
www.SoftGozar.com

Beginning ASP.neT 4.5.1

Foreword xxv

inTroducTionxxvii

chAPTer 1 Getting started with AsP.NET 4.5.1 . .. 1

chAPTer 2 Building an AsP.NET Website 33

chAPTer 3 Designing Your Web Pages 63

chAPTer 4 Working with AsP.NET server Controls 101

chAPTer 5 Programming Your AsP.NET Web Pages 135

chAPTer 6 Creating Consistent Looking Websites 195

chAPTer 7 Navigation 239

chAPTer 8 User Controls 273

chAPTer 9 Validating User Input 299

chAPTer 10 AsP.NET AJAX . .. 337

chAPTer 11 jQuery . .. 369

chAPTer 12 Introducing Databases 407

chAPTer 13 Displaying and Updating Data . .. 439

chAPTer 14 LINQ and the ADO.NET Entity Framework 485

chAPTer 15 Working with Data — Advanced Topics 539

chAPTer 16 security in Your AsP.NET Website 589

chAPTer 17 Personalizing Websites . .. 629

chAPTer 18 Exception Handling, Debugging, and Tracing 663

chAPTer 19 Deploying Your Website. 715

APPendix A Exercise Answers 757

APPendix B Configuring sQL server 2012 781

index 795

ffirs.indd 1 25-02-2014 10:44:30

www.SoftGozar.com

ffirs.indd 2 25-02-2014 10:44:30

Beginning

ASP.neT 4.5.1

ffirs.indd 3 25-02-2014 10:44:30

ffirs.indd 4 25-02-2014 10:44:30

Beginning

ASP.neT 4.5.1
in C# and VB

Imar Spaanjaars

ffirs.indd 5 25-02-2014 10:44:36

www.SoftGozar.com

Beginning aSP.neT 4.5.1: in C# and VB

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2014 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-84677-3
ISBN: 978-1-118-84690-2 (ebk)
ISBN: 978-1-118-84696-4 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,
fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard
print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD
or DVD that is not included in the version you purchased, you may download this material at http://booksupport
.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2013958296

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other
countries, and may not be used without written permission. All other trademarks are the property of their respective
owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

ffirs.indd 6 25-02-2014 10:44:36

http://booksupport.wiley.com
http://booksupport.wiley.com
http://www.wiley.com
http://www.wiley.com
http://www.wiley.com/go/permissions

To Niek

ffirs.indd 7 25-02-2014 10:44:36

ffirs.indd 8 25-02-2014 10:44:36

ABouT The AuThor

imAr SPAAnjAArS graduated in Leisure Management at the Leisure Management School in the
Netherlands, but he quickly changed his career path to the Internet world.

After working in the Internet business at various web agencies for over twelve years, he now runs
his own company called De Vier Koeden (http://devierkoeden.com), a small Internet agency
specializing in consultancy and development of Internet and intranet applications with Microsoft
technologies such as ASP.NET 4.5.1. He’s also the CTO of Dynamicweb North America, the U.S.
branch of the popular Danish content management, e-commerce, and online marketing platform.

Imar has written books on ASP.NET and Macromedia Dreamweaver, all published under the Wrox
brand. He is also one of the top contributors to the Wrox Community Forum at p2p.wrox.com,
where he shares his knowledge with fellow programmers.

Imar has received Microsoft’s Most Valuable Professional (MVP) award each year since 2008 for
his contributions to the ASP.NET community. In early 2012, Imar joined the ASPInsiders, a small
group of international professionals that provide feedback and direction on new features for future
versions of ASP.NET.

Imar lives in Utrecht, the Netherlands, with his girlfriend Fleur and his son Niek. You can contact
him through his personal website at http://imar.spaanjaars.com or by e-mail at
imar@spaanjaars.com.

ffirs.indd 9 25-02-2014 10:44:36

www.SoftGozar.com

http://devierkoeden.com
http://imar.spaanjaars.com
mailto:imar@spaanjaars.com
http://p2p.wrox.com

ffirs.indd 10 25-02-2014 10:44:36

Acquisitions editor
Mary James

Project editor
Brian Herrmann

Technical editor
Jason Gaylord

Production editor
Daniel scribner

editorial manager
Mary Beth Wakefield

Associate director of marketing
David Mayhew

marketing manager
Ashley Zurcher

Business manager
Amy Knies

Vice President and executive group
Publisher
Richard swadley

Associate Publisher
Jim Minatel

Project coordinator, cover
Katie Crocker

Proofreaders
Josh Chase, Louise Watson, sarah Kaikini,
Word One

indexer
Robert swanson

cover designer
Ryan sneed

cover image
© Nevin Giesbrecht / istockPhoto

crediTS

ffirs.indd 11 25-02-2014 10:44:36

ffirs.indd 12 25-02-2014 10:44:36

AcknowledgmenTS

AlThough The jumP in version number by only 0.1 seems to suggest that there’s not much new
in ASP.NET 4.5.1 or Visual Studio 2013, you’d be surprised at the number of changes — small
and large — that made their way into these products. I spent the past couple of months working
on updating this book from the .NET 4.5 release to the new .NET 4.5.1 release. I discovered new
features and functionality every day. Some of those changes are really small, but could mean a
boost in productivity on a day-to-day basis. Others are much bigger and affect the way you build
or deploy your websites. I tried to incorporate all the new features found in ASP.NET and Visual
Studio that will make sense for you, someone with no or limited experience with ASP.NET.

I have also made a lot of changes to the book based on reader feedback. Just as with the previous
versions of the book, I went over all the errata that have been submitted as well as over the hundreds
of forum posts that were made, identifying areas in the book that readers had difficulties with,
and finding ways to improve it. If you have the previous edition and posted a question in the Wrox
forums: thanks for your valuable feedback; you’ve really helped to make this book better.

Besides my readers, I owe a lot to other people who helped me write this book.

First of all, a big thanks goes out to Brian Herrmann for his editorial work. Once again, it was a
pleasure to work with you! I also want to thank Jason Gaylord for his many useful suggestions he
provided as a technical editor. Both of you really helped shape this book. Many thanks also to the
people from Wrox for their support and contributions to this book.

Another person I owe a lot to is my friend Anne Ward from Blue Violet, a UK-based web and
graphic design company. Anne has done most of the designs used in this book and I highly
appreciate her input. Thanks again, Anne! The concert pictures you see in this book come from
Nigel D. Nudds, who kindly let me use pictures from his collection.

Finally, I would like to thank my lovely girlfriend Fleur for her support during this project.
I couldn’t have done it without you!

ffirs.indd 13 25-02-2014 10:44:36

www.SoftGozar.com

ffirs.indd 14 25-02-2014 10:44:36

Contents

Foreword xxv

IntroductIon xxvii

Chapter 1: GettinG started with asp.net 4.5.1 1

Microsoft Visual Studio Express for Web 2
Getting Visual Studio 3
Installing Visual Studio Express for Web (VSEW) 3

Creating Your First ASP.NET 4.5.1 Website 5
An Introduction to ASP.NET 4.5.1 9

Understanding HTML 10
A First Look at ASP.NET Markup 15

A Tour of the IDE 16
The Main Development Area 16
Informational Windows 22

Customizing the IDE 23
Rearranging Windows 23
Modifying the Toolbox 24
Customizing the Document Window 26
Customizing Toolbars 27
Customizing Keyboard Shortcuts 28
Resetting Your Changes 28

The Sample Application 29
Practical Tips on Visual Studio 30
Summary 31

Chapter 2: BuildinG an asp.net weBsite 33

Creating Websites with Visual Studio 2013 34
Different Project Types 34
Choosing the Right Website Template 35
Creating and Opening a New Website 37

Working with Files in Your Website 41
The Many File Types of an ASP.NET Website 41
Adding Existing Files 44
Organizing Your Site 45
Special File Types 46

Working with Web Forms 47

ftoc.indd 15 25-02-2014 10:45:05

www.SoftGozar.com

xvi

CONTENTS

The Different Views on Web Forms 47
Choosing between Code Behind and Pages with Inline Code 49
Adding Markup to Your Page 54
Connecting Pages 59

Practical Tips on Working with Web Forms 61
Summary 61

Chapter 3: desiGninG Your weB paGes 63

Why Do You Need CSS? 64
Problems with Using HTML Formatting 64
How CSS Fixes Formatting Problems 65

An Introduction to CSS 65
CSS — The Language 69
The Style Sheet 70
Adding CSS to Your Pages 82

Working with CSS in Visual Studio 84
Using the CSS Editor 85
Creating Embedded and Inline Style Sheets 89
Applying Styles 93
Managing Styles 94

Practical Tips on Working with CSS 97
Summary 97

Chapter 4: workinG with asp.net server Controls 101

Introduction to Server Controls 102
A Closer Look at ASP.NET Server Controls 106

Defining Controls in Your Pages 106
Common Properties for All Controls 106

Types of Controls 109
Standard Controls 109
HTML Controls 122
Data Controls 123
Validation Controls 123
Navigation Controls 123
Login Controls 123
Ajax Extensions 124
WebParts 124
Dynamic Data 124

The ASP.NET State Engine 124
What Is State and Why Is It Important? 124

ftoc.indd 16 25-02-2014 10:45:05

xvii

CONTENTS

How the State Engine Works 125
Not All Controls Rely on View State 129
A Note about View State and Performance 130

Practical Tips on Working with Controls 131
Summary 132

Chapter 5: proGramminG Your asp.net weB paGes 135

Introduction to Programming 136
Data Types and Variables 137

Converting and Casting Data Types 140
Using Arrays and Collections 142

Statements 147
Operators 147
Making Decisions 155
Loops 162

Organizing Code 167
Methods: Functions and Subroutines 167
The App_Code Folder 169
Organizing Code with Namespaces 173
Writing Comments 176

Object Orientation Basics 178
Important OO Terminology 178
Events 190

Practical Tips on Programming 191
Summary 192

Chapter 6: CreatinG Consistent lookinG weBsites 195

Consistent Page Layout with Master Pages 196
Creating Master Pages 198
Creating Content Pages 200

Using a Centralized Base Page 206
An Introduction to the ASP.NET Page Life Cycle 207
Implementing the Base Page 208
Creating Reusable Page Templates 212

Themes 216
Different Types of Themes 217
Choosing Between Theme and StyleSheetTheme 217
Applying Themes 218
Extending Themes 222
Dynamically Switching Themes 224

ftoc.indd 17 25-02-2014 10:45:05

xviii

CONTENTS

Skins 232
Creating a Skin File 233
Named Skins 234
Disable Theming for Specific Controls 235

Practical Tips on Creating Consistent Pages 235
Summary 236

Chapter 7: naviGation 239

Different Ways to Move Around Your Site 240
Understanding Absolute and Relative URLs 240
Understanding Default Documents 243

Using the Navigation Controls 243
Architecture of the Navigation Controls 244
Examining the Web.sitemap File 244
Using the Menu Control 246
Using the TreeView Control 254
Using the SiteMapPath Control 258

Routing 260
Setting up Extension-less URLs 261
Considerations for Extension-less URLs 263

Programmatic Redirection 263
Programmatically Redirecting the Client

to a Different Page 264
Server-Side Redirects 266

Practical Tips on Navigation 268
Summary 269

Chapter 8: user Controls 273

Introduction to User Controls 274
Creating User Controls 274
Adding User Controls to a Content Page or Master Page 277
Sitewide Registration of User Controls 280
User Control Caveats 282

Adding Logic to Your User Controls 284
Creating Your Own Data Types for Properties 284
Implementing View State Properties 289
View State Considerations 295

Practical Tips on User Controls 295
Summary 296

ftoc.indd 18 25-02-2014 10:45:05

www.SoftGozar.com

xix

CONTENTS

Chapter 9: validatinG user input 299

Gathering Data from the User 300
Validating User Input in Web Forms 301
Understanding Request Validation 320

Processing Data at the Server 321
Sending E-mail from Your Website 321
Reading from Text Files 327

Practical Tips on Validating Data 333
Summary 333

Chapter 10: asp.net aJaX 337

Introducing Ajax 338
Using ASP.NET AJAX in Your Projects 340

Creating Flicker-free Pages 340
Providing Feedback to Users 345
The Timer Control 350

Using Web Services in Ajax Websites 351
What Are Web Services? 351
Creating Web Services 357

Practical Ajax Tips 365
Summary 366

Chapter 11: JQuerY 369

An Introduction to jQuery 370
Introducing NuGet 371
Choosing the Location for Your jQuery Reference 375
Different Ways to Include the jQuery Library 376

jQuery Syntax 380
jQuery Core 380
Selecting Items Using jQuery 381

Modifying the DOM with jQuery 388
CSS Methods 388
Handling Events 390
Miscellaneous jQuery Functionality 391
Common Mistakes When Working with jQuery 392

Effects with jQuery 393
jQuery and Validation 399
Practical Tips on jQuery 403
Summary 403

ftoc.indd 19 25-02-2014 10:45:06

xx

CONTENTS

Chapter 12: introduCinG dataBases 407

What Is a Database? 408
Different Kinds of Relational Databases 409

Installing SQL Server 2012 Express 410
Using SQL to Work with Database Data 410
Retrieving and Manipulating Data with SQL 414

Reading Data 414
Creating Data 423
Updating Data 424
Deleting Data 424

Creating Your Own Tables 427
Data Types in SQL Server 427
Understanding Primary Keys and Identities 429
Creating Relationships between Tables 432

Practical Database Tips 436
Summary 436

Chapter 13: displaYinG and updatinG data 439

Data Controls 439
Data-bound Controls 440
Data Source Controls 442
Other Data Controls 442

Data Source and Data-bound Controls Working Together 443
Displaying and Editing Data with GridView 443
Inserting Data with DetailsView 449
Storing Your Connection Strings in Web.config 451
Filtering Data 453

Customizing the Appearance of the Data Controls 459
Configuring Columns or Fields of Data-bound Controls 460

Updating and Inserting Data 466
Using DetailsView to Insert and Update Data 466

Practical Tips for Displaying and Updating Data 480
Summary 481

Chapter 14: linQ and the ado.net entitY Framework 485

Introducing LINQ 486
LINQ to Objects 487
LINQ to XML 487
LINQ to ADO.NET 487

ftoc.indd 20 25-02-2014 10:45:06

xxi

CONTENTS

Introducing the ADO.NET Entity Framework 488
Mapping Your Data Model to
 an Object Model 489
Introducing Query Syntax 495

Standard Query Operators 495
Shaping Data with Anonymous Types 499

Using Model Binding with LINQ Queries 504
Introducing Model Binding 505
A Note about Performance 535

Practical LINQ and ADO.NET Entity Framework Tips 536
Summary 536

Chapter 15: workinG with data — advanCed topiCs 539

Formatting Your Controls Using Styles 540
An Introduction to Styles 541
Combining Styles, Themes, and Skins 545

Handling Events 549
The ASP.NET Page and Control Life Cycles Revisited 549
The ASP.NET Page Life Cycle and Events in Data Controls 555
Handling Errors That Occur in the
 Data Source Controls 560

Hand-Coding Data Access Code 564
Caching 574

Common Pitfalls with Caching Data 575
Different Ways to Cache Data in ASP.NET
 Web Applications 576

Practical Data Tips 585
Summary 586

Chapter 16: seCuritY in Your asp.net weBsite 589

Introducing Security 590
Identity: Who Are You? 590
Authentication: How Can You Prove Who You Are? 590
Authorization: What Are You Allowed to Do? 591
An Introduction to the ASP.NET Application Services 591

Introducing the Login Controls 593
The Login Controls 598
Configuring Your Web Application 609

The Role Manager 612
The Role Manager Configuration 613

ftoc.indd 21 25-02-2014 10:45:06

xxii

CONTENTS

Managing Users with the WSAT 613
Configuring the Web Application to Work with Roles 618
Programmatically Checking Roles 622

Practical Security Tips 625
Summary 626

Chapter 17: personalizinG weBsites 629

 Understanding Profile 630
Configuring the Profile 631
Using the Profile 637

Other Ways of Dealing with Profile 655
Anonymous Identification 655
Cleaning Up Old Anonymous Profiles 655
Looking at Other Users’ Profiles 657

Practical Personalization Tips 660
Summary 660

Chapter 18: eXCeption handlinG, deBuGGinG,
and traCinG 663

Exception Handling 664
Different Types of Errors 664
Catching and Handling Exceptions 667
Global Error Handling and Custom Error Pages 675

The Basics of Debugging 683
Tools Support for Debugging 686

Moving Around in Debugged Code 686
Debugging Windows 687

Debugging Client-Side Script 693
Debugging with the Page Inspector 696

Introducing the Page Inspector 696
Using the Page Inspector 697

Cross-browser Testing with Browser Link 701
Introducing Browser Link 702
Using Browser Link 702

Tracing Your ASP.NET Web Pages 704
Using the Standard Tracing Capabilities 705
Adding Your Own Information to the Trace 708
Tracing and Performance 710
A Security Warning 710

Practical Debugging Tips 711
Summary 712

ftoc.indd 22 25-02-2014 10:45:06

xxiii

CONTENTS

Chapter 19: deploYinG Your weBsite 715

Preparing Your Website for Deployment 716
Avoiding Hard-Coded Settings 716
The Web.config File 717
Expression Syntax 717
The WebConfigurationManager Class 718

Introducing Bundling and Minification 723
Preparing for Deployment 727

Publishing Your Site 727
Introducing Web.config Transformations 730

Running Your Site Under IIS 734
Installing and Configuring the Web Server 735
Installing and Configuring ASP.NET 737
Understanding Security in IIS 741
NTFS Settings for Planet Wrox 742
Troubleshooting Web Server Errors 745

Moving Data to a Remote Server 747
Exporting Your Data to a File 748
Recreating the Database 750

The Deployment Checklist 751
What’s Next 753
Summary 754

appendiX a: eXerCise answers 757

appendiX B: ConFiGurinG sQl server 2012 781

Index 795

ftoc.indd 23 25-02-2014 10:45:06

flast.indd 24 2/21/2014 2:12:14 PM

Foreword

The adoption rate of emerging standards like HTML5 and CSS3 grows every day. Things that
were only possible on thick client apps are becoming a reality on the web. With browsers
getting faster and better each day, with more common tasks becoming available as reusable librar-
ies, and with open sourcing of nearly all big web frameworks, our World Wide Web is a happening
place. Penetration of mobile devices and the varied mobile app development technologies are making
developers further consider the open and accessible web as their medium of expression.

During this time, client side libraries like jQuery and jQuery mobile, Angular.js, Knockout.js
and server-side technologies like ASP.NET are making typically difficult and cumbersome tasks
approachable. On top of all this, free tools like Visual Web Developer make web development more
fun than ever before. It is indeed a joy to be a web developer these days, and it is nice to see this
book come out and make becoming a web developer approachable for everyone.

Imar Spaanjaars, the author of this book, has been a Microsoft MVP in ASP.NET since 2008, and
this time around we also had him join the ASP.NET Insiders group, in which we bounce feature
ideas and pre-release products even before they ever get to public beta. Imar has been a constant
source of feedback for the team during the development process and I am certain he will continue to
be so even in the future.

In Beginning ASP.NET 4.5.1: in C# and VB he starts slow, goes deep, builds concepts, and covers
the latest features of both ASP.NET 4.5.1 and Visual Studio 2013. Whether you are just starting
web development or upgrading to ASP.NET 4.5.1, this book is certainly worth adding to your
toolbox.

It is my pleasure to know Imar, and I want to thank him for his contribution to our community. His
insights and thoughts were invaluable to the product team behind ASP.NET and Visual Studio. I
hope his insights will help you too.

Vishal R. Joshi
Principal Program Manager Lead

Windows Azure Group, Microsoft Corporation
http://vishalrjoshi.com

flast.indd 25 2/21/2014 2:12:14 PM

www.SoftGozar.com

http://vishalrjoshi.com

flast.indd 26 2/21/2014 2:12:14 PM

IntroductIon

to buIld eFFectIve and attractIve database-drIven websItes, you need two things: a solid
and fast framework to run your web pages on and a rich and extensive environment to create and
program these web pages. With ASP.NET 4.5.1 and Visual Studio 2013 you get both. Together they
form the platform to create dynamic and interactive websites.

ASP.NET 4.5.1 builds on top of its popular predecessors ASP.NET 2.0, 3.5, 4.0, and 4.5. While
maintaining backward compatibility with sites built using these older versions, ASP.NET 4.5.1 and
Visual Studio 2013 introduce new, exciting features.

You’ll also find many changes — small and large — in both the ASP.NET Framework and Visual
Studio. Some of these changes are the inclusion of Entity Framework 6 (discussed in Chapter 14),
the introduction of browser Link discussed in Chapter 18 and the introduction of the Publish Wizard
for Web Site Projects, discussed in Chapter 19.

If you haven’t used Visual Studio 2012 with ASP.NET 4.5 yet, you’ll also appreciate the improved
CSS and JavaScript editors (discussed in Chapter 3 and Chapter 10, respectively), the inclusion of
NuGet (Chapter 11), and the Page Inspector (Chapter 18), all of which were added in VS 2012 that
VS 2013 builds on top of.

If you’re familiar with earlier versions of ASP.NET, you’ll be happy to find many small gems in the
new version of the framework that will make your life as a developer easier. I mention and discuss
these new features throughout this book where appropriate. For a complete list of all new features
in ASP.NET, check out the following white paper at the official ASP.NET website:

www.asp.net/visual-studio/overview/2013/release-notes

If this link no longer works by the time you read this book, search www.asp.net for: “What’s new
in ASP.NET 4.5.1.”

Probably the best thing about Visual Studio Express 2013 for Web is its price: it’s available for free.
This makes Visual Studio and ASP.NET probably the most attractive and compelling web develop-
ment technologies available today.

who thIs book Is For

This book is for anyone who wants to learn how to build rich and interactive websites that run on
the Microsoft platform. With the knowledge you gain from this book, you create a great foundation
to build any type of website, ranging from simple hobby-related websites to sites you may be creat-
ing for commercial purposes.

Anyone new to web programming should be able to follow along because no prior background in
web development is assumed, although it helps if you do have a basic understanding of HTML and

flast.indd 27 2/21/2014 2:12:14 PM

http://www.asp.net/visual-studio/overview/2013/release-notes
http://www.asp.net

xxviii

INTRODUCTION

the web in general. The book starts at the very beginning of web development by showing you how
to obtain and install Visual Studio. The chapters that follow gradually introduce you to new tech-
nologies, building on top of the knowledge gained in the previous chapters.

Do you have a strong preference for Visual basic over C# or the other way around? Or do you think
both languages are equally cool? Or maybe you haven’t made up your mind yet and want to learn
both languages? Either way, you’ll like this book because all code examples are presented in both
languages!

Even if you have some experience with prior versions of ASP.NET, you may gain a lot from this
book. Although many concepts from previous versions are brought forward into ASP.NET 4.5.1,
you’ll discover there’s a lot of new stuff to be found in this book, including the strongly typed data
controls, smarter code editors, new debugging facilities, and more.

what thIs book covers

This book teaches you how to create a feature-rich, data-driven, and interactive website called
Planet Wrox. Although this is quite a mouthful, you’ll find that with Visual Studio 2013, develop-
ing such a website isn’t as hard as it seems. You’ll see the entire process of building a website, from
installing Visual Studio in Chapter 1 all the way up to putting your website on a live server in
Chapter 19. The book is divided into 19 chapters, each dealing with a specific subject:

➤➤ Chapter 1, “Getting Started with ASP.NET 4.5.1.” In this chapter you see how to obtain
and install Visual Studio Express 2013 for Web, the free version of Visual Studio 2013 to
build ASP.NET websites. You are also introduced to HTML5, the latest standard for defin-
ing web pages. The chapter closes with an overview of the customization options that Visual
Studio gives you.

➤➤ Chapter 2, “Building an ASP.NET Website.” This chapter shows you how to create a
new website and how to add new items like pages to it. besides learning how to create a
well-structured site, you also see how to use the numerous tools in Visual Studio to create
HTML and ASP.NET pages.

➤➤ Chapter 3, “Designing Your Web Pages.” Visual Studio comes with a host of tools that
enable you to create well-designed and attractive web pages. In this chapter, you see how to
make good use of these tools. Additionally, you learn about CSS, the language that is used
to format web pages.

➤➤ Chapter 4, “Working with ASP.NET Server Controls.” ASP.NET Server Controls are
one of the most important concepts in ASP.NET. They enable you to create complex and
feature-rich websites with very little code. This chapter introduces you to the large number
of server controls that are available, explains what they are used for, and shows you how to
use them.

➤➤ Chapter 5, “Programming Your ASP.NET Web Pages.” Although the built-in CSS tools and
the ASP.NET Server Controls can get you a long way in creating web pages, you are likely

flast.indd 28 2/21/2014 2:12:14 PM

xxix

INTRODUCTION

to use a programming language to enhance your pages. This chapter serves as an introduc-
tion to programming with a strong focus on programming web pages. best of all: all the
examples you see in this chapter (and the rest of the book) are in both Visual basic and C#,
so you can choose the language you like best.

➤➤ Chapter 6, “Creating Consistent Looking Websites.” Consistency is important to give your
website an attractive and professional appeal. ASP.NET helps you create consistent-looking
pages through the use of master pages, which enable you to define the global look and feel
of a page. Skins and themes help you to centralize the looks of controls and other visual ele-
ments in your site. You also see how to create a base page that helps to centralize program-
ming code that you need on all pages in your site.

➤➤ Chapter 7, “Navigation.” To help your visitors find their way around your site, ASP.NET
comes with a number of navigation controls. These controls are used to build the navigation
structure of your site. They can be connected to your site’s central site map that defines the
pages in your website. You also learn how to programmatically send users from one page to
another.

➤➤ Chapter 8, “User Controls.” User controls are reusable page fragments that can be used in
multiple web pages. As such, they are great for repeating content such as menus, banners,
and so on. In this chapter, you learn how to create and use user controls and enhance them
with some programmatic intelligence.

➤➤ Chapter 9, “Validating User Input.” A large part of interactivity in your site is defined by
the input of your users. This chapter shows you how to accept, validate, and process user
input using ASP.NET Server Controls. Additionally, you see how to send e-mail from your
ASP.NET website and how to read from text files.

➤➤ Chapter 10, “ASP.NET AJAX.” Microsoft ASP.NET AJAX enables you to create good-
looking, flicker-free web pages that close the gap between traditional desktop applications
and websites. In this chapter you learn how to use the built-in Ajax features to enhance the
presence of your web pages, resulting in a smoother interaction with the website.

➤➤ Chapter 11, “jQuery.” jQuery is a popular, open source and cross-browser JavaScript
library designed to make it easier to interact with web pages in the client’s browser. In this
chapter you learn the basics of jQuery and see how to add rich visual effects and animations
to your web pages.

➤➤ Chapter 12, “Introducing Databases.” Understanding how to use a database is critical to
building websites, because most modern websites require the use of a database. You learn
the basics of SQL, the query language that enables you to access and alter data in a data-
base. In addition, you are introduced to the database tools found in Visual Studio that help
you create and manage your SQL Server databases.

➤➤ Chapter 13, “Displaying and Updating Data.” building on the knowledge you gained in
Chapter 12, this chapter shows you how to use the ASP.NET data-bound and data source
controls to create a rich interface that enables your users to interact with the data in the
database that these controls target.

flast.indd 29 2/21/2014 2:12:14 PM

xxx

INTRODUCTION

➤➤ Chapter 14, “LINQ and the ADO.NET Entity Framework.” LINQ is Microsoft’s solution
for accessing objects, databases, XML, and more. The ADO.NET Entity Framework (EF) is
Microsoft’s new technology for database access. This chapter shows you what LINQ is all
about, how to use the visual EF designer built into Visual Studio, and how to write LINQ
to Entities queries to get data in and out of your SQL Server database. You also see how to
work with Model binding and the strongly typed data controls to make it easier to write
code with fewer errors.

➤➤ Chapter 15, “Working with Data — Advanced Topics.” Whereas earlier chapters focus mostly
on the technical foundations of working with data, this chapter looks at the same topic from
a front-end perspective. You see how to change the visual appearance of your data through
the use of control styles. You also see how to interact with the data-bound controls and how
to speed up your website by keeping a local copy of frequently accessed data.

➤➤ Chapter 16, “Security in Your ASP.NET Website.” Although presented quite late in the
book, security is a first-class, important topic. This chapter shows you how to make use
of the built-in ASP.NET features related to security. You learn about a number of applica-
tion services that facilitate security. You also learn how to let users sign up for an account
on your website, how to distinguish between anonymous and logged-on users, and how to
manage the users in your system.

➤➤ Chapter 17, “Personalizing Websites.” building on the security features introduced in
Chapter 16, this chapter shows you how to create personalized web pages with content tar-
geted at individual users. You see how to configure and use ASP.NET Profile, which enables
you to store personalized data for known and anonymous visitors.

➤➤ Chapter 18, “Exception Handling, Debugging, and Tracing.” You need good debugging
tools to understand, improve, and fix the code you write for your ASP.NET web pages.
Visual Studio ships with great debugging support that enables you to diagnose the state of
your application at run time, helping you find and fix problems before your users do. You
also get a good look at the Page Inspector and the new browser Link feature.

➤➤ Chapter 19, “Deploying Your Website.” by the end of the book, you should have a website
that is ready to be shown to the world. but how exactly do you do that? What are the things
you need to know and understand to put your website out in the wild? This chapter gives
the answers and provides you with a good look at configuring different production systems
in order to run your final website. You also see how to implement bundling and minification
to improve the performance of your website.

how thIs book Is structured

This book takes the time to explain concepts step by step using working examples and detailed
explanations. Using the famous Wrox Try It Out and How It Works sections, you are guided
through a task step by step, detailing important things as you progress through the task. Each Try
It Out task is followed by a detailed How It Works section that explains the steps you performed in
the exercise.

flast.indd 30 2/21/2014 2:12:14 PM

xxxi

INTRODUCTION

At the end of each chapter, you find exercises that help you test the knowledge you gained in this
chapter. You can find the answers to each question in Appendix A at the end of this book. Don’t
worry if you don’t know all the answers to the questions. Later chapters do not assume you followed
and carried out the tasks from the exercise sections of previous chapters.

because this is a beginner’s book, I can’t go into great detail on a number of topics. For nearly every
chapter in this book, you’ll find numerous other books that exclusively deal with the topic discussed.
Where appropriate, I have included references to these books so you can easily decide where to go to
next if you want to deepen your knowledge on a specific subject.

what You need to use thIs book

This book assumes you have a system that meets the following requirements:

➤➤ Capable of running Visual Studio. For the exact system requirements, consult the
 documentation that comes with the software.

➤➤ Running Windows 7 or Windows 8 (at least the Home Premium edition), or one of the
Windows Server 2008 R2 or 2012 editions.

Chapter 1 shows you how to obtain and install Visual Studio 2013, which in turn installs the
Microsoft .NET Framework version 4.5.1 and SQL Server Express LocalDb edition; then all you
need is a good operating system and the drive to read this book!

conventIons

To help you get the most from the text and keep track of what’s happening, a number of conventions
are used throughout the book.

trY It out Conventions

The Try It Out is an exercise you should work through, following the text in the book.

 1. They usually consist of a set of steps.

 2. Each step has a number.

 3. Follow the steps through with your copy of the code.

 4. Then read the How It Works section to find out what’s going on.

How It Works

After each Try It Out, the actions you carried out and the code you’ve typed in are explained in detail.

flast.indd 31 2/21/2014 2:12:14 PM

xxxii

INTRODUCTION

Note Boxes like this one hold important, not-to-be forgotten information that
is directly relevant to the surrounding text.

CoMMoN MIStAKeS These are easily made while following the exercises
and are presented in a box like this. Be sure to read these carefully when you
get stuck in an exercise.

As for styles in the text:

➤➤ New terms and important words are italicized when they are introduced.

➤➤ Code within the text is presented like this: Request.QueryString.Get("Id")

➤➤ URLs that do not start with www are prefixed with http:// to make it clear it’s an Internet
address. URLs within the text are presented like this: http://imar.spaanjaars.com.

➤➤ You’ll see many URLs that start with tinyurl.com or bit.ly, which are handy, online
services to make URLs shorter (and thus easier to type). Entering a tinyurl.com or bit.ly
address in your browser should take you to its final destination.

➤➤ Menu items that require you to click multiple submenus have a special symbol that looks
like this: File➤➪➤New➤➪➤Folder.

➤➤ Code or content irrelevant to the discussion is either left out completely or replaced with
ellipses (three dots) and a comment, like this:

<tr>
 <td style="white-space: nowrap;">
 ... Menu items go here; not shown
 </td>
</tr>

The three dots are used regardless of the programming language used in the example, so
you’ll see it for C#, Visual basic, HTML, CSS, and JavaScript. When you see it in code
you’re instructed to type into the code editor, you can simply skip the three dots and any-
thing that follows them on the same line.

➤➤ Code shown for the first time, or other relevant code, is in the following format:

Dim roles As New ArrayList()
roles.Add("Administrators")
roles.Add("ContentManagers")

flast.indd 32 2/21/2014 2:12:14 PM

www.SoftGozar.com

http://imar.spaanjaars.com
http://tinyurl.com
http://tinyurl.com

xxxiii

INTRODUCTION

To put emphasis on a block of code surrounded by other code, I use a bolded font like this:

<appSettings>
 <add key="FromAddress" value="planetwrox@example.com"/>
</appSettings>

The surrounding code is used to make it easier to see where the bolded code should be placed.

➤➤ Quite often, white space in code is irrelevant, as is mostly the case with ASP.NET markup
and HTML. To fit code within the boundaries of this book, I often wrap code over multiple
lines and indent the part that should have been on the previous line like this:

Dim result As String =
 WebConfigurationManager.AppSettings.Get("FromAddress")

If you’re typing this code yourself, you can put it all on one line, or use the same line breaks if
you prefer. The sample code that comes with this book has the code typically on a single line.

➤➤ Text that appears on-screen often has Each Word Start With A Capital Letter, even though
the original screen text uses a different capitalization. This is done to make the screen text
stand out from the rest of the text.

source code

As you work through the examples in this book, you may choose either to type in all the code
manually or to use the source code files that accompany the book. All of the source code used in this
book is available for download from the book’s own page on the Wrox website at www.wrox.com/
go/begaspnet451. If somehow this link no longer works, go to www.wrox.com and locate the book
either by using the Search box or by using one of the title lists. Click the Download Code link on the
book’s detail page to obtain all the source code for the book.

Note Because many books have similar titles, you may find it easiest to search
by ISBN; for this book the ISBN is 978-1-118-84677-3.

You can download the full source for this book as a single file for each programming language used
in the book (C# or Visual basic). You can decompress these files with your favorite decompression
tool. If you extract the source, make sure you maintain the original folder structure that is part of
the code download. The different decompression tools use different names for this feature, but look
for a feature like Use Folder Names or Maintain Directory Structure. Once you have extracted the
files from the code download, you should end up with a folder called Source and a folder called
Resources. Then create a new folder in the root of your C drive, call it BegASPNET, and move the
Source and Resources folders into this new folder so you end up with folders like C:\BegASPNET\
Source and C:\BegASPNET\Resources. The Source folder contains the source for each of the 19
chapters of this book and the final version of the Planet Wrox website. The Resources folder con-
tains files you need during some of the exercises in this book. If everything turned out correctly, you
should end up with the structure shown in Figure I-1.

flast.indd 33 2/21/2014 2:12:15 PM

http://www.wrox.com/go/begaspnet451
http://www.wrox.com
http://www.wrox.com/go/begaspnet451

xxxiv

INTRODUCTION

Later chapters have you create folders called Site and Release inside the same C:\BegASPNET
folder, giving you a folder structure similar to that in Figure I-2.

FIgure I-1

FIgure I-2

flast.indd 34 2/21/2014 2:12:15 PM

xxxv

INTRODUCTION

The Site folder contains the site as you’ll build it throughout this book, and the Release folder will
contain your final version at the end of this book. Whenever you’re stuck with some examples in this
book, you can take a peek in the Source folder to see how things should have ended up.

If you want to run the site for a specific chapter to see how it works, be sure to open the chapter’s
folder in Visual Studio as a website. So, you should open a folder such as C:\BegASPNET\Source\
Chapter12 directly rather than opening its parent folder C:\BegASPNET\Source.

If you want to follow along in both programming languages, create a second folder called C:\
BegASPNETVB or C:\BegASPNETCS to hold the files for the other version. This way, the two sites can
coexist without any problems. If you create a folder specifically for the C# language, don’t include
the hash symbol (#) because that’s an invalid character in the pathname for a website.

Sticking to this structure ensures a smooth execution of the Try It Out exercises in this book.
Incorrectly mixing or nesting these folders makes it harder to carry out the exercises and may
even lead to unexpected situations and errors. Whenever you run into an issue or error that is not
explained in this book, ensure that your site structure is still closely related to the one presented
here.

errata

I have made every effort to ensure that there are no errors in the text or in the code. However, no
one is perfect, and mistakes do occur. If you find an error in this book, such as a spelling mistake
or a faulty piece of code, I’d be very grateful for your feedback. by sending in errata you may save
another reader hours of frustration and at the same time you will be helping me provide even higher
quality information.

To find the errata page for this book, go to www.wrox.com/go/begaspnet451 or go to www.wrox
.com and locate the title using the Search box or one of the title lists. Then, on the book details
page, click the Errata link. On this page you can view all errata that has been submitted for this
book and posted by Wrox editors. A complete book list including links to each book’s errata is also
available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the book’s Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. I’ll check
the information and, if appropriate, post a message to the book’s errata page and fix the problem in
subsequent editions of the book.

p2p.wrox.com

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics
of interest of your choosing when new posts are made to the forums. I am a frequent visitor of the
Wrox forums, and I’ll do my best to help you with any questions you may have about this book.

flast.indd 35 2/21/2014 2:12:15 PM

http://www.wrox.com/go/begaspnet451
http://www.wrox.com
http://www.wrox.com/misc-pages/booklist.shtml
http://www.wrox.com/contact/techsupport.shtml
http://www.wrox.com
http://www.wrox.com/contact/techsupport.shtml
http://p2p.wrox.com
http://p2p.wrox.com

xxxvi

INTRODUCTION

At p2p.wrox.com you will find a number of different forums that will help you not only as you read
this book, but also as you develop your own applications. To join the forums, just follow these steps:

 1. Go to p2p.wrox.com and click the Register Now link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P but in order to post your own messages,
you must join (which is free).

After you join, you can post new messages and respond to messages other users post. You’ll find
this book’s own forum under the ASP.NET 4.5.1 category that is available from the homepage. You
can read messages at any time on the web. If you would like to have new messages from a particu-
lar forum e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum
listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

flast.indd 36 2/21/2014 2:12:15 PM

http://p2p.wrox.com
http://p2p.wrox.com

Getting Started with
ASP.NET 4.5.1

What you Will learn in this chapter:

➤➤ How to acquire and install Visual Studio Express 2013 for Web and
Visual Studio 2013

➤➤ How to create your first website with Visual Studio Express 2013

➤➤ How an ASP.NET page is processed by the server and sent to the
browser

➤➤ How you can use and customize the development environment

Ever since the first release of the .NET Framework 1.0 in early 2002, Microsoft has put a lot
of effort and development time into ASP.NET, the part of the .NET Framework that enables
you to build rich web applications. This first release meant a radical change from the older
Microsoft technology to build websites called Active Server Pages (ASP), now referred to as
classic ASP. The introduction of ASP.NET 1.0 and the associated Visual Studio .NET gave
developers the following benefits over classic ASP:

➤➤ A clean separation between presentation and code. With classic ASP, your
programming logic was often scattered throughout the HTML of the page, making it
hard to make changes to the page later.

➤➤ A development model that was much closer to the way desktop applications are
programmed. This made it easier for the many Visual Basic desktop programmers to
make the switch to web applications.

➤➤ A feature-rich development tool (called Visual Studio .NET) that enabled developers
to create and code their web applications visually.

1

c01.indd 1 2/21/2014 9:57:15 AM

2 ❘ chapter 1 GettinG Started with aSP.net 4.5.1

➤➤ A choice between a number of object-oriented programming (OOP) languages, of which
Visual Basic .NET and C# (pronounced as C-Sharp) are now the most popular.

➤➤ Access to the entire .NET Framework, which for the first time meant that web developers
had a unified and easy way to access many advanced features to work with databases, files,
e-mail, networking tools, and much more.

Despite the many advantages of ASP.NET over the older model, using ASP.NET also meant an
increase in complexity and the knowledge needed to build applications with it, making it harder for
many new programmers to get started with ASP.NET.

After the initial release in 2002, Microsoft released another version of the .NET Framework (called
.NET 1.1) and the development IDE (called Visual Studio .NET 2003). Many people saw this as a
service pack for the initial release, although it also brought a lot of new enhancements in both the
framework and the development tools.

In November 2005, Visual Studio 2005 and ASP.NET 2.0 were released. To the pleasant surprise
of many developers around the world, Microsoft had again been able to drastically improve and
expand the product, adding many features and tools that helped reduce the complexity that was
introduced with ASP.NET 1.0. New wizards and smart controls made it possible to reduce the code
required to build an application, decreasing the learning curve for new developers and increasing
their productivity.

In November 2007, Microsoft released Visual Studio 2008 and the ASP.NET 3.5 framework,
followed by Visual Studio 2010 and ASP.NET 4 in March 2010 and Visual Studio 2012 and ASP
.NET 4.5 in September 2012. Each version added a lot of new functionality, including LINQ
(discussed in Chapter 14), the integration of the AJAX Framework (which you learn more about in
Chapter 10), the ADO.NET Entity Framework (discussed in Chapter 14), the inclusion of jQuery
(discussed in Chapter 11), and more.

The current versions, Visual Studio 2013 and ASP.NET 4.5.1, build on top of the successful
Visual Studio 2012 and ASP.NET 4.5 releases, leaving many of the beloved features in place
while adding new features and tools in other areas. Over the next 19 chapters, you learn how to
build full-featured ASP.NET websites using Visual Studio Express 2013 for Web, Microsoft’s free
development tool for ASP.NET web applications, which is also part of the full Visual Studio 2013
suite. This book guides you through the process of creating a fully functional, database-driven
website, starting with a bare-bones website in the next chapter, all the way down to the deployment
of it to a production environment in Chapter 19.

The sample site that comes with this book and all the examples are built with Visual Studio Express
2013 for Web (VSEW), so it’s important that you have it installed on your development machine. The
next section shows you how to acquire and install VSEW. Once you have it up and running, you see
how to create your first website, followed by an extensive tour through the many features of VSEW.

Microsoft Visual studio express for Web

Microsoft Visual Studio (VS) hosts an enormous number of tools that will help you in rapidly
creating complex ASP.NET web applications.

c01.indd 2 2/21/2014 9:57:15 AM

Microsoft Visual Studio Express for Web ❘ 3

Visual Studio for Web comes in two flavors: as a standalone and free version called Microsoft Visual
Studio Express 2013 for Web, and as part of the larger development suite called Visual Studio
2013, which is also available in different editions, each with its own price tag. With the commercial
editions of Visual Studio, the web components are fully integrated. You just start Visual Studio
2013 and then create a Web Site Project or a Web Application Project, which in turn enables the web
components of Visual Studio.

Although the Express edition of Visual Studio is free, it contains all the features and tools you need
to create complex and feature-rich web applications. All the examples you find in the book can
be built with the free Express edition, so there’s no need to shell out big bucks for the commercial
versions of Visual Studio 2013 to follow along with this book.

I’ll use the term Visual Studio (VS) to refer to both the commercial and free versions of Visual
Studio. When talking about the free edition specifically, I’ll use the terms Express edition or Visual
Studio Express 2013 for Web.

Getting Visual Studio is easy. You can download it from the Microsoft site as discussed next.

Getting Visual studio
You can get the free Visual Studio Express 2013 for Web from the Microsoft site at www
.microsoft.com/express/. On the Express homepage, follow the Downloads link until you reach
the page that offers the downloads for the Express products, including VSEW. From this page, you
can download VSEW as a Web Install, where you download only the installer, while the remaining
files are downloaded during the installation process. Make sure you choose Visual Studio Express
2013 for Web from the page, and not one of the other free Express products or one of the older
editions of Visual Studio.

Don’t be fooled by the file size of the Web Install download, which is just a few megabytes. The
file you download is just the installer that downloads the required files over the Internet. The total
download depends on your current system and will be somewhere between 500MB and 1GB.

If you want to try out the full version of Visual Studio 2013, which also contains the web
components, you can sign up for a free trial on the Microsoft site at http://msdn.microsoft.com/
vstudio. You can choose to download an ISO image that you’ll need to burn on a DVD or choose
to download the Web Installer.

Finally, you can download VSEW with the Microsoft Web Platform Installer (WPI) application
available for download at www.microsoft.com/web/platform and at www.asp.net/downloads/.
Besides VSEW, this tool also gives you easy access to many other web development–related tools and
programs. The WPI is an excellent tool to get a whole bunch of web development–related programs
and tools in one fell swoop. I often use it to get up and running quickly on a clean development
machine.

installing Visual studio express for Web (VseW)
Installing VSEW is a straightforward, although somewhat lengthy, process. Depending on your
installation method, your computer, and your Internet connection speed, installing VSEW may take
anywhere between 20 minutes and an hour — or even more.

c01.indd 3 2/21/2014 9:57:16 AM

http://msdn.microsoft.com/vstudio
http://www.microsoft.com/web/platform
http://www.asp.net/downloads/
http://www.microsoft.com/express/
http://www.microsoft.com/express/
http://msdn.microsoft.com/vstudio

4 ❘ chapter 1 GettinG Started with aSP.net 4.5.1

try it out Installing Visual Studio Express 2013 for Web

This Try It Out exercise guides you through installing
VSEW on your computer. It assumes you’re using the
web installer, although the process for installing the
Express edition from a DVD is almost identical. The
steps you need to perform to install the full versions
of Visual Studio 2013 are similar as well, although
the screens you’ll see will be somewhat different.

 1. Start by browsing to www.microsoft.com/
express/ and follow the instructions to
download VSEW 2013. You can install directly
by choosing the Download and then the Install
Now link or you can download an ISO file that
you can burn on a DVD or mount on Windows as
a virtual drive. Make sure you download Visual
Studio Express 2013 for Web, and not one of the
other free Express editions or older versions. If
this link is ever changed or no longer provides
direct access to the VSEW download, search the
web for “install Visual Studio Express 2013 for
Web” and you’ll be taken to a download page
where you can start the installation.

 2. When the download completes, start the installer.
You should see a screen similar to Figure 1-1.

Check the checkbox for the license terms and pri-
vacy policy.

If you’re installing the full version of Visual Studio,
click the Next button that appeared when you
agreed to the license terms. You see a screen simi-
lar to Figure 1-2. Make sure you select at least the
Microsoft Web Developer Tools option.

 3. In both cases, click the Install button to start the
installation process.

 4. After a while you should see a message indicating
that Visual Studio has been installed successfully.
The installer may need to reboot your machine
during or after the installation. Once the installer
has finished, Visual Studio is ready for use.

How It Works

The straightforward installation process guided you
through the setup of Visual Studio. During installation,

fiGure 1-1

fiGure 1-2

c01.indd 4 2/21/2014 9:57:16 AM

http://www.microsoft.com/express/
http://www.microsoft.com/express/

Creating Your First ASP.NET 4.5.1 Website ❘ 5

a copy of SQL Server 2012 Express LocalDB, Microsoft’s free version of its SQL Server 2012 database
engine, has been installed. SQL Server 2012 is discussed and used a lot in this book, starting with
Chapter 12.

Now that Visual Studio is installed, it’s time to fire it up and start working with it. The next section
shows you how to create your very first site in VSEW. You see how to create a site, add content to a web
page, and view that page in your browser.

creatinG your first asp.net 4.5.1 Website

You probably can’t wait to get started with your first ASP.NET website, so instead of giving you a
theoretical overview of websites in VS, the next Try It Out exercise dives right into the action and
shows you how to build your first web project. Then, in the How It Works explanation and the
section that follows, you get a good look at what goes on behind the scenes when you view an ASP
.NET page in your browser.

try it out Creating Your First ASP.NET Website

 1. Start Visual Studio from the Windows Start menu or Start screen. For VSEW, the menu item is
called VS Express 2013 for Web. For Windows 8.1, you’ll need to click the down arrow on
the Start screen to go to the list of all applications. If you’re using the commercial version of
Visual Studio, just start Visual Studio 2013 from the Start screen; all web-related components are
accessed from the main VS program.

You’ll be greeted by a dialog that lets you sign in to Visual Studio with a Microsoft account. This
is useful if you want to synchronize your settings across multiple machines. Click Sign In to enter
your credentials or sign up for a new account. If you don’t want to sign in, click Not now, maybe
later. The first time you start VS, there might be a delay before you can use it because it’s busy
configuring itself. Subsequent starts of the application will go much faster.

 2. If you’re using a commercial version of Visual Studio, you may also get a dialog box that lets you
choose between different collections of settings the first time you start Visual Studio. The choice
you make on that dialog box influences the layout of windows, toolboxes, menus, and shortcuts.
Choose the Web Development settings because those settings are designed specifically for ASP
.NET developers. You can always choose a different profile later by resetting your settings, as
explained later in this chapter.

 3. Once VS is fully configured, you see the main screen appear, as shown in Figure 1-3.

You get a full description of all the windows, toolbars, panels, and menus in the next section, so
for now, just focus on creating a new website. Click the File menu in the upper-left corner and
choose New Web Site. If you’re using a commercial version of Visual Studio, depending on the
settings you chose when starting Visual Studio the first time, you may have to open the submenu
New first. Make sure you don’t accidentally use the New Project menu, because that is used to
create different types of .NET applications.

c01.indd 5 2/21/2014 9:57:16 AM

6 ❘ chapter 1 GettinG Started with aSP.net 4.5.1

fiGure 1-3

fiGure 1-4

The New Web Site dialog box appears as shown in Figure 1-4.

 4. In the middle of the dialog, above the list of the available templates, select .NET Framework 4.5.1
from the drop-down list. Then, in the Installed Templates section on the left, you can choose a
programming language you will use for your site. This book shows all examples in both Visual
Basic and Visual C# so you can choose a language to your liking.

c01.indd 6 2/21/2014 9:57:17 AM

Creating Your First ASP.NET 4.5.1 Website ❘ 7

 5. In the list of templates in the middle, click ASP.NET Web Forms
Site. Verify that File System is the selected option in the Web
Location drop-down list at the bottom left. If you want, you could
change the location on disk where the website is stored by clicking
the Browse button and choosing a new location on your computer’s
hard drive. For now, the default location — a folder
under your Documents folder — is fine, so you can leave the
location as is.

 6. Click OK. VS creates a new website for you that includes
a number of files and folders (see Figure 1-5) to jump-start your
website.

 7. Open the file Default.aspx by double-clicking it and remove all
the code inside the <asp:Content> block that has its ID set to
BodyContent (it starts with <div> at line 5 and ends with
</div>) all the way at the bottom. Replace it with the following
bolded code:

<asp:Content runat="server" ID="BodyContent" ContentPlaceHolderID="MainContent">
 <h2>Hello World</h2>
 <p>Welcome to Beginning ASP.NET 4.5.1 on <%: DateTime.Now.ToString() %></p>
</asp:Content>

You’ll see code formatted like this a lot more in this book. When you are instructed to type in
code formatted like this with some code in bold, you only need to type in the bolded code. The
other code should already be present in the file.

Don’t worry about the code with the angle brackets (<>) and percentage symbol in the welcome
message; these are called tags, and you learn more about them later. Although this code may not
look familiar to you now, you can probably guess what it does: It writes out today’s date and time.

 8. Press Ctrl+F5 to open the page in your default web browser. You see a page similar to the one
shown in Figure 1-6.

fiGure 1-5

fiGure 1-6

c01.indd 7 2/21/2014 9:57:17 AM

8 ❘ chapter 1 GettinG Started with aSP.net 4.5.1

If you already have some experience with Visual Studio you may be used to pressing F5 instead. If
you use that option, the site is opened in debug mode and you may get a dialog asking if you want
to enable debugging (which you can safely do). Debugging with F5 is discussed in Chapter 18, and
you’re advised to use Ctrl+F5 until then.

If you see an information bar warning about intranet settings in Internet Explorer, click Turn on
Intranet Settings.

If you don’t see the date and time in the page, or if you get an error, look again at the code in the
welcome message. It starts with an angle bracket (<) followed by a percentage symbol and a colon.
It closes with a single percentage sign and another angle bracket (>). Also, make sure you typed
in the code exactly as shown here, including capitalization. This is especially true when you are
using C#, because that language is case sensitive.

 9. Notice how a small icon representing IIS Express has appeared in the tray
bar of Windows, visible in Figure 1-7.

The icon belongs to the built-in web server called IIS Express. This web
server has been started by VS automatically to serve the request for your
page. You learn more about how the web server processes your page later in this chapter.

If you don’t see the icon in the tray, click the arrow near the other icons in the Windows tray and
click the Customize option. Then set IIS Express System Tray to Show Icon and Notifications.

That’s it. You just created your very first ASP.NET website with Visual Studio.

How It Works

Although the website you created in this Try It Out is quite simple, the process that eventually results in
the page Default.aspx being displayed in your browser isn’t so simple. All by itself, an ASP.NET page
(also referred to as an ASPX page because of its extension, or a Web Form) can’t do much. It needs to
be processed and served by a web server before your browser can display it. That’s why VS automati-
cally started up IIS Express to handle the request for the page. Next, it started up your default web
browser and directed it to the address of the web server (http://localhost:49815/Default in the
Try It Out example), although the actual port number in the address may change every time you start
the web server because it is randomly chosen by VS.

It’s important to realize that the ASPX file you modified in VS is not the same as the one that eventually
gets displayed by the browser.

When you create a page in VS, you add markup to it. The markup in an ASPX page is a combination of
HTML, code for ASP.NET Server Controls (which you learn more about in this chapter and in Chapter
4), code written in Visual Basic.NET or C#, and more.

When you request an ASPX page in your browser, the web server processes the page, executes any
server-side code it finds in the file, and effectively transforms the ASP.NET markup into plain HTML
that it then sends to the browser, where it is displayed. In the preceding Try It Out, the resulting HTML
causes the browser to display the current date and time. HTML, or HyperText Markup Language, is
the language that browsers use to display a web page. You learn how HTML looks and how to use it
later in this chapter.

fiGure 1-7

c01.indd 8 2/21/2014 9:57:17 AM

http://localhost:49815/

An Introduction to ASP.NET 4.5.1 ❘ 9

To see how the final HTML differs from the original ASPX page, open the source for the page in
your browser. In most browsers, you can bring up the source window by right-clicking the page in the
browser and choosing View Source or View Page Source. This brings up your default text editor, show-
ing the HTML for the page.

If you already closed your browser after the preceding Try It Out, press Ctrl+F5 in VS to open the page
and choose View Source.

Scroll down in the source file until you see the line with the Welcome text. Notice how instead of the
code between the tags, you now see the actual date and time:

<h2>Hello World</h2>
<p>Welcome to Beginning ASP.NET 4.5.1 on 11/16/2013 4:18:17 PM</p>

When the web server processed the page, it looked up the current date and time from the server and
inserted it in the HTML that got sent to the browser. Depending on the language settings of your
Windows installation, you may see the date and time formatted differently to accommodate
the Windows Regional Settings.

In the following section, you see how ASP.NET works in much more detail.

an introduction to asp.net 4.5.1

When you type a URL like www.wrox.com in your web
browser and press Enter, the browser sends a request to the
web server at that address. This is done through HTTP,
the HyperText Transfer Protocol. HTTP is the protocol by
which web browsers and web servers communicate. When
you request the URL, you send a request to the server.
When the server is active and the request is valid, the server
accepts the request, processes it, and then sends the response
back to the client browser. The relationship between the
request and response is shown in Figure 1-8.

Because you are using IIS Express, the server and the client
are really the same machine. However, in a real-world
scenario, you’ll host your website on an external web server
where it can be accessed by many different clients.

For simple, static files, like HTML files or images, the web
server simply reads the file from its local hard drive and sends
it to the browser. However, for dynamic files, such as ASPX
pages, this is obviously not good enough. If the web server
were to send the ASPX file directly to the browser as a text file, you wouldn’t have seen the current
date and time in the browser, but instead you would have seen the actual code (<%: DateTime
.Now.ToString() %>). So, instead of sending the file directly, the web server hands over the request
to another piece of software that is able to process the page. This is done with a concept called

fiGure 1-8

Web Server

Request

Response

Browser

21

c01.indd 9 2/21/2014 9:57:18 AM

http://www.wrox.com

10 ❘ chapter 1 GettinG Started with aSP.net 4.5.1

Application Mapping or Handler Mapping, where an extension of a file (.aspx in this example) is
mapped to an application that is capable of handling it. In the case of an .aspx page, the request
is eventually handled and processed by the ASP.NET run time, part of the Microsoft .NET
Framework designed specifically to handle web requests.

Note In Figure 1-7 you don’t see the .aspx extension on the page name.
However, behind the scenes, the request is still served by Default.aspx. You
learn how to create so-called friendly URLs in Chapter 7.

During the processing of the page, three main areas can influence the way the page eventually ends
up in the browser:

➤➤ Static text. Any static text, like HTML, CSS, or JavaScript code you place in a page, is sent
to the browser directly. You learn more about HTML, CSS, and JavaScript (a programming
language used at the client) in this and subsequent chapters, including Chapter 3, which
gives you a detailed look at CSS.

➤➤ ASP.NET Server Controls. These controls are placed in your ASPX page and when they
are processed, they emit HTML that is inserted in the page. You learn more about server
controls after the discussion of HTML in this chapter, and Chapter 4 is devoted entirely to
ASP.NET Server Controls.

➤➤ Programming code. You can embed code, like Visual Basic .NET or C#, directly in a page,
as you saw in the previous Try It Out. In addition, you can place code in a separate code file.
The official term for this code file is Code Beside. However, most developers refer to this as
the Code Behind file, which is the term I’ll stick to in this book. This code can be executed
by the run time automatically, or based on a user’s action. Either way, execution of the code
can greatly influence the way the page is displayed, by accessing databases, performing
calculations, hiding or showing specific controls, and much more. You learn more about
this Code Behind file in the next chapter, and programming your ASP.NET web pages is
discussed in great detail in Chapter 5.

Once the page is done processing, and all the HTML for the page has been collected, the HTML is
sent back to the browser. The browser then reads it, parses it, and, finally, displays the page for you
to look at.

Because HTML is so critical for displaying web pages, the next section gives you an overview of
HTML.

understanding htMl
HTML is the de facto language for creating web pages and is understood by every web browser
that exists today. Since the beginning of the ’90s it has been the driving force of the World Wide
Web, the part of the Internet that deals with web pages. HTML documents are simple text files
that contain markup, text, and additional data that influences that text. The most recent version
of HTML is HTML5. Although the specification of HTML5 is still under development, a lot of
modern browsers support important parts of this specification, and this support increases with each
new release of those browsers. Despite the fact that not all browsers support HTML5 fully, it is

c01.indd 10 2/21/2014 9:57:18 AM

An Introduction to ASP.NET 4.5.1 ❘ 11

really the future of HTML-based applications, and therefore I use it in this book and for the Planet
Wrox demo website. Don’t worry about the limited browser support too much. All major browsers
support all of the HTML5 features you use in this book, or support can easily be simulated by a
script library called Modernizr, which you see later in the book.

HTML Elements and Tags
HTML uses text surrounded by angle brackets to indicate how your content should be rendered (or
displayed) in the browser. The text with angle brackets is referred to as a tag; a pair of tags holding
some text or other content is referred to as an element. Take another look at the HTML you saw in
the previous Try It Out where you opened the source window for the page in the browser:

<h2>Hello World</h2>
<p>Welcome to Beginning ASP.NET 4.5.1 on 11/16/2013 4:18:17 PM</p>

The first line of this example contains an <h2> element with an opening tag (<h2>) and a closing
tag (</h2>). This element is used to signify a heading at the second level (if you scroll up a bit in
the final source in the browser, you also see an <h1> element). Notice how the element is closed
with a similar tag, but with an additional forward slash (/) in it: </h2>. Any text between these
opening and closing tags is considered part of the element, and is thus rendered as a heading. In
most browsers, this means the text is rendered in a larger font. Similar to the <h2> tag are tags for
creating headings up to level six, such as <h1>, <h3>, and so on.

Below the heading element, you see a <p> element, which is used to denote a paragraph. All text
within the pair of <p> tags is considered part of the paragraph. By default, a browser renders a
paragraph with some additional margin spacing at the bottom, although you can override that
behavior.

Many tags are available in HTML, too many to cover them all here. The following table lists some
of the most important tags and describes how they can be used. For a complete list of all HTML
elements, take a look at the website of the organization that maintains the HTML standard:
www.w3.org/TR/html5/index.html.

taG description exaMple

<html> Used to denote the start and
end of the entire page.

<html>

 ...All other content goes here

</html>

<head> Used to denote a special section
of the page that contains data
about the page, including its
title and references to external
resources. The contents of this
element are not directly output on
screen but influence the looks and
behavior of the page, as you’ll see
later. This element is placed inside
the <html> element.

<head>

 ...Content goes here

</head>

continues

c01.indd 11 2/21/2014 9:57:18 AM

http://www.w3.org/TR/html5/index.html

12 ❘ chapter 1 GettinG Started with aSP.net 4.5.1

taG description exaMple

<title> Used to define the title of the
page. This title will appear in the
browser’s title bar. This element
is placed inside the <head>
element.

<title>

 Welcome to Planet Wrox 4.5.1

</title>

<body> Used to denote the start and
end of the body of the page. Its
content is what you see in the
browser. This element is placed
inside the <html> element.

<body>

 ...Page body goes here

</body>

<header> Used to denote the header of
a page. This element and all
remaining elements in this table
are placed inside the <body>
element.

<header>

 ...
</header>

<section> Used to denote various sections
in your page. You can have
multiple sections per page.

<section>

 ...Content goes here

</section>

<aside> Used to denote content that is
not part of the core page, but
presented as an aside.

<aside>

 ...
</aside>

<article> Used to denote the main piece
of content in a page.

<article>

 ...Main page content goes here

</article>

<footer> Denotes the footer section of a
page.

<footer>

 ...Content for footer goes here

</footer>

<a> Used to link one web page to
another or to create links within
a page.

 Visit the Wrox site

 Used to embed images in a
page.

Used to format text in a bold or
italic font.

This is bold text</ strong>

while this text is in italic

 (continued)

c01.indd 12 2/21/2014 9:57:18 AM

An Introduction to ASP.NET 4.5.1 ❘ 13

taG description exaMple

<form>

<input>

<textarea>

<select>

Used for input forms that enable
users to submit information to
the server.

<input type="text" value="Some Text" />

<table>

<tr>

<th>

<td>

These tags are used to create a
layout with a table. The <table>
tag defines the entire table, the
<th> is used to denote header
cells, and the <tr> and <td>
tags are used to define rows and
cells, respectively.

<table>

<tr>

 <td>This is a Cell in Column 1</td>

 <td>This is a Cell in Column 2</td>

</tr>

</table>

These three tags are used to
create numbered or bulleted
lists. The and the
tags define the looks of the
list (either unordered, with a
simple bullet, or ordered, with
a number), and the tag is
used to represent items in the
list.

 First item with a bullet

 Second item with a bullet

 First item with a number

 Second item with a number

 This tag is used to wrap and
influence other parts of the
document. It appears as inline,
so it adds no additional line
break on the screen.

<p>This is some normal text while

this text
appears in red </p>

<div> Just like the tag,
the <div> tag is used as a
container for other elements.
However, the <div> acts as a
block element, which causes
an explicit line break before
and after the <div> element by
default.

<div>This is some text on 1 line</div>

<div>

 This text is put directly under

 the previous text on a new line.

</div>

<audio>

<video>

<source>

Used to embed audio and video
files in your web page. The
<source> element is used to
define multiple types of audio
and video resources.

<video src="Somevideo.mpg" />

c01.indd 13 2/21/2014 9:57:18 AM

14 ❘ chapter 1 GettinG Started with aSP.net 4.5.1

HTML Attributes
In addition to the HTML elements, the examples in the preceding table also showed you HTML
attributes. Attributes contain additional information that changes the way a specific element
behaves. For example, with the tag that is used to display an image, the src attribute defines
the source of that image. Similarly, the tag contains a style attribute that changes the color
of the text to red. The value of the style attribute (color: red;) is part of a cascading style sheet
(CSS), which is discussed in much more detail in Chapter 3. Just as with the HTML elements, there
is a long list of available attributes and the elements to which they apply on the W3C website:
www.w3.org/TR/html5/index.html#attributes-1.

You don’t need to memorize all these elements and attributes. Most of the time, they are generated
for you automatically by VS. In other cases, where you need to enter them by hand, VS offers you
IntelliSense to help you find the right tag or attribute. IntelliSense is discussed in the next chapter.

HTML Comments
In order to comment something out in HTML, you wrap it in comment tags, like this:

<!-- This is a comment -->

Code you comment out is not processed by the browser (and thus isn’t visible), but it’s still sent
to the browser (and thus is viewable by the end user). Because it is still sent to the browser, it adds to
the page size, so you should use comments sparingly. In later chapters you see how to comment out
code at the server so it’s not sent to the client.

The Rules of HTML5
The rules of HTML5 are pretty simple, and most of the time VS helps you get it right or shows
you a list of errors and suggestions for how to fix them. HTML5 is actually more relaxed than the
previous version of HTML (called XHTML, which in turn was a reformulation of HTML 4.01
with XML rules) when it comes to enforcing rules.

Close Your Elements
Most elements in HTML must be closed. So when you start with a <div> tag, you must use </div>
somewhere later in your page. Some exceptions exist (such as the <p> element if it’s directly followed
by some other elements), but I prefer to consistently close my tags. This is also the case for elements
that don’t have their own closing tags, like or
 (to enter a line break). In HTML5, these
tags can be written as self-closing tags, where the closing slash is embedded directly in the tag itself
as in or
.

Usage of Attributes
Whenever you write an attribute in a tag, you can write the value wrapped in double quotes, single
quotes, or no quotes at all. For example, when writing out the tag and its src attribute, you
can write it like this:

You could also use single quotes to enclose the attribute value, like this:

c01.indd 14 2/21/2014 9:57:18 AM

http://www.w3.org/TR/html5/index.html#attributes-1

An Introduction to ASP.NET 4.5.1 ❘ 15

Both options work, as long as you use the same type of quote on both ends of the value. For values
that don’t contain a space, you can also leave out the quotes:

<input value=yes>

It’s also sometimes necessary to nest single and double quotes. For example, when some special ASP
.NET syntax requires the use of double quotes, you should use single quotes to wrap the attribute’s
value:

<asp:Label ID="TitleLabel" runat="server" Text='<%# Eval("Title") %>' />

You see this syntax used a lot more in later chapters in this book.

For consistency, this book uses double quotes where possible in all HTML that ends up in the client,
as this is generally the accepted standard.

Nest Your Elements Correctly
When you write nested elements, make sure that you first close the inner element you opened last,
and then close the outer element. Consider this correct example that formats a piece of text with
both bold and italic fonts:

This is some formatted text

Notice how the tag is closed before the tag. Swapping the order of the closing tags
leads to invalid HTML:

This is some formatted text

Add a DOCTYPE Declaration to Your Page
A DOCTYPE gives the browser information about the kind of HTML it can expect. By default, VS
adds a DOCTYPE for HTML5 to your page:

<!DOCTYPE html>

The DOCTYPE greatly influences the way browsers like Internet Explorer render the page, so if you’re
seeing odd behavior on your page, check that your page has the correct DOCTYPE.

You can view the complete HTML5 syntax rules at the W3C site at www.w3.org/TR/html-markup/
syntax.html.

Besides HTML, an ASP.NET web page can contain other markup as well. Most pages will have
one or more ASP.NET Server Controls to give them some additional functionality. The next section
briefly looks at these ASP.NET Server Controls, but you get an in-depth look at them in Chapter 4.

a first look at asp.net Markup
To some extent, the markup for ASP.NET Server Controls is similar to that of HTML. It also
has the notion of tags, elements, and attributes, using the same angle brackets and closing tags as
HTML does. One big difference is that the ASP.NET tags start with an asp: prefix. For example, a
button in ASP.NET looks like this:

<asp:Button ID="Button1" runat="server" Text="Click Me" />

Note how the tag is self-closed with the trailing slash (/) character, eliminating the need to type a
separate closing tag. If you wanted to, you could use a separate closing tag, though.

c01.indd 15 2/21/2014 9:57:18 AM

http://www.w3.org/TR/html-markup/syntax.html
http://www.w3.org/TR/html-markup/syntax.html

16 ❘ chapter 1 GettinG Started with aSP.net 4.5.1

When a server control is processed, it returns HTML. So, the code for the same button ends up like
this when rendered in the browser:

<input type="submit" name="Button1" value="Click Me" id="Button1" />

The process of converting the server control to its HTML representation is similar to the code you
saw earlier that displayed the current date. The server control is processed at the server by the ASP
.NET handler. This processing results in HTML, which is sent to the browser, where it’s displayed.
You see more of this in Chapter 4.

Now that you understand the basics of an ASP.NET page and the HTML that it generates, it’s time
to look at VS again. Knowing how to use the application and its many tools and windows is an
important step in building fun, good-looking, functional websites.

a tour of the ide

Visual Studio is by far the most extensive and feature-rich integrated development environment
(IDE) for building ASP.NET web pages. The abbreviation IDE refers to the way all the separate
tools you need to build complex web applications are integrated in a single environment. Instead
of writing code in a text editor, compiling code at the command line, writing HTML and CSS in
a separate application, and managing your database in yet another, VS enables you to perform all
of these tasks, and more, from the same environment. Besides the efficiency this brings because
you don’t have to constantly switch tools, this also makes it much easier to learn new areas of VS,
because many of the built-in tools work in the same way.

the Main development area
To get familiar with the many tools that are packed in VS’s interface, take a look at Figure 1-9. It shows
the same screen you got after you created your first website in VS, but now it highlights some of the
most important screen elements. If you are already familiar with a previous version of Visual Studio,
you could skip this section and pick up again at the next Try It Out exercise later in this chapter.

fiGure 1-9

Main Menu
Toolbar Area

Solution Explorer

Server Explorer

Properties Grid

Toolbox

Document Window

Tool Window

c01.indd 16 2/21/2014 9:57:19 AM

A Tour of the IDE ❘ 17

If you have a previous version of Visual Studio installed, your screen may look different, because
Visual Studio 2013 is able to import settings from older versions.

Choosing Your Development Profile
Because VSEW targets people new to ASP.NET development as well as seasoned web developers,
you can choose among different developer profiles: Basic Settings, Code Only, and Expert Settings.
In Basic Settings mode, many menu items you don’t frequently use have been hidden or are placed
in their own submenu. The Code Only profile is great for pure coding sessions where you’re not
interested in many of the design features of VSEW, such as Design View or the Toolbox. Expert
Settings mode gives you access to the full functionality of VSEW. You can switch between settings
using the Tools ➪ Settings menu. This book assumes you are using Expert Settings mode right from
the beginning. You may not need all the features you see right from the start, but you sure will use
most of them by the end of the book. Because the menu items change location depending on the
profile you choose, I decided to use Expert Settings mode right away, to make it easier to refer to
a specific menu item or feature. You don’t have this option in the commercial versions of Visual
Studio — Expert Settings is on by default.

The Main Menu
At the top of the application, right below the Windows title bar, you see the main menu. This menu
bar contains familiar items you find in many other Windows applications, like the File, Edit, and
Help menus as well as menus specific to VS, such as the Website and Debug menus. The menu
changes dynamically depending on the task you’re working on, so you’ll see menu items appear
and disappear as you work your way through the application. You can use the Help ➪ Set Help
Preference menu to configure online and offline help. Offline help needs to be installed first, and
online help requires a connection to the Internet. On the far right you see a Sign In link that lets
you sign in with your Microsoft account to enable synchronization of VS settings between
different machines.

The Notification Window
In the application’s title bar to the left of the Windows Close, Minimize, and Maximize buttons,
you see an icon with a little flag. Clicking the flag icon brings up the Notification window in
which Visual Studio provides you with important information. For example, it will show available
downloads for new documentation content, expired licenses, product updates, and more.
Depending on the importance of the available notifications, the color of the flag icon in the title bar
changes color. The Notifications window is also accessible from the View menu. If you installed
the RTM version of Visual Studio, you’re likely to see a few updates which you can safely
install now.

The Toolbar Area
Right below the menu, you see the toolbar area, which is capable of showing different toolbars that
give you quick access to the most common functions in VS. In Figure 1-9, only two of the toolbars
are enabled, but VS comes with many other toolbars that you can use in specific task-oriented
scenarios. Some toolbars appear automatically when you’re working on a task that requires a

c01.indd 17 2/21/2014 9:57:19 AM

18 ❘ chapter 1 GettinG Started with aSP.net 4.5.1

particular toolbar’s presence, but you can also enable and disable toolbars to your liking. To enable
or disable a toolbar, right-click an existing toolbar or the menu bar and choose the toolbar from the
menu that appears.

The Toolbox
On the left of the main screen, tucked away at the border of VS, you see the tab for the Toolbox. If
you click the tab, the Toolbox folds out, giving you a chance to see what it contains. If you click the
little pin icon in the upper-right corner of the Toolbox (or any of the other panels that have this pin
icon), it gets pinned to the IDE so it remains open.

Just as with the menu bar and the toolbars, the Toolbox automatically updates itself to show content
that is relevant to the task you’re working on. When you’re editing a standard ASPX page, the
Toolbox shows the many controls you have available for your page. You can simply drag an item
from the Toolbox and drop it on a location of your page where you want it to appear. These controls
are discussed in great detail in Chapter 4. Note that each Toolbox category also contains a Pointer
icon. This isn’t a control itself, though. In other designers for Visual Studio (such as Win Forms)
this icon is used to get out of control drawing mode, but it has little use in ASP.NET. The Toolbox
contains multiple categories that you can expand and collapse as you see fit to make it easier to find
the right tool. You can also reorder the items in the list, add and remove
items from the Toolbox, and even add your own tools to it. Customizing the IDE is discussed later
in this chapter.

If the Toolbox is not visible on-screen, press Ctrl+Alt+X to open it or choose View ➪ Toolbox,
provided you have chosen the Expert Settings option in the Tools ➪ Settings menu.

The Solution Explorer
At the right of the screen, you see the Solution Explorer. The Solution Explorer is an important
window because it gives you an overview of the files that comprise your website. Instead of placing
all your files in one big folder, the Solution Explorer enables you to store files in separate folders,
creating a logical and organized site structure. You can use the Solution Explorer to add new files to
your site, move existing files around using drag and drop or cut and paste, rename files and delete
them from the project, and more. Much of the functionality of the Solution Explorer is hidden
behind its right-click menu, which changes depending on the item you right-click.

At the top of the Solution Explorer, you see a small toolbar that gives you quick access to some
functionality related to your website, including refreshing the Solution Explorer window, an
option to nest related files, and a button that enables you to configure your website. Most of this
functionality is discussed later in the book.

You can access the Solution Explorer by choosing View ➪ Solution Explorer from the main menu or
by pressing Ctrl+Alt+L.

The Server Explorer
This window, hidden behind the Solution Explorer in Figure 1-9, enables you to work with your
databases and other services.

c01.indd 18 2/21/2014 9:57:19 AM

A Tour of the IDE ❘ 19

You can access the Server Explorer by choosing View ➪ Server Explorer or by pressing Ctrl+Alt+S.
The Server Explorer is discussed in more detail in the chapters about databases, starting with
Chapter 12.

The Team Explorer
This window, hidden behind the Solution Explorer in Figure 1-9, is used to connect to and work
with Team Foundation Server (TFS), Microsoft’s Application Lifecycle Management tool used for
source control, work item tracking, and more. For more details, and a free account for the hosted
version of TFS, check out http://tfs.visualstudio.com. TFS and the Team Explorer are not
discussed in this book.

The Properties Grid
With the Properties Grid, you can view and edit the properties of many items in Visual Studio,
including files in the Solution Explorer, controls on a web page, properties of the page itself, and
much more. The window constantly updates itself to reflect the selected item. You can quickly open
the Properties Grid by pressing F4. You can use this same shortcut to force the Properties Grid to
show the details of a selected item.

The Document Window
The Document Window is the main area in the middle of the application. This is where most of
the action takes place. You can use the Document Window to work with many different document
formats, including ASPX and HTML files, CSS and JavaScript files, code files for VB and C#, XML
and text files, and even images. In addition, you can use the same window to manage databases,
create copies of your site, view the pages in your site in the built-in mini-browser, and much more.

The Document Window is a tabbed window by default, which means it can host multiple
documents, each one distinguished by a tab with the filename at the top of the window. The right-
click menu of each tab contains some useful shortcuts for working with the file, including saving
and closing it and opening the file’s parent folder in File Explorer.

To switch between documents, you can press Ctrl+Tab, click the tab for the document you want
to see, or click the down arrow in the upper-right corner of the Document Window, next to the
Solution Explorer, shown in Figure 1-9. Clicking the down arrow reveals a list of open documents so
you can easily select one.

Another way to switch documents is to press Ctrl+Tab and then hold down the Ctrl key. On the
window that pops ups, you can select a document you want to work with in the right-hand column.
You can then use the cursor keys to move up and down in the list with open documents. This makes
it super easy to select the correct file.

On the same dialog box, you see a list with all active tool windows. Clicking one of the windows in
the list shows it on-screen, moving it in front of other windows if necessary.

To get a quick preview of a document without opening it for editing, click the file you want to see in
the Solution Explorer once. You can see that a file is in preview mode by its tab, which is docked to
the right of the row with tabs as opposed to the left for open files.

c01.indd 19 2/21/2014 9:57:19 AM

http://tfs.visualstudio.com

20 ❘ chapter 1 GettinG Started with aSP.net 4.5.1

At the bottom of the Document Window in Figure 1-9, you see three buttons called Design, Split,
and Source. These buttons appear automatically when you’re working with a file that contains
markup, such as ASPX pages. They enable you to open the Design View of a page (giving you an
idea of how the page will look in the browser), its Markup View (the HTML and other markup),
or both at the same time. How this works is explained in more detail in Chapter 2, but for now,
it’s important to realize you can switch among Markup, Split, and Design View by clicking one of
the three buttons. The Markup View is also often called the Source View or Code View window.
However, to avoid confusion with the code editor that is used to edit Code Behind files, this book
uses the term Markup View exclusively.

The Start Page
Whenever you start up VS, the Start Page is loaded in the Document Window. With the Start Page,
you can quickly create new and open existing websites and other projects. The Start Page also
provides a number of links to related news and information about web development. To pin your
favorite projects to the Start Page, click the pin icon to the left of the project name in the list with
recent projects. To unpin a project, right-click it and choose Remove from List. To reopen the Start
Page, choose View ➪ Start Page.

To get a feel for how you can use all these windows, the following Try It Out shows you how to
build a simple web page that contains a few ASP.NET Server Controls.

try it out Creating Your First ASP.NET Web Page

This Try It Out exercise guides you through creating a new website with a single page that contains a
number of ASP.NET Server Controls. You see how to use windows like the Document Window and
the Solution Explorer, and how to use the Toolbox and the Properties Grid to add ASP.NET Server
Controls to the page and change their looks.

 1. Start VSEW or Visual Studio 2013.

 2. If you’re using the Express edition, choose Tools ➪ Settings and choose Expert Settings to turn on
the developer profile that gives you access to the full feature set of VSEW.

 3. On the File menu choose New Web Site. Depending on configuration, you may have to choose File
➪ New ➪ Web Site instead. This triggers the New Web Site dialog box.

 4. In this dialog box, make sure that ASP.NET Empty Web Site is selected and not the ASP.NET
Web Forms Site item that you used in a previous exercise. Ensure that File System is chosen in the
Web Location drop-down list. It doesn’t matter if you choose Visual Basic or C# for this exercise.
Click OK to create the new site.

 5. Next, right-click the new website in the Solution Explorer. Make sure you click the website
(labeled WebSite2) and not the parent Solution element. It’s the highlighted element in Figure 1-5.
From the context menu that appears, choose Add ➪ Add New Item.

 6. In the new window that appears, click Web Form and type ControlsDemo as the name. The
ASPX extension is added for you automatically when you click the Add button. You can leave the
other settings in the dialog box at their default settings. The page should open in Markup View,
showing you the default HTML, like the <html>, <head>, <title>, and <body> elements that VS
adds there for you automatically when you create a new page.

c01.indd 20 2/21/2014 9:57:19 AM

A Tour of the IDE ❘ 21

 7. Switch the page to Design View by clicking the Design
button at the bottom of the Document Window.

 8. If the Toolbox isn’t open yet, press Ctrl+Alt+X to open
it or click the Toolbox tab to show it and then click the
pin icon in the top-right corner to make the Toolbox
visible at all times. Drag a TextBox and a Button from
the Standard category of the Toolbox into the dashed
area in the Design View of the page. You should end up
with a Design View that looks similar to Figure 1-10.

 9. Right-click the button in Design View and choose
Properties. In the Properties Grid, locate the Text property
under the Appearance category (shown in Figure 1-11) and
change it from Button to Submit Information. As soon as
you press Tab or click somewhere outside the Properties
Grid, the Design View of the page is updated and shows
the new text on the button.

 10. Press Ctrl+F5 to open the page in your default browser.
Note that it’s not necessary to explicitly save the changes
to your page (although it’s a good idea to do this often anyway using the shortcut Ctrl+S). As soon
as you press Ctrl+F5 to run the page, VS saves all changes to open documents automatically.

 11. Type some text in the text box and click the button. Note that after the page has reloaded, the
text is still displayed in the text box. Other than that, not much has happened because you didn’t
write any code for the button yet.

How It Works

When you dragged the Button and the TextBox from the Toolbox on the page in Design View, VS
added the corresponding code for you in Markup View automatically. Similarly, when you changed the
Text property of the button in the Properties Grid, VS automatically updated the markup for the con-
trol in Markup View. Instead of using the Properties Grid, you could also have typed the text directly
between the quotation marks of the Text property in Markup View.

After changing the Text property, your page should contain this code in Markup View:

<asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>
<asp:Button ID="Button1" runat="server" Text="Submit Information" />

When you press Ctrl+F5 to view the page in the browser, the web server receives the request, the page is
processed by the ASP.NET run time, and the resulting HTML for the page is sent to the browser.

After you type in some text and click the button, the same process is more or less repeated: The
web server receives the request, the page is processed, and the result gets sent back to the browser.
When you click the button, you cause a postback to occur, where any information contained in the
page — such as the text you typed in the text box — is sent back to the server. ASP.NET reacts to the
postback by rendering the page again. However, this time it prepopulates controls, like the TextBox,
with the values that were sent to the page.

fiGure 1-10

fiGure 1-11

c01.indd 21 2/21/2014 9:57:19 AM

22 ❘ chapter 1 GettinG Started with aSP.net 4.5.1

Take a look at the resulting HTML for the page after the postback, using the browser’s View Source
command (rerun the page from VS by pressing Ctrl+F5 if you already closed it). You should see code
similar to this:

<input name="TextBox1" type="text" value="Hello World" id="TextBox1" />
<input type="submit" name="Button1" value="Submit Information" id="Button1" />

Just as with the earlier example, you can see that the resulting HTML is substantially different from the
original ASPX markup.

Postbacks are an important concept in ASP.NET, and you see more about them in other chapters,
including Chapter 4.

VSEW hosts many more windows and tool panels than those you have seen so far. The next section
briefly touches upon some of the windows you’ll most frequently use when building ASP.NET web
pages. All of the windows mentioned are accessible from the main View menu in VS or VSEW if
you’re using the Expert Settings mode.

informational Windows
In addition to the windows that are visible by default when you start VS, many more windows
are available. You see most of them in action in the remainder of this book, but some are worth
highlighting now. You access all windows that are discussed next from the main View menu.

The Error List
The Error List gives you a list of the things that are currently somehow broken in your site,
including incorrect markup in your ASPX or HTML files and programming errors in VB or C# files.
This window can even show you errors in XML and CSS files. The Error List shows its messages
in three categories — Errors, Warnings, and Messages — that signify the severity of the problem.
Figure 1-12 shows the Error List for a page that has some problems with its CSS and XHTML.

fiGure 1-12

The Output Window
When you try to build your site using the Build menu, the Output window tells you whether or not
the build succeeded. If the build failed, for example because you have a programming error, it tells
you why the build failed. In the commercial versions of Visual Studio, the Output window is used
for other information as well, including the status of external plug-in programs. Building — or
compiling — websites is discussed later in this book, including in Chapter 19, which deals with
deployment of your website.

c01.indd 22 2/21/2014 9:57:20 AM

Customizing the IDE ❘ 23

The Find Results Window
The Find and Replace features of VS are invaluable tools when it comes to managing the content of
your site. You will often need to replace some text in the current document or even in the entire site.
Find in Files (Ctrl+Shift+F) and Replace in Files (Ctrl+Shift+H) both output their results in the Find
Results window, as shown in Figure 1-13.

fiGure 1-13

Because having several informational windows open at the same time may take up precious screen
space, it’s often a good idea to dock them. This way, only one of them is visible at a time, while you
still have quick access to the others. You learn how to customize the IDE, including the docking of
windows, next.

custoMizinG the ide

Although the standard setup of Visual Studio and its tool windows is pretty useful, there’s a fair
chance you want to customize the IDE to your liking. You may want to move some of the windows
to a location where they are easier to reach, or you may want to open additional windows you
frequently use. Visual Studio is fully customizable and enables you to tweak every little detail of the
IDE. In the next section, you learn how to perform the most common customization tasks.

rearranging Windows
To give each window the location it deserves, you can drag and drop them in the main IDE. Simply
grab a window’s title bar or its bottom tab and drag it in the direction of the new location. Once
you start dragging, you see that Visual Studio gives you visual cues as to where the window will end
up (see Figure 1-14).

If you drag the window over one of the four square indicators at the sides of the middle indicator,
the window will be docked next to the existing window. Once you drop it, the window pops to its
new location. If you drop the window on the square in the middle of the large indicator, the window
docks with that window, sharing the same screen space. Each window has its own tab, as you can
see with the windows at the bottom of Figure 1-14.

In addition to docking windows with others in the IDE, you can also have floating windows. To
change a docked window into a floating one, drag it away from its current location and
drop it somewhere in the IDE without hitting one of the visual cues on the screen. You can
also choose Window ➪ Float from the main menu or right-click the window’s title bar and
choose Float.

c01.indd 23 2/21/2014 9:57:20 AM

24 ❘ chapter 1 GettinG Started with aSP.net 4.5.1

To restore a floating panel to its previous docked location, right-click its title bar and choose Dock
or choose Window ➪ Dock from the main menu. Make sure you don’t choose Dock as Tabbed
Document for the tool windows, like the Toolbox or the Solution Explorer, or they’ll end up in the
main Document Window. This makes it difficult to use these tool windows together with an open
file because the two windows will share the same space.

Modifying the toolbox
You can modify the Toolbox as well. By default, the items are sorted alphabetically, but you can reorder
them using drag and drop. To do this, open the Toolbox (press Ctrl+Alt+X) and drag an item (such as the
TextBox under the Standard category) to a different location. You can also delete items from the Toolbox
by right-clicking them and choosing Delete from the context menu. Don’t worry about items getting lost
forever; you can reset the Toolbox again by choosing Reset Toolbox from the same menu.

You can also add your own items to the Toolbox. The most common use for this is code snippets.
Simply highlight some text or code in the Document Window and drag it to the Toolbox. You can
then right-click the item and choose Rename Item to give it a more meaningful name that you can
easily recognize.

To avoid cluttering up the Toolbox with your own code snippets, consider creating a separate
category for them. You can do this by choosing Add Tab from the Toolbox’s right-click menu. Enter
a name and press Enter, and your Toolbox tab is ready for use.

fiGure 1-14

c01.indd 24 2/21/2014 9:57:20 AM

Customizing the IDE ❘ 25

In the next Try It Out exercise, you get the chance to play around with the Visual Studio IDE so you
can customize it to your liking.

try it out Customizing the IDE

In this exercise you practice opening and rearranging the windows in the VS IDE. Don’t be afraid to
mess things up. A little later in this chapter, instructions are given on how to reset the IDE to the way it
was when you opened it the first time.

 1. If you closed your website since the previous Try It Out, open it again, or create a new one using
the File menu.

 2. From the View menu, choose Error List to open the Error List window. If you don’t see the Error
List item directly, choose Tools ➪ Settings ➪ Expert Settings first. Notice how the Error List gets
docked below the Document Window by default.

 3. From the same View menu, choose Task List. By default, it is docked in the same space as the
Error List, with the tabs for both windows next to each other.

 4. Click the tab of the Task List and, while holding down your mouse button, drag the Task List
away from its location in the direction of the Document Window. Once you release the window, it
appears as a floating window in the IDE. To restore the window, drag it back on the center square
of the Error List. To change the order in which tabs appear in a tab group, drag a tab over the
other tabs and release it at the desired location.

 5. If you want, you can repeat the previous steps for other windows that are visible in the IDE by
default or for the ones you find under the View menu. Spend some time familiarizing yourself
with all the different windows and how you can arrange them on-screen. Because you’ll
be working a lot with these windows in the remainder of this book, it’s good to be familiar with
their locations.

 6. Next, open the ControlsDemo.aspx page (or add a new ASPX first if you created a new website)
from the Solution Explorer by double-clicking it. When the page opens, the Toolbox becomes
visible automatically. If it doesn’t, press Ctrl+Alt+X to open it.

 7. Right-click the Toolbox and choose Add Tab. Type HTML Fragments as its new name and press
Enter. This adds a new category to the Toolbox that behaves just like all the others.

 8. With the Document Window showing your ASPX page in Markup View, type <h1> directly after
the opening <div> tag. Note that Visual Studio automatically inserts the closing </h1> for you.
You should end up with code in Markup View looking like this:

<form id="form1" runat="server">
 <div>
 <h1></h1>
 </div>

 9. Highlight the opening and closing <h1> tags, and then drag the selection from the Markup
View window onto the new Toolbox tab you created in step 7. The selection shows up as
Text: <h1></h1>.

 10. Right-click the Toolbox item you just created, choose Rename Item, and type Heading 1 as
the name.

c01.indd 25 2/21/2014 9:57:20 AM

26 ❘ chapter 1 GettinG Started with aSP.net 4.5.1

 11. Put your cursor in the Document Window again and press Ctrl+K directly followed by Ctrl+D to
format the document in the Document Window. Alternatively, choose Edit ➪ Format Document
from the main menu. This formats the document according to the rules you have set in the Text
Editor Options dialog box. Formatting is also available for a number of other document types,
including C# and VB.NET code, and CSS and XML files.

From now on, whenever you need a heading in your document in Markup View, simply place the cur-
sor in the Document Window where you want the heading to appear and double-click the appropriate
heading in the Toolbox.

Note This exercise serves as an example of adding code to the Toolbox. For
an <h1> element, you might prefer to type the code directly in the code edi-
tor. Alternatively, you could use a code snippet. Enter h1 in the editor and then
press Tab. Visual Studio expands the code for the heading to <h1></h1> and
positions your cursor between the two tags so you can start typing the heading
right away.

How It Works

Most of the steps in this Try It Out are self-explanatory. You started off by opening a few windows that
you frequently need when building websites. You then used the drag-and-drop features of the IDE to
rearrange the window layout according to your personal preferences.

You then added an HTML fragment to a custom tab in the Toolbox. When you drag any markup to the
Toolbox, Visual Studio creates a Toolbox item for it that contains the selected markup. Whenever you
need a copy of that markup in your page, simply double-click the item or drag it from the Toolbox into
Markup View. This is a great time saver for HTML fragments that you frequently use. You typically
use this technique for larger blocks of code; for elements like the <h1>, Visual Studio has a better tool
called Code Snippets, which you’ll learn more about later in this book.

At the end you used Visual Studio’s document formatting option to change the layout of the code in the
document. This helps to keep the code organized and easier to read. You can fully change how the code
is formatted by using the Options dialog box accessible through Tools ➪ Options. Then expand the
path Text Editor ➪ HTML (Web Forms) ➪ Formatting, and click Tag Specific Options.

Besides the window layout and the Toolbox, Visual Studio enables you to customize a lot more in
the IDE. The following section explains how to customize three other important IDE features: the
Document Window, toolbars, and keyboard shortcuts.

customizing the document Window
Visual Studio gives you great flexibility with regard to how text is displayed in the Document
Window. You can change things like font size, font color, and even the background color of the
text. You can access the Font and Colors settings by choosing Tools ➪ Options, and then choosing
Environment ➪ Fonts and Colors. Alternatively, press Ctrl+Q to put the focus on the Quick Launch
textbox at the very top of the IDE. Then type font and press Enter to select the highlighted item

c01.indd 26 2/21/2014 9:57:20 AM

Customizing the IDE ❘ 27

Environment — Fonts and Colors. Quick Launch is a great tool for accessing features such as
options and menu commands. For more information about Quick Launch, check out: http://bit
.ly/1eljcko.

One thing I like to customize in the Document Window is the tab size, which controls the number
of spaces that are inserted when indenting code. To change the tab size, choose Tools ➪ Options,
and then under Text Editor choose All Languages ➪ Tabs. I usually set the Tab and Indent Size to
2 spaces, leaving the other settings in the Tab panel untouched. Another thing I like to customize
is the number of line breaks before and after HTML elements. The Options window gives you
full control over this: Select Text Editor ➪ HTML (Web Forms) ➪ Formatting and then click Tag
Specific Options. In the list on the left you can select a tag and then with the settings on the right
you can control how the tag is formatted. The Preview box makes it easy to see how the various
settings change the formatting. Note that Web Forms has its own category in the Options dialog
because it uses a different HTML editor under the hood than the other HTML-based editors found
in Visual Studio.

If you prefer to see line numbers in the gutter of the Document Window, choose Tools ➪ Options ➪
Text Editor ➪ All Languages and select the Line Numbers checkbox.

With the exception of the Tab Size being set to 2 and the number of line breaks around a few
HTML elements, all screen shots in this book show the default setup of VSEW.

customizing toolbars
You can customize toolbars in three ways: you can show or hide the built-in toolbars, you can add
and remove buttons on existing toolbars, and you can create your own toolbars with buttons you
often use.

Enabling and Disabling Toolbars
You disable and enable existing toolbars by right-clicking any existing toolbar or the menu bar and
then selecting the appropriate item from the list. Once the toolbar is displayed, you can use its drag
grip at its left to drag it to a new location within the Toolbar area.

Editing Existing Toolbars
If you feel that an existing toolbar is missing an important button or that it contains buttons you
rarely use, you can customize the buttons on the toolbar. To do this, right-click any toolbar or the
menu bar, choose Customize, switch to the Commands tab, and select the toolbar you want to
modify from the Toolbar drop-down. With the command buttons at the right, you can add new and
remove existing commands, or change their order.

Creating Your Own Toolbars
Creating your own toolbar is useful if you want to group some functions that you frequently use. To
create a new toolbar, open the Customize window as explained in the preceding section. Click the
New button and type a name for the toolbar. Then switch to the Commands tab and modify your
toolbar as you would do with existing toolbars.

c01.indd 27 2/21/2014 9:57:20 AM

http://bit.ly/1eljcko
http://bit.ly/1eljcko

28 ❘ chapter 1 GettinG Started with aSP.net 4.5.1

customizing Keyboard shortcuts
Another setting many developers like to change is keyboard shortcuts. Keyboard shortcuts are a
great way to save time because they enable you to perform a task with a simple keyboard command
instead of reaching for the mouse and selecting the appropriate item from the menu. To change
the keyboard shortcuts, choose Tools ➪ Options, expand Environment, and click Keyboard.
Alternatively, press Ctrl+Q, type keyboard, and hit enter. Locate the command for which you want
to change the shortcut in the list of commands. Because this list contains many items, you can
filter the list by typing a few letters from the command. For example, typing print in the Show
Commands Containing field gives you a list of all print-related commands.

Next, in the Press Shortcut Keys field, type a new shortcut and click Assign. Visual Studio enables
you to enter a double shortcut key for a single command. For example, you can bind the command
Close All Documents to the command Ctrl+K, Ctrl+O. To perform this command, you need to press
both key combinations in rapid succession. Although a double shortcut key may seem like overkill, it
greatly increases the number of available shortcut keys.

resetting your changes
Don’t worry if you feel that you have messed up Visual Studio by trying out the numerous
customization options. You have many ways to restore Visual Studio to its previous state.

Resetting the Window Layout
The command Reset Window Layout, accessible from the Window menu, resets all windows to the
position they were in when you first started Visual Studio. This command is useful if you misplaced
too many windows and ended up with a cluttered IDE.

Resetting the Toolbox
If you removed an item from the Toolbox by mistake or even deleted an entire tab, you can reset the
Toolbox to its original state by right-clicking the Toolbox and choosing Reset Toolbox. You need to
think twice before you use this command because it also deletes all your custom code snippets.

Resetting All Settings
If you followed along with the previous Try It Out exercises, and then started experimenting with
the customization possibilities, your IDE is now probably in one of two states: It either looks exactly
the way you want it, or it looks like a complete mess. In the latter case, it’s good to know that it is
easy to clean up the chaos.

To completely revert all Visual Studio settings to the way they were right after installation, choose
Tools ➪ Settings ➪ Import and Export Settings or Tools ➪ Import and Export Settings, depending
on the version of VS you’re using. Then choose the Reset All Settings option and click Next. If you
want, you can create a backup of the existing settings; otherwise, choose No, Just Reset Settings.
You get another screen that enables you to choose among a number of settings collections. Choose
Expert Settings or Web Development because these options give you access to all the features you
need to follow along with this book. Finally, click Finish. This action causes all settings to be reset
to their defaults, including the window layout, Toolbox and Toolbox customizations, shortcut

c01.indd 28 2/21/2014 9:57:21 AM

The Sample Application ❘ 29

keys, and everything you may have changed in the Visual Studio Options dialog box. So, use this
command only when you’re really sure you want a fresh, new setup of Visual Studio.

With some basic knowledge about ASP.NET pages and Visual Studio, it’s time for some real action.
In the next chapter, you see how to create ASP.NET websites and web pages in much more detail.
You learn how to organize your site in a logical and structured way, how to add the many different
types of files to your site and how to use them, and how to connect the pages in your site.

However, before you proceed to the next chapter, there is one more important topic you need to
look at: the sample application that comes with this book.

the saMple application

Building websites is what this book is all about, so it makes a whole lot of sense that this book
comes with a complete and functional sample site that is used to showcase many of the capabilities
of ASP.NET.

The sample site you build in this book is called Planet Wrox, a site that serves as an online
community for people interested in music. The site offers the following features to its visitors:

➤➤ Reviews about albums and concerts that have been posted on the site by the administrator.

➤➤ The Gig Pics section, an online photo album where users can share pictures taken at concerts.

➤➤ The ability to switch between the different graphical themes that the site offers, giving you a
chance to change the look and feel of the site without altering the content.

➤➤ The ability to store musical preferences that influence the information users see on the site.

➤➤ Access to bonus features for registered users.

The site enables the administrator (that is, you, the owner of the site) to do the following:

➤➤ Add and maintain the reviews.

➤➤ Manage the different musical genres in the system.

➤➤ Manage photo albums created by visitors to the site.

Figure 1-15 shows the Planet Wrox homepage.

Figure 1-16 shows another page from Planet Wrox, but with a different theme applied. This page
enables users to enter their personal information and specify preferences with regard to their favorite
musical genres.

You can find an online running example of the site at www.PlanetWrox.com. There you can play
around with the site from an end user’s perspective.

You can also download the source for the sample application and all other examples from this book
from the Wrox website at www.wrox.com/go/begaspnet451.

By the end of this book, you’ll be able to build all of the functionality from the sample site (and
hopefully even more) in other websites. Don’t worry if it sounds like an awful lot of complex things.
I guide you, step by step, from the beginning of the application all the way to the last feature. As
long as you keep having fun doing this, I’m sure you’ll make it all the way.

c01.indd 29 2/21/2014 9:57:21 AM

http://www.PlanetWrox.com
http://www.wrox.com/go/begaspnet451

30 ❘ chapter 1 GettinG Started with aSP.net 4.5.1

fiGure 1-15

fiGure 1-16

practical tips on Visual studio

Most of the chapters in this book end with a short section of useful tips. These are tips that either
didn’t fit in anywhere in the text or encourage you to further explore or test out things. Sometimes
they may seem irrelevant or hard to understand at first, but you’ll find that as you make your way
through this book and look back at tips from previous chapters, things start to make sense. Don’t
worry if you don’t understand certain things completely the first time you see them. Give the idea
some thought and revisit the topic a few days later. Hopefully, by letting the ideas sink in a little,

c01.indd 30 2/21/2014 9:57:21 AM

Summary ❘ 31

things start to make more sense automatically. This applies not only to the Practical Tips section,
but to the entire book.

➤➤ Before you move on to the next chapter, play around with Visual Studio some more. Add
a couple of pages to your site, drag and drop some controls from the Toolbox onto your
pages, and view them in your browser. That way, you’ll have a better understanding of the
tools and the many controls available when you start the next chapter.

➤➤ Familiarize yourself with the many options to tweak the Visual Studio IDE. When building
websites, you spend most of your time in this IDE, so it makes sense to tweak it as much as
possible to your liking. Don’t be afraid to mess it up; you can always revert to previous settings.

➤➤ Take some time to browse through the settings you find in the Options dialog box of
Visual Studio (accessible through the Tools ➪ Options menu). Many of the settings are self-
explanatory and can really help in further tweaking the IDE.

suMMary

This chapter covered a lot of important ground to get you started with ASP.NET 4.5.1 and Visual
Studio. It started off with a brief history of the Microsoft .NET Framework in general and ASP
.NET in particular.

You then learned how to acquire and install Visual Studio, which is the most extensive and versatile
tool available for creating ASP.NET 4.5.1 web pages. To enable you to work with it effectively, this
chapter showed you how to use and customize the main features of the IDE. In subsequent chapters,
you use and extend this knowledge to work with the many tools found in VS.

It’s important to understand how a page in Visual Studio makes it to your web browser. Some
knowledge of the web server that serves the request and how the page is processed to deliver the
final HTML in the browser is critical to understanding ASP.NET. This chapter gave you a short
introduction to the way a web page is requested and served to the browser.

In the next chapter, you get a much more detailed explanation of creating websites.

exercises

 1. Explain the differences between the markup of a page in Visual Studio and the final HTML
page in the browser.

 2. Imagine you have a number of HTML fragments that you expect to use a lot throughout the
site. What’s the best way to make these fragments available in Visual Studio?

 3. Name three ways you can reset some or all of the IDE customization settings.

 4. If you want to change the property of a control on your page, for example the text of a
button, which two options do you have available to make the change?

You can find answers to these exercises in Appendix A.

c01.indd 31 2/21/2014 9:57:21 AM

32 ❘ chapter 1 GettinG Started with aSP.net 4.5.1

 ➤ What you learned in this chapter

attribute Extra information in a tag to define or change its behavior

element A pair of tags holding some text or other content

htMl HyperText Markup Language: the language that browsers use to
display a web page

http HyperText Transfer Protocol: the protocol by which web browsers and
web servers communicate

ide Integrated development environment: an integrated collection of
applications and tools to develop applications

Javascript A programming language used to interact with a web page in the
client’s browser

tag Text surrounded by angle brackets to create HTML elements

Visual studio 2013 The development environment to build .NET applications

Visual studio express
2013 for Web

The free version of Visual Studio that enables you to build ASP.NET
web applications

c01.indd 32 2/21/2014 9:57:21 AM

2
Building an ASP.NET Website

What you Will learn in this chapter:

➤➤ The different project types you can choose from as a starting
point for your ASP.NET websites

➤➤ The different project templates that are available to jump-start
your site development

➤➤ The numerous file types available in ASP.NET and what they are
used for

➤➤ Ways to create structured websites that are easy to manage, now
and in the future

➤➤ How to use the designer tools to create formatted web pages

Wrox.com code doWnloads for this chapter

You can find the wrox.com code downloads for this chapter on the Download Code tab at
www.wrox.com/go/begaspnet451. The code is in the Chapter 2 folder.

To create good-looking, functional, and successful websites, you have to understand a number
of important technologies and languages, including HyperText Markup Language (HTML),
ASP.NET, cascading style sheets (CSS), a server-side programming language such as C# or
VB, and a client-side language such as JavaScript. This and upcoming chapters provide a solid
foundation in these technologies, so you should be comfortable with the most important con-
cepts once you’ve finished this book.

Besides these technologies, you also have to understand the Visual Studio IDE that was intro-
duced in the previous chapter. You need to know how to create sites, add pages, and manage
all the toolbars and windows that Visual Studio (VS) offers you. In addition, you need to
know how to build and design web pages in VS with HTML and server controls.

c02.indd 33 2/21/2014 7:04:17 AM

http://www.wrox.com/go/begaspnet451
http://wrox.com
http://wrox.com

34 ❘ chapter 2 Building an aSP.nET WEBSiTE

This chapter shows you, in detail, how to create and manage your websites. It also shows you how
to create your ASP.NET web pages and add markup to them, enabling you to create useful web
pages that can present information to users and react to their responses.

Although you already created your first ASP.NET website in the previous chapter, this chapter starts
off with another in-depth look at creating a new website. Because you have many choices to make
when you start a new site, it’s important to understand all the different options and pick the right
one for your scenario.

creating Websites With Visual studio 2013

The preceding chapter gave you a quick overview of creating a website in VS. You simply chose New
Web Site from the File menu, selected a language, selected the standard ASP.NET Web Forms Site
template, and clicked OK. However, there’s more to the New Web Site dialog box than you saw in
the previous chapter. You may have noticed that you can choose among a number of different tem-
plates that enable you to create different kinds of sites. But before looking at the different templates
on which you can base your new website, you need to know a little more about the different project
types that are available in VS.

different project types
In Visual Studio 2013 you can choose between two types of projects for creating ASP.NET Web
Forms websites: Web Application Projects and Web Site Projects.

Web Application Projects
Web Application Projects make it easier for developers who work in teams or who need more con-
trol over the contents of the site and their compilation and deployment processes to build websites
with VS. The whole website is managed as a project, with a single project file that keeps track of all
the content of the website.

In VS, you create a new Web Application Project through the File ➪ New Project dialog box. The
Web category contains a single template — ASP.NET Web Application — that lets you create a web
application that can contain various ASP.NET-related technologies such as Web Forms, ASP.NET
MVC, and Web API. This is part of Microsoft’s “One ASP.NET” initiative that aims to bring the
various web technologies closer together in Visual Studio. For more information about these tech-
nologies, visit www.asp.net and click the Learn menu item.

Note For more information on One ASP.NET, and to learn more advanced
techniques, consult Professional ASP.NET 4.5 (Wrox; ISBN: 978-1-118-31182-0).

Web Site Projects
Web Site Projects represent a project in VS for a website. You create a new Web Site Project by
choosing File ➪ New Web Site or File ➪ New ➪ Web Site from Visual Studio’s main menu.

c02.indd 34 2/21/2014 7:04:18 AM

http://www.asp.net

Creating Websites with Visual Studio 2013 ❘ 35

A Web Site Project site is simply a Windows folder with a bunch of files and subfolders in it. There
is no collective file (known as the project file with a .vbproj or .csproj extension) that keeps track
of all the individual files in the website. You just point VS to a folder, and it instantly opens it as a
website. This makes it very easy to create copies of the site, move them, and share them with others,
because no dependencies exist with files on your local system. Because of the lack of a central proj-
ect file, Web Site Projects are usually simply referred to as websites, which is the term I use in the
remainder of this book.

Note You can’t use a Web Site Project to create MVC or Web API
applications.

Choosing between Web Site Projects and Web Application Projects
Because you have two options to choose from, you may be wondering which project type you should
pick. In general, the Web Site Project is a bit easier to work with. Because it’s just a folder, it’s easier
to copy the files to a different location, such as another development workstation or a production
server. Also, changes to the code files are picked up by the web server and applied automatically
without a formal deployment process. The Web Application Project, on the other hand, works better
if you work with a team of developers on the same site, because it dictates a more formal develop-
ment and deployment process and has better support for working with Source Control versioning
systems, such as Microsoft’s Team Foundation Server. In addition, it supports other technologies
such as ASP.NET MVC and Web API.

This book uses the Web Site Project model because it’s easier to work with if you’re new to
ASP.NET. However, you’ll find that sites built using the Web Application Project model have a lot in
common with Web Site Projects, which means you can use the knowledge you gain from this book
to build sites with the Web Application Project model as well. You must use the Web Site Project
model if you want to follow along with this book. When not referring to a specific project type, I’ll
use the terms website and web application interchangeably throughout this book when referring to
websites in general.

Now that you know about the different project models, the next thing to consider is the different
website templates and their options.

choosing the right Website template
The New Web Site dialog box in VS contains different website templates, each one serving a distinct
purpose.

Figure 2-1 shows the New Web Site dialog box in VS. You can open this dialog box by choosing
File ➪ New Web Site or File ➪ New ➪ Web Site, depending on your version of VS. If your dialog
box doesn’t look like Figure 2-1, make sure you chose File ➪ New Web Site and not File ➪ New
Project.

In the left-hand section you can choose between Visual Basic and Visual C# as the programming
language for your site. The section in the middle shows the ASP.NET website templates that are

c02.indd 35 2/21/2014 7:04:18 AM

36 ❘ chapter 2 Building an aSP.nET WEBSiTE

installed by default. Each of them is discussed in the next section. When you have created your own
templates or have templates installed from other parties, they show up in this area as well.

figure 2-1

Above the list of templates, you can select the .NET Framework version you want to use. For
all exercises in this book, make sure you always choose .NET Framework 4.5.1. The ASP.NET
Empty Web Site template is used throughout this book for the Planet Wrox website. The others
are described briefly in the following sections so you know how they can be used. The exact list of
installed templates on your system depends on the version of Visual Studio and the installed com-
ponents. Don’t worry if you have other templates as long as you have the ASP.NET Web Forms Site
and the ASP.NET Empty Web Site items.

ASP.NET Web Forms Site
This template enables you to set up a basic ASP.NET website. It contains a number of files and
folders to jump-start the development of your site. The different file types are all discussed later in
this chapter. The special App_Data folder and the functionality of the pages in the Account folder
are discussed later in this book. This template uses an external framework called Bootstrap, a
front-end framework that helps you to build websites that look great on multiple devices such as
desktops, tables and phones. Unfortunately, a number of the controls that ship with ASP.NET (such
as the Menu control you’ll see in Chapter 7) don’t render properly when using Bootstrap. That’s
why I decided not to use this framework in this book, but instead to focus on all the functionality
that ships with ASP.NET. For your own projects, you could use this Visual Studio template with
Bootstrap, but you’ll need to implement alternatives for controls like the Menu. You can learn more
about Bootstrap at http://getbootstrap.com.

ASP.NET Web Site (Razor v2 / Razor v3)
You use these templates to create sites using Microsoft’s Web Pages framework. You can learn more
about Web Pages in my book Beginning ASP.NET Web Pages with WebMatrix (Wrox, 2011, ISBN:
978-1-118-05048-4).

c02.indd 36 2/21/2014 7:04:18 AM

http://getbootstrap.com

Creating Websites with Visual Studio 2013 ❘ 37

ASP.NET Empty Web Site
The ASP.NET Empty Web Site template gives you nothing but two configuration files (Web.config
and Web.Debug.config). The ASP.NET Empty Web Site template is useful if you have a bunch of
existing files you want to use to create a new website or when you want to create your site from
scratch. You use this template as the basis for the sample website you build in the book and add files
and folders as you progress through the book.

ASP.NET Dynamic Data Entities Web Site
This template enables you to create a flexible yet powerful website to manage data in a database
without a lot of manual code. This template is not discussed in this book, but you learn more about
the Microsoft ADO.NET Entity Framework that is used by the template in Chapter 14.

WCF Service
This template enables you to create a website containing one or more Windows Communication
Foundation (WCF) Services. A WCF Service is somewhat similar to a web service in that it enables
you to create methods that are callable over a network. However, WCF Services go much further
than simple web services and offer you a lot more flexibility. You see how to create and consume a
web service from a browser in Chapter 10.

Although it seems you have to make a clear choice up front for the right website template, this isn’t
really the case. Because an ASP.NET website in VS is essentially just a reference to a folder, it’s easy to
add types from one template to another. For example, it’s perfectly acceptable (and very common)
to add a WCF service file to a standard ASP.NET Web Forms Site or an ASP.NET Empty Web Site, as
you see in Chapter 10.

creating and opening a new Website
You have a number of different ways to create new and open existing websites. The choices you have
here are largely influenced by the way you access the website (either on your local machine with
Visual Studio on it or on a remote machine), and whether you want to use IIS Express (the built-in
web server that ships with VS) or the full version of IIS — the web server that comes with Windows.

All the examples in this book assume that you open sites from your local hard drive and that you
use IIS Express, a trimmed down version of IIS, because it’s very convenient to develop sites with it.
However, Chapter 19 shows you how to use and configure the full version of Internet Information
Services, or IIS for short. This advanced web server comes with most editions of Windows and is
mostly used for production hosting of your websites on the server editions of Windows, because it’s
capable of serving web pages in high-traffic scenarios.

Creating New Websites
The next Try It Out section guides you through creating the Planet Wrox website, which is the
project you work on in this book. All exercises in the remainder of the book assume you have this
website open in VS, except where stated otherwise. The exercise instructs you to store your website

c02.indd 37 2/21/2014 7:04:18 AM

38 ❘ chapter 2 Building an aSP.nET WEBSiTE

in a folder called C:\BegASPNET\Site. Take note of this folder name, because it’s used throughout
this book. If you decide to use a different folder, be sure to use your own location whenever you see
this folder name in the book. Make sure you don’t use special characters like the hash (#) or insert
a space in the folder name because you’ll run into trouble when developing your site. Finally, make
sure you don’t create this folder under your Windows Documents folder (typically at C:\Users\
UserName\Documents), because you’ll run into problems later when accounts other than your own
need access to your site.

try it out Creating a New ASP.NET 4.5.1 Website

 1. Start by creating a folder called BegASPNET in the root of your C drive using File Explorer
(Windows Explorer on older versions of Windows). Inside the folder, create another folder called
Site. You should end up with a folder called C:\BegASPNET\Site. If you followed the instruc-
tions from the “Introduction” section of this book and unpacked the source for this book, you
already have the BegASPNET folder, which in turn contains the Source and Resources folders.
You still need to create the Site folder, though. If you want to follow along with VB.NET and
C# at the same time, you can create two folders, BegASPNETVB and BegASPNETCS, and use two
instances of Visual Studio.

 2. Start Visual Studio and choose File ➪ New Web Site or File ➪ New ➪ Web Site, depending on
your version of VS.

commoN mistakes Don’t mistakenly create a new Web Application Project
using File ➪ New Project because this project template is not compatible with
the exercises in this book.

 3. In the target framework drop-down list at the top of the screen, select .NET Framework 4.5.1.

 4. In the Installed Templates area on the left, choose between Visual Basic and Visual C#. All the
examples in this book are shown in both programming languages, so you can choose the one you
like best.

 5. In the area in the middle select ASP.NET Empty Web Site.

 6. In the Web Location drop-down list, make sure that File System is selected. The other two options
(HTTP and FTP) enable you to open a site running on IIS (either on your local machine or on a
remote server using the so-called Microsoft FrontPage Server Extensions) and open a site from an
FTP server, respectively.

 7. Click the Browse button next to the location text box, browse to C:\BegASPNET\Site (the folder
you created in the first step of this exercise), and click Open.

Your final screen should look like the one in Figure 2-2, except that you may have chosen Visual
C# instead of Visual Basic.

 8. Click OK and VS creates the new site for you.

c02.indd 38 2/21/2014 7:04:18 AM

Creating Websites with Visual Studio 2013 ❘ 39

How It Works

As soon as you click OK, VS creates a new, empty website for you. This new
website contains nothing but two configuration files (called Web.config and
Web.Debug.config). In the Solution Explorer, your website now looks like
Figure 2-3 (note that I expanded the Web.config file). If you don’t see the
top-level Solution node, choose Tools ➪ Options in VS, and in the Projects
and Solutions category select Always Show Solution.

Because a website based on the Empty Web Site template is just a simple Windows folder that VS looks
at, the actual folder on disk contains the same files. No additional files are used to create the site, as
shown in Figure 2-4, which shows File Explorer displaying the files in the folder C:\BegASPNET\Site.

figure 2-2

figure 2-3

figure 2-4

c02.indd 39 2/21/2014 7:04:19 AM

40 ❘ chapter 2 Building an aSP.nET WEBSiTE

If you don’t see the .config extension of the web file, don’t worry. You see how to view file exten-
sions in a later exercise.

As you progress through this book, you’ll add new files and folders to the site. These additional
files and folders show up in the Solution Explorer and will appear in the Windows folder at C:\
BegASPNET\Site as well.

Opening websites based on the Web Site Project template is very similar to creating new ones. In the
next section, you get a quick overview of opening existing sites in VS.

Opening Existing Websites
Just as with creating new sites, opening an existing site in VS gives you a few options with regard
to the source location of the website. You can choose to open a site from the local filesystem, from
a local IIS web server, from a remote server using FTP, from a remote site using the Microsoft
FrontPage Server Extensions, or from a central Source Control system such as Microsoft’s Team
Foundation Server. Figure 2-5 shows the Open Web Site dialog box in VS.

figure 2-5

To get to this dialog box, choose File ➪ Open Web Site in VS (don’t accidentally choose File ➪ Open
Project because that menu item is used to open Web Application Projects instead). All the examples
in the book assume that you always open the Planet Wrox website from the local filesystem, using
the File System button, which is the first button in the left column of the window. Then in the right
pane, locate your website (C:\BegASPNET\Site in this example) and click the Open button.

c02.indd 40 2/21/2014 7:04:19 AM

Working with Files in Your Website ❘ 41

The site you created in the previous Try It Out is a very bare-bones site. To make it more useful, you
need to add files to it. The many file types you have at your disposal and the way they are added to
the site are the next topics of discussion.

Working With files in your Website

An ASP.NET Web Forms Site consists of at least a single Web Form (a file with an .aspx extension),
but usually it consists of a larger number of files. Many different file types are available in VS, each
offering a distinct functionality. In the next section, you see the most important file types that are
used in VS. In addition, you learn a few different ways to add these files to your site.

the many file types of an asp.net Website
To give you an idea of how many different files you can use in ASP.NET, Figure 2-6 shows the dia-
log box that enables you to add new files to the site (accessible by right-clicking your website in the
Solution Explorer and choosing Add ➪ Add New Item or by choosing Website ➪ Add New Item
from the main menu).

figure 2-6

To make it easier to find the type of file you’re looking for, you can use the search box at the top-
right corner of the dialog box. Simply enter a few letters of the type you’re looking for and hit Enter.
VS filters the list of files to those matching your search phrase.

The files you can add to a site can be grouped in a few different categories. The most important
files — the ones you use throughout the examples in this book — are discussed next.

Web Files
Web files are specific to web applications and can either be requested by a browser directly, or are
used to build up part of the web page that is requested in the browser. The following table lists the

c02.indd 41 2/21/2014 7:04:19 AM

42 ❘ chapter 2 Building an aSP.nET WEBSiTE

various web files you typically use in an ASP.NET Web Forms website and their extensions, and
describes how each file is used.

file type extension description

Web Form .aspx The workhorse of any ASP.NET Web Forms website; rep-
resents the pages that your users view in their browsers.

Master Page .master Enables you to define the global structure and the look
and feel of a website. You see how it can be used in
Chapter 6.

Web User Control .ascx Contains page fragments that can be reused in multiple
pages in your site. Chapter 8 is entirely devoted to user
controls.

HTML Page .html Can be used to display static HTML in your website.

Style Sheet .css Contains CSS code that enables you to style and format
your website. You learn more about CSS in Chapter 3.

Web Configuration
File

.config Contains global configuration information that is used
throughout the site. You see how to use the Web.config
later in this book.

Site Map .sitemap Contains a hierarchical representation of files in your site
in an XML format. The site map is used for navigation and
is discussed in Chapter 7.

JavaScript File .js Contains JavaScript that can be executed in the client’s
browser.

Skin File .skin Contains design information for controls in your website.
Skins are discussed in Chapter 6.

The next Try It Out exercise shows you how to add a new master page to the site, which is used
throughout the book.

try it out Adding Files to Your Site

 1. If it is not still open, open the Planet Wrox website you created earlier by choosing File ➪ Open
Web Site. Make sure that you open the site from the filesystem, locate the folder that contains
your site (C:\BegASPNET\Site), and click the Open button.

 2. In the Solution Explorer, right-click your site and choose Add ➪ New Folder.

commoN mistakes Make sure you click the actual site and not the
Web.config file or the Solution node at the top (see Figure 2-3) or you won’t
get the correct menu item.

c02.indd 42 2/21/2014 7:04:19 AM

Working with Files in Your Website ❘ 43

 3. Type MasterPages as the name of the folder and press Enter. Then right-click this new folder
and choose Add ➪ Add New Item. Alternatively, you can choose File ➪ New File or Website ➪
Add New Item from Visual Studio’s main menu, or you can click the new folder in the Solution
Explorer once to put the focus on it and then press Ctrl+Shift+A.

 4. In the dialog box that appears, click Master Page and type Frontend as the name. VS automati-
cally adds the .master extension for you when you add the file. Verify that under Installed
Templates you have selected the language you want to use for this site and that Place Code in
Separate File in the bottom-right corner is checked. Finally, click the Add button. The master page
is added to the site, and is opened automatically for you in the Document Window.

How It Works

This simple exercise showed you how to add a new item to your website. Although at this stage the
site isn’t very exciting yet, the file you added forms the basis for the rest of the book. The next sections
briefly look at the remainder of the file types.

Code Files
Adding code files to the site is identical to how you add web files. The following table describes the
various types of code files.

file type extension description

WCF Service .svc Can be called by other systems, including browsers, and
can contain code that can be executed on your server.
WCF services are covered in Chapter 10.

Class .cs /.vb Can contain code to program your website. Note that
Code Behind files (discussed later) also have this extension
because they are essentially class files. C# uses files with
the .cs extension and Visual Basic uses .vb files.

Global
Application Class

.asax Can contain code that is fired in response to interesting
things that happen in your site, such as the start of the
application or when an error occurs somewhere in the site.
You see how to use this file in Chapter 7 and later.

Besides the Code Files category, there is one more group of files worth looking into: Data Files.

Data Files
Data files are used to store data that can be used in your site and in other applications. The group
consists of the XML files, database files, and files related to working with data.

c02.indd 43 2/21/2014 7:04:19 AM

44 ❘ chapter 2 Building an aSP.nET WEBSiTE

file type extension description

XML File .xml Used to store data in XML format. In addition to plain XML
files, ASP.NET supports a few more XML-based files, two of
which you briefly saw before: Web.config and the site map.

SQL Server
Database

.mdf Files with an .mdf extension are databases that are used by
Microsoft SQL Server. Databases are discussed in Chapter
12 and later.

ADO.NET Entity
Data Model

.edmx Used to access databases declaratively, without the need to
write a lot of repetitive code. Technically, this is not a data
file, because it does not contain the actual data. However,
because it is tied to the database so closely, it makes sense
to group it under this header. You learn more about the
ADO.NET Entity Framework in Chapter 14.

As you saw in the previous Try It Out, adding a new file of any of these types is really easy. It’s just
as easy to add existing files to the site.

adding existing files
Not every file you create in your website has to be brand new. In some cases it makes sense to reuse
files from other projects. For example, you may want to reuse a logo or a CSS file across multiple
sites. You can easily add existing files by right-clicking the website in the Solution Explorer and
choosing Add ➪ Add Existing Item. In the dialog box that appears, you can browse for the files, and
optionally select multiple files by holding down the Ctrl key. Finally, when you click Add, the files
are added to the website. You can also use copy and paste to copy files from a folder on your local
disk to a website in VS. Simply highlight the files in File Explorer, press Ctrl+C to copy the files,
switch to VS, click the website in the Solution Explorer (or on a subfolder of your site), and press
Ctrl+V. The files are then copied into your website’s folder.

However, there is an even easier way to add files to the site, which can be a great time saver when
you need to add multiple existing files and folders to your site: drag and drop. The following Try It
Out shows you how this works.

try it out Adding Existing Files to Your Site

 1. In Windows, minimize all open applications, right-click your desktop, and choose New ➪ Text
Document. If you don’t see this option, simply create a new text document using Notepad and
save it on your desktop.

 2. Rename the file Styles.css. Make sure the .txt extension is replaced by .css. If you don’t see
the initial .txt extension and the icon of the file doesn’t change from a text file to a CSS file (by
default this is the same icon as a text file with a gear symbol on top of it, but you may have soft-
ware installed that changed the icon for CSS files), Windows is configured to hide extensions for
known file types. If that’s the case, open up Windows Explorer in Windows 7, click the Organize

c02.indd 44 2/21/2014 7:04:20 AM

Working with Files in Your Website ❘ 45

button, and then choose Folder and Search Options. Switch to the View tab and deselect the option
labeled Hide Extensions for Known File Types. For Windows 8 you find the option called File
Name Extensions on the View tab of the Ribbon bar of the File Explorer, shown in Figure 2-4.
You now may need to change the name of the file from Styles.css.txt to Styles.css.

When you change the file extension from .txt to .css, Windows may give you a warning that the
file becomes unusable if you proceed. You can safely answer Yes to this question to continue.

 3. Rearrange VS so you can see part of the desktop with the CSS file as well. You can use the Restore
Down button next to the Close button on the Windows title bar of VS to get it out of full screen
mode.

 4. Click the CSS file on the desktop and, while holding down the mouse button, drag the file into the
Solution Explorer. Make sure you drag the file into the Solution Explorer and not into other parts
of VS, or the file won’t be added. For example, when you drag it into the Document Window, VS
simply opens the file for you, but doesn’t add it to the site.

 5. When you release the mouse while over the website node or an existing file in the Solution
Explorer, the CSS file is added to your site.

Note If you are using Windows 7 and run VS as an administrator, this might
not work because Windows doesn’t allow the Windows Explorer and VS to
communicate. In that case, add existing files using the Add Existing Item menu
discussed earlier or use copy and paste.

How It Works

Although this seems to be a simple exercise that uses basic Windows skills, it serves to show that VS
creates a copy of the file when it adds it to the site. So, the original Styles.css file on the desktop is
not affected when you make changes to the copy in VS. This way, it’s easy to drag and drop files from
existing websites into your new one without affecting the originals. The same applies to files you add
using the Add Existing Item dialog box in VS.

If you have added files to your website’s folder outside of VS, they may not show up right away. You
can get a fresh copy of the file list by clicking the Refresh button on the Solution Explorer’s toolbar.

organizing your site
Because of the many files that make up your site, it’s often a good idea to group them by function
in separate folders. For example, all style sheet files could go in a folder called Styles, .js files
containing JavaScript could go in Scripts, user controls could go in a Controls folder, and mas-
ter pages could be stored in a folder called MasterPages. This is a matter of personal preference,
but structured and well-organized sites are easier to manage and understand. The next Try It Out
explains how you can move files around into new folders to organize your site.

c02.indd 45 2/21/2014 7:04:20 AM

46 ❘ chapter 2 Building an aSP.nET WEBSiTE

try it out Organizing Your Website

 1. Right-click the Planet Wrox site in the Solution Explorer and choose Add ➪ New Folder.

 2. Type Styles as the new folder name and press Enter.

 3. Create another folder, called Controls. These two folders are used in the remainder of this book.

 4. Drag the Styles.css file that you added earlier and drop it into the Styles folder.

If everything went well, your Solution Explorer should look like
Figure 2-7.

If your Solution Explorer looks different from the one shown in Figure
2-7, follow this Try It Out again until your site looks exactly the same,
with the same folder structure and files in it. Future Try It Out exercises
in this book assume you have the correct folders and files in your website.

How It Works

Structure and organization are important to keep your sites manageable.
Although you may be tempted to add all of your files to the root of your proj-
ect, it’s better not to do this. With a very small site, you may not notice any
difference, but as soon as your site begins to grow, you’ll find it becomes a lot harder to manage when it
lacks structure. Placing related files in separate folders is the first step to an organized site. Storing files
of the same type in a single folder is only one way to optimize your site. In later chapters, you see that
separate folders are also used to group files with similar functionality. For example, all files that are
accessible only by an administrator of the site are grouped in a folder called Management.

The drag-and-drop features of VS make it easy to reorganize your site. Simply pick up one file or
multiple files and drop them in their new location. If you continue to apply these kinds of organiza-
tion practices while expanding your site, you’ll find that tomorrow or six months from now, you
won’t have any problems locating the right file when you need it.

special file types
Some of the files listed in the previous section
require that you put them in a special folder
instead of the proposed optional organiza-
tional folder structure. The IDE warns you
when you try to add a file outside of its special
folder, and offers to create the folder and put
the file there. For example, when you try to
add a class file (with a .vb or .cs extension), you get the warning shown in Figure 2-8.

When you get this dialog box, always click Yes. Otherwise, your file won’t function correctly. You
get similar dialog boxes for other file types, including skin and database files.

Now that you have a good understanding of the different types of files that make up your website,
it’s time to look at one of them in much more detail: .aspx files, also known as Web Forms.

figure 2-7

figure 2-8

c02.indd 46 2/21/2014 7:04:20 AM

Working with Web Forms ❘ 47

Working With Web forms

Web Forms, represented by .aspx files, are the core of any ASP.NET Web Forms website. They are
the actual pages that users see in their browsers when they visit your site.

As you learned in the previous chapter, Web Forms can contain a mix of HTML, ASP.NET Server
Controls, client-side JavaScript, CSS, and programming logic. To make it easier to see how all this
code ends up in the browser, VS offers a number of different views on your pages.

the different Views on Web forms
VS enables you to look at your Web Form from a few different angles. When you have a file with
markup — like a Web Form or master page — open in the Document Window, you see three buttons
at the bottom-left corner of the window. With these buttons, visible in Figure 2-9, you can switch
between the different views. This figure shows a master page, which you’ll learn more about
in Chapter 6.

figure 2-9

Source View is the default view when you open a page. It shows you the raw HTML and other
markup for the page, and is very useful if you want to tweak the contents of a page and you have a
good idea of what you want to change and where. As I explained in the previous chapter, I use the
term Markup View rather than Source View to refer to the markup of ASPX and HTML pages.

The Design button enables you to switch the Document Window into Design View, which gives
you an idea of how the page will end up. When in Design View, you can use the Visual Aids and
Formatting Marks submenus from the main View menu to control visual markers like line breaks,
borders, and spaces. Both submenus offer a menu item called Show that enables you to turn all the
visual aids on or off at once. Turning both off is useful if you want to have an idea of how
the page ends up in the browser. You should, however, use Design View only to get an idea of
how the page will end up. Although VS has a great rendering engine that renders the page in Design
View pretty well, you should always check your pages in different browsers as well, because what
you see in VS is the markup for the page before it gets processed. Server controls on the page may
emit HTML that changes the look of the page in the browser. Therefore, it’s recommended to view

c02.indd 47 2/21/2014 7:04:20 AM

48 ❘ chapter 2 Building an aSP.nET WEBSiTE

the page in the browser as often as possible so you can check if it’s going to look the way you want
it. It’s also recommended to test your site in as many different browsers as you can get your hands
on, because there may be small differences between them in the way they render a web page. The
Planet Wrox website has been developed and tested against recent versions of Microsoft Internet
Explorer, Firefox, Google Chrome, Safari, and Opera. You’ll see screenshots of these browsers at
various places in the book. In Chapter 18 you’ll be introduced to Browser Link, which makes cross-
browser testing a lot easier.

The Split button enables you to look at Design View and Markup View at the same time, as you can
see in Figure 2-10.

figure 2-10

Split View is great if you want to see the code that VS generates when you add controls to the Design
View of your page. The other way around is very useful too: When you make changes to the markup
of the page in Markup View, you can see how it ends up in Design View. Sometimes Design View
becomes out of sync with Markup View. If that’s the case, a message appears at the top of Design
View. Simply clicking the message or saving the entire page is enough to update the Design window.

You can cycle through the three different modes using the Ctrl+Page Up and Ctrl+Page Down keys.

If you want your pages to open in a different view than Markup View, choose Tools ➪ Options.
Then expand HTML Designer, and in the General category, set your preferred view. Alternatively,
enter HTML Designer General in the Quick Launch text box (which you can access by pressing
Ctrl+Q) at the top-right of VS and then click the item in the list that appears.

Note Internally, Visual Studio has two editors for markup-based files. For Web
Forms (and User Controls, which you’ll meet later in the book) Visual Studio
uses the older editor that shipped with earlier versions of Visual Studio. This
editor supports Design View. The new HTML editor has a strong focus on
code-only editing and does not support Design View. This means that you can
switch to Design View for Web Forms, but not for regular HTML files. If you
want Design View for HTML files as well, you can associate the .html extension
with the HTML (Web Forms) Editor under Tools ➪ Options ➪ Text Editor ➪ File
Extension.

c02.indd 48 2/21/2014 7:04:20 AM

Working with Web Forms ❘ 49

In addition to the HTML and other markup you see in the Markup View window, a Web Form can
also contain code in either C# or Visual Basic .NET. Where this code is placed depends on the type
of Web Form you create. The next section explains the two options you have in more detail.

choosing between code behind and
pages with inline code

Web Forms come in two flavors: either as an .aspx file with a Code Behind file (a file named after
the Web Form with an additional .vb or .cs extension) or as .aspx files that have their code
embedded, often referred to as Web Forms with inline code. Although you won’t see much code
until Chapter 5, it’s important to understand the difference between these types of Web Forms. At
first, Web Forms with inline code seem a little easier to understand. Because the code needed to
program your website is part of the very same Web Form, you can clearly see how the code relates
to the file. However, as your page gets larger and you add more functionality to it, it’s often easier
if you have the code in a separate file. That way, it’s completely separate from the markup, enabling
you to focus on the task at hand.

In the next exercise, you add two files that demonstrate the difference between Code Behind and
inline code.

try it out Adding Web Forms with Code to Your Site

The files you add in this exercise aren’t needed for the final application. To avoid cluttering up the proj-
ect, you should put them in a separate Demos folder.

 1. In the Solution Explorer, right-click your website and choose Add ➪ New Folder. Name the folder
Demos and press Enter.

 2. Right-click the Demos folder and choose Add ➪ Add New Item. In the dialog box that appears,
choose your programming language on the left, click the Web Form template, and name the file
CodeBehind.aspx. Make sure that the check box for Place Code in Separate File is selected.
Finally, click the Add button. The page should open in Markup View so you can see the HTML
for the page.

 3. At the bottom of the Document Window, click the Design button to switch the page from Markup
View into Design View. The page you see has a white background with a small, dashed rectangle
at the top of it. The dashed rectangle represents the <div> element you saw in Markup View.

 4. From the Toolbox, drag a Label control from the Standard category and drop it in the dashed
area of the page. Remember, you can open the Toolbox with the shortcut Ctrl+Alt+X if it isn’t
open yet. In Design View, your screen should now look like Figure 2-11.

figure 2-11

c02.indd 49 2/21/2014 7:04:20 AM

50 ❘ chapter 2 Building an aSP.nET WEBSiTE

 5. Double-click somewhere in the white area below the dashed line of the <div> element. VS
switches from Design View into the Code Behind of the file and adds code that fires when the
page loads in the browser:

VB.NET

Protected Sub Page_Load(sender As Object, e As EventArgs) Handles Me.Load

End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{

}

Although this odd syntax may look a little scary at this point, don’t worry about it too much now.
In most cases, VS adds it for you automatically, as you just saw. In later chapters, you see exactly
how this code works, but for now it’s important to realize that the code you’re going to place
between the lines that start with Protected Sub and End Sub in Visual Basic and between the
curly braces in C# will be run when the page is requested in the browser.

All code examples you see from now on include a Visual Basic (VB.NET) and a C# version, so
always pick the one that matches your programming language.

 6. Place your cursor in the open line in the code that VS created and add the bolded line of code that
assigns today’s date and time to the label, which will eventually show up in the browser:

VB.NET

Protected Sub Page_Load(sender As Object, e As EventArgs) Handles Me.Load
 Label1.Text = "Hello World; the time is now " & DateTime.Now.ToString()
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 Label1.Text = "Hello World; the time is now " + DateTime.Now.ToString();
}

Note that as soon as you type the L for Label1, you get a list with options to choose from. This
is part of Visual Studio’s IntelliSense, a great tool that helps you rapidly write code. Instead of
typing the whole word Label1, you simply type the letter L or the letters La and then you pick the
appropriate item from the list, visible in Figure 2-12.

To complete the selected word, you can press Enter or Tab or even the period. In the latter case,
you immediately get another list that enables you to pick the word Text simply by typing the
first few letters, completing the word by pressing the Tab or Enter key. This feature is a real pro-
ductivity tool because you can write code with a minimum of keystrokes. IntelliSense is avail-
able in many other file types as well, including ASPX, HTML, CSS, JavaScript, and XML. In
many cases, the list with options pops up automatically if you begin typing. If it doesn’t, press
Ctrl+Spacebar to invoke it. If the list covers some of your code in the code window, press and hold
the Ctrl key to make the window transparent.

c02.indd 50 2/21/2014 7:04:21 AM

Working with Web Forms ❘ 51

 7. Right-click the CodeBehind.aspx page in the Solution Explorer and choose View in Browser
(Internet Explorer). Depending on the default browser you’ve configured for your computer, the
browser name in the parentheses may be different. I’ll simply refer to this menu item as View in
Browser from now on.

 8. Click Yes if you get a dialog box that asks if you want to save the changes, and then the page will
appear in the browser, similar to the browser window you see in Figure 2-13.

figure 2-12

figure 2-13

If you don’t see the message with the date and time appear or you get an error on the page in
the browser, make sure you saved the changes to all open pages. To save all pages at once, press
Ctrl+Shift+S or click the Save All button on the toolbar (the one with the multiple floppy disk
symbols). Additionally, make sure you typed the code for the right language. When you created
this new page, you chose a programming language that applies to the entire page. You can’t mix
languages on a single page, so if you started with a Visual C# page, make sure you entered the C#
code snippet in step 6.

 9. Setting up a page with inline code is very similar. Start by adding a new Web Form to the Demos
folder. Call it CodeInline.aspx and make sure you uncheck the Place Code in Separate File
option.

 10. Just as you did in steps 3, 4, and 5, switch the page into Design View, drag a label inside the
<div> element, and double-click the page somewhere outside the <div> that now contains the
label. Instead of opening a Code Behind file, VS now switches your page into Markup View and
adds the Page_Load code directly in the page.

 11. On the empty line in the code block that VS inserted, type the bolded line you see in step 6 of this
exercise. Make sure you use the correct programming language. You should end up with the fol-
lowing code at the top of your .aspx file:

c02.indd 51 2/21/2014 7:04:21 AM

52 ❘ chapter 2 Building an aSP.nET WEBSiTE

VB.NET

<script runat="server">
 Protected Sub Page_Load(sender As Object, e As EventArgs)
 Label1.Text = "Hello World; the time is now " & DateTime.Now.ToString()
 End Sub
</script>

C#

<script runat="server">
 protected void Page_Load(object sender, EventArgs e)
 {
 Label1.Text = "Hello World; the time is now " + DateTime.Now.ToString();
 }
</script>

 12. Right-click the page in the Solution Explorer and choose View in Browser. Alternatively, press
Ctrl+F5 to open the page in your browser. You should see a page similar to the one you got
in step 8.

How It Works

At run time, pages with inline code behave the same as pages that use Code Behind. In both cases, the
ASP.NET run time sees the Page_Load code and executes any code it finds in it. In the Try It Out, this
meant setting the Text of Label1 to a welcome message and today’s date and time. The biggest dif-
ference between the two options is where the code is stored. With pages with inline code, all code and
markup is stored in the same file on disk. When using Code Behind, the VB or C# code you write is
stored in a separate file named after the Web Form.

Because pages with Code Behind are easier to manage, I’ll use them exclusively for the Planet Wrox
website.

In this example, the C# code looks very similar to the VB.NET code. The code that sets the Label’s
text is almost identical in the two languages. One difference is that VB.NET uses an ampersand (&) to
glue two pieces of text together, but C# uses the plus (+) character. You can also use the plus character
in VB.NET to concatenate strings together, but with a few caveats, as you’ll learn in Chapter 5. The
other difference is that in C# code lines must be terminated with a semicolon (;) to indicate the end of
a unit of code, but Visual Basic uses the line break. If you want to split a long line of code over multiple
lines in Visual Basic, you can use the underscore (_) character. In earlier versions, VB.NET required
the underscore in a lot of different places. However, in recent versions of Visual Basic, the designers of
the language have greatly reduced the number of places where you must use an underscore.

One place where you do need the underscore if you want to split code over multiple lines is right before
the Handles keyword that you saw earlier:

Protected Sub Page_Load(sender As Object, e As EventArgs) _
 Handles Me.Load
 Label1.Text = "Hello World; the time is now " & DateTime.Now.ToString()
End Sub

Note that in your pages you don’t have to use the underscore to break a long line. However, I’ll add it
to some of the examples in this book because the book’s pages are not wide enough to show the entire
code statement on a single line. You’ll see more of these underscores in other Visual Basic examples in

c02.indd 52 2/21/2014 7:04:21 AM

Working with Web Forms ❘ 53

the remainder of this book. If you decide to manually type the underscore to make your own code more
readable, don’t forget to type a space before the underscore or your code won’t work.

In C#, you don’t need this character because the language itself allows you to break long lines simply by
pressing Enter. This is because C# uses a semicolon to denote the end of a line instead of a line break in
the source.

You opened the page in your browser using the right-click View in Browser option or by pressing
Ctrl+F5. With the View in Browser option, you always open the page you right-click. With the Ctrl+F5
shortcut, you open the page that is currently the active document in the Document Window, the page
that is currently selected in the Solution Explorer, or the file that has been set as the Start Page for the
website. Additionally, all open files are saved automatically, and the site is checked for errors before the
requested page is opened in the browser.

You can assign a page as the Start Page by right-clicking it in the Solution Explorer and choosing Set As
Start Page. If you want to control this behavior at a later stage, right-click the website in the Solution
Explorer and choose Property Pages. In the Start Options category, you can indicate that you want the
currently active page to open, or you can assign a specific page, as shown in Figure 2-14.

figure 2-14

In the previous exercise, you learned how to add a page that contains a simple Label control.
Additionally, you saw how to write some code that updates the label with today’s date and time.
You can ignore this code for now; it only served to demonstrate the differences between Code
Behind and inline code. In Chapter 5, you learn more about programming in Visual Basic and C#.

To make compelling pages, you obviously need a lot more content than just a simple Label control
that shows today’s date and time. The next section shows you how to add content and HTML to
your pages and how to style and format it.

c02.indd 53 2/21/2014 7:04:21 AM

54 ❘ chapter 2 Building an aSP.nET WEBSiTE

adding markup to your page
You have a number of ways to add HTML and other markup to your pages. First of all, you can
simply type it in the Markup View window. However, this isn’t always the best option, because it
forces you to type a lot of code by hand. To make it easier to insert new HTML in the page and to
apply formatting to it, the Design View window offers a number of helpful tools. These tools include
the Formatting toolbar and the menu items Format and Table. For these tools to be active, you need
to have the document in Design View. If you’re working in Split View mode, you have to make sure
that the Design View part has the focus, or you’ll find that most of the tools are not available.

Inserting and Formatting Text
You can type text in both Design View and in Markup View. Simply place the cursor at the desired
location and start typing. When you switch to Design View, the Formatting toolbar becomes avail-
able, with the options shown in Figure 2-15.

figure 2-15

Target Rule Block Format Font Size
Bold Underline

Align Text

Hyperlink

Background Color
Foreground Color

Show
Overlay

ItalicReuse Existing
Style

Many of the buttons on the toolbar function exactly the same as in other editing environments. For
example, the B button formats your text with a bold font. Similarly, the I and the U buttons itali-
cize and underline your text, respectively. The drop-down list labeled Block Format enables you to
insert HTML elements like <p> for paragraphs, <h1> through <h6> for headings, and , ,
and for lists. You can choose an item from the drop-down list directly to have it inserted in
your page, or you can select some text first and choose the appropriate block element from the list to
wrap the selected text inside the tags.

In the next Try It Out, you see how to work with these tools to create the homepage of the Planet
Wrox website.

try it out Adding Formatted Text

In this Try It Out, you create a Web Form called Default.aspx and add some basic content to it.

 1. Add a new Web Form with the Add New Item dialog box to the root of the site and call it
Default.aspx. Make sure you check off the Place Code in Separate File option and click Add.
Switch to Design View using the Design button at the bottom of the Document Window.

 2. Click inside the dashed rectangle until you see the glyph showing that the <div> element is cur-
rently active. At the same time, the tag navigator at the bottom of the code window should high-
light the last block with the text <div> on it, as shown in Figure 2-16.

c02.indd 54 2/21/2014 7:04:22 AM

Working with Web Forms ❘ 55

 3. Type Hi there visitor and welcome to Planet Wrox and highlight the text using the mouse.
From the Block Format drop-down list (visible in Figure 2-15) choose Heading 1 <h1>. Note that
a small glyph with the text h1 appears right above the text, to indicate that VS created a heading
for you automatically. Figure 2-17 shows the Design View with the <h1> element.

figure 2-16

figure 2-17

figure 2-18

 4. Position your cursor at the end of the heading after the word Wrox and press Enter. A new para-
graph (indicated by a small glyph with the letter p on it) is inserted for you so you can directly
start typing.

 5. Type the text shown in Figure 2-18 (or make up your own) to welcome the visitor to Planet Wrox.
Notice how the text www.PlanetWrox.com turns blue as soon as you type the comma to indi-
cate VS has recognized it as a web address and has turned it into a link. You can press Enter to
start a new paragraph. Select the text “paying a visit,” click the Foreground Color button on the
Formatting toolbar, and select a different color in the dialog box that appears. Then select some
other text, such as “reviews and concert pictures,” and click the Bold button. When you’re done,
your Design View should show something similar to Figure 2-18.

The code for the homepage should now look more or less similar to the following (the code has
been reformatted a bit to fit the space in the book):

<div>
 <h1>Hi there visitor and welcome to Planet Wrox</h1>
 <p>
 We're glad you're

c02.indd 55 2/21/2014 7:04:22 AM

http://www.PlanetWrox.com

56 ❘ chapter 2 Building an aSP.nET WEBSiTE

 paying a visit to
 www.PlanetWrox.com,
 the coolest music community site on the Internet.
 </p>
 <p>
 Feel free to have a look around; there are lots of interesting
 reviews and concert pictures to be found here.
 </p>
</div>

At the top of the file you should also see a <style> element, which is discussed next.

 6. Open the page in your browser by pressing Ctrl+F5, or by right-clicking the page in the Solution
Explorer and choosing View in Browser.

How It Works

When you use the various Formatting toolbar buttons, like Foreground Color, VS inserts the appro-
priate HTML and CSS code for you. For example, when you click the B button, VS inserts a pair of
 tags around the selected text. When you click the I button, VS adds a pair of tags to
italicize the text. In this exercise, VS also inserted a class attribute (shown in the previous code exam-
ple) that points to a class called auto-style1 when you changed the text color. The code for this style
has been added to the top of your file and looks similar to this:

<style type="text/css">
 .auto-style1
 {
 color: #FF0000;
 }
</style>

Your code may look slightly different if you chose a different color. The code you see here is explained
in the next chapter. For now, just remember that this code sets the color of the text it is applied to as
red. If the opening curly bracket is on the same line as the class, choose Tools ➪ Options ➪ Text Editor
➪ CSS ➪ Advanced and set Brace Positions to Expanded. This is just a matter of preference and doesn’t
change the effect of the code.

Note that VS replaced the apostrophe character (') in “we’re” in the welcome message with its HTML-
compatible variant: '. Using this kind of code enables you to insert characters in your page that
a browser may have trouble displaying, or that have special meaning within HTML itself, like the
ampersand character (&), which is written as &. When you type text in Design View, VS automati-
cally inserts the coded equivalents of relevant characters for you; however, if you type in Markup View
directly, you’ll have to do this yourself.

Don’t worry if your code looks different from what is shown here. Many settings in VS influence the
code that is generated for you.

So far, the exercises have been concerned with adding and styling text in your page. However, VS
enables you to insert other HTML elements as well, like tables and bullets. The next section shows
you how this works.

c02.indd 56 2/21/2014 7:04:22 AM

Working with Web Forms ❘ 57

Adding Tables and Other Markup
HTML tables are great if you need to present structured or repeating data, like a list of products in
a shopping cart, photos in a photo album, or input controls in a form. There is a lot of debate on the
Internet about whether you should use tables to lay out your page as well. For example, if your page
contains a header with a logo, a main content area, and a footer at the bottom, you could use a table
with three rows to accomplish this. In general, it’s considered bad practice to use tables for this pur-
pose because they add a lot of extraneous markup to the page and are often difficult to maintain.
Besides, quite often the same result can be accomplished using CSS, which you learn about in the
next chapter. Despite the disadvantages that tables may bring, they are still an invaluable asset in
your HTML toolbox when it comes to displaying tabular or otherwise structured information.

try it out Using the Format and Table Menus

In this exercise, you learn how to add tables to your page
using the Table menu and how to add rows and columns.
Additionally, you learn how to add other structured ele-
ments, such as bulleted lists.

