 20), 20, 21)
below_the_diagonal <- rbind(0, identity_20_by_21)
identity_21_by_20 <- diag(rep.int(1, 20), 21, 20)
above_the_diagonal <- cbind(0, identity_21_by_20)
on_the_diagonal <- diag(abs(seq.int(-10, 10)))
wilkinson_21 <- below_the_diagonal + above_the_diagonal + on_the_diagonal
eigen(wilkinson_21)$values

Exercise 5-1
For simplicity, here I’ve manually specified which numbers are square. Can you
think of a way to automatically determine if a number is square?

list(
 "0 to 9" = c(0, 1, 4, 9),
 "10 to 19" = 16,
 "20 to 29" = 25,
 "30 to 39" = 36,
 "40 to 49" = 49,
 "50 to 59" = NULL,
 "60 to 69" = 64,
 "70 to 79" = NULL,
 "80 to 89" = 81,
 "90 to 99" = NULL
)

More fancily, we can automate the calculation for square numbers. Here, the cut
function creates different groups with the ranges 0 to 9, 10 to 19, and so on, then
returns a vector stating which group each square number is in. Then the split
function splits the square number vector into a list, with each element containing
the values from the corresponding group:

x <- 0:99
sqrt_x <- sqrt(x)
is_square_number <- sqrt_x == floor(sqrt_x)
square_numbers <- x[is_square_number]
groups <- cut(
 square_numbers,
 seq.int(min(x), max(x), 10),
 include.lowest = TRUE,
 right = FALSE
)
split(square_numbers, groups)

Solutions to Exercises | 343

Exercise 5-2
There are many different ways of getting the numeric subset of the iris dataset.
Experiment with them!

iris_numeric <- iris[, 1:4]
colMeans(iris_numeric)

Exercise 5-3
This solution is just one of the many ways of indexing and subsetting the data
frames:

beaver1$id <- 1
beaver2$id <- 2
both_beavers <- rbind(beaver1, beaver2)
subset(both_beavers, as.logical(activ))

Exercise 6-1
We create an environment using new.env. After that, the syntax is the same as with
lists:

multiples_of_pi <- new.env()
multiples_of_pi[["two_pi"]] <- 2 * pi
multiples_of_pi$three_pi <- 3 * pi
assign("four_pi", 4 * pi, multiples_of_pi)
ls(multiples_of_pi)

[1] "four_pi" "three_pi" "two_pi"

Exercise 6-2
This is easier than you think. We just use the modulo operator to get the remainder
when divided by two, and everything automatically works, including nonfinite
values:

is_even <- function(x) (x %% 2) == 0
is_even(c(-5:5, Inf, -Inf, NA, NaN))

[1] FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE
[12] NA NA NA NA

Exercise 6-3
Again, the function is just a one-liner. The formals and body functions do the hard
work, and we just need to return a list of their results:

args_and_body <- function(fn)
{
 list(arguments = formals(fn), body = body(fn))
}
args_and_body(var)

$arguments
$arguments$x
##
##
$arguments$y

344 | Appendix D: Solutions to Exercises

NULL
##
$arguments$na.rm
[1] FALSE
##
$arguments$use
##
##
##
$body
{
if (missing(use))
use <- if (na.rm)
"na.or.complete"
else "everything"
na.method <- pmatch(use, c("all.obs", "complete.obs",
"pairwise.complete.obs", "everything", "na.or.complete"))
if (is.na(na.method))
stop("invalid 'use' argument")
if (is.data.frame(x))
x <- as.matrix(x)
else stopifnot(is.atomic(x))
if (is.data.frame(y))
y <- as.matrix(y)
else stopifnot(is.atomic(y))
.Call(C_cov, x, y, na.method, FALSE)
}

args_and_body(alarm)

$arguments
NULL
##
$body
{
cat("\a")
flush.console()
}

Exercise 7-1
formatC(pi, digits = 16)

[1] "3.141592653589793"

This also works if you replace formatC with format or prettyNum.

Exercise 7-2
Call strsplit with a regular expression to match the spaces and punctuation. Recall
that ? makes the matching character optional:

#split on an optional comma, a compulsory space, an optional
#hyphen, and an optional space
strsplit(x, ",? -? ?")

Solutions to Exercises | 345

[[1]]
[1] "Swan" "swam" "over" "the" "pond" "Swim" "swan" "swim!"
##
[[2]]
[1] "Swan" "swam" "back" "again" "Well" "swum" "swan!"

#or, grouping the final hyphen and space
strsplit(x, ",? (-)?")

[[1]]
[1] "Swan" "swam" "over" "the" "pond" "Swim" "swan" "swim!"
##
[[2]]
[1] "Swan" "swam" "back" "again" "Well" "swum" "swan!"

Exercise 7-3
By default, cut creates intervals that include an upper bound but not a lower bound.
In order to get a count for the smallest value (3), we need an extra break point below
it (at 2, for example). Try replacing table with count from the plyr package:

scores <- three_d6(1000)
bonuses <- cut(
 scores,
 c(2, 3, 5, 8, 12, 15, 17, 18),
 labels = -3:3
)
table(bonuses)

bonuses
-3 -2 -1 0 1 2 3
4 39 186 486 233 47 5

Exercise 8-1
Use if to distinguish the conditions. The %in% operator makes checking the con‐
ditions easier:

score <- two_d6(1)
if(score %in% c(2, 3, 12))
{
 game_status <- FALSE
 point <- NA
} else if(score %in% c(7, 11))
{
 game_status <- TRUE
 point <- NA
} else
{
 game_status <- NA
 point <- score
}

346 | Appendix D: Solutions to Exercises

Exercise 8-2
Since we want to execute the code an unknown number of times, the repeat loop
is most appropriate:

if(is.na(game_status))
{
 repeat({
 score <- two_d6(1)
 if(score == 7)
 {
 game_status <- FALSE
 break
 } else
 if(score == point)
 {
 game_status <- TRUE
 break
 }
 })
}

Exercise 8-3
Since we know how many times we want to execute the loop (from the length of
the shortest word to the length of the longest word), the for loop is most appro‐
priate:

nchar_sea_shells <- nchar(sea_shells)

for(i in min(nchar_sea_shells):max(nchar_sea_shells))
{
 message("These words have ", i, " letters:")
 print(toString(unique(sea_shells[nchar_sea_shells == i])))
}

These words have 2 letters:

[1] "by, So, if, on"

These words have 3 letters:

[1] "She, sea, the, The, she, are, I'm"

These words have 4 letters:

[1] "sure"

These words have 5 letters:

[1] "sells"

These words have 6 letters:

[1] "shells, surely"

These words have 7 letters:

[1] ""

Solutions to Exercises | 347

These words have 8 letters:

[1] "seashore"

These words have 9 letters:

[1] "seashells"

Exercise 9-1
Since the input is a list and the output is always the same known length, vapply is
the best choice:

vapply(wayans, length, integer(1))

Dwayne Kim Keenen Ivory Damon Kim Shawn
0 5 4 0 3
Marlon Nadia Elvira Diedre Vonnie
2 0 2 5 0

Exercise 9-2
1. We can get a feel for the dataset by using str, head, and class, and by reading

the help page ?state.x77:
num [1:50, 1:8] 3615 365 2212 2110 21198 ...
- attr(*, "dimnames")=List of 2
..$: chr [1:50] "Alabama" "Alaska" "Arizona" "Arkansas" ...
..$: chr [1:8] "Population" "Income" "Illiteracy" "Life Exp" ...

Population Income Illiteracy Life Exp Murder HS Grad Frost
Alabama 3615 3624 2.1 69.05 15.1 41.3 20
Alaska 365 6315 1.5 69.31 11.3 66.7 152
Arizona 2212 4530 1.8 70.55 7.8 58.1 15
Arkansas 2110 3378 1.9 70.66 10.1 39.9 65
California 21198 5114 1.1 71.71 10.3 62.6 20
Colorado 2541 4884 0.7 72.06 6.8 63.9 166
Area
Alabama 50708
Alaska 566432
Arizona 113417
Arkansas 51945
California 156361
Colorado 103766

[1] "matrix"

2. Now that we know that the data is a matrix, the apply function is most appro‐
priate. We want to loop over columns, so we pass 2 for the dimension value:

Population Income Illiteracy Life Exp Murder HS Grad
4246.420 4435.800 1.170 70.879 7.378 53.108
Frost Area
104.460 70735.880

Population Income Illiteracy Life Exp Murder HS Grad
4.464e+03 6.145e+02 6.095e-01 1.342e+00 3.692e+00 8.077e+00

348 | Appendix D: Solutions to Exercises

Frost Area
5.198e+01 8.533e+04

Exercise 9-3
tapply is the best choice from base R. ddply from plyr also works nicely:

with(commute_data, tapply(time, mode, quantile, prob = 0.75))

bike bus car train
63.55 55.62 42.33 36.29

ddply(commute_data, .(mode), summarize, time_p75 = quantile(time, 0.75))

mode time_p75
1 bike 63.55
2 bus 55.62
3 car 42.33
4 train 36.29

Exercise 10-1
In R GUI, click Packages → “Install package(s)…,” choose a mirror, and then choose
Hmisc. If the download or install fails, then make sure that you have Internet access
and permission to write to the library directory. You can also try visiting the CRAN
website and doing a manual download. The most common cause of problems is
restricted permissions; speak to your sys admin if this is the case.