 1. In the Demos folder, create a new Web Form called
TableDemo.aspx. Make sure it uses Code Behind
by checking the Place Code in Separate File option.

 2. Switch the page to Design View, click inside the
dashed rectangle that represents the standard <div>
tag in the page, and choose Table ➪ Insert Table.
The Insert Table dialog box appears, as shown in
Figure 2-19.

 3. Set Rows to 3 and leave Columns set to 2. Leave all
other settings at their defaults and click OK. The
table gets inserted in the page.

 4. If you see only a single table cell, and not the entire
table with three rows and two columns, you need
to enable Visual Aid for tables. To do this, choose
View ➪ Visual Aids ➪ Visible Borders from the main menu to turn the borders on. Your Design
View should now look like Figure 2-20.

figure 2-19

figure 2-20

 5. Drag the right border of the very first cell in the table to the left. You’ll see a visual indicator showing
the width of the cell. Keep dragging it to the left until it has a width of 200 pixels, as in Figure 2-21.

c02.indd 57 2/21/2014 7:04:22 AM

58 ❘ chapter 2 Building an aSP.nET WEBSiTE

figure 2-21

 6. To add more rows or columns to the table, you can right-click an existing cell. From the pop-
up menu that appears, choose Insert to add additional rows or columns at different locations.
Similarly, you can use the Delete, Modify, and Select options to delete rows or columns, merge
cells, and make selections. For this exercise, you
don’t need to add additional rows or columns,
although it’s okay if you have already done so.

 7. Place your cursor in the first cell of the first row
and type the words Bulleted List.

 8. Place your cursor in the second cell using the
mouse. Alternatively, you can press Tab to move
the cursor to the next cell. From the Format
menu, choose Bullets and Numbering.

 9. Switch to the Plain Bullets tab, click the picture
with the round, solid bullets (see Figure 2-22),
and click OK.

 10. Type some text, like your favorite musical genre
(Punk, Rock, Techno, and so on), and press
Enter. VS inserts a new bullet for you automati-
cally, so you can continue to add new items to
the list. Add two more genres, so you end up
with three bullets.

 11. Repeat steps 7 through 10, but now create a numbered list. First, type Numbered List in the
first cell of the second row, then position
your cursor in the second cell of the same
row, and choose Format ➪ Bullets and
Numbering. Switch to the Numbers tab
(visible in Figure 2-22 behind the Plain
Bullets tab) and click the second picture in
the first row, which shows a standard num-
bered list, and click OK. Type a few items
for the list, pressing Enter after each item.

 12. Open the page in the browser by pressing
Ctrl+F5. You should see a screen similar to
Figure 2-23.

figure 2-22

figure 2-23

c02.indd 58 2/21/2014 7:04:22 AM

Working with Web Forms ❘ 59

How It Works

When you visually insert page elements like tables or lists through the available menus, VS inserts the
required markup for you in Markup View. When you insert a table, VS adds a <table> element and a
number of <tr> and <td> elements to define rows and cells, respectively. It also applies a class attri-
bute pointing to a CSS style that defines the table’s width. It created another style for the <td> elements
when you dragged the column width to be 200 pixels. Similarly, when you insert a list, VS inserts an
 element for numbered or ordered lists and a element for bulleted or unordered lists. Within
these elements, elements are used to define each item in the list.

Besides the HTML tags you have seen thus far, there is another important tag you need to look at:
the <a> tag, which is used to create links between pages.

connecting pages
An important part of any website is the links that connect the pages in your site. Links enable your
visitors to go from one page to another, in the same site or to a completely different site on the
Internet. You have a few ways to create links between pages, including:

➤➤ The HTML <a> element, explained in this chapter.

➤➤ Using the <asp:HyperLink> control, discussed in Chapter 7.

➤➤ Programmatically through code. This is discussed later in the book.

The following exercise shows you how easy it is to link from one page to another.

try it out Linking Pages

In this Try It Out, you modify the TableDemo.aspx page you created earlier by adding text that links
to another page. Once you run the page in the browser and click that link, the new page replaces the
old one.

 1. Open the TableDemo.aspx page from the Demos folder.

 2. If necessary, switch to Design View.

 3. In the first cell of the third row, type the text Link.

 4. In the second cell of the same row, type the text Go to the homepage of Planet Wrox and
highlight it with your mouse.

 5. On the Formatting toolbar, click the Convert to HyperLink button. It’s located near the end of the
toolbar and has a link icon and a small arrow on it.

 6. In the dialog box that appears, click the Browse button, select Default.aspx page in the root of
your site, and click OK. Next, click OK again to close the Hyperlink dialog box. The Design View
of your page should look similar to the one displayed in Figure 2-24.

c02.indd 59 2/21/2014 7:04:23 AM

60 ❘ chapter 2 Building an aSP.nET WEBSiTE

 7. Switch to Markup View and notice how the HTML for the link has been inserted:

Go to the homepage of Planet Wrox

Note that the href attribute points to the page you want to link to.

 8. If you want to change the page being linked to from Markup View, click somewhere between the
opening and closing quotes of the href attribute and press Ctrl+Spacebar. A dialog box pops up
that enables you to select another page within your site. Alternatively, you can click the Pick URL
option and browse for the new page somewhere in your site.

 9. Right-click the TableDemo.aspx page in the Solution Explorer and choose View in Browser.
When the page has finished loading, click the Go to the homepage of Planet Wrox link. The
request is sent to the web server and, as a response, you now get the homepage of the website.

figure 2-24

How It Works

Links between pages are likely one of the most important elements in a web page, because they enable
you to create a connection between a page in your site and another page, whether that page lives in
your own site or on a completely different server somewhere on the Internet. For simple links that
should appear somewhere in your page, the HTML <a> tag with an href attribute set is the easiest to
set up. When the user clicks such a link, the browser requests the new page from the server and displays
it. The double dots (..) in the href’s value are a way to refer to the parent directory. The full href
attribute means “go up one level in the folder hierarchy and then select the file Default.aspx.” You see
a lot more about links and how they work in Chapter 7.

You’re not limited to linking to pages in your own site. If you want to link to external pages instead, sim-
ply replace the href attribute value with the full address of the page, as shown in the following example:

Go to the Wrox homepage

For external links, it’s important to include the http:// prefix; otherwise, the browser goes out look-
ing for a file or folder called www.wrox.com on your own website.

You’ll use the things you learned in this chapter about page creation and formatting in the next
chapter, which deals with designing your web pages using CSS.

Besides the visual tools, like the Formatting toolbar and the Table menu, Visual Studio has another
great way to quickly insert code in your pages: code snippets. Code snippets enable you to insert
large chunks of code with just a few keystrokes. You see code snippets at work in the next chapter.

c02.indd 60 2/21/2014 7:04:23 AM

http://www.wrox.com

Summary ❘ 61

practical tips on Working With Web forms

Here are some tips for working with Web Forms:

➤➤ Favor Web Forms with Code Behind over those with inline code. Although at first you may
not notice a big difference in working with them, as your site and pages start to grow, you’ll
find that it’s easier to work with a page where the code is separated from the markup.

➤➤ Spend some time familiarizing yourself with the different menu items of the Format and
Table menus. Most of them generate HTML elements that are inserted into your page. Take
a look at the HTML elements and attributes that have been generated for you, and try to
change them directly in the code, and through the menus and toolbars. This way, you get a
good feel for the various tags available and how they behave.

➤➤ Experiment with links to connect pages in your site. Notice how VS creates different links
depending on the location of the page you are linking to. Chapter 7 deals with linking and
the various ways to address pages in your site in much more detail.

summary

This chapter introduced you to some important topics that help you build maintainable and struc-
tured ASP.NET websites. Understanding the differences between the various project types and tem-
plates enables you to kick-start a web project with just the files you need.

The same applies to the different file types you can add to your site. Because each file type serves a
specific purpose, it’s important to realize what that purpose is and how you can use the file.

One common activity that you’ll perform when building ASP.NET web pages is adding markup to
the page. As you saw in this and the previous chapter, markup comes in a few flavors, including plain
HTML and ASP.NET Server Controls. Knowing how to add this markup to your page using the
numerous menu options and toolbars that VS offers is critical in building good-looking web pages.

Now that you have a solid understanding of creating and modifying Web Forms, it’s time to look at
how you can turn those dull black-and-white pages with a few controls into attractive web pages. The
next chapter shows you how to work with the many CSS tools found in VS to create the desired effect.

exercises

 1. Name three important files in the Web Files category that you can add to your site. Describe
the purpose of each file.

 2. What do you need to do to make a piece of text both bold and italicized in your web page?
What will the resulting HTML look like?

 3. Name three different ways to add existing files to an ASP.NET website in VS.

 4. What are the different views that VS offers you for your ASPX pages? Does VS offer other
views as well?

You can find answers to these exercises in Appendix A.

c02.indd 61 2/21/2014 7:04:23 AM

62 ❘ chapter 2 Building an aSP.nET WEBSiTE

 ➤ What you learned in this chapter

code behind A page model where server-side code is stored in a separate code file

design View Gives you a graphical representation of your page

file types ASP.NET supports many different file types, including Web Forms (.aspx),
master pages (.master), CSS files (.css), JavaScript (.js), and SQL Server
databases (.mdf)

inline code A page model where server-side code is stored in the same file as the
markup

markup View Enables you to look at the markup of your page

project
templates

Jump-start your web development by setting up a site targeting a specific
scenario

project types Visual Studio offers two project types: Web Application Projects and Web
Site Projects

split View Enables you to look at Markup View and Design View at the same time

Web form Presents the user interface of your website at the client

c02.indd 62 2/21/2014 7:04:23 AM

Designing Your Web Pages
What you Will learn in this chapter:

➤➤ What CSS is and why you need it

➤➤ How CSS looks and how to write it

➤➤ The different ways to add CSS code to your ASP.NET pages and
external files

➤➤ The numerous tools that VS offers you to quickly write CSS

Wrox.com code doWnloads for this chapter

You can find the wrox.com code downloads for this chapter on the Download Code tab at
www.wrox.com/go/begaspnet451. The code is in the Chapter 3 folder.

The pages you created in the previous two chapters look pretty plain and dull. That’s because
they lack styling information and therefore default to the standard layout that the browser
applies. To spruce up your pages, you need a way to change their presentation in the browser.
The most common way to do this is by using the cascading style sheets (CSS) language. CSS
is the de facto language for formatting and designing information on the web, including
ASP.NET web pages. With CSS you can quickly change the appearance of your web pages,
giving them that great look that your design or corporate identity dictates.

Solid support for working with CSS was initially added in Visual Web Developer (VWD)
2008, one of the predecessors of VS Express 2013 for Web. VS 2012 included a brand new
CSS editor with features similar to other languages, such as C# and VB. The CSS editor has
been further enhanced in VS 2013.

To understand the relevance of and need for CSS in your ASP.NET websites, you need to
understand the shortcomings of HTML first. The next section looks at the problems that
HTML presents, and how CSS is able to overcome these issues.

3

c03.indd 63 2/21/2014 10:41:16 AM

http://www.wrox.com/go/begaspnet451
http://wrox.com
http://wrox.com

64 ❘ chapter 3 Designing Your Web Pages

Why do you need css?

In the early days of the Internet, web pages consisted mostly of text and images. The text was
formatted using plain HTML, using tags like to make the text bold, and the tag
to influence the font family, size, and color. Web developers soon realized that they needed more
power to format their pages, so CSS was created to address some of HTML’s styling shortcomings.

problems with using html formatting
One of the problems with using HTML for formatting is that it offers only a limited set of options
to style your pages. You can only use elements like and to change the appearance
of text. In previous versions of HTML you could also use the element and an attribute
like bgcolor to further change the appearance of HTML elements. These elements and attributes
are now deprecated in HTML5. You also have a number of other attributes at your disposal for
changing the way links appear in your page.

Obviously, this feature set isn’t rich enough to create the attractive web pages that your users expect
and demand.

Another problem with HTML with a lot more impact on how you build your web pages is the
way the styling information is applied to the page. By design, HTML forces you to embed your
formatting in your HTML document, making it harder to reuse or change the design later. Consider
the following example that was common in many websites before CSS became widely applicable:

<p>
 This is red text in an Arial type face and slightly larger than the default text.
</p>

The problem with this code snippet is that the actual data (the text in the <p> element) is mixed
with the presentation (the formatting of the text with the tag in this example). Ideally, the
two should be separated, so each of them is easier to change without affecting the other.

Imagine you used the <p> and elements to mark up the first paragraph of every page in your
site. What happens when you decide to change the color of the font from red to dark blue? Or what
if your corporate identity dictates a Verdana font instead of Arial? You would need to visit each and
every page in your site, making the required changes.

Besides maintainability, another problem with HTML formatting is the fact that you can’t easily
change the formatting at run time in the user’s browser. With the HTML from the previous code
snippet, there is no way to let your visitor change things like the font size or color, a common
request to help people who are visually impaired. If you want to offer your visitors an alternative
version of the page with a larger font size or a different color, you would need to create a copy of the
original page and make the necessary changes.

The final problem with HTML formatting is that the additional markup in your page adds
considerably to the size of the page. This makes it slower to download and display because the
information needs to be downloaded with each page in your website. It also makes it harder
to maintain your pages because you’d need to scroll through large HTML files to find the content
you need.

c03.indd 64 2/21/2014 10:41:16 AM

An Introduction to CSS ❘ 65

To summarize, formatting with HTML suffers from the following problems:

➤➤ Its feature set severely limits the formatting possibilities that your pages require.

➤➤ Data and presentation are mixed within the same file.

➤➤ HTML doesn’t enable you to easily change formatting at run time in the browser.

➤➤ The required formatting tags and attributes make your pages larger and thus slower to load,
display, and maintain.

Fortunately, CSS enables you to overcome all of these problems.

how css fixes formatting problems
CSS is designed to format your web pages in almost every possible way. It offers a rich set of options
to change every little aspect of your web page, including fonts (size, color, family, and so on), colors
and background colors, borders around HTML elements, positioning of elements in your page,
and much more. CSS is understood by all major browsers today, so it’s the language for visual
presentation of web pages and very popular among web developers.

CSS overcomes the problem of mixed data and presentation by enabling you to define all formatting
information in external files. Your ASPX or HTML pages can then reference these files and the
browser will apply the correct styles for you. With this separation, the HTML document contains
what you want to display, and the CSS file defines how you want to display it, enabling you to
change or replace one of the two documents, leaving the other unmodified. In addition, you can
place CSS directly in an HTML or ASPX page, which gives you a chance to add small snippets of
CSS exactly where you need them. You should be cautious when placing CSS directly in an HTML
or ASPX page, because you can no longer control style information from a single, central location.

Because you can place all CSS code in a separate file, it’s easy to offer the user a choice between
different styles — for example, one with a larger font size. You can create a copy of the external
style sheet, make the necessary changes, and then offer this alternative style sheet to the user. You
see how this works in Chapter 6 when ASP.NET Themes are discussed.

Another benefit of a separate style sheet file is the decreased bandwidth that is required for your site.
Style sheets don’t change with each request, so a browser saves a local copy of the style sheet the
first time it downloads it. From then on, it uses this cached copy instead of requesting it from the
server over and over again. Sometimes this caching can work against you when the browser doesn’t
download the latest CSS files with your changes. If you find that the browser is not picking up the
changes you made to a CSS file, use Ctrl+F5 or Ctl+R in the browser (not in VS) to get a fresh copy
from the server.

Now that you have seen why CSS is so important, it’s time to find out how it looks and how to use it.

an introduction to css

In terms of syntax, CSS is an easy language to learn. Its “grammar” consists of only a few concepts.
That makes it relatively easy to get started with. What makes CSS a bit more difficult is the way all
major browsers render a page. Although virtually every modern desktop browser understands CSS,
they all have their quirks when it comes to displaying a page according to the CSS standard. This

c03.indd 65 2/21/2014 10:41:16 AM

66 ❘ chapter 3 Designing Your Web Pages

standard, maintained by the same organization that maintains the HTML standard, the World
Wide Web Consortium, or W3C for short, comes in three different versions: 1.0, 2.1, and 3.0. Of
these three versions, 2.1 is the most applicable today. It contains everything that version 1.0 contains
but also adds a lot of possibilities on top of that. It’s also the version that VS uses and generates by
default. Version 3.0 is currently under development and it’s expected to take some time before the
major browsers have solid support for it.

Before you look at the actual syntax of CSS, it’s a good idea to see an example first. In the following
exercise, you will write a simple ASPX page that contains some CSS to format the contents of the
page. This helps in understanding the CSS language, which is discussed in full detail in the section
that follows.

try it out Writing Your First CSS

In this Try It Out you will write some CSS that changes the appearance of a header and two paragraphs.
You’ll hand code the page for now; the second half of this chapter shows you how to use the CSS tools
available in VS.

 1. In the Demos folder of the Planet Wrox project, create a new Web Form called CssDemo.aspx. For
this exercise, it doesn’t matter if you choose Inline Code or Code Behind.

 2. Make sure the page is in Markup View and then locate the closing </title> tag in the source.
Position your cursor at the end of the line and press Enter to create an empty line between
the <title> and <head> tags. On this new line type the word style and then press Tab. VS
completes the <style> element for you. Press Enter to create some room between the tags and
then complete the block as follows:

 <title></title>
 <style>

 </style>
</head>

Note This code completion feature uses code snippets that enable you to
associate a piece of code (like the <style> element) with an identifier (like
style in this example). Code snippets are very useful for inserting pieces of
code quickly by typing only the short identifier. Many more code snippets are
available, and where appropriate I’ll point them out throughout this book.

Instead of using the style code snippet, you can also type the full code yourself. Note that as soon
as you type the opening angle bracket (<), a list pops up that enables you to select the <style> tag.
All you need to do to complete the word is press the Tab or Enter key. The same help is available
for attributes on an element. Simply select the relevant attribute in the list and press Tab or Enter,
and the value is inserted for you automatically, nicely surrounded by the double quotes.

 3. Next, between the opening and closing <style> tags, type the following bolded CSS code:

<style>
 h1
 {

c03.indd 66 2/21/2014 10:41:16 AM

An Introduction to CSS ❘ 67

 font-size: 20px;
 color: Green;
 }

 p
 {
 color: #0000FF
 font-style: italic;
 }

 .RightAligned
 {
 text-align: right;
 }
</style>

Take great care when typing this code, because CSS is rather picky about syntax. The first item in
the list is an h1 tag to style a heading at the first level, so it gets a size of 20 pixels and is displayed
in a green font. Notice the colon between font-size and 20px and that the line is closed with a
semicolon.

The second item in the list simply contains the letter p and defines the look and feel for all <p> ele-
ments in the page. It uses a hexadecimal value (#0000FF) for the color blue.

The last item is prefixed with a period (.) followed by the text RightAligned. This item is used to
right-align some text in the page. Because CSS is case sensitive, it’s important to type this exactly
as shown here, with a capital R and A, or the CSS code won’t line up with the HTML shown in
the next step.

Note that as soon as you type the hash symbol (#) after
the color property, a color picker pops up to help you
to select a color, as shown in Figure 3-1. For now, just
close the color picker by pressing Esc and manually
complete the code. You will see more of this color
picker later in this chapter.

 4. Scroll down in the page a bit until you see the opening <div> tag. Right after this tag, type the
following bolded code:

<div>
 <h1>Welcome to this CSS Demo page</h1>
 <p>CSS makes it super easy to style your pages.</p>
 <p class="RightAligned">
 With very little code, you can quickly change the looks of a page.
 </p>
</div>

Instead of typing in this code directly, you can also use the Formatting toolbar while in Design
View to create elements like <h1> and <p>. For now, you need to switch to Markup View to add
class="RightAligned", but in later exercises in this chapter you see how you can have the IDE
write this code for you.

 5. If you switch to Design View (or Split View), you’ll see that the designer shows your text with the
formatting defined in the <style> element of the page. Figure 3-2 shows the page in Split View so
you can see the code and the design at the same time.

figure 3-1

c03.indd 67 2/21/2014 10:41:16 AM

68 ❘ chapter 3 Designing Your Web Pages

Although this black-and-white book makes it difficult to see different font colors, in Figure 3-2
you can see clearly that the <h1> has a larger font size. The figure also shows that all paragraphs
are now displayed with an italic font. Finally, you can see that the last paragraph is aligned to the
right of the window, because the class attribute on the tag is set to RightAligned.

CommoN mistakes If you don’t see the last paragraph glued to the right
border of the Document Window, make sure you typed RightAligned exactly
the same in the <style> tag and in the class attribute. Because CSS is case
sensitive, there’s a big difference between RightAligned and rightaligned.

 6. Press Ctrl+F5 to view CssDemo.aspx in your browser. The page you see in the browser is identical
to the preview you got in the Design View of VS.

How It Works

Although the code you typed in this exercise is relatively simple, there’s a lot going on under the hood
of the browser (and the Design View of VS) to make this possible. You started by adding some styles to
the <head> section of the page:

<style>
 h1
 {
 font-size: 20px;
 color: Green;
 }

 ...
</style>

The <style> tag is used to wrap a CSS style sheet that is embedded in the page.

The code block from h1 until the closing curly brace (}) between the <style> tags is called a rule set
or simply a rule. The rule in this code snippet defines the appearance for all <h1> elements in your
page. The h1 at the top of the code block is called a selector and is used to indicate to what element the

figure 3-2

c03.indd 68 2/21/2014 10:41:17 AM

An Introduction to CSS ❘ 69

formatting should be applied. In this case, the selector maps
directly to an HTML element, but many other selectors are
available, as you will see in the next section. Figure 3-3 shows
how the elements are related to
each other.

Between the curly braces you see the style information that
should be applied to the heading. Each line between the curly
braces is called a declaration. A declaration consists of a
property, followed by a colon, and then followed by a value.
The semicolon (;) at the end of a declaration separates it from
the next declaration, and is required on all declarations except
for the last one in the rule set. However, for consistency, it’s a
good idea to add it to all declarations, which is what I’ll do in
the remainder of this book.

When the browser loads this page, it also reads in the styles you defined between the <style> tags.
Then, whenever it comes across an HTML element that matches the selector, it applies the CSS rules to
that element. So, for the <h1> and <p> elements, their respective rules are applied. This causes the head-
ing to turn green with a large font, while the paragraphs turn blue with an italic font.

But why does the last paragraph turn blue and get right-aligned? In CSS, you can have rules coming
from different sources. The last <p> element gets its style information from the standard p selector
in the style definition. So, the p rule gives the paragraph a blue and italic font. However, it also has
a class defined. This class, called RightAligned, links to a Class selector .RightAligned (note the
leading period) in the style sheet and causes the text to be aligned to the right of the window. You see
more of Class and other selectors in the next section. In the end, the last <p> element gets its rules from
two selectors at the same time. You can make up and assign your own class names (as shown with the
RightAligned class), giving you the flexibility to design your pages and elements exactly how you
want them.

The next section digs a lot deeper in the syntax of CSS, giving you a much more detailed view on
selectors, properties, and values.

css — the language
As you saw in the previous Try It Out exercise, a cascading style sheet is actually a collection of
rules. A rule is a combination of a selector and one or more declarations, which in turn can be
broken down to a property and a value. You’re probably getting a little dizzy from all the new terms
that were introduced in the past few paragraphs, so in the next section, you see most of them again,
with a detailed explanation and code examples that show you what they are used for and how
they work.

figure 3-3

Selector

Declaration

h1

Rule Set font-size: 20px;
color: Green;

{

}

Property Value

c03.indd 69 2/21/2014 10:41:17 AM

70 ❘ chapter 3 Designing Your Web Pages

the style sheet
The style sheet contains all the relevant style information that should be applied to page elements. In
its simplest form, a style sheet looks like this:

h1
{
 color: Green;
}

A style sheet can also contain more than one rule, as you saw in the previous exercise. At the
same time, each rule can contain multiple declarations, enabling you to group them under a single
selector:

h1
{
 font-size: 20px;
 color: Green;
}

The code you just saw is functionally identical to this:

h1
{
 font-size: 20px;
}
h1
{
 color: Green;
}

The condensed form, where the two declarations are grouped under the same selector, is much easier
to read, understand, and maintain, so it’s advisable to use this syntax as much as possible.

To be able to style an element on a page, a browser has to know three things:

➤➤ What element of the page must be styled?

➤➤ What part of that element must be styled?

➤➤ How do you want that part of the selected element to look?

The answers to these questions are given by selectors, properties, and values.

Selectors
As its name implies, a selector is used to select or point to one or more specific elements within your
page. A number of different selectors are available, giving you fine control over what elements you
want to style. The selector answers the first question: What element of the page must be styled? The
next section shows you the four most important types of selectors.

The Universal Selector
The Universal selector, indicated by an asterisk (*), applies to all elements in your page. You can
use the Universal selector to set global settings like a font family. The following rule set changes the
font for all elements in your page to Arial:

c03.indd 70 2/21/2014 10:41:17 AM

An Introduction to CSS ❘ 71

*
{
 font-family: Arial;
}

The Type Selector
The Type selector enables you to point to an HTML element of a specific type. With a Type selector,
all HTML elements of that type will be styled accordingly.

h1
{
 color: Green;
}

This Type selector now applies to all <h1> elements in your code and gives them a green color. Type
selectors are not case sensitive, so you can use both h1 and H1 to refer to the same heading. I prefer
to use all lowercase for my Type selectors, so that’s what you’ll see in this book.

The ID Selector
The ID selector is always prefixed by a hash symbol (#) and enables you to refer to a single element
in the page. Within an HTML or ASPX page, you can give an element a unique ID using the id
attribute. With the ID selector, you can change the behavior for that single element, like this:

#IntroText
{
 font-style: italic;
}

Because you can reuse this ID across multiple pages in your site (it only has to be unique within a
single page), you can use this rule to quickly change the appearance of an element that you use once
per page, but more than once in your site, for example, with the following HTML code:

<p id="IntroText">I am italic because I have the right ID.</p>
<p id="BodyText">I am NOT italic because I have a different ID.</p>

In this example, the #IntroText selector changes the font of the first paragraph — which has the
matching id attribute — but leaves the other paragraph unmodified. ID selectors are case sensitive,
so make sure that the id attribute and the selector always use the same casing.

Notice that the selector uses a hash symbol (#) in its name, but you don’t use this symbol in the id
attribute.

The Class Selector
The Class selector enables you to style multiple HTML elements through the class attribute. This
is handy when you want to apply the same type of formatting to a number of unrelated HTML
elements. The following rule changes the text to red and bold for all HTML elements that have their
class attributes set to Highlight:

.Highlight
{
 color: Red;
 font-weight: bold;
}

c03.indd 71 2/21/2014 10:41:17 AM

72 ❘ chapter 3 Designing Your Web Pages

The following code snippet uses the Highlight class to make the contents of a element and
a link (<a>) appear with a bold typeface:

This is normal text but this is Red and Bold.
This is also normal text but
 this link is Red and Bold as well.

Notice that the selector uses a period in its name, but you don’t use this period when referring to the
selector in the class attribute. The class attribute is very useful because it enables you to reuse a
piece of CSS for many different purposes, regardless of the HTML element that uses the class. Class
selectors are case sensitive so make sure you type them correctly (or let IntelliSense help you pick the
classes from the list when possible).

CSS supports more types of selectors, giving you even more control over the elements you want to
target, but the four different types you just saw are the most widely used.

Grouping and Combining Selectors
CSS also enables you to group multiple selectors by separating them with a comma. This is handy if
you want to apply the same styles to different elements. The following rule turns all headings in the
page to red:

h1, h2, h3, h4, h5, h6
{
 color: Red;
}

Moreover, with CSS you can also combine selectors, enabling you to hierarchically point to a
specific element in a page. You can do this by separating the selectors with a space. The following
example targets all <p> elements that fall within a <section> element with an id of MainContent,
leaving all other paragraphs unmodified. Also note there’s no space between section and
#MainContent. This results in that part of the selector targeting a <section> element with an id of
MainContent.

section#MainContent p
{
 font-size: 18px;
}

Note that combining is very different from grouping. Grouping is just a shortcut to avoid typing the
same declarations over and over again, whereas combining enables you to target specific elements in
your document.

With combining, you’re not limited to ID and Type selectors; you can also use it with the other
selectors, as is demonstrated with the following example:

section#MainContent p.Attention
{
 font-weight: bold;
}

This rule changes all paragraphs with the class Attention within the <section> element with its id
set to MainContent and leaves all others untouched. The following HTML snippet uses this rule to
show the effect:

c03.indd 72 2/21/2014 10:41:18 AM

An Introduction to CSS ❘ 73

<section id="MainContent">
 <p class="Attention">My class is Attention, so my text is bold.</p>
 <p>My text is not bold, as it lacks the Attention class.</p>
</section>
<p class="Attention">I am NOT bold because I don't fall within MainContent.</p>

The second question that needs to be answered to apply a certain style in your page is about what
part of the element must be styled. You do this with properties.

Properties
Properties are the part of the element that you want to change with your style sheet. The CSS
specification defines a long list of properties (VS’s IntelliSense list shows more than 100 items),
although you won’t use all of them in most websites. The following table lists some of the most
common CSS properties and describes where they are used.

property description example

background-color

background-image

Specifies the background
color or image of an
element.

background-color: White;

background-image: url(Image.jpg);

border Specifies the border of an
element.

border: 3px solid Black;

color Changes the font color. color: Green;

display Changes the way elements
are displayed, enabling you
to hide or show them.

display: none;

This causes the element to be hidden,
and not take up any screen space.

float Enables you to “float” an
element in the page using
a left or right float. Other
content is then placed on
the opposite side.

float: left;

This setting causes other content
following a float to be placed at the
top-right corner of the element. You
see how this works later in the chapter.

font-family

font-size

font-style

font-weight

Changes the appearance
of fonts used on your page.

font-family: Arial;

font-size: 18px;

font-style: italic;

font-weight: bold;

height

width

Sets the height or width of
elements in your page.

height: 100px;

width: 200px;

margin

padding

Sets the amount of free
space inside (padding)
and outside (margin) of an
element.

padding: 0;

margin: 20px;

continues

c03.indd 73 2/21/2014 10:41:18 AM

74 ❘ chapter 3 Designing Your Web Pages

property description example

visibility Controls whether an
element is visible in the
page. Invisible elements
still take up screen space;
you just don’t see them.

visibility: hidden;

This causes the element to be invisible.
However, it still takes up its original
space in the page. It’s as if the
element is still there, but completely
transparent.

Fortunately, VS helps you to find the right property with its many CSS tools, so you don’t have to
remember them all.

Note Many more selectors and properties are available in CSS than I have
described here. For more detail on CSS, consult VS’s IntelliSense lists or take a
look at www.w3schools.com/cssref/.

For a property to be useful, you need to give it a value, which answers the third question: How do
you want the part of the selected element to look?

Values
Just as with properties, values come in many flavors. The values you have available depend on the
property. For example, the color attribute takes values that represent a color. This can be a named
color (such as White), a hexadecimal number representing a red, green, and blue (RGB) component
(such as #FF0000), or you can set it using the CSS rgb notation. The following examples are all
functionally equivalent and set the color of the h1 element to red:

h1
{
 color: Red;
}

h1
{
 color: #FF0000;
}

h1
{
 color: rgb(100%, 0%, 0%);
}

You can also specify the transparency of a color using the rgba notation where the fourth parameter
is a decimal number between 0 (fully transparent) and 1 (no transparency) like this:

color: rgba(255, 0, 0, 0.50);

 (continued)

c03.indd 74 2/21/2014 10:41:18 AM

http://www.w3schools.com/cssref/

An Introduction to CSS ❘ 75

Using named colors can increase the readability of your CSS code, but because you’re limited to a
relatively short list of named colors, you often need the hexadecimal notation to get the exact color
you want. Later in this chapter you see how to use the built-in color picker to create the exact color
you need.

Many other values are possible as well, including size units (px, em, and so on), font families, images
(which take the form of url(SomeImage.jpg)), or so-called enumerations like the border-style,
which enables you to set a border style such as solid, dashed and double.

Using Shorthand
Many of the CSS properties enable you to write a shorthand version as well as a more expanded
version. Take, for example, the border property. In its shortest form, you can set the border
property like this:

border: 1px solid Black;

This border property applies a border to all four sides of an HTML element. The border size is 1px,
the style is solid (some of the other options include dashed, dotted, and double), and the border
color is set to Black.

This is an easy way to quickly set all four borders of the HTML to the same values. However, if
you want more control over the individual borders and their properties, you can use the expanded
version:

 border-top-width: 1px;
 border-top-style: solid;
 border-top-color: Black;
 border-right-width: 1px;
 border-right-style: solid;
 border-right-color: Black;
 border-bottom-width: 1px;
 border-bottom-style: solid;
 border-bottom-color: Black;
 border-left-width: 1px;
 border-left-style: solid;
 border-left-color: Black;

This long version causes the exact same style to be applied: a solid black border on all four sides
with a thickness of 1 pixel. In most cases, you should favor shorthand notation over its expanded
counterpart, because it’s much easier to read and maintain. However, if you need absolute control
over the border — for example, if you want a 2-pixel dashed border on the left and top sides, and
a green, solid border on the right and bottom sides of the HTML element — it’s good to know that
you can set each border property of all four directions individually. You can also mix these options.
The following example sets the border on all four sides to a 1-pixel solid black line, and then
overrides just the color of the left border:

border: 1px solid Black;
border-left-color: Blue;

Other CSS properties that support shorthand include font, background, list-style, margin, and
padding. If you’re unsure whether a property supports shorthand, consult the IntelliSense pop-up list
that appears by pressing Ctrl+Space when you’re entering a property in a CSS file or a <style> block.

c03.indd 75 2/21/2014 10:41:18 AM

76 ❘ chapter 3 Designing Your Web Pages

Although at times it seems you need to write CSS
by trial and error, and just hope for the right result,
there’s actually a quite accurate model behind CSS
that determines how items should be laid out on the
page. This model is called the CSS Box Model.

The CSS Box Model
The CSS Box Model describes the way three
important CSS properties are applied to HTML
elements: padding, border, and margin. Figure 3-4
shows a graphical representation of the box model.

In the middle there is an HTML element like a <p>
or a <div> with a certain height and width. Just
around it there is padding; the whitespace that surrounds the element within its border. Immediately
after the padding you can see the border and finally on the outside there is the margin, which defines
the room between an element (including its padding and border) and its surrounding elements. The
three outer properties of an element — padding, border, and margin — add up to the space that an
element takes up in the page. To see how this works, consider the following CSS and HTML:

.MyDiv
{
 width: 200px;
 padding: 10px;
 border: 2px solid Black;
}
...
<div class="MyDiv">Element</div>

This renders a rectangle in the browser with the <div> element
surrounded by a black border of two pixels, as shown in
Figure 3-5.

Before you read on, try answering the question: How wide is the
arrow below the <div> element?

If you guessed 224 pixels, you are correct. The width of the arrow is the sum of three values: the
width of the actual element (200 pixels), plus the width of the padding surrounding it on both sides
(two times 10 pixels), plus the width of the borders on both sides (two times 2 pixels), resulting in a
total width of 224 pixels. So, if you wanted the entire box to be 200 pixels wide instead, you’d need
to set the width property of the MyDiv selector to 176px. Outside the border of the element, margin
could further influence the gap between this element and its surrounding elements.

The example shows the effect on the width only, but the same principles apply to the height of
elements. Keep this box model in mind when laying out your pages. When things end up wider or
taller than you anticipated, check the width, height, padding, border, and margin properties in
the CSS style sheet.

In the next exercise, you modify the site’s homepage that you created in the previous chapter. You
add the basic layout for the site, which is then styled using a style sheet. In Chapter 6 you use this
page again when you upgrade it to a master page.

figure 3-4

Top

Margin

Border
Padding

Element

Bottom

RightLeft

figure 3-5

Element

How wide is this arrow?

c03.indd 76 2/21/2014 10:41:19 AM

An Introduction to CSS ❘ 77

try it out Styling the Planet Wrox Homepage

In this exercise you modify two files. First, you add the basic layout elements to the Default.aspx page
to create room for a header, a menu, the main content area, a sidebar, and a footer. Then you modify
the Styles.css file from the Styles folder to change the size and location of these elements. Finally,
you attach the style sheet to the page, so the style information is applied when the page is viewed in the
designer or in a browser.

 1. Open the Default.aspx file from the root of your website and, if necessary, switch to Markup
View.

 2. Modify the code within the <form> element so it ends up like this:

<form id="form1" runat="server">
 <div id="PageWrapper">
 <header>Header Goes Here</header>
 <nav>Menu Goes Here</nav>
 <section id="MainContent">
 <h1>Hi there visitor and welcome to Planet Wrox</h1>
 ...
 </section>
 <aside id="Sidebar">Sidebar Goes Here</aside>
 <footer>Footer Goes Here</footer>
 </div>
</form>

Make sure that the welcome message you added in the previous chapter ends up between the
opening and closing tag of the MainContent <section> element. If you were already familiar
with versions of HTML before HTML5, you may a bit surprised by
the new elements such as header, section, and footer. These ele-
ments were introduced in HTML5 to give a better semantic structure
to your documents. Refer to Chapter 1 for a quick introduction to
HTML5.

 3. Open the Styles.css file from the Styles folder. If you added some
code to this file earlier, remove that code first.

 4. At the top of the CSS file, type the following code that uses an ID
selector to select the header element:

header
{

}

 5. Position your mouse between the curly braces and type the letter b. This
brings up the IntelliSense list and shows you all properties that start with
the letter b, as shown in Figure 3-6.

Next, type the letter c. The list is filtered further as you can see in Figure 3-7.

Notice how this filtering is done in a pretty smart way. The filter does not
limit the list to only those properties that start with or contain the letters
bc (which in this case don’t exist), but it also supports what is called a title

figure 3-6

figure 3-7

c03.indd 77 2/21/2014 10:41:19 AM

78 ❘ chapter 3 Designing Your Web Pages

case search, which means it lists items that have each word in the property begin with the letters
you’re searching for. In this case, bc matches items such as background-clip, background-
color, and more. The same applies to all other CSS properties. For example, td would give you
text-decoration, bbw gives you border-bottom-width, and so on. This makes it extremely easy
to write CSS code with only a few keystrokes.

Note how some items in the list have an icon with a pair of scissors instead of the standard prop-
erty icon. The scissors icon indicates a code snippet that you can expand by pressing Tab twice.
Doing so inserts browser-specific CSS into the file that is used for CSS properties that are not yet
widely implemented by all browsers.

Continue this exercise by selecting background-color from the list. You can double-click the
value, press Enter or Tab, and VS completes the property for you. Next, type a colon, then a space
and then the hash symbol (#) followed by C0C0C0 (which represents the color silver). Close the line
with a semicolon. Your final code should now look like this:

header
{
 background-color: #C0C0C0;
}

 6. Complete the code block for the header element by adding width and height properties like this:

{
 background-color: #C0C0C0;
 width: 844px;
 height: 86px;
}

 7. Complete the CSS file by creating the following rules. Make good use of Visual Studio’s
IntelliSense and title case search feature to minimize the number of keystrokes needed to write
this code.

*
{
 font-family: Arial;
}

h1
{
 font-size: 20px;
}

#PageWrapper
{
 width: 844px;
 margin: auto;
}

nav
{
 width: 844px;

c03.indd 78 2/21/2014 10:41:19 AM

An Introduction to CSS ❘ 79

}

section#MainContent
{
 width: 664px;
 float: left;
}

aside
{
 background-color: Gray;
 width: 180px;
 float: left;
}

footer
{
 background-color: #C0C0C0;
 width: 844px;
 clear: both;
}

Since the Universal selector (*) applies to all elements in your site, it’s common to move it to the
top of the CSS above, even above the header selector, which you could do now.

 8. When you’re done creating the rules, save and close the Styles.css file, because you’re done with
it for now.

 9. Open the Default.aspx file again and switch to Design View. From the Solution Explorer, drag
the Styles.css file from the Styles folder onto the page. You should immediately see the Design
View change to reflect the code you wrote in the style sheet. When you drop the style sheet on the
page, VS inserts code in the <head> section of the page in Markup View that attaches the style
sheet to the document:

<head runat="server">
 <title></title>
 <style type="text/css">
 .auto-style1
 {
 color: #FF0000;
 }
 </style>
 <link href="Styles/Styles.css" rel="stylesheet" type="text/css" />
</head>

You can also drag an existing style sheet from the Solution Explorer directly in the <head> section
of a page in Markup View. When you do that, VS adds the same <link> element but leaves out
the type attribute. Since this attribute is optional in HTML5, this is not a problem.

 10. Since the site uses HTML5, you need a browser that supports this latest HTML version for the
page to render correctly. For older browsers, such as Internet Explorer 8 and below, you can use a
nifty JavaScript library called Modernizr. One of the many features of this library is dynamically
adding support for new HTML elements such as nav, section and aside through JavaScript.

c03.indd 79 2/21/2014 10:41:19 AM

80 ❘ chapter 3 Designing Your Web Pages

Adding Modernizr to your site is very easy using the Package Manager Console that ships with
Visual Studio. To add the library, follow these steps:

 1. Choose Tools ➪ Library Package Manager ➪ Package Manager Console.

 2. Type the following command and press Enter:

Install-Package Modernizr

 3. After a short delay, your site is expanded with a file called packages.config that keeps
track of the installed packages and a Scripts folder that now contains the file
modernizr-2.7.1.js. Note: your version number could be different if a newer version of
Modernizr has been released by the time you read this book. To add this library to your
page, open Default.aspx in Markup View and drag the file from the Solution Explorer
to the head section of the code, directly after the link to the style sheet. You should end up
with this code:

 <link href="Styles/Styles.css" rel="stylesheet" type="text/css" />
 <script src="Scripts/modernizr-2.7.1.js"></script>
</head>

You should add the Modernizr library to your site even if you have a modern web browser.
Since you can’t control the browsers visiting your site, you want to make sure everybody
sees your site as intended. Adding Modernizr fixes the HTML5 compatibility issues for
older browsers while hardly causing any overhead. You can learn more about Modernizr
on its website at http://modernizr.com. You’ll see a lot more about the Package Manager
Console in Chapter 11.

 11. Finally, save the changes to all open documents (press Ctrl+Shift+S) and then request Default
.aspx in your browser. Your screen should look similar to Figure 3-8, which shows the page in
Mozilla Firefox.

figure 3-8

How It Works

Features like IntelliSense and title case search make it easy to write CSS with a minimum number of
keystrokes. At first you may be typing in most of the CSS yourself, but once you become more familiar
with Visual Studio’s CSS editor, you can let VS write most of the code for you.

c03.indd 80 2/21/2014 10:41:19 AM

http://modernizr.com

An Introduction to CSS ❘ 81

Note that the header, PageWrapper, nav, and footer elements have an exact width of 844 pixels.
This way, the site fits nicely on screens with a size of 1024 x 768 pixels, still a reasonably common
screen size for many of today’s computers, without being squeezed between the Windows borders.
Systems with bigger screens simply center the site in the available space. This centering is done by the
PageWrapper element, which has its margin set to auto. This means that the available space on the left
and right sides (but not at the top and bottom) is equally divided, effectively centering the PageWrapper
element in the middle of the browser window. As an alternative to fixed width layouts, you can also
create a responsive layout that adapts to the visitor’s screen size. The Bootstrap framework mentioned
earlier makes this very easy.

Note also that the MainContent section and the aside are positioned next to each other. You do this
with the CSS float property:

section#MainContent
{
 width: 664px;
 float: left;
}

aside
{
 background-color: Gray;
 width: 180px;
 float: left;
}

This tells the MainContent to “float” on the left side of content that follows it, effectively placing the
aside to the right of it. You need to tell the aside to float as well; if you leave it out, it will be placed at
the left of the page, right where it was before you applied the CSS. If you have multiple aside elements
in your site (which is a common practice), you can target this aside that acts as a sidebar by adding an
id attribute (such as Sidebar) just as I did with the MainContent section element and then update the
CSS as follows:

aside#Sidebar
{
 ...
}

The combined width of the MainContent and aside elements adds up to 844 pixels, which is exactly
the width of their parent element: the PageWrapper.

To end the float and tell the footer element to be placed directly under the MainContent and aside
elements, the clear property is used to clear any float (left or right) that may be in effect:

footer
{
 background-color: #C0C0C0;
 width: 844px;
 clear: both;
}

The gray backgrounds are just temporarily added to the code, so it’s easier to see what <div> ends up
where. In future exercises, you modify the CSS file again to fit the scheme of the Planet Wrox website.

c03.indd 81 2/21/2014 10:41:20 AM

82 ❘ chapter 3 Designing Your Web Pages

To tell the browser what styles to apply, you link the style sheet in the head of the page:

<link href="Styles/Styles.css" rel="stylesheet" type="text/css" />

This tells the browser to look in the Styles folder for a file called Styles.css and apply all rules in
that file to the current document. Once the browser has downloaded the CSS file, it applies all the styles
it finds in there to your HTML elements, resulting in the layout shown in Figure 3-8.

In this exercise, you saw how to link an external style sheet to a page using the <link> tag.
However, you have more ways to include style sheets in your web pages.

adding css to your pages
The first way to add CSS style sheets to your web pages is through the <link> element that points to
an external CSS file, as you saw in the previous exercise. Take a look at the following <link> to see
what options you have when embedding a style sheet in your page:

<link href="StyleSheet.css" rel="Stylesheet" type="text/css" media="screen" />

The href property points to a file within your site, just as you saw in the previous chapter when
you created links between two pages. The rel and type attributes tell the browser that the linked
file is in fact a cascading style sheet. The media attribute is quite interesting: it enables you to target
different devices, including the screen, printer, handheld devices, and even Braille and aural support
tools for visually impaired visitors. The default for the media attribute is screen, so it’s OK to omit
the attribute if you’re targeting standard desktop browsers.

You briefly saw the second way to include style sheets at the beginning of this chapter: using
embedded <style> elements. The <style> element should be placed at the top of your ASPX or
HTML page, between the <head> tags. Within the <style> tags, you can write the exact same CSS
you saw earlier. For example, to change the appearance of an <h1> element in the current page only,
you can add the following code to the <head> of your page:

<head runat="server">
 <title></title>
 <style>
 h1
 {
 color: Blue;
 }
 </style>
</head>

The type attribute on the <style> element is optional as well, so you’ll come across <style>
elements with and without that attribute.

The third way to apply CSS to your HTML elements is to use inline styles with the style attribute
that you saw earlier in this chapter. Because the style attribute is already applied to a specific
HTML element, you don’t need a selector and you can write the declaration in the attribute directly:

 This is white text on a black background.

c03.indd 82 2/21/2014 10:41:20 AM

An Introduction to CSS ❘ 83

Choosing among External, Embedded, and Inline Style Sheets
You have so many options to add style sheets to your site, what’s the best method to use?
In general, you should give preference to external style sheets over embedded styles, which in turn
are preferred over inline styles. External style sheets enable you to change the appearance of the
entire site through a single file. Make one change to your external style sheet file, and all pages that
use this style sheet pick up the change automatically.

However, it’s perfectly acceptable to use embedded and inline styles as well in certain circumstances.
If you want to change the look of a single page, without affecting other pages in your site, an
embedded style sheet is your best choice. The same applies to inline styles: If you only want to
change the behavior of a single element in a single page, and you’re pretty sure you’re not going to
need the same declaration for other HTML elements, you could use an inline style.

An important thing to consider is the way that the various types of style sheets override one another.
If you have multiple identical selectors with different property values, the one defined last takes
precedence. For example, consider a rule defined in an external style sheet called Styles.css that
sets the color of all <h1> elements to green:

h1
{
 color: Green;
}

Now imagine you’re attaching this style sheet in a page that also has an embedded rule for the same
h1 but that sets a different color:

<link href="Styles/Styles.css" rel="stylesheet" type="text/css" />
<style>
 h1
 {
 color: Blue;
 }
</style>

With this code, the color of the actual <h1> element in the page will be blue. This is because the
embedded style sheet that sets the color to blue is defined later in the page, and thus overrides the
setting in the external file. If you turn the styles around like this,

<style>
 h1
 {
 color: Blue;
 }
</style>
<link href="Styles/Styles.css" rel="stylesheet" type="text/css" />

the heading will be green, because the setting in the external style sheet now overrules that of the
embedded style.

The same principle applies to inline styles. Because they’re defined directly on the HTML elements,
their settings take precedence over embedded and external style sheets.

c03.indd 83 2/21/2014 10:41:20 AM

84 ❘ chapter 3 Designing Your Web Pages

It’s also good to know that CSS generally overrules attributes on HTML elements. For example, if
you have a CSS rule that sets the width and height of an image, the height and width attributes
on the img element are ignored. For example, the image in this code snippet ends up as a 100-pixel
square:

img
{
 height: 100px;
 width: 100px;
}
...

Note There’s a lot more to CSS than what is shown here. To learn more about
CSS, pick up a copy of Beginning CSS: Cascading Style Sheets for Web Design,
3rd Edition by Richard York and Ian Pouncey (ISBN: 978-0-470-89152-0).

In general, it’s recommended that you attach external files at the top of the <head> section, followed
by embedded style sheets. That way, the external file defines the global look of elements, and you
can use embedded styles to overrule the external settings on a page-by-page basis.

VS makes it easy to move embedded style sheets to an external CSS file, something you learn how to
do in the next section, which discusses the remainder of the CSS tools in VS.

Working With css in Visual studio

Visual Studio 2013 has a number of great tools on board to make working with CSS as easy as
possible, including:

➤➤ The CSS Properties Grid, which enables you to change property values.

➤➤ The Manage Styles window, which enables you to organize styles in your site, changing
them from embedded to external style sheets and vice versa; reorder them; link existing style
sheets to a document; and create new inline, embedded, or external style sheets.

➤➤ The Apply Styles window, which you can use to choose from all available styles in your site
and quickly apply them to elements in your page.

➤➤ Hierarchical indenting, which makes your CSS code easier to understand.

➤➤ Smarter IntelliSense and title case search features, which make it easy to enter CSS code
manually.

➤➤ A number of helpful editor features such as the ability to easily comment and uncomment
code and wrap code in collapsible regions, a color picker, and code snippets.

You’ve already seen some of these tools at work, and the next sections give you a detailed look at the
remaining tools.

c03.indd 84 2/21/2014 10:41:20 AM

Working with CSS in Visual Studio ❘ 85

using the css editor
The CSS text editor in VS hosts a number of powerful features, demonstrated in the next Try It Out
exercise.

try it out Trying Out the CSS Editor

In this exercise you modify the Styles.css file you created earlier by adding a few new styles. Along
the way you’re introduced to a number of the CSS editor features listed earlier.

 1. Open the Styles.css file from the Styles folder and locate the section#MainContent selector.
Right below its closing curly brace, add the following CSS selector that targets links (a elements)
in the MainContent section:

section#MainContent a
{

}

 2. Between the opening and closing curly braces, type
color, followed by a colon (:) and then by a hash
symbol (#). As soon as you type the hash symbol, VS
presents you with a color picker. If you click the down
arrow at the right of the color picker, it expands and
shows more options, visible in Figure 3-9.

This color picker has a few interesting features. Firstly,
the top row of colored squares contains a list of colors
that are defined in your style sheet. This is a great way
to quickly pick a color you’ve already been using for another selector. The list of recognized colors
is then followed by a vertical bar, which in turn is followed by some default colors that VS adds
for you. In Figure 3-9 you can see two recognized colors: a light and a dark shade of gray. The
other colors are all defaults. Secondly, you can mix your own color by dragging the mouse over
the large square in the middle as well as over the colored vertical bar on the right. Finally, using
the tiny color picker icon at the bottom right of the screen, you can quickly select a color from
any other Windows application or your desktop. This is a great way to retrieve the color from an
image you may have opened in some graphics program, for example.

If you want to type in your own color information, simply ignore the color picker (or close it by
pressing the Esc key).

For this exercise, click a green square, which inserts the hexadecimal value (such as #4cff00) of
the color for you. Complete the line of code by entering a semicolon.

 3. Complete the style rule for section#MainContent a and add two more style rules as follows:

section#MainContent a
{
 color: #4cff00;
 text-decoration: underline;

figure 3-9

c03.indd 85 2/21/2014 10:41:20 AM

86 ❘ chapter 3 Designing Your Web Pages

}

section#MainContent a:visited
{
 color: #FF0000;
 text-decoration: underline;
}

section#MainContent a:hover
{
 color: #FFA500;
 text-decoration: underline;
}

 4. Next, choose Edit ➪ Format Document from the main menu.
Alternatively, press Ctrl+K followed by Ctrl+D. This shortcut and
menu command are available for other types of files as well, such
as HTML, ASPX, Visual Basic, and C# files. When executed, they
format the document according to the settings for that particular file
type. In the case of CSS, it formats your code by placing the opening curly brace at a consistent
location, and indenting and formatting the individual rules. It also performs what’s called a
hierarchical indent. To best understand how this works, take a look at Figure 3-10, which depicts
the section#MainContent rule set as well as the new selectors for the a elements you added
earlier after you formatted the document.

Notice how the section#MainContent a rule set has been indented below the
section#MainContent rule set. This helps to understand the relationship between the two selec-
tors used by the rule set (section#MainContent a only targets a elements within a parent
section element with an id of MainContent). Likewise, the section#MainContent a:visited
and section#MainContent a:hover rule sets are indented below the a element because they can
be considered “children” of the a element. If you don’t like this behavior, you can turn it off by
setting Hierarchical Indentation to Off under Tools ➪ Options ➪ Text Editor ➪ CSS ➪ Advanced.
Alternatively, press Ctrl+Q to put focus on the Quick Launch box, type CSS Advanced, and press
Enter. This opens the same Options dialog box. While you’re there, spend some time browsing
around the items under the Text Editor node to get an idea of how you can change the formatting
of the many languages that VS supports.

 5. The final two editor features worth showing here are Regions and Comments. If your CSS code
becomes unwieldy, it may help to wrap some parts of the code that belong together in a region. A
region in VS can then be collapsed to hide the code, and expanded again when you need to change
it. To create a region, you wrap the code in a region / endregion pair using CSS comment
syntax. For example:

/*#region Name Of Region */
 … Your CSS code here
/*#endregion*/

For this exercise, add the opening region statement with a name
of Main Content (/*#region Main Content */) right above the
section#MainContent rule set, and the closing statement (/*#endre-
gion*/) below the section#MainContent a:hover rule set. Once the
region is created, in Figure 3-11 you see a minus (-) icon in the gutter next to the text editor.

figure 3-10

figure 3-11

c03.indd 86 2/21/2014 10:41:20 AM

Working with CSS in Visual Studio ❘ 87

You can now collapse the region by clicking the minus icon. VS hides
the code block and shows the name of the region instead, as shown in
Figure 3-12.

This makes it really easy to get some code out of the way when work-
ing with large code files. Note: Regions are also supported by other file
types, such as C# and VB files, although each language uses a slightly
different syntax.

The region feature in VS makes use of standard CSS comments syntax. This means that the
browser ignores the region code as well as its name.

To comment out other code (so it’s not interpreted by the browser), select
some text and then press Ctrl+K followed by Ctrl+C (for Comment). The code
is then commented out using /* and */, as shown in Figure 3-13.

To uncomment the code again, press Ctrl+K followed by Ctrl+U (for
Uncomment). Both commands are also available in the Edit ➪ Advanced menu. You can also start
a comment manually by typing /*. VS then inserts the closing */ for you automatically.

 6. Save the changes to the CSS file. You can leave the region code in, but make sure you uncomment
any code you may have commented out in the preceding step.

 7. Switch to the Default.aspx page and, if necessary, switch to Design View. Select the text “look
around” in the paragraph. If you typed something else in an earlier Try It Out, select that text
instead. At this stage, all that’s important is that you have some text to turn into a link.

 8. On the Formatting toolbar, click the Convert to Hyperlink button (with the link symbol and
arrow on it), click the Browse button in the dialog box that appears, and select Default.aspx in
the root of the site. This way, the link points to the same page it’s defined in, which is fine for this
exercise. Click OK twice to dismiss the dialog boxes.

 9. Save the changes to all open documents (choose File ➪ Save All from the main menu or press
Ctrl+Shift+S) and then request Default.aspx in your browser by pressing Ctrl+F5. You should
see the page appear with the “look around” link underlined, as shown in Figure 3-14, which
shows the page in Google Chrome.

figure 3-12

figure 3-13

figure 3-14

c03.indd 87 2/21/2014 10:41:21 AM

88 ❘ chapter 3 Designing Your Web Pages

 10. Hover your mouse over the “look around” link; note that it turns to orange.

 11. Notice how the link to www.PlanetWrox.com is green (provided you haven’t visited this site
before), whereas the link to Default.aspx is red (because you’re currently viewing Default
.aspx, the browser marks this page as “visited”). If you visit the Planet Wrox website and then
come back to your Default.aspx page, the link to the Planet Wrox site will have turned red as
well. Hovering over it still turns it to orange. If you want to test the page in another browser,
right-click Default.aspx in the Solution Explorer and choose Browse With from the context
menu. If your alternate browser is listed there already, select it from the list and then click Browse.
You can select multiple browsers at the same time by holding down the Ctrl key when you click
them. These browsers will all open when you click the Browse button. Optionally, you can make
the browser or browsers the default by clicking the Set as Default button. Combined with a new
VS feature called Browser Link (which you’ll see in Chapter 18), this is a great way to quickly
develop and test your pages in multiple browsers.

If your browser is not listed, click the Add button and then the ellipsis next to the Program Name
box to search for your favorite browser. When the browser is displayed in the list, click it to
select it.

You can also access these settings from the Standard toolbar, shown in Figure 3-15.

figure 3-15

How It Works

This exercise started off by showing you some of the features of the CSS editor in VS. The color picker,
code commenting, hierarchical indenting, and code formatting are all designed to make it as easy as
possible to write CSS code.

The :hover and :visited parts on the a selector you added are probably new to you. These selec-
tors are called pseudo class selectors. The a:visited selector is applied only to links that the user has
already visited in the browser. The a:hover selector is applied only to the <a> element when the user
hovers the mouse over the link.

When you open the page in the browser, the updated style sheet is downloaded and the browser then
applies the a:visited rule set to all links in the MainContent section you visited before. When you
hover your mouse over a link, the rule set section#MainContent a:hover is applied, causing the link
to turn orange.

c03.indd 88 2/21/2014 10:41:21 AM

http://www.PlanetWrox.com

Working with CSS in Visual Studio ❘ 89

Viewing your pages in different browsers is a good thing to do. Although modern browsers tend to
render a page more and more similarly, subtle differences exist that you need to be aware of and handle
in your HTML and CSS code. Installing a few different browsers on your system (Internet Explorer,
Firefox, Safari, Opera, and Chrome, for example), assigning them to the Browse With dialog box as
shown in this Try It Out, and testing your pages in these browsers as often as you can will help to
ensure your pages look exactly right in the majority of the browsers.

As useful as external style sheets are, sometimes you really want to use embedded or inline styles
instead. Creating and managing those styles, explained in the next section, is just as easy.

creating embedded and inline style sheets
When you’re working with a page in Design View, you often need to make minor tweaks to part of
the page, like styling a piece of text, aligning an image, or applying a border to an element. At this
stage, you need to make a decision about whether to create an inline, embedded, or external style
sheet. As you saw earlier, you should opt for external or embedded style sheets if you envision that
you’re going to reuse a style later. VS doesn’t care much, though. It enables you to create styles at
all three levels. Even better, it enables you to easily upgrade an embedded style to an external one,
or copy inline style information to a different location, giving you great flexibility and the option to
change your mind later.

In the next exercise, you see how to create inline and embedded style sheets. You see later how to
move those styles to an external style sheet, enabling other pages to reuse the same styles.

try it out Creating Embedded and Inline Styles in a Page

In this Try It Out, you add a style rule to the <h1> element of the page to remove the default margin
that a browser draws around the heading. In addition, you style the first paragraph using a class attri-
bute, giving it a different look to make it stand out from the other paragraphs on the page.

 1. Go back to VS and make sure that the Default.aspx page is open in Design View.

 2. Click once on the <h1> element in the Document Window to select it and then choose Format ➪
New Style. The New Style dialog box appears (visible in Figure 3-16) that lets you visually create
new CSS code.

 3. At the top of the screen, open the Selector drop-down list and choose (inline style). It’s the first
item in the list. This ensures that the new style is applied as an inline style to the <h1> element.

 4. Switch to the Box category, shown in Figure 3-17. This dialog box has a handy diagram that
serves as a refresher on the CSS Box Model, showing you where the properties padding, border,
and margin end up.

By default, browsers draw some white space above or below an <h1> element, but the actual
amount differs between browsers. To give each browser the same consistent settings, you can
reset the padding to 0 and then apply a little bit of margin at the bottom of the heading, which
creates some distance to the elements following it. To do this, set padding to 0 in the top box and
clear the value from the drop-down list next to the text box. By leaving the Same for All option

c03.indd 89 2/21/2014 10:41:21 AM

90 ❘ chapter 3 Designing Your Web Pages

selected, VS creates a shorthand declaration for you. Then uncheck Same for All for the margin
section, enter 0 for the top, right, and left boxes, and clear the value from the drop-down next to
each value. Next, enter 10 for the bottom text box and make sure px is selected in the drop-down
list. Your screen should now look like Figure 3-17.

figure 3-16

figure 3-17

c03.indd 90 2/21/2014 10:41:22 AM

Working with CSS in Visual Studio ❘ 91

Click OK to close the dialog box and apply the changes to the heading. You end up with the fol-
lowing <h1> element with an inline style in Markup View:

<h1 style="padding: 0; margin: 0 0 10px 0">
 Hi there visitor and welcome to Planet Wrox
</h1>

 5. Next, in Design View, select the first paragraph by clicking it. A small glyph appears to indicate
you selected a <p> element. The Tag Selector at the bottom of the Document Window should
highlight the <p> element, as shown in Figure 3-18.

figure 3-18

 6. With the paragraph still selected, choose Format ➪ New Style from the main menu. This time,
instead of creating an inline style, type the text .Introduction in the Selector box. Don’t forget
the dot (.) in front of the selector’s name.

 7. At the top of the screen, select the check box for Apply New Style to Document Selection. With
this setting on, the new class you’re about to create is
applied to the <p> element that you have selected.

 8. From the font-style drop-down list, choose italic.

 9. Click OK to close the dialog. Note that the entire
paragraph is now displayed with an italic font.

 10. With the <p> element still selected, open the CSS
Properties Grid (see Figure 3-19) by choosing View ➪
CSS Properties. This grid gives you an overview of all
the CSS properties and shows which ones are currently
active for your page.

This grid shows a list of applied rules in
the top part of the window in the order
in which they are applied. The bottom part
of the window is used to show the CSS
properties for those rules. In Figure 3-19
you see the rules that are applicable to the
.Introduction selector.

 11. Locate the color property in the CSS
Properties Grid and set it to a dark blue
color, like #003399. To achieve this, open
the drop-down list for the property value
and choose a color from the color picker. If
the color you’re looking for is not available,
click the More Colors button to bring up the
extended color picker, shown in Figure 3-20.

figure 3-19

figure 3-20

c03.indd 91 2/21/2014 10:41:22 AM

92 ❘ chapter 3 Designing Your Web Pages

Instead of using the color picker, you can also type a value
in the Properties Grid directly. This is how many of the
properties work in the CSS Properties Grid: They let you
enter values directly or enable you to change the value visu-
ally using a drop-down list or a button with ellipses at the
end of the property’s value box. Figure 3-21 shows the dif-
ferent options you have for the font-style property in a
convenient drop-down list.

Take special note of the three buttons at the top of the window, because they house some useful
functionalities. The first two buttons enable you to switch between categorized mode and alpha-
betical mode, making it easier to find the right property. The third button enables you to display
the applied properties at the top of the list or at their default locations in the list.

 12. Finally, save all changes and open Default.aspx in your browser (see Figure 3-22). You’ll see
that the first paragraph is now displayed with a blue and italic font except for the link in the
text, which is green or red depending on whether you visited that site before. Additionally, if you
followed all the instructions from the previous chapter, the text “paying a visit” is red, set by the
embedded CSS class.

figure 3-21

figure 3-22

 13. Switch back to VS and look at your page in Markup View. In the <head> section of the page, you
should see the following embedded style sheet:

 .Introduction
 {
 font-style: italic;
 color: #003399;
 }
 </style>
 <link href="Styles/Styles.css" rel="stylesheet" type="text/css" />

How It Works

The numerous tools that VS offers make it easy to write CSS for your website. You don’t need to hand
code anything, or remember all the different properties that the CSS standard supports. Instead, you

c03.indd 92 2/21/2014 10:41:22 AM

Working with CSS in Visual Studio ❘ 93

can simply choose them from different lists on the CSS Properties Grid. This grid enables you to enter
values manually but also offers handy tools to select colors, files, items from drop-down lists, and more.

All changes you make in the Properties Grid are applied to the relevant style sheet, whether you’re
working with an inline, embedded, or external style sheet. At the same time, the Design View is
updated to reflect the new CSS options you have set.

When you look at the <h1> element, you can see that VS created an inline style with padding set to 0 to
affect all four sides at once, and margin set to 0 0 10px 0 to control all four sides individually.

Once you have created a bunch of useful and reusable styles, you need a way to apply your existing
styles to other pages or HTML elements. You see how this works next.

applying styles
If you have some experience with Microsoft Word, you may be familiar with the Styles dialog box,
which lists all available styles and enables you to apply them to selected portions of text. This way,
you can quickly apply identical formatting to blocks of text. This works similarly in VS. With the
Apply Styles window — accessible by choosing View ➪ Apply Styles from the main menu — you can
easily apply style rules to elements in the page.

tyr it out Using the Apply Styles Window

In this exercise, you reuse the .Introduction class and apply it to the second paragraph of the page as
well. That way, both paragraphs end up looking the same.

 1. Still in Default.aspx, make sure you’re in Design View and then select the second paragraph
of the page by clicking it. Ensure that the Tag Selector at the bottom of the Document Window
shows that the <p> element is selected, and not another one like
 that may be part of the <p> element. If you have only one
paragraph of text, create a new one first (by pressing Enter after the
first paragraph in Design View), enter some text, and then select that
paragraph.

 2. Open the Apply Styles window by choosing View ➪ Apply Styles.
Make sure the window is not accidentally docked in the main
Document Window, but either floats or is placed at the side of the
Document Window. This window shows all the selectors it finds in
the current page and any attached style sheet. If you don’t see all the
styles shown in Figure 3-23, click the Options button and choose
Show All Styles.

 3. Click the Introduction class in the CSS Styles list. VS adds a class
attribute to the <p> tag:

<p class="Introduction">
 Feel free to have a look around; there are lots of
 interesting reviews and concert pictures to be found here.
</p>

figure 3-23

c03.indd 93 2/21/2014 10:41:22 AM

94 ❘ chapter 3 Designing Your Web Pages

If you want to apply multiple classes, hold down the Ctrl key while clicking one of the other
classes in the list. This applies a list of classes separated by a space to the element’s class attri-
bute. You can follow the same steps to apply the selected style in Markup View as well.

 4. Using the Clear Styles button, you can quickly remove existing classes and inline styles from a
tag. Consider the HTML fragment you saw in the previous chapter when you used the Formatting
toolbar to format text in the page. If you used the Foreground Color button, you ended up with
code similar to this:

We're glad you're paying a visit

To remove the class attribute, select the tag in the Tag Selector, or simply click the
 tag in Markup View and then click Clear Styles in the Apply Styles window, which you
can see below the toolbar in Figure 3-23. You’ll end up with this HTML:

We're glad you're paying a visit

Because an empty around the text has no use, VS removes it for you as well. In addition,
VS also removes the auto-style1 rule because it’s no longer used by any code on the page. If
the Apply Styles window is empty when you click the in Markup View, you may need to
switch to Design View first to populate the dialog.

Removing style attributes from HTML elements works the same way.

How It Works

Once again, VS is able to keep all relevant windows in sync: the Design View, Markup View, and the
various CSS design tools. When you apply a class from the Apply Styles window, VS adds the requested
class to the selected HTML element in Markup View. It then also updates the Design View window.
Similarly, when you remove a selector or a declaration from an embedded style in Design View, both
the Design View and the CSS tools windows are updated.

The final CSS functionality you need to look at in this chapter is located on the Manage Styles and
Apply Styles windows. Besides helping you attach CSS files to your documents, these windows
enable you to manage your styles easily.

managing styles
Because it’s so easy to add new inline and embedded styles, your pages may quickly become a mess
with styles all over the place. To achieve reusability, you should move as much of your inline and
embedded styles as possible to an external style sheet. This is exactly what the Apply Styles and
Manage Styles windows enable you to do.

try it out Managing Styles with the Manage Styles and Apply Styles Windows

Earlier in this chapter, you modified the <h1> element and applied padding and margin to the head-
ing. However, Default.aspx is not the only page that could benefit from this style for a heading, so
it makes sense to move it to the Styles.css file. Similarly, the Introduction class seems reusable
enough to include it in the Styles.css file so other pages can access it. This Try It Out shows you how
to move styles around in your site.

c03.indd 94 2/21/2014 10:41:23 AM

Working with CSS in Visual Studio ❘ 95

 1. Make sure that Default.aspx is still open and switch to Markup
View if necessary.

 2. Locate the <h1> element and click it once. VS highlights the tag in
the Tag Selector at the bottom of the Document Window to indicate
it’s the active tag.

 3. Open the Apply Styles window by choosing View ➪ Apply Styles
from the main menu. Alternatively, if you have the window docked
with other windows, simply click its tab to make it active. Again,
make sure the window is not accidentally docked in the main
Document Window, but either floats or is placed at the side of the
Document Window. At the bottom of the Apply Styles window,
you’ll see an inline style appear (see Figure 3-24).

 4. Right-click Inline Style and choose New Style Copy. The New Style
dialog box appears, enabling you to create a new style based on
the current selection. At the top of the window, choose h1 from the
Selector drop-down list, and from the Define In drop-down list choose Existing style sheet. From
the URL drop-down list, choose Styles/Styles.css. If that item isn’t available, click the Browse
button to locate and select it. Your dialog box should end up like Figure 3-25.

figure 3-24

figure 3-25

 5. Click OK to close the dialog box. VS creates a copy of the h1 style and places it in the Styles.
css file. VS creates a new selector for h1 in the Styles.css file instead of adding the padding and
margin info to the existing rule set. If you want to, you can combine the two selectors into
one manually.

c03.indd 95 2/21/2014 10:41:23 AM

96 ❘ chapter 3 Designing Your Web Pages

 6. In the Apply Styles window, right-click Inline Style again, and this time
choose Remove Inline Style from the context menu. This removes the
style attribute from the h1 element.

 7. From the main menu, choose View ➪ Manage Styles. Again, make sure
the window is placed beside the Document Window and not docked
in the Document Window. Under the Current Page item, locate the
.Introduction selector.

 8. Click the .Introduction selector once, and then drag it into the area
for Styles.css, for example dropping it after the h1 selector. Note that
VS draws lines between the selectors as you hover over them to indicate
the point where the selector will end up. Figure 3-26 shows how the
.Introduction selector is dragged from the current page into Styles
.css, between the h1 and #PageWrapper selectors.

 9. Once you drop the selector in the Styles.css section of the Manage
Styles window, the associated style is removed from your current page,
and then inserted in Styles.css. Because that CSS file is included
in your current page using the <link /> element, you won’t see a difference in Design View.
You can now remove the empty <style> element from Default.aspx, because it’s not needed
anymore.

 10. If you haven’t already merged the two h1 selectors, open Styles.css and scroll down to the end
of the file. Copy the two lines for the padding and margin properties to the clipboard and then
delete the entire selector. Scroll up in the file and then paste the two CSS rules inside the other h1
selector. You should end up with this code:

h1
{
 font-size: 20px;
 padding: 0;
 margin: 0 0 10px 0;
}

 11. Save any pending changes you may have and then open Default.aspx in your browser by
pressing Ctrl+F5. Note that the paragraphs haven’t changed and still use the same blue and italic
font.

How It Works

Unfortunately, VS doesn’t allow you to move inline styles to external style sheet files. However, by cre-
ating a copy of the existing style, and then deleting the original inline style, you can achieve the same
effect. Moving embedded or external style sheets between files is a lot easier. You can simply drag a
style from one file to another, and VS will automatically move the code for you. This makes it easy to
organize your CSS. Instead of leaving all your embedded CSS in your page because you’re afraid to
touch it, you can now simply drag and drop it into an external file. This makes it a lot easier to reuse
those styles in other pages, decreasing page size and page bloat and making your site a lot easier to
manage. Obviously, it’s important that the file you are moving your CSS to is attached to the pages
you’re working with.

figure 3-26

c03.indd 96 2/21/2014 10:41:23 AM

Summary ❘ 97

practical tips on Working With css

Follow these tips to make the most of CSS:

➤➤ Take some time to familiarize yourself with the many properties that CSS supports. The
best way to do this is to create a brand-new page in your Demos folder, create a few HTML
elements like <div> and <p> tags, and then simply experiment with all the different
properties. By trying out many of the properties on the CSS Properties Grid, you get a feel
for what options you have available. This makes it easier later if you want to apply a certain
effect to some piece of content.

➤➤ When creating custom CSS classes, try to come up with names that describe the behavior of
the rule, rather than the look and feel. For example, a class called .Introduction to style
the first paragraph of a page is a good description. It enables you to change the underlying
values without affecting the actual meaning of the name. But classes with names like
.BlueAndItalic are guaranteed to give you problems later. What if you decide to change
the blue to black? You either end up with a very odd class name that doesn’t describe its
own behavior, or you’ll need to rename the class and then update the entire site, changing
references to the old class to .BlackAndItalic.

➤➤ Try to create smaller and reusable rule sets that you can combine if required, rather than
creating large, monolithic rules that can only be used on a single UI element. For example,
instead of creating a style like this:

.ImportantHeading
{
 color: Red;
 font-size: 20px;
 font-weight: bold;
}

you’re better off creating a few lightweight rules that are easier to reuse:

h1
{
 font-size: 20px;
}

.Attention
{
 color: Red;
 font-weight: bold;
}

When you apply the .Attention class to a heading like this: <h1 class="Attention">,
you get the exact same behavior you got when you gave it the ImportantHeading class.
However, with the separate Attention class, you have created a reusable rule that you can
apply to other elements that need the user’s attention, like <p> or elements.

summary

This chapter gave you a good look at CSS, the most important language for styling your ASPX and
HTML web pages.

c03.indd 97 2/21/2014 10:41:23 AM

98 ❘ chapter 3 Designing Your Web Pages

CSS enables you to overcome the limitations of HTML with respect to styling your web pages
because it is designed to minimize page bloat, give you greater control over the look of your page,
and generally help you create websites that load more quickly and are easier to maintain.

Once you have a good understanding of the CSS terminology, you’ll find it’s easy to work with the
many CSS tools that VS has on board. Tools like the Manage Styles and Apply Styles windows, the
Style Builder, and the smart IntelliSense in the code editor make writing and managing CSS very
easy.

You can apply CSS not only to HTML, as you’ve seen in this chapter, but also to ASP.NET Server
Controls. The CSS you apply to those controls eventually ends up in the browser as inline style
attributes, and the same principles apply as those you’ve seen in this chapter. The next chapter gives
you a detailed look at the many available ASP.NET Server Controls.

exercises

 1. What is the main benefit of using an external style rather than embedded style sheets?

 2. Write a CSS rule that changes the appearance of all headings at level one (h1) in your page to
the following:

➤➤ The heading uses an Arial font face.

➤➤ The heading should be blue.

➤➤ The heading must have a font size of 18 pixels.

➤➤ The heading has a blue, thin border at the top and left side.

For the last requirement, check out VS’s IntelliSense list in a CSS file to discover another short-
hand version for the border property.

 3. Which of the two following rules is easier to reuse across pages in your website? Can you
explain why?

#MainContent
{
 border: 1px solid Blue;
}

.BoxWithBorders
{
 border: 1px solid Blue;
}

 4. VS enables you to attach an external style sheet to a page in a number of different ways. Can
you name two different ways to do this?

You can find answers to these exercises in Appendix A.

c03.indd 98 2/21/2014 10:41:23 AM

Summary ❘ 99

 ➤ What you learned in this chapter

css Cascading style sheets, the language used to lay out web pages in the
browser.

css Box model The model on which the dimensions of elements are calculated with
regard to height, width, padding, border, and margin.

declaration A combination of a property and a value that determines the styling for
the element to which the declaration applies.

embedded style
sheets

CSS code that is defined in a page in a <style /> element. Usually
referred to as embedded styles.

external style
sheets

CSS code that is defined in a separate file and then included in a page
using the <link /> element.

inline style sheets CSS code that is defined directly on an element using the style
attribute. Usually referred to as inline styles.

rule set A combination of a selector and one or more declarations wrapped in a
pair of curly braces.

selector A CSS construct to point to one or more elements in the page. Different
selectors exist, including the Universal selector, the ID and Class
selectors, and the Type selector.

c03.indd 99 2/21/2014 10:41:23 AM

c03.indd 100 2/21/2014 10:41:23 AM

Working with ASP.NET Server
Controls

What You Will learn in this Chapter:

➤➤ What ASP.NET Server Controls are

➤➤ The different kinds of server controls you have at your disposal

➤➤ The common behavior shared among most of the server controls

➤➤ How the ASP.NET run time processes the server controls on your
page

➤➤ How server controls are able to maintain their state across
postbacks

Wrox.Com Code doWnloads for this Chapter

You can find the wrox.com code downloads for this chapter on the Download Code tab at
www.wrox.com/go/begaspnet451. The code is in the Chapter 4 folder.

ASP.NET Server Controls are the workhorses of ASP.NET. Almost all the Web Forms pages
you build in Visual Studio (VS) will contain one or more server controls. These controls come
in all sorts and sizes, ranging from simple controls like a Button and a Label to complex
controls like the TreeView and the ListView that are capable of displaying data from a data
source (like a database or an XML file). You see these controls in Chapters 7, 13, and 14.

The architecture of ASP.NET Server Controls is deeply integrated into ASP.NET, giving the
controls a feature set that is quite unique in today’s technologies for building websites. This
chapter shows you what server controls are, how they work, and which ones are available out
of the box when you install VS.

4

c04.indd 101 2/21/2014 7:11:26 AM

http://www.wrox.com/go/begaspnet451
http://wrox.com
http://wrox.com

102 ❘ Chapter 4 Working With ASP.nEt SErvEr ControlS

The chapter starts off with a general discussion of server controls. You see how to define them in
your code by adding them to Design or Markup View.

The section that follows gives you a thorough look at the many controls that are available in the VS
Toolbox.

introduCtion to server Controls

It’s important to understand how server controls operate and how they are completely different
from the way you define controls in other languages like classic ASP or PHP (another popular
programming language for creating dynamic websites).

For example, to influence the text in a text box in these languages, you would use plain HTML and
mix it with server-side code. This works similarly to the example in Chapter 2 where the current
date and time are displayed on the page. To create a text box with a message and the current time in
it in classic ASP, you can use the following code:

<input type="text" value="Hello World, the time is <%=Time()%>" />

As you can see, this code contains plain HTML, mixed with a server-side block, delimited by
<% and %> that outputs the current time using the equals (=) symbol. This type of coding has a major
disadvantage: the HTML and server-side code is mixed, making it difficult to write and maintain
your pages. Although this is a trivial example in which it’s still easy to understand the code, this
type of programming can quickly result in very messy and complex pages.

Server controls work differently. In ASP.NET, the controls “live” on the server inside an ASPX page.
When the page is requested in the browser, the server-side controls are processed by the ASP.NET
run time — the engine that is responsible for processing requests for ASPX pages. The controls then
emit client-side HTML code that is appended to the final page output. It’s this HTML code that
eventually ends up in the browser, where it’s used to build up the page.

So, instead of defining HTML controls in your pages directly, you define an ASP.NET Server
Control with the following syntax, where the italicized parts differ for each control:

<asp:TypeOfControl ID="ControlName" runat="server" />

For the controls that ship with ASP.NET you always use the asp: prefix followed by the name of
the control. For example, to create a TextBox that can hold the same welcome message and current
time, you can use the following syntax:

<asp:TextBox ID="Message" runat="server" />

Note that the control has two attributes: ID and runat. The ID attribute is used to uniquely identify
a control on the page, so you can program against it. It’s important that each control on the page
has a unique ID; otherwise the ASP.NET run time won’t understand what control you’re referring
to. If you accidentally type a duplicate control ID, VS signals the problem in the error list. The
mandatory runat attribute is used to indicate that this is a control that lives on the server. Without
this attribute, the controls won’t be processed and will end up directly in the HTML source. If
you ever feel you’re missing a control in the final output in the browser, ensure that the control has
this required attribute. Note that for non-server elements, like plain HTML elements, the runat

c04.indd 102 2/21/2014 7:11:26 AM

Introduction to Server Controls ❘ 103

attribute is optional. With this attribute, non-server controls can be reached by your programming
code. You learn more about this later in the book.

You can easily add the runat attribute to an existing element using a code snippet by typing runat
and pressing the Tab key.

The preceding example of the TextBox uses a self-closing tag where the closing slash (/) is
embedded in the opening tag. This is quite common for controls that don’t need to contain child
content such as text or other controls. However, the long version, using a separate closing tag, is
acceptable as well:

<asp:TextBox ID="Message" runat="server"></asp:TextBox>

You can control the default behavior of closing tags per element using Tools ➪ Options ➪ Text
Editor ➪ HTML (Web Forms) ➪ Formatting ➪ Tag Specific Options.

You can program against this text box from code that is either placed inline with the page or in a
separate Code Behind file, as you saw in Chapter 2. To set the welcome message and the time, you
can use the following code:

VB.NET

Message.Text = "Hello World, the time is " & DateTime.Now.TimeOfDay.ToString()

C#

Message.Text = "Hello World, the time is " + DateTime.Now.TimeOfDay.ToString();

The definition of the control in the markup section of the page is now separated from the actual
code that defines the text displayed in the text box, making it easier to define and program the text
box (or any other control) because it enables you to focus on one task at a time. You can either
declare the control and its visual appearance in the markup section of the page, or program its
behavior from a code block.

In general, controls defined in Markup View are not case-sensitive, although some of the values you
can set are case-sensitive. I prefer to use the capitalization as suggested by IntelliSense. Note that
when using C#, properties you use in the Code Behind are case-sensitive.

You see how server controls send their underlying HTML to the client in the next exercise.

trY it out Working with Server Controls

In this exercise, you add a TextBox, a Label, and a Button control to a page. When you request the
page in the browser, these server controls are transformed into HTML that is then sent to the client. By
looking at the final HTML for the page in the browser, you’ll see how the HTML is completely differ-
ent from the initial ASP.NET markup.

 1. Open the Planet Wrox project in Visual Studio.

 2. In the Demos folder in the Solution Explorer, create a new Web Form called ControlsDemo.aspx.
Choose your programming language and make sure the Web Form uses Code Behind.

 3. Switch to Design View. From the Standard category of the Toolbox, drag a TextBox, a Button,
and a Label control onto the design surface within the dashed lines of the <div> tag that was
added for you when you created the page.

c04.indd 103 2/21/2014 7:11:26 AM

104 ❘ Chapter 4 Working With ASP.nEt SErvEr ControlS

Type the text Your name in front of the TextBox and add
a line break between the Button and the Label by posi-
tioning your cursor between the two controls in Design
View and then pressing Enter. If you’re having trouble
positioning the cursor between the controls, place it after
the Label control and then press the left arrow key twice.
The first time you press it, the Label is selected; the sec-
ond time, the cursor is placed between the two controls,
enabling you to press Enter. Your Design View should now look like
Figure 4-1.

Right-click the Button control and choose Properties to open up
the Properties Grid for the control. Pressing F4 after selecting the
Button does the same thing. The window that appears, shown in
Figure 4-2, enables you to change the properties for the control,
which in turn influences the way the control looks and behaves at
run time.

 5. Set the control’s Text property to Submit Information and
set its ID (which you’ll find all the way down at the bottom of
the list wrapped in parentheses) to SubmitButton.

 6. Change the ID of the TextBox to YourName using the Properties Grid.

 7. Clear the Text property of the Label using the Properties Grid. You can right-click the property’s
label in the grid and choose Reset, or you can remove the text manually. Set its ID to Result.

 8. Still in Design View, double-click the Button control to have VS add some code to the Code
Behind of the page that will be fired when the button is clicked in the browser. You see later how
to accomplish the same thing from Markup View. Add the bolded line of code to the code block
that VS inserted for you:

VB.NET

Protected Sub SubmitButton_Click(sender As Object,
 e As EventArgs) Handles SubmitButton.Click
 Result.Text = "Your name is " & YourName.Text
End Sub

C#

protected void SubmitButton_Click(object sender, EventArgs e)
{
 Result.Text = "Your name is " + YourName.Text;
}

Note that the VB.NET example doesn’t need an underscore here to split the code over two lines.
In older versions of VB.NET, the underscore was required to split this code over two lines.

figure 4-1

figure 4-2

c04.indd 104 2/21/2014 7:11:27 AM

Introduction to Server Controls ❘ 105

 9. Save the changes to the page and then open it in the browser by pressing Ctrl+F5. Don’t click
the button yet, but open up the source of the page by right-clicking the page in the browser and
choosing View Source or View Page Source. You should see the following HTML code (I changed
the formatting slightly so the HTML fits on the page):

<div>
 Your name <input name="YourName" type="text" id="YourName" />
 <input type="submit" name="SubmitButton" value="Submit Information"
 id="SubmitButton" />

</div>

 10. Switch back to your browser, fill in your name in the text box, and click the button. When the
page is done reloading, open up the source for the page in the browser again using the browser’s
right-click menu. The code should now look like this:

<div>
 Your name <input name="YourName" type="text" value="Imar" id="YourName" />
 <input type="submit" name="SubmitButton" value="Submit Information"
 id="SubmitButton" />

 Your name is Imar
</div>

Note that the two bold lines have changed, and now show the name you entered in the text box.
You can ignore the other HTML in the page for now.

How It Works

As its name implies, an ASP.NET Server Control lives on the server in your ASPX page where it can be
processed by the ASP.NET run time. When you request a page in the browser, the run time creates an
in-memory representation of the ASPX file with the controls you created. When the run time is about to
send the HTML to the browser, it asks each of the controls in the page for their HTML, which is then
injected in the final response. For example, when the Label control is asked for its HTML the first time
it loads, it returns the following:

Although you defined the Label control with the <asp:Label> syntax, it ends up as a simple
element in the browser. Because the Text property of the Label control is empty, you don’t see any
text between the two tags. The same applies to other controls; an <asp:TextBox> ends up as
<input type="text">, whereas the <asp:Button> ends up as <input type="submit">.

When you click the button, the control causes a postback, which sends the information for the controls
in the page to the server, where the page is loaded again. Additionally, the code that you wrote to han-
dle the button’s Click event is executed. This code takes the name you entered in the text box and then
assigns it to the Label control as shown in this C# example:

Result.Text = "Your name is " + YourName.Text;

Don’t worry about the syntax for the code that handles the button’s Click event for now. In Chapter 5,
you see how this works, and why you need this code.

c04.indd 105 2/21/2014 7:11:27 AM

106 ❘ Chapter 4 Working With ASP.nEt SErvEr ControlS

At this stage, the Label control contains the text you entered in the text box, so when it is asked for its
HTML, it now returns this:

Your name is Imar

You get a more in-depth look at postbacks later in this chapter when the ASP.NET state engine is
discussed.

a Closer look at asp.net server Controls

Because you’ll be working with server controls most of the time when building your ASP.NET Web
Forms pages, you need to know in detail how they work and how to use them. In the next section,
you see how to add the controls to your pages and change the way they behave in the browser. In the
section that follows, you get an overview of the behavior that all server controls have in common.
Once you understand this shared behavior, it’s easy to apply this knowledge to other, new controls
as well, enabling you to get up to speed with them very quickly.

defining Controls in Your pages
As demonstrated in the previous Try It Out, you can simply drag controls from the Toolbox onto the
design surface of the page. This makes it very easy to add a bunch of controls to a page to get you
started. However, because of the way the design surface works, it’s sometimes difficult to add them
exactly where you want them. For example, it can be difficult to drag a control between the opening
and closing tags of an HTML element. Fortunately, you can just as easily drag a control from the
Toolbox in Markup View. Additionally, you can also type the control’s markup directly in Markup
View, letting IntelliSense and code snippets help you with the different tags and attributes. You’ll
also find that the Properties Grid works in Markup View. Simply click the relevant markup, and the
Properties Grid is updated to reflect the tag you clicked. This makes it easy to change the properties
of the control, while you can still see exactly what markup gets generated for you. Visual Studio
enables you to bind handlers (such as the Click event used in the preceding exercise) directly in
Markup View without switching to Design View. You’ll also be able to access the Smart Tasks panel
for the controls from code. You see more of these features later in this chapter.

If you look at the Properties Grid for some of the controls in a page, you’ll notice that many of them
have similar properties. In the next section, you see exactly what these properties are and what they
are used for.

Common properties for all Controls
Most of the server controls you find in the VS Toolbox share some common behavior. Part of this
behavior includes the so-called properties that define the data a control can contain and expose.
You learn more about properties and other behavior types in the next chapter. Each server control
has an ID to uniquely identify it in the page, a runat attribute that is always set to server to
indicate the control should be processed on the server, and a ClientID that contains the client-
side ID attribute that is assigned to the element in the final HTML. In versions of ASP.NET up

c04.indd 106 2/21/2014 7:11:27 AM

A Closer Look at ASP.NET Server Controls ❘ 107

to 3.5 this ClientID was always generated for you automatically. However, in ASP.NET 4 a new
ClientIDMode property was introduced that gives you more control over the ID of an element
at the client. You see how this works in later chapters. The runat attribute is technically not a
property of a server control, but is necessary to indicate that the markup for the control should be
processed as a server control and not end up as plaintext or HTML in the browser.

Besides these properties, many of the server controls share more properties because they share
the same Control base class. The next chapter digs deeper into base classes and inheritance. The
following table lists the most common shared properties and describes what they are used for.

propertY desCription

AccessKey Enables you to set a key with which a control can be accessed at the client by
pressing the associated key on the keyboard.

BackColor

ForeColor

Enables you to change the color of the background (BackColor) and text
(ForeColor) of the control.

BorderColor

BorderStyle

BorderWidth

Changes the border of the control in the browser. The similarities with the
CSS border properties you saw in the previous chapter are no coincidence.
Each of these three ASP.NET properties maps directly to its CSS
counterpart.

CssClass Enables you to define the HTML class attribute for the control in the
browser. This class name could then point to a CSS class you defined in the
page or an external CSS file.

Enabled Determines whether the user can interact with the control in the browser.
For example, with a disabled text box (Enabled="False") you cannot
change its text.

Font Enables you to define different font-related settings, such as size, family and
whether or not the font should be bold.

Height

Width

Determines the height and width of the control in the browser.

TabIndex Sets the client-side HTML tabindex attribute that determines the order in
which users can move through the controls in the page by pressing the Tab
key.

ToolTip Enables you to set a tooltip for the control in the browser. This tooltip,
rendered as a title attribute in the HTML, is shown when the user hovers
the mouse over the element.

Visible Determines whether or not the control is sent to the browser. You should
really see this as a server-side visibility setting because an invisible control is
never sent to the browser at all. This means it’s quite different from the CSS
display and visibility properties you saw in the previous chapter that
hide the element at the client.

c04.indd 107 2/21/2014 7:11:27 AM

108 ❘ Chapter 4 Working With ASP.nEt SErvEr ControlS

To see how all these attributes end up in the browser, consider the following markup for a TextBox
server control:

<asp:TextBox AccessKey="a" BackColor="Black" ForeColor="White" Font-Size="30px"
 BorderColor="Yellow" BorderStyle="Dashed" BorderWidth="4" CssClass="TextBox"
 Enabled="True" Height="40" Width="200" TabIndex="1" ToolTip="Hover text here"
 Visible="True" ID="TextBox1" runat="server" Text="Hello World">
</asp:TextBox>

When you request the page with this control in the browser, you end up with the following HTML:

<input name="TextBox1" type="text" value="Hello World" id="TextBox1" accesskey="a"
 tabindex="1" title="Hover text here" class="TextBox" style="color:White;
 background-color:Black;border-color:Yellow;border-width:4px;
 border-style:Dashed;font-size:30px;height:40px;width:200px;"
/>

This results in the text box shown in Figure 4-3.

Note that most of the server-side control properties have been
converted into CSS inline styles with the style attribute.

When building websites, it’s quite uncommon to define a
TextBox in this manner. As you learned in the previous chapter,
you should avoid inline styles as much as possible, and opt for
external cascading style sheets instead. You can accomplish the
exact same behavior with this server-side control:

<asp:TextBox ID="TextBox1" AccessKey="a" CssClass="TextBox" TabIndex="1"
 ToolTip="Hover text here" runat="server" Text="Hello World">
</asp:TextBox>

And the following CSS class:

.TextBox
{
 background-color: Black;
 color: White;
 font-size: 30px;
 border-color: Yellow;
 border-style: Dashed;
 border-width: 4px;
 height: 40px;
 width: 200px;
}

Obviously, the second example is much easier to read, reuse, and maintain. If you want another text
box with the exact same look, you simply assign TextBox to the CssClass of that control. Also,
notice I left out the Enabled and Visible properties. Both default to True, so there’s no need to
explicitly state that in the control declaration.

Although it’s recommended to use CSS classes instead of these inline styles, it’s good to know about
the server-side control properties in case you need fine control over them. If you change the control’s
properties programmatically (as you learn how to do later), they still end up as inline styles, and
thus possibly override settings in embedded or external style sheets.

figure 4-3

c04.indd 108 2/21/2014 7:11:27 AM

Types of Controls ❘ 109

Now that you have seen the generic behavior that all server controls
share, it’s time to look at the large number of controls that ship with ASP
.NET.

tYpes of Controls

Out of the box, ASP.NET 4.5.1 comes with a large number of server
controls, supporting most of your web development needs. To make it
easy for you to find the right controls, they have been placed in separate
control categories in the VS Toolbox (accessible by pressing Ctrl+Alt+X).
Figure 4-4 shows the Toolbox with all the available categories.

Note that depending on your version of Visual Studio, you may have other categories as well.

A handy feature in VS is the ability to search in the Toolbox. Just type in a few letters of the control
you’re looking for in the Search text box at the top of the Toolbox, and VS filters the list with
controls matching your criteria.

In the following sections, you see the controls in each category and the tasks for which they are
designed.

With the discussion of the various controls, you see a mention of the
properties of a control. For example, a TextBox has a Text property
(among many others), and a ListBox has a SelectedItem property. Some
properties can only be set programmatically and not with the Properties
Grid. Reading and changing control properties programmatically is
discussed in detail in the next chapter.

standard Controls
The Standard category contains many of the basic controls that almost
any web page needs. You’ve already seen some of them, like the TextBox,
Button, and Label controls earlier in this chapter. Figure 4-5 shows all
the controls in the Standard category.

Many of the controls probably speak for themselves, so instead of giving
you a detailed description of them all, the following sections briefly
highlight a few important ones.

Simple Controls
The Toolbox contains a number of simple and straightforward controls,
including TextBox, Button, Label, HyperLink, RadioButton, and
CheckBox. Their icons in the Toolbox give you a good clue as to how
they end up in the browser. In the remainder of this book, you see these
controls used many times. In ASP.NET 4.5 the TextMode property of the
TextBox control was expanded to support new HTML5 types such as
DateTime, Email, and Number. You see more about this later in the book.

figure 4-4

figure 4-5

c04.indd 109 2/21/2014 7:11:28 AM

110 ❘ Chapter 4 Working With ASP.nEt SErvEr ControlS

List Controls
The standard category also contains a number of controls that present themselves as lists in the
browser. These controls include ListBox, DropDownList, CheckBoxList, RadioButtonList, and
BulletedList. To add items to the list, you define <asp:ListItem> elements between the opening
and closing tags of the control, as shown in the following example:

<asp:DropDownList ID="FavoriteLanguage" runat="server">
 <asp:ListItem Value="C#">C#</asp:ListItem>
 <asp:ListItem Value="Visual Basic">Visual Basic</asp:ListItem>
 <asp:ListItem Value="CSS">CSS</asp:ListItem>
</asp:DropDownList>

The DropDownList enables a user to select only one item at a time. To see the currently active and
selected item of a list control programmatically, you can look at its SelectedValue, SelectedItem,
or SelectedIndex properties. SelectedValue returns a string that contains the value for the
selected item, like C# or Visual Basic in the preceding example. SelectedIndex returns the
zero-based index of the item in the list. With the preceding example, if the user had chosen C#,
SelectedIndex would be 0. Similarly, if the user had chosen CSS, the index would be 2 (the third
item in the list).

For controls that allow multiple selections (like CheckBoxList and ListBox), you can loop through
the Items collection and see what items are selected. In this case, SelectedItem returns only the
first selected item in the list; not all of them. You learn how to access all the selected items in the
next exercise. Note that in the browser, both the DropDownList and the ListBox control render as a
<select> element. Attributes, such as size and multiple, set by these two controls determine the
appearance and behavior of the HTML element in the browser.

The BulletedList control doesn’t allow a user to make selections, and as such doesn’t support
these properties.

To see how to add list items to your list control, and how to read the selected values, the following
exercise guides you through creating a simple Web Form with two list controls that ask users for
their favorite programming language.

trY it out Working with List Controls

In this exercise you add two list controls to a page. Additionally, you add a button that, when clicked,
displays the selected items as text in a Label control.

 1. In the Demos folder, create a new Web Form called ListControls.aspx. Make sure you create a
Code Behind file by checking the Place Code in Separate File option.

 2. Switch to Design View and drag a DropDownList from the
Toolbox onto the design surface of the page within the dashed
border of the <div> element that is already present in your page.

 3. Notice that as soon as you drop the DropDownList control on the
page, a pop-up menu appears that is labeled DropDownList Tasks,
as shown in Figure 4-6.

figure 4-6

c04.indd 110 2/21/2014 7:11:28 AM

Types of Controls ❘ 111

This pop-up menu is called the Smart Tasks panel. When it appears, it gives you access to the most
common tasks of the control it belongs to. In the case of the DropDownList, you get three options. The
first option enables you to bind the control to a data source, which is demonstrated in Chapter 13.
The second item enables you to manually add items to the list, and the last option sets the
AutoPostBack property of the control. With this option checked, the control submits the page in which
it is contained back to the server as soon as the user chooses a new item from the list. Note that the
browser must have JavaScript enabled for this to work.

The Smart Tasks panel appears only for the more complex controls that have a lot of features. You
won’t see it for simple controls like Button or Label. To reopen the Smart Tasks panel, right-click the
control in the designer and choose Show Smart Tag. Alternatively, click the small arrow at the top-right
corner of the control, visible in Figure 4-6, or press Shift+Alt+F10 when the control is selected. You can
also open the Smart Tasks panel from markup view. Simply click anywhere on the opening or closing
tag of a control or other piece of markup and press Ctrl+Dot (Ctrl+.). Alternatively, hover over the tiny
blue rectangle at the start of the opening tag and then click the grey arrow that appears.

On the Smart Tasks panel of the DropDownList, click the Edit Items link to bring up the ListItem
Collection Editor, shown in Figure 4-7.

figure 4-7

This dialog box enables you to add new items to the list control. The items you add through this win-
dow are added as <asp:ListItem> elements between the tags for the control.

 4. Click the Add button on the left side of the screen to insert a new list item. Then in the Properties
Grid on the right, enter C# for the Text property and press Tab. As soon as you tab away from
the Text property, the value is copied to the Value property as well. This is convenient if you
want both the Text and the Value property to be the same. However, it’s perfectly OK (and quite
common) to assign a different value to the Value property.

 5. Repeat step 4 twice, this time creating list items for Visual Basic and CSS. You can use the up and
down arrow buttons in the middle of the dialog box to change the order of the items in the list.

c04.indd 111 2/21/2014 7:11:28 AM

112 ❘ Chapter 4 Working With ASP.nEt SErvEr ControlS

Finally, click OK to insert the items in the page. You should end up with the following code in
Markup View:

<asp:DropDownList ID="DropDownList1" runat="server">
 <asp:ListItem>C#</asp:ListItem>
 <asp:ListItem>Visual Basic</asp:ListItem>
 <asp:ListItem>CSS</asp:ListItem>
</asp:DropDownList>

 6. In Markup View drag a CheckBoxList control from the Toolbox directly into the code window,
right after the DropDownList.

 7. Copy the three <asp:ListItem> elements from the DropDownList you created in steps 4 and 5
and paste them between the opening and closing tags of the CheckBoxList. You should end up
with this code:

 <asp:ListItem>CSS</asp:ListItem>
</asp:DropDownList>
<asp:CheckBoxList ID="CheckBoxList1" runat="server">
 <asp:ListItem>C#</asp:ListItem>
 <asp:ListItem>Visual Basic</asp:ListItem>
 <asp:ListItem>CSS</asp:ListItem>
</asp:CheckBoxList>

 8. Switch to Design View and drag a Button from the Toolbox in Design View to the right of the
CheckBoxList control. The Button will be placed below the CheckBoxList. Next, drag a Label
control and drop it to the right of the Button. Create some room between the Button and the
Label by positioning your cursor between the controls and then pressing Enter twice. Double-
click the Button to open the Code Behind of the page.

 9. In the code block that VS added for you, add the following bolded code, which will be executed
when the user clicks the button:

VB.NET

Protected Sub Button1_Click(sender As Object, e As EventArgs) _
 Handles Button1.Click
 Label1.Text = "In the DDL you selected " &
 DropDownList1.SelectedValue & "
"

 For Each item As ListItem In CheckBoxList1.Items
 If item.Selected = True Then
 Label1.Text &= "In the CBL you selected " & item.Value & "
"
 End If
 Next
End Sub

C#

protected void Button1_Click(object sender, EventArgs e)
{
 Label1.Text = "In the DDL you selected " +
 DropDownList1.SelectedValue + "
";

 foreach (ListItem item in CheckBoxList1.Items)
 {

c04.indd 112 2/21/2014 7:11:28 AM

Types of Controls ❘ 113

 if (item.Selected == true)
 {
 Label1.Text += "In the CBL you selected " + item.Value + "
";
 }
 }
}

Notice how in the VB.NET code the under-
score is needed to split the code over two
lines. VB.NET requires the underscore if
you want to move the Handles keyword to
its own line.

 10. Save the changes to the page and then
request it in the browser. Choose an item
from the DropDownList, check one or more
items in the CheckBoxList, and click the
button. You should see something similar
to Figure 4-8, which shows the page in
Firefox.

How It Works

The various list controls all use <asp:ListItem> elements. That makes it easy to reuse them by copying
them from one control to another. Because the DropDownList supports only one selected item at a time,
it’s pretty easy to get its selected value. All it takes is a single line of code (shown in C#):

Label1.Text = "In the DDL you selected " + DropDownList1.SelectedValue + "
";

The CheckBoxList control enables a user to select multiple items at once. Therefore, you need a bit
more code to loop over the collection of items, checking the Selected property of each item (again
shown in C#):

foreach (ListItem item in CheckBoxList1.Items)
{
 if (item.Selected == true)
 {
 Label1.Text += "In the CBL you selected " + item.Value + "
";
 }
}

The CheckBoxList and the other list controls have an Items collection that contains all the items you
defined in the code. So, given the code from this Try It Out, CheckBoxList1 contains three items, for
C#, Visual Basic, and CSS, respectively. Each ListItem in turn contains a Selected property that
determines whether or not the user has checked the item in the list.

Using a foreach loop (For Each in VB.NET), you can iterate over the collection of ListItem elements,
testing the Selected property one by one. If the item was selected in the list, its Selected property
is true (True in VB) and its Value is appended to the text of the Label. Notice the use of += (&= in
VB.NET) in the last code example to assign the Value of the list item together with the text to the
Label control’s Text property. The += and &= syntax is shorthand for this:

Label1.Text = Label1.Text + "In the CBL you selected " + item.Value + "
";

figure 4-8

c04.indd 113 2/21/2014 7:11:29 AM

114 ❘ Chapter 4 Working With ASP.nEt SErvEr ControlS

This code takes the current text from the Label control, appends the literal text "In the CBL you
selected " to it, then appends the value of the item using item.Value and finally appends the literal
text
. It then reassigns the entire string back to the Text property of the label. Using the += syn-
tax is often a bit easier to write and understand, but the longer version is common as well.

Both VB.NET and C# have support for a for each loop, although both languages use a slightly different
syntax. In the next chapter, you learn a lot more about looping and other language constructs.

Also of note is the way the ListItems are set up. In the first example, before the Try It Out, you saw
ListItem elements with both a value and text:

<asp:ListItem Value="C#">C#</asp:ListItem>
<asp:ListItem Value="Visual Basic">Visual Basic</asp:ListItem>
<asp:ListItem Value="CSS">CSS</asp:ListItem>

When you add items to the list yourself with the ListItem Collection Editor, you don’t get the Value
attributes:

<asp:ListItem>C#</asp:ListItem>
<asp:ListItem>Visual Basic</asp:ListItem>
<asp:ListItem>CSS</asp:ListItem>

You didn’t get the Value attribute because you didn’t supply an explicit value for the item in the
ListItem Collection Editor. If you omit the Value, the text between the opening and closing tags of
the ListItem is used implicitly as the value, which is fine in many cases. However, it’s also quite com-
mon to have a different Value and Text property in the list. For example, when you have a list with
countries, you could use the full name of the country as the Text (like The Netherlands) and use the
official country code (nl) as the Value for the drop-down list. You see the list controls at work in other
chapters in this book.

Container Controls
Quite often it’s desirable to group related content and controls. You can do this by putting the
controls (and other markup) in one of the container controls, like the Panel, the PlaceHolder, the
MultiView, or the Wizard. For example, you can use the PlaceHolder or the Panel control to hide
or show a number of controls at once. Instead of hiding each control separately, you simply hide the
entire container that contains all the individual controls and markup. Both of these controls have
their own advantages and disadvantages. The good thing about the PlaceHolder control is that it
emits no HTML of its own into the page, so you can use it as a container without any side effects
in the final page. However, it lacks design-time support, making it hard to manage the controls
inside the PlaceHolder at design time in VS. In contrast, the Panel enables you to easily access all
controls and other content it contains but renders itself as a <div> element. In many cases this isn’t a
problem, and can even be useful as you can target that div using CSS at the client, so usually you’re
best off with the Panel control because of its design-time support.

The MultiView (which can contain one or more <asp:View> elements) and the Wizard are similar
in that they enable you to split up a long page into multiple areas, making it easy to fill in a long
form, for example. The Wizard has built-in support for moving from page to page using Previous,
Next, and Finish buttons, whereas the MultiView must be controlled programmatically.

c04.indd 114 2/21/2014 7:11:29 AM

Types of Controls ❘ 115

A Closer Look at the Panel Control
In the following exercise, you use a Panel control to create a container for other controls and
markup. You only add some text for now, but in a subsequent Try It Out exercise you add ASP.NET
controls to the panel.

trY it out Using the Panel Control

In this exercise you see how to use the Panel control as a container for some simple text. In addition,
you use a CheckBox to control the visibility of the Panel at the server.

 1. Start by creating a new Web Form with Code Behind called Containers.aspx in the Demos
folder.

 2. Switch the page into Design View and drag a CheckBox and a Panel control from the Toolbox on
the design surface into the dashed <div> element.

 3. Give the CheckBox control a meaningful description by setting its Text property to Show Panel
and set its AutoPostBack property to True using the Properties Grid. Rather than choosing True
from the drop-down list for the property, you can also double-click the AutoPostBack property
or its value to toggle between False and True.

 4. Set the Visible property of the Panel control to False using the Properties Grid. This hides the
Panel control when the page first loads.

 5. Inside the Panel control, type some text (for example, I am visible now). Note that the panel
behaves like the rest of VS’s design surface. You can simply add text to it, select and format it, and
add new controls to it by dragging them from the Toolbox. The code for the panel should end up
like this in Markup View:

<asp:Panel ID="Panel1" runat="server" Visible="False">
 I am visible now
</asp:Panel>

 6. In Markup View, locate the code for the
CheckBox. Position your cursor right before
the closing forward slash (/) and type On,
followed by Ctrl+Space. This brings up
IntelliSense, as shown in Figure 4-9.

Select OnCheckedChanged by pressing Tab
or Enter. Next, type an equals sign (=), which
brings up IntelliSense again as shown in
Figure 4-10. Note that if you’re using C#, you
may also see a Page_Load item in the list of
event handlers.

Select the <Create New Event> item and press
Tab. VS completes the code as follows:

OnCheckedChanged="CheckBox1_CheckedChanged"

Although this auto-completion is nice, VS has done something else that’s much more useful: when
you pressed Tab, it also added the handler code for you in the Code Behind. To see that code,
press F7 to switch to Code View.

figure 4-9

figure 4-10

c04.indd 115 2/21/2014 7:11:29 AM

116 ❘ Chapter 4 Working With ASP.nEt SErvEr ControlS

NoTE With this feature, the need to switch to Design View and set up the han-
dler by double-clicking a control (as you did in an earlier exercise) or using the
Events tab of the Properties Grid (as you see later) has been greatly reduced. This
is great for people who prefer hand-coding over the Design View and is espe-
cially useful in more complex pages where Design View isn’t that useful anyway.

Note that there is a subtle difference between adding the handler using Markup View and Design
View if you’re using VB.NET. If you use Markup View, the handler is added to the markup
(OnCheckedChanged="CheckBox1_CheckedChanged") and code is added to the Code Behind.
When you use Design View, the code in Markup View is not affected, and the code in the Code
Behind is annotated with the Handles keyword to indicate which event (for instance, the click on
a button, the check changed event of a check box, and so on) the code responds to. At run time,
however, there is no difference.

 7. Next, add the following bolded line within the handler code that VS added for you:

VB.NET

Protected Sub CheckBox1_CheckedChanged(sender As Object, e As EventArgs)
 Panel1.Visible = CheckBox1.Checked
End Sub

C#

protected void CheckBox1_CheckedChanged(object sender, EventArgs e)
{
 Panel1.Visible = CheckBox1.Checked;
}

 8. Save all your changes and then request the page in the browser by pressing Ctrl+F5.

 9. When the page first loads, all you see is the check box and the text beside it. When you look at
the HTML for the page in the browser (right-click the page and choose View Source or View Page
Source depending on your browser), you’ll only see the check box; there’s no code for the Panel
control at this stage sent to the browser. When you click the check box to place a checkmark in it,
the page reloads and now shows the text you entered in step 5.

WarNiNg If nothing happens, go back to the source of the page in VS and
ensure that AutoPostBack is set to True on the CheckBox control.

If you look at the HTML in the browser, you’ll see that the text you typed in step 5 is wrapped in
a <div> element with an id of Panel1:

<div id="Panel1">
 I am visible now
</div>

How It Works

In step 4 of this exercise you set the Visible property of the Panel control to False. This means that
when the page loads, the control is not visible on the server and thus its HTML never makes it to the

c04.indd 116 2/21/2014 7:11:29 AM

Types of Controls ❘ 117

browser. When you then check the check box, a postback occurs, which sends the information con-
tained in the form to the server. At the server, some code is run that is fired whenever the check box
changes its state from checked to unchecked or vice versa. Inside that code block, the following code is
executed (shown in C#):

 Panel1.Visible = CheckBox1.Checked;

This means that the Panel is only visible when the check box is checked. When it isn’t, the Panel is
hidden automatically.

As you can see, it’s easy to add text and other markup to the Panel control in VS. Right now, you
only added some plaintext, but in the next section you see how to add a Wizard control and how to
use it.

Magic with the Wizard Control
The Wizard control is a great tool for breaking apart large Web Forms and presenting them as bite-
sized chunks of information to the user. Instead of confusing your user with one page with many
controls and text on it, you can break the page apart and present each section on a separate wizard
page. The Wizard control then handles all navigation issues by creating Next, Previous, and Finish
buttons automatically. In the following exercise you use a wizard to ask a user for her name and
favorite programming language. Although the example itself is pretty trivial, and you could have
placed both questions on the same page without confusing the user, the example shows how the
wizard works and why it’s useful. You can easily apply the same techniques to your own, possibly
larger, Web Forms.

trY it out Using the Wizard to Create Easy-to-use Forms

In this Try It Out, you place a Wizard inside the panel you created in the previous exercise that enables
a user to fill in a form that is spread over a couple of pages. The wizard will have two steps where a
user can enter details, and a results page that shows the data the user has provided.

 1. Make sure you still have the Containers.aspx page open in Design View. Remove the text “I am
visible now” that you entered in the previous Try It Out, and then drag a Wizard control from the
Toolbox inside the Panel. Drag its right edge further to the right, increasing the total width of the
control to 500px. Your page now looks similar to Figure 4-11.

figure 4-11

c04.indd 117 2/21/2014 7:11:30 AM

118 ❘ Chapter 4 Working With ASP.nEt SErvEr ControlS

 2. Open the Wizard’s Smart Tasks panel (click the arrow in its upper right-hand corner) and choose
Add/Remove WizardSteps. In the dialog box that follows, click the Add button to insert a third
wizard step, shown in Figure 4-12.

figure 4-12

 3. Click the first WizardStep labeled Step 1 in the Members list on the left and change its Title
from Step 1 to About You. Set the Title of the other two steps to Favorite Language and
Ready, respectively.

 4. Change the StepType of the second step (now labeled Favorite Language) to Finish, and of the
last step to Complete. You can leave the StepType of the first step set to Auto. Click OK to close
the WizardStep Collection Editor.

 5. In Design View, click About You in the list at the left to make it the active step and drag a Label
and a TextBox to the right side of the Wizard. You need to drag them inside the gray rectangle
that’s in the upper-right corner of the Wizard, or the controls won’t end up inside the Wizard.
Set the Text property of the Label to Type your name and change the ID of the TextBox to
YourName. When you’re done, your Wizard looks like Figure 4-13.

figure 4-13

 6. Click the Favorite Language item in the list on the left to make it the active step. Add a
DropDownList to the rectangle with the gray border on the right part of the wizard step. Rename
the DropDownList by setting its ID to FavoriteLanguage. Open the Smart Tasks panel of the
DropDownList control and choose Edit Items. Add the same three items you added in an earlier
Try It Out: for C#, Visual Basic, and CSS, respectively. If you want, you can copy the three items

c04.indd 118 2/21/2014 7:11:30 AM

Types of Controls ❘ 119

from the page ListControls.aspx and paste them between the <asp:DropDownList> tags inside
the second step. You should end up with the following code for the second step:

</asp:WizardStep>
<asp:WizardStep runat="server" Title="Favorite Language" StepType="Finish">
 <asp:DropDownList ID="FavoriteLanguage" runat="server">
 <asp:ListItem>C#</asp:ListItem>
 <asp:ListItem>Visual Basic</asp:ListItem>
 <asp:ListItem>CSS</asp:ListItem>
 </asp:DropDownList>
</asp:WizardStep>
<asp:WizardStep runat="server" StepType="Complete" Title="Ready">

 7. For the final step, switch to Markup View. If you try to switch to the last step in Design View,
you may notice that the Wizard disappears. If that happens, switch to Markup View and set
ActiveStepIndex to 0 again on the opening tag of the Wizard control.

Inside the last WizardStep labeled Ready, drag a label control from the Toolbox and rename it by
setting its ID to Result. Alternatively, inside the code for the last step, type the word label and
then press Tab to execute a code snippet for inserting a
Label. Then add the ID attribute manually.

 8. Double-click the Wizard in Design View and add the
following bolded code, which will be executed when
the user clicks the Finish button on the last step of the
wizard. If you’re having problems getting VS to create
the correct code for you, as you see it in the next snippet,
select the Wizard, press F4 to open up the control’s
Properties Grid, and then click the button with the
lightning bolt on it (the fourth button from the left on the
toolbar of the Properties Grid), as shown in Figure 4-14.

This part of the Properties Grid is often referred to as the Events tab of the Properties Grid. Locate
and double-click FinishButtonClick in the Action category. With both methods, you should end up
with some code for Wizard1_FinishButtonClick that you need to extend with the following code:

VB.NET

Protected Sub Wizard1_FinishButtonClick(sender As Object,
 e As WizardNavigationEventArgs) Handles Wizard1.FinishButtonClick
 Result.Text = "Your name is " & YourName.Text
 Result.Text &= "
Your favorite language is " &
 FavoriteLanguage.SelectedValue
End Sub

C#

protected void Wizard1_FinishButtonClick(object sender,
 WizardNavigationEventArgs e)
{
 Result.Text = "Your name is " + YourName.Text;
 Result.Text += "
Your favorite language is " +
 FavoriteLanguage.SelectedValue;
}

figure 4-14

c04.indd 119 2/21/2014 7:11:30 AM

120 ❘ Chapter 4 Working With ASP.nEt SErvEr ControlS

 9. Switch back to Design View and open the Properties Grid for the Wizard and make sure its
ActiveStepIndex is set to 0. The designer remembers the last step you designed and stores the
value in the ActiveStepIndex of the Wizard in Markup View. To make sure the Wizard starts on
the first page, you should always set the ActiveStepIndex back to 0 (or click the first step in the
Wizard control in Design View) before you save your changes and run the page.

 10. Save all changes, close all open browser windows, and press Ctrl+F5 to open the page in the
browser. Select the check box to make the Panel visible and enter your name on the first wizard
page. Click Next and choose your favorite programming language. Notice how there’s now a
Previous button available that enables you to go back to the first step of the wizard if you want to
change your name. Instead of clicking the Next and Previous buttons, you can also click the links
on the left of the wizard in the browser. When you click the Finish button, you’ll see the results of
the information you entered in the wizard (see Figure 4-15).

figure 4-15

How It Works

The Wizard control takes care of most of the hard work for you. It handles the navigation, determines
when to show the correct buttons (Next, Previous, and Finish), and ensures that in the resulting page
the values for the controls you added in the wizard steps are still available so you can show them
with the label. It does this with a concept called View State, something you learn more about toward
the end of this chapter.

All you have to do is define the steps and set their StepType. You set the StepType of the first step to
Auto. With this setting, the Wizard figures out what buttons to show. Because it’s the first step in the
wizard and there’s no previous step to go to, it leaves out the Previous button (this is the equivalent of
setting the StepType to Start manually.) You set the StepType of the second step to Finish, which
tells the Wizard to draw a Previous button and a Finish button. When you click the Finish button, the
Wizard arrives at the last step with its StepType set to Complete. On this step, the navigation buttons
are hidden, and all you see is the label with the result, which was assigned with the code in the Code
Behind of the page. In Chapter 5, you learn more about the code in the Code Behind that makes
this possible.

In addition to the controls you have seen in the previous sections, a few other controls are worth
examining. Not all of them are discussed here in detail because they aren’t used any further in
this book. A good source of information about these controls is the Microsoft Developer Network
(MSDN) site at http://msdn.microsoft.com. To find information about controls on this site, use

c04.indd 120 2/21/2014 7:11:31 AM

http://msdn.microsoft.com

Types of Controls ❘ 121

your favorite search engine and then search for ControlName Control MSDN. For example, to find
more information on the Wizard control you’d search for Wizard Control MSDN. Typically, the
MSDN site is at the top of the search results.

Other Standard Controls
This section briefly discusses the remainder of the controls in the Standard category of the Toolbox.
You see many of them used in the sample application in the rest of the book.

LinkButton and ImageButton
The LinkButton and the ImageButton controls operate similarly to an ordinary Button control.
Both of them cause a postback to the server when they are clicked. The LinkButton presents itself
as a simple <a> element, but posts back (using JavaScript) instead of requesting a new page. The
ImageButton does the same, but displays an image that the user can click to trigger the postback.

Image and ImageMap
These controls are pretty similar in that they display an image in the browser. The ImageMap enables
you to define hotspots on the image that, when clicked, either cause a postback to the server or
navigate to a different page.

Calendar
The Calendar control presents a rich interface that enables a user to select a date. You see more of it
toward the end of this chapter when the ASP.NET state engine is discussed.

FileUpload
The FileUpload control enables a user to upload files that can be stored on the server. You see more
of this control in Chapter 14.

Literal, Localize, and Substitute
All three controls look a little like the Label control because they can all display static text or
HTML. The biggest advantage of the Literal is that it renders no additional tag itself; it displays
only what you assign to its Text property, and is thus very useful to display HTML or JavaScript
that you build up in the Code Behind or that you retrieve from a database.

The Localize control is used in multilingual websites and is able to retrieve its contents from
translated resource files. The Substitute control is used in advanced caching scenarios and enables
you to update only parts of a page that is otherwise cached completely. Both of these controls fall
outside the scope of this book, but for a good discussion of them you may want to get a copy of
Wrox’s Professional ASP.NET 4.5 in C# and VB (ISBN: 978-1-118-31182-0).

AdRotator
The AdRotator control enables you to display random advertisements on your website. The ads
come from an XML file that you create on your server. Because it lacks advanced features like click
tracking and logging that are required in all but the simplest scenarios, this control isn’t used much
in today’s websites.

c04.indd 121 2/21/2014 7:11:31 AM

122 ❘ Chapter 4 Working With ASP.nEt SErvEr ControlS

HiddenField
The HiddenField control enables you to store data in the page that is submitted with each request.
This is useful if you want the page to remember specific data without the user seeing it on the page.
Because the field does show up in the HTML source of the page, and is thus accessible to the end
user, you should never store any sensitive data in it.

XML
The XML control enables you to transform data from an XML format to another format (like
HTML) for display on a page. Check out Professional ASP.NET 4.5 for a detailed description.

Table
The <asp:Table> control is in many respects identical to its HTML <table> counterpart.
However, because the control lives at the server, you can program against it, creating new columns
and rows dynamically and adding data to it dynamically.

This concludes the discussion of the controls in the Standard category of the Toolbox. In most web
pages, you’ll be working with at least a few of these controls. The remainder of this section discusses
the other categories of the Toolbox. Because most of them are used in some form in the remainder of
this book, this chapter just briefly describes their purpose so you get a rough idea what they are used
for. You’ll find cross-references to the other chapters where you can find out more information about
them.

html Controls
The HTML category of the Toolbox contains a number of HTML controls that look similar to
the ones found in the Standard category. For example, you find the Input (Button) that looks
like the <asp:Button>. Similarly, there is a Select control that has the <asp:DropDownList> and
<asp:ListBox> as its counterparts.

In contrast to the ASP.NET Server Controls, the HTML controls are client-side controls and end
up directly in the final HTML in the browser. You can expose them to server-side code by adding
a runat="server" attribute to them. This enables you to program against them from the Code
Behind of a Web Form, to influence things like their visibility.

The HTML controls have a lot less functionality than the ones in the Standard category. For
example, the Select control lacks design-time support for adding new items to the list with the
ListItem Collection Editor. This forces you to write the items by hand in the Markup View of VS.

Because the controls in the Standard and HTML category look quite like each other, the next
section discusses their differences and gives you some idea of when to favor one category over the
other.

How to Choose Between Standard and HTML Controls
There seems to be some overlap between the controls in the Standard and HTML categories of the
Toolbox. So which ones should you choose and when? Generally, the true server controls in the
Standard category offer you a lot more functionality, both in terms of design-time support in VS
and what they can do at run time. But this functionality comes at a price. Because of their increased

c04.indd 122 2/21/2014 7:11:31 AM

Types of Controls ❘ 123

complexity, the server controls take a little more time to process. However, on most websites you
probably won’t notice the difference. Only when you have a high-traffic website with lots of controls
on the page do the HTML controls give you a slightly better performance and consume less memory
on the server when compared to the server controls.

In most scenarios, favor the server controls over their HTML counterparts. Because server controls
offer more functionality, they give you more flexibility in your pages, enabling you to create a richer
user experience. Also, the better design-time support makes it worth choosing these controls.

Choose the HTML controls if you’re really sure that you don’t need the functionality that the server
controls offer you.

The remainder of this section quickly guides you through the other categories in the Toolbox.

data Controls
Data controls were introduced in ASP.NET 2.0, and offer an easy way to access various data sources
like databases, XML files, and objects. Instead of writing lots of code to access the data source as
you had to do in earlier versions of ASP.NET, you simply point your data control to an appropriate
data source, and the ASP.NET run time takes care of most of the difficult issues for you. You see a
lot more about these controls in Chapter 13 and onward.

validation Controls
Validation controls enable you to rapidly create Web Forms with validation rules that prohibit users
from entering invalid data. For example, you can force users to enter values for required fields and
check whether the entered data matches a specific format like a valid date or a number between 1
and 10. They even allow you to write custom code to create validation routines that are not covered
by the standard controls. The beauty of the validation controls is that they can execute both on the
client and the server, enabling you to create responsive and secure web applications. Chapter 9 digs
much deeper into these controls.

navigation Controls
The controls you find under the Navigation category of the Toolbox are used to let users find their
way through your site. The TreeView control presents a hierarchical display of data and can be used
to show the structure of your site, giving easy access to all the pages in the site. The Menu control
does a similar thing and provides options for horizontal and vertical fold-out menus.

The SiteMapPath control creates a “breadcrumb trail” in your web pages that enables your users to
easily find their way up in the hierarchy of pages in your site.

You see all of these controls in action in Chapter 7, which deals with navigation in websites
exclusively.

login Controls
Just like the data and navigation controls, the login controls were introduced in ASP.NET 2.0 and
are still strongly present in ASP.NET 4.5.1. With very little effort, login controls enable you to

c04.indd 123 2/21/2014 7:11:31 AM

124 ❘ Chapter 4 Working With ASP.nEt SErvEr ControlS

create secure websites where users need to sign up and log in before they can access specific parts of
the website (or even the entire website). In addition, they provide the tools for users to change their
password, or request a new password if they forget the old one, and enable you to display different
data depending on the logged-in status and role of the user. Chapter 16 provides more details about
the security features and login controls of ASP.NET.

ajax extensions
The Ajax Extensions enable you to create flicker-free web applications that are able to retrieve data
from the server from client-side JavaScript without a full postback. You can find the full details on
them in Chapter 10.

Webparts
ASP.NET WebParts are a set of controls that enables an end user of a web page to change the
appearance and behavior of a website. These controls are outside the scope of this book.

dynamic data
The controls in this category are used in Dynamic Data websites. Dynamic Data sites enable you to
quickly build a user interface to manage data in a database. These controls are not discussed further
in this book. To learn more about them, check out Sams’ ASP.NET Dynamic Data Unleashed, Oleg
Sych and Randy Patterson, 2012 (ISBN: 978-0-672-33565-5).

the asp.net state engine

In the previous chapter, you created a page with a TextBox and a Button control. In the Try It
Out, you ran this page in the browser, typed some text, and clicked the button. The button caused
a postback to the server, and when the page reloaded, the text was still present in the text box.
You pretty much did the same thing with the Wizard control in this chapter, where the values from
the text box and the drop-down list were maintained as well. If you’re familiar with other web
technologies like ASP or PHP, this probably surprised you. In those languages, you often need to
write lots of code to make this happen. So why and how does this work automatically in ASP.NET?

The text in the text box is maintained by the ASP.NET state engine, a feature that is deeply
integrated into the ASP.NET run time. It enables controls to maintain their state across postbacks,
so their values and settings remain available after every postback of the page.

What is state and Why is it important?
To understand state, it’s important to realize that, by design, HTTP — the protocol used to request
and serve pages in a web browser — is stateless. What this means is that the web server does not
keep track of requests that have been made from a specific browser. As far as the web server is
concerned, each request you make to the server by browsing to a page and clicking links to other
pages stands on its own. The web server has no recollection of pages you requested previously.

c04.indd 124 2/21/2014 7:11:31 AM

The ASP.NET State Engine ❘ 125

This poses some interesting problems. Consider, for example, a simple
login page that enables you to log in to a website, like your favorite web
mail program. You can see a sample of the login box in Figure 4-16.

Now imagine that you try to log in with a correct username but with an
incorrect password. The page will then inform you that your login attempt
failed. Ideally, you would also want your username to be filled in for you
automatically, and you’d want the Remember Me Next Time check box
to retain its selection as well. That way, it’s easy for the user to enter the correct password and click
the Log In button again. This is just a trivial example, but it’s easy to come up with many more
scenarios where it’s useful if controls are able to maintain their own state.

However, by default, a web page or a control cannot do this on its own. Because each request is a
standalone request, the server won’t fill in the text boxes again after a postback, but will simply
serve the page the same way it did when it first loaded it. In other web technologies, like classic ASP
or PHP, you could work around this by manually writing code that prepopulates controls after a
postback. Fortunately, ASP.NET makes this much easier for you by integrating this functionality in
the ASP.NET feature set.

how the state engine Works
The state engine in ASP.NET is capable of storing state for many controls. It can store state not only
for user input controls like a TextBox and a CheckBox, but for other controls like a Label and even
a Calendar. This is best demonstrated by a demo. The following exercise shows you how to create a
page with controls that are capable of maintaining their state. The sections that follow then explain
how ASP.NET is able to do this.

trY it out Examining the ASP.NET State Engine

In this exercise you add Label, Button, TextBox, and Calendar controls to the page. These controls
are used to demonstrate some of the inner workings of ASP.NET, including postbacks and the way ASP
.NET maintains state.

 1. Under the Demos folder, create a new page called State.aspx. Make sure it uses Code Behind,
and don’t forget to choose your preferred programming language.

 2. Switch the page to Design View, click inside the dashed <div> to put the focus on it, and then
choose Table ➪ Insert Table from the main menu. Set Rows to 3 and Columns to 2 and click OK
to insert a table with three rows and two columns.

 3. In the first cell of the first row, drag a Label control from the Toolbox. In the first cell of the
second row, drag a Calendar control.

 4. Note that as soon as you drop the Calendar control in the cell, its Smart Tasks panel pops up as
shown in Figure 4-17.

In the case of the Calendar control, you only get one option on this panel, Auto Format, which enables
you to change the appearance of the calendar. Click the link, choose from one of the predefined color
schemes, like Simple, and click OK.

figure 4-16

c04.indd 125 2/21/2014 7:11:31 AM

126 ❘ Chapter 4 Working With ASP.nEt SErvEr ControlS

 5. In the first cell of the last row, drag a TextBox control.

 6. Next, drag Button controls into the right column of the first two rows of the table.

 7. Click the Button in the first row and press F4 to open the Properties Grid. Set the Button’s
Text property to Set Date and its ID to SetDate. You’ll find the ID property all the way at the
end of the list with properties, or at the beginning if you have the list with properties sorted
alphabetically.

 8. Repeat the previous step for the other button but call it PlainPostback and set its Text property
to Plain Postback. When you’re done, the page should look like Figure 4-18 in Design View.

figure 4-17

figure 4-18

 9. Double-click the Set Date button in Design View and add the following bolded code on the empty
line between the code lines that VS inserted for you:

VB.NET

Protected Sub SetDate_Click(sender As Object, e As EventArgs) Handles SetDate.Click
 Label1.Text = DateTime.Now.ToString()
End Sub

c04.indd 126 2/21/2014 7:11:32 AM

The ASP.NET State Engine ❘ 127

C#

protected void SetDate_Click(object sender, EventArgs e)
{
 Label1.Text = DateTime.Now.ToString();
}

There’s no need to write code for the Plain Postback button.

 10. Open the page in the browser by pressing Ctrl+F5. Select a date on the calendar by clicking one
of the days. Notice that as soon as you click the date, the page reloads, caused by a postback. You
learn more about this in the How It Works section that follows this exercise.

 11. Enter some text in the TextBox control and then click the Set Date button a few times. Again, the
page is posted back to the server and the Label is updated with today’s date and time each time
you click the button. The TextBox still shows the text you entered. Wait a few seconds, and then
click the Plain Postback button. Once again, a postback occurs, and the page reloads. Now take a
look at the text for the Label. It still contains the date and time that was displayed when you last
clicked the Set Date button. Click the Plain Postback button a few more times and notice that the
Label doesn’t change. The TextBox should still display the text you entered.

 12. Go back to VS and open the Properties Grid for the Label control in Design View. Locate the
EnableViewState property and set it to False by selecting that value from the drop-down list or
by double-clicking the property name or its value. Repeat this step for the TextBox control.

 13. Repeat steps 10 and 11 by reopening the page in the browser and clicking the calendar and the
buttons. This time, when you click the Plain Postback button, you’ll see that the Label control
defaults to its initial text: Label. The TextBox, however, still displays the text you entered.

How It Works

To understand how this all works, you need to look at a few important elements. First, open up the
page in the browser again and view its HTML source. You can do this by right-clicking the page in the
browser and choosing the View Source or View Page Source menu item. Near the top of the window,
you see the following <form> element:

<form method="post" action="State.aspx" id="form1">
...
</form>

The HTML <form> element is used to enable a user to submit information from the browser to the
server. A user can enter information using controls like text boxes, drop-down lists, check boxes, and
so on. A form can be submitted in two ways: with POST (as shown in the previous <form> element) or
with GET. In the former case, all data from the form is added to the body of the request and then sent to
the server. In the case of the GET method, all the data is appended to the actual address of the request.
The intricacies of the differences are not that important right now; what’s important to understand is
what the <form> element is used for: it encapsulates form controls whose values are submitted back to
the server en masse.

When a control like a Button is clicked, it causes a postback to the server. During this postback, all
the relevant information in the form is submitted back to the server where it can be used to rebuild the
page.

c04.indd 127 2/21/2014 7:11:32 AM

128 ❘ Chapter 4 Working With ASP.nEt SErvEr ControlS

By default, all your ASP.NET Web Forms always use the POST method to send data to the server. Also,
by default, an entire ASP.NET page always contains exactly one form. Because this is so common, a
new page (or Master Page as you learn in Chapter 6) created in VS already contains the <form> ele-
ment, so you don’t have to add it yourself. Finally, it’s important to understand that an ASP.NET Web
Form by default always submits back to itself. In other web environments, like classic ASP and PHP, it’s
not uncommon to set the action attribute of the page to a second page that then processes the data the
user has submitted. However, with an ASP.NET page, you’ll find that even if you set the action attri-
bute in the code explicitly, the ASP.NET run time will revert it to the name of the current page.

NoTE ASP.NET supports a feature called Cross Page Postbacks that enables
you to submit from one page to another. To learn more about this concept,
search the MSDN site for Cross page postbacks or get yourself a copy of
Professional ASP.NET 4.5 from Wrox.

The next thing to look at is ASP.NET’s View State functionality implemented with the hidden __
VIEWSTATE field that you see in the HTML source bolded in the following snippet:

<form method="post" action="State.aspx" id="form1">
...
 <input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE"
 value="IXcrUZ51B9YmtdoSL9csn2+VrYx5oW32kAw0oRXGsf3F0/W0l6/upieH7Nht1f
 hyr99U0IRRKmjvYk4FdH5E9ZRucaja0xPkwCyRoNBI3KkidqR5eAVX86D
 qOfEl584eSB0ff3IF4o3Y+ZqD7qZp3A==" />
</div>

Although at first the text appears to contain nothing more than random characters, it actually contains
useful information. To protect the information stored in this field, ASP.NET has converted the page
state in the preceding string. If you were able to look inside the value of the fields, you’d find a value for
the Label1 control with the current date and time.

When your ASP.NET page loads, the ASP.NET run time fills this hidden field with information about
the page. For example, it added the value for the Text property of the Label1 control when you caused
a postback by clicking the Set Date button. Similarly, it contains the selected date for the Calendar
control. When the page is then submitted back by a postback, the value in this hidden __VIEWSTATE
field is sent with the request. Then, when ASP.NET creates the new page on the server, the information
from the __VIEWSTATE field is read and applied to the controls in the page. This way, a control like the
Label is able to maintain its text even after the page has been posted back to the server.

The TextBox doesn’t need View State, though. It’s able to maintain its value because the browser sub-
mits it to the server with each postback.

To reiterate, here’s a rundown of the process that took place in the preceding Try It Out.

 1. You requested the page in the browser by opening it from within VS.

 2. The browser got the page from the server by making a request for it.

 3. The ASP.NET run time read the page from disk, processed it, and sent the resulting HTML to
the browser. At this stage, all the controls were set to their default values that were defined in the
markup of the page. For example, the Text of the Label control is set to Label.

c04.indd 128 2/21/2014 7:11:32 AM

The ASP.NET State Engine ❘ 129

 4. After the page got displayed in the browser, you clicked the Set Date button. This caused a
postback to the server.

 5. At the server, the page was reconstructed again, similar to the first time it loaded, described in
step 3. At this stage, all the controls contain their default values. So, again, the Label1 control
had its Text property set to Label. Shortly after the defaults have been set, the run time overrides
these defaults for controls it finds in View State. However, because this was the first postback
and the Label control’s Text property hadn’t changed yet, its value was not present in View State.
So the Text property just contained the default word Label.

 6. While still processing the same request, the ASP.NET run time fired the code in SetDate_Click.
As you have seen, this code changed the Text property of the Label control to the current date and
time. The ASP.NET run time sees this change and stores this new value in View State as well,
and sends it to the browser so it stays available for subsequent postbacks.

 7. Next, you entered some text and clicked the Plain Postback button. Just as with the other button,
this caused a postback to occur. The page was constructed again, and all defaults are set. Again,
this means that the Text property of the Label1 control simply contains the word Label.
However, shortly after that, during the same processing cycle, the ASP.NET run time processes
the View State, restoring control values it finds in the hidden __VIEWSTATE field. In this example,
it found the Text property with the current date and time, and assigned it again to the Label
control. Because the Plain Postback button doesn’t change the Text of the Label anymore, the
Text property doesn’t change: it contains the date and time from the previous postback. The Text
property of the TextBox control is set using the value submitted to the server; that is, this control
does not use View State to maintain its value. At the end, the entire page is sent to the browser,
where the label correctly displays its previous value.

 8. Finally, you turned off the View State for the Label and TextBox controls by setting
EnableViewState to False. With this setting turned off, the ASP.NET run time doesn’t track
the Label control anymore. So when you click the Plain Postback button, the ASP.NET run time
doesn’t find any information for the label in View State, which eventually results in the label
displaying its own default text: the word Label.

not all Controls rely on view state
You have to understand that not all controls rely on View State all the time. A number of
controls are able to maintain some of their own state, as you saw with the TextBox control in the
preceding exercise. These controls include, among others, the TextBox, CheckBox, RadioButton,
and DropDownList controls. They are able to maintain their values because they are rendered as
standard HTML form controls in the browser. For example, a TextBox server control ends up like
this in the browser:

<input name="TextBox1" type="text" value="Initial Text" id="TextBox1" />

When a page with such a TextBox in it is posted back, the browser also sends the value of the
control back to the server. The ASP.NET run time can then simply look at that value to prepopulate
the text box again, instead of getting the value from View State. Obviously, this is more efficient
than storing the value in View State too. If that were the case, the value would get sent to the server
twice: once in the text box and once in View State. Especially with large values, this could quickly

c04.indd 129 2/21/2014 7:11:32 AM

130 ❘ Chapter 4 Working With ASP.nEt SErvEr ControlS

increase the page’s size, and thus its load time. For some features — such as tracking changes made
at the client — these controls still need to store their values in View State as well, and do so on a
need-to-have basis.

In addition to View State, controls support the concept of Control State. Controls use that
mechanism to keep track of data they absolutely need to operate correctly. You cannot disable
Control State but, since only limited amounts of data are stored in Control State, this is not a
problem.

a note about view state and performance
Because the View State engine adds a considerable amount of information to the page, it’s often a
good idea to turn it off when you don’t need it. This way, you can minimize the size of the hidden
__VIEWSTATE field, which means the page becomes smaller and thus loads faster in the browser.
Note that when you turn off View State you still see the hidden __VIEWSTATE field because Control
State uses the same field to store its data. Turning off View State is easy, and you can do it at three
different places:

➤➤ At the website level — You can do this in the Web.config file in the root of the site
by modifying (or adding) the <pages> element under <system.web>, setting the
enableViewState attribute to false:

<pages enableViewState="false">
 ...
</pages>

➤➤ At the page level — At the top of each page you find the page directive, a series of
instructions that tell the ASP.NET run time how the page should behave. In the page
directive you can set EnableViewState to False:

 <%@ Page Language="VB" AutoEventWireup="False" CodeFile="State.aspx.vb"
 Inherits="Demos _ State" EnableViewState="False" %>

This option is useful for pages where you’re sure you don’t need View State at all.

➤➤ At the control level — Each ASP.NET Server Control enables you to set EnableViewState
individually, giving you the option to turn it off for some controls, while leaving it on for
others.

Once you’ve turned off View State at a higher level (Web.config or page level), setting
EnableViewState to True again at a lower level (the page or a specific control) has no effect.
However, using the ViewStateMode property you can still accomplish this as follows:

➤➤ Do not turn off View State in the Web.config file.

➤➤ At the page level, set EnableViewState to True and ViewStateMode to Disabled like this:

 <%@ Page Language="C#" … EnableViewState="True" ViewStateMode="Disabled" %>

This turns off View State for all controls in the page except for those that explicitly enable it
again by setting the ViewStateMode to Enabled.

c04.indd 130 2/21/2014 7:11:32 AM

Practical Tips on Working with Controls ❘ 131

➤➤ For the controls you want to give View State support, set the ViewStateMode to Enabled,
like this:

<asp:Label ID="Label1" runat="server" Text="Label" ViewStateMode="Enabled" />

If you want to see this at work in your demo page, modify the page directive of State.aspx as in
the previous example by setting EnableViewState to True and ViewStateMode to Disabled. Then
create a second Label in the page and set ViewStateMode for the first to Enabled:

 <asp:Label ID="Label1" runat="server" Text="Label" ViewStateMode="Enabled" />
 <asp:Label ID="Label2" runat="server" Text="Label" />

In the Code Behind of the page, assign today’s date and time to the second label as well:

VB.NET

Label1.Text = DateTime.Now.ToString()
Label2.Text = DateTime.Now.ToString()

C#

Label1.Text = DateTime.Now.ToString();
Label2.Text = DateTime.Now.ToString();

Finally, run steps 10 and 11 of the last Try It Out exercise. You’ll notice the first Label maintains its
text, whereas the second defaults back to the text Label.

praCtiCal tips on Working With Controls

The following list presents some practical tips on working with controls:

➤➤ Spend some time trying out the different controls in the Standard category. Although many
of them are used and discussed throughout the book, it’s good to know how you should use
them and how they operate. By experimenting with them now in a few sample pages, you
have a head start when the controls reappear in later chapters.

➤➤ Consider turning off View State for controls that don’t need it. In many cases, you hardly
notice the difference, but especially with the data-driven controls discussed in Chapter 13
and onward, disabling View State can seriously decrease the size of your web page, resulting
in shorter load times and improved user experience.

➤➤ Before you design a complex Web Form with multiple controls to accept user input, step
back from your computer and take a piece of paper and a pen to draw out the required
functionality. By thinking about the (technical) design of your application before you start
coding, it’s much easier to create a consistent and well-thought-out user interface. Making
considerable changes later in the page if you’ve taken a wrong route will always take more
time than doing it (almost) right the first time.

➤➤ Experiment with the View State mechanism to get a better understanding of how it works.
Create a couple of pages similar to the one you created in the last exercise. Then turn off View
State at the page or control level and see how the page behaves. Take note of the controls,
such as TextBox, that are capable of maintaining their value even with View State off.

c04.indd 131 2/21/2014 7:11:32 AM

132 ❘ Chapter 4 Working With ASP.nEt SErvEr ControlS

summarY

This chapter gave you a good look at the large set of ASP.NET Server Controls. Because these
controls are so important and used throughout every ASP.NET application, it’s really critical that
you understand what controls you have available in the Toolbox, what they are used for, how they
work, and how they maintain their own state.

One of the biggest inventions in ASP.NET is the state engine that enables controls to maintain their
state across postbacks. The state engine is a real time saver and frees you from writing loads of
tedious and boring code in every single web page to replicate this behavior. However, you should
turn View State off when possible to improve performance.

This chapter also introduced you to some trivial server-side code in Visual Basic and in C#. The
next chapter gives you a much better understanding of programming ASP.NET pages. You see how
a programming language looks, what elements it contains, and how to write code yourself to use in
your ASP.NET pages. And best of all, the examples are presented in Visual Basic and C#, so you’re
not stuck with a language you may not like.

exerCises

 1. Name the mechanism that enables server controls to maintain their state.

 2. How is the ASP.NET run time able to keep track of control state between postbacks?

 3. Name a difference between an <asp:DropDownList> and an <asp:ListBox>.

 4. What property do you need to cause a postback to the server when you change the checked
state of a CheckBox in the browser?

 5. Many server controls have a common set of properties that affects their looks at run time.
Name three properties that change styling elements such as color, borders, and size.

 6. Instead of setting individual control properties like BackColor and ForeColor, it’s better to
set a single CSS-related property. What’s the name of this property and what benefit does it
give you?

You can find answers to these exercises in Appendix A.

c04.indd 132 2/21/2014 7:11:32 AM

Summary ❘ 133

 ➤ What You learned in this Chapter

__VIEWSTATE The hidden form field that is used to transfer the state from the
server to the client and back.

Container controls Server controls that serve as a container by wrapping other content
and controls.

events tab The part of the Properties Grid that lets you set up handlers for
control events such as Click for a Button.

list controls Server controls that present a list of items to the user, such as the
DropDownList, CheckBoxList, and more.

POST and GET methods Different methods to submit data from the client to the server. With
POST the data is added to the body of the request, whereas with GET
the data is appended to the address of the requested page.

postback The process of sending form data from a client browser back to the
server.

server Controls The workhorses of ASP.NET, used to build up the user interface of a
web page in the browser.

smart tasks panel The action panel that appears for some controls to help you
accomplish common tasks.

view state The mechanism that enables the ASP.NET controls to store state at
the client.

c04.indd 133 2/21/2014 7:11:32 AM

c04.indd 134 2/21/2014 7:11:32 AM

Programming Your ASP.NET
Web Pages

What You Will learn in this Chapter:

➤➤ How to work with data types, variables, objects, and collections in
a programming environment

➤➤ Different ways to make decisions in your code

➤➤ The options available for creating blocks of functionality that can
 easily be reused

➤➤ Different ways to write well-organized and documented code

➤➤ What object orientation is, and how you can use it in your
applications

Wrox.Com Code doWnloads for this Chapter

You can find the wrox.com code downloads for this chapter on the Download Code tab at
www.wrox.com/go/begaspnet451. The code is in the Chapter 5 folder.

In the previous four chapters, you created a number of Web Forms that contained mostly
ASP.NET Server Controls and plain HTML. Only a few of the examples contained actual
programming code, written in either C# or Visual Basic (VB.NET), and most of that code
was pretty straightforward. However, not all of your pages will always be so simple, and the
ability to read, understand, and write code is a critical asset in your web development toolkit.

This chapter teaches you the basics and beyond of programming for web applications. Just
as with all the other samples in the book, this entire chapter covers both VB.NET and C#.
For every concept or piece of theory introduced in this chapter, you see an example in both
VB.NET and C# at the same time. Which language you prefer is entirely your decision.

5

c05.indd 135 2/21/2014 7:29:56 AM

http://www.wrox.com/go/begaspnet451
http://wrox.com
http://wrox.com

136 ❘ Chapter 5 Programming Your aSP.nET WEb PagES

Note To get the most out of this chapter, it’s recommended that you actu-
ally try out the code. You can test most of the examples with a simple ASPX
page. Drag a Label and a Button on your page and double-click the Button
in Design View. Then type the sample code on the open line of the code block
that VS added for you and press Ctrl+F5. After the page has finished loading,
click the button and the code will be executed. Some of the examples call ficti-
tious code and won’t run correctly. They only serve to illustrate the topic being
discussed.

introduCtion to programming

To get started with programming, it’s critical to understand a common set of terms shared by
programmers in all types of languages and applications. The remainder of this chapter introduces
you to a relatively large number of terms and concepts. Most of the terminology comes with code
examples so you can see how they are used in real code.

It’s also important to realize this is not a complete introduction to programming. Not every detail of
a programming language is covered. Instead, this chapter focuses on the key concepts that you need
to understand to successfully build day-to-day websites. Once you get the hang of that you’ll find it’s
easier to deepen your knowledge about programming by learning the more exotic features of your
favorite programming language.

Note If you’re interested in learning a lot more about programming in
VB.NET or C#, find Beginning Visual Basic 2012 (Bryan Newsome, 2012;
ISBN: 978-1-1183-1181-3) or Beginning Microsoft Visual C# 2012 (Karli Watson
et. al, 2012; ISBN: 978-1-1183-1441-8), both published by Wrox.

You add the code you write in this and coming chapters either to the Code Behind of a web page, or
in a separate class file placed in the special App_Code folder. When the ASP.NET run time processes
the request for a page containing code, it compiles any code it finds in the page, Code Behind, or
class files first. When code is compiled, it is being transformed from a human-readable programming
language (like C# or VB.NET) into Microsoft Intermediate Language (MSIL), the language that the
.NET Framework run time can understand and execute. The result of the compilation process of an
ASP.NET website is one or more assemblies — files with a DLL extension — in a temporary folder
on your system. This compilation process takes place only the first time the page is requested after
it has been created or changed. Subsequent requests to the same page result in the same DLL being
reused for the request. Fortunately, in ASP.NET websites, compilation takes place behind the scenes,
so you usually don’t have to worry about it.