Exercise 10-2
install.packages("lubridate")

You might want to specify a library to install to.

Exercise 10-3
The installed.packages function retrieves the details of the packages on your
machine and their locations (the results will be different for your machine):

pkgs <- installed.packages()
table(pkgs[, "LibPath"])

##
C:/Program Files/R/R-devel/library D:/R/library
29 169

Exercise 11-1
This example uses strptime to parse and strftime to format, though there are
many possibilities:

in_string <- c("1940-07-07", "1940-10-09", "1942-06-18", "1943-02-25")
(parsed <- strptime(in_string, "%Y-%m-%d"))

[1] "1940-07-07" "1940-10-09" "1942-06-18" "1943-02-25"

(out_string <- strftime(parsed, "%a %d %b %y"))

[1] "Sun 07 Jul 40" "Wed 09 Oct 40" "Thu 18 Jun 42" "Thu 25 Feb 43"

Solutions to Exercises | 349

Exercise 11-2
The ?Sys.timezone help page suggests this code for importing the time zone file:

tzfile <- file.path(R.home("share"), "zoneinfo", "zone.tab")
tzones <- read.delim(
 tzfile,
 row.names = NULL,
 header = FALSE,
 col.names = c("country", "coords", "name", "comments"),
 as.is = TRUE,
 fill = TRUE,
 comment.char = "#"
)

The best way to find your own time zone depends on where you are. Start with
View(tzones) and use subset to narrow your search if you need to.

Exercise 11-3
You can solve this using base R by accessing components of a POSIXlt date, but it’s
a little bit cleaner to use the lubridate month and day functions:

zodiac_sign <- function(x)
{
 month_x <- month(x, label = TRUE)
 day_x <- day(x)
 switch(
 month_x,
 Jan = if(day_x < 20) "Capricorn" else "Aquarius",
 Feb = if(day_x < 19) "Aquarius" else "Pisces",
 Mar = if(day_x < 21) "Pisces" else "Aries",
 Apr = if(day_x < 20) "Aries" else "Taurus",
 May = if(day_x < 21) "Taurus" else "Gemini",
 Jun = if(day_x < 21) "Gemini" else "Cancer",
 Jul = if(day_x < 23) "Cancer" else "Leo",
 Aug = if(day_x < 23) "Leo" else "Virgo",
 Sep = if(day_x < 23) "Virgo" else "Libra",
 Oct = if(day_x < 23) "Libra" else "Scorpio",
 Nov = if(day_x < 22) "Scorpio" else "Sagittarius",
 Dec = if(day_x < 22) "Sagittarius" else "Capricorn"
)
}
#Usage is, for example,
nicolaus_copernicus_birth_date <- as.Date("1473-02-19")
zodiac_sign(nicolaus_copernicus_birth_date)

[1] "Pisces"

Note that the switch statement means that this implementation of the function isn’t
vectorized. You can achieve vectorization by using lots of ifelse statements or,
more easily, by calling Vectorize(zodiac_sign).

350 | Appendix D: Solutions to Exercises

Exercise 12-1
Use system.file to locate the file and read.csv to import the data:

hafu_file <- system.file("extdata", "hafu.csv", package = "learningr")
hafu_data <- read.csv(hafu_file)

Exercise 12-2
Use read.xlsx2 from the xlsx package to import the data. The data is in the first
(and only) sheet, and it is best to specify the types of data in each column:

library(xlsx)
gonorrhoea_file <- system.file(
 "extdata",
 "multi-drug-resistant gonorrhoea infection.xls",
 package = "learningr"
)
gonorrhoea_data <- read.xlsx2(
 gonorrhoea_file,
 sheetIndex = 1,
 colClasses = c("integer", "character", "character", "numeric")
)

Exercise 12-3
There are several ways of doing this using the RSQLite package. One step at a time,
we can connect like this:

library(RSQLite)
driver <- dbDriver("SQLite")
db_file <- system.file("extdata", "crabtag.sqlite", package = "learningr")
conn <- dbConnect(driver, db_file)

query <- "SELECT * FROM Daylog"
head(daylog <- dbGetQuery(conn, query))

Tag ID Mission Day Date Max Temp Min Temp Max Depth Min Depth
1 A03401 0 08/08/2008 27.73 25.20 0.06 -0.07
2 A03401 1 09/08/2008 25.20 23.86 0.06 -0.07
3 A03401 2 10/08/2008 24.02 23.50 -0.07 -0.10
4 A03401 3 11/08/2008 26.45 23.28 -0.04 -0.10
5 A03401 4 12/08/2008 27.05 23.61 -0.10 -0.26
6 A03401 5 13/08/2008 24.62 23.44 -0.04 -0.13
Batt Volts
1 3.06
2 3.09
3 3.09
4 3.09
5 3.09
6 3.09

dbDisconnect(conn)

[1] TRUE

dbUnloadDriver(driver)

Solutions to Exercises | 351

[1] TRUE

Or, more cheekily, we can use the function defined in Chapter 12:

head(daylog <- query_crab_tag_db("SELECT * FROM Daylog"))

Or we can use the dbReadTable function to simplify things a little further:

get_table_from_crab_tag_db <- function(tbl)
{
 driver <- dbDriver("SQLite")
 db_file <- system.file("extdata", "crabtag.sqlite", package = "learningr")
 conn <- dbConnect(driver, db_file)
 on.exit(
 {
 dbDisconnect(conn)
 dbUnloadDriver(driver)
 }
)
 dbReadTable(conn, tbl)
}
head(daylog <- get_table_from_crab_tag_db("Daylog"))

Tag.ID Mission.Day Date Max.Temp Min.Temp Max.Depth Min.Depth
1 A03401 0 08/08/2008 27.73 25.20 0.06 -0.07
2 A03401 1 09/08/2008 25.20 23.86 0.06 -0.07
3 A03401 2 10/08/2008 24.02 23.50 -0.07 -0.10
4 A03401 3 11/08/2008 26.45 23.28 -0.04 -0.10
5 A03401 4 12/08/2008 27.05 23.61 -0.10 -0.26
6 A03401 5 13/08/2008 24.62 23.44 -0.04 -0.13
Batt.Volts
1 3.06
2 3.09
3 3.09
4 3.09
5 3.09
6 3.09

Exercise 13-1
1. To detect question marks, use str_detect:

library(stringr)
data(hafu, package = "learningr")
hafu$FathersNationalityIsUncertain <- str_detect(hafu$Father, fixed("?"))
hafu$MothersNationalityIsUncertain <- str_detect(hafu$Mother, fixed("?"))

2. To replace those question marks, use str_replace:
hafu$Father <- str_replace(hafu$Father, fixed("?"), "")
hafu$Mother <- str_replace(hafu$Mother, fixed("?"), "")

352 | Appendix D: Solutions to Exercises

Exercise 13-2
Make sure that you have the reshape2 package installed! The trick is to name the
measurement variables, “Father” and “Mother”:

hafu_long <- melt(hafu, measure.vars = c("Father", "Mother"))

Exercise 13-3
Using base R, table gives us the counts, and a combination of sort and head allows
us to find the most common values. Passing useNA = "always" to table means
that NA will always be included in the counts vector:

top10 <- function(x)
{
 counts <- table(x, useNA = "always")
 head(sort(counts, decreasing = TRUE), 10)
}
top10(hafu$Mother)

x
Japanese <NA> English American French German Russian
120 50 29 23 20 12 10
Fantasy Italian Brazilian
8 4 3

The plyr package provides an alternative solution that returns the answer as a data
frame, which may be more useful for further manipulation of the result:

top10_v2 <- function(x)
{
 counts <- count(x)
 head(arrange(counts, desc(freq)), 10)
}
top10_v2(hafu$Mother)

x freq
1 Japanese 120
2 <NA> 50
3 English 29
4 American 23
5 French 20
6 German 12
7 Russian 10
8 Fantasy 8
9 Italian 4
10 Brazilian 3

Exercise 14-1
1. cor calculates correlations, and defaults to Pearson correlations. Experiment

with the method argument for other types:
with(obama_vs_mccain, cor(Unemployment, Obama))

[1] 0.2897

Solutions to Exercises | 353

2. In base/lattice/ggplot2 order, we have:
with(obama_vs_mccain, plot(Unemployment, Obama))
xyplot(Obama ~ Unemployment, obama_vs_mccain)
ggplot(obama_vs_mccain, aes(Unemployment, Obama)) +
 geom_point()

Exercise 14-2
1. Histograms:

plot_numbers <- 1:2
layout(matrix(plot_numbers, ncol = 2, byrow = TRUE))
for(drug_use in c(FALSE, TRUE))
{
 group_data <- subset(alpe_d_huez2, DrugUse == drug_use)
 with(group_data, hist(NumericTime))
}

histogram(~ NumericTime | DrugUse, alpe_d_huez2)

ggplot(alpe_d_huez2, aes(NumericTime)) +
 geom_histogram(binwidth = 2) +
 facet_wrap(~ DrugUse)

2. Box plots:
boxplot(NumericTime ~ DrugUse, alpe_d_huez2)
bwplot(DrugUse ~ NumericTime, alpe_d_huez2)

ggplot(alpe_d_huez2, aes(DrugUse, NumericTime, group = DrugUse)) +
 geom_boxplot()

Exercise 14-3
For simplicity, the answers to this are given using ggplot2. Since this is a data
exploration, there is no “right” answer: if the plot shows you something interesting,
then it was worth drawing. When you have several “confounding factors” (in this
case we have year/ethnicity/gender), there are lots of different possibilities for dif‐
ferent plot types. In general, there are two strategies for dealing with many variables:
start with an overall summary and add in variables, or start with everything and
remove the variables that don’t look very interesting. We’ll use the second strategy.

The simplest technique for seeing the effects of each variable is to facet by
everything:

ggplot(gonorrhoea, aes(Age.Group, Rate)) +
 geom_bar(stat = "identity") +
 facet_wrap(~ Year + Ethnicity + Gender)

There is a difference between the heights of the bars in each panel, particularly with
respect to ethnicity, but with 50 panels it’s hard to see what is going on. We can
simplify by plotting each year together on the same panel. We use group to state

354 | Appendix D: Solutions to Exercises

which values belong in the same bar, fill to give each bar a different fill color, and
position = "dodge" to put the bars next to each other rather than stacked one on
top of another:

ggplot(gonorrhoea, aes(Age.Group, Rate, group = Year, fill = Year)) +
 geom_bar(stat = "identity", position = "dodge") +
 facet_wrap(~ Ethnicity + Gender)

The reduced number of panels is better, but I find it hard to get much meaning
from all those bars. Since most of the age groups are the same width (five years),
we can cheat a little and draw a line plot with age on the x-axis. The plot will be a
bit wrong on the righthand side of each panel, because the age groups are wider,
but it’s close enough to be informative:

ggplot(gonorrhoea, aes(Age.Group, Rate, group = Year, color = Year)) +
 geom_line() +
 facet_wrap(~ Ethnicity + Gender)

The lines are close together, so there doesn’t seem to be much of a time trend at all
(though the time period is just five years). Since we have two variables to facet by,
we can improve the plot slightly by using facet_grid instead of facet_wrap:

ggplot(gonorrhoea, aes(Age.Group, Rate, group = Year, color = Year)) +
 geom_line() +
 facet_grid(Ethnicity ~ Gender)

This clearly shows the effect of ethnicity on gonorrhoea infection rates: the curves
are much higher in the “Non-Hispanic Blacks” and “American Indians & Alaskan
Natives” groups. Since those groups dominate so much, it’s hard to see the effect of
gender. By giving each row a different y-scale, it’s possible to neutralize the effect
of ethnicity and see the difference between males and females more clearly:

ggplot(gonorrhoea, aes(Age.Group, Rate, group = Year, color = Year)) +
 geom_line() +
 facet_grid(Ethnicity ~ Gender, scales = "free_y")

Here you can see that women have higher infection rates than men (with the same
age group and ethnicity) and have a more sustained peak, from 15 to 24 rather than
20 to 24.

Exercise 15-1
1. Both the number of typos in this case, x, and the average number of typos,

lambda, are 3:
dpois(3, 3)

[1] 0.224

2. The quantile, q, is 12 (months), the size is 1, since we only need to get pregnant
once, and the probability each month is 0.25:

pnbinom(12, 1, 0.25)

Solutions to Exercises | 355

[1] 0.9762

3. Straightforwardly, we just need to set the probability to 0.9:
qbirthday(0.9)

[1] 41

Exercise 15-2
We can either take a subset of the dataset (using the usual indexing method or the
subset function), or pass subsetting details to the subset argument of lm:

model1 <- lm(
 Rate ~ Year + Age.Group + Ethnicity + Gender,
 gonorrhoea,
 subset = Age.Group %in% c("15 to 19" ,"20 to 24" ,"25 to 29" ,"30 to 34")
)
summary(model1)

##
Call:
lm(formula = Rate ~ Year + Age.Group + Ethnicity + Gender, data = gonorrhoea,
subset = Age.Group %in% c("15 to 19", "20 to 24", "25 to 29",
"30 to 34"))
##
Residuals:
Min 1Q Median 3Q Max
-774.0 -127.7 -10.3 106.2 857.7
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 9491.13 25191.00 0.38 0.7068
Year -4.55 12.54 -0.36 0.7173
Age.Group20 to 24 131.12 50.16 2.61 0.0097
Age.Group25 to 29 -124.60 50.16 -2.48 0.0138
Age.Group30 to 34 -259.83 50.16 -5.18 5.6e-07
EthnicityAsians & Pacific Islanders -212.76 56.08 -3.79 0.0002
EthnicityHispanics -124.06 56.08 -2.21 0.0281
EthnicityNon-Hispanic Blacks 1014.35 56.08 18.09 < 2e-16
EthnicityNon-Hispanic Whites -174.72 56.08 -3.12 0.0021
GenderMale -83.85 35.47 -2.36 0.0191
##
(Intercept)
Year
Age.Group20 to 24 **
Age.Group25 to 29 *
Age.Group30 to 34 ***
EthnicityAsians & Pacific Islanders ***
EthnicityHispanics *
EthnicityNon-Hispanic Blacks ***
EthnicityNon-Hispanic Whites **
GenderMale *

356 | Appendix D: Solutions to Exercises

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 251 on 190 degrees of freedom
Multiple R-squared: 0.798, Adjusted R-squared: 0.789
F-statistic: 83.7 on 9 and 190 DF, p-value: <2e-16

Year isn’t significant, so we remove it:

model2 <- update(model1, ~ . - Year)
summary(model2)

##
Call:
lm(formula = Rate ~ Age.Group + Ethnicity + Gender, data = gonorrhoea,
subset = Age.Group %in% c("15 to 19", "20 to 24", "25 to 29",
"30 to 34"))
##
Residuals:
Min 1Q Median 3Q Max
-774.0 -129.3 -6.7 104.3 866.8
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 358.2 53.1 6.75 1.7e-10
Age.Group20 to 24 131.1 50.0 2.62 0.00949
Age.Group25 to 29 -124.6 50.0 -2.49 0.01363
Age.Group30 to 34 -259.8 50.0 -5.19 5.3e-07
EthnicityAsians & Pacific Islanders -212.8 55.9 -3.80 0.00019
EthnicityHispanics -124.1 55.9 -2.22 0.02777
EthnicityNon-Hispanic Blacks 1014.3 55.9 18.13 < 2e-16
EthnicityNon-Hispanic Whites -174.7 55.9 -3.12 0.00207
GenderMale -83.8 35.4 -2.37 0.01881
##
(Intercept) ***
Age.Group20 to 24 **
Age.Group25 to 29 *
Age.Group30 to 34 ***
EthnicityAsians & Pacific Islanders ***
EthnicityHispanics *
EthnicityNon-Hispanic Blacks ***
EthnicityNon-Hispanic Whites **
GenderMale *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 250 on 191 degrees of freedom
Multiple R-squared: 0.798, Adjusted R-squared: 0.79
F-statistic: 94.5 on 8 and 191 DF, p-value: <2e-16

This time Gender is significant, so we can stop. (Infection rates are similar across
genders in children and the elderly, where sex isn’t the main method of transmision,
but in young adults, women have higher infection rates than men.)