To get started with programming, the first concepts that you need to look at are data types and
variables, because they are the building blocks of any programming language.

c05.indd 136 2/21/2014 7:29:56 AM

Data Types and Variables ❘ 137

Note The .NET Framework used by ASP.NET is huge and contains thousands
of types with hundreds of thousands of members. Clearly, you cannot
memorize all the types in the framework, so you need to make good use of
resources like IntelliSense and online help. Navigating the MSDN site (http://
msdn.microsoft.com/en-us/library/) can sometimes be a daunting task.
However, I often find that searching for something like typeName type .NET
MSDN brings up exactly what I need. So, if I wanted to learn more about the
string class, I’d type string class .NET MSDN in my favorite search engine.
Nine out of ten times the first result is a link to the relevant page on the MSDN
website, where I can learn more about the class — where it’s defined and
located and how to use it.

data tYpes and Variables

At first when you think about data that is used in some programming environment, you may not
realize that each piece of data has a data type. You may think that a computer would store the text
Hello World in exactly the same way as today’s date or the number 26; as a series of characters, for
example. However, to be able to effectively work with data, many programming languages have
different data types, and each data type is constrained to a specific type of information. Out of
the box, the .NET Framework comes with a long list of data types that enable you to work with
numbers (such as Int32, Int16, and Double), text strings (Char and String), dates (DateTime),
true/false constructs (the Boolean), and more. A list of the most common types is supplied later in
this section.

For each major type of data there is a special data type. To work with that data, you can store it
in a variable that you need to declare first using the required data type. In VB.NET you use Dim
myVariable As DataType, whereas in C# you use DataType myVariable to declare a variable. A
valid variable name typically consists of letters, numbers, and underscores, and cannot start with a
number. These rules apply to other identifiers as well, such as classes and methods, which you see
later. The following example shows you how to declare two variables: an Integer (int in C#) to
hold a number and a String (string in C#) to hold a piece of text:

VB.NET

' Declare a variable of type Integer to hold medium sized whole numbers.
Dim distanceInMiles As Integer

' Declare a variable to hold some text like a first name.
Dim firstName As String

C#

// Declare a variable of type int to hold medium sized whole numbers.
int distanceInMiles;

// Declare a variable to hold some text like a first name.
string firstName;

c05.indd 137 2/21/2014 7:29:56 AM

http://msdn.microsoft.com/en-us/library/
http://msdn.microsoft.com/en-us/library/

138 ❘ Chapter 5 Programming Your aSP.nET WEb PagES

These two code examples also contain comments, prefixed with a tick (') in VB.NET or two
forward slashes (//) in C#. You learn more about commenting your code later in this chapter.

After you have declared a variable, you can assign it a value. You can assign types like numbers
and booleans directly to a variable. To assign a string to a variable you need to enclose it in double
quotes:

VB.NET

Dim distanceInMiles As Integer
distanceInMiles = 437

Dim firstName As String
firstName = "Imar"

C#

int distanceInMiles;
distanceInMiles = 437;

string firstName;
firstName = "Imar";

In addition to separate declarations and assignments, you can also declare a variable and assign it a
value in one fell swoop:

VB.NET

Dim distanceInMiles As Integer = 437
Dim firstName As String = "Imar"

C#

int distanceInMiles = 437;
string firstName = "Imar";

Although a variable name can be nearly anything you like, it’s advised that you give each variable
a meaningful name that describes its purpose. For example, a string to hold a first name could be
called firstName and a variable that holds someone’s age could simply be called age. In .NET it’s
common to write local variables in what’s called camel case,
which means each word starts with a capital letter except
for the first. To help you find the type of the variable later
in the code, VS shows a useful tooltip when you hover over
a variable in the code editor, making it super easy to find a
variable’s type. Figure 5-1 shows that the distanceInMiles
variable in the C# example is of type int.

You’re advised not to prefix your variables with letters
to indicate the type. For example, write firstName and not sFirstName for a String holding
someone’s name. This type of notation, called Hungarian Notation, is considered outdated. IDEs
like Visual Studio, with their smart IntelliSense and other programming tools, don’t really require
this anymore. Without Hungarian Notation, your code becomes easier to read (age is more readable
than iAge) and easier to maintain because you can change a variable’s type without renaming it
everywhere it’s used.

figure 5-1

c05.indd 138 2/21/2014 7:29:56 AM

Data Types and Variables ❘ 139

Microsoft .NET supports a large number of different programming languages, including VB.NET,
C#, and others. All these languages are able to communicate with each other. For example, you can
write some code in C#, use Visual Studio Express 2013 for Windows Desktop to compile it to a
.dll file (a file with reusable code that can be consumed by other .NET applications), and then use
it in a web application that uses VB.NET as the primary language. Because of this interoperability,
it’s necessary to agree on some system that enables all .NET programming languages to understand
each other. This system is called the Common Type System (CTS). It’s the CTS that defines the data
types that are accessible to all CTS-compliant languages. Each language is then free to define a set
of primitive types, which are essentially shortcuts or aliases for the more complex type descriptions
in the .NET Framework. So, even if the CTS defines a type called System.Int32, a language like
C# is free to alias this type as int and VB is free to alias this type as Integer to make it easier for a
developer to work with it.

The following table lists the most common CTS types in the .NET Framework and their C# and
VB.NET aliases. The table also lists the ranges of the variables and what they are used for.

.net C# Vb.net desCription

System.Byte byte Byte Used to store small, positive whole numbers from
0 to 255. Defaults to 0 when no value is assigned
explicitly.

System.Int16 short Short Capable of storing whole numbers between
–32,768 and 32,767. Defaults to 0.

System.Int32 int Integer Capable of storing whole numbers between
–2,147,483,648 and 2,147,483,647. Defaults to 0.

System.Int64 long Long Holds whole large numbers between
–9,223,372,036,854,775,808 and
9,223,372,036,854,775,807. Defaults to 0.

System.Single float Single Stores large numbers with decimals between
–3.4028235E+38 and 3.4028235E+38. Defaults to
0.0.

System.Double double Double Can hold large fractional numbers. It’s not as
accurate as the Decimal when it comes to the
fractional numbers but when extreme accuracy is
not a requirement, you should prefer the Double
over the Decimal, because the Double is a little
faster. Defaults to 0.0.

System.Decimal decimal Decimal Stores extremely large fractional numbers with
a high accuracy. Defaults to 0. This data type is
often used to store monetary values.

System.Boolean bool Boolean Used to hold a simple boolean value: True or False
in VB, and true or false in C#. Defaults to False.

continues

c05.indd 139 2/21/2014 7:29:56 AM

140 ❘ Chapter 5 Programming Your aSP.nET WEb PagES

.net C# Vb.net desCription

System.DateTime n/a Date VB.NET has an alias for the System.DateTime data
type to store date and time values. C# doesn’t
define an alias for this type. Defaults to 1/1/0001:
12:00 a.m.

System.Char char Char Holds a single character. Defaults to Nothing (null
in C#).

System.String string String Can hold text with a length of up to 2 billion
characters. Defaults to Nothing (null in C#).

System.SByte sbyte SByte Used to store small numbers from –128 to 127.
Defaults to 0.

System.UInt16 ushort UShort Similar to a System.Int16, but this data type can
only store unsigned whole numbers, between 0
and 65,535. Defaults to 0. The other data types
prefixed with a U are all unsigned as well.

System.UInt32 uint UInteger Capable of storing whole numbers between 0 and
4,294,967,295. Defaults to 0.

System.UInt64 ulong ULong Capable of storing whole numbers between 0 and
18,446,744,073,709,551,615. Defaults to 0.

System.Object object Object The parent of all data types in .NET, including the
CTS types and types you define yourself. Each
data type is also an object, as you learn later in
the book. Defaults to Nothing (null in C#).

The standard .NET types are all prefixed with System followed by a period. This System part is the
namespace for this data type. You learn what namespaces are and what they are used for later in
this chapter.

Sometimes you need to convert data from one type to another. For example, you may have an Int32
that you need to treat as a Double. You can do this in a number of different ways.

Converting and Casting data types
The most common way to convert a type is converting it into a String. Web applications use string
types in many places. For example, the Text returned from a TextBox is a String, and so is the
SelectedValue of a DropDownList. To get a string representation of an Object, you can call its
ToString() method. Every object in the .NET world supports this method, although the exact
behavior may differ from object to object. For now, it’s important to understand that ToString
is a method — or an operation — on an object, like a String or a Double and even the parent

(continued)

c05.indd 140 2/21/2014 7:29:57 AM

Data Types and Variables ❘ 141

Object itself. You learn more about methods and objects later in this chapter when object-oriented
programming is discussed.

Using ToString() is easy, as the following example that outputs today’s date and time on a Label
control demonstrates:

VB.NET

Label1.Text = System.DateTime.Now.ToString()

C#

Label1.Text = System.DateTime.Now.ToString();

Another way to convert data types is by using the Convert class.

Note Classes are an important concept in .NET so they are discussed in their
own section later in this chapter. For now it’s important to understand that a
class is like a blueprint for objects that are used in .NET. You can create your
own classes, but you will also use many of the standard classes that are part of
the .NET Framework.

The Convert class contains functionality to convert a number of data types into another type. The
following is a simple example of converting a String containing a value that looks like a boolean
into a true Boolean type:

VB.NET

Dim myBoolean1 As Boolean = Convert.ToBoolean("True") ' Results in True
Dim myBoolean2 As Boolean = Convert.ToBoolean("False") ' Results in False

C#

bool myBoolean1 = Convert.ToBoolean("True"); // Results in true
bool myBoolean2 = Convert.ToBoolean("False"); // Results in false

Besides the ToBoolean method, Convert offers you a host of other conversion methods, including
ToInt32 (for integer types), ToDateTime (for dates), and ToString.

Another way to convert one type into another is by using casting. With casting you actually force
one type into another, which is different from converting, in which the underlying value of a data
type is transformed into a new value.

Casting only works for compatible types. You can’t, for example, cast a DateTime into an Integer.
You can, however, cast similar types, like a Double to an Integer or a String to an Object.
The reverse of the latter example isn’t always true. Earlier I said that every data type in the .NET
Framework is based on the Object data type, meaning that, for example, a String is an Object.
However, not every Object is also a String. When you try to cast one type into another and get
a compilation or runtime error, keep this in mind. Later chapters in this book show you more
examples of how to cast compatible types into each other.

To cast one type into another using VB.NET, you have a few options. First, you can use CType
and DirectCast. CType is a bit more flexible in that it allows you to cast between two objects that

c05.indd 141 2/21/2014 7:29:57 AM

142 ❘ Chapter 5 Programming Your aSP.nET WEb PagES

look similar. DirectCast, on the other hand, only allows you to cast between compatible types but
performs slightly faster. The following VB.NET example shows how this works:

Dim o1 As Object = 1
Dim i1 As Integer = DirectCast(o1, Integer) ' Works, because o1 is an Integer
Dim i2 As Integer = CType(o1, Integer) ' Works, because o1 is an Integer

Dim o2 As Double = 1
Dim i3 As Integer = DirectCast(o2, Integer) ' Does not compile, because o2 is
 ' not an Integer
Dim i4 As Integer = CType(o2, Integer) ' Works, because o2 looks like an
 ' Integer

In the first part of the example, an object called o1 is declared and assigned the Integer value
of 1. Although o1 exposes itself to the outside world as an Object, its underlying value is still an
Integer. When DirectCast is called, the cast succeeds because o1 is, under the hood, an Integer.

In the second example, o2 is declared as a Double, a numeric type that looks somewhat like an
Integer, but isn’t really one. Therefore, the call to DirectCast fails because a Double cannot
be cast to an Integer. CType, on the other hand, works fine, because the underlying value of the
variable o2 looks like an Integer and can therefore be cast to one. It’s important to realize that if
the Double type has a decimal part, that part gets lost when casting it to an Integer.

The third option to cast in VB.NET is using the keyword TryCast, which is somewhat similar to
the other two options. When an object cannot be cast correctly, TryCast returns Nothing, whereas
DirectCast and CType result in a crash of the code.

In C# you have two options to cast objects. The most common way is to put the data type in
parentheses in front of the expression you want to cast. This works similar to CType in VB:

object o1 = 1;
int i1 = (int)o1; // Works

double o2 = 1;
int i2 = (int)o2; // Works

Alternatively, you can use the as keyword, which works similarly to TryCast in VB.NET in that the
code doesn’t crash if the cast doesn’t succeed. The following sample code shows that you cannot cast
an Integer to an ArrayList (which you meet later in this chapter). Instead of crashing, the variable
myList simply contains null to indicate that the cast operation didn’t succeed:

object o1 = 1;
ArrayList myList = o1 as ArrayList; // Doesn't cast, but doesn't crash either.

You learn more about casting and converting in the remaining chapters in this book.

using arrays and Collections
So far the data types you have seen are relatively straightforward and singular objects. For example,
you store a value of True or False in a Boolean type, and you store a number like 123 in an
Integer. But what if you have the need to store lots of integers? You may have the need to do so if
you want to store the points of a complex shape like a polygon. Or you may have the need to store
all the roles that your application supports in a single variable so you can show them on a web page
in the Management section, for example. Here’s where arrays and collections come to the rescue.

c05.indd 142 2/21/2014 7:29:57 AM

Data Types and Variables ❘ 143

Defining and Working with Arrays
You can see an array as a big bag or list of the same type of things. You define the data type of the
things in the array when you declare it. Each item in the array is identified by a sequential number
(its so-called index) starting at 0, making arrays zero-based. When declaring and accessing an array
in VB.NET you use parentheses, whereas in C# you use square brackets. After you have defined the
array and populated its elements, you can access the elements by their zero-based element index
(0, 1, 2, and so on).

The following code snippet defines an array called roles that can hold up to two roles at the
same time:

VB.NET

Dim roles(1) As String

C#

string[] roles = new string[2];

See the difference between the VB.NET and C# examples? That’s not a typo. In VB.NET you define
an array’s size by specifying the upper bound. The upper bound is the last element in the array that
you can access. Because arrays are zero-based (that is, you address the first item in the array with an
index of 0), it means that if you need room for two items, the upper bound is 1, giving you the items
0 and 1.

In C#, on the other hand, you don’t define the upper bound but instead you define the size. So in C#,
you simply specify 2 to get an array with two elements.

Additionally, C# requires you to use the keyword new, which instantiates a new array for you.
VB.NET does that for you automatically and raises an error if you add the New keyword as in the
C# example. You see the new (New in VB.NET) keyword again later in this chapter.

To enter the role names into the array you use the following syntax:

VB.NET

roles(0) = "Administrators"
roles(1) = "ContentManagers"

C#

roles[0] = "Administrators";
roles[1] = "ContentManagers";

Just as with the array’s declaration, you use parentheses in VB.NET and square brackets in C# to
address the elements in the array. Note that (0) and [0] refer to the first element in the array and
(1) and [1] refer to the second.

By design, arrays have a fixed size. So, given the previous example that defines an array with room
for two elements, the following code will throw an error:

VB.NET

roles(2) = "Members" ' Throws an error

C#

roles[2] = "Members"; // Throws an error

c05.indd 143 2/21/2014 7:29:57 AM

144 ❘ Chapter 5 Programming Your aSP.nET WEb PagES

This code tries to squeeze a third role into an array that has room for only two. Obviously, that
doesn’t fit and you’ll get an error stating that the “Index was outside the bounds of the array.”
But what if you need to create more room in the array at a later stage in your code at run time? In
VB.NET this is pretty easy. You can use the ReDim statement:

ReDim Preserve roles(2)
roles(2) = "Members" ' Works fine now

This line of code re-dimensions the array to its new size: an upper bound of two, thus creating
room for a third element. The Preserve keyword is necessary to leave the current items in the array
intact. Without it, the resized array will be empty.

C# has no direct keyword to re-dimension an array. However, you can leverage the Array class of
the .NET Framework to resize the array as follows:

Array.Resize(ref roles, 3); // Resize the array so it can
 // hold three elements

roles[2] = "Members"; // Works fine now

Don’t worry about this syntax right now; you probably won’t need it very often, because the .NET
Framework offers alternatives to fixed-size arrays. Since Array.Resize is available to VB.NET as
well, you have two options to choose from if you’re using that language.

When you start working with arrays, you find that they are quick to use at run time, but lack some
useful functionality. For example, it’s not so easy to add new elements or to remove existing items
from the array. Fortunately, the .NET Framework offers a range of useful collections that do give
you the feature set you need.

Defining and Working with Collections
Collections are similar to arrays in that they enable you to store more than one object in a single
variable. The same bag analogy works for collections: you can simply drop a number of items in a
bag, and it will hold them for you. What’s different with collections is how they enable you to work
with the data in the bag. Instead of simply accessing each item by its index, most collections expose
an Add method that enables you to add an item to the collection. Similarly, they have Remove and
Clear methods to remove one or all items from the collection. Just like arrays, they enable you to
iterate, or loop, over them to access the items in the collection.

When collections were first introduced in the .NET Framework 1.0, the ArrayList and Hashtable
became popular very quickly because they were so easy to use. The ArrayList enables you to add
arbitrary objects that are then stored in the order in which you add them, whereas the Hashtable
enables you to store objects referenced by a custom key. The main benefit of these collections over
their array cousins is that they can grow on demand. Unlike the previous example, where you
needed to resize the array to create room for the third role, the ArrayList grows dynamically when
required. The following example shows you how this works:

VB.NET

Dim roles As New ArrayList() ' Create a new ArrayList. You don't need
 ' to set its size explicitly

roles.Add("Administrators") ' Add the first role

c05.indd 144 2/21/2014 7:29:57 AM

Data Types and Variables ❘ 145

roles.Add("ContentManagers") ' Add the second role
roles.Add("Members") ' Keep adding roles and the ArrayList
 ' grows as necessary

C#

ArrayList roles = new ArrayList(); // Create a new ArrayList. You don't need
 // to set its size explicitly

roles.Add("Administrators"); // Add the first role
roles.Add("ContentManagers"); // Add the second role
roles.Add("Members"); // Keep adding roles and the ArrayList
 // grows as necessary

Because this code now calls a method (Add) rather than assigning an item to a predefined index in
an array, you need parentheses (()) in both VB.NET and C#. The usage of methods is discussed
later in this chapter.

Although collections solve some of the problems that arrays have, they introduce a few problems of
their own. The biggest drawback of the ArrayList is that it isn’t strongly typed. What this means
is that you can add any object to the list using the Add method. This means that the ArrayList
could hold objects that are of different types at the same time. This may not seem to be a big deal
at first, but as soon as you start working with an ArrayList that contains multiple types of objects,
you’ll quickly see why this is problematic. Take the roles example again. With the array and the
ArrayList versions, the code simply added a few strings containing role names. You can then use
these three strings to, say, build up a drop-down list in a Web Form to enable a user to pick a role.
So far, so good. But what if one of the items in the list is not a string? What if another developer
accidentally wrote some code that adds a DropDownList control to the ArrayList? Because the
ArrayList accepts all objects, it won’t complain. However, your code will crash if it expects a
String, but gets a DropDownList control instead.

With .NET 2.0, Microsoft introduced a concept called generics. Generics are still strongly present
in version 4.5.1 of .NET, helping you overcome the problems that weakly typed collections like the
ArrayList introduced.

An Introduction to Generics
Since their introduction with .NET 2.0, generics pop up in many different locations in the .NET
Framework. Although they are used often in situations where collections are used, the use of
generics is not limited to collections; you can also use them for singular types of objects.

Generics are to code what Microsoft Word templates are to word processing. They enable you to
write a code template that can be used in different scenarios with different types. With generics,
you can define a generic code template that doesn’t explicitly specify a type. Only when that code is
used do you define the type. The main benefit of this is that you can reuse the same template over
and over again for multiple data types, without retyping and maintaining multiple versions of the
code. In addition to using generics in your own code definitions, you find a host of generics-enabled
objects and collections in the .NET Framework, ready to be used by your code.

To understand how you can take advantage of generics, take a look at the following example. It’s
essentially the same code you saw earlier where the ArrayList was used, but this time the type of
the list is constrained so it accepts only strings:

c05.indd 145 2/21/2014 7:29:57 AM

146 ❘ Chapter 5 Programming Your aSP.nET WEb PagES

VB.NET

Dim roles As New List(Of String)

roles.Add("Administrators")
roles.Add("ContentManagers")
roles.Add("Members")

C#

List<string> roles = new List<string>();

roles.Add("Administrators");
roles.Add("ContentManagers");
roles.Add("Members");

Not much code has changed to make the roles list type safe. However, with the definition of List
(Of String) in VB.NET and List<string> in C# the new list is now set up to allow only strings
to be added through its Add method. This compiles fine:

roles.Add("Administrators");

The following will not compile because 33 is not a string:

roles.Add(33);

Similar to the generics list of strings, you can also create lists to hold other types. For example:

VB.NET

Dim intList As New List(Of Integer) ' Can hold Integers only
Dim boolList As New List(Of Boolean) ' Can hold Booleans only
Dim buttonList As New List (Of Button) ' Can hold Button controls only

C#

List<int> intList = new List<int>(); // Can hold ints only
List<bool> boolList = new List<bool>(); // Can hold bools only
List<Button> buttonList = new List<Button>(); // Can hold Button controls only

Note Because there’s a lot more to generics than what is shown here,
they deserve an entire book on their own. Wrox has released such a book:
Professional .NET 2.0 Generics by Tod Golding (2005; ISBN: 978-0-7645-5988-4).
Although it was originally written for .NET 2.0, you’ll find that all the concepts
and examples introduced in that book still apply.

Though the Add method is useful to add items to a collection, it can sometimes be a bit tedious if
you need to add multiple items to a collection at once. To make this easier, .NET supports collection
initializers. With a collection initializer, you declare the collection and add some items in one
step. You do this by adding the items in a pair of curly braces (prefixed with the keyword From in
VB.NET) as shown in the following example:

VB.NET

Dim myList As New List(Of Integer) From {1, 2, 3, 4, 5}

c05.indd 146 2/21/2014 7:29:57 AM

Statements ❘ 147

C#

List<int> myList = new List<int>() { 1, 2, 3, 4, 5 };

Right after this line, the list is populated with the five integers.

Collection initializers are not limited to the List class or integers. You can use them with other
collection types and data types as well.

The generics examples you have seen barely scratch the surface of what is possible with generics.
However, when building ASP.NET websites, you often don’t need all the advanced stuff that
generics offer you. The List collection is so useful it had to be discussed here. Without a doubt,
you’ll use that collection in your own code in one way or another.

statements

To make a program or a website do something useful, you need to provide it with code statements
that it can execute. Statements cover a wide range of actions, such as show this button, send this
e-mail, execute this and that code when a user clicks that button, and so on. However, simply
executing these actions is not enough. You often need to execute some code only when a certain
condition is true. For example, if a visitor to an e-commerce website is buying more than $100
worth of merchandise at one time, she might get a discount of 10 percent. Otherwise, she’ll pay
the full price. Conditions or decisions are therefore very important statements in a programming
language. Another important set of statements is the loops. Loops enable you to repeat a certain
piece of code a number of times. For example, you can have a loop that goes from 1 to 10,
performing some action on each iteration. Or you can loop through the products in a shopping cart,
summing up their total price, for example.

The final important set of statements is the operators. Operators enable you to do something
with your values; or, to be more exact, they enable you to operate on them. For example, you use
operators to add or subtract values, concatenate (combine) them, or compare them to each other.

The following three sections dig deeper into operators, decision making, and loops.

operators
The most important operators can be grouped logically into five different types; these types are
covered in this section. Of these five types, the assignment operators are probably the easiest to
understand and use.

Assignment Operators
The assignment operators are used to assign a value to a variable. This value can come from many
sources: a constant value, like the number 6, the value of another variable, or the result of an
expression or a function, which are discussed later. In its simplest form, an assignment looks like
this, where the number 42 is assigned to the age variable:

VB.NET

Dim age As Integer = 42

c05.indd 147 2/21/2014 7:29:57 AM

148 ❘ Chapter 5 Programming Your aSP.nET WEb PagES

C#

int age = 42;

What if the person this age variable is referring to just had his birthday? You’d need to add 1 to the
age value. That’s where arithmetic operators come into play.

Arithmetic Operators
Arithmetic operators enable you to perform most of the familiar calculations on variables and
values, like adding, subtracting, and dividing. The following table lists the common arithmetic
operators for both VB.NET and C#.

Vb.net C# usage

+ + Adds two values to each other

− − Subtracts one value from another

* * Multiplies two values

/ / Divides two values

\ n/a Divides two values but always returns a rounded integer

^ n/a Raises one value to the power of another

Mod % Divides two whole numbers and returns the remainder

The first four operators probably look familiar, and their usage is pretty straightforward. The
following code snippet shows the basic operations you can perform with these operators:

VB.NET

Dim firstNumber As Integer = 100
Dim secondNumber As Single = 23.5
Dim result As Double = 0

result = firstNumber + secondNumber ' Results in 123.5
result = firstNumber - secondNumber ' Results in 76.5
result = firstNumber * secondNumber ' Results in 2350
result = firstNumber / secondNumber ' Results in 4.25531914893617

C#

int firstNumber = 100;
float secondNumber = 23.5F;
double result = 0;

result = firstNumber + secondNumber; // Results in 123.5
result = firstNumber - secondNumber; // Results in 76.5
result = firstNumber * secondNumber; // Results in 2350
result = firstNumber / secondNumber; // Results in 4.25531914893617

Note that in the C# example you need to add the letter F to the value of 23.5. This tells the compiler
you really want it to be a float rather than a double.

c05.indd 148 2/21/2014 7:29:57 AM

Statements ❘ 149

VB.NET also supports the \ operator, which basically performs the division and then drops the
remainder from the value, effectively rounding the return value down to the nearest integer:

VB.NET

result = firstNumber \ secondNumber ' Results in 4

C# doesn’t have a special operator for this. However, when you try to divide two integers, the result
is always an integer as well. This means that 7 (stored as an int) divided by 2 (stored as an int) will
be 3. It’s important to realize that this rounding occurs, or you may end up with unexpected results.

The final two operators need a bit more explanation. First, the ^ operator — for raising one number
to the power of another — is available only in the VB.NET language:

VB.NET

Dim result As Double

result = 2 ^ 3 ' Results in 8 (2 * 2 * 2)
result = 3 ^ 2 ' Results in 9 (3 * 3)

C# doesn’t support this operator, but you can easily replicate its behavior using Math.Pow, which is
made available by the .NET Framework. The following code snippet is functionally equivalent to
the preceding one:

C#

result = Math.Pow(2, 3); // Results in 8 (2 * 2 * 2)
result = Math.Pow(3, 2); // Results in 9 (3 * 3)

Of course Math.Pow is available to VB.NET as well, so if you’re using that language, you have two
options to choose from.

The final operator is called the modulus operator. It returns the remainder of the division of two
numbers, like this:

VB.NET

Dim firstNumber As Integer = 17
Dim secondNumber As Integer = 3
Dim result As Integer = firstNumber Mod secondNumber ' Results in 2

C#

int firstNumber = 17;
int secondNumber = 3;
int result = firstNumber % secondNumber; // Results in 2

Simply put, the modulus operator tries to subtract the second number from the first as many times
as possible and then returns the remainder. In the preceding example this will succeed five times,
subtracting a total of 15, leaving a remainder of 2, which is then returned and stored in the result.
The modulus operator is often used to determine if a number is odd or even.

When working with operators, it’s important to keep their precedence in mind. To see why this is
important, consider the following calculation:

2 + 10 * 4

c05.indd 149 2/21/2014 7:29:57 AM

150 ❘ Chapter 5 Programming Your aSP.nET WEb PagES

What is the outcome of this? You may think the answer is 48 if you first add 2 and 10 together,
and then multiply the result by 4. However, the right answer is 42; first the multiplication operator
is applied on 10 and 4, resulting in 40. Then 2 is added, which leads to 42 as the final result. The
following table shows the operator precedence for both VB.NET and C#.

Vb.net C#

^ Exponentiation *, /, % Multiplication, division, and
modulus

*, / Multiplication and division +, − Addition and subtraction

\ Integer division

Mod Modulus arithmetic

+, − Addition and subtraction and string
 concatenation using the plus (+) symbol

& String concatenation

To force a different operator order, you can use parentheses around expressions. The contents of the
expressions are evaluated first, resulting in a different order. For example:

(2 + 10) * 4

This does result in 48 now, because the addition operator is applied before the multiplication
operator.

Both languages also enable you to combine the arithmetic and assignment operators, enabling you
to take the value of a variable, perform some arithmetic operation on it, and assign the result back
to the variable. The following examples show how this works:

VB.NET

Dim someNumber1 As Integer = 3
Dim someNumber2 As Integer = 3
Dim someNumber3 As Integer = 3
Dim someNumber4 As Integer = 3
someNumber1 += 3 ' Results in someNumber1 having the value 6
someNumber2 -= 3 ' Results in someNumber2 having the value 0
someNumber3 *= 3 ' Results in someNumber3 having the value 9
someNumber4 /= 3 ' Results in someNumber4 having the value 1

C#

int someNumber1 = 3;
int someNumber2 = 3;
int someNumber3 = 3;
int someNumber4 = 3;
someNumber1 += 3; // Results in someNumber1 having the value 6
someNumber2 -= 3; // Results in someNumber2 having the value 0
someNumber3 *= 3; // Results in someNumber3 having the value 9
someNumber4 /= 3; // Results in someNumber4 having the value 1

c05.indd 150 2/21/2014 7:29:58 AM

Statements ❘ 151

C# also enables you to increase a variable’s value by 1 using the ++ operator, like this:

C#

int someNumber = 3;
someNumber++; // Results in someNumber having the value 4

This construct is used often in loops, as you’ll see later in the chapter.

Both languages also use arithmetic assignment operators to concatenate string values, as you’ll see
shortly.

Another common set of operators is the comparison operators, which enable you to compare values.

Comparison Operators
Just as with the arithmetic operators, VB.NET and C# each have their own set of comparison
operators to compare one value to another. A comparison operator always compares two values
or expressions and then returns a boolean value as the result. The following table lists the most
common comparison operators.

Vb.net C# usage

= == Checks if two values are equal to each other

<> != Checks if two values are not equal

< < Checks if the first value is less than the second

> > Checks if the first value is greater than the second

<= <= Checks if the first value is less than or equal to the second

>= >= Checks if the first value is greater than or equal to the second

Is is In VB.NET: Compares two objects; In C#: Checks if a variable is of a certain type

The first thing you’ll notice is that C# uses a double equals symbol (==) for the standard comparison
operator. This clearly makes it different from the assignment operator. It’s a common mistake in
C# to use only a single equals symbol if you intend to compare two values. Consider the following
example:

if (result = 4)
{
 // Do something here with result
}

The intention here is to see if result equals 4. However, because the assignment operator is used
instead of a proper comparison operator, you’ll get the compile error that is displayed in Figure 5-2.

figure 5-2

c05.indd 151 2/21/2014 7:29:59 AM

152 ❘ Chapter 5 Programming Your aSP.nET WEb PagES

At first the error message may look a little strange. But if you look at the code a little closer, it starts
to make more sense. First, result gets assigned a value of 4. This value is then used for the if
statement. However, the if statement needs a boolean value to determine whether it should run the
code inside the if block. Because you can’t convert an integer value to a boolean like this, you get a
compile error. The fix is easy, though; just use the proper comparison operator instead:

if (result == 4)
{
 // Do something here with result
}

Similar to the simple comparison operator, you can use the other operators to compare values:

VB.NET

4 > 5 ' 4 is not greater than 5; evaluates to False
4 <> 5 ' 4 is not equal to 5; evaluates to True
5 >= 4 ' 5 is greater than or equal to 4; evaluates to True

C#

4 > 5 // 4 is not greater than 5; evaluates to false
4 != 5 // 4 is not equal to 5; evaluates to true
5 >= 4 // 5 is greater than or equal to 4; evaluates to true

The Is keyword in VB.NET and is in C# do something completely different. In VB.NET, Is
compares two instances of objects, something you learn more about in the second half of this
chapter. In C#, you use is to find out if a certain variable is compatible with a certain type. You
can accomplish that in VB.NET using the TypeOf operator. The following two examples are
functionally equivalent:

VB.NET

Dim myTextBox As TextBox = New TextBox()

If TypeOf myTextBox Is TextBox Then
 ' Run some code when myTextBox is a TextBox
End If

C#

TextBox myTextBox = new TextBox();

if (myTextBox is TextBox)
{
 // Run some code when myTextBox is a TextBox
}

One of the arithmetic operators enables you to add two values to each other. That is, you use the
plus (+) symbol to add two values together. But what if you want to combine two values, rather than
add them up? That’s where the concatenation operators are used.

Concatenation Operators
To concatenate two strings, you use the + in C# and the & character in VB.NET. Additionally, you
can use += and &= to combine the concatenation and assignment operators. Consider this example:

c05.indd 152 2/21/2014 7:29:59 AM

Statements ❘ 153

VB.NET

Dim firstString As String = "Hello "
Dim secondString As String = "World"
Dim result As String

' The following three blocks are all functionally equivalent
' and result in the value "Hello World"

result = firstString & secondString

result = firstString
result = result & secondString

result = firstString
result &= secondString

C#

string firstString = "Hello ";
string secondString = "World";
string result;

// The following three blocks are all functionally equivalent
// and result in the value "Hello World"

result = firstString + secondString;

result = firstString;
result = result + secondString;

result = firstString;
result += secondString;

In addition to the & and &= concatenation operators in VB.NET, you could use + and += as well.
However, depending on the data types of the expressions you’re trying to concatenate, you may not
get the result you’d expect. Take a look at this code snippet:

Dim firstNumber As String = "4"
Dim secondNumber As Integer = 5
Dim result As String = firstNumber + secondNumber

Because firstNumber is a String, you may expect the final result to be 45, a concatenation of 4 and
5. However, by default, the VB.NET compiler will silently convert the string “4” into the number
4, after which addition and not concatenation takes place, giving result a value of “9”, the string
representation of the addition.

To avoid this ambiguity, always use the & and &= operators to concatenate string values.
Additionally, you can tell VB.NET to stop converting these values for you automatically by adding
the following line to the top of your code files:

Option Strict On

This forces the compiler to generate errors when an implicit conversion is about to occur, as in the
previous example.

The final group of operators worth looking into is the logical operators, which are discussed in the
next section.

c05.indd 153 2/21/2014 7:29:59 AM

154 ❘ Chapter 5 Programming Your aSP.nET WEb PagES

Logical Operators
The logical operators are used to combine the results of multiple individual expressions, and to
make sure that multiple conditions are true or false, for example. The following table lists the most
common logical operators.

Vb.net C# usage

And & Returns True when both expressions result in a True value.

Or | Returns True if at least one expression results in a True value.

Not ! Reverses the outcome of an expression.

AndAlso && Enables you to short-circuit your logical And condition checks.

OrElse || Enables you to short-circuit your logical Or condition checks.

The And, Or, and Not operators (&, |, and ! in C#) are pretty straightforward in their usage, as
demonstrated in the following code snippets:

VB.NET

Dim num1 As Integer = 3
Dim num2 As Integer = 7

If num1 = 3 And num2 = 7 Then ' Evaluates to True because both
 ' expressions are True

If num1 = 2 And num2 = 7 Then ' Evaluates to False because num1 is not 2

If num1 = 3 Or num2 = 11 Then ' Evaluates to True because num1 is 3

If Not num1 = 5 Then ' Evaluates to True because num1 is not 5

C#

int num1 = 3;
int num2 = 7;

if (num1 == 3 & num2 == 7) // Evaluates to true because both
 // expressions are true

if (num1 == 2 & num2 == 7) // Evaluates to false because num1 is not 2

if (num1 == 3 | num2 == 11) // Evaluates to true because num1 is 3

if (!(num1 == 5)) // Evaluates to true because num1 is not 5

The AndAlso and OrElse operators in VB.NET and the && and || operators in C# work very
similar to their And and Or counterparts (& and |) in C#. The difference is that with these operators
the second expression is never evaluated when the first one already determines the outcome of the
entire expression. So with a simple And operator,

If num1 = 2 And num2 = 7 Then

c05.indd 154 2/21/2014 7:29:59 AM

Statements ❘ 155

both expressions are checked. This means that both num1 and num2 are asked for their values to see
if they equal 2 and 7, respectively. However, because num1 does not equal 2, there really isn’t a point
in asking num2 for its value anymore because the result of that expression will never change the final
outcome of the combined expressions. This is where the AndAlso (&& in C#) operator enables you to
short-circuit your logic:

VB.NET

If num1 = 2 AndAlso num2 = 7 Then

C#

if (num1 == 2 && num2 == 7)

With this code, the expression num2 = 7 (num2 == 7 in C#) is never evaluated because num1 already
didn’t meet the required criteria.

This may not seem like a big deal with these simple expressions, but it can be a real performance
booster if one of the expressions is actually a slow and long-running operation. Consider this
fictitious code:

VB.NET

If userName = "Administrator" And GetNumberOfRecordsFromDatabase() > 0 Then

C#

if (userName == "Administrator" & GetNumberOfRecordsFromDatabase() > 0)

The code for this If block executes only when the current user is called Administrator
and the fictitious call to the database returns at least one record. Now, imagine that
GetNumberOfRecordsFromDatabase() is a long-running operation. It would be a waste of time to
execute it if the current user’s name is not Administrator. AndAlso (&& in C#) can fix this problem:

VB.NET

If userName = "Administrator" AndAlso GetNumberOfRecordsFromDatabase() > 0 Then

C#

if (userName == "Administrator" && GetNumberOfRecordsFromDatabase() > 0)

Now, GetNumberOfRecordsFromDatabase() will only be executed when the current user is
Administrator. The code will be ignored for all other users, resulting in increased performance for
them.

Most of the previous examples used an If statement to demonstrate the logical operators. The If
statement itself is a very important language construct as well. The If statement and other ways to
make decisions in your code are discussed next.

making decisions
Making decisions in an application is one of the most common things you do as a developer. For
example, you need to hide a button on a Web Form when a user is not an administrator. Or you
need to display the even rows in a table with a light gray background and the odd rows with a white
background. You can make all these decisions with a few different logic constructs, explained in the
following sections.

c05.indd 155 2/21/2014 7:29:59 AM

156 ❘ Chapter 5 Programming Your aSP.nET WEb PagES

If, If Else, and ElseIf Constructs
The If statement (if in C#) is the simplest of all decision-making statements. The If statement
contains two relevant parts: the condition being tested and the code that is executed when
the condition evaluates to True (true in C#.) For example, to make a button visible only to
administrators you can use code like this:

VB.NET

If User.IsInRole("Administrators") = True Then
 DeleteButton.Visible = True
End If

C#

if (User.IsInRole("Administrators") == true)
{
 DeleteButton.Visible = true;
}

Note that VB.NET uses the If and End If keywords, whereas C# uses if together with a pair of
curly braces to indicate the code block that is being executed. Also, with C#, the parentheses around
the condition being tested are required, whereas VB.NET requires you to use the keyword Then
after the condition.

This code explicitly checks for the value True / true. However, this is not required and it’s quite
common to leave it out. The following example is equivalent:

VB.NET

If User.IsInRole("Administrators") Then
 DeleteButton.Visible = True
End If

C#

if (User.IsInRole("Administrators"))
{
 DeleteButton.Visible = true;
}

I’ll use this succinct version in the remainder of the examples in this chapter.

Often you want to perform a different action if the condition is not True. Using the negation
operator Not or ! you could simply write another statement:

VB.NET

If User.IsInRole("Administrators") Then
 DeleteButton.Visible = True
End If
If Not User.IsInRole("Administrators") Then
 DeleteButton.Visible = False
End If

C#

if (User.IsInRole("Administrators"))
{
 DeleteButton.Visible = true;

c05.indd 156 2/21/2014 7:29:59 AM

Statements ❘ 157

}
if (!User.IsInRole("Administrators"))
{
 DeleteButton.Visible = false;
}

Clearly, this leads to messy code, because you need to repeat each expression evaluation twice: once
for the True case and once for the False case. Fortunately, there is an easier solution—the Else
block (else in C#):

VB.NET

If User.IsInRole("Administrators") Then
 DeleteButton.Visible = True
Else
 DeleteButton.Visible = False
End If

C#

if (User.IsInRole("Administrators"))
{
 DeleteButton.Visible = true;
}
else
{
 DeleteButton.Visible = false;
}

For simple conditions this works fine. But consider a scenario in which you have more than two
options. In those scenarios you can use ElseIf in VB.NET or the else if ladder in C#.

Imagine that your site uses three different roles: administrators, content managers, and standard
members. Administrators can create and delete content; content managers can only create new
content, whereas members can’t do either of the two. To show or hide the relevant buttons, you can
use the following code:

VB.NET

If User.IsInRole("Administrators") Then
 CreateNewArticleButton.Visible = True
 DeleteArticleButton.Visible = True
ElseIf User.IsInRole("ContentManagers") Then
 CreateNewArticleButton.Visible = True
 DeleteArticleButton.Visible = False
ElseIf User.IsInRole("Members") Then
 CreateNewArticleButton.Visible = False
 DeleteArticleButton.Visible = False
End If

C#

if (User.IsInRole("Administrators"))
{
 CreateNewArticleButton.Visible = true;
 DeleteArticleButton.Visible = true;
}

c05.indd 157 2/21/2014 7:29:59 AM

158 ❘ Chapter 5 Programming Your aSP.nET WEb PagES

else if (User.IsInRole("ContentManagers"))
{
 CreateNewArticleButton.Visible = true;
 DeleteArticleButton.Visible = false;
}
else if (User.IsInRole("Members"))
{
 CreateNewArticleButton.Visible = false;
 DeleteArticleButton.Visible = false;
}

Although this makes your code a bit more readable, you can still end up with difficult code when
you have many expressions to test. If that’s the case, you can use the Select Case (VB.NET) or
switch (C#) statement.

Select Case/switch Constructs
Imagine you’re building a website for a concert hall that has shows on Saturday. During the week,
visitors can buy tickets online for Saturday’s gig. To encourage visitors to buy tickets as early as
possible, you decide to give them an early-bird discount. The earlier in the week they buy their
tickets, the cheaper they are. Your code to calculate the discount percentage can look like this, using
a Select Case/switch statement:

VB.NET

Dim today As DateTime = DateTime.Now
Dim discountPercentage As Double = 0

Select Case today.DayOfWeek
 Case DayOfWeek.Monday
 discountPercentage = 40
 Case DayOfWeek.Tuesday
 discountPercentage = 30
 Case DayOfWeek.Wednesday
 discountPercentage = 20
 Case DayOfWeek.Thursday
 discountPercentage = 10
 Case Else
 discountPercentage = 0
End Select

C#

DateTime today = DateTime.Now;
double discountPercentage = 0;

switch (today.DayOfWeek)
{
 case DayOfWeek.Monday:
 discountPercentage = 40;
 break;
 case DayOfWeek.Tuesday:
 discountPercentage = 30;
 break;
 case DayOfWeek.Wednesday:

c05.indd 158 2/21/2014 7:29:59 AM

Statements ❘ 159

 discountPercentage = 20;
 break;
 case DayOfWeek.Thursday:
 discountPercentage = 10;
 break;
 default:
 discountPercentage = 0;
 break;
}

For each day where the discount is applicable (Monday through Thursday) there is a Case block.
The differences between VB.NET and C# syntax are quite small: C# uses a lowercase c for case
and requires a colon after each case label. Additionally, you need to exit each block with a break
statement. At run time, the condition (today.DayOfWeek) is evaluated and the correct block is
executed. It’s important to understand that only the relevant block is executed, and nothing else.
When no valid block is found (the code is executed on a day between Friday and Sunday), the code
in the Case Else or default block fires. You’re not required to write a Case Else or default
block, although it’s recommended to do so because it makes your code more explicit and easier to
read. The preceding examples could have left it out, because discountPercentage already gets a
default value of 0 at the top of the code block.

To get a feel for the statements you have seen so far, the following Try It Out exercise shows you
how to use them in a small demo application.

trY it out Creating a Simple Web-based Calculator

In this exercise you create a simple calculator that is able to add, subtract, multiply, and divide values.
You see how to use some of the logical and assignment operators and learn to use the If and Select
Case/switch constructs.

 1. Start by creating a new Web Form called CalculatorDemo.aspx in the Demos folder. Make sure
you don’t name the page Calculator or you’ll run into trouble later in this chapter when you create
a class by that name. Once again, make sure you’re using the Code Behind model and select the
correct programming language.

 2. Switch the page to Design View, and click in the dashed rectangle to put the focus on it. Choose
Table ➪ Insert Table from the main menu and add a table with three rows and three columns.

 3. Merge all three cells of the first row by selecting them with the mouse (either by dragging the
mouse or by clicking each cell while holding down the Ctrl key), right-clicking the selection, and
choosing Modify ➪ Merge Cells from the menu that appears.

 4. Add the following controls to the page, set their ID and other properties as in the following table,
and arrange the controls as shown in Figure 5-3.

Control tYpe Control id propertY settings

Label ResultLabel Clear its Text property. To do this, right-click the
property name in the Properties Grid and choose Reset.

TextBox ValueBox1

continues

c05.indd 159 2/21/2014 7:29:59 AM

160 ❘ Chapter 5 Programming Your aSP.nET WEb PagES

Control tYpe Control id propertY settings

DropDownList OperatorList Add four list items for the following arithmetic
operators using the Edit Items option on the
DropDownList’s Smart Tasks panel:

+

-

*

/

TextBox ValueBox2

Button CalculateButton Set the Text property of the button to Calculate.

When you’re done, your page should look like Figure 5-3 in Design View.

figure 5-3

 5. Double-click the Calculate button and add the following bolded code in the code placeholder that
VS added for you:

VB.NET

Protected Sub CalculateButton_Click(sender As Object,
 e As EventArgs) Handles CalculateButton.Click
 If ValueBox1.Text.Length > 0 AndAlso ValueBox2.Text.Length > 0 Then

 Dim result As Double = 0
 Dim value1 As Double = Convert.ToDouble(ValueBox1.Text)
 Dim value2 As Double = Convert.ToDouble(ValueBox2.Text)

 Select Case OperatorList.SelectedValue
 Case "+"
 result = value1 + value2
 Case "-"
 result = value1 - value2
 Case "*"
 result = value1 * value2

(continued)

c05.indd 160 2/21/2014 7:30:00 AM

Statements ❘ 161

 Case "/"
 result = value1 / value2
 End Select
 ResultLabel.Text = result.ToString()
 Else
 ResultLabel.Text = String.Empty
 End If
End Sub

C#

protected void CalculateButton_Click(object sender, EventArgs e)
{
 if (ValueBox1.Text.Length > 0 && ValueBox2.Text.Length > 0)
 {
 double result = 0;
 double value1 = Convert.ToDouble(ValueBox1.Text);
 double value2 = Convert.ToDouble(ValueBox2.Text);

 switch (OperatorList.SelectedValue)
 {
 case "+":
 result = value1 + value2;
 break;
 case "-":
 result = value1 - value2;
 break;
 case "*":
 result = value1 * value2;
 break;
 case "/":
 result = value1 / value2;
 break;
 }
 ResultLabel.Text = result.ToString();
 }
 else
 {
 ResultLabel.Text = string.Empty;
 }
}

 6. Save all changes and press Ctrl+F5 to open the page in the browser. If you get an error instead
of seeing the page, make sure you typed the code exactly as shown here, and that you named all
controls according to the table you saw earlier.

 7. Enter a number in the first and second text boxes, choose an operator from the drop-down list,
and click the Calculate button. The code in the Code Behind fires and then — based on the item
you selected in the drop-down list — the correct calculation is performed and the label is updated
with the result.

 8. Go ahead and try some other numbers and operators; you’ll see that the calculator carries out the
right operation every time you click the Calculate button.

c05.indd 161 2/21/2014 7:30:00 AM

162 ❘ Chapter 5 Programming Your aSP.nET WEb PagES

How It Works

When you enter two values and click the Calculate button, the following code in the Code Behind fires:

VB.NET

If ValueBox1.Text.Length > 0 AndAlso ValueBox2.Text.Length > 0 Then

C#

if (ValueBox1.Text.Length > 0 && ValueBox2.Text.Length > 0)

This code is necessary to ensure that both text boxes contain a value. The code uses a simple If state-
ment to ensure that both fields have a value. It also uses AndAlso or && to avoid checking the Text
property of the second TextBox when the first is empty. In Chapter 9 you see a much cleaner way to
perform this validation. In that chapter you’ll also see how to make sure users enter valid numbers, as
currently the code crashes when you enter anything that cannot be converted to a Double.

The code then declares a Double to hold the result of the calculation and then gets the values from
the two text box controls, converts the values to a Double using the ToDouble method of the Convert
class, and then sets up a Select Case (switch in C#) block to handle the type of operator you have
chosen in the drop-down list:

VB.NET

Select Case OperatorList.SelectedValue
 Case "+"
 result = value1 + value2

C#

switch (OperatorList.SelectedValue)
{
 case "+":
 result = value1 + value2;
 break;

For each item in the drop-down list, there is a Case statement. When you have chosen the + operator
from the list, the code in the first case block fires, and result is assigned the sum of the numbers you
entered in the two text boxes. Likewise, when you choose the subtraction operator, for example, the
two values are subtracted from each other.

At the end, the result is converted to a String and then displayed on the label called ResultLabel.

The Select Case/switch statements close off the discussion about making decisions in your code.
There’s one more group of statements left: loops that enable you to loop over code or over objects in
a collection.

loops
Loops are extremely useful in many applications, because they enable you to execute code
repetitively, without the need to write that code more than once. For example, if you have a website
that needs to send a newsletter by e-mail to its 20,000 subscribers, you write the code to send the

c05.indd 162 2/21/2014 7:30:00 AM

Statements ❘ 163

newsletter once, and then use a loop that sends the newsletter to each subscriber the code finds in a
database.

Loops come as a few different types, each with their own usage and advantages.

The For Loop
The For loop simply repeats its code a predefined number of times. You define the exact number of
iterations when you set up the loop. The For loop takes the following format:

VB.NET

For counter [As datatype] = start To end [Step stepSize]
 ' Code that must be executed for each iteration
Next [counter]

C#

for (startCondition; endCondition; step definition)
{
 // Code that must be executed for each iteration
}

This looks a little odd, but a concrete example makes this a lot easier to understand:

VB.NET

For loopCount As Integer = 1 To 10
 Label1.Text &= loopCount.ToString() & "
"
Next

C#

for (int loopCount = 1; loopCount <= 10; loopCount++)
{
 Label1.Text += loopCount.ToString() + "
";
}

Although the syntax used in both languages is quite different, both code examples perform the same
action: they write out numbers from 1 to 10 followed by a line break on a Label control. That is,
the loop is started by the assignment of 1 to the variable loopCount. Next, the value is converted
to a String and assigned to the Label control. Then loopCount is increased by 1, and the loop
continues. This goes on until loopCount is 10, and then the loop ends. In this example, hard-coded
numbers are used. However, you can replace the start and end conditions with dynamic values from
variables or other objects. For example, if you’re working with the roles array you saw earlier, you
can write out each role in the array like this:

VB.NET

For loopCount As Integer = 0 To roles.Length - 1
 Label1.Text &= roles(loopCount) & "
"
Next

C#

for (int loopCount = 0; loopCount < roles.Length; loopCount++)
{
 Label1.Text += roles[loopCount] + "
";
}

c05.indd 163 2/21/2014 7:30:00 AM

164 ❘ Chapter 5 Programming Your aSP.nET WEb PagES

Because arrays are zero-based, you need to address the first item with roles(0) in VB.NET and
roles[0] in C#. This also means that the loop needs to start at 0. The Length property of an
array returns the total number of items that the array contains. So when three roles are in the
array, Length returns 3. Therefore, in VB.NET the code subtracts one from the Length and uses
that value as the end condition of the loop, causing the loop to run from 0 to 2, accessing all three
elements.

The C# example doesn’t subtract 1 from the Length, though. Instead it uses the expression:

loopCount < roles.Length;

So, as long as loopCount is less than the length of the array, the loop continues. Again, this causes
the loop to access all three items, from 0 to 2.

The previous examples loop by adding 1 to the loopCount variable on each iteration. To use a
greater step increase, you use the keyword Step in VB.NET, whereas C# enables you to define the
step size directly in the step definition:

VB.NET

For loopCount As Integer = 0 To 10 Step 2
 Label1.Text &= loopCount.ToString() & "
"
Next

C#

for (int loopCount = 0; loopCount <= 10; loopCount = loopCount + 2)
{
 Label1.Text += loopCount.ToString() + "
";
}

This loop assigns the even numbers between 0 and 10 to the Label control.

If you are looping over an array or a collection of data, there’s another loop at your disposal that’s a
bit easier to read and work with: the For Each (VB.NET) or foreach (C#) loop.

The For Each/foreach Loop
The For Each loop in VB.NET and the foreach loop in C# simply iterate over all the items in a
collection. Taking the roles array as an example, you can execute the following code to print each
role name on the Label control:

VB.NET

For Each role As String In roles
 Label1.Text &= role & "
"
Next

C#

foreach (string role in roles)
{
 Label1.Text += role + "
";
}

Because the roles variable is an array of strings, you need to set up the loop with a String as well,
as is done with the role variable. You would change this variable’s type if the collection contained
items of a different type.

c05.indd 164 2/21/2014 7:30:00 AM

Statements ❘ 165

In addition to the For and the For Each loops, there is one more loop that you need to look at: the
While loop.

The While Loop
As its name implies, the While loop is able to loop while a certain condition is true. Unlike the other
two loops, which usually end by themselves, the While loop could loop forever if you’re not careful.
It could also not execute at all if its condition is never met. The following example shows how to use
the While loop:

VB.NET

Dim success As Boolean = False
While Not success
 success = SendEmailMessage()
End While

C#

bool success = false;
while (!success)
{
 success = SendEmailMessage();
}

This code tries to send an e-mail message using the fictitious SendEmailMessage method and will
do so until it succeeds — that is, as long as the variable success has the value False (false in
C#). Note that Not and ! are used to reverse the value of success. The SendEmailMessage method
is supposed to return True when it succeeds and False when it doesn’t. If everything works out
as planned, the code enters the loop and calls SendEmailMessage. If it returns True, the loop
condition is no longer met, and the loop ends. However, when SendEmailMessage returns False,
for example because the mail server is down, the loop continues and SendEmailMessage is called
again.

To avoid endless loops with the While loop, it’s often a good idea to add a condition that terminates
the loop after a certain number of tries. For example, the following code helps to avoid an infinite
loop if the mail server is down:

VB.NET

Dim success As Boolean = False
Dim loopCount As Integer = 0
While Not success AndAlso loopCount < 3
 success = SendEmailMessage()
 loopCount = loopCount + 1
End While

C#

bool success = false;
int loopCount = 0;
while (!success && loopCount < 3)
{
 success = SendEmailMessage();
 loopCount = loopCount + 1;
}

c05.indd 165 2/21/2014 7:30:00 AM

166 ❘ Chapter 5 Programming Your aSP.nET WEb PagES

With this code, the variable loopCount is responsible for exiting the loop after three attempts to call
SendEmailMessage. Instead of using loopCount = loopCount + 1, you can also use the combined
concatenation and assignment operators, like this:

VB.NET

loopCount += 1

C#

loopCount += 1;

// Alternatively C# enables you to do this:
loopCount++;

All examples have the same result: the loopCount value is increased by one, after which the new
total is assigned to loopCount again.

Besides the While loop, you have a few other alternatives, such as the Do While loop (do while in
C#), which ensures that the code to be executed is always executed at least once, and the Do Until
loop (not available in C#), which goes on until a certain condition is true, as opposed to looping
while a certain condition is true, as is the case with the While loop.

Exiting Loops Prematurely
It’s common to have the need to exit a loop before it has completely finished. You can do this with
Exit For in VB.NET and break in C#, like this:

VB.NET

For loopCount As Integer = 1 To 10
 If loopCount = 5 Then
 Exit For
 End If
 Label1.Text &= loopCount.ToString() & "
"
Next

C#

for (int loopCount = 1; loopCount <= 10; loopCount++)
{
 if (loopCount == 5)
 {
 break;
 }
 Label1.Text += loopCount.ToString() + "
";
}

With this code, the label will only show the numbers 1 to 4, as the loop is exited as soon as
loopCount has reached the value of 5. Note: This example doesn’t have a lot of real-world usage as
you would rewrite the code to loop four times only, but it shows the concept quite nicely.

You can use Continue For in VB and continue in C# to stop processing the current iteration and
move on with the next, if available.

So far, the code you’ve seen has been comprised of short and simple examples that can be placed
directly in the Code Behind of a web page; for example, in Page_Load or in a Button’s Click

c05.indd 166 2/21/2014 7:30:00 AM

Organizing Code ❘ 167

handler that you have seen before. However, in real-world websites, you probably want to structure
and organize your code a lot more. In the next section, you see different ways to accomplish this.

organizing Code

When you start adding more than just a few pages to your website, you’re almost certain to end up
with some code that you can reuse in multiple pages. For example, you may have some code that
reads settings from the Web.config file that you need in multiple files. Or you want to send an
e-mail with user details from different pages. So you need to find a way to centralize your code. To
accomplish this in an ASP.NET website, you can use functions and subroutines, which are discussed
next. To make these functions and subroutines available to all the pages in your site, you need to
create them in a special location, which is discussed afterward.

methods: functions and subroutines
Functions and subroutines (subs) are very similar; both enable you to create a reusable block of
code that you can call from other locations in your application. The difference between a function
and a subroutine is that a function can return data, whereas a sub can’t. Together, functions and
subroutines are referred to as methods. You’ll see that term again in the final part of this chapter
that deals with object orientation.

To make functions and subs more useful, they can be parameterized. That is, you can pass in
additional information that can be used inside the function or subs. Functions and subs generally
take the following format:

VB.NET

' Define a function
Public Function FunctionName ([parameterList]) As DataType

End Function

' Define a subroutine
Public Sub SubName ([parameterList])

End Sub

C#

// Define a function
public DataType FunctionName([parameterList])
{

}

// Define a subroutine
public void SubName([parameterList])
{

}

c05.indd 167 2/21/2014 7:30:00 AM

168 ❘ Chapter 5 Programming Your aSP.nET WEb PagES

The complete first line, starting with Public, is referred to as the method signature because it
defines the look of the function, including its name and its parameters. The Public keyword
(public in C#) is called an access modifier and defines to what extent other web pages or code files
can see this method. This is discussed in detail later in the chapter. For now, you should realize that
Public has the greatest visibility, so the method is visible to any calling code.

The name of the function is followed by parentheses, which in turn can contain an optional
parameter list. The italicized parts in these code examples will be replaced with real values in your
code. The parts between the square brackets ([]) are optional. To make it a little more concrete,
here are some examples of functions and subs:

VB.NET

Public Function Add(a As Integer, b As Integer) As Integer
 Return a + b
End Function

Public Sub SendEmailMessage(emailAddress As String)
 ' Code to send an e-mail goes here
End Sub

C#

public int Add(int a, int b)
{
 return a + b;
}

public void SendEmailMessage(string emailAddress)
{
 // Code to send an e-mail goes here
}

In these code examples it’s clear that functions return a value, and subs don’t. The Add method
uses the Return keyword (return in all lowercase in C#) to return the sum of a and b. The Sub
in VB.NET and the void method in C# don’t require the Return keyword, although you can use
it to exit the method prematurely. In that case, you use the Return keyword on its own, without
specifying a value.

Finally, both the function and subroutine have a parameter list that enables you to define the
name and data type of variables that are passed to the method. Inside the method you can access
these variables as you would access normal variables. In the case of the Add method, you have two
parameters: one for the left side of the addition and one for the right side. The SendEmailMessage
method has only a single parameter: a String holding the user’s e-mail address.

In earlier versions of VB.NET you would see the keyword ByVal in front of each parameter in
the parameter list. This is the default type for all parameters, so VS no longer adds it for you. The
opposite of ByVal is ByRef. These keywords determine the way a value is sent to the function or
subroutine. When you specify ByVal, a copy of the variable is made. Any changes made to that copy
inside the method are lost as soon as the method finishes. In contrast, when you specify ByRef, a
reference to the variable is sent to the method. Any changes made to the incoming variable reflect on
the original variable as well. The following short example demonstrates how this works:

c05.indd 168 2/21/2014 7:30:00 AM

Organizing Code ❘ 169

Public Sub ByValDemo(someValue As Integer) ' No ByVal needed as it's the default
 someValue = someValue + 20
End Sub

Public Sub ByRefDemo(ByRef someValue As Integer)
 someValue = someValue + 20
End Sub

Dim x As Integer = 0
ByValDemo(x)

Label1.Text = x.ToString() ' Prints out 0; A copy of x is sent to ByValDemo,
 ' leaving the original value of x unmodified.

Dim y As Integer = 0
ByRefDemo(y)

Label1.Text = y.ToString() ' Prints out 20; A reference to y is sent
 ' to ByRefDemo so when that method modified
 ' someValue, it also changed the variable y.

C# has a similar construct using the ref keyword. The biggest difference from VB.NET is that you
need to specify the ref keyword in the call to the method as well:

public void ByRefDemo(ref int someValue)
{
 someValue = someValue + 20;
}

int y = 0;
ByRefDemo(ref y); // Just as in the VB example, y contains 20
 // after the call to ByRefDemo

Be careful when using reference parameters like this; before you know it the method may change
important variables in the calling code. This can lead to bugs that are hard to track down.

To make your site-wide methods accessible to pages in your website, you should place them in a
centralized location. The App_Code folder of your website is a perfect location for your code.

the app_Code folder
The App_Code folder is a special ASP.NET folder. It’s designed specifically to hold code files, like
classes that you’ll use throughout the site. Code that applies only to one page (like the handler of a
Button control’s Click event) should remain in the page’s Code Behind, as you have seen so far.

Note The App_Code folder is specific to Web Site Projects, the project type
used for the Planet Wrox sample website. Web Application Projects, on the
other hand, don’t use or support an App_Code folder. However, that project
type enables you to create code files in pretty much any other location. To
follow along with the samples in this and later chapters, it’s important you’re
using a Web Site Project as explained in Chapter 2.

c05.indd 169 2/21/2014 7:30:01 AM

170 ❘ Chapter 5 Programming Your aSP.nET WEb PagES

To add the App_Code folder to your site, right-click the site’s name
in the Solution Explorer and choose Add ➪ Add ASP.NET Folder
➪ App_Code. Figure 5-4 shows the new folder.

With the App_Code folder in place, you can start adding class files
to it. Class files have an extension that matches the programming
language you have chosen for the site: .cs for C# files and .vb
for files containing VB.NET code. Inside these class files you
can create classes that in turn contain methods (functions and
subroutines) that can carry out common tasks. Classes are
discussed in more detail in the final section of this chapter; for
now, focus on the methods in the code file and how they are
called, rather than on why you need to add the code to a class first.

The next exercise shows you how to use the App_Code folder to
optimize the calculator you created in an earlier Try It Out.

trY it out Optimizing the Calculator

In this exercise, you create a class called Calculator that exposes four methods: Add, Subtract,
Multiply, and Divide. When the class is set up and is capable of performing the necessary computing
actions, you modify the CalculatorDemo.aspx file so it uses your new Calculator class. Although
this is a trivial example when it comes to the amount of code you need to write and the added flexibility
you gain by moving your code from the ASPX page to the App_Code folder so it can be reused by other
applications, it’s comprehensive enough to show you the concept, yet short enough to enable you to
understand the code. For now, just focus on how the calculator works and how to call its methods. In
the section on object orientation later in this chapter, you see exactly what a class is.

 1. If you haven’t already done so, start by adding an App_Code folder to your site by right-clicking
the site and choosing Add ➪ Add ASP.NET Folder ➪ App_Code.

 2. Right-click this newly created folder and choose Add ➪ Add New Item. In the dialog box that
follows, select the appropriate programming language, and click Class. Instead of choosing Add
➪ Add New Item you can also choose Add ➪ Class, which serves as a shortcut for adding a class
file. This shortcut menu also lists other file types that you recently added to the site.

 3. Type Calculator as the name of the file and click Add (or OK if you used the shortcut menu).
This creates a class file that in turn contains a class called Calculator. Note that it’s common
practice to name classes using what’s called Pascal casing, where each word starts with a capital
letter.

 4. Right after the line of code that defines the Calculator class, add the following four methods,
replacing any code that was already present in the class:

VB.NET

Public Class Calculator

 Public Function Add(a As Double, b As Double) As Double
 Return a + b

figure 5-4

c05.indd 170 2/21/2014 7:30:01 AM

Organizing Code ❘ 171

 End Function

 Public Function Subtract(a As Double, b As Double) As Double
 Return a - b
 End Function

 Public Function Multiply(a As Double, b As Double) As Double
 Return a * b
 End Function

 Public Function Divide(a As Double, b As Double) As Double
 Return a / b
 End Function

End Class

C#

public class Calculator
{
 public double Add(double a, double b)
 {
 return a + b;
 }

 public double Subtract(double a, double b)
 {
 return a - b;
 }

 public double Multiply(double a, double b)
 {
 return a * b;
 }

 public double Divide(double a, double b)
 {
 return a / b;
 }
}

 5. Next, modify the Code Behind of the CalculatorDemo.aspx page so it uses the class you
just created. You need to make two changes: first you need to add a line of code that creates
an instance of the Calculator class, and then you need to modify each Case block to use the
relevant calculation methods in the calculator:

VB.NET

Dim myCalculator As New Calculator()
Select Case OperatorList.SelectedValue
 Case "+"
 result = myCalculator.Add(value1, value2)
 Case "-"
 result = myCalculator.Subtract(value1, value2)
 Case "*"
 result = myCalculator.Multiply(value1, value2)

c05.indd 171 2/21/2014 7:30:01 AM

172 ❘ Chapter 5 Programming Your aSP.nET WEb PagES

 Case "/"
 result = myCalculator.Divide(value1, value2)
End Select

C#

Calculator myCalculator = new Calculator();
switch (OperatorList.SelectedValue)
{
 case "+":
 result = myCalculator.Add(value1, value2);
 break;
 case "-":
 result = myCalculator.Subtract(value1, value2);
 break;
 case "*":
 result = myCalculator.Multiply(value1, value2);
 break;
 case "/":
 result = myCalculator.Divide(value1, value2);
 break;
}

 6. Save all your changes and open the page in the browser. The calculator still works as before;
only this time the calculations are not carried out in the page’s Code Behind file, but by the
Calculator class in the App_Code folder instead.

How It Works

The file you created in the App_Code folder contains a class called Calculator. You learn more about
classes in the final section of this chapter, but for now it’s important to know that a class is like a defi-
nition for an object that can expose methods you can call at run time. In this case, the definition for
the Calculator class contains four methods to perform arithmetic operations. These methods accept
parameters for the left-hand and right-hand sides of the calculations. Each method simply carries out
the requested calculation (Add, Subtract, and so on) and returns the result to the calling code.

The code in the Code Behind of the CalculatorDemo.aspx page first creates an instance of the
Calculator class. That is, it creates an object in the computer’s memory based on the class definition.
To do this, it uses the New (new in C#) keyword to create an instance of Calculator, which is then
stored in the variable myCalculator. You learn more about the New keyword later in this chapter when
objects are discussed. Note that the data type of this variable is Calculator, the name of the class.

VB.NET

Dim myCalculator As New Calculator()

C#

Calculator myCalculator = new Calculator();

Once the Calculator instance is created, you can call its methods. Just as you saw earlier with other
methods, the methods of the Calculator class accept parameters that are passed in by the calling code:

VB.NET

Case "+"

c05.indd 172 2/21/2014 7:30:01 AM

Organizing Code ❘ 173

 result = myCalculator.Add(value1, value2)

C#

case "+":
 result = myCalculator.Add(value1, value2);
 break;

The Add method then adds the two values and returns the result as a Double, which is stored in the
variable result. Just as in the first version of the calculator, at the end the result is displayed on the
page with a Label control.

Functions and subroutines are a great way to organize your web application. They enable you to
create reusable blocks of code that you can easily call from other locations. Because code you need
more than once is defined only once, it’s much easier to maintain or extend the code. If you find a
bug in a function, simply fix its definition in the App_Code folder, and all pages using that function
automatically benefit from the change. In addition to the increased maintainability, functions and
subs also make your code easier to read: Instead of wading through long lists of code in a page, you
just call a single function and work with the return value (if any). This makes the code easier on
your brain, minimizing the chance of bugs in your application.

Functions and subs are not the only way to organize code in your .NET projects. Another common
way to organize things is to use namespaces.

organizing Code with namespaces
Namespaces seem to cause a lot of confusion with new developers. They think they’re scary, they
think way too many of them exist, or they don’t see the need to use them. None of this is true, and
with a short explanation of them, you’ll understand and maybe even like namespaces.

Namespaces are intended to solve two major problems: to organize the enormous amount of
functionality in the .NET Framework and in your own code, and to avoid name collisions, where
two different types share the same name. One common misconception about namespaces is that
there is a direct relation with .NET assemblies (files with a .dll extension that are loaded and
used by the .NET Framework), but that’s not the case. Although you typically find namespaces
like System.Web.UI in a DLL called System.Web.dll, it’s possible (and common) to have multiple
namespaces defined in a single DLL or to have a namespace be spread out over multiple assemblies.
Keep that in mind when adding references to assemblies, as explained later.

To see what a namespace looks like, open one of the Code Behind files of the ASPX pages you’ve
created so far. You’ll see something similar to this:

VB.NET

Partial Class Demos_CalculatorDemo
 Inherits System.Web.UI.Page

C#

public partial class Demos_CalculatorDemo : System.Web.UI.Page
{

c05.indd 173 2/21/2014 7:30:01 AM

174 ❘ Chapter 5 Programming Your aSP.nET WEb PagES

Note that the definition of the class name is followed by the Inherits keyword in VB and a colon in
C#, which in turn are followed by System.Web.UI.Page. You see later what this Inherits keyword
is used for. In this code, Page is the name of a class (a data type), which is defined in the System
.Web.UI namespace. By placing the Page class in the System.Web.UI namespace, developers (and
compilers) can see this class is about a web page. By contrast, imagine the following (fictitious) class
name:

Microsoft.Word.Document.Page

This code also refers to a Page class. However, because it’s placed in the Microsoft.Word
.Document namespace, it’s easy to see that it’s referring to a page of a Word document, not a web
page. This way there is no ambiguity between a web page and a Word document page. This in turn
helps the compiler understand which class you are referring to.

Another benefit of namespaces is that they help you find the right data type. Instead of displaying
thousands and thousands of items in the IntelliSense list, you get a few top-level namespaces. When
you choose an item from that list and press the dot key (.), you get another relatively short list with
types and other namespaces that live inside the chosen namespace.

Namespaces are nothing more than simple containers that you can refer to by name using the dot
notation. They are used to prefix each data type that is available in your application. For example,
the Double data type lives in the System namespace, thus its fully qualified name is System
.Double. Likewise, the Button control you’ve added to your web pages lives in the System.Web
.UI.WebControls namespace, thus its full name is System.Web.UI.WebControls.Button.

It’s also easy to create your own namespaces. As long as they don’t collide with an existing name,
you can pretty much make up your own namespaces as you see fit. For example, you could wrap the
Calculator class in the following namespace (in Calculator.vb or Calculator.cs in App_Code):

VB.NET

Namespace Wrox.Samples

 Public Class Calculator
 ...
 End Class

End Namespace

C#

namespace Wrox.Samples
{
 public class Calculator
 {
 ...
 }
}

With the calculator wrapped in this namespace, you could create a new instance of it like this:

VB.NET

Dim myCalculator As New Wrox.Samples.Calculator()

c05.indd 174 2/21/2014 7:30:02 AM

Organizing Code ❘ 175

C#

Wrox.Samples.Calculator myCalculator = new Wrox.Samples.Calculator();

Although you get some help from IntelliSense to find the Calculator class, typing these long names
becomes boring after a while. Fortunately, there’s a fix for that as well.

After you have created your own namespaces, or if you want to use existing ones, you need to make
them available in your code. You do this with the keyword Imports (in VB.NET) or using (in
C#). For example, to make your Calculator class available in the Calculator demo page without
specifying its full name, you can add the following namespace to your code:

VB.NET

Imports Wrox.Samples

Partial Class Demos_CalculatorDemo
 Inherits System.Web.UI.Page

C#

using Wrox.Samples;

public partial class Demos_CalculatorDemo : System.Web.UI.Page
{

With this Imports/using statement in place, you can now simply use Calculator again instead of
Wrox.Samples.Calculator.

If you are using C#, you’ll see a number of using statements by default in the Code Behind of
an ASPX page for namespaces like System and System.Web.UI.WebControls. If you’re using
VB.NET, you won’t see these references. Instead, with a VB.NET website, the default namespaces
are included in the machine’s global Web.config file under
the <namespaces> element.

Quite often, you know the name of the class, but you
don’t know the namespace it lives in. VS makes it very
easy to find the namespace and add the required Imports
or using statement for you. Simply type the name of the
class you want to use and then place the cursor in the
class name and press Ctrl+. (Ctrl+Dot). You see a menu
appear that lets you select the right namespace, as shown
in Figure 5-5.

If the dialog box doesn’t offer to add an Imports or using statement, the assembly that contains the
class you’re looking for may not be referenced by the project. If that’s the case, right-click the website
in the Solution Explorer and choose Add Reference. In the dialog box that follows you can choose
from the many built-in .NET assemblies on the .NET tab or browse to a third-party assembly using
the Browse button. Once the reference is added you should be able to add an Imports or using
statement for the class you’re looking for by pressing Ctrl+. again on the class name.

Once you start writing lots of code, you may quickly forget where you declared what, or what a
variable or method is used for. It’s therefore wholeheartedly recommended to put comments
in your code.

figure 5-5

c05.indd 175 2/21/2014 7:30:02 AM

176 ❘ Chapter 5 Programming Your aSP.nET WEb PagES

Writing Comments
No matter how clean a coder you are, it’s likely that someday you will run into code that makes
you raise your eyebrows and think, “What on earth is this code supposed to do?” Over the years,
the way you program will change; you’ll learn new stuff, optimize your coding standards, and find
ways to code more efficiently. To make it easier for you to recognize and understand your code now
and two years from now, it’s a good idea to comment your code. You have two main ways to add
comments in your code files: inline and as XML comments.

Commenting Code Inline
Inline comments are written directly in between your code statements. You can use them to
comment on existing variables, difficult loops, and so on. In VB.NET, you can comment out only
one line at a time using the tick (') character, which you place in front of the text that you want to
use as a comment. To comment a single line in C#, you use two slashes (//). Additionally, you can
use /* and */ to comment out an entire block of code in C#. The following examples show some
different uses of comments:

VB.NET

' Usage: explains the purpose of variables, statements and so on.
' Used to store the number of miles the user has traveled last year.
Dim distanceInMiles As Integer

' Usage: comment out code that's not used (anymore).
' In this example, SomeUnfinishedMethod is commented out
' to prevent it from being executed.
' SomeUnfinishedMethod()

' Usage: End of line comments.
If User.IsInRole("Administrators") Then ' Only allow admins in this area
End If

C#

// Usage: explains the purpose of variables, statements and so on.
// Used to store the number of miles the user has traveled last year.
int distanceInMiles;

// Usage: comment out code that's not used (anymore).
// In this example, SomeUnfinishedMethod is commented out
// to prevent it from being executed.
// SomeUnfinishedMethod();

// Usage: End of line comments.
if (User.IsInRole("Administrators")) // Only allow admins in this area
{ }

/*
 * This is a block of comments that is often used to add additional
 * information to your code, for example to explain a difficult loop. You can
 * also use this to (temporarily) comment a whole block of code.
*/

c05.indd 176 2/21/2014 7:30:02 AM

Organizing Code ❘ 177

To comment out the code, simply type the code character (' or //) at the location where you want
the comment to start. To comment out a block of code, select it in the text editor and press Ctrl+K
followed by Ctrl+C. Similarly, press Ctrl+K followed by Ctrl+U to uncomment a selected block
of code.

Alternatively, you can choose Edit ➪ Advanced ➪ Comment Selection or Uncomment Selection from
the main menu.

Inline comments are usually good for documenting small details of your code. However, it’s also a
good idea to provide a high-level overview of what your code does. For example, for a method called
SendEmailMessage it would be good to have a short description that explains what the method does
and what the parameters are used for. This is exactly what XML comments are used for.

Writing XML Comments
XML comments are comments that you add as XML elements (using angle brackets: < >) in your
code to describe its purpose, parameters, return value, and more. The VS IDE helps you by writing
these comments. All you need to do is position your cursor on the line just before a class or method
and type ''' (three tick characters) for VB or /// (three forward slashes) for C#. As soon as you do
that, the IDE inserts XML tags for the summary and, optionally, the parameters and return type
of a method. Once again, consider a SendEmailMessage method. It could have two parameters of
type String: one for the e-mail address to send the message to, and one for the mail body. With the
XML comments applied, the method could look like this:

VB.NET

''' <summary>
''' Sends out an e-mail to the address specified by emailAddress.
''' </summary>
''' <param name="emailAddress">The e-mail address of the recipient.</param>
''' <param name="mailBody">The body of the mail message.</param>
''' <returns>This method returns True when the message was sent successfully;
''' and False otherwise.</returns>
''' <remarks>Attention: this method assumes a valid mail server is
''' available.</remarks>
Public Function SendEmailMessage(emailAddress As String, mailBody As String) As
Boolean
 ' Implementation goes here
End Function

C#

/// <summary>
/// Sends out an e-mail to the address specified by emailAddress.
/// </summary>
/// <param name="emailAddress">The e-mail address of the recipient.</param>
/// <param name="mailBody">The body of the mail message.</param>
/// <returns>This method returns true when the message was sent successfully;
/// and false otherwise.</returns>
/// <remarks>Attention: this method assumes a valid mail server is
/// available.</remarks>
public bool SendEmailMessage(string emailAddress, string mailBody)
{
 // Implementation goes here
}

c05.indd 177 2/21/2014 7:30:02 AM

178 ❘ Chapter 5 Programming Your aSP.nET WEb PagES

The cool thing about this type of commenting
is that the comments you type here show up in
IntelliSense in the code editor when you try to call
the method (see Figure 5-6).

This makes it much easier for you and other
developers to understand the purpose of the
method and its parameters.

In addition to aiding development in the code editor, you can also use the XML comments to create
good-looking, MSDN-like documentation. A number of third-party tools are available that help you
with this, including Microsoft’s own Sandcastle (http://msdn.microsoft.com/en-us/vstudio/
bb608422.aspx) and Document! X from Innovasys (www.innovasys.com/).

objeCt orientation basiCs

A chapter about writing code in ASP.NET wouldn’t be complete without a section on object
orientation (OO). Object orientation, or object-oriented programming, is a highly popular style of
programming where the software is modeled as a set of objects interacting with each other. Object
orientation is at the heart of the .NET Framework. Literally everything inside the framework is an
object, from simple things like integers to complex things like a DropDownList control, a connection
to the database, or a data-driven control.

Because object orientation is such an important aspect of .NET, it’s important to be familiar
with the general concepts of object-oriented programming. At the same time, you don’t have to
be an expert on OO to be able to build websites with ASP.NET. This section gives you a 10,000-
foot overview of the most important terms and concepts. This helps you get started with object
orientation, so you can start building useful applications in the next chapter instead of keeping your
nose in the books for the next three weeks.

important oo terminology
In object orientation, everything revolves around the concept of objects. In OO everything is, in
fact, an object. But what exactly is an object? And what do classes have to do with them?

Objects
Objects are the basic building blocks of object-oriented programming languages. Just like in the real
world, an object in OO-land is a thing, but stored in the computer’s memory. It can be an integer
holding someone’s age or an open database connection to a SQL Server located on the other side
of the world, but it can also be something more conceptual, like a web page. In your applications,
you create a new object with the New (new in C#) keyword, as you saw with the calculator example.
This process of creating new objects is called instantiating and the objects you create are called
instances. You can instantiate complex or custom types like Calculator, as well as simple types
like Integers and Strings:

figure 5-6

c05.indd 178 2/21/2014 7:30:02 AM

http://msdn.microsoft.com/en-us/vstudio/bb608422.aspx
http://msdn.microsoft.com/en-us/vstudio/bb608422.aspx
http://www.innovasys.com/

Object Orientation Basics ❘ 179

VB.NET

Dim myCalculator As Calculator = New Calculator()

Dim age As Integer = New Integer()

C#

Calculator myCalculator = new Calculator();

int age = new int();

Because it’s so common to create variables of simple types like Integer (int in C#) and String
(string in C#), the compiler allows you to leave out the new keyword and the assignment.
Therefore, the following code is functionally equivalent to the preceding age declaration:

VB.NET

Dim age As Integer

C#

int age;

All data types listed at the beginning of this chapter except System.Object can be created without
the New keyword.

Once you have created an instance of an object, such as the myCalculator object, it’s ready to
be used. For example, you can access its methods and properties to do something useful with the
object. But before you look at methods and properties, you need to understand classes.

Classes
Classes are the blueprints of objects. Just as you can use a single blueprint to build a bunch of
similar houses, you can use a single class to create multiple instances of that class. So the class acts
as the definition of the objects that you use in your application. At its most basic form, a class looks
like this:

VB.NET

Public Class ClassName

End Class

C#

public class ClassName
{
}

Because this code simply defines an empty class, it cannot do anything useful. To give the class some
behavior, you can give it fields, properties, methods, and constructors. In addition, you can let the
class inherit from an existing class to give it a head start in terms of functionality and behavior.
You’ll come to understand these terms in the next couple of sections.

c05.indd 179 2/21/2014 7:30:02 AM

180 ❘ Chapter 5 Programming Your aSP.nET WEb PagES

Fields
Fields are simple variables declared at the class level that can contain data. They are often used as
backing variables for properties (as you’ll see in the next section), but that doesn’t have to be the
case. Here’s a quick example of a field in a Person class:

VB.NET

Public Class Person
 Private _firstName As String
End Class

C#

public class Person
{
 private string _firstName;
}

Fields are often marked as Private (private in C#), which makes them visible only in the class that
defines them. If you have the need to expose fields to other classes as well, you should use properties,
which are discussed next. Later in the chapter you learn more about the Private keyword and other
access modifiers.

Properties
Properties of an object are the characteristics the object has. Consider a Person object. What kind
of properties does a Person have? It’s easy to come up with many different characteristics, but the
most common are:

➤➤ First name

➤➤ Last name

➤➤ Date of birth

You define a property in a class with the Property keyword (in VB.NET) or with a property
header similar to a method in C#. In both languages, you use a Get block (get in C#) and a Set
block (set in C#) to define the so-called getters and setters of the property. The getter is accessed
when an object is asked for the value of a specific property, and the setter is used to assign a value
to the property. Properties only provide access to underlying data stored in the object; they don’t
contain the actual data. To store the data, you often use what is called a backing variable. This is
often a simple field defined in the class that is able to store the value for the external property. In the
following example, the variable _firstName is the backing variable for the FirstName property:

VB.NET

Public Class Person
 Private _firstName As String
 Public Property FirstName() As String
 Get
 Return _firstName
 End Get
 Set(value As String)
 _firstName = value

c05.indd 180 2/21/2014 7:30:02 AM

Object Orientation Basics ❘ 181

 End Set
 End Property
End Class

C#

public class Person
{
 private string _firstName;
 public string FirstName
 {
 get { return _firstName; }
 set { _firstName = value; }
 }
}

It is common to prefix the private backing variables with an underscore, followed by the first
word in all lowercase, optionally followed by more words that start with a capital again.
So the FirstName property has a backing variable called _firstName, LastName has one
called _lastName, and so on. This way, all variables that apply to the entire class are nicely packed
together in the IntelliSense list. Simply type an underscore in your code and you’ll get the full list
of private variables. Note that the underscore is typically not used when defining variables inside a
function or a subroutine.

Just like the Public keyword you saw earlier, Private is also an access modifier. You learn more
about access modifiers later in this chapter.

The main reason for a property in a class is to encapsulate data. The idea is that a property
enables you to control the data that is being assigned to it. This way, you can perform validation
or manipulation of the data before it’s stored in the underlying backing variable. Imagine that one
of the business rules of your application states that all first names must be written with the first
letter as a capital. In non–object oriented languages, the developer setting the name would have to
keep this rule in mind every time a variable was filled with a first name. In an OO approach, you
can make the FirstName property responsible for this rule so others don’t have to worry about it
anymore. You can do this type of data manipulation in the setter of the property:

VB.NET

Set(value As String)
 If Not String.IsNullOrEmpty(value) Then
 _firstName = value.Substring(0, 1).ToUpper() & value.Substring(1)
 Else
 _firstName = String.Empty
 End If
End Set

C#

set
{
 if (!string.IsNullOrEmpty(value))
 {
 _firstName = value.Substring(0, 1).ToUpper() + value.Substring(1);
 }
 else

c05.indd 181 2/21/2014 7:30:02 AM

182 ❘ Chapter 5 Programming Your aSP.nET WEb PagES

 {
 _firstName = string.Empty;
 }
}

This code demonstrates that in both VB.NET and C#, the value parameter is accessible, just as a
parameter is accessible to a method. The value parameter contains the value that is being assigned
to the property. In VB.NET, the value parameter is defined explicitly in the property’s setter. In C#
it’s not specified explicitly, but you can access it nonetheless.

The code first checks if the value that is being passed is not Nothing (null in C#) and that it
doesn’t contain an empty string, using the handy String.IsNullOrEmpty method.

The code in the If block then takes the first letter of value, using the Substring method of the
String class, to which it passes the values 0 and 1. The 0 indicates the start of the substring and
the 1 indicates the length of the string that must be returned. String indexing is zero-based as well,
so a start of 0 and a length of 1 effectively returns the first character of the value parameter. This
character is then changed to uppercase using ToUpper(). Finally, the code takes the remainder of
the value parameter using Substring again and assigns the combined name back to the backing
variable. In this call to Substring, only the start index is passed, which returns the string from that
position to the end.

You can now use code that sets the name with arbitrary casing. But when you try to access the name
again, the first name will always begin with a proper first character:

VB.NET

Dim myPerson As Person = New Person() ' Create a new instance of Person
myPerson.FirstName = "imar" ' Accessing setter to change the value

Label1.Text = myPerson.FirstName ' Accessing getter that now returns Imar

C#

Person myPerson = new Person(); // Create a new instance of Person
myPerson.FirstName = "imar"; // Accessing setter to change the value

Label1.Text = myPerson.FirstName; // Accessing getter that now returns Imar

For simple properties that don’t need any data manipulation or validation, you can use so-called
automatic properties. With these properties, you can use a much more condensed syntax without
the need for a private backing variable. When the code is compiled, the compiler creates a hidden
backing variable for you, and you’ll need to refer to the public property. Here’s the DateOfBirth
property of the Person class, written as an automatic property:

VB.NET

Public Property DateOfBirth As DateTime

C#

public DateTime DateOfBirth { get; set; }

The Visual Basic implementation of automatic properties has one advantage over the C# version:
You can declare the property and give it a value in one shot. The following snippet defines a
CreateDate property and assigns it with the current date and time:

c05.indd 182 2/21/2014 7:30:03 AM

Object Orientation Basics ❘ 183

VB.NET

Public Property CreateDate As DateTime = DateTime.Now

To assign a default value to an automatic property in C#, you need to set its value using
constructors, which are discussed later.

If you later decide you need to write code in the getter or the setter of the property, it’s easy to
extend the relevant code blocks without breaking your existing applications. Until that time, you
have nice, clean property definitions that don’t clutter up your class.

Creating Read-only and Write-only Properties
At times, read-only or write-only properties make a lot of sense. For example, the ID of an object
could be read-only if it is assigned by the database automatically. When the object is constructed
from the database, the ID is assigned to the private backing variable. The public Id property is then
made read-only to stop calling code from accidentally changing it. Another good candidate for a
read-only property is one that returns a combination of data. Consider a FullName property of a
Person class that returns a combination of the FirstName and LastName properties. You use the
setter of each individual property to assign data, but you can have a read-only property that returns
the concatenated values. Likewise, you can have a write-only property for security reasons. For
example, you could have a Password property on a Person object that you can only assign to if you
know it, but no longer read it afterward. Internally, code within the class can still access the backing
variables to work with the password value.

Read-only or write-only properties in C# are simple: just leave out the setter (for a read-only
property) or the getter (for a write-only property). VB.NET is a bit more verbose and requires you
to specify the keyword ReadOnly or WriteOnly explicitly. The following code snippet shows a read-
only FullName property in both VB.NET and C#:

VB.NET

Public ReadOnly Property FullName() As String
 Get
 Return _firstName & " " & _lastName
 End Get
End Property

C#

public string FullName
{
 get { return _firstName + " " + _lastName; }
}

When you try to assign a value to a read-only property, you’ll get a compilation error in VS.

Similar to properties, objects can also have methods.

Methods
If properties are the things that a class has (its characteristics), then methods are the things a class
can do or the operations it can perform. A Car class, for example, has properties such as Brand,
Model, and Color. Its methods could be Drive(), Brake(), and OpenDoors(). Methods give objects
the behavior that enables them to do something.

c05.indd 183 2/21/2014 7:30:03 AM

184 ❘ Chapter 5 Programming Your aSP.nET WEb PagES

You have already seen methods at work earlier, when this chapter discussed some ways to write
organized code using subs and functions. You simply add methods to a class by writing a function
or a sub between the start and end elements of the class. For example, imagine the Person class has
a Save method that enables the object to persist itself in the database. The method’s signature could
look like this:

VB.NET

Public Class Person
 Public Sub Save()
 ' Implementation goes here
 End Sub
End Class

C#

public class Person
{
 public void Save()
 {
 // Implementation goes here
 }
}

If you want to call the Save method to have the Person object save itself to the database, you create
an instance of it, set the relevant properties such as FirstName, and then call Save:

VB.NET

Dim myPerson As Person = New Person()
myPerson.FirstName = "Jim"
myPerson.Save()

C#

Person myPerson = new Person();
myPerson.FirstName = "Jim";
myPerson.Save();

The Save method would then know how to save the Person in the database.

Methods can also have parameters, as you saw earlier in the section on XML comments. The
SendEmailMessage method accepts two parameters — one for the e-mail address and one for the
message body — whose values are then accessible from within the method.

Note that a new instance of the Person class is created with the New (new in C#) keyword followed
by the class name. When this code fires, it calls the object’s constructor, which is used to create
instances of objects.

Constructors
Constructors are special methods in a class that help you create an instance of your object. They run
as soon as you try to create an instance of a class, so they are a great place to initialize your objects
to some default state. Earlier you learned that you create a new instance of an object using the New
(new in C#) keyword:

c05.indd 184 2/21/2014 7:30:03 AM

Object Orientation Basics ❘ 185

VB.NET

Dim myCalculator As Calculator = New Calculator()

C#

Calculator myCalculator = new Calculator();

The New keyword is followed by the object’s constructor: the name of the class. By default, when you
create a new class file in VS, you get a default constructor for C# but not for VB.NET. That’s not
really a problem, though, because the compiler generates a default constructor for you if no other
constructor exists. A default constructor has no arguments and takes the name of the class in C#
and the reserved keyword New in VB.NET:

VB.NET

Public Class Person
 Public Sub New()

 End Sub
End Class

C#

public class Person
{
 public Person()
 {

 }
}

Although this default constructor is nice for creating standard instances of your classes, sometimes
it is really useful to be able to send some information into the class up front, so it’s readily available
as soon as it is constructed. For example, with the Person class, it could be useful to pass in the
first and last names and the date of birth to the constructor so that data is available immediately
afterward. To enable this scenario, you can create a specialized constructor. To have the constructor
accept the names and the date of birth, you need the following code:

VB.NET

Public Sub New(firstName As String, lastName As String, dateOfBirth As DateTime)
 _firstName = firstName
 _lastName = lastName
 _dateOfBirth = dateOfBirth
End Sub

C#

public Person(string firstName, string lastName, DateTime dateOfBirth)
{
 _firstName = firstName;
 _lastName = lastName;
 _dateOfBirth = dateOfBirth;
}

c05.indd 185 2/21/2014 7:30:03 AM

186 ❘ Chapter 5 Programming Your aSP.nET WEb PagES

With this code, you can create a new Person object:

VB.NET

Dim myPerson As Person = New Person("Imar", "Spaanjaars", New DateTime(1971, 8, 9))

C#

Person myPerson = new Person("Imar", "Spaanjaars", new DateTime(1971, 8, 9));

The constructor accepts the values passed to it and assigns them to the private backing variables, so
right after this line of code, the myPerson object is fully initialized.

You can have multiple constructors for the same class, as long as each one has a different method
signature.

Visual Basic supports a slightly different syntax to declare and initialize an object in one fell swoop
using the Dim myVariable As New ClassName syntax. The following code is equivalent to the
previous instantiation of a Person instance:

Dim myPerson As New Person("Imar", "Spaanjaars", New DateTime(1971, 8, 9))

In addition to constructors, .NET offers another quick way to create an object and initialize a few
properties: object initializers. With an object initializer, you provide the initial values for some of
the properties at the same time you declare an instance of your objects. The following code creates a
Person object and assigns it a value for the FirstName and LastName properties:

VB.NET

Dim myPerson As New Person() With {.FirstName = "Imar", .LastName = "Spaanjaars"}

C#

Person myPerson = new Person() { FirstName = "Imar", LastName = "Spaanjaars" };

In VB.NET, you need the With keyword in front of the properties list. In addition, you need
to prefix each property name with a dot (.). Other than that, the syntax is the same for both
languages. Object initializers are great if you need to set a bunch of properties on an object quickly
without being forced to write specialized versions of the constructors.

Although it’s useful to have this Person class in your application, at times you may need specialized
versions of a Person. For example, your application may require classes like Employee and Student.
What should you do in this case? Create two copies of the Person class and name them Employee
and Student, respectively?

Although this approach certainly works, it has a few large drawbacks. The biggest problem is the
duplication of code. If you decide to add a SocialSecurityNumber property, you now need to add it
in multiple locations: in the general Person class and in the Employee and Student classes. Object
inheritance, a major pillar of object orientation, is designed to solve problems of this kind.

Inheritance
Earlier you learned that System.Object is the parent of all other data types in .NET, including all
the built-in types and types that you define yourself, meaning that each type in .NET (except Object
itself) inherits from Object. One of the benefits of inheritance is that you can define a behavior at a

c05.indd 186 2/21/2014 7:30:03 AM

Object Orientation Basics ❘ 187

high level (for example in the Object class) that is available to inheriting
classes automatically without the need to duplicate that code. In the
.NET Framework, the Object class defines a few members that all other
objects inherit, including the ToString() method.

To let one class inherit another, you need to use the Inherits keyword
in VB.NET and the colon (:) in C#, as shown in the following example
that defines a Student class that inherits Person:

VB.NET

Public Class Student
 Inherits Person

C#

public class Student : Person
{
}

To see how inheritance works, think again about the Person class
shown in earlier examples. That class had a few properties, such as
FirstName and LastName, and a Save method. But if it is inheriting
from Object, does it also have a ToString() method? You bet it does.
Figure 5-7 shows the relationship between the Object class and the
Person class that inherits from Object.

Figure 5-7 shows that Person inherits from Object (indicated by the
arrow pointing in the direction of the class that is being inherited from), which in turn means that a
Person instance can do whatever an Object can do. So, for example, you can call ToString() on
your Person object:

Label1.Text = myPerson.ToString() ' Writes out Person

The default behavior of the ToString() method defined in Object is to say its own class name. In
the preceding example, it means that the Person class inherits this behavior and thus says Person
as its name. Usually, this default behavior is not enough, and it would be much more useful if the
Person could return the full name of the person it is representing, for example. You can easily do
this by overriding the ToString() method. Overriding a method or property redefines the behavior
the class inherits from its parent class. To override a method you use the keyword Overrides in
VB.NET and override in C#. The following snippet redefines the behavior of ToString in the
Person class:

VB.NET

Public Overrides Function ToString() As String
 Return FullName & ", born at " & _dateOfBirth.ToShortDateString()
End Function

C#

public override string ToString()
{
 return FullName + ", born at " + _dateOfBirth.ToShortDateString();
}

figure 5-7

c05.indd 187 2/21/2014 7:30:03 AM

188 ❘ Chapter 5 Programming Your aSP.nET WEb PagES

With this definition of ToString in the Person class, it no longer returns the word Person, but now
returns the full name of the person it is representing:

Label1.Text = myPerson.ToString() ' Imar Spaanjaars, born at 8/9/1971

Notice how the code uses the read-only FullName property to avoid coding
the logic of concatenating the two names again. You can’t just override any
method member you want to. For a method to be overridable, the parent
class needs to mark the member with the keyword virtual (in C#) or
Overridable (in VB.NET).

Object inheritance in .NET enables you to create a hierarchy of objects that
enhance, or add functionality to, other objects. This enables you to start
out with a generic base class (Object). Other classes can then inherit from
this class, adding specialized behavior. If you need even more specialized
classes, you can inherit again from the class that inherits from Object,
thus creating a hierarchy of classes that keep getting more specialized. This
principle works for many classes in the .NET Framework, including the
Page class. You may not realize it, but every ASPX page you create in VS
is actually a class that inherits from the class System.Web.UI.Page. This
Page class in turn inherits from TemplateControl, which inherits from
Control, which inherits from Object. The entire hierarchy is shown in
Figure 5-8. At the bottom you see the class MyWebPage, which could be a
Code Behind class of a page such as MyWebPage.aspx.

In Figure 5-8 you can see that TemplateControl is an abstract class — a
class that cannot be instantiated; that is, you cannot use New (new in C#)
to create a new instance of it. It serves solely as a common base class for
others (like Page) that can inherit from it. The exact classes between Page
and Object are not really relevant at this stage, but what’s important is that
your page inherits all the behavior that the Page class has. The fact that
all your ASPX pages inherit from Page is more useful than you may think
at first. Because it inherits from Page, you get loads of properties and methods defined in this class
for free. For example, the Page class exposes a Title property that, when set, ends up as a <title>
element in the page. Your page can simply set this property, and the parent Page class handles the
rest for you:

VB.NET

Title = "Beginning ASP.NET 4.5.1 in C# and VB from Wrox"

C#

Title = "Beginning ASP.NET 4.5.1 in C# and VB from Wrox";

You use inheritance in the next chapter when you create a BasePage class that serves as the parent
class for most of the pages you create in the Planet Wrox website.

In earlier examples, including the override for the ToString() method, you have seen the keyword
Public. Additionally, when creating backing variables, you saw the keyword Private. These
keywords are called access modifiers and determine the visibility of your code.

figure 5-8

c05.indd 188 2/21/2014 7:30:03 AM

Object Orientation Basics ❘ 189

Access Modifiers
Earlier in this chapter I mentioned that a core concept of OO is encapsulation. By creating members
such as functions and properties, you make an object responsible for the implementation. Other
objects interacting with this object consider those methods and properties as black boxes. That is,
they pass some data in and optionally expect some result back. How the method performs its work
is of no interest to them; it should just work as advertised. To enable an object to shield some of its
inner operations, you need a way to control access to types and members. You do this by specifying
an access modifier in front of the class, property, or method name. The following table lists the
available access modifiers for C# and VB.NET and explains their purpose.

C# Vb.net desCription

public Public The class or member can be accessed from everywhere, including
code outside the current application.

protected Protected Code with a protected access modifier is available only within the
type that defines it or within types that inherit from it. For example,
a protected member defined in the Page class is accessible to your
ASPX page because it inherits from Page.

internal Friend Limits the accessibility of your code to other code within the same
assembly. An assembly is a set of one or more compiled code files
(either an .exe or a .dll file) containing reusable .NET code.

private Private A class or member that is accessible only within the type that
defines it. For example, with the Person class, the _firstName
variable is accessible only from within the Person class. Other code,
like an ASPX page, cannot access this field directly, and needs to
access the public FirstName property to get or set the first name
of a person.

Of these four access modifiers, only protected and internal (Protected and Friend in VB) can
be combined. The other two must be used separately. By combining protected and internal, you
can create members that are accessible by the current class and any class that inherits from it in the
current assembly only.

Using access modifiers, you can now create properties that are read-only for external code but that
can still be set from within the class by marking the getter as private.

As with some of the other OO concepts, you won’t be spending half your day specifying access
modifiers in your code. However, it’s good to know that they exist and what they do. That way,
you may have a clue as to why sometimes your classes don’t show up in the IntelliSense list. There’s
a fair chance you forgot to specify the public access modifier (Public in VB.NET) on the class
in that case. The default is internal (Friend in VB.NET), which makes the class visible to other
classes in the same assembly but hides it from code outside the assembly. Adding the keyword
public or Public in front of the class definition should fix the problem.

c05.indd 189 2/21/2014 7:30:04 AM

190 ❘ Chapter 5 Programming Your aSP.nET WEb PagES

events
The final important topic that needs to be discussed in this chapter is events. ASP.NET is an event-
driven environment, which means that code can execute based on certain events that occur in your
application. Events are raised by certain objects in the application and then handled by others.
Many objects in the .NET Framework are capable of raising an event, and you can even add your
own events to classes that you write.

To be able to handle an event raised by an object, you need to write an event handler, which is
basically a normal method with a special signature. You can wire up this event handler to the
event using event wiring syntax, although VS takes care of writing that code most of the time for
you. When an object, such as a control in a web page, raises an event, it may have the need to
pass additional information to the event handler, to inform it about relevant data that caused or
influenced the event. You can send out this information using an event arguments class, which is the
class System.EventArgs or any class that inherits it.

To see how all these terms fit together, consider
what happens when you click a button in a web
page. When you click it, the client-side button in the
browser causes a postback. At the server, the Button
control sees it was clicked in the browser and then
raises its Click event. It’s as if the button says: “Oh,
look, everyone. I just got clicked. In case anyone is
interested, here are some details.” Usually, the code
that is interested in the button’s Click event is your
own page, which needs to have an event handler to
handle the click. You can create an event handler for
the Button by double-clicking it in the designer, or
you can wire it up using Markup View as you saw
in Chapter 4. Alternatively, you can double-click the
relevant event on the Events tab of the Properties Grid. You open this tab by clicking the button
with the lightning bolt on the toolbar of the Properties Grid (see Figure 5-9.)

If you double-click the control in Design View or the event name in the Properties Grid, VS writes
the code for the event handler for you. The following snippet shows the handler for a Button
control’s Click event in VB.NET and C#:

VB.NET

Protected Sub Button1_Click(sender As Object, e As EventArgs) _
 Handles Button1.Click
End Sub

C#

protected void Button1_Click(object sender, EventArgs e)
{
}

In the VB.NET example, you see a standard method with some arguments, followed by Handles
Button1.Click. This is the event wiring code that hooks up the Button control’s Click event to the

figure 5-9

c05.indd 190 2/21/2014 7:30:04 AM

Practical Tips on Programming ❘ 191

Button1_Click method. Now, whenever the button is clicked, the code inside Button1_Click is
executed.

The C# version doesn’t have this Handles keyword. Instead, with C# you’ll find that VS has added
the following bold code to the Button control in the markup of the page:

<asp:Button ID="Button1" runat="server" Text="Button" OnClick="Button1_Click" />

With this piece of markup, the compiler generates the necessary code to link up the Button1_Click
method to the Click event of the button. At run time you’ll see the exact same behavior: when
you click the button, the code in Button1_Click is executed. Note that if you wire up an event in
Markup View in VB.NET, you get the same behavior as in C#; in that case the Handles keyword is
omitted from the Code Behind because there’s already an On handler in Markup View.

You can also see that this Button1_Click event handler has two parameters: an Object called
sender and an EventArgs class called e. This is a standard .NET naming scheme and is followed
by all objects that generate events. The sender parameter contains a reference to the object that
triggered the event, Button1 in this example. This enables you to find out who triggered an event in
case you wired up multiple events to the same event handler.

The second parameter is an instance of the EventArgs class and supplies additional arguments
to the event. With a button’s click, there is no additional relevant data to submit, so the plain
and empty EventArgs class is used. However, in later chapters (for example, Chapter 9, which
deals with data-driven Web Forms), you see some examples of classes that fire events with richer
information.

With the concepts of events, you have come to the end of the section on object orientation. This
section should have familiarized you with the most important terms used in object-oriented
programming. You see practical examples of these concepts in the remainder of this book.

praCtiCal tips on programming

The following list presents some practical tips on programming:

➤➤ Always give your variables meaningful names. For simple loop counters you can use i,
although loopCount probably describes the purpose of the variable much better. Don’t
prefix variables with the word var. All variables are variables, so adding var only adds
noise to your code. Consider useful names such as _firstName and _categoryId as
opposed to strFName, varFirstName, or catI for private fields, and names like FirstName
and Person for public properties and classes, respectively.

➤➤ Experiment and experiment. Even more so than with working with controls and ASPX
pages, the best way to learn how to program is by actually doing it. Just type in some code
and hit Ctrl+F5 to see how the code behaves. The compiler will bark at you when something
is wrong, providing you with useful hints on how to fix it. Don’t be afraid to mess anything
up; just keep trying variations until the code does what you want it to do. If you can’t make
your code work, check out Chapter 18, which deals with debugging. You’ll find useful tips
to locate and fix many of the errors that may occur in your code.

c05.indd 191 2/21/2014 7:30:04 AM

192 ❘ Chapter 5 Programming Your aSP.nET WEb PagES

➤➤ When writing functions or subroutines, try to minimize the number of lines of code.
Usually, methods with more than 40 or 50 lines of code are a sign of bad design. When you
see such code, consider the option to move certain parts to their own routine. This makes
your code much easier to understand, leading to better code with fewer bugs. Even if a
method is used only once, keeping a chunk of code in a separate method can significantly
increase the readability and organization of your code.

➤➤ When writing comments in your code, try to describe the general purpose of the code
instead of explaining obvious statements. For example, this comment (seen many times in
real code) is completely useless and only adds noise:

Dim loopCount As Integer = 0 ' Declare loopCount and initialize it to zero

Anyone with just a little bit of coding experience can see what this code does.

summarY

Although programming can get really complex, the bare basics that you need to understand are
relatively easy to grasp. The fun thing about programming is that you don’t have to be an expert to
make useful programs. You can start with a simple Hello World example and work from there, each
time expanding your view on code a little.

This chapter covered two main topics. First, you got an introduction to programming in .NET using
either C# or VB.NET. You saw what data types and variables are and learned about operators,
decision making, and loops. You also saw how to write organized code using functions, subs, and
namespaces and how to add comments to your code.

The final section of this chapter dealt with object orientation. Though object orientation in itself
is a very large subject, the basics are easy to pick up. In this chapter you learned about the basic
elements of OO programming: classes, methods, properties, and constructors. You also learned a bit
about inheritance, the driving force behind object-oriented design.

In the next chapter, which deals with creating consistent-looking web pages, you see inheritance
again when you create a BasePage class that serves as the parent for most of the Code Behind
classes in the Planet Wrox project.

exerCises

 1. Considering the fact that the oldest person in the world lived to be 122, what’s the best
numeric data type to store a person’s age? Bonus points if you come up with an even better
alternative to store someone’s age.

 2. What does the following code do?

VB.NET

DeleteButton.Visible = Not DeleteButton.Visible

C#

DeleteButton.Visible = !DeleteButton.Visible;

c05.indd 192 2/21/2014 7:30:04 AM

Summary ❘ 193

 3. Given the following Person class, what would the code look like for a new Student class that
contains a string property called StudentId? Make use of inheritance to create this new class.

VB.NET

Public Class Person
 Public Property Name As String
End Class

C#

public class Person
{
 public string Name { get; set; }
}

You can find answers to these exercises in Appendix A.

c05.indd 193 2/21/2014 7:30:04 AM

194 ❘ Chapter 5 Programming Your aSP.nET WEb PagES

 ➤ What You learned in this Chapter

Class A blueprint for objects in a programming language

Collection A special data type that is capable of holding multiple objects at the
same time

Constructor A special type of method called to create an object instance

encapsulation Hiding the inner workings and data of a class from the outside world
in order to better manage and protect that data

instantiating The process of creating a new object in memory based on a type’s
definition

method An operation on an object, like Brake() for a Car class

namespace A way to structure classes and other types in a hierarchical manner

object orientation A popular style of programming where the software is modeled as a
set of objects interacting with each other

overriding Redefining the behavior in a child class of a member defined in a
parent class

property A characteristic of an object, like the first name of a person

c05.indd 194 2/21/2014 7:30:04 AM

6
Creating Consistent Looking
Websites

What You Will learn in this Chapter:

➤➤ How to use master and content pages that enable you to define
the global look and feel of a web page

➤➤ How to work with a centralized base page that enables you to
define common behavior for all pages in your site

➤➤ How to create themes to define the look and feel of your site with
an option for the user to choose a theme at run time

➤➤ How to create skins to make site-wide changes to control layout

➤➤ What the ASP.NET page life cycle is and why it’s important

Wrox.Com Code doWnloads for this Chapter

You can find the wrox.com code downloads for this chapter on the Download Code tab at
www.wrox.com/go/begaspnet451. The code is in the Chapter 6 folder.

When you’re building a website you should strive to make the layout and behavior as
consistent as possible. Consistency gives your site a professional appearance and it helps your
visitors to find their way around the site. Fortunately, ASP.NET 4.5.1 and Visual Studio 2013
offer a number of great features and tools to implement a consistent design, helping you to
create great-looking pages in no time.

c06.indd 195 2/21/2014 7:32:04 AM

http://www.wrox.com/go/begaspnet451
http://wrox.com
http://wrox.com

196 ❘ Chapter 6 Creating Consistent Looking Websites

In previous chapters you learned how to work with VS, HTML5, CSS, and server controls to create
your web pages visually. Chapter 5 introduced you to programming in ASP.NET. This chapter is
the first that combines these concepts, by showing you — among many other things — how to use
programming code to change the appearance of the site.

The first section shows you how to create a master page that defines the general look and feel of
a page. The ASPX pages in your site can then use this master page without the need to repeat the
general layout. The remaining sections of this chapter build on top of this master page.

Consistent page laYout With master pages

With most websites, only part of the page changes when you go from one page to another.
The parts that don’t change usually include common regions like the header, a menu, and the
footer. To create web pages with a consistent layout, you need a way to define these relatively
static regions in a single template file. Versions of ASP.NET prior to 2.0 did not have a template
solution, so you were forced to duplicate your page layout on every single page in the website,
or resort to weird programming tricks. Fortunately, this is no longer the case due to master
pages. The biggest benefit of master pages is that they enable you to define the look and feel of
all the pages in your site in a single location. This means that if you want to change the layout
of your site — for instance, if you want to move the menu from the left to the right — you
need to modify only the master page, and the pages based on this master pick up the changes
automatically.

When master pages were introduced in ASP.NET 2.0, they were quickly embraced by the developer
community as the template solution for ASP.NET pages because they are very easy to use. Even
better, VS has great design-time support, because it enables you to create and view your pages at
design time during development, rather than only in the browser at run time.

To some extent, a master page looks like a normal ASPX page. It contains static HTML such as the
<html>, <head>, and <body> elements, and it can also contain other HTML and ASP.NET Server
Controls. Inside the master page, you set up the markup that you want to repeat on every page, like
the general structure of the page and the menu.

However, a master page is not a true ASPX page and cannot be requested in the browser directly; it
only serves as the template on which real web pages — called content pages — are based.

Instead of the @Page directive that you saw in Chapter 4, a master page uses an @Master directive
that identifies the file as a master page:

VB.NET

<%@ Master Language="VB" %>

C#

<%@ Master Language="C#" %>

c06.indd 196 2/21/2014 7:32:04 AM

Consistent Page Layout with Master Pages ❘ 197

Just like a normal ASPX page, a master page can have a Code Behind file, identified by its CodeFile
and Inherits attributes:

VB.NET

<%@ Master Language="VB" CodeFile="Frontend.master.vb"
 Inherits="MasterPages _ Frontend" %>

C#

<%@ Master Language="C#" AutoEventWireup="true" CodeFile="Frontend.master.cs"
 Inherits="MasterPages _ Frontend" %>

To create regions that content pages can fill in, you define ContentPlaceHolder controls in your
page like this:

<asp:ContentPlaceHolder ID="ContentPlaceHolder1" runat="server">
</asp:ContentPlaceHolder>

You can create as many placeholders as you like, although you usually need only a few to create a
flexible page layout.

The content pages, which are essentially normal ASPX files, without the code that they’re going to
take from the master page, are connected to a master page using the MasterPageFile attribute of
the Page directive:

VB.NET

<%@ Page Title="" Language="VB" MasterPageFile="~/MasterPages/Frontend.master"
 AutoEventWireup="false" CodeFile="Default.aspx.vb" Inherits=" _ Default">

C#

<%@ Page Title="" Language="C#" MasterPageFile="~/MasterPages/Frontend.master"
 AutoEventWireup="true" CodeFile="Default.aspx.cs" Inherits=" _ Default">

The page-specific content is then put inside a Content control that points to the relevant
ContentPlaceHolder:

<asp:Content ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1"
 runat="Server">
</asp:Content>

Note that the ContentPlaceHolderID attribute of the Content control points to the
ContentPlaceHolder that is defined in the master page. Right now it points to the default name of
ContentPlaceHolder1, but in a later exercise you see how to change this.

At run time, when the page is requested, the markup from the master page and the content page are
merged, processed, and sent to the browser. Figure 6-1 shows a diagram of the master page with just
one ContentPlaceHolder and the content page that results in the final page that is sent to the browser.

To see this process in action, the following sections guide you through creating master and content
pages.

c06.indd 197 2/21/2014 7:32:04 AM

198 ❘ Chapter 6 Creating Consistent Looking Websites

Creating master pages
You can add master pages to the site using the Add New Item dialog box. You can place them in
any custom folder in the site, including the root folder, but from an organizational point of view,
it’s often easier to store them in a separate folder. Just like normal ASPX pages, they support the
inline code model as well as the Code Behind model. The master pages used in the Planet Wrox
project use the Code Behind model exclusively. In the following exercise, you learn how to create a
simple master page and add some HTML to it to define the general structure of the pages in your
website.

trY it out Creating a Master Page

 1. Open the Planet Wrox project in Visual Studio if it is not open already.

 2. In Chapter 2 you created a folder called MasterPages to hold your master pages and then added
a single master page to that folder. If you didn’t carry out that exercise, add the master page now.
To do this, create the MasterPages folder in the root of the site, right-click the new folder, choose
Add ➪ Add New Item, and select the Master Page item. Make sure that the master page uses Code
Behind and that it is using the programming language you selected for the site. Name the master
page Frontend.master. Finally, click Add.

 3. Add the following highlighted code between the <form> tags of the master page, replacing the
<div> tags and the ContentPlaceHolder that VS added for you when you created the master

figure 6-1

Master Page

Header

Menu ContentPlaceHolder

Header

Final Page

Menu

Content Page

c06.indd 198 2/21/2014 7:32:05 AM

Consistent Page Layout with Master Pages ❘ 199

page. Note that this is almost the same code you added to Default.aspx in Chapter 3, except for
the <asp:ContentPlaceHolder> element and the <a> element within the Header <div>. The <a>
element takes the user back to the homepage, and will be styled later.

<form id="form1" runat="server">
 <div id="PageWrapper">
 <header>Header Goes Here</header>
 <nav>Menu Goes Here</nav>
 <section id="MainContent">
 <asp:ContentPlaceHolder ID="cpMainContent" runat="server">
 </asp:ContentPlaceHolder>
 </section>
 <aside id="Sidebar">Sidebar Goes Here</aside>
 <footer>Footer Goes Here</footer>
 </div>
</form>

Make sure that you have the ContentPlaceHolder within the MainContent <section> tags. You
can drag one from the Toolbox onto the page or enter the code directly, using IntelliSense’s help-
ful hints. In both cases you should give the control an ID of cpMainContent.

 4. Next, switch the master page into Design View and then drag Styles.css from the Styles folder
in the Solution Explorer onto the master page. As soon as you drop the file, VS updates the Design
View and shows the layout for the site that you created in Chapter 3. If the design doesn’t change,
switch to Markup View and ensure there’s a <link> tag in the head of the page pointing to your
CSS file:

 <asp:ContentPlaceHolder ID="head" runat="server">
 </asp:ContentPlaceHolder>
 <link href="../Styles/Styles.css" rel="stylesheet" type="text/css" />
</head>

The page should now look like Figure 6-2 in Design View.

figure 6-2

Note the area with the purple border around it between the menu and the footer region in your
Design View. This is the ContentPlaceHolder control that is used by the content pages. You see
how to use it in the next exercise.

c06.indd 199 2/21/2014 7:32:05 AM

200 ❘ Chapter 6 Creating Consistent Looking Websites

 5. In Markup View, drag the file modernizr-2.7.1.js from the Scripts folder into the <head>
section of the Master Page below the CSS file. Then manually remove the two leading periods
from the src attribute, like this:

<script src="/Scripts/modernizr-2.7.1.js"></script>

 6. You can save and close the master page because you’re done with it for now.

How It Works

Within VS, master pages behave like normal pages. You can add HTML and server controls to them,
and you can manage the page both in Markup and Design View. The big difference is, of course, that a
master page isn’t a true page itself; it only serves as a template for other pages in your site. You needed
to change the path to the script file by removing the two leading periods. This causes the browser to
download the file from the Scripts folder in the root of the site, no matter where the page that uses
this master page is located. ASP.NET manages this for CSS files automatically, but not for script files.
In the next chapter you learn more about how file paths are handled.

In the next section you see how to use this master page as the template for a content page.

Creating Content pages
A master page is useless without a content page that uses it. Generally, you’ll have only a few master
pages, whereas you can have many content pages in your site. To base a content page on a master
page, check the Select Master Page option at the bottom right of the Add New Item dialog box when
you add a new Web Form to your site. Alternatively, you can set the MasterPageFile attribute
on the page directly in the Markup View of the page. You saw this @ Page directive earlier in this
chapter when master and content pages were introduced.

Content pages can only directly contain Content controls that each map to a ContentPlaceHolder
control in the master page. These content controls in turn can contain standard markup like HTML
and server control declarations. Because the entire markup in a content page needs to be wrapped
by <asp:Content> tags, it’s not easy to turn an existing ASPX page into a content page. Usually the
easiest thing to do is copy the content you want to keep to the clipboard, delete the old page, and
then add a new page based on the master page to the website. Once the page is added, you can paste
the markup within the <asp:Content> tags. You see how this works in the following exercise.

trY it out Adding a Content Page

In this Try It Out you see how to add a content page to the site that is based on the master page you cre-
ated earlier. Once the page is added, you add content to the <asp:Content> regions.

 1. In previous exercises you added standard ASPX pages to your project, which should now be
“upgraded” to make use of the new master page. If you want to keep the welcome text you added
to Default.aspx earlier, copy all the HTML between the MainContent <section> tags to the
clipboard (that is, the <h1> and the two <p> elements that you created earlier) and then delete

c06.indd 200 2/21/2014 7:32:05 AM

Consistent Page Layout with Master Pages ❘ 201

the Default.aspx page from the Solution Explorer. Next, right-click the website in the Solution
Explorer and choose Add ➪ Add New Item. Select the correct programming language, click Web
Form, name the page Default.aspx, and then, at the bottom of the dialog box, select the check
boxes for Place Code in Separate File and Select Master Page, as shown in Figure 6-3.

figure 6-3

Finally, click the Add button.

 2. In the Select a Master Page dialog box (see Figure 6-4), click the MasterPages folder in the left-
hand pane, and then in the area at the right, click Frontend.master.

figure 6-4

c06.indd 201 2/21/2014 7:32:06 AM

202 ❘ Chapter 6 Creating Consistent Looking Websites

Click OK to add the page to your website.

Instead of getting a full page with HTML as you got with standard ASPX pages, you now only
get two <asp:Content> placeholders as shown in this VB.NET example:

<%@ Page Title="" Language="VB" MasterPageFile="~/MasterPages/Frontend.master"
 AutoEventWireup="false" CodeFile="Default.aspx.vb" Inherits="_Default" %>
<asp:Content ID="Content1" ContentPlaceHolderID="head" runat="Server">
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="cpMainContent" runat="Server">
</asp:Content>

 3. Switch to Design View and note that everything is grayed out and read-only, except for the
<asp:Content> region for cpMainContent. Figure 6-5 shows you how the page should look.

Also note that VS conveniently lists the master page that this page is based on in the top-right cor-
ner of Design View, visible in Figure 6-5. Clicking the name opens the master page in the editor.

 4. If you still have the old markup from the Default.aspx on the clipboard, click once inside the
cpMainContent placeholder and press Ctrl+V. (Note: you can do this both in Design View and in
Markup View). This adds the markup to the page, right between the <asp:Content> tags.

 5. Save your changes by pressing Ctrl+S and press Ctrl+F5 to open the page in your browser. The
browser should display the page very closely to what you saw in Design View (see Figure 6-5).

figure 6-5

 6. Now take a look at the HTML for the page in the browser. You can do this by right-clicking the
page and choosing View Source or View Page Source. Note that the source of the final page in the
browser is a combination of the source of the master page and the content page:

<div id="PageWrapper">
 <header>Header Goes Here</header>
 <nav>Menu Goes Here</nav>
 <section id="MainContent">
 <h1>Hi there visitor and welcome to Planet Wrox</h1>
 <p class="Introduction">
 We're glad you're paying a visit to
 www.PlanetWrox.com, the coolest music community site on the Internet.
 </p>
 ...

c06.indd 202 2/21/2014 7:32:06 AM

Consistent Page Layout with Master Pages ❘ 203

The first four lines come from the master page and the bolded lines of HTML code come from the
content page.

 7. Switch back to VS and create a new page called Login.aspx in the root of the site based on
the master page. Notice how VS remembered your last settings with regard to the master page
and Code Behind (make sure both are checked in case you unchecked them earlier). Switch to
Markup View and create an <h1> element inside the cpMainContent placeholder with the text
Log in to Planet Wrox. There’s no need to add any other controls to this page just yet, but it
serves as the basis for the login functionality you create in Chapter 16. Without any content in the
MainContent element, the Sidebar will be moved to the left of the page.

 8. Go back to Default.aspx and switch to Design View. Beneath the welcome text with the header
and two <p> elements, create a new paragraph (press Enter in Design View) and type some text
(for example, You can log in here). Notice how this new paragraph has a class attribute
called Introduction because VS applies the previous class to new paragraphs automatically.
Remove this class using the Clear Styles option of the Apply Styles window, or manually remove it
from the code in Markup View.

 9. Highlight the words “log in” in Design View and choose Format ➪ Convert to Hyperlink from
the main menu. In the dialog box that follows, click the Browse button and select the Login.aspx
page that you just created. Click OK twice.

 10. Save all changes and press Ctrl+F5 again to view Default.aspx in the browser. Then click the
link you created in the preceding step. You should now be taken to Login.aspx. Note that the
general layout, like the header and the sidebar, is maintained. The only thing that changes when
you go from page to page is the content in the main content area.

How It Works

When a page based on a master page is requested in the browser, the server reads in both the con-
tent page and the master page, merges the two, processes them, and then sends the final result to the
browser. In step 6 of this exercise you saw that the HTML in the browser for the requested page con-
tained the markup from both files.

Master pages will save you a lot of work when it comes to updating or radically changing the looks
of your site. Because the entire design and layout of your site is defined in the master page, you only
need to touch that single file when you want to make any changes. All content pages will pick up the
changes automatically.

A Closer Look at Master Pages
So far you’ve seen a master page with a content placeholder for the main content. But if you look at the
master page in Markup View, you’ll find another content placeholder in the head section of the page:

<head runat="server">
 <title></title>
 <asp:ContentPlaceHolder id="head" runat="server">
 </asp:ContentPlaceHolder>
 ...
</head>

c06.indd 203 2/21/2014 7:32:06 AM

204 ❘ Chapter 6 Creating Consistent Looking Websites

This placeholder is added for you automatically to each new master page you create. You can use it
in content pages to add page-specific content that belongs between the <head> tags of a page, such
as CSS (both embedded and external style sheets) and JavaScript. You learn more about JavaScript
in Chapters 10 and 11. You need to add content to this placeholder in Markup View, because it’s not
visible in Design View.

The ContentPlaceHolder called cpMainContent in the master page currently does not contain any
markup itself. However, it doesn’t have to be like this. You can easily add your own content there
that will serve as the default in your content pages as long as it’s not overridden by the content page.
For example, you can have the following ContentPlaceHolder in a master page:

<asp:ContentPlaceHolder ID="cpMainContent" runat="server">
 This is default text that shows up in content pages that don't
 explicitly override it.
</asp:ContentPlaceHolder>

When you base a new page on this master page, you won’t see this default at first in Markup View.
However, you can open the Content control’s Smart Tasks panel, shown in Figure 6-6, and choose
Default to Master’s Content.

figure 6-6

When you click Yes when asked if you want to default to the master page content, VS removes
the entire Content control from the Markup View of the page. However, when you request the
page in the browser you will still see the default content from the master page. In Design View,
the content is still visible, now presented as a read-only area on the design surface. A master page
with default content can be useful if you add a new ContentPlaceHolder to the master page at
a later stage. Existing pages can simply display the default content, without the need for you to
touch all these pages. New pages can define their own content. If you don’t have default content in
the ContentPlaceHolder control in the master page and the content page doesn’t have a Content
control for the ContentPlaceHolder, no output is sent to the browser.

Once you have defaulted to the master page’s content, you can create custom content again by
opening the Smart Tasks panel and choosing Create Custom Content. This copies the default
contents into a new Content control that you can then modify.

Nesting Master Pages
It is also possible to nest master pages. A nested master page is a master that is based on another
master page. Content pages can then be based on the nested master page. This is useful if you have a
website that targets different areas that still need to share a common look and feel. For example, you
can have a corporate website that is separated by departments. The outer master page defines the
global look and feel of the site, including corporate logo and other branding elements. You can then

c06.indd 204 2/21/2014 7:32:06 AM

Consistent Page Layout with Master Pages ❘ 205

have different nested master pages for different departments. For example, the sales department’s
section could be based on a different master than the marketing department’s, enabling each to add
their own identity to their section of the site. VS 2013 has excellent Design View support for nested
master pages, giving you a good look at how the final page will end up.

Creating a nested master page is easy: check the Select Master Page check box when you add a
master page just as you do when you add a normal content page to the site. Then add markup and
ContentPlaceHolder controls to the Content controls at locations that you want to override in
the content pages. Finally, you choose your nested master page as the master for new content pages
you create. Inside the content page, you only see the ContentPlaceHolder controls from the nested
master page, not from its parent.

Master Page Caveats
Although master pages are great and can save you a lot of work, you need to be aware of some
caveats.

For starters, the ASP.NET run time changes the client ID of your controls in the page. This is the id
attribute that is used in client script to access controls from JavaScript in the browser and with CSS
ID selectors. With normal ASPX pages, the server-side ID of a control is usually inserted one-on-one
in the final HTML. For example, a Button control with a server-side ID of Button1 in a normal
ASPX page defined with this code,

<asp:Button ID="Button1" runat="server" Text="Click Me" />

ends up with a client-side ID like this in the final HTML:

<input type="submit" name="Button1" value="Click Me" id="Button1" />

However, the same button inside an <asp:Content> control ends up like this:

<input type="submit" name="ctl00$cpMainContent$Button1"
 value="Click Me" id="cpMainContent_Button1" />

The name attribute has been prefixed with the auto-generated ID of the master page (ctl00)
and both the name and the id attributes contain the ID of the ContentPlaceHolder control
(cpMainContent).

This means that any client-side code that previously referred to Button1 should now refer to
cpMainContent_Button1.

Note that this is not just a master page problem. You’ll also run into this behavior in other
situations; for example, when working with user controls (discussed in Chapter 8) and data-bound
controls (discussed in Chapter 13 and onward).

The second caveat is related to the first. Because the name and id of the HTML elements are
changed, they add considerably to the size of the page. This may not be problematic for a single
control, but once you have pages with lots of controls, this could impact the performance of your
site. The problem gets worse with nested master pages, where both content controls are appended to
the ID. The same button inside a nested master page can end up like this:

<input type="submit" name="ctl00$ctl00$cpMainContent$ContentPlaceHolder1$Button1"
 value="Click Me" id="cpMainContent_ContentPlaceHolder1_Button1" />

c06.indd 205 2/21/2014 7:32:07 AM

206 ❘ Chapter 6 Creating Consistent Looking Websites

To mitigate the problem, you should keep the IDs of your ContentPlaceHolder and Content
controls as short as possible. To improve readability, this book uses longer names, like
cpMainContent. However, in your own sites, you could reduce this to MC or cpMC to save some
bandwidth on every request.

Note ASP.NET 4 introduced a new feature called ClientIDMode that helps
minimize the problems typically associated with changing client-side IDs. You
learn more about this feature in Chapter 8.

Master pages enable you to define the general look and feel of your site in a single location, thus
improving the consistency and maintainability of your site. However, there is another way to
improve consistency: centralize the behavior of the pages in your website. You can do this with a
so-called base page, which is discussed next.

using a Centralized Base page

In Chapter 5 you learned that, by default, all ASPX pages derive
from a class called System.Web.UI.Page. This means all of
your pages have at least the behavior defined in this class.

However, in some circumstances this behavior is not enough
and you need to add your own stuff to the mix. For example,
you may have the need to add some behavior that applies to all
the pages in your site. Instead of adding this behavior to each
and every individual page, you can create a common base page.
All the pages in your site can then inherit from this intermediate
page instead of from the standard Page class. The left half of
Figure 6-7 shows how an ASPX page called MyWebPage inherits
from the Page class directly. The right half shows a situation where the ASPX page inherits from a
class called BasePage, which in turn inherits from Page.

To have your pages inherit from this base page, you need to do two things:

➤➤ Create a class that inherits from System.Web.UI.Page in the App_Code folder of your website.

➤➤ Make the web pages in your site inherit from this base page instead of the standard Page class.

In an upcoming exercise you create a new base page class inside the App_Code folder. For now,
the sole purpose of this class is to check the Title of the page at run time to stop pages with an
empty title or a meaningless title like “Untitled Page” making it to the browser. Giving your pages a
unique and helpful title helps the major search engines to index them, so it’s recommended to always
include a title in your web pages. Checking the title programmatically is relatively easy to do, which
enables you to focus on the concept of inheritance rather than on the actual code. In the section that
discusses themes later in this chapter, you modify the base page once more, this time to retrieve the
user’s preference for a theme.

figure 6-7

c06.indd 206 2/21/2014 7:32:07 AM

Using a Centralized Base Page ❘ 207

Note Older versions of VS used “Untitled Page” as the default title for
new Web Forms. However, starting with the Service Pack 1 release of Visual
Studio 2008, the default title is an empty string. I decided to leave the check
for “Untitled Page” in the base page so you can see how you can check for
unwanted titles.

Before you can implement the base class, you need to know more about the ASP.NET page life
cycle, an important concept that describes the process a web page goes through when requested by a
browser.

an introduction to the asp.net page life Cycle
When you think about how a page is served by a web server to the browser and think of this
process as the life cycle of a page, you can probably come up with a few important moments in
the page’s life. For example, the initial request by the browser is the starting point for the page’s
“life.” Similarly, when the page has sent its entire HTML to the browser, its life may seem to end.
However, more interesting events are going on in the page’s life cycle. The following table describes
eight broad phases the page goes through. Within each phase, at least one event is raised that
enables a page developer to hook into the page’s life cycle and perform actions at the right moment.
You see an example of this in the next exercise.

phase desCription

Page request A request to an ASPX page starts the life cycle of that page. When the web
server is able and allowed to return a cached copy of the page, the entire life
cycle is not executed. In all other situations, the page enters the start phase.

Start In this phase, the page gets access to properties like Request and
Response that are used to interact with the page’s environment. In
addition, during this phase the PreInit event is raised to signal that the
page is about to go into the initialization phase. You use this event later to
set the theme of a page.

Page initialization During this phase, the controls you have set up in your page or added
programmatically become available. Additionally, the Page class fires three
events: Init, InitComplete, and PreLoad.

Load During this phase, the control properties are loaded from View State
and Control State during a postback. For example, when you change
the selected item in a DropDownList and then cause a postback, this
is the moment where the correct item gets preselected in the drop-down
list again, which you can then work with in your server-side code. Also,
during this phase the page raises the Load event.

Validation In the validation phase, the Validation controls used to validate user input
are processed. You learn about validators in Chapter 9.

continues

c06.indd 207 2/21/2014 7:32:07 AM

208 ❘ Chapter 6 Creating Consistent Looking Websites

phase desCription

Postback event
handling

During this phase, the controls in your page may raise their own events.
For example, the DropDownList may raise a SelectedIndexChanged
event when the user has chosen a different option in the list. Similarly, a
TextBox may raise the TextChanged event when the user has changed the
text before she posted back to the server. When all event processing is
done, the page raises the LoadComplete event. Also during this phase the
PreRender event is raised to signal that the page is about to render to
the browser. Shortly after that, SaveStateComplete is raised to indicate
that the page is done storing all the relevant data for the controls in
View State.

Rendering Rendering is the phase where the controls (and the page itself) output
their HTML to the browser.

Unload The unload phase is really a clean-up phase. This is the moment where the
page and controls can release resources they were holding on to. During
this phase, the Unload event is raised so you can handle any cleanup you
may need to do.

One thing that’s important to realize is that all these events fire at the server, not at the client. So,
even if you change, say, the text of a text box at the client, the TextChanged event of the TextBox
control will fire at the server after you have posted back the page.

Now you may wonder why you need to know all of this. The biggest reason to have some
understanding of the page life cycle is that certain actions can be performed only at specific stages
in the page life cycle. For example, dynamically changing the theme has to take place in PreInit,
as you’ll see later. To really understand the ASP.NET page life cycle, you need to know a little more
about controls, state, events, and so on. Therefore, you’ll revisit the page life cycle again in
Chapter 15 where you get a good look at all the different events that fire, and in what order.

In the next exercise, you use the PreRender event of the Page class to check the title. Because a
developer could set the page’s title programmatically during many events, checking for a correct title
should be done as late as possible in the page’s life cycle, which is why PreRender is the best event
for this.

implementing the Base page
Implementing a base page is pretty easy: all you need to do is add a class file to your App_Code
folder, add some code to it, and you’re done. What’s often a bit more difficult is to make sure
each page in your site inherits from this new base page instead of from the standard System.
Web.UI.Page class. Unfortunately, there is no way to configure the application to do this for you
automatically when using Code Behind, so you need to modify each page manually. Visual Studio
makes it a little easier for you by enabling you to export a page template that already contains this
code. In the next exercise you add a base page to the site and in a later exercise you see how to
export a web form to a template so you can add files that use the base page in no time.

 (continued)

c06.indd 208 2/21/2014 7:32:07 AM

Using a Centralized Base Page ❘ 209

trY it out Creating a Base Page

 1. Right-click the App_Code folder in the Solution Explorer and choose Add ➪ Add New Item. Select
Class in the Templates list and name the file BasePage. You could choose another name if you like
but BasePage clearly describes the purpose of the class, making it easier to understand what it does.

 2. Clear the contents of the file, and then add the following code:

VB.NET

Public Class BasePage
 Inherits System.Web.UI.Page

 Private Sub Page_PreRender(sender As Object, e As EventArgs) Handles Me.PreRender
 If String.IsNullOrEmpty(Me.Title) OrElse Me.Title.Equals("Untitled Page",
 StringComparison.CurrentCultureIgnoreCase) Then
 Throw New Exception(
 "Page title cannot be ""Untitled Page"" or an empty string.")
 End If
 End Sub

End Class

C#

using System;

public class BasePage : System.Web.UI.Page
{
 private void Page_PreRender(object sender, EventArgs e)
 {
 if (string.IsNullOrEmpty(this.Title) || this.Title.Equals("Untitled Page",
 StringComparison.CurrentCultureIgnoreCase))
 {
 throw new Exception(
 "Page title cannot be \"Untitled Page\" or an empty string.");
 }
 }

 public BasePage()
 {
 this.PreRender += Page_PreRender;
 }
}

 3. Save the file and close it, and then open the Login.aspx page that you created earlier. Open its
Code Behind file and change the Inherits code (the colon [:] in C#) so the login page inherits
from the BasePage class you created earlier:

VB.NET

Partial Class Login
 Inherits BasePage
 ...
End Class

c06.indd 209 2/21/2014 7:32:07 AM

210 ❘ Chapter 6 Creating Consistent Looking Websites

C#

public partial class Login : BasePage
{
 ...
}

 4. Save the page and then request it in the browser by pressing Ctrl+F5. If you haven’t changed the
title of the page earlier, you should be greeted by the error shown in Figure 6-8 in your browser.

figure 6-8

 5. Go back to VS and open the login page in Markup View. Locate the Title attribute in the @
Page directive (or add one if it isn’t there) and set its value to Log in to Planet Wrox. The
following snippet shows the VB.NET version of the @ Page directive but the C# version is almost
identical:

<%@ Page Title="Log in to Planet Wrox" Language="VB"
 MasterPageFile="~/MasterPages/Frontend.master" AutoEventWireup="false"
 CodeFile="Login.aspx.vb" Inherits="Login" %>

 6. Repeat steps 3 and 5 for all the pages in your site. To make this a bit quicker, you can use Find
and Replace to quickly replace all the occurrences of System.Web.UI.Page with BasePage. Make
sure you don’t accidentally replace it in the BasePage file in the App_Code folder itself. To prevent
this from happening, make sure you search only in Code Behind files, like this:

➤➤ Open the Replace in Files dialog box (press Ctrl+Shift+H or select Edit ➪ Find and
Replace ➪ Replace in Files).

➤➤ In the Find What box, enter System.Web.UI.Page. In the Replace With text box, enter
BasePage.

➤➤ Under the Look In dropdown, make sure that Entire Solution is selected.

➤➤ Expand the Find Options section and in the Look at These File Types text box, enter
*.aspx.vb or *.aspx.cs depending on the language you use. This leaves the BasePage file,
which has a single extension of .vb or .cs, alone.

➤➤ Click Replace All and then click Yes to confirm the Replace operation.

c06.indd 210 2/21/2014 7:32:08 AM

Using a Centralized Base Page ❘ 211

 7. Save the changes you made to any open page and then browse to Login.aspx again. If everything
worked out as planned, the error should be gone and you now see the login page.

Remember, though, that all other pages in your site now throw an error when you try to access
them. The fix is easy; just give them all a valid Title. For pages without a Title attribute in their
page directive, you need to do this manually. For other pages, with an empty Title="" attribute,
you can quickly do this by searching the site for Title="" and replacing it with something like
Title="Planet Wrox". (Don’t forget to reset Look at These File Types back to *.*). For pages
other than the demo pages you’ve created so far, you’re better off giving each page a unique title,
clearly describing the content it contains.

How It Works

By default, all pages in your website inherit from the Page class defined in the System.Web.UI
namespace. This gives them the behavior required to make them act as web pages that can be requested
by the browser and processed by the server. Because the inheritance model in .NET enables you to
create a chain of classes that inherit from each other, you can easily insert your own base page class
between a web page and the standard Page class. You do this by changing the Inherits statement (in
VB) and the colon (in C#) to your new BasePage:

VB.NET

Partial Class Login
 Inherits BasePage

C#

public partial class Login : BasePage

Inside this new BasePage class you add an event handler that is called when the class fires its
PreRender event. As you learned earlier, this event is raised quite late in the page’s life cycle, when the
entire page has been set up and is ready to be rendered to the client:

VB.NET

Private Sub Page_PreRender(sender As Object, e As EventArgs) Handles Me.PreRender
 ' Implementation here
End Sub

C#

private void Page_PreRender(object sender, EventArgs e)
{
 // Implementation here
}

Note that Visual Basic uses the Handles keyword to tell the compiler that the Page_PreRender method
will be used to handle the event. In C#, you need to hook up this handler manually. A good place to do
this is in the class’s constructor:

public BasePage()
{
 this.PreRender += Page_PreRender;
}

c06.indd 211 2/21/2014 7:32:08 AM

212 ❘ Chapter 6 Creating Consistent Looking Websites

This highlighted line of code serves the same purpose as the Handles keyword in VB.NET: it tells the
compiler what method to run when the page raises its PreRender event.

Inside the event handler, the code checks the current page title. If the page title is still an empty string
(the default for any new page you add to your web project) or Untitled Page it throws an exception.

VB.NET

If String.IsNullOrEmpty(Me.Title) OrElse Me.Title.Equals("Untitled Page",
 StringComparison.CurrentCultureIgnoreCase) Then
 Throw New Exception(
 "Page title cannot be ""Untitled Page"" or an empty string.")
End If

C#

if (string.IsNullOrEmpty(this.Title) || this.Title.Equals("Untitled Page",
 StringComparison.CurrentCultureIgnoreCase))
{
 throw new Exception(
 "Page title cannot be \"Untitled Page\" or an empty string.");
}

This code uses the handy IsNullOrEmpty method of the String class to check if a value is null
(Nothing in VB) or an empty string. It also uses the Equals method to check if the page title is equal to
Untitled Page. It uses StringComparison.CurrentCultureIgnoreCase to do a case-insensitive com-
parison, so untitled page or Untitled Page would both match.

Notice how the keywords Me (in VB.NET) and this (in C#) are used. These keywords are context-
sensitive and always refer to the instance of the class where they are used. In this example, Me and this
refer to the current instance of the BasePage class. This BasePage instance has a Title property (which it
inherits from Page) that can be checked for unwanted values. If it still contains the default title (an empty
string) or the text “Untitled Page,” the code raises (or throws) an exception. This immediately stops execu-
tion of the page so you as a page developer can fix the problem by providing a valid title before the page
ends up in public. In Chapter 18 you learn more about exceptions and how to prevent and handle them.

To display a double quote (") in the error message, both languages use a different format. In Visual
Basic, you need to double the quotes. In C#, you need to prefix the double quote with a backslash (\) to
escape the double quote. In both cases, a double quote character ends up in the error message.

Because every new page you add to the site should now inherit from this new base page, you should
create a page template that already has the correct code in its Code Behind and markup, making it
easy to add the correct page to the site right from the start. This is discussed next.

Creating reusable page templates
Visual Studio comes with a great tool to export templates for a number of different file types
including ASPX pages, class files, and even CSS files. By creating a custom template, you define the
code or markup that you need in every file once and then create new files based on this template,
giving you a jump start with the file and minimizing the code you need to type. The next exercise
shows you how to create your own templates.

c06.indd 212 2/21/2014 7:32:08 AM

Using a Centralized Base Page ❘ 213

trY it out Creating a Reusable Page Template

In this exercise you see how to create a template file for all new ASPX pages you add to your site. To
avoid conflicts with existing pages in your current site, you create a new temporary page and use that
for the template. Afterward, you can delete the temporary file.

 1. Add a new Web Form to the root of the site and call it Temporary.aspx. Make sure it uses Code
Behind, uses your programming language, and is based on the master page in the MasterPages
folder.

 2. Open the Code Behind of this new page (by pressing F7) and change the Inherits line (the colon
in C#) so the page inherits from BasePage instead of from System.Web.UI.Page. Also rename
the class from Temporary to $relurlnamespace$_$safeitemname$:

VB.NET

Partial Class $relurlnamespace$_$safeitemname$
 Inherits BasePage

End Class

C#

public partial class $relurlnamespace$_$safeitemname$: BasePage
{
 ...
}

Make sure you don’t remove any of the existing code, like the using statements or the Page_Load
method in the C# version.

Don’t worry about any compile errors you may get about unexpected characters like $. Once you
start adding pages based on this template, $relurlnamespace$_$safeitemname$ will be replaced
by the name of the page you’re adding.

 3. Switch to Markup View, and change the Inherits attribute from Temporary to $relurlnamespa
ce$_$safeitemname$ as shown in this C# example:

<%@ Page Title="" Language="C#" MasterPageFile="~/MasterPages/Frontend.master"
 AutoEventWireup="true" CodeFile="Temporary.aspx.cs"
 Inherits="$relurlnamespace$_$safeitemname$" %>

You must leave the CodeFile attribute alone; VS will change it to the right Code Behind file auto-
matically whenever you add a new page to the site.

 4. Optionally, add other code you want to add to your pages by default, like a comment block with a
copyright notice.

 5. Save all changes and then choose File ➪ Export Template. In the dialog box that follows, select
Item Template and choose your programming language from the drop-down list at the bottom of
the screen, shown in Figure 6-9.

c06.indd 213 2/21/2014 7:32:08 AM

214 ❘ Chapter 6 Creating Consistent Looking Websites

 6. Click Next and place a check mark in front of Temporary.aspx, which you find near the bottom
of the list. Click Next again to go to the Select Item References dialog box.

 7. There is no need to set anything in the Select Item References dialog box now. If you had a
web page referencing specific assemblies (.dll files) you could pick them here, so VS adds the
references for you automatically next time you add a file based on this template. Click Next again
to go to the Select Template Options screen. Type MyBasePage as the new template name, and
optionally type a short note describing the purpose of the template. Make sure the Automatically
Import the Template into Visual Studio option is checked. Figure 6-10 shows the final dialog box.

figure 6-9

figure 6-10

c06.indd 214 2/21/2014 7:32:09 AM

Using a Centralized Base Page ❘ 215

 8. Click Finish to create the template. VS opens a File Explorer (Windows Explorer in Windows 7)
showing a copy of the new template as a zip file. You can close that window, because you don’t
need it.

If you want to carry out this exercise for both VB.NET and C#, be sure to rename the resulting
zip file first before you make an export for the second language; otherwise the zip file gets over-
written. To rename the file, open File Explorer, go to your Documents folder and then browse to
Visual Studio 2013\Templates\ItemTemplates. You’ll find a file called MyBasePage.zip,
which you can rename to something like MyBasePageCS.zip. Note that the file’s location is differ-
ent from the one you see in Figure 6-10; the output location contains just a copy of the exported
template that you can use as a backup.

 9. Back in VS, delete the temporary file Temporary.aspx you created. Then right-click the website
in the Solution Explorer and choose Add ➪ Add New Item. Note that your custom template
now shows up in the list of templates, shown in Figure 6-11. If you click it, VS shows you the
description you gave it earlier. Note: you may have to restart VS and reopen your website for the
template to appear.

figure 6-11

 10. Type a new name for the page, such as TestPage.aspx, and click Add to add it to your site. Look
at the markup and the Code Behind of the file and verify that $relurlnamespace$_$safeitem
name$ has been renamed to _TestPage to reflect the new name of the page. If everything looks
OK, you can delete TestPage.aspx because it’s not used in the Planet Wrox website.

How It Works

When you export the template, Visual Studio creates a zip file with the necessary files — an ASPX file
and a Code Behind file in this exercise. This zip file is then stored in the ItemTemplates subfolder of
the Visual Studio 2013 folder under your Documents folder. Some of the files in the zip file contain
the placeholders $relurlnamespace$ and $safeitemname$. When you add a new file to the site that

c06.indd 215 2/21/2014 7:32:09 AM

216 ❘ Chapter 6 Creating Consistent Looking Websites

is based on your template using the Add New Item dialog box, VS replaces $relurlnamespace$ with
the name of the folder (nothing, in the case of a file added to the root of the site) and $safeitemname$
with the actual name of the page. In this exercise, you typed TestPage.aspx as the new name for the
page, so you ended up with a class in the Code Behind called _TestPage, which in turn inherits from
the global BasePage. The underscore (_) is hard-coded between the two placeholders and is really only
needed when adding a Web Form based on this template to a subfolder. However, it’s a valid start of
a class identifier so you can safely leave it in for pages at the root of your website. If you add a file to a
subfolder, such as the Demos folder, the class name is prefixed with the name of the folder so you end
up with a class called Demos_TestPage. In addition to $relurlnamespace$ and $safeitemname$, you
can use a few other placeholders. Search the MSDN site at http://msdn.microsoft.com for the term
$safeitemname$ to find the other template parameters.

If you need to make a change to the exported template, either redo the entire export process, or manu-
ally edit the files in the zip file.

With this exported template you now have a very quick way to add pages to your site that inherit from
the BasePage class. You don’t need to manually change the Code Behind of the class file or the markup
of the page anymore.

In addition to master pages and the central BasePage class, you have more options to create
consistent-looking websites. One of them is themes.

themes

So far you’ve seen how to create a master page to define the global look
and feel of the pages in your site. You also saw how to centralize the
behavior of your pages by using a central base page. However, you have
more ways to influence the look and feel of your site: themes and skins.
Skins are dealt with later in the chapter because they are an optional
part of themes, which need to be discussed first.

A theme is a collection of files that defines the look of a page. A theme
typically includes skin files, CSS files, and images. You define themes in
the special App_Themes folder in the root of your website. Within this
folder you create one or more subfolders that define the actual themes.
Inside each subfolder, you can have a number of files that make up
the theme. Figure 6-12 shows the Solution Explorer for a website that
defines two themes: Monochrome and DarkGrey.

A link to each CSS file in the theme folder is added to your page’s
<head> section automatically whenever the theme is active. You see
how this works later. The images in the theme folder can be referenced
from the CSS files. You can use them to change common elements of the
website, such as background images, or images used in bulleted lists or
navigation lists. figure 6-12

c06.indd 216 2/21/2014 7:32:09 AM

http://msdn.microsoft.com

Themes ❘ 217

To create a theme, you need to do the following:

➤➤ Create the special App_Themes folder if it isn’t already present in your site.

➤➤ For each theme you want to create, create a subfolder with the theme’s name, like
Monochrome or DarkGrey in Figure 6-12.

➤➤ Optionally, create one or more CSS files that will be part of the theme. Although naming
the CSS files after the theme helps in identifying the right files, this is not a requirement.
Any CSS file you add to the theme’s folder is added to the page at run time automatically.