Solutions to Exercises | 357

Most of the possible interaction terms aren’t very interesting. We get a much better
fit by adding an ethnicity-gender interaction, although not all interaction terms are
significant (output is verbose, and so not shown). If you’re still having fun analyzing,
try creating a separate ethnicity indicator for black/non-black and use that as the
interaction term with gender:

##
Call:
lm(formula = Rate ~ Age.Group + Ethnicity + Gender + Ethnicity:Gender,
data = gonorrhoea, subset = Age.Group %in% c("15 to 19",
"20 to 24", "25 to 29", "30 to 34"))
##
Residuals:
Min 1Q Median 3Q Max
-806.0 -119.4 -9.4 105.3 834.8
##
Coefficients:
Estimate Std. Error t value
(Intercept) 405.1 63.9 6.34
Age.Group20 to 24 131.1 50.1 2.62
Age.Group25 to 29 -124.6 50.1 -2.49
Age.Group30 to 34 -259.8 50.1 -5.19
EthnicityAsians & Pacific Islanders -296.9 79.2 -3.75
EthnicityHispanics -197.2 79.2 -2.49
EthnicityNon-Hispanic Blacks 999.5 79.2 12.62
EthnicityNon-Hispanic Whites -237.0 79.2 -2.99
GenderMale -177.6 79.2 -2.24
EthnicityAsians & Pacific Islanders:GenderMale 168.2 112.0 1.50
EthnicityHispanics:GenderMale 146.2 112.0 1.30
EthnicityNon-Hispanic Blacks:GenderMale 29.7 112.0 0.27
EthnicityNon-Hispanic Whites:GenderMale 124.6 112.0 1.11
Pr(>|t|)
(Intercept) 1.7e-09 ***
Age.Group20 to 24 0.00960 **
Age.Group25 to 29 0.01377 *
Age.Group30 to 34 5.6e-07 ***
EthnicityAsians & Pacific Islanders 0.00024 ***
EthnicityHispanics 0.01370 *
EthnicityNon-Hispanic Blacks < 2e-16 ***
EthnicityNon-Hispanic Whites 0.00315 **
GenderMale 0.02615 *
EthnicityAsians & Pacific Islanders:GenderMale 0.13487
EthnicityHispanics:GenderMale 0.19361
EthnicityNon-Hispanic Blacks:GenderMale 0.79092
EthnicityNon-Hispanic Whites:GenderMale 0.26754

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 251 on 187 degrees of freedom
Multiple R-squared: 0.802, Adjusted R-squared: 0.789
F-statistic: 63.2 on 12 and 187 DF, p-value: <2e-16

358 | Appendix D: Solutions to Exercises

Exercise 15-3
First, the setup. Get the package installed in the usual way:

install.packages("betareg")

We need to rescale the response variable to be between 0 and 1 (rather than 0 and
100), because that is the range of the beta distribution:

ovm <- within(obama_vs_mccain, Obama <- Obama / 100)

Now we’re ready to run the model. It’s just the same as running a linear regression,
but we call betareg instead of lm. I’m arbitrarily looking at Black as the ethnicity
group and Protestant as the religion:

library(betareg)
beta_model1 <- betareg(
 Obama ~ Turnout + Population + Unemployment + Urbanization + Black + Protestant,
 ovm,
 subset = State != "District of Columbia"
)
summary(beta_model1)

##
Call:
betareg(formula = Obama ~ Turnout + Population + Unemployment +
Urbanization + Black + Protestant, data = ovm, subset = State !=
"District of Columbia")
##
Standardized weighted residuals 2:
Min 1Q Median 3Q Max
-2.834 -0.457 -0.062 0.771 2.044
##
Coefficients (mean model with logit link):
Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.52e-01 4.99e-01 -1.11 0.2689
Turnout 1.69e-02 5.91e-03 2.86 0.0042 **
Population 1.66e-09 5.34e-09 0.31 0.7566
Unemployment 5.74e-02 2.31e-02 2.48 0.0132 *
Urbanization -1.82e-05 1.54e-04 -0.12 0.9059
Black 8.18e-03 4.27e-03 1.91 0.0558 .
Protestant -1.78e-02 3.17e-03 -5.62 1.9e-08 ***
##
Phi coefficients (precision model with identity link):
Estimate Std. Error z value Pr(>|z|)
(phi) 109.5 23.2 4.71 2.5e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Type of estimator: ML (maximum likelihood)
Log-likelihood: 72.1 on 8 Df
Pseudo R-squared: 0.723
Number of iterations: 36 (BFGS) + 3 (Fisher scoring)

Solutions to Exercises | 359

Urbanization is nonsignificant, so we remove it, using the same technique as for lm:

beta_model2 <- update(beta_model1, ~ . - Urbanization)
summary(beta_model2)

##
Call:
betareg(formula = Obama ~ Turnout + Population + Unemployment +
Black + Protestant, data = ovm, subset = State != "District of Columbia")
##
Standardized weighted residuals 2:
Min 1Q Median 3Q Max
-2.831 -0.457 -0.053 0.774 2.007
##
Coefficients (mean model with logit link):
Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.69e-01 4.77e-01 -1.19 0.2327
Turnout 1.70e-02 5.86e-03 2.90 0.0037 **
Population 1.73e-09 5.31e-09 0.32 0.7452
Unemployment 5.70e-02 2.29e-02 2.48 0.0130 *
Black 7.93e-03 3.73e-03 2.13 0.0334 *
Protestant -1.76e-02 2.48e-03 -7.09 1.3e-12 ***
##
Phi coefficients (precision model with identity link):
Estimate Std. Error z value Pr(>|z|)
(phi) 109.4 23.2 4.71 2.5e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Type of estimator: ML (maximum likelihood)
Log-likelihood: 72.1 on 7 Df
Pseudo R-squared: 0.723
Number of iterations: 31 (BFGS) + 3 (Fisher scoring)

Similarly, Population has to go:

beta_model3 <- update(beta_model2, ~ . - Population)
summary(beta_model3)

##
Call:
betareg(formula = Obama ~ Turnout + Unemployment + Black + Protestant,
data = ovm, subset = State != "District of Columbia")
##
Standardized weighted residuals 2:
Min 1Q Median 3Q Max
-2.828 -0.458 0.043 0.742 1.935
##
Coefficients (mean model with logit link):
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.55577 0.47567 -1.17 0.2427
Turnout 0.01686 0.00585 2.88 0.0040 **
Unemployment 0.05964 0.02145 2.78 0.0054 **
Black 0.00820 0.00364 2.26 0.0241 *

360 | Appendix D: Solutions to Exercises

Protestant -0.01779 0.00240 -7.42 1.2e-13 ***
##
Phi coefficients (precision model with identity link):
Estimate Std. Error z value Pr(>|z|)
(phi) 109.2 23.2 4.71 2.5e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Type of estimator: ML (maximum likelihood)
Log-likelihood: 72.1 on 6 Df
Pseudo R-squared: 0.723
Number of iterations: 27 (BFGS) + 2 (Fisher scoring)

Plotting can be done with exactly the same code as with lm:

plot_numbers <- 1:6
layout(matrix(plot_numbers, ncol = 2, byrow = TRUE))
plot(beta_model3, plot_numbers)

Exercise 16-1
There is no prescription for the exact rules that must be followed to check and
handle user input. In general, if input is in the wrong form, it is best to try to convert
it to the right one, warning the user in the process. Thus, for nonnumeric inputs,
we can try to convert them to be numeric with a warning.

For nonpositive values, we can try substituting an in-range value or pretend the
value was missing, but this would make the answer wrong. In this case, it is best to
throw an error:

harmonic_mean <- function(x, na.rm = FALSE)
{
 if(!is.numeric(x))
 {
 warning("Coercing 'x' to be numeric.")
 x <- as.numeric(x)
 }
 if(any(!is.na(x) & x <= 0))
 {
 stop("'x' contains non-positive values")
 }
 1 / mean(1 / x, na.rm = na.rm)
}

Exercise 16-2
Here’s the RUnit version. To test missing values, we need to consider the cases with
na.rm being TRUE and na.rm being FALSE. To test that a warning has been thrown,
we use the trick of changing the warn option to 2, meaning that warnings are treated
as errors. For testing nonpositive numbers, we use the boundary case of zero:

test.harmonic_mean.1_2_4.returns_12_over_7 <- function()
{
 expected <- 12 / 7

Solutions to Exercises | 361

 actual <- harmonic_mean(c(1, 2, 4))
 checkEqualsNumeric(expected, actual)
}
test.harmonic_mean.no_inputs.throws_error <- function()
{
 checkException(harmonic_mean())
}
test.harmonic_mean.some_missing.returns_na <- function()
{
 expected <- NA_real_
 actual <- harmonic_mean(c(1, 2, 4, NA))
 checkEqualsNumeric(expected, actual)
}
test.harmonic_mean.some_missing_with_nas_removed.returns_12_over_7 <- function()
{
 expected <- 12 / 7
 actual <- harmonic_mean(c(1, 2, 4, NA), na.rm = TRUE)
 checkEqualsNumeric(expected, actual)
}
test.harmonic_mean.non_numeric_input.throws_warning <- function()
{
 old_ops <- options(warn = 2)
 on.exit(options(old_ops))
 checkException(harmonic_mean("1"))
}
test.harmonic_mean.zero_inputs.throws_error <- function()
{
 checkException(harmonic_mean(0))
}

The testthat translation is straightforward. Warnings are easier to test for, using
the expect_warning function:

expect_equal(12 /7, harmonic_mean(c(1, 2, 4)))
expect_error(harmonic_mean())
expect_equal(NA_real_, harmonic_mean(c(1, 2, 4, NA)))
expect_equal(12 /7, harmonic_mean(c(1, 2, 4, NA), na.rm = TRUE))
expect_warning(harmonic_mean("1"))
expect_error(harmonic_mean(0))

Exercise 16-3
Here’s the updated harmonic_mean function:

harmonic_mean <- function(x, na.rm = FALSE)
{
 if(!is.numeric(x))
 {
 warning("Coercing 'x' to be numeric.")
 x <- as.numeric(x)
 }
 if(any(!is.na(x) & x <= 0))
 {
 stop("'x' contains non-positive values")

362 | Appendix D: Solutions to Exercises

 }
 result <- 1 / mean(1 / x, na.rm = na.rm)
 class(result) <- "harmonic"
 result
}

To make an S3 method, the name must be of the form function.class; in this case,
print.harmonic. The contents can be generated with other print functions, but
here we use the lower-level cat function:

print.harmonic <- function(x, ...)
{
 cat("The harmonic mean is", x, "\n", ...)
}

Exercise 17-1
Creating the function and the data frame is straightforward enough:

sum_of_squares <- function(n)
{
 n * (n + 1) * (2 * n + 1) / 6
}
x <- 1:10
squares_data <- data.frame(x = x, y = sum_of_squares(x))

In your call to package.skeleton, you need to think about which directory you
want to create the package in:

package.skeleton("squares", c("sum_of_squares", "squares_data"))

Exercise 17-2
The function documentation goes in R/sum_of_squares.R, or similar:

#' Sum of Squares
#'
#' Calculates the sum of squares of the first \code{n} natural numbers.
#'
#' @param n A positive integer.
#' @return An integer equal to the sum of the squares of the first \code{n}
#' natural numbers.
#' @author Richie Cotton.
#' @seealso \code{\link[base]{sum}}
#' @examples
#' sum_of_squares(1:20)
#' @keywords misc
#' @export

The package documentation goes in R/squares-package.R:

#' squares: Sums of squares.
#'
#' A test package that contains data on the sum of squares of natural
#' numbers, and a function to calculate more values.
#'

Solutions to Exercises | 363

#' @author Richie Cotton
#' @docType package
#' @name squares
#' @aliases squares squares-package
#' @keywords package
NULL

The data documentation goes in the same file, or in R/squares-data.R:

#' Sum of squares dataset
#'
#' The sum of squares of natural numbers.
#' \itemize{
#' \item{x}{Natural numbers.}
#' \item{y}{The sum of squares from 1 to \code{x}.}
#' }
#'
#' @docType data
#' @keywords datasets
#' @name squares_data
#' @usage data(squares_data)
#' @format A data frame with 10 rows and 2 variables.
NULL

Exercise 17-3
The code is easy; the hard part is fixing any problems:

check("squares")
build("squares")

364 | Appendix D: Solutions to Exercises

Bibliography

1. Jason R. Briggs. Python for Kids: A Playful Introduction to Programming. 2012.
William Pollock. ISBN-13 978-1-59327-407-8.

2. Garrett Grolemund. Data Analysis with R. 2013. O’Reilly. ISBN-13
978-1-4493-5901-0.

3. Andrie de Vries and Joris Meys. R For Dummies. 2012. John Wiley & Sons. ISBN-13
978-1-1199-6284-7.

4. Michael Fitzgerald. Introducing Regular Expressions. 2012. O’Reilly. ISBN-13
978-1-4493-9268-0.

5. Paul Murrell. R Graphics, Second Edition. 2011. Chapman and Hall/CRC. ISBN-13
978-1-4398-3176-2.

6. Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis. 2010. Springer.
ISBN-13 978-0-3879-8140-6.

7. Deepayan Sarkar. Lattice: Multivariate Data Visualization with R. 2008. Springer.
ISBN-13 978-0-3877-5968-5.

8. Edward R. Tufte. Envisioning Information. 1990. Graphics Press USA. ISBN-13
978-0-9613-9211-6.

9. Michael J. Crawley. The R Book. 2013. John Wiley & Sons. ISBN-13
978-0-4709-7392-9.

10. Andy Field, Jeremy Miles, and Zoe Field. Discovering Statistics Using R. 2012. SAGE
Publications. ISBN-13 978-1-4462-0046-9.

11. Max Kuhn. Applied Predictive Modeling. 2013. Springer. ISBN-13
978-1-4614-6848-6.

12. John Fox and Sanford Weisberg. An R Companion to Applied Regression. 2011.
SAGE Publications. ISBN-13 978-1-4129-7514-8.

365

13. José Pinheiro and Douglas Bates. Mixed-Effects Models in S and S-PLUS. 2009.
Springer. ISBN-13 978-1-4419-0317-4.

14. Graham Williams. Data Mining with Rattle and R: The Art of Excavating Data for
Knowledge Discovery. 2011. Springer. ISBN-13 978-1-4419-9889-7.

15. Thomas Lumley. “Standard nonstandard evaluation rules”. 2003. http://developer.r-
project.org/nonstandard-eval.pdf.

16. Dirk Eddelbuettel. Seamless R and C++ Integration with Rcpp. 2013. Springer.
ISBN-13 978-1-4614-6867-7.

17. Yihui Xie. Dynamic Documents with R and knitr. 2013. Chapman and Hall/CRC.
ISBN-13 978-1-4822-0353-0.

18. Michael Lawrence and John Verzani. Programming Graphical User Interfaces in R.
2012. Chapman and Hall/CRC. ISBN-13 978-1-4398-5682-6.

19. Q. Ethan McCallum and Stephen Weston. Parallel R. 2012. O’Reilly. ISBN-13
978-1-4493-0992-3.

366 | Bibliography

http://developer.r-project.org/nonstandard-eval.pdf
http://developer.r-project.org/nonstandard-eval.pdf

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
! operator, 21
symbol, 8
$ operator, 62
% operator, 96
%% operator, 15
%*% operator, 53
%/% operator, 15
%in% operator, 82
%o% operator, 53
& operator, 21
+ operator, 13, 300
: operator, 13, 13, 39
<- operator, 18, 306
<<- operator, 18, 306
== operator, 15
? operator, 8
?? operator, 8, 10
[[]] indexing, 62
[] indexing, 43, 61
^ operator, 53
| operator, 21

A
adding dates, 160
adding vectors, 13
aggregate function (stats), 137
alarm function (utils), 98

all.equal function (base), 16
anova function (stats), 273
apply function (base), 192
*apply function family, 138
apropos function (utils), 9
Architect, 6 (see Eclipse)
args function (base), 84
arguments, 8

formal, 83
pass into functions, 70
using functions as, 87

arithmetic
date/time, 160
lists, 60
on arrays, 52–54

arrange function (plyr), 201
array function (base), 46
arrays, 46–54

arithmetic on, 52–54
columns of, 48–51
creating, 46
dimensions of, 48–51
indexing, 51
looping over, 132–135
rows of, 48–51
two-dimensional, 29

as* functions (base, methods), 32
assertive package, 31
assign function (base), 18, 80, 300

367

atomic variable types, 60, 328
Autoloads, 146
axis scales, 219

B
backslash characters, 97
bar charts, 253–260

in base graphics, 254–256
in ggplot2 graphics, 258–260
in lattice graphics, 256–258

base environment, 81
limitations of, 211

base graphics package
bar charts in, 254–256
box plots in, 250
histograms in, 238–244
line plots in, 230
scatterplots in, 213–216

basename function (base), 101
Bell Laboratories, 3
bibmemory package, 332
binary data files, 179–182

Excel files as, 179
binding matrices, 52
Bitbucket, 148
box plots, 249–253

in base graphics, 250
in ggplot2 graphics, 252
in lattice graphics, 251

breaks argument, 244
browseEnv function (utils), 36
browseVignettes function (utils), 10
by function (base), 137

C
c function (base), 13, 39, 51, 65
call objects, 300
cancor function (stats), 210
casting, 32
cat function (base), 33, 95
cbind function (base), 52, 66
Chambers, John, 3
character arrays, 93
character class, 27
character vector, 29, 42, 93
characters

case, changing, 98
special, 97

check function (devtools), 320
check* function family (RUnit), 295
class factory, 305
class function (base), 30

combining unclass and, 160
class generator, 305
classes, 27–30

changing, 30–32
checking, 30–32
of variables, 25
vectors, 27

cleaning data, 191–205
functions for, 202–205
strings, 191–196

cleaning datasets, 103
closure, 82
colbycol package, 174
colClasses argument, 180
collaboration, Live-R and, 7
colMeans function (base), 76
colnames function (base), 50, 54, 72
colon operator (see : operator)
colSums function (base), 76
column functions, 60
columns, 48–51

adding/replacing, 196–201, 196
naming, 50

comma-separated value (CSV) files, 170–174
comments, 8
comparing

integers, 15
strings, 17

complete.cases function (stats), 197
complex class, 26
compulsary files, 314
concatenating

values, 39
vectors, 65

conditional execution, 112
coordinated universal time, 156
cor function (stats), 210
Core Team, 3
CRAN package repository, 148
CRAN task views, 331
CRANextra, 148
CSV files, 156, 170–174
cummax function (base), 209
cummin function (base), 209
cumprod function (base), 209

368 | Index

cumsum function (base), 209
cumulative density function (CDF), 266
customizing Emacs, 5
cut function (base), 105