➤➤ Optionally, add one or more images to the theme folder. The CSS files should refer to these
images with a relative path as explained later.

➤➤ Optionally, add one or more skin files to the theme folder. Skins enable you to define
individual properties (such as ForeColor and CssClass) for a specific control that are then
applied at run time.

After you have followed these steps, you can configure your site or an individual web page to make
use of this theme. To be able to set up the correct theme, you should be aware that two types of
themes exist.

different types of themes
An ASP.NET page has two different properties that enable you to set a theme: the Theme property
and the StyleSheetTheme property. Both of these properties use the themes that you define in the
App_Themes folder. Both of these properties take their default value from the Web.config file as
you’ll see later. Although at first they seem very similar, it’s their runtime behavior that makes the
difference. The StyleSheetTheme is applied very early in the page’s life cycle, shortly after the page
instance has been created. This means that an individual page can override the settings from the
theme by applying inline attributes on the controls. So, for example, a theme with a skin file that
sets the BackColor of a button to blue can be overridden by the following control declaration in the
markup of the page:

<asp:Button ID="Button1" runat="server" Text="Button" BackColor="Red" />

The theme in the Theme property, on the other hand, is applied late in the page’s life cycle, effectively
overriding any customization you may have for individual controls.

Choosing Between theme and stylesheettheme
Because properties of the StyleSheetTheme can be overridden by the page, and the Theme
in turn can override these properties again, both serve a distinct purpose. You should set
the StyleSheetTheme if you want to supply default settings for your controls. That is, the
StyleSheetTheme can supply defaults for your controls, which can then be overridden at the
page level. You should use the Theme property instead if you want to enforce the look and feel of
your controls. Because the settings from the Theme cannot be overridden anymore and effectively
overwrite any customizations, you can be assured that your controls look the way you defined them
in the theme. There is one exception: by setting EnableTheming on the control to False you can
disable theming for that control. You see this property and its effect toward the end of the chapter.
The Planet Wrox sample site in this book uses the Theme property.

c06.indd 217 2/21/2014 7:32:09 AM

218 ❘ Chapter 6 Creating Consistent Looking Websites

applying themes
To apply a theme to your website, you have three different options: at the page level in the Page
directive, at the site level by modifying the Web.config file, and programmatically.

➤➤ Setting the theme at the page level. Setting the Theme or StyleSheetTheme property at the
page level is easy, just set the relevant attribute in the Page directive of the page:

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
 Inherits="_Default" Theme="DarkGrey" %>

Replace Theme with StyleSheetTheme to apply a theme whose settings can be overridden
by the individual controls. Figure 6-13 shows that as soon as you type Theme=, VS pops up
with a list with all the themes it finds in the App_Themes folder.

figure 6-13

➤➤ Setting the theme at the site level. To enforce a theme throughout the entire website, you can
set the theme in the Web.config file by adding a theme or styleSheetTheme attribute to
the <pages> element inside the <system.web> element:

<pages theme="DarkGrey" styleSheetTheme="DarkGrey">
 ...
</pages>

Make sure you type these attributes exactly as shown here because the XML in the Web.
config file is case sensitive. The attributes you set here are then applied to the Theme and
StyleSheetTheme properties of the Page class, as you see later.

➤➤ Setting themes programmatically. The third and final way to set a theme is
programmatically through code. You see how this works in a later exercise.

The next Try It Out exercise shows you how themes work. You create a theme, add the necessary
CSS, and then configure the application to use the new theme.

trY it out Creating a New Theme for Your Website

In this exercise you create two themes: Monochrome and DarkGrey.
For each theme, you add the CSS layout, which is applied to the site
automatically. You configure the application to use one of the themes
and then switch to the other to see the differences.

 1. Add the special App_Themes folder to your website. To do this,
right-click the website in the Solution Explorer and choose
Add ➪ Add ASP.NET Folder ➪ Theme. This not only creates
the App_Themes folder, but immediately creates a subfolder
for the theme called Theme1 by default. Type Monochrome as
the new name instead. Your Solution Explorer should now
look like Figure 6-14. figure 6-14

c06.indd 218 2/21/2014 7:32:10 AM

Themes ❘ 219

 2. From the Styles folder, move the Styles.css file into this new Monochrome folder. You can
either drag it directly into the new folder or use Ctrl+X to cut the file, click the Monochrome folder,
and press Ctrl+V to paste it again. You can leave the empty Styles folder because it’s used again
later.

 3. To make it clear later where your CSS is coming from, rename the file from Styles.css to
Monochrome.css. You can rename it by selecting it and pressing F2 or by right-clicking it and
choosing Rename.

 4. Because the main layout is now going to be controlled by the theme, you no longer need the
<link> element in the <head> section of the master page pointing to the old CSS file, so you can
remove it. To this end, open the master page, switch to Markup View, and remove the following
highlighted line from the code:

<head runat="server">
 <title></title>
 <asp:ContentPlaceHolder ID="head" runat="server">
 </asp:ContentPlaceHolder>
 <link href="../Styles/Styles.css" rel="stylesheet" type="text/css" />

 5. The next step is to apply the theme to the entire website. Open the Web.config file from the root
of the site and directly inside the <system.web> element, create a <pages> element with a theme
attribute pointing to the Monochrome theme. There’s no support for themes in IntelliSense in the
Web.config file so you need to type the name yourself.

<system.web>
 <pages theme="Monochrome" />
 ...

 6. To test the theme, save all your changes and then request the Default.aspx page in your browser.
The design of the site should be identical to how it was.

CoMMoN MIStAKeS If you get an error about an invalid page title, go back
to Visual Studio and change the Title attribute of the @ Page directive of
Default.aspx to “Welcome to Planet Wrox.” If your design doesn’t look as
it should, press Ctrl+F5 or Ctrl+R in the browser. This forces a hard refresh,
which means you get the latest version of the files from the server instead of a
cached local copy of the page.

Instead of linking to the CSS file from the master page, the CSS is now included in the page source
through the theme set in the Web.config file. To see how this works, open the HTML source of
the page in the browser. At the top you should see the following code (I altered the layout for bet-
ter readability):

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>

c06.indd 219 2/21/2014 7:32:10 AM

220 ❘ Chapter 6 Creating Consistent Looking Websites

 <title>Welcome to Planet Wrox</title>
 <script src="/Scripts/modernizr-2.7.1.js"></script>
 <link href="App_Themes/Monochrome/Monochrome.css"
 type="text/css" rel="stylesheet" />
</head>
<body>

Note that a link to the style sheet from the Monochrome theme folder is injected in the <head> of
the page. The ASP.NET run time does this for every CSS file it finds in the currently active theme
folder (in alphabetical order), so be sure to keep your theme folder clean to avoid unnecessary
files from being included and downloaded by the browser. Also note that the <link> is added just
right before the closing </head> tag. This ensures that the theme file is included after all other
files you may have added yourself (through the master page, for example). This is in contrast to
how the styleSheetTheme attribute works. Because this type of theme allows its settings to be
overridden, it’s imported at the top of the file, giving room for other CSS files that follow it to
change the look and feel of the page.

 7. Return to Visual Studio and open the master page file in Design View. Notice how all the design
is gone and VS now shows the basic layout of the page again. Unfortunately, VS does not display
the theme you’ve set using the theme attribute. However, you can overcome this limitation by
setting the styleSheetTheme instead. To do this, open the Web.config file again, locate the
<pages> element you created earlier, and add the following attribute:

<pages theme="Monochrome" styleSheetTheme="Monochrome" ... />

 8. Save the changes to Web.config, close and reopen the master page,
and switch to Design View. You’ll see that VS now applies the
correct styling information to your pages.

 9. To add another theme to the site, create a new folder under
App_Themes and call it DarkGrey. Next, open the folder where
you extracted the downloaded code that comes with this book.
If you followed the instructions in the introduction of this
book, this folder is located at C:\BegASPNET\Resources. If you
don’t have these files yet, they are available at www.wrox.com/
go/begaspnet451. Open the Chapter 06 folder and then the
DarkGrey folder. Position the File Explorer and VS side by side
and then drag the file DarkGrey.css from File Explorer into the
DarkGrey theme folder in VS. If dragging doesn’t work for you,
you can use Ctrl+C in File Explorer to copy the file, and then use
Ctrl+V in VS to paste the file in the right folder. Your Solution
Explorer should now resemble Figure 6-15.

You add the images that the CSS file refers to in a later exercise.

 10. Open the Web.config file once more and change both occurrences
of Monochrome to DarkGrey in the <pages> element. Save the changes again and press Ctrl+F5.
Instead of the blue Monochrome theme, you’ll now see the site with the DarkGrey theme applied as
is visible in Figure 6-16. If you don’t see the menu placeholder, the main content, and the sidebar all
next to each other, make sure your browser window is wide enough to display all content.

figure 6-15

c06.indd 220 2/21/2014 7:32:11 AM

http://www.wrox.com/go/begaspnet451
http://www.wrox.com/go/begaspnet451

Themes ❘ 221

If you don’t see the new theme appear, close all open browsers, ensure you changed Web.config cor-
rectly, and open Default.aspx again. If you still don’t see the theme, press Ctrl+F5 or Ctrl+R in your
browser to force it to get a fresh copy from the server.

How It Works

In this exercise you first applied the Monochrome theme by changing the <pages> element in the Web.
config file. When the run time sees that a theme is active, it scans the associated theme folder for .css
files and includes a link to all those files in the page’s <head> section in alphabetical order. In the case
of the Monochrome theme it finds the file Monochrome.css and adds it to the <head> section automati-
cally. An identical process took place when you changed the theme to DarkGrey. The linked style sheet
then influences the way the page is displayed in the browser by changing the layout and colors used in
the page.

To enable design-time support in Visual Studio, you need to change the styleSheetTheme in the Web.
config file as well. The only downside of this is that the relevant CSS file is now included twice: once
for the Theme and once for the StyleSheetTheme. Because the exact same file is included twice, it
doesn’t affect the layout of the site. All the selectors in the second file simply overrule those in the first.
However, if you feel this duplication is a waste of CPU cycles, you should delete the styleSheetTheme
attribute from the Web.config file when you go live with the application.

The layout of the page is changed radically because of the CSS in the DarkGrey.css file. If you want to
know what CSS the file contains and what elements of the page it changes, open it up in VS. It has lots
of comments describing each selector in detail.

ASP.NET themes are not limited to just CSS files. As you learn next, themes can also contain images
and skin files.

figure 6-16

c06.indd 221 2/21/2014 7:32:11 AM

222 ❘ Chapter 6 Creating Consistent Looking Websites

extending themes
In addition to CSS files and skins (discussed toward the end of this
chapter), a theme can also contain images. The most common use of
theme images is referring to them from your CSS. To put this to good
use it’s important to understand how CSS refers to images.

By design, an image referred to by a CSS selector will be searched for
relative to the location of the CSS file, unless you give it a path that
starts with a forward slash (/) to indicate the root of the site. Consider,
for example, the App_Themes folder depicted in Figure 6-17.

To refer to the MenuBackground.jpg file in the Images folder of the
Monochrome theme, you can add the following CSS to Monochrome.css:

nav
{
 background-image: url(Images/MenuBackground.jpg);
}

If you wanted to refer to an image in the Images folder in the root of the site, you would use
this CSS:

background-image: url(/Images/MenuBackground.jpg);

Note the leading forward slash in front of the image path to indicate the root of the site. This latter
syntax is useful if you want to share images between different themes. Simply put them in a folder
outside a specific theme, like an Images folder at the root, and then use this root-based syntax to
refer to them. The next chapter digs a lot deeper into the different forms a URL can take to refer to
a resource like an image.

trY it out Adding Images to Your Theme

In this Try It Out you add the images and CSS files to the site to complete both themes. You overwrite
the file Monochrome.css in the Monochrome theme, so if you made any customizations you would like
to keep, create a backup of it first.

 1. Open File Explorer and navigate to the files you extracted from the zip file for this chapter (at C:\
BegASPNET\Resources). Open the Chapter 06 folder and then the Monochrome folder. Select the
Images folder and the Monochrome.css file.

 2. Drag (or copy and paste) the selected folder and files from File Explorer into the Monochrome
theme folder in VS. Click Yes when you’re asked to overwrite Monochrome.css.

 3. Repeat steps 1 and 2, but this time drag (or copy and paste) only the Images folder from the File
Explorer’s DarkGrey folder into the DarkGrey theme folder in VS. Your Solution Explorer now
looks like Figure 6-17.

 4. Open up the master page from the MasterPages folder, and remove the text Header Goes Here
from the <header> element. Make sure you don’t accidentally remove the <a> element, which
should now be empty.

figure 6-17

c06.indd 222 2/21/2014 7:32:11 AM

Themes ❘ 223

 5. Request Default.aspx in your browser by right-clicking it and choosing View in Browser. You
should now see the web page with images from the DarkGrey theme, shown in Figure 6-18, that
displays the page in Apple’s Safari.

figure 6-18

 6. Go back to VS, open the Web.config file, and switch the two theme attributes of the <pages>
element from DarkGrey to Monochrome again. Open Default.aspx in your browser and you’ll
see the page with the new theme and images as shown in Figure 6-19 that displays the page in
Google Chrome. If you still see the old page, press Ctrl+F5 to cause a hard refresh. If you find that
the page in the browser is showing a combination of the two themes, go back to VS, open Web.
config, and remove the styleSheetTheme attribute from the <pages> element.

figure 6-19

c06.indd 223 2/21/2014 7:32:12 AM

224 ❘ Chapter 6 Creating Consistent Looking Websites

How It Works

From a theme point of view, nothing has changed in this exercise. Just as you saw before, the theme’s
style sheet is added to the head of the page. However, this time the style sheet points to images located
in the theme folder. The browser reads the CSS file, follows the link to the images, downloads them,
and then displays them at the right location as dictated by the various CSS selectors in the code file.

The CSS files you added for both themes contain a lot of comments, so if you want to know what the
CSS does, check out the files in the two theme folders.

Useful as themes may be to enable you, the page developer, to quickly change the appearance and
even the layout of the site, they become even more useful if you let your users switch them at run
time. This way, users can customize the site to their liking. The next section shows you how to
accomplish this.

dynamically switching themes
Switching themes at run time has a few benefits. For example, you can please your users by enabling
them to choose a theme with the colors and layout they like. Not everyone appreciates a dark
background with white text, so the option to change that at run time is something that many people
like. However, you can also deploy themes to help visually impaired users. By creating a theme that
has a high-contrast color scheme and a large font size, you make it much easier for people to see your
site. The themes in the Planet Wrox website only change screen elements like colors and layout, but
it’s easy to create a copy of one of those themes and then change the font size and the color scheme.

Because of the way themes are applied to a page at run time, you need to set the theme early on in
the page’s life cycle, in the PreInit event to be precise. The base page of the website is once again
the ideal location to do this, because every page in the site inherits from this class.

To enable users to change the theme, you can offer them a drop-down menu that automatically
posts back to the server when they change the active option in the list. At the server, you get the
chosen theme from the list, apply it to the page, and then store the selection in a cookie so it can be
retrieved on subsequent visits to the website.

Cookies are little pieces of text that you can store on the user’s computer. The data you store in a
cookie is sent only to the server that set it in the first place, so other sites can’t read the cookie from
yours. However, because cookies are stored on the user’s computer as plaintext, you should never
use them to store any sensitive data, such as a password. Storing harmless data like the preferred
theme is an excellent use of cookies, though.

To create a cookie so it’s stored on the user’s computer, you use the Cookies collection on the Response
object. This way, the cookie is sent to the browser along with the response. Here’s a quick example:

VB.NET

Dim myCookie As HttpCookie = New HttpCookie("CookieName")
myCookie.Expires = DateTime.Now.AddMonths(3)
myCookie.Value = "Cookie value"
Response.Cookies.Add(myCookie)

c06.indd 224 2/21/2014 7:32:12 AM

Themes ❘ 225

C#

HttpCookie myCookie = new HttpCookie("CookieName");
myCookie.Expires = DateTime.Now.AddMonths(3);
myCookie.Value = "Cookie value";
Response.Cookies.Add(myCookie);

This code sends the cookie to the browser where it will be stored until it expires, which in this
example is three months from the day the cookie is set. For each request to a page, the browser
sends this cookie back to the server where you can read it again using the Cookies collection of the
Request object, like this:

VB.NET

Dim myCookie As HttpCookie = Request.Cookies.Get("CookieName")
If myCookie IsNot Nothing Then
 Label1.Text = myCookie.Value ' Would display "Cookie value"
End If

C#

HttpCookie myCookie = Request.Cookies.Get("CookieName");
if (myCookie != null)
{
 Label1.Text = myCookie.Value; // Would display "Cookie value"
}

In the following two exercises you see how to implement the functionality to switch themes
dynamically. The first exercise guides you through modifying the master page to enable the user to
select a theme. This exercise only retrieves the name of the theme the user selects and stores it in a
cookie. The second exercise then shows you how to apply that theme at run time to every page that
inherits from BasePage.

Note There has been a lot of debate about cookies and whether or not they
can harm your privacy. Generally, cookies are safe, because they only store
data that the server that sets it already has. They can’t be used to steal sensi-
tive data from your computer if you haven’t given this data to the server your-
self. In most scenarios, cookies improve the user’s browsing experience by
remembering little pieces of data instead of asking you every single time you
visit a page. Unfortunately, some large corporations like advertising agencies
use a unique cookie to track your trails on the web, giving them some global
idea of the sites you visit. To ensure that visitors to your site understand what
information you have and keep about them, it’s usually a good idea to add a
privacy statement to your site describing the intent and usage of cookies and
any personal data you may keep. Be aware that in Europe you must comply
with the “cookie law” that doesn’t allow you to create cookies without the
user’s consent.

c06.indd 225 2/21/2014 7:32:12 AM

226 ❘ Chapter 6 Creating Consistent Looking Websites

trY it out Letting the User Select a Theme

In this exercise you add a DropDownList control to the master page. This control contains the available
themes so a user can choose one. The user’s choice is stored in a cookie so it’s available again later. The
final step is to preselect the correct theme in the drop-down list when the user revisits the page.

1. Open the master page in Markup View and locate the <aside> element. Remove the static text
Sidebar Goes Here and replace it with a DropDownList control by dragging it from the Toolbox
between the two <div> tags. Change the ID of the control from DropDownList1 to ThemeList.
Type some text (for example, Select a Theme) followed by a line break (
) in front of the
drop-down list to clarify the purpose of the list.

2. Open the control’s Smart Tasks panel (in Design View or
Markup View), and select Enable AutoPostBack.

3. On the same Smart Tasks panel, click the Edit Items link and
insert two items: one with the text Monochrome and one with
the text DarkGrey.

4. Double-click the drop-down list in Design View to set up an
event handler for the SelectedIndexChanged event. Instead
of double-clicking, you can also select the DropDownList,
press F4 to open its Properties Grid, click the button with the
lightning bolt to switch to the Events tab, and double-click
SelectedIndexChanged. Figure 6-20 shows the Properties Grid in Events mode.

As you saw earlier, you could also add this event handler in Markup View on the control declara-
tion directly.

Any code you write in the SelectedIndexChanged handler fires at the server when the user
makes a new selection in the drop-down list at the client. Within the handler block, add the fol-
lowing bolded code that retrieves the selected theme from the list and stores it in a cookie:

VB.NET

Protected Sub ThemeList_SelectedIndexChanged(sender As Object,
 e As EventArgs) Handles ThemeList.SelectedIndexChanged
 Dim preferredTheme As HttpCookie = New HttpCookie("PreferredTheme")
 preferredTheme.Expires = DateTime.Now.AddMonths(3)
 preferredTheme.Value = ThemeList.SelectedValue
 Response.Cookies.Add(preferredTheme)
 Response.Redirect(Request.Url.ToString())
End Sub

C#

protected void ThemeList_SelectedIndexChanged(object sender, EventArgs e)
{
 HttpCookie preferredTheme = new HttpCookie("PreferredTheme");
 preferredTheme.Expires = DateTime.Now.AddMonths(3);
 preferredTheme.Value = ThemeList.SelectedValue;
 Response.Cookies.Add(preferredTheme);
 Response.Redirect(Request.Url.ToString());
}

figure 6-20

c06.indd 226 2/21/2014 7:32:12 AM

www.SoftGozar.com

Themes ❘ 227

5. Still in the Code Behind of the master page, you need to add some code that preselects the correct
item in the list again when the page loads. The best place to do this is in the Page class’s Load
event. If you’re using C#, the Page_Load handler should already be there. When you’re using
Visual Basic you can add one in two different ways: either double-click the page anywhere in
Design View (this works in C# as well), or select (Page Events) from the left drop-down list just
above the Document Window in the Code Behind (shown in Figure 6-21), and then choose Load
from the second drop-down. This is a nice way to add handlers for other controls as well, like
Button and DropDownList controls.

figure 6-21

Within the handler block that VS added for you, add the following code:

VB.NET

Protected Sub Page_Load(sender As Object, e As EventArgs) Handles Me.Load
 If Not Page.IsPostBack Then
 Dim selectedTheme As String = Page.Theme
 Dim preferredTheme As HttpCookie = Request.Cookies.Get("PreferredTheme")
 If preferredTheme IsNot Nothing Then
 selectedTheme = preferredTheme.Value
 End If
 If Not String.IsNullOrEmpty(selectedTheme) Then
 Dim item As ListItem = ThemeList.Items.FindByValue(selectedTheme)
 If item IsNot Nothing Then
 item.Selected = True
 End If
 End If
 End If
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 if (!Page.IsPostBack)
 {
 string selectedTheme = Page.Theme;
 HttpCookie preferredTheme = Request.Cookies.Get("PreferredTheme");
 if (preferredTheme != null)
 {
 selectedTheme = preferredTheme.Value;
 }

c06.indd 227 2/21/2014 7:32:12 AM

www.SoftGozar.com

228 ❘ Chapter 6 Creating Consistent Looking Websites

 if (!string.IsNullOrEmpty(selectedTheme))
 {
 ListItem item = ThemeList.Items.FindByValue(selectedTheme);
 if (item != null)
 {
 item.Selected = true;
 }
 }
 }
}

 6. Save all changes and then request Default.aspx in your browser again. The drop-down list in
the sidebar should display the first item in the list as selected. Select the other option from the list
and the page will reload. The item you chose last in the drop-down list should now be preselected
in the drop-down list. Close your browser and then browse to Default.aspx again. The theme
you chose should still be selected in the drop-down list. Notice that you keep seeing the same
theme because you haven’t written any code yet that applies the selected theme. You see how to do
that in a later exercise.

CoMMoN MIStAKeS If you get an error, make sure you have no typos in the
code. If nothing seems to happen (for example, the page doesn’t post back),
check if you set the AutoPostBack attribute on the DropDownList control to
True. Also, check the spelling of the name of the cookie (PreferredTheme) in
both code blocks. Finally, if the correct item is not preselected after a postback
or after you close and reopen your browser, check you browser’s or computer’s
security settings. You may have configured your browser to delete cookies
when you close the browser, or you may have security software running on
your machine that blocks cookies altogether. If you can’t make it work in one
browser, try it in another to rule out problems with the code.

How It Works

You made three important changes to the master page. First, you added the drop-down list and set
AutoPostBack to True. This causes the page to submit itself back to the server as soon as you choose
a new item in the list. When that happens, the code in the SelectedIndexChanged handler fires. This
code creates a cookie that can be stored on the user’s computer. To make the cookie last between
browser sessions, you need to set the Expires property. In the code example, the cookie is set to expire
three months from now, which means the browser will discard it automatically after that period. Every
time the user chooses a new theme, this date is extended, setting it for another three months:

VB.NET

Dim preferredTheme As HttpCookie = New HttpCookie("PreferredTheme")
preferredTheme.Expires = DateTime.Now.AddMonths(3)

C#

HttpCookie preferredTheme = new HttpCookie("PreferredTheme");
preferredTheme.Expires = DateTime.Now.AddMonths(3);

c06.indd 228 2/21/2014 7:32:12 AM

Themes ❘ 229

After the cookie has been created, you can set its Value property. In the example, the SelectedValue
of the DropDownList (containing the name of the theme) is stored in the cookie. The cookie is then
added to the Cookies collection using Response.Cookies.Add:

VB.NET

preferredTheme.Value = ThemeList.SelectedValue
Response.Cookies.Add(preferredTheme)

C#

preferredTheme.Value = ThemeList.SelectedValue;
Response.Cookies.Add(preferredTheme);

Note that the cookie is added to the Cookies collection of the Response object that is associated with
the response to the user. Later you see how to read this cookie again from the Cookies collection of the
Request object that is associated with the request the user is making for a page.

The final step is to redirect the user to the same page:

VB.NET

Response.Redirect(Request.Url.ToString())

C#

Response.Redirect(Request.Url.ToString());

This is necessary because otherwise the new theme won’t be applied immediately. Because the theme
needs to be set early in the page’s life cycle, it can no longer be set for the current request. By redirect-
ing the user to the same page, a new request is made that can successfully apply the selected theme. The
next exercise shows you the code to set the selected theme programmatically.

The final change in the master page you made was a modification to the Page_Load handler. Inside
this method, a String variable is declared that holds the currently active theme by looking at Page.
Theme. This serves as the default theme and will be the one that is preselected in the drop-down list if
the user doesn’t have a cookie holding her preferred theme. The code then sees if there is a cookie called
PreferredTheme. If it exists, its value is used to give the string selectedTheme a new value. In the end,
this String variable is then used to find the item in the drop-down list and preselect it.

This way, the drop-down list always displays the currently configured site theme or the item the user
has chosen manually, even if she comes back to the site next week. Note the use of the FindByValue
method on the Items collection of the DropDownList control. This method returns the item if it is
found or Nothing (null in C#) when the item isn’t there. This ensures that if the cookie contains a
theme that is no longer available, the code doesn’t try to preselect an item in the list that doesn’t
exist.

With the ability to let a user select a theme in place, the next step is to apply the chosen theme.

As you learned previously, the theme needs to be set in the PreInit event, which takes place early
in the page’s life cycle. Inside this event, you can see if the cookie with the selected theme exists. If it
does, you can use its value to set the right theme.

c06.indd 229 2/21/2014 7:32:13 AM

230 ❘ Chapter 6 Creating Consistent Looking Websites

trY it out Applying the User-Selected Theme

In this exercise, you modify the base page and add some code for the PreInit event to set the user’s
theme.

1. Open the base page file from the App_Code folder and add the following code that sets the selected
theme during the PreInit event. You can add this code before or after the method that checks the
page title.

VB.NET

Private Sub Page_PreInit(sender As Object, e As EventArgs) Handles Me.PreInit
 Dim preferredTheme As HttpCookie = Request.Cookies.Get("PreferredTheme")
 If preferredTheme IsNot Nothing Then
 Dim folder As String = Server.MapPath("~/App_Themes/" & preferredTheme.Value)
 If System.IO.Directory.Exists(folder) Then
 Page.Theme = preferredTheme.Value
 End If
 End If
End Sub

C#

private void Page_PreInit(object sender, EventArgs e)
{
 HttpCookie preferredTheme = Request.Cookies.Get("PreferredTheme");
 if (preferredTheme != null)
 {
 string folder = Server.MapPath("~/App_Themes/" + preferredTheme.Value);
 if (System.IO.Directory.Exists(folder))
 {
 Page.Theme = preferredTheme.Value;
 }
 }
}

For the C# example, you need to include a using statement at the top of the file to bring the
Request class into scope, like this:

using System.Web;

2. If you’re working with C#, you also need to set up an event handler in the class’s constructor for
the PreInit event, just as you did with the PreRender event handler in an earlier exercise. This
tells the ASP.NET run time which method will handle the PreInit event:

public BasePage()
{
 this.PreRender += Page_PreRender;
 this.PreInit += Page_PreInit;
}

3. Save changes to all open documents and then request Default.aspx in the browser. The page
should load with the theme you chose last in the drop-down list in the previous exercise.

c06.indd 230 2/21/2014 7:32:13 AM

www.SoftGozar.com

Themes ❘ 231

 4. Choose a new item from the list. The page should reload and should now show the other theme.

If you find that the page in the browser is showing a combination of the two themes, go back to
VS, open Web.config, and remove the styleSheetTheme attribute from the <pages> element,
leaving the theme attribute in place because it serves as the default for new visitors. If you don’t
see the theme applied, make sure your page is inheriting the BasePage class in the Code Behind.

How It Works

With the hard work of getting the user’s favorite theme and storing it in a cookie already done, apply-
ing the theme is now very easy. The code in the PreInit event handler first verifies whether there is
a cookie called PreferredTheme. It does this by comparing the return value of the Get method to
Nothing (null in C#).

VB.NET

Dim preferredTheme As HttpCookie = Request.Cookies.Get("PreferredTheme")
If preferredTheme IsNot Nothing Then

C#

HttpCookie preferredTheme = Request.Cookies.Get("PreferredTheme");
if (preferredTheme != null)

This code uses Request.Cookies to read from the cookies that the user’s browser sent together with
the request. If the cookie exists, its Value property is used to set the correct theme:

VB.NET

Page.Theme = preferredTheme.Value

C#

Page.Theme = preferredTheme.Value;

Because the theme is set early in the page’s life cycle, this setting is applied throughout the page,
effectively giving the page the look and feel defined in it. To ensure that the code doesn’t try to apply a
theme that (no longer) exists, it uses Directory.Exists that returns true or false depending on the
presence of the folder on disk. To get at the full path of the theme folder on disk, it uses Server
.MapPath to translate a virtual path into its physical counterpart. You learn more about virtual paths
in the next chapter, while Server.MapPath is discussed further in Chapter 9.

With the capability to set the theme programmatically, you’re offering your users a quick and easy
way to change the page to their liking. The theme affects colors and layout throughout each page in
the entire website. Combined with master pages, this gives you a flexible way to influence the look
and feel of an entire page. It could also be useful if you were able to change certain controls on a
page. For example, you may have the need to give each button in your site the exact same look. This
is where the ASP.NET skins come into play.

c06.indd 231 2/21/2014 7:32:13 AM

232 ❘ Chapter 6 Creating Consistent Looking Websites

skins

Skins are simple text files that contain markup that enables you to define the look and feel of one
or more server controls from a central location. Placed in a theme’s folder, they are an integral
part of the ASP.NET themes feature. A skin file (with a .skin extension) contains the server-side
presentational elements of a control. These settings are then applied to all the controls to which
the skin applies. To see how this works, consider the following example that defines the skin — or
appearance — of a Button control:

<asp:Button BackColor="#cccccc" ForeColor="#308462" runat="server" />

With this skin definition, the buttons in your site will get a BackColor of #cccccc and a ForeColor
of #308462. All you need to do is create a skin file under your theme’s folder, add this markup to
it, and that’s it. From then on, all the buttons will be changed automatically. Just as with setting
the properties on the controls directly as you saw earlier, these properties, like BackColor and
ForeColor, are transformed into client-side HTML and CSS.

Note that this skin markup is similar to the markup of a button. A few differences exist, though.
First of all, the control in the skin file cannot have an ID attribute. The ID is used to uniquely
identify a control in a page, and because the skin is applied to all controls, there’s no point in giving
it an ID. Another difference is the number of attributes you can set in the markup. Not all properties
of a control are skinnable. For example, you can’t set the Enabled property of the Button through a
skin. Microsoft’s MSDN documentation lists for each property whether or not they can be skinned.
Another way to find out if you can skin a certain property is by simply trying it: just set the property
in the skin and if you’re not allowed to set it, you’ll get an error at run time.

Generally speaking, properties that influence the appearance (BackColor, ForeColor, BorderColor,
and so on) can be skinned and properties that influence behavior (Enabled, EnableViewState, and
more) cannot be set.

When you create a new skin file using the Add New Item dialog box, you get a bunch of text
wrapped in a server-side comment block. You can safely remove these comments because they only
give you a short example of how skins work. You can define multiple controls in a single skin file.
However, from a maintainability point of view, it’s often easier to name each skin file after the
control it represents. For example, you would have a file called Button.skin for buttons, Label.
skin for labels, and so on.

Instead of applying formatting elements directly to the control’s properties in the skin and thus to
the final markup in the page, it’s often better to use the CssClass property to point to a CSS class in
one of your CSS files. That way, it’s even easier to make sitewide changes and you avoid bloating
the final HTML. Given the previous example, a file with the following skin definition and a class in
the theme’s CSS file would give the same effect:

<asp:Button CssClass="MyButton" runat="server" />

.MyButton
{
 color: #308462;
 background-color: #cccccc;
}

c06.indd 232 2/21/2014 7:32:13 AM

Skins ❘ 233

Creating a skin file
Skin files must be created in the theme’s folder directly. You can’t store them in a subfolder like you
do with the theme’s images. In the following exercise you see how to create a simple skin file to
change the look and feel of all button controls in the website. Later chapters in this book build on
this knowledge by defining more complex skins for other controls like the GridView.

When you start typing in a skin file, you’ll notice that the familiar IntelliSense doesn’t kick in. This
makes it slightly difficult to define your controls and their attributes. However, there is a simple
workaround:

 1. Open Visual Studio’s Options dialog box by choosing Tools ➪ Options.

 2. Expand the Text Editor category and click File Extension.

 3. In the Extension box, type skin and then from the Editor drop-down list, choose User
Control Editor.

 4. Click the Add button and then click the OK button to dismiss the Options dialog box.

From now on, you’ll get IntelliSense in skin files (you may need to reopen existing skin files first if
you already created one). With this setting on, you may get a warning in the Error List about build
providers when you have a skin file open. You can safely ignore this warning, because skins work
fine at run time even with these settings in VS.

trY it out Creating a Skin for the Button Control

To effectively use skins, you should strive to use CssClass attributes as much as possible instead of
applying inline attributes that all end up in the final HTML of the page, increasing its size and load
time. However, to show you how it works in case you do have a special need to add inline attributes,
this exercise shows you how to apply both.

 1. In the Monochrome theme folder, add a new skin file and call it Button.skin. You add the file
by right-clicking the Monochrome folder and choosing Add ➪ Skin File. In the dialog box that
follows, type Button as the filename and click OK.

 2. Delete the entire contents from the file and type the following code:

<asp:Button CssClass="MyButton" BackColor="#509EE7" runat="server" />

Note that this markup uses a combination of inline attributes for styling (the BackColor) and the
CssClass to point to a selector in your CSS file. Also note that this control does not have an ID
attribute. As explained earlier, you can ignore the warning about missing build providers because
your skin files will work fine at run time. As soon as you close the skin file, the warning goes away.

 3. Open the Monochrome.css file from the theme folder and add this CSS selector at the end of the
file:

.MyButton
{
 color: White;
}

c06.indd 233 2/21/2014 7:32:13 AM

234 ❘ Chapter 6 Creating Consistent Looking Websites

 4. Create a new Web Form in the Demos folder and call it SkinsDemo.aspx. Make sure you base it
on the exported MyBasePage template you created earlier. Give the page a Title of Skins Demo
and then add a Button by dragging it from the Toolbox into the cpMainContent area of the page.
You end up with this code:

<asp:Content ID="Content2" ContentPlaceHolderID="cpMainContent" runat="Server">
 <asp:Button ID="Button1" runat="server" Text="Button" />
</asp:Content>

 5. Save all changes and then request SkinsDemo.aspx in the browser. If necessary, switch to the
Monochrome theme. The button you added in step 4 should now have a blue background with
white text on it. If the changed colors don’t show up, make sure you selected the right theme in
the drop-down list and that you added the MyButton CSS class to the CSS file of the Monochrome
theme. If you still don’t see the changes, press Ctrl+F5 or Ctrl+R to force a fresh copy of the CSS
file from the server.

How It Works

To see how it works, you should take a look at the HTML for the page in the browser. The Button con-
trol has been transformed in the following HTML:

<input type="submit" name="ctl00$cpMainContent$Button1" value="Button"
 id="cpMainContent_Button1" class="MyButton" style="background-color:#509EE7;" />

Both the CssClass and the BackColor attributes in the skin have been added to the HTML. The for-
mer ended up as a class attribute on the button, and the latter has been transformed into a style
attribute. The MyButton class in the CSS file gives the button its white text and the inline style deter-
mines the background color of the button. If you choose the DarkGrey theme in the drop-down list and
then look at the HTML again, you’ll notice it has no class and style attributes, giving the button its
default look.

As you can see, skins are extremely easy to use and enable you to radically change the look of
specific controls in your site. But what if you don’t want all your buttons to change to blue and
white at the same time? What if you need one special button that has a red background? You can do
this with named skins.

named skins
Named skins are identical to normal skins with one exception: they have a SkinID set that enables
you to refer to that skin by name. Controls in your ASPX pages can then use that SkinID to apply
that specific skin to the control. The next exercise shows you how this works.

trY it out Creating a Named Skin for the Button Control

The easiest way to create a named skin is by copying the code for an existing one and then adding a
SkinID attribute. Be aware that if you copy and paste a skin definition, VS automatically adds an ID
attribute (that is, if you connected skin files to the User Control Editor as described earlier). This ID is
not allowed, so you need to remove it.

c06.indd 234 2/21/2014 7:32:13 AM

Practical Tips on Creating Consistent Pages ❘ 235

1. Open Button.skin, copy all the code, and paste it below the existing markup.

2. If VS added an ID attribute, remove it, together with its value (that is, remove ID=”Button1”).

3. Remove the CssClass attribute and its value, change the BackColor of the button to Red, and set
the ForeColor to Black.

4. Add a SkinID attribute of RedButton. You should end up with this code:

<asp:Button CssClass="MyButton" BackColor="#509EE7" runat="server" />
<asp:Button BackColor="Red" ForeColor="Black" SkinID="RedButton" runat="server" />

5. Save and close the skin file.

6. Open SkinsDemo.aspx and add a second button. Set the SkinID of this button to RedButton.
Notice how IntelliSense helps you pick the right SkinID. The code for the two buttons should now
look like this:

<asp:Button ID="Button1" runat="server" Text="Button" />
<asp:Button ID="Button2" runat="server" Text="Button" SkinID="RedButton" />

7. Open SkinsDemo.aspx in the browser. You should now see two buttons; the blue one you added
earlier and the new black-on-red one. If you don’t see the different colors, ensure you have selected
the Monochrome theme in the browser.

How It Works

Named skins work almost exactly the same as normal skins. However, with a named skin a control can
point to a specific skin in one of the skin files. In the SkinsDemo.aspx page, the first button gets its set-
tings from the default, unnamed skin, and the other now gets its settings from the skin with its SkinID
set to RedButton. If you assign a nonexistent SkinID to a control, ASP.NET will simply ignore it and
not raise an error.

With named skins, you have a very flexible solution at your disposal. With the normal skins, you
can quickly change the appearance of all controls in your site. You can then use a named skin to
override this behavior for a few controls that you want to look different.

disable theming for specific Controls
If for some reason you don’t want to apply a skin to a specific control, you can disable the skin by
setting the EnableTheming property of the control, like this:

<asp:Button ID="Button1" runat="server" EnableTheming="False" Text="Button" />

With EnableTheming set to False, the skin is not applied to the control. CSS settings from the
theme’s CSS file are still applied, though.

praCtiCal tips on Creating Consistent pages

The following list provides some practical tips on creating consistent pages:

c06.indd 235 2/21/2014 7:32:13 AM

www.SoftGozar.com

236 ❘ Chapter 6 Creating Consistent Looking Websites

➤➤ When you create a new website, always start by adding a master page that you base all
other pages on. Even if you think you have a site with only a few pages, a master page will
help you ensure a consistent look across the entire site. Adding a master page at a later stage
to the site means making a lot of manual changes to existing pages.

➤➤ As soon as you find yourself adding styling information to complex controls like the
TreeView and Menu (discussed in the next chapter) or data-aware controls like the GridView
(discussed in Chapter 13), consider creating a skin for them. The fact that you can control
the layout of all similar controls from a single location makes it a lot easier to update your
site. If you want to override the layout for a few controls, you can always use named skins
with a SkinID or disable the skin entirely by setting EnableTheming to False.

➤➤ When creating skins or setting style properties directly on a control, consider using the
CssClass property instead, and then moving all styling-related properties to the CSS for
the site or theme. This decreases the page’s size and makes it easier to make changes to the
layout afterward.

➤➤ The Export Template feature of Visual Studio is a great time saver. You can use it not
only to create a template for an ASPX page and its Code Behind, but also for other files
like classes and CSS files, and even a complete website. This enables you to jump-start the
creation of new files, saving you from typing the same stuff over and over again.

summarY

The consistent look and feel of all pages in your site is important to give your site a professional
and attractive look. This in turn helps your visitors in finding the right information in your site,
increasing the chances that they might visit your site again. ASP.NET 4.5.1 offers a number of great
tools to aid you in creating a consistent looking website.

ASP.NET master pages and content pages help you create a layout that is repeated in every page that
is based on that master.

Whereas master pages define a centralized look and feel, you use a base page to centralize behavior
such as checking the page for invalid titles.

Themes are used to change the look and feel of the pages in your site and the controls they contain.
Because themes can contain CSS files, images, and skins, you can change colors, fonts, positioning,
and images simply by applying a theme. By making good use of techniques like named skins and
the EnableTheming attribute, you can create a design that applies to your entire site, while you
maintain the flexibility to overrule the design on a control-by-control basis.

The Planet Wrox website is now starting to grow. This means it becomes more difficult for you and
your visitors to find the right pages. The next chapter shows you a number of different ways for your
users to navigate your site so they won’t have any problems finding the page they are looking for.

c06.indd 236 2/21/2014 7:32:13 AM

Summary ❘ 237

exerCises

1. What’s the difference between a ContentPlaceHolder and a Content control? In what type of
page do you use which one?

2. How do you hook up a Content control in a content page to the ContentPlaceHolder in the
master page?

3. Imagine you have created a skin that gets applied to all buttons in your site with the following
skin definition:

<asp:Button runat="server" CssClass="MyButton" />

The imaginary CSS class MyButton sets the background color of the button to black and the
foreground color to white. To draw attention to a specific button in a page, you decide to
give it a red background instead. Which options do you have to control the look of this single
button?

4. Explain the differences between setting the Theme property and the StyleSheetTheme
property for a page.

5. Name three different ways to set the Theme property for a page and explain the differences
between the options.

6. What’s the main reason for implementing a base page in your website?

You can find answers to these exercises in Appendix A.

c06.indd 237 2/21/2014 7:32:13 AM

www.SoftGozar.com

238 ❘ Chapter 6 Creating Consistent Looking Websites

 ➤ What You learned in this Chapter

Base page A class inheriting from the ASP.NET Page class that serves as the parent
class for your ASPX pages

Content page An ASPX Web Form that uses a master page to build up its global
appearance and layout

Cookies Little pieces of text that you can store on the user’s computer and access
again from the server

master page A central page that defines the look and feel of content pages that use the
master page

named skin An ASP.NET skin with an explicit SkinID set, enabling you to refer to this
skin by its ID

page life Cycle The series of events that an ASPX page goes through when requested by a
browser

skin A collection of presentational settings to influence the appearance
of controls in the browser

theme A collection of CSS styles, skins, and images to change the appearance of
pages in your site

c06.indd 238 2/21/2014 7:32:13 AM

Navigation
What You Will learn in this Chapter:

➤➤ How to move around in your site using server controls and plain
HTML

➤➤ How to address pages and other resources like images

➤➤ How to use the ASP.NET Menu, TreeView, and SiteMapPath
navigation controls

➤➤ How to use ASP.NET’s routing capabilities

➤➤ How to send users from one page to another programmatically

Wrox.Com Code doWnloads for this Chapter

You can find the wrox.com code downloads for this chapter on the Download Code tab at
www.wrox.com/go/begaspnet451. The code is in the Chapter 7 folder.

When your site contains more than a handful of pages, it’s important to have a solid and clear
navigation structure that enables users to find their way around your site. If you implement a
good navigation system, all the disconnected web pages in your project form a complete and
coherent website.

When you think about important parts of a navigation system, the first thing that you may
come up with is a menu. Menus come in all sorts and sizes, ranging from simple and static
HTML links to complex, fold-out menus driven by CSS or JavaScript. But there’s more to
navigation than menus alone. ASP.NET comes with a number of useful navigation controls
that enable you to set up a navigation system in no time. These controls include the Menu,
TreeView, and SiteMapPath, which you learn about in this chapter.

7

c07.indd 239 25-02-2014 10:46:27

http://wrox.com
http://www.wrox.com/go/begaspnet451
http://wrox.com

240 ❘ Chapter 7 NavigatioN

Besides visual controls like Menu, navigation is also about structure. A well-organized site is easy for
your users to navigate. The Web.sitemap file that is used by the navigation controls helps you define
the logical structure of your site.

Another important part of navigation takes place at the server. Sending a user from one page
to another in Code Behind based on some condition is a very common scenario. For example,
imagine an administrator entering a new CD or concert review in the Management section of the
website. When the review is completed, you may want to show the administrator the full details by
redirecting her to a new page.

In this chapter, you learn how to use the different navigation options at your disposal. Before you
look at the built-in navigation controls, however, you need to understand the different options you
have to address the resources in your site, such as ASPX pages and images.

different WaYs to move around Your site

The most common way to let a user move from one page to another is by using the <a> element.
This element has an href attribute that enables you to define the address of a page or other resource
you want to link to. Between the tags you can place the content you want to link, such as text, an
image, or other HTML. The following snippet shows a simple example of the <a> element:

You can log in here

With this code in a web page, after users click the text “You can log in here,” they are taken to the
Login.aspx page, which should be in the same folder as the page that contains the link.

The <a> element has a server-side counterpart called the HyperLink. It eventually ends up as an <a>
element in the page. The NavigateUrl property of this control maps directly to the href attribute
of the <a> element. For example, a server-side HyperLink in a content page such as this:

<asp:HyperLink runat="server" id="LoginLink" NavigateUrl="Login.aspx">
 You can log in here</asp:HyperLink>

produces the following HTML in the browser:

You can log in here

Other than the id attribute that is assigned by the ASP.NET run time, this code is identical to the
earlier example. In both cases, the href attribute points to the Login.aspx page using a relative
URL. The next topic describes the differences between relative and absolute URLs.

understanding absolute and relative urls
Key to working with links in your site is a good understanding of the different forms a uniform
resource locator (URL) to a resource inside or outside your website can take. A URL is used to
uniquely identify a resource in your or another website. These URLs are used in different places,
including the href attribute of a hyperlink or a <link> element to point to a CSS file, the src
attribute pointing to an image or a JavaScript source file, and the url() value of a CSS property.
A URL can be expressed as a relative URL or an absolute URL. Both have advantages and
disadvantages that you should be aware of.

c07.indd 240 25-02-2014 10:46:27

Different Ways to Move Around Your Site ❘ 241

Relative URLs
In the previous examples you saw a relative URL that points to another
resource relative to the location where the URL is used. This means that
the page containing the <a> element and the Login.aspx page should both
be placed in the same folder in your site. To refer to resources in other
folders you can use the following URLs. All the examples are based on a
site structure shown in Figure 7-1.

To link from Login.aspx in the root to Default.aspx in the Management
folder, you can use this URL:

Management

To refer to the image Header.jpg from Default.aspx in the Management
folder, you can use this URL:

The two leading periods “navigate” one folder up to the root, and then the
path goes back in the Images folder to point to Header.jpg.

For a deeper folder hierarchy, you can use multiple double periods, one for each folder you want to
go upward in the site hierarchy, like the following element. You can use it to refer to the same
image from pages in the Reviews folder, which is located under the Management folder:

One benefit of relative URLs is that you can move a set of files to another directory at the same level
without breaking their internal links. However, at the same time, they make it more difficult to
move files to a different level in the site hierarchy. For example, if you moved the Login.aspx page
to a separate folder like Members, the link to the Management folder would break. The new Members
folder doesn’t have Management as its subfolder, so Management/Default.aspx is no longer a
valid link.

To overcome this problem, you can use root-based relative URLs.

Root-Based Relative URLs
Root-based relative URLs always start with a leading forward slash to indicate the root of the site. If
you take the link to the Management folder again, its root-based version looks like this:

Management

Note the leading forward slash in front of the Management folder to indicate the root of the website.
This link is unambiguous. It always points to the Default.aspx file in the Management folder in the
root. With this link, moving the Login.aspx page to a subfolder doesn’t break it; it still points to
the exact same file.

Relative URLs in Server-Side Controls
With ASP.NET Server Controls, you have another option at your disposal to refer to resources
in your website: You can use the tilde (~) character to point to the current root of the site. This is
especially useful when you run your website as a separate application folder under the main website.

figure 7-1

c07.indd 241 25-02-2014 10:46:27

242 ❘ Chapter 7 NavigatioN

This would be the case if your main site ran under www.PlanetWrox.com/Site rather than under
www.PlanetWrox.com, for example. To see what that means, consider this image that uses the tilde
in its ImageUrl:

<asp:Image ID="Image1" runat="server" ImageUrl="~/Images/Header.jpg" />

When you use an application folder such as Site, the image is searched for at /Site/Images/
Header.jpg. If you reconfigure the site to run without an application folder, the image is looked for
at /Images/Header.jpg without requiring you to change any code.

You can also use the ~ syntax on regular HTML elements, provided you add the runat attribute.
This way, the path is processed at the server and then returned to the client. The following example
shows a plain HTML link that links to a page in the Management folder:

Management

IIS Express, the web server that ships with VS 2013, will always start a new site at the root
directory. That means it will use a URL similar to http://localhost:59898/ and not
http://localhost:59898/Site/. Therefore, root-based URLs will work as expected.

Absolute URLs
In contrast to relative URLs that refer to a resource from a document or site root perspective, you
can also use absolute URLs that refer to a resource by its full path. So instead of directly referring to
an image and optionally specifying a folder, you include the full name of the domain and protocol
information (the http:// prefix). Here’s an example that refers to the Wrox logo at the Wrox
Programmer to Programmer site (http://p2p.wrox.com), where you go for questions about this
and other Wrox books or for general questions regarding programming:

Absolute URLs are required if you want to refer to a resource outside your own website. With such
a URL, the http:// prefix is important. If you leave it out, the browser will look for a folder called
p2p.wrox.com inside your own website.

Absolute URLs are unambiguous. They always refer to a fixed location, which helps you to make
sure you’re always referring to the exact same resource, no matter where the source document is
located. This may make you think that they are ideal to use everywhere — including references
to resources within your own site — but that’s not the case. The extra protocol and domain
information adds to the size of the page in the browser, making it unnecessarily slower to download.
But more important, it creates difficulties if you’re changing your domain name, or if you want to
reuse some functionality in a different website. For example, if you previously had your site running
on www.mydomain.com but you’re moving it to www.someotherdomain.com, you will need to update
all the absolute URLs in the entire website.

You will also have trouble with absolute URLs during development. Quite often, you test your
website on a URL such as http://localhost. If you were to point all your images to that URL, they
would all break as soon as you put your site on a production domain like www.PlanetWrox.com.

In short, use absolute URLs with caution. You always need them when referring to resources outside
your website, but you should give preference to relative URLs within your own projects wherever
possible.

c07.indd 242 25-02-2014 10:46:28

http://www.PlanetWrox.com/Site
http://www.PlanetWrox.com
http://localhost:59898/
http://localhost:59898/Site/
http://p2p.wrox.com
http://www.mydomain.com
http://www.someotherdomain.com
http://www.PlanetWrox.com
http://p2p.wrox.com

Using the Navigation Controls ❘ 243

understanding default documents
In the context of URLs you should also know about default documents. When you browse to a site
like www.domainname.com you magically see a page appear. How does this work? Each web server
has so-called default documents, a list of document names that can be served to a browser when no
explicit document name is supplied. So, when you browse to www.domainname.com, the web server
scans the directory requested (the root folder in this example) and processes the first file from its
default documents list it finds on disk. In most ASP.NET scenarios, the web server is set up to use
Default.aspx as the default document. So, when you browse to www.domainname.com on an ASP
.NET web server, you are actually served the page www.domainname.com/Default.aspx.

In the links you create, you should generally leave out Default.aspx when it isn’t needed. It
decreases the page size, but more important, it makes it easier for your users to type the address.

Now that you have seen how you can use URLs to point to documents and other files, it’s time to
look at some higher-level controls that make use of these URLs: the ASP.NET navigation controls.

using the navigation Controls

ASP.NET 4.5.1 offers three useful navigation tools: SiteMapPath, TreeView, and Menu. Figure 7-2
shows basic examples of the three navigation controls, without any styling applied.

The SiteMapPath on the left shows the user the path to the current page. This helps if users want to
go up one or more levels in the site hierarchy. It also helps them to understand where they are. The
TreeView can display the structure of your site and enables you to expand and collapse the different
nodes; in Figure 7-2 the entire tree is expanded. The Menu control on the right initially only displays
the Home menu item. However, as soon as you move the mouse over the menu item, a submenu
appears. In Figure 7-2 one of these child elements is the Reviews item, which in turn has child
elements itself.

figure 7-2

c07.indd 243 25-02-2014 10:46:28

http://www.domainname.com
http://www.domainname.com
http://www.domainname.com
http://www.domainname.com/Default.aspx

244 ❘ Chapter 7 NavigatioN

Although quite different in behavior and appearance, these three navigation controls have part of
their design in common.

Note In Chapter 2 I mentioned that the Navigation controls don’t work well
with frameworks like Bootstrap. If you use one of these frameworks, you’re better
off not using the Navigation controls and instead relying on the navigation
features (such as a menu) of these frameworks.

architecture of the navigation Controls
To make it easy to show relevant pages in your site using a Menu, a TreeView, or a SiteMapPath,
ASP.NET uses an XML-based file that describes the logical structure of your website. By default,
this file is called Web.sitemap. This file is then used by the navigation controls in your site to
present relevant links in an organized way. Simply by hooking up one of the navigation controls to
the Web.sitemap file, you can create complex user interface elements like fold-out menus or
a tree view.

examining the Web.sitemap file
By default, you should call the site map file Web.sitemap. This enables the controls to find the right
file automatically. For more advanced scenarios you can have multiple site map files with different
names, with a configuration setting in the Web.config file that exposes these additional files to the
system. In most cases, a single site map file is sufficient. A basic version of the site map file can look
like this:

<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0">
 <siteMapNode url="~/" title="Home.aspx" description="Go to the homepage">
 <siteMapNode url="~/Reviews.aspx" title="Reviews"
 description="Reviews published on this site" />
 <siteMapNode url="~/About.aspx" title="About"
 description="About this site" />
 </siteMapNode>
</siteMap>

The site map file contains siteMapNode elements that together form the logical structure of your
site. In this example, there is a single root node called Home, which in turn contains two child
elements, Reviews and About.

Key Elements of the Web.sitemap File
Each siteMapNode can have many child nodes (but there can only be one siteMapNode directly
under the siteMap element), enabling you to create a site structure that can be both wide and
deep. The siteMapNode elements in this example have three of their attributes set: url, title, and
description. The url attribute should point to a valid page in your website. You can use the ~
syntax you saw in the previous section to refer to application-root–based URLs. The ASP.NET run
time doesn’t allow you to specify the same URL more than once, but you can work around that

c07.indd 244 25-02-2014 10:46:28

Using the Navigation Controls ❘ 245

by making the URL unique by adding a query string. For example, ~/Login.aspx and ~/Login.
aspx?type=Admin will be seen as two different pages. You see more of the query string later in this
chapter.

The title attribute is used in the navigation controls to display the name of the page. You see
more about this later when you work with the Menu, TreeView, and SiteMapPath controls. The
description attribute is used as a tooltip for the navigation elements. Figure 7-2 shows a tooltip for
the By Genre item.

The navigation controls work together with the ASP.NET security mechanism. That is, you can
automatically hide elements from controls like the Menu that users don’t have access to. Security is
described in more detail in Chapter 16.

The SiteMapPath control that displays a breadcrumb (discussed later in this chapter) is able
to find the Web.sitemap file itself. For the other two navigation controls, you need to specify a
SiteMapDataSource control (which you can find under the Data category of the Toolbox) explicitly
as an intermediate layer to the Web.sitemap file.

To create a Web.sitemap file, you need to add one to your site and then manually add the necessary
siteMapNode elements to it. There is no automated way in Visual Studio to create a site map file
based on the current site’s structure, although third-party solutions exist that help you with this.

trY it out Creating a Web.sitemap File

In this exercise you add a new Web.sitemap file to the site and add a bunch of siteMapNode elements
to it. This site map serves as the basis for the navigation controls in the site.

 1. Right-click the website in the Solution Explorer, choose Add➤➪➤Add New Item, and click Site
Map. Leave the default name set to Web.sitemap and click Add. You end up with one root
element containing two child nodes in the Web.sitemap file.

 2. Modify the Web.sitemap so it contains this code:

<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0">
 <siteMapNode url="~/" title="Home" description="Home">
 <siteMapNode url="~/Default.aspx." title="Home"
 description="Go to the homepage" />
 <siteMapNode url="~/Reviews/Default.aspx." title="Reviews"
 description="Reviews published on this site">
 <siteMapNode url="~/Reviews/AllByGenre.aspx." title="By Genre"
 description="All Reviews Grouped by Genre" />
 <siteMapNode url="~/Reviews/All.aspx." title="All Reviews"
 description="All Reviews" />
 </siteMapNode>
 <siteMapNode url="~/About/Default.aspx." title="About"
 description="About this Site">
 <siteMapNode url="~/About/Contact.aspx." title="Contact Us"
 description="Contact Us" />
 <siteMapNode url="~/About/AboutUs.aspx." title="About Us"
 description="About Us" />

c07.indd 245 25-02-2014 10:46:28

246 ❘ Chapter 7 NavigatioN

 </siteMapNode>
 <siteMapNode url="~/Login.aspx." title="Login"
 description="Log in to this web site" />
 </siteMapNode>
</siteMap>

Remember, you don’t have to type all this code yourself. You can find a copy of the file in the Source
folder (not in the Resources folder) for this chapter’s download that you can find on the Wrox
website. Note that none of the files in that sitemap file have the .aspx extension because the site uses the
FriendlyUrls package you’ll see later in this chapter.

 3. Save the file; you’re done with it for now.

CoMMoN MIStAKeS Make sure you type the code exactly as shown here.
Notice that some items, such as the first Home element, contain other child
elements and have their closing tag further down the code. In contrast,
items such as By Genre are using self-closing tags and do not have any child
elements.

How It Works

Although you didn’t add any spectacular code in the Web.sitemap file, a few things are worth discuss-
ing. First of all, note that the site map only contains a single root node called Home. This is enforced
by the Web.sitemap file, which doesn’t allow more than one root element. The downside of this is that
this single root element will also be the root item of your Menu and TreeView controls. In Figure 7-2
you can see how all submenus of the TreeView fall under the Home node. In most websites, however, it’s
much more common to have the Home item at the same level as the others. Therefore, in this exercise
you added an additional Home node directly under the parent node to align it with the Reviews, About,
and Login items. In a later exercise you see how to hide the root element from the controls, enabling
you to only show the “first children” of the root node and their children. To overcome the problem that
URLs in the siteMapNode elements need to be unique, you set one to ~/ and the other to ~/Default.
aspx. Because of the way web servers handle default documents, this eventually points to the same file.

A Web.sitemap file all by itself isn’t very useful. You need to add navigation controls to your site to
make use of the site map. In the next section you see how to use the Menu control. Later sections dig
into the TreeView and SiteMapPath controls.

using the menu Control
The Menu control is very easy to use and tweak. To create a basic menu, all you need to do is add
one to your page, hook it up to a SiteMapDataSource control, and you’re done. But at the same
time, the control is quite flexible and has around 80 public properties (including the ones shared by
all controls) that enable you to tweak every visual aspect of the control. The following table lists
the most common properties used with the menu. Refer to the MSDN online help for a complete
description of this control.

c07.indd 246 25-02-2014 10:46:29

Using the Navigation Controls ❘ 247

propertY desCription

CssClass Enables you to set a CSS class attribute that applies
to the entire control.

StaticEnableDefaultPopOutImage A boolean that determines whether images are
used to indicate submenus on the top-level menu
items.

DynamicEnableDefaultPopOutImage A boolean that determines whether images are
used to indicate submenus on submenu items.

DisappearAfter Determines the time in milliseconds that menu
items will remain visible after you move your mouse
away from them.

MaximumDynamicDisplayLevels Determines the number of levels of submenu items
that the control can display. Useful with very large
site maps to limit the number of items being sent to
the browser.

DataSourceID The ID of a SiteMapDataSource control that
supplies the data for the menu from the Web.
sitemap file.

Orientation Determines whether to use a horizontal menu with
drop-out submenus, or a vertical menu with fold-
out submenus.

RenderingMode Introduced in ASP.NET 4, this property determines
whether the control presents itself using tables and
inline styles or unordered lists and CSS styles.

IncludeStyleBlock Introduced in ASP.NET 4, this property gives
you full control (and responsibility) in styling the
control. When set to False, ASP.NET does not add
the embedded style sheet block used to lay out the
Menu control, making you responsible for writing
the CSS.

The Menu control also has a few properties that start with Static or Dynamic, two of which were
shown in the preceding table. The Static properties are used to control the main menu items that
appear when the page loads. Because they don’t change or get hidden when you hover over them,
they are considered static. The submenus are dynamic, because they appear only when you activate
the relevant main menu items.

In addition to these properties, the Menu control also has a number of style properties that enable
you to change the look and feel of the different parts of the menu.

c07.indd 247 25-02-2014 10:46:29

248 ❘ Chapter 7 NavigatioN

Using the Rendering Mode
Earlier versions of the Menu control were criticized because of the HTML they generated. In ASP.
NET 2.0 and 3.5, the Menu control generated bloated HTML using tables and inline styles. Besides
increasing the size of the page unnecessarily, this also meant that the Menu was much harder to
style using your own CSS. Fortunately, this was fixed in ASP.NET 4 with the introduction of the
RenderingMode property on the control. By default in new ASP.NET 4.5.1 sites, this property
ensures the control renders itself as an unordered list using and elements. You can
override this behavior by setting the RenderingMode property to Table instead.

You see the Menu control and the HTML it generates in the next exercise.

Creating a Basic Version of the Menu Control
To see how the Menu control operates, you’re best off creating a very basic version first. Once you
understand how it works and how it operates under the hood, you can style the menu to your liking
so it blends in with the design of the rest of your site.

trY it out Adding a Menu to the Site

In this exercise, you see how to add a Menu control to the master page that uses the Web.sitemap file to
build up the menu. The Menu is added to the <nav> element in the master page and presents the menu
items horizontally. Because of this orientation, this Menu is suitable only for the Monochrome theme.
Later you add a TreeView to represent the pages in the site, and write some code that shows the Menu
for the Monochrome theme and the TreeView for the DarkGrey theme.

 1. Open the master page in Markup View and locate the <nav> element. Remove the placeholder
text Menu Goes Here.

 2. From the Navigation category of the Toolbox, drag a Menu and drop it between the <nav> tags.
Set the CssClass of the Menu control to MainMenu:

<nav>
 <asp:Menu ID="Menu1" runat="server" CssClass="MainMenu"></asp:Menu>
</nav>

 3. Switch to Design View. You may notice that the Design View doesn’t look like the final page
anymore. That’s because you may have removed the styleSheetTheme attribute from the
<pages> element in Web.config. You can leave it like this for now. With much of the styling
already done, this isn’t so important. You can still see how the content inside the cpMainContent
placeholder is going to end up in the browser. If your Design View does look much closer to
the final page, open the Web.config file and remove the styleSheetTheme attribute from the
<pages> element.

 4. Click the Menu control’s gray arrow to open its Smart Tasks panel.

 5. From the Choose Data Source drop-down list select <New data source>. In the dialog box that
appears, click the Site Map icon. Figure 7-3 shows the Data Source Configuration Wizard.

 6. Click OK to close the dialog box.

c07.indd 248 25-02-2014 10:46:29

Using the Navigation Controls ❘ 249

 7. When you return to the page, the Menu control now
shows the top-level element, Home (see Figure 7-4).

 8. Click the SiteMapDataSource control once and then
press F4 to open or activate the Properties Grid. Change
the ShowStartingNode property from True to False.
Note that as soon as you do this, the Menu control in
the designer is updated and shows all direct child menus
under the root element: Home, Reviews, About, and
Login. Figure 7-5 shows how your Menu control should
look now.

 9. Click the Menu control once to select it and then make the
following changes to the properties of the control using
the Properties Grid. Because the Menu control has so many
properties, you may find it easier to find them if you sort the list
of properties alphabetically in the Properties Grid. You can do
that by clicking the second button on the toolbar with an A, a Z,
and an arrow on it.

propertY value

StaticEnableDefaultPopOutImage False

Orientation Horizontal

figure 7-3

figure 7-4

figure 7-5

c07.indd 249 25-02-2014 10:46:30

250 ❘ Chapter 7 NavigatioN

When you’re ready, the code for your Menu should look like this:

<asp:Menu ID="Menu1" runat="server" CssClass="MainMenu" Orientation="Horizontal"
 DataSourceID="SiteMapDataSource1" StaticEnableDefaultPopOutImage="False">
</asp:Menu>

 10. Save the changes to the master page and then request Default.aspx in your browser. If necessary,
use the Theme drop-down list to make Monochrome the active theme. You should now see the
menu in the horizontal menu area. Hover your mouse over the items, and you’ll see sub items
appear as in Figure 7-6, which shows the page in Google’s Chrome browser.

figure 7-6

Note that the text on the sub items is hard to read. That’s because the CSS from the Monochrome
theme has changed the text of all anchors in the menu area to white and no explicit background color
has been set. After you’ve seen how the Menu control works, you get a chance to fix its styling.

Don’t worry if the menu doesn’t look good in the DarkGrey theme. You see how to implement a differ-
ent navigation control for that theme later in this chapter.

How It Works

When a page with the menu is sent to the browser, the Menu control asks the SiteMapDataSource,
defined in the same master page, for data. This data source control in turn reads the Web.sitemap file
and then hands over the data to the Menu control. Based on the hierarchical XML, the Menu is able to
generate the necessary HTML and JavaScript. It generates a element for the top menu items with
nested subelements, each containing one or more menu items. The Menu control initially hides the sub-
menus. When you hover your mouse over one of the main menu items, the submenu becomes visible.
This is done by some JavaScript.

If you search the source of the page for the JavaScript code that hides or shows the menu, you won’t
find it. So where is the JavaScript that is used to show and hide the relevant menu items? The answer is
in the cryptic <script> tag in the page that looks similar to this:

<script src="/WebResource.axd?d=vxurWY7jjhneEhwNQbmdBEdPSXwLRytjgBhME9lyLoo1
 &t=633925206143355520" type="text/javascript">

This <script> tag references a special ASP.NET handler called WebResource.axd. The seemingly ran-
dom characters in the query string (the part of the URL after the question mark) tell the ASP.NET run
time to fetch a JavaScript file that contains the functionality for the menu. The file doesn’t exist on your
disk, but is returned by the WebResource.axd handler on the fly based on the query string. If you’re

c07.indd 250 25-02-2014 10:46:31

Using the Navigation Controls ❘ 251

brave, you can look at the file by requesting it in your browser, copying the value of the src attribute
and pasting it right after the port number of your website in the browser (for example,
http://localhost:50404). You can safely ignore the file, because you don’t need to make any changes
to it for the menu to function correctly. The WebResource.axd syntax is also used by other controls,
like the TreeView that uses it to retrieve the images used in the TreeView.

In addition to the JavaScript, you also find a CSS <style> block at the top of your page, which sets the
default layout for your menu items. Among other things, it removes the default bullet that
 elements display and removes underlining from the <a> elements in the menus.

To better integrate the Menu control with the existing design of the Monochrome theme, you can
style it using CSS.

Styling the Menu Control
The Menu control exposes a number of complex style
properties that enable you to change the look of items
such as the main and submenu items. You can also define
how these items look when they are active (selected) or
when you hover your mouse over them. Each of these
style properties has a number of subproperties for visual
aspects, such as font, color, and spacing. Figure 7-7
shows the Properties Grid for the StaticMenuItemStyle
property, which defines the look of the main menu items
that are visible when the page first loads.

Most of the properties, like BackColor, ForeColor,
and Font, are added to the <style> block at the top
of the page that contains the Menu control. This makes
it difficult to reuse the design in other pages or with other themes, so it’s much better to use CSS
instead. You see how this works next.

trY it out Styling the Menu Control

In this exercise you add some CSS rules to the Monochrome.css file to influence the way the Menu
control is styled. By default, the Menu control adds CSS classes to the menu items, such as level1 and
level2, which makes it easy to apply styling at various levels in the menu.

 1. Open Monochrome.css from the Monochrome theme folder and add the following CSS rules. You
can leave out the comments placed between /* and */, because they only serve to describe the
purpose of the selectors. If you don’t feel like typing all this CSS, remember you can also get a
copy of this file from the code download that comes with this book and copy it from that file into
yours. You can find the Monochrome.css file in the Monochrome theme folder for this chapter.
Remember, CSS is case sensitive, so type the selectors exactly as shown here:

ul.level1
{
 /* Defines the appearance of main menu items. */

figure 7-7

c07.indd 251 25-02-2014 10:46:31

http://localhost:50404

252 ❘ Chapter 7 NavigatioN

 font-size: 14px;
 font-weight: bold;
 height: 19px;
 line-height: 19px;
}

ul.level1 .selected
{
 /* Defines the appearance of active menu items. */
 background-color: #509EE7;
}

a.level1
{
 /* Adds some white space to the left of the main menu item text.
 !important is used to overrule the in-line CSS that the menu generates */
 padding-left: 5px !important;
}

a.level2
{
 /* Defines the appearance of the sub menu items. */
 background-color: #555555;
 padding-left: 8px;
}

a.level1:hover, a.level2:hover
{
 /* Defines the hover style for the main and sub items. */
 background-color: #509EE7;
}

 2. Save and close the file.

 3. Next, create the following folders and Web Forms that you’ll use in this and later chapters.
Use the MyBasePage template to create the new files. Also, in Markup View, give each page a
meaningful title to avoid errors later.

folder filename title

/About Default.aspx About this Site

/About Contact.aspx Contact Us

/About AboutUs.aspx About Us

/Reviews Default.aspx My Favorite Reviews

/Reviews All.aspx All Reviews

/Reviews AllByGenre.aspx Reviews Grouped by Genre

 4. Save all changes and open the Default.aspx page from the root in your browser. Your site menu
now looks a lot better and more in line with the rest of the Monochrome theme. When you hover

c07.indd 252 25-02-2014 10:46:31

Using the Navigation Controls ❘ 253

the mouse over a main menu, the submenus appear, showing the text on a light gray background.
When you hover over a submenu, its background color changes again. Figure 7-8 shows the
expanded Reviews menu with the hover style applied to the By Genre menu item in Opera.

figure 7-8

CoMMoN MIStAKeS If you get an error when you navigate to one of the
new pages you created, make sure you gave all of them a valid title. Because
they all inherit from the base page, the title is checked when the page loads.
If the menu hasn’t been updated, press Ctrl+F5 to get a fresh copy of the style
sheet from the server.

How It Works

The Menu control renders itself as a series of and elements. The menu items themselves are
simple <a> elements with a class attribute to indicate at what level they are. If you look in the HTML
for the page in the browser you see something like this:

<ul class="level1">
 Home
 <a title="Reviews published on this site"
 class="level1" href="/Reviews/Default.aspx">Reviews
 <ul class="level2">
 <a title="All Reviews Grouped by Genre"
 class="level2" href="/Reviews/AllByGenre.aspx">By Genre
 <a title="All Reviews"
 class="level2" href="/Reviews/All.aspx">All Reviews

 ... <!-- Other menu items go here -->

Because this code is pure HTML with a few class attributes applied, it’s easy to style this information
using the CSS techniques you learned in earlier chapters. The code you added in step 1 uses a number

c07.indd 253 25-02-2014 10:46:31

254 ❘ Chapter 7 NavigatioN

of selectors to style individual elements of the menu. For example, the main menu items are styled
as follows:

ul.level1
{
 font-size: 14px;
 font-weight: bold;
 height: 19px;
 line-height: 19px;
}

This code is applied to all elements with a CSS class of level1, which means it’s applied to
all main menu items such as Home, Reviews, and About. Take a look at the first <a> element in the
HTML of the menu, which represents the selected Home item. Notice how it has a second class called
selected applied:

<a title="Go to the homepage" class="level1 selected"
 href="/Site/Default.aspx">Home

Selected items are then given a different color using this CSS selector:

ul.level1 .selected
{
 background-color: #BCD1FE;
}

The same principle is used for the other selectors, including the pseudo :hover selector that applies to
<a> elements when you hover your mouse over them:

a.level1:hover, a.level2:hover
{
 background-color: #BCD1FE;
}

To override some of the CSS that the Menu control adds to the top of the page, the CSS rule for the
static menu items looks like this:

a.level1
{
 padding-left: 5px !important;
}

The inclusion of !important marks this property as more important than the inline style targeting the
same menu item. Without !important, your menu item has only a tiny bit of padding on the left.

The Menu control in horizontal mode is ideal for the Monochrome theme, because it features
a horizontal navigation bar. For the DarkGrey theme you can use the same Menu and set its
Orientation to Vertical. This creates a vertical menu with the main items stacked on top of each
other, whereas the submenus will fold out to the right of the main menus. But instead of the Menu
control, you can also use a TreeView control to display a hierarchical overview of the site map. This
control is discussed next.

using the treeview Control
A TreeView is capable of displaying a hierarchical list of items, similar to how the tree in Windows
Explorer looks. Items can be expanded and collapsed with the small plus and minus icons in front of

c07.indd 254 25-02-2014 10:46:32

Using the Navigation Controls ❘ 255

items that contain child elements. This makes the TreeView an ideal tool to display the site map of
the website as a means to navigate the site (although you can also use it for non-navigation purposes,
such as displaying hierarchical data and allowing multiple items to be selected). The data used
by the TreeView control is not limited to the Web.sitemap file, however. You can also bind it to
regular XML files and even create a TreeView or its items (called nodes) programmatically.

The following table lists the most common properties of the TreeView. Again, the MSDN online
help is a good place to get a detailed overview of all the available properties and their descriptions.

propertY desCription

CssClass Enables you to set a CSS class attribute that applies to the entire
control.

CollapseImageUrl The image that collapses a part of the tree when clicked. The
default is an icon with a minus symbol on it.

ExpandImageUrl The image that expands a part of the tree when clicked. The
default is an icon with a plus symbol on it.

CollapseImageToolTip The tooltip that is shown when a user hovers over a collapsible
menu item.

ExpandImageToolTip The tooltip that is shown when a user hovers over an expandable
menu item.

ShowExpandCollapse Determines whether the items in the TreeView can be collapsed
and expanded by clicking an image in front of them.

ShowLines Determines whether lines are used to connect the individual items
in the tree.

ExpandDepth Determines the level at which items in the tree are expanded
when the page first loads. The default setting is FullyExpand,
which means all items in the tree are visible. Other allowed
settings are numeric values to indicate the level to which to
expand.

The TreeView control has a number of style properties that enable you to change the look and
feel of the different parts of the tree. To tell the TreeView which items to show, you bind it to a
SiteMapDataSource control, which is demonstrated next.

trY it out Building a Navigation System with the TreeView Control

In this exercise, you add a TreeView control to the <nav> element, right below the Menu you created
earlier, and then bind the TreeView to the same data source as the Menu. Next, you write some code
that shows either the Menu or the TreeView, depending on the active theme.

 1. Open the master page in Markup View and just below the Menu control, add a TreeView control
by dragging it from the Toolbox.

c07.indd 255 25-02-2014 10:46:32

256 ❘ Chapter 7 NavigatioN

 2. Between the opening and closing tags of the control, add the following <LevelStyles> element:

<LevelStyles>
 <asp:TreeNodeStyle CssClass="FirstLevelMenuItems" />
</LevelStyles>

The FirstLevelMenuItems class selector is defined in the file DarkGrey.css that you added in
the preceding chapter and is used to create some room above each tree item at the first level.

 3. Switch to Design View, click the TreeView once, and click the small arrow to open the Smart
Tasks panel. From the Choose Data Source drop-down, select SiteMapDataSource1, the data
source control you created for the Menu control (see Figure 7-9).

figure 7-9

As soon as you select the data source, the TreeView is updated in Design View; it now shows the
correct menu items from the site map file.

 4. Open the Properties Grid for the TreeView control and set the ShowExpandCollapse property to
False.

 5. Click somewhere in the document to put the focus on it, and then press F7 to open the Code
Behind of the master page file and locate the Page_Load event that you used earlier to preselect
the theme in the Theme list. Right below that code, and before the end of the method, add the
following bold code that shows or hides the TreeView and Menu controls based on the currently
active theme:

VB.NET

 item.Selected = True
 End If
 End If
 End If
 Select Case Page.Theme.ToLower()
 Case "darkgrey"
 Menu1.Visible = False
 TreeView1.Visible = True
 Case Else
 Menu1.Visible = True
 TreeView1.Visible = False
 End Select
End Sub

c07.indd 256 25-02-2014 10:46:32

Using the Navigation Controls ❘ 257

C#

 item.Selected = true;
 }
 }
 }
 switch (Page.Theme.ToLower())
 {
 case "darkgrey":
 Menu1.Visible = false;
 TreeView1.Visible = true;
 break;
 default:
 Menu1.Visible = true;
 TreeView1.Visible = false;
 break;
 }
}

 6. Save all changes and open Default.aspx in the browser. Depending on your currently active
theme, you should see either the Menu or the TreeView control. Select a different theme from
the list and the page will reload, now showing the other control as the navigation system of the
website (see Figure 7-10).

figure 7-10

CoMMoN MIStAKeS If you get an error from the code in the BasePage class
that checks the title, make sure you set a valid theme in the <pages> element
in the Web.config file. If the theme is switched when you move from one page
to another, make sure your pages inherit BasePage, which should be the case if
you based the new pages on your custom template.

c07.indd 257 25-02-2014 10:46:33

258 ❘ Chapter 7 NavigatioN

How It Works

Just like the Menu control, the TreeView control can get its data from a SiteMapDataSource control,
which in turn gets its information from the Web.sitemap file. By default, the TreeView shows plus
and minus signs to indicate that items can be collapsed and expanded. For a site menu this may not
make much sense, so by setting ShowExpandCollapse to False, you effectively hide the images. The
TreeView enables you to set a number of style properties, including the NodeStyle, RootNodeStyle,
and LevelStyles that influence the appearance of individual items in the tree. In this exercise, you
used LevelStyles to apply a class called FirstLevelMenuItems that adds some room above each item
at the top level, such as Home and Reviews.

The code in the Code Behind of the master page looks at the current theme by investigating the Theme
property of the Page. When DarkGrey is the current theme, the code hides the Menu and then dis-
plays the TreeView. In the Case Else / default block the reverse is true. This means that for the
Monochrome theme and all future themes you may add, the TreeView is hidden and the Menu is used
instead as the navigation system.

The TreeView still suffers from the same problems as the Menu control in previous versions of ASP.NET
in that it generates a lot of bloated HTML. Unfortunately, this control has no RenderingMode prop-
erty, so if you’re using the TreeView you’re stuck with the table-based HTML.

With two of the three navigation controls discussed, the final control you need to look at is the
SiteMapPath control.

using the sitemappath Control
The SiteMapPath control shows you where you are in the site’s structure. It presents itself as a series
of links, often referred to as a breadcrumb. It’s a pretty simple yet powerful control with more than
50 public properties you can set through the Properties Grid to influence the way it looks. Just like
the Menu and TreeView, it has a number of style properties you use to change the look of elements
like the current node, a normal node, and the path separator.

The following table lists a few of the most common properties of the SiteMapPath control.

propertY desCription

PathDirection Supports two values: RootToCurrent and CurrentToRoot. The
first setting shows the root element on the left, intermediate
levels in the middle, and the current page at the right of the
path. The CurrentToRoot setting is the exact opposite, where
the current page is shown at the left of the breadcrumb path.

PathSeparator Defines the symbol or text to show between the different
elements of the path. The default is the “greater than”
symbol (>), but you can change it to something like the
pipe character (|).

c07.indd 258 25-02-2014 10:46:33

Using the Navigation Controls ❘ 259

RenderCurrentNodeAsLink Determines whether the last element of the path (the current
page) is rendered as a text link or as plaintext. The default is
False, which is usually fine because you are already on the page
that element is representing, so there’s no real need for a link.

ShowToolTips Determines whether the control displays tooltips (retrieved
from the description attribute of the siteMapNode elements in
the Web.sitemap file) when the user hovers over the elements
in the path. The default is True, which means the tooltips are
shown by default.

Depending on your personal preferences, you usually don’t need to define any of the styles of the
SiteMapPath control. In the final page in the browser, the SiteMapPath consists of mainly anchor
tags (<a>) and plaintext. If you have set up a specific selector for anchors in your CSS file, the
SiteMapPath automatically shows itself in line with the other links in the page.

trY it out Creating a Breadcrumb with the SiteMapPath Control

A good location for the SiteMapPath is in the global master page of the site. That way it becomes vis-
ible in all your pages automatically.

 1. Open the master page in Markup View and locate the MainContent <section> element. Right
after its opening tag, and before the <asp:ContentPlaceHolder> tag, press Enter to create some
room and drag a SiteMapPath from the Toolbox. Right after the SiteMapPath add two line
breaks (
). You should end up with code like this:

<section id="MainContent">
 <asp:SiteMapPath ID="SiteMapPath1" runat="server"></asp:SiteMapPath>

 <asp:ContentPlaceHolder ID="cpMainContent" runat="server">

 2. Save the changes and then request Default.aspx in the browser. Note that the page now shows
the path from the root of the site (identified by the Home text) to the current page. Click a few of the
items in the Menu or TreeView control to navigate around the site and you’ll see the breadcrumb
change for each page. Figure 7-11 shows the breadcrumb for the All Reviews page in Firefox. The
All Reviews page is a subelement of Reviews, which in turn falls under the Home root element.

figure 7-11

c07.indd 259 25-02-2014 10:46:33

260 ❘ Chapter 7 NavigatioN

When you navigate to one of the subpages, you can click the elements of the path to go up one
or more levels. Clicking Reviews in the page shown in Figure 7-11 takes you back to the main
Reviews page, and clicking Home takes you back to the root of the site.

 3. Using the Theme selector, switch to the other theme. Note that the SiteMapPath looks pretty
much the same, except for the color of the links, which are defined in the CSS file of each theme.

How It Works

The SiteMapPath renders as a series of elements that contain either a link or plaintext. Here’s a
part of the HTML code for the SiteMapPath from Figure 7-11:

Home
 >
<a title="Reviews published on this site"
 href="/Reviews/Default.aspx">Reviews
 >
All Reviews

The first two menu items (Home and Reviews) are represented by a link (<a>) to enable you to navigate
to the pages defined in their href properties. The final menu item — All Reviews — is just plaintext.
In between the elements you see a with the character you set in the PathSeparator property.
Because this separator character (>) has a special meaning in HTML, its value is encoded to >
(greater than) to ensure it ends up as a plaintext character in the browser.

If you look at the HTML for the page in your browser, you also see an <a> element that enables you to
skip links. The <a> contains a small image with its left property set to a large negative value, so it is
outside of the visible browser window and you don’t see it. This is useful for vision-impaired users with
screen readers because it enables them to skip the navigation and go directly to the content of the page.
The TreeView and Menu controls use an identical approach to prevent a screen reader from reading the
entire site structure out loud every time the page loads.

The three navigation controls give you a great feature set for a navigation system in your website
from the client side. Both the Menu and the TreeView controls enable you to quickly display the
entire structure of the site so users can easily find their way. SiteMapPath helps users understand
where they are in the site and gives them an easy way to navigate to pages higher up in the site
hierarchy.

Until now, the pages you have viewed in the browser all end with a .aspx extension. However,
to make it easier for users to type in an address directly, and to please search engines, it would be
nice if you could drop the .aspx extension from the URL, so a page like /Contact.aspx would be
accessible as simple /Contact. You see how to do this next with ASP.NET Routing.

routing

Traditionally, ASP.NET Web Forms has used a file-based mechanism, where a page you request in
the browser (for example, /Contact.aspx) needs to exist on disk in order to be served. However,
this is not always desirable. Search engines tend to prefer extension-less URLs and also for users

c07.indd 260 25-02-2014 10:46:34

Routing ❘ 261

URLs without an extension are easier to look at, type in and remember. To address this issue,
Microsoft has created a solution called FriendlyUrls that you can install into your website. Once
installed and configured, all requests for pages that have the .aspx extension are automatically
redirected to their extension-less counterpart. What’s great about this solution is that it’s easy to set
up and requires no further changes to your pages (other than dropping the .aspx extension from
existing links). In the next section you see how to configure your site for extension-less URLs.

Note If you create a new website in VWD using the ASP.NET Web Forms Site
template, FriendlyUrls is installed and configured by default.

setting up extension-less urls
In order to enable extension-less URLs, you need to install a NuGet package using the Package
Manager Console. Once the package is added, you need to write a route configuration class in the
App_Code folder and call a method from the website’s Global.asax file. The Global.asax file is
a special ASP.NET file that you add to the root of the site. Inside this file you can write code that
responds to global events that happen within your application. These events work the same as
other events you’ve seen so far, such as the Button’s Click event. The biggest difference is that these
events fire for the entire application (your website) and not for a single control or page. For example,
when your ASP.NET application starts up, the Application_Start event is fired, enabling you to
execute your own code. Other events that fire include BeginRequest, which fires for each request to
the site and Application_Error, which fires when an unhandled exception in your site occurs. You
make use of this last event in Chapter 18, which deals with debugging and exception handling.

trY it out Configuring ASP.NET FriendlyUrls

In this exercise you add the Microsoft.AspNet.FriendlyUrls.Core package to the site using the Package
Manager Console window. You then write some custom code to enable the friendly URLs. In the end
you’ll test the website to ensure everything still functions as before.

 1. Start by opening the Package Manager Console using Tools ➪ Library Package Manager ➪
Package Manager Console.

 2. At the command prompt that appears, type the following command:

Install-Package Microsoft.AspNet.FriendlyUrls.Core

and press Enter.

 3. Add a new class file called RouteConfig to the App_Code folder and replace its contents with the
following code:

VB.NET

Imports System.Web.Routing
Imports Microsoft.AspNet.FriendlyUrls

Public Module RouteConfig

c07.indd 261 25-02-2014 10:46:34

262 ❘ Chapter 7 NavigatioN

 Public Sub RegisterRoutes(routes As RouteCollection)
 Dim settings = New FriendlyUrlSettings()
 settings.AutoRedirectMode = RedirectMode.Permanent
 routes.EnableFriendlyUrls(settings)
 End Sub
End Module

C#

using System.Web.Routing;
using Microsoft.AspNet.FriendlyUrls;

public static class RouteConfig
{
 public static void RegisterRoutes(RouteCollection routes)
 {
 var settings = new FriendlyUrlSettings();
 settings.AutoRedirectMode = RedirectMode.Permanent;
 routes.EnableFriendlyUrls(settings);
 }
}

You haven’t seen a Module in VB yet, but it’s essentially a class whose methods you can call with-
out instantiating an instance of it. C# doesn’t need this as it has built-in support for static classes.

 3. Right-click the website in the Solution Explorer, and choose Add ➪ Add New Item. Locate the
Global Application Class item. You don’t have to enter a name because the default of Global.
asax is the only allowed name for this file.

 4. Add the following bolded code to the Application_Start method that is already part of the code
template of the Global.asax file:

VB.NET

Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)
 ' Code that runs on application startup
 RouteConfig.RegisterRoutes(System.Web.Routing.RouteTable.Routes)
End Sub

C#

void Application_Start(object sender, EventArgs e)
{
 // Code that runs on application startup
 RouteConfig.RegisterRoutes(System.Web.Routing.RouteTable.Routes);
}

 5. Save all your changes and request the page Default.aspx in the browser by right-clicking it and
choosing View in Browser.

Rather than seeing an address such as http://localhost:49348/Default.aspx, you should see
that the file extension has been dropped from the URL, giving you an address such as http://
localhost:49348/Default.

 6. Browse around the site by requesting pages from the Menu or TreeView. Notice that none of the
pages have an .aspx extension anymore.

c07.indd 262 25-02-2014 10:46:34

http://localhost:49348/Default.aspx
http://localhost:49348/Default
http://localhost:49348/Default

Programmatic Redirection ❘ 263

How It Works

When the application starts up the first time it fires its Application_Start event. The code in Global
.asax handles that event and calls RegisterRoutes on the RouteConfig class (a module in VB) that
you created and sends it System.Web.Routing.RouteTable.Routes, a collection of routes that can be
used to determine how to redirect a user based on the incoming request. At this point, the collection is
still empty, but the RegisterRoutes method in RouteConfig adds a route that tells ASP.NET how to
handle extension-less URLs. This is all the code you need to configure friendly URLs. From now on,
whenever a request for a URL that ends with .aspx comes in, ASP.NET redirects the browser to its
extension-less counterpart.

Considerations for extension-less urls
When ASP.NET encounters a request for a URL with the .aspx extension, it instructs the browser
to fetch a new page without the extension. This means that the browser is requesting two pages,
only to be shown the final, extension-less page. Clearly, this is a waste of resources, so once you’ve
configured the friendly URLs you should no longer link to pages with an extension. To optimize
the current site, you should remove all .aspx extensions in links. If you’ve followed along with all
exercises in the book so far, you’ll find two links in Default.aspx in the root, and one in the file
TableDemo.aspx in the Demos folder. All you need to do is remove the .aspx extension so a link
like this:

You can log in here</p>

ends up like this:

You can log in here</p>

Furthermore, you should remove the extension from the URLs in Web.sitemap that drives the Menu,
TreeView, and SiteMapPath controls. Here’s an example of the Reviews page:

<siteMapNode url="~/Reviews/Default" title="Reviews"
 description="Reviews published on this site">

For more information about routing, check out the following article by Scott Hanselman from the
ASP.NET team: http://bit.ly/RLzjeT.

In addition to navigating from the client browser as you’ve seen so far, it’s also very common to
navigate a user to a different page from the server side using code. How this works is discussed in
the next section.

programmatiC redireCtion

Programmatic redirection is very useful and common in ASP.NET pages. For example, imagine
a page that enables a user to enter a review into the database. As soon as the user clicks the Save
button, the review is saved and the user is taken to another page where she can see the entire review.

ASP.NET supports three major ways to redirect users to a new page programmatically. The first two,
Response.Redirect and Response.RedirectPermanent (which was introduced in ASP.NET 4),

c07.indd 263 25-02-2014 10:46:34

http://bit.ly/RLzjeT

264 ❘ Chapter 7 NavigatioN

send an instruction to the browser to fetch a new page. The third option, Server.Transfer,
executes at the server. Because there’s quite a difference in client- and server-side redirection, the
following sections describe them in more detail.

programmatically redirecting the Client
to a different page

Within each ASPX page you have access to a property called Response, which you saw earlier when
saving the cookie for the selected theme. The Response object gives you access to useful properties
and methods that are all related to the response from the server to the user’s browser. Two of these
methods are the Redirect and RedirectPermanent methods. These methods send an instruction to
the browser to request a new page. This is useful if you want to redirect your user to another page in
your site or to a completely different website.

The difference between Redirect and RedirectPermanent mainly has to do with search engine
optimization. Using Redirect tells the client that the page has moved temporarily. You often use
this to redirect a user to a new page based on some action. For example, after filling in a contact
form, you may want to send the user to ThankYou.aspx; that displays a message.

RedirectPermanent tells the client the page has moved permanently. This is useful if you want to tell
a search engine to stop looking at an old page, and index the new one instead. For example, imagine
your site has a page called Index.aspx that you no longer use. Search engines may keep requesting
this page. If you add the following code to the Code Behind of Index.aspx, clients (including search
engines) are sent to Default.aspx. Moreover, search engines keep note of the permanency of the
redirect and will stop requesting Index.aspx and focus on Default.aspx instead.

VB.NET

Protected Sub Page_Load(sender As Object, e As EventArgs) Handles Me.Load
 Response.RedirectPermanent("Default")
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 Response.RedirectPermanent("Default");
}

The two methods each have a second version (called an overload) that accepts an additional boolean
parameter called endResponse, which enables you to execute any remaining code after the redirect
action when you pass False (false in C#) for that parameter. This is usually not necessary, so
you’re better off calling the first version, which ends the response by default.

Quite often, when you want to send the user to a different page, you want to send some additional
information. You can do that by passing it in the query string, the part of the address that comes
after the page name, separated by a question mark. Consider the following URL:

http://localhost:49246/Demos/Target?CategoryId=10&From=Home

The entire bold part (after the question mark) is considered the query string. It consists of name-
value pairs, each separated from another by an ampersand (&). In this case, you have two pairs:

c07.indd 264 25-02-2014 10:46:34

Programmatic Redirection ❘ 265

CategoryId with a value of 10 and From with a value of the word Home. The page, Target.aspx
(without an extension) in this example, is able to read these values using Request.QueryString.
You see how to use the query string in the next exercise.

trY it out Redirecting the User to Another Page

To give you a closer look at how it works, this exercise shows you how to create a page that redirects
from one page to another using Response.Redirect. The example uses a temporary redirect (the initial
page remains accessible after the redirect), so the code uses Response.Redirect instead of Response.
RedirectPermanent.

 1. In the Demos folder, create two new Web Forms based on your custom MyBasePage template. Call
them Source.aspx and Target.aspx. Set their Title to Source and Target, respectively.

 2. Open Source.aspx in Design View and double-click somewhere in the gray, read-only area of the
page outside the ContentPlaceHolder to set up a Page_Load handler. Inside this handler, write
the following code that redirects the user to the Target.aspx page. To show you how to pass
additional data through the query string and how to read that information in the target page, the
code passes a query string field called Test with SomeValue as the value:

VB.NET

Protected Sub Page_Load(sender As Object, e As EventArgs) Handles Me.Load
 Response.Redirect("Target?Test=SomeValue")
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 Response.Redirect("Target?Test=SomeValue");
}

 3. Open Target.aspx, switch to Design View, and add a Label control to the cpMainContent
Content control. Leave its ID set to Label1. Set up a Page_Load handler similar to the one you
created in the previous step by double-clicking the gray, read-only area of the page, and then add
the following code:

VB.NET

Protected Sub Page_Load(sender As Object, e As EventArgs) Handles Me.Load
 Label1.Text = Request.QueryString.ToString()
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 Label1.Text = Request.QueryString.ToString();
}

 4. Save all your changes, go back to Source.aspx, and press Ctrl+F5 to open it in the browser.
Instead of seeing Source.aspx, you now see the page depicted in Figure 7-12.

c07.indd 265 25-02-2014 10:46:35

266 ❘ Chapter 7 NavigatioN

Note If you get a 404 message instead, stating the page cannot be found,
right-click the IIS Express icon in the Windows tray bar and choose Exit. Then
in VS, press Ctrl+F5 again to open the Source page again. This causes the ASP.
NET application to restart, which in turn picks up the new page.

Note that the address bar now reads Target?Test=SomeValue, the page you redirected to in the
Page_Load event handler of the source page. The Label in the target page shows the query string
that is passed to this page. Notice that QueryString.ToString() contains only Test=SomeValue.
The address and the question mark are not a part of the query string for the page.

How It Works

When you use Response.Redirect, ASP.NET sends an instruction to the browser to tell it to fetch
a new page. In technical terms, it sends a “302” HTTP status code to indicate the page has moved
temporarily. With this instruction it also sends the new URL, so the browser understands what page
to fetch next. In this exercise, the new page was Target.aspx?Test=SomeValue, which contains
both the page name and a query string. The Target.aspx page is then requested by the browser, the
Page_Load event fires, and the query string is displayed on the label in the page. Because of this cli-
ent redirect, the new page name and query string are fully exposed to the client. If you use Response.
RedirectPermanent, ASP.NET sends out a “301 Moved Permanently” instruction. For some browsers,
this means that if the original page has previously been cached by the browser, you’re taken automati-
cally to the new page if you request the original page. Once the browser cache is cleared, a request is
made again for the original page. Other browsers may continue to request the original page. Search
engines interpret the 301 redirect as “don’t bother fetching this page again” and the page will no longer
be indexed.

Redirects follow the same naming scheme for URLs as those used in server controls, so you can redirect
to a page like ~/Default.aspx to redirect the user to the file Default.aspx in the website’s root.

In contrast to Response.Redirect and Response.RedirectPermanent, there is also Server.
Transfer, which redirects to another page at the server.

server-side redirects
Server-side redirects are great if you want to send out a different page without modifying the client’s
address bar. This enables you to hide details of page names and query strings, which may lead to

figure 7-12

c07.indd 266 25-02-2014 10:46:35

Programmatic Redirection ❘ 267

cleaner URLs from a user’s point of view. This is often used in so-called URL-rewrite scenarios that
are used to create pretty URLs. For example, a user may request a page like this:

http://www.domain.com/Cars/Volvo/850/T5/

Under the hood the server might transfer to:

http://www.domain.com/Cars/ShowCar.aspx?Make=643&Model=984&Type=7345

Clearly, the first URL is a lot easier to understand and type in a browser. It also enables a user to
guess other URLs that match the same pattern. For example, there’s a fair chance you can request a
page like this:

http://www.domain.com/Cars/Volvo/V70/R/

and end up with the right page showing you the Volvo V70 R.

In addition to being easier to understand, server-side transfers may also speed up your site a little.
Instead of sending a response to the browser to tell it to fetch a new page, which results in a new
request for a page, you can transfer the user directly to a new page, saving you some network
overhead.

Server-side transfers are carried out with the Server object. Just as the Request and Response
objects you saw earlier give you information about the request and the response, so does the Server
object provide you with information about the server the page is running on. You can use it to get
information about the server name, its IP address, and so on. One of its methods is Transfer, which
performs a server-side transfer.

You can use Server.Transfer only to redirect to other pages within your site. You cannot use it to
send the user to pages on different domains. If you try to do so, the ASP.NET run time throws an
error.

To see the difference between Response.Redirect and Server.Transfer, the following exercise
shows you how to change the page Source.aspx to perform a Server.Transfer operation.

trY it out Server-Side Redirecting

It’s easy to change the redirect code so it transfers the user to another page. All you need to do is
replace Response.Redirect with Server.Transfer as demonstrated in this exercise.

 1. Open the Code Behind of Source.aspx and replace the line with Response.Redirect with the
following line:

VB.NET

Protected Sub Page_Load(sender As Object, e As EventArgs) Handles Me.Load
 Server.Transfer("Target.aspx?Test=SomeValue")
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 Server.Transfer("Target.aspx?Test=SomeValue");
}

c07.indd 267 25-02-2014 10:46:35

http://www.domain.com/Cars/Volvo/850/T5/
http://www.domain.com/Cars/ShowCar.aspx?Make=643&Model=984&Type=7345
http://www.domain.com/Cars/Volvo/V70/R/

268 ❘ Chapter 7 NavigatioN

Note that with server side redirects, you must specify the .aspx extension, as a server-side
redirect bypasses the routing mechanism.

 2. Save the changes and then press Ctrl+F5 to open Source.aspx in the browser (see Figure 7-13).

figure 7-13

The Label control displays the query string values that were sent from Source.aspx to Target.
aspx, demonstrating the fact that you are really viewing the output of the Target.aspx page.
However, the browser’s address bar is left unmodified and still shows Source, hiding the new
page name and query string values from the user.

How It Works

Instead of instructing the browser to fetch a new page, Server.Transfer takes place completely at the
server. The output of the old page is discarded and a new page life cycle is started for the page that is
being transferred to. This page then generates its content and sends it back to the browser, while leaving
the browser’s address bar unmodified.

If you look at the emitted HTML in the browser, you see that the form action is set to the new page
so any postback that occurs is executed against that page, which in turn changes the address in the
address bar:

<form method="post" action="Target.aspx?Test=SomeValue" id="form1">
...
</form>

With programmatic ways to send a user to another page, you have come to the end of this chapter
on navigation. With the concepts shown in this chapter, you have all the knowledge you need to
create a highly effective navigation system in your site, from both the client’s browser and your own
server-side code.

praCtiCal tips on navigation

The following list presents some practical tips on navigation:

➤➤ When you start building a website that you think will grow in the future, create a logical
structure right away. Don’t place all files in the root of your website, but group logically

c07.indd 268 25-02-2014 10:46:35

Summary ❘ 269

related files in the same folder. Such logical grouping makes it easier for you to manage
the site and for your users to find the pages they want. Although it’s easy to move a page
in a Menu or TreeView using the Web.sitemap file, it’s more difficult if you are also using
programmatic redirects or transfers, because you also need to update the server-side code to
reflect the new site structure. To create a solid page structure, you can draw it out on paper
before you start with the site, or use site map diagramming tools like Microsoft Visio.

➤➤ Try to limit the number of main and sub items that you display in your Menu or TreeView
controls. Users tend to get lost or confused when they are presented with long lists of
options to choose from.

➤➤ When creating folders to store your pages in, give them short and logical names. It’s much
more intuitive to navigate to a page using www.PlanetWrox.com/Reviews than it is to
navigate to a folder with a long name including abbreviations and numbers.

summarY

This chapter familiarized you with navigation in an ASP.NET website. Users don’t just type in the
address of a web page directly, so it’s important to offer them a clear and straightforward navigation
system.

A critical foundation for a good navigation system is a good understanding of how URLs work.
URLs come in two types: relative URLs and absolute URLs. Relative URLs are used to point to
resources within your own site. Absolute URLs enable you to point to resources by their complete
location, including protocol and domain information. Absolute URLs are mostly useful if you want
to point to resources outside your own website.

ASP.NET offers three navigation controls used in the user interface of a website. These controls
enable your users to visit the different pages in your site. The Menu control displays either as a
vertical or a horizontal menu, with submenus folding or dropping out. The TreeView control can
show the complete structure of the site in a hierarchical way. The SiteMapPath control displays a
breadcrumb trail to give users a visual cue as to where they are in the site.

Using the ASP.NET Friendly URLs you can easily convert URLs that end in .aspx to their
extension-less counterpart. In order to enable friendly URLs, you need to install the FriendlyUrls
package and then add some configuration code to your website.

In addition to the built-in navigation controls, you can also send the user to a different page
programmatically. ASP.NET supports two major ways to do this: client side using Response.
Redirect and Response.RedirectPermanent and server side using Server.Transfer. The
redirect methods instruct the browser to fetch a new page from the server, whereas the transfer
method is executed at the server.

 In the next chapter you learn more about ASP.NET user controls, which enable you to reuse specific
code and user interface elements in different pages in your website.

c07.indd 269 25-02-2014 10:46:35

http://www.PlanetWrox.com/Reviews

270 ❘ Chapter 7 NavigatioN

exerCises

 1. The TreeView control exposes a number of style properties that enable you to change items
in the tree. Which property do you need to change if you want to influence the background
color of each item in the tree? What’s the best way to change the background color?

 2. What options do you have to redirect a user to another page programmatically? What’s the
difference between them?

 3. You can use the TreeView controls in two different ways: either as a list with items and sub
items that can be collapsed and expanded by clicking them, or as a static list showing all the
items, with no way to collapse or expand. What property do you need to set on the control to
prevent users from expanding or collapsing items in the tree?

You can find answers to these exercises in Appendix A.

c07.indd 270 25-02-2014 10:46:36

Summary ❘ 271

 ➤ What You learned in this Chapter

friendlyurls A Microsoft package that you can add to your site to get rid of
the .aspx extension in URLs

Menu control A navigation control that is able to display data, including data
coming from the Web.sitemap file, in a horizontal or vertical
manner using drop-down or fold-out submenus

permanent redirect A mechanism to inform a client, such as a search engine, that
a page has moved permanently, telling the client to stop
requesting the old resource

server-side transfer A redirect to another page that takes place at the server
without informing the client browser

SiteMapDataSource control The bridge between the Web.sitemap file and the navigation
controls, such as TreeView and Menu

SiteMapPath control A navigation control that displays a breadcrumb from the root
of the site to the current page, enabling users to move back
up in the hierarchy of a site

temporary redirect A mechanism to redirect a client to a new, temporary location

TreeView control A navigation control that is able to display data, including data
coming from the Web.sitemap file, in a hierarchical way

Web.sitemap The XML-based file that contains the logical structure of your
site. This file drives the other navigation controls

c07.indd 271 25-02-2014 10:46:36

c07.indd 272 25-02-2014 10:46:36

User Controls
What You Will learn in this Chapter:

➤➤ What user controls are, how they look, and why they are useful

➤➤ How to create user controls

➤➤ How to consume (or use) user controls in your pages

➤➤ How you can improve the usefulness of user controls by adding
coding logic to them

Wrox.Com Code doWnloads for this Chapter

You can find the wrox.com code downloads for this chapter on the Download Code tab at
www.wrox.com/go/begaspnet451. The code is in the Chapter 8 folder.

In addition to the master pages, themes, and skins discussed in Chapter 6, ASP.NET has
another feature that enables you to create reusable and thus consistent blocks of information:
user controls.

User controls enable you to group logically related content and controls together so they can
be treated as a single unit in content pages, master pages, and inside other user controls.
A user control is actually a sort of mini-ASPX page in that it has a markup section and,
optionally, a Code Behind file in which you can write code for the control. Working with a
user control is very similar to working with normal ASPX pages, with a few minor differences.

You typically use a User Control for content that gets used in a few pages in your site. For
example, you can build a user control that displays a banner that is shown on some, but not all
pages, as you’ll see in this chapter.

By the end of this chapter, you’ll have a firm understanding of what user controls are and how
they work, enabling you to create functional, reusable blocks of content.

8

c08.indd 273 2/21/2014 7:42:16 AM

http://www.wrox.com/go/begaspnet451
http://wrox.com
http://wrox.com

274 ❘ Chapter 8 User Controls

introduCtion to user Controls

User controls are great for encapsulating markup, controls, and code that you need repeatedly
throughout your site. To some extent, they look a bit like server controls in that they can contain
programming logic and presentation that you can reuse in your pages. However, rather than
dragging existing ones from the VS Toolbox, you need to create your own user controls and then
add them to your ASPX pages, as you learn how to do later in this chapter.

Though master pages enable you to create content that is displayed in all pages in your site, it’s
common to have content that should appear only on some, but not all, pages. For example, you may
want to display a banner on a few popular pages, but not on the homepage or other common pages.
Without user controls, you would add the code for the banner (an image, a link, and so on) to each
page that needs it. When you want to update the banner (if you want to use a new image or link), you
need to make changes to all pages that use it. If you move the banner to a user control and use that
control in your content pages instead, all you need to change is the user control and the pages that use
it pick up the change automatically. This gives you a flexible way to create reusable content.

User controls have the following similarities to normal ASPX pages:

➤➤ They have a markup section where you can add standard markup, server controls, and plain
HTML.

➤➤ They can be created and designed with Visual Studio in Markup, Design, and Split View.

➤➤ They can contain programming logic, either inline or with a Code Behind file.

➤➤ They give you access to page-based information like Request.QueryString.

➤➤ They raise some (but not all) of the events that the Page class raises, including Init, Load,
and PreRender.

You should also be aware of a few differences. User controls have an .ascx extension instead of
the regular .aspx extension. In addition, user controls cannot be requested in the browser directly.
Therefore, you can’t link to them. The only way to use a user control in your site is by adding it to a
content or master page or another user control (which eventually should be added to a page).

In the remainder of this chapter, you see how to create a user control that is capable of displaying
banners. The user control can present itself as a horizontal or vertical banner to accommodate for
differently sized regions in your pages. In the next section, you see how to create a user control. The
sections that follow show you how to use that control in an ASPX page.

Creating user Controls
You add user controls to the site like any other content type: through the Add New Item dialog box.
Similar to pages, you get the option to choose the programming language and whether you want to
place the code in a separate Code Behind file. Figure 8-1 shows the Add New Item dialog box for a
user control.

Once you add a user control to the site, it is opened in the Document Window automatically. The
first thing you may notice is that a user control doesn’t have an @ Page directive, but rather an
@ Control directive, as shown in this example that uses Code Behind:

<%@ Control Language="C#" AutoEventWireup="true" CodeFile="WebUserControl.ascx.cs"
 Inherits="WebUserControl" %>

c08.indd 274 2/21/2014 7:42:17 AM

Introduction to User Controls ❘ 275

This marks the file as a user control, so the ASP.NET run time knows how to deal with it. Other
than that, the directive is similar to a standard ASPX page that doesn’t use a master page.

With the user control open in the VS Document Window, you can use all the tools you have used
in the previous seven chapters to create pages. You can use the Toolbox to drag controls in Markup
and Design View, the CSS windows to change the look and feel and content of the user control, and
the Properties Grid to change the properties of controls in your user controls. You can also write
code that reacts to the events that the control raises.

To try this out yourself, the next exercise shows you how to create your first user control. In a later
exercise, you see how to use the control in ASPX pages in your site.

trY it out Creating a User Control

In this exercise, you create a basic user control that displays a single vertical banner using an Image
control. In later exercises, you see how to use this control in your pages and how to add another (hori-
zontal) image.

For this exercise, you need two images that represent banners — one in portrait mode with dimensions
of roughly 120 x 240 pixels, and one in landscape mode with a size of around 486 x 60 pixels. The
Resources folder for this chapter’s code download that comes with this book has these two images,
but you could also create your own. Don’t worry about the exact size of the images; as long as they are
close to these dimensions, you should be fine.

 1. Open the Planet Wrox site in VS.

 2. If you haven’t done so already, create a new folder called Controls in the root of the site.
Although user controls can be placed anywhere in the site hierarchy, placing them in a separate
folder makes them easier to find and manage.

figure 8-1

c08.indd 275 2/21/2014 7:42:17 AM

276 ❘ Chapter 8 User Controls

 3. Create another folder called Images at the root of the site.

 4. Using File Explorer (Windows Explorer on Windows 7), open up the Resources folder for
this chapter (at C:\BegASPNET\Resources\Chapter 08 if you followed the instructions in the
introduction of this book). If you haven’t done so already, you can download the necessary
resources from www.wrox.com. Drag (or copy and paste) the files Banner120x240.gif and
Banner486x60.gif from File Explorer into the Images folder you created in step 3. If you’re
using your own images, drag them into the Images folder and give them
the same names.

 5. Right-click the Controls folder and choose Add ➪ Add New Item. In
the dialog box that follows, choose your programming language, click
Web User Control, and make sure that Place Code in Separate File is
checked, as shown in Figure 8-1. Name the file Banner and then click
Add to add the control to the site. Notice how VS adds the extension of
.ascx for you automatically if you don’t type it in. VS does this for all
file types you add through the Add New Item dialog box so you don’t
need to type the extension yourself. Your Solution Explorer should now
look like Figure 8-2.

 6. Switch the user control to Design View and drag a Panel from the
Standard category of the Toolbox onto the design surface. Using
the Properties Grid, change the ID of the Panel to VerticalPanel.

 7. From the Toolbox, drag an Image control into the Panel. Select
the Image and then open the Properties Grid. Locate the ImageUrl
property and click its ellipsis button, shown in Figure 8-3.

Browse to the Images folder, select the Banner120x240.gif image,
and click OK to add it to the user control. Your Design View now
looks like Figure 8-4.

figure 8-2

figure 8-3

figure 8-4

c08.indd 276 2/21/2014 7:42:17 AM

http://www.wrox.com

Introduction to User Controls ❘ 277

 8. Using the same Properties Grid, locate the AlternateText property and type This is a sample
banner. Most browsers display the alternate text (rendered as a client-side alt attribute) only
when the image cannot be displayed correctly. Some older browsers show the alternate text as the
tooltip for the image when you hover your mouse over it.

 9. Wrap the Image in a standard <a> element and set its href attribute to http://p2p.wrox.com.
If you want, you can use the a code snippet to insert the bare link for you. To do this, type the
letter a and then press Tab. VS inserts a link for you and enables you to type in the href value
directly. When you then press Tab again, the content of the link is selected, which you can delete
by pressing Del (the Image control will be the contents of the link). Finally, cut the closing
tag and move it to after the image.

 10. Set the target of the anchor tag (<a>) to _blank to force the browser to open up the page in a
new window when the image is clicked. When you’re done, the code for the entire user control
should look like the following code, except for the Language attribute that you may have set to VB
and the AutoEventWireup that is False by default in VB.NET:

<%@ Control Language="C#" AutoEventWireup="true" CodeFile="Banner.ascx.cs"
 Inherits="Controls_Banner" %>
<asp:Panel ID="VerticalPanel" runat="server">

 <asp:Image ID="Image1" runat="server" AlternateText="This is a sample banner"
 ImageUrl="~/Images/Banner120x240.gif" />

</asp:Panel>

 11. Save the changes by pressing Ctrl+S and then close the user control file by pressing Ctrl+F4.

How It Works

The design experience of user controls in the Visual Studio IDE is identical to that of pages. You can
use drag and drop; the Toolbox; the Markup, Split, and Design Views; and so on. This makes it easy to
work with user controls because you can use all the familiar tools you also use for page development.

The control you just created displays a single image wrapped in an anchor element. In the next
section, you see how to add the user control to the master page so it will be displayed in the Sidebar
<aside> element of every page in the site. Later sections in this chapter show you how to add the
other image that you can use to display a horizontal banner in individual content pages.

adding user Controls to a Content page or master page
To use a user control in a content or master page or in another user control, you need to perform
two steps. First, you need to register the control by adding an @ Register directive to the page or
control where you want the user control to appear. The second step involves adding the tags for the
user control to the page and optionally setting some attributes on it.

A typical @ Register directive for a user control looks like this:

<%@ Register Src="ControlName.ascx" TagName="ControlName" TagPrefix="uc1" %>

c08.indd 277 2/21/2014 7:42:17 AM

http://p2p.wrox.com

278 ❘ Chapter 8 User Controls

The directive contains three important attributes, described in the following table:

attribute desCription

Src Points to the user control you want to use. To make it easier to move pages at a
later stage, you can also use the tilde (~) syntax to point to the control from the
application root.

TagName The name for the tag that is used in the control declaration in the page. You’re
free to make up this name, but usually it is the same as the name of the control.

TagPrefix Holds the prefix of the TagName that is used in the control declaration. Just as
ASP.NET uses the asp prefix to refer to its controls, you need to provide a prefix
for your own user controls. By default, this prefix is uc followed by a sequential
number, but you can also change it to your own liking — for example, to your
own company name or a custom abbreviation.

Considering the user control you created in the preceding exercise, your @ Register directive could
look like this:

<%@ Register Src="~/Controls/Banner.ascx" TagName="Banner" TagPrefix="uc1" %>

When the control is registered, you can add it to the page using the TagPrefix:TagName construct,
similar to the way you add standard server controls to a page. Given the @ Register directive for
the banner control, you need the following markup to add the control to your page:

<uc1:Banner ID="Banner1" runat="server" />

This is the minimum code needed for a user control in a page. Note that the control is defined by a
combination of the TagPrefix and the TagName. The other two attributes — ID and runat — are
standard attributes that most controls in an ASP.NET page have.

Fortunately, in most cases, you don’t have to type all this code yourself. When you drag a user
control from the Solution Explorer into a page in Design View, VS adds the required code for you
automatically. The following exercise demonstrates how this works.

trY it out Adding the User Control to Your Page

In this exercise, you add the user control Banner.ascx to the master page, so it displays a banner on
each page in the site in the sidebar area.

 1. Open up Frontend.master from the MasterPages folder and switch it into Design View.

 2. Locate the drop-down list that enables you to select a theme, position your cursor right after the
drop-down list, and press Enter three times to create some room.

 3. From the Solution Explorer, drag the Banner.ascx file from the Controls folder into the empty
spot you just created. Design View is updated and now looks like Figure 8-5.

c08.indd 278 2/21/2014 7:42:17 AM

Introduction to User Controls ❘ 279

Common mistakes If your Design View doesn’t look like this, but looks
much closer to how the file ends up in the browser, you may still have the
styleSheetTheme set in the Web.config file. Also, you may have more or fewer
options selected in the View ➪ Visual Aids or View ➪ Formatting Marks menu,
which may affect your display.

 4. Switch to Markup View and locate the @ Register directive at the top of the file. If the Src
attribute starts with two dots, change them to a tilde (~):

<%@ Register Src="~/Controls/Banner.ascx" TagName="Banner" TagPrefix="uc1" %>

 5. Save the changes to the master page and close it.

 6. Some browsers automatically draw a border around an image when it’s placed within a hyperlink
tag. To remove that border, add the following code to both themes’ CSS files:

img
{
 border: 0;
}

 7. Save all your changes, right-click Default.aspx in the root of your site in the Solution Explorer,
and choose View in Browser.

 8. The banner is now displayed below the drop-down list. Switch to the other theme and you’ll
see the same banner appear. When you click the banner, a new window is opened that takes you
to the site you linked to in the previous exercise. If you don’t see the banner appear at all, check to
see if you’re running ad-blocking software on Windows or in your browser. For example, Firefox
has an add-on called Adblock Plus that may block the banner in your web page based on its
dimensions.

figure 8-5

c08.indd 279 2/21/2014 7:42:18 AM

280 ❘ Chapter 8 User Controls

How It Works

When you dragged the user control onto the design surface of the master page, VS performed two
tasks: first it added the @ Register directive to tell the page where to look for the user control. It then
added the control declaration right below the drop-down list.

When the page loads, the ASP.NET run time sees the control declaration and injects the output of
the control at the specified location. In this example, the Panel, the <a> element, and the Image are
inserted in the sidebar region of the page. If you look at the HTML for the page in the browser, you see
the following code:

<div id="Banner1_VerticalPanel">

 <img id="Banner1_Image1" src="Images/Banner120x240.gif"
 alt="This is a sample banner" />

</div>

The Panel control has been transformed into an HTML <div> element and the Image control into an
 element. The AlternateText property has been changed to an alt attribute. Because the anchor
element (<a>) was defined with plain HTML in the user control, it ends up exactly as you wrote it.

Notice how the id of the panel has been changed from VerticalPanel to the client id Banner1_
VerticalPanel. This is necessary to give the <div> tag a unique client-side id attribute that is used in
client-side scripting. The same has happened to the id of the element. You see more about this in
a later section of this chapter.

When you add a user control to a page, VS usually refers to the control using a relative path. In this
exercise, this path first contained two dots (..) to indicate the parent folder, followed by the Controls
folder, and finally by the name of the control:

<%@ Register Src="../Controls/Banner.ascx" TagName="Banner" TagPrefix="uc1" %>

By changing the two dots to the tilde symbol, it becomes easier to move your pages around in your site
because the Src attribute now always points to the Controls folder at the application’s root, no matter
where the page that consumes the control is located. If your Src attribute already contained the tilde,
you don’t have to change anything.

Though the tilde syntax makes your pages with user controls a little easier to manage, there is an
even easier way to register your user controls sitewide.

sitewide registration of user Controls
If you have a control that you expect to use quite often on separate content pages in your site, like
the banner in the previous examples, you can register the control globally in the Web.config file.
This way it becomes available throughout the entire site, without the need to register it on every
page. The following exercise shows how to do this.

c08.indd 280 2/21/2014 7:42:18 AM

Introduction to User Controls ❘ 281

trY it out Registering User Controls in the Web.config File

In this exercise, you register the Banner.ascx user control in the Web.config file. You can then
remove the @ Register directive from the master page because it isn’t needed anymore. After you have
changed the Web.config file, adding the same user control to other pages will no longer add the
@ Register directive to the page.

 1. Open the Web.config file from the root of the site. If you’re familiar with versions of ASP
.NET prior to .NET 4, you may find the Web.config worryingly empty. But don’t worry; the
functionality it included has not been removed from .NET. The configuration information placed
in the website’s Web.config file has now been moved to the central Web.config and Machine
.config files that apply to the entire machine instead. This gives you a much cleaner
configuration file, making it easy to focus on your own stuff that you put in there.

 2. Locate the <pages/> element that you used in Chapter 6 to apply the theme, and within its tags
add the following bolded code that contains a <controls> element with a child <add/> element.
Note: you may need to change the self-closing tag of the <pages> element to a full closing tag.

<pages theme="Monochrome">
 <controls>
 <add tagPrefix="Wrox" tagName="Banner" src="~/Controls/Banner.ascx" />
 </controls>
</pages>

 3. Save the changes and close the file.

 4. Open the master page again in Markup View and locate the Banner control in the sidebar area.
Change uc1 to Wrox:

<Wrox:Banner ID="Banner1" runat="server" />

If the declaration for your user control has its own closing tag, VS updates the closing tag for you
automatically:

<Wrox:Banner ID="Banner1" runat="server"></Wrox:Banner>

 5. Scroll all the way up in the master page file and remove the entire line with the @ Register
directive.

 6. Save and close the master page.

 7. Open Default.aspx again in your browser. Note that the banner is still present in the
sidebar area.

Common mistakes If you get an error, verify you added the correct code
at the right location to the Web.config file. Also make sure that you changed
uc1 to Wrox in the control declaration and that you deleted the @ Register
 directive from the master page.

c08.indd 281 2/21/2014 7:42:18 AM

282 ❘ Chapter 8 User Controls

How It Works

Without the @ Register directive in the master page, the ASP.NET run time scans the Web.config file
for controls that have been registered there. It then finds the registration of the Wrox:Banner control so
it is able to successfully find the file using the src attribute and add its contents to the page hierarchy.

With the control registration added to the Web.config file, it’s much easier to move or rename the
control. Instead of finding and replacing the @ Register directive in all pages that use it, the only thing
you need to change is the registration in the Web.config file. When you make a change there, all pages
using the control will automatically find the new location or name of the user control.

Useful as user controls are, they have a few caveats that you need to be aware of.

user Control Caveats
Earlier you saw that the ID of the Panel control you added to the page was modified by the
ASP.NET run time. Instead of getting a <div> element with its id set to VerticalPanel, you got
the following id:

<div id="Banner1_VerticalPanel">
 ...
</div>

In many cases, this isn’t problematic because you often don’t need the client id. However, if you
need to access this control from client-side JavaScript or CSS, it’s important to understand why this
id is modified.

Understanding and Managing Client IDs
By design, all elements in an HTML page need to be unique. Giving them an id attribute is not
required, but if you do so, you have to make sure they are unique. To avoid conflicts in the final
HTML code of the page, ASP.NET ensures that each server-side element gets a unique client
id by prefixing them with the name of their naming container. Within a naming container all
elements should have unique IDs. VS warns you when you try to add a control that doesn’t have a
unique server ID. For example, you get an error when you try to add a second panel with an id of
VerticalPanel to the user control. But what if you place two Banner controls in the same page,
or one in the master page and another in a content page? Potentially, you could end up with two
client <div> elements with an ID of VerticalPanel. To avoid this problem, ASP.NET prefixes each
element with the ID of its nearest naming container. For the Panel inside the user control it means
it’s prefixed with Banner1, the server-side ID of the user control in the master page.

You can use the ClientID of a control to get its full client-side id. The following snippet shows how
to display the ClientID of the Panel control on a fictitious Label control within the Banner.ascx
user control:

VB.net

Label1.Text = VerticalPanel.ClientID

C#

Label1.Text = VerticalPanel.ClientID;

c08.indd 282 2/21/2014 7:42:18 AM

Introduction to User Controls ❘ 283

With this code, the Label control’s Text property will contain Banner1_VerticalPanel, the client-
side id of the Panel. You see a more practical example of using ClientID in the next chapter.

With an explicit ID, it’s easier to predict the final id of a client-side HTML element, which in turn
makes it easier to reference those elements in JavaScript or CSS.

Note Because the ASP.NET run time can change the client id attributes of
your HTML elements, you may have trouble using CSS ID selectors to refer
to elements. The easiest way to fix this is to use Class selectors instead of ID
selectors. Alternatively, you can use the control’s ClientID when using
embedded style sheets.

ASP.NET 4 introduced a new option to influence the client ID: the ClientIDMode.

Introducing ClientIDMode
Starting with ASP.NET 4, each web control now has a ClientIDMode property that enables you to
determine the way the client ID is made up. You can set the ClientIDMode to any of these
four values:

Value desCription

AutoID Generates the ID as it did in previous versions of ASP.NET.

Inherit With this setting the control inherits its ClientIDMode value from its parent
control.

Predictable This value is mostly used for data-bound controls (discussed in Chapter 13 and
later) and enables you to create predictable client IDs for repeating elements.
The client ID of a control is generated by concatenating the client ID of the
parent control and the server ID of the control itself. The ID can optionally be
extended with a unique value for each element using the ClientIDRowSuffix
property.

Static With this value the client ID will be exactly the same as the server ID that you
set. This enables you to set the client ID explicitly, giving you greater control.
However, it doesn’t prevent you from assigning the same value twice, which
may result in duplicate IDs in the client’s HTML. Use with care!

The default value of ClientIDMode for the Page class is Predictable and the default value for a
control is Inherit. This in turn means that the default ID generation mode for controls is effectively
Predictable, as they inherit that setting from Page. If you use Visual Studio to convert a Web
project to ASP.NET 4.5.1 from an earlier version, Visual Studio automatically sets the site default to
AutoID in the <pages> element in the Web.config file to maintain backwards compatibility like this:

<pages controlRenderingCompatibilityVersion="3.5" clientIDMode="AutoID"/>

c08.indd 283 2/21/2014 7:42:18 AM

284 ❘ Chapter 8 User Controls

Currently, the Planet Wrox website doesn’t benefit a whole lot from changing the client IDs for
any of the existing controls, so there’s no need to change any of them right now. However, in later
chapters, you use the ClientIDMode property again to create cleaner client IDs.

Although the current banner user control makes it easy to display a banner at various locations in your
site, it isn’t very smart yet. All it can do is display a linked image and that’s it. To improve its usability,
you can add behavior to the control so it can behave differently on different pages in your site.

adding logiC to Your user Controls

Although using controls for repeating content is already quite useful, they become even more useful
when you add custom logic to them. By adding public properties or methods to a user control,
you can influence its behavior at run time. When you add a property to a user control, it becomes
available automatically in IntelliSense and in the Properties Grid for the control in the page you’re
working with, making it easy to change the behavior from another file like a page.

To add properties or methods to a user control, you add them to the Code Behind of the control.
The properties you add can take various forms. In its simplest form, a property looks exactly
like the properties you saw in Chapter 5. For more advanced scenarios you need to add View State
properties, which are able to maintain their state across postbacks. In the next two exercises you
see how to create both types of properties.

Creating Your own data types for properties
To make the banner control more useful, you can add a second image to it that displays a horizontal
banner. You could also add a property to the control that determines whether to display the vertical
or horizontal image. You could do this by creating a numeric property of type System.Byte.
Then 0 would be vertical and 1 would be horizontal, for example. However, this makes it hard to
remember what each number represents. You can make it a bit easier by creating a String property
that accepts the values Horizontal and Vertical. However, strings cannot be checked at compile
time, so you may end up with a spelling mistake, resulting in an error or in the incorrect banner
being displayed. The .NET Framework supplies a nice way to solve this by enabling you to create
your own data type in the form of an enumeration. With an enumeration, or enum for short, you
assign numbers to human-friendly text strings. Developers then use this readable text, while under
the hood the numeric value is used. The following snippet shows a basic example of an enum (notice
how the VB example doesn’t use commas, whereas they are required in C#):

VB.net

Public Enum Direction
 Horizontal
 Vertical
End Enum

C#

public enum Direction
{
 Horizontal,
 Vertical
}

c08.indd 284 2/21/2014 7:42:18 AM

Adding Logic to Your User Controls ❘ 285

With these enums, the compiler assigns numeric values to the Horizontal and Vertical members
automatically, starting with 0 and counting upward. You can also define numeric values explicitly if
you want:

VB.net

Public Enum Direction
 Horizontal = 0
 Vertical = 1
End Enum

C#

public enum Direction
{
 Horizontal = 0,
 Vertical = 1
}

The cool thing about enums is that you will get IntelliSense in code files, in the Properties Grid,
and even in the code editor for your user controls. Figure 8-6 shows how IntelliSense kicks in for a
VB.NET code file.

figure 8-6

figure 8-7

figure 8-8

In Figure 8-7 you see the same list with values from the enum in the
Properties Grid.

And in Figure 8-8 you see the same list appear for a property of a user
control in Markup View.

Just as with other code files like classes, you should put your enums in a
file under the App_Code folder. If you have more than one of them, you
can store them all in the same file or create a separate file for each enum.

Enums are great for simple and short lists. They help you find the right item quickly without
memorizing “magic numbers” like 0 or 1, but enable you to use human-readable text strings instead.

In the next exercise, you see how to create an enum and use it in your Banner user control.

c08.indd 285 2/21/2014 7:42:18 AM

286 ❘ Chapter 8 User Controls

trY it out Creating Smarter User Controls

In this exercise, you add a second banner to the user control. This banner displays as a horizontal
image inside its own panel. To avoid the two banners showing up at the same time, you add a property
that determines which banner to display. Pages that use the control can then define the correct banner.

 1. Start by creating an enumeration that contains two members for the different directions: vertical
and horizontal. To do this, right-click the App_Code folder and choose Add➤➪➤Add New Item.
Choose your programming language and add a class file called Direction.

 2. Once the file opens, clear its contents and add the following code to it:

VB.net

Public Enum Direction
 Horizontal
 Vertical
End Enum

C#

public enum Direction
{
 Horizontal,
 Vertical
}

 3. Save and close the file.

 4. Open the Code Behind for the user control Banner.ascx and add the following property. To help
you create properties, VS comes with a handy code snippet. To activate the snippet in C#, type
prop and then press Tab twice. VS adds the code structure for an automatic property for you. For
VB.NET, you can type Property and then press Tab. However, this creates a full property rather
than an automatic property (which is what is used in this exercise), so you’re better off typing in
the code manually in this case. Once the code is inserted, you can press Tab again to move from
field to field, each time typing the right data type or property name. Complete the code so it looks
like this:

VB.net

Public Property DisplayDirection As Direction

C#

public Direction DisplayDirection { get; set; }

CoMMoN MIStAKeS Make sure you add the property outside the
Page_Load method (when you’re working with C#) but before the closing End
Class (in VB.NET) or the closing curly brace for the class (in C#).

Note that the name of the property is DisplayDirection and its data type is Direction,
the enum you defined earlier.

c08.indd 286 2/21/2014 7:42:19 AM

Adding Logic to Your User Controls ❘ 287

 5. Open the Markup View of Banner.ascx, copy the entire <asp:Panel>, and paste it right below
the existing Panel. Name the control HorizontalPanel and set the ImageUrl of the image to
~/Images/Banner486x60.gif. If you want to browse for the image instead of typing its path
directly, position your cursor in Markup View after the opening quote of the ImageUrl attribute’s
value and press Ctrl+Space. Choosing Pick URL in the menu that appears enables you to browse
for a file. Your code should now look like this:

<asp:Panel ID="HorizontalPanel" runat="server">

 <asp:Image ID="Image2" runat="server" AlternateText="This is a sample banner"
 ImageUrl="~/Images/Banner486x60.gif" />

</asp:Panel>

 6. Switch back to the Code Behind of the control and add the following bolded code to the Page_Load
handler. In C#, the handler should already be there. In Visual Basic, you can choose (Page Events)
from the left drop-down list at the top of the Document Window and Load from the right drop-
down list to set up the handler, or you can double-click the user control in Design View.

VB.net

Protected Sub Page_Load(sender As Object, e As EventArgs) Handles Me.Load
 Select Case DisplayDirection
 Case Direction.Horizontal
 HorizontalPanel.Visible = True
 VerticalPanel.Visible = False
 Case Direction.Vertical
 VerticalPanel.Visible = True
 HorizontalPanel.Visible = False
 End Select
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 switch (DisplayDirection)
 {
 case Direction.Horizontal:
 HorizontalPanel.Visible = true;
 VerticalPanel.Visible = false;
 break;
 case Direction.Vertical:
 VerticalPanel.Visible = true;
 HorizontalPanel.Visible = false;
 break;
 }
}

 7. Save and close the two files that make up the user control because you’re done with them for now.

 8. Open up the master page file once more in Markup View and locate the user control declaration.
Right after the runat="server" attribute, add the following DisplayDirection attribute that
sets the correct image type:

<Wrox:Banner ID="Banner1" runat="server" DisplayDirection="Horizontal" />

c08.indd 287 2/21/2014 7:42:19 AM

288 ❘ Chapter 8 User Controls

IntelliSense will help you pick the right DisplayDirection from the list. If you don’t get
IntelliSense, wait a few seconds until VS has caught up with all the changes. Alternatively, save
and close all open files (or restart VS), open the master page, and try again.

 9. Save all changes and request Default.aspx in the browser. Note that the right sidebar area now
contains the horizontal image, breaking the layout a little because the image is too wide for the
sidebar. If you don’t see the banner appear at all, check your system for ad-blocking software that
may stop the banner image from appearing.

 10. Switch back to the master page and change the DisplayDirection from Horizontal to
Vertical. Save your changes and refresh the page in the browser. The sidebar should now display
the vertical banner, as shown in Figure 8-9.

figure 8-9

 11. Open the AboutUs.aspx page from the About folder in Markup View. If you don’t have that
file, create it first. In the cpMainContent Content block, add some text describing you or your
organization and the reason you created the site. Switch to Design View and drop the Banner
.ascx control from the Solution Explorer onto the design surface, right below the text you
just added. VS detects the user control in the master page called Banner1 and assigns the ID of
Banner2 to the user control you just dropped. Notice how you see four banners in Design View;
two come from the Banner control in the master page and the other two come from the Banner
control in the About Us page itself. At run time, two of them will be hidden.

 12. Select the user control you just added in Design View, open its Properties Grid, and set the
DisplayDirection to Horizontal.

 13. Save all your changes and then press Ctrl+F5 to open the About Us page in your browser. In
addition to the banner in the right sidebar, you should now also see the horizontal banner appear
in the content area.

c08.indd 288 2/21/2014 7:42:19 AM

Adding Logic to Your User Controls ❘ 289

How It Works

The property called DisplayDirection gives your user control some extra behavior. Pages using the
control should now set the DisplayDirection like this:

<Wrox:Banner ID="Banner1" runat="server" DisplayDirection="Horizontal" />

When the control instance is created by the ASP.NET run time, the value you set in the control decla-
ration is assigned to the property DisplayDirection. If you don’t assign a value, the default will be
Horizontal for the current definition of the Direction enum, as that’s the first item in the list and has
an implicit value of zero.

When the page loads, this code in the user control is executed:

VB.net

Select Case DisplayDirection
 Case Direction.Horizontal
 HorizontalPanel.Visible = True
 VerticalPanel.Visible = False
 Case Direction.Vertical
 VerticalPanel.Visible = True
 HorizontalPanel.Visible = False
End Select

C#

switch (DisplayDirection)
{
 case Direction.Horizontal:
 HorizontalPanel.Visible = true;
 VerticalPanel.Visible = false;
 break;
 case Direction.Vertical:
 VerticalPanel.Visible = true;
 HorizontalPanel.Visible = false;
 break;
}

This code uses a Select Case/switch block to determine which image to show. When the
DisplayDirection equals Horizontal, the Visible property of HorizontalPanel is set to True and
the other control is hidden. The same principle is applied to the Vertical setting.

implementing View state properties
In addition to the DisplayDirection, another useful property for the user control would be the
URL that the banner links to. In the next section, you see how to implement this and learn how to
create a View State property called NavigateUrl that is able to survive postbacks.

c08.indd 289 2/21/2014 7:42:19 AM

290 ❘ Chapter 8 User Controls

trY it out Implementing the NavigateUrl Property

To be able to set the URL that a user is taken to programmatically, you need to be able to access
the anchor tag that is defined in the control’s markup. To do this, you need to give it an id and a
runat="server" attribute. To be able to programmatically set the new NavigateUrl property that
you’ll add to the Banner control and to ensure that this property survives postbacks, you need to imple-
ment a View State property. To show you why you need a View State property, the first three steps of
this exercise have you modify the About Us page so it sets the DisplayDirection of the Banner control
programmatically. You’ll then cause a postback so you can see that the value for the direction gets lost
because it doesn’t maintain its state in View State. The second part of the exercise then shows you how
to implement the NavigateUrl property that is able to maintain its state.

 1. Open the Code Behind of AboutUs.aspx and add the following bolded code to the Page_Load
event handler. If the handler isn’t there yet, switch to Design View and double-click somewhere on
the gray area of the page.

VB.net

Protected Sub Page_Load(sender As Object, e As EventArgs) Handles Me.Load
 If Not Page.IsPostBack Then
 Banner2.DisplayDirection = Direction.Vertical
 End If
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 if (!Page.IsPostBack)
 {
 Banner2.DisplayDirection = Direction.Vertical;
 }
}

Verify that the Banner user control has an ID of Banner2 in the Markup View of the page, or
update your code accordingly.

 2. Switch to Design View and add a Button control by dragging it from the Standard category of
the Toolbox on top of the Banner.ascx control that is placed inside the page (not the one that’s
defined in the master page). There’s no need to write any code for the Button control’s Click event.

 3. Save the page and open it in your browser. Because of the code in Page_Load, the first time the
page loads, the banner at the bottom of the screen displays the vertical banner. Now click the
button so the page will reload. This time, the page displays the horizontal image. Because the
DisplayDirection of the Banner control is set in Page_Load only when Page.IsPostBack is
False, that setting is lost when you post back, causing the banner to revert to its default setting of
Horizontal.

 4. To avoid this problem with the NavigateUrl, you need to implement it as a View State property
where the ViewState collection is used as the backing store to store the underlying value. That
way, the value is sent to the browser and back to the server with every request. To implement
the property, add the following code to the Code Behind of the Banner.ascx user control, right
below the DisplayDirection property you created earlier.

c08.indd 290 2/21/2014 7:42:19 AM

Adding Logic to Your User Controls ❘ 291

Remember, you don’t have to type all this code manually because the download that comes with
this book contains all the code shown.

VB.net

Public Property NavigateUrl() As String
 Get
 Dim _navigateUrl As Object = ViewState("NavigateUrl")
 If _navigateUrl IsNot Nothing Then
 Return CType(_navigateUrl, String)
 Else
 Return "http://p2p.wrox.com" ' Return a default value
 End If
 End Get
 Set(Value As String)
 ViewState("NavigateUrl") = Value
 End Set
End Property

C#

public string NavigateUrl
{
 get
 {
 object _navigateUrl = ViewState["NavigateUrl"];
 if (_navigateUrl != null)
 {
 return (string)_navigateUrl;
 }
 else
 {
 return "http://p2p.wrox.com"; // Return a default value
 }
 }
 set
 {
 ViewState["NavigateUrl"] = value;
 }
}

 5. Switch to Markup View of the user control and add runat="server" attributes to both
links. Give the link in the vertical panel an id of VerticalLink and the other an id of
HorizontalLink. They should end up looking like this:

...

 6. Switch back to the Code Behind of the user control (press F7) and modify the Page_Load handler
of the user control so it also sets the HRef property of the anchor element:

VB.net

Case Direction.Horizontal
 HorizontalPanel.Visible = True
 VerticalPanel.Visible = False

c08.indd 291 2/21/2014 7:42:19 AM

292 ❘ Chapter 8 User Controls

 HorizontalLink.HRef = NavigateUrl
Case Direction.Vertical
 VerticalPanel.Visible = True
 HorizontalPanel.Visible = False
 VerticalLink.HRef = NavigateUrl

C#

case Direction.Horizontal:
 HorizontalPanel.Visible = true;
 VerticalPanel.Visible = false;
 HorizontalLink.HRef = NavigateUrl;
 break;
case Direction.Vertical:
 VerticalPanel.Visible = true;
 HorizontalPanel.Visible = false;
 VerticalLink.HRef = NavigateUrl;
 break;

 7. Save the changes and go back to the Code Behind of AboutUs.aspx. Modify the code so it sets the
NavigateUrl property of the Banner control to a different URL. You should overwrite the code
that sets the DisplayDirection.

VB.net

Protected Sub Page_Load(sender As Object, e As EventArgs) Handles Me.Load
 If Not Page.IsPostBack Then
 Banner2.NavigateUrl = "http://imar.spaanjaars.com"
 End If
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 if (!Page.IsPostBack)
 {
 Banner2.NavigateUrl = "http://imar.spaanjaars.com";
 }
}

 8. Save all your changes and then request the AboutUs.aspx page in your browser by pressing Ctrl+F5.

CoMMoN MIStAKeS To ensure you get a fresh browser window, first close
any windows you may have open.

Click the horizontal banner at the left side of the page. A new window pops up, showing the URL
you set in the previous step.

 9. Close this new window and click the button you added to AboutUs.aspx earlier to cause the page
to post back to the server. Once the page is reloaded, click the banner image again. You are
taken to the same site as in step 8. This illustrates the point that the NavigateUrl property is now
able to maintain its value across postbacks, unlike the DisplayDirection property you added to
the user control earlier.

c08.indd 292 2/21/2014 7:42:19 AM

Adding Logic to Your User Controls ❘ 293

How It Works

In the first three steps, you witnessed the behavior of non–View State properties. You started off by
writing some code in the Page_Load event handler that sets the DisplayDirection programmatically:

VB.net

If Not Page.IsPostBack Then
 Banner2.DisplayDirection = Direction.Vertical
End If

C#

if (!Page.IsPostBack)
{
 Banner2.DisplayDirection = Direction.Vertical;
}

Because of the check for Page.IsPostBack, this code only fires when the page loads the first time. It
doesn’t fire when the page is reloaded due to a postback. When it fires, it sets the DisplayDirection
property of the Banner control so the banner displays the correct image. However, as soon as the page
is posted back, this value is lost and the control reverts to its default direction of Horizontal. One way
to overcome this problem is to make sure the code fires both the first time and on subsequent
postbacks. Removing the check for Page.IsPostBack is enough to accomplish this. However, this is
not always a desired solution. Imagine you’re getting the correct display direction from a database.
Because fetching data from a database is a costly operation, you want to minimize the number of times
you hit the database. In such scenarios, developers are likely to fetch the data only when the page
loads the first time and expect it to stay around on subsequent postbacks. That is exactly what the
NavigateUrl property does. You set its value once and it stays available, even if you post the page back
to the server. This is accomplished with a View State property.

To see how this works, take a look at the setter of that property first:

VB.net

Public Property NavigateUrl() As String
 ...
 Set(Value As String)
 ViewState("NavigateUrl") = Value
 End Set
End Property

C#

public string NavigateUrl
{
 ...
 set
 {
 ViewState["NavigateUrl"] = value;
 }
}

When you assign a value to the NavigateUrl property, its value is stored in the ViewState collection.
You can see the ViewState collection as a bag that enables you to store data that you can retrieve

c08.indd 293 2/21/2014 7:42:19 AM

294 ❘ Chapter 8 User Controls

again after a postback. You identify values in View State using a unique key. In the example the key
equals the name of the property so it’s easy to see they belong together. Once you assign a value to a
View State property, it’s stored in the page in the hidden __VIEWSTATE field that you learned about in
Chapter 4. This means it gets sent to the browser when the page loads and it is sent back to the server
when the page is posted back again.

When the postback occurs, the code in Page_Load in the user control fires again. Just as with the initial
request, the code accesses the NavigateUrl property in the Select Case/switch block:

VB.net

Case Direction.Horizontal
 ...
 HorizontalLink.HRef = NavigateUrl
 ...

C#

case Direction.Horizontal:
 ...
 HorizontalLink.HRef = NavigateUrl;
 ...

The value for NavigateUrl is returned by the getter of the property:

VB.net

Public Property NavigateUrl() As String
 Get
 Dim _navigateUrl As Object = ViewState("NavigateUrl")
 If _navigateUrl IsNot Nothing Then
 Return CType(_navigateUrl, String)
 Else
 Return "http://p2p.wrox.com" ' Return a default value
 End If
 End Get
 ...
End Property

C#

public string NavigateUrl
{
 get
 {
 object _navigateUrl = ViewState["NavigateUrl"];
 if (_navigateUrl != null)
 {
 return (string)_navigateUrl;
 }
 else
 {
 return "http://p2p.wrox.com"; // Return a default value
 }
 }
 ...
}

c08.indd 294 2/21/2014 7:42:20 AM

Practical Tips on User Controls ❘ 295

This code first tries to get the value from View State using ViewState("NavigateUrl") in VB.NET or
ViewState["NavigateUrl"] in C#, which uses square brackets to access items in a collection. If the
value that is returned is Nothing or null, the getter returns the default value for the property: http://
p2p.wrox.com.

However, if the value is not Nothing, it is cast to a string using CType in VB.NET and (string) in C#
and eventually returned to the calling code. At the end, the NavigateUrl returned from the View State
property is assigned to the HRef property of the anchor tag again, which is then used as the URL users
are taken to when they click the image.

View state Considerations
Although View State is designed to overcome the problems of maintaining state as outlined in the
previous exercise, you should carefully consider whether or not you use it. The values you store
in View State are sent to the browser and back to the server on every request. When you store
many or large values in View State, this increases the size of the page and thus negatively impacts
performance. Never store large objects like database records in View State; it’s often quicker to get
the data fresh from the database on each request than to pass it along in the hidden View State field
if the amount of data that needs to be stored is large. Also, because the View State is stored within
the page and is thus transferred over the wire, you shouldn’t use it to store sensitive values such as
passwords.

praCtiCal tips on user Controls

The following list provides some practical tips on working with user controls:

➤➤ Don’t overuse user controls. User controls are great for encapsulating repeating content, but
they also make it a little harder to manage your site because code and logic is contained in
multiple files. If you’re not sure if some content will be reused in another part of the site,
start by embedding it directly in the page. You can always move it to a separate user control
later if the need arises.

➤➤ Keep user controls focused on a single task. Don’t create a user control that is able to
display five different types of unrelated content with a property that determines what to
display. This makes the control difficult to maintain and use. Instead, create five lightweight
controls and use them appropriately.

➤➤ When you create user controls that contain styled markup, don’t hardcode style information
like the CssClass for the server controls contained in the user control. Instead, consider
creating separate CssClass properties on the user control, which are then used to set
the CssClass of your server controls. This improves the reusability of your user control,
making it easier to incorporate the control in different designs.

c08.indd 295 2/21/2014 7:42:20 AM

http://p2p.wrox.com
http://p2p.wrox.com

296 ❘ Chapter 8 User Controls

summarY

User controls can greatly improve the maintainability of your site. Instead of repeating the same
markup and code on many different pages in your site, you encapsulate the code in a single control,
which you can then use in different areas of your site.

To improve the usefulness of your controls, you can add behavior to them. It’s common to create
controls with properties you can set in consuming pages, enabling you to change the behavior of
the control at run time. Although View State properties can solve some of the state issues you may
come across, you should carefully consider whether you really need them. Because these properties
add to the size of the page, they can have a negative impact on your site’s performance.

You can further improve the Banner control by keeping track of the number of times each image has
been clicked. The Planet Wrox site doesn’t implement this, but with the knowledge you gain in the
chapters about database interaction, this is easy to implement yourself.

In the next chapter you create another user control that serves as a contact form. By building the
form as a user control, it’s easy to ask your users for feedback from different locations in the site.

exerCises

 1. In this chapter you saw how to create a standard property and a View State property. What is
the main difference between the two? And what are the disadvantages of each of them?

 2. Currently, the DisplayDirection property of the Banner control doesn’t maintain its state
across postbacks. Change the code for the property so it is able to maintain its state using
the ViewState collection, similar to how NavigateUrl maintains its value.

 3. What are the two main benefits of using a custom enumeration like Direction over built-in
types like System.Byte or String?

You can find answers to these exercises in Appendix A.

c08.indd 296 2/21/2014 7:42:20 AM

Summary ❘ 297

 ➤ What You learned in this Chapter

@ Control directive A set of instructions that marks a file as a User Control and define its
behavior.

@ Register directive Used to register user controls and point to their source inside pages,
master pages, and other user controls.

AlternateText The property that enables you to set the alt attribute on images that
is shown when the image cannot be displayed.

Machine.config The central .NET configuration file that applies to your entire system
and provides defaults for your website’s settings.

user Control A block of content (stored in a file with an .ascx extension and an
optional Code Behind file) that can be reused in pages, master pages,
and other user controls in your site.

View state properties Properties at the page, master page, or user control level that store
their values in View State so they can survive postbacks.

ViewState collection The ViewState collection is the property on the Page, UserControl,
and MasterPage classes that enables you to store and retrieve values
using View State.

c08.indd 297 2/21/2014 7:42:20 AM

c08.indd 298 2/21/2014 7:42:20 AM

9
Validating User Input

What You Will learn in this Chapter:

➤➤ What user input is and why it’s important to validate it

➤➤ What ASP.NET 4.5.1 has to offer to aid you in validating user input

➤➤ How to work with the built-in validation controls and how to
create solutions that are not supported out of the box

➤➤ How to send e-mail using ASP.NET

➤➤ How to read text files

Wrox.Com Code doWnloads for this Chapter

You can find the wrox.com code downloads for this chapter on the Download Code tab at
www.wrox.com/go/begaspnet451. The code is in the Chapter 9 folder.

So far you have been creating a fairly static website where you control the layout and content
by adding fixed pages to the site and its navigation menus. But you can make your site a lot
more attractive by incorporating dynamic data. This data usually flows in two directions: it
either comes from the server and is sent to the end user’s browser, or the data is entered by the
user and sent to the server to be processed or stored.

Data coming from the server can be retrieved from many different data sources, including files
and databases, and is often presented with the ASP.NET data controls. You see how to access
databases in Chapter 12 and onward.