D
data directory, 314
data frames, 70–77

columns, adding/replacing, 196–201
creating, 71–74
indexing, 74–75
manipulating, 75, 196–201
manipulating, functions for, 202–205
missing values in, 197
SQL, manipulating with, 200–201
transposing, 75
wide/long forms, converting between, 198

data function (utils), 169
data, cleaning, 191–205

functions for, 202–205
strings, 191–196

data, rectangular, 170
data, visualizing, 207–261

bar charts, 253–260
histograms, 238–248
line plots, 230–237
scatterplots, 212–230
summary statistics, 207–211

data.frame function (base), 71
database management systems (DBMSs), 185
databases, accessing, 185–188
datasets, 169–189

APIs, websites with, 182
from binary files, 179–182
built-in, 169
cleaning, 103
CSV files as, 170–174
databases as, 185–188
HTML files as, 175
JSON files, 176–179
packages for, 181
scraping web pages for, 184–185
in spreadsheets, 179
from statistical packages, 181
tab-delimited files as, 170–174
text files as, 170–179
unstructured text files as, 175
web data as, 182–185
XML files as, 175

YAML files as, 176–179
datasets package, 169
Date class, 155
date classes, add-on, 156
dates, 153–165

arithmetic with, 160
Date class, 155
formatting, 157
lubridate package and, 161–165
manipulating, 161
parsing, 156
POSIXct class, 154
POSIXlt class, 154
strings, converting to/from, 156

DBMSs, 185
dcast function (reshape2), 199
ddply function (plyr), 140
debugging, 80, 292–294

using Eclipse for, 6
defineTestSuite function, 297
demo directory, 314
demo function (utils), 10
deparse function (base), 85, 301
deparsing, 301
DESCRIPTION files, 314
devtools package, 320
difftime class, 160
difftime function (base), 160
dim argument, 47
dim function (base), 48
dimensions, of arrays/matrices, 48–51

naming, 50
dimnames function (base), 50, 54, 72
directories, 314

optional, 314
dirname function, 101
distributions, 266

random numbers and, 265
do.call function (base), 86
doc directory, 314
double quotes, 97

E
ecdf function (stats), 87
Eclipse, 6

debugger, 6
edit function (utils), 36
elements of vectors

indexing, 43–45

Index | 369

naming, 42
recycling, 45
repetition of, 45

else statements, 115
Emacs, 5

customizing, 5
Emacs Speaks Statistics (ESS), 5
empty environments, 81
empty variables, 66
environments, 79–82

converting to lists, 81
empty, 81
frames and, 81

error argument, 290
error handling, 289–291
errors, 286–288
ESRI ArcGIS spatial data files, 181
ESS (Emacs Speaks Statistics), 5
eval function (base), 302

using substitute with, 302
example function (utils), 10
Excel (Microsoft), 179
exists function (base), 80, 89
expect* function family (testthat), 298
expression objects, 300

F
facets, 227
factor function (base), 103
factors, 101–107

combining, 107
continuous vs. categorical variables and, 105
creating, 101
levels of, 28
levels, changing, 103
levels, dropping, 103
levels, generating, 107
ordered, 104

factors class, 27
FALSE, 20
ff package, 332
file formats, 156
file paths as strings, 100
file.path function (base), 100
filter function (stats), 202
Find function (base), 203
finding functions, 8
first-class objects, 4
fivenum function (stats), 210

fix function (utils), 36
fixed function (stringr), 193
flow control, 111–116

if/else statements, 112
switch, 115–116
vectorized, 114
vectorized if, 114

for, 300
for loops, 120–121
foreign package, 181
formal arguments, 83
formalArgs function (methods), 84
formals function (base), 70, 84
format function, 96
formatC function (base), 95
formatting numbers, 95–97

with format function, 96
with formatC, 95
with prettyNum function, 96
with sprintf function, 96

formula interface, 221
formulae, 267–268
frames, 81

environments and, 81
freq argument, 243
Frogger, 136
functional programming, 202–205
functions, 8, 82–91

calling, 82–86
creating, 82–86, 83
creating durations, 163
finding, 8
help with, 8
importing, 106
methods vs., 33
overloading, 303
pass arguments into, 70
passing, to/from other functions, 86–89
shortcuts, 81
standard deviation, 70
using as arguments, 87
variable scope and, 89–91

G
Gentleman, Robert, 3
get function (base), 80, 89
getwd function (base), 100
ggplot function (ggplot2), 224

370 | Index

ggplot2 graphics package
bar charts in, 258–260
box plots in, 252
histograms in, 247–248
line plots in, 233–237
scatterplots in, 224–230

GitHub, 148
glm, 280
global assignment, 18, 306
global environment, 79, 81
global error option, 293
global variables, 89
gnumeric package, 181
Gnumeric spreadsheets, 181
Google Code, 148
graphical representations, 207–261

bar charts, 253–260
histograms, 238–248
line plots, 230–237
scatterplots, 212–230
summary statistics, 207–211

grep function (base), 192
grepl function (base), 192
GROUP BY operations (SQL), 138
gWidgets framework, 331

H
HDF5 files, 181
head function (utils), 34

internal nodes and, 176
help function (utils), 9
help search operator, 10
help, sources for, 8–11
help.search function (utils), 9
hist function (graphics), 238
histograms, 238–248

in base graphics, 238–244
in ggplot2 graphics, 247–248
in lattice graphics, 244–247

HTML files, 175
htmlParse function (XML), 185

I
IDEs, 5–7

Architect, 6
Eclipse, 6
Emacs, 5
ESS, 5

Live-R, 7
popular choices, 5
Revolution-R, 7
RStudio, 6
XEmacs, 6

if, 300
if/else statements, 112

vectorized, 114
ifelse function (base), 113, 114
Ihaka, Ross, 3
importing

XML files, 175
YAML files, 178

%in% operator, 82
INDEX files, 314
indexing, 43

arrays, 51
data frames, 74–75
elements (vectors), 43–45
lists, 61–64

infinite values, 19
initialize method, 306
inst directory, 314
install.packages function (utils), 148
install.Rtools function (installr), 313
installed.packages function (utils), 146
installr package, 11, 313
install_github function (devtools), 150
integer class, 26
Integrated Development Environment (see

IDEs)
integration testing, 294
interpreter, 299–302
intervals, 163
inverse CDF, 266
is.* function family (base, methods), 30

J
JDBC API, 185
JGR, 7
JSON files, 176–179

K
knitr package, 315

L
labelling elements, 42

Index | 371

language objects, 328
language variable types, 299
lapply function (base), 127
lattice graphics package, 144

bar charts in, 256–258
box plots in, 251
histograms in, 244–247
line plots in, 233
plots, benefits of, 222
scatterplots in, 218–224

layout function (graphics), 216, 276
learningr package, 294
length function (base), 42, 49
levels argument, 103
levels function (base), 102
libraries, 144

problems with, 147
library function (base), 144
LICENSE files, 314
line plots, 230–237

in base graphics, 230
in ggplot2 graphics, 233–237
in lattice graphics, 233

linear regression models, 268–271
list function (base), 40, 57
list2env function (base), 81
listing elements, 57
lists, 57–70

accessing elements of, 61
arithmetic, 60
combining, 65
converting environments to, 81
creating, 57–59
dimensions of, 60
indexing, 61–64
looping over, 127–132
NULL value and, 66–70
pairlists, 70
as recursive variables, 60
vectors, converting to/from, 64

Live-R, 7
collaborating with, 7
downsides, 7

lm function (stats), 268
local assignment operator, 306
local variables, 17
log scales, 226
logical class, 25
logical operators, vectorized, 21

logical vectors, 20–22, 29
looping, 116–121, 125–141

for, 120–121
mapply function, 135
over arrays, 132–135
over lists, 127–132
over multiple vectors, 135
plyr package for, 138–141
repeat, 116–118
replicate function, 125
tapply function, 136
Vectorize function, 136
while, 118

ls function (base), 36, 80
ls.str function (utils), 36, 80
lubridate package, 161–165

M
magic function (matlib), 133
magic squares, 133
man directory, 314
manipulating dates, 161
manual offsets, 158
Map function, 203
mapply function (base), 135

Vectorize function and, 136
mathematical functions, 15
mathematical operations, 13–17
MATLAB files, 181
matlab package, 132
matrices, 46–54

binding, 52
columns of, 48–51
combining, 51
converting to vectors, 51
creating, 47
creating with array function, 47
dimensions of, 48–51
rows of, 48–51
transposing, 53

matrix class, 29
max function, 208
mean function, 161, 207
median function, 207
median function (base), 14
merge function, 76
messages, 286–288
methods

functions vs., 33

372 | Index

static, 308
methods function, 304
min function, 208
models, 268–281

comparing, 271–276
formulae for, 267–268
inspecting, 276–280
linear regression, 268–271
plotting, 276–280
types of, 280
updating, 271–276

multidimensional objects, 34
multiple expressions, 120
multiword search terms, 8

N
NA value, 68
na.fail function, 198
na.omit function, 198
names function, 43, 58
NAMESPACE files, 314
naming elements, 58
ncol function, 49
Negate function, 202
nested elements, 62
NetCDF files, 181
new method, 307
new.env function, 80
NEWS files, 314
nlevels function (base), 102
nlme package, 281
normalize function, 85
NppToR, 7
nrow argument (read), 172
nrow function, 49, 60
null characters in strings, 97
NULL value

lists and, 66–70
NA vs., 68

numbers
converting strings to, 32
formatting, 95–97
special, 19
types of, 26

numeric class, 25, 26
numeric types, 95

O
object-oriented programming (OOP), 302–310

reference classes, 305–310
S3 classes, 303
S4 classes, 303

ODBC database connections, 187
operations, vectorized, 121
optional directories, 314
optional files, 314
order function, 201