The other flow of data comes from the user and is sent to the server. The scope of this
information is quite broad, ranging from simple page requests and “Contact Us” forms to
complex shopping cart scenarios and wizard-like user interfaces, but the underlying principle
of this data flow is basically the same in all scenarios — users enter data in a Web Form and
then submit it to the server.

c09.indd 299 2/21/2014 7:44:51 AM

http://www.wrox.com/go/begaspnet451
http://wrox.com
http://wrox.com

300 ❘ Chapter 9 Validating User inpUt

To prevent your system from receiving invalid data, it’s important to validate this data before you
allow your system to work with it. Fortunately, ASP.NET 4.5.1 comes with a bag of tools to make
data validation a simple task.

The first part of this chapter gives you a good look at the validation controls that ASP.NET
supports. You see what controls are available, how to use and customize them, and in what
scenarios they are applicable.

The second half of this chapter shows you how to work with data in other ways. You see how to
receive the information a user submits to your site and then send it by e-mail and how to customize
the mail body using text-based templates.

By the end of the chapter, you will have a good understanding of the flow of information to an
ASP.NET website and the various techniques you have at your disposal to validate this data.

GatherinG data from the user

Literally every website on the Internet has to deal with input from the user. Generally, this input can
be sent to the web server with a number of different techniques, of which GET and POST are the most
common. In Chapter 4, you briefly saw the difference between these two methods and saw that GET
data is appended to the actual address of the page being requested, whereas with the POST method,
the data is sent in the body of the request for the page.

With the GET method, you can retrieve the submitted data using the QueryString property of the
Request object, as discussed in Chapter 7. Imagine you are requesting the following page:

http://www.PlanetWrox.com/Reviews/ViewDetails.aspx?ReviewId=34&CategoryId=3

With this example, the query string is ReviewId=34&CategoryId=3. The question mark is used to
separate the query string from the rest of the address, and the query string itself consists of name/
value pairs separated by an ampersand (&). The names and values in turn are separated by the
equals symbol (=). To access individual items in the query string, you can use the Get method of the
QueryString collection:

VB.NET

' Assigns the value 34 to the reviewId variable
Dim reviewId As Integer = Convert.ToInt32(Request.QueryString.Get("ReviewId"))
' Assigns the value 3 to the categoryId variable
Dim categoryId As Integer = Convert.ToInt32(Request.QueryString.Get("CategoryId"))

C#

// Assigns the value 34 to the reviewId variable
int reviewId = Convert.ToInt32(Request.QueryString.Get("ReviewId"));
// Assigns the value 3 to the categoryId variable
int categoryId = Convert.ToInt32(Request.QueryString.Get("CategoryId"));

The POST method, on the other hand, gets its data from a form with controls that have been
submitted to the server. Imagine you have a form with two controls: a TextBox called Age to hold
the user’s age and a Button to submit that age to the server. In the Button control’s Click event,
you could write the following code to convert the user’s input to an integer:

c09.indd 300 2/21/2014 7:44:51 AM

http://www.PlanetWrox.com/Reviews/ViewDetails.aspx?ReviewId=34&CategoryId=3

Gathering Data from the User ❘ 301

VB.NET

Dim age As Integer = Convert.ToInt32(Age.Text) ' age now holds the user's age

C#

int age = Convert.ToInt32(Age.Text); // age now holds the user's age

Note that in this case, there is no need to access a collection like Form as you saw with the
QueryString collection earlier. ASP.NET shields you from the complexity of manually retrieving
data from the submitted form, and instead populates the various controls in your page with the data
from the form. If you have the need, you can still access the form values by accessing the Request
.Form collection, similar to how you do it with the Request.QueryString collection.

With the previous code example, all is well as long as users enter values that look like an age in the
text box. But what happens when a user submits invalid data, either deliberately or by accident?
What if a user sends the text I am 42 instead of just the number 42? When that happens, the code
will crash. The ToInt32 method of the Convert class throws an exception (an error) when you
pass it something that cannot be represented as a number. As soon as the exception is thrown, page
execution stops completely. Chapter 18 digs deeper into exception handling.

To avoid these problems, you need to validate all the data that is being sent to the server. When it
doesn’t look valid, you need to reject it and make sure your application deals with it gracefully.

Validating user input in Web forms
People concerned with validating user input often use the mantra: Never trust user input. Although
this may seem like paranoia at first, it is really important in any open system. Even if you think you
know who your users are, and even if you trust them completely, they are often not the only users
that can access your system. As soon as your site is out on the Internet, it’s a potential target for
malicious users and hackers who will try to find a way into your system. In addition to these evil
visitors, even your trustworthy users may send incorrect data to your server by accident.

To help you overcome this problem as much as possible, ASP.NET ships with a range of validation
controls that help you validate data before it is used in your application. In the following sections,
you see how to use the standard validation controls to ensure the user submits valid data into the
system.

The ASP.NET Validation Controls
ASP.NET 4.5.1 comes with six useful controls to perform validation in
your website. Five of them are used to perform the actual validation,
whereas the final control — ValidationSummary — is used to provide
feedback to the user about any errors made in the page. Figure 9-1 shows
the available controls in the Validation category of the Toolbox.

The validation controls are extremely helpful in validating the data that
a user enters in the system. They can easily be hooked to other controls
like the TextBox or a DropDownList; however, they also support custom
validation scenarios. Figure 9-2 demonstrates two of the validation
controls — RequiredFieldValidator and RangeValidator — at work to
prevent a user from submitting the form without entering required and valid data.

fiGure 9-1

c09.indd 301 2/21/2014 7:44:51 AM

302 ❘ Chapter 9 Validating User inpUt

The great thing about the validation controls is that they can check the input at the client and
at the server. When you add a validation control to a web page, the control renders JavaScript that
validates the associated control at the client. This client-side validation works on most modern
web browsers with JavaScript enabled, including Internet Explorer, Firefox, Chrome, Opera, and
Safari and on many different devices such as desktops, tablets, and phones. At the same time, the
validation is also carried out at the server automatically. This makes it easy to provide your user
with immediate feedback about the data using client-side scripts, while your web pages are safe from
bogus data at the server.

A Warning on Client-side Validation
Although client-side validation may seem like it’s enough to prevent users from sending invalid
data to your system, you should never rely on it as the only solution to validation. It’s easy to
disable JavaScript in the browser, rendering the client-side validation routines useless. In addition, a
malicious user can easily bypass the entire page in the browser and send information directly to the
server, which will happily accept and process it if you don’t take countermeasures.

In general, you should see client-side validation as a courtesy to your users only. It gives them
immediate feedback so they know they forgot to enter a required field, or entered incorrect data
without a full postback to the server. Server-side validation, on the other hand, is the only real
means of validation. It’s effectively the only way to prevent invalid data from entering your system.

The following section discusses how you can employ the validation controls to protect your data.

Using the Validation Controls
To declare a validation control in your ASPX page, you use the familiar declarative syntax. For
example, to create the RequiredFieldValidator control used in Figure 9-2, you need the following
code:

<asp:RequiredFieldValidator ID="ReqVal1" runat="server" ControlToValidate="YourName"
 ErrorMessage="Enter your name" />

The ControlToValidate property links this validation control to another control (YourName in
this example) in the page. When asked to perform its validation, the validation control looks at the
value of the linked control and when that value doesn’t meet the validation rules you set, it displays
the message set in the ErrorMessage property by default although you can override this behavior as
you’ll see later.

fiGure 9-2

c09.indd 302 2/21/2014 7:44:51 AM

Gathering Data from the User ❘ 303

To give you an idea of how the validation controls work, the following exercise guides you through
the process of using the RequiredFieldValidator in a contact form that is placed in a user control.
The exercise is followed by an in-depth discussion of the various validation controls.

Note Visual Studio comes with a number of useful code snippets that
enable you to quickly insert controls like the validation controls in Markup
View. In the following exercise, you see how to add the necessary controls
using the Toolbox, Design View, and drag and drop, but it’s useful to know
how to quickly add controls in Markup View as well. For example, to insert a
TextBox in Markup View, type tb or textbox and then press Tab. VS
completes the full control code for you. To insert a RequiredFieldValidator,
type the letters req, press Ctrl+Spacebar to have VS complete the word
requiredfieldvalidator for you, and then press Tab again to insert the
entire tag.

If you do this directly below a TextBox control with its ID set, VS even sets
the correct ControlToValidate attribute for you. This latter trick wouldn’t
work if you tried it in the next exercise because the various controls are not
directly next to each other, but are placed in separate table cells. VS still inserts
the code for the RequiredFieldValidator for you, but you need to set the
ControlToValidate property to the ID of the associated TextBox manually.

trY it out Using the RequiredFieldValidator

In this exercise, you create a user control called ContactForm.ascx. You can place it in a web page so
visitors to your site can leave some feedback. In later exercises, you extend the control by sending the
response by e-mail to your e-mail account.

 1. Open the Planet Wrox project and add a new user control in the Controls folder. Call the control
ContactForm.ascx. Make sure that it uses your programming language and a Code Behind file.

 2. Switch to Design View and insert a table by choosing Table ➪ Insert Table. Create a table with
eight rows and three columns.

 3. Merge the three cells of the first row. To do this, select all three cells, right-click the selection, and
choose Modify ➪ Merge Cells.

 4. In the merged cell, type some text that tells your users they can use the contact form to get in
touch with you. You could use an h1 element as a heading above the page to draw the user’s
attention.

 5. In the first cell of the second row, type the word Name. Into the second cell of the same
row, drag a TextBox and set its ID to Name. Into the last cell of the same row, drag a
RequiredFieldValidator from the Validation category of the Toolbox. Finally, into the second
cell of the last row, drag a Button. Rename the button to SendButton by setting its ID and set its
Text property to Send. When you’re done, your Design View looks like Figure 9-3.

c09.indd 303 2/21/2014 7:44:51 AM

304 ❘ Chapter 9 Validating User inpUt

 6. Click the RequiredFieldValidator once in Design View and then open up its Properties Grid by
pressing F4. Set the following properties on the control:

propertY Value

CssClass ErrorMessage

ErrorMessage Enter your name

Text *

ControlToValidate Name

Note: you can type in the value for ControlToValidate directly or you can pick it from the list
by clicking the down arrow.

 7. Save the changes to the user control and then close it because you’re done with it for now.

 8. Add the following CSS declaration to the CSS files for both themes (Monochrome.css and
DarkGrey.css):

.ErrorMessage
{
 color: Red;
}

Save and close both files.

 9. Open Contact.aspx from the About folder in Markup View and from the Solution Explorer, drag
the user control ContactForm.ascx between the tags of the cpMainContent control. You should
end up with this control declaration:

<asp:Content ID="Content2" ContentPlaceHolderID="cpMainContent" runat="Server">
 <Wrox:ContactForm ID="ContactForm" runat="server" />
</asp:Content>

Visual Studio remembers the last custom prefix you used and reuses that when dragging the
user control onto the page. Depending on how you previously configured the Banner user con-
trol in Web.config, your Wrox: prefix may be different and will be something like uc1. That

fiGure 9-3

c09.indd 304 2/21/2014 7:44:52 AM

Gathering Data from the User ❘ 305

doesn’t matter for this exercise. Also note, when you drag the control in Design View, its ID is
ContactForm1. For this exercise, the actual ID doesn’t matter, but beware of the difference when
working with the control ID later in this chapter.

 10. Open Web.config and add or modify the following code under the <appSettings> element
(which is a direct child of the main <configuration> node) to disable unobtrusive validation:

<configuration>
 <appSettings>
 <add key="ValidationSettings:UnobtrusiveValidationMode" value="None" />
 </appSettings>
 ...
</configuration>

Unobtrusive validation requires jQuery, which is discussed in Chapter 11. Until then, you need to
disable it or your pages with validation controls will throw errors.

 11. Save your changes and open Contact.aspx in your browser. If you get an error, make sure
you renamed the TextBox to Name and that you set the ControlToValidate property on the
RequiredFieldValidator to Name.

 12. Leave the Name text box empty and click the Send button. Note that the page is not submitted to
the server. Instead, you should see a red asterisk appear at the very right of the row for the name
field to indicate an error. If the asterisk is not red, press Ctrl+F5 or Ctrl+R to get a fresh copy of
the theme’s CSS file from the server and click the Send button again.

 13. Enter your name and click Send again. The page now successfully posts back to the server.

How It Works

With the RequiredFieldValidator attached to the TextBox through the ControlToValidate
property, client-side JavaScript is sent to the browser that validates the control at the client.

The RequiredFieldValidator control is able to validate another control like a TextBox. It does this
by comparing the value of the other control with its own InitialValue property and making sure that
the other control’s value is different. By default, this property is an empty string, which means that
anything except an empty string is considered a valid value. Whenever you try to submit the form to the
server by clicking the Send button, the validation control checks the control it is attached to. When the
text box is still empty, the asterisk from its Text property is shown (formatted with the ErrorMessage
CSS class), and the form is not submitted. You see how to use and display the ErrorMessage property
later in this chapter. When the user enters something in the Name text box, validation succeeds and the
page submits to the server successfully.

Using the HTML5 Data Types
HTML5 has introduced a number of new types for the type attribute on the input element. These
new types enable you to determine how a browser should interpret the field so it can render a correct
user interface for it. ASP.NET 4.5.1 supports these new attributes using the TextMode property of

c09.indd 305 2/21/2014 7:44:52 AM

306 ❘ Chapter 9 Validating User inpUt

a TextBox control. In addition to the SingleLine, MultiLine, and Password types that have been
supported since ASP.NET 1, you can now use the following values as well:

Value desCription

Color Enables the user to choose a color, usually from a color picker.

Date / DateTime /
DateTimeLocal / Month /
Week / Time

Enables various ways for the user to enter a date or time.
Depending on the type, the browser renders a calendar or other
specialized control to enter a value.

Email Enables the user to enter an e-mail address.

Url Enables the user to enter a web address.

Number Enables the user to enter a number.

Range Enables the user to enter a number with a specified range. The
browser typically draws a slider control to enter the value.

Search Enables the user to enter a search term. This typically renders a
standard text box but with an option in the right corner to clear
the text.

These server-side values for the TextMode property are converted into client-side HTML attributes
with the same name, but written in lowercase. To see how that looks, consider this TextBox:

<asp:TextBox runat="server" ID="Email" TextMode="Email" />

When rendered in the browser, this control generates the following HTML:

<input name="Email" type="email" id="Email" />

Based on various values for the type attribute, browsers can help the user enter the correct data by
drawing a different user interface for the control and by validating the data that is entered. Also,
devices with a “soft keyboard” — a keyboard that is displayed on-screen — are able to adapt the
keyboard to match the data type for the input control. For example, Apple’s iPad shows a numeric
keyboard if you put the focus on a text box with its type set to number.

Although these new attribute values are a great addition to HTML, you need to be aware of a few
caveats. First of all, with HTML5 being so new, not all browsers support these new features.
Figure 9-4 shows each of these attributes in the five most popular browsers today. On the first row,
you see Internet Explorer 11, Firefox 24, and Chrome 29; and on the second row, you see Safari 5
and Opera 16.

As you can see, some browsers support more of the attributes than others. At the time of writing,
Chrome and Opera have the best support. Note that not all browsers implement these new types
exactly the same. For example, in most but not all browsers you’ll get an error and you won’t be able
to submit the page if you enter a value that doesn’t look like an e-mail address in an input box with
its type attribute set to email.

c09.indd 306 2/21/2014 7:44:52 AM

Gathering Data from the User ❘ 307

You can try out a live example of this page to test your browser by navigating to http://imar
.spaanjaars.com/demos/html5/html5.aspx.

fiGure 9-4

Another thing you need to realize is that you should see these new attributes as helpful hints to
the user only; you should never solely rely on them for validation purposes. It would be easy for a
malicious user to bypass the validation carried out by the browser. In addition, because browser
support is still so limited, the validation won’t be carried out for all fields in all browsers.

c09.indd 307 2/21/2014 7:44:52 AM

http://imar.spaanjaars.com/demos/html5/html5.aspx
http://imar.spaanjaars.com/demos/html5/html5.aspx

308 ❘ Chapter 9 Validating User inpUt

Given the limited implementation of these new attributes in major browsers, you may wonder if it’s
worth using them in the first place. My recommendation would be to use them, even though support
is somewhat limited. First of all, new versions of browsers are released on a regular basis, bringing
better HTML5 support. In addition, other devices such as phones and tablets come to the market
with browsers that do have support for these attributes. Finally, using these attributes is pretty much
risk-free. The default type for an input element is text, so when a browser encounters a value it
doesn’t understand, it treats the element as a simple text box.

Because you can’t rely on these HTML5 attributes to validate your data, it’s important that you use
the ASP.NET validation controls. The next section discusses the remaining validation controls that
are available in ASP.NET.

The Standard Validation Controls
The five validation controls (the ones in the Validation category of the Toolbox whose names end in
Validator) ultimately all inherit from the same base class, and thus share some common behavior.
Four of the five validation controls operate in the same way, and contain built-in behavior that
enables you to validate associated controls. The last control, the CustomValidator, enables you to
write custom validation rules not supported out of the box.

The following table lists a number of common properties that are shared by the validation controls
and that you typically use when working with them.

propertY desCription

Display This property determines whether or not the hidden error message
takes up space. With the Display set to Static, the error message
takes up screen real estate, even when it is hidden. This is similar to
the CSS setting visibility: hidden you saw in Chapter 3. The
Dynamic setting hides the error message using display: none until
it needs to be displayed. With a setting of None, the control is not
visible at all. This is useful if you are using a ValidationSummary,
which you see later in this chapter.

CssClass This property enables you to set the CSS class attribute that is
applied to the error message text.

ErrorMessage This property holds the error message used in the
ValidationSummary control. When the Text property is empty,
the ErrorMessage value is also used as the text that appears on the
page.

Text The Text property is used as the text that the validation control
displays on the page. This could be an asterisk (*) to indicate an
error, or text like “Enter your name.”

c09.indd 308 2/21/2014 7:44:52 AM

Gathering Data from the User ❘ 309

ControlToValidate This property contains the server ID of the control that needs to be
validated.

EnableClientScript This property determines whether the control provides validation at
the client. The default is True.

SetFocusOnError This property determines whether client-side script gives the focus
to the first control that generated an error. This setting is False by
default.

ValidationGroup Validation controls can be grouped together, enabling you to
perform validation against a selection of controls. All controls
with the same ValidationGroup are checked at the same time,
which means that controls that are not part of that group are not
checked. Consider, for example, a login page with a Login button
and fields for a username and password. The same page may also
contain a search box that enables you to search the site. With the
ValidationGroup, you can have the Login button validate the
username and password boxes, whereas the Search button triggers
validation for just the search box.

IsValid You don’t typically set this property at design time, but at run
time, it provides information about whether the validation test has
passed. The Page class also has an IsValid property that returns
the combined result of all controls in the page or validation group, as
you’ll see later.

The Difference Between the Text and ErrorMessage Properties
At first glance, these two properties seem to serve the same
purpose. Both of them can be used to provide feedback to
the user in the form of an error message. But when used in
combination with a ValidationSummary control, there’s a
subtle difference between the two. When you set both the
properties at the same time, the validation control displays
the Text property, whereas the ValidationSummary
uses the ErrorMessage. Figure 9-5 shows a sample login
page with two RequiredFieldValidator controls. Both
validation controls have their Text property set to an
asterisk (*) to give the user a visual cue that there is a
problem. The ValidationSummary below the control then
displays the full ErrorMessage properties.

You’ve already seen the RequiredFieldValidator at work, so the next sections give you a good
look at the three remaining standard validation controls. A later section then shows you how to use
the CustomValidator and the ValidationSummary controls.

fiGure 9-5

c09.indd 309 2/21/2014 7:44:52 AM

310 ❘ Chapter 9 Validating User inpUt

RangeValidator
The RangeValidator control enables you to check whether a value falls within a certain range.
The control is able to check data types like strings, numbers, dates, and currencies. For example,
you can use it to make sure a number is between 1 and 10, a character between A and F, or
a selected date falls between today and the next two weeks. The following table lists its most
important properties.

propertY desCription

MinimumValue This property determines the lowest acceptable value. For example, when
checking an integer number between 1 and 10, you set this property to 1.

MaximumValue This property determines the highest acceptable value. For example, when
checking an integer number between 1 and 10, you set this property to 10.

Type This property determines the data type that the validation control
checks. This value can be set to String, Integer, Double, Date, or
Currency to check the respective data types.

The following example shows a RangeValidator that ensures that the value entered in the Rate text
box is a whole number that lies between 1 and 10:

<asp:RangeValidator ID="RangeValidator1" runat="server"
 ControlToValidate="Rate" ErrorMessage="Enter a number between 1 and 10"
 MaximumValue="10" MinimumValue="1" Type="Integer" />

RegularExpressionValidator
The RegularExpressionValidator control enables you to check a value against a regular
expression that you set in the ValidationExpression property of the control. Regular expressions
offer a compact syntax that enables you to search for patterns in text strings. Regular expressions
are a complex subject, but fortunately, Visual Studio comes with a few built-in expressions that
make it easy to validate values like e-mail addresses and ZIP codes. If you want to learn more about
regular expressions, pick up a copy of Wrox’s Beginning Regular Expressions by Andrew Watt
(ISBN: 978-0-7645-7489-4).

The following example shows a RegularExpressionValidator control that ensures that a user
enters a value that looks like an e-mail address:

<asp:RegularExpressionValidator ID="RegularExpressionValidator1" runat="server"
 ControlToValidate="Email" ErrorMessage="Enter a valid e-mail address"
 ValidationExpression="\w+([-+.']\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*" />

CompareValidator
The CompareValidator can be used to compare the value of one control to another value. This is
often used in sign-up forms where users have to enter a password twice to make sure they type the
same password both times. Instead of comparing to another control, you can also compare against a
constant value.

c09.indd 310 2/21/2014 7:44:53 AM

Gathering Data from the User ❘ 311

The following table lists the additional properties for the CompareValidator control.

propertY desCription

ControlToCompare This property contains the ID of the control that the validator compares
against. When this property is set, ValueToCompare has no effect.

Operator This property determines the type of compare operation. For example,
when Operator is set to Equal, both controls must contain the same
value for the validator to be considered valid. Similarly, you have
options like NotEqual, GreaterThan, and GreaterThanEqual to
perform different validation operations.

Type This property determines the data type that the validation control
checks. This value can be set to String, Integer, Double, Date, or
Currency to check the respective data types.

ValueToCompare This property enables you to define a constant value to compare
against. This is often used in agreements where you have to enter a
word like Yes to indicate that you agree to some condition. Simply set
the ValueToCompare to the word Yes and the ControlToValidate to
the control you want to validate and you’re done. When this property is
set, make sure that the ControlToCompare property is empty because
that will otherwise take precedence.

This example shows a CompareValidator that ensures that two TextBox controls contain the same
password:

<asp:CompareValidator ID="CompareValidator1" runat="server"
 ControlToCompare="ConfirmPassword" ControlToValidate="Password"
 ErrorMessage="Your passwords don't match" />

In the following exercise, you see most of these controls at work, except for the RangeValidator.
However, its usage is similar to the other validation controls, so it’s just as easy to add it to your web
page or user control when you need it.

trY it out Extending the Contact Form

In the previous Try It Out, you started with the basics for the contact form by creating a user control
holding a table and a few controls to let users enter their name. In this exercise, you extend the form
and add fields for an e-mail address, a home phone number, a business phone number, and a comment.
You use the validation controls to ensure that the e-mail address is in a valid format, and that at least
one of the two phone numbers is filled in. To make sure users enter a correct e-mail address, they are
asked to enter it twice. If you don’t like this behavior, you can simply delete the row with the text box
for the second e-mail address and ignore the CompareValidator.

c09.indd 311 2/21/2014 7:44:53 AM

312 ❘ Chapter 9 Validating User inpUt

 1. Open ContactForm.ascx from the Controls folder again and switch to Design View.

 2. In the second column, drag five additional TextBox controls in the empty table cells between the
text box for the name and the Send button. From top to bottom, name the new controls by setting
their ID as follows:

➤➤ EmailAddress

➤➤ ConfirmEmailAddress

➤➤ PhoneHome

➤➤ PhoneBusiness

➤➤ Comments

 3. Set the TextMode property of the Comments control to MultiLine, and then make the control a
little wider and taller in the designer so it’s easier for a user to add a comment.

 4. Set the TextMode property of the two e-mail fields to Email. On browsers that support this, this
will validate the value as an e-mail address and may trigger the correct “soft keyboard” to be
displayed.

 5. In the first cell of the rows to which you added the TextBox controls, add text describing the
purpose of the TextBox. Figure 9-6 shows an example.

 6. In the last cell of the row for the first e-mail address, drag a RequiredFieldValidator and a
RegularExpressionValidator. In the last cell of the row for the second e-mail address, drag a
RequiredFieldValidator and a CompareValidator. Finally, in the last cell for the comments
row, drag a RequiredFieldValidator. When you’re done, your form looks like Figure 9-6.

fiGure 9-6

 7. For each of the five validation controls you added, open the Properties Grid and set the
Text property to an asterisk (*), the Display property to Dynamic, and the CssClass to

c09.indd 312 2/21/2014 7:44:53 AM

Gathering Data from the User ❘ 313

ErrorMessage. To do this for all controls at once, select the first validator control, then press the
Ctrl key and click the others. When you make changes to the Properties Grid while you’ve selected
multiple controls, the changes are applied to all of them.

 8. Next, set the remaining properties for the controls as shown in the following table.

Control properties You need to set Values You need to set

RequiredFieldValidator (for
the first e-mail address)

ErrorMessage: Enter an e-mail address

ControlToValidate: EmailAddress

RegularExpressionValidator ErrorMessage: Enter a valid e-mail
address

ControlToValidate: EmailAddress

RequiredFieldValidator (for
the second e-mail address)

ErrorMessage: Confirm the e-mail
address

ControlToValidate: ConfirmEmailAddress

CompareValidator ErrorMessage: The e-mail addresses
don’t match

ControlToCompare: EmailAddress

ControlToValidate: ConfirmEmailAddress

RequiredFieldValidator (for
the Comments field)

ErrorMessage: Enter a comment

ControlToValidate: Comments

 9. Still in Design View, click the
RegularExpressionValidator once, open its Properties
Grid, and locate the ValidationExpression property.
When you click the property in the grid, the grid shows
a button with an ellipsis. When you click that button,
you get a dialog box that enables you to select a regular
expression, shown in Figure 9-7.

 10. Find the item Internet e-mail address in that list and click
it. Note that VS inserts a long regular expression in the
Validation Expression box. Click OK to add the property
to the control and dismiss the dialog box.

 11. Save all the changes and then request the Contact.aspx page from the About folder in your
browser. If you get errors, make sure you set all the ControlToValidate properties on the
relevant controls as shown earlier. Play around with the various validation controls by leaving out
required data or by entering bogus data. At this stage, you will only see the red asterisks appear to

fiGure 9-7

c09.indd 313 2/21/2014 7:44:53 AM

314 ❘ Chapter 9 Validating User inpUt

give an indication of the problem. After you have seen how these validators work, you learn how
to use the ValidationSummary to provide more detailed information to the user.

Depending on your browser, you may see other notifications about invalid fields such as colored
borders or tooltips explaining the problem. Only when you have entered all required fields and
typed the same e-mail address in both text boxes will the page submit to the server.

How It Works

Just like the RequiredFieldValidator control, the other validation controls emit JavaScript to the cli-
ent, which is triggered when you click the Send button or when the value of one of the client controls is
changed. The CompareValidator works by looking at the value of two different controls. Only when
both contain the same data will it return true. It’s important to realize that the CompareValidator
control does not trigger its validation code when the text boxes are empty. Therefore, it’s important to
hook up a RequiredFieldValidator control as well. This control first makes sure the user entered at
least some data and then the CompareValidator control ensures that the text is the same in both text
boxes.

The RegularExpressionValidator control works by checking the pattern of the data that it is validat-
ing. If you look at the ValidationExpression property of the control, you see a long, cryptic string.
This pattern ensures that the e-mail address contains some text, optionally followed by some separa-
tion character like a dash (-) or period, followed by more text. It also ensures that there’s an @ symbol
in the address, followed by a domain name, a period, and then at least one more character to represent
the top-level domain like .com, .nl, or .co.uk. With this expression, you@example.com is considered a
valid e-mail address. So is a@a.a, whereas you@you isn’t.

Note that the RegularExpressionValidator control only roughly checks the syntax of the e-mail
address. It’s still perfectly possible to enter a nonexistent e-mail address that just looks valid or even an
invalid e-mail address such as a@a.a. However, in many cases, this validator is good enough to filter
out common typos that users make when entering e-mail addresses.

If you look at the source for the page you see a lot of JavaScript code at the end of the file. With this
code, ASP.NET has implemented the client-side validation since the first version of ASP.NET. However,
starting with ASP.NET 4.5, you now have another alternative that uses jQuery under the hood. You
learn more about jQuery and the alternative validation mechanism in Chapter 11.

The validation controls you have seen so far are very easy to use. You add them to a page, set a
few properties, and then they do all the hard work for you. However, they do not support every
possible validation scenario you may come up with. For example, what if you wanted to ensure that
a user entered at least one of the two phone numbers? And what if you wanted to present your users
with a full list of all the errors they made in the form? This is where the CustomValidator and the
ValidationSummary controls come in.

The CustomValidator and ValidationSummary Controls
The CustomValidator control enables you to write custom validation functions for both the client
(in JavaScript) and the server (using VB.NET or C#). This gives you great flexibility with regard to
the data you want to validate and the rules you want to apply.

c09.indd 314 2/21/2014 7:44:54 AM

mailto:you@example.com

Gathering Data from the User ❘ 315

The ValidationSummary control provides the user with a list of errors that it retrieves from the
individual validation control’s ErrorMessage properties. It can display these errors in three different
ways: using a list embedded in the page, using a JavaScript alert box, or using both at the same time.
You control this setting with the ShowMessageBox and ShowSummary properties. Additionally, the
DisplayMode property enables you to change the way the list of errors is presented. The default
setting is BulletList where each error is an item in a bulleted list, but other options are List
(without bullets) and SingleParagraph.

You learn how to write client- and server-side validation methods and how to use the
ValidationSummary control in the following exercise.

trY it out Writing Client- and Server-side Validation Methods

In this exercise, you see how to use the CustomValidator in your page to ensure that at least one of the
two phone numbers is entered. The validation is carried out at the client and at the server. Additionally,
you see how to use the ValidationSummary control to provide feedback to your users about the errors
they made in the form.

Note This is the first chapter where you’ll actually write some JavaScript on
your own. Don’t worry about it too much because you won’t have to write
a whole lot of it. The examples should be pretty easy to follow, even if you
don’t have any prior experience with JavaScript. If you want to learn more
about JavaScript, consider getting a copy of Professional JavaScript for Web
Developers, 3rd Edition by Nicholas C. Zakas (Wrox, ISBN: 978-1-1180-2669-4).

 1. Go back to the ContactForm.ascx user control in VS and switch it to Design View. Right-click
the row with the Button control in it (right-click a cell, not the button) and choose Insert ➪ Row
Below from the context menu to insert a new table row. Alternatively, you can click in a cell of the
row to select it and then press Ctrl+Alt+down arrow to have the row inserted for you as well.

 2. Select the three cells of the row you just inserted, right-click them, and choose Modify ➪ Merge
Cells to create a single cell that spans all three columns.

 3. From the Validation category of the Toolbox, drag a ValidationSummary control into this newly
created cell and set its CssClass property to ErrorMessage.

 4. In the empty cell after the text box for the Home phone number, drag a CustomValidator control
and set the following properties:

propertY Value

CssClass ErrorMessage

Display Dynamic

ErrorMessage Enter your home or business phone number

Text *

ClientValidationFunction validatePhoneNumbers

c09.indd 315 2/21/2014 7:44:54 AM

316 ❘ Chapter 9 Validating User inpUt

 5. Double-click the CustomValidator control in Design View to have VS write an event handler for
the ServerValidate event. Add the following code to the handler:

VB.NET

Protected Sub CustomValidator1_ServerValidate(source As Object,
 args As ServerValidateEventArgs) Handles CustomValidator1.ServerValidate
 If Not String.IsNullOrEmpty(PhoneHome.Text) OrElse
 Not String.IsNullOrEmpty(PhoneBusiness.Text) Then
 args.IsValid = True
 Else
 args.IsValid = False
 End If
End Sub

C#

protected void CustomValidator1_ServerValidate(object source,
 ServerValidateEventArgs args)
{
 if (!string.IsNullOrEmpty(PhoneHome.Text) ||
 !string.IsNullOrEmpty(PhoneBusiness.Text))
 {
 args.IsValid = true;
 }
 else
 {
 args.IsValid = false;
 }
}

 6. Switch to Markup View of the user control and add the following block of JavaScript code right
before the table with the controls:

<script>
 function validatePhoneNumbers(source, args)
 {
 var phoneHome = document.getElementById('<%= PhoneHome.ClientID %>');
 var phoneBusiness = document.getElementById('<%= PhoneBusiness.ClientID %>');
 if (phoneHome.value != '' || phoneBusiness.value != '')
 {
 args.IsValid = true;
 }
 else
 {
 args.IsValid = false;
 }
 }
</script>
<table class="auto-style1">

In JavaScript, it’s common to write method names using camel casing, where the first word of the
method name is written in lowercase, followed by words with the first letter in uppercase.

If you find that VS is adding your opening curly braces ({) at the end of a line, rather than on their
own line, choose Tools ➪ Options from the main menu. Then expand the path Text Editor ➪

c09.indd 316 2/21/2014 7:44:54 AM

Gathering Data from the User ❘ 317

JavaScript ➪ Formatting, and check off both items in the New Lines category. This is purely a for-
matting preference; the JavaScript runs fine with or without the curly brace on its own line. Note
that JavaScript is case sensitive, so make sure you type the code exactly as shown here.

 7. Save all the changes by pressing Ctrl+Shift+S, request the Contact.aspx page in your
browser, and click the Send button. Note that the ValidationSummary control shows a list
of all the problems with the data entered in the form. The client-side JavaScript function
validatePhoneNumbers now ensures that you enter at least one phone number before you can
submit the page back to the server. Figure 9-8 shows how the page appears in Google Chrome.

fiGure 9-8

 8. Go back to VS and click the ValidationSummary control in Design View. On the Properties Grid,
change ShowMessageBox to True and ShowSummary to
False. (Quick tip: you can easily choose the next item
in a drop-down list on the Properties Grid by
double-clicking the value. For booleans, this means that
if you double-click False, it turns to True and vice versa).
Also, set its HeaderText property to Please correct the
following errors:.

 9. Open the page in the browser again and click the Send
button once more. Note that instead of the inline list with
errors, you now get a client-side alert, shown in Figure 9-9.
The list of errors is preceded with the HeaderText of the
ValidationSummary.

fiGure 9-9

c09.indd 317 2/21/2014 7:44:54 AM

318 ❘ Chapter 9 Validating User inpUt

How It Works

When you added the CustomValidator control, you set up two event handlers, one for the client-side
and one for the server-side validation check, both in bold in the following snippet:

<asp:CustomValidator ID="CustomValidator1" runat="server" ErrorMessage="Enter your
 home or business phone number" ClientValidationFunction="validatePhoneNumbers"
 OnServerValidate="CustomValidator1_ServerValidate"
 Display="Dynamic">*</asp:CustomValidator>

If you’re using VB.NET, you won’t see the OnServerValidate attribute because that is set up in the
Code Behind using the Handles keyword.

The JavaScript function validatePhoneNumbers that you set in the ClientValidationFunction is
triggered at the client when you click the Send button. This function is defined in the markup section of
the user control and contains two references to the text boxes for the phone numbers:

var phoneHome = document.getElementById('<%= PhoneHome.ClientID %>');
var phoneBusiness = document.getElementById('<%= PhoneBusiness.ClientID %>');

The calls to the ClientID are wrapped in a server-side <%= %> block. This code runs at the server, and
then returns the ClientID of the control to the client. If you look at the HTML for the Contact page in
the browser, you find the following code:

function validatePhoneNumbers(source, args)
{
 var phoneHome = document.getElementById('cpMainContent_ContactForm_PhoneHome');
 var phoneBusiness =
 document.getElementById('cpMainContent_ContactForm_PhoneBusiness');
 if (phoneHome.value != '' || phoneBusiness.value != '')

Here you can see how the server-side ClientID properties of the controls have been transformed into
their client id counterparts. This is a much better solution than hard-coding the id attributes of the
text boxes in the final HTML, because they can be changed easily by the ASP.NET run time. You saw
how and why this happened in the preceding chapter.

To make the final JavaScript in the browser slightly shorter and easier to read, you can use the
ClientIDMode property you saw in the preceding chapter to “fix” the IDs of the phone number con-
trols. Because it’s unlikely you will have two ContactForm user controls in a single page, you can safely
assume that you won’t end up with two client controls with the same name if you fix the client control
IDs. To do this, you need to set the ClientIDMode for these two controls to Static, like this:

<asp:TextBox ID="PhoneHome" runat="server" ClientIDMode="Static" />
...
<asp:TextBox ID="PhoneBusiness" runat="server" ClientIDMode="Static" />

Because the control IDs are now fixed, they end up as-is in the final HTML:

var phoneHome = document.getElementById('PhoneHome');
var phoneBusiness = document.getElementById('PhoneBusiness');

Eventually, the client IDs are passed to the JavaScript function getElementById on the document
object to get a reference to their respective text boxes in JavaScript. In Chapter 11, which deals with
jQuery, I discuss an easier alternative to using getElementById.

The code then examines the value properties of these two TextBox controls. If one of them is not an
empty string, the validation succeeds. But how does the validatePhoneNumbers method report back

c09.indd 318 2/21/2014 7:44:54 AM

Gathering Data from the User ❘ 319

to the validation mechanism whether the validation succeeded or not? When the ASP.NET validation
mechanism calls the validatePhoneNumbers method, it passes two arguments: source, which is a ref-
erence to the actual CustomValidator in the HTML, and args. The args object exposes an IsValid
property that enables you to determine whether or not the validation succeeded:

if (phoneHome.value != '' || phoneBusiness.value != '')
{
 args.IsValid = true;
}
else
{
 args.IsValid = false;
}

With this code, if both text boxes are empty, IsValid is set to false, so validation won’t succeed, stop-
ping the form from being submitted. If at least one of the text boxes contains a value, IsValid is set to
true. In this example, the source argument is not used, but you could use it to highlight or otherwise
change the validation control based on whether or not it’s valid.

At the server, the CustomValidator control calls the server-side validation method, which performs the
same check:

VB.NET

If Not String.IsNullOrEmpty(PhoneHome.Text) OrElse
 Not String.IsNullOrEmpty(PhoneBusiness.Text) Then
 args.IsValid = True
Else
 args.IsValid = False
End If

C#

if (!string.IsNullOrEmpty(PhoneHome.Text) ||
 !string.IsNullOrEmpty(PhoneBusiness.Text)
{
 args.IsValid = true;
}
else
{
 args.IsValid = false;
}

By checking the data at the client and at the server, you ensure your system accepts only valid data.
Even when the browser doesn’t support JavaScript (possibly because the user turned it off deliberately),
your data is still checked at the server. However, it’s important to realize that you still need to check
whether the page is valid before you work with the data submitted to it. You do this by checking the
IsValid property of the page:

VB.NET

If Page.IsValid Then
 ' OK to proceed
End if

c09.indd 319 2/21/2014 7:44:54 AM

320 ❘ Chapter 9 Validating User inpUt

C#

if (Page.IsValid)
{
 // OK to proceed
}

The IsValid property returns True when all the controls in the page or in the active ValidationGroup
are valid. By checking the IsValid property on the server before you work with the data, you can be
sure that the data is valid according to your validation controls, even if the user turned off JavaScript in
the browser, and sent the form to the server without any client-side checks. You see the IsValid prop-
erty used again later in this chapter, when sending e-mail is discussed.

In addition to the validation controls you have seen so far, ASP.NET comes with another validation
mechanism, which is discussed next.

understanding request Validation
By design, an ASP.NET page throws an exception whenever one of the controls on a page contains
content that looks like HTML tags. For example, you see the error shown in Figure 9-10 when you
enter <h1>Hello World</h1> or <script>alert(‘Hello World’);</script> as the contents for
the comments text box in the contact form.

fiGure 9-10

The ASP.NET run time does this to prevent users from entering HTML or JavaScript that can potentially
mess with the design or workings of your website or that could lead to security risks. If you’re sure you
want to allow your users to enter HTML, you have a few options available. First, you can disable
request validation by setting the ValidateRequest attribute in the @ Page directive to False:

<%@ Page Inherits="Contact" Title="Contact Us" ValidateRequest="False" %>

With this setting set to False, users can enter HTML without causing an error. In previous versions
of ASP.NET, this was the only way to enable a user to send HTML to your page. The downside of this
solution is that it’s all or nothing. By turning off request validation at the page level, all controls in the
page will now accept HTML. This unnecessarily opens up your page for potential abuse. As a good
security mechanism, you should allow HTML only for specific fields that you determine explicitly.

c09.indd 320 2/21/2014 7:44:55 AM

Processing Data at the Server ❘ 321

Fortunately, since ASP.NET 4.5 this is very easy; the Control class (from which controls such as
TextBox inherit) has been extended with a ValidateRequestMode property that controls the
check for invalid data. When set to Enabled, the control does not accept HTML; when set to
Disabled the control does accept HTML, similar to how ValidateRequest enabled this for all
controls in the page. The final value for ValidateRequestMode is Inherit, which gives it the
value set by the parent of the control such as a PlaceHolder. This is convenient because you
can wrap multiple controls that should accept HTML in a PlaceHolder and then configure the
ValidateRequestMode on the container instead of on each individual control.

Before you set this property on a control, make sure you really want to allow users to submit HTML
in your controls. This opens up your site for Cross Site Scripting attacks when you’re not careful.
Depending on the situation, you may need to sanitize the data by removing dangerous pieces of code
such as <script> elements. When displaying the data on a page, you could use a Literal control,
with its Mode set to Encode in order for the HTML to be encoded and rendered harmless. With this
property set, the text is displayed verbatim, without being interpreted as HTML or JavaScript.

proCessinG data at the serVer

The information that a user inputs on your Web Forms is typically not the only data that makes
your website an interactive, data-driven system. In most websites, you have information coming
from other data sources as well, such as databases, text, XML files, and web services. In addition,
there is also data going out of your system. You may want to send an e-mail to the owner of the
website whenever someone posts information through the contact page, or you may want to notify
people whenever you add a new feature or review to the website. For these scenarios, it’s important
to understand how ASP.NET enables you to send e-mail. This is discussed in the next section.

sending e-mail from Your Website
Writing code that sends e-mail from an ASP.NET page is pretty straightforward. Inside the System
.Net.Mail namespace you find a number of classes that make it easy to create and send e-mail
messages. These classes enable you to create new messages; add addressees in the To, CC, and Bcc
fields; add attachments; and, of course, send the messages.

The following table describes four classes that you typically work with when sending e-mail from a
.NET application.

Class desCription

MailMessage This class represents the message you’re going to send. It has properties such
as Subject and Body to set the message contents; To, CC, and Bcc properties
to set the addressees; and an Attachments collection to attach files to the
message.

MailAddress This class represents a sender or receiver address used in the e-mail. It has
a few constructor overloads that enable you to set the e-mail address and
display name.

continues

c09.indd 321 2/21/2014 7:44:55 AM

322 ❘ Chapter 9 Validating User inpUt

Class desCription

Attachment This class represents a file you can attach to a MailMessage. When you
construct an Attachment instance, you can pass in the name of the file you
want to send. You then add the attachment to the MailMessage using the
Add method of its Attachments collection.

SmtpClient This class is used to send the actual message. By default, an instance of this
class checks the Web.config file for settings, such as the SMTP server (which
stands for Simple Mail Transfer Protocol), to send the mail to and an optional
username and password that is used for sending e-mail.

Configuring Your Website for Sending E-mail
Although the code to send e-mail is pretty easy, configuring your application and network can
often be a bit trickier. The machine you are using to send e-mail must be able to access an SMTP
server, either available locally on your network or over the Internet. In most cases, you should use
the SMTP server that you also use in your e-mail client (for example, Microsoft Outlook). If you’re
hosting your site with an external hosting party, you need to use the SMTP server it provides.
Contact your network administrator or your ISP if you are unsure about your SMTP server.

When you have the address of the SMTP server, you can configure it globally in the Web.config
file in the <system.net> element. When you are using the SMTP server from your ISP, the
configuration setting looks like this:

 <system.net>
 <mailSettings>
 <smtp deliveryMethod="Network" from="Your Name <you@example.com >">
 <network host="smtp.example.com" />
 </smtp>
 </mailSettings>
 </system.net>
 ...
</configuration>

You must add the <system.net> element as a direct child of the Web.config file’s root element
<configuration>. Within <system.net> you add a <mailSettings> element, which in turn contains
an <smtp> element. Finally, the <network> element has a host attribute that points to your SMTP server.

The <smtp> element accepts an optional from attribute that enables you to set the name and e-mail
address of the sender in the format Name <E-mail Address>. Because the angle brackets (< >) in
XML have special meaning, you need to escape them with < and >. When you send e-mail
programmatically, you can override this From address as you see in the next Try It Out exercise.

If your ISP requires you to authenticate before you can send the e-mail or wants you to use a
different port number, you can add this information to the <network /> element:

<smtp deliveryMethod="Network" from="Your Name <you@example.com >">
 <network host="smtp.example.com" userName="UserName" password="Password"
 port="587" />
</smtp>

 (continued)

c09.indd 322 2/21/2014 7:44:55 AM

Processing Data at the Server ❘ 323

The port number varies from server to server. In some cases, you can leave out the port attribute
and the SmtpClient will use the default port number (which is 25). Other port numbers that are
frequently used include 465 and 587.

Some mail servers — like the one supplied by Gmail — require you to use Secure Sockets Layer (SSL),
a technique that encrypts the data going to the mail server to improve security. In ASP.NET prior to
version 4, you had to enable SSL programmatically in your own code. Fortunately, with the inclusion
of the enableSsl attribute on the <network /> element, this is no longer the case. To use a Gmail
server or any other mail server that requires SSL, you use a <network /> element that looks like this:

<network enableSsl="true" host="smtp.gmail.com" password="Password"
 userName="YourAccountName@gmail.com" port="587" />

Don’t forget to enter your password and username — which in the case of Gmail is your full Gmail
e-mail address. Depending on your settings, you may need to generate an application-specific
password, which you can do here: http://bit.ly/N9Wv35.

For Outlook.com (the former Hotmail), you can use the following settings:

<network host="smtp.live.com" password="Password"
 userName="you@yourdomain.com" enableSsl="true" port="587" />

And for Yahoo, you can use the following settings:

<network host="smtp.mail.yahoo.com" password="Password"
 userName="YourAccountName@yahoo.com" />

During development, there’s a much easier way to handle mail sent by your application: drop it in
a folder on your local hard drive directly. To do this, create a folder like C:\TempMail. You need to
create the folder yourself because it won’t be created automatically. Then configure the <smtp />
element as follows:

<smtp deliveryMethod="SpecifiedPickupDirectory"
 from="Planet Wrox <planetwrox@example.com>">
 <specifiedPickupDirectory pickupDirectoryLocation="C:\TempMail" />
</smtp>

With these settings in Web.config, your messages are not sent over the network, but are dropped as
physical files (with an .eml extension) in the folder you configured in the pickupDirectoryLocation
attribute. You can read these files with mail clients like Outlook or Windows Live Mail (which you
can download from the Internet). I prefer this setting during development over the networked version
because mail arrives instantly, and doesn’t clutter up my mail account or Inbox. Another alternative is
to use a fake development SMTP server such as smtp4dev. You can find out more about this program
on their website at http://smtp4dev.codeplex.com.

Refer to the online MSDN documentation at http://tinyurl.com/bu79nkm for more information
about the different settings that the <mailSettings> element takes.

Creating E-mail Messages
To create and send an e-mail message, you need to carry out four steps. First, you need to create an
instance of the MailMessage class. You then configure the message by adding a body and a subject.
The next step is to provide information about the sender and receivers of the message, and finally,
you need to create an instance of the SmtpClient class to send the message. The following exercise
shows you how to code these four steps.

c09.indd 323 2/21/2014 7:44:55 AM

http://bit.ly/N9Wv35
http://smtp4dev.codeplex.com
http://tinyurl.com/bu79nkm
http://outlook.com

324 ❘ Chapter 9 Validating User inpUt

trY it out Sending E-mail Messages

In this exercise, you create a simple page in the Demos folder. The code in this page creates an e-mail
message that is sent when the page loads. In a later exercise, you modify the contact form so it can send
the user’s response by e-mail.

 1. Under the Demos folder, create a new file called Email.aspx. Make sure it’s based on your own
base page template so that it has the right master page and inherits from BasePage automatically.
Change the page’s Title to E-mail Demo.

 2. Switch to the Code Behind by pressing F7 and at the top of the file, before the class definition, add
the following statement to make the classes in the System.Net.Mail namespace available to your
code:

VB.NET

Imports System.Net.Mail

C#

using System.Net.Mail;

 3. Add the following code to a Page_Load handler. If you’re using VB.NET, you need to set up the
handler first using the two drop-down lists at the top of the Document Window (or by double-
clicking the page in Design View):

VB.NET

Protected Sub Page_Load(sender As Object, e As EventArgs) Handles Me.Load
 Dim myMessage As MailMessage = New MailMessage()
 myMessage.Subject = "Test Message"
 myMessage.Body = "Hello world, from Planet Wrox"
 myMessage.From = New MailAddress("you@example.com", "Sender Name")
 myMessage.To.Add(New MailAddress("you@example.com", "Receiver Name"))

 Dim mySmtpClient As SmtpClient = New SmtpClient()
 mySmtpClient.Send(myMessage)
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 MailMessage myMessage = new MailMessage();
 myMessage.Subject = "Test Message";
 myMessage.Body = "Hello world, from Planet Wrox";
 myMessage.From = new MailAddress("you@example.com", "Sender Name");
 myMessage.To.Add(new MailAddress("you@example.com", "Receiver Name"));

 SmtpClient mySmtpClient = new SmtpClient();
 mySmtpClient.Send(myMessage);
}

Change the e-mail addresses and names in the two lines that set the From and To addresses to
your own. If you have only one e-mail address, you can use the same address for the sender and
the receiver.

c09.indd 324 2/21/2014 7:44:55 AM

Processing Data at the Server ❘ 325

 4. Open Web.config and right before the closing </configuration> tag, add the following settings:

 <system.net>
 <mailSettings>
 <smtp deliveryMethod="Network" from="Your Name <you@example.com>">
 <network host="smtp.example.com" />
 </smtp>
 </mailSettings>
 </system.net>
</configuration>

Don’t forget to change smtp.example.com to the name of your SMTP server. Also, be sure to
enter your name and e-mail address in the from attribute. If necessary, add the userName, pass-
word, enableSsl, and port attributes to the <network> element as shown earlier.

If you’re using Gmail, Outlook.com, or Yahoo, use the settings shown at the start of this section.
Otherwise, check with your host for specific requirements concerning the port number when SSL
is used; typical port numbers include 465 and 587. The source that comes with this book uses
SpecifiedPickupDirectory as the delivery method, which means you need to create a folder
called C:\TempMail in order to send e-mail if you want to run that code.

 5. Save all changes, switch back to Email.aspx, and request it in your browser. After a while, you
should receive an e-mail message at the address you specified in step 3 of this exercise or in your
local pickup folder.

CoMMoN MIStAKeS If you get an error, you can check a couple of things.
First, make sure you entered the right SMTP server in Web.config. You may
need to talk to your Internet provider or network administrator to get the right
address and optionally a username and password. Also make sure that the mail
server you are using actually allows you to send messages. If you get an error
such as “The SMTP server requires a secure connection or the client was not
authenticated,” your provider may require you to log in or to use SSL to secure
the connection. If that’s the case, check the username, password, and port
number in Web.config or try setting the enableSsl attribute of the <network
/> element as shown earlier. Different mail servers use different port numbers,
so try out the listed port numbers or ask your host which port you should use.

In some obscure cases you may receive an error when the name of your devel-
opment machine contains an underscore. In that case, you either need to
rename the machine or use a different SMTP server.

Another reason for problems could be a mismatch between your account
name and the address you specify in the From property in the code. Some mail
servers require these values to be identical.

Finally, if you get the error “The specified string is not in the form required
for an e-mail address,” check if you entered a valid e-mail address in the from
attribute in the Web.config file. You get this error if you leave out the @ sym-
bol or make some other syntax error.

c09.indd 325 2/21/2014 7:44:55 AM

http://smtp.example.com
http://outlook.com

326 ❘ Chapter 9 Validating User inpUt

If you can’t make sending mails from your local machine work, you can always use the
SpecifiedPickupDirectory delivery option to store the files on your local machine. This way, you
need to configure the mail server only when you deploy your website, and it gives you a quick,
convenient solution during development.

How It Works

You added the following Imports or using statement to the Code Behind file:

VB.NET

Imports System.Net.Mail

C#

using System.Net.Mail;

This statement is used to make the classes in this namespace available in your code without
prefixing them with their full namespace. This enables you, for example, to create a MailMessage
instance like this:

VB.NET

Dim myMessage As MailMessage = New MailMessage()

C#

MailMessage myMessage = new MailMessage();

Without the Imports or using statement, you would need this longer code instead:

VB.NET

Dim myMessage As System.Net.Mail.MailMessage = New System.Net.Mail.MailMessage()

C#

System.Net.Mail.MailMessage myMessage = new System.Net.Mail.MailMessage();

The code in Page_Load creates a new MailMessage object and sets its Subject and Body properties.
The code then assigns addresses for the sender and recipient of the e-mail message:

VB.NET

myMessage.From = New MailAddress("you@example.com", "Sender Name")
myMessage.To.Add(New MailAddress("you@example.com", "Receiver Name"))

C#

myMessage.From = new MailAddress("you@example.com", "Sender Name");
myMessage.To.Add(new MailAddress("you@example.com", "Receiver Name"));

The From property of the MailMessage is of type MailAddress, so you can assign a new MailAddress
directly. The constructor of the MailAddress class accepts the e-mail address and friendly name as
strings, so you can create and assign the From address with a single line of code.

c09.indd 326 2/21/2014 7:44:55 AM

Processing Data at the Server ❘ 327

The To property of the MailMessage class is a collection, so you cannot assign a MailAddress instance
directly. Instead, you need to use the Add method to assign an address. This also enables you to add
multiple recipients by calling To.Add multiple times, each time passing in a different MailAddress
instance. You use the CC and Bcc properties in a similar way to assign e-mail addresses to the carbon
copy and blind carbon copy fields of an e-mail message.

The final two lines of the code send out the actual message:

VB.NET

Dim mySmtpClient As SmtpClient = New SmtpClient()
mySmtpClient.Send(myMessage)

C#

SmtpClient mySmtpClient = new SmtpClient();
mySmtpClient.Send(myMessage);

When the Send method is called, the SmtpClient scans the Web.config file for a configured SMTP
server or local drop folder. It then contacts that server and delivers the message or saves it locally.

In the preceding Try It Out exercise, the body text for the e-mail message is hard-coded. This isn’t
always the best solution because it means you need to scan and change your code whenever you
want to change the text. It’s often better to use a text-based template instead. You see how to do this
in the next section.

reading from text files
The .NET Framework comes with a few handy classes and methods that make working with files
very easy. For example, the File class located in the System.IO namespace enables you to read
from and write to files, create and delete files, and move files around on disk. This class contains
only static methods, which means you don’t have to create an instance of the class first. Instead, you
call methods directly on the File class. For example, to read the contents of a text file, you can use
the following code:

VB.NET

Dim myContents As String = System.IO.File.ReadAllText("C:\MyFile.txt")

C#

string myContents = System.IO.File.ReadAllText(@"C:\MyFile.txt");

In this example, the filename in C# is prefixed with an @ symbol, to avoid the need to prefix each
backslash (\) with an additional backslash. In C#, the backslash has a special meaning (it’s used to
“escape” other characters that have a special meaning), so to use it in a string, you normally need
to prefix it with another backslash. Using the @ symbol tells the compiler that it should treat each
backslash it finds as literal, ignoring the special meaning of the character. It also preserves any line
breaks inside the string.

c09.indd 327 2/21/2014 7:44:55 AM

328 ❘ Chapter 9 Validating User inpUt

The following table lists the most common methods of the File class that enable you to work with files.

method Value

AppendAllText Appends a specified string to a text file. If the file does not exist, it’s
created first.

Copy Copies a file from one location to another.

Delete Deletes the specified file from disk.

Exists Checks if the specified file exists on disk.

Move Moves the specified file to a different location.

ReadAllText Reads the contents of a text file.

WriteAllText Writes the contents of a string to a new file and overwrites the target
file if it already exists.

You can use these methods for all kinds of purposes. For example, when a user has uploaded a file,
you can use the Move method to move it to a different folder. Additionally, when you want to get rid
of uploaded files that you don’t need anymore, you use the Delete method.

The ReadAllText method is useful to read the complete contents of a text file. For example, when
sending text by e-mail, you could store the body text of the e-mail in a text file. When you’re about
to send the e-mail, you call ReadAllText and assign the contents that this method returns to the
body of the e-mail. You see how this works in the following Try It Out.

trY it out Sending Mail from the ContactForm User Control

This exercise shows you how to use e-mail to send the user data from the contact form to your own
Inbox. As the body of the e-mail message, the code reads in a text file that contains placeholders. These
placeholders are filled with the actual user data from the form.

 1. Start by adding a new text file to the App_Data folder in your website. If you don’t have
the App_Data folder yet, right-click the website and choose Add ➪ Add ASP.NET
Folder ➪ App_Data. Create the text file by right-clicking the App_Data folder and choosing
Add ➪ Add New Item. Then select Text File, name the file ContactForm.txt, and click Add.

 2. Enter the following text in the text file, including the placeholders wrapped in a pair of double
hash symbols:

Hi there,

A user has left the following feedback at the site:

Name: ##Name##
E-mail address: ##Email##
Home phone: ##HomePhone##
Business phone: ##BusinessPhone##
Comments: ##Comments##

c09.indd 328 2/21/2014 7:44:56 AM

Processing Data at the Server ❘ 329

Save and close the file.

 3. Open the Code Behind of the ContactForm.ascx user control and import the following
namespaces (no need to type the comments) at the top of the file:

VB.NET

Imports System.IO ' Provides access to the File class for reading the file
Imports System.Net.Mail ' Provides access to the various mail related classes

Partial Class Controls_ContactForm
 Inherits System.Web.UI.UserControl

C#

using System.IO; // Provides access to the File class for reading the file
using System.Net.Mail; // Provides access to the various mail related classes

public partial class Controls_ContactForm : System.Web.UI.UserControl

 4. Switch to Markup View and add the runat="server" and id="FormTable" attributes to the
table with the server controls. This way you can hide the entire table programmatically when the
form has been submitted. To do this, locate the opening <table> tag and modify it like this:

<table class="auto-style1" runat="server" id="FormTable">

 5. Scroll down to the end of the file and right after the closing </table> tag, add a label called
Message. Set its Text property to Message Sent. Hide the label by setting the Visible property
to false:

</table>
<asp:Label ID="Message" runat="server" Text="Message Sent" Visible="false" />

 6. Switch the control into Design View and set ShowSummary of the ValidationSummary back
to true and ShowMessageBox to false. Because these are the default values, VS removes the
attributes from the markup completely. Next, double-click the Send button. Inside the event
handler that VS adds for you, add the following code:

VB.NET

Protected Sub SendButton_Click(sender As Object, e As EventArgs) _
 Handles SendButton.Click
 If Page.IsValid Then
 Dim fileName As String = Server.MapPath("~/App_Data/ContactForm.txt")
 Dim mailBody As String = File.ReadAllText(fileName)

 mailBody = mailBody.Replace("##Name##", Name.Text)
 mailBody = mailBody.Replace("##Email##", EmailAddress.Text)
 mailBody = mailBody.Replace("##HomePhone##", PhoneHome.Text)
 mailBody = mailBody.Replace("##BusinessPhone##", PhoneBusiness.Text)
 mailBody = mailBody.Replace("##Comments##", Comments.Text)

 Dim myMessage As MailMessage = New MailMessage()
 myMessage.Subject = "Response from web site"
 myMessage.Body = mailBody

 myMessage.From = New MailAddress("you@example.com", "Sender Name")

c09.indd 329 2/21/2014 7:44:56 AM

330 ❘ Chapter 9 Validating User inpUt

 myMessage.To.Add(New MailAddress("you@example.com", "Receiver Name"))
 myMessage.ReplyToList.Add(New MailAddress(EmailAddress.Text))

 Dim mySmtpClient As SmtpClient = New SmtpClient()
 mySmtpClient.Send(myMessage)

 Message.Visible = True
 FormTable.Visible = False
 End If
End Sub

C#

protected void SendButton_Click(object sender, EventArgs e)
{
 if (Page.IsValid)
 {
 string fileName = Server.MapPath("~/App_Data/ContactForm.txt");
 string mailBody = File.ReadAllText(fileName);

 mailBody = mailBody.Replace("##Name##", Name.Text);
 mailBody = mailBody.Replace("##Email##", EmailAddress.Text);
 mailBody = mailBody.Replace("##HomePhone##", PhoneHome.Text);
 mailBody = mailBody.Replace("##BusinessPhone##", PhoneBusiness.Text);
 mailBody = mailBody.Replace("##Comments##", Comments.Text);

 MailMessage myMessage = new MailMessage();
 myMessage.Subject = "Response from web site";
 myMessage.Body = mailBody;

 myMessage.From = new MailAddress("you@example.com", "Sender Name");
 myMessage.To.Add(new MailAddress("you@example.com", "Receiver Name"));
 myMessage.ReplyToList.Add(new MailAddress(EmailAddress.Text));

 SmtpClient mySmtpClient = new SmtpClient();
 mySmtpClient.Send(myMessage);

 Message.Visible = true;
 FormTable.Visible = false;
 }
}

Again, make sure you replace the e-mail addresses for the From and To properties of the
MailMessage with your own. Also, the replace method is case sensitive so make sure you type the
placeholders exactly as how you wrote them in the text file.

 7. Save all your changes and once again request the Contact.aspx page in the browser. Enter your
details and click the Send button. You’ll see the text Message Sent appear.

 8. Check the e-mail account you sent the e-mail to (or look in the folder C:\TempMail if you’re
dropping your mail on disk) and you should see an e-mail message similar to Figure 9-11.

c09.indd 330 2/21/2014 7:44:56 AM

Processing Data at the Server ❘ 331

How It Works

The mail-sending part of this exercise is pretty similar to the demo page you created earlier. What’s
different, however, is where the body text for the mail message comes from. Instead of hard-coding the
body in the Code Behind of the ContactForm control, you moved the text to a separate file. This file in
turn contains a few placeholders that are replaced at run time with the user’s details. To read the entire
file at once, you use the following code:

VB.NET

Dim fileName As String = Server.MapPath("~/App_Data/ContactForm.txt")
Dim mailBody As String = File.ReadAllText(fileName)

C#

string fileName = Server.MapPath("~/App_Data/ContactForm.txt");
string mailBody = File.ReadAllText(fileName);

The first line uses Server.MapPath to translate a virtual path into its physical counterpart. By using
the virtual path, it’s easier to move your site to a different location because it doesn’t depend on any
hard-coded paths. Server.MapPath("~/App_Data/ContactForm.txt") returns a physical path such as
C:\BegASPNET\Site\App_Data\ContactForm.txt. This path is then fed to the ReadAllText method
of the File class, which opens the file and returns its contents, which are then assigned to the mail-
Body variable.

fiGure 9-11

c09.indd 331 2/21/2014 7:44:56 AM

332 ❘ Chapter 9 Validating User inpUt

Note Reading this file every time you need it isn’t very efficient. In Chapter
15 you see how to cache the contents of a file so you don’t have to read it on
every request.

The code then uses a number of calls to the Replace method of the String class to replace the static
placeholders in the message body with the details the user entered in the contact form. The return value
of the Replace method — the new text with the replaced strings — is reassigned to the mailBody vari-
able. After the final call to Replace, the mailBody no longer contains the placeholders, but the user’s
details instead:

VB.NET

mailBody = mailBody.Replace("##Name##", Name.Text)
...
mailBody = mailBody.Replace("##Comments##", Comments.Text)

C#

mailBody = mailBody.Replace("##Name##", Name.Text);
...
mailBody = mailBody.Replace("##Comments##", Comments.Text);

The Replace method is case sensitive, so if you find that some placeholders are not replaced correctly,
make sure you used the same capitalization in the code and in the message body.

The placeholders are wrapped in a pair of double hash symbols (##). The hash symbols are arbitrarily
chosen, but help to identify the placeholders, minimizing the risk that you accidentally replace some
text that is supposed to be in the actual message.

Once the message body is set up, it’s assigned to the Body property of the MailMessage object, which is
then sent using the SmtpClient, identical to what you saw in an earlier exercise.

You may have noticed the call to the ReplyToList collection of the MailMessage instance. This code
adds the e-mail address that the user entered in the EmailAddress text box to the reply-to list of the
mail message. This means that when you receive the message and want to reply to it, the reply gets sent
to the user’s address instead of to the From address you assigned to the message. This is especially use-
ful in contact forms where users enter an e-mail address so you can directly reply to them. You may be
tempted to assign the address the user entered to the From property directly, but you’re advised not to
do this. Some mail servers require this address to be your own and thus sending the mail may fail. Also,
your message may be rejected when users enter an invalid address. By setting the From address to one
of your own and adding the user’s address to the ReplyToList, you create a reliable, yet convenient
solution.

When you filled in your details in the contact form and clicked the Send button, you may have
noticed some page flicker as the page submits to the server and is then reloaded with the success
message. This page flicker can easily be minimized or completely removed using Ajax technologies,
which are discussed in the next chapter.

c09.indd 332 2/21/2014 7:44:56 AM

Summary ❘ 333

praCtiCal tips on ValidatinG data

The following list provides practical tips on validating data:

➤➤ Always validate all user input. Whenever you have a public website on the Internet, you lose
the ability to control its users. To stop malicious users from entering bogus data in your
system, always validate your users’ input using the ASP.NET validation controls.

➤➤ Always provide useful error messages in your validation controls. Either assign the
error message to the ErrorMessage property and leave the Text empty, or use a
ValidationSummary control to show a list of error messages.

➤➤ Consider using the CssClass attribute of the validation controls to move the style
definitions for the error messages to a separate CSS file instead of setting them directly on
the validation controls.

➤➤ Whenever you are writing code that sends an e-mail message, consider moving the body
of the e-mail to a separate text file stored in the App_Data folder because it makes your
application much easier to maintain.

➤➤ When storing data in text or XML files, always store them in the App_Data folder that
is designed specifically for this purpose. This way, all your data files are nicely packed
together. More importantly, by default the web server blocks access to the files in this folder
so a visitor to your site cannot request them directly.

➤➤ When sending e-mails as a test, always send them to an existing and valid address. Even
though an address like asdf@test.com may appear to be invalid, there’s a fair chance the
account exists and is monitored, leading to the possible loss of sensitive data, like passwords
you may be sending through e-mail.

➤➤ Consider using SpecifiedPickupDirectory as the deliveryMethod for SMTP mail during
development. It avoids the need to send messages over the network, resulting in a faster
response and a cleaner inbox.

summarY

User input is an important aspect of most interactive websites. The input comes from different
sources in your website: the contact form you created in this chapter, the query string, and other
sources. To stop users from entering invalid or even dangerous content into your system, it’s
important to validate all input before you work with it.

The biggest benefit of the validation controls that ship with ASP.NET is that they work at the client
and at the server, enabling you to create responsive forms where users get immediate feedback about
any errors they make, without the need for a full postback. At the same time, the data is validated at
the server, ensuring that data coming from clients that don’t use JavaScript is valid as well.

To store the information that users submit to your site, you have a couple of options. The data can
be stored in a database or a text file or sent by e-mail. The latter option is particularly useful for
contact forms, so you get an immediate alert when someone leaves a comment at your website.

c09.indd 333 2/21/2014 7:44:56 AM

mailto:asdf@test.com

334 ❘ Chapter 9 Validating User inpUt

Sending e-mail is a breeze with the classes in the System.Net.Mail namespace. These classes enable
you to create an e-mail message, add subject, body, sender, and recipient information, and then send
the message using the SmtpClient class.

exerCises

 1. To make the ContactForm.ascx user control even more reusable, you can create a string
property on it such as PageDescription that enables you to set the name of the page
that uses the control. You can then add this string to the declaration of the control in the
containing page. Finally, you can add the description to the subject of the message that you
send. This way, you can see from which page the contact form was called. What code do you
need to write to make this happen?

 2. Why is it so important that you check the value of the IsValid property of the Page when
processing data? What can happen if you forget to make this check?

 3. What’s the difference in behavior between the To and the From property of the MailMessage
class?

 4. When you use a CustomValidator, you can write validation code at the client and at the
server. How do you tell the ASP.NET run time what client-side validation method to call during
the validation process?

 5. How do you tell the validation mechanism that validation succeeded or failed in your
CustomValidator routines?

You can find answers to these exercises in Appendix A.

c09.indd 334 2/21/2014 7:44:56 AM

Summary ❘ 335

 ➤ What You learned in this Chapter

Client-side validation Validation that takes place in the client’s browser. Mainly
serves as a courtesy to users and offers quick feedback.

File class Contains methods that enable you to work with files,
including reading and writing text files.

regular expressions A compact and flexible, albeit quite complex, syntax for
finding strings of text in other strings.

Replace method A method on the String class to replace one value in a string
with another.

server-side validation Validation that takes place at the server. You always need
server-side validation to protect your data because client-side
validation can be bypassed.

smtp server A server responsible for accepting and delivering e-mail.

ssl A technique to encrypt (and thus protect) data flowing
between two machines.

System.Net.Mail namespace The namespace for e-mail classes such as MailMessage,
MailAddress, and SmtpClient.

Validation controls A set of ASP.NET Server Controls that enable you to validate
user input at the client and at the server.

c09.indd 335 2/21/2014 7:44:56 AM

c09.indd 336 2/21/2014 7:44:56 AM

ASP.NET AJAX
What You Will learn in this Chapter:

➤➤ Using the UpdatePanel control to avoid page flicker

➤➤ Understanding the ScriptManager control that enables the Ajax
functionality

➤➤ Using the UpdateProgress control to notify users about progress
of an Ajax operation

➤➤ Creating WCF services that are accessible by your client-side
script

Wrox.Com Code doWnloads for this Chapter

You can find the wrox.com code downloads for this chapter on the Download Code tab at
www.wrox.com/go/begaspnet451. The code is in the Chapter 10 folder.

Over the past few years, Ajax has popularized itself immensely in the web development
community. Although the technology that drives Ajax has been around for quite some time,
it wasn’t until the beginning of 2005 that it got an official name. Ajax, which stands for
Asynchronous JavaScript And XML, enables your client-side web pages to exchange data
with the server through asynchronous calls, which means they don’t block the user interface
while running. Probably the most popular feature driven by Ajax is the flicker-free page that
enables you to perform a postback to the server without refreshing the entire page. Note
that the term Ajax doesn’t really cover the underlying technology anymore. Asynchronous
JavaScript is still used to make the calls, but in many situations XML as the data format has
been replaced with JSON (JavaScript Object Notation), as you see later in this chapter.

10

c10.indd 337 2/21/2014 7:46:50 AM

http://www.wrox.com/go/begaspnet451
http://wrox.com
http://wrox.com

338 ❘ Chapter 10 ASP.NET AJAX

To enhance your website with Ajax features you can choose among different Ajax frameworks. In
earlier versions of Visual Studio and ASP.NET, Microsoft shipped both a server-side framework as
well as a client-side script library for Ajax interactions. This client-side script library — while still
present in ASP.NET 4.5.1 — is no longer the recommended solution. Instead, you’re encouraged to
use jQuery, which is discussed in detail in the next chapter.

The server-side part of Microsoft ASP.NET AJAX gives you a lot more than flicker-free postbacks.
In addition to the controls that make flicker-free pages possible, Microsoft ASP.NET AJAX gives
you a few more server controls to create rich, interactive, and responsive user interfaces.

the CorreCt spelling of ajax

You’ll come across two different spellings of Ajax: using Pascal casing, or in all
caps. I’ll use the term Ajax when referring to the general concept, and I’ll use ASP
.NET AJAX when specifically referring to Microsoft’s Ajax framework.

By the end of the chapter, you should have a good understanding of the various server controls that
the ASP.NET AJAX Framework has to offer. You will also have a basic understanding of creating
WCF Services using ASP.NET and how you can call them from client-side JavaScript code.

introduCing ajax

In the first chapter of this book you learned how browsers interact with the server. The browser
makes a request for a page using GET or POST, as you’ve seen in Chapter 4 and Chapter 9. The server
processes that page and sends back the resulting HTML. The browser then parses that HTML and
renders the page to the user, optionally downloading any external resources like images, script files,
and cascading style sheets (CSS). When a user interacts with the page (for example, by clicking a
button to submit a filled-in contact form) the page is posted back to the server, after which the entire
page is loaded in the browser again. The left-hand side of Figure 10-1 shows a visual representation
of this process.

Even though this model has been used for years to serve web pages, it has a few big drawbacks.
First, because the entire page is loaded after a postback, the HTML sent to the browser is much
larger than it needs to be. Think back to the contact form you created in the previous chapter.
Right after the user has submitted the contact form, the server shows a Label control with the text
Message Sent. It does that by fully loading a new page that hides the form controls and shows the
message. Even though the rest of the page hasn’t changed (the menu, the sidebar, the footer, and so
on), they are still sent from the server to the client. Ideally, you would only want to send back the
HTML that has changed. In the case of the contact form, that could be as little as the text Message
Sent. The right-hand side of Figure 10-1 shows how this works. Rather than sending the entire page
as a response, the server sends a partial response (containing little more than the text Message Sent),
which is then used by the browser to update just the part of the page that has changed, leaving the
rest of the page as it was.

c10.indd 338 2/21/2014 7:46:50 AM

Introducing Ajax ❘ 339

The second drawback of a full-page reload has to do with the way the browser renders the page.
Because the entire page is replaced, the browser has to dismiss the old one and then draw the new
one. This causes the page to “flicker,” which results in an unattractive user experience. You can
deploy Ajax techniques to overcome these two problems, as you see in the remainder of this chapter.

The concepts behind Ajax have been around for many years. Browsers since Internet Explorer 5
have shipped with the XMLHttpRequest object that enabled you to make calls to the server from
JavaScript to send and receive data. However, people also used other techniques to emulate the
behavior of what is now called Ajax, including Macromedia Flash, iframe elements, or hidden
frames.

However, when the term Ajax was introduced, things really took off. In an attempt to stay ahead
of the curve, Microsoft started building ASP.NET AJAX, the Ajax framework that is fully
integrated in ASP.NET and Visual Studio. This framework offers a number of benefits that you as a
web developer can take advantage of to create responsive applications.

In particular, ASP.NET AJAX enables you to:

➤➤ Create flicker-free pages that enable you to refresh portions of the page without a full reload
and without affecting other parts of the page

➤➤ Provide feedback to your users during these page refreshes

➤➤ Update sections of a page and call server-side code on a scheduled basis using a timer

➤➤ Access server-side WCF and other services and work with the data they return

The nice thing about ASP.NET AJAX is that it is very easy to get started with. Creating a flicker-
free page is a matter of dragging and dropping a few controls from the Toolbox onto your page.
When you understand the basics of the Ajax framework, you can extend your knowledge by looking
at more advanced topics such as calling WCF services.

figure 10-1

1 2

Traditional
Request

Full Page
Response

Web Server

Traditional Page Processing

Browser Browser

1 2

Ajax
Request

Partial
Response

Web Server

Ajax Page Processing

c10.indd 339 2/21/2014 7:47:02 AM

340 ❘ Chapter 10 ASP.NET AJAX

using asp.net ajax in Your projeCts

ASP.NET AJAX is fully integrated in ASP.NET and VS, which means you can start using it right
away. Each new ASP.NET 4.5.1 web project you create in VS is already Ajax-enabled. In addition,
the Toolbox contains an AJAX Extensions category with a number of Ajax-related controls that
you can use in your pages. Visual Studio also has great support for ASP.NET AJAX, giving you
IntelliSense for the controls at the server as well as for the client-side JavaScript you’ll write to
interact with the client page and code running on the server.

Creating flicker-free pages
To avoid full postbacks in your ASPX pages and update only part of the page, you can use the
UpdatePanel server control. For this control to operate correctly, you also
need a ScriptManager control. If you’re going to use Ajax functionality in
many of your ASPX pages, you can place the ScriptManager in the master
page, so it’s available in all pages that are based on this master. You can
have only one ScriptManager per page, so if you add one to a master page,
you can’t add another one to a content page. To access a ScriptManager
control that is defined in a master page from a content page, you can use the
ScriptManagerProxy control as explained later. You’ll find these and other
Ajax-related server controls in the AJAX Extensions category of the Toolbox,
shown in Figure 10-2.

The following two sections introduce you to the UpdatePanel and ScriptManager controls. After
the introduction you see how to make use of these controls in the pages in your Planet Wrox website.
Later sections introduce you to the UpdateProgress, Timer, and ScriptManagerProxy controls.

The UpdatePanel Control
The UpdatePanel control is a key component in creating flicker-free pages. In its most basic
application, you simply wrap the control around content you want to update, add a ScriptManager
to the page, and you’re done. Whenever one of the controls within the UpdatePanel causes a
postback to the server, only the content within that UpdatePanel is refreshed.

To see what problems the UpdatePanel control solves and how it behaves in a client page, the
following Try It Out shows a simple example that uses the panel to avoid page flicker during
postbacks.

trY it out Adding an UpdatePanel to a Page

In this exercise, you add a Label and a Button control to a page. When you click the button in the
browser, the Text property of the Label is updated with the current date and time at the server.
To avoid the page flicker typically associated with postbacks, you then wrap the controls in an
UpdatePanel to see how that control affects the behavior.

 1. Open the Planet Wrox website in Visual Studio.

 2. In the Demos folder, create a new Web Form called UpdatePanel.aspx using your custom
template. Give the page a Title of UpdatePanel Demo.

figure 10-2

c10.indd 340 2/21/2014 7:47:02 AM

Using ASP.NET AJAX in Your Projects ❘ 341

 3. Switch the new page into Design View and drag a Label control and a Button control from the
Toolbox into the cpMainContent placeholder. If the ContentPlaceHolder suddenly gets as small
as the Label, simply drop the Button on top of the Label. The Button is then placed before the
Label but if you now drag the Label on top of the Button again, the two change places.

 4. Use the Properties Grid to clear the Text property of the Label control. To do this, right-click the
Text property label in the Properties Grid and choose Reset.

 5. Double-click the gray and read-only area of the page in Design View to set up a handler for its
Load event and add the following code to the handler that VS added for you:

VB.NET

Protected Sub Page_Load(sender As Object, e As EventArgs) Handles Me.Load
 Label1.Text = System.DateTime.Now.ToString()
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 Label1.Text = System.DateTime.Now.ToString();
}

 6. Save all your changes and press Ctrl+F5 to open the page in your browser.

The Label displays the current date and time. Click the Button control a few times. Note that
each time you click the button, the page flickers and is then redrawn, displaying the updated date
and time. Now take a look at the HTML that is used by the browser (right-click the page in the
browser and choose View Source or View Page Source). Notice how the page contains a
element with the date and time that was sent from the server.

 7. Close your browser, go back into VS, and switch the UpdatePanel.aspx page to Markup View.
Make some room right before the Label control, and then type updatepanel and press Tab. VS
inserts the code for an UpdatePanel and a <ContentTemplate> for you.

 8. Next, cut both the closing </ContentTemplate> and the closing </UpdatePanel> tags and paste
them below the button you created in step 3. You should end up with this markup:

<asp:UpdatePanel runat="server">
 <ContentTemplate>
 <asp:Label ID="Label1" runat="server"></asp:Label>
 <asp:Button ID="Button1" runat="server" Text="Button" />
 </ContentTemplate>
</asp:UpdatePanel>

 9. Right before the opening tag of the UpdatePanel, drag a ScriptManager from the AJAX Extensions
category of the Toolbox. Alternatively, type sm followed by the Tab key to insert the ScriptManager
using a code snippet. Your code should look similar to this (although your ScriptManager may lack
the ID attribute and may use a self-closing element when you use a code snippet):

<asp:Content ID="Content2" ContentPlaceHolderID="cpMainContent" runat="Server">
 <asp:ScriptManager ID="ScriptManager1" runat="server"></asp:ScriptManager>
 <asp:UpdatePanel runat="server">

 10. Save your changes and request the page in the browser again. Click the button a few times to
update the label with the current date and time. Note that there is no page flicker now, and

c10.indd 341 2/21/2014 7:47:02 AM

342 ❘ Chapter 10 ASP.NET AJAX

only the label is updated on the page. If you look at the source in the browser again, you see the
 element that contains the date and time of the very first request. The updates to the label
that were added by clicking the button are not a part of the HTML source because they have been
added dynamically by the ASP.NET AJAX Framework to the browser’s internal HTML.

How It Works

By wrapping the content in an UpdatePanel you define a region in your page that you want to refresh
without affecting the entire page. In the example, the Button control inside the UpdatePanel caused a
postback and thus a refresh of just the region in which the control is defined. Rather than replacing the
entire page, only the part of the page that is wrapped in the UpdatePanel is refreshed, causing a flicker-
free reload of the page.

If you analyze the data that gets sent from the server to the browser (using a network analysis tool like
Fiddler, which you can download from www.telerik.com/fiddler/), you would see that only a
limited amount of data gets sent to the client. Rather than the full page (weighing around 12KB), only
the following data is sent:

1|#||4|232|updatePanel|cpMainContent_ctl00|
12/21/2013 11:56:09 AM
<input type="submit" name="ctl00$cpMainContent$Button1" value="Button"
id="cpMainContent_Button1" class="MyButton" style="background-color:#7A70A4;" />
|0|hiddenField|__EVENTTARGET||0|hiddenField|__EVENTARGUMENT||0|hiddenField|__
LASTFOCUS||1624|hiddenField|__VIEWSTATE|1Atsytn51usXShfT92FZnRfhkyw76l6TfovQaG
...
Demo|184|scriptBlock|ScriptPath|/ScriptResource.axd?d=zvkqIRNUspAvS1yKeFhMb_LRgBPQ
LrZDpLmd71civkClsZ5csFf1SkT-
k1NurvxrEjhFFVa7dJqUQpcX9l3wMJNiJeY5DJdOF5sqxTU0JGDbsEuI_njxenny6ggiBtc
4vOKR16h2V2npds3RA8dURw2&t=57d51992|

Note that I cut out a big piece of content including much of the View State of the page from the middle
(represented by the three dots) to save some space in this book. If you look at this response, you’ll recog-
nize the HTML for the updated Label and the Button; the two controls that have been defined within
the <ContentTemplate> of the UpdatePanel control. The remaining text is used by the ASP.NET AJAX
Framework to maintain page state (using the __VIEWSTATE field) and to understand where to place the
response in the page. Even though a lot of data still gets sent down the wire, it’s far less than the original
full page of around 12KB. This results in a faster response and a better user experience.

When you looked at the source of the page in the browser in step 10 you may have noticed that the page
still contained the original source, not the updated source modified by the ASP.NET AJAX Framework.
This sometimes makes it difficult to build, test, and debug Ajax applications because you cannot really
see what data gets sent to the browser. Fortunately, many tools are available that help with this. Besides
the aforementioned Fiddler tool, you’re advised to take a look at the Microsoft Internet Explorer
Developer Toolbar. It ships with Internet Explorer 8 and later and can be opened (and closed) by press-
ing F12. For Windows 8.x you need to use the desktop version of Internet Explorer.

Another great tool for debugging is Firebug, which integrates nicely with the Firefox browser. You
can get the tool at http://getfirebug.com. Once installed, you activate the toolbar by pressing F12.
Google’s Chrome has a similar tool that you can open by clicking the menu or wrench icon and then
choosing Tools ➪ Developer tools.

c10.indd 342 2/21/2014 7:47:02 AM

http://www.telerik.com/fiddler/
http://getfirebug.com

Using ASP.NET AJAX in Your Projects ❘ 343

In this exercise, you used two important AJAX Extensions controls. The ScriptManager — that
you placed in UpdatePanel.aspx directly in this exercise — is a requirement for most Ajax
functionality in an ASPX page to operate correctly. It serves as the bridge between the client page
and the Microsoft ASP.NET AJAX Framework and takes care of things like registering the correct
JavaScript files that are used in the browser. The UpdatePanel is then used to define regions you
want to update without reloading the entire page. You see both controls in more detail in the
following sections.

A Closer Look at the UpdatePanel
The UpdatePanel and its content is the only part of the page that is updated when you click a
button (as discussed in the previous exercise). This is the default behavior of an UpdatePanel, where
only its inner contents are refreshed by other server controls defined within the <ContentTemplate>
element. However, the UpdatePanel can do more than this, as you see in the next section.

Common UpdatePanel Properties
The following table lists some of the important properties of the UpdatePanel that enable you to
influence its behavior.

propertY desCription

ChildrenAsTriggers This property determines whether controls located within the
UpdatePanel can cause a refresh of the UpdatePanel. The default
value is True, as you saw in the previous exercise. When you set this
value to False, you have to set the UpdateMode to Conditional. Note
that controls defined within the UpdatePanel still cause a postback to
the server with this property set to False; they just don’t update the
panel automatically anymore.

Triggers The Triggers collection contains PostBackTrigger and
AsyncPostBackTrigger elements. The first is useful if you want to
force a complete page refresh, whereas the latter is useful if you want to
update an UpdatePanel with a control that is defined outside the panel.

RenderMode You can set this property to Block (the default) or Inline to indicate
whether the UpdatePanel renders itself as a <div> or element.

UpdateMode This property determines whether the control is always refreshed (the
UpdateMode is set to Always) or only under certain conditions, for
example, when one of the controls defined in the <Triggers> element
is causing a postback (the UpdateMode is set to Conditional). The
default for this setting is Always.

ContentTemplate Although not visible in the Properties Grid for the UpdatePanel, the
<ContentTemplate> is an important property of the UpdatePanel.
It’s the container in which you place controls as children of the
UpdatePanel. If you forget this required ContentTemplate, VS gives
you a warning.

c10.indd 343 2/21/2014 7:47:02 AM

344 ❘ Chapter 10 ASP.NET AJAX

You see more of the UpdatePanel in later exercises in this chapter.

UpdatePanel Caveats
As useful as the UpdatePanel seems (and is), its usage comes at a price. Although it appears as if
only part of the page is refreshed, the entire page (and all of its form data) is still posted back to the
server. At the server, the page still goes through its normal life cycle and then sends back the HTML
that is needed to update the page. However, the data that is sent back isn’t in a very optimal format
because it contains some overhead data (required by ASP.NET AJAX to understand how to interpret
it). This means that the UpdatePanel carries some overhead in terms of form posts, page processing,
and network traffic. Later in this chapter, you see some ways to get data to and from the server from
client-side code that minimize this overhead.

As demonstrated in the previous exercise, the UpdatePanel control is capable of refreshing parts of
a page. Controls that are defined either inside the UpdatePanel or outside of it can cause a refresh of
the UpdatePanel. However, in order to function, the UpdatePanel needs a ScriptManager control
that manages the client-side JavaScript, among other things.

The ScriptManager Control
The ScriptManager control serves as the bridge between the client page and the server. It manages
script resources (the JavaScript files used at the client), takes care of partial-page updates as shown
earlier, and handles interaction with your website for things like WCF services.

You usually place the ScriptManager control directly in a content page if you think you need Ajax
capabilities on only a handful of pages. You briefly saw how this worked in the previous Try It Out
exercise. However, you can also place the ScriptManager in a master page so it becomes available
throughout the entire site. You do this in a later exercise in this chapter.

The ScriptManager class has a number of properties, of which most are used in advanced
scenarios. In many situations, like updating sections of a page using the UpdatePanel as you just
saw, you don’t need to change any of the properties of the ScriptManager class. In other scenarios,
you may need to change or set some of its properties. The following table lists some of the more
common properties of the ScriptManager control.

propertY desCription

AllowCustomErrorsRedirect This property determines whether errors that occur during
an Ajax operation cause the customized error page to be
loaded. The default is True; with a setting of False, the
error is shown as a JavaScript alert window in the browser or
is hidden from the client when debugging is disabled. Note
that if you haven’t configured any customized error page,
the error is always shown as a JavaScript alert, regardless
of the value of this setting. Chapter 18 talks more about
setting up customized error pages and debugging your
application.

c10.indd 344 2/21/2014 7:47:02 AM

Using ASP.NET AJAX in Your Projects ❘ 345

AsyncPostBackErrorMessage When you’re not using customized error pages, this
property enables you to customize the error message that
users see when an Ajax error occurs. It enables you to hide
the dirty details from the users and instead present them a
more friendly error message.

EnablePartialRendering This property determines whether the ScriptManager
supports the partial rendering of the page using
UpdatePanel controls. You should leave this setting to
True, unless you want to block the partial updates for the
entire page.

EnableCdn With this property set to True, ASP.NET includes links
to the client-side framework files on Microsoft’s Content
Delivery Network, rather than on your own server. This saves
you some bandwidth and speeds up the initial load of the
page if the user already had a cached copy of the files from
visiting another site using these files.

AjaxFrameworkMode Determines whether the Microsoft AJAX client
library is included. This setting enables you to use the
ScriptManager for server-related tasks (like registering
client scripts) without embedding the client-side framework
in the page.

Scripts The <Scripts> child element of the ScriptManager control
enables you to add additional JavaScript files that must be
downloaded by the client at run time.

CompositeScript Just like the <Scripts> element, the <CompositeScript>
element enables you to add additional JavaScript files.
However, files registered under <CompositeScript> are
combined into a single, downloadable file, minimizing
network overhead and improving performance.

Services The <Services> element enables you to define WCF
services that are accessible by your client-side pages. You
see how to use WCF services in the second half of this
chapter.

Although the UpdatePanel and the ScriptManager together are all you need to create flicker-free
pages, ASP.NET AJAX offers more to enhance the user’s experience in an Ajax-enabled website.
One way to improve the user’s experience is by using the UpdateProgress control, discussed next.

providing feedback to users
Despite the visual problems that postbacks usually cause, they have one big advantage: the user
can see something is happening. The UpdatePanel makes this a little more difficult. Users have no

c10.indd 345 2/21/2014 7:47:02 AM

346 ❘ Chapter 10 ASP.NET AJAX

visual cue that something is happening until it has happened. To tell your users to hold on for a few
seconds while their request is being processed, you can use the UpdateProgress control.

The UpdateProgress Control
You connect the UpdateProgress control to an UpdatePanel using the AssociatedUpdatePanelID
property. Its contents, defined in the <ProgressTemplate> element, are then displayed whenever
the associated UpdatePanel is busy refreshing. You usually put text such as “Please wait” or an
animated image in this template to let the user know something is happening, although any other
markup is acceptable as well.

In addition to the AssociatedUpdatePanelID and <ProgressTemplate> properties, the
UpdateProgress control features the following properties you typically use.

propertY desCription

DisplayAfter Determines the time in milliseconds that the control waits before it
displays its contents. This is useful when the refresh period is so short that
a notification message would be overkill. The default is 500 milliseconds,
which is half a second.

DynamicLayout Determines whether the control takes up screen real estate when hidden.
This maps directly to the CSS display: none; (when this setting is true)
or visibility: hidden; (when it’s false).

In the following exercise, you see how to combine the UpdatePanel, the ScriptManager, and the
UpdateProgress controls to make the contact form user control flicker-free.

trY it out Flicker-free Pages — Putting It All Together

In this exercise, you modify the user control ContactForm.ascx that you created earlier, wrapping the
entire control in an UpdatePanel so the page doesn’t perform a full postback when you enter a message
and click the Send button. To help users understand that the page is busy when the message is being
sent, you add an UpdateProgress panel to the control. Inside this control you place an animated GIF
image that is available in the code download for this book. Alternatively, you can go to www.ajaxload.
info and create your own animated image.

 1. Open the ContactForm.ascx user control from the Controls folder in Markup View and wrap
the entire <table> element and the Label at the bottom of the control in an UpdatePanel with
a <ContentTemplate>. You can do this by typing the code directly in Markup View, by using
a code snippet (type updatepanel and then press Tab), or by dragging the control from the
Toolbox. Make sure the ID of the UpdatePanel is set to UpdatePanel1. You should end up with
the following code:

<asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 <table class="auto-style1" runat="server" id="FormTable">

c10.indd 346 2/21/2014 7:47:02 AM

http://www.ajaxload.info
http://www.ajaxload.info

Using ASP.NET AJAX in Your Projects ❘ 347

 </table>
 <asp:Label ID="Message" runat="server" Text="Message Sent" Visible="false" />
 </ContentTemplate>
</asp:UpdatePanel>

 2. Save the changes to the control and then open the Frontend.master file from the MasterPages
folder. Between the opening <form> tag and the <div> for the PageWrapper, add a
ScriptManager control by dragging it from the Toolbox into the source of the page. You should
end up with this code:

<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server"></asp:ScriptManager>
 <div id="PageWrapper">

 3. Save the changes to the master page and close it.

 4. Open the UpdatePanel.aspx page you created in an earlier Try It Out and remove the
ScriptManager control. Because this control is now declared in the master page, you can no
longer redefine it in pages that are based on that master. Save and close the page.

 5. Open the Contact.aspx page from the About folder in your browser and then fill in the contact
form. Note that as soon as you click the Send button, the form disappears and is replaced with the
label stating that the message is sent. Just as with the earlier UpdatePanel example, you’ll notice
no page flicker when the page reloads and displays the text Message Sent.

 6. To keep the user updated on the progress while the message is
delivered to the mail server, you should add an UpdateProgress
control to the page. Inside this control, you add an animated image
and some text informing the user the message is being sent. To add
the image, locate the folder where you extracted the files that come
with this book (at C:\BegASPNET\Resources) with File Explorer
(Windows Explorer on Windows 7). Open the Chapter 10 folder
and then the Monochrome folder. Drag the PleaseWait.gif file
from File Explorer into the Images folder of the Monochrome
theme under App_Themes. Repeat this process, but now drag
PleaseWait.gif from the DarkGrey folder into its respective
theme’s Images folder. Figure 10-3 shows how both images
should end up.

 7. Open the Monochrome.css file, scroll all the way down to the end,
and add the following rule:

.PleaseWait
{
 height: 32px;
 width: 500px;
 background-image: url(Images/PleaseWait.gif);
 background-repeat: no-repeat;
 padding-left: 40px;
 line-height: 32px;
}

figure 10-3

c10.indd 347 2/21/2014 7:47:03 AM

348 ❘ Chapter 10 ASP.NET AJAX

 8. Copy the exact same rule into the DarkGrey.css file for the DarkGrey theme.

 9. Switch back to the ContactForm.ascx user control and below the closing tag of the UpdatePanel
at the end of the file, drag an UpdateProgress control from the AJAX Extensions category of
the Toolbox. Set its AssociatedUpdatePanelID to UpdatePanel1, the ID of the UpdatePanel
defined earlier in the page.

 10. Between the <UpdateProgress> tags create a <ProgressTemplate> element, and within this
template, create a <div> element with its class attribute set to PleaseWait, the CSS class you
created in step 7. Inside the <div> element, type some text to inform your users that they should
hold on for a while. You should end up with this code:

</asp:UpdatePanel>
<asp:UpdateProgress ID="UpdateProgress1" runat="server"
 AssociatedUpdatePanelID="UpdatePanel1">
 <ProgressTemplate>
 <div class="PleaseWait">
 Please Wait...
 </div>
 </ProgressTemplate>
</asp:UpdateProgress>

 11. To emulate a long delay while sending out the message so you can see the UpdateProgress
control, add the following line of code to the Code Behind of the control, just after the lines that
change the visibility of the controls in the method that sends out the e-mail:

VB.NET

Message.Visible = True
FormTable.Visible = False
System.Threading.Thread.Sleep(5000)

C#

Message.Visible = true;
FormTable.Visible = false;
System.Threading.Thread.Sleep(5000);

 12. Save all your changes and open the Contact.aspx page from the About folder once again. Fill in
the required details and click the Send button. Shortly after you click the button, you should see
the UpdateProgress control appear that displays text and an animated image below the form,
shown in Figure 10-4. Shortly after that, the UpdateProgress control and the entire form should
disappear and you should be presented with the Message Sent text.

COMMON MISTAKES If you don’t see the described behavior, your browser
may be working with an outdated version of the CSS files. Press Ctrl+F5 or
Ctrl+R to get the latest version from the server and try again. Alternatively, you
can clear the browser’s cache.

c10.indd 348 2/21/2014 7:47:03 AM

Using ASP.NET AJAX in Your Projects ❘ 349

How It Works

With the UpdatePanel in the user control, everything that falls within the ContentTemplate of the
UpdatePanel will be updated upon postback, without affecting other parts of the page. This way, you
can hide the form with the server controls and replace it with the Message Sent label without causing
any page flicker.

To inform the user that his or her message is being sent, you also added an UpdateProgress control to
the site. By default, this control will be shown when refreshing the UpdatePanel it is attached to takes
longer than 500 milliseconds (half a second). The <ProgressTemplate> element for the control con-
tained a simple <div> element with its class set to PleaseWait. You added the following CSS rule to
the two CSS files for the themes:

.PleaseWait
{
 height: 32px;
 width: 500px;
 background-image: url(Images/PleaseWait.gif);
 background-repeat: no-repeat;
 padding-left: 40px;
 line-height: 32px;
}

This code first sets the dimensions of the Update message to be 500 pixels wide and 32 pixels high. This is
enough to span the width of the content block, giving you enough room for a longer message.

The code then adds the animated image as a background image. To prevent the image from being
repeated in the background, the repeat property is set to no-repeat. Then the left padding is set to 40
pixels. This moves the text in the <div> to the right, so it appears next to the animated image. Finally,
the line-height of the text is set to 32 pixels, the same height as the entire <div>. This centers the
entire text block vertically within the <div> element and aligns it nicely with the animated image.

figure 10-4

c10.indd 349 2/21/2014 7:47:03 AM

350 ❘ Chapter 10 ASP.NET AJAX

Finally, you added the following line of code to the handler that sends the message:

System.Threading.Thread.Sleep(5000);

This code halts the execution of the page for 5 seconds (the number you pass to the Sleep method is
expressed in milliseconds) so you can get a good look at the message in the UpdateProgress control.
In production code, you should remove this line, because it slows down the page considerably without
adding any value to the page.

In addition to user-triggered page updates as you saw with the Send button, you can also trigger
page refreshes programmatically at a specified interval, as discussed in the following section.

NOTE When you wrap server-side functionality in an UpdatePanel, it may
sometimes be hard to see if an error has occurred and what the exact error
message is. For example, when sending the e-mail fails, you won’t see the
real error message because it’s hidden in the JavaScript. To make it easier to
see the error message in case something goes wrong, you can temporarily
remove the UpdatePanel from the page, or comment out its closing and
opening tags using the server-side comments tags <%-- and --%> like this:

<%--<asp:UpdatePanel ID="up1" runat="server"><ContentTemplate>--%>
... Existing content goes here
<%--</ContentTemplate></asp:UpdatePanel>--%>

the timer Control
The Timer control that you find in the AJAX Extensions category of the Toolbox is great for
executing server-side code on a repetitive basis. For example, you can use it to update the contents
of an UpdatePanel every 5 seconds. The contents of this UpdatePanel could come from a variety of
sources, such as a database with the latest forum posts on a forum or news items on a news site, an
XML file with information to rotate advertisements in the browser, stock quotes from a stock web
service, and more.

The Timer control is pretty simple to use. At a specified interval, the control fires its Tick event.
Inside an event handler for this event you can execute any code you see fit. The following code
snippet shows the markup for a simple UpdatePanel and a Timer control that you can place inside
a content page based on your master page (because the master page already contains the required
ScriptManager):

<asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 <asp:Label ID="Label1" runat="server"></asp:Label>
 <asp:Timer ID="Timer1" runat="server" Interval="5000" OnTick="Timer1_Tick" />
 </ContentTemplate>
</asp:UpdatePanel>

c10.indd 350 2/21/2014 7:47:03 AM

Using Web Services in Ajax Websites ❘ 351

NOTE When you’re using VB.NET, you don’t need the OnTick handler on the
Timer control because that is taken care of with the Handles keyword in the
Code Behind file in that language.

When the timer “ticks” it raises its Tick event, which you can handle with the following code:

VB.NET

Protected Sub Timer1 _ Tick(sender As Object, e As EventArgs) Handles Timer1.Tick
 Label1.Text = System.DateTime.Now.ToString()
End Sub

C#

protected void Timer1_Tick(object sender, EventArgs e)
{
 Label1.Text = System.DateTime.Now.ToString();
}

When this code is run in the browser, the label will be updated with the current date and time
every 5 seconds. If you want to make it tick slower or faster, you need to adjust its Interval
property, which specifies the time in milliseconds.

This scenario with an auto-updating panel and the ability to refresh the content with a button click
is quite common. The auto-refreshing panel is a non-intrusive way to feed the user the most up-to-
date information from the server. In addition, you could offer your users a button to force a refresh
of the data at any moment they choose. From a coding perspective, you wouldn’t have to change
much; you would call the same code (preferably wrapped in a separate method) from the Timer’s
Tick event handler and from the Button’s Click event handler.

For more information about the Timer control, check out the MSDN documentation at http://
tinyurl.com/TimerClass4-5.

You have now seen the most important server-side controls that the ASP.NET AJAX Framework
has to offer. In the remainder of this chapter, you find a discussion of WCF services in your
Ajax-enabled web pages. During the discussion of web services, you see how to use the
ScriptManagerProxy, the final control in the AJAX Extensions category of the Toolbox.

using Web serviCes in ajax Websites

The ability to call web services from an Ajax-enabled ASP.NET website is a great addition to your
web development toolkit. Being able to call a web service means it’s now much easier to access data
at the server from client-side code, giving you a great alternative to full postbacks. The next section
discusses web services.

What are Web services?
Web services are essentially methods that you can call over the Internet and that can optionally
return data to the calling code. This makes them ideal for exchanging data between different

c10.indd 351 2/21/2014 7:47:03 AM

http://tinyurl.com/TimerClass4-5
http://tinyurl.com/TimerClass4-5

352 ❘ Chapter 10 ASP.NET AJAX

systems. Because web services are based on solid and well-understood standards, they make it easy
to exchange data between different types of platforms and systems. For example, with a web service
it’s possible to exchange data between an ASP.NET website running on Microsoft Windows and a
PHP-based site running on Linux. But at the same time, it’s also possible to exchange data between
an ASP.NET or PHP website and a client browser using JavaScript.

NOTE Previous versions of this book also introduced a concept called Page
Methods, which are methods you can declare in a Web Form’s Code Behind
and then call from JavaScript, similar to how you call WCF services. However,
Page Methods don’t work very well with the FriendlyUrls feature you were
introduced to in Chapter 7, and in general the ASP.NET team suggests
that people move away from Page Methods whenever possible. Instead of
Page Methods, you’re advised to use alternatives such as Web API or WCF
service methods. Web API is a framework that makes it easy to expose services
over HTTP, which can be used by a variety of devices such as browsers and
mobile devices. You can learn more about Web API at the official ASP.NET
website at www.asp.net/web-api.

WCF service methods are the topic of the next section.

Introducing WCF
To build web services in an ASP.NET website, you use Windows Communication Foundation
(WCF), Microsoft’s platform for service-oriented applications using the .NET Framework. In
previous versions of ASP.NET you could also make use of so-called ASMX web services, but these
have now been deprecated in favor of WCF. However, this isn’t really a problem because WCF can
do anything that ASMX web services could do and much more.

WCF supports a number of different underlying network communication technologies such as
HTTP, .NET Remoting, Microsoft Message Queuing, and Enterprise Services. This makes it an
ideal platform for the exchange of data in a variety of scenarios such as locally on a single machine,
on a corporate network, or over the Internet. For public-facing websites such as the Planet Wrox
site, HTTP or HTTPS (the secured version of HTTP) is the natural choice because it will work
cross-browser and across firewalls.

For information about the other supported technologies, check out this article on the MSDN website
at http://msdn.microsoft.com/library/dd943056.aspx or get a copy of Professional WCF 4:
Windows Communication Foundation with .NET 4 (Pablo Cibraro, Kurt Claeys, Fabio Cozzolino,
Johann Grabner; Wrox, 2010; ISBN: 978-0-470-56314-4).

To build a WCF web service, you add a WCF service (with an .svc extension) to your project. As
you see later, you have a few different templates available, each serving a different purpose. Inside
this service file you define a Service Contract and an Operation Contract. The Service Contract
defines the overall service and the Operation Contract defines the various methods that are available
on the service. The following snippet shows a simple WCF service with a single method:

c10.indd 352 2/21/2014 7:47:03 AM

http://www.asp.net/web-api
http://msdn.microsoft.com/library/dd943056.aspx

Using Web Services in Ajax Websites ❘ 353

VB.NET

<ServiceContract(Namespace:="")>
<AspNetCompatibilityRequirements(
 RequirementsMode:=AspNetCompatibilityRequirementsMode.Allowed)>
Public Class NameService
 <OperationContract()>
 Public Function HelloWorld(name As String) As String
 Return String.Format("Hello {0}", name)
 End Function
End Class

C#

[ServiceContract(Namespace = "")]
[AspNetCompatibilityRequirements(
 RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)]
public class NameService
{
 [OperationContract]
 public string HelloWorld(string name)
 {
 return string.Format("Hello {0}", name);
 }
}

You define the Service Contract by applying a ServiceContract attribute to your class. An
attribute is like a little tag or label that you can stick on code elements, like classes, methods,
properties, and so on, to mark that piece of code as something special. Other code interacting with
the attributed code can then see what attributes that code contains and make decisions based on
that information. Don’t worry about that too much because you don’t have to read those attributes
yourself when working with web services. All you need to do is stick the attribute on a class or
method to enable it for WCF.

In C# you use square brackets to wrap the attribute, whereas VB.NET uses angle brackets. You may
also come across examples where the VB.NET attribute is followed by a space and an underscore,
because previous versions of VB.NET required this. You don’t need the underscore anymore,
although it’s perfectly valid to use it anyway.

With this attribute in place, you signal to the run time that you really want to expose this class as a
WCF service.

The AspNetCompatibilityRequirements attribute that is applied to the service class determines
how the WCF service behaves at run time. The Allowed value enables your service to run in what’s
called the ASP.NET Compatibility Mode, which runs the WCF service in a similar way ASMX
services were run. When you set the value to NotAllowed, your services won’t run correctly in your
ASP.NET websites.

Besides the attribute on the class, each method you want to expose to the service is marked
with the OperationContract attribute. This opt-in model enables you to create other methods (for
example, helper methods that you call from your service methods) without exposing them from
your service.

c10.indd 353 2/21/2014 7:47:04 AM

354 ❘ Chapter 10 ASP.NET AJAX

Calling Services from Client-side Code
Calling a WCF service from a client HTML page is really simple. ASP.NET takes care of most of the
hard work for you by generating the necessary JavaScript to interact with the service. All you have
to do is register the service with the ScriptManager control and then call it from client-side code.
Given the NameService you saw earlier, you set up the ScriptManager as follows:

<asp:ScriptManager ID="ScriptManager1" runat="server">
 <Services>
 <asp:ServiceReference Path="~/WebServices/NameService.svc" />
 </Services>
</asp:ScriptManager>

In this example, the service file is called NameService.svc and is located in a folder called
WebServices in the root of your website.

Once you set up the service, you can call the service from client-side JavaScript in an ASPX page like
this:

NameService.HelloWorld('Imar', helloWorldCallback);

function helloWorldCallback(result)
{
 alert(result);
}

Note that this code uses a mix of camel case and Pascal case. To align with the .NET programming
guidelines, the service method uses Pascal casing and is written as HelloWorld. In JavaScript
it’s common to write methods using camel case, and thus the callback method is written as
helloWorldCallback with a lowercase “h.” I’ll stick to these naming conventions throughout
the chapter, which will help you determine if something is a pure client method, or a server-
side method. To call a service method, you use
ServiceName.MethodName. So, in the preceding
example, NameService is the name of the service,
and HelloWorld is the method you want to call.
When you type this code in Visual Studio (and have
registered the service in the ScriptManager for the
master page that the content page is using), you get
help from IntelliSense as shown in Figure 10-5.

Although the actual service definition has only a
single parameter (the name parameter), the client side method in this example has four parameters.
The first one is the name parameter that I set up in the HelloWorld service method. If your service
expected more parameters, they would be listed here as well. The second parameter enables you
to pass a success callback method — a method you define in your code that gets called when the
service call completes successfully. In the code example, this method is called helloWorldCallback.
You can name this method any way you want (as long as it’s a valid name in JavaScript), but I prefer
to call it serviceMethodNameCallback to clearly express for which code it serves as a callback. As
a parameter, the callback method receives the value returned from the service. In this example, this
result is a simple string, but you see later how you can also pass complex objects. The third parameter
is also a callback method and is called when the service call somehow fails (for example, because

figure 10-5

c10.indd 354 2/21/2014 7:47:04 AM

Using Web Services in Ajax Websites ❘ 355

the service encounters an error or is not available). The final parameter is called userContext and
enables you to pass additional data to your callback methods. This is useful if you need additional
context data to correctly process the success callback. In this example, the first parameter is
required and the other three are optional. However, in most real-world scenarios you implement at
least the onSuccess callback in order to work with the data returned from the service.

In this example, the code in the success callback helloWorldCallback is really simple; all it does is
alert the value returned from the service. However, it doesn’t have to be like this. The values you can
return from the service are not limited to simple strings, as you see in the following section.

Exchanging Complex Objects with WCF
Although a simple string can sometimes be enough as the response from a service, you typically
need more information. For example, you may want to load the last two reviews from a service
call when a user clicks a refresh button. Rather than posting back the entire page, you could call a
service, retrieve the reviews from the database, and then display them in the page somehow. Here’s
an example of how a service that retrieves reviews could look:

VB.NET

<ServiceContract(Namespace:="")>
<AspNetCompatibilityRequirements(
 RequirementsMode:=AspNetCompatibilityRequirementsMode.Allowed)>
Public Class ReviewsService

 <OperationContract()>
 Public Function GetLatestReviews() As List(Of Review)
 Dim temp As New List(Of Review) From
 {
 New Review() With {.Id = 1,
 .Title = "21st Century Breakdown by Green Day"},
 New Review() With {.Id = 2,
 .Title = "Sonic Youth: Daydream Nation live in Roundhouse, London"}
 }
 Return temp
 End Function
End Class

Public Class Review
 Public Property Id As Integer
 Public Property Title As String
End Class

C#

[ServiceContract(Namespace = "")]
[AspNetCompatibilityRequirements(
 RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)]
public class ReviewsService
{
 [OperationContract]
 public List<Review> GetLatestReviews()
 {
 List<Review> temp = new List<Review>()

c10.indd 355 2/21/2014 7:47:04 AM

356 ❘ Chapter 10 ASP.NET AJAX

 {
 new Review() {Id = 1,
 Title = "21st Century Breakdown by Green Day"},
 new Review() {Id = 2,
 Title = "Sonic Youth: Daydream Nation live in Roundhouse, London"}
 };
 return temp;
 }
}

public class Review
{
 public int Id { get; set; }
 public string Title { get; set; }
}

To show you how to work with complex data at the client, this code example returns two hard-
coded Review instances. In later chapters you see how to work with reviews in a database so you
could make this example truly dynamic. For now, it just serves the purpose of showing the reviews
at the client.

The code sets up a generic collection of Review instances. For now, a Review is a simple class with
two properties: an Id and a Title. The collection is then filled using a collection initializer that
adds two Review instances, each of them created with an object initializer. Refer back to Chapter 5
for more information on collection and object initializers.

When you call the GetLatestReviews method from client code, you get back a collection of Review
instances that you can loop over. The following code shows the getLatestReviewsCallback
method that accomplishes this:

function getLatestReviewsCallback(result)
{
 var listItems = '';
 for (i = 0; i < result.length; i++)
 {
 listItems += '' + result[i].Title + '';
 }
 document.getElementById('Reviews').innerHTML = listItems;
}

This code first declares a string that will hold the titles of the reviews. It then loops over the reviews
in the result variable. JavaScript doesn’t support foreach, but using a standard for loop you can
easily access all items in the collection. Within the for loop, the review’s title is retrieved using
result[i].Title, which is then wrapped in a pair of tags and appended to a string variable.
In the end, the string is added as the innerHTML of an element called Reviews (which could look like
this in the code: <ul id="Reviews">) so the review titles end up in a bulleted list.

When you type this code, you’ll notice you don’t get IntelliSense for the result object. VS doesn’t
know the actual type of the result variable, and as such can’t help you find properties such as Id
and Title.

Note that this code is a bit clumsy. Using document.getElementById and innerHTML isn’t the best
way to write code like this. Therefore, the next chapter introduces you to better alternatives when

c10.indd 356 2/21/2014 7:47:04 AM

Using Web Services in Ajax Websites ❘ 357

it discusses jQuery. For now, though, this should suffice, showing the core concept of working with
complex objects returned from a WCF service.

It’s important to realize that the Reviews object you work with in JavaScript is not the exact same
object as the one you use in the service. Your VB.NET or C# code targets the .NET Framework
at the server, whereas your JavaScript runs at the client. To get the object to the client, WCF
serializes the collection of reviews into JavaScript Object Notation (JSON) — a string
representation of your objects that can be used directly in your JavaScript code. You see an example
of JSON in a later exercise.

The web services in the Planet Wrox project will only be used to have a client page in the browser
talk to the server and exchange data. So, in this site, both the server and the client are in the same
web project — one executes at the client (the JavaScript that calls the web server), and the other lives
at the server (the web service itself). From a security point of view, this is the easiest solution because
both parts trust each other.

If you want your client-side pages to talk to a web service on a different domain, you could host a
service on your own site that calls the remote web service. The client browser then calls your service,
which in turns calls the remote service. This scenario falls outside the scope of this chapter, though.

You see this WCF theory in practice in the following exercise.

Creating Web services
Creating WCF services with VS is pretty easy. Just as with all the other document types, VS comes
with a template for a WCF service. You add the service to the site using the Add New Item dialog
box. You then modify the service code to suit your requirements. Next, you register the service in a
ScriptManager or ScriptManagerProxy and then you’re ready to call it from a client web page.

VS comes with a few different templates to create a WCF service. To create one that’s callable from
a website, you use the WCF Service (Ajax-enabled) template. When you add a service based on this
template, VS adds the necessary configuration code to allow calling this service from a web page
to the Web.config file for you. In addition, the coding model of this service is a bit easier than the
standard WCF Service template because it stores all the code in a single class file.

trY it out Creating a Web Service

In this exercise you create a simple “Hello World” web service. This service accepts your name as an
input parameter and returns a friendly, personalized greeting. There’s not much real-world usage for
this exact web service, but because of the simplicity in the service itself, it’s easy for you to focus on the
underlying concepts.

 1. Create a new folder called WebServices in the root of your site to group all web services in a
single folder. This is not required, but helps in organizing your site.

 2. Next, right-click this new folder and choose Add ➪ Add New Item. Click the WCF Service
(Ajax-enabled) Service item. Because the list of templates can be quite long, you can quickly find
the right item by searching for WCF in the search box in the top-right corner of the Add New
Item dialog box.

c10.indd 357 2/21/2014 7:47:04 AM

358 ❘ Chapter 10 ASP.NET AJAX

Make sure that you click the item for your programming language, and call the service
NameService, as shown in Figure 10-6.

figure 10-6

figure 10-7

 3. Click Add to add the service to the site. Notice how the .svc file
is added to the WebServices folder and the Code Behind file (.vb
or .cs) is placed in the site’s App_Code folder shown in Figure 10-7.

 4. Open the NameService Code Behind file from the App_Code folder,
rename the DoWork method to HelloWorld, and change the code so
it accepts a string and returns a personalized greeting. Notice that
in VB you need to change the code from a Sub to a Function and
have it return a String, and in C# from void to a string method,
because the service method returns a string. You should end up with
code like this:

VB.NET

Public Class NameService
 ...
 <OperationContract()>
 Public Function HelloWorld(name As String) As String
 Return String.Format("Hello {0}", name)
 End Function
End Class

C#

public class NameService
{
 ...
 [OperationContract]

c10.indd 358 2/21/2014 7:47:04 AM

Using Web Services in Ajax Websites ❘ 359

 public string HelloWorld(string name)
 {
 return string.Format("Hello {0}", name);
 }
}

 5. That’s it. You just created a WCF service that can be called from client-side code. Note that if you
try to request the .svc file in the browser directly, you get a screen similar to Figure 10-8.

figure 10-8

You get this screen because by default, for security reasons, WCF services don’t expose their metadata.
This means they don’t tell the outside world how they work and how to call them. If you want to test
your WCF service you could enable it to publish its metadata by following the instructions on the ser-
vice page shown in Figure 10-8. Once you’ve enabled the metadata, you get more information about
testing the service using a WCF test client program. I usually don’t do this for simple WCF services,
though; it’s often just as easy to call the service from a client-side page, as you see in a later Try It Out
exercise.

How It Works

WCF services are essentially methods that can be called over a network, like the Internet or your local
network. They are designed to enable applications to communicate and exchange data with each other.
The default underlying message format for an Ajax-enabled WCF service is JSON. This is a very suc-
cinct way to exchange data. For example, the two reviews you saw in an earlier example are transferred
from the server to the client using the following JSON code:

{"d":[{"__type":"Review:#","Id":1,"Title":"21st Century Breakdown
 by Green Day"},{"__type":"Review:#","Id":2,"Title":
 "Sonic Youth: Daydream Nation live in Roundhouse, London"}]}

I split the code over multiple lines to make it more legible. In reality, this code was all placed on a single
line. If you look at the comments above your service code file you see that you can also have it return
XML. However, for most purposes, JSON is an excellent choice.

c10.indd 359 2/21/2014 7:47:05 AM

360 ❘ Chapter 10 ASP.NET AJAX

When you add a web service to your project, not all methods in this file become web-callable automati-
cally. To expose a method as a service, you need to apply the OperationMethod attribute:

VB.NET

<OperationMethod()>
Public Function HelloWorld(name As String) As String

C#

[OperationMethod]
public string HelloWorld(string name)

With this attribute, the method is visible to the outside world, and can thus be accessed by external systems.

With the service created, the next steps are registering it with the ScriptManager and calling it
from client code. These two topics are discussed next.

Configuring the ScriptManager
In an earlier section in this chapter you saw that the ScriptManager control is a required
component in almost all Ajax-related operations. It registers client-side JavaScript files (those used
by the Ajax framework and optionally your own), takes care of partial-page updates with the
UpdatePanel, and handles interaction with the web services you have defined in your website.
You can add a ScriptManager to an individual page or to the master page so it becomes
available throughout your site.

When using web services, you also need to tell the ScriptManager that you want to expose your
web service to client script. You have two ways to do this:

➤➤ In the ScriptManager in the master page

➤➤ In a content page that uses the web service, using the ScriptManagerProxy class

When you are going to use the web service in all or in most pages, you’re best off declaring the web
service in the master page’s ScriptManager. You do this by giving the ScriptManager control a
<Services> element that in turn contains one or more ServiceReference elements that point to
your public services. For example, to make the NameService.svc service you created available in all
pages in your site, you’d add the following highlighted code to the master page:

<asp:ScriptManager ID="ScriptManager1" runat="server">
 <Services>
 <asp:ServiceReference Path="~/WebServices/NameService.svc" />
 </Services>
</asp:ScriptManager>

By referencing the service in the master page, it becomes available to all pages based on that master.
This also means that each page will download the JavaScript files needed to run this service. This
is a waste of bandwidth and resources if your page is not using the web service at all. So, for
services that you use on only a few pages, you’re better off referencing the service in the page itself.
On a normal page that doesn’t use a master page with a ScriptManager, you can simply add a
ScriptManager to the Web Form directly. However, if you are using a master page that already has
its own ScriptManager (as is the case with the pages in the Planet Wrox website), you need to use a

c10.indd 360 2/21/2014 7:47:05 AM

Using Web Services in Ajax Websites ❘ 361

ScriptManagerProxy control. Because you can have only one ScriptManager in a page, you can’t
add another one in a content page that uses your master page with the ScriptManager. Therefore,
the ScriptManagerProxy serves as a bridge between the content page and the ScriptManager in
the master page, giving you great flexibility as to where you register your services.

When you have the ScriptManagerProxy in place, you add the exact same <Services> element to
it as you saw with the ScriptManager itself:

<asp:ScriptManagerProxy ID="ScriptManagerProxy1" runat="server">
 <Services>
 <asp:ServiceReference Path="~/WebServices/NameService.svc" />
 </Services>
</asp:ScriptManagerProxy>

The following exercise demonstrates how to register and access your web service from client-side
code using the ScriptManagerProxy.

trY it out Calling Web Services from Client-side Code

In this exercise you register your web service in a ScriptManagerProxy control so it becomes available
in one page only. You then write some client-side JavaScript code that accesses the service and then dis-
plays its return value.

 1. First, create a page that uses your service and then registers it using a ScriptManagerProxy
control. To do this, add a new Web Form in the Demos folder and call it WebServices.aspx.
Make sure you base this page on your custom template, so it has the correct master page set and
inherits from the BasePage class, and then give it a Title such as Web Services Demo. Once
you’ve added the page, drag a ScriptManagerProxy control from the AJAX Extensions category
of the Toolbox into the markup of the cpMainContent placeholder.

 2. Within the ScriptManagerProxy element, add a <Services> element that in turn contains
a ServiceReference with its Path set to the NameService you created earlier. Note that
IntelliSense helps you pick the right file as soon as you type Path=" by showing you a list with
files. Click Pick URL at the bottom of the list and browse to the service file in the WebServices
folder. You should end up with this code in the WebServices.aspx page:

<asp:Content ID="Content2" ContentPlaceHolderID="cpMainContent" runat="Server">
 <asp:ScriptManagerProxy ID="ScriptManagerProxy1" runat="server">
 <Services>
 <asp:ServiceReference Path="~/WebServices/NameService.svc" />
 </Services>
 </asp:ScriptManagerProxy>
</asp:Content>

 3. Right below the closing tag of the <ScriptManagerProxy>, add an Input (Text) and an Input
(Button)by dragging them from the HTML category of the Toolbox. By using plain HTML
elements and not ASP.NET Server Controls, you can see that the code you are going to write
really executes at the client. Set the id of the text box to YourName and the id of the button to
SayHello. Set the value of the button to Say Hello. You should end up with this markup:

</asp:ScriptManagerProxy>
<input id="YourName" type="text" />
<input id="SayHello" type="button" value="Say Hello" />

c10.indd 361 2/21/2014 7:47:05 AM

362 ❘ Chapter 10 ASP.NET AJAX

 4. Below these two lines, add a client-side JavaScript block with the following code:

<input id="SayHello" type="button" value="Say Hello" />
<script>
 function helloWorld()
 {
 var yourName = document.getElementById('YourName').value;
 NameService.HelloWorld(yourName, helloWorldCallback);
 }

 function helloWorldCallback(result)
 {
 alert(result);
 }
</script>

 5. Add an onclick attribute to the button so that it calls the helloWorld method when you click it.
Your code should look like this:

<input id="SayHello" type="button" value="Say Hello" onclick="helloWorld();" />

 6. Save all your changes by pressing Ctrl+Shift+S, and then request the WebServices.aspx page in
your browser. Enter your name and click the Say Hello button. If everything turned out well, you
should be greeted with a message from the web service, repeating your name. Figure 10-9 shows
the alert window in Apple’s Safari.

COMMON MISTAKES If you get an error instead of this message box, or you
see a small yellow triangle in the bottom-left corner of the screen, make sure
you typed the JavaScript exactly as in the code snippet. JavaScript is case-
sensitive, so make sure you get all the capitalization right. Also make sure that
the JavaScript block you added in step 4 comes after the input box and button
that you defined earlier. Finally, make sure that the path to your web service
matches the actual path of your .svc service file.

How It Works

To expose a WCF service to the client-side script
in your application, you need to register it in the
Web.config file. In addition, you need to apply
the correct attributes to the service class. Both
actions are carried out for you when you add an
WCF Service (Ajax-enabled) to your project. If
you look at the Web.config file you see something
like this:

<system.serviceModel>
 <behaviors>
 <endpointBehaviors>
 <behavior name="NameServiceAspNetAjaxBehavior">
 <enableWebScript />

figure 10-9

c10.indd 362 2/21/2014 7:47:05 AM

Using Web Services in Ajax Websites ❘ 363

 </behavior>
 </endpointBehaviors>
 </behaviors>
 <serviceHostingEnvironment aspNetCompatibilityEnabled="true"
 multipleSiteBindingsEnabled="true" />
 <services>
 <service name="NameService">
 <endpoint address=""
 behaviorConfiguration="NameServiceAspNetAjaxBehavior"
 binding="webHttpBinding" contract="NameService" />
 </service>
 </services>
</system.serviceModel>

The service element defines a single service; the NameService in this case. If your site has more services
available, you would add them to the same <services> element as the NameService. The binding and
contract attributes tell the run time that this service is callable over HTTP and is implemented by the
NameService class. The address attribute is left empty, which means the run time takes care of assign-
ing an address. For more advanced scenarios you can enter a relative or absolute address here. The
behaviorConfiguration points to a behavior called NameServiceAspNetAjaxBehavior defined under
the behaviors node. WCF separates behaviors from the actual service definition so you can reuse the
same behavior across multiple services. In this case, the behavior is created to enable the service to be
called by a web page through the enableWebScript element.

Once the service is created and registered in the Web.config file, you also need to register it with the
ScriptManager. You could do this in the <Services> element of the ScriptManager in the master
page. The downside of registering the web service in the master page is that its client JavaScript is ref-
erenced in each and every page in your site. For a service you only use once or twice, it’s much better
to add a ScriptManagerProxy to the specific page(s) and register the service there. Within your page,
the ScriptManagerProxy control looks and acts like a normal ScriptManager control. However, in
reality it’s just a proxy control that relays all its settings to the true ScriptManager in the master page,
combining the settings for both controls. You used the ScriptManagerProxy control as follows to set
up the <Services> element:

<asp:ScriptManagerProxy ID="ScriptManagerProxy1" runat="server">
 <Services>
 <asp:ServiceReference Path="~/WebServices/NameService.svc" />
 </Services>
</asp:ScriptManagerProxy>

All you need to do is refer to the service by setting the Path property. Just as with other server-side
URLs you have seen in this book so far, you can use the tilde (~) syntax to refer to the application’s
root.

Once you have registered the service, it becomes available in your client-side code. Note that
IntelliSense in VS is smart enough to discover the WCF services you have defined and registered. As
soon as you typed NameService followed by a dot in a client-side script block, IntelliSense kicked in
again and showed the public methods it found. This makes it extremely easy to find the correct ser-
vices you have defined in your site. This is a huge improvement over old versions of Visual Studio that
had only a fixed number of JavaScript-related items in the IntelliSense list. Starting with Visual Studio
2008, IntelliSense is now actually able to look at your code and fill the IntelliSense list with the right

c10.indd 363 2/21/2014 7:47:05 AM

364 ❘ Chapter 10 ASP.NET AJAX

variable names, methods, services, and so on that it finds in your code. Since VS 2010, Microsoft has
improved IntelliSense even further by improving the performance and the accuracy of the items shown
in IntelliSense.

To see how the actual page works, and how it accesses the web service, take a look at the code in the
<script> block.

The first code you need to look at is the helloWorld method:

function helloWorld()
{
 var yourName = document.getElementById('YourName').value;
 NameService.HelloWorld(yourName, helloWorldCallback);
}

First, this code gets a reference to the text box you created earlier. You then access its value property
to get the name the user entered.

This name is then sent to the web service method HelloWorld with the following code:

 NameService.HelloWorld(yourName, helloWorldCallback);

The first argument of the call to HelloWorld is the argument that the web service method expects:
a string holding your name. The second argument, helloWorldCallback, is a reference to another
JavaScript method that is triggered when the service returns the result. By design, the call to the web
service is made asynchronously. This means the call to the service is made in a separate thread and the
helloWorld method exits shortly afterward. Because it can potentially take a long time for the web
service to respond, you need to designate a method that is responsible for handling the response when it
comes back from the service. In this case, the responsible method is called helloWorldCallback.

In addition to this success callback, you could add another one that is triggered when the web service
somehow fails; for example, because the network connection is down or because the service threw an
exception. In that case, the call to HelloWorld would look like this:

NameService.HelloWorld(yourName, helloWorldCallback, helloWorldErrorCallback);

The helloWorldErrorCallback function could then look like this:

function helloWorldErrorCallback(error)
{
 alert(error.get_message());
}

The error argument that is passed to this method has convenient methods and properties to display
information about the exception. As in the example, you use get_message() to get at the original
exception that occurred at the server. You should use this only during development to figure out the
actual error. In Chapter 18 you learn more about dealing with errors at the server so the error details
are never sent to the client’s browser.

If everything goes according to plan, the call to helloWorld triggers the web service method
HelloWorld. This method receives the name and returns a friendly welcome message.

The String.Format method takes a string that contains numeric placeholders wrapped in a pair of
curly braces ({}). Then for each numeric value, you supply a value as subsequent parameters. In the

c10.indd 364 2/21/2014 7:47:05 AM

Practical Ajax Tips ❘ 365

preceding example there is only one placeholder, but you can easily extend the call to the Format
method with more parameters. For example, if you wanted to format a string with a first and last
name, you’d use this code:

VB.NET

Return String.Format("Hello {0} {1}", firstName, lastName)

C#

return string.Format("Hello {0} {1}", firstName, lastName);

The String.Format method is great to make your strings much more readable. Instead of messy string
concatenation using & or +, you simply define placeholders in the string, and then supply the values at
run time.

Finally, the web service method returns the welcome message as a string. The web service run time then
takes care of sending this return value to the calling code and then the helloWorldCallback method is
invoked. This method has a result parameter that holds the return value of the web service:

function helloWorldCallback(result)
{
 alert(result);
}

In the preceding exercise the result is a simple string. This means you can use alert(result) to
directly display the result in a JavaScript alert window.

In other situations, the result parameter could hold more complex objects that provide access to its
properties or collections with objects, as you saw earlier.

The final thing you need to look at is how everything started in the first place. When you clicked the
button, the client-side helloWorld function was triggered. This was done by adding an onclick attri-
bute to the button that tells the browser which JavaScript method to call when you click the button.
Again, better alternatives exist for the onclick attribute and the call to document.getElementById.
Chapter 11, which discusses jQuery, shows you cleaner alternatives.

Obviously, the NameService you saw in this chapter has little real-world usage. However, the principles
of web services you learned in this chapter are easily applied to more complex services as well, enabling
you to access data on the server from client-side JavaScript with just a few lines of code.

You see the NameService again in Chapter 18 when debugging is discussed. In that chapter you step
through the code line by line so you can see which code executes and in what order.

praCtiCal ajax tips

Consider these tips to get the most out of ASP.NET AJAX:

➤➤ Because the content for an UpdateProgress panel is visible only during an Ajax page
update, you’ll find that it’s hard to design its contents. You see the content only for a
few seconds or less, and only after you cause a postback to the server. To make it easier
to design an UpdateProgress panel, you should first design the message outside of the

c10.indd 365 2/21/2014 7:47:05 AM

366 ❘ Chapter 10 ASP.NET AJAX

UpdateProgress panel. For example, in the exercise from this chapter, you should move
the <div id="PleaseWait"> outside any other controls so it’s always visible. You can then
change the HTML and the CSS for the <div> until it looks exactly right. Then you can
move the <div> back into the UpdateProgress panel so it’s shown only during a partial
page update.

➤➤ Whenever you are using an UpdatePanel, consider adding an associated UpdateProgress
control as well. Even if you don’t see the need because the UpdatePanel refreshes
really fast, it may be worth adding the UpdateProgress for people on slow computers
or slow networks. Or better yet: add an UpdateProgress to the master page in a
convenient and visible area of the page (in the Footer section, for example). Don’t set
AssociatedUpdatePanelID to anything so the progress panel will show on any Ajax
callback. This way, you don’t need lots of different waiting indicators in different areas of
your site.

➤➤ Don’t overuse UpdatePanel controls. In many situations, the perceived performance of an
application increases when using UpdatePanel controls even if the true performance is the
same. This is a good thing, because your users think your application is faster than without
an UpdatePanel. However, using too many UpdatePanel controls may confuse your users,
especially when the controls are not bound to an UpdateProgress control that tells your
users something is going on. Consider web services instead, because they can decrease the
overhead and the data that gets transferred over the wire.

➤➤ You may be tempted to wrap the entire contents of a master page in an UpdatePanel
control to avoid page flicker when you browse from page to page. However, this won’t work
because browsing to a new page is a new GET request whereas the UpdatePanel control
works only during postbacks.

summarY

Ajax is a broad and very interesting technology that can really add a lot of value to your site.

The UpdatePanel control enables you to create flicker-free pages in no time, whereas the
ScriptManager control serves as the bridge between the server and the client and is responsible for
tasks like registering the necessary client scripts. Other controls in the AJAX Extensions category of
the Toolbox include the ScriptManagerProxy, the UpdateProgress, and the Timer controls.

Besides these very useful server-side controls, the ASP.NET AJAX Framework also comes with
functionality that enables you to access web services in your site with just a few lines of code. Web
services can be used to exchange data with the server without blocking or fully reloading the user
interface.

Although Ajax itself is a very compelling technology, it becomes even more useful in richer,
data-driven scenarios. For example, using an UpdatePanel control around the records returned
from a database to avoid page flicker when sorting, filtering, or paging your data greatly enhances
the user’s browsing experience. You learn how to work with databases in Chapter 12. With the
knowledge about Ajax you gained from this chapter, you will quickly create flicker-free,
database-driven web pages.

c10.indd 366 2/21/2014 7:47:06 AM

Summary ❘ 367

exerCises

 1. The AJAX Extensions category of the Toolbox defines a ScriptManager and a
ScriptManagerProxy. Explain the difference between these two controls, and explain when
you should use the ScriptManager and when to use the ScriptManagerProxy.

 2. How can you let your users know a partial page update is in progress?

 3. To expose a method in your site as a web method that can be called by client-side script, you
need to create a class and apply some attributes. Which class do you need to create, and
which attributes do you need to apply?

You can find answers to these exercises in Appendix A.

c10.indd 367 2/21/2014 7:47:06 AM

368 ❘ Chapter 10 ASP.NET AJAX

 ➤ What You learned in this Chapter

ajax Asynchronous JavaScript And XML, a term for a collection
of techniques used to create flicker-free web pages and to
interact with the server from client-side code

attribute A code element that can be applied to other elements such
as classes and methods to change their meaning or behavior

ScriptManager control A core component of the Microsoft ASP.NET AJAX
Framework that takes care of managing client script files and
server-side Ajax behavior

ScriptManagerProxy control The bridge between a content page and the ScriptManager
control defined in a master page

UpdatePanel control A control that helps create flicker-free pages by only
updating content defined within its <ContentTemplate>
element

UpdateProgress control A panel (a <div> or a) that can be shown during the
execution of an asynchronous Ajax operation

Web service method A method that can be called over the Internet or local
network by other applications

c10.indd 368 2/21/2014 7:47:06 AM

jQuery
What You Will learn in this Chapter:

➤➤ What jQuery is

➤➤ What NuGet is and how to use it

➤➤ How to use jQuery to enhance your pages, including adding rich
visual effects and animations

➤➤ How to leverage jQuery to enhance the ASP.NET validation
framework

Wrox.Com Code doWnloads for this Chapter

You can find the wrox.com code downloads for this chapter on the Download Code tab at
www.wrox.com/go/begaspnet451. The code is in the Chapter 11 folder.

In previous chapters you were introduced to JavaScript, the de facto language for client-
side scripting and interacting with elements in your web pages at the client. Though the
examples shown were relatively straightforward, JavaScript can do much more and is quite
a powerful programming language. But powerful as it may be, it has a few shortcomings.
One of the problems with JavaScript is that not all browsers interpret it the same way. A lot
of the JavaScript code you’ll write will work in all major browsers, but subtle differences in
code and behavior exist that make it difficult to write code that behaves exactly the same
in all major browsers. Also, JavaScript lacks some useful features that would come in handy
in your day-to-day JavaScript coding. For example, it has built-in methods to find a specific
element on a page (using getElementById as you saw in Chapters 9 and 10) and to find all
elements of a specific HTML tag (using getElementsByTagName), but it lacks features like
getElementsByClassName to get a list of elements with a specific class applied to them.

11

c11.indd 369 2/21/2014 7:50:02 AM

http://www.wrox.com/go/begaspnet451
http://wrox.com
http://wrox.com

370 ❘ Chapter 11 jQuery

Fortunately, the Internet developer community has been very active developing frameworks that use
JavaScript under the hood and that extend its power, while offering a very rich feature set that helps
you create interactive client-side web pages. Over the years, many JavaScript libraries have been
developed — most of which are free — including:

➤➤ Prototype (http://prototypejs.org)

➤➤ Scriptaculous, an add-on to Prototype (http://script.aculo.us)

➤➤ Ext JS (www.sencha.com/products/extjs/)

➤➤ Dojo (http://dojotoolkit.org)

➤➤ MooTools (http://mootools.net/)

One framework that has received a lot of attention is jQuery. Initially developed and released by
John Resig in January 2006, jQuery has grown to be a very popular client-side framework. It also
caught the attention of Microsoft, which decided to start shipping jQuery with Microsoft products.
Initially, jQuery shipped with the Microsoft ASP.NET MVC Framework, but it’s now also included
in other web projects in Visual Studio 2013.

an introduCtion to jQuerY

The main focus of the jQuery library has always been to simplify the way you access the elements
in your web pages, provide help in working with client-side events, enable visual effects like
animations, and make it easier to use Ajax in your applications. In January 2006, John Resig
announced the first version of jQuery, which was followed by an official release of jQuery 1.0 in
August 2006. Many more versions would follow, with version 2.0.3 as the latest, stable release at
the time of writing.

Note jQuery is under active development, and, as such, there’s a fair chance
that by the time you read this book, a new version of jQuery will have been
released. Although the code presented in this chapter is expected to be
 compatible with future versions, backward-compatibility issues may arise with
later versions. If you find that some of your code doesn’t work with the jQuery
version you are using, consider using the files that come with this chapter’s
download to rule out any problems with the new version.

You have a few ways to acquire the jQuery library and add it to your website. First of all, you can
download the latest version of jQuery from the official website at http://jquery.com. Not only
will you find the downloadable files there, but you’ll also find the documentation, FAQs, tutorials,
and much more information you can use to make the most out of jQuery.

c11.indd 370 2/21/2014 7:50:02 AM

http://prototypejs.org
http://script.aculo.us
http://www.sencha.com/products/extjs/
http://dojotoolkit.org
http://mootools.net/
http://jquery.com

An Introduction to jQuery ❘ 371

Note At the time of writing, two main versions of jQuery exist: the older 1.x
branch and the newer 2.x branch. They both support the same features but the
newer branch no longer supports Internet Explorer 6, 7, and 8. If these versions
are important for you (IE 8 still has a market share of around 6 percent),
 consider using the older 1.x branch instead. All code presented in this chapter
works in both versions.

The second way to acquire jQuery is to use the ASP.NET Web Forms Site template to create a new
site, because it already contains a Scripts folder with the necessary jQuery files. However, back
in Chapter 2 you based the Planet Wrox website on the ASP.NET Empty Web Site template, which
doesn’t include these files.

The third solution to add jQuery to your site is by using a Content Delivery Network (CDN) as
you’ll see later.

The final way is to use NuGet, the Library Package Manager that ships with Visual Studio
(including the Express editions). NuGet is discussed next.

introducing nuGet
NuGet is an open source Library Package Manager that comes as a Visual Studio extension and that
makes it very easy to add, remove, and update external libraries in your Visual Studio projects
and websites. You’ve seen it at work briefly in Chapter 3 (when you added Modernizr to the site) and
Chapter 7 (when you added FriendlyUrls), but this chapter digs a little deeper into the core
functionality of the package manager.

NuGet was initially developed by Microsoft but has now been turned into an Open Source project
that accepts contributions from the developer community. Although you’ll see NuGet used in the
context of a website in VS, NuGet is certainly not for ASP.NET only. You can use it for all types of
applications you can build with Visual Studio.

To understand what problems NuGet solves, imagine you want to add an open source library
such as jQuery to your ASP.NET website. Although the specifics differ from library to library, you
usually need to go through the following steps:

 1. Find the website of the library.

 2. Find a link to the download of the latest stable version of the library and download it.

 3. Unblock the downloaded file using File Explorer, unzip it, and add it to your project,
optionally creating a specific folder for it.

 4. Optionally, add a reference to the library in your project.

 5. Optionally, configure the library through the Web.config file or other code files.

Using NuGet, you can greatly minimize the steps needed to add libraries to your project. For
example, you can add the jQuery library with just five mouse clicks. In addition to adding packages,
NuGet also enables you to easily update libraries to their latest versions after you’ve added them to
your website, and it enables you to remove packages again without leaving a trace.

c11.indd 371 2/21/2014 7:50:02 AM

372 ❘ Chapter 11 jQuery

Besides the extension for Visual Studio, NuGet also has its own website at http://nuget.org. Here
you can browse the catalog of packages, find commands for installing packages (more on that in the
next section), read detailed documentation, and more.

To manage libraries with NuGet, you have two options: you can use the Manage NuGet Packages
dialog box or you can use the Package Manager Console.

Using the Manage NuGet Packages Dialog Box
The Manage NuGet Packages dialog box enables you to search for packages online, as well as
manage packages you have already installed. You access this dialog box by right-clicking your
website in the Solution Explorer and choosing Manage NuGet Packages. Alternatively, choose
Tools ➪ Library Package Manager ➪ Manage NuGet Packages for Solution. Figure 11-1 shows
the dialog box in action.

fiGure 11-1

On the left of the dialog box you can choose from three different types of lists with packages:

➤➤ Installed packages — This item shows a list of packages that have been installed into your
website. You can use this option to find out which version of a package you have installed,
uninstall packages, or install the same package into another website or project that is part
of the same solution.

➤➤ Online — This item enables you to search for packages online using the official NuGet
package source, the official Microsoft source, or any additional feeds you may have
added (which you can do using Tools ➪ Options ➪ Package Manager ➪ Package Sources).
By default, the list shows the most popular packages first (measured by the number of
downloads), but you can change the ordering using the drop-down list at the top. To the
left of the Sort by drop-down you have the option to display only stable packages, or

c11.indd 372 2/21/2014 7:50:02 AM

http://nuget.org

An Introduction to jQuery ❘ 373

also include prerelease versions of packages. In the upper-right corner you can search for
packages by entering (part of) their name. Once you find the package you want to add to
your website, select it, click the Install button and the NuGet Package Manager takes care
of the installation process. You see more of this in a later exercise.

➤➤ Updates — This item shows a list of packages for which new versions have been released
since you installed the package into your website. Because updates could potentially break
an existing website, they are not installed automatically and you need to manually select the
packages you want to update.

You can find the full documentation on the Manage NuGet Packages dialog box in the
documentation section of the NuGet website at http://bit.ly/q2PiyM.

Besides using this dialog box, you can also manage packages using the Package Manager Console.

Using the Package Manager Console
The Package Manager Console enables you to manage your packages from a command-line
interface. This is not as user-friendly as using the dialog box, but once you get the hang of using
NuGet you’ll find that the console can be really useful. Using the console you can access the same
features as with the dialog box and more. Figure 11-2 shows the Package Manager Console, which
you can access from the main menu by choosing Tools ➪ Library Package Manager ➪ Package
Manager Console.

Note NuGet is updated quite often (you’ll be notified by Visual Studio when a
new release is available) so your version number may be slightly different. That
doesn’t matter for the functionality described in this book.

fiGure 11-2

This command-line window supports a number of commands that help you manage packages. To
get a list of the available main commands, type Get-Help NuGet and press Enter. You’ll see a list
of commands appear that you can execute at the console. The console has IntelliSense as well to
help you complete the commands by pressing the Tab key. In the example of the Help command,
simply type Get followed by the Tab key to get a list with all commands that start with Get. You
can then select the command from the list and complete it by pressing Tab again or by pressing
Enter. Because many commands start with Get, in this case it’s probably quicker to type Get-H and
then press Tab, or to type the complete command yourself. However, for longer and more unique
command names, using the Tab key can be a great time saver.

c11.indd 373 2/21/2014 7:50:02 AM

http://bit.ly/q2PiyM

374 ❘ Chapter 11 jQuery

Probably the most popular commands are Get-Package and Install-Package. Using Get-
Package you can list the packages that are currently installed in your site. To see the list, just type
the command and hit Enter. If you try this now, you should see the Modernizr and FriendlyUrls
packages. By using Get-Package -ListAvailable you can see a complete list of all available
packages. Because thousands of them exist (and the list is growing), you want to filter the list using
-Filter, like this:

Get-Package -ListAvailable -Filter jQuery

This lists all the packages that have jQuery in their name. Note that filtering isn’t case sensitive.
To find prerelease versions of packages that haven’t been officially released yet, you use the
-PreRelease option, like this:

Get-Package -ListAvailable -Filter jQuery -PreRelease

Once you find the package you want to install, use the Install-Package command. As an
argument, you need to supply it the name of the package. For example, to install jQuery into your
website you execute the following command:

Install-Package jQuery

After you hit Enter, the Package Manager Console downloads the package and installs it in your
website exactly the same as using the Manage NuGet Packages dialog box does.

For a complete overview of all the available commands, look at the official NuGet documentation at
http://docs.nuget.org. You can find the command-line reference here: http://bit.ly/q0N57L.

In the next exercise, you use the Manage NuGet Packages dialog box to install the jQuery library
into your website.

trY it out Using NuGet to Install Packages

In this exercise you see how to find and install the latest jQuery package using the Manage NuGet
Packages dialog box. Using the dialog box is the most intuitive and easiest way, so it’s a good place to get
started with NuGet. In later parts of this book you also use the Console window to install packages.

 1. Start by opening the Manage NuGet Packages dialog box. You can do that by right-clicking your
site in the Solution Explorer and choosing Manage NuGet Packages. Alternatively, you can choose
Tools ➪ Library Package Manager ➪ Manage NuGet Packages for Solution. The dialog box
shown in Figure 11-1 appears.

 2. If it’s not already selected, click the Online item in the list on the left.

 3. Because jQuery is so popular, it should appear in the list with packages that are shown by default.
If it’s not, or if you want to install another package, use the search box at the top-right corner of
the dialog box.

 4. Click the jQuery library package in the list. Make sure you choose just the jQuery library, and not
the jQuery UI (Combined Library) or jQuery Validation package, because these serve a different
purpose.

c11.indd 374 2/21/2014 7:50:03 AM

http://docs.nuget.org
http://bit.ly/q0N57L

An Introduction to jQuery ❘ 375

 5. Click the Install button. A dialog box pops up that lists the actions that are executed to install
the package. Once that dialog box has disappeared, click the Close button to dismiss the Manage
NuGet Packages dialog box.

That’s it. You just installed jQuery using NuGet.

How It Works

To see how it works, take a look at the Scripts folder in your Solution Explorer. You should see an
item called jquery-2.0.3.js, shown in Figure 11-3. Remember, a new version may have been released
since this book was written so your version numbers may be different. During installation, NuGet
added four jQuery-related JavaScript files to your Scripts folder (which it would have created if it
didn’t exist.) In addition, it kept track of the installed packages in a file called packages.config in
the root of your website and created a packages folder to store a local copy of the downloaded pack-
ages. Depending on your settings, this location could differ, but most
likely it’s located in a folder named after your site in Documents\Visual
Studio 2013\Projects.

These four .js files all serve a different purpose. The file
 jquery-2.0.3.js contains the core jQuery code in an uncompressed
format. This means you can read its code and use it for debugging
 purposes in cases where you need to see what code the library executes.
The file jquery-2.0.3.intellisense.js contains the documenta-
tion for the code in the jQuery library that is used in the IntelliSense
lists and documentation pop-ups. You see how this works later in this
chapter. The file jquery-2.0.3.min.js is the core jQuery library in a
compressed format. This is the file you’ll use in your website because it
has the smallest size and is thus the quickest to download. Finally, the
.map file is only used when you want to debug the jQuery library itself
because it provides a mapping between the code in the minified and the
code in the original, uncompressed file.

Now that the jQuery library has been added to the website, the next step is determining where to
use it. Because the jQuery library adds to the size of your web pages, it should be a deliberate choice
whether or not you include it in your site.

Choosing the location for Your jQuery reference
To include jQuery in your website, you have a couple of options:

➤➤ Add a reference to the jQuery library in just the web pages or user controls that require it.

➤➤ Add a reference to the jQuery library in the master page of your site so it’s available in all
pages.

Both methods have their own advantages and disadvantages. Adding a reference to the jQuery
library in just the pages that need it helps keep the size of your pages down a bit. When your users
browse only to pages without jQuery, they’ll never have to download the library file, saving them

fiGure 11-3

c11.indd 375 2/21/2014 7:50:03 AM

376 ❘ Chapter 11 jQuery

some bandwidth. Note that once they’ve visited a page that does reference the library, the browser
will cache a copy of it, removing the need to download it again on subsequent visits to pages.