P
package.skeleton function, 315
packages, 10, 143–150, 313–323

building, 320
checking, 320
creating, 315–317
directory structure for, 314
documenting, 317–320
finding, 146–147
format of, 315–317
installing, 148–150
libraries, 146–147
loading, 144–147
maintaining, 150, 321
search function, 146
tools for, 313
updating, 150

pairlists, 70
parentheses, 19
parse function, 300
parsing strings, 300
paste function, 94, 99
periods, 163

creating, 163
plot function (base), 213
plyr package, 105, 138–141
pmax function, 208
pmin function, 208
Position function, 202
POSIXct class, 154
POSIXlt class, 154
prettyNum function, 96
print function, 286
print method, 33
probability density function, 266

Index | 373

Q
quantile function, 209

R
R, 3–11

classes of numeric variable, 26
code, deparsing, 301
Core Team, 3
debugging, 292–294
error handling, 289–291
errors, 286–288
extensions, 11
help, sources for, 8–11
history, 4
IDEs for, 5–7
installing, 4
interpreter, 299–302
as language, 3
mathematical functions, 15
mathematical operations, 13–17
messages, 286–288
object-oriented programming in, 302–310
plotting systems for, 211
programming language, 285
programming paradigms, 4
as scientific calculator, 13–22
simple program in, 8
special numbers, 19
testing, 294–299
variables, assigning, 17–19
warnings, 286–288

R directory, 314
R-bloggers, 11
random numbers, 264–266

distributions and, 265
range function (base), 208
rank function (base), 202
raply function (plyr), 139
raw class, 27, 29
rbind function (base), 52, 66
rbinom function (stats), 114
Rcpp package, 315
read.csv function (utils), 172
read.table function (utils), 172, 174, 184
readLines function (base), 175
recover function (utils), 293
rectangular data, 170
recursive variable types, 60, 328

Reduce function (base), 204
reference classes, 305–310
regexpr function (base), 192
regular expressions, 9
release function (devtools), 321
relevel function (stats), 275
removing variables, 37
reorder function (stats), 250
rep function (base), 46
rep.int function (base), 46
repeat loops, 116–118
replicate function (base), 125
require function (base), 145
reserved words, 8
reshape function (reshape2), 199
Revolution-R, 7

community edition, 7
enterprise edition, 7

rjson package, 177
RJSONIO package, 177
rlnorm function (stats), 19
rm function (base), 37
RNGkind function, 265
rnorm function (stats), 19, 265
RODBC package, 187
rowMeans function (base), 76
rows, 48–51

naming, 50
rowSums function (base), 76, 133
roxygen2 package, 317
roxygenize function (roxygen2), 320
RSeek, 11
RSiteSearch function, 10
RSS, 175
RStudio, 6
runif, 265
RUnit, 295–298

checkWarning function and, 298
runTestSuite function (RUnit), 297

S
S3 classes, 303
S4 classes, 303
sample function (base), 28, 264
sapply function (base), 129
SAS files, 181
scales argument, 219
scaling vectors, 85
scan function (base), 174

374 | Index

scatterplots, 212–230
base graphics, 213–216
ggplot2 graphics, 224–230
lattice graphics, 218–224

Sci-Views-K, 7
scope, of variables, 89–91
sd function (stats)”, 70
search function (base)

finding installed packages with, 146
sep argument (read), 172
seq function (base), 41, 161
seq.int function (base), 41
sequences, 41

creating, 41
functions for, 41
specifying, 41

seq_along function (base), 41
seq_len function (base), 41
set.seed function (base), 265
setRefClass function (methods), 305
setRepositories function (utils), 148
setwd function (base), 100
shorten vectors, 42
show method, 308
simpleError class, 290
skip argument (read), 172
slicing, 43
SOAP, 175
solve function (base), 53
sort function (base), 201
source function (base), 130
special characters, 8, 97
special numbers, 19

infinity, 19
missing values, 19
not-a-number, 19

split argument, 99
split-apply-combine, 138
sprintf function (base), 96
SPSS files, 181
SQL, data frames and, 200–201
sqldf package, 174, 200
src directory, 314
Stack Overflow, 11
stamp function (lubridate), 162
standard deviation function, 70
Stata files, 181
static methods, 308
stats package, 146

stopifnot function (base), 288
storing variables, 79
str function (utils), 36

internal nodes and, 176
strftime function (base), 157
strings, 93–101

case, changing, 98
cleaning, 191–196
comparing, 17
constructing, 94
converting to numbers, 32
dates, converting to/from, 156
file paths as, 100
formatting date/time in, 157
of numbers, formatting, 95–97
parsing, 300
printing, 94
replacing one with another, 192
special characters for, 97
splitting, 99
substrings, extracting, 98
times, converting to/from, 156

strptime function (base), 156
strsplit function (base), 99
subscripting, 43
subset function (base), 75, 196
subsetting, 43
substitute function (base)

using deparse with, 301
using eval with, 302

substr function (base), 98
substring function (base), 98, 191
subtracting dates, 160
sum function (base), 14
summary function (base), 34, 161, 210, 269
summary statistics, 161, 207–261

bar charts, 253–260
histograms, 238–248
line plots of, 230–237
scatterplots of, 212–230
summary statistics, 207–211

switch function (base), 115, 300
switch statements, 115–116
system testing, 294

T
t function (base), 53, 75
tab-delimited files, 170–174
table function (base), 105, 207

Index | 375

tapply function (base), 136
wrapper functions to, 137

testing programs, 294–299
integration, 294
system, 294
test directory, 297
unit, 294
with RUnit, 295–298
with testthat, 298

tests directory, 297
testthat, 298
test_file function (testthat), 298
text file formats

CSV, 170–174
HTML, 175
JSON, 176–179
reading, 170–179
tab-delimited, 170–174
XML, 175
YAML, 176–179

time classes from add-on packages, 156
time zones, 156, 158–159
time(s), 153–165

arithmetic with, 160
Date class, 155
formatting, 157
lubridate package and, 161–165
parsing, 156
POSIX package, 154
strings, converting to/from, 156
time zones, 158–159

Tinn-R, 7
tolower function (base), 98
toString function (base), 94
toupper function (base), 98
trace method, 308
traceback function (base), 292
transposing data frames, 75
transposing matrices, 53
TRUE, 20
try function (base), 289
try-error, 289
tryapply function (plyr), 291
tryCatch function (base), 290
Twitter, 183
two-dimensional arrays, 29
type argument, 246

U
unclass function, 35, 154

combining class and, 160
unit testing, 294
University of Auckland, 3
Unix grep tool, 192
unlist function (base), 65
untrace method, 308
updating packages, 150
UseMethod function, 303
user workspace, 79

(see also global environment)
UTC (see coordinated universal time)

V
vapply function (base), 129
variables, 25–37

assigning, 17–19
atomic, 60, 328
classes of, 25
classes, checking/changing, 30–32
continuous vs. categorical, 105
creating, 9
empty, 66
environments and, 79–82
examining, 33–36
functions and, 327
internal storage type, 25
language types, 299
local, 17
number types, 26
recursive, 60, 328
removing, 37
scope, 89–91
storage mode, 25
storing, 79
values returned by modes, 327
in workspace, 36–37

VCF files, 181
vector function (base), 39
vector inputs, 130
Vectorize function (base), 136
vectorized arguments, 131
vectorized flow control, 114
vectorized operation, 121
vectorizing, 14

logical operators, 21
over arguments, 14

376 | Index

vectors, 8, 13–17, 25, 39–46
accessing parts of, 43
adding, 13, 45
atomic types and, 328
character, 42
classes of, 27
converting matrices to, 51
creating, 39, 42
elements, naming, 42
elements, recycling, 45
elements, repetition of, 45
indexing, 43–45
lengths, 42
lists, converting to/from, 64
logical, 20–22
scaling, 85
sequences, 41
shorten, 42

View function (utils), 36
vignette function (utils), 10
vignettes, 10
vignettes directory, 314
Vim-R, 7

W
warn option, 298
warnings, 286–288
warnings function (base), 287
web data, 182–185

APIs, sites with, 182

scraping pages, 184–185
which function (base), 45
while loops, 118
with function (base), 196
within function (base), 197
workspace, 36–37
write.csv function (utils), 174
write.table function (utils), 174
writeLines function (base), 175

X
XEmacs, 6
xlsReadWrite package, 181
xlsx package, 180
XML files, 175

importing, 175
problems with, 176

xmlParse function (XML), 175
internal nodes and, 176

XPath, 176
xyplot function (lattice), 218

Y
YAML files, 176–179

importing, 178
ymd function (lubridate), 162

Index | 377

About the Author
Richard Cotton is a data scientist with a background in chemical health and safety, and
has worked extensively on tools to give nontechnical users access to statistical models.
He is the author of the R packages assertive (for checking the state of your variables)
and sig (to make sure your functions have a sensible API). He runs The Damned Liars
statistics consultancy.

Colophon
The animals on the cover of Learning R are roe deer (Capreolus capreolus), a species of
deer found throughout much of Europe, Scandinavia, and the Mediterranean region.
Roe is derived from the Old English word for “spotted,” though other translations show
that it might be an ancient word for “red.”

The roe deer is rather small (averaging 3–4 feet long and around 2 feet tall at the
shoulders), with long graceful legs. Male roe have short antlers with just a few branches,
but are otherwise nearly the same size as female roe. These deer also have very short
tails with a white rump patch, which they flash when alarmed by something. In the
summer, their coats are red, but fade to gray or pale brown in the winter. Their fawns
are born in summer after a 10-month gestation period, and have white spots for their
first six weeks of life.

Woodland is the preferred habitat of the roe deer, though they also graze in grasslands
and sparse forests. Occasionally they can be found near farms, but tend to avoid fields
where livestock have been kept, perhaps because the grass is trampled and less clean.
They eat grass, shoots, leaves, and berries, and are most active at twilight.

In the Austrian books upon which the classic Disney film Bambi was based, Bambi was
a roe deer—but Disney changed the character to a white-tailed deer, which was more
familiar to North American audiences.

The cover image is from Cassell’s Natural History. The cover font is Adobe ITC Gara‐
mond. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed;
and the code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	About This Book
	What Is in This Book
	Which Chapters Should I Read?
	Conventions Used in This Book
	Goals, Summaries, Quizzes, and Exercises
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Part I. The R Language
	Chapter 1. Introduction
	Chapter Goals
	What Is R?
	Installing R
	Choosing an IDE
	Emacs + ESS
	Eclipse/Architect
	RStudio
	Revolution-R
	Live-R
	Other IDEs and Editors

	Your First Program
	How to Get Help in R
	Installing Extra Related Software
	Summary
	Test Your Knowledge: Quiz
	Test Your Knowledge: Exercises

	Chapter 2. A Scientific Calculator
	Chapter Goals
	Mathematical Operations and Vectors
	Assigning Variables
	Special Numbers
	Logical Vectors
	Summary
	Test Your Knowledge: Quiz
	Test Your Knowledge: Exercises

	Chapter 3. Inspecting Variables and Your Workspace
	Chapter Goals
	Classes
	Different Types of Numbers
	Other Common Classes
	Checking and Changing Classes
	Examining Variables
	The Workspace
	Summary
	Test Your Knowledge: Quiz
	Test Your Knowledge: Exercises

	Chapter 4. Vectors, Matrices, and Arrays
	Chapter Goals
	Vectors
	Sequences
	Lengths
	Names
	Indexing Vectors
	Vector Recycling and Repetition

	Matrices and Arrays
	Creating Arrays and Matrices
	Rows, Columns, and Dimensions
	Row, Column, and Dimension Names
	Indexing Arrays
	Combining Matrices
	Array Arithmetic

	Summary
	Test Your Knowledge: Quiz
	Test Your Knowledge: Exercises

	Chapter 5. Lists and Data Frames
	Chapter Goals
	Lists
	Creating Lists
	Atomic and Recursive Variables
	List Dimensions and Arithmetic
	Indexing Lists
	Converting Between Vectors and Lists
	Combining Lists

	NULL
	Pairlists
	Data Frames
	Creating Data Frames
	Indexing Data Frames
	Basic Data Frame Manipulation

	Summary
	Test Your Knowledge: Quiz
	Test Your Knowledge: Exercises

	Chapter 6. Environments and Functions
	Chapter Goals
	Environments
	Functions
	Creating and Calling Functions
	Passing Functions to and from Other Functions
	Variable Scope

	Summary
	Test Your Knowledge: Quiz
	Test Your Knowledge: Exercises

	Chapter 7. Strings and Factors
	Chapter Goals
	Strings
	Constructing and Printing Strings
	Formatting Numbers
	Special Characters
	Changing Case
	Extracting Substrings
	Splitting Strings
	File Paths

	Factors
	Creating Factors
	Changing Factor Levels
	Dropping Factor Levels
	Ordered Factors
	Converting Continuous Variables to Categorical
	Converting Categorical Variables to Continuous
	Generating Factor Levels
	Combining Factors

	Summary
	Test Your Knowledge: Quiz
	Test Your Knowledge: Exercises

	Chapter 8. Flow Control and Loops
	Chapter Goals
	Flow Control
	if and else
	Vectorized if
	Multiple Selection

	Loops
	repeat Loops
	while Loops
	for Loops

	Summary
	Test Your Knowledge: Quiz
	Test Your Knowledge: Exercises

	Chapter 9. Advanced Looping
	Chapter Goals
	Replication
	Looping Over Lists
	Looping Over Arrays
	Multiple-Input Apply
	Instant Vectorization

	Split-Apply-Combine
	The plyr Package
	Summary
	Test Your Knowledge: Quiz
	Test Your Knowledge: Exercises

	Chapter 10. Packages
	Chapter Goals
	Loading Packages
	The Search Path
	Libraries and Installed Packages

	Installing Packages
	Maintaining Packages
	Summary
	Test Your Knowledge: Quiz
	Test Your Knowledge: Exercises

	Chapter 11. Dates and Times
	Chapter Goals
	Date and Time Classes
	POSIX Dates and Times
	The Date Class
	Other Date Classes

	Conversion to and from Strings
	Parsing Dates
	Formatting Dates

	Time Zones
	Arithmetic with Dates and Times
	Lubridate
	Summary
	Test Your Knowledge: Quiz
	Test Your Knowledge: Exercises

	Part II. The Data Analysis Workflow
	Chapter 12. Getting Data
	Chapter Goals
	Built-in Datasets
	Reading Text Files
	CSV and Tab-Delimited Files
	Unstructured Text Files
	XML and HTML Files
	JSON and YAML Files

	Reading Binary Files
	Reading Excel Files
	Reading SAS, Stata, SPSS, and MATLAB Files
	Reading Other File Types

	Web Data
	Sites with an API
	Scraping Web Pages

	Accessing Databases
	Summary
	Test Your Knowledge: Quiz
	Test Your Knowledge: Exercises

	Chapter 13. Cleaning and Transforming
	Chapter Goals
	Cleaning Strings
	Manipulating Data Frames
	Adding and Replacing Columns
	Dealing with Missing Values
	Converting Between Wide and Long Form
	Using SQL

	Sorting
	Functional Programming
	Summary
	Test Your Knowledge: Quiz
	Test Your Knowledge: Exercises

	Chapter 14. Exploring and Visualizing
	Chapter Goals
	Summary Statistics
	The Three Plotting Systems
	Scatterplots
	Take 1: base Graphics
	Take 2: lattice Graphics
	Take 3: ggplot2 Graphics

	Line Plots
	Histograms
	Box Plots
	Bar Charts
	Other Plotting Packages and Systems
	Summary
	Test Your Knowledge: Quiz
	Test Your Knowledge: Exercises

	Chapter 15. Distributions and Modeling
	Chapter Goals
	Random Numbers
	The sample Function
	Sampling from Distributions

	Distributions
	Formulae
	A First Model: Linear Regressions
	Comparing and Updating Models
	Plotting and Inspecting Models

	Other Model Types
	Summary
	Test Your Knowledge: Quiz
	Test Your Knowledge: Exercises

	Chapter 16. Programming
	Chapter Goals
	Messages, Warnings, and Errors
	Error Handling
	Debugging
	Testing
	RUnit
	testthat

	Magic
	Turning Strings into Code
	Turning Code into Strings

	Object-Oriented Programming
	S3 Classes
	Reference Classes

	Summary
	Test Your Knowledge: Quiz
	Test Your Knowledge: Exercises

	Chapter 17. Making Packages
	Chapter Goals
	Why Create Packages?
	Prerequisites
	The Package Directory Structure
	Your First Package
	Documenting Packages
	Checking and Building Packages
	Maintaining Packages
	Summary
	Test Your Knowledge: Quiz
	Test Your Knowledge: Exercises

	Part III. Appendixes
	Appendix A. Properties of Variables
	Appendix B. Other Things to Do in R
	Appendix C. Answers to Quizzes
	Appendix D. Solutions to Exercises

	Bibliography
	Index
	About the Author