Adding the reference to jQuery in the master page of your site is quite convenient, because all pages
based on this master page automatically get access to the jQuery functionality. However, this results
in a small performance hit on the first page of your site because the library needs to be downloaded
from the server. This is the option used in the Planet Wrox website.

In addition to the location where you add your jQuery file, you also have a few options with regard
to the way you include the file.

different Ways to include the jQuery library
Because the jQuery library consists of a single file with JavaScript code, you can embed a reference
to the library in a page, user control, or master page using the standard <script> syntax:

<script src="/Scripts/jquery-2.0.3.min.js" type="text/javascript"></script>

It’s important to use a separate closing </script> tag because some browsers will choke if you use
a self-closing tag.

You can also embed the reference inside the ScriptManager control that you added to the master
page in the previous chapter. The ScriptManager control has a <Scripts> child element that lets
you register JavaScript files that will be added to the final page in the browser, like this:

<asp:ScriptManager ID="ScriptManager1" runat="server">
 <Scripts>
 <asp:ScriptReference Path="~/Scripts/jquery-2.0.3.min.js" />
 </Scripts>
</asp:ScriptManager>

Another alternative is to refer to an online version of the library with Microsoft’s Content Delivery
Network (CDN) or Google Code. For more information on this, visit Microsoft’s CDN site at
www.asp.net/ajax/cdn or Google’s API site at http://code.google.com/apis/ajaxlibs/.

The advantages of using online versions of external libraries are improved performance and lowered
bandwidth for your servers. Because it is likely that visitors to your site already have downloaded the
shared scripts when visiting another site, they don’t have to download them again when visiting yours.

In the following exercise, you add the jQuery library to the master page of the Planet Wrox website.
With the library set up, the remainder of this chapter teaches you how jQuery works and how to use
it in the Planet Wrox website.

Note By the time you read this book, a new version of jQuery may have
been released. This means that the version number in your jQuery file may be
different from what I am showing here. Be sure to update the file names to
match your library files. If you ever upgrade an existing site with a newer ver-
sion of jQuery be sure to read the release notes of that version to see what has
changed and to test your site with the new library to make sure the upgrade
didn’t break anything.

c11.indd 376 2/21/2014 7:50:03 AM

http://code.google.com/apis/ajaxlibs/
http://www.asp.net/ajax/cdn

An Introduction to jQuery ❘ 377

trY it out Your First jQuery Page

In this exercise, you add the jQuery library to the master page so it’s available to all pages in your site.

 1. Open the Frontend.master file from the MasterPages folder and switch it to Markup View if
necessary. Locate the ScriptManager control and add the following bolded markup to it:

<asp:ScriptManager ID="ScriptManager1" runat="server">
 <Scripts>
 <asp:ScriptReference Path="~/Scripts/jquery-2.0.3.min.js" />
 </Scripts>
</asp:ScriptManager>

If your ScriptManager didn’t have a separate closing tag yet, you should add one now (and
remove the slash (/) from the opening tag) or the code won’t be added correctly.

 2. Save and close the master page because you’re done with it for now.

 3. To try out the jQuery library, create a brand new Web Form in the Demos folder based on your
custom template. Call the page jQuery.aspx, and set its Title to jQuery Demo.

 4. With the new page open in Markup View, add the following code to the Content block for
cpMainContent:

<asp:Content ID="Content2" ContentPlaceHolderID="cpMainContent" runat="Server">
 <input id="Button1" type="button" value="button" />
 <script>
 $(document).ready(function() {
 $('#MainContent').css('background-color', 'green')

 $('#Button1').click(function() {
 $('#MainContent').css('background-color', 'red')
 .animate({ width: '100px', height: '800px' })
 });
 });
 </script>
</asp:Content>

Just like many other programming languages, JavaScript (and thus jQuery) is case sensitive and
quite sensitive to missing quotes, brackets, and parentheses, so make sure you type this code
exactly as shown here. Alternatively, you can copy and paste the code from the jQuery.aspx page
that is part of the full source code that comes with this book.

Note that while typing, IntelliSense pops up, helping you complete the code and giving you infor-
mation about various methods and parameters in a tooltip. If it doesn’t pop up, make sure you
added the right <Scripts> element to the master page. Also, try saving and closing all open docu-
ments and then reopen jQuery.aspx.

 5. Save the changes to the page and then press Ctrl+F5 to open it up in the browser. Notice how the
background color of the MainContent element has turned to green. Click the button and notice
how the background color changes to red and how the MainContent element changes size, ending
up with a width of 100 pixels and a height of 800 pixels.

c11.indd 377 2/21/2014 7:50:03 AM

378 ❘ Chapter 11 jQuery

CoMMoN MIStAKeS If you get an error, or you don’t see the animation,
make sure the link to the jQuery library is added to the master page correctly.
Also, check your code for any typos you may have made.

How It Works

Although the effects shown in this exercise aren’t that fancy, a lot is going on under the hood to make
this example work. To understand how it works, first look back at the master page where you added a
reference to the jQuery library:

<asp:ScriptManager ID="ScriptManager1" runat="server">
 <Scripts>
 <asp:ScriptReference Path="~/Scripts/jquery-2.0.3.min.js" />
 </Scripts>
</asp:ScriptManager>

This tells the script manager to include a script element pointing to the jQuery library. If you look in
the HTML source for the page in the browser, you should see the following script element:

<script src="../Scripts/jquery-2.0.3.min.js" type="text/javascript"></script>

This in turn tells the browser to download the jquery-2.0.3.min.js file from the Scripts folder,
giving your page access to all functionality included in the jQuery library.

The next thing to look at is the code in the jQuery demo page. First, you added a standard <script>
block that can contain JavaScript. Inside this block, you added some jQuery code that is fired as soon
as the browser is done loading the page. Everything between the opening ({) and closing (}) curly braces
is executed when the page is ready:

<script>
 $(document).ready(function() {
 // Remainder of the code skipped
 });
</script>

Because the jQuery code interacts with the elements on the page, you often have to wait until the entire
page has loaded so the elements you’re programming against are available. Adding jQuery code like this
is a standard practice to delay execution of the code until the entire page is ready. You see more of this,
including a handy shortcut to the “document ready function” $(document).ready later in this chapter.

The code that is executed when the page is ready consists of two parts. The first line of code sets the
background color of the MainContent <section> to green:

$('#MainContent').css('background-color', 'green')

This code gets a reference to the MainContent element and then calls the css method to change the
background color to green. Remember document.getElementById from the previous chapter that gets

c11.indd 378 2/21/2014 7:50:03 AM

An Introduction to jQuery ❘ 379

a reference to an element in the page by its id? In this example, $('#MainContent') is jQuery’s equiva-
lent, but as you see later, it’s much more powerful.

The second part sets up a click handler for the HTML button you added to the page, similar to how
you used onclick in Chapter 10. Inside the click handler you see some code that changes the back-
ground color of the MainContent <section> element to red, and changes the height and the width of it
using a fluid animation:

$('#Button1').click(function() {
 $('#MainContent').css('background-color', 'red')
 .animate({ width: '100px', height: '800px' })
 });

Again, you learn more about how jQuery is able to find the button and the <section> element and
how the css and animate methods work later in this chapter, so don’t worry too much if none of this is
making a lot of sense right now.

When you click the button in the browser, the MainContent’s background color is changed to red, and
then its width and height are changed to 100 and 800 pixels, respectively.

When you typed the jQuery code you may have noticed you got help from IntelliSense. As soon as
you typed $(you got a tooltip explaining the information you can pass to this function. Likewise,
IntelliSense helps you find and complete the css method and the various arguments you need to pass to
it, as shown in Figure 11-4.

fiGure 11-4

IntelliSense for jQuery works through the extra file — jquery-2.0.3.intellisense.js — you added
to the site with NuGet. VS scans the library’s folder for files ending in intellisense.js, parses them,
and then uses the documentation it finds in them to build up the IntelliSense list.

The reason for the separate documentation file is to keep the size of the original jQuery library down.
Without the documentation, the library is only 82KB; with the documentation the file size would be
much bigger.

You should never include a link to the IntelliSense version of the library in your pages because it doesn’t
add any value in the browser.

Now that you’ve seen some jQuery at work, it’s time to get a better understanding of its possibilities
and syntax.

c11.indd 379 2/21/2014 7:50:03 AM

380 ❘ Chapter 11 jQuery

jQuerY sYntax

To understand and use jQuery, you need to know a few important basics. First, you need to know
more about jQuery’s core functionality, including the $ function you’ve seen before, and its ready
method that enables you to execute code when the page is done loading in the browser. Next, you
need to learn more about jQuery’s selector and filter syntax, which enable you to find elements in a
page by criteria that you specify. Once you have a reference to one or more elements in a page, you
can apply various methods to them, like the css method you saw earlier. You also need to know a
little about jQuery events that enable you to attach behavior to the events that your HTML elements
might fire, like click, mouseover, and so on. In the next couple of sections, you see all of these
main jQuery topics at work.

jQuery Core
Most of the jQuery code you write will be executed when the browser is done loading the page. It’s
important to wait with executing your code until the page is done loading the DOM. The DOM —
the document object model — is a hierarchical representation of your web page and contains a tree-
like structure of all your HTML elements, script files, CSS, images, and so on. The DOM is always
in sync with the page you see in the browser, so if you make a programmatic change to the DOM
(for example, with jQuery code), the change is reflected in the page in the browser. If you execute
your jQuery code too early (for example, at the very top of the page), the DOM may not have
loaded the elements you’re referring to in your script, and you may get errors. Fortunately, it’s easy
to postpone the execution of your code until the DOM is ready using the ready function in jQuery.
You’ve already seen the ready function at work in the previous Try It Out, but it’s shown here again
now that you better understand what it’s used for:

$(document).ready(function() {
 // Code added here is executed when the DOM is ready.
});

Any code you add between the opening and closing curly braces is executed when the page is ready
for DOM manipulation. jQuery also comes with a shortcut for the ready function to make it easier
to write code that fires when the DOM is ready. The following snippet is equivalent to the preceding
example:

$(function() {
 // Code added here is executed when the DOM is ready.
});

Note It’s important that any code referencing the jQuery library is not run
before the jQuery library itself is loaded. Because the link to the jQuery library
is added after the <body> tag by the ScriptManager, you need to find a loca-
tion later in the page. A good place for this is near the closing </body> tag
defined in the master page.

c11.indd 380 2/21/2014 7:50:03 AM

jQuery Syntax ❘ 381

Because jQuery code is often specific to a page, it makes sense to add the code to the end of just the
pages that require it. To make this a little easier, you can add a ContentPlaceHolder in your master
page especially for this purpose. The pages that use this master page then have an easy location to
write jQuery code. You see how to do this in the next exercise.

In the previous jQuery example you saw some code that selected the MainContent <section>
element and the button in your page. However, jQuery comes with a lot more options to select
specific elements in your pages. These options are discussed next.

selecting items using jQuery
In jQuery you use the dollar sign ($) as a shortcut to find elements in your page. The elements that
are found and returned are referred to as a matched set. The basic syntax for the $ method is this:

$('Selector Here')

Between the quotes (you can use single or double quotes, as long as you use the same type on each
end) you enter one or more selectors, which are discussed later. The $ method returns zero or more
elements that you can then influence using one of the many jQuery methods. For example, to apply
some CSS to all h2 elements, you use the css method:

$('h2').css('padding-bottom', '10px');

This applies a padding of ten pixels at the bottom of all headings at level two in the page. The cool
thing about many of the jQuery methods is that, besides applying some design or behavior, they
return the matched set again. This enables you to call another method on the same matched set so
both are applied. This concept is called chaining or fluent programming where you use the result
of one method as the input of another, enabling you to create a chain of effects. For example, the
following code first changes the font size of all level-two headings in the page, and then fades them
out until they are invisible in five seconds:

$('h2').css('font-size', '40px').fadeOut(5000); // timeout is in milliseconds

As you learned in earlier chapters, you should try to avoid using inline CSS properties like this.
Instead, you should define CSS classes and assign them to the HTML elements. You see how to do
this later in this chapter. You learn more about the different visual effects like animate and fadeOut
after you’ve seen how selectors and filters work.

Basic Selectors
jQuery selectors enable you to find one or more elements in your page’s document object model
so you can apply all sorts of jQuery methods to these elements. The great thing about jQuery
selectors is that you already know how they work. Rather than inventing a new technique to find
page elements, the designers of jQuery decided to use an existing selector-based syntax that you are
already familiar with: CSS. Remember the CSS selectors from Chapter 3? You can use the exact
same ones in jQuery.

c11.indd 381 2/21/2014 7:50:03 AM

382 ❘ Chapter 11 jQuery

The Universal Selector
Just as its CSS counterpart, the Universal selector matches all elements in your page. To set the
font-family property of the style for each element in your page to Arial, you use this code:

$('*').css('font-family', 'Arial');

The Element Selector
This selector returns a reference to zero or more elements that match a specific tag name. For
example, this code turns the text color of all headings at level two to blue:

$('h2').css('color', 'blue');

The ID Selector
This selector finds and retrieves an element by its id, the same as you would do in CSS. For
example, to set the CSS class for a button called Button1, you use this code:

$('#Button1').addClass('NewClassName');

When this code sets the CSS class (using the addClass method), the standard CSS rules apply. That
means that for this code to work and change the appearance of the button, the NewClassName class
needs to be available to the page, either through an external CSS file or by an embedded style sheet.
Refer to Chapter 3 if you need a refresher on the different cascading style sheet types. However,
you’ll also see examples where a CSS class is added that doesn’t exist in a CSS file. This is convenient
to “tag” elements so you can select them again later using a Class selector.

The Class Selector
The Class selector returns a reference to zero or more elements that match a specific class name.
Consider this HTML fragment:

<h1 class="Highlight">Heading 1</h1>
<h2>Heading 2</h2>
<p class="Highlight">First paragraph</p>
<p>Second paragraph</p>

Notice how two of the four elements have a CSS class called Highlight. The following jQuery code
changes the background color of the first heading and the first paragraph to red, leaving the other
elements unmodified:

$('.Highlight').css('background-color', 'red');

Grouped and Combined Selectors
Just as with CSS, you can group and combine selectors. The following Grouped selector changes the
text color of all h1 and h2 elements in your page:

$('h1, h2').css('color', 'orange');

With a Combined selector, you can find specific elements that fall within some others. For example,
the following jQuery touches just the paragraphs that fall within the MainContent element, leaving
all other paragraphs alone:

c11.indd 382 2/21/2014 7:50:04 AM

jQuery Syntax ❘ 383

$('#MainContent p').css('border', '1px solid red');

To get a feel for the selectors in jQuery and the effects you can apply to the matched set, the next
exercise shows you how to use some of the selectors and apply some animations to the matched set.
In later sections of this chapter, you get a more detailed explanation of the different animations; for
now, just focus on the selector part of the jQuery code.

trY it out Using Basic Selectors

In this exercise, you first add an additional ContentPlaceHolder control to the main master page so
it’s easier to add client-side jQuery code to your pages. You then write some jQuery to try out the vari-
ous selectors.

 1. Open up the Frontend.master file from the MasterPages folder and make sure it’s in Markup
View.

 2. Near the bottom of the page, right before the closing </form> tag, drag a ContentPlaceHolder
from the Toolbox. Set its ID to cpClientScript. Your code should end up like this:

 <footer>Footer Goes Here</footer>
 </div>
 <asp:ContentPlaceHolder ID="cpClientScript" runat="server">
 </asp:ContentPlaceHolder>
</form>

 3. Save and close the master page because you’re done with it for now.

 4. Create a new demo page called BasicSelectors.aspx in the Demos folder. Once again, base
it on your own template and give it a meaningful title. Switch the page to Design View, locate
the cpClientScript placeholder at the bottom, open its Smart Tasks panel, and choose Create
Custom Content. You need to do this in Design View because your custom template does not
contain this code yet. If you want to include the code for the cpMainContent in the Markup for
new pages based on your custom template, you need to re-create the template by following the
steps described in Chapter 6.

 5. Switch to Markup View and add the following HTML to the cpMainContent placeholder (don’t
accidentally add it to the placeholder you just added):

<h1>Basic Selectors</h1>
<div class="SampleClass">I am a div.</div>

 6. Add the following jQuery code demonstrating all six basic selectors to the cpClientScript
placeholder you created in step 4:

<asp:Content ID="Content3" runat="server" ContentPlaceHolderID="cpClientScript">
<script>
 $(function()
 {
 $('*').css('color', 'Green'); // Universal
 $('#Sidebar').css('border-bottom', '2px solid red'); // ID
 $('h1').bind('click', function () { alert('Hello World') }); // Element
 $('.SampleClass').addClass('PleaseWait').hide(5000); // Class

c11.indd 383 2/21/2014 7:50:04 AM

384 ❘ Chapter 11 jQuery

 $('footer, header').slideUp('slow').slideDown('slow'); // Grouped
 $('#Sidebar img').fadeTo(5000, 0.1); // Combined
 });
</script>
</asp:Content>

 7. Save all your changes and request the page in the browser. All text is now green, the sidebar
has an extra bottom border, you see the Please Wait animated icon and text appear and then
disappear, the header and footer disappear and then reappear, and finally, during a five-second
period, the banner in the sidebar becomes almost transparent. If you click the Basic Selectors
heading you get a pop-up saying Hello World.

How It Works

Phew, lots of animation fun. I typically don’t recommend adding all these features to your pages at once
or you’ll be sure to scare away most of your users. However, for this demo it works really well because
you can see some of the power of jQuery. You’ve seen all of the six selectors, but the code that is being
executed against their matched sets is probably new to you.

The first selector selects all elements in your page and then applies the css method to turn their font
color to green. The ID selector then gets a single element and calls the same css method to apply
a border. The third example uses the Element selector to find the h1 element and then dynamically
binds a click handler so that when you click the heading, the code between the curly braces is
executed.

Selector four demonstrates the Class selector and shows you how to find elements by their class
name. Notice that the CSS class being searched for doesn’t have to be an existing CSS class defined in
your style sheet. Once the elements are found, the addClass method then adds a new class to them,
PleaseWait in this example, which applies the spinner image as the background to the <div> element.
The hide method then hides the elements again during a five-second timeframe.

Line number five uses the Grouped selector to find both the footer and the header elements. The
slideUp method then slowly decreases the height of these elements until they have completely
disappeared. In doing so, it remembers the initial size, so when you call slideDown again it knows
to what size to restore the elements.

The final example uses a Combined selector to find the banner image in the right-hand sidebar. Once it
has found the image, it slowly dissolves it (in five seconds) by setting its opacity to 0.1 (10%) so it gets
almost invisible.

In a later section in this chapter you see more of the various styling and animation methods that jQuery
offers. For now, it’s just important that you understand the selector syntax to refer to the elements in
your page.

Quite often, simply selecting items in your page is not enough. For instance, when selecting rows in
a table you may not want to select all rows at once, but only the odd or even rows, so you can apply
a “zebra stripe” effect to the table where odd and even rows have different colors. That’s where
filters come into play.

c11.indd 384 2/21/2014 7:50:04 AM

jQuery Syntax ❘ 385

Basic Filters
In jQuery you can use filters to further filter the result set from a selector. This opens a lot of
possibilities because it enables you to get at elements like the first, last, all even or odd ones, all
headings, or items at a specific location. The table after the next exercise lists the most-used basic
filters and gives an example of how to use them. To follow along with these examples and many that
follow, carry out this exercise, which sets up a test page for most of the jQuery examples.

trY it out Setting up a jQuery Demo Page

In this exercise, you create a brand new demo page you can use to try out many of the examples in this
chapter, simply by replacing a single line of code.

 1. Create a new page based on your custom template and call it jQueryDemos.aspx. Give the page a
title and then in the cpMainContent placeholder add the following HTML:

<h1 title="First Header">First Header</h1>
<table id="DemoTable">
 <tr><td>Row 1 Cell 1</td><td>Row 1 Cell 2</td></tr>
 <tr><td>Row 2 Cell 1</td><td>Row 2 Cell 2</td></tr>
 <tr><td>Row 3 Cell 1</td><td>Row 3 Cell 2</td></tr>
 <tr><td>Row 4 Cell 1</td><td>Row 4 Cell 2</td></tr>
 <tr><td>Row 5 Cell 1</td><td>Row 5 Cell 2</td></tr>
</table>
<h2>Second
 Header</h2>
<input id="Button1" type="button" value="button" />
<input id="Text1" type="text" />
<input id="Checkbox1" type="checkbox" />
<input id="Checkbox2" type="checkbox" />

You don’t have to type all this code yourself. Instead, you can use VS to write most of it for you.
Make good use of the Table menu and the HTML category of the Toolbox.

 2. Add a Content block for the cpClientScript below cpMainContent and enter the following code:

</asp:Content>
<asp:Content ID="Content3" runat="server" ContentPlaceHolderID="cpClientScript">
<script>
 $(function()
 {
 // Examples go here
 });
</script>
</asp:Content>

 3. Replace the line // Examples go here with the following code to test out your setup:

$('#DemoTable').css('background-color', 'green');

 4. Save your changes and press Ctrl+F5 to open the page in your browser. If all went well, the
background color of the cells in the table turned green.

 5. Close your browser and go back to VS. Press Ctrl+Z to undo your last changes until you see the
// Examples go here line again, and save the page.

c11.indd 385 2/21/2014 7:50:04 AM

386 ❘ Chapter 11 jQuery

How It Works

In this exercise you created a simple Content block that can hold your jQuery code. You then defined
a code block that fires as soon as the browser is done loading the DOM. Inside this block you wrote a
simple selector that selects the table with an id of DemoTable and then used jQuery’s css method to
change its background color.

In the following table you see a list of jQuery’s basic filters. Remember, you can try out each
example by replacing the //Examples go here line with the code examples given. Then save the
page and load it in your browser to see the code at work.

filter purpose

:first

:last

Enables you to select the first or last item in a matched set. The following
example changes the background color of the first or last row of the table
to red:

$('#DemoTable tr:first').css('background-color', 'red');
$('#DemoTable tr:last').css('background-color', 'red');

First, the table is found using #DemoTable. Then all its rows are found using
tr. Finally, the first or last row is found using the :first and :last filters.

:odd

:even

Enables you to select the odd or even items in a matched set. The following
example changes the background color of the odd rows of the table to red.
Because the numbering is zero-based, you actually see the second and fourth
rows change color (because they have an index of 1 and 3, respectively):

$('#DemoTable tr:odd').css('background-color', 'red');

:eq(index)

:lt(index)

:gt(index)

Matches elements by their index. :eq (equals) returns a single element by its
index, and :lt (less than) and :gt (greater than) return items smaller or greater
than the given index, respectively. Examples:

// Changes the color in the first row (with an index of 0)
$('#DemoTable tr:eq(0)').css('color', 'green');

// Changes only the last two rows. The first three
// with an index of 0, 1 and 2 respectively, are skipped.
$('#DemoTable tr:gt(2)').css('color', 'green');

// Changes the text color of the first two rows to green.
$('#DemoTable tr:lt(2)').css('color', 'green');

:header Finds all headers (from h1 to h6) in the page. Example:
$(':header').css('color', 'green');

For a complete list of all basic filters, check out the jQuery documentation at http://api.jquery
.com/category/selectors/.

c11.indd 386 2/21/2014 7:50:04 AM

http://api.jquery.com/category/selectors/
http://api.jquery.com/category/selectors/

jQuery Syntax ❘ 387

Advanced Filters
Besides the basic filters you just saw, jQuery supports a lot more filters that enable you to get items
based on the text they contain, whether or not they are visible, and also on any attributes they
may have. Additionally, you can find filters to get at form elements (like buttons, check boxes,
radio buttons, and so on) and a number of selectors that enable you to select children, parents,
siblings, and descendants. The following table lists the ones you’ll use most. The online jQuery
documentation gives you access to the complete list, with full working examples showing how
they work.

filter purpose

:contains(text) Matches an element by the text it contains. Example:
$('td:contains("Row 3")').css('color', 'green');

If you leave out the td, the entire table will be green. This is because
the table itself is matched as well (one of its children contains the text
Row 3) so the color is applied to the table, which in turn changes the
text in each cell to green. Note how I am using double quotes for the
text string to avoid closing the single quote from the selector too
soon.

:has(element) Matches elements that contain at least one of the given elements.
Example:

$(':header:has("span")').css('color', 'green');

This matches only the h2 because it’s a header (:header) and contains
a element (has("span")).

[attribute] Matches an element based on the given attribute. Example:
// Matches the button and the text box as both
// have a type attribute but would also
// match other elements with a type attribute
$('[type]').css('color', 'green');

To select only input controls with a type attribute you can use this:
$('input[type]').css('color', 'green');

You need to type some text in the text box to see the green font color.

[attribute=value] Matches an element based on an attribute and that attribute’s value.
Example:

// Matches just the text box
$('[type=text]').css('color', 'green');

continues

c11.indd 387 2/21/2014 7:50:04 AM

388 ❘ Chapter 11 jQuery

filter purpose

:input

:text

:password

:radio

:checkbox

:submit

:image

:reset

:button

:hidden

:file

These selectors enable you to match specific client HTML form
elements. For example, the code snippet that finds the button and the
text box can be rewritten using a Grouped selector as follows:

$(':button, :text').css('color', 'green');

You can use these filters to do some fancy stuff. For example, to write
some functionality that checks all check boxes in a form, you can use:

$(':checkbox').attr('checked', true);

In order to uncheck all check boxes, you pass false as the second
argument to the attr method.

Powerful as these selectors and filters are, they are pretty useless without a way to act upon their results.
Changing the looks and behavior of the items in the matched set is the topic of the next section.

modifYinG the dom With jQuerY

Once you have a matched set, you want to do something with it. For example, you may want to apply
a CSS class or style to the items in it. Or you may want to append some behavior to them, like
adding a click handler that fires some code when the items get clicked. You’ve already seen some
examples of this using the css and bind methods, but jQuery has a lot more to offer. In the next two
sections, you see how to work with the various CSS methods and learn how to set up event handlers.

Css methods
CSS is supported in jQuery in a few different ways. First, there’s the css method that enables you to
retrieve a specific CSS value (like the color of an item), and to set one or more CSS properties on a set of
elements. Secondly, methods like addClass, removeClass, toggleClass, and hasClass enable you to
alter or inspect the CSS classes that are applied to elements. Furthermore, a couple of methods enable
you to work with the dimensions and position of an element. I discuss only the most common ones, but
you can look up the entire list at the jQuery website. The examples once again use the same HTML
fragment you saw before, so it’s easy to follow along if you want to try them out in your browser.

css(name, value)
This method enables you to set a specific CSS property on a matched element. The name argument
refers to a CSS property (such as border, color, and so on) and the value defines the style you
want to apply. The following example changes the background color of the h1 element:

$('h1').css('background-color', 'green');

 (continued)

c11.indd 388 2/21/2014 7:50:04 AM

Modifying the DOM with jQuery ❘ 389

css(name)
This method retrieves a specific CSS value based on the property you pass to it. The following
example alerts ‘italic’ because that’s the font-style of the element in the level 2 heading:

alert($('h2 span').css('font-style'));

You can use this value in your jQuery scripts; for example, you can use it to toggle the font-style
between italic and normal or to set multiple elements to the same style.

css(properties)
This is quite a powerful method because it enables you to set multiple properties on the matched
elements in one fell swoop. The following example changes the color of all cells in the table to red,
changes the font to Verdana and sets their padding to 10px. You pass the data in what is called an
anonymous object where you wrap the entire set of properties in a pair of curly braces ({}), separate
each property and value by a colon (:) and each pair by a comma:

$('#DemoTable td').css({'color' : 'red', 'font-family' : 'Verdana',
 'padding' : '10px'});

addClass, removeClass, and toggleClass
The addClass and removeClass methods enable you to add and remove classes from elements,
respectively. Just as with plain CSS, you’re better off using these methods than assigning inline CSS
with the css(properties) method. This way, it’s easier to define CSS classes at a central place,
which makes them easier to maintain and reuse. The next example shows how to assign a class to
the h2 element:

$('h2').addClass('PleaseWait');

If you want to remove the class again, you call removeClass like this:

$('h2').removeClass('PleaseWait');

The toggleClass method assigns the class if it’s not present yet and removes it otherwise.

All three methods enable you to pass multiple classes by separating them with a space.

attr(attributeName)
The attr method enables you to read and set the values of attributes on HTML elements. This
version, which accepts a single argument, is used to read an existing value. For the attributeName
you pass the name of the attribute as a string. The following example alerts First Header, the title
attribute of the h1 header:

alert($('h1').attr('title'));

c11.indd 389 2/21/2014 7:50:04 AM

390 ❘ Chapter 11 jQuery

attr(attributeName, value)
The second version of attr, which accepts two arguments, is used to change the value of an
attribute. Besides the name of the attribute you want to change, you also need to send the new value
for the attribute. The following example checks all check boxes in the demo page:

$(':checkbox').attr('checked', true);

Together, these CSS methods give you great power to change the look and feel of elements in your
page. You can take this one step further by using the rich event system in jQuery that enables you to
assign and remove all kinds of handlers to your elements through code.

handling events
Events are a very common technique in many programming languages. You’ve seen .NET events
at work in previous chapters where you used them to handle a Button control’s Click event or
a Page’s Load event. JavaScript and the DOM are no exception and events are available in many
places. For example, many HTML elements (such as a button defined with input type="button")
have a click event that fires when you click it. Likewise, they have mouseover and mouseout events
that fire when you move your mouse over or away from them. Normally, when you define the events
directly in the markup, they look like this:

<input type="button" onclick="alert('Hello');" value="Click Me" />

Rather than writing the code they trigger inline (the alert function in this example), you can also
point them to JavaScript functions you can write yourself. The following example calls a fictitious
SayYourName function:

<input type="button" onclick="SayYourName();" value="Click Me" />

jQuery goes one step further, and enables you to hook up events not only to a single element, but
to a whole matched set at once. This is extremely powerful because it enables you to bind handlers to
a large number of elements with only a few lines of code. Consider, for example, a table with many
rows. To make the table a little more visually attractive, you could apply a technique that is called
“active item tracking,” where the item your mouse is over changes color. Without jQuery you would
write onmouseover and onmouseout handlers on each and every row in the table. This clearly leads
to a lot of excessive bloat in the final HTML of the page. With jQuery, all you need is this code,
again using the HTML code samples you used before:

$(function()
{
 $('#DemoTable tr')
 .bind('mouseover', function() { $(this).css('background-color', 'yellow') });
});

This code finds all the table rows within the #DemoTable element and then dynamically assigns a
function that is called when you hover your mouse over each row. If you hover your mouse over
them, the background changes color. But if you move your mouse away, the new color remains.
To fix this problem, you can use jQuery’s chaining concept, where the result of a jQuery method

c11.indd 390 2/21/2014 7:50:04 AM

Modifying the DOM with jQuery ❘ 391

returns the matched set so you can apply another function to it. To bind the mouseout to a new
function, simply call bind again on the return value of the first call to bind:

$('#DemoTable tr')
 .bind('mouseover', function() { $(this).css('background-color', 'yellow') })
 .bind('mouseout', function() { $(this).css('background-color', '') });

Notice how the semicolon that closed off the line in the previous example has been moved to the
final line. Then the second bind is simply chained to the previous call to bind. It’s a bit difficult to
see because the code is spread out over multiple lines to accommodate the width of this book, but
this code actually comes down to this:

$('#DemoTable tr').bind('mouseover', ...).bind('mouseout', ...);

This code does three things: first it uses $('#DemoTable tr') to find all rows in the table. On the
matched set that is returned it calls bind to dynamically hook up some behavior that fires when you
move your mouse over a row. Then bind is called again on the matched set returned by the first call
to bind to reset the background color when you move your mouse away from the table row. Notice
how I am setting the color to an empty string (") to remove the CSS background property so you can
see the original background again.

There’s one more important thing to look at in this example and that’s the way the background
color is set:

$(this).css('background-color', 'yellow')

The this keyword in this example refers to the element to which the item is applied: the table row in
this case. Using $(this) then gives you a jQuery matched set (containing a single element) to which
you can apply regular jQuery methods such as css. Instead of using jQuery you can also execute
standard JavaScript against the this element:

this.style.backgroundColor = 'yellow'

The table row (and many other HTML elements) has a style property that lets you change CSS
styles programmatically. Maybe you expected to use style.background-color to change the color,
but that’s not how it works in JavaScript. In that language, the dash (-) is not a valid identifier so in
JavaScript all dashes are removed from the property names. Furthermore, each letter following the
original dash is written in uppercase. So, background-color in CSS becomes backgroundColor
in JavaScript, font-family becomes fontFamily, and so forth. Keep these naming rules in mind
when you try to set CSS information dynamically through JavaScript and jQuery.

miscellaneous jQuery functionality
Before you move on to the next topic of effects with jQuery, you need to understand a few
important functions in jQuery. First of all, there’s each.

The each method iterates (or loops) over a collection. This is great if you want to apply some
behavior to items in your matched set that you cannot set with a single jQuery function. As an

c11.indd 391 2/21/2014 7:50:05 AM

392 ❘ Chapter 11 jQuery

argument to each you supply a function that is executed for each item. The following each example
alerts the contents of each table cell by looping over the items in the matched set and then calling
alert. Again, you can try this out with your jQueryDemos.aspx page:

$('#DemoTable td').each(function()
 {
 alert(this.innerHTML);
 });

Two other important methods include parent and prev. These methods are used in DOM
traversing, where you can “walk” up and down the document tree finding elements that are either
below or above an item, or at the same level.

The prev method selects a matched element’s direct sibling. To see how this works, take a look at
this:

alert($('#DemoTable td:contains("Row 1 Cell 2") ').prev()[0].innerHTML);

What do you think this alerts? If you guessed “Row 1 Cell 1,” you’re right. The $ selector first
selects the table cell in the second column of the first row by the text it contains. The prev method
then returns its first sibling: the cell to the left of it. Because a matched set is a collection even if it
contains only a single item, you still need to use an indexer (with [0]) to refer to that first item. The
table cell then exposes an .innerHTML property that returns the content of the cell.

Finally, take a look at parent:

alert($('#DemoTable td:contains("Row 1 Cell 2") ').parent()[0].innerHTML);

If you run this code in the demo page, you get the result
shown in Figure 11-5.

If you’re not seeing this exact same HTML, make sure that
the line that begins with alert is the only one inside your
document ready function, because the other examples may
influence the HTML for the table.

The selector is the same as in the previous example. The
parent function then points to the <tr> around the
matched table cell. Alerting the innerHTML then returns the
HTML for the two cells that this row contains.

Common mistakes When Working with jQuery
Depending on the complexity of the jQuery functionality you’re using, writing the code can be quite
challenging. You need to take care of the proper capitalization, parentheses, brackets, commas, and
more. When you find your jQuery code doesn’t run or has unexpected behavior, check to see if your
code is suffering from the following problems.

fiGure 11-5

c11.indd 392 2/21/2014 7:50:05 AM

Effects with jQuery ❘ 393

Your ID Selectors Don’t Work
It’s likely you forgot to include the # symbol in front of it. $('DemoTable') does not select the table
with an id of DemoTable, whereas $('#DemoTable') does select it. Another situation where your
ID selector might not work is when you’ve got the casing wrong. ID selectors are case sensitive, so
$('#DemoTable') is not the same as $('#demotable').

Your ID Selectors Don’t Work, Even with a Hash Symbol
In this case, it’s likely that the client element doesn’t have the id you expect. Maybe the ASP.NET
run time changed the client id by prefixing it with the id of its parent? In that case, try setting the
ClientIDMode on the relevant control to Static so the id ends up more predictable. Also make
sure your code executes inside the document ready function because the elements you’re targeting
may not be available yet.

None of Your Code Seems to Run
Check your parentheses, curly braces, and quotes. Each pair needs to be balanced, with an equal
number of opening and closing items.

So far the code you’ve seen revolves mostly around finding elements in your page and changing their
appearance through CSS or to execute JavaScript. However, jQuery comes with a bag of tricks to
animate elements in your page as well. In the next section you see these so-called effects, followed
by a Try It Out exercise that shows them in action.

effeCts With jQuerY

In an earlier example in this chapter you saw how to use slideUp and slideDown to slowly hide and
show elements. But these are only two of the many effect and animation methods that jQuery has
available. The following table lists the most common ones you can use. Once again, you’re advised
to try out all examples using the jQueryDemos.aspx page.

method name purpose

show()

hide()

Hides or shows the matched elements by decreasing the height, width,
and opacity (making them transparent). Both methods enable you to define
a fixed speed (slow, normal, and fast) or a number defining the animation
time in milliseconds. Examples:

$('h1').hide(1000); //Hide the heading in 1 second
$('h1').show(1000); //Make it reappear in 1 second

toggle() The toggle method uses show and hide internally and changes the display
of the matched elements. That is, visible items are hidden, and vice versa.
Example:

$('h1').toggle(2000); // hide or show the h1 in 2 seconds

continues

c11.indd 393 2/21/2014 7:50:05 AM

394 ❘ Chapter 11 jQuery

method name purpose

slideDown()

slideUp()

slideToggle()

Just like hide and show, these methods make matched elements appear or
disappear. However, they do this by adjusting the height from its current
size to zero or vice versa, causing the element to “slide up” or “slide down.”
The slideToggle method slides down hidden elements and slides up
visible elements, which makes it easy to show and hide elements repeatedly
with a single action. Examples:

$('h1').slideUp(1000);
$('h1').slideDown(1000);
$('h1').slideToggle(1000);

fadeIn()

fadeOut()

fadeTo()

These methods make the matched elements visible or invisible by changing
their opacity. fadeOut sets the opacity to 0, making the item completely
transparent, and then sets the CSS display property to none, hiding the
item completely. fadeTo lets you specify an opacity (a number between
0 and 1) to determine the transparency level of the elements and fadeIn
makes the item visible again and sets the opacity to 1. All three methods
enable you to define a fixed speed (slow, normal, and fast) or a number
defining the duration of the animation in milliseconds. Examples:

$('h1').fadeOut(1000); // dissolve the h1 in 1 second
$('h1').fadeIn(1000); // h1 reappears in 1 second
$('h1').fadeTo(1000, 0.5); // fade to semi-transparent

animate() Internally, animate is used for many of the animation methods like show
and hide. However, it’s also externally available to give you great flexibility
in animating your matched elements. With the animate method you can
specify a bunch of properties to animate. Consider this example:

$('h1').animate({
 opacity: 0.4,
 marginLeft: '50px',
 fontSize: '50px'
 }, 1500);

In one smooth animation with a duration of 1.5 seconds, this code takes
the h1 element and increases its font size to 50 pixels, sets the opacity to
0.4 to make the element semi-transparent, and changes the left margin
to 50 pixels. The first argument of the animate method is an object
holding one or more properties you want to animate, each one separated
by a comma. Notice how you need to use JavaScript’s marginLeft and
fontSize, rather than the CSS margin-left and font-size properties.
You can only animate properties that take numeric values. That is, you
can use properties like margin, fontSize, opacity, and so on, but not
properties like color or fontFamily.

 (continued)

c11.indd 394 2/21/2014 7:50:05 AM

Effects with jQuery ❘ 395

Now that you’ve seen the most important jQuery concepts, from simple selectors to advanced
animation options, you can use this knowledge to make the contact form of the Planet Wrox site a
little more attractive.

trY it out Animating the Contact Form

In this exercise you apply two main animations: one is triggered when the user submits the contact
form and slowly slides it up until it disappears. The other animation is used to show and hide the
Message Sent label, attracting more attention until it completely disappears.

 1. Start by adding an additional text paragraph below the Message Sent label in the ContactForm
.ascx user control in Markup View. This paragraph will be visible after the form has been
submitted, and remains visible, even after the Message Sent text has been hidden. Within the
paragraph tags add some text that thanks the user for his response. Add id and runat="server"
attributes to the paragraph (so you can program against it in Code Behind) and set its Visible
property to False. Finally, set the CssClass attribute of the Label control placed before the
paragraph to Attention. You should end up with this code:

<asp:Label ID="Message" runat="server" CssClass="Attention"
 Text="Message Sent" Visible="False" />
<p runat="server" id="MessageSentPara" visible="False">Thank you for your message.
 We'll get in touch with you if necessary.</p>

 2. Wrap the entire table that holds the form controls in a <div> and set its id to TableWrapper.
Tables can’t be easily resized using slideUp and slideDown, but by wrapping the table in a <div>
you can resize that element instead:

<div id="TableWrapper">
<table class="auto-style1" runat="server" id="FormTable">
...
</table>
</div>

 3. In previous versions of VS, you would not see IntelliSense for jQuery and other script libraries in
user controls. That’s because VS doesn’t know in which pages or master page the control will be
used. Because the script references are added to these pages, the user control doesn’t know of their
existence. You could work around that by adding a reference to the library in the control and hide
it in a server-side comment, or remove the reference when you deploy your site. However, VS 2013
has a much cleaner solution. By adding a JavaScript file with the special name of _references
.js to your site, VS gives you IntelliSense for all script file references it finds in that file. To set
this up, first add a JavaScript file called _references.js to the Scripts folder (right-click the
folder and choose Add ➪ JavaScript file.) Then from the Scripts folder in the Solution Explorer,
drag jquery-2.0.3.js into the open JavaScript file. VS adds the following code for you:

/// <reference path="jquery-2.0.3.js" />

Save and close the file. Also, close and reopen the ContactForm.ascx file. From now on, you’ll
see IntelliSense appear for the jQuery library, no matter where you’re adding your jQuery code.
Visual Studio looks at the file reference you added to this file and looks for matching files with an

c11.indd 395 2/21/2014 7:50:05 AM

396 ❘ Chapter 11 jQuery

intellisense.js extension, which it uses to build up IntelliSense and the documentation tool
tips. You can add other references to _references.js as well to light up IntelliSense for other
JavaScript libraries. I really like this feature because it gives you IntelliSense everywhere without
messy hacks or double script references. You never have to include a reference to this special file in
the pages or controls in your site; it serves purely as a development-time feature.

 4. Back in the user control ContactForm.ascx, scroll down to the end of the control’s markup, and
add a <script> element and the following jQuery code that fires when the form is about to be
submitted:

<script>
 $(function()
 {
 $('form').bind('submit', function()
 {
 if (Page_IsValid)
 {
 $('#TableWrapper').slideUp(3000);
 }
 });
 });
 // Code from step 5 goes here
</script>

 5. Right before the closing </script> tag and after the closing curly brace, parenthesis, and
semicolon of the jQuery document ready function, add the following bold piece of JavaScript:

 });
 function pageLoad()
 {
 $('.Attention').animate({ width: '600px' }, 3000).
 animate({ width: '100px' }, 3000).fadeOut('slow');
 }
</script>

The pageLoad method (which is part of the client-side JavaScript made available by ASP.NET
AJAX) serves the same purpose as jQuery’s document ready, with one exception: it also fires
after a partial page update, which is what takes place after you submit the form because of the
UpdatePanel in the user control.

 6. Switch to Code Behind and add the following line of code to the SendButton_Click method. This
code makes the text paragraph visible when the form is submitted and the e-mail message is sent:

VB.NET

Message.Visible = True
MessageSentPara.Visible = True
FormTable.Visible = False

C#

Message.Visible = true;
MessageSentPara.Visible = true;
FormTable.Visible = false;

 7. Save all your changes and close the user control because you’re done with it.

c11.indd 396 2/21/2014 7:50:05 AM

Effects with jQuery ❘ 397

 8. Open the Monochrome.css file from its theme folder and add the following CSS declaration to the
bottom of the file:

.Attention
{
 border: 4px solid red;
 padding: 10px 0;
 width: 100px;
 margin: auto;
 display: block;
 text-align: center;
}

 9. Copy the same declaration to the DarkGrey theme’s CSS file.

 10. Save your changes and then request the Planet Wrox site in your browser. Choose the Contact Us
item (under About) from the Menu or TreeView control, fill in the form, and click Send. Notice
how shortly after clicking the button the form slides up slowly until it completely disappears.
Figure 11-6 shows the form halfway during the slideUp operation.

fiGure 11-6

 11. Once the page is done loading, the Message Sent label and the thank you text appear. Notice how
the label first grows in size to span the full
content width, then shrinks again, and finally
disappears completely. Figure 11-7 shows the
message while it’s being resized. If you don’t
see this animation appear, press Ctrl+F5 or
Ctrl+R to get a fresh copy of the CSS file from
the server and then fill in the contact form
again. Also, make sure you set the CssClass
attribute of the Label control to Attention.

How It Works

A lot of the steps involved in this exercise deal with things you’ve already seen: adding <div> elements,
classes, and CSS declarations. However, there’s some jQuery and Ajax code in this example that’s
worth examining. First, take a look at the code you added in the jQuery document ready function:

$('form').bind('submit', function()
{
 if (Page_IsValid)
 {

fiGure 11-7

c11.indd 397 2/21/2014 7:50:06 AM

398 ❘ Chapter 11 jQuery

 $('#TableWrapper').slideUp(3000);
 }
});

The first line dynamically binds some code to the form’s submit event. This way, the remainder of the
code fires when the user clicks the Send button. The check for Page_IsValid is necessary to prevent
the form from sliding up if the user made a mistake somewhere. Imagine that a user leaves both phone
numbers empty and clicks the Send button. This button then tries to submit the form, causing the form’s
submit event to fire. The ASP.NET client framework intercepts this event and validates the form, causing
an alert box with an error message to appear. But even though the form is invalid, it continues to handle
other submit event handlers, including the one your code set up. If you didn’t take precautions, the form
would slide up, regardless of whether it was valid. This makes it impossible for the user to complete the
form. Fortunately, you can check Page_IsValid, which is set to false when the form contains invalid
data. Only when Page_IsValid returns true will the slideUp method hide the form. During a three-
second period (3,000 milliseconds) the form smoothly slides up until it’s no longer visible.

Then the server code runs and sends out the message as you’ve seen in previous chapters. Once the
e-mail is sent, the server code sends back the Message Sent label and the paragraph. The message is
then animated through this code, which uses a combination of ASP.NET AJAX and jQuery:

function pageLoad()
{
 $('.Attention').animate({ width: '600px' }, 3000).
 animate({ width: '100px' }, 3000).fadeOut('slow');
}

Rather than using jQuery’s $(function() to fire code when the page loads, this example uses ASP
.NET AJAX’s pageLoad, and for a very specific reason: this event is fired by the Ajax framework when
the page loads the first time, and after every postback, partial or not! This is important, because the
Message Sent text is only available after the partial postback caused by the button. Notice that page-
Load also fires on the initial request of Contact.aspx. However, in that case, the Label with the
Attention class is not present in the page (because its Visible property has been set to False which
results in the control’s code not being sent to the browser) so $('.Attention') results in an empty
matched set and no animation takes place.

The code that executes here is relatively straightforward. First, using animate({ width: '600px' },
3000) the message is animated to have a width of 600 pixels. The animation takes three seconds to com-
plete. Once the three seconds are over, another chained method animates the message back to 100 pixels.
Finally, the fadeOut method is used to dissolve the message, after which it completely disappears.

Although some of the code looks quite complex, I hope you agree that with jQuery it’s relatively easy
to apply some fancy design makeover to your pages. Not every page or form should be abused for these
techniques, but when used sparingly, jQuery animations can really add some flavor to your website.

As you saw in the previous sections, jQuery is really powerful. You can use it to find elements
in your page, manipulate them through code, change the appearance of elements and create
animations. However, jQuery can be used for more than that. The remaining section of this chapter
deals with the topic of using jQuery for validation.

c11.indd 398 2/21/2014 7:50:06 AM

jQuery and Validation ❘ 399

jQuerY and Validation

Remember the validation controls you used in Chapter 9 to validate the contact form? The
validation controls work by generating JavaScript that is added to the page. The downside of that
approach is that your page becomes unnecessarily large because a lot of repetitive code is added to
each page that uses these controls. The developers of ASP.NET have thought of this too and decided
to leverage the power of jQuery to improve client-side validation. They have done this through a
concept known as unobtrusive JavaScript, where the functionality (the code that gets executed) has
been separated from the structure and content of the page. Rather than embedding large chunks of
JavaScript code in the page, they have written a small JavaScript library that uses jQuery under the
hood to perform the validation. This leads to cleaner code and reduces the size of the page. For the
Contact Us page, enabling unobtrusive JavaScript validation decreased the size of the final HTML
from 20.7KB to 14.9KB, a reduction of more than 25 percent.

Configuring the validation framework to use unobtrusive validation with jQuery instead of the
built-in code that is generated is a three-step activity:

 1. Enable unobtrusive validation in the Web.config file.

 2. Register the jQuery library with the ScriptManager in the Global.asax file.

 3. Install a package that contains JavaScript files to handle the client side validation.

In the next exercise you see how to add the Global.asax file to your site and then enable
unobtrusive JavaScript validation.

trY it out Enabling Unobtrusive JavaScript Validation

In this exercise you revisit the current Contact Us page to look at the code that the controls generate.
You’ll then modify the Global.asax file and enable unobtrusive JavaScript validation so you can see
the effect this has on the code that is generated.

 1. Start by opening the Contact.aspx file from the About folder and then press Ctrl+F5 to view that
page in your browser.

 2. View the HTML for the page in the browser by right-clicking the page and choosing View Source
or View Page Source.

 3. Locate the input field for the user’s name and then look at the code for the validator that is placed
directly below it. You should see something like this:

<span id="cpMainContent_ContactForm_RequiredFieldValidator1"
 class="ErrorMessage" style="visibility:hidden;">*

 4. Scroll down to the end of the code until you see the large chunk of JavaScript code that is
responsible for the validation. For the Name field, you’ll see something like this:

var cpMainContent_ContactForm_RequiredFieldValidator1 = document.all ?
 document.all["cpMainContent_ContactForm_RequiredFieldValidator1"] :
 document.getElementById(
 "cpMainContent_ContactForm_RequiredFieldValidator1");
cpMainContent_ContactForm_RequiredFieldValidator1.controltovalidate
 = "cpMainContent_ContactForm_Name";

c11.indd 399 2/21/2014 7:50:06 AM

400 ❘ Chapter 11 jQuery

cpMainContent_ContactForm_RequiredFieldValidator1.errormessage
 = "Enter your name";
cpMainContent_ContactForm_RequiredFieldValidator1.evaluationfunction
 = "RequiredFieldValidatorEvaluateIsValid";
cpMainContent_ContactForm_RequiredFieldValidator1.initialvalue = "";

For each of the validation controls you see similar code, all adding to the size of the page.

 5. Go back to VS, open the Global.asax file and add the following bolded code to the
Application_Start method:

VB.NET

Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)
 RouteConfig.RegisterRoutes(System.Web.Routing.RouteTable.Routes)
 ScriptManager.ScriptResourceMapping.AddDefinition("jquery",
 New ScriptResourceDefinition With
 { .Path = "~/Scripts/jquery-2.0.3.min.js" })
End Sub

C#

void Application_Start(object sender, EventArgs e)
{
 RouteConfig.RegisterRoutes(System.Web.Routing.RouteTable.Routes);
 ScriptManager.ScriptResourceMapping.AddDefinition("jquery",
 new ScriptResourceDefinition
 {
 Path = "~/Scripts/jquery-2.0.3.min.js"
 }
);
}

The spelling of the word jquery (all lowercase) is case sensitive, so make sure you type it exactly
as shown here. If you have a newer version of the jQuery library, don’t forget to update the ver-
sion number.

 7. Save your changes and close the file.

 8. Next, open up the Web.config file and modify the following line of code in the <appSettings>
element by changing the value attribute from None to WebForms. You added that line in Chapter
9. If you don’t have this line of code, add it between the <appSettings> tags. Either way, you
should end up with this code:

<appSettings>
 ...
 <add key="ValidationSettings:UnobtrusiveValidationMode" value="WebForms" />
</appSettings>

 9. In order to use unobtrusive validation together with jQuery, you need to install the package
Microsoft.AspNet.ScriptManager.WebForms. To do this, open the Package Manager Console,
enter the following command and hit enter:

Install-Package Microsoft.AspNet.ScriptManager.WebForms

c11.indd 400 2/21/2014 7:50:06 AM

jQuery and Validation ❘ 401

After a short delay you should get a confirmation that the package has been installed. In addition,
you should see a number of files appear in the WebForms folder located under the Scripts folder.

 10. Open up the master page and change the reference to the jQuery library so it points to the
ScriptResourceDefinition you created in the Global.asax file and insert a reference to the file
WebUIValidation.js which handles the client side validation:

<asp:ScriptManager ID="ScriptManager1" runat="server">
 <Scripts>
 <asp:ScriptReference Name="jquery" />
 <asp:ScriptReference Path="~/Scripts/WebForms/WebUIValidation.js" />
 </Scripts>
</asp:ScriptManager>

If you didn’t make this change, jQuery would be included twice on pages that use the validation
controls; once from the code in Global.asax, and once from the reference in the ScriptManager
control. By having the ScriptReference point to the ScriptResourceDefinition defined in
Global.asax, ASP.NET sees that it’s pointing to the same JavaScript library and includes the ref-
erence only once.

 11. Save your changes and then request Contact.aspx in your browser. Click the Send button and
notice that validation still works. Open up the HTML for the page and locate the input field for
the name again. Below that field you should see the following code for the validator:

<span data-val-controltovalidate="cpMainContent_ContactForm_Name"
 data-val-errormessage="Enter your name"
 id="cpMainContent_ContactForm_RequiredFieldValidator1"
 class="ErrorMessage" data-val="true"
 data-val-evaluationfunction="RequiredFieldValidatorEvaluateIsValid"
 data-val-initialvalue="" style="visibility:hidden;">*

 11. Scroll down to the end of the code. Notice all the JavaScript you saw previously has now gone.
Instead, at the top of the file you now find a <script> element that points to a JavaScript file (one
of the links that start with /ScriptResource.axd) that contains validation code that uses the
jQuery library.

How It Works

By enabling unobtrusive JavaScript validation, the validation controls generate different code. Rather
than emitting JavaScript code that carries out the validation, the controls now emit HTML5 data attri-
butes on the validation . The HTML5 specification enables you to make up your own attributes
on elements as long as you prefix them with data-. The unobtrusive validation framework makes use
of this feature by adding attributes for things like the error message (in data-val-error-message),
and the JavaScript function that needs to be executed to validate the input control (in data-val-
evaluationfunction). When you click the submit button, the validation framework kicks in, finds all
controls that need to be validated, and then uses the data- attributes to determine what needs to be
validated and how. Note that other than the validation controls and the JavaScript they generated previ-
ously, not much has changed. Your page still contains the same input controls and submit button. But
the way validation takes place has changed radically, it now uses the jQuery library and the
data-attributes added to the HTML elements.

c11.indd 401 2/21/2014 7:50:06 AM

402 ❘ Chapter 11 jQuery

To enable unobtrusive validation you have to enable a key in Web.config that you previously disabled.
This key signals the validation framework to switch modes and emit unobtrusive JavaScript code instead.
Because the validation relies on jQuery, you also need to register the jQuery library and the client side
validation library with the ScriptManager. Unfortunately, you cannot register the jQuery library
directly with the ScriptManager control; you have to do this in the Global.asax with this code:

VB.NET

ScriptManager.ScriptResourceMapping.AddDefinition("jquery",
 New ScriptResourceDefinition With
 { .Path = "~/scripts/jquery-2.0.3.min.js" })

C#

ScriptManager.ScriptResourceMapping.AddDefinition("jquery",
 new ScriptResourceDefinition
 {
 Path = "~/scripts/jquery-2.0.3.min.js"
 }
);

This code uses an object initializer to create a new instance of the ScriptResourceDefinition
class. It sets its Path property to the path of the jQuery library. This instance is then added to the
ScriptManager’s ScriptResourceMapping using the AddDefinition method. Finally, by pointing the
ScriptManager control in the master page to this ScriptResourceDefinition, jQuery is included on
all pages in your site. Although this looks a bit funky, the outcome is pretty straightforward: a link to
the referenced jQuery library is added to the output of the page so the validation framework can use it.

Once you’ve set this up, you never have to worry about it; you can add validation controls to your page
as you did before and jQuery and the validation framework of ASP.NET will handle all validation for
you. Note that this change does not impact server-side validation at all; that will continue to function
as before.

If by now you think that jQuery really rocks, I completely agree. Although it may be a bit difficult
to get used to jQuery in the beginning, once you get the hang of it you’ll wonder how you ever did
without it. And what’s even cooler is that you’re not limited to what the jQuery library supports
out of the box. jQuery has a pluggable architecture, which means you can write plug-ins for it that
extend or enhance jQuery’s functionality. You can find the office jQuery Plugin Registry at http://
plugins.jquery.com/. Also, searching the web for “jQuery plug-ins” should bring up many useful
plug-ins for all kinds of purposes, ranging from image galleries, validation frameworks, visual
tooltips, dialog boxes, and more. You’re also encouraged to look at jQuery UI, a collection of
widgets such as tabs, dialog boxes, calendars, draggable content, and more. You can find the jQuery
UI project at http://jqueryui.com. If you like jQuery UI, you should also check out Juice UI (at
http://juiceui.com). Juice UI is an open source collection of ASP.NET controls that render jQuery
UI elements in the browser. This way, you get the best of both worlds: a rich and programmable
framework at the server and lean and clean client-side HTML that leverages jQuery and jQuery UI.

Up until now, you’ve been working on fairly static web pages. Although jQuery enables you to create
dynamically changing pages at the client, the content that’s available on the website is still static. To

c11.indd 402 2/21/2014 7:50:06 AM

http://plugins.jquery.com/
http://plugins.jquery.com/
http://jqueryui.com
http://juiceui.com

Summary ❘ 403

fix that, you can use a database, the topic of the next four chapters. In the next chapter you get a
thorough introduction to databases, and the chapters that follow give you in-depth information on
working with data in an ASP.NET environment.

praCtiCal tips on jQuerY

To get the most out of jQuery, follow these short tips:

➤➤ Experiment and experiment. At first, jQuery is a bit of an odd technique to master, mostly
because of all its curly braces and parentheses. However, by practicing a lot you can become
a jQuery master in no time.

➤➤ Visit the jQuery.com website. Besides very good documentation with many examples
showing off jQuery’s capabilities, you also find a wealth of articles and links on using
jQuery, including links to sites that feature video content.

➤➤ Invest some time in browsing the jQuery UI and Juice UI websites. You may not need what
they offer right now, or you may feel you’re not ready to take that next step yet, but it’s good
to know what these products have to offer when you’re building your next website with a
rich client interface.

summarY

In this chapter you were introduced to jQuery, a very popular, open source, client-side JavaScript
framework for interacting with the document object model.

The chapter started off by showing you where to get jQuery and how to add it to your site. You then
got a quick example of jQuery, which was followed by an introduction to jQuery selectors and filters
that enable you to find relevant elements in your page.

The second part of this chapter was devoted to the numerous methods that jQuery supports to apply
effects and animations to your matched sets. You saw how to use methods like css to manipulate
CSS settings, parent and prev to navigate through the items in your set, and how to work with
events to fire code in response to some action like the click of a button or when a form is submitted.

Near the end of the chapter you learned how to use the many animation methods in jQuery to give
your page a more compelling and interactive appearance, and you saw how to leverage the power of
jQuery in the ASP.NET validation framework.

exerCises

 1. Imagine that you want to offer your users the possibility of hiding a certain region of a page.
For example, you could offer them a link to hide or show the large banner in the Sidebar
element with the click of a button. What jQuery does this require? Bonus points if you can find
a way to change the text that triggers the code from Hide to Show and vice versa.

c11.indd 403 2/21/2014 7:50:06 AM

http://jquery.com

404 ❘ Chapter 11 jQuery

 2. What’s the difference between slideUp and slideDown? What important argument do both
methods accept?

 3. What’s the difference between jQuery’s document ready function, defined with
$(function()...), and the ASP.NET AJAX pageLoad method? How can you make good use
of this difference?

 4. What’s the purpose of the _references.js file in the Scripts folder?

You can find answers to these exercises in Appendix A.

c11.indd 404 2/21/2014 7:50:06 AM

Summary ❘ 405

 ➤ What You learned in this Chapter

_references.js The special JavaScript file in the Scripts folder that triggers
IntelliSense for all JavaScript files it references

Chaining The concept where the result of one method is used as the input of
another to create a chain of effects

filters Enable you to further refine your jQuery matched set of elements

Global.asax A central file that is used to handle various application-scoped events
such as Application_Start, Application_Error, and more

jQuery A popular client-side JavaScript framework that simplifies working with
the DOM, visual effects, event handling, and Ajax functionality

matched set The set of elements that are returned by a jQuery selector

nuGet The Library Package Manager for Visual Studio to help you manage
third-party libraries in your .NET websites and projects

selectors A CSS-like syntax to find elements in your page using jQuery

c11.indd 405 2/21/2014 7:50:06 AM

c11.indd 406 2/21/2014 7:50:06 AM

Introducing Databases
What You Will learn in this Chapter:

➤➤ What a database is and which databases are typically used with
ASP.NET pages

➤➤ What SQL is, how it looks, and how you use it to manipulate data

➤➤ What database relationships are and why they are important

➤➤ Which tools you have available to manage database objects (such
as tables) and how to use them

Wrox.Com Code doWnloads for this Chapter

You can find the wrox.com code downloads for this chapter on the Download Code tab at
www.wrox.com/go/begaspnet451. The code is in the Chapter 12 folder.

Being able to use a database in your ASP.NET websites is just as critical as understanding
HTML and CSS: it’s almost impossible to build a modern, full-featured website without it.
Databases are useful because they enable you to store and retrieve data in a structured way. The
biggest benefit of databases is that you can access them at run time in your site, which means
you are no longer limited to just the relatively static files you create at design time in Visual
Studio. You can use a database to store reviews, musical genres, pictures, information about
users (usernames, e-mail addresses, passwords, and so on), log information about who reads
your reviews, news articles, and much more, and then access that data from your ASPX pages.

This gives you great flexibility in the data you present, and the way you present it, enabling
you to create highly dynamic websites that can adapt to your visitors’ preferences, to the
content your site has to offer, or even to the roles or access rights that your users have.

To successfully work with a database in an ASPX page, this chapter teaches you how to
access databases using a query language called SQL — or Structured Query Language. This
language enables you to retrieve and manipulate data stored in a database. You also see how
to use the database tools to create tables and queries.

12

c12.indd 407 2/21/2014 8:01:34 AM

http://www.wrox.com/go/begaspnet451
http://wrox.com
http://wrox.com

408 ❘ Chapter 12 IntroducIng databases

Although ASP.NET and the .NET Framework offer you many tools and technologies that enable
you to work with databases without requiring a firm knowledge of the underlying concepts like
SQL, it’s still important to understand them. Once you know how to access a database, you’ll find
it easier to understand and appreciate other technologies, like the ADO.NET Entity Framework
(discussed in Chapter 14), which provides easier access to database operations directly from code.

In the chapters that follow, you apply the things you learn in this chapter. In Chapter 13, you see
how to use built-in controls to work with data in your database. In Chapter 14, you learn how to
use the ADO.NET Entity Framework as an additional layer on top of your database to access data
in an object-oriented way with minimal code. Chapter 15, the last of the data-focused chapters,
shows you advanced techniques for working with data.

In the following sections, you see what a database is, and what different kinds of databases are
available to you.

What is a database?

By its simplest definition, a database is a collection of data that is arranged so it can be accessed,
managed, and updated easily. For the purposes of this book, and the websites you will build, it’s
also safe to assume that the data in the database is stored in an electronic format.

The most popular type of database is the relational database. It’s the type of database that is
frequently used in websites and is also the type of database that is used in the remainder of this
book. However, the relational database is not the only one. Other types exist, including flat-file,
NoSQL, object-relational, and object-oriented databases, but these are less common in Internet
applications.

A relational database has the notion of tables, where data is stored in rows and columns, much like
a spreadsheet. Each row in a table contains the complete information about an item that is stored
in the table. Each column, on the other hand, contains information about a specific property of the
rows in the table.

The term “relational” refers to the way the different tables in the database can be related to each
other. Instead of duplicating the same data over and over again, you store repeating data in its own
table and then create a relationship between that table and other tables. Consider the table called
Review in Figure 12-1. This table could store the album reviews that are presented on the Planet
Wrox website.

figure 12-1

c12.indd 408 2/21/2014 8:01:34 AM

Different Kinds of Relational Databases ❘ 409

As you can see in Figure 12-1, each review is
assigned to a musical genre such as Pop, Indie
Rock, or Techno. But what if you wanted to
rename the genre Techno to something like
Hardcore Techno? You would need to update
all the rows that have this genre assigned. If
you had other tables that stored a genre, you
would need to visit those tables as well and
make the changes manually.

A much better solution would be to use a
separate table and call it Genre, for example.
This table could store the name of a genre and an ID (a sequential number, for example) that
uniquely identifies each genre. The Review table then has a relationship to the Genre table and
stores only its ID instead of the entire name. The Genre table also has a SortOrder column, which
is used in later examples. Figure 12-2 shows the model for this change.

With just the ID of the genre now stored in the Review table, it’s easy to rename a genre. All you
need to do is change the name of the genre in the Genre table, and all tables with a relationship
to that genre pick up the change automatically. In database terminology, both Id columns in this
example are primary keys (identified by the lock icon) and are used to uniquely identify each row
in the table. GenreId, on the other hand, is a foreign key which is used to link back to a primary
or otherwise unique key in a table. Later in this chapter, you see how to create and make use of
relationships in your relational database.

different Kinds of relational databases

You can use many different kinds of databases in your ASP.NET projects, including Microsoft
Access, SQL Server, Oracle, SQLite, and MySQL. However, the most commonly used database in
ASP.NET websites is probably Microsoft SQL Server. This book focuses on using the Microsoft
SQL Server 2012 Express LocalDB edition, because it’s free, comes bundled with VS 2012 and
has a lot to offer out of the box. Also, because the database format is identical to that of the
commercial versions of SQL Server 2012, it’s easy to upgrade to those versions at a later stage in the
development cycle. This upgrade path is described in more detail in Appendix B.

The only problem with LocalDB is that you can’t use all of the database management tools from
within Visual Studio. You can create tables and other database objects, but you can’t visually create
new queries and diagrams, two features that you’ll use regularly when working with databases in
your ASP.NET projects.

To overcome this limitation, you should download and install SQL Server Management Studio
(SSMS) Express, the free tools to manage all your SQL Server databases, including LocalDB,
Express, and the commercial versions of SQL Server (although in the latter case you probably want
to use the more feature rich version of the tools that ship with the main product.)

In the next sections you see how to acquire and install SQL Server Management Studio Express.
The sections that follow then show you how to use it to manage your databases and the data they
contain.

figure 12-2

c12.indd 409 2/21/2014 8:01:34 AM

410 ❘ Chapter 12 IntroducIng databases

Note Installing SQL Server and SSMS can be tricky. If you get stuck, be sure
you visit this book’s forum at http://p2p.wrox.com to find a helping hand.

installing sQl server 2012 express
You can download SQL Server Management Studio Express from the following page at the
Microsoft site: http://tinyurl.com/SqlExpress2012. If this link no longer works, you can go to
www.microsoft.com/express/database/ instead and click the Download button. Alternatively,
you can go to the main downloads page at www.microsoft.com/downloads and search for “SQL
Server 2012 Management Studio Express.”

In all cases, make sure you download and install the 2012 version of Management Studio, and not
an older or newer version if one has been released by the time you read this book. At the time of
writing, SQL Server 2014 was in beta and the final release will likely work with VWD 2013, but
the remainder of this book assumes you’re using SQL Server 2012. Also, if you don’t have SQL
Server Express (the database server) installed, download the package that contains both the Express
database engine and the Management Studio tools (it should have a name such as Express with Tools
or something similar, abbreviated to SQLEXPRWT.) You don’t need it in the exercises in this and
the next three chapters, but it’s used in Chapter 19, which shows you how to deploy your website,
and in Appendix B, which shows you how to configure other versions of SQL Server. It’s quite a large
download (around 700MB if you choose Express with Tools) but well worth the time downloading.

After you have downloaded the Management Studio setup file (optionally with the Express database
engine included), run the installer and follow the on-screen instructions. When asked for the
Installation Type, choose for a New SQL Server stand-alone installation. This option enables you
to choose Management Tools as a component to install later in the Setup Wizard. If you’re also
installing the Database Engine Services, accept SqlExpress as the name for the instance. If that
name is already taken, it means you already have SQL Server Express installed locally. If this version
is SQL Server 2012 (use the Programs and Features option of the control panel in Windows to
find out), you can skip installing the Database Engine Services components. If you have a different
version installed, you can still install SQL Server 2012 side by side. In that case, choose a name such
as Sql2012Express for the named instance. From then on, use this name whenever this book refers
to SqlExpress as the named instance.

Now that SQL Server Management Studio is installed, it’s time to look at ways to manage data in
SQL Server database. SQL Server supports a query language called SQL that lets you do just that.

using sQl to WorK With database data

To get data in and out of a database, you need to use Structured Query Language (SQL). This is
the de facto language for querying relational databases that almost all relational database systems
understand. A number of clear standards exist, with the most popular one being the ANSI 92 SQL
standard. Besides the grammar that this standard supports, many database vendors have added their
own extensions to the language, giving it a lot more flexibility and power on their own system, at
the cost of decreased interoperability with other systems.

c12.indd 410 2/21/2014 8:01:34 AM

http://p2p.wrox.com
http://tinyurl.com/SqlExpress2012
http://www.microsoft.com/express/database/
http://www.microsoft.com/downloads

Using SQL to Work with Database Data ❘ 411

Microsoft SQL Server 2012 is no exception, and supports most of the grammar that has been
defined in the ANSI 92 SQL standard. On top of this standard, Microsoft has added some
proprietary extensions. Collectively, the two are referred to as T-SQL, or Transact SQL. I’ll stick to
the term SQL for the remainder of this book.

In the following sections, you see how to use SQL targeting a SQL Server 2012 database to retrieve
and manipulate data in your database. However, before you can write your first SQL statement, you
need to know how to connect to your database first. The following exercise shows you how to create
a sample database from a SQL script file that comes with the downloadable code for this book.

trY it out Creating the SQL Server Sample Database

In this exercise you learn how to create and work with a database using Visual Studio. To give you
something to work with, the code download for this chapter contains a SQL script that creates two
tables and a few sample rows in your database. You can use these rows to test out the SQL queries that
are shown throughout this chapter. This database is used only for this chapter, and, as such, you don’t
have to create it to follow along with the Planet Wrox website. However, by creating it with the follow-
ing instructions you have a nice test database to test out SQL queries.

 1. Start by creating a folder called Databases in the root of your C drive. This serves as a nice
central location for your databases, which makes them easier to manage. If you decide to use a
different location, make sure the folder is not located in your Documents folder or you’ll run into
permissions problems later. It’s recommended to use C:\Databases for the walk-throughs in this
book.

 2. Start SQL Server Management Studio from the Windows Start menu or Start screen.

 3. Log in to the SQL Server LocalDB instance by entering (LocalDB)\v11.0 in the Server Name
field as shown in Figure 12-3, and click Connect.

 4. After you log in to the database, you should see the Object Explorer (shown in Figure 12-4) on
the left. If you don’t see it, choose View ➪ Object Explorer from the main menu or press F8.

figure 12-3 figure 12-4

c12.indd 411 2/21/2014 8:01:34 AM

412 ❘ Chapter 12 IntroducIng databases

 5. Right-click the Databases node (visible in Figure 12-4) and choose New Database. Type
PlanetWroxTemp as the name. Don’t use PlanetWrox as the name, because you’ll be using that
for later exercises in the book. In the Database Files section of the screen, type C:\Databases in
the Path column for both rows. You may need to scroll to the right to see the Path column. Your
dialog box should end up as shown in Figure 12-5.

figure 12-5

Click OK to create the database.

 6. Press Ctrl+O to bring up a dialog box that lets you select a file. Browse to the folder
C:\BegASPNET\Resources\Chapter 12. If you don’t have this folder, refer to the Introduction of
this book to learn how to acquire the code that comes with this book. Select the Create Planet
Wrox Database.sql file.

 7. On the SQL Editor toolbar (shown in Figure 12-6) select the PlanetWroxTemp database from the
drop-down list.

c12.indd 412 2/21/2014 8:01:35 AM

Using SQL to Work with Database Data ❘ 413

This makes the PlanetWroxTemp database the active database, so
any queries you execute in the query editor window will target that
database.

 8. Click the Execute button on the SQL Editor toolbar or press F5.
This executes the query and creates two tables along with some
sample rows. You can take a look at the SQL statements if you
want; the concept of inserting the sample rows is explained later in
this chapter.

 9. On the Object Explorer, click the Refresh icon on the toolbar and
then expand Databases, then your new database, and then the
Tables node. You should see the Genre and Review tables appear
as shown in Figure 12-7.

How It Works

In this exercise, you connected to an instance of SQL Server called (LocalDB)\v11.0 which is a
lightweight version of SQL Server designed for development. In Appendix B you see how to connect
your website to other versions of SQL Server for production scenarios. You then created a new data-
base called PlanetWroxTemp and stored it in the folder C:\Databases. The SQL file you executed
against this database contains SQL code to create two tables called Genre and Review. The exact
SQL code to create these tables is not so important now; later in this chapter you learn how to
create your own tables using SSMS. The file contains SQL INSERT statements to add data to these
tables. You learn more about the INSERT statement in the “Creating Data” section later in this
chapter.

When you have a connection to your database in SSMS, you can work with the objects it contains.
In the next section you see how you can access and change the data in the tables in your
database.

figure 12-6

figure 12-7

c12.indd 413 2/21/2014 8:01:35 AM

414 ❘ Chapter 12 IntroducIng databases

retrieving and manipulating data With sQl

When interacting with databases, you’ll spend a good deal of time retrieving and manipulating data.
Most of it comes down to four distinct types of operations, grouped under the CRUD acronym:
Create, Read, Update, and Delete.

Because these data operations are so crucial, the next couple of sections show you how to use them
in detail.

reading data
To read data from a database, you typically use a few different concepts. First, you need to indicate
the columns that you want to retrieve from the table you are querying. You do that with the
SELECT statement. You need to indicate the table(s) you want to select the data from using the FROM
keyword. Then you need a way to filter the data, making sure only the rows you’re interested in are
returned. You can filter the data using the WHERE clause in the SQL statement. Finally, you can order
your results using the ORDER BY clause.

Selecting Data
To read data from one or more database tables, you use the SELECT statement. In its most basic
form, the SELECT statement looks like this:

SELECT ColumnName [, OtherColumnNames] FROM TableName

Here, the parts between the square brackets are considered optional. For example, to retrieve all
rows from the Genre table and select only their Id and Name columns, you use this SQL statement:

SELECT Id, Name FROM Genre

Right after the SELECT statement comes a comma-separated list of column names. You can have only
one or as many columns as you like here. Instead of specifying the column names explicitly, you can
also use the asterisk (*) character to indicate you want all columns to be returned. However, using
SELECT * is usually considered a poor programming practice as you’re usually selecting more columns
than you need, causing unnecessary overhead. It’s better to define each column you want to retrieve
explicitly. If you want to rename the column in the result set, you use the AS keyword, like this:

SELECT Id AS GenreId, Name FROM Genre

To limit the number of rows retrieved from a table, you use the TOP keyword followed by the
maximum number of rows. To get predictable results, you typically use an ORDER BY clause.
Without that, the order of rows is not guaranteed and TOP may return different results each time you
call it. Here’s a quick example that retrieves the first three genres:

SELECT TOP 3 Id, Name FROM Genre ORDER BY Name

SSMS by default uses TOP 200 to limit the number of rows retrieved when you open a table.

Right after the FROM keyword, you specify the name of the table from which you want to retrieve
data. The previous example showed only one table (the Genre table), but you see later that you can
also specify multiple tables using joins.

c12.indd 414 2/21/2014 8:01:35 AM

Retrieving and Manipulating Data with SQL ❘ 415

Note Although the SQL language is not case sensitive, it’s common practice
to write all keywords such as SELECT and FROM in all caps. Additionally, this
book uses Pascal casing — where each new word is capitalized — for names of
tables, columns, and so on. For example, the date and time a certain review is
created are stored in a column called CreateDateTime in the Review table.

Filtering Data
To filter data, you use the WHERE clause, with which you indicate the criteria that you want your data
to match. For example, to retrieve the ID of the Grunge genre you use the following SQL statement:

SELECT Id FROM Genre WHERE Name = 'Grunge'

Note that the word Grunge is wrapped in single quotes. This is required for text data types and
dates when you filter data or want to send values to an INSERT or UPDATE statement that enables
you to create new or change existing rows, as explained later. You can’t use them for numeric or
boolean types, though, so to get the name of the genre with an ID of 8 you would use the following
statement:

SELECT Name FROM Genre WHERE Id = 8

The preceding two examples show a WHERE clause that uses the equals operator for an exact match.
However, you can also use other operators for different criteria. The following table lists a few
popular comparison operators you can use in your WHERE clauses.

operator desCription

= The equals operator matches only when the left side and the right side of the
comparison are identical.

> The greater than operator matches when the left side of the comparison
represents a larger value than the right side.

>= The greater than or equal operator matches when the left side of the comparison
is equal to or larger than the right side.

< The less than operator matches when the left side of the comparison represents a
smaller value than the right side.

<= The less than or equal operator matches when the left side of the comparison is
equal to or smaller than the right side.

<> The not equals operator does the reverse of the equals operator and matches
when the left side and the right side of the comparison are different.

To combine multiple WHERE criteria, SQL supports a number of logical operators such as AND and OR.
In addition, it supports other operators to search for text and to specify ranges. The following table
lists a few of the operators and describes what they are used for.

c12.indd 415 2/21/2014 8:01:35 AM

416 ❘ Chapter 12 IntroducIng databases

operator desCription

AND Enables you to join two expressions. For example, the WHERE clause WHERE Id >
20 AND Id < 30 gives you all rows with IDs that fall between 20 and 30 (with
20 and 30 themselves not included).

OR Enables you to define multiple criteria of which only one has to match (although
more matches are allowed). For example, the WHERE clause WHERE GenreId = 5
OR GenreId = 8 gives you all the rows with a GenreId of 5 or 8.

BETWEEN Enables you to specify a range of values that you want to match with a lower and
upper bound. For example, WHERE Id BETWEEN 10 AND 35 gives you all rows
whose IDs are between 10 and 35 (including 10 and 35 themselves if they exist in
the database).

LIKE Used to determine if a value matches a specific pattern. You can use wildcards
like % to match any string of zero or more characters, and the underscore (_)
to match a single character. For example, the WHERE clause WHERE Name LIKE
'%rock%' returns all genres that have rock in their name, including Indie Rock,
Hard Rock, and so on.

If no rows match the WHERE clause, you don’t get an error, but you simply get zero results back.

After you have defined your filtering requirements with the WHERE clause, you may want to change
the order in which the results are returned from the database. You do this with the ORDER BY
clause.

Ordering Data
The ORDER BY clause comes at the end of the SQL statement and can contain one or more column
names or expressions, which can optionally include ASC or DESC to determine if items are sorted in
ascending order (with ASC, which is the default if you leave out the keyword) or in descending order
(using DESC).

For example, to retrieve all genres from the Genre table and sort them alphabetically by their name
in ascending order, you can use this SQL statement:

SELECT Id, Name FROM Genre ORDER BY Name

Because ascending is the default order, you don’t need to specify the ASC keyword explicitly,
although you could if you wanted to. The next example is functionally equivalent to the preceding
example:

SELECT Id, Name FROM Genre ORDER BY Name ASC

If you wanted to return the same rows but sort them in reverse order on their Name column, you use
this syntax:

SELECT Id, Name FROM Genre ORDER BY Name DESC

c12.indd 416 2/21/2014 8:01:35 AM

Retrieving and Manipulating Data with SQL ❘ 417

You can order by columns in the ORDER BY statement that are not part of the SELECT statement as
shown in this snippet:

SELECT Id, Name FROM Genre ORDER BY SortOrder DESC

In the next exercise, you see how to perform a number of queries against the sample database,
giving you a good idea of how different queries affect the results returned from the database.

trY it out Selecting Data from the Sample Database

In this exercise you use the database that you created in an earlier exercise. This database is used only
for the samples in this chapter, so don’t worry if you mess things up. Note that all the exercises in this
chapter use SQL Server Management Studio to work with your database. In later chapters you see how
to use VS to connect to your SQL Server database as well.

 1. Open up SQL Server Management Studio if you don’t
have it open anymore and log in to (LocalDB)\v11.0
as shown earlier. Expand the Databases node, then your
PlanetWroxTemp database, and then the Tables node.
You should see the two tables, Genre and Review, as
shown earlier in Figure 12-7.

 2. Right-click the Genre table and choose Edit Top 200
Rows. In the Document Window you should now see
a list with all the available genres in the Genre table,
shown in Figure 12-8.

Note that this is not just a list with all the rows in the
Genre table. It’s actually the result of a SQL SELECT
query that is executed when you open the window. To see
the query behind this list, ensure that the Query Designer
toolbar, shown in Figure 12-9, is displayed on-screen. If the toolbar isn’t visible, right-click an
existing toolbar and choose Query Designer.

figure 12-8

figure 12-9

Change Type of Query Verify SQL Syntax

Add TableSQL Pane
Diagram

Pane

Criteria
Pane

Results
Pane

Execute
SQL

Add
Group By

Add Derived
Table

c12.indd 417 2/21/2014 8:01:36 AM

418 ❘ Chapter 12 IntroducIng databases

On this toolbar, click the Show Diagram pane, the Show Criteria pane, and the Show SQL pane
buttons to open their respective windows. The first four buttons on the toolbar should now be in
a pressed state and the Document Window is split in four regions, with each region corresponding
to one of the buttons on the toolbar. Figure 12-10 shows the entire Document Window with the
four panes.

figure 12-10

Diagram Pane

Criteria Pane

SQL Pane

Results Pane

The SQL pane displays the SQL statement that is used to retrieve the genres that are displayed
in the Results pane. In this case, the SQL statement reads SELECT TOP (200) Id, Name,
SortOrder FROM Genre to retrieve all columns and the first 200 rows from the table, but you can
easily change that.

 3. In the SQL pane, modify the query as follows:

SELECT Id, Name, SortOrder FROM Genre WHERE Id > 4

 4. To make sure the SQL statement is valid, click the Verify SQL Syntax button on the toolbar and
fix any errors your SQL statement may contain. Next, click the Execute SQL button (the one with
the red exclamation mark on it) or press Ctrl+R. In both cases, the SQL statement is executed
and the Results pane is updated to show all genres with an ID larger than 4. In your SQL pane,
the query is now split over multiple lines to improve legibility. The SQL language enables you to
spread your statements over multiple lines without the need for a line continuation character.

 5. Now take a look at the Diagram pane — the top part of the dialog box in Figure 12-10 that shows
your table diagram. In the Diagram pane you can check and uncheck column names to determine
whether they end up in the query. Deselect the SortOrder column (don’t accidentally change the
check mark of the Output column in the Criteria pane instead). Note that it also gets removed
from the Criteria pane and the SQL statement in the SQL pane (visible in Figure 12-11).

c12.indd 418 2/21/2014 8:01:37 AM

Retrieving and Manipulating Data with SQL ❘ 419

 6. Take a look at the Criteria pane in Figure 12-11. It shows the two columns you are selecting. In
the Filter column it shows the expression that filters all genres with an ID larger than 4.

In this pane you can modify the query without manually writing a lot of code. To see how you
can apply an additional filter, type LIKE '%rock%' in the Filter cell for the Name row. This limits
the results to all genres that contain the word rock and that have an ID that is larger than 4. If
you press Ctrl+R again, the Results pane is updated to reflect the change in the query. Notice how
Visual Studio added an N before your search term (see Figure 12-12). You see why this is in the
How it Works section following this exercise.

 7. To determine the sort order, you can use the Sort Type column. You can do this for visible
columns (those that have their Output check box checked end up in the final result set) but also
for other columns. To order by the SortOrder column, click the cell under Name once. It changes
and now shows a drop-down list instead. Choose SortOrder from the drop-down list. When you
click or tab away from the field, SSMS places a check mark in the Output column. You can click
that check mark to remove the column again from the output so it remains available for ordering
and filtering, but won’t show up in the query results. However, for this exercise you should leave
that column selected.

 8. In the Sort Type column, choose Descending from the drop-down list for the SortOrder. Your
final Criteria pane now looks like Figure 12-12.

figure 12-11

figure 12-12

c12.indd 419 2/21/2014 8:01:37 AM

420 ❘ Chapter 12 IntroducIng databases

While you make your changes using the Diagram and Criteria panes, SSMS continuously updates
the SQL pane. Your final SQL statement should now include the extra WHERE clause and the ORDER
BY statement:

SELECT Id, Name, SortOrder
FROM Genre
WHERE (Id > 4) AND (Name LIKE N'%rock%')
ORDER BY SortOrder DESC

 9. Press Ctrl+R again (or click the Execute SQL button
on the toolbar) and the Results pane shows the
rows from the Genre table that match your criteria,
visible in Figure 12-13.

Note that the rows are now sorted in descending order based on the SortOrder column.

How It Works

The Query Designer in SSMS is a very helpful tool for creating new queries against your database.
Instead of hand-coding the entire SQL statement in the SQL pane, you use the Diagram and Criteria
panes to create your queries visually. Of course, you can still use the SQL pane to make manual tweaks
to the SQL code that SSMS generates for you.

The final query you executed returned all the rows that contain the word rock and that had an ID
larger than 4. The query shown in step 8 has a WHERE clause that consists of two parts: the first part
limits the rows returned to those with an ID larger than 4. The second part filtered the rows to those
that contain the text rock. The two criteria are both applied at the same time using the AND keyword,
so only rows with an ID larger than 4 and the word rock in their name are returned. Effectively, this
returns the Alternative Rock, Indie Rock, and Rock genres, while leaving out the Hard Rock genre
because it has an ID of 4. SSMS adds the capital letter N in front of the filter text to indicate this is
a Unicode data type. The Unicode data type enables you to store text for many different foreign lan-
guages. In your own queries you can usually leave out the N because SQL Server will figure it out for
you. For more information on the N, check out this article: http://tinyurl.com/39s8wn7.

At the end, the result set is sorted in descending order on the SortOrder column using the syntax
ORDER BY SortOrder DESC. Notice that SortOrder is an arbitrarily chosen name. You can easily give
this column a different name, or order on a different column like the Name column to retrieve the genres
in alphabetical order.

In this example, you saw how to retrieve data from a single table. However, in most real-world
applications you get your data from multiple tables that are somehow related to each other. You
define this relationship in your SQL syntax using the JOIN keyword.

Joining Data
A JOIN in your query enables you to express a relationship between one or more tables. For example,
you can use a JOIN to find all the reviews from the Review table that have been published in a specific
genre and then select some columns from the Review table together with the Name of the genre.

figure 12-13

c12.indd 420 2/21/2014 8:01:37 AM

http://tinyurl.com/39s8wn7

Retrieving and Manipulating Data with SQL ❘ 421

The basic syntax for a JOIN looks like the following bolded code:

SELECT
 SomeColumn
FROM
 LeftTable
INNER JOIN RightTable ON LeftTable.SomeColumn = RightTable.SomeColumn

The first part is the standard SELECT part of the query that you saw earlier, and the second part
introduces the keywords INNER JOIN to express the relationship between the two tables. This
query only returns the rows in the table LeftTable with a corresponding row in RightTable. For
example, to return the ID and the title of a review together with the name of the genre it belongs to,
you use this SQL statement:

SELECT
 Review.Id, Review.Title, Genre.Name
FROM
 Review
INNER JOIN Genre ON Review.GenreId = Genre.Id

Note that in the SELECT statement each column is prefixed with the table name. This makes it clear
what table you are referring to and avoids conflicts when multiple tables have similar column names
(like the Id column that exists in both tables).

In addition to an INNER JOIN that returns only matching rows, you can also use an OUTER JOIN.
The OUTER JOIN enables you to retrieve rows from one table regardless of whether they have a
matching row in another table. The following example returns a list with all the genres in the system
together with the reviews in each genre:

SELECT
 Genre.Id, Genre.Name, Review.Title
FROM
 Genre
LEFT OUTER JOIN Review ON Genre.Id = Review.GenreId

For each review assigned to a genre, a unique row is returned that contains the review’s title.
However, even if a genre has no reviews assigned, the row is still returned as shown in
Figure 12-14.

figure 12-14

The genre Indie Rock is repeated multiple times, once for each review in the Review table that has
been assigned to that genre. The Punk genre has only one review attached to it, so it’s listed only

c12.indd 421 2/21/2014 8:01:38 AM

422 ❘ Chapter 12 IntroducIng databases

once. Finally, the Rock and Grunge genres have no reviews associated with them. However, because
the SQL statement uses a LEFT OUTER JOIN, those two genres (listed on the left side of the JOIN) are
still returned. Instead of the Title of a review, that column now contains a NULL value to indicate
there is no associated review.

Besides the LEFT OUTER JOIN, there is also a RIGHT OUTER JOIN that returns all the rows from the
table listed at the right side of the JOIN.

In addition, you can use other joins including cross joins and self joins. For a detailed description
of these types of joins, pick up a copy of the book Beginning Microsoft SQL Server 2012
Programming by Paul Atkinson and Robert Vieira, Wrox, 2012 (ISBN: 978-1-1181-0228-2).

You see how to use a very common type of join, the INNER JOIN, in the next Try It Out.

trY it out Joining Data

To join data from two tables, you need to write a JOIN statement in your code. To help you write the
code, SSMS adds a JOIN for you whenever you add related tables to the Diagram pane. However, some-
times this JOIN is not correct, so you’ll need to check the code to see if it’s okay.

1. Still in your test database in SSMS, right-click the Review table and choose Edit Top 200 Rows.
You’ll see all the reviews in the table appear. Next, enable the Diagram, Criteria, and SQL panes
by clicking their respective buttons on the Query Designer toolbar.

2. Right-click an open spot of the Diagram pane next to the Review table and choose Add Table.
Alternatively, choose Query Designer ➪ Add Table from the main menu.

3. In the dialog box that opens, click the Genre table and then click the Add button. Finally, click
Close.

4. The SQL statement that SSMS generated looks like this:

SELECT TOP (200) Review.Id, Review.Title, Review.Summary, Review.Body,
 Review.GenreId, Review.Authorized, Review.CreateDateTime, Review.UpdateDateTime
FROM Review
INNER JOIN Genre ON Review.GenreId = Genre.Id

SSMS correctly detected the relationship defined in the database between the GenreId column of
the Review table and the Id column of the Genre table, and applied the correct JOIN for you.

5. To see how you can create JOINs yourself without writing code directly, you’ll manually re-create
the JOIN. First, right-click the line that is drawn between the two tables in the Diagram pane and
choose Remove. The SQL statement now contains a CROSS JOIN.

6. Next, click the GenreId column of the Review table in the Diagram pane once and drag it
onto the Id column of the Genre table. As soon as you release the mouse, SSMS creates a new
INNER JOIN in the SQL pane for you with the exact same code as you saw earlier. SQL Server
understands the primary and foreign keys that have been set up in the database tables and
correctly joins the primary key of the Genre table (Id) to the foreign key of the Reviews table
(GenreId).

c12.indd 422 2/21/2014 8:01:38 AM

www.SoftGozar.com

Retrieving and Manipulating Data with SQL ❘ 423

 7. Modify the SQL statement so it selects only the Id and the Title columns from the Review
table and the Name column from the Genre table. You can do this by altering the SQL statement
manually or by unchecking the columns in the Diagram pane. Your SQL statement should now
look like this:

SELECT TOP (200) Review.Id, Review.Title, Genre.Name
FROM Review INNER JOIN Genre ON Review.GenreId = Genre.Id

 8. Finally, press Ctrl+R to execute the query. Your Results pane should now look like Figure 12-15.

figure 12-15

How It Works

By using a JOIN in your SQL statement, you tell the database how to relate rows to each other. In this
example, you joined the GenreId column of the Review table to the actual Id of the Genre table:

SELECT
 Review.Id, Review.Title, Genre.Name
FROM
 Review
INNER JOIN Genre ON Review.GenreId = Genre.Id

With this JOIN, you can retrieve data from multiple tables and present them in a single result set. SQL
Server returns the correct genre name for each review, as is shown in Figure 12-15.

In addition to selecting data, you also need to be able to insert data into the database. You do this
with the INSERT statement.

Creating data
To insert new rows in a SQL Server table, you use the INSERT statement. It comes in a few different
flavors, but in its simplest form it looks like this:

INSERT INTO TableName (Column1 [, Column2]) VALUES (Value1 [, Value2])

Just as with the WHERE clause, you need to enclose string and date values in single quotes, but you
can enter numbers and boolean values directly in your SQL statement. The following snippet shows
how to insert a new row in the Genre table:

INSERT INTO Genre (Name, SortOrder) VALUES ('Tribal House', 20)

c12.indd 423 2/21/2014 8:01:38 AM

424 ❘ Chapter 12 IntroducIng databases

The Id column of the Genre table is set up to generate a value automatically when you insert a
new row (you see more of this concept, called identity columns, later in this chapter). Because it’s
generated by SQL Server, it’s not part of this query. After you have created some data, you may want
to edit it again. You do this with the UPDATE statement.

updating data
To update data in a table, you use the UPDATE statement:

UPDATE TableName SET Column1 = NewValue1 [, Column2 = NewValue2] WHERE
 Column3 = Value3

With the UPDATE statement, you use Column = Value constructs to indicate the new value of the
specified column. You can have as many of these constructs as you want, with a maximum of one
per column in the table. To limit the number of items that get updated, you use the WHERE clause,
just as with selecting data as you saw earlier. Without a WHERE clause, all rows will be affected
which is usually not what you want.

The following example updates the row that was inserted with the INSERT statement you saw
earlier. It sets the Name to Trance and updates the SortOrder to 5 to move the item up a little in
sorted lists. It also uses the unique ID of the new row (13 in this example) in the WHERE clause to
limit the number of rows that get affected with the UPDATE statement.

UPDATE Genre SET Name = 'Trance', SortOrder = 5 WHERE Id = 13

Obviously, you may also need to delete existing rows. It should come as no surprise that the SQL
language uses the DELETE statement for this.

deleting data
Just as with the SELECT and UPDATE statements, you can use the WHERE clause in a DELETE statement
to limit the number of rows that get deleted. This WHERE clause is often very important, because you
will otherwise wipe out the entire table instead of just deleting a few rows. Beware!

When you write a DELETE statement, you don’t need to specify any column names. All you need
to do is indicate the table that you want to delete rows from and an optional WHERE clause to limit
the number of rows that get deleted. The following example deletes the row that was inserted and
updated in the previous two examples:

DELETE FROM Genre WHERE Id = 13

If you leave out the WHERE clause, all rows will be deleted from the table.

You see these SQL statements at work in the next exercise.

trY it out Working with Data in the Sample Database

In this exercise, you put everything you learned so far into practice. In a series of steps, you see how to
create a new row in the Genre table, select it again to find out its new ID, update it using the UPDATE
statement, and finally, delete the genre from the database. Although the examples themselves may seem

c12.indd 424 2/21/2014 8:01:38 AM

Retrieving and Manipulating Data with SQL ❘ 425

pretty trivial, they are at the core of how SQL works. If you understand the examples from this section,
you’ll be able to work with the remaining SQL statements in this and coming chapters.

 1. Still in SSMS, right-click the Genre table and choose Edit Top 200 Rows. If the table was already
open with an old query, you need to close it first by pressing Ctrl+F4. This gets rid of the existing
SQL statement.

 2. Click the first three buttons on the Query Designer toolbar (Diagram, Criteria, and SQL pane) to
open up their respective panes.

 3. In the SQL pane, remove TOP (200) from the SQL statement and then in
the Diagram pane, uncheck the Id column and leave Name and SortOrder
checked, as shown in Figure 12-16.

Because the Id column gets an auto-generated value from the database, you
cannot supply an explicit value for it in an INSERT statement.

 4. On the Query Designer toolbar click the Change Type button and choose the
third option: Insert Values. The query in the SQL pane is updated and now contains a template
for the INSERT statement:

INSERT INTO Genre (Name, SortOrder) VALUES (,)

 5. Between the parentheses for the VALUES, enter a name (between single quotes) and a sort order for
your genre separated by a comma:

INSERT INTO Genre (Name, SortOrder) VALUES ('Folk', 15)

 6. Press Ctrl+R to execute the query. You should get a dialog
box that tells you that your action caused one row to be
affected, as shown in Figure 12-17.

 7. Click OK to dismiss the dialog box.

 8. Clear out the entire SQL statement from the SQL pane
(you can use Ctrl+A to select the entire SQL statement and
then press the Delete key to delete it) and replace it with
this code, which selects all the genres and sorts them in
descending order:

SELECT Id, Name FROM Genre ORDER BY Id DESC

 9. Press Ctrl+R to execute this SELECT statement. The Results pane shows a list of genres with the
one you just inserted at the top of the list. Note the ID of the newly inserted row. It should be 13
if you haven’t inserted any row before, although it’s okay if you have a different ID.

 10. Click the Change Type button on the toolbar again, this time choosing Update. Complete the SQL
statement that SSMS created for you so it looks like this:

UPDATE
 Genre
SET
 Name = 'British Folk',
 SortOrder = 5
WHERE
 Id = 13

figure 12-16

figure 12-17

c12.indd 425 2/21/2014 8:01:38 AM

426 ❘ Chapter 12 IntroducIng databases

Don’t forget to replace the number 13 in the SQL statement with the ID you determined in step 9.

11. Press Ctrl+R again to execute the query and you’ll get a dialog box informing you that one row
has been modified.

12. Once again, clear the SQL pane and then enter and execute the following query by pressing
Ctrl+R:

SELECT Id, Name FROM Genre WHERE Id = 13

Replace the Id in the WHERE clause with the ID of the row you determined in step 9. You should
see the updated row appear.

13. On the Query Designer toolbar, click the Change Type button and choose Delete. SSMS changes
the SQL statement so it is now set up to delete the row with an ID of 13:

DELETE FROM Genre WHERE (Id = 13)

14. Press Ctrl+R to execute the query and delete the row from the database. Click OK to dismiss the
confirmation dialog box.

15. To confirm that the row is really deleted, click the Change Type button once more and choose
Select. Then choose one or more columns of the Genre table in the Diagram pane and press
Ctrl+R again. You’ll see that this time no rows are returned, confirming that the newly inserted
genre has indeed been deleted from the database.

How It Works

In this short exercise, you carried out all four parts of the CRUD acronym, which gave you a look at
the life cycle of data in a SQL Server database from creation to deletion.

You started off with an INSERT statement:

INSERT INTO Genre (Name, SortOrder) VALUES ('Folk', 15)

This creates a new row in the Genre table. As you see in the next section, the Id column of the Genre
table is an identity column, which means that each new row gets a new, sequential ID assigned
automatically.

To retrieve that ID, you used a SELECT statement with an ORDER BY clause that orders the rows on their
IDs in descending order, so the most recent ID was put on top of the list. Retrieving the new ID like
this in a busy application is not reliable because you may end up with the ID of a row inserted by some-
one else. You see later in the book how to retrieve the ID in a reliable way, but for the purposes of this
exercise, the ORDER BY method works well enough.

Armed with the new ID, you executed an UPDATE statement to change the Name and SortOrder of the
newly inserted genre. If you want to update only a single column with the UPDATE statement — say you
want to change only the Name — you can simply leave out the other columns. For example, the follow-
ing UPDATE statement changes only the Name, leaving all other columns at their original values:

UPDATE
 Genre
SET
 Name = 'British Folk'
WHERE
 Id = 13

c12.indd 426 2/21/2014 8:01:39 AM

www.SoftGozar.com

Creating Your Own Tables ❘ 427

Finally, at the end of the exercise, you executed a DELETE statement to get rid of the new row. It’s
always important to specify a WHERE clause when executing a DELETE or an UPDATE statement to stop
you from clearing the entire table or from assigning the same value to all rows.

DELETE FROM Genre WHERE (Id = 13)

This SQL statement simply deletes the row with an ID of 13. If the row exists, it gets deleted. If the
row does not exist, no error is raised, but the dialog box in SSMS shows you that zero rows have been
affected. The parentheses are not required in this example, but they help in determining precedence
when you have multiple conditions in your WHERE clause.

Up to this point, you have seen how to work with existing tables in a database. However, it’s also
important to understand how to create new tables with relationships yourself. This is discussed in
the next section.

Creating Your oWn tables

Creating tables in a SQL Server database is easy using the database tools that are part of SSMS.
You see how you can create your own tables in the database after the next section, which briefly
introduces you to the data types at your disposal in SQL Server.

data types in sQl server
Just as with programming languages like Visual Basic .NET and C#, a SQL Server database uses
different data types to store its data. SQL Server 2012 supports more than 30 different data types,
most of which look similar to the types used in .NET. The following table lists the most common
SQL Server data types together with a description and their .NET counterparts.

sQl 2012 data tYpe desCription .net data tYpe

bit Stores boolean values in a 0 / 1 format (1 = True,
0 = False).

System.Boolean

char / nchar Contains fixed-length text. When you store
text shorter than the defined length, the text is
padded with spaces. The nchar stores the data
in Unicode format, which enables you to store
data for many foreign languages (at the cost of
needing twice as much space in the database).

System.String

datetime Stores a date and a time in the range 1753/1/1
through 9999/12/31.

System.DateTime

continues

c12.indd 427 2/21/2014 8:01:39 AM

428 ❘ Chapter 12 IntroducIng databases

sQl 2012 data tYpe desCription .net data tYpe

datetime2 Similar to the datetime type, but with a greater
precision and range (from 0001/1/1 through
9999/12/31)

System.DateTime

date Stores a date without the time element. System.DateTime

time Stores a time without the date element. System.TimeSpan

decimal Enables you to store large, fractional numbers. System.Decimal

float Enables you to store large, fractional numbers. System.Double

binary /

varbinary

Enables you to store large binary objects such
as files. binary has a fixed length whereas
varbinary stores binary objects with a variable
length.

System.Byte[]

tinyint Used to store integer numbers ranging from 0 to
255.

System.Byte

smallint Used to store integer numbers ranging from
–32,768 to 32,767.

System.Int16

int Used to store integer numbers ranging from
–2,147,483,648 to 2,147,483,647.

System.Int32

bigint Used to store large integer numbers
ranging from –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

System.Int64

text / ntext Used to store large amounts of text. The ntext
stores the data in Unicode format, which enables
you to store data for many foreign languages.

System.String

varchar /

nvarchar
Used to store text with a variable length.
nvarchar stores the data in Unicode format.

System.String

uniqueidentifier Stores globally unique identifiers. System.Guid

For a complete list of all the supported data types in SQL Server 2012, check out the MSDN
documentation at http://tinyurl.com/SqlDataTypes.

Some of these data types enable you to specify the maximum length. When you define a column of
type char, nchar, varchar, or nvarchar you need to specify the length in characters. For example,
an nvarchar(10) enables you to store a maximum of 10 characters. For char and nchar, the value
you put in a column is padded with spaces if the value you supply is shorter than the maximum
length. The types varchar and nvarchar also enable you to specify MAX as the maximum size. With

 (continued)

c12.indd 428 2/21/2014 8:01:39 AM

http://tinyurl.com/SqlDataTypes

Creating Your Own Tables ❘ 429

the MAX specifier, you can store data up to 2GB in a single column. For large pieces of text, like the
body of a review, you should consider the nvarchar(max) data type. If you have a clear idea about
the maximum length for a column (like a ZIP code or a phone number) or you want to explicitly
limit the length of it, you should specify that length instead. For example, the title of a review could
be stored in an nvarchar(200) column to allow up to 200 characters.

understanding primary Keys and identities
To uniquely identify a row in a table, you can set up a primary key. A primary key consists of one
or more columns in a table that contains a value that is unique across all rows. When you identify
a column as a primary key, the database engine ensures that no two rows can end up with the
same value. A primary key can consist of just a single column (for example, a numeric column that
contains unique numbers for each row in the table such as the Id column of the Genre table you
saw earlier) or it can span multiple columns, where the columns together form a unique ID for the
entire row.

SQL Server also supports identity columns. An identity column is a numeric column whose
sequential values are generated automatically whenever a new row is inserted. They are often used
as the primary key for a table. You see how this works in the next section when you create your own
tables.

It’s not a requirement to give each table a primary key, but it makes your life as a database
programmer a lot easier, so it’s recommended to always add one to your tables.

Creating tables, primary keys, and identity columns is really easy with SSMS’s database tools, as
you see in the next Try It Out.

trY it out Creating Tables in the Table Designer

In this exercise you add two tables to a new database that you use in the Planet Wrox website later.
You can delete the test database you created at the beginning of this chapter because you don’t need it
anymore.

 1. Still in SSMS and logged in to the LocalDB SQL
Server, right-click the Databases node and choose
New Database. In the dialog box that follows,
type PlanetWrox as the name, and then enter C:\
BegASPNET\Site\App_Data as the Path for both
rows in the Database Files section of the dialog
box (you may need to scroll to the right to see the
Path column). This creates the new database in the
App_Data folder of your website so you can easily
connect to it later. Click OK to create the database.

 2. In the Object Explorer, expand Databases and then
expand the database you just created. Right-click
the Tables node and choose New Table, as shown in
Figure 12-18. figure 12-18

c12.indd 429 2/21/2014 8:01:39 AM

430 ❘ Chapter 12 IntroducIng databases

 3. In the dialog box that follows, you can enter column
names and data types that together make up the
table definition. Create three columns for the Id,
Name, and SortOrder of the Genre table so the
dialog box ends up as shown in Figure 12-19.

Make sure you clear the check box for all three items
in the Allow Nulls column. This column determines
if fields are optional or required. In the case of the Genre table, all three columns will be required,
so you need to clear the Allow Nulls check box.

 4. Next, select the entire row for the Id by clicking in the margin on the left (identified by the
black arrow in Figure 12-19) and then on the Table Designer toolbar, visible in Figure 12-20,
click the second button from the left (with the yellow key on it) to turn the Id column into a
primary key.

figure 12-19

figure 12-20

Manage Check Constraints

Manage XML IndexesRelationships

Set Primary Key

Manage Fulltext
Index

Manage Spatial Indexes

Generate Change Script
Manage Indexes

and Keys

 5. Below the table definition you see the Column
Properties, a panel that looks similar to the
Properties Grid in VS. With the Id column
still selected, scroll down a bit on the
Column Properties grid until you see Identity
Specification. Expand the item and then set (Is
Identity) to Yes, as shown in Figure 12-21.

 6. Press Ctrl+S to save your changes. A dialog box
pops up that enables you to provide a name for
the table. Type Genre as the name and click OK
to apply your changes. Then press Ctrl+F4 to
close the table designer.

 7. Create another table by following steps 2 and 3, but this time create a table with the following
specifications to hold the CD and concert reviews for the Planet Wrox website.

figure 12-21

c12.indd 430 2/21/2014 8:01:40 AM

Creating Your Own Tables ❘ 431

Column name data tYpe

alloW

nulls desCription

Id int No The primary key and identity of the table.

Title nvarchar(200) No Contains the title of the review.

Summary nvarchar(max) No Contains a short summary or teaser text
for the review.

Body nvarchar(max) Yes Contains the full body text of the review.

GenreId int No Contains the ID of a genre that the
review belongs to.

Authorized bit No Determines whether the review is
authorized for publication by an
administrator. Unauthorized reviews will
not be visible on the website.

CreateDateTime datetime No The date and time the review is created.

UpdateDateTime datetime No The date and time the review is last
updated.

 8. Make the Id column the primary key again, and
set its (Is Identity) property to Yes just as you did in
steps 4 and 5.

 9. Click the CreateDateTime column once and then on
the Column Properties grid, type getdate() in the
field for the Default Value or Binding property, as
shown in Figure 12-22. This inserts the current date
and time for new rows if you don’t supply an explicit
value.

 10. Repeat the preceding step for the UpdateDateTime
column.

 11. When you’re done, press Ctrl+S to save the table and
call it Review. Close the table designer by pressing
Ctrl+F4.

How It Works

The Table Designer in SSMS is pretty straightforward.
You simply type new column names and define a data type for the column, and you’re pretty much
done. Some columns, such as the Id column in the Genre and Review tables, require a bit more work.
For those columns, you set (Is Identity) to Yes. This means that SQL Server automatically assigns a new
sequential number to each new row that you insert. By default, the first row in the table gets an ID of 1,
and the ID of subsequent rows is increased by one. You can change the default behavior by setting the
Identity Increment and Identity Seed in the Identity Specification element for the column.

figure 12-22

c12.indd 431 2/21/2014 8:01:40 AM

432 ❘ Chapter 12 IntroducIng databases

You also assigned a default value to the CreateDateTime and UpdateDateTime columns of the Review
table. Default values are inserted by the database when you don’t supply one explicitly in your SQL
statements. This means that if your INSERT statement does not contain a value for the CreateDateTime
or UpdateDateTime column, the database will insert a default value for you automatically. In the pre-
ceding Try It Out, this default value was getdate(), which inserts today’s date and time automatically.
This way, you can easily track when a review was created. In later chapters you see how to update the
UpdateDateTime column when reviews are updated.

In addition to relationships that are only defined in your own SQL queries as you saw before with
the SELECT and JOIN statements, you can also create relationships in the database. The benefits of
relationships and how you can create them in your database are discussed in the next section.

Creating relationships between tables
Consider the tables you have created so far. You created a Genre table with an Id column to
uniquely identify a genre row. You also created a Review table with a GenreId column. Clearly, this
column should contain an ID that points to a row in the Genre table so you know to which genre a
review belongs. Now imagine that you delete a row from the Genre table that has reviews attached
to it. Without a relationship, the database will let you do that. However, this is causing a great deal
of trouble. If you now try to display the genre together with a review, it will fail because there is
no longer a matching genre. Similarly, if you want to list all the reviews in your system grouped by
genre, you’ll miss the ones that belong to the deleted genre.

To avoid these kinds of problems and keep your database in a healthy and consistent state, you can
create a relationship between two tables. With a proper relationship set up, the database will stop
you from accidentally deleting rows in one table that still have other rows attached to it.

Besides the protection of data, relationships also make your data model clearer. If you look at the
database through a diagram (which you use in the next exercise), you’ll find that relationships
between tables help you better understand how tables are connected, and what data they
represent.

You can define a relationship by creating one between the primary key of one table and a column
in another table. The column in this second table is referred to as a foreign key. In the case of
the Review and Genre tables, the GenreId column of the Review table points to the primary key
column Id of the Genre table, thus making GenreId a foreign key. In the next exercise, you see how
to create a relationship between two tables and then execute a SQL statement that shows how the
relationship is helping you to protect your data.

trY it out Creating a Relationship between Two Tables

Before you can visually add a relationship between two tables, you need to add a diagram to your data-
base. A diagram is a visual tool that helps you understand and define your database. On the diagram,
you can drag a column from one table to another to create the relationship. In this exercise, you create
a relationship between the Review and Genre tables.

c12.indd 432 2/21/2014 8:01:40 AM

Creating Your Own Tables ❘ 433

 1. On the Object Explorer, expand your Planet Wrox database, right-click the Database Diagrams
element (visible in Figure 12-18), and click New Database Diagram. If this is the first time you are
adding a diagram to the database, you may get a dialog box asking if you want SSMS to make you
the owner of the database. Click Yes to proceed. Don’t worry if you don’t get this prompt; things
will work fine without it. The prompt may be followed by another that indicates that, in order to
work with diagrams, SSMS needs to create a few required objects. Again, click Yes to proceed.

 2. In the Add Table dialog box that follows, select both tables you created in the previous Try It Out
(hold down the Ctrl key while you click each item), click Add to add the tables to the diagram,
and then click Close to dismiss the Add Table dialog box.

 3. If necessary, arrange the tables in the diagram using drag and drop so they are positioned next to
each other.

 4. On the Genre table, click the left margin of the Id column (it should contain the yellow key to
indicate this is the primary key of the table) and then drag it onto the GenreId column of the
Review table and release your mouse.

 5. Two dialog boxes pop up that enable you to customize the defaults for the relation. In the top-
most window, confirm that Id is selected from Genre as the Primary Key Table and that GenreId
is selected from Review as the Foreign Key Table. Click OK to dismiss the top window. In the
dialog box that remains, visible in Figure 12-23, notice how Enforce Foreign Key Constraint is
set to Yes. This property ensures that you cannot delete a row from the Genre table if it still has
reviews attached to it. Click OK to dismiss this dialog box as well.

figure 12-23

 6. The diagram window should now show a line between the two tables. At the side of the
Genre table, you should see a yellow key to indicate this table contains the primary key for
the relationship. At the other end, you should see the infinity symbol (the number 8 turned 90
degrees) to indicate that the Review table can have many rows that use the same GenreId. You see
the diagram in Figure 12-24.

c12.indd 433 2/21/2014 8:01:40 AM

434 ❘ Chapter 12 IntroducIng databases

Note that in your diagram the line heads between
the two tables don’t necessarily point to the correct
columns; they just point to the entire table. This
can be confusing sometimes because you may think
that other columns are actually related. To confirm
the columns participating in the relationship, right-
click the line between the two tables and choose
Properties. The Table and Columns Specification item
shows which columns and tables participate in the
relationship, shown in Figure 12-25.

You can drag the line heads up and down to point to
the correct column. This doesn’t affect the tables, but
it makes your intent clearer to others viewing the diagram.

7. Press Ctrl+S to save the changes to the diagram. You can leave the name set to its default or you
can enter a more descriptive name such as Reviews and Genres and click OK. You’ll get another
warning that states that you are about to make changes to the Review and Genre tables. Click Yes
to apply the changes.

8. Go back to the Object Explorer, expand the Tables
node, right-click the Genre table, and choose Edit Top
200 Rows. If you don’t see your tables, click the Refresh
icon on the toolbar of the Object Explorer. Enter a few
different genres by typing a Name and a SortOrder.
When you press Tab in the SortOrder field to tab
away from the current row, the row is inserted in the
database, and the Id column is filled with a unique,
sequential number. You should end up with a list similar
to the one shown in Figure 12-26.

9. Open the Review table from the Object Explorer using
the Edit Top 200 Rows command and enter a few
review rows. For the GenreId, supply some of the new
IDs you got when you inserted rows in the Genre table.

figure 12-24

figure 12-25

figure 12-26

c12.indd 434 2/21/2014 8:01:41 AM

www.SoftGozar.com

Creating Your Own Tables ❘ 435

You can just make up the Title, Summary, and Body fields for now and set Authorized to True.
Remember, you don’t have to enter a value
for the date columns. If you leave them out, the database will insert the default value for you.
Notice that you can’t insert a value in the Id column yourself. Because this column is an Identity
field, the database supplies values for you automatically. If you get an error about missing values
for the date columns, ensure that you entered a proper default value in the previous exercise.
When you’re done entering a row, click outside the row (on the new, empty row below it, for
example) to insert the row in the table. Your list of rows should look similar to Figure 12-27,
although your content for the columns, of course, may be different.

figure 12-27

 10. Right-click the Genre table again and choose Edit Top 200 Rows. Click the SQL pane button on
the Query Designer toolbar and then use the Change Type button on the same toolbar to create
a DELETE query. Modify the query so it deletes one of the genre IDs you used in step 9 to link the
reviews to, like this:

DELETE FROM Genre WHERE Id = 5

This code will attempt to delete the Indie
Rock genre. However, because reviews are
connected to it, the delete action should fail.
Press Ctrl+R to execute the query. Instead of
deleting the row from the Genre table, SSMS
now shows you the dialog box you see in
Figure 12-28.

How It Works

When you create a relationship between two
tables, the database will enforce this relationship when you try to insert, update, or delete data. In this
example, rows in the Review table have a genre that exists in the Genre table. When you try to delete
a row from the Genre table, the database sees that the genre is used by a row in the Review table and
cancels the delete operation. In Chapter 15 you learn how to handle this situation in your website and
present your user with a friendly error message.

Now that you’ve seen the underlying concepts in dealing with databases, you’re ready for the next
chapter, which shows you how to work with your database using the many available ASP.NET data
controls.

figure 12-28

c12.indd 435 2/21/2014 8:01:41 AM

436 ❘ Chapter 12 IntroducIng databases

praCtiCal database tips

The following list provides some practical tips on working with databases:

➤➤ Because the database is often at the heart of a website, you need to carefully consider its
design. It’s especially important to think of a good design up front, before you start building
your site on top of it. When you have a number of pages that access your database, it will
become harder to make changes — such as removing tables or renaming columns — to the
data model.

➤➤ Always consider the primary key for your table. I prefer to give each table a column called
Id. The underlying data type is then an int and an identity, which gives each row a unique
ID automatically. Instead of an int, you can also consider the uniqueidentifier data
type, which ensures uniqueness even across database or application boundaries. However, a
uniqueidentifier is much slower than the int data type (especially during inserts) so use
this only when you need the benefits of the uniqueidentifier data type.

➤➤ Give your database objects such as tables and columns logical names. Avoid characters
such as spaces, underscores, and dashes. A name like GenreId is much easier to read than
colGen_ID_3.

➤➤ Don’t use SELECT * to get all columns from a database. By using SELECT * you may be
selecting more columns than you actually need. By defining the columns you want to
retrieve explicitly, you make your intentions to others clearer and increase the performance
of your queries at the same time.

➤➤ Always create relationships between tables when appropriate. Although querying for
the reviews and genres you saw in this chapter without a relationship between the two
tables works just fine, relationships help you enforce the quality of your data. With proper
relationships, you minimize the chance of ending up with orphaned or incorrect data.

summarY

The ability to work with databases is a good addition to your set of web development skills. Most of
today’s dynamic websites use databases, so it’s important to understand how to work with them.

To access and manipulate data in a relational database, you use a language called Structured Query
Language, or SQL for short. Among other elements, this language defines four important keywords
that enable you to perform CRUD — Create, Read, Update, Delete — operations against a database.

The SELECT statement enables you to retrieve data from one or more tables. To access more than
one table, you can use one of the available JOIN types to define a relationship between the tables. To
limit the number of rows returned by a query, you can use a WHERE clause. To order the items in the
result set returned by your query, you use the ORDER BY clause. To create new rows in your database
you use the INSERT statement, and you need an UPDATE statement to change existing rows. Finally,
to delete rows that you no longer need, you use the DELETE statement. Just like the SELECT and
UPDATE statements, DELETE takes an optional WHERE clause that enables you to limit the number of
rows that get deleted.

c12.indd 436 2/21/2014 8:01:41 AM

Summary ❘ 437

The second part of this chapter showed you how to use the built-in database tools to create tables
with relationships between them. In addition, you saw how a relationship between two tables
enables you to protect your data from becoming corrupt or orphaned.

Although this chapter had a strong focus on the SQL that you need to write to access a database,
you see in the next chapter that in many cases Visual Studio makes accessing databases pretty easy
as well by generating most of the code for you. However, a solid knowledge of SQL helps you in
understanding and tweaking the code that is being written for you.

exerCises

1. If you try to delete a row from the Genre table that has matching rows in the Review table, the
DELETE statement fails. How is this possible?

2. If you try to delete a row from the Review table that has its GenreId set to the Id of an
existing genre in the Genre table, the DELETE statement succeeds. Why?

3. Imagine you want to clean up your database and decide to delete all rows from the Review
table that have an Id of 100 or less. Write a SQL statement that deletes these rows.

4. Imagine you want to delete the genre with an ID of 4. But before you delete the genre, you
want to reassign reviews assigned to this genre to another genre with an ID of 11. What SQL
statements do you need to accomplish this?

5. Write a SQL statement that updates the Rock genre to read Punk Rock instead. You have at
least two ways to write the WHERE clause for this statement.

You can find answers to these exercises in Appendix A.

c12.indd 437 2/21/2014 8:01:41 AM

www.SoftGozar.com

438 ❘ Chapter 12 IntroducIng databases

 ➤ What You learned in this Chapter

Crud The four basic SQL operations to work with data in a database: Create,
Read, Update, and Delete

foreign key Identifies a column in a table that refers to the primary key of another
table to enforce referential integrity

identity An automatic, sequential number assigned to new rows

JOIN Enables you to express the relationship between two or more tables in a
query to find related data

primary key Consists of one or more columns in a table that uniquely identify a row
in that table

relational database A type of database where data is stored in separate, spreadsheet-like
tables that can refer to each other

relationship Defines the relation between one or more tables and helps you enforce
referential integrity

table An object in a database that enables you to store data

c12.indd 438 2/21/2014 8:01:41 AM

Displaying and Updating Data
What You Will learn in this Chapter:

➤➤ How to display, insert, edit, and delete data using controls such as
GridView, DetailsView, and SqlDataSource

➤➤ How to create a rich interface that enables a user to insert and
edit data while maintaining data integrity with the ASP.NET
validation controls

➤➤ The best way to store your connection strings in your application
so they are easily updatable

Wrox.Com Code doWnloads for this Chapter

You can find the wrox.com code downloads for this chapter on the Download Code tab at
www.wrox.com/go/begaspnet451. The code is in the Chapter 13 folder.

In this chapter you learn how to display, insert, update, and delete data using the popular
data controls that ship with ASP.NET. Besides working with the visual controls that are used
to display and edit data in a web page, you also learn how to work with the SqlDataSource
control that acts as the bridge between the database and your ASPX pages.

The first things you need to look at are the available data controls, discussed in the next
section.

data Controls

To enable you to work efficiently with the data in your system, ASP.NET offers two sets of
data-aware controls: the data-bound controls and the data source controls.

13

c13.indd 439 2/21/2014 8:03:52 AM

www.SoftGozar.com

http://www.wrox.com/go/begaspnet451
http://wrox.com
http://wrox.com

440 ❘ Chapter 13 Displaying anD UpDating Data

The first group contains controls that you use to display and edit data, such
as the GridView, Repeater, and ListView controls in the user interface.
The data source controls are used to retrieve data from a data source, like a
database or an XML file, and then offer this data to the data-bound controls.
Figure 13-1 shows the complete list of available data controls in the Data
category of the Toolbox.

The following three sections provide a quick overview of all the controls
in the Data category. In the remainder of this chapter you get a much more
detailed look at some of these controls and how to use them.

data-bound Controls
Seven of the controls in the Toolbox depicted in Figure 13-1 are the so-called
data-bound controls. You use them to display and edit data on your web
pages. The GridView, DataList, ListView, and Repeater are all able to
display multiple rows at the same time. As such they are often referred to as
list controls. The DetailsView and the FormView are designed to show a
single row at a time. The DataPager is a helper control used to provide paging
capabilities to the ListView controls.

List Controls
Because ASP.NET offers multiple controls to display lists of rows, you may be wondering when to
choose what control. The GridView is a very versatile control that supports automatic paging (where
rows are spread out over multiple “pages”), sorting, editing, deleting, and selecting. It renders its
data like a spreadsheet with rows and columns. Although many possibilities exist to style the looks
of these rows and controls (you learn more about this in Chapter 15), you cannot radically change
the way the data is presented. Additionally, the GridView does not allow you to insert rows in the
underlying data source directly.

Figure 13-2 shows a typical GridView.

figure 13-1

figure 13-2

The DataList control enables you to present data not only in rows as with the GridView, but
in columns as well, enabling you to create a matrix-like presentation of data. The control can be
considered deprecated and is replaced with the ListView, which is a lot more powerful. As such,
this book doesn’t discuss the DataList any further.

c13.indd 440 2/21/2014 8:03:52 AM

Data Controls ❘ 441

The Repeater gives you the greatest flexibility in terms of the HTML that you output to the
browser because the control by itself does not add any HTML to the page output. As such, it’s often
used for HTML ordered or unordered lists (and) and other lists where you can’t afford
to have unwanted HTML mixed with your own. You define the entire client markup through the
numerous templates the control exposes. However, this flexibility comes at a price: the control has
no built-in capabilities to page, sort, or modify data. You see more of the Repeater control in the
next chapter.

The ListView was introduced in ASP.NET 3.5 and is a best-of-all-worlds combination of the
GridView, the DataList, and the Repeater. It has undergone some changes in ASP.NET 4 and 4.5
that make it even easier to work with. The control supports editing, deleting, and paging of data,
similar to the GridView. It supports multi-column and multi-row layouts like the DataList offers,
and it enables you to completely control the markup generated by the control, just as the Repeater
does. It also supports inserting and updating data like the DetailsView or FormView controls. In
the next chapter, you see a lot more of the ListView control.

In ASP.NET 4, list controls were extended with a ClientIDRowSuffix property that enables you
to indicate the column whose value is used to create unique client-side IDs based on data in the
database. For this to work, you need to set the ClientIDMode property that you saw in earlier
chapters to Predictable.

In ASP.NET 4.5, the controls were extended again with a new property: ItemType. You see this
property at work in the next chapter.

Single-item Controls
The DetailsView and FormView controls are somewhat similar in that both of them can display a
single record at a time. The DetailsView uses a built-in tabular format to display the data, whereas
the FormView uses templates to let you define the look and feel of your data. A simple, template-
based DetailsView could look like the one shown in Figure 13-3.

figure 13-3

The FormView control (and a few of the Login controls you’ll see in Chapter 16) have a
RenderOuterTable property. When you set this property to False (it defaults to True so you need
to set it explicitly) the control doesn’t generate a wrapping HTML <table> element. This in turn
results in less code and cleaner HTML. Both controls enable you to define the templates for different
situations, such as a read-only display of data, and inserting and updating of data. You see how to
customize these templates in the second half of this chapter.

c13.indd 441 2/21/2014 8:03:53 AM

442 ❘ Chapter 13 Displaying anD UpDating Data

Paging Controls
Another useful control is the DataPager, which enables paging on other controls. For the time being,
you can only use it to extend the ListView control, but that might change with future versions of the
.NET Framework. The ListView and DataPager controls are discussed in Chapter 14.

For the data-bound controls to display something useful, you need to assign them a data source.
To bind this data source to the controls, two main methods are available: You can assign data to
the control’s DataSource property, or you can use one of the separate data source controls. In later
chapters, you see how to use the DataSource property; the different data source controls are the
topic of the following section.

data source Controls
The Data category of the Toolbox contains six different data source controls that you can use to
bind data to your data-bound controls. The XmlDataSource and SiteMapDataSource controls are
used to bind hierarchical, XML-based data to these controls. You saw SiteMapDataSource at work
when you created the site map in Chapter 7.

The ObjectDataSource control enables you to connect your data-bound controls to separate objects in
your application. Instead of tying your data-aware controls directly to a database, you bind data from
a separate layer with custom objects to them. Get yourself a copy of Wrox’s Professional ASP.NET 4.5
(ISBN 978-1-118-31182-0) if you want to find out more about the ObjectDataSource control.

The final three data source controls are the SqlDataSource, the EntityDataSource, and the
LinqDataSource controls. The first is discussed in this chapter. The LinqDataSource serves as a
data source for LINQ to SQL, a technology similar to the ADO.NET Entity Framework you learn
more about in Chapter 14. Because Microsoft is now promoting the Entity Framework instead of
LINQ to SQL, I won’t discuss the LinqDataSource control in this book. The EntityDataSource
is used with older versions of the Entity Framework, and hasn’t been updated for the latest version
of EF. Instead of using this control, Microsoft recommends to use a concept called Model Binding,
discussed extensively in the next chapter.

The QueryExtender control acts like an add-on to the LinqDataSource and EntityDataSource
controls in that it enables you to create a rich filtering interface to search for specific data without
manually writing a lot of code. You can learn more about the QueryExtender in this article:
http://bit.ly/92kMPQ.

other data Controls
The final control in the Toolbox is the Chart control. It was initially released as an add-on to Visual
Studio 2008 but is now fully integrated into VS 2013. It’s designed to render chart graphics ranging
from simple bar charts to 3D pie charts and fancy line diagrams. I won’t discuss this control any
further, but you can find a series of articles that discuss it in detail here: http://tinyurl.com/
nsnbvv.

In the next section you see how to use the SqlDataSource and the GridView to retrieve and display
data from a database. Later sections and chapters dig deeper into the other data controls.

c13.indd 442 2/21/2014 8:03:53 AM

http://bit.ly/92kMPQ
http://tinyurl.com/nsnbvv
http://tinyurl.com/nsnbvv

Data Source and Data-bound Controls Working Together ❘ 443

data sourCe and data-bound Controls
Working together

The SqlDataSource control enables you to quickly create functional, database-driven web pages.
Without writing a whole lot of code, you can create web pages that enable you to perform all four
operations of the CRUD acronym: Create, Read, Update, and Delete data. Although its name may
seem to imply that the control can access only Microsoft’s SQL Server, that’s not the case. The
control can access other databases, such as Oracle or MySQL, as well.

displaying and editing data with gridView
To give you an idea of how the SqlDataSource control works in conjunction with the data-
bound controls, the next Try It Out shows you how to create a very simple data-driven web page
that enables you to update and delete the musical genres that are stored in the Genre table in the
database. This chapter assumes you have the PlanetWrox.mdf database with the Genre and Review
tables in your App_Data folder. It’s also assumed that these tables each contain at least a few rows.
If you didn’t follow the steps in the preceding chapter, use the script file Create Planet Wrox
Database.sql supplied in the Resources folder of that chapter to create the necessary tables and
records. You still need to create the database at C:\BegASPNET\Site\App_Data as explained in the
preceding chapter. It’s also a good idea to use this script if your own copy doesn’t contain a lot of
review and genre rows. This gives you a good set of sample rows to work with.

trY it out Using the GridView and SqlDataSource Controls

In this exercise you start building the Management section of the website that will be your main entry
point to manage things such as reviews and genres in your site. For now, the pages you create in this
section are accessible to all users of your site, but Chapter 16 shows you how to block access to this
folder to any user that is not an administrator.

You see how to drag a table from the Server Explorer onto the page and have VS create a user interface
to manage items in the database for you by automatically generating the necessary code for a GridView
and a SqlDataSource. In later exercises in this book you see how to reproduce this behavior manually,
giving you more control over the code.

1. Open the Planet Wrox website from its location at C:\BegASPNET\Site in Visual Studio.

2. Right-click the MasterPages folder, choose Add ➪ Add New Item, and add a new Master Page
called Management.master to the site. Make sure it uses your programming language and that
it’s not based on an existing master page. Also, make sure it’s using Code Behind by checking the
Place Code in Separate File option.

3. Change the HTML inside the <form> element to the following code that creates two elements (a
<nav> and a <section>) floating next to each other. The first contains a simple list-based menu
for the Management section, whereas the second contains the ContentPlaceHolder control that
enables content pages to provide custom content:

c13.indd 443 2/21/2014 8:03:53 AM

www.SoftGozar.com

444 ❘ Chapter 13 Displaying anD UpDating Data

<form id="form1" runat="server">
<div>
 <nav style="width: 200px; float: left;">

 Management Home
 Manage Genres

 </nav>
 <section style="width: 750px; float: left;">
 <asp:ContentPlaceHolder ID="cpMainContent"
 runat="server"></asp:ContentPlaceHolder>
 </section>
</div>
</form>

In the next steps, you add the two files linked to from the <nav> element. Save and close the mas-
ter page.

 4. Add a new folder to the root of the site and call it Management. Right-click this new folder,
choose Add ➪ Add New Item, and create a new standard Web Form called Default.aspx. Don’t
use your custom template, and make sure the page is based on the new Management.master file
you just created by checking Select Master Page and then selecting that master page from the
MasterPages folder. Add some text to the cpMainContent content block that welcomes the user
to the Management section of the website:

<asp:Content ID="Content2" ContentPlaceHolderID="cpMainContent" runat="Server">
 <h1>Planet Wrox Management Section</h1>
 <p>Welcome to the Management section of this web site. Please choose an item
 from the menu on the left to continue.</p>
</asp:Content>

Give the page a title of Planet Wrox - Management - Home.

 5. Create another page in the Management folder and call it Genres.aspx. Base it on the same
master page and then change its title to Planet Wrox - Management - Genres and switch it
into Design View.

 6. Double-click the PlanetWrox.mdf file in the App_Data folder. This opens the Server Explorer.
If you don’t see the Planet Wrox database listed here or you get an error, refer to the preceding
chapter, which explains how to set up the database. Remember, there’s a script file in the
Resources folder for the preceding chapter that creates the tables you’ll work with in case you
don’t have your own.

 7. Expand the PlanetWrox.mdf database, then the Tables node, and then drag the Genre table from
the Server Explorer and drop it in the cpMainContent area of the Genres page in Design View. VS
creates a GridView and a SqlDataSource for you automatically.

 8. On the Smart Tasks panel for the GridView control that should open automatically (if it doesn’t,
click the gray arrow on the upper-right corner of the control or right-click the control and choose
Show Smart Tag), check all the available check boxes, shown in Figure 13-4.

c13.indd 444 2/21/2014 8:03:53 AM

Data Source and Data-bound Controls Working Together ❘ 445

9. Right-click the Management folder in the Solution Explorer and choose Add ➪ Add New Item.
Choose Web Configuration File and then click Add to add a Web.config file that applies to the
Management folder only. In the file that opens, add a <pages> element under <system.web>
and set the theme attribute to an empty string, effectively disabling the theme for the entire
Management section of the site:

<configuration>
 <system.web>
 <pages theme="" />
 </system.web>
</configuration>

10. Save all your changes and then request Genres.aspx from the Management folder in your browser.
You should see a grid with the genres from the Genre table (see Figure 13-5). The links in the left
column enable you to edit, delete, and select the relevant genres. Note that you can’t delete genres
that have one or more reviews attached to them. If you try, you’ll get an error instead. Chapter 15
digs much deeper into changing the user interface (UI) to disable the Delete links so users can no
longer accidentally click them.

If the list with genres ends up below the menu on the left, you may need to make your browser
window a little wider.

11. You can click the column headers, such as Name and SortOrder (visible in Figure 13-5), to sort the
data in the grid on that column. If you click the same header again, the data is sorted in reverse
order. You can move to another page in the grid by clicking the numbers at the bottom.

figure 13-4

c13.indd 445 2/21/2014 8:03:53 AM

www.SoftGozar.com

446 ❘ Chapter 13 Displaying anD UpDating Data

 12. Click the Edit link for one of the genres, change the name in the text box that has appeared, and
click the Update link. The GridView should now display the new name.

How It Works

You didn’t manually write any code to interact with the database in this exercise, but you got a lot of
functionality simply by dragging and dropping a database table. To see how it works, take a look at the
source that VS generated. First, look at the markup for the SqlDataSource control:

<asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString="<%$ ConnectionStrings:PlanetWroxConnectionString1 %>"
 ProviderName="
 <%$ ConnectionStrings:PlanetWroxConnectionString1.ProviderName %>"
 DeleteCommand="DELETE FROM [Genre] WHERE [Id] = @Id"
 InsertCommand="INSERT INTO [Genre] ([Name], [SortOrder]) VALUES (@Name,
 @SortOrder)"
 SelectCommand="SELECT [Id], [Name], [SortOrder] FROM [Genre]"
 UpdateCommand="UPDATE [Genre] SET [Name] = @Name, [SortOrder] = @SortOrder
 WHERE [Id] = @Id">
 <DeleteParameters>
 <asp:Parameter Name="Id" Type="Int32" />
 </DeleteParameters>
 <InsertParameters>
 <asp:Parameter Name="Name" Type="String" />
 <asp:Parameter Name="SortOrder" Type="Int32" />
 </InsertParameters>
 <UpdateParameters>
 <asp:Parameter Name="Name" Type="String" />
 <asp:Parameter Name="SortOrder" Type="Int32" />
 <asp:Parameter Name="Id" Type="Int32" />
 </UpdateParameters>
</asp:SqlDataSource>

I changed the order of the attributes so all the commands are placed together. In your case, you may
have the ProviderName attribute in a different location. As with all ASP.NET controls, the order of
attributes in the control declaration doesn’t matter.

figure 13-5

c13.indd 446 2/21/2014 8:03:54 AM

Data Source and Data-bound Controls Working Together ❘ 447

A couple of interesting things are worth examining. First, note that the ConnectionString and
ProviderName attributes point to a connection string that has been defined in the Web.config file.
You see more of this in the next section, including an explanation of the <%$ %> syntax used for the
attributes.

You then see four commands, each one of them containing a SQL statement that is used for one of
the four operations of the CRUD acronym. The INSERT, UPDATE, and DELETE commands contain
parameters, identified by the at symbol (@) prefix. At run time, when the control is asked to perform
the relevant data operation, these parameters are substituted by runtime values. The SqlDataSource
control keeps track of the relevant parameters in the *Parameters collections. For example, the
<DeleteParameters> element contains a single parameter for the Id (the primary key) of the genre:

<DeleteParameters>
 <asp:Parameter Name="Id" Type="Int32" />
</DeleteParameters>

Note that the Name of the parameter minus the at symbol (@) lines up with the parameter in the SQL
statement:

DeleteCommand="DELETE FROM [Genre] WHERE [Id] = @Id"

Notice how VS has wrapped column and table names in square brackets ([]). You normally only need
these if your column or table name contains a special character such as a space or the name matches
a reserved word. VS is just cautious and adds them to all columns and tables. You can leave them in,
but if you write your own SQL statements you don’t have to include them (although you could if you
wanted to).

All by itself, the SqlDataSource control can’t do much at this stage. It needs a data-bound control
that tells it what data operations to execute. In this Try It Out exercise the data-bound control is the
GridView that is defined with this code:

<asp:GridView ID="GridView1" runat="server" AllowPaging="True" AllowSorting="True"
 AutoGenerateColumns="False" DataKeyNames="Id" DataSourceID="SqlDataSource1"
 EmptyDataText="There are no data records to display.">
 <Columns>
 <asp:CommandField ShowDeleteButton="True" ShowEditButton="True"
 ShowSelectButton="True" />
 <asp:BoundField DataField="Id" HeaderText="Id" ReadOnly="True"
 SortExpression="Id" />
 <asp:BoundField DataField="Name" HeaderText="Name" SortExpression="Name" />
 <asp:BoundField DataField="SortOrder" HeaderText="SortOrder"
 SortExpression="SortOrder" />
 </Columns>
</asp:GridView>

The GridView contains a few important attributes. First, the DataKeyNames attribute tells the
GridView what the primary key is of the row in the database. It needs this to uniquely identify rows in
the grid.

The DataSourceID attribute points to the SqlDataSource control that you saw earlier, whereas
AllowPaging and AllowSorting enable their associated features on the GridView.

c13.indd 447 2/21/2014 8:03:54 AM

448 ❘ Chapter 13 Displaying anD UpDating Data

Under the <Columns> element you see a number of fields set up. First, you see a CommandField. A
CommandField is a column in the GridView that enables a user to execute one or more actions for the
row to which the CommandField applies. It ends up in the browser as one or more text links or buttons.
In this example, ShowDeleteButton, ShowEditButton, and ShowSelectButton have all been set to
True. This gives the grid the functionality you see in Figure 13-5. When you click one of the links that
have been created by the CommandField, they’ll trigger a command at the server. For example, clicking
the Edit link puts the GridView in edit mode so you can edit the selected row. Notice how clicking the
Select link doesn’t seem to change the GridView at all. In Chapter 15 you see how to create styles for
the GridView so you can radically change the appearance of the control, including visually distinguish-
ing a selected row from the others.

If you want the GridView to render buttons instead of links, you need to set ButtonType to Button:

<asp:CommandField ShowDeleteButton="True" ShowEditButton="True"
 ShowSelectButton="True" ButtonType="Button"></asp:CommandField>

The other three fields are so-called bound fields and map directly to the columns of the Genre table in
the database with their DataField attribute so the GridView knows what data to display where.

The GridView and SqlDataSource controls work together closely to retrieve and modify the data in
the underlying data source. To give you an idea of how this works, here’s a rundown of the events that
took place when you requested the Genres page in the browser and then edited a single genre:

 1. You request the page in your browser and the page begins its page life cycle.

 2. The GridView knows it is set up to retrieve and display data because it has a DataSourceID
attribute that points to a SqlDataSource control. It contacts this data source control and
asks it for its data. The SqlDataSource in turn connects to the database and then fires its
SelectCommand, the SQL statement that selects the Id, Name, and SortOrder from the Genre
table in the database:

 SelectCommand="SELECT [Id], [Name], [SortOrder] FROM [Genre]"

 3. When the SqlDataSource receives the requested rows from the database it hands them over to
the GridView, which creates an HTML table out of them using the bound fields that have been
set up in the <Columns> element. The GridView keeps track of the unique ID for each row that is
displayed in the page by storing it in View State.

 4. As soon as you click the Edit link, the page posts back. The GridView is able to see what row you
clicked by looking at the associated DataKeyNames and retrieving the row’s ID from View State.
It then gets the latest results from the database by asking the SqlDataSource again to fire its
SelectCommand, and, finally, puts the selected row in edit mode so you can change the relevant
details. When you click the Update link, the GridView collects the new values from the TextBox
controls and then contacts the SqlDataSource again.

 5. For each of the parameters in the <UpdateParameters> element of the SqlDataSource, the
GridView supplies a value. It retrieves the Id of the genre from the selected row, and then retrieves
the new Name and SortOrder values from the TextBox controls in the page.

 6. Armed with the relevant data for the Id, Name, and SortOrder, the SqlDataSource then executes
its UpdateCommand against the database:

c13.indd 448 2/21/2014 8:03:54 AM

Data Source and Data-bound Controls Working Together ❘ 449

 UpdateCommand="UPDATE [Genre] SET [Name] = @Name,
 [SortOrder] = @SortOrder WHERE [Id] = @Id"

Each of the parameters prefixed with the at symbol (@) is filled with the values that the GridView
supplied. The SQL statement that gets sent to the database ends up looking similar to this:

UPDATE [Genre] SET [Name] = 'New Name', [SortOrder] = 1 WHERE [Id] = 1

 7. Finally, the GridView refreshes the data on the page by once again asking the SqlDataSource to
execute its SelectCommand. This way, the GridView now displays the latest data with the update
you made.

The other commands work in a similar way and send their own SQL commands to the database.

At the end of the exercise, you added a new Web.config file to the Management folder to reset the
theme that is applied to all pages in the Management section. With the theme removed, it’s easier to
focus on the functionality of the Management section, rather than be distracted by layout issues. In
Chapter 15 you create a third theme specifically for the Management folder and apply that theme in the
Web.config file in the Management folder. That way, your management pages will have a look and feel
that’s different from the pages in the front end.

Now that you’ve seen how to display, edit, and delete data, it’s time to learn how to insert new rows
in the database using the DetailsView control.

inserting data with detailsView
Just as displaying, updating, and deleting data with the GridView are pretty easy, so is inserting
data with the DetailsView control. The DetailsView supports a number of templates that enable
you to customize the look and feel of the control in different modes. For example, the control has
a <HeaderTemplate>, a <FooterTemplate>, and a <PagerTemplate> element that enable you to
define the look of the top and bottom parts of the control. In addition, the control has a <Fields>
element that enables you to define the rows that should appear in the control, much like the
<Columns> element of the GridView.

The DetailsView is able to display data in a few different modes. First of all, it can display an
existing row in read-only mode. In addition, you can use the control to insert new rows and to
update existing ones. You control the mode of the DetailsView with the DefaultMode property,
which you can set to ReadOnly, Insert, and Edit, respectively. You see how to configure the
DetailsView and set the DefaultMode property next.

trY it out Inserting Data with the DetailsView Control

In this exercise, you see how to use the DetailsView control to let your users insert new rows into the
Genre table. As with the GridView example, the next exercise requires no coding from your side. All
you need to do is drag and drop a few controls, set a few properties, and you’re done. Obviously, these
code-free pages have limitations that make them less useful in more advanced scenarios. Therefore,
later in this chapter, you see how to extend and customize these controls.

c13.indd 449 2/21/2014 8:03:54 AM

450 ❘ Chapter 13 Displaying anD UpDating Data

 1. Go back to the Genres.aspx page in VS and make sure it’s in Design View.

 2. Drag and drop a DetailsView control from the Data category of the Toolbox immediately
below the GridView. If you have trouble dropping the control below the GridView but above the
SqlDataSource control, you can simply drop it on the SqlDataSource; VS then adds the markup
of the dropped control before the one you drop it on.

 3. Open the control’s Smart Tasks panel if it didn’t open automatically and hook up the control to the
existing SqlDataSource1 by selecting that name from the Choose Data Source drop-down list.

 4. On the same Smart Tasks panel, select the Enable Inserting item.

 5. Open the control’s Properties Grid by pressing F4 and then locate the DefaultMode property in
the Behavior category. Set the DefaultMode to Insert. The code for the DetailsView should
now look like this:

<asp:DetailsView ID="DetailsView1" runat="server" AutoGenerateRows="False"
 DataKeyNames="Id" DataSourceID="SqlDataSource1" DefaultMode="Insert"
 Height="50px" Width="125px">
 <Fields>
 <asp:BoundField DataField="Id" HeaderText="Id" InsertVisible="False"
 ReadOnly="True" SortExpression="Id" />
 <asp:BoundField DataField="Name" HeaderText="Name" SortExpression="Name" />
 <asp:BoundField DataField="SortOrder" HeaderText="SortOrder"
 SortExpression="SortOrder" />
 <asp:CommandField ShowInsertButton="True" />
 </Fields>
</asp:DetailsView>

If you don’t see the three BoundField elements, open the
Smart Task panel for the DetailsView, click Refresh schema,
click No when asked to refresh the fields and keys for the
GridView, but click Yes when asked the same question for the
DetailsView. This leaves the GridView unmodified and then
correctly adds the fields for the DetailsView.

 6. Save the changes to the page, and press Ctrl+F5 to open it up
in your browser. Below the GridView you should now see the
controls that enable you to insert a new genre, as shown in
Figure 13-6.

 7. Insert a new genre such as Disco or Dance. Make sure you
enter both a name and a sort order (a number) and then click
the Insert link. You may need to page to the last page of the GridView by clicking one of the
numbers at the bottom of the screen in the Pager bar to see the new row.

How It Works

Identical to the other data-bound controls, you hook up the DetailsView to a data source control by
setting the DataSourceID property. Because you already have a working SqlDataSource control on
the page, you can simply reuse that. The DetailsView exposes different views, for read-only, insert,

figure 13-6

c13.indd 450 2/21/2014 8:03:54 AM

Data Source and Data-bound Controls Working Together ❘ 451

and edit modes. By setting the DefaultMode to Insert, you force the control to switch to insert mode,
which means you automatically get a UI for entering details for the genre, and Insert and Cancel links.
The DetailsView control is actually pretty smart. When you point it to the SqlDataSource control, it
is able to figure out the DataKeyNames property, which it set to Id:

<asp:DetailsView ID="DetailsView1" runat="server" AutoGenerateRows="False"
 DataKeyNames="Id" DataSourceID="SqlDataSource1" ...

It also understands that the Id column is an identity column in the database, and therefore hides it in
the Insert screen (shown in Figure 13-6) by setting InsertVisible to False. Because the database gen-
erates this ID automatically, there is no point in letting the user enter a value for it.

When you enter some values and click the Insert link, a process similar to updating with the GridView
takes place. The DetailsView collects the relevant information from the page’s controls (the Name and
the SortOrder) and forwards them to the SqlDataSource. This control in turn pushes the new values
in the parameters for the INSERT statement and then sends the command off to the database, which
inserts the new row in the Genre table. If you click the Insert link without entering a name or sort
order, you’ll get an error. In this and later chapters you see how to modify the data-bound controls to
include validation functionality.

When you dropped the Genre table on the Genres.aspx page earlier in this chapter, VS not only
created a bunch of controls for you, but it also stored information about the database in your
Web.config file. The next section explains how this works and why it is important.

storing Your Connection strings in Web.config
The first time you dropped the Genre table on your page, VS created a SqlDataSource control for
you. To tell this control what database to access, VS also created a connection string in the
Web.config file under the <connectionStrings> element and pointed the SqlDataSource to this
connection string. The setting in Web.config looks like this:

<connectionStrings>
 <add name="PlanetWroxConnectionString1" connectionString="Data Source=
 (localdb)\v11.0;AttachDbFilename=|DataDirectory|\PlanetWrox.mdf;
 Integrated Security=True"
 providerName="System.Data.SqlClient" />
</connectionStrings>

The SqlDataSource then accesses this connection string as follows:

<asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString="<%$ ConnectionStrings:PlanetWroxConnectionString1 %>"

This code uses expression syntax to refer to the connection string in the Web.config. It asks the
Web.config file for the connection string that listens to the name PlanetWroxConnectionString1.
It also reads the providerName attribute to figure out how its internal code should talk to the
database.

c13.indd 451 2/21/2014 8:03:54 AM

452 ❘ Chapter 13 Displaying anD UpDating Data

Note In addition to the expression syntax that uses <%$ %> to bind control
values to resources like a connection string, you’ll also come across similar
syntax that uses <%# %>. This is called data-binding expression syntax and it
enables you to bind control values to data that comes from data sources like a
database. You see more about data-binding expression syntax in this and the
next two chapters.

Storing your connection strings in Web.config is considered a very good practice. By centralizing
your connection strings you make it much easier to modify them when your database changes (for
example, when you switch from a development environment to a production server). Never store
your connection strings directly in Code Behind files or in the markup section of the page. You’ll
seriously regret that the day you have to change your connection string and have to wade through
all the pages in your site looking for connection strings.

The Express LocalDB edition of SQL Server that you have used so far enables you to work with
databases that are attached to SQL Server on the fly when you need them. Take a look at the actual
connection string to see how this works:

Data Source=(localdb)\v11.0;
AttachDbFilename=|DataDirectory|\PlanetWrox.mdf;
Integrated Security=True;

This connection string consists of three parts (which are all on one line in your config file). The
value of the first part contains the data source to identify the SQL Server that is targeted, which
in this case is a LocalDB instance of SQL Server 2012. Other valid data sources you may come
across include . (just a dot, to denote the local machine), .\SqlExpress, to target a named instance
version of SQL Server Express running on the local machine (where SqlExpress is the instance
name), or something like MachineName or MachineName\InstanceName to target a remote
machine or a named instance on a remote machine.

AttachDbFileName contains a path to your SQL Server Express database. The |DataDirectory|
placeholder is expanded to the full and physical path of the App_Data folder at run time. So, when
your pages load and the SqlDataSource needs to connect to the database, it will open the file
PlanetWrox.mdf in C:\BegASPNET\Site\App_Data\. As an alternative to AttachDbFileName
you’ll also come across Initial Catalog in other connection strings. The Initial Catalog points
to a database available on the SQL Server you are using. You see more of this in Appendix B.

The last part of the connection string has to do with security. With Integrated Security, the account
used by the web server is used to connect to the database. In the case of VS and IIS Express, this
account is the one you use to log on to your machine. In case you’re using the full version of IIS, this
account is an account named after an Application Pool in IIS, or a special account called Network
Service. Chapter 19, which deals with deployment, and Appendix B, which explains how to connect
to SQL Server, dig deeper into security-related issues.

So far you have seen most of the database concepts that were introduced in the previous chapter.
You saw creating (with the DetailsView in insert mode), reading (with the SelectCommand and
the GridView), updating (inline within the GridView and an UpdateCommand), and deleting (with

c13.indd 452 2/21/2014 8:03:54 AM

Data Source and Data-bound Controls Working Together ❘ 453

the delete option in the GridView and a DeleteCommand). Moreover, you saw sorting that can be
enabled in the GridView with just a single setting. What you haven’t seen is filtering, a way to limit
the data that is presented in the page. In the next section you see how to create a filter that enables
you to display reviews that belong to a certain genre. You create the filter in the Management
section in a new page called Reviews.aspx, which will be your main entry point for managing the
reviews in your website. Subsequent sections build on top of this, gradually expanding the Reviews
page with more useful features.

filtering data
As you learned in the previous chapter, you use a WHERE clause to filter your data. VS and ASP.NET
come with a bunch of tools that make creating filters very easy. To filter data, the SqlDataSource
control (and other data source controls) have a <SelectParameters> element that enables you to
supply values at run time that are used for filtering. These values can come from a variety of sources,
including the ones described in the following table.

With a the Value is retrieVed from

ControlParameter A control in the page, such as a DropDownList or a TextBox.

CookieParameter A cookie that is stored on the user’s computer and that is sent to
the server with each request.

FormParameter A value posted in the form that has been submitted to the server.

Parameter A variety of sources. With this parameter, you set the value
through code.

ProfileParameter A property on the user’s profile. The ASP.NET Profile is discussed
in full detail in Chapter 17.

QueryStringParameter A query string field.

SessionParameter A value that is stored in a session, which is a server-side, user-
specific store of data that exists during a user’s visit to a site.

Because these parameters all behave more or less the same, it’s easy to use them in your own code.
Once you understand how to use one of them, you’ll quickly be able to use the others as well. You
see the ControlParameter at work in the next exercise, where you use a DropDownList with all the
genres to filter a list of reviews that belong to the chosen genre.

trY it out Setting Up the Filter

To make long lists of data easier to manage, it’s a good idea to offer them to the user in smaller, bite-
size blocks. For example, when you need to present a list with reviews in your database, you could
enable your users to filter them by genre. A DropDownList with the genres to limit the reviews in the
GridView to those that belong to the selected genre would be the perfect solution for that. You see how
to build this next.

c13.indd 453 2/21/2014 8:03:55 AM

454 ❘ Chapter 13 Displaying anD UpDating Data

 1. Create a new Web Form called Reviews.aspx in the Management folder, and make sure it uses
Code Behind and is based on the new Management master page. Change the Title of the page to
Planet Wrox - Management - Reviews.

 2. Add a link to this page in the master page for the Management section:

 Manage Genres
 Manage Reviews

 3. Go back to Reviews.aspx and switch the page into Design View. From the Standard category
of the Toolbox, drag a DropDownList control into the page. On its Smart Tasks panel, select
Enable AutoPostBack and click the Edit Items link. Insert an item with its Text set to Make a
selection, and then clear its Value that was inserted for you automatically.

 4. Once you return from the ListItem Collection Editor dialog box, the Smart Tasks panel for the
drop-down list is still open. Click the Choose Data Source item and choose <New data source>
from the drop-down list at the top of the screen. The Data Source Configuration Wizard, shown
in Figure 13-7, appears.

figure 13-7

c13.indd 454 2/21/2014 8:03:55 AM

Data Source and Data-bound Controls Working Together ❘ 455

 5. Click Database, leave the ID set to SqlDataSource1, and click OK.

 6. In the dialog box that follows, select the connection string called PlanetWroxConnectionString1
from the drop-down list and click Next.

 7. Verify that the radio button for Specify Columns from a Table or View is selected. Also ensure
that Genre is selected in the drop-down list with table names and then select the Id and Name
columns in the Columns section. Click the ORDER BY button, choose SortOrder from the Sort
By drop-down list, and click OK. When you’re done, your Configure Data Source wizard should
look like Figure 13-8.

figure 13-8

 8. Click Next and then Finish to have VS create the SqlDataSource for you. You return to the Data
Source Configuration Wizard for the drop-down list where you can now set up a field that is
displayed in the drop-down list for the genres and a field that serves as the underlying value in the
list. Choose Name as the field to display and leave the second drop-down list set to Id. You should
end up with the screen shown in Figure 13-9.

c13.indd 455 2/21/2014 8:03:55 AM

456 ❘ Chapter 13 Displaying anD UpDating Data

 9. Click OK to close the dialog box and finish setting up the data source for the drop-down list.

 10. With the DropDownList control still selected in Design View, press F4 to open up its Properties
Grid and set the property AppendDataBoundItems to True. Switch to Markup View, and if the
static ListItem that instructs your users to select an item does not have a Value attribute, add it
manually and set it to an empty string. Your final code should look like this:

<asp:DropDownList ID="DropDownList1" runat="server" DataSourceID="SqlDataSource1"
 DataTextField="Name" DataValueField="Id" AppendDataBoundItems="true"
 AutoPostBack="True">
 <asp:ListItem Value="">Make a selection</asp:ListItem>
</asp:DropDownList>

<asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString="<%$ ConnectionStrings:PlanetWroxConnectionString1 %>"
 SelectCommand="SELECT [Id], [Name] FROM [Genre] ORDER BY [SortOrder]">
</asp:SqlDataSource>

 11. Save all your changes and press Ctrl+F5 to open the page in the browser. You should now see a
drop-down list with all the genres in the database ordered by their SortOrder column. Once you
choose a new genre from the list, the page posts back to the server. Nothing else happens because
you didn’t tie any logic to the DropDownList control, but you see how to do this in the next exercise.

figure 13-9

c13.indd 456 2/21/2014 8:03:55 AM

Data Source and Data-bound Controls Working Together ❘ 457

How It Works

At the end of this exercise you end up with code similar to what VS created automatically when
you dropped a GridView on the page in an earlier exercise. You have a data-bound control (the
DropDownList) that gets its data from a data source control (the SqlDataSource control). What’s dif-
ferent is that the way you set things up gave you a lot more flexibility with regard to the code that is
generated. Instead of relying on VS to generate a SQL statement for all the columns in the database,
you now choose only the two columns that you need. Additionally, because the SqlDataSource doesn’t
require any updates to the data source, you only needed to provide a SelectCommand. You also used the
ORDER BY button to control the order in which the items are added to the list.

With the SqlDataSource control set up, displaying the data it returns in a DropDownList control is
pretty easy. You start by pointing the DropDownList to the correct data source using the DataSourceID
attribute, and then set up the DataTextField and DataValueField to tell the control what columns to
use for the text displayed in the control and the underlying value. By setting AppendDataBoundItems
to True, you can preserve the item that you add in your code manually. With this setting turned off, the
static item Make a selection would have been cleared as soon as the data-bound items were added.

With the filter control set up, the next step is to create the GridView that displays reviews for the
selected genre. You see how to do this in the next exercise.

trY it out Applying the Filter

In this Try It Out you add another SqlDataSource that gets its data from the Review table. By creat-
ing a filter (the WHERE clause in the SQL statement) you can limit the number of items displayed in the
grid to those that belong to a specific genre. The genre chosen in the drop-down list you created in
the previous section is sent into the SqlDataSource control’s SelectParameters collection using an
<asp:ControlParameter>.

 1. Switch the Reviews.aspx page to Design View and drag a GridView from the Data category of
the Toolbox on top of the existing SqlDataSource control. The GridView is added right above it
and its Smart Tasks panel opens.

 2. In the Choose Data Source drop-down list of the GridView’s Smart Tasks panel, choose <New
data source>. In the Data Source Configuration Wizard, click Database (just as with the wizard
for the genres that is shown in Figure 13-7) and click OK.

 3. In the dialog box that follows, select the Planet Wrox connection string from the drop-down list
and click Next again.

 4. Select the Review table in the Name drop-down list and then make sure the asterisk (*) is checked
in the Columns list to select all columns. In the preceding chapter I recommended not to use
SELECT *, but it’s OK to do so for this exercise. Later in this chapter you see how to fix this.

 5. Click the WHERE button, which enables you to set up a WHERE clause using the
SelectParameters. In the dialog box that follows, enter the details so the screen ends up like
Figure 13-10.

c13.indd 457 2/21/2014 8:03:55 AM

458 ❘ Chapter 13 Displaying anD UpDating Data

For some reason, each of your controls may show up twice in the Control ID drop-down list. It
doesn’t matter which of the DropDownList1 options you choose.

 6. Click the Add button to add the selection to the WHERE clause list at the bottom of the screen and
click OK.

 7. Back in the Configure Data Source wizard, click Next. To test the query, click the Test Query
button. If you set up the parameter correctly, a dialog box pops up enabling you to enter a value.
Enter a number that you know exists in the Genre table (such as 2) and click OK. If rows exist in
the Review table for the chosen genre, they are displayed in the Test Query window. Finally, click
Finish to finalize the wizard. If you get a dialog box about refreshing parameters, click Yes to
have the code in Markup View updated for you.

 8. Save all your changes and open Reviews.aspx in your browser.

CoMMoN MIStAKeS If you get an error stating that the “input string was not
in a correct format,” ensure that you set the Value of the static ListItem in the
drop-down list to an empty string ("") as shown in the preceding exercise.

 9. Select a new item in the drop-down list. The page refreshes, and now shows the reviews that
belong to the chosen genre. If the page doesn’t refresh, ensure that you set AutoPostBack to True
in the previous exercise. At this stage the page looks rather messy because the GridView contains
many columns but in the next Try It Out you see how to fix this.

figure 13-10

c13.indd 458 2/21/2014 8:03:56 AM

Customizing the Appearance of the Data Controls ❘ 459

How It Works

For the most part, this exercise works the same as a previous exercise where you displayed a list with
the available genres. What’s different this time is the way the SqlDataSource is able to filter the rows
from the Review table based on the selection you made in the drop-down list. Take a look at the code
for the SqlDataSource to see how this works:

<asp:SqlDataSource ID="SqlDataSource2" runat="server"
 ConnectionString="<%$ ConnectionStrings:PlanetWroxConnectionString1 %>"
 SelectCommand="SELECT * FROM [Review] WHERE ([GenreId] = @GenreId)">
<SelectParameters>
 <asp:ControlParameter ControlID="DropDownList1" Name="GenreId"
 PropertyName="SelectedValue" Type="Int32" />
 </SelectParameters>
</asp:SqlDataSource>

The SQL statement for the SelectCommand contains a parameter for the GenreId denoted by the @
GenreId variable in the SELECT statement. That means that the SQL statement returns rows from
the Review table only for a specific genre. At run time, the value for this parameter is retrieved from the
control defined in the ControlParameter element. In this example, the code is set up to get the
value from the DropDownList1 control. VS knows that in order to get the selected value from the
DropDownList it should access its SelectedValue property, so it adds that as the PropertyName for
the ControlParameter. If you have the need to use a different property, you can simply change it in the
ControlParameter element’s declaration.

With this code set up, the GridView asks the SqlDataSource for its data. This data source in turn asks
the DropDownList for the item that the user has selected in the list. This value is inserted in the SQL
statement, which is sent to the database. The results that are returned from the database are sent back
through the data source to the GridView, which uses them to create the HTML table in the browser.

When you choose Make a Selection from the drop-down list, you get an empty page with no rows. In
this case, the DropDownList returns an empty string as its value (defined in the Value property), which
is converted to null, the database equivalent of nothing. This in turn causes the query to return no
rows from the Review table.

Until now, you’ve relied on the code-generation tools of VS to set up the GridView and the
DetailsView. By default, VS creates a column (for the GridView) or a field (for the DetailsView)
for each column that it finds in the data source. It’s smart enough to recognize some of the
underlying types of the data in the data source so you get a nice CheckBoxField for boolean (bit)
fields in the database, but that’s about it. To further customize the look and feel of these data
controls, you need to customize their Columns and Fields collections.

Customizing the appearanCe of the data Controls

By default, the GridView and DetailsView render columns or rows automatically based on the
data they receive. Alternatively, you can have VS create a number of fields or columns for you when
you attach the control to a data source. But, more often than not, you want to change what you

c13.indd 459 2/21/2014 8:03:56 AM

460 ❘ Chapter 13 Displaying anD UpDating Data

see on-screen, be it fewer columns, different column headings, or different controls to display data.
Fortunately, this is really easy to do with the Fields editor in VS. In the next section you see how to
use this editor to create and modify the different types of built-in columns and fields. In the section
that follows, you see how to customize the fields even further with user-defined templates.

Configuring Columns or fields of data-bound Controls
Within the <Columns> or <Fields> element of the GridView and the DetailsView, you can add the
types of fields shown in the following table.

field tYpe desCription

BoundField The default field for most database types. It renders as simple text in read-
only mode, and as a TextBox in edit mode.

ButtonField Renders as a link or a button enabling you to execute a command on the
server.

CheckBoxField Renders as a read-only check box in read-only mode, and as an editable
check box in edit mode.

CommandField Enables you to set up various commands, including editing, inserting,
updating, and deleting.

HyperLinkField Renders as a link (an <a> element). You can set properties like
DataNavigateUrlFields, DataNavigateUrlFormatString, and
DataTextField to influence the behavior of the hyperlink. You see more
of this in the next exercise.

ImageField Renders as an element in the browser.

TemplateField Enables you to define your own look and feel for various templates, like
ItemTemplate, InsertItemTemplate, and EditItemTemplate.

Clearly, each field type serves a distinct purpose so you can choose the one that best fits your needs.
You see some of these field types in more detail in the next exercise.

trY it out Customizing GridView Columns

In this exercise, you see how to do the following in the Reviews.aspx page:

➤➤ Use the Fields editor to customize the fields for the GridView with reviews.

➤➤ Use a HyperLink column to create a link to a details page that enables you to manage the details
of a review.

➤➤ Format the output of the existing BoundField columns.

➤➤ Use a custom function in the Code Behind to have full control over the output in a TemplateField.

A later exercise shows you how to create the details page to insert new and edit existing reviews.

c13.indd 460 2/21/2014 8:03:56 AM

Customizing the Appearance of the Data Controls ❘ 461

 1. In Reviews.aspx, open the Smart Tasks panel for the SqlDataSource2 control in Design
View and click Configure Data Source. Click Next to skip the connection string screen, and
then complete the screen as shown in Figure 13-11 by selecting the Id, Title, Authorized,
and CreateDateTime columns from the Review table. Make sure the SQL Statement box also
contains the WHERE clause filter that you set up earlier. You may have to set this up again using the
steps from the previous exercise because VS sometimes seems to lose this information.

figure 13-11

Click the Advanced button and have VS generate commands for the INSERT, UPDATE, and DELETE
statements by checking off the first item. You can leave the Optimistic Concurrency check box —
which deals with detecting changes to the row since it was last loaded from the data source —
cleared. Click OK to close the Advanced SQL Generation Options dialog box, then click Next and
finally Finish to update the SQL statement in the source for the page. When asked whether you
want to refresh the fields and keys for the GridView, click Yes.

CoMMoN MIStAKeS If both options in the Advanced SQL Generation
Options dialog box are grayed out, check your table in the database using SQL
Server Management Studio. Make sure that you made the Id column of the
Review table the primary key and an identity column as explained in the pre-
ceding chapter.

c13.indd 461 2/21/2014 8:03:56 AM

462 ❘ Chapter 13 Displaying anD UpDating Data

 2. At this stage, VS has created columns for the GridView in Markup View. To remove those items
and define your own, open the Smart Tasks panel for the GridView and click Edit Columns. This
brings up the Fields dialog box. If the Selected Fields list contains items, use the Delete button
(with the big X) to clear the list first.

 3. In the Available Fields list, select Authorized under BoundField (not the one under
CheckBoxField) and then click the Add button to copy the item to the Selected Fields list. Repeat
this step for the CreateDateTime field. Your dialog box now looks like Figure 13-12.

figure 13-12

 4. In the Available Fields at the top of the screen, select HyperLinkField and then click the Add
button to add the item to the Selected Fields list as well. Move the HyperLinkField to the top of
the list by clicking the button with the up arrow twice. Then, using the Properties Grid on the
right, set the following properties on the HyperLinkField:

propertY set its Value to

HeaderText Title

DataNavigateUrlFields Id

DataNavigateUrlFormatString AddEditReview.aspx?Id={0}

DataTextField Title

c13.indd 462 2/21/2014 8:03:57 AM

Customizing the Appearance of the Data Controls ❘ 463

 5. In the list with Available Fields, click CommandField and click the Add button again. Then set the
HeaderText of the item you just inserted to Delete and ShowDeleteButton to True using the
Properties Grid. This enables you to delete reviews from the database using the GridView later.
The Fields dialog box should now look like Figure 13-13.

figure 13-13

 6. Click the Authorized column in the Selected Fields list and then click the blue Convert This Field
into a TemplateField link visible at the bottom-right of the dialog box in Figure 13-13.

 7. Click the CreateDateTime column on the left and set its DataFormatString property to {0:g}.

 8. Click OK to apply the changes to the source code.

 9. Switch to Markup View and remove the <EditItemTemplate> for the Authorized field. The
GridView displays reviews only in read-only mode, so you don’t need this template.

 10. Modify the Label control in the ItemTemplate of the Authorized field so it ends up like this:

<asp:Label ID="AuthorizedLabel" runat="server"
 Text='<%# GetBooleanText(Eval("Authorized")) %>' />

 11. Switch to the Code Behind of the page by pressing F7 and add the following function — which
returns the text Yes or No depending on the boolean value that you pass — to the top of the class
file, right after the Inherits line in VB.NET and after the opening curly brace in C#:

c13.indd 463 2/21/2014 8:03:57 AM

464 ❘ Chapter 13 Displaying anD UpDating Data

VB.NET

 Inherits System.Web.UI.Page
Protected Function GetBooleanText(booleanValue As Object) As String
 Dim authorized As Boolean = CType(booleanValue, Boolean)
 If authorized Then
 Return "Yes"
 Else
 Return "No"
 End If
End Function

C#

public partial class Management_Reviews : System.Web.UI.Page
{
 protected string GetBooleanText(object booleanValue)
 {
 bool authorized = (bool)booleanValue;
 if (authorized)
 {
 return "Yes";
 }
 else
 {
 return "No";
 }
 }

 12. Save all your changes (press Ctrl+Shift+S) and press Ctrl+F5 to open Reviews.aspx in the
browser. Choose a genre from the drop-down list and you’ll see a list of reviews appear. Note that
the Authorized column now shows the text Yes or No. The CreateDateTime column shows the
date and time in a short format. Figure 13-14 shows the result for the Indie Rock genre.

figure 13-14

c13.indd 464 2/21/2014 8:03:57 AM

Customizing the Appearance of the Data Controls ❘ 465

Note that the title in the first column of the GridView now links to a page where the ID of the review
is passed in the query string field Id: http://localhost:1049/Management/AddEditReview
.aspx?Id=1. You create this Add/Edit page later in this chapter. If you want, you could drop
the .aspx extension from the URL because the friendly URLs you configured earlier will handle the
correct URL. For back-end functionality, using friendly URLs is less important as search engines don’t
have access to it and all main pages are accessible to users from the management menu.

How It Works

You started off by modifying the SelectCommand for the SqlDataSource. Instead of selecting all col-
umns using SELECT *, the SQL statement now contains a subset of the columns, making the page load
slightly faster:

<asp:SqlDataSource ID="SqlDataSource2" runat="server"
 ConnectionString="<%$ ConnectionStrings:PlanetWroxConnectionString1 %>"
 SelectCommand="SELECT [Id], [Title], [Authorized], [CreateDateTime]
 FROM [Review] WHERE ([GenreId] = @GenreId)">
 ...
</asp:SqlDataSource>

You then used the Fields dialog box to modify the different fields that are displayed by the GridView.
You created the Title column using a HyperLinkField:

<asp:HyperLinkField DataNavigateUrlFields="Id" DataTextField="Title"
 DataNavigateUrlFormatString="AddEditReview.aspx?Id={0}" HeaderText="Title">
</asp:HyperLinkField>

The DataNavigateUrlFields property contains a comma-separated list of fields you want to use in
the DataNavigateUrlFormatString property. In this case, only one field is used. To display the value
of this field you use placeholders such as {0} in the DataNavigateUrlFormatString property. For
example, a review with an ID of 10 will end up with a HyperLink column having this NavigateUrl:
AddEditReview.aspx?Id=10. With this setup, the {0} is replaced with the value for the first field in the
DataNavigateUrlFields property. If you defined more fields separated by a comma, you would access
them with {1}, {2}, and so on.

The DataTextField is set to the column Title. This tells the HyperLink to render its Text attribute
with the title of the review, as shown in Figure 13-14.

You also set the DataFormatString property of the bound field for the CreateDateTime column:

<asp:BoundField DataField="CreateDateTime" DataFormatString="{0:g}"
 HeaderText="CreateDateTime" SortExpression="CreateDateTime" />

The DataFormatString enables you to define the format in which the underlying data is displayed. In
this case, the lowercase letter g is used to display both the date and the time in short format (without
seconds). You can find more information about the different format strings in the MSDN documenta-
tion at http://tinyurl.com/DateFormatters45.

You then converted the Authorized column to a template column. A template column gives you full
freedom with regard to the content you are presenting. Essentially, you can add almost anything you

c13.indd 465 2/21/2014 8:03:57 AM

http://localhost:1049/Management/AddEditReview.aspx?Id=1
http://tinyurl.com/DateFormatters45
http://localhost:1049/Management/AddEditReview.aspx?Id=1

466 ❘ Chapter 13 Displaying anD UpDating Data

see fit as content for the column, including HTML and ASPX controls. In this exercise, you changed the
Label so that it gets its text from a custom function using the data binding expression syntax <%# %>:

<asp:Label ID="AuthorizedLabel" runat="server"
 Text='<%# GetBooleanText(Eval("Authorized")) %>'></asp:Label>

Two things are used here to make this work. First, look at the Eval("Authorized")statement. This
is called a one-way data binding expression and results in the value of the Authorized column being
passed as an object to the custom GetBooleanText method. This method in turn converts the incom-
ing value to a Boolean and then returns Yes or No, depending on the value of the Authorized column
in the database. This is just a simple example to demonstrate how to call custom methods in your
Code Behind during data binding. However, the principle remains the same for more complex meth-
ods: you pass one or more arguments to a Code Behind method using Eval("ColumnName"). The
method in the Code Behind accepts these arguments as objects, casts them to an appropriate type, and
then uses them as appropriate. In the end, the method can return a string with any text or HTML you
see fit.

The HyperLink for the Title column that you set up points to a page called AddEditReview.aspx.
This page enables you to create new and update existing reviews. You see how to create this page in
the following section.

updating and inserting data

Earlier in this chapter I discussed how to do simple updates with the GridView and the
SqlDataSource controls. Although this built-in update behavior is fine in many circumstances, it is
not always extensive enough to meet all your demands.

Fortunately, controls like FormView and DetailsView enable you to tweak their look and feel,
giving you a lot more flexibility in the way your end users work with their data. In the next section
you see how to use the DetailsView to give the user a much easier interface to insert and edit
reviews in the database.

using detailsView to insert and update data
Earlier in this chapter you learned how to set up a simple DetailsView control and fully rely on
VS and the control itself to render the relevant user interface in the browser. Obviously, this default
behavior is often not enough. What if you wanted to influence the controls used in the interface? For
example, what if you wanted to use a DropDownList instead of a simple TextBox for the genre? And
what if you wanted to add one or more validation controls that you learned about in Chapter 9? Or
what if you wanted to manage some of the data being sent to the database programmatically? All of
this is possible with the DetailsView control, its template-based columns, and the numerous events
that the control fires at various stages in its life cycle.

c13.indd 466 2/21/2014 8:03:57 AM

Updating and Inserting Data ❘ 467

First, however, you need to learn a bit more about the different events that the data-bound and
data source controls fire. The following table lists some of the events that the DetailsView, the
FormView, and the ListView expose and raise during their lifetime. The GridView has similar
events, but they start with Row instead of Item. Because the DataList and Repeater controls do not
natively support editing of data, they do not have any of these events.

eVent desCription

ItemInserting Fires right before the Insert command is executed against the data source.
This is an ideal location to change the data that is about to be sent to the
database.

ItemInserted Fires right after the Insert command has been executed against the data
source.

ItemUpdating Fires right before the Update command is executed against the data source.
This is an ideal location to change the data that is about to be sent to the
database.

ItemUpdated Fires right after the Update command has been executed against the data
source.

ItemDeleting Fires right before the Delete command is executed against the data source.

ItemDeleted Fires right after the Delete command has been executed against the data
source.

These six events fire at very convenient moments in the life of the control: right before and right after
the data for the operation is sent to the database. You see how to use them in the next Try It Out.

trY it out Managing Data with the DetailsView Control

In this exercise you create the AddEditReview.aspx page that you created a link for earlier in the
Reviews page. You add a DetailsView to this page, customize most of its fields by implementing tem-
plate fields, and then handle some of the events of the control to change its behavior. After you’re done,
you have everything you need to create, list, update, and delete reviews in your website.

 1. In the Management folder, create a new Web Form and call it AddEditReview.aspx. Again,
select your preferred programming language and base it on the master page for the Management
section. Give it a Title of Planet Wrox - Management - Insert and Update Reviews.

 2. Switch the page to Design View and drop a DetailsView control on the page. In the Smart Tasks
panel that opens automatically, choose <New data source> from the Choose Data Source drop-
down list. Click the Database icon and then click OK. In the dialog box that follows, choose the
connection string from the drop-down list and click Next.

 3. Enter the details as displayed in Figure 13-15.

Note that all fields of the Review are selected explicitly, except for the CreateDateTime field.

c13.indd 467 2/21/2014 8:03:57 AM

468 ❘ Chapter 13 Displaying anD UpDating Data

 4. Click the WHERE button to set up a SelectParameter that retrieves the review ID from the
query string by completing the dialog box as shown in Figure 13-16.

Don’t forget to type Id in the QueryString field text box.

figure 13-15

figure 13-16

c13.indd 468 2/21/2014 8:03:58 AM

Updating and Inserting Data ❘ 469

 5. Click the Add button to add the parameter to the WHERE Clause
list at the bottom and then click OK to close the dialog box.

 6. Back in the Configure Data Source wizard (shown in Figure
13-15), click the Advanced button, select the option to generate
INSERT, UPDATE, and DELETE statements, and click OK to close
the dialog box. Finally, click Next and then Finish to finalize the
data source wizard.

 7. On the Smart Tasks panel for the DetailsView, select the options
for Inserting and Editing as shown in Figure 13-17.

 8. On the Properties Grid for the DetailsView, set DefaultMode to
Insert.

 9. Double-click an empty spot of the page in Design View to set up a Page_Load handler and enter
the following code:

VB.NET

Protected Sub Page_Load(sender As Object, e As EventArgs) Handles Me.Load
 If Request.QueryString.Get("Id") IsNot Nothing Then
 DetailsView1.DefaultMode = DetailsViewMode.Edit
 End If
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 if (Request.QueryString.Get("Id") != null)
 {
 DetailsView1.DefaultMode = DetailsViewMode.Edit;
 }
}

 10. Open the Reviews.aspx page in Design View and drag the AddEditReview.aspx page from the
Solution Explorer onto the page below the GridView. This creates a link to this page so you can
insert new reviews. Switch to Markup View and change the text between the <a> tags to Insert
New Review:

Insert New Review

 11. Save all your changes and open AddEditReview.aspx in your browser. You should get the default
layout for the control, with simple text boxes for all the columns in the data source. Fill in the
fields as shown in Figure 13-18.

figure 13-17

c13.indd 469 2/21/2014 8:03:58 AM

470 ❘ Chapter 13 Displaying anD UpDating Data

CoMMoN MIStAKeS If you get an empty screen, make sure you set
DefaultMode to Insert. Be sure the GenreId that you enter matches one of
the genres in the Genre table in the database or you’ll get an error when you
try to insert the item. Also be sure you enter a valid date using the yyyy/mm/dd
format, where y stands for year, m for month, and d for day.

figure 13-18

Click Insert to insert the item in the database. At first, not much seems to happen except that the
controls are now all cleared. However, you can now locate the new review through the Reviews
.aspx page by following these two steps:

➤➤ Click the Manage Reviews link in the menu on the left.

➤➤ Select the right genre from the drop-down list at the top of the page. If you used the scripts
from the preceding chapter to create the data in your database, and you entered 1 for the
GenreId when inserting the review, the genre is Rap and Hip-Hop.

When you have found your review, you can click its title and you’ll be taken to AddEditReview
.aspx, where you can change the review’s details again.

How It Works

Most of this exercise should be familiar by now. The DetailsView works the same for inserting as
the DetailsView for genres you saw earlier. What’s different is how updates are handled. The code
in the Code Behind looks at the query string and if it finds an Id query string parameter, it flips the
DetailsView into edit mode:

VB.NET

If Request.QueryString.Get("Id") IsNot Nothing Then
 DetailsView1.DefaultMode = DetailsViewMode.Edit
End If

C#

if (Request.QueryString.Get("Id") != null)
{

c13.indd 470 2/21/2014 8:03:58 AM

Updating and Inserting Data ❘ 471

 DetailsView1.DefaultMode = DetailsViewMode.Edit;
}

When the control is in edit mode, it knows what to do. It calls the SqlDataSource and requests its
data. The SqlDataSource in turn retrieves the ID of the review from the query string, accesses the
database, and then returns the correct review, which is displayed on the page. When you subsequently
click the Update link, the SqlDataSource fires its UpdateCommand to send the changes to the
database.

This exercise provides a nice foundation for the following exercise, where you extend the
DetailsView by implementing custom templates with validation controls and set up various event
handlers to respond to the control’s events.

Right now, the page with the DetailsView looks quite dull. It would look a lot better and be easier
to use if it had the following features:

➤➤ A text area instead of a single-line text box for the Summary and Body fields

➤➤ A drop-down list for the genre filled with the available genres from the database

➤➤ Automatic updating of the UpdateDateTime column

➤➤ Validation controls to stop you from leaving required fields empty

➤➤ Automatic redirection to the Reviews.aspx page after an item has been inserted or updated

The next exercise shows you how to implement all of these features.

trY it out Customizing the DetailsView and Handling Its Events

This walk-through is quite long and has a large number of steps. Remember you can always download
the final version of this page from the Wrox website in case you want to compare your result with mine.

 1. Make sure AddEditReview.aspx is in Design View and bring up the Fields editor for
the DetailsView control by clicking Edit Fields on its Smart Tasks panel. Locate the
UpdateDateTime column in the Selected Fields list and set its Visible property to False.

 2. Click the Title column in the Selected Fields list and then click the blue link with the text
Convert This Field into a TemplateField. Repeat this for the Summary, Body, and GenreId fields
and then close the Fields dialog box by clicking OK.

 3. Switch to Markup View and remove the ItemTemplate element for all fields you converted
to a template. This page does not display read-only data so you don’t need this template.
Then add a TextMode attribute with its value set to MultiLine for the four TextBox controls
for the Summary and Body fields. In addition, set their Width and Height properties to 500
and 100 pixels, respectively. Make sure you do this for both the EditItemTemplate and the
InsertItemTemplate. You should end up with the following code that shows the Summary field,
but the code for the Body field should be similar:

c13.indd 471 2/21/2014 8:03:59 AM

472 ❘ Chapter 13 Displaying anD UpDating Data

<asp:TemplateField HeaderText="Summary" SortExpression="Summary">
 <EditItemTemplate>
 <asp:TextBox ID="TextBox2" TextMode="MultiLine" Width="500" Height="100"
 runat="server" Text='<%# Bind("Summary") %>'></asp:TextBox>
 </EditItemTemplate>
 <InsertItemTemplate>
 <asp:TextBox ID="TextBox2" TextMode="MultiLine" Width="500" Height="100"
 runat="server" Text='<%# Bind("Summary") %>'></asp:TextBox>
 </InsertItemTemplate>
</asp:TemplateField>

 4. Add a RequiredFieldValidator in the EditItemTemplate and the InsertItemTemplate of
both the Title and the Summary rows. You can drag and drop it from the Toolbox directly in
Markup View or enter the required code manually. Using a code snippet makes this even easier:
position your mouse on an empty, new line below the TextBox, type requiredfieldvalidator,
and press Tab. VS inserts a RequiredFieldValidator for you and automatically assigns the
ControlToValidate property with the ID of the previous TextBox defined in the code.

Make sure you hook up all validators to their respective TextBox controls in the template by set-
ting the ControlToValidate property and providing a useful error message. When you’re done,
the summary field should look like this:

<asp:TemplateField HeaderText="Summary" SortExpression="Summary">
 <EditItemTemplate>
 <asp:TextBox ID="TextBox2" TextMode="MultiLine" Width="500" Height="100"
 runat="server" Text='<%# Bind("Summary") %>'></asp:TextBox>
 <asp:RequiredFieldValidator ControlToValidate="TextBox2"
 runat="server" ErrorMessage="Enter a summary" />
 </EditItemTemplate>
 <InsertItemTemplate>
 <asp:TextBox ID="TextBox2" TextMode="MultiLine" Width="500" Height="100"
 runat="server" Text='<%# Bind("Summary") %>'></asp:TextBox>
 <asp:RequiredFieldValidator ControlToValidate="TextBox2"
 runat="server" ErrorMessage="Enter a summary" />
 </InsertItemTemplate>
</asp:templatefield>

The Title and Body fields should look similar to Summary. The TextBox for the Title field
doesn’t have the TextMode, Width, and Height properties applied, whereas the Body field is miss-
ing the RequiredFieldValidator. Other than that, the fields should look pretty similar to the
Summary field.

 5. Switch to Design View and drag a new SqlDataSource control next to SqlDataSource1 that is
already on the page. Open the new control’s Smart Tasks panel and click Configure Data Source.
Select the Planet Wrox connection string from the drop-down list and click Next. Select the Id
and Name columns from the Genre table and set up an ORDER BY clause on the SortOrder column
by clicking the ORDER BY button and choosing SortOrder from the Sort By drop-down list.
When you click OK, the Configure Data Source screen looks like Figure 13-19.

c13.indd 472 2/21/2014 8:03:59 AM

Updating and Inserting Data ❘ 473

 6. Click Next and then Finish to finalize the Configure Data Source wizard.

 7. Select the new SqlDataSource (called SqlDataSource2) in Design View and change its ID to
GenresDataSource using the Properties Grid so it’s easier to recognize in the page.

 8. Switch to Markup View, locate the InsertItemTemplate for the GenreId of the DetailsView,
and remove its contents (the TextBox control). At the place where you removed the TextBox, add
a DropDownList by dragging it from the Toolbox into Markup View. Your code looks like this:

<asp:TemplateField HeaderText="GenreId" SortExpression="GenreId">
 <EditItemTemplate>
 <asp:TextBox ID="TextBox4" runat="server"
 Text='<%# Bind("GenreId") %>'></asp:TextBox>
 </EditItemTemplate>
 <InsertItemTemplate>
 <asp:DropDownList ID="DropDownList1" runat="server">
 </asp:DropDownList>
 </InsertItemTemplate>
</asp:TemplateField>

 9. Switch to Design View, right-click the DetailsView, and choose Edit Template ➪ Field[4] -
GenreId, as shown in Figure 13-20. If you don’t see this menu item, you may need to click one of
the rows with controls first — such as the summary row — to put the focus on the DetailsView
correctly.

figure 13-19

c13.indd 473 2/21/2014 8:03:59 AM

474 ❘ Chapter 13 Displaying anD UpDating Data

 10. When the control is in template editing mode, you can access the DropDownList directly. Open
the Smart Tasks panel for the DropDownList and select Choose Data Source. In the Data Source
Configuration Wizard, choose GenresDataSource from the data source drop-down list and Name
and Id from the other two drop-down lists (see Figure 13-21). If Name and Id don’t appear in the
drop-down lists, click the blue Refresh Schema link at the bottom of the screen. If you don’t see
the GenreDataSource listed, but you see SqlDataSource2 instead, make sure you renamed the
control correctly as described in step 7.

figure 13-20

figure 13-21

c13.indd 474 2/21/2014 8:03:59 AM

Updating and Inserting Data ❘ 475

 11. Click OK to close the Data Source Configuration Wizard.

 12. Back on the Smart Tasks panel of the DropDownList control, click Edit DataBindings. In the
dialog box that follows, click SelectedValue in the list on the left and then choose GenreId from
the Bound To drop-down list on the right, as shown in Figure 13-22. If you find that the Field
Binding radio button at the top-right of the screen is read-only, click the Refresh Schema link.
In the dialog that appears, click OK. When you return to the DataBindings dialog box the item
should now be enabled.

figure 13-22

 13. Click OK to close the dialog box. The code for the InsertItemTemplate now looks like this in
Markup View:

<InsertItemTemplate>
 <asp:DropDownList ID="DropDownList1" runat="server"
 DataSourceID="GenresDataSource" DataTextField="Name" DataValueField="Id"
 SelectedValue='<%# Bind("GenreId") %>'>
 </asp:DropDownList>
</InsertItemTemplate>

 14. Copy the contents of the InsertItemTemplate (the bolded code in the previous step) and paste
it in the EditItemTemplate, overwriting the existing TextBox control. This adds the same drop-
down list to the DetailsView in edit mode.

 15. Switch back to Design View, click the DetailsView, and press F4 to open up the Properties Grid.
Switch to the Events tab of the Properties Grid and double-click the following events. VS switches
to the Code Behind file every time you double-click an event, so you need to switch back to the
page (using Ctrl+Tab) to add the other events:

➤➤ ItemInserted

➤➤ ItemInserting

c13.indd 475 2/21/2014 8:04:00 AM

476 ❘ Chapter 13 Displaying anD UpDating Data

➤➤ ItemUpdated

➤➤ ItemUpdating

When you’re done, the event category of the Properties
Grid should look like Figure 13-23.

 16. Go into the Code Behind and modify the code as follows.
Note that the ItemInserted and ItemUpdated handlers
call the EndEditing method (that you also need to add
to the code), whereas ItemInserting and ItemUpdating
both set the UpdateDateTime value:

VB.NET

Private Sub EndEditing()
 Response.Redirect("Reviews.aspx")
End Sub

Protected Sub DetailsView1_ItemInserted(sender As Object,
 e As DetailsViewInsertedEventArgs) Handles DetailsView1.ItemInserted
 If e.Exception Is Nothing Then
 EndEditing()
 End If
End Sub

Protected Sub DetailsView1_ItemInserting(sender As Object,
 e As DetailsViewInsertEventArgs) Handles DetailsView1.ItemInserting
 e.Values("UpdateDateTime") = DateTime.Now
End Sub

Protected Sub DetailsView1_ItemUpdated(sender As Object,
 e As DetailsViewUpdatedEventArgs) Handles DetailsView1.ItemUpdated
 If e.Exception Is Nothing Then
 EndEditing()
 End If
End Sub

Protected Sub DetailsView1_ItemUpdating(sender As Object,
 e As DetailsViewUpdateEventArgs) Handles DetailsView1.ItemUpdating
 e.NewValues("UpdateDateTime") = DateTime.Now
End Sub

C#

private void EndEditing()
{
 Response.Redirect("Reviews.aspx");
}

protected void DetailsView1_ItemInserted(object sender,
 DetailsViewInsertedEventArgs e)
{
 if (e.Exception == null)
 {
 EndEditing();

figure 13-23

c13.indd 476 2/21/2014 8:04:00 AM

Updating and Inserting Data ❘ 477

 }
}

protected void DetailsView1_ItemInserting(object sender,
 DetailsViewInsertEventArgs e)
{
 e.Values["UpdateDateTime"] = DateTime.Now;
}

protected void DetailsView1_ItemUpdated(object sender,
 DetailsViewUpdatedEventArgs e)
{
 if (e.Exception == null)
 {
 EndEditing();
 }
}

protected void DetailsView1_ItemUpdating(object sender,
 DetailsViewUpdateEventArgs e)
{
 e.NewValues["UpdateDateTime"] = DateTime.Now;
}

 17. Finally, save all your changes and open AddEditReview.aspx in your browser. Leave all fields
empty and click the Insert link. Note that the validation controls kick in, preventing you from
sending empty values to the server. Next, fill in valid values and click Insert again. You’re now
taken to Reviews.aspx. Locate your review by choosing its genre from the drop-down list and
then click its title to edit it. The DetailsView should now display all the values you entered
previously (see Figure 13-24).

figure 13-24

c13.indd 477 2/21/2014 8:04:00 AM

478 ❘ Chapter 13 Displaying anD UpDating Data

How It Works

The DetailsView and the SqlDataSource controls take care of most of the hard work for you. You set
up different templates that enable a user to insert new rows and update existing ones and then the two
controls take care of the rest. When you click the Insert link, the controls are validated using JavaScript
as you saw in previous chapters. The same validation is carried out at the server by the DetailsView
control to ensure the submitted data meets the criteria you set. If the data is valid, the Details
View control inserts or updates the data, depending on the mode it’s in. To see how this works, take a
look at the InsertItemTemplate for the Title column first:

<InsertItemTemplate>
 <asp:TextBox ID="TextBox1" runat="server" Text='<%# Bind("Title") %>'>
 </asp:TextBox>
 <asp:RequiredFieldValidator ControlToValidate="TextBox1"
 runat="server" ErrorMessage="Enter a title">
 </asp:RequiredFieldValidator>
</InsertItemTemplate>

The most important piece of code in this snippet is the way the Text property of the TextBox is bound.
Earlier you saw the one-way binding syntax using Eval that basically outputs the value of a bound
column. With Bind, however, something much more powerful occurs. Basically, Bind enables you to
express a data binding between a column from the SqlDataSource and a control in the page in two
directions. In this example, the Title column of a review is bound to the TextBox. This means that
when the control must display its data (for example, when updating an existing row), it knows that it
must display the Title of a review. But more importantly, on postback, after you click the Update link,
the control still understands the relationship between the TextBox control and the Title column. So,
when you click Update after making changes to the review in the page, the DetailsView collects all the
bound data from the form (the Title, Summary, Body, GenreId, and whether the item is authorized)
and then sends it to the SqlDataSource control that has parameters set up for each of the relevant col-
umns of the Review table:

<asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ...
 <UpdateParameters>
 <asp:Parameter Name="Title" Type="String" />
 <asp:Parameter Name="Summary" Type="String" />
 <asp:Parameter Name="Body" Type="String" />
 <asp:Parameter Name="GenreId" Type="Int32" />
 <asp:Parameter Name="Authorized" Type="Boolean" />
 <asp:Parameter Name="UpdateDateTime" Type="DateTime" />
 <asp:Parameter Name="Id" Type="Int32" />
 </UpdateParameters>
</asp:SqlDataSource>

Eventually, the SqlDataSource grabs all the parameter values, injects them in the UpdateCommand, and
then sends them to the database.

This works nicely for all columns of the Review table that have a form control attached to them,
but what about the other columns? You may have noticed that CreateDateTime was not a part of
any of the SqlDataSource commands. Because the database is set up to insert today’s date and time

c13.indd 478 2/21/2014 8:04:00 AM

Updating and Inserting Data ❘ 479

automatically, there’s no need to include it in the code. The UpdateDateTime column is a different
story. Obviously, you don’t want your users to enter the value for this column manually. Instead, the
system should keep track of it automatically. That’s why you hid the control from the user interface
by setting its Visible property to False. However, because the Insert and Update commands still
expect a value for this column, you need to find a different way to insert it. Here’s where the Inserting
and Updating events come into play. Take a look at the ItemInserting event handler to get a general
understanding of how this works:

VB.NET

Protected Sub DetailsView1_ItemInserting(sender As Object,
 e As DetailsViewInsertEventArgs) Handles DetailsView1.ItemInserting
 e.Values("UpdateDateTime") = DateTime.Now
End Sub

C#

protected void DetailsView1_ItemInserting(object sender,
 DetailsViewInsertEventArgs e)
{
 e.Values["UpdateDateTime"] = DateTime.Now;
}

As you saw earlier, ItemInserting fires right before the InsertCommand is sent to the database.
This is a perfect location to supply (default) values for the columns in your table that have no corre-
sponding control in the user interface, as is the case with UpdateDateTime. This code simply sets the
UpdateDateTime value to today’s date and time. This value is then sent to the database where it is used
to assign a value to the Review table’s UpdateDateTime column.

The same principle applies to the ItemUpdating command. Within that event, you need to index the
NewValues collection instead of the Values collection, but the principle is the same.

You might argue that in the case of an Insert command, you don’t need to set the UpdateDateTime.
After all, the database inserts a value for you automatically when you insert a new row. However,
to make the distinction between inserting and updating, you need to do a lot more manual work.
You have to remove the column from the InsertCommand and then remove the column from the
<InsertParameters> collection as well. Although in itself this is not a lot of work, you get into trouble
when you later try to modify the SQL commands for the SqlDataSource, because the Insert and
Update commands are now out of sync. Simply setting the UpdateDateTime through code, as in this
case, solves many of these problems.

When the SqlDataSource control is done with inserting or updating, it fires its ItemInserted or
ItemUpdated events, respectively. Inside these events, the code checks if e.Exception is null/Nothing.
Without this check, the user would be redirected to the Reviews.aspx page regardless of whether an
error occurred. With this check, the user is taken back to Reviews.aspx page by calling EndEditing()
only if the database update succeeded:

VB.NET

Private Sub EndEditing()
 Response.Redirect("Reviews.aspx")
End Sub

c13.indd 479 2/21/2014 8:04:00 AM

480 ❘ Chapter 13 Displaying anD UpDating Data

C#

private void EndEditing()
{
 Response.Redirect("Reviews.aspx");
}

A typical reason for an error during the update might be an incorrect genre ID. If you didn’t set up
the DropDownList correctly, the database would be given an invalid genre ID and the INSERT or
UPDATE would fail. By not redirecting when an error occurs, the error message is displayed on-screen
so you get a chance to fix it.

With the discussion of the various events that the DetailsView control fires, you have come to the
end of this chapter. By now, you should have a reasonably good understanding of how to perform
CRUD operations using the GridView, DetailsView, and SqlDataSource controls.

Useful as the SqlDataSource control may be, many developers don’t like or use it. One of the
biggest drawbacks of this control is the fact that your SQL statements end up directly in your
ASPX pages. This can be really problematic if you start changing your database schema. Even if
you think there’s no need to do that ever, you can be pretty sure you’ll need to change it one day.
Once you do that, things are likely to break. For example, if you rename the Name column of the
Genre table to Description, your application will break. However, you won’t notice that until
run time because VS is not able to check the database schema against the command texts defined
in the SqlDataSource controls. You have a few ways to work around this. One solution is to
build strongly typed objects and work with the ObjectDataSource control instead. Details of
this solution are beyond the scope of this book, but you’re invited to check out my website where
I’ve published an article series demonstrating this concept: http://bit.ly/9woD7D. The concepts
presented in this series are quite advanced, so you may want to postpone digging into it until you’ve
finished this book.

Another alternative is to make use of the ADO.NET Entity Framework, the topic of the next
chapter that also shows you how to use Model Binding and the ListView and DataPager controls
to perform similar actions without the need to write embedded SQL statements in your code.

praCtiCal tips for displaYing and updating data

The following list provides some practical tips for displaying and updating data:

➤➤ Always store your connection strings in the Web.config file. Although it may seem easy to
store them directly in the SqlDataSource control in a page, you’ll get in trouble when you
need to make changes to your connection string later.

➤➤ Always consider adding validation controls to your data entry pages. It makes it a lot easier
for your users to find out what data is required, and in what format they should deliver it,
while you protect your system from receiving and processing incorrect data.

c13.indd 480 2/21/2014 8:04:00 AM

http://bit.ly/9woD7D

Summary ❘ 481

➤➤ If you have long lists of data to present, always consider turning paging on for controls like
the GridView. Users tend to get lost if you present them with lists containing many items.
Generally, a page size of somewhere between 10 and 20 items works best.

➤➤ Consider renaming the controls in the page to something other than their default values.
For example, in the previous Try It Out exercise you renamed SqlDataSource2 to
GenresDataSource. This makes it much easier to see which data source is needed to get
information about the genres. With only a few controls in a page this isn’t really an issue,
but as soon as your page grows, it is increasingly important to choose distinguishing names
for your controls.

➤➤ Consider setting the CssClass of the validation controls in AddEditReview.aspx and hook
them up to a CSS class. You can create them in a style sheet in the Styles folder in the root
for now and link that file to the master page. In a later chapter you create a separate
theme for the Management section.

summarY

This chapter built on the general knowledge you gained in Chapter 12 about accessing a database
through SQL. It started off with a discussion of the numerous controls in the Data category of the
Toolbox in Visual Studio.

These controls can be split into two groups: data-bound controls and data source controls. The
first group of controls — including the GridView, the DetailsView, and the ListView — is used to
display data in a web page. Most, but not all of them enable you to maintain your data as well, by
exposing inserting, updating, and deleting capabilities.

The controls in the other group, the data source controls, have no visual appearance themselves.
They serve as a bridge between the user interface and the database. A number of different data
source controls exist, each providing access to a specific kind of data store. In this chapter you
saw the SqlDataSource control, which enables you to retrieve data from many different kinds of
relational databases.

exerCises

 1. If you need to create a user interface that enables a user to display, sort, edit, and delete data
coming from a database, what is the best control to use? How do you hook up that control to
the database?

 2. Which control would you pick if you want to display a simple list of the genres in your
database in the following format?

 Punk
 Hard Rock
 Jazz
 Techno

c13.indd 481 2/21/2014 8:04:01 AM

482 ❘ Chapter 13 Displaying anD UpDating Data

 3. What’s the difference between a BoundField and a TemplateField? When would you use
either of the two?

 4. What’s the best place to store your connection strings? How do you access the connection
strings from that location? And why shouldn’t you store them in a page?

You can find answers to these exercises in Appendix A.

c13.indd 482 2/21/2014 8:04:01 AM

Summary ❘ 483

 ➤ What You learned in this Chapter

Connection string A string containing information necessary to connect to a
database such as SQL Server

data source controls A set of ASP.NET controls that serve as a bridge between
a data source (a database, an XML file, and so on) and the
data-bound controls

data-binding expression syntax Syntax used to bind values from data sources to control
properties such as labels and text boxes. Example:

Text='<%# Bind("Title") %>'

Bind is used for two-way binding, whereas Eval is used to
display read-only data

data-bound controls A set of ASP.NET controls that can display flat and
hierarchical data

expression syntax A terse syntax to bind a variety of sources, including
connection strings from the Web.config file, to control
properties. Example:

ConnectionString="<%$ ConnectionStrings:Plan
etWroxConnectionString1 %>"

InsertParameters

UpdateParametersDelete

Parameters

A set of parameters used to feed data into the data source
controls to support insert, update, and delete behavior

named instance The name of a specific SQL Server instance. Used to
distinguish between multiple installations of SQL Server on
the same machine

selectparameters A set of parameters that can get their data from other
sources (a query string, a cookie, and so on) and that can
be used in the data source controls to filter data

c13.indd 483 2/21/2014 8:04:01 AM

c13.indd 484 2/21/2014 8:04:01 AM

LINQ and the ADO.NET
Entity Framework

What You Will learn in this Chapter:

➤➤ What LINQ is and what its syntax looks like

➤➤ The different forms of LINQ that are available and when they are
appropriate to use

➤➤ How to use the ADO.NET Entity Framework

➤➤ How to use Model Binding to access the ADO.NET Entity
Framework

➤➤ How to use the ListView and DataPager controls

Wrox.Com Code doWnloads for this Chapter

You can find the wrox.com code downloads for this chapter on the Download Code tab at
www.wrox.com/go/begaspnet451. The code is in the Chapter 14 folder.

Language-Integrated Query (LINQ) is the query language that is tightly integrated with the
programming languages used in the .NET Framework. LINQ enables you to query data from
within .NET programming languages in the same way that SQL enables you to query data
in a database. In fact, the LINQ syntax has been modeled partially after the SQL language,
making it easier for programmers familiar with SQL to get started with LINQ.

LINQ comes in a few different implementations, enabling you to access and query a wide
variety of sources, including in-memory data, XML files, .NET DataSets, and databases
from your VB.NET or C# code. In the next section you get a brief overview of the main
LINQ pillars. The remainder of this chapter focuses on the LINQ syntax and on the

14

c14.indd 485 25-02-2014 10:47:32

http://www.wrox.com/go/begaspnet451
http://wrox.com
http://wrox.com

486 ❘ Chapter 14 LINQ aNd the adO.Net eNtIty FramewOrk

ADO.NET Entity Framework (EF), a technology that enables you to work with databases without
writing a lot of code. The ADO.NET Entity Framework uses LINQ a lot under the hood, so you get
a good shot at practicing your new LINQ skills.

introduCing linQ

LINQ enables you to query data from a wide variety of data sources, directly from your
programming code. LINQ is to .NET programming what SQL is to relational databases. With
straightforward, declarative syntax you can query collections for objects that match your criteria.

LINQ is not just an add-on that is part of the .NET Framework. On the contrary, LINQ has been
designed and implemented as a true part of the programming languages in .NET. This means that
LINQ is truly integrated into .NET, giving you a unified way to query data, regardless of where
that data comes from. In addition, because it is integrated into the language and not in a certain
project type, LINQ is available in all kinds of projects, including web applications, Windows Forms
applications, Console applications, and so on. To help developers get familiar with LINQ, its syntax
is closely modeled after SQL, the most popular query language for relational databases. This means
that LINQ has keywords such as Select, From, and Where to get data from a data source.

To give you an idea of what a LINQ query looks like, here’s a quick example that shows a list of
Wrox authors whose names contain the capital letter S:

VB.NET

Dim authors As String() = New String() {"Hanselman, Scott", "Evjen, Bill",
 "Haack, Phil", "Vieira, Robert", "Spaanjaars, Imar"}
Dim result = From author In authors
 Where author.Contains("S")
 Order By author
 Select author
For Each author In result
 Label1.Text += author + "
"
Next

C#

using System.Linq;
...
string[] authors = new string[] { "Hanselman, Scott", "Evjen, Bill",
 "Haack, Phil", "Vieira, Robert", "Spaanjaars, Imar" };
var result = from author in authors
 where author.Contains("S")
 orderby author
 select author;

foreach (var author in result)
{
 Label1.Text += author + "
";
}

Although the syntax used in this example is probably quite easy to follow, the example itself is really
powerful. Given an array of strings containing author names, you can simply select all the authors

c14.indd 486 25-02-2014 10:47:32

Introducing LINQ ❘ 487

whose names contain the capital letter S and order them in ascending order. It should come as no
surprise that in this example, the Label control displays my name and that of Scott Hanselman
because only those two names match the Where criterion. Notice how in C# the code imports the
System.Linq namespace. This is necessary to bring the LINQ functionality into scope for your
application. If you’re finding that some keywords don’t show up in IntelliSense or VS gives you
compilation errors on your LINQ queries, check that you have this namespace imported at the top
of your code file. In a VB website, this namespace is included by default.

Of course, this example is only the beginning. The different types of LINQ discussed in the
following three sections enable you to create much more powerful queries against a wide variety of
data sources.

Because LINQ is so powerful and has so much potential, it has been integrated into many
different areas of the .NET Framework. The following sections introduce the different LINQ
implementations.

linQ to objects
This is the purest form of language integration. With LINQ to Objects, you can query collections
in your .NET applications as you saw in the previous example. You’re not limited to arrays because
LINQ enables you to query almost any kind of collection that exists in the .NET Framework.

linQ to xml
LINQ to XML is the new .NET way to read and write XML. Instead of typical XML query
languages like XSLT or XPath, you can now write LINQ queries that target XML directly in your
application.

linQ to ado.net
ADO.NET is the part of the .NET Framework that enables you to access data and data services like
SQL Server and many other different kinds of data sources. ADO.NET is also used under the hood
by the SqlDataSource control and is commonly used in “raw data access code” — code written in
C# or VB.NET that connects to a database without using the declarative data controls. With LINQ
to ADO.NET you can query database-related information sets, including LINQ to DataSet,
LINQ to SQL, and LINQ to Entities.

LINQ to DataSet enables you to write queries against the DataSet, a class that represents an
in-memory version of a database.

LINQ to SQL enables you to write object-oriented queries in your .NET projects that target
Microsoft SQL Server databases. The LINQ to SQL implementation translates your queries into
SQL statements, which are then sent to the database to perform typical CRUD operations. In the
3.5 version of this book, this entire chapter was devoted to LINQ to SQL. However, Microsoft
has indicated that it will no longer actively develop LINQ to SQL. It will remain part of the
.NET Framework and Visual Studio for the foreseeable future, but Microsoft won’t be adding
new functionality to it. The reason for this is the great overlap in functionality with the Entity
Framework (EF). Almost anything you can do in LINQ to SQL can be done in LINQ to Entities.

c14.indd 487 25-02-2014 10:47:32

488 ❘ Chapter 14 LINQ aNd the adO.Net eNtIty FramewOrk

However, this latter framework is a lot more powerful and offers many more features than LINQ to
SQL. Because it’s more powerful, the Entity Framework is preferred over LINQ to SQL and as such
it’s the main topic of this chapter.

For more information about the other types of implementations, check out the official LINQ
homepage at http://bit.ly/18ypUj.

introduCing the ado.net entitY frameWork

EF is an Object Relational Mapper (ORM) that supports the development of data-oriented software
applications. With EF, you can take a bunch of database objects like tables and turn them into
.NET objects that you can access in your code. You can then use these objects in queries or use them
directly in data-binding scenarios. EF also enables you to do the reverse: design an object model first
and then let EF create the necessary database structure for you.

Working with EF is pretty easy and quite flexible. Using a diagram designer, you drag and drop
objects like tables from your database into your Entity model. The database objects you drop on
the diagram become available as .NET objects. For example, if you drop the Review table on the
diagram, you end up with a strongly typed Review class. You can create instances of this class using
LINQ queries and other means, as you see later in this chapter.

Note The ADO.NET Entity Framework is a large and complex topic by
itself. There’s a lot more to it than what I can cover in this chapter. For an in-
depth look at EF, pick up a copy of the excellent book Programming Entity
Framework Second Edition by Julia Lerman.

When you drop more than one related database table on your diagram, the designer detects the
relationships between the tables and then replicates these relationships in your object model. For
example, if you had a Review instance created in code using some LINQ to Entities query (as you
see later), you could access its Genre property, which in turn gives you access to properties like
Name:

VB.NET

Label1.Text = myReview.Genre.Name

C#

Label1.Text = myReview.Genre.Name;

Similarly, you can access the associated Reviews collection for a specific genre, for example to bind
it to a data-bound control:

VB.NET

Repeater1.DataSource = myGenre.Reviews

C#

Repeater1.DataSource = myGenre.Reviews;

c14.indd 488 25-02-2014 10:47:32

http://bit.ly/18ypUj

Mapping Your Data Model to an Object Model ❘ 489

Don’t worry about the actual syntax right now. You see a lot more of it in the remainder of this
chapter. What’s important to take away from this section is that EF creates a layer between your
.NET application and your SQL Server database. The Entity Designer takes care of most of the
work for you, providing access to a clean object model that you can use in your application.

mapping Your data model to
an objeCt model

With EF, you map database items such as tables, columns, and relationships in the database to
objects and properties in an object model in your application. VS comes with great tools to make
this mapping as easy as possible, as you see in the following exercise.

trY it out A Simple LINQ to Entities Example

In this Try It Out, you see how to add an ADO.NET Entity Data Model file to your project, add data-
base tables to the model, and then write a simple LINQ query to access the data in the underlying
tables.

 1. Open the Planet Wrox project that you have been working on so far. Right-click the App_Code
folder, choose Add ➪ Add New Item, and select your programming language on the left. Then
click ADO.NET Entity Data Model, type PlanetWrox as the name, and click Add to add the item
to your project. If you don’t see the item in the list, check that you right-clicked App_Code and not
another folder like App_Data.

 2. On the dialog box that follows, make sure that Generate from Database is selected and click
Next.

 3. In the Choose Your Data Connection step, make sure PlanetWroxConnectionString1 is selected
in the drop-down and that the check box to store the settings in Web.config is checked. Your
dialog now looks like Figure 14-1.

Click Next to go to the Choose Your Version dialog. Choose Entity Framework 6.0 and click
Next.

 4. On the Choose Your Database Objects and Settings dialog, expand Tables and then dbo, and then
check off the Genre and Review tables. If you see a sysdiagrams table, leave it unchecked. This is
a table used by SQL Server internally and you don’t need it in your Planet Wrox model.
If you’re using an English version of VS, you get an option to pluralize or singularize names in the
model automatically, which you should leave checked. For other languages you’ll need to do this
manually, as you see next. Finally, make sure you leave the option to include foreign key
columns in the model checked. You see what that option is used for later in this chapter. Click
Finish to add the model to your site. If you get a security warning, click Do Not Show This
Message Again and then click OK. Visual Studio uses what’s called a T4 template (with a .tt
extension) to generate the code for you and by default you need to grant permissions to execute
this template.

c14.indd 489 25-02-2014 10:47:32

490 ❘ Chapter 14 LINQ aNd the adO.Net eNtIty FramewOrk

 5. VS adds a file called PlanetWrox.edmx and two files with
a .tt extension and then opens the Entity Designer
for you in the main editor window, shown in
Figure 14-2. It also installed the EntityFramework
package, which resulted in an EF assembly (a .dll file)
and XML documentation file in the Bin folder.

This Entity Designer shows you .NET classes that have
been generated based on the tables in your database. VS
draws a line connecting the two classes, indicating it
picked up the relationship that you created between the
underlying tables in Chapter 12. If you don’t see the line,
or you don’t see Reviews at the bottom of the Genre class
or Genre at the bottom of the Reviews class, make sure
you set up your database as explained in Chapter 12.

 6. If you’re using a non-English version of VS you need to pluralize the names of the entity sets and
properties yourself. To do this, click the Genre class in the Designer, open its Properties Grid by
pressing F4, and change the Entity Set Name from Genre to Genres. Repeat this for the Review
class and change its Entity Set Name to Reviews. Finally, click the Review property on the
diagram for the Genre class (located under the Navigation Properties header in Figure 14-2), press
F2 to rename the item, and enter Reviews as the new name. Because a Review only belongs to a
single Genre, you don’t need to pluralize the Genre property of the Review class.

 7. Save and close the diagram.

 8. Open All.aspx from the Reviews folder, switch it into Design View, and drag a GridView from
the Toolbox onto the page. If you don’t have this page, create it now and base it on your custom
template.

figure 14-2

figure 14-1

c14.indd 490 25-02-2014 10:47:33

Mapping Your Data Model to an Object Model ❘ 491

 9. Double-click the page in the gray, read-only area to have VS set up a handler for the Page’s Load
event and add the following code:

VB.NET

Protected Sub Page_Load(sender As Object, e As EventArgs) Handles Me.Load
 Using myEntities As New PlanetWroxEntities()
 Dim authorizedReviews = From review In myEntities.Reviews
 Where review.Authorized = True
 Order By review.CreateDateTime Descending
 Select review
 GridView1.DataSource = authorizedReviews.ToList()
 GridView1.DataBind()
 End Using
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 using (PlanetWroxEntities myEntities = new PlanetWroxEntities())
 {
 var authorizedReviews = from review in myEntities.Reviews
 where review.Authorized == true
 orderby review.CreateDateTime descending
 select review;
 GridView1.DataSource = authorizedReviews.ToList();
 GridView1.DataBind();
 }
}

 10. Save all your changes and press Ctrl+F5 to open the page. You’ll get a screen full of reviews that
have been retrieved from the Review table in the database, as shown in Figure 14-3.

figure 14-3

c14.indd 491 25-02-2014 10:47:33

492 ❘ Chapter 14 LINQ aNd the adO.Net eNtIty FramewOrk

The page looks rather messy because of the way the data is presented in the GridView, but in later exer-
cises you see how to improve the layout of the grid and the data.

How It Works

EF comes with an object-relational designer (accessible in VS) that enables you to create an object
model that is accessible through code based on the tables in your database. By adding tables to this
designer, VS generates code for you that enables you to access the underlying data in the database with-
out writing a lot of code. The classes that are added to the designer are stored in the .edmx file and its
Code Behind files.

The .tt files — which are T4 Template Files used to generate code dynamically — look at the data in
the .edmx file and generate classes on the fly. If you look in the Code Behind of PlanetWrox.tt, you’ll
see two classes called Genre and Review, which are generated based on the two tables from the data-
base you added to the diagram. Likewise, the Code Behind of PlanetWrox.Context.tt contains a
class that inherits from DbContext, the main object in EF that provides access to your database. In the
preceding exercise, this class is called PlanetWroxEntities (named after the .edmx file) and you use it
to access the data in the tables you added to the diagram.

The designer is smart enough to detect the relationships in the database and is thus able to create the nec-
essary relationships in code as well, as you saw in Figure 14-2. The model defines two main object types,
Review and Genre, both of which also have collection counterparts called Reviews and Genres, respec-
tively. These collections are referred to as entity sets. Note that on English versions of VS the designer has
correctly pluralized the names of the Review and Genre tables (Reviews and Genres, respectively), mak-
ing it easier to see what is a collection (Reviews) and what is a single instance of an object (Review). For
other language versions of VS, you had to apply this logic yourself using the Entity Designer.

After the model has been generated, you can execute LINQ queries against it to get data out of the
underlying database. To access the data, you need an instance of the DbContext class, which is the base
class for the PlanetWroxEntities class. That instance is created inside the Using block in the code. A
Using block (using in C#) is used to wrap code that creates a variable that must be disposed of (cleared
from memory) as soon as you’re done with it. Because the myEntities variable holds a (scarce) connec-
tion to the SQL Server database, it’s a good idea to wrap the code that uses it in a Using block, so the
object is destroyed at the end of the block and the connection is released. This myEntities object then
exposes your data (such as reviews and genres) that you can use in a query:

VB.NET

Using myEntities As New PlanetWroxEntities()
 Dim authorizedReviews = From review In myEntities.Reviews
 Where review.Authorized = True
 Order By review.CreateDateTime Descending
 Select review
 ...
End Using

C#

using (PlanetWroxEntities myEntities = new PlanetWroxEntities())
{
 var authorizedReviews = from review in myEntities.Reviews
 where review.Authorized == true

c14.indd 492 25-02-2014 10:47:34

Mapping Your Data Model to an Object Model ❘ 493

 orderby review.CreateDateTime descending
 select review;
 ...
}

Note that this query looks similar to the SQL that you learned in the previous chapters. Under the
hood, the run time converts this LINQ query into its SQL counterpart and executes it against the
underlying database. Within this query, the variable review in the From clause is used to refer to the
review in the other parts of the query (Where, Order By, and Select), enabling you to specify the
select, filter, and ordering criteria.

What’s important to realize is that EF uses a mechanism called lazy loading, which means sub objects
are not loaded until you explicitly tell them to. What this means is that in the previous example the
Genre properties of the Review objects you’ve queried are null in C# and Nothing in VB.NET and
don’t contain any data. As soon as your code tries to access them, they are loaded by executing another
query to the database. This can greatly improve performance if you don’t need these sub objects.
However, if you’re sure you need them in your code beforehand, executing a separate SQL statement for
each item results in a lot of overhead. In that case, you can preload the objects with the initial query. To
express that you want to include these objects as well, you use the Include method for the types you
want to query:

VB.NET

Dim authorizedReviews = From review In myEntities.Reviews.Include("Genre")
 Where review.Authorized = True
...

C#

var authorizedReviews = from review in myEntities.Reviews.Include("Genre")
 where review.Authorized == true
...

With this addition to the query, the Review objects now have their Genre property correctly filled with
data. Though this may seem a little counterintuitive and counterproductive at first, it’s actually quite
a nice feature. If you don’t need the extra Genre property in a specific page, you don’t take the perfor-
mance hit of selecting and returning these objects. If you do need them, all you need to add is a single
call to Include.

Besides the Reviews collection the model also contains a Genres collection. When you want to select
all the genres in the database, you can use this query:

VB.NET

Dim allGenres = From genre In myEntities.Genres
 Order By genre.Name
 Select genre

C#

var allGenres = from genre in myEntities.Genres
 orderby genre.Name
 select genre;

In addition to these two separate objects and their collections, both objects have properties that refer
to each other’s type. For example, a Review instance has a Genre property that provides additional

c14.indd 493 25-02-2014 10:47:34

494 ❘ Chapter 14 LINQ aNd the adO.Net eNtIty FramewOrk

information about the genre to which the review was assigned. A Genre instance in turn has a Reviews
collection property, giving you access to all reviews posted in that genre. You see later how to make use
of these properties.

From the keywords used in the first query in this Try It Out, it’s probably easy to see what the query
does: It gets a list of all the reviews in the system that have been authorized and orders them in descend-
ing order on their creation date. The result of the query is then assigned to the authorizedReviews
variable. Notice that in both languages you can spread out the query over multiple lines to improve
readability. This is not required, but you’re encouraged to do it anyway because it makes your queries a
lot easier to understand and maintain.

You may notice some strange syntax in the query. The VB.NET example doesn’t use an As clause to
define the type of the variable. Similarly, the C# snippet uses the var keyword, also without a type
name. Although you may not conclude it from these code snippets, in both languages the variable
authorizedReviews is still strongly typed and not just a variable with an undefined type.

Note Strongly typed refers to the fact that the variable’s type is explicitly
defined when it’s declared. Once you’ve defined the type for a variable (using
Dim in VB or the type’s name in C#) you cannot change it anymore at run time.
Strongly typed languages — such as C# and VB.NET — bring many advan-
tages, including the ability to check the types being used at compile time,
something that a weakly typed programming language cannot do.

Because the code didn’t state the type for authorizedReviews (the example used Dim or var
instead), .NET needs a different solution to determine the type. This is done by a concept called
type inference, where the compiler is able to infer the type for a variable by looking at the right side
of the assignment. In this case, the compiler sees that a list of Review objects will be returned from
the query, and correctly types the authorizedReviews variable as a generics type IQueryable(Of
Review) in VB.NET syntax or IQueryable<Review> in C#. Although this looks a little scary and
 incomprehensible at first, it becomes much easier to understand if you simply read it as “a bunch of
Review objects that you can access in queries.” In most cases you can also explicitly specify the return
type of the variable instead of using var or a Dim statement without a data type, but exceptions do
exist, as you’ll see later when anonymous objects are discussed.

These Review objects are then assigned to the DataSource property of the GridView. In previous
 chapters you saw how to use the DataSourceID property to connect a control such as the GridView to
a data source control like the SqlDataSource. By using the DataSource property instead, you can
assign the actual data yourself, which the control then uses to build up the UI:

VB.NET

GridView1.DataSource = authorizedReviews.ToList()
GridView1.DataBind()

C#

GridView1.DataSource = authorizedReviews.ToList();
GridView1.DataBind();

c14.indd 494 25-02-2014 10:47:34

Introducing Query Syntax ❘ 495

By calling DataBind() on the GridView you instruct the control to display the individual Review
objects on the page. Because the GridView control’s AutoGenerateColumns property is True by
default, the control creates a column for each property it finds on the Review object. Later you see how
to customize the control and the data that is being assigned to the DataSource property. Note the call
to ToList at the end of the query. This causes an immediate execution of the query against the
database, which results in the variable authorizedReviews pointing to all the reviews that matched
the where clause. You need to do this when you bind the results of a query to a data control such
as the GridView. However, in many other cases, you don’t need ToList, as you’ll see throughout
this chapter.

In the following section you learn more about the LINQ query syntax, the language that drives the
querying capabilities of .NET.

introduCing QuerY sYntax

The query you saw in the previous example is quite simple; it requests all the authorized reviews
from the system and returns them in a sorted order. However, the querying capabilities of LINQ
are much more powerful than this. In this section you learn more about the LINQ query syntax
that you use to query your object model. Remember, LINQ syntax is not invented just for the
Entity Framework. Most of the LINQ concepts that follow can also be used in the other LINQ
implementations, such as LINQ to Objects and LINQ to ADO.NET.

standard Query operators
LINQ supports a large number of query operators — keywords that enable you to select, order, or
filter data that is to be returned from the query. Although all of the examples in this chapter are
discussed in the context of EF, you can easily apply them to the other LINQ implementations as
well. In the following section you get an overview of the most important standard query operators,
each followed by an example. Each of the examples uses the object model and the DbContext object
called myEntities you created earlier as the data source to query against.

Select
The Select keyword (select in C#) is used to retrieve objects from the source you are querying. In
this example you see how to select an object of an existing type. Later in this chapter you see how to
define new object shapes on the fly.

VB.NET

Dim allReviews = From r In myEntities.Reviews
 Select r

C#

var allReviews = from r in myEntities.Reviews
 select r;

c14.indd 495 25-02-2014 10:47:34

496 ❘ Chapter 14 LINQ aNd the adO.Net eNtIty FramewOrk

The r variable in this example is referred to as a range variable that is only available within the
current query. You typically introduce the range variable in the From clause, and then use it again
in the Where and Select clauses to filter the data and to indicate the data you want to select.
Although you can choose any name you like, you often see single-letter variables like the r (for
Review) or you see the singular form of the collection you are querying (review instead of r in the
preceding examples).

From
Although not considered a standard query operator — because it doesn’t operate on the data but
rather points to the data — the From clause (from in C#) is an important element in a LINQ query,
because it defines the collection or data source that the query must act upon. In the previous
example, the From clause indicates that the query must be executed against the Reviews collection
that is exposed by the myEntities object in EF.

Order By
With Order By (orderby in C#, without the space that VB.NET uses) you can sort the items in the
result collection. Order By is followed by an optional Ascending or Descending (ascending and
descending in C#) keyword to specify sort order. You can specify multiple criteria by separating
them with a comma. The following query returns a list of genres, first sorted by SortOrder in
descending order, then sorted by Name in ascending order (the default):

VB.NET

Dim allGenres = From g In myEntities.Genres
 Order By g.SortOrder Descending, g.Name
 Select g

C#

var allGenres = from g in myEntities.Genres
 orderby g.SortOrder descending, g.Name
 select g;

Where
Just like the WHERE clause in SQL, the Where clause in LINQ (where in C#) enables you to filter the
objects returned by the query. The following query returns all authorized reviews:

VB.NET

Dim authorizedReviews = From r In myEntities.Reviews
 Where r.Authorized = True
 Select r

C#

var authorizedReviews = from r in myEntities.Reviews
 where r.Authorized == true
 select r;

Note that the Where clause uses the language’s standard equality operator: a single equals sign (=) in
VB.NET and two of them in C#.

c14.indd 496 25-02-2014 10:47:35

Introducing Query Syntax ❘ 497

Sum, Min, Max, Average, and Count
These aggregation operators enable you to perform mathematical calculations on the objects in the
result set. For example, to retrieve the number of reviews, you can execute this query:

VB.NET

Dim numberOfReviews = (From r In myEntities.Reviews
 Select r).Count()

C#

var numberOfReviews = (from r in myEntities.Reviews
 select r).Count();

Note that the Count method is applied to the entire result set. Therefore, you need to wrap the
entire statement in parentheses followed by a call to Count. Without the parentheses you’ll get an
error. The numberOfReviews variable in this example will be inferred as an integer and contains the
number of items in the Review table.

Take, Skip, TakeWhile, and SkipWhile
Take and Skip enable you to make sub-selections within the result set. This is ideal for paging
scenarios where only the items for the current page are retrieved. Take gets the requested number of
elements from the result set and then ignores the rest, whereas Skip ignores the requested number
of elements and then returns the rest.

Within EF, the Take and Skip operators are translated to SQL statements as well. This means
that paging takes place at the database level, and not in the ASP.NET page. This greatly enhances
performance of the query, especially with large result sets, because not all elements have to be
transferred from the database to the ASP.NET page.

For Skip to work in LINQ to Entities, you must add an Order By clause (orderby in C#) to your
query to sort the results before the designated number of rows are skipped. Databases may return
results in an unpredictable order if you don’t add an explicit ORDER BY statement, so adding the
Order By action in your LINQ to Entities query is needed to get a consistent result from the Skip
method because rows are sorted first before they are skipped and taken.

The following example shows you how to retrieve the second page of rows, given a page size of 10:

VB.NET

Dim someReviews = (From r In myEntities.Reviews
 Order By r.Title
 Select r).Skip(10).Take(10)

C#

var someReviews = (from r in myEntities.Reviews
 orderby r.Title
 select r).Skip(10).Take(10);

Just as with the Count example, the query is wrapped in a pair of parentheses, followed by the calls
to Skip and Take to get the requested rows.

c14.indd 497 25-02-2014 10:47:35

498 ❘ Chapter 14 LINQ aNd the adO.Net eNtIty FramewOrk

The TakeWhile and SkipWhile query operators work in a similar fashion, but enable you to take
or skip items while a specific condition is true. Unfortunately, they don’t work in EF, but you can
usually work around that by adding a simple Where clause to your query.

Single and SingleOrDefault
The Single and SingleOrDefault operators enable you to return a single object as a strongly typed
instance. This is useful if you know your query returns exactly one row; for example, when you retrieve
it by its unique ID. The following example retrieves the review with an ID of 37 from the database:

VB.NET

Dim review37 = (From r In myEntities.Reviews
 Where r.Id = 37
 Select r).Single()

C#

var review37 = (from r in myEntities.Reviews
 where r.Id == 37
 select r).Single();

The Single operator raises an exception when the requested item is not found or if the query
returns more than one instance. If you want the method to return null (Nothing in VB.NET) — for
example, for a Review or Genre that is not found — or the default value for the relevant data type
(such as a 0 for an Integer, False for a Boolean, and so on) instead, use SingleOrDefault.

Even though there is only one Review with an Id of 37 in the database, you will still get a collection
of reviews (holding only one element) if you omit the call to Single. By using Single you force the
result set into a single instance of the type you are querying.

First, FirstOrDefault, Last, and LastOrDefault
These operators enable you to return the first or the last element in a specific sequence of objects.
Just as with the Single method, First and Last throw an error when the collection is empty,
whereas the other two operators return the default value for the relevant data types.

In contrast to Single, the First, FirstOrDefault, Last, and LastOrDefault operators don’t
throw an exception when the query returns more than one item. They simply return the first item
in the result set.

The Last and LastOrDefault queries are not supported in EF. However, you can easily accomplish the
same behavior with First and a descending sort order. The following code snippet shows how to
retrieve the oldest (the one with the lowest ID) and the most recent review from the database:

VB.NET

Dim firstReview = (From r In myEntities.Reviews
 Order By r.Id
 Select r).First()

Dim lastReview = (From r In myEntities.Reviews
 Order By r.Id Descending
 Select r).First()

c14.indd 498 25-02-2014 10:47:35

Introducing Query Syntax ❘ 499

C#

var firstReview = (from r in myEntities.Reviews
 orderby r.Id
 select r).First();

var lastReview = (from r in myEntities.Reviews
 orderby r.Id descending
 select r).First();

Simply by reordering the result set in reverse order before executing First, you actually get the last
row in the sequence. Note that in both cases, the type returned by the query is a true Review object,
enabling you to access its properties, such as Id and Title, directly.

Besides this LINQ Query Syntax, LINQ also supports method syntax. For the differences and an
example, check out this MSDN article: http://tinyurl.com/MethodVersusQuery.

shaping data with anonymous types
So far, the queries you have seen in the previous sections returned full types. That is, the queries
returned a list of Review instances (such as the Select method), a single instance of Review
(Single, First, or Last), or a numeric value (such as Count and Average).

Quite often, however, you don’t need all the information from these objects. Figure 14-3 shows a
GridView with all the properties from the Review object. To improve the presentation of this list,
you usually want to skip properties like Body and Authorized, and instead of the genre ID you
probably want to display the genre name. Although you could tell the GridView to display only the
columns you want to see, it would be more efficient if you were able to limit the actual data. This is
pretty easy to do with anonymous types, another language feature available in C# and VB.NET. An
anonymous type is a type whose name and members you don’t define up front as you do with other
types. Instead, you construct the anonymous type by selecting data and then letting the compiler
infer the type for you. The anonymous type can only be accessed within the method that declared it,
and as such you cannot return an anonymous type from a method.

If you don’t define the actual type and give it a name, how can you access the type and its
properties? This is once again done with type inference, where the compiler can see what data is
assigned to a variable and then creates a new, anonymous type on the fly.

Creating an anonymous type is easy; instead of selecting the actual object using something like
Select review, you use the new keyword in C# and New With in Visual Basic, and then define the
properties you want to select between a pair of curly braces:

VB.NET

Dim authorizedReviews = From myReview In myEntities.Reviews
 Where myReview.Authorized = True
 Select New With {myReview.Id, myReview.Title, myReview.Genre.Name}

C#

var authorizedReviews = from review in myEntities.Reviews
 where review.Authorized == true
 select new { review.Id, review.Title, review.Genre.Name };

c14.indd 499 25-02-2014 10:47:35

http://tinyurl.com/MethodVersusQuery

500 ❘ Chapter 14 LINQ aNd the adO.Net eNtIty FramewOrk

Although the type is anonymous and cannot be accessed by name directly, the compiler is still able
to infer the type, giving you full IntelliSense for the new properties that were selected in the query.
Figure 14-4 shows how you access the properties of the anonymous type in the authorizedReviews
variable, using the var keyword in C#.

figure 14-4

Note that the preceding query accessed the actual Genre property of the Review. Besides its
GenreId (defined as a column in the table Review in the database), the Review class also has a
strongly typed Genre property, giving you direct access to the genre’s properties, like the Name, as
the previous query demonstrates.

Besides directly selecting existing properties — as shown in the query that selected the Id and Title
of the Review and the Name of the Genre — you can also make up property values and give them
different names as you go. For example, the following query creates a new anonymous type that
renames the Id as Number, limits the Title to the first 20 characters, and contains a boolean value
that determines whether the item has been updated in the database previously:

VB.NET

Dim allReviews = From myReview In myEntities.Reviews
 Select New With
 {
 .Number = myReview.Id,
 .Title = myReview.Title.Substring(0, 20),
 myReview.Genre.Name,
 .HasBeenUpdated = (myReview.UpdateDateTime >
 myReview.CreateDateTime)
 }

C#

var allReviews = from myReview in myEntities.Reviews
 select new
 {
 Number = myReview.Id,
 Title = myReview.Title.Substring(0, 20),
 myReview.Genre.Name,
 HasBeenUpdated = (myReview.UpdateDateTime >
 myReview.CreateDateTime)
 };

c14.indd 500 25-02-2014 10:47:35

Introducing Query Syntax ❘ 501

Note the difference between VB.NET and C#; in the VB.NET example, the names of the new
properties (Number, Title, and HasBeenUpdated) are prefixed with a period (.). C# doesn’t have
this requirement and lets you write new property names directly. If you don’t introduce a new name
(as is the case with the genre name in the preceding example), the name of the property you’re
selecting is used. This means that the genre name is stored in a property called Name.

The ability to select extra properties that are not present in the original object gives you great
flexibility in the data you display. This example determines whether the current review has
been updated by comparing the CreateDateTime and UpdateDateTime properties. The result
of this comparison (a boolean with the value True or False) is then stored in the property
HasBeenUpdated. You can select nearly anything you want, including the current date and time,
complex calculations, substrings or combinations of properties, and so on.

In the following exercise you see how to create a new anonymous type that has a Reviews collection
as a property. You use this type to create a list of all the available genres in the database, and the
reviews that each genre contains.

trY it out Working with Queries and Anonymous Types

In this Try It Out you create a page that lists all the available genres, each followed by the list of
reviews that have been published in that genre. You use a Repeater control to display the list of genres
and a nested BulletedList to display the inner reviews. When you’re done, you should see a list simi-
lar to the one displayed in Figure 14-5.

 1. Open the AllByGenre.aspx page from the Reviews folder. Make sure the page is in Markup
View and then drag a Repeater from the Data category of the Toolbox between the opening and
closing tags of the cpMainContent content placeholder.

 2. Inside the Repeater create an <ItemTemplate> element that in turn contains an <h3> element
that contains a Literal. You should end up with this code:

<asp:Repeater ID="Repeater1" runat="server">
 <ItemTemplate>
 <h3><asp:Literal ID="Literal1" runat="server"></asp:Literal></h3>
 </ItemTemplate>
</asp:Repeater>

 3. Set the Text property of the Literal control to <%# Eval("Name") %>. Instead of double quotes,
make sure you use single quotes to delimit the property’s value. You need this or otherwise the
double quotes surrounding Name would prematurely close off the Text property.

<asp:Literal ID="Literal1" runat="server"
 Text='<%# Eval("Name") %>'></asp:Literal>

 4. Below the <h3> element, drag and drop a BulletedList control from the Standard category and
set the following properties on the control. You can either enter them directly in Markup View or
use the Properties Grid.

c14.indd 501 25-02-2014 10:47:36

502 ❘ Chapter 14 LINQ aNd the adO.Net eNtIty FramewOrk

propertY name Value

ID ReviewList

DataSource <%# Eval(“Reviews”)%> (make sure you use single quotes again to
wrap this attribute value, as shown in the following code snippet)

DataTextField Title

DisplayMode Text

You should end up with the following control code:

<asp:BulletedList ID="ReviewList" runat="server"
 DataSource='<%# Eval("Reviews")%>' DataTextField="Title"
 DisplayMode="Text"></asp:BulletedList>

 5. Switch to Design View and double-click the page somewhere in the read-only area defined by
the master page to set up a handler for the Load event of the page. Within the handler, write the
following code:

VB.NET

Protected Sub Page_Load(sender As Object, e As EventArgs) Handles Me.Load
 Using myEntities As New PlanetWroxEntities()
 Dim allGenres = From genre In myEntities.Genres.Include("Reviews")
 Order By genre.Name
 Select New With {genre.Name, genre.Reviews}
 Repeater1.DataSource = allGenres.ToList()
 Repeater1.DataBind()
 End Using
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 using (PlanetWroxEntities myEntities = new PlanetWroxEntities())
 {
 var allGenres = from genre in myEntities.Genres.Include("Reviews")
 orderby genre.Name
 select new { genre.Name, genre.Reviews };
 Repeater1.DataSource = allGenres.ToList();
 Repeater1.DataBind();
 }
}

 6. Save the changes to your page and then request it in the browser. You should see a result similar
to that shown in Figure 14-5, where each genre appears as a group header above the lists with
reviews.

c14.indd 502 25-02-2014 10:47:36

Introducing Query Syntax ❘ 503

How It Works

You have two important things to look at in this exercise. First of all, there’s
the LINQ query that is used to get the genres and reviews from the database.
This query (that uses Include("Reviews") to prevent lazy loading as you
saw earlier) creates a new anonymous type with two properties: the Name
of the Genre as a String and a collection of Review objects called Reviews.
The class diagram for the new anonymous type could look like Figure 14-6.

These Name and Reviews properties are then used in the second important part: the Repeater control
with the nested bulleted list. First, take a look at the Repeater:

<asp:Repeater ID="Repeater1" runat="server">
 <ItemTemplate>
 <h3><asp:Literal ID="Literal1" runat="server"
 Text='<%# Eval("Name") %>'></asp:Literal></h3>
 <!-- BulletedList here -->
 </ItemTemplate>
</asp:Repeater>

Although you haven’t worked with the Repeater control before, it may look familiar, because it works
in a manner similar to the other data controls. Within the <ItemTemplate> you define the markup
that you want repeated for each item in the data source. Using Eval you can get the value of the genre’s
Name property and assign it to the Literal, which is wrapped in a pair of <h3> tags. A similar con-
struct is used for the BulletedList to feed it a DataSource:

<asp:BulletedList ID="BulletedList1" runat="server" DisplayMode="Text"
 DataSource='<%# Eval("Reviews")%>' DataTextField="Title" />

In addition to assigning simple properties like the Text of the Literal from the Name of the underlying
data item, you can also use Eval to get complex properties. In this example, Eval(“Reviews”) is used

figure 14-5

figure 14-6

c14.indd 503 25-02-2014 10:47:36

504 ❘ Chapter 14 LINQ aNd the adO.Net eNtIty FramewOrk

to get the collection of Reviews for the current Genre. The
BulletedList control then understands how to handle this
data source and retrieves the Title from each individual
Review object and then displays that in the list. The dia-
gram in Figure 14-7 shows you how each Genre contains
one or more reviews, whose titles are
displayed below the name of the genre.

After you have set up the Repeater and defined the query,
you need to start the data-binding process. You do this by
assigning the results of the query to the DataSource
property of the Repeater, followed by a call to
DataBind() as shown in this C# example:

 Repeater1.DataSource = allGenres.ToList();
 Repeater1.DataBind();

These two lines set things in motion: As soon as you call ToList(), the query is executed and the rel-
evant genres and reviews are retrieved from the database and assigned to the DataSource property. In
this example, the genres are sorted on their Name, but obviously you can order on other properties, such
as SortOrder, as well. When DataBind is called, the Repeater loops through each item in the result set
(this item is the anonymous type you just saw) and uses that item’s Name to fill in the <h3> element with
the genre name. The Repeater then assigns the Reviews collection to the inner BulletedList control’s
DataSource property. This control loops over the available Review instances, using their Title to
build up the bulleted list. In this example, you see that genres without reviews are displayed in the list
as well. In the “Exercises” section at the end of the chapter, you’ll find an exercise that shows you how
to hide empty genres.

Although it may take you some time to fully understand the principles behind these LINQ queries
and the Entity Framework, I am sure you are beginning to appreciate their power and accessibility.
With just a few lines of code and a few controls, you can create powerful data presentation pages.

You can use these EF queries to display data using the ASP.NET Server Controls, as you’ll see in the
next section, which deals with the ListView and the DataPager controls.

using model binding With linQ Queries

So far you have seen one way to bind the results of a LINQ query against EF to a control in your
ASPX page: assign the data to the control’s DataSource property and then call DataBind. This
way of getting data into the controls is a bit limited, as it does not support the editing, updating, and
deleting of data directly. In order to support these operations, ASP.NET has a feature called Model
Binding that supports full CRUD operations against a data source from the data-bound controls
such as the GridView, ListView, and DetailsView. You see how Model Binding works in the
next section.

figure 14-7

c14.indd 504 25-02-2014 10:47:37

Using Model Binding with LINQ Queries ❘ 505

introducing model binding
Model Binding is a capability built into the data-bound controls to execute CRUD operations
against a data source. Instead of depending on a data source control such as the SqlDataSource
you’ve seen before, Model Binding relies on methods that you can define in your code to supply the
data and handle changes such as an insert, an update, or a delete operation. These methods can be
defined in the Code Behind of the Web Forms that contains the data-bound controls, or in other
classes in your project. To point a data-bound control to methods that can retrieve or change data,
you use the following four properties on the data-bound control. Note: Because not every control
supports updating, deleting, and inserting of data, some controls miss some of these properties.

Control desCription

SelectMethod This method is called by the control when it needs to display its data.
It’s supported by the GridView, the ListView, the Repeater, the
DetailsView, and the FormView.

InsertMethod This method is called by the control when an insert operation is executed.
It’s supported by the ListView, the DetailsView, and the FormView.

UpdateMethod This method is called by the control when an insert operation is executed.
It’s supported by the GridView, the ListView, the DetailsView, and the
FormView.

DeleteMethod This method is called by the control when an insert operation is executed.
It’s supported by the GridView, the ListView, the DetailsView, and the
FormView.

A very powerful feature of Model Binding is the ability to dynamically fill objects with data coming
from the data-bound control when the insert, update, or delete methods are fired. For example, when
creating a new photo album using a DetailsView control, you can let ASP.NET automatically
retrieve information such as the album’s name from the data that the user supplied and assign it to a
new instance of the PhotoAlbum class. This frees you from writing a lot of repetitive code that does
nothing more than retrieve a value from a control and assign it to an object. You see how this works
in the next exercise that uses the Entity Framework, although Model Binding is not limited to EF only.

trY it out A Simple Model Binding Application

In this Try It Out you start building the Gig Pics feature of Planet Wrox, a section of the website where
users can upload photos they created during concerts of their favorite bands. You see how to let a user
create a new photo album that acts as a container for the pictures that are uploaded. You see how
to use the DetailsView to create a user interface that enables users to enter a name for a new photo
album into the system. You also see Model Binding at work to insert the new photo album in the data-
base using Entity Framework. In later exercises you see how to add pictures to this photo album.

 1. Start by adding the following two tables to your database using SQL Server Management Studio.
Refer to Chapter 12 for more details about creating tables, primary keys, and identity columns.

c14.indd 505 25-02-2014 10:47:37

506 ❘ Chapter 14 LINQ aNd the adO.Net eNtIty FramewOrk

photoalbum

Column name data tYpe desCription

Id int The unique ID (identity and primary key) of the photo album

Name nvarchar(100) The name of the photo album

picture

Column name data tYpe desCription

Id int The unique ID (identity and primary key) of the picture

Description nvarchar(300) A description of the picture

ToolTip nvarchar(50) A tooltip displayed when you hover over a picture

ImageUrl nvarchar(200) The virtual path to the picture on disk

PhotoAlbumId int The ID of the photo album this picture belongs to

For both tables, make sure that none of the columns are nullable by unchecking their Allow
Nulls check boxes. Make the Id column the primary key by clicking it once and then clicking
the yellow key icon on the Table Designer toolbar. Additionally, make this column the table’s
Identity column by setting the (Is Identity) property on the Column Properties Grid to Yes. Refer
to Chapter 12 if you’re not sure how to do this. Finally, make sure you have the casing of the table
and column names right. Later code in this book assumes you wrote the table and column names
as shown here.

 2. On the Object Explorer, open the database diagram that you created in Chapter 12. Right-
click the diagram and choose Add Table. Select the two new tables, click Add, and then click
Close. Arrange the two new tables side by side if necessary. Next, drag the Id column from the
PhotoAlbum table onto the PhotoAlbumId column of the Picture table. Confirm that the Primary
Key Table is PhotoAlbum with Id as the selected column and that Picture is the Foreign Key
Table with PhotoAlbumId as the selected column, as shown in Figure 14-8.

 3. Click OK twice to apply the changes and then save and close the diagram. Click Yes to confirm
the changes made to the two tables.

 4. Next, switch back to VS, and open the ADO.NET Entity Framework Model file PlanetWrox
.edmx from the App_Code folder by double-clicking it. Right-click an empty spot of the diagram
and choose Update Model from Database. In the wizard that appears, expand Tables, then dbo,
and then check the two tables you just created: PhotoAlbum and Picture. Click Finish to have
the two tables added to your model. Your diagram should end up like Figure 14-9. Note that I
reorganized the diagram by dragging the entities side by side to make it easier to see them.

If you’re using a non-English version of VS, you need to pluralize the names of the entity sets and
properties again. To do this, click the Picture class, open its Properties Grid by pressing F4, and
change the Entity Set Name from Picture to Pictures. Repeat this for the PhotoAlbum class and
change its Entity Set Name to PhotoAlbums. Finally, click the Picture property on the diagram
for the PhotoAlbum class, press F2 to rename the item, and then enter Pictures as the new name.

c14.indd 506 25-02-2014 10:47:37

Using Model Binding with LINQ Queries ❘ 507

Save all your changes and close the diagram.

 5. Create a new Web Form based on your custom template in the root of the site and call it
NewPhotoAlbum.aspx. Give the page a title of Create New Photo Album.

 6. Make sure you’re in Markup View and then from the Data category of the Toolbox, drag a
DetailsView control and drop it into the cpMainContent placeholder.

 7. Modify the code for the control so it ends up like this:

<asp:DetailsView AutoGenerateRows="false" ID="DetailsView1"
 DefaultMode="Insert" runat="server">
 <Fields>
 <asp:BoundField DataField="Name" HeaderText="Name" />
 <asp:CommandField ShowInsertButton="True" ShowCancelButton="false" />
 </Fields>
</asp:DetailsView>

 8. Next, position your cursor just before the closing angled bracket (>) of the opening tag of the
DetailsView, type a space, and then type Insert. Visual Studio highlights the InsertMethod in
the IntelliSense list. Press Enter to have Visual Studio complete the code for you. If the IntelliSense
list doesn’t show up automatically, press Ctrl+Space and then locate the InsertMethod.

figure 14-8

figure 14-9

c14.indd 507 25-02-2014 10:47:38

508 ❘ Chapter 14 LINQ aNd the adO.Net eNtIty FramewOrk

 9. After the word InsertMethod, type an equals sign (=). Visual Studio inserts the equals sign and
two double quotes and pops up a list that lets you create a new method, as shown in Figure 14-10.

figure 14-10

 10. Select the <Create New Method> item with the keyboard and press Enter or double-click the item.
Visual Studio completes the code as follows:

InsertMethod="DetailsView1_InsertItem"

Besides the change in Markup View, Visual Studio also added the following method definition to
the Code Behind:

VB.NET

Public Sub DetailsView1_InsertItem()

End Sub

C#

public void DetailsView1_InsertItem()
{

}

 11. Switch to Code Behind and complete that method as follows:

VB.NET

Public Sub DetailsView1_InsertItem()
 Dim photoAlbum As New PhotoAlbum()
 TryUpdateModel(photoAlbum)
 If ModelState.IsValid Then
 Using myEntities As New PlanetWroxEntities()
 myEntities.PhotoAlbums.Add(photoAlbum)
 myEntities.SaveChanges()
 End Using
 Response.Redirect(String.Format(
 "ManagePhotoAlbum?PhotoAlbumId={0}", photoAlbum.Id.ToString()))
 End If
End Sub

C#

public void DetailsView1_InsertItem()
{
 PhotoAlbum photoAlbum = new PhotoAlbum();
 TryUpdateModel(photoAlbum);
 if (ModelState.IsValid)
 {
 using (var myEntities = new PlanetWroxEntities())
 {

c14.indd 508 25-02-2014 10:47:38

Using Model Binding with LINQ Queries ❘ 509

 myEntities.PhotoAlbums.Add(photoAlbum);
 myEntities.SaveChanges();
 }
 Response.Redirect(string.Format(
 "ManagePhotoAlbum?PhotoAlbumId={0}", photoAlbum.Id.ToString()));
 }
}

 12. Save all changes and then request NewPhotoAlbum.aspx in the browser.

Enter a new name for the photo album, such as Nick Cave & The Bad Seeds, and click the Insert
link. You’ll get a Resource Not Found error (because you haven’t created ManagePhotoAlbum
.aspx yet), but you can at least see the ID of the new photo album in the address bar of your
browser:

http://localhost:9797/ManagePhotoAlbum?PhotoAlbumId=1

How It Works

You started this exercise by adding the Picture and PhotoAlbum tables to both the database and the
EF diagram. These tables are used to store data about photo albums and the pictures they contain.
Each individual picture belongs to a PhotoAlbum referred to by its PhotoAlbumId that points to the Id
column of the PhotoAlbum table in the database. The Picture table is designed to only hold data about
the picture; the actual picture file is stored on disk, as you see later.

To enable users to create a new photo album, you added a DetailsView control to the page. To make
sure the control can be used to insert new photo albums, you set the DefaultMode to Insert. This
forces the control to jump into Insert mode, so when the page loads in the browser, the DetailsView
renders a user interface that enables you to enter a new name for the photo album. The control renders
the Insert link because of the CommandField with its ShowInsertButton set to True. By default, the
CommandField also shows a Cancel link. However, in this case there isn’t a sensible cancel action, so
the link was hidden by setting ShowCancelButton to False.

When you enter the name of a photo album in the browser and then click Insert, the page posts back
to the server, and the DetailsView notices that an Insert command is requested and then fires the
InsertMethod that you defined in code. Inside this method, the data (in this case, only the name of
the photo album) is retrieved from the form, a new PhotoAlbum instance is created, this album is updated
with the name from the form and added to the PhotoAlbums collection of the Entity Framework
context, and the changes are saved to the database. At the end, the user is redirected to the page
ManagePhotoAlbum.aspx that you’ll build later to add pictures to a photo album. To see how this all
works, take another look at the code you added to the Code Behind of the Web Form:

VB.NET

Dim photoAlbum As New PhotoAlbum()
TryUpdateModel(photoAlbum)
If ModelState.IsValid Then
 Using myEntities As New PlanetWroxEntities()
 myEntities.PhotoAlbums.Add(photoAlbum)
 myEntities.SaveChanges()
 End Using
 ... Remaining code shown later
End If

c14.indd 509 25-02-2014 10:47:38

http://localhost:9797/ManagePhotoAlbum?PhotoAlbumId=1

510 ❘ Chapter 14 LINQ aNd the adO.Net eNtIty FramewOrk

C#

PhotoAlbum photoAlbum = new PhotoAlbum();
TryUpdateModel(photoAlbum);
if (ModelState.IsValid)
{
 using (var myEntities = new PlanetWroxEntities())
 {
 myEntities.PhotoAlbums.Add(photoAlbum);
 myEntities.SaveChanges();
 }
 ... Remaining code shown later
}

The first line of code creates a new, empty instance of the PhotoAlbum class. This class has been created
by EF automatically when you added the Picture and PhotoAlbum tables to the EF diagram.

The second line is where all the magic happens. When you call TryUpdateModel (a method that has been
added to the Page class), the Model Binder tries to fill the properties of the PhotoAlbum class with values
that match the incoming request. It does this by consulting various Value Providers, classes dedicated
to supplying data coming from a variety of sources. ASP.NET supports a number of different value
providers, including the FormValueProvider (which gets data from a form that the user has submit-
ted), a QueryStringValueProvider (which uses the query string of the current request to find values), a
CookieValueProvider (which retrieves data from cookies), a ProfileValueProvider (which retrieves
data from the user’s profile, which you’ll see in Chapter 17), and more. In this example, the only property
that gets updated is the Name property, which is found using the FormValueProvider. ASP.NET can
find this property because it has been defined as follows in the Markup of the DetailsView:

<asp:BoundField DataField="Name" HeaderText="Name" />

The Name value in the DataField attribute is important here. This links the control (a TextBox) that
the BoundField generates to the Name of the PhotoAlbum so the FormValueProvider can successfully
retrieve the value that the user entered after the postback.

At this point, the instance of the PhotoAlbum class (held in the photoAlbum variable) has been updated,
and its Name property contains the value that you entered in the form in the browser.

Once TryUpdateModel has been called, you can check if the binding process succeeded by calling
ModelState.IsValid. This property returns false when the binding process encounters an error.
This could happen when you try to supply a non-numeric value for a numeric property on your object,
for example. In other, more advanced scenarios, the model state could also be invalid if the supplied
data doesn’t match your business rules, such as a required field that is left blank.

If the model state is valid, the code continues and creates a new instance of the PlanetWroxEntities
context. It then calls Add on its PhotoAlbum collection, which adds the album to the internal collec-
tion of photo albums. When SaveChanges is then called, the Entity Framework sees that this is a new
photo album and will insert it into the SQL Server database by executing an INSERT statement. It also
retrieves the automatically generated ID of the new album and assigns that to the Id property of the
PhotoAlbum instance.

This ID is then used to redirect the user to a new page where you can add pictures to the photo album.
This redirect is accomplished with the following code:

c14.indd 510 25-02-2014 10:47:38

Using Model Binding with LINQ Queries ❘ 511

VB.NET

Response.Redirect(String.Format("ManagePhotoAlbum?PhotoAlbumId={0}",
 photoAlbum.Id.ToString()))

C#

Response.Redirect(String.Format("ManagePhotoAlbum?PhotoAlbumId={0}",
 photoAlbum.Id.ToString()));

Note that you get an error when you leave the name field empty and click Insert because Name is
a required column in the PhotoAlbum table. The previous chapter showed you how to modify the
DetailsView to insert validation controls to its templates.

Now that you can insert new photo albums, the next logical step is to add pictures to the photo
album. In the next exercise you see how to create a user interface with the ListView control that
enables a user to upload new pictures in the photo album.

Introducing the ListView Control
Up until now, you have seen a few data-bound controls at work. You saw the GridView, which is
quite powerful because it supports updates, deletes, sorting, and paging of data, but lacks inserting
and generates a lot of HTML markup. You also saw the Repeater control that gives you precise
control over the generated HTML, but lacks most advanced features that the other data controls
have, such as update and delete behavior and sorting and filtering capabilities. And finally, you saw
the DetailsView that enables you to insert or update one row at a time.

The ListView is a “best of all worlds” control, combining the rich feature set of the GridView
with the control over the markup that the Repeater gives you and adding the insert behavior of the
DetailsView. The ListView enables you to display data in a variety of formats, including a grid
(rows and columns like the GridView), as a bulleted list (similar to how you set up the Repeater
earlier in this chapter), and in Flow format, where all the items are placed in the HTML after each
other, leaving it up to you to write some CSS to format the data.

The ListView displays and manages its data through templates that enable you to control many
of the different views that the ListView gives you on its underlying data. The following table
describes all the available templates that you can add as direct children of the ListView control in
the markup of the page:

template desCription

<LayoutTemplate> Serves as a container. It enables you to define a location where
the individual data items are placed. The data items, presented
through the ItemTemplate and AlternatingItemTemplate,
are then added as children of this container.

<ItemTemplate>

<AlternatingItemTemplate>

Define the read-only mode for the control. When used
together, they enable you to create a “zebra effect,” where
odd and even rows have a different appearance (usually a
different background color).

continues

c14.indd 511 25-02-2014 10:47:38

512 ❘ Chapter 14 LINQ aNd the adO.Net eNtIty FramewOrk

template desCription

<SelectedItemTemplate> Enables you to define the look and feel of the currently active,
or selected, item.

<InsertItemTemplate>

<EditItemTemplate>

These two templates enable you to define the user interface
for inserting and updating items in the list. You typically place
controls like text boxes, drop-down lists, and other server
controls in these templates and bind them to the underlying
data source.

<ItemSeparatorTemplate> Defines the markup that is placed between the items in the
list. Useful if you want to add a line, an image, or any other
markup between the items.

<EmptyDataTemplate> Displayed when the control has no data to display. You can
add text or other markup and controls to it to tell your users
there’s no data to display.

<GroupTemplate>

<GroupSeparatorTemplate>

<EmptyItemTemplate>

Used in advanced presentation scenarios where data can be
presented in different groups.

Although this long list of templates seems to suggest you need to write a lot of code to work with
the ListView, this is not always the case. You don’t always need all templates, which enables you to
minimize the code for the control.

Besides the numerous templates, the control has the following properties that you typically set to
influence its behavior:

propertY desCription

ItemPlaceholderID The ID of a server-side control placed within the LayoutTemplate.
The control referred to by this property is replaced by all the
repeated data items when the control is displayed on-screen. It can
be a true server control like an <asp:PlaceHolder> or a simple
HTML element with a valid ID and its runat attribute set to server
(for example, <ul runat="server" id="MainList">). If you
don’t set this property, ASP.NET tries to find a control with an ID of
itemPlaceholder and uses that control instead.

DataSourceID The ID of a data source control on the page, such as a
SqlDataSource control

InsertItemPosition The enumeration for this property contains three values — None,
FirstItem, and LastItem — to determine the position of the
InsertItemTemplate: either at the beginning or end of the list, or
not visible at all.

 (continued)

c14.indd 512 25-02-2014 10:47:39

Using Model Binding with LINQ Queries ❘ 513

Just like the other data-bound controls, the ListView has a number of events that fire at specific
moments during the control’s lifetime. For example, it has ItemInserting and ItemInserted
events that fire right before and after an item has been inserted in the underlying data source.
Similarly, it has events that trigger right before and after you update or delete data. You see more
about handling these kinds of events in the next chapter.

Besides the templates, properties, and events you just saw, the ListView has more to offer. For a
detailed explanation of the ListView control and all of its members and behavior, check out the
MSDN documentation at http://bit.ly/dCAooK.

The next exercise shows you how to put all of this information together. You see how to define
the various templates and set the relevant properties to control the look and feel of the ListView
control.

trY it out Inserting and Deleting Data with the ListView Control

Inserting items with the ListView can be just as easy as with the DetailsView: You add the control
to the page, define one or more templates (for example, one to display an item in read-only mode and
another that lets you edit an item), and then use Model Binding to get data from the database and send
updates back. In this exercise you see how to use the ListView to add pictures to an album and how
to delete those pictures again. For now, you’ll only be able to insert some dummy data into the Picture
table, but in a later exercise you learn how to upload actual pictures, save them on disk, and associate
them with the data in the database.

 1. In the root of the website, create a new Web Form based on your custom template. Call it
ManagePhotoAlbum.aspx, set its Title to Manage Photo Album, and make sure you are in
Markup View.

 2. From the Data category of the Toolbox, drag a ListView control onto the page in the
cpMainContent placeholder.

 3. Modify the code for the ListView as follows:

<asp:ListView ID="ListView1" runat="server" DataKeyNames="Id"
 InsertItemPosition="LastItem">
 <InsertItemTemplate>

 Description: <asp:TextBox ID="Description" runat="server"
 TextMode="MultiLine" Text='<%# Bind("Description") %>' />

 ToolTip: <asp:TextBox ID="ToolTip" runat="server"
 Text='<%# Bind("ToolTip") %>' />

 ImageUrl: <asp:TextBox ID="ImageUrl" runat="server"
 Text='<%# Bind("ImageUrl") %>' />

 <asp:Button ID="InsertButton" runat="server" Text="Insert" CommandName="Insert" />

 </InsertItemTemplate>
 <ItemTemplate>

 Description: <asp:Label ID="Description" runat="server"
 Text='<%# Eval("Description") %>' />

c14.indd 513 25-02-2014 10:47:39

http://bit.ly/dCAooK

514 ❘ Chapter 14 LINQ aNd the adO.Net eNtIty FramewOrk

 ToolTip: <asp:Label ID="ToolTip" runat="server"
 Text='<%# Eval("ToolTip") %>' />

 ImageUrl: <asp:Label ID="ImageUrl" runat="server"
 Text='<%# Eval("ImageUrl") %>' />

 <asp:Button ID="DeleteButton" runat="server" CommandName="Delete"
 Text="Delete" CausesValidation="False" />

 </ItemTemplate>
 <LayoutTemplate>
 <ul class="ItemContainer">
 <li runat="server" id="itemPlaceholder" />

 </LayoutTemplate>
</asp:ListView>

This is quite a bit of code type manually, so make good use of the Toolbox and Visual Studio’s
IntelliSense to make it as easy as possible to create this code. When you’re done, compare your
code with mine to make sure you haven’t made any typos.

 4. Position your cursor before the closing angled bracket of the opening tag of the ListView, type
Select, pick SelectMethod from the IntelliSense list, type an equals sign, and choose Create New
Method to have Visual Studio complete the markup for you and add an empty select method to
the Code Behind of the file.

 5. Repeat this process, but now add methods for the InsertMethod and DeleteMethod. Your
ListView control should now look like this:

<asp:ListView ID="ListView1" DataKeyNames="Id" runat="server"
 InsertItemPosition="LastItem" SelectMethod="ListView1_GetData"
 InsertMethod="ListView1_InsertItem" DeleteMethod="ListView1_DeleteItem">

The Code Behind should now contain the following method definitions. I left out the comments
that Visual Studio added to the code as well:

VB.NET

Public Function ListView1_GetData() As IQueryable
 Return Nothing
End Function

Public Sub ListView1_InsertItem()

End Sub

Public Sub ListView1_DeleteItem(ByVal id As Integer)

End Sub

C#

public IQueryable ListView1_GetData()
{
 return null;
}

c14.indd 514 25-02-2014 10:47:39

Using Model Binding with LINQ Queries ❘ 515

public void ListView1_InsertItem()
{

}

public void ListView1_DeleteItem(int id)
{

}

 6. The next step is to implement the SelectMethod, which is called when the ListView needs to
display data. Because the photo album page should display pictures only for the current photo
album (as identified by the PhotoAlbumId query string parameter), you need to find a way to
filter the correct pictures from the database using a LINQ query. Fortunately, you can use Model
Binding again to let ASP.NET find and retrieve the ID of the photo album and make it available
in the ListView1_GetData method. You can then use that ID in the Where clause of a LINQ
query. To implement this functionality, modify that method as follows. Note that you need to
add a using/Imports statement for the namespace System.Web.ModelBinding to bring the
QueryString attribute into scope. You can either type in this namespace manually at the top of
the code file, or you can press Ctrl+. (Ctrl+dot) on the word QueryString in the method definition
and pick the namespace from the list that appears.

VB.NET

Public Function ListView1_GetData(<QueryString("PhotoAlbumId")>
 photoAlbumId As Integer) As IQueryable
 Dim myEntities As New PlanetWroxEntities()
 Return From p In myEntities.Pictures
 Where p.PhotoAlbumId = photoAlbumId
 Select p
End Function

C#

public IQueryable ListView1_GetData([QueryString("PhotoAlbumId")] int photoAlbumId)
{
 var myEntities = new PlanetWroxEntities();
 return from p in myEntities.Pictures
 where p.PhotoAlbumId == photoAlbumId
 select p;
}

Notice the QueryString attribute applied to the photoAlbumId parameter of the GetData
method. This attribute signals the ASP.NET run time to populate that parameter with the value
from the associated PhotoAlbumId query string parameter.

 7. The next step is to implement the method that lets you insert new pictures; this is done with the
following code in the same Code Behind file:

VB.NET

Public Sub ListView1_InsertItem(<QueryString("PhotoAlbumId")> photoAlbumId As Integer)
 Dim picture As New Picture()
 TryUpdateModel(picture)

c14.indd 515 25-02-2014 10:47:39

516 ❘ Chapter 14 LINQ aNd the adO.Net eNtIty FramewOrk

 If ModelState.IsValid Then
 Using myEntities As New PlanetWroxEntities()
 picture.PhotoAlbumId = photoAlbumId
 myEntities.Pictures.Add(picture)
 myEntities.SaveChanges()
 End Using
 End If
End Sub

C#

public void ListView1_InsertItem([QueryString("PhotoAlbumId")] int photoAlbumId)
{
 Picture picture = new Picture();
 TryUpdateModel(picture);
 if (ModelState.IsValid)
 {
 using (var myEntities = new PlanetWroxEntities())
 {
 picture.PhotoAlbumId = photoAlbumId;
 myEntities.Pictures.Add(picture);
 myEntities.SaveChanges();
 }
 }
}

This code is very similar to the code you saw earlier to create a new photo album. The differ-
ence here is the photoAlbumId parameter, which is assigned the ID of the current photo album
through the QueryString attribute. This ID is then assigned to the PhotoAlbumId property of the
picture, which eventually links the picture with the photo album in the database.

 8. To display images side by side instead of stacked below each other, add the following CSS code to
Monochrome.css in the Monochrome theme’s folder and save the file:

.ItemContainer
{
 width: 600px;
 list-style-type: none;
 clear: both;
}

.ItemContainer li
{
 height: 300px;
 width: 200px;
 float: left;
}

.ItemContainer li img
{
 width: 180px;
 margin: 10px 20px 10px 0;
}

 9. Add the same code to DarkGrey.css in the DarkGrey theme’s folder, but this time set the width
of the ItemContainer class to 400px like this:

c14.indd 516 25-02-2014 10:47:39

Using Model Binding with LINQ Queries ❘ 517

.ItemContainer
{
 width: 400px;
 list-style-type: none;
 clear: both;
}

 10. To test out the functionality you have so far, save all your changes, close all open files, and
then request NewPhotoAlbum.aspx in your browser. Make sure you don’t accidentally open
ManagePhotoAlbum.aspx, because it requires a query string that is sent by NewPhotoAlbum.aspx.
Enter a new name for the photo album and click Insert. You’re taken to ManagePhotoAlbum.aspx,
where you can enter new pictures. For now, all you can do is enter the description of the picture,
the tooltip, and a fake URL of the image (just enter some text); you see later how to modify this
and let a user upload real pictures to the website. Once you click the Insert button, a new item
appears in the list, next to the insert controls. If the new item appears above the insert controls,
you may need to refresh the page by pressing Ctrl+F5 to force an update of the style sheet. This
may insert the same item again, which is no problem for this exercise. Add a few more items and
you’ll notice that the insert controls move to a row below the others, as shown in Figure 14-11,
which shows the page in Internet Explorer.

figure 14-11

 11. To make it possible to delete pictures from an album, switch back to VS and implement the delete
method as follows:

VB.NET

Public Sub ListView1_DeleteItem(ByVal id As Integer)
 Using myEntities As New PlanetWroxEntities()
 Dim picture = (From p In myEntities.Pictures
 Where p.Id = id
 Select p).Single()
 myEntities.Pictures.Remove(picture)
 myEntities.SaveChanges()
 End Using
End Sub

c14.indd 517 25-02-2014 10:47:39

518 ❘ Chapter 14 LINQ aNd the adO.Net eNtIty FramewOrk

C#

public void ListView1_DeleteItem(int id)
{
 using (var myEntities = new PlanetWroxEntities())
 {
 var picture = (from p in myEntities.Pictures
 where p.Id == id
 select p).Single();
 myEntities.Pictures.Remove(picture);
 myEntities.SaveChanges();
 }
}

This method receives the ID from the picture in the database through the id parameter. It then
uses a LINQ query to find that item in the database, and then calls Remove in the Pictures
collection.

 12. Save all your changes, close all open files, and then request NewPhotoAlbum.aspx again in your
browser. Make sure you don’t accidentally open ManagePhotoAlbum.aspx. Create a new album,
and insert a few pictures. Click the Delete button for an item and see how the item is removed
from the list automatically.

 13. If you’re currently viewing the site in the Monochrome theme, use the drop-down list to switch to
DarkGrey. Notice that this theme shows only two images per row instead of the three displayed
by the Monochrome theme shown in Figure 14-11.

How It Works

In order to understand how this works, I’ll dissect the ListView control and its templates first, fol-
lowed by a discussion in the various Model Binding methods you defined in the Code Behind.

The LayoutTemplate you added to the ListView serves as the container for the other templates. In
between its tags you define the markup that contains the individual items (the pictures for the current
album, as well as the user interface to insert new pictures):

<LayoutTemplate>
 <ul class="ItemContainer">
 <li ID="itemPlaceholder" runat="server" />

</LayoutTemplate>

Note that this has its ID set to itemPlaceholder. This tells the ListView control where to add
the individual pictures. At run time, this element will be replaced by the actual items from the tem-
plates, like ItemTemplate.

When the ListView control needs to display its data (you see later how the control retrieves the data), it
creates an item based on the ItemTemplate for each data item in the data source. In this example, each
data item is a strongly typed Picture object, which provides access to properties such as ToolTip and
Description:

<ItemTemplate>

 ...
 ToolTip:

c14.indd 518 25-02-2014 10:47:40

Using Model Binding with LINQ Queries ❘ 519

 <asp:Label ID="ToolTip" runat="server" Text='<%# Eval("ToolTip") %>' />
 ...
 <asp:Button ID="DeleteButton" runat="server" CommandName="Delete" Text="Delete"
 CausesValidation="False" />

</ItemTemplate>

With this code in place, each item in the data source is presented as a series of labels that display rel-
evant properties of the picture. Eval(PropertyName) is used to retrieve the requested value from the
object, which is then displayed as the Label control’s text. Note that at this stage, the ItemTemplate
only displays data about the picture. You see how to upload and display real pictures later.

Note the CommandName of the Button control in the ItemTemplate. It’s set to Delete, which turns this
button into a true Delete button. You see how deleting pictures works when the various methods in the
Code Behind are discussed.

The first time the page loads after you create a new photo album, there won’t be any pictures. However,
as soon as you start adding items using the InsertItemTemplate of the ListView control, you’ll see
them appear in the list.

In contrast to many of the other data-bound controls, the ListView also supports inserting by defining
an InsertItemTemplate that contains one or more controls that are bound to properties in the under-
lying object. For example, the Description property of the picture is bound like this:

<InsertItemTemplate>

 Description:
 <asp:TextBox ID="Description" runat="server"
 Text='<%# Bind("Description") %>' />

 ...
</InsertItemTemplate>

Instead of Eval(PropertyName), this code uses Bind(PropertyName) to set up a two-way binding
mechanism. This ensures that the ASP.NET run time is able to figure out the relationship between the
Description property of a Picture and the text box called Description, even after a postback. So
when you enter some details and click the special Insert button (with its CommandName set to Insert),
the control executes the method defined in its InsertMethod property, as you’ll see shortly.

Now that you’ve seen the various templates that make up the UI of the control, it’s time to look at the
various Code Behind methods that interact with the Entity Framework and the database. When the
ListView needs to display its data, it calls the SelectMethod, which is defined as follows:

VB.NET

Public Sub ListView1_InsertItem(<QueryString("PhotoAlbumId")> photoAlbumId As Integer)
 Dim myEntities As New PlanetWroxEntities()
 Return From p In myEntities.Pictures
 Where p.PhotoAlbumId = photoAlbumId
 Select p
End Function

C#

public IQueryable ListView1_GetData([QueryString("PhotoAlbumId")] int photoAlbumId)
{
 var myEntities = new PlanetWroxEntities();

c14.indd 519 25-02-2014 10:47:40

520 ❘ Chapter 14 LINQ aNd the adO.Net eNtIty FramewOrk

 return from p in myEntities.Pictures
 where p.PhotoAlbumId == photoAlbumId
 select p;
}

A very important piece of the puzzle is the QueryString attribute that is applied to the photoAlbumId
parameter of the method. This tells the ASP.NET run time to populate this parameter with the value
of the PhotoAlbumId query string parameter (which was sent by the NewPhotoAlbum.aspx page). The
method then uses that ID to query all pictures for that album from the database using a simple LINQ
query. The first time the page loads, this list will be empty, but once you start adding images using the
InsertItemTemplate of the ListView, they show up on the page.

When you enter the details of a picture and click Insert, the ListView calls the InsertMethod, defined
as follows:

VB.NET

Public Sub ListView1_InsertItem(<QueryString("PhotoAlbumId")> photoAlbumId As Integer)
 Dim picture As New Picture()
 TryUpdateModel(picture)
 If ModelState.IsValid Then
 Using myEntities As New PlanetWroxEntities()
 picture.PhotoAlbumId = photoAlbumId
 myEntities.Pictures.Add(picture)
 myEntities.SaveChanges()
 End Using
 End If
End Sub

C#

public void ListView1_InsertItem([QueryString("PhotoAlbumId")] int photoAlbumId)
{
 Picture picture = new Picture();
 TryUpdateModel(picture);
 if (ModelState.IsValid)
 {
 using (var myEntities = new PlanetWroxEntities())
 {
 picture.PhotoAlbumId = photoAlbumId;
 myEntities.Pictures.Add(picture);
 myEntities.SaveChanges();
 }
 }
}

This is almost the same code as that used to create a new photo album. The difference here is another
QueryString attribute that is populated with the ID of the photo album. The Include Foreign Key
Columns option in Entity Framework you enabled earlier in this chapter has given you a PhotoAlbumId
property on the Picture class that enables you to directly set the ID of the PhotoAlbum (which you
retrieved from the query string). This in turn relates the picture in the database to a specific photo
album in the PhotoAlbum table. If you hadn’t enabled that option, the property wouldn’t have been
there, and you would have had to assign a PhotoAlbum instance to the PhotoAlbum property of

c14.indd 520 25-02-2014 10:47:40

Using Model Binding with LINQ Queries ❘ 521

the picture by querying the photo album from the database based on its ID. Using the Foreign Key
Columns option makes this process a lot easier because you can simply assign the ID of the album you
want to add this picture to.

When you click the Delete button for a picture, the ListView fires the DeleteMethod that looks as
follows:

VB.NET

Public Sub ListView1_DeleteItem(ByVal id As Integer)
 Using myEntities As New PlanetWroxEntities()
 Dim picture = (From p In myEntities.Pictures
 Where p.Id = id
 Select p).Single()
 myEntities.Pictures.Remove(picture)
 myEntities.SaveChanges()
 End Using
End Sub

C#

public void ListView1_DeleteItem(int id)
{
 using (var myEntities = new PlanetWroxEntities())
 {
 var picture = (from p in myEntities.Pictures
 where p.Id == id
 select p).Single();
 myEntities.Pictures.Remove(picture);
 myEntities.SaveChanges();
 }
}

This method creates a new PlanetWroxEntities instance and then uses a LINQ query to find the cor-
rect picture. It then calls the Remove method on the Pictures collection and sends it the picture. EF
then knows which record to delete from the database when you call SaveChanges. But how does the
ListView know how to populate the id parameter of this method? The answer is in the DataKeyNames
attribute defined on the ListView:

<asp:ListView ID="ListView1" runat="server" DataKeyNames="Id" ...

The ListView stores the ID of each individual item in ViewState. Then when you click the Delete
button, it’s able to extract the correct ID for the picture you want to delete, which it then sends to the
DeleteItem method in the Code Behind.

The final part of this exercise you need to take a look at is the CSS code you added to the theme’s CSS
files to display the items in an organized way. By setting the class attribute of the control to
ItemContainer, the following CSS is applied to that list:

.ItemContainer
{
 width: 600px;
 list-style-type: none;
 clear: both;
}

c14.indd 521 25-02-2014 10:47:40

522 ❘ Chapter 14 LINQ aNd the adO.Net eNtIty FramewOrk

The first property sets the entire width of the list to 600 pixels and the second declaration removes the
bullet from the items in the list. Each item in the list is then displayed within a element, to which
the following CSS is applied:

.ItemContainer li
{
 height: 300px;
 width: 200px;
 float: left;
}

Each item gets a forced width of 200 pixels. The float property tells the elements to float next
to each other. Within the parent area of 600 pixels you can fit three elements of 200 pixels each,
causing the fourth and further elements to be placed on their own line. This is a great alternative to
presenting data with HTML tables, which generally needs a lot more markup to achieve the same
effect.

Finally, each image within the element gets a forced width of 180 pixels and 10 pixels of margin
at the top and bottom, 20 pixels on the right (to create some room between the images), and none at the
left side:

.ItemContainer li img
{
 width: 180px;
 margin: 10px 20px 10px 0;
}

In the DarkGrey theme, the width of the ItemContainer is set to only 400 pixels. This way, the <div>
is just wide enough to display two images side by side.

The code in the ListView uses Eval and Bind statements to get data in and out of the Picture objects
that you’re assigning to the controls. ASP.NET 4.5 introduced a new way to set up these bindings. You
see how to use these bindings next.

Using Strongly Typed Data-Bound Controls
When you added the code for the ListView, you used Bind and Eval statements like this:

<asp:TextBox ID="ToolTip" runat="server" Text='<%# Bind("ToolTip") %>' />
...
<asp:Label ID="ToolTip" runat="server" Text='<%# Eval("ToolTip") %>' />

As you learned in the “How It Works” section of the preceding exercise, Bind is for two-way data
binding (for insert and edit scenarios) and Eval is for read-only scenarios. Notice how the name of
the property (ToolTip in this example) is a literal string placed between quotes. Using string literals
makes your code more prone to errors. First of all, it’s easy to misspell the name. Because a string
cannot be checked by VS at development time, you won’t notice this error until you view the page in
the browser. Secondly, if you rename a property, the change is not picked up by the string literal.

Fortunately, ASP.NET has a solution to deal with this problem. The data-bound controls (such as
the ListView, the Repeater, the GridView, the DetailsView, and the FormView) have been turned

c14.indd 522 25-02-2014 10:47:40

Using Model Binding with LINQ Queries ❘ 523

into strongly typed data-bound controls. They have been extended with an ItemType property that
you can point to the type of object you’re assigning to its data source. In the preceding example, this
type would have been Picture. Once you’ve set this property, the data-bound control gets two new
properties, Item and BindItem, that are of the type you assigned to the ItemType property. The
first one serves as a replacement for Eval and the second one replaces Bind. By setting the ItemType
property and using Item and BindItem, you get the following benefits:

➤➤ IntelliSense now helps you find the correct property of the object you’re working with, as
shown in Figure 14-12.

figure 14-12

➤➤ When you misspell the name of a property, or rename it later, you now get an error in
the Error List, giving you the chance to fix the problem before the page is viewed in the
browser.

➤➤ External tools (available for the full versions of Visual Studio) will correctly rename the item
in the markup when you rename a property on your object.

Although this is an excellent new feature that will help you write better code, you can only use this
solution when working with a strongly typed object such as Picture from an EF model, or from
other classes you or third-party developers create. It won’t work in situations such as the following:

➤➤ When using the SqlDataSource control. This control uses an object under the hood
that doesn’t expose strongly typed properties that map to columns (such as ToolTip or
Description), and as such you cannot access these columns or properties through the Item
and BindItem properties.

➤➤ When using anonymous objects. Because the anonymous object doesn’t have a name, you
cannot assign its name to the ItemType property.

In the following short exercise, you see how to make use of this new strongly typed data-binding
capability.

trY it out Using Strongly Typed Data-Bound Controls

In this exercise you modify the ListView control in ManagePhotoAlbum.aspx by making it strongly
typed. You see how to set the ItemType property and how to replace Bind and Eval with their strongly
typed counterparts. When you’re done, the page will work exactly as before, but will now be easier to
maintain in the future.

c14.indd 523 25-02-2014 10:47:41

524 ❘ Chapter 14 LINQ aNd the adO.Net eNtIty FramewOrk

 1. Start by opening ManagePhotoAlbum.aspx in
Markup View in VS.

 2. Locate the opening tag of the ListView and
add an ItemType property with its value set
to Picture. Notice how IntelliSense helps you
find the correct item by showing a list with all
the types that can be used as the ItemType, as
shown in Figure 14-13.

 3. Inside the InsertItemTemplate template of the ListView, locate the Bind statement for the
Description TextBox, and change it from Bind("Description") to BindItem.Description.
Notice how IntelliSense helps you type the Description property. You should end up with this
code:

<asp:TextBox ID="Description" runat="server" Text='<%# BindItem.Description %>' />

 4. Repeat the previous step for the ToolTip TextBox. The ImageUrl gets special treatment later in
this chapter, so there’s no point in changing it now.

 5. Inside the ItemTemplate template of the ListView, locate the Eval statement for the
Description Label and change it from Eval("Description") to Item.Description. You
should end up with this code:

<asp:Label ID="Description" runat="server" Text='<%# Item.Description %>' />

 6. Repeat step 5 for the ToolTip Label. Again, the ImageUrl gets special treatment later in this
chapter, so there’s no point in changing it now.

 7. Save your changes and request NewPhotoAlbum.aspx in the browser. Insert a new album and then
add a few pictures by entering a description and tooltip and uploading an image file. Notice how
the code still behaves as before.

How It Works

You didn’t have to change a lot to make the ListView strongly typed and get access to IntelliSense
and compile-time checking of your code. All you had to do was add an ItemType property to the
ListView and replace the calls to Bind and Eval with their BindItem and Item counterparts. With
these changes in place, the control behaves exactly as before. At run time, the control looks at the value
of the assigned properties and displays them in the browser. When you submit data back to the server,
the reverse takes place: The values you entered in the controls are retrieved by the Model Binder and
assigned to the properties of an instance of the Picture object, which is then saved in the database by
the Entity Framework. It’s recommended to use the strongly typed binding capabilities whenever you
can, because they’ll help you spot errors much sooner and make it easier to type your code.

Right now, users need to type in a URL for an image manually. Obviously, this isn’t very user
friendly. It would be much easier for them if they could pick an image from their local computer and
upload it to the server. You see how to accomplish this in the next exercise.

figure 14-13

c14.indd 524 25-02-2014 10:47:41

Using Model Binding with LINQ Queries ❘ 525

trY it out Customizing Templates of the ListView Control

The templates for the ListView control that you added in an earlier exercise are enough only in the
most trivial situations. Usually, you need much more control. For example, in the ItemTemplate you
may want to display an actual Image control instead of the plain ImageUrl property as text. Likewise,
in the InsertItemTemplate you may want to display a file upload control instead of a simple text
box. In this exercise, you see how to change these templates so you can incorporate both features.
Additionally, you see how to update the InsertMethod to save the uploaded file to disk, and update the
database with the URL of the image.

For this example to work, the account used by the web server (the account you use to log on to your
machine if you are using IIS Express) needs read and write permissions to the GigPics folder that you
create in this exercise. The account should already have these permissions on your machine, but if you
run into problems with this exercise, refer to the section “Understanding Security in IIS” in Chapter 19.

 1. Create a new folder in the root of the website called GigPics. This folder will contain concert
pictures uploaded by users.

 2. Open the ManagePhotoAlbum.aspx page in Markup View and locate the <ItemTemplate>
element. Remove the Label that displays the ImageUrl and replace it with an Image control, with
its ImageUrl set to the ImageUrl of the picture object.

<asp:Image ID="ImageUrl" runat="server" ImageUrl='<%# Item.ImageUrl %>' />

Remove the text ImageUrl: that appears right above the image.

 3. To enable users to upload images, you need to replace the TextBox for the ImageUrl property
with a FileUpload control. You also need to remove the text ImageUrl: again. You do this in the
InsertItemTemplate:

<asp:TextBox ID="ToolTip" runat="server"
 Text='<%# BindItem.ToolTip %>' />

<asp:FileUpload ID="FileUpload1" runat="server" />

<asp:Button ID="InsertButton" runat="server" CommandName="Insert" Text="Insert" />

Note that you don’t need to bind the property to the control here. Because the uploaded image
needs special treatment, you’ll write some code in the Code Behind of the page instead of relying
on the built-in data-binding capabilities.

 4. In Markup View, add three validation controls to the InsertItemTemplate: two
RequiredFieldValidator controls hooked up to the text boxes for the Description and
ToolTip, and one CustomValidator with its ErrorMessage set to Select a valid .jpg file.
Give the RequiredFieldValidator controls an ID such as reqDesc and reqToolTip and assign
the CustomValidator an ID of cusValImage. Finally, set the TextMode property of the text box
for the Description to MultiLine and enter a line break (a
) before the Insert button.

You should end up with the following code:

Description:
<asp:RequiredFieldValidator ID="reqDesc" ControlToValidate="Description"
 runat="server" ErrorMessage="Enter a description." />
<asp:TextBox ID="Description" runat="server" TextMode="MultiLine"

c14.indd 525 25-02-2014 10:47:41

526 ❘ Chapter 14 LINQ aNd the adO.Net eNtIty FramewOrk

 Text='<%# BindItem.Description %>' />

ToolTip:
<asp:RequiredFieldValidator ID="reqToolTip" ControlToValidate="ToolTip"
 runat="server" ErrorMessage="Enter a tool tip." />
<asp:TextBox ID="ToolTip" runat="server"
 Text='<%# BindItem.ToolTip %>' />

<asp:FileUpload ID="FileUpload1" runat="server" />

<asp:CustomValidator ID="cusValImage" runat="server"
 ErrorMessage="Select a valid .jpg file." />

<asp:Button ID="InsertButton" runat="server" CommandName="Insert" Text="Insert" />

 5. Switch to Code Behind and extend the ListView1_InsertItem method with the following code:

VB.NET

TryUpdateModel(picture)
Dim FileUpload1 As FileUpload =
 CType(ListView1.InsertItem.FindControl("FileUpload1"), FileUpload)
If Not FileUpload1.HasFile OrElse
 Not FileUpload1.FileName.ToLower().EndsWith(".jpg") Then
 Dim cusValImage As CustomValidator =
 CType(ListView1.InsertItem.FindControl("cusValImage"), CustomValidator)
 cusValImage.IsValid = False
 ModelState.AddModelError("Invalid", cusValImage.ErrorMessage)
End If

If ModelState.IsValid AndAlso Page.IsValid Then

C#

TryUpdateModel(picture);

FileUpload FileUpload1 = (FileUpload)ListView1.InsertItem.FindControl("FileUpload1");
if (!FileUpload1.HasFile || !FileUpload1.FileName.ToLower().EndsWith(".jpg"))
{
 CustomValidator cusValImage =
 (CustomValidator)ListView1.InsertItem.FindControl("cusValImage");
 cusValImage.IsValid = false;
 ModelState.AddModelError("Invalid", cusValImage.ErrorMessage);
}

if (ModelState.IsValid && Page.IsValid)

Notice that the line with the call to ModelState.IsValid has been expanded with a call to
Page.IsValid.

 6. Near the bottom of the method, after the picture instance has been assigned the ID of the photo
album, add the following code, which saves the file to disk and then updates the ImageUrl
property of the Picture instance with its new location:

VB.NET

picture.PhotoAlbumId = photoAlbumId

Dim virtualFolder As String = "~/GigPics/"

c14.indd 526 25-02-2014 10:47:42

Using Model Binding with LINQ Queries ❘ 527

Dim physicalFolder As String = Server.MapPath(virtualFolder)
Dim fileName As String = Guid.NewGuid().ToString()
Dim extension As String = System.IO.Path.GetExtension(FileUpload1.FileName)

FileUpload1.SaveAs(System.IO.Path.Combine(physicalFolder, fileName + extension))
picture.ImageUrl = virtualFolder + fileName + extension

myEntities.Pictures.Add(picture)

C#

picture.PhotoAlbumId = photoAlbumId;

string virtualFolder = "~/GigPics/";
string physicalFolder = Server.MapPath(virtualFolder);
string fileName = Guid.NewGuid().ToString();
string extension = System.IO.Path.GetExtension(FileUpload1.FileName);

FileUpload1.SaveAs(System.IO.Path.Combine(physicalFolder, fileName + extension));
picture.ImageUrl = virtualFolder + fileName + extension;

myEntities.Pictures.Add(picture);

 7. Save all your changes, and then request NewPhotoAlbum.aspx in your browser (don’t accidentally
request the ManagePhotoAlbum.aspx page that you just worked on). Enter a new name for the
photo album and click the Insert link. Insert a few pictures by entering a description and a tooltip,
selecting a .jpg picture from your hard drive, and clicking the Insert button. If you get an error
message similar to the following:

Could not find a part of the path 'C:\BegASPNET\Site\GigPics\
 7b26dde2-82f5-4942-ac80-6a438ae4d062.jpg'.

make sure you created the GigPics folder as a sub folder of your site.

Enter the description and tooltip of another image, but leave the file upload box empty. When you
click Insert, you get an error message indicating that you didn’t upload a valid .jpg file, as shown
in Figure 14-14.

 8. Click the Browse button of the file upload box, browse for a valid .jpg file, and click the Insert
button once more. The file now gets uploaded successfully.

figure 14-14

c14.indd 527 25-02-2014 10:47:42

528 ❘ Chapter 14 LINQ aNd the adO.Net eNtIty FramewOrk

How It Works

You haven’t changed much in the actual process of inserting the Picture into the database. The
ListView control still collects all the relevant data from the page and then calls the InsertMethod,
which then inserts the item in the Picture table in the database through EF. What is different is the
way you set up the templates and the code in the method that inserts the picture. Look at the templates
first. Inside the ItemTemplate you added an <asp:Image> to take the place of the plain text label. As
you can see in Figure 14-14, this displays the actual image, rather than just its URL.

To enable a user to upload the images, you replaced the TextBox control in the InsertItemTemplate
with a FileUpload control. Additionally, you added a few validation controls to force the user to enter
the required fields. As soon as you click the Insert button, the page posts back and the ListView con-
trol calls the InsertMethod. Inside this method you added some code that “finds” the upload control in
the InsertItem template. Because you can potentially have multiple controls with the same name (for
example, a FileUpload control in the InsertItemTemplate and one in the EditItemTemplate), you
cannot access FileUpload1 directly. Instead, you need to use FindControl on the InsertItem object
to search for the control:

VB.NET

Dim FileUpload1 As FileUpload =
 CType(ListView1.InsertItem.FindControl("FileUpload1"), FileUpload)

C#

FileUpload FileUpload1 =
 (FileUpload)ListView1.InsertItem.FindControl("FileUpload1");

When you have a reference to the FileUpload control, you can check its HasFile property to see if a
file has been uploaded. Additionally, you can check FileUpload1.FileName.ToLower().EndsWith
(".jpg") to see if a file with a .jpg extension has been uploaded. To ensure that this test is carried out
only when the user has uploaded a file, the code uses OrElse in VB and || in C# to short-circuit the
logic in the If statement, as explained in Chapter 5.

If the user doesn’t upload a valid file, the code in the If block runs. It uses FindControl again to
find the CustomValidator control and sets its IsValid property to False (false in C#). This tells
the control to display its ErrorMessage property when the page renders. It also adds an error to the
ModelState using AddModelError. This is needed to tell the ModelBinder that validation failed, which
in turn tells the ListView to stay in Insert mode and display the data that the user already added along
with the error message from the CustomValidator control.

The other validation controls to make sure a title and description are entered work in the same way as
you saw in Chapter 9.

If the user uploaded a valid .jpg file, the code continues. It then executes the following code to deter-
mine the physical and virtual folder for the file, its name, and its extension:

VB.NET

Dim virtualFolder As String = "~/GigPics/"
Dim physicalFolder As String = Server.MapPath(virtualFolder)
Dim fileName As String = Guid.NewGuid().ToString()
Dim extension As String = System.IO.Path.GetExtension(FileUpload1.FileName)

c14.indd 528 25-02-2014 10:47:42

Using Model Binding with LINQ Queries ❘ 529

C#

string virtualFolder = "~/GigPics/";
string physicalFolder = Server.MapPath(virtualFolder);
string fileName = Guid.NewGuid().ToString();
string extension = System.IO.Path.GetExtension(FileUpload1.FileName);

The variable virtualFolder holds the virtual location — starting off the root of the website — of the
folder where the uploaded images are stored. Using Server.MapPath you can turn this into a physical
folder. Assuming you have your project in its default location of C:\BegASPNET\Site, the physical-
Folder variable now contains C:\BegASPNET\Site\GigPics.

Next, a new, random filename is generated using Guid.NewGuid(). The Guid class is able to gener-
ate more or less random filenames that are guaranteed to be unique across time and space. This code
assigns the variable fileName something like f6d8ed05-2dbe-4aed-868a-de045f9462e3, which guar-
antees a unique filename. Finally, the extension of the file is retrieved using the static GetExtension
method of the Path class in the System.IO namespace.

At this stage, you have all the required information to store the file on disk, and then update the data-
base. Storing the file on disk is easy using the SaveAs method of the FileUpload control:

VB.NET

FileUpload1.SaveAs(System.IO.Path.Combine(physicalFolder, fileName + extension))

C#

FileUpload1.SaveAs(System.IO.Path.Combine(physicalFolder, fileName + extension));

This code takes the physical folder, the filename, and the extension and passes them to the
Combine method of the Path class that builds up the full path. This path is then sent to the
SaveAs method, which saves the file at the requested location.

Finally, the Picture instance is updated with the new ImageUrl:

VB.NET

picture.ImageUrl = virtualFolder + fileName + extension

C#

picture.ImageUrl = virtualFolder + fileName + extension;

This assigns something like ~/GigPics/f6d8ed05-2dbe-4aed-868a-de045f9462e3.jpg to the
ImageUrl property, which is the new virtual location of the uploaded image. Right after you insert the
new image, the ListView is updated and now shows the new image, using the Image control with its
ImageUrl set to the image you just uploaded.

You can imagine that if you upload a large number of images for a single photo album, the page
becomes more difficult to manage. This is especially true at the front end, where users may be accessing
your site over a slow network connection. Instead of presenting them all the images in the photo album
on a single page, you can split up the photo album into multiple pages, enabling users to go from page
to page. You see how to do this in the next section, which discusses the DataPager control.

c14.indd 529 25-02-2014 10:47:42

530 ❘ Chapter 14 LINQ aNd the adO.Net eNtIty FramewOrk

Introducing the DataPager Control
The DataPager is a separate control that you can use to extend another data-bound control.
Currently, the .NET Framework lets you use the DataPager only to provide paging capabilities to
the ListView control, but the developer community has been active writing implementations for
other controls, like the GridView, as well.

You can hook up the DataPager to the ListView control in two ways: You can either define it
within the LayoutTemplate of the ListView control or you can define it entirely outside the
ListView. In the first case, the DataPager knows to what control it should provide paging
capabilities automatically. In the latter case, you need to set the PagedControlID property of the
DataPager to the ID of a valid ListView control. You see how to configure and use the DataPager
in conjunction with a ListView next. Being able to define the DataPager outside of the ListView
control is useful if you want to place it at a different location on the page, such as in the Footer or
Sidebar area.

trY it out Paging Data with the ListView and DataPager Controls

In this Try It Out you create the front-end page of the Gig Pics feature. Users of your site can choose
one of the available photo albums from a drop-down list and then view all the available pictures in a
pageable list that is created by a ListView and a DataPager control. Figure 14-16 shows the final result
of this exercise.

 1. In the root of your site, create a new folder called PhotoAlbums. Inside this folder create a new
Web Form based on your custom page template and call it Default.aspx. Set the Title of the
page to All Photo Albums.

 2. Switch to Design View and drop a
DropDownList control on the page. On
the control’s Smart Tasks panel, enable
AutoPostBack and then, using the
Properties Grid, set the control’s ID to
PhotoAlbumList, DataTextField to Name,
DataValueField to Id, and SelectMethod
to PhotoAlbumList_GetData, as shown in
Figure 14-15.

The DataTextField will display the name
of the photo album in the DropDownList,
while the DataValueField is used as the
underlying ID of the photo album. This ID is then used later to display the pictures that are part
of the selected photo album. You need to manually assign the SelectMethod and add the associ-
ated method to the Code Behind, as the control does not support generating the method automati-
cally as the ListView does.

 3. Switch to the Events category of the Properties Grid and double-click the SelectedIndexChanged
event to set up a handler for that event in the Code Behind. Your final control now looks like this
in Markup View (in VB you won’t see the handler for the SelectedIndexChanged event):

figure 14-15

c14.indd 530 25-02-2014 10:47:43

Using Model Binding with LINQ Queries ❘ 531

<asp:DropDownList ID="PhotoAlbumList" runat="server" AutoPostBack="True"
 DataTextField="Name" DataValueField="Id" SelectMethod="PhotoAlbumList_GetData"
 OnSelectedIndexChanged="PhotoAlbumList_SelectedIndexChanged">
</asp:DropDownList>

 4. If necessary, switch to the Code Behind. At the top of the class, directly after the class definition,
add the following line of code that instantiates a new PlanetWroxEntities instance:

VB.NET

Partial Class PhotoAlbums_Default
 Inherits BasePage
 Dim entities As New PlanetWroxEntities()

C#

public partial class PhotoAlbums_Default : BasePage
{
 PlanetWroxEntities entities = new PlanetWroxEntities();

Because multiple methods in this class need access to the PlanetWroxEntities, it makes sense to
create a single class-scope instance once that can be reused by all methods instead of creating a
new one inside each method.

 5. Next, create a method called PhotoAlbumList_GetData and implement it as follows:

VB.NET

Public Function PhotoAlbumList_GetData() As IEnumerable(Of PhotoAlbum)
 Return From p in entities.PhotoAlbums
 Order By p.Id
 Select p
End Function

C#

public IEnumerable<PhotoAlbum> PhotoAlbumList_GetData()
{
 return from p in entities.PhotoAlbums
 orderby p.Id
 select p;
}

This method queries all PhotoAlbum instances and returns them ordered by the ID. The return
type of this method is an IEnumerable of PhotoAlbum, which means this collection can only be
used to enumerate over. This means that the collection itself is read-only, which is exactly what
is needed for this exercise as the PhotoAlbum instances are only displayed in the DropDownList.
You’ll add code to the SelectedIndexChanged handler later.

 6. Switch back to Markup View and immediately below the DropDownList insert the following code
for a ListView control, letting Visual Studio create the name and the method in the Code Behind
for the SelectMethod for you:

<asp:ListView ID="ListView1" runat="server" DataKeyNames="Id"
 ItemType="Picture" SelectMethod="ListView1_GetData">
 <EmptyDataTemplate>
 No pictures found for this photo album.
 </EmptyDataTemplate>

c14.indd 531 25-02-2014 10:47:43

532 ❘ Chapter 14 LINQ aNd the adO.Net eNtIty FramewOrk

 <ItemTemplate>

 <asp:Image ID="Image1" runat="server" ImageUrl='<%# Item.ImageUrl %>'
 ToolTip='<%# Item.ToolTip %>' />
 <asp:Label ID="Description" runat="server" Text='<%# Item.Description %>' />

 </ItemTemplate>
 <LayoutTemplate>
 <ul class="ItemContainer">
 <li id="itemPlaceholder" runat="server" />

 <!-- Todo add DataPager here -->
 </LayoutTemplate>
</asp:ListView>

This creates an Image control with its ImageUrl and ToolTip properties bound to the corre-
sponding properties of the Picture object that you’re going to bind to. The ToolTip appears
when you hover your mouse over the image in the browser. Below the image, a simple Label con-
trol displays the Description of the image.

 7. Below the element, replace the Todo placeholder text with the following code for a
DataPager. You can type in the code manually, or drag the control from the Data category of the
Toolbox in Markup View.

<div style="clear: both;">
 <asp:DataPager ID="DataPager1" runat="server" PageSize="3">
 <Fields>
 <asp:NextPreviousPagerField ButtonType="Button"
 ShowFirstPageButton="True" ShowLastPageButton="True" />
 </Fields>
 </asp:DataPager>
</div>

 8 Next, wrap the entire code in the cpMainContent content block in an UpdatePanel with
a ContentTemplate element to avoid page flicker when paging the list of pictures, or when
choosing a new photo album from the list.

<asp:Content ID="Content2" ContentPlaceHolderID="cpMainContent" runat="Server">
 <asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 ...
 </ContentTemplate>
 </asp:UpdatePanel>
</asp:Content>

 9. Switch to the Code Behind and implement the ListView1_GetData method as follows:

VB.NET

Public Function ListView1_GetData() As IQueryable(Of Picture)
 Dim photoAlbumId As Integer = Convert.ToInt32(PhotoAlbumList.SelectedValue)
 Return From p in entities.Pictures
 where p.PhotoAlbumId = photoAlbumId
 Order By p.Id
 select p
End Function

c14.indd 532 25-02-2014 10:47:43

Using Model Binding with LINQ Queries ❘ 533

C#

public IQueryable<Picture> ListView1_GetData()
{
 int photoAlbumId = Convert.ToInt32(PhotoAlbumList.SelectedValue);
 return from p in entities.Pictures
 where p.PhotoAlbumId == photoAlbumId
 orderby p.Id
 select p;
}

 10. Still in the Code Behind, add the following highlighted line to the PhotoAlbumList_
SelectedIndexChanged method that Visual Studio added there in step 3:

VB.NET

Public Sub PhotoAlbumList_SelectedIndexChanged(sender As Object, e As EventArgs) _
 Handles PhotoAlbumList.SelectedIndexChanged
 ListView1.DataBind()
End Sub

C#

protected void PhotoAlbumList_SelectedIndexChanged(object sender, EventArgs e)
{
 ListView1.DataBind();
}

 11. Open the Web.sitemap file for the site and add a main menu and two submenu items for the Gig
Pics section, between the Reviews and About sections:

</siteMapNode>
<siteMapNode url="~/PhotoAlbums/" title="Gig Pics" description="All Gig Pics">
 <siteMapNode url="~/PhotoAlbums/Default" title="Gig Pics"
 description="All Gig Pics" />
 <siteMapNode url="~/NewPhotoAlbum" title="New Album"
 description="Create a new Photo Album with Gig Pics" />
</siteMapNode>
<siteMapNode url="~/About/Default" title="About"
 description="About this site">

 12. Because you added another menu item, you need to change the width of each item in the menu
for the Monochrome theme. To do this, open up Monochrome.css and change the width for the
.MainMenu ul li selector from 200 to 160 pixels:

.MainMenu ul li
{
 width: 160px;
}

 13. Save all your changes and then request Default.aspx from the PhotoAlbums folder in your
browser. Choose a photo album from the drop-down list and the page reloads, showing you the
relevant pictures in the photo album.

c14.indd 533 25-02-2014 10:47:43

534 ❘ Chapter 14 LINQ aNd the adO.Net eNtIty FramewOrk

CommoN mistakes If nothing happens when you choose a new item from
the drop-down list, go back to VS and ensure you set AutoPostBack on the
DropDownList control to True.

If you don’t have any pictures in a photo album, or not enough to fill an entire
page, choose New Album from the Gig Pics menu, create a new photo album,
and add at least four images to it. Then click the Gig Pics menu item and choose
your new photo album from the drop-down list. Note that there is now a paging
user interface, enabling you to move forward and backward through the list of
pictures in the photo album using the First, Previous, Next, and Last buttons vis-
ible at the bottom of the screen in Figure 14-16. Because of the AJAX panel you
added, the selection and paging operations now occur completely flicker-free.

Note Your first few albums will end up broken. That’s because you didn’t sup-
ply images when you created them. You can delete the albums (and their asso-
ciated picture rows) from the database if you want to clean up a bit. In Chapter
16 you develop functionality to delete images from the Default.aspx page in
the PhotoAlbums folder.

figure 14-16

How It Works

Most of what you have seen in this exercise should be familiar. You connected a DropDownList to a
SelectMethod similar to the way you set up the SelectMethod in ManagePhotoAlbum.aspx. Because
the DropDownList will only display a read-only list of the photo albums and doesn’t do any sorting or
paging itself, the return value of the method is an IEnumerable of Picture. An IEnumerable is the
lightest way to retrieve data from EF, as it carries no overhead to support other operations like altera-
tions of the collection, sorting, and so on. The ListView is also similar to what is discussed earlier in

c14.indd 534 25-02-2014 10:47:43

Using Model Binding with LINQ Queries ❘ 535

this chapter. However, instead of retrieving the ID of the photo album with a QueryString attribute,
the code retrieves the ID from the DropDownList:

VB.NET

Dim photoAlbumId As Integer = Convert.ToInt32(PhotoAlbumList.SelectedValue)

C#

int photoAlbumId = Convert.ToInt32(PhotoAlbumList.SelectedValue);

Instead of retrieving the ID from the control directly, you could also add a parameter to the method
and mark it with the Control attribute to automatically retrieve the value from the DropDownList.
However, I found that when you apply that attribute, the method for the ListView is called before the
method for the DropDownList. This in turn means the DropDownList has no data yet when the page
loads the first time. With the current implementation, photoAlbumId will always contain the ID of the
selected item in the DropDownList.

The biggest difference from previous examples is the addition of the DataPager. As demonstrated
in this exercise, paging is handled for you automatically. All you need to do is embed a DataPager
 control somewhere in the LayoutTemplate of the ListView and the rest is taken care of automatically.
Because the GetData method for the ListView returns an IQueryable of Picture, the ListView and
the DataPager are able to further query the set of pictures. This means that paging (selecting only the
 subset of records that are needed for the current page) is done through EF, which in turn means that
only the rows that are displayed are retrieved from the database. This results in the query being
executed as efficiently and as fast as possible.

If you place the DataPager outside the ListView, don’t forget to hook it up to the ListView by setting
the PagedControlID property. If you prefer links or images over buttons, you can set the ButtonType
property of the NextPreviousPagerField element to Link or Image, respectively. If you prefer a
numeric pager, replace the NextPreviousPagerField item with a NumericPagerField:

<asp:NumericPagerField NextPageText="..." PreviousPageText="..." />

In this exercise you set the PageSize to 3 so it’s easier to fill more than one page and see the pager at
work. In real-world applications the PageSize is usually a bit higher, such as 10 or 20. Because the lay-
out uses a three-column layout for the Monochrome theme and a two-column layout for the DarkGrey
theme, you may want to select a value that’s dividable by both, such as 18.

Notice in Figure 14-16 that some buttons are disabled when they are unusable. This is done with the
<disabled> attribute. When a button with that attribute set also has its <color> property set (as is the
case with all button controls in the Monochrome theme because of the <Button.skin> file), you can’t
tell whether the button is disabled or not. Fortunately, ASP.NET also renders an <aspNetDisabled>
class on the button which you can target with CSS to give the button a disabled look. In <Monochrome.css>
you'll find a CSS selector targeting the <aspNetDisabled> class that sets the color to grey.

a note about performance
The preceding exercise has a known performance problem that you should be aware of. Although
the ItemTemplate of the ListView resizes the images to 180 pixels in the browser by setting their
widths through CSS, the actual images are left unmodified. This means that if you upload a large

c14.indd 535 25-02-2014 10:47:44

536 ❘ Chapter 14 LINQ aNd the adO.Net eNtIty FramewOrk

image, the entire image is still downloaded, only to display as a small thumbnail image. It would
be better to create a true thumbnail image at the server, and send that to the browser instead. The
chapter entitled “Greeting Cards” in my book ASP.NET 2.0 Instant Results (ISBN: 978-0-471-
74951-6) has a number of examples of resizing images on the server.

praCtiCal linQ and ado.net entitY frameWork tips

Here are some practical LINQ and ADO.NET Entity Framework tips:

➤➤ In this chapter you saw how to create anonymous types to shape the data you want to return
from your queries. The compiler and IntelliSense are invaluable tools in determining what
data you can return and what properties you have available. Spend some time playing around
with the anonymous types, looking at the different options that the IntelliSense lists give you.

➤➤ Just as with other data access methods, like the SqlDataSource control you saw in the
previous chapter, try to filter your data as much as possible. If you know you only need
reviews in the Jazz genre, be explicit and incorporate a Where clause in your code that limits
the list of reviews at the database level. This speeds up your queries and data retrieval,
improving the overall speed of the application.

➤➤ Make use of anonymous types to decrease the memory consumption of your LINQ queries.
For example, instead of retrieving the entire Review object, use the New (new in C#) keyword
to create a new anonymous type on the fly. Because this new object contains only the
properties you really need, you save yourself the overhead of bringing in the full object.

summarY

LINQ is a compelling and exciting technology that ships with .NET. LINQ is an important
plumbing technique in many data access scenarios, including database access in ASP.NET web
applications using the ADO.NET Entity Framework.

Because LINQ is so important, it has been integrated in many different places in .NET. LINQ is
available for objects, enabling you to query in-memory collections. Additionally, LINQ is available
for XML, ADO.NET, and DataSets, each type providing access to a different data store, but with
the same unified querying language. LINQ is also used as the query language for the ADO.NET
Entity Framework.

To work with EF in your ASP.NET web applications you have a couple of different options. First,
you can write queries in the Code Behind of a page and then bind the results to a data-bound
control using the DataSource property and DataBind method of the control. Alternatively, you
can use Model Binding with the data-bound controls to get data from EF. Combined with the
ListView and DataPager controls, this enables you to create fully functional CRUD pages.

Until now, the database-driven pages you have seen look quite dull. You haven’t applied a lot of
styling or provided any conditional formatting, where data is presented differently based on its
values. You can do this through control styles and the many events of the data-bound and data
source controls. The next chapter shows you how to make use of these styles and events.

c14.indd 536 25-02-2014 10:47:44

Summary ❘ 537

exerCises

 1. Imagine you have a page in the Reviews folder called MostRecent.aspx. This page should
show the 10 most recently added reviews. What would your LINQ query look like if you only
wanted to show the review’s Title property and the name of the genre it belongs to? You
should use the Take method to limit the result set to 10. If you’re having trouble writing
the code to get the last reviews, look at the section titled “First, FirstOrDefault, Last, and
LastOrDefault,” which shows you how to get the last review in the database.

 2. What is the major benefit of the ListView control over other data controls like GridView and
Repeater?

 3. Currently the Default.aspx page from the PhotoAlbums folder just shows the thumbnails of
the pictures. What would you need to do to display the full-size picture on its own page using
a LINQ query?

 4. When you delete a picture from the ListView on the Photo Album page, only the database
row is deleted, but the image on disk is left untouched. Make use of the static System
.IO.File.Delete method to delete the item from disk when the picture gets deleted.

 5. Currently, the AllByGenre.aspx page displays the title of the genre, regardless of whether it
has any reviews attached to it. How can you hide genres that don’t have any reviews? Make
use of the Count method on the Reviews collection to solve this question.

You can find answers to these exercises in Appendix A.

c14.indd 537 25-02-2014 10:47:44

538 ❘ Chapter 14 LINQ aNd the adO.Net eNtIty FramewOrk

 ➤ What You learned in this Chapter

ado.net entity data
model file

The file that contains the information necessary to map your object
model to the tables in your database

anonymous types Types that are created on the fly without defining them explicitly

entity framework A technology to create a strongly typed object model with an
underlying database that enables you to interact with the data in your
database

entity set A collection of objects in your entity model; for example, a
PhotoAlbum instance has a Pictures entity set that contains the
pictures in the album.

lazy loading A technique in which data is not loaded from the database until it is
accessed at run time

linQ Language-Integrated Query; the part of .NET Framework
programming languages that provides querying support against all
kinds of data collections, including objects, XML, and databases

model binding A mechanism by which ASP.NET can populate objects for you with
data coming from a variety of sources. The various methods that
can be called from the data-bound controls make heavy use of this
process.

range variable A variable defined in your LINQ query that is subsequently used in the
Select and Where parts

strong typing A programming concept in which the type of a variable is explicitly
defined when the variable is declared

type inference A technique in which the compiler determines the type of a variable
based on the data it gets assigned; this enables you to create strongly
typed variables without explicitly defining the variable’s type first.

c14.indd 538 25-02-2014 10:47:44

15
Working with Data — Advanced
Topics

What You Will learn in this Chapter:

➤➤ How to change the formatting of the various data-bound controls
using styles, themes, and skins

➤➤ How to handle the various events that are fired by the data
controls to change their appearance conditionally

➤➤ How to hand-code the UI of data access pages to get complete
freedom over the pages’ structure and markup

➤➤ How to use the built-in caching mechanisms to improve the
performance of your website

Wrox.Com Code doWnloads for this Chapter

You can find the wrox.com code downloads for this chapter on the Download Code tab at
www.wrox.com/go/begaspnet451. The code is in the Chapter 15 folder.

The previous three chapters introduced you to a lot of new concepts. Chapter 12 discussed
databases in general and SQL Server 2012 Express LocalDB edition in particular. That
chapter also covered the basic operations to create, read, update, and delete data. Chapter 13
focused mostly on working with the SqlDataSource control and the different data-bound
controls that you have at your disposal. Finally, Chapter 14 explored the world of the ADO
.NET Entity Framework, Microsoft’s latest data access technology designed to speed up the
way you write data access code.

c15.indd 539 2/21/2014 12:13:24 PM

http://www.wrox.com/go/begaspnet451
http://wrox.com
http://wrox.com

540 ❘ Chapter 15 Working With Data — aDvanceD topics

To help you really understand the core concepts of data access, those three chapters focused mainly
on the data source controls and the principles behind them, and much less on the presentation of
data with the data-bound controls. Obviously, in a real-world application this is not enough, and
you need a way to present data in a clear and attractive way.

The data-bound controls that ship with ASP.NET provide many options to change the way data
is presented. They enable you to completely change the design (font, colors, spacing, and so on) of
the data they are presenting. Additionally, you can tweak these controls to hide specific columns,
modify column headers, and even change the look and feel of the controls programmatically.

In the next sections you see how to style your controls using a variety of techniques. Later sections
in this chapter show you how to hand-code your data access pages, giving you great flexibility. Near
the end of the chapter, caching — a technique to improve the performance of your website — is
discussed.

formatting Your Controls using stYles

Chapters 13 and 14 explained how to work with the numerous
data-bound ASP.NET controls. You learned how to display and
edit lists of data with controls like GridView, Repeater, and
ListView, as well as how to work with single record controls
such as DetailsView.

So far, you’ve relied on the built-in look and feel of the controls,
which often results in dull and plain-looking screens.
Figure 15-1 shows the GridView that you created in Chapter 13
to manage the genres in the Planet Wrox database in Firefox.

This control relies on the default settings of the browser to
display text and links, which usually results in purple
and blue links with the default font, such as Times New
Roman. Additionally, the columns in the grid are just
as wide as necessary to display the text they contain. It
would be a lot easier on the eyes if you could present the
GridView as in Figure 15-2 instead.

The column for the Edit and Delete links is now a little
wider, separating it clearly from the actual content in
the grid. The Id column has been hidden and the Name
column has been made wider. The different colors for
the header, footer, items, and alternating items make the
data in the grid a lot easier to read. Because some genres
have reviews attached to them, their Delete links are
disabled. And finally, a little glyph has been added to
the Name heading to indicate the direction the column is sorted on.

Changing the dull-looking GridView from Figure 15-1 into the snazzier one shown in Figure 15-2
is easily accomplished with the use of ASP.NET styles and the many events that the data-bound

figure 15-1

figure 15-2

c15.indd 540 2/21/2014 12:13:24 PM

Formatting Your Controls Using Styles ❘ 541

controls fire. In the next section you see how to apply these styles to a single control in a page. In the
section that follows you see how to move the styles to a theme, so styles can be reused more easily
by all controls in a section of your site. You have already seen some styles at work in Chapter 7,
where you used them to style the Menu and the TreeView controls. However, because styles are used
so much for formatting data-bound controls, they really deserve their own section.

an introduction to styles
Many of the data-bound and navigation controls have a number of style properties that enable you
to modify the look and feel of the control. For example, the GridView control has RowStyle and
AlternatingRowStyle properties that enable you to customize the look of an individual row in the
grid. Here’s an example of a GridView with two style elements that renders odd and even rows with
different background colors:

<asp:GridView ID="GridView1" runat="server">
 <AlternatingRowStyle BackColor="White" />
 <RowStyle BackColor="#EFF3FB" />
</asp:GridView>

Likewise, the DetailsView has a CommandRowStyle property that is used
to control the appearance of the command row that holds commands such
as Insert, Delete, Cancel, and so on.

Ultimately, each style property inherits from the Style class that lives in
the System.Web.UI.WebControls namespace. Figure 15-3 shows you a
filtered view of the diagram for this class with its most common
properties visible.

As you can see from their names, the properties of the Style class are used
to change style-related information on the objects to which this class is
applied. Each of these properties is eventually converted to a CSS property
or an HTML attribute, such as background-color, border, and so on.
Other styles, like the styles for the GridView control, add various layout-
related properties, such as different options to control alignment. The following table lists the most
important properties of the various Style-derived classes that are available. Note that not every
property is available for every style. IntelliSense shows you exactly what properties you can use in a
certain style.

propertY desCription

BackColor

ForeColor

These enable you to change the background and text color of the
elements. They map to the CSS properties background-color and
color, respectively.

BorderColor

BorderStyle

BorderWidth

These enable you to change the border of the element to which the style
is applied. They map directly to their CSS counterparts border-color,
border-style, and border-width.

figure 15-3

continues

c15.indd 541 2/21/2014 12:13:25 PM

542 ❘ Chapter 15 Working With Data — aDvanceD topics

propertY desCription

CssClass This enables you to assign a CSS class instead of inline style information.
You should give preference to the CssClass property over the individual
style properties because they minimize page bloat. You see how to use
CssClass in a later exercise.

Font This enables you to set the font for the element through the various
subproperties like Font-Names, Font-Size, and Font-Bold. These
properties end up as various CSS font properties, such as font-family,
font-size, and font-weight.

HorizontalAlign

VerticalAlign

These end up as align and valign attributes on the HTML element to
which they are applied and enable you to control the alignment of the
contents of the element. For example, you use HorizontalAlign to left-,
center-, or right-align the text of the column headers of a GridView.

Note: These properties output HTML attributes that are obsolete in
HTML5. Most browsers will still render them as intended, but if HTML5
conformance is important, you shouldn’t use these properties, but use
your own CSS class assigned with the CssClass property.

Wrap This ends up as a white-space: nowrap; CSS declaration when set to
False and determines whether a piece of text is allowed to wrap to a
new line.

Height

Width

These enable you to control the height and width of the elements to
which they are applied and map directly to their CSS height and width
counterparts.

Check out the MSDN documentation (at http://bit.ly/Lb3WZd) for a full description of the
Style class.

The different data-bound controls each have a different set of styles, although they do share a few. The
following table lists the available styles for the GridView and describes their purpose. The other data-
bound controls have slightly different styles, but from their names you should be able to see what they
do and determine what they are used for. Another good way to learn more about the different styles
that are available is by using Visual Studio’s Auto Format, which inserts a number of styles for you.
You see later how to use and improve the styles that are generated by the Auto Format feature.

stYle desCription

RowStyle

AlternatingRowStyle

These control the look of a single row. By default, the
RowStyle affects all rows. The AlternatingRowStyle is
used only on even rows when it’s set.

SelectedRowStyle This can be applied to selected rows, and gives you the
opportunity to visually present selected rows differently
from unselected rows.

 (continued)

c15.indd 542 2/21/2014 12:13:25 PM

http://bit.ly/Lb3WZd

Formatting Your Controls Using Styles ❘ 543

EditRowStyle This can be applied to rows that are currently in Edit mode.
For example, when you click the Edit link for a row in the
GridView on the Genres page in the Management section,
the row switches to Edit mode and this EditRowStyle is
applied.

EmptyDataRowStyle This enables you to define the look of the row that is
displayed when the grid is bound to an empty data
source. This style works together with the EmptyDataText
property of the grid that contains the text displayed when
no records exist, or with the EmptyDataTemplate that
enables you to define your own custom template to be
displayed when an empty data source is used.

HeaderStyle

FooterStyle

These control the appearance of the header and footer
rows.

PagerStyle This enables you to influence the look of the pager bar
displayed in the GridView when paging is enabled.

SortedAscendingCellStyle

SortedAscendingHeaderStyle

SortedDescendingCellStyle

SortedDescendingHeaderStyle

Collectively, these styles enable you to change the looks
of the header and the entire column when the column is
sorted in ascending or descending order.

Some controls, like Repeater and ListView, have no built-in styles. Because these controls do not
contribute any HTML to the page all by themselves and leave it up to you to define the look and feel
in the numerous templates these controls have, there is no point in having separate styles; you can
simply add the necessary style or class information to the elements you define in their templates.

To show you how to use these styles with your controls, the following exercise guides you through
the process of enhancing the GridView control in the Genres page of the Management section. In a
later exercise, you see how to move the style-related information to a theme and CSS file to improve
the reusability of the code and to reduce the amount of HTML sent to the browser on each request.

trY it out Applying Styles

In this Try It Out, you use the built-in formatting capabilities of VS to change the appearance of the
GridView control. You see how VS creates the necessary styles for you, each with its relevant styling
properties set.

 1. Open Genres.aspx from the Management folder of the main Planet Wrox website that you have
been working on so far.

 2. Switch to Design View and open the GridView control’s Smart Tasks panel. Make sure you open
that of the GridView and not the one for the surrounding Content block.

c15.indd 543 2/21/2014 12:13:25 PM

544 ❘ Chapter 15 Working With Data — aDvanceD topics

 3. At the top of the panel, click the Auto Format link.

 4. From the list of format schemes on the left, choose Classic. The Preview on the right is updated
and now looks like Figure 15-4.

figure 15-4

 5. Click OK to have VS generate the necessary templates for you. The GridView is updated in Design
View immediately, showing the selected format scheme.

 6. Switch back to Markup View and inspect the various styles that have been generated. You should
see the following styles, some placed before and others placed below the <Columns> element:

<AlternatingRowStyle BackColor="White" />
...
<EditRowStyle BackColor="#2461BF" />
<FooterStyle BackColor="#507CD1" Font-Bold="True" ForeColor="White" />
... Some styles are not shown here to save some space
<SortedDescendingHeaderStyle BackColor="#4870BE" />

 7. Save the changes to the page and request it in the browser by pressing Ctrl+F5. You should see the
list of genres with the selected formatting scheme applied.

 8. Open the HTML source for the page by right-clicking the page in the browser and choosing the
View Source or View Page Source command. Scroll down a bit until you see an HTML table with
its id set to cpMainContent_GridView1. You’ll see that the table itself has a style attribute that
sets text color and border properties:

<table cellspacing="0" cellpadding="4" id="cpMainContent_GridView1"
 style="color:#333333;border-collapse:collapse;">

Additionally, you see that the numerous child elements of the table (table rows and anchor ele-
ments) all have different style settings applied. For example, odd and even rows now have the fol-
lowing style applied:

c15.indd 544 2/21/2014 12:13:25 PM

Formatting Your Controls Using Styles ❘ 545

<tr style="background-color:#EFF3FB;"> ... </tr>
<tr style="background-color:White;"> ... </tr>

Close the source document and click the headers of the GridView a few times. The header
changes color to indicate the column is now sorted.

How It Works

The different style elements you created in step 5 are converted into their CSS and HTML equivalents.
For example, RowStyle and AlternatingRowStyle have their BackColor set to a different background
color:

<RowStyle BackColor="#EFF3FB" />
<AlternatingRowStyle BackColor="White" />

When the control renders its HTML, it applies these backgrounds to the table row of the items and
alternating items:

<tr style="background-color:#EFF3FB;"> ... </tr>
<tr style="background-color:White;"> ... </tr>

The same principle is applied to the other styles in the GridView.

If you look at the source of the page in the browser, you see a lot of page bloat, because each individual
row has its properties set. This increases the page size, especially with larger results displayed in the
GridView. To decrease the page size and improve the performance of the page, you could move the style
definitions to a page theme and then use CSS and jQuery instead. You see how to do this next.

Combining styles, themes, and skins
Chapter 6 discussed how to create consistent-looking web pages using master pages, themes, and
skins. With the basic theme infrastructure set up, it’s now easy to add a new theme that applies to
the entire Management section. Earlier you saw how to create a skin file to change the appearance
of a button; in the following exercise you see how to reuse this concept to create a skin file for the
GridView, enabling you to style all GridView controls in the Management folder in one fell swoop.

trY it out Creating Advanced Style Solutions

In this Try It Out, you move the various Style properties from the Genres.aspx page into a separate
.skin file. You also move the inline style information to a separate CSS
file. You then use some jQuery to separate data and appearance of the
page even further.

 1. On the Solution Explorer, right-click the App_Themes folder,
choose Add ➪ Add ASP.NET Folder ➪ Theme, and type
Management as the new theme name.

 2. Right-click this new folder and choose Add ➪ Add New Item.
Add a skin file called GridView.skin. You should end up with a
Solution Explorer looking like Figure 15-5. figure 15-5

c15.indd 545 2/21/2014 12:13:25 PM

546 ❘ Chapter 15 Working With Data — aDvanceD topics

 3. Open the Genres.aspx page in Markup View and delete all the style elements you created in the
previous exercise except the HeaderStyle, the PagerStyle, the SortedAscendingHeaderStyle,
and the SortedDescendingHeaderStyle. From the four remaining styles, remove all attributes
and replace them with a single CssClass attribute named after the style and prefixed with
GridView. You should end up with the following styles:

<HeaderStyle CssClass="GridViewHeaderStyle" />
<PagerStyle CssClass="GridViewPagerStyle" />
<SortedAscendingHeaderStyle CssClass="GridViewSortedAscendingHeaderStyle" />
<SortedDescendingHeaderStyle CssClass="GridViewSortedDescendingHeaderStyle" />

Don’t worry if VS adds red error lines under the CSS class names. Because the CSS classes aren’t
defined yet, it can’t find them. Later, you add them to the theme’s CSS file, where VS still can’t
find them. They’ll work fine at run time, though, so don’t worry.

 4. Select the styles in the code editor and then cut them to the clipboard using Ctrl+X. Switch to the
GridView.skin file, delete all existing code (the comment text you saw earlier), and paste the
styles into the skin file.

 5. Wrap the styles in an <asp:GridView> element with its runat attribute set to server and its
CssClass attribute set to GridView. Don’t add an ID attribute, because skin files don’t need this.
You should end up with this code:

<asp:GridView runat="server" CssClass="GridView">
 ... styles go here
</asp:GridView>

 6. Open the resources folder for this chapter (located at C:\
BegASPNET\Resources\Chapter 15 if you followed the instructions
in the Introduction section of this book) in File Explorer (Windows
Explorer in Windows 7), select the Images folder and the
Management.css file, and press Ctrl+C to copy them. Switch back
to VS, click the Management folder under App_Themes, and press
Ctrl+V. Just as the other two themes do, the management theme now
has its own style sheet and Images folder, shown in Figure 15-6.

The two images are used to change the header for sorted columns in the GridView, as you will see later.

 7. Open the Web.config file for the Management folder in the root that you added earlier and set the
theme to Management:

<system.web>
 <pages theme="Management" />
</system.web>

 8. Open the Management.master file from the MasterPages folder, switch to Markup View,
and below the ContentPlaceHolder in the <head> section of the page, drag the file jquery-
2.0.3.min.js from the Scripts folder. VS inserts the following <script> element for you:

 </asp:ContentPlaceHolder>
 <script src="../Scripts/jquery-2.0.3.min.js"></script>
</head>

 9. Go back to Genres.aspx and in Markup View, under the Columns element of the GridView
control, delete the bound field for the Id column. Users typically don’t need to see the IDs of items
in the user interface because they are often meaningless to them. By removing the Id column, you

figure 15-6

c15.indd 546 2/21/2014 12:13:25 PM

Formatting Your Controls Using Styles ❘ 547

reduce the noise in the page. Set the ItemStyle-Width for the CommandField to 100px and for
the Name column to 200px. Finally, set ShowSelectButton of the CommandField to False, and
set the HeaderText of the SortOrder field to Sort Order with a space between the words. You
should end up with this GridView:

<asp:GridView ID="GridView1" runat="server" AllowPaging="True"
 AllowSorting="True" AutoGenerateColumns="False" DataKeyNames="Id"
 DataSourceID="SqlDataSource1" GridLines="None" CellPadding="4"
 ForeColor="#333333" EmptyDataText="There are no data records to display.">
 <Columns>
 <asp:CommandField ShowDeleteButton="True" ShowEditButton="True"
 ShowSelectButton="False" ItemStyle-Width="100px" />
 <asp:BoundField DataField="Name" HeaderText="Name"
 SortExpression="Name" ItemStyle-Width="200px" />
 <asp:BoundField DataField="SortOrder" HeaderText="Sort Order"
 SortExpression="SortOrder"></asp:BoundField>
 </Columns>
</asp:GridView>

 10. Scroll down to the end of the page in Markup View and, right before the closing </asp:Content>
tag, add the following jQuery code wrapped in a <script> block:

<script>
 $(function()
 {
 $('.GridView tr:odd:not(.GridViewPagerStyle)').
 addClass('GridViewAlternatingRowStyle');
 });
</script>

 11. Save all your changes by pressing Ctrl+Shift+S and then open Genres.aspx in the browser. You
should now see the list of genres that was presented in Figure 15-2, except for the disabled Delete
links, which you add later. Click the header of the Name or Sort Order columns to order the data
in the GridView. Notice how the GridView now shows a little glyph beside the name to indicate
the sort direction.

 12. Click Manage Reviews in the main Management menu to open the Reviews page. Select a genre
from the drop-down list to display a list of reviews. Note that the Reviews list — visible in
Figure 15-7 — now also has some of the same styles applied as the Genres list you saw earlier,
except for the alternating row styles applied by jQuery and the settings on the GridView such as
GridLines and CellPadding.

figure 15-7

c15.indd 547 2/21/2014 12:13:26 PM

548 ❘ Chapter 15 Working With Data — aDvanceD topics

How It Works

The concepts from this exercise should be familiar by now. You have seen how to create and apply
themes and skins in Chapter 6, and how to use the various control styles in the previous exercise. You
also saw the concepts behind jQuery in Chapter 11. What may be new is the way that odd rows in the
GridView are selected to dynamically change their background color, skipping the footer row using the
not filter:

$('.GridView tr:odd:not(.GridViewPagerStyle)')

First, all odd table rows are selected using the selector .GridView tr:odd. However, depending on
the number of rows in the GridView, this may also select the footer row (with the paging controls
in it) because the footer is rendered as a <tr> as well. To stop the footer from being included you
use the not filter and pass it an expression on which you want to filter. In this case, the expression is
.GridViewPagerStyle because that’s the class name applied to the footer row. The jQuery code
is only applied to the Genres.aspx page, but you could move it to the Management master page or
copy it to individual pages. Either way, it helps in removing page bloat because you don’t have to add
a style or class attribute to each row in the GridView. Instead, you can let jQuery figure out what
rows are odd and even. If you want, you can create a ContentPlaceHolder in the master page for
the Management section as you’ve done with the Frontend.master file, in which to put page-specific
JavaScript code.

Assigning the image to the sorted column header requires a few rule sets. First, each sorted header
(ascending or descending) is given some padding:

.GridViewSortedAscendingHeaderStyle, .GridViewSortedDescendingHeaderStyle
{
 padding-left: 20px;
}

This moves the text in the header cell a bit to the right, making room for the image. Then for both the
ascending and descending sort order, there is a separate rule that assigns the image. The rule is applied
by ASP.NET by adding a class attribute to the relevant HTML elements. The following shows the
selector for a column that is sorted in ascending order:

.GridViewSortedAscendingHeaderStyle
{
 background-image: url(Images/SortAscending.png);
}

The .GridViewHeaderStyle th selector then stops the background image from repeating, positions
the image near the top, and determines the background color and text alignment:

.GridViewHeaderStyle th, .GridViewPagerStyle
{
 background-color: #BCD1FE;
 background-repeat: no-repeat;
 background-position: 0 5px;
 text-align: left;
}

c15.indd 548 2/21/2014 12:13:26 PM

Handling Events ❘ 549

By moving your control style declarations to a separate skin file that in turn is part of a theme, you have
created a very flexible, maintainable solution. If you want to see how the new styles are applied, open
the source of the page in the browser using its View Source command. Instead of inline styles, the
relevant class attributes are applied. If you want to change the layout of all the GridView controls
in the Management section, all you need to do now is modify the relevant CSS in the Management
.css file. If you need to make changes to other styles, don’t forget to add them to the GridView.skin
file first.

Obviously, you can still tweak the controls at the page level. Though the skin defines the global
look and feel of the GridView, you can still set individual properties on columns as you did with the
ItemStyle-Width in the Genres page.

Although styles, skins, and themes are powerful tools to style your web pages, you’ll find
that they are often an all-or-nothing solution. For example, if you create ItemStyle and
AlternatingItemStyle elements (rather than using jQuery as you just did), they are applied to each
and every row in the grid. What if you wanted to change the look and feel of just a few rows?
Or what if you wanted to change some rows based on the actual data that the row is holding? You
see how to accomplish conditional formatting and more, using event handling, in the
following section.

handling events

Previous chapters have covered how the ASP.NET controls can raise events. You learned how to
handle these events with event-handler code that you typically add to the page’s Code Behind file.
For example, you wrote code to handle a Button control’s Click event. However, most controls
expose a lot more events.

A solid understanding of the various events that fire during a control’s life cycle and the order in
which they fire is important knowledge for an ASP.NET developer. Being able to hook into the
control’s life cycle, tweaking parts of the output as you go, enables you to create flexible, dynamic
web pages that do exactly what you want.

To gain an understanding of the various events and the order in which they fire, the next section
explains the basic steps in the ASP.NET control life cycle. You won’t see every event that is fired in
the process, but instead you see the ones you are most likely to use. Later sections then show you
how to make use of these events to change the behavior of your web pages.

the asp.net page and Control life Cycles revisited
In Chapter 6 you learned about the stages in a page’s life. You learned about different events such
as PreInit, Load, PreRender, and Unload. Besides these events that are raised by the ASPX page,
all the other controls in your ASPX pages can raise their own events. These events can be as simple
as a Button control’s Click event (triggered by a user action) or be more complex events, such as
Inserting, which is raised by controls like the SqlDataSource or the DataBound event that is
raised by various data-bound controls. You see many of these events in the next exercise.

c15.indd 549 2/21/2014 12:13:26 PM

550 ❘ Chapter 15 Working With Data — aDvanceD topics

trY it out Seeing the Page and Control Life Cycles at Work

To give you an idea of the different events that you can hook into during a page or control’s life cycle
and the order in which they fire, this Try It Out shows you how to set up a page that displays some data
from the Genres table using an SqlDataSource. You also add a button to the page that you can use to
trigger a postback to see how that influences things. You then hook up a number of event handlers to
a few interesting events of the controls on the page so you can see in what order things are called. You
can apply the concepts you learn in this exercise to any other page or control that raises events to get a
better understanding of how they operate.

 1. Inside the Demos folder, create a new file called Events.aspx. Make sure it’s based on your
custom page template so it inherits from BasePage. Set the page’s Title to Events Demo.

 2. Switch the page to Design View, drop a GridView into the cpMainContent placeholder, and
then hook it up to a new SqlDataSource control using the GridView’s Smart Tasks panel. Use
PlanetWroxConnectionString1 as the connection string and configure the control to retrieve all
columns from the Genre table. There’s no need to set up insert, update, or delete behavior, nor do
you need to select specific columns or add a Where clause.

 3. Back on the GridView control’s Smart Tasks panel, enable sorting by selecting the second check
box. When you’re done, your code should look like this:

<asp:GridView ID="GridView1" runat="server" AllowSorting="True"
 AutoGenerateColumns="False" DataKeyNames="Id" DataSourceID="SqlDataSource1">
 <Columns>
 <asp:BoundField DataField="Id" HeaderText="Id" InsertVisible="False"
 ReadOnly="True" SortExpression="Id" />
 <asp:BoundField DataField="Name" HeaderText="Name" SortExpression="Name" />
 <asp:BoundField DataField="SortOrder" HeaderText="SortOrder"
 SortExpression="SortOrder" />
 </Columns>
 </asp:GridView>
 <asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString="<%$ ConnectionStrings:PlanetWroxConnectionString1 %>"
 SelectCommand="SELECT * FROM [Genre]"></asp:SqlDataSource>

 4. Make sure you’re in Markup View, and directly under the opening Content tag for the
cpMainContent placeholder and before the GridView add the following markup that creates
a table with one row and two cells, each with a large heading (h1) and a Label control called
NoPostBack and PostBack, respectively.

<table>
 <tr>
 <td><h1>No PostBack</h1><asp:Label ID="NoPostBack" runat="server" /></td>
 <td><h1>PostBack</h1><asp:Label ID="PostBack" runat="server" /></td>
 </tr>
</table>

 5. Switch to Design View, and below the GridView drop a Button control and double-click it in
Design View to set up an event handler for its Click event in the Code Behind.

 6. Switch back to Design View and double-click the gray and read-only area of the page to set up a
handler for the Page control’s Load event.

c15.indd 550 2/21/2014 12:13:26 PM

Handling Events ❘ 551

 7. Switch to Design View again, click the GridView, and open its Properties Grid by pressing F4.
Switch to the Events tab and double-click the following events to set up handlers for them in the
Code Behind. After each handler, switch back to Design View by pressing Ctrl+Tab so you can
add the next event.

➤➤ Sorted

➤➤ Sorting

➤➤ RowCreated

➤➤ DataBinding

➤➤ DataBound

➤➤ RowDataBound

 8. Repeat the preceding step, but now set up a handler for the Selecting event of the
SqlDataSource control.

 9. Make sure you are in Code Behind and at the top of the file add the following Imports/using
statement:

VB.NET

Imports System.Runtime.CompilerServices

C#

using System.Runtime.CompilerServices;

Then below the last event handler (but still within the class definition), add the following method
that writes some text to one of the two labels, depending on whether the current page request is
the result of a postback:

VB.NET

Private Sub WriteMessage(<CallerMemberName> Optional handlerName As String = "")
 If Page.IsPostBack Then
 PostBack.Text &= handlerName & "
"
 Else
 NoPostBack.Text &= handlerName & "
"
 End If
End Sub

C#

private void WriteMessage([CallerMemberName] string handlerName = "")
{
 if (Page.IsPostBack)
 {
 PostBack.Text += handlerName + "
";
 }
 else
 {
 NoPostBack.Text += handlerName + "
";
 }
}

c15.indd 551 2/21/2014 12:13:26 PM

552 ❘ Chapter 15 Working With Data — aDvanceD topics

 10. To each of the event handlers that you have set up, add the following code that calls your custom
method. Because you’re not passing a value for the optional handlerName parameter, .NET
automatically inserts the name of the calling method because of the CallerMemberName attribute
applied to that parameter in the WriteMessage method. You see how this works later.

VB.NET

Protected Sub Page_Load(sender As Object, e As EventArgs) Handles Me.Load
 WriteMessage()
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 WriteMessage();
}

 11. Finally, add the following event handler to the Code Behind manually:

VB.NET

Protected Sub Page_PreRenderComplete(sender As Object,
 e As EventArgs) Handles Me.PreRenderComplete
 WriteMessage("Page_PreRenderComplete
------------")
End Sub

C#

protected void Page_PreRenderComplete(object sender, EventArgs e)
{
 WriteMessage("Page_PreRenderComplete
------------");
}

The PreRenderComplete event fires very late in the Page control’s life cycle, making it an ideal
place to put a line at the bottom of the event list. That way you can clearly see what set of events
belong to each other, which in turn helps you to figure out what events are triggered during page
load or a postback.

 12. Save all your changes and open the page in the browser. In addition to the GridView with the
available genres, you should also see a list with event names under the No PostBack heading:

Page_Load
SqlDataSource_Selecting
GridView1_DataBinding
GridView1_RowCreated
GridView1_RowDataBound
GridView1_RowCreated
GridView1_RowDataBound
...
GridView1_DataBound
Page_PreRenderComplete

Note that the RowCreated and RowDataBound events are repeated multiple times — once for each
genre from the database plus two more. You see later why that is. Click the button below the
GridView to cause a postback. The No PostBack label won’t change, but the PostBack label now
shows the following list of event names:

c15.indd 552 2/21/2014 12:13:26 PM

Handling Events ❘ 553

GridView1_RowCreated
GridView1_RowCreated
...
GridView1_RowCreated
GridView1_RowCreated
Page_Load
Button1_Click
Page_PreRenderComplete

Click one of the column headers of the GridView to order the data it is displaying. Notice that the
second label’s text is extended with a second set of event names. Each set is separated by a line of
dashes, created by the Page_PreRenderComplete event handler.

How It Works

Technically, this exercise isn’t complicated. You set up a bunch of event handlers for the various con-
trols in your page. Inside the event handler you call a method that checks whether the page is cur-
rently loading for the first time or is loading due to a postback. To make it easy to add the name of
the calling method to the Label control, the handlerName parameter of the method has a special
CallerMemberName attribute applied, like this:

VB.NET

Private Sub WriteMessage(<CallerMemberName> Optional handlerName As String = "")

C#

private void WriteMessage([CallerMemberName] string handlerName = "")

This attribute has been introduced in .NET 4.5 and can be applied to optional parameters (identified
in VB.NET with the Optional keyword and a default value, and in C# simply by assigning it a default
value). When no value is passed to the WriteMessage method for this parameter (as is the case for
most of the handlers except for the last one you added), .NET fills it for you with the name of the call-
ing method. This is very convenient for debugging purposes because it enables you to easily figure out
which method called WriteMessage. In earlier versions of .NET you had to pass the name of the call-
ing method manually in each call to WriteMessage, making this code a bit more tedious to write. Also,
because this attribute only has an effect when no value is passed in, you can still supply a value your-
self, as is the case with the Page_PreRenderComplete handler. Besides the method name, this code also
passes the line break and the dashed line and, as such, you have to supply the value yourself.

The WriteMessage method then updates one of the two Label controls with the name of the event that
triggered the event handler.

What’s also interesting about this exercise is the order in which the events occur. Take a look at the first
list, displayed when the page first loads:

Page_Load
SqlDataSource1_Selecting
GridView1_DataBinding
GridView1_RowCreated
GridView1_RowDataBound
GridView1_RowCreated

c15.indd 553 2/21/2014 12:13:26 PM

554 ❘ Chapter 15 Working With Data — aDvanceD topics

GridView1_RowDataBound
...
GridView1_DataBound
Page_PreRenderComplete
 — — — — — — — — -

First Page_Load is triggered. Then the GridView sees that it’s hooked up to a SqlDataSource and asks
that control for its data. This causes the Selecting events to be triggered. When the GridView receives
the data from the SqlDataSource, it fires its DataBinding event to signal it’s about to bind the data
to the control. The GridView then starts to create rows. For each item in the data source, it creates a
row, fires RowCreated, binds the item’s data to the row, and finally calls RowDataBound. If you carefully
count the number of times that RowCreated and RowDataBound are called, you’ll notice that the total
number of calls is the actual number of items that are in the data source plus two. This is because the
same event is also raised when the control creates its header and footer rows. You see how to distin-
guish between these rows inside an event handler in a later exercise.

Finally, when the GridView is done creating and binding all the rows in the data source, it fires its
DataBound event.

On postback, the story looks quite different. When you click the button to cause a postback, the fol-
lowing events are raised:

...
GridView1_RowCreated
GridView1_RowCreated
GridView1_RowCreated
GridView1_RowCreated
Page_Load
Button1_Click
Page_PreRenderComplete
 — — — — — — — — -

Note that this list contains no RowDataBound or DataBound events, and the SqlDataSource is also
nowhere to be seen. The GridView is able to reconstruct the entire control from View State, elimi-
nating the need to access the database again. While getting the data from View State, the GridView
still needs to re-create each row in the grid, so you still see the RowCreated events. Toward the end
of the list you see the Page_Load event followed by the Button control’s Click event. It’s important
to understand and remember that user-triggered control events like a Button control’s Click or a
SelectedIndexChanged of a DropDownList occur after the Load event of the Page. Note that this Load
event isn’t the start of the Page’s life cycle. Before the Load event, the Page is already instantiated and
has fired its Init event. You could add a handler for this event to the code to confirm this.

At the end of the exercise, you clicked a column header to sort the data in the grid. This time, the
GridView knows it must sort the data that is being displayed. It cannot do that itself, so instead it
asks the SqlDataSource for a fresh copy of the data in the order the user requested. Just as you
did the first time the page loaded, you see the various RowCreated and DataBound events appear.
What’s interesting to see is that the Sorting and Sorted events fire after each other, and before the
SqlDataSource gets its data. The reason for this is that the GridView doesn’t handle the sorting here;
it merely exposes the sorting parameters (the sort expression and the direction) to other controls. With
a SqlDataSource, sorting takes place at the database level, but it retrieves the sorting parameters from
the GridView.

c15.indd 554 2/21/2014 12:13:26 PM

Handling Events ❘ 555

If you want to see other events at work, simply repeat steps 7 and 10 of the preceding exercise, setting
up handlers for the various events. To see the effect of View State, try disabling it either at the control
level (for example, for the GridView) or at the page level. In Chapter 18 you learn a technique called
tracing that enables you to find out this information for all controls in your page, including the time it
takes to execute the various events.

Although the preceding exercise is quite useless in a real-world application, it should help you gain
an understanding of the various control events and the order in which they fire. You can use the
exact same principles to hook into the page and make modifications to the page itself, or to any of
the controls in the page. In the next exercise you see how to change the appearance of rows in the
data source, depending on the data that you are displaying.

the asp.net page life Cycle and events in data Controls
As previously discussed, the GridView raises its RowCreated and RowDataBound events for each row
it adds to its output. These events are ideal to peek into the data and then, based on that data, take
appropriate action. For example, you can use these events to verify whether a review that is being
displayed is authorized. If it’s not (meaning it won’t be visible in the front-end website), you can
change the review’s appearance to draw attention to it. Another example of using events would be to
hide or disable elements in the interface when it doesn’t make sense for them to be visible or active.
You see how to disable the Delete link in the Genres GridView in the next exercise.

trY it out Hooking into RowDataBound

In this Try It Out you write an event handler for the RowDataBound event of the GridView control in
the Genres page of the Management section. Within this event, you can diagnose the data item that is
being bound to the GridView row, enabling you to see if the genre has reviews attached to it or not. If
reviews are associated with the genre, you use some code to disable the Delete link so users cannot acci-
dentally try to delete that genre.

 1. Open the Genres.aspx page from the Management folder in Markup View and locate the
SqlDataSource control. Find the SelectCommand and modify the SQL statement so it reads like
this:

SelectCommand="SELECT Genre.Id, Genre.Name, Genre.SortOrder,
 COUNT(Review.Id) AS NumberOfReviews FROM Genre LEFT OUTER JOIN Review
 ON Genre.Id = Review.GenreId GROUP BY Genre.Id, Genre.Name, Genre.SortOrder"

You can type the entire SQL statement on a single line or break it up over multiple lines as I’ve
done here.

 2. Switch to Design View and open the GridView control’s Smart Tasks panel. Click the Refresh
Schema link on the Smart Tasks panel and answer No to the questions about regenerating fields
and keys to maintain the current layout of the controls.

Click Edit Columns on the Smart Tasks panel to bring up the Fields dialog box. Click the
CommandField item in the Selected Fields list and then click the blue link at the bottom right of
the dialog box to convert the field to a TemplateField. This way the column is expanded into a

c15.indd 555 2/21/2014 12:13:27 PM

556 ❘ Chapter 15 Working With Data — aDvanceD topics

template, which makes it easier to access the controls, such as the Delete link, it contains. Click
OK to close the Fields dialog box.

 3. In Markup View, locate the Delete link (the one with its CommandName set to Delete) and change
its ID to DeleteLink:

<asp:LinkButton ID="DeleteLink" runat="server" CausesValidation="False"
 CommandName="Delete" Text="Delete"></asp:LinkButton>

 4. Switch to Design View, open the Properties Grid for the GridView, and switch to the Events tab.
Set up an event handler for the RowDataBound event.

 5. At the top of the Code Behind of the Web Form, add the following line of code:

VB.NET

Imports System.Data

C#

using System.Data;

 6. Inside the event handler that VS created for you, add the following code:

VB.NET

Protected Sub GridView1_RowDataBound(sender As Object,
 e As GridViewRowEventArgs) Handles GridView1.RowDataBound
 Select Case e.Row.RowType
 Case DataControlRowType.DataRow
 Dim myRowView As DataRowView = CType(e.Row.DataItem, DataRowView)
 If Convert.ToInt32(myRowView("NumberOfReviews")) > 0 Then
 Dim deleteLink As LinkButton =
 TryCast(e.Row.FindControl("DeleteLink"), LinkButton)
 If deleteLink IsNot Nothing Then
 deleteLink.Enabled = False
 End If
 End If
 End Select
End Sub

C#

protected void GridView1_RowDataBound(object sender, GridViewRowEventArgs e)
{
 switch (e.Row.RowType)
 {
 case DataControlRowType.DataRow:
 DataRowView myDataRowView = (DataRowView)e.Row.DataItem;
 if (Convert.ToInt32(myDataRowView["NumberOfReviews"]) > 0)
 {
 LinkButton deleteLink = e.Row.FindControl("DeleteLink") as LinkButton;
 if (deleteLink != null)
 {
 deleteLink.Enabled = false;
 }
 }
 break;
 }
}

c15.indd 556 2/21/2014 12:13:27 PM

Handling Events ❘ 557

 7. Save changes to all open files and then request Genres
.aspx in the browser. Notice how for genres that have
reviews attached to them, the Delete link is now disabled,
as shown in Figure 15-8.

How It Works

Although short, this exercise demonstrates a powerful way to
hook into the different events of a control and change the pre-
sentation of the underlying control. To see how it works, take a
look at the modified SQL code first:

SELECT
 Genre.Id, Genre.Name, Genre.SortOrder, COUNT(Review.Id) AS NumberOfReviews
FROM
 Genre LEFT OUTER JOIN
 Review ON Genre.Id = Review.GenreId
GROUP BY
 Genre.Id, Genre.Name, Genre.SortOrder

This modified SQL statement gets all the columns from
the Genre table but introduces a new column, called
NumberOfReviews, which contains the number of reviews
associated with each genre. It does this by executing the SQL
COUNT function against the Id column of the Review table.
The statement uses GROUP BY to group the selected rows
into a set of summary rows by collapsing non-unique rows.
Because the SQL statement is grouped on all unique columns
in the Genre table, you get a unique row including the num-
ber of reviews for each genre row, whether or not reviews are
associated, as shown in Figure 15-9, which displays the result
of this query in SSMS.

When this query is executed, the GridView in the markup of the page makes use of the first three col-
umns, just as it did in the previous version of this page. But you can access the fourth column as well.
You do this in the Code Behind, in the RowDataBound event to be exact, which fires for each row after
the GridView is done binding the data for a specific row:

VB.NET

Protected Sub GridView1_RowDataBound(sender As Object,
 e As GridViewRowEventArgs) Handles GridView1.RowDataBound
 Select Case e.Row.RowType
 Case DataControlRowType.DataRow
 ...
 End Select
End Sub

C#

protected void GridView1_RowDataBound (object sender, GridViewRowEventArgs e)
{

figure 15-8

figure 15-9

c15.indd 557 2/21/2014 12:13:27 PM

558 ❘ Chapter 15 Working With Data — aDvanceD topics

 switch (e.Row.RowType)
 {
 case DataControlRowType.DataRow:
 ...
 }
}

The RowDataBound event gets passed an instance of GridViewRowEventArgs, a class that provides
information about the row and data that are being bound at this stage. One of the properties of this
class is the Row that represents the actual row that is being added to the GridView. This row in turn
contains a RowType enumeration property that you can test to see what kind of row is being added.
This enumeration contains six different members that map directly to the different types of rows the
GridView can contain: DataRow for normal and alternating rows, EmptyDataRow for empty data rows,
Header and Footer for the header and footer rows that are placed at the top and bottom, Pager for the
pager bar, and Separator for rows separating the data items in the grid. Because you need to change
the appearance of an actual data row, the code in the Case block only fires for normal and alternating
rows.

Inside the Case block, the following code is executed:

VB.NET

Dim myRowView As DataRowView = CType(e.Row.DataItem, DataRowView)
If Convert.ToInt32(myRowView("NumberOfReviews")) > 0 Then
 Dim deleteLink As LinkButton =
 TryCast(e.Row.FindControl("DeleteLink"), LinkButton)
 If deleteLink IsNot Nothing Then
 deleteLink.Enabled = False
 End If
End If

C#

DataRowView myDataRowView = (DataRowView)e.Row.DataItem;
if (Convert.ToInt32(myDataRowView["NumberOfReviews"]) > 0)
{
 LinkButton deleteLink = e.Row.FindControl("DeleteLink") as LinkButton;
 if (deleteLink != null)
 {
 deleteLink.Enabled = false;
 }
}

The DataItem property contains a reference to the data item object that is being bound. When
you are using a SqlDataSource control, the DataItem is presented as a DataRowView, a .NET
object that encapsulates a row returned from the database. The DataItem is therefore cast to a
DataRowView object and then it’s indexed — using myRowView("NumberOfReviews") in VB.NET and
myRowView["NumberOfReviews"] in C# — to get the count of reviews from the NumberOfReviews col-
umn. If the count is larger than zero, it means reviews are associated with this genre and the Delete link
must be disabled. Earlier you converted the CommandField to a template field, which added an explicit
declaration for the Delete link in your code:

<asp:LinkButton ID="DeleteLink" runat="server" CausesValidation="False"
 CommandName="Delete" Text="Delete"></asp:LinkButton>

c15.indd 558 2/21/2014 12:13:27 PM

Handling Events ❘ 559

Using FindControl on the row that is being data bound, you can then get a reference to the Delete
link, convert it to a proper LinkButton, and set its Enabled property to False. Because this code is
also called when a row in the GridView is in Edit mode (by clicking the Edit link), you need to check
if deleteLink is null (Nothing in VB.NET) or not. In case you’re editing, the GridView row does not
contain the DeleteLink (because the EditItemTemplate is active, and not the ItemTemplate) and
therefore FindControl returns null.

When you disable a LinkButton by setting Enabled to False as in this example, ASP.NET applies a
CSS class of aspNetDisabled:

Delete

You can then style this disabled link with the CSS class (which you find in Management.css that you
added earlier) and give it a gray color:

a.aspNetDisabled
{
 color : #CCC;
}

If you’re using Model Binding instead of a SqlDataSource control, you can accomplish the same
functionality with this GetData method:

VB.NET

Public Function GridView1_GetData() As IQueryable
 Dim myEntities As New PlanetWroxEntities()
 Return From genre in myEntities.Genres.Include("Reviews")
 Order By genre.Name
 Select genre
End Sub

C#

public IQueryable<Genre> GridView1_GetData()
{
 PlanetWroxEntities myEntities = new PlanetWroxEntities();
 return from genre in myEntities.Genres.Include("Reviews")
 orderby genre.Name
 select genre;
}

This selects each Genre along with its associated Reviews. You can then get the Count of the
Reviews and use that in the Markup to disable the Delete button like this:

<asp:LinkButton ID="DeleteLink" runat="server" CausesValidation="False"
 CommandName="Delete" Text="Delete" Enabled='<%# Item.Reviews.Count > 0 %>'>
</asp:LinkButton>

Note that this code selects all reviews from the database as well, so it’s not very efficient. As an
alternative, you could select an anonymous object that contains the Genre’s Id and Name properties,
as well as a total count of all the reviews. This in turn also means you need to implement your own
paging and sorting mechanism in the code behind using LINQ’s Skip and Take methods as Model
Binding cannot do that for you automatically with anonymous objects, or you could disable sorting
and paging of the GridView.

c15.indd 559 2/21/2014 12:13:27 PM

560 ❘ Chapter 15 Working With Data — aDvanceD topics

By disabling the delete button, you can easily prevent errors that may occur when you try to delete
a genre that has associated reviews. However, you may not always be able to prevent an error from
occurring during a CRUD operation against a data source control. For example, you may try to
delete a genre that initially didn’t have any reviews attached. But imagine that right before you
try to delete the genre, somebody else inserts a new review for it. When you then try to delete the
genre you’ll get an error because the genre is now linked to a review. In such cases, the data source
controls enable you to diagnose the error that occurred and then take the necessary measures, like
providing feedback to the users informing them that their CRUD operation didn’t succeed.

handling errors that occur in the
data source Controls

In Chapter 18 you see a lot more about recognizing and handling errors that occur in your ASP
.NET pages. That chapter demonstrates how to catch errors that may occur in your code, and then
handle them by logging them or by informing the user. But because the data source controls expose
error information as well, it’s interesting to look at data access errors in this chapter.

The SqlDataSource control (and other data source controls as well)
give you information about errors (exceptions in .NET parlance)
that may occur during one of the four CRUD operations.
With the SqlDataSource control, all four events accept an instance
of SqlDataSourceStatusEventArgs. Figure 15-10 shows these three
EventArgs classes and their properties.

This class has two important properties: Exception and
ExceptionHandled. The first contains the actual exception that occurred
or Nothing (in VB.NET) or null (in C#) when everything goes according
to plan and no error occurs. You can examine this error and take
appropriate action. For example, you can inform the user that something
went terribly wrong, or you can send an e-mail to the site’s webmaster
informing her about the error so appropriate follow-up action can
be taken.

If you decide to handle the error in the event handler of the data source control, you should set the
ExceptionHandled property of the object to True. This signals to the ASP.NET run time that you
are aware of the exception and have dealt with it adequately. If you omit setting this property, the
run time forwards the exception, which is eventually displayed to the user.

In the following exercise, you see how to make use of the SqlDataSourceStatusEventArgs class in
the Genres.aspx page. Rest assured, you can apply the exact same principles from this section to
events that are raised by the other data source control as well.

trY it out Handling Errors When Deleting Rows

In this Try It Out you see how to deal with exceptions that occur in a GridView when deleting
rows. You’ll temporarily comment out the code that disables the Delete link so you can try to delete
genres with associated reviews. The code then displays an error message when a user tries to delete a
genre that still has reviews attached to it. This exercise mainly serves to demonstrate how to handle

figure 15-10

c15.indd 560 2/21/2014 12:13:27 PM

Handling Events ❘ 561

exceptions that may be thrown by the data source controls. From an end user’s perspective, disabling
the Delete link when it’s not appropriate, as you did in an earlier exercise, should take care of the prob-
lem in most circumstances, but someone else could still insert a new review before you try to delete a
genre. The best way to handle this is to combine both solutions: You disable links that are not avail-
able, and handle an error gracefully in case someone else has created a review for a genre you just tried
to delete.

 1. Open Genres.aspx from the Management folder.

 2. Switch to Design View and from the Toolbox drag a Label control onto the GridView. This
places the Label that will hold an error message above the GridView. Change the ID of the
Label to ErrorMessage and clear its Text property. (Right-click the Text property label in the
Properties Grid and choose Reset. This removes the entire Text property and its value from the
control’s markup.) Set its CssClass to ErrorMessage. Finally, set its EnableViewState property
to false to ensure the label doesn’t maintain its text after postbacks. You should end up with this
code:

<asp:Label ID="ErrorMessage" runat="server" CssClass="ErrorMessage"
 EnableViewState="false"></asp:Label>
<asp:GridView ID="GridView1" runat="server" AllowPaging="True"

 3. Open the Management.css file from the Management theme folder and add the following rule set:

.ErrorMessage
{
 color: Red;
 font-weight: bold;
}

 4. Switch back to Genres.aspx, make sure the page is in Design View, and click the SqlDataSource
control once to select it. Then open its Properties Grid, switch to the Events tab, and set up an
event handler for the Deleted event by double-clicking the event name in the list of events.

 5. At the top of the Code Behind, add the following namespace to bring the SqlException class into
scope:

VB.NET

Imports System.Data.SqlClient

C#

using System.Data.SqlClient;

 6. Inside the event handler that VS added for you in step 4, write the following code:

VB.NET

Protected Sub SqlDataSource1_Deleted(sender As Object,
 e As SqlDataSourceStatusEventArgs) Handles SqlDataSource1.Deleted
 If e.Exception IsNot Nothing AndAlso TypeOf (e.Exception) Is SqlException Then
 Dim myException As SqlException = CType(e.Exception, SqlException)
 If myException.Number = 547 Then
 ErrorMessage.Text = "Sorry, you can't delete this genre because " &
 "it has associated reviews that you need to delete first."
 e.ExceptionHandled = True

c15.indd 561 2/21/2014 12:13:28 PM

562 ❘ Chapter 15 Working With Data — aDvanceD topics

 End If
 End If
End Sub

C#

protected void SqlDataSource1_Deleted(object sender,
 SqlDataSourceStatusEventArgs e)
{
 if (e.Exception != null && e.Exception is SqlException)
 {
 SqlException myException = (SqlException)e.Exception;
 if (myException.Number == 547)
 {
 ErrorMessage.Text = @"Sorry, you can't delete this genre because
 it has associated reviews that you need to delete first.";
 e.ExceptionHandled = true;
 }
 }
}

 7. Comment out the code that you added in the previous Try It Out to stop the Delete link from
being disabled. For this exercise it’s enough to just comment out the line that disables the link:

VB.NET

' deleteLink.Enabled = False

C#

// deleteLink.Enabled = false;

If you wanted to remove this functionality completely, you could remove the entire event handler.
In that case, don’t forget to remove the handler from the GridView’s markup in C# as well.

 8. Save all your changes and then press Ctrl+F5 to open Genres.aspx in your browser. Try deleting
a genre that you know has associated reviews, such as Rap and Hip-Hop. Instead of deleting the
genre, the ASPX page now presents you with the error that is displayed above the GridView in
Figure 15-11.

figure 15-11

If the error message doesn’t appear in red, press Ctrl+F5 to force a fresh copy of the Management
theme’s style sheet.

 9. Click the Manage Reviews menu item in the Management menu and then select the Rap and Hip-
Hop genre from the drop-down list. Delete the reviews in the genre, or edit them and reassign
them to a different genre.

c15.indd 562 2/21/2014 12:13:28 PM

Handling Events ❘ 563

 10. Click the Genres menu item in the Management menu and try deleting the Rap and Hip-Hop
genre again. This time the genre is successfully deleted from the database.

 11. To see the error you would get without this error handling, comment out the line in the Code
Behind that sets ExceptionHandled to True. Save your changes, open the page again in your
browser, and try to delete a genre with reviews. You’ll get a detailed ASP.NET error instead,
shown in Figure 15-12.

figure 15-12

Notice how this error is almost identical to the one you got near the end of Chapter 12 when
you tried to delete a genre manually. Don’t forget to enable both lines you commented out in this
exercise when you’re done, so links are disabled when appropriate and you still get a friendly error
message when the genre can’t be deleted.

How It Works

When you click the Delete link in the GridView visible in Figure 15-11, the GridView triggers the
Delete command on the associated SqlDataSource control. As you have seen in previous chapters,
this control tries to send a DELETE statement to the database. The database then tries to delete the
requested genre from the database, but finds out that it can’t because the genre has related reviews. This
results in a foreign key constraint error, which means the genre cannot be deleted because its ID is used
as a foreign key in another table.

This foreign key constraint error is then returned from the database and eventually ends up in the
Exception property of the e argument of the SqlDataSource1_Deleted handler. The code then checks
if there was an error (e.Exception is not Nothing/null) and checks the type of the exception to find
out whether it’s a SqlException:

VB.NET

If e.Exception IsNot Nothing AndAlso _
 TypeOf (e.Exception) Is SqlException Then
 ...
End If

C#

if (e.Exception != null && e.Exception is SqlException)
{
 ...
}

When you are working with a SQL Server database, as is the case in the Planet Wrox example, the errors
thrown by the database are of type SqlException from the System.Data.SqlClient namespace that
you imported in this exercise. This enables you to clearly separate database errors from other errors.

c15.indd 563 2/21/2014 12:13:28 PM

564 ❘ Chapter 15 Working With Data — aDvanceD topics

When SQL Server throws an error, it also passes an error number, which is stored in the Number prop-
erty of the exception. To access that number, you need to cast the exception to a true SqlException,
which you do with this code:

VB.NET

Dim myException As SqlException = CType(e.Exception, SqlException)

C#

SqlException myException = (SqlException)e.Exception;

Finally, the code checks the Number property. When it is 547, it means that SQL Server threw a foreign
key constraint error to indicate you cannot delete a genre because it still has associated reviews. When
this is the case, the Label control’s Text property is set, and finally the code sets e.ExceptionHandled
to True. This tells the ASP.NET run time that the error has been dealt with, so the user won’t get a
nasty error page, but a nice and friendly error message at the top of the GridView instead. Note that for
all other types of exceptions, the user still gets the default ASP.NET error message screen, also called
the Yellow Screen of Death. Chapter 18 teaches you some techniques to log the error in a central loca-
tion and present the user with a friendly, human-readable error page instead.

The number 547 seems to be arbitrarily chosen, but it’s the number that SQL Server returns for a for-
eign key constraint exception. In Chapter 18, which deals with debugging, you learn a few tricks that
enable you to look into the exceptions that are thrown so you can diagnose the Number property for
different kinds of exceptions.

In the past few chapters you have seen many examples of accessing a database using one of the
built-in data controls such as the SqlDataSource. Useful and quick to use as they are, they are not
suitable for every situation. In cases where they don’t fit, you can always hand-code your pages, as
you see how to do next.

hand-Coding data aCCess Code

The biggest issue I often have with the data controls is the amount of markup that they require.
Although, for example, the ListView generates most of the code for you when associated with a
data source control, you still end up with a lot of code in the page. This makes it cumbersome and
time-consuming to make a lot of modifications to this control. Another issue with these controls is
that often you find yourself defining almost identical markup twice: once for an Insert template and
once for an Edit template. The final issue I often encounter when working with the data controls is
that I do not have complete control over the markup they create. This can make it difficult sometimes
to create fancy and complex pages with multiple levels of bound drop-down controls, AJAX
UpdatePanel controls, image uploads, and more. To overcome these issues, you can hand-code your
pages, which gives you full control over the markup in the page and the code in the Code Behind.

Hand-coding isn’t as difficult as it seems and you do get a lot of flexibility in return for the extra
effort. Though the actual process differs from page to page, here’s a general description of the steps
you need to carry out to hand-code an Add/Edit page that enables you to enter a new or update an
existing item in the database with the same markup:

c15.indd 564 2/21/2014 12:13:28 PM

Hand-Coding Data Access Code ❘ 565

➤➤ Create the user interface by adding a number of controls, such as TextBox and
DropDownList, to a page that enables users to enter new and update existing data.

➤➤ Add validation controls to the page so users are required to enter valid data.

➤➤ In the Code Behind, figure out whether you’re creating a new or editing an existing item.
You can make the distinction by looking at the query string, for example. When you’re
editing an existing item, you get it from the data source and prepopulate the form controls.

➤➤ Handle the Save button to insert or update the item. When you’re updating an existing item,
you should get the item from the database first and then overwrite the existing values with
the new ones from the form. Finally, save the items back to the data store.

In the next Try It Out you build a page that implements this process.

Note In the next exercise, you hand-code the user interface and use the
ADO.NET Entity Framework to handle all data access for you. It’s also
common to hand-code the interaction with the database using ADO.NET
classes such as classes that inherit from DbConnection, DbCommand, and
DbDataReader. Although hand-coding the interaction with the database
requires a lot more code, it also gives you greater control and more flexibility.
Get yourself a copy of Wrox’s Professional ASP.NET 4.5 in C# and VB (ISBN:
978-1-118-31182-0) for a deeper dive into ADO.NET.

trY it out Hand-Coding Data Access Pages

In this exercise you create a new version of the AddEditReview.aspx page to replace the existing one
that currently uses a DetailsView to handle the insert and update process. In the new page you add
form controls to enter the review’s title, summary, body, and genre and whether or not it’s authorized.
In the Code Behind of the page you work with the PlanetWroxEntities class to handle all data access
code. To keep the exercise short you won’t be adding any validation controls. However, with the knowl-
edge you gained from Chapter 9, you know what to do to make this page accept valid data only.

 1. Start by adding a standard Web Form (don’t use your custom template) using Code Behind to the
Management folder of your site and call it AddEditReviewHandCoded.aspx. Base the page on the
Management master page and give it a meaningful title.

 2. Switch to Design View, choose Table ➪ Insert Table, and insert a table of six rows and two
columns. Add controls to the cells of the HTML table and set their properties according to this
table:

roW Column 1 Column 2

1 Add a Label control

Text: Title

Add a TextBox control

ID: TitleText

Width: 450px

continues

c15.indd 565 2/21/2014 12:13:28 PM

566 ❘ Chapter 15 Working With Data — aDvanceD topics

roW Column 1 Column 2

2 Add a Label control

Text: Summary

Add a TextBox control

ID: SummaryText

Width: 450px

TextMode: MultiLine

3 Add a Label control

Text: Body

Add a TextBox control

ID: BodyText

Width: 450px

TextMode: MultiLine

4 Add a Label control

Text: Genre

Add a DropDownList control

ID: GenreList

DataTextField: Name

DataValueField: Id

5 Add a Label control

Text: Authorized

Add a CheckBox control

ID: Authorized

6 Leave this cell empty Add a Button control

ID: SaveButton

Text: Save

When you’re done, your page looks similar to Figure 15-13.

 (continued)

figure 15-13

c15.indd 566 2/21/2014 12:13:28 PM

Hand-Coding Data Access Code ❘ 567

 3. Next, set up the SelectMethod for the DropDownList control and call the method GenreList_
GetData. Your control should look like this:

<asp:DropDownList ID="GenreList" runat="server" DataTextField="Name"
 DataValueField="Id" SelectMethod="GenreList_GetData">
</asp:DropDownList>

Then switch to the Code Behind and implement the GetData method as follows:

VB.NET

Public Function GenreList_GetData() As IEnumerable(Of Genre)
 Using myEntities As New PlanetWroxEntities()
 Return (From genre in myEntities.Genres
 Order By Genre.SortOrder
 Select genre).ToList()
 End Using
End Function

C#

public IEnumerable<Genre> GenreList_GetData()
{
 using (PlanetWroxEntities myEntities = new PlanetWroxEntities())
 {
 return (from genre in myEntities.Genres
 orderby genre.SortOrder
 select genre).ToList();
 }
}

 4. The next step is to write some code that gets an existing Review from the database in case the
user is editing an item. The page assumes you are editing an item when the query string contains
the item’s ID. If it doesn’t, it assumes you are creating a new review.

To set up the code, double-click the gray and read-only area of the page in Design View to set up
a handler for the Page’s Load event, and then add the following bold code. Don’t forget the _id
variable outside Page_Load but inside the class definition.

VB.NET

Partial Class Management_AddEditReviewHandCoded
 Inherits System.Web.UI.Page

 Dim _id As Integer = -1

 ' GenreList_GetData goes here

 Protected Sub Page_Load(sender As Object, e As EventArgs) Handles Me.Load
 If Not String.IsNullOrEmpty(Request.QueryString.Get("Id")) Then
 _id = Convert.ToInt32(Request.QueryString.Get("Id"))
 End If
 If Not Page.IsPostBack And _id > -1 Then
 Using myEntities As New PlanetWroxEntities()
 Dim review = (From r In myEntities.Reviews
 Where r.Id = _id
 Select r).SingleOrDefault()

c15.indd 567 2/21/2014 12:13:29 PM

568 ❘ Chapter 15 Working With Data — aDvanceD topics

 If review IsNot Nothing Then
 TitleText.Text = review.Title
 SummaryText.Text = review.Summary
 BodyText.Text = review.Body
 GenreList.DataBind()
 Dim myItem As ListItem =
 GenreList.Items.FindByValue(review.GenreId.ToString())
 If myItem IsNot Nothing Then
 myItem.Selected = True
 End If
 Authorized.Checked = review.Authorized
 End If
 End Using
 End If
 End Sub
End Class

C#

public partial class Management_AddEditReviewHandCoded : System.Web.UI.Page
{
 int _id = -1;
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!string.IsNullOrEmpty(Request.QueryString.Get("Id")))
 {
 _id = Convert.ToInt32(Request.QueryString.Get("Id"));
 }
 if (!Page.IsPostBack && _id > -1)
 {
 using (PlanetWroxEntities myEntities = new PlanetWroxEntities())
 {
 var review = (from r in myEntities.Reviews
 where r.Id == _id
 select r).SingleOrDefault();
 if (review != null)
 {
 TitleText.Text = review.Title;
 SummaryText.Text = review.Summary;
 BodyText.Text = review.Body;
 GenreList.DataBind();
 ListItem myItem =
 GenreList.Items.FindByValue(review.GenreId.ToString());
 if (myItem != null)
 {
 myItem.Selected = true;
 }
 Authorized.Checked = review.Authorized;
 }
 }
 }
 }
 // GenreList_GetData goes here
}

c15.indd 568 2/21/2014 12:13:29 PM

Hand-Coding Data Access Code ❘ 569

If you don’t feel like typing all this code, remember you can find a copy of it in the Chapter 15
folder of the source (in the Source folder and not in the Resources folder) for this book that you
can download from www.wrox.com. However, in real-world applications you typically need to
type this code, so rather than copying and pasting it now, you’re better off finding the most effi-
cient way to enter code like this, letting IntelliSense do most of the work for you.

 5. Switch back to Design View and double-click the Save button to set up a handler for the Button
control’s Click event. Then back in the Code Behind, add the following code to that handler:

VB.NET

Protected Sub SaveButton_Click(sender As Object, e As EventArgs) _
 Handles SaveButton.Click
 Using myEntities As New PlanetWroxEntities()
 Dim myReview As Review
 If _id = -1 Then ' Insert new item
 myReview = New Review()
 myReview.CreateDateTime = DateTime.Now
 myReview.UpdateDateTime = myReview.CreateDateTime
 myEntities.Reviews.Add(myReview)
 Else ' update existing item
 myReview = (From r In myEntities.Reviews
 Where r.Id = _id
 Select r).Single()
 myReview.UpdateDateTime = DateTime.Now
 End If

 myReview.Title = TitleText.Text
 myReview.Summary = SummaryText.Text
 myReview.Body = BodyText.Text
 myReview.GenreId = Convert.ToInt32(GenreList.SelectedValue)
 myReview.Authorized = Authorized.Checked

 myEntities.SaveChanges()
 Response.Redirect("Reviews.aspx")
 End Using
End Sub

C#

protected void SaveButton_Click(object sender, EventArgs e)
{
 using (PlanetWroxEntities myEntities = new PlanetWroxEntities())
 {
 Review myReview;
 if (_id == -1) // Insert new item
 {
 myReview = new Review();
 myReview.CreateDateTime = DateTime.Now;
 myReview.UpdateDateTime = myReview.CreateDateTime;
 myEntities.Reviews.Add(myReview);
 }
 else // update existing item
 {
 myReview = (from r in myEntities.Reviews
 where r.Id == _id
 select r).Single();

c15.indd 569 2/21/2014 12:13:29 PM

http://www.wrox.com

570 ❘ Chapter 15 Working With Data — aDvanceD topics

 myReview.UpdateDateTime = DateTime.Now;
 }

 myReview.Title = TitleText.Text;
 myReview.Summary = SummaryText.Text;
 myReview.Body = BodyText.Text;
 myReview.GenreId = Convert.ToInt32(GenreList.SelectedValue);
 myReview.Authorized = Authorized.Checked;

 myEntities.SaveChanges();
 Response.Redirect("Reviews.aspx");
 }
}

 6. Open the Reviews.aspx file from the Management folder and change the two occurrences
of AddEditReview.aspx to AddEditReviewHandCoded.aspx. You should find one in the
HyperLinkField for the Title and one in the Insert New Review link at the bottom.

 7. Save all pending changes by pressing Ctrl+Shift+S. Then right-click the
AddEditReviewHandCoded.aspx page in the Solution Explorer and choose View in Browser.
You should see a screen that enables you to insert a new review, as shown in Figure 15-14, which
shows the page in Opera 12.

figure 15-14

 8. Enter a new review, choose a genre, and click the Save button. You’re taken to the Reviews
page again. Open your genre, locate your review, and click its title. You’re taken to
AddEditReviewHandCoded.aspx, where all form controls should already be filled in, ready to be
edited.

How It Works

You actually coded quite a lot in this exercise and didn’t use many of the ready-made controls, other
than those to let the user enter some details and to create the list of genres. Although hand-coding
often means more work, you do gain a lot of flexibility, and — when you do it right — you end up
with a page that’s a lot easier to maintain. In this example, the markup section of the page is much
easier to maintain than the previous version that used a DetailsView. Gone are the endless attri-
butes on the controls, gone is the duplication that existed between the InsertItemTemplate and the

c15.indd 570 2/21/2014 12:13:29 PM

Hand-Coding Data Access Code ❘ 571

EditItemTemplate, and gone is the awkward code to handle the UpdateDateTime in the Code Behind.
What remains is a simple table-based presentation of the necessary form controls. Just like the Contact
form you created in Chapter 9, it’s easy to modify this page, add validation controls from Chapter 9,
and use CSS to change the appearance of the page.

Next up is the code in the Code Behind. I’ll discuss saving the form for a new review in the database
first. After that I’ll show you how to load an existing review from the database and prepopulate
the form.

When you fill in the form’s controls and click the Save button, the code in the SaveButton_Click
method fires. This code first creates a new PlanetWroxEntities object with a using block to enable
you to interact with the database through EF. Then when the _id variable does not contain an ID of an
existing review (you see how the ID is retrieved later), a new Review instance is created and added to
the Reviews collection of the entities object. This would be the case when you are creating a brand new
review using the Insert New Review link.

VB.NET

myReview = New Review()
myReview.CreateDateTime = DateTime.Now
myReview.UpdateDateTime = myReview.CreateDateTime
myEntities.Reviews.Add(myReview)

C#

myReview = new Review();
myReview.CreateDateTime = DateTime.Now;
myReview.UpdateDateTime = myReview.CreateDateTime;
myEntities.Reviews.Add(myReview);

Because the review needs a CreateDateTime and an UpdateDateTime, this code sets both. Notice how
the UpdateDateTime is filled with the CreateDateTime so both contain the exact same date and time,
indicating the item hasn’t been modified yet.

If the _id variable did contain a review ID (which means an existing review is being edited and saved),
it’s queried from the database with a LINQ to Entities query:

VB.NET

myReview = (From r In myEntities.Reviews
 Where r.Id = _id
 Select r).Single()
myReview.UpdateDateTime = DateTime.Now

C#

myReview = (from r in myEntities.Reviews
 where r.Id == _id
 select r).Single();
myReview.UpdateDateTime = DateTime.Now;

Whether or not an ID was passed to this page, at this stage the myReview variable contains a Review
instance. The remaining code then fills the review’s properties by retrieving them from the relevant
form controls. For the genre, the code directly assigns the GenreId property instead of querying a com-
plete Genre instance and assigning it to the Genre property of the Review instance. This works because
the model has support for foreign key columns, as you learned in the preceding chapter.

c15.indd 571 2/21/2014 12:13:29 PM

572 ❘ Chapter 15 Working With Data — aDvanceD topics

Finally, when the object is fully set up, the code calls SaveChanges on the PlanetWroxEntities object.
This eventually sends a SQL INSERT or UPDATE instruction to the database to tell it to insert a new or
update the existing Review row. Just as with the data source control, calling SaveChanges may throw
an error. Chapter 18 digs deeper into handling errors that may occur in your code. After SaveChanges
has been called, the user is redirected to the Reviews.aspx page using Response.Redirect:

VB.NET

myEntities.SaveChanges()
Response.Redirect("Reviews.aspx")

C#

myEntities.SaveChanges();
Response.Redirect("Reviews.aspx");

Obviously, once you’ve saved a review in the database, you can edit it again. Once you click one of the
existing reviews in the reviews list at Reviews.aspx, you’re taken to the Add/Edit page with the ID
of the review in the query string. For example, browsing to http://localhost:1049/Management/
AddEditReviewHandCoded.aspx?Id=6 enables me to edit the Death Magnetic album by Metallica. The
page is able to detect the ID in the query string using this code in Page_Load:

VB.NET

If Not String.IsNullOrEmpty(Request.QueryString.Get("Id")) Then
 _id = Convert.ToInt32(Request.QueryString.Get("Id"))
End If

C#

if (!string.IsNullOrEmpty(Request.QueryString.Get("Id")))
{
 _id = Convert.ToInt32(Request.QueryString.Get("Id"));
}

Because this _id variable is assigned a value in Page_Load, it can be used to load an existing item
to display in the form, but also to get the item from the database in the SaveButton’s Click event
(which you saw earlier).

If there is an ID (_id is assigned a value other than -1) and the page is not posted back, the
code sets up a new PlanetWroxEntities instance inside a using block and queries the Review
instance using the following LINQ to Entities query:

VB.NET

Dim review = (From r In myEntities.Reviews
 Where r.Id = _id
 Select r).SingleOrDefault()

C#

var review = (from r in myEntities.Reviews
 where r.Id == _id
 select r).SingleOrDefault();

c15.indd 572 2/21/2014 12:13:29 PM

http://localhost:1049/Management/AddEditReviewHandCoded.aspx?Id=6
http://localhost:1049/Management/AddEditReviewHandCoded.aspx?Id=6

Hand-Coding Data Access Code ❘ 573

Once the Review instance is found in the database, its properties are used to prepopulate the form
controls:

VB.NET

If review IsNot Nothing Then
 TitleText.Text = review.Title
 SummaryText.Text = review.Summary
 BodyText.Text = review.Body
 GenreList.DataBind()
 Dim myItem As ListItem = GenreList.Items.FindByValue(review.GenreId.ToString())
 If myItem IsNot Nothing Then
 myItem.Selected = True
 End If
 Authorized.Checked = review.Authorized
End If

C#

if (review != null)
{
 TitleText.Text = review.Title;
 SummaryText.Text = review.Summary;
 BodyText.Text = review.Body;
 GenreList.DataBind();
 ListItem myItem = GenreList.Items.FindByValue(review.GenreId.ToString());
 if (myItem != null)
 {
 myItem.Selected = true;
 }
 Authorized.Checked = review.Authorized;
}

The code checks to make sure review is not Nothing/null before it tries to access its properties.
The chances of the review being null in this example are pretty small because you access the
Add/Edit page by clicking an existing item in the Reviews page, so you can be pretty sure the item
is there. However, this is not always the case, especially not in public-facing pages. Your clients
may have a bookmark for a page with a specific ID in the query string. If you then delete that item
from the database and your users access the page using the old bookmark, the review can’t be
found and a so-called Null Reference exception occurs.

The same defensive coding mechanism is used to preselect the genre in the drop-down list. In this
case you can be sure the Genre still exists in the database because there’s a relationship between
the Id column of the Genre table and the GenreId of the Review table. However, checking to
make sure an item exists in a DropDownList control before you try to select it is a best practice
and helps in avoiding other Null Reference exceptions. Because the DropDownList with genres
hasn’t been populated at this stage, you need to call DataBind() first. This forces the control to
get the genres using its SelectMethod. Afterward, the code can successfully find and preselect the
appropriate item.

Finally, when you click the Save button for an edited item, the exact same code is fired that was
used to insert a new item.

c15.indd 573 2/21/2014 12:13:29 PM

574 ❘ Chapter 15 Working With Data — aDvanceD topics

If you were using validation controls (and you really should, as you learned in Chapter 9),
you need to check whether or not the page is valid before you proceed with saving the Review
instance:

VB.NET

Protected Sub SaveButton_Click(sender As Object, e As EventArgs) _
 Handles SaveButton.Click
 If (Page.IsValid) Then
 Using myEntities As New PlanetWroxEntities()

C#

protected void SaveButton_Click(object sender, EventArgs e)
{
 if (Page.IsValid)
 {
 using (PlanetWroxEntities myEntities = new PlanetWroxEntities())

This is really all there is to adding and editing new reviews using your own code against the Entities
Framework. I realize it may look a little funky at first because you need to reset your head, forget about
smart controls and their many properties and events, and think in straight code. However, EF makes
this pretty straightforward, and most of it comes down to querying entities, copying values from or to
an object’s properties, and calling SaveChanges to propagate the changes back to the database.

Clearly, this is just the beginning. There’s a whole lot more you can do once you start writing your own
code, whether or not it targets EF. For more information, get yourself a copy of Programming Entity
Framework Second Edition by Julia Lerman or Professional ASP.NET 4.5 in C# and VB from Wrox
(ISBN: 978-1-118-31182-0).

In all the database examples you have seen so far, the code accesses the database for each and every
request. Every time some data needs to be displayed, it’s retrieved fresh from the database. Clearly,
this can be a waste of time and resources like network bandwidth and CPU cycles, especially if
the data hasn’t changed since the last time you accessed it. In the final section of this chapter,
you are introduced to a technique called caching that can greatly improve the responsiveness and
performance of your application.

CaChing

Caching is one of the best and often easiest ways to improve the performance of an application.
It’s also an option that is too often overlooked by developers. With caching, a copy of your data is
stored in a location that can be accessed very quickly. The idea with caching is that fetching data
from the cache should be faster than regenerating it or fetching it from the original data source.
Therefore, most caching solutions store data in memory, which is usually the fastest way to get the
data. The .NET cache is no exception, and enables you to store frequently accessed data in a special
location in the computer’s memory.

Typically, the caching principle takes the route displayed in Figure 15-15.

c15.indd 574 2/21/2014 12:13:29 PM

Caching ❘ 575

The application queries for some data — for example, a list of genres from the database. Instead of
accessing the database directly, the cache is examined to see if it already contains the requested data.
If it does, the data is returned from the cache directly. If it’s not stored in the cache yet, it is retrieved
from the data source (such as a SQL Server database), a copy of the data is stored in the cache for
later retrieval, and finally, the data is returned to the calling code.

Although caching is generally a great solution to improve your application, it has a few drawbacks
that you need to be aware of. The following section explains a few common pitfalls you can run
into when using caching. The section after that shows the different caching mechanisms you have
available in your ASP.NET web applications.

Common pitfalls with Caching data
When working with cached data you typically encounter two common problem areas:

➤➤ You end up with stale — or out-of-date — data.

➤➤ You assume an item is present in the cache when it isn’t.

In the next sections you see how to avoid these two problems.

Avoiding Stale Data
Stale data is cached data that no longer matches its original source. For example, when you cache
the results of a query for all the genres in the database and use that data instead of getting it fresh
from the database, a new genre inserted by another user may go unnoticed.

figure 15-15

Request
for data

Data in
cache?

Return data from
the cache Return data

Get data from
source and store it

in the cache

Yes

No

c15.indd 575 2/21/2014 12:13:30 PM

576 ❘ Chapter 15 Working With Data — aDvanceD topics

To avoid stale data you need a way to invalidate the cache. With cache invalidation, an item is
removed from the cache so it can be re-created on the next request. To invalidate cached data, you
have a number of options at your disposal. First of all, you can choose to set a short cache duration.
For example, you could cache the Genres list for, say, 10 minutes. If another user inserts a new
genre during those 10 minutes, it won’t show up in your pages. However, after 10 minutes, the list is
removed from the cache and re-created with fresh data the next time it is requested. You see how to
use time-based caching later.

Another option to invalidate the cache is by using a cache dependency. With a cache dependency,
you create a relationship between the cached item and the original data source. When the underlying
data source changes, the cached item is invalidated so it can be re-created the next time it is
requested. You see how to use the CacheDependency class later.

You can also use a cache dependency when using a database like Microsoft SQL Server. This means
that as soon as the data that is part of the cached query is changed, the cached item is invalidated.
Database caching and invalidation is an advanced and broad subject. You find more in the chapter
that deals with caching in Professional ASP.NET 4.5 in C# and VB, published by Wrox (ISBN:
978-1-118-31182-0).

Don’t Rely on the Data Being There
To minimize memory consumption for an application, the caching mechanism in ASP.NET
automatically removes old and infrequently used items from the cache from time to time. Also, when
the server is consuming too much memory, items may be ejected from the cache as well. Therefore,
you shouldn’t rely on items being in the cache. They may have been removed by the cache itself when
the ASP.NET run time determined that the item was not used often enough and was thus taking
up precious space unnecessarily. The entire cache is also cleared when the web application or web
server restarts (which happens when you make changes to the Web.config file, for example). But
items can also be removed because of their dependencies. Therefore, you should never rely on the
item being in the cache, even if you set it there yourself earlier in the application’s life cycle. Later in
this chapter you see how to use the Cache API (application programming interface; the way you can
interact with a program) to use the cache programmatically.

Using the Cache API is not the only way to use the cache. The next section shows you the different
ways of caching data in ASP.NET.

different Ways to Cache data in asp.net
Web applications

You can deploy a few different caching strategies in your ASP.NET applications, including output
caching, caching with the built-in data source controls, and programmatic caching. All three
options are discussed in the remainder of this chapter.

Output Caching
With output caching, the end result of a rendered page is cached. This means that the very first
time a page is requested, its final result is added to the cache. Subsequent requests to the same
page result in the same HTML being sent. This last sentence is important enough to be repeated:

c15.indd 576 2/21/2014 12:13:30 PM

Caching ❘ 577

Subsequent requests to the same page result in the same HTML being sent. This means the page is
not processed at the server again, and no custom code in the Code Behind will fire. The exact same
HTML from the first request is simply returned on each subsequent request.

Enabling output caching is extremely simple; just add an OutputCache directive below your Page
directive, as shown in bold under this C# @ Page directive (you use the same code if you’re using
VB.NET, but your @ Page directive may look slightly different):

<%@ Page Title="About this Site" Language="C#"
 MasterPageFile="~/MasterPages/Frontend.master" AutoEventWireup="true"
 CodeFile="Default.aspx.cs" Inherits="About_Default" %>
<%@ OutputCache Duration="60" VaryByParam="None" %>

The Duration is the number of seconds you want to cache the page before ASP.NET creates a new
copy of it. In the preceding example, the page is cached for a minute.

The None value in the VaryByParam attribute tells .NET to cache a single version of the page, no
matter what query string values you pass to it. Although this is fine for relatively static pages like
the About page in the Planet Wrox site, this is typically not an ideal solution for dynamic pages.
Imagine a dynamic page that shows the details for a review based on the query string that is being
passed to the page. The first time you request the page you may browse to something like:

http://localhost:12345/Reviews/ViewDetails.aspx?Id=23

ASP.NET generates a page showing review 23 and then caches the entire output of the page. So
what happens when you then request this page?

http://localhost:12345/Reviews/ViewDetails.aspx?Id=33

Instead of seeing the review with an ID of 33, you end up with the review with an ID of 23! To
overcome this problem, ASP.NET enables you to cache specific versions of a page. For example,
you can instruct the page to cache a copy of the page for each unique query string field that it
retrieves. You do this by setting the VaryByParam attribute of the directive to a comma-separated
list of possible query string or form values. ASP.NET will cache a copy of the page for each unique
combination of the fields it finds. As an example, consider a page that accepts the ID of a review in
the query string and then displays its details. To cache a copy for each unique review, you add Id to
the VaryByParam attribute like this:

<%@ OutputCache Duration="60" VaryByParam="Id" %>

For a page showing the details of a specific review, this is perfect. For each unique review, ASP.NET
keeps a cached copy. This means that the database will only be hit when the review is not present in
the cache. All other requests will be served from the cache.

One of the problems with output caching is that it’s often an all-or-nothing scenario. Although it’s
easy to cache different pages based on, for example, a query string value, you’ll need to write custom
code to handle other situations like dealing with themes. When a page is requested and cached for
the first time, the user’s theme is taken into account. If subsequent users have a different theme set
they still see the page in the originally requested theme. Another case where output caching can be
problematic is when you’re using security-related controls such as the LoginView (discussed in the
next chapter). These controls can display content based on the currently logged-in user. If that page
is cached, other users will see the content that belongs to the first user that requested the page.

c15.indd 577 2/21/2014 12:13:30 PM

http://localhost:12345/Reviews/ViewDetails.aspx?Id=23
http://localhost:12345/Reviews/ViewDetails.aspx?Id=33

578 ❘ Chapter 15 Working With Data — aDvanceD topics

One solution to this problem is to not use output caching at the page level and move content that
applies to all users to a separate user control, which you then embed in the page as you saw how
to do with the Contact Form. For example, a list with news articles or the full list of reviews could
be the same for all users. If you move the code for these lists to a user control with output caching
enabled, your containing page is still created separately for each user, but the content from the user
control is only generated the first time, and then reused for all subsequent requests.

Another solution is to instruct the data source controls to cache data for you, as you see in the next
section.

If you’re not affected by the drawbacks of output caching (such as when you’re not using themes or
the security-related controls), output caching is an excellent mechanism to improve the performance
of your site.

Caching with Data Source Controls
The biggest benefit of caching with the data source controls is that they only cache dynamic,
database-driven data, and not the entire page. That enables you to keep other parts of the page
dynamic, such as a banner module or a personalized greeting welcoming the user. Caching is
supported by design on most of the data source controls, except for the SiteMapDataSource,
LinqDataSource, and EntityDataSource controls.

Caching with the data source controls is very easy: All you need to do is set the EnableCaching
property and then specify a CacheDuration. The following code snippet shows a SqlDataSource
control that caches its data for 10 minutes:

<asp:SqlDataSource ID="SqlDataSource1" runat="server" CacheDuration="600"
 EnableCaching="True"></asp:SqlDataSource>

What’s cool about caching with the data source controls is that they are smart enough to see if you
are making updates to the underlying data. So, when you have set up a SqlDataSource control to
cache data for the SelectCommand for 20 minutes, but then make a change to the data by using
the InsertCommand, UpdateCommand, or DeleteCommand, the cache is invalidated automatically.
This only works when you execute the insert, update, or delete command against the exact same
SqlDataSource. If you have one page that displays and caches a list with reviews (such as
All.aspx, for example) and then have another page that is used to insert a new review (such as
AddEditReview.aspx in the Management folder), this won’t work. After you have inserted a new
review in the Management section of the site, it won’t show up in All.aspx until the cache
has expired.

Code-free caching with the data source controls is useful in many situations. However, the data
source controls cannot be used in every situation. What if you want to cache the results of data you
get from a completely different source? What if you want to cache data you receive in a hand-coded
page targeting the Entity Framework, or the contents of a text or an XML file that you frequently
need to access? For those cases, ASP.NET gives you programmatic access to the cache.

Programmatic Caching
With programmatic caching, you can store items in the cache through VB.NET or C# code.
Obviously, you can also access them again later. To store items, you use the Add or the Insert
method or you index the Cache collection directly. The Add method is quite powerful (and complex)

c15.indd 578 2/21/2014 12:13:30 PM

Caching ❘ 579

and enables you to specify a host of options that determine how long the item is cached, what
priority it should have compared to other cached items, and what factors trigger the item’s removal
from the cache.

The Insert method, on the other hand, is much easier. It has a few short overloads that enable you
to specify the cached item and associate it with a specific key. Another overload also enables you to
define dependencies that can be used to invalidate a cached item when the original source is changed.
This is great for caching files that don’t change very often. You can read a file from disk, and store
it in the cache with a dependency on the original file. You then keep reading the file from the cache
instead of from disk. When the file on disk is changed, the cached item is invalidated automatically
and you can read the original source file again and store it in the cache. The following example shows
how to modify the ContactForm.ascx user control to store and get the item from the cache until it
changes:

VB.NET

If Page.IsValid Then
 Dim mailBody As String = TryCast(Cache("ContactFormMailBody"), String)
 If String.IsNullOrEmpty(mailBody) Then
 Dim fileName As String = Server.MapPath("~/App _ Data/ContactForm.txt")
 mailBody = System.IO.File.ReadAllText(fileName)
 Cache.Insert("ContactFormMailBody", mailBody, New CacheDependency(fileName))
 End If
 mailBody = mailBody.Replace("##Name##", Name.Text)

 ...
End If

C#

if (Page.IsValid)
{
 string mailBody = Cache["ContactFormMailBody"] as string;
 if (string.IsNullOrEmpty(mailBody))
 {
 string fileName = Server.MapPath("~/App _ Data/ContactForm.txt");
 mailBody = System.IO.File.ReadAllText(fileName);
 Cache.Insert("ContactFormMailBody", mailBody,
 new CacheDependency(fileName));
 }
 mailBody = mailBody.Replace("##Name##", Name.Text);

 ...
}

Notice how a new CacheDependency (for which you need to bring the System.Web.Caching
namespace into scope with an Imports/using statement) is created and passed to the Insert
method. This CacheDependency expects the name of the file it is dependent on. As soon as you
change the file on disk (using VS or Notepad, or by overwriting it through FTP, for example), ASP.
NET removes the item from the cache so it will be read from the original source file again the next
time this code is executed.

You remove items from the cache using the Remove method that accepts the key of the cached item.
You define this key when inserting the item, using either Add or Insert.

c15.indd 579 2/21/2014 12:13:30 PM

580 ❘ Chapter 15 Working With Data — aDvanceD topics

To access the items in the cache, you have a few options available. First of all, you can access the
Cache collection directly:

VB.NET

myReview = TryCast(Cache(myKey), Review)

C#

Review myReview = Cache[myKey] as Review;

Here, the Cache collection is indexed using the key stored in the myKey variable.

Additionally, you can use the Get method that expects the key:

VB.NET

myReview = TryCast(Cache.Get(myKey), Review)

C#

myReview = Cache.Get(myKey) as Review;

Because Get is a method, the C# example now also uses parentheses around the cache key, making
both examples look more like each other.

Finally, you can access items in the cache using the Item property that also accepts the key of the
cached item.

All three ways to access items in the cache always return an object or Nothing/null when the item
cannot be found. That means that if you know the type you are getting back from the cache, you
should cast it to the appropriate type using TryCast in VB.NET or the as keyword in C# before you
can use its properties. The previous two examples show you how the item from the cache is cast to a
strongly typed Review object first.

To give you an idea of how to use the cache programmatically, the next exercise shows you how to
insert a review in the cache, so you don’t have to get it from the database every time you need it.

trY it out Using the Cache API

In this Try It Out exercise you see how to cache a Review instance you get from EF using a LINQ to
Entities query so it can be retrieved later by its key (which contains the review’s ID).

 1. Start by adding a new page called ViewDetails.aspx in the Reviews folder of your web
application. Make sure it’s based on your custom template. There’s no need to set an explicit title,
because it will be set programmatically. Instead, remove the Title="" attribute from the Page
directive. There’s a funny and old bug in ASP.NET that causes programmatic modifications to the
page’s Title not to stick when this attribute is set to an empty string in Markup View.

 2. In Markup View, add three Label controls to the cpMainContent content placeholder and name
the controls as follows:

➤➤ TitleLabel

➤➤ SummaryLabel

➤➤ BodyLabel

c15.indd 580 2/21/2014 12:13:30 PM

Caching ❘ 581

Delete the Text attribute and its value from all three labels.

 3. Wrap the TitleLabel label in an <h1> element, and set the CssClass property of the
SummaryLabel control to Summary. You should end up with this code:

<h1><asp:Label ID="TitleLabel" runat="server"></asp:Label></h1>
<asp:Label CssClass="Summary" ID="SummaryLabel" runat="server"></asp:Label>
<asp:Label ID="BodyLabel" runat="server"></asp:Label>

 4. Switch to Design View and double-click the read-only area of the page to set up a handler for
Page_Load.

 5. Add the following code to the Page_Load event handler that has been created for you:

VB.NET

Protected Sub Page_Load(sender As Object, e As EventArgs) Handles Me.Load
 Dim reviewId As Integer = Convert.ToInt32(Request.QueryString.Get("ReviewId"))
 Dim cacheKey As String = "Reviews" + reviewId.ToString()
 Dim myReview As Review = TryCast(Cache(cacheKey), Review)
 If myReview Is Nothing Then
 Using myEntities As New PlanetWroxEntities()
 myReview = (From r In myEntities.Reviews
 Where r.Id = reviewId
 Select r).SingleOrDefault()
 If myReview IsNot Nothing Then
 Cache.Insert(cacheKey, myReview, Nothing, DateTime.Now.AddMinutes(20),
 System.Web.Caching.Cache.NoSlidingExpiration)
 End If
 End Using
 End If

 If myReview IsNot Nothing Then
 TitleLabel.Text = myReview.Title
 SummaryLabel.Text = myReview.Summary
 BodyLabel.Text = myReview.Body
 Title = myReview.Title
 MetaDescription = myReview.Summary
 End If
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 int reviewId = Convert.ToInt32(Request.QueryString.Get("ReviewId"));
 string cacheKey = "Reviews" + reviewId.ToString();
 Review myReview = Cache[cacheKey] as Review;
 if (myReview == null)
 {
 using (PlanetWroxEntities myEntities = new PlanetWroxEntities())
 {
 myReview = (from r in myEntities.Reviews
 where r.Id == reviewId
 select r).SingleOrDefault();

 if (myReview != null)
 {

c15.indd 581 2/21/2014 12:13:30 PM

582 ❘ Chapter 15 Working With Data — aDvanceD topics

 Cache.Insert(cacheKey, myReview, null, DateTime.Now.AddMinutes(20),
 System.Web.Caching.Cache.NoSlidingExpiration);
 }
 }
 }

 if (myReview != null)
 {
 TitleLabel.Text = myReview.Title;
 SummaryLabel.Text = myReview.Summary;
 BodyLabel.Text = myReview.Body;
 Title = myReview.Title;
 MetaDescription = myReview.Summary;
 }
}

 6. Open the page All.aspx from the Reviews folder and delete the GridView that you created in the
previous chapter. Replace it with a simple Repeater control that contains a single HyperLink into
your new details page:

<asp:Content ID="Content2" ContentPlaceHolderID="cpMainContent" runat="Server">
 <asp:Repeater ID="Repeater1" runat="server" ItemType="Review">
 <ItemTemplate>
 <asp:HyperLink ID="HyperLink1" runat="server"
 NavigateUrl='<%# "ViewDetails?ReviewId=" + Item.Id.ToString() %>'
 Text='<%# Item.Title %>'></asp:HyperLink>
 </ItemTemplate>
 <SeparatorTemplate>
</SeparatorTemplate>
 </asp:Repeater>
</asp:Content>

 7. Switch to the Code Behind of the page and replace the last two calls that used the GridView so
they end up using the Repeater control instead:

VB.NET

Repeater1.DataSource = authorizedReviews.ToList()
Repeater1.DataBind()

C#

Repeater1.DataSource = authorizedReviews.ToList();
Repeater1.DataBind();

 8. Add the following CSS declaration to the end of the CSS files for the Monochrome and the
DarkGrey themes. Since this is a front-end page visited by your users, you don’t need to add it to
the Management theme:

.Summary
{
 font-style: italic;
 display: block;
}

 9. Save all changes and then request All.aspx from the Reviews folder in your browser. Click the
title of a review and you’re taken to ViewDetails.aspx with the ID of the requested review
in the query string.

c15.indd 582 2/21/2014 12:13:30 PM

Caching ❘ 583

CoMMoN MIStAKeS If you see an error message about an invalid page title,
make sure you removed Title="" from the Page directive in ViewDetails.
aspx. With the attribute set to an empty string, the title you set in Code Behind
won’t stick, and then your BasePage will raise an exception because the title is
missing.

You should now see the details of the review displayed on the page. Press Ctrl+F5 or Ctrl+R to
refresh the contents of the page. Although you don’t see the difference, the review now comes
from the cache and thus the page saves a trip to the database. If you want to confirm this is really
the case, you can add a Label control to the ViewDetails.aspx page and then update it with text
saying whether or not the item was in the cache:

VB.NET

Label1.Text = "In the cache"
If myReview Is Nothing Then
 Label1.Text = "NOT in the cache"
 Using myEntities As New PlanetWroxEntities()

C#

Label1.Text = "In the cache";
if (myReview == null)
{
 Label1.Text = "NOT in the cache";
 using (PlanetWroxEntities myEntities = new PlanetWroxEntities())

This code initially sets the Label’s Text to "In the cache". However, if the item isn’t found,
the Label is updated to reflect that observation.

CoMMoN MIStAKeS If you get the error ‘Page title cannot be “Untitled
Page” or an empty string,’ make sure you’re passing a valid Review ID in the
ReviewId query string parameter to the ViewDetails.aspx page. You usu-
ally get this error when you browse to the details page directly from within VS
using Ctrl+F5 rather than through All.aspx. To work around this situation,
you could add code to ViewDetails.apsx that redirects the user back to
All.aspx when there’s not valid value in the ReviewId query string parameter
which you could check using String.IsNullOrEmpty(Request.QueryString.
Get("ReviewId"). For other unforeseen situations you need to add error-
handling code to your page. This is the topic of Chapter 18.

How It Works

In the ViewDetails.aspx page you first added a few labels that hold relevant properties of the Review,
such as its Title, Summary, and Body. You assigned the Label control for the summary a CssClass so
you can influence its styling from your CSS files. The .Summary selector assigns an italic font and sets
the display property to block, forcing the body text that follows onto its own line.

The code in the Code Behind then starts by looking at whether or not it can retrieve the item from the cache:

c15.indd 583 2/21/2014 12:13:30 PM

584 ❘ Chapter 15 Working With Data — aDvanceD topics

VB.NET

Dim myReview As Review = TryCast(Cache("Reviews" + reviewId.ToString()), Review)

C#

Review myReview = Cache["Reviews" + reviewId.ToString()] as Review;

As the key for the cached item, the code uses a combination of the word Reviews and the Id of each
item. This gives each review a unique key to be used for the cache. If the item cannot be found in the
cache (possibly because you’re loading the page for the first time or because ASP.NET removed it),
the TryCast method in VB.NET and the as keyword in C# return Nothing/null. So, by checking the
myReview variable for that value, you can determine whether the item was in the cache. If it was, you’re
pretty much done, but if it wasn’t you need to get it from the database using a LINQ to Entities query
similar to those you’ve seen before. Note that the query uses the SingleOrDefault() operator to limit
the query to a single Review instance, because there should only be one by the given ID, or to Nothing/
null when the item cannot be found. What you do when the item is not found is up to you; you can
display an error message in a Label control informing the user that the item is no longer available, or
you can redirect to the homepage or another page in your site.

After the item is retrieved from the database, it’s inserted into the cache with the following code:

VB.NET

Cache.Insert("Reviews" + reviewId.ToString(), myReview, Nothing,
 DateTime.Now.AddMinutes(20), System.Web.Caching.Cache.NoSlidingExpiration)

C#

Cache.Insert("Reviews" + reviewId.ToString(), myReview, null,
 DateTime.Now.AddMinutes(20), System.Web.Caching.Cache.NoSlidingExpiration);

The first parameter of the Insert method is the cache key and the second parameter is the object you
want to cache: the actual Review instance, in this case. The third parameter enables you to hook up your
cached item to some dependency, such as a file or a database, so the item is removed from the cache when
the dependent object changes. This is not used in this example, so null (Nothing in VB) is passed. The
fourth parameter defines the absolute expiration date: the date and time at which the item is considered
outdated and has to be removed from the cache. In this example, this date is constructed by adding 20
minutes to the current date and time, meaning the item will be cached for a maximum duration of
20 minutes. The final parameter can be used to set a new expiration time every time the item is accessed.
This is a great way to cache frequently used items and ensures that items that are not used often are
removed from the cache sooner. However, the previous example is using an absolute expiration date,
which means you have to pass the constant value of System.Web.Caching.Cache.NoSlidingExpiration
as the sliding expiration parameter because the two parameters are mutually exclusive.

At this stage, if the item exists in the database, you have a valid Review instance, whether or not it
came from the cache. This instance is then used to fill the Label controls in the page and the page’s
Title and MetaDescription properties:

VB.NET

TitleLabel.Text = myReview.Title
SummaryLabel.Text = myReview.Summary
BodyLabel.Text = myReview.Body

c15.indd 584 2/21/2014 12:13:31 PM

Practical Data Tips ❘ 585

Title = myReview.Title
MetaDescription = myReview.Summary

C#

TitleLabel.Text = myReview.Title;
SummaryLabel.Text = myReview.Summary;
BodyLabel.Text = myReview.Body;
Title = myReview.Title;
MetaDescription = myReview.Summary;

Setting the Title and MetaDescription is good for your users and for the ranking of your page in
search engines. The title is used when bookmarking a page, so a clear title helps the user find your
page again. Search engines such as Google and Bing use the title in their evaluation of what the
page is about. They use the text that you set in the MetaDescription (which ends up as a <meta
name="description" /> element in the <head> section of the page’s HTML) to present the results to
the user. This means the text you enter there is often your first point of contact with a user that uses a
search engine. As such, it’s an important piece of information. Rather than reusing the Summary prop-
erty for this purpose, you could add an additional column (called SearchEngineDescription, for
example) to the Reviews table in the database. You then need to bring this column into the ADO.NET
Entity Data Model by right-clicking the EDMX model diagram in the Entity Designer and choosing
Update Model from Database. Once you’ve added this property to the model, don’t forget to change the
edit pages in the Management section (AddEditReview.aspx or AddEditReviewHandCoded.aspx) so
they support this new property as well. Finally, in the ViewDetails.aspx page you can then assign its
value to the MetaDescription property of the Page class.

Besides the MetaDescription property, the Page class was extended with a MetaKeywords property
in ASP.NET 4. This property works more or less the same as the MetaDescription and enables you to
set the keywords for the page. Although the importance of keywords to influence search engine rank-
ing is heavily debated (many say they are not used by search engines at all), it can’t hurt to set them.
You could add the keywords to the database and model by following the same steps as outlined for the
SearchEngineDescription property. For a lot more tips on search engine optimization (SEO), con-
sider getting a copy of Wrox’s Professional Search Engine Optimization with ASP.NET: A Developer’s
Guide to SEO (ISBN: 978-0-470-13147-3).

The ViewDetails.aspx page now performs pretty well; The first time it loads, the item is retrieved
from the database and stored in the cache. On subsequent visits to the page, the database is no longer
accessed but the item is retrieved from the much faster cache.

praCtiCal data tips

Here are some practical tips on working with data in your ASP.NET websites:

➤➤ Whenever you use the numerous style properties of the data-bound controls, consider using
the CssClass property instead of setting the individual style properties directly. This avoids
page bloat and makes your site easier to maintain.

c15.indd 585 2/21/2014 12:13:31 PM

586 ❘ Chapter 15 Working With Data — aDvanceD topics

➤➤ The section about the control’s life cycle has an exercise that shows you how to display
the various events and the order in which they occur. You could extend the example and
write code for even more events. Additionally, you could add more controls to the page
and handle their events as well to help you establish a solid understanding of those events.
Because a good understanding of those events and their order is often critical in writing web
applications, the time you put into this little research project is well spent.

➤➤ Whenever you are writing pages that access a database or other slow or scarce resources like
files or web services, consider whether they can benefit from caching. Although it’s not that
hard to add caching at a later stage, it’s best to put it in as early as possible.

➤➤ Consider hand-coding complex data access pages. Though they are more difficult to write at
first, you’ll end up with pages that are easier to maintain in the long run.

summarY

This chapter covered some of the more advanced topics on presenting data with the data controls
that earlier chapters deliberately skipped to enable you to focus on the core data access concepts.

The chapter started off with a good look at the numerous style elements that most data-bound
controls have to influence their appearance. You then learned more about the numerous events
that controls can fire. These events can be used to change the appearance of the controls
programmatically. Therefore, a solid understanding of the page’s life cycle is important knowledge.

The chapter closed with a discussion of the various caching capabilities that ASP.NET supports to
help you improve the performance of your websites.

This chapter showed you some advanced ways to handle data in an ASP.NET web application.
The following chapter shows you how to protect some of this data — for example, the Management
folder — from unauthorized users by implementing ASP.NET security.

exerCises

 1. Imagine you have a simple Web Form with a single Button on it. If you click the Button in the
browser, it causes a postback and at the server its Click event is triggered. What happens
first — the Page’s Load event or the Button control’s Click event?

 2. Right now, when you insert or edit an item on AddEditReviewHandCoded.aspx, you’re taken
back to Reviews.aspx when you’re done. It would be nice if the genre for the new or updated
review item would already be preselected in the drop-down list. What code do you need to
write to implement this feature?

 3. What’s the proper way to avoid an exception that you handled in a data-bound control’s event
in the Code Behind from being displayed in the page?

You can find answers to these exercises in Appendix A.

c15.indd 586 2/21/2014 12:13:31 PM

Summary ❘ 587

 ➤ What You learned in this Chapter

asp.net styles Control properties that inherit from the Style class and that let
you change the appearance of controls.

Caching A technique used to store copies of data in a location that is
quicker to access than the original source in order to improve
performance.

Cache invalidation A mechanism where items are removed from the cache when
they are no longer valid.

exception The .NET term for an error (exceptions are discussed in great
detail in Chapter 18).

foreign key constraint
error

An error that occurs at the database level when you try to delete
a row that other rows depend on

MetaDescription

MetaKeywords

These two properties on the Page class enable you to set
metadata for the page in the browser that can be used by
search engines.

output caching A form of caching where an entire page or a user control is
cached to prevent it from being generated from scratch every
time it’s accessed.

stale data A cached copy of some data that no longer accurately
represents the original data.

c15.indd 587 2/21/2014 12:13:31 PM

c15.indd 588 2/21/2014 12:13:31 PM

16
Security in Your ASP.NET
Website

What You Will learn in this Chapter:

➤➤ Important terminology you’ll encounter when dealing with
security

➤➤ The ASP.NET application services that drive the security model of
ASP.NET

➤➤ How you can let users sign up for an account for your site

➤➤ How users can reset their passwords or request new ones

➤➤ How you can manage the users and roles in your database at
development time

➤➤ How you can present different content to different users based on
their access rights in the system

Wrox.Com Code doWnloads for this Chapter

You can find the wrox.com code downloads for this chapter on the Download Code tab at
www.wrox.com/go/begaspnet451. The code is in the Chapter 16 folder.

Until now, you have been creating pages in your website that are accessible to all visitors to
your site. There is currently no way to block certain resources like ASPX files or even whole
folders for specific users. That means, for example, that currently anyone can access your
Management folder and start messing with the genres and reviews in the system.

c16.indd 589 2/21/2014 1:21:54 PM

http://www.wrox.com/go/begaspnet451
http://wrox.com
http://wrox.com

590 ❘ Chapter 16 Security in your ASP.net WebSite

Clearly, this is not something you’d want in a production website. So you need to think of a good
security strategy to stop unwanted users from accessing specific content. You also need to look at
a mechanism that enables users to sign up for a new account, and at the same time enables you to
designate certain users as managers of your website and grant them special access rights.

ASP.NET and VS ship with all the tools you need to create a solid and safe security mechanism. In
this chapter, you learn how to make use of these tools in your ASP.NET website.

Before you start looking at how security is implemented in the ASP.NET Framework, you need to
understand a few important terms that you’ll come across in every discussion on security.

introduCing seCuritY

Although security can be quite a complex subject, it often revolves around three straightforward
questions:

➤➤ Who are you?

➤➤ How can you prove that?

➤➤ What are you allowed to do in the system?

identity: Who are You?
An identity is what makes you, you. The answer to what an identity is depends on the context it is
used in. As a citizen of a country, your identity revolves around your person, your official name and
birth date, and maybe even a social security number. However, for a website like p2p.wrox.com,
Wrox’s community website, your identity may be as little as your e-mail address.

No matter what you include in an identity, it is a way to refer to you. But how does anyone else
know you? And how can they be sure it’s really you when you log on to a website, for example? This
is where authentication enters the game.

authentication: how Can You prove Who You are?
Authentication is about providing evidence about who you are. When you need to register for a
library card, you may need to show your passport to prove that the name you register the card under
really belongs to you. With a website like p2p.wrox.com, you need to provide an e-mail address
and a password. Together, these two pieces form the evidence that proves your identity. Many other
mechanisms are used for authentication, including high-tech fingerprint or iris scans, smart cards
and tokens (where the evidence is stored on something tangible), and so on. However, in light of the
discussion on security of ASP.NET websites, this chapter sticks to a username and password
for authentication. In many cases, e-mail addresses act as usernames because they uniquely identify
a user.

c16.indd 590 2/21/2014 1:21:54 PM

http://p2p.wrox.com
http://p2p.wrox.com

Introducing Security ❘ 591

authorization: What are You allowed to do?
Depending on who you are, a system grants you more or fewer privileges to access certain areas.
Think about the highly secured headquarters of a national security agency in an action movie, for
example. Even if the main character is allowed to enter the building, he is often not allowed to enter
specific areas because he lacks the proper authorization (the fact that the hero eventually gains
access in those movies using a two-minute hack in the system is beside the point here).

To determine what a user is allowed to do, a system needs to know two things: the permissions for
the current user and the authorization rules for the resource a user is trying to access.

The permissions for the user are based on her username (the identity it represents) and the roles (or
security groups) the user is optionally assigned to. Similarly, resources can be opened up or blocked
for specific users or roles. When there is a match between the current user and the access rules for
the resource a user is trying to access, the user is granted access. If the user is blocked specifically,
access is denied. Imagine a file that is only accessible to the user Niek and the group Developers. The
user Niek can access that file, regardless of whether he is in the Developers role. At the same time,
the user Charlotte must be in the Developers role in order to access the file.

You see how to work with these concepts in the remainder of this chapter.

A large part of these security concepts in ASP.NET are implemented with the so-called application
services, discussed next.

an introduction to the asp.net application services
Versions of ASP.NET before ASP.NET 2.0 had some support for security. In ASP.NET 1.x
applications, you needed to write a lot of code to implement a solid security strategy. The downside
of writing this code was that it was often pretty much the same in all your websites. You were more
or less forced to write the same code over and over again to implement a security mechanism.

These problems were solved in ASP.NET 2.0, which shipped with the application services: a set
of services you can use in your website to support management of users, roles, profiles, and more.
These services are based on a provider model, something you’ll learn more about shortly. The
application services are still strongly present in ASP.NET 4.5.1 and have been updated to simplify
configuration and deployment.

ASP.NET 4.5.1 ships with a number of application services. The most important ones are:

➤➤ Membership — Enables you to manage and work with user accounts in your system.

➤➤ Roles — Enables you to manage the roles to which your users can be assigned.

➤➤ Profile — Enables you to store user-specific data in a back-end database.

Figure 16-1 gives an overview of these services and shows how they are related to your website and
the underlying data stores that the services may use.

c16.indd 591 2/21/2014 1:21:54 PM

592 ❘ Chapter 16 Security in your ASP.net WebSite

At the top of the diagram, you see the ASP.NET 4.5.1 websites and web applications that represent
the websites that you build. These websites can contain controls like the login controls (discussed
next) that in turn can talk to the ASP.NET application services such as membership and roles. To
create a flexible solution, these services don’t talk to an underlying data source directly, but instead
talk to a configured provider. A provider is an interchangeable piece of software that is designed
for a specific task. For example, in the case of the membership services, the Membership provider is
designed to work with users in the underlying data store. You can configure different providers for
the same application service depending on your needs. Previous versions of ASP.NET shipped with a
SQL Server provider that enables your membership services to talk to a SQL Server database (both
the Express and commercial editions) and an Active Directory provider (that lets you create and
manage users in Active Directory on Windows). These providers are still available, but there is now
a new alternative. In June 2011, Microsoft released the Universal Providers that work the same as
the SQL Server providers, but can be used to target all editions of SQL Server, including SQL Server
Compact and SQL Azure. This makes it easy to switch the underlying database, simply by changing
the configuration for the application. The Universal Providers are available for .NET 4 and later
and are ideal for Internet-connected websites like PlanetWrox.com. If you create a new ASP.NET
Web Forms site, the Universal Providers are already set up for you. If you create an empty ASP.NET
website instead (as is the case with the Planet Wrox sample project), you need to add the providers
yourself using NuGet, as you see in a later exercise.

figure 16-1

ASP.NET 4.5.1 Websites and Applications

D
at

a
St

o
re

s
P

ro
vi

d
er

s
A

SP
.N

E
T

Se
rv

ic
es

SQL Server Active
Directory Oracle Microsoft

Access
Other
Data

Stores

Membership Roles Profile Other Services

MembershipProvider RoleProvider ProfileProvider Other Providers

c16.indd 592 2/21/2014 1:21:55 PM

http://PlanetWrox.com

Introducing the Login Controls ❘ 593

The beauty of the provider model is that you can swap providers through configuration without any
changes to your programming code. If you have your own custom data store, you could write your
own provider and plug it into your website to replace one of the default providers with very little
effort.

Each provider needs a data store — represented by the bottom part of the diagram in Figure 16-1 —
and is written to work with one or more specific data stores. For example, the DefaultMember-
shipProvider (to handle membership services such as creating users, logging in, and resetting
passwords) and the DefaultRoleProvider (to handle role-related tasks) are designed to work with
any version of Microsoft SQL Server, including Express, LocalDB, SQL Server Compact, and SQL
Azure. These two providers replace the SqlMembershipProvider and the SqlRoleProvider that
shipped with earlier versions of ASP.NET.

In the remainder of this chapter, you see how to use the DefaultMembershipProvider and the
DefaultRoleProvider. In the next chapter, you work with the DefaultProfileProvider. You can
configure all three providers to use the same SQL Server database, making it easy to centralize all
your user data.

Note ASP.NET 4.5.1. ships with a new authentication and authorization system
called ASP.NET Identity. It’s designed to replace the Membership system that
has been part of ASP.NET for a long time. However, this new framework tar-
gets advanced scenarios and doesn’t support the various Login controls you’ll
see in this chapter. I therefore won’t discuss this new system in this book, but
you can learn more about it on the official ASP.NET website at www.asp
.net/identity.

 Ideally, you don’t deal with these providers directly. Under normal circumstances, the various
providers are configured for your website at a central location. You then use these providers by
talking to the application services. Although you could access these services directly from code,
you often use the ASP.NET built-in login controls to do the hard work for you. These controls are
discussed next.

introduCing the login Controls

The login controls that ship with ASP.NET 4.5.1 take away much of the complexity usually
associated with writing a security layer in a website. The available login controls effectively
encapsulate all the code and logic you need to validate and manage users. These controls work by
communicating with the configured provider through the application services, instead of talking to
a database directly. To see how this works, the following exercise shows you how to create a simple
Login and Sign Up page that enables new users to create an account and then log in. The section
that follows then looks at the seven login controls that ship with ASP.NET 4.5.1.

c16.indd 593 2/21/2014 1:21:55 PM

http://www.asp.net/identity
http://www.asp.net/identity

594 ❘ Chapter 16 Security in your ASP.net WebSite

trY it out Creating Login and Sign-Up Pages

In this Try It Out, you extend the Login page that you created earlier. You also create a new page that
enables a user to sign up for an account on the Planet Wrox website.

 1. Open your website in VS and then open the Package Console Manager (choose Tools ➪ Library
Package Manager ➪ Package Manager Console).

 2. Enter the following command at the Package Manager Console prompt and press Enter:

Install-Package Microsoft.AspNet.Providers

By executing this package, VS downloads the providers, adds an
assembly called System.Web.Providers.dll to the Bin folder
of your site and adds configuration information for the provid-
ers to Web.config. When the command has completed, your
Solution Explorer should look like Figure 16-2.

 3. From the root of the site, open the Login.aspx page in Markup
View. If you don’t have that page, create it now, based on your
custom template, and set its Title to Log in to Planet
Wrox. Then add an <h1> element with the same text in the
cpMainContent placeholder.

 4. From the Login category of the Toolbox, drag a LoginStatus
control and drop it in the page after the <h1> element.

 5. Switch to Design View and from the Toolbox, drag a Login control and drop it on the
LoginStatus, so it ends up right above it. Both controls are visible in Figure 16-3 (the
LoginStatus appears as a small Login link below the Login control).

figure 16-2

figure 16-3

 6. Open the Properties Grid for the Login control and set the three properties shown in the
following table:

propertY Value

DestinationPageUrl ~/Default.aspx

CreateUserText Sign Up for a New Account at Planet Wrox

CreateUserUrl ~/SignUp.aspx

c16.indd 594 2/21/2014 1:21:55 PM

Introducing the Login Controls ❘ 595

 7. In the root of the website, create a new Web Form called SignUp.aspx based on your custom
template and give it a Title of Sign Up for a New Account at Planet Wrox.

 8. Switch the page to Design View and from the Toolbox, drag a CreateUserWizard control into the
main content area for the page. Save and close the page.

 9. Open the Web.config file from the root of the site and add an <authentication> element with
its mode attribute set to Forms as a direct child of the <system.web> element:

<system.web>
 <authentication mode="Forms" />
 ...
</system.web>

 10. Still in the Web.config file, take a look at the <connectionStrings> section. Notice how the
NuGet package manager added a new connection string for you called DefaultConnection.
You could leave this connection string in there, and everything would work. However, with
this connection string, .NET creates a new database and attaches that to SQL Server. From a
management perspective, it’ll be easier if your user data is stored in the same database as your
reviews, genres, pictures, and photo albums. This is quite easy to accomplish, though. First,
remove the connection string called DefaultConnection that was added by the package manager.
Next, replace the value for the connectionStringName attribute on all four providers (for Profile,
Membership, Roles, and Session state) with the name of your Planet Wrox connection string
(which should be called PlanetWroxConnectionString1). You should end up with configuration
code that looks like the following. Note that I left out a lot of code and only show the code for
the Membership provider to save some space. The important part is the connectionStringName
attribute on all four providers that points to the Planet Wrox connection string:

<connectionStrings>
 <add name="PlanetWroxConnectionString1" connectionString="…
 <add name="PlanetWroxEntities" connectionString="…
</connectionStrings>

<system.web>
 ... Other code here
 <membership defaultProvider="DefaultMembershipProvider">
 <providers>
 <add name="DefaultMembershipProvider"
 ... Other attributes here
 connectionStringName="PlanetWroxConnectionString1"
 enablePasswordRetrieval="false" enablePasswordReset="true"
 .. Other attributes here
 />
 </providers>
 </membership>
 ... Other code here
</system.web>

 11. Save all your changes, go back to Login.aspx, and press Ctrl+F5 to open that page in your
browser. You are greeted with a login box, as shown in Figure 16-4.

c16.indd 595 2/21/2014 1:21:55 PM

596 ❘ Chapter 16 Security in your ASP.net WebSite

Note that the login status below the Login control is currently set to Login (as a call to action) to
indicate you are not logged in yet. If the text says Logout instead, verify that you set authentica-
tion to Forms in the Web.config file. Otherwise, Windows authentication is used, which logs you
in with your Windows account.

 12. Try to log in by entering a random username and password. Obviously, this fails because the
account doesn’t exist. It may take a few seconds before you see the result because ASP.NET is
busy setting up the membership database.

 13. Follow the Sign Up link below the Login control to go to SignUp.aspx and then create an
account by entering your personal details (see Figure 16-5). By default, the password needs to
have a minimum length of six characters. Note that the password is case sensitive. Write down the
username and password you just entered, because you’ll need this account information again later.

figure 16-4

figure 16-5

c16.indd 596 2/21/2014 1:21:56 PM

Introducing the Login Controls ❘ 597

 14. Click the Create User button to have the account created for you.
When the page reloads, you get a confirmation that the account
was created successfully. Click the Login item from the main Menu
or TreeView (depending on the theme you currently have selected).
You are taken to the Login page again where the LoginStatus
control below the Login control now indicates that you are logged
in (see Figure 16-6). When you create a new account using the
CreateUserWizard, you’re logged in automatically, although
you can change that behavior by setting the LoginCreatedUser
property of the control to false.

 15. Click the Logout link and you are logged out, causing the LoginStatus to display the text Login
again. In the Login control, enter the username and password you entered in step 13 and click the
Log In button. You’re logged in and redirected to the homepage. On the main Menu or TreeView,
click Login to return to the Login page again. Note that the LoginStatus has changed and now
shows Logout again, illustrating the fact that you successfully logged in.

At this stage, being logged in doesn’t add much value; all you see is the LoginStatus change from
Login to Logout. However, later in this chapter you see how to offer different content to
logged-in users.

How It Works

Besides adding and configuring a few ASP.NET Server Controls, you didn’t do any coding in this exer-
cise. Still, you were able to implement a fully functional login procedure that enables a user to sign up
for an account and then log in to the site. So how does all this work? As you learned earlier, the ASP
.NET controls talk to the configured application service providers; a software layer that sits between
the login controls and the SQL Server database that keeps track of the users.

The very first time you try to log in (or use other login controls that
require database access), the provider checks if your application is
using a database with the necessary database objects, such as tables.
By default, it checks the database by looking at a connection string
pointed to by the connectionStringName attribute on the config-
ured Membership provider. If the database from the connection string
doesn’t exist, or it doesn’t contain the necessary tables, .NET executes
a SQL script to prepare the database for you. That is why there was a
delay when you entered the username and password in step 12. To find
out what the database looks like, go back to VS, expand the App_Data
folder, and then double-click your PlanetWrox.mdf database. This
opens the Server Explorer and shows your database. Expand the Tables
node to see which database objects have been added for you, as shown
in Figure 16-7.

After this database has been created successfully, the login controls can use it. For example, when you
create a new account using the CreateUserWizard control, records are inserted in the Memberships
and Users tables. Similarly, when you try to log in, your username and password are checked against
these tables.

figure 16-6

figure 16-7

c16.indd 597 2/21/2014 1:21:56 PM

598 ❘ Chapter 16 Security in your ASP.net WebSite

To force the ASP.NET run time to use forms-based authentication (which the configured Membership
provider uses under the hood), you need to set the mode attribute of the authentication element to
Forms in the Web.config file:

<authentication mode="Forms" />

Other options for the mode attribute include Windows (where security is handled by Windows itself) and
None, which disables security altogether. In the remainder of this book, the Forms option is used exclu-
sively because it’s the most common solution for Internet-facing web applications.

The Remember Me Next Time option of the Login control is more forgetful than you may think. When
you check this option, you are logged in automatically the next time you visit the site, provided your
authentication cookie hasn’t expired. The first time you log in, the server sets a cookie that is saved for
future sessions. However, this cookie expires after 30 minutes, which means a user returning to the site
after that period needs to reauthenticate. To extend the period that users remain logged in, you need
to set the timeout attribute of the <forms> element (which itself is a direct child of the <authentica-
tion> element) in Web.config. The timeout takes an integer value representing the timeout period in
minutes. The following code sets the timeout to 24 hours (1,440 minutes):

<authentication mode="Forms">
 <forms timeout="1440" />
</authentication>

Lower timeout values are generally considered safer because they don’t provide unlimited or long-last-
ing access, but longer timeout values are more user friendly because users don’t need to reauthenticate
every time they visit the site.

If you hadn’t reconfigured the providers to use the Planet Wrox database, .NET would have created a
new one for you.

Now that you have seen how the login controls work in conjunction with the SQL Server database,
it’s time to look at the controls in the Login category of the Toolbox in more
detail.

the login Controls
ASP.NET 4.5.1 ships with seven login controls, each serving a distinct
purpose. Figure 16-8 shows the Toolbox with the seven login controls (the
pointer is present in all Toolbox categories and is not a login control).

In the sections that follow, each of these controls is explained in more detail.

Login
As you saw in the previous exercise, the Login control enables a user to log in
to the site. Under the hood, the control talks to the configured Membership provider through
the application services to see if the username and password represent a valid user in the system.
If the user is validated, a cookie is issued that is sent to the user’s browser. On subsequent requests,

figure 16-8

c16.indd 598 2/21/2014 1:21:57 PM

Introducing the Login Controls ❘ 599

the browser resubmits the cookie to the server so the system knows it’s still dealing with a valid
user. The different settings for the Membership provider are all configured in the <membership />
element of the Web.config file. You learn more about this element later in this chapter.

To create a fully functional Login page, you need only the following control declaration:

<asp:Login ID="Login1" runat="server" />

However, in most situations you want to enhance the appearance and behavior of the control by
setting one or more of the properties, shown in the following table.

propertY desCription

DestinationPageUrl Defines the URL the user is sent to after a successful login
attempt. When you leave this property empty, the value is taken
from the defaultUrl attribute of the <forms> element in Web
.config which defaults to Default.aspx.

CreateUserText Controls the text that is displayed to invite users to sign up for a
new account. If you leave this property empty, the sign-up link is
not shown.

CreateUserUrl Controls the URL where users are taken to sign up for a new
account.

DisplayRememberMe Specifies whether the control displays the Remember Me option.
When set to False, the check box for this option is not shown.

RememberMeSet Specifies whether the Remember Me option is initially checked.

PasswordRecoveryText Controls the text of a link that is displayed to tell users they can
reset or recover their password. If you leave this property empty,
the link is not shown.

PasswordRecoveryUrl Specifies the URL where users are taken to get their (new)
password.

VisibleWhenLoggedIn Determines whether the control is visible when the current user is
logged in. True by default.

The authentication mechanism of ASP.NET by default assumes you have a page called Login
.aspx in the root of your site that is used to let users log in. To be functional, the minimum that this
page requires is a Login control. If you want to use a different page, you can specify its path in the
<forms /> element under <authentication /> like this:

<authentication mode="Forms">
 <forms loginUrl="~/Account/MyLoginPage.aspx" />
</authentication>

c16.indd 599 2/21/2014 1:21:57 PM

600 ❘ Chapter 16 Security in your ASP.net WebSite

With this configuration, you tell the ASP.NET run time to load the MyLoginPage.aspx page from
the Account folder in the site’s root whenever a user needs to present her credentials.

Note If you have installed the ASP.NET FriendlyUrls package (discussed in
Chapter 7) you need to configure the loginUrl to point to ~/Login/ rather
than the default of ~/Login.aspx. If you don’t make this change, the
Login control won’t find an exact match between the page that contains
the Login control and the configured Login URL. This in turn breaks the feature
that sends users to the originally requested page after they log in. You see how
to configure this attribute in the next exercise

Note that on the Login page (configured in the loginUrl property), the VisibleWhenLoggedIn
property of the Login control has no effect. On the configured Login page, the Login control is
always visible. If you want to hide it you can use a LoginView control, as you see in a later exercise.

In addition to these properties, the Login control has a range of Text properties, such as
LoginButtonText, RememberMeText, TitleText, and UserNameLabelText, that are used to set the
text that appears in the control and in its various child controls like the Button and Label controls
that make up the user interface.

Just as with the data-bound controls, the login controls have numerous style properties that enable
you to tweak their appearance. You’re encouraged to check out the Styles category of the Properties
Grid for the controls to see how you can set the various styling options. Remember, just as with the
data-bound controls, you can move much of the styling information to skin and CSS files.

The Login control also exposes a few events that you typically don’t need to handle, but that
can come in handy from time to time. For example, the LoggedIn event fires right after the
user has logged in and is a good place to send the user to another page dynamically if the
DestinationPageUrl is not flexible enough.

LoginView
The LoginView is a handy control that lets you display different data to different users. It enables
you to differentiate between anonymous and logged-in users, and you can even differentiate between
users in different roles. The LoginView is template-driven and as such lets you define different
templates that are shown to different users. The following table describes the two main templates
and the special RoleGroups element.

template desCription

AnonymousTemplate The content in this template is shown to unauthenticated users only.

LoggedInTemplate The content in this template is shown to logged-in users only. This
template is mutually exclusive with the AnonymousTemplate. Only one
of the two can be visible at any time.

c16.indd 600 2/21/2014 1:21:57 PM

Introducing the Login Controls ❘ 601

RoleGroups This control can contain one or more RoleGroup elements that, in turn,
contain a ContentTemplate element that defines the content for the
specified role. The role or roles that are allowed to see the content
are defined in the Roles attribute, which takes a comma-separated
list of roles. The RoleGroups element is mutually exclusive with the
LoggedInTemplate. That means that if a user is a member of one of the
roles for the RoleGroup, the content in the LoggedInTemplate is not
visible. Additionally, only content for the first RoleGroup that matches
the user’s roles is shown.

The LoginView control itself doesn’t output any markup other than the content you define in the
various child elements of the control, which means you can easily embed it between a pair of HTML
tags like <h1>and to create customized headings or list items.

The following code snippet shows a LoginView control that defines content for three different users:
anonymous visitors to the site, logged-in users, and users that have logged in and are members of the
Managers role:

<asp:LoginView ID="LoginView1" runat="server">
 <AnonymousTemplate>
 Hi there visitor. Would you be interested in signing up for an account?
 </AnonymousTemplate>
 <LoggedInTemplate>
 Hi there visitor and welcome back to PlanetWrox.com.
 </LoggedInTemplate>
 <RoleGroups>
 <asp:RoleGroup Roles="Managers">
 <ContentTemplate>
 Hi there manager. You can proceed to the Management section.
 </ContentTemplate>
 </asp:RoleGroup>
 </RoleGroups>
</asp:LoginView>

You see how to create and configure roles later in this chapter.

LoginStatus
As demonstrated in the previous Try It Out exercise, the LoginStatus control provides information
about the current status of the user. It provides a Login link when the user is not authenticated and
a Logout link when the user is already logged in. You control the actual text being displayed by
setting the LoginText and LogoutText properties. Alternatively, you can set the LoginImageUrl
and LogoutImageUrl properties to display an image instead of text. When you set both an image
and a text, the image is shown and the text is used as the alternative text for the image. Finally, you
can set the LogoutAction property to determine whether the current page refreshes if the user logs
out, or whether the user is taken to another page after logging out. You determine this destination
page by setting the LogoutPageUrl.

Besides these properties, the control is capable of raising two events, LoggingOut and LoggedOut,
which fire right before and after the user is logged out.

c16.indd 601 2/21/2014 1:21:57 PM

602 ❘ Chapter 16 Security in your ASP.net WebSite

LoginName
LoginName is an extremely simple control. All it does is display the name of the logged-in user.
To embed the user’s name in some text, such as You are logged in as Imar, you can use the
FormatString property. If you include {0} in this format string, it will be replaced with the user’s
name.

You see how this works in the next exercise, which has you modify the login and master pages for
the site so they display relevant information about the user.

trY it out Working with the Login Controls

In this Try It Out, you hide the Login control on the Login.aspx page when the user is already logged
in and display a message instead. Additionally, you add text to the footer of the page that displays the
name of the user together with an option to log out again.

 1. Open Login.aspx and switch to Design View. From the Login category of the Toolbox, drag a
new LoginView control on top of the Login control so it’s placed right above it in the page.

 2. Open the Smart Tasks panel of the LoginView control and
make sure that AnonymousTemplate is selected in the Views
drop-down list, visible in Figure 16-9.

Any content you put in the control is placed in the
AnonymousTemplate area, because that is now the active
template for the control in Design View.

 3. Click the Login control once to select it and then press
Ctrl+X to cut it to the clipboard. Click inside the small white
rectangle that represents the LoginView to position your
cursor in the control, and then press Ctrl+V to paste the
Login control into your LoginView.

 4. Open the Smart Tasks panel of the LoginView again and switch to the LoggedInTemplate using
the Views drop-down list. Click inside the small white rectangle of the control again and type the
text You are already logged in.

 5. Switch to Markup View and look at the code. The Login control should be placed inside the
AnonymousTemplate, and the text you typed should be displayed within the LoggedInTemplate
tags:

<asp:LoginView ID="LoginView1" runat="server">
 <AnonymousTemplate>
 <asp:Login ID="Login1" runat="server" CreateUserUrl="SignUp.aspx"
 DestinationPageUrl="~/Default.aspx"
 CreateUserText="Sign Up for a New Account at Planet Wrox">
 </asp:Login>
 </AnonymousTemplate>
 <LoggedInTemplate>
 You are already logged in.
 </LoggedInTemplate>
</asp:LoginView>

figure 16-9

c16.indd 602 2/21/2014 1:21:57 PM

Introducing the Login Controls ❘ 603

 6. Save and close the page because you’re done with it for now.

 7. Open the master page Frontend.master in Markup View and locate the <footer> element at the
bottom of the page. Remove the text Footer Goes Here and replace it with a new LoginName
control by dragging it from the Toolbox into the <footer> element. Set its FormatString
property to Logged in as {0} by typing in the code directly:

<asp:LoginName ID="LoginName1" runat="server" FormatString="Logged in as {0}" />

 8. From the Toolbox, drag a new LoginView control and drop it below the LoginName control,
but still in the <footer> element. Switch to Design View, and on the Smart Tasks panel of the
LoginView, choose LoggedInTemplate from the Views drop-down list. Then in the white
rectangle for the active LoggedInTemplate, drag and drop a new LoginStatus control.

 9. Switch to Markup View again and wrap the code for the LoginStatus in a pair of parentheses.
You should end up with the following code:

<footer>
 <asp:LoginName ID="LoginName1" runat="server" FormatString="Logged in as {0}" />
 <asp:LoginView ID="LoginView1" runat="server">
 <LoggedInTemplate>
 (<asp:LoginStatus ID="LoginStatus1" runat="server" />)
 </LoggedInTemplate>
 </asp:LoginView>
</footer>

 10. Open the Web.config file and modify the <authentication> element so it points the loginUrl
to ~/Login/ like this:

 <authentication mode="Forms">
 <forms loginUrl="~/Login"/>
 </authentication>

 11. Save all your changes and request Login.aspx in your browser. Log in with the account and
password you created in a previous exercise (you may need to log out first
by clicking the Logout link). If you don’t recall the username and password,
simply click the Sign Up link to create a new account. Note that as soon as you
are logged in, the footer displays the text visible in Figure 16-10.

 12. Click the Login item in the Menu or TreeView to go to the Login page. Instead
of the Login control you should now see a message indicating that you are already logged in.

 13. Click the Logout link in the footer at the bottom of the page. The page refreshes and displays the
Login control again. Additionally, the text from the footer has now disappeared.

How It Works

You started by adding a LoginView to the Login page to wrap the Login control and a text message.
The Login control is shown when the user is not logged in, whereas the text is displayed for logged-in
users only.

The code in the footer of the master page contains a LoginName control that displays the name of the
user that is logged in. It doesn’t display anything for anonymous users. To control the text being dis-
played, you use the FormatString property:

<asp:LoginName ID="LoginName1" runat="server" FormatString="Logged in as {0}" />

figure 16-10

c16.indd 603 2/21/2014 1:21:57 PM

604 ❘ Chapter 16 Security in your ASP.net WebSite

At run time, the {0} is replaced with the user’s name.

By default, the LoginStatus you added displays a link to enable users to log in and log out. Because
the Menu or the TreeView already contains a link to the Login page, the footer uses a LoginView again
to display the Logout text only when the user is currently logged in. If you want to add a Login link as
well, you can extend the LoginView with an anonymous template and an additional LoginStatus or
remove the entire LoginView so the LoginStatus is visible to all users.

In addition to the controls you have seen that enable a user to log in and that use the current user’s
log-in status to show or hide relevant content, the Login category of the Toolbox contains three
more controls that enable users to sign up for a new account on the site, to change an existing
password, and to recover a lost password. These controls are discussed next.

CreateUserWizard
You briefly saw CreateUserWizard at work in an earlier exercise. But the control has a lot more to
offer than the standard behavior you saw in that exercise.

To start with, the control has a long list of Text properties, such as CancelButtonText,
CompleteSuccessText, UserNameLabelText, and CreateUserButtonText, that affect the text
used in the control. All properties have good (English) defaults, but you can change them if they
don’t suit your needs.

The control has a bunch of properties that end in ImageUrl, such as CreateUserButtonImageUrl.
These properties enable you to define images for various user actions instead of the default
buttons that the control generates. If you set any of these properties to a valid ImageUrl,
you also need to set the corresponding ButtonType. For example, to change the Create User
button to an image, you need to set the CreateUserButtonImageUrl to a valid image and set
CreateUserButtonType to Image.

The default value for the ButtonType is Button, which renders standard buttons by default. You
can also set the ButtonType to Link to have them rendered as standard LinkButton controls. The
associated text properties introduced at the beginning of this section are displayed on the buttons
and the links.

Additionally, the control exposes a number of useful properties that you can set to change its
behavior and appearance, shown in the following table.

propertY desCription

ContinueDestinationPageUrl Defines the page where users are taken when they click
Continue after signing up.

DisableCreatedUser Determines whether or not the user is marked as disabled
when the account is created. When set to True, users
cannot log in to the site until their account has been
enabled. You see how to activate and deactivate user
accounts manually later. Defaults to False.

c16.indd 604 2/21/2014 1:21:57 PM

Introducing the Login Controls ❘ 605

LoginCreatedUser Determines whether or not the user is logged in
automatically after the account has been created. Defaults
to True.

RequireEmail Determines whether or not the control asks the user for an
e-mail address. Defaults to True.

MailDefinition Contains a number of subproperties that enable you to
define the (optional) e-mail that gets sent to users after
they sign up.

You may notice that the control doesn’t have any properties to change the password policy that
requires users to type a password of at least six characters. Because multiple controls need access to
these settings, you need to configure them on the underlying provider. In the section “Configuring
Your Web Application” later in this chapter, you see how this works.

The CreateUserWizard control is able to send a confirmation e-mail to users to inform them their
new account was created successfully. This e-mail message can also serve as a reminder of their
usernames and passwords. In the following exercise, you see how to configure the MailDefinition
element so the CreateUserWizard sends an e-mail message to new users to confirm their account,
and sends them their username and password for future reference.

trY it out Sending Confirmation E-Mail with CreateUserWizard

For this exercise to work, you need to have configured the <system.net> element of the Web.config
file with a valid mail server name or local pickup folder. Refer to Chapter 9 if you don’t have these set-
tings and don’t know how to configure them.

 1. Add a new Text File to the App_Data folder and call it SignUpConfirmation.txt.

 2. Add the following text to the file and then save and close it:

Hi <% UserName %>,

Thank you for signing up for a new account at www.PlanetWrox.com.

To log in to the site, use the following details:

User name: <% UserName %>
Your password: <% Password %>

We look forward to your contributions.

The Planet Wrox Team

Take care when typing the UserName and Password placeholders. They are wrapped in a pair of
server-side tags (<% and %>), which are used to give special meaning to these placeholders.

 3. Open SignUp.aspx, switch to Design View and on the Properties Grid of the CreateUserWizard
control, locate the MailDefinition property and expand it. Click the BodyFileName property,

c16.indd 605 2/21/2014 1:21:58 PM

606 ❘ Chapter 16 Security in your ASP.net WebSite

click the ellipsis to browse for a file, and then select
SignUpConfirmation.txt, which you created in the
App_Data folder.

 4. Set the Subject property to Your New Account at
PlanetWrox.com. When you’re done, the Properties
Grid should look like Figure 16-11.

 5. Save all changes and request SignUp.aspx in your
browser. Enter the required details for a new account
and click Create User to sign up for an account. If you
get an error about specifying a From address, make
sure you assigned a valid e-mail address to the from
attribute in the Web.config file:

<smtp deliveryMethod="SpecifiedPickupDirectory" from="planetwrox@example.com">

Refer to Chapter 9 to see how to add this attribute. Make sure you enter a valid e-mail address or
the mail server may still reject it.

 6. After a while, you should receive an e-mail that contains the welcome text you typed in step 2.
Figure 16-12 shows the message with the UserName and Password placeholders replaced with the
details that you entered in step 5.

figure 16-11

figure 16-12

How It Works

The CreateUserWizard comes with built-in functionality to send a confirmation message to the user. It
doesn’t send the message until you specify the <MailDefinition> element. You use the BodyFileName
property to point to a text file or an HTML file that is used as the e-mail’s body.

c16.indd 606 2/21/2014 1:21:58 PM

http://PlanetWrox.com

Introducing the Login Controls ❘ 607

Within this body, you can use the special placeholders <% UserName %> and <% Password %>, which
are replaced automatically with the actual username and password that the user entered in the
sign-up form.

The PasswordRecovery control, discussed next, also supports a custom mail body and enables you
to send the message manually in a handler for the SendingMail event.

PasswordRecovery
The PasswordRecovery control enables users to retrieve their existing passwords (when the system
supports it) or to get a new auto-generated password. In both cases, the password is sent to the
e-mail address that the user entered when signing up for an account.

Most of the properties of the PasswordRecovery control should be familiar by now. It has a
number of Text properties, such as GeneralFailureText (shown when the password could not
be recovered) and SuccessText, that enable you to set the text that is displayed by the control. It
also has properties that end with ButtonType, ButtonText, and ButtonImageUrl, which enable
you to change the look and behavior of the various action buttons of the control. You set the
SuccessPageUrl to a page in your site if you want to send the user to another page when password
recovery succeeds.

As with the CreateUserWizard, the PasswordRecovery control also has a MailDefinition
element that can point to a file that you want to send as the mail body. You can use the same
placeholders for the username and password to customize the message. If you leave out the
MailDefinition, the control uses a default mail body, as you see in the next exercise.

ChangePassword
The ChangePassword control enables existing and logged-in users to change their passwords. It
has a host of properties to change things like text, error messages, and buttons, similar to the
CreateUserWizard and PasswordRecovery controls. It also has a MailDefinition element that
enables you to send a confirmation of the new password to the user’s e-mail address. You see how to
use this control in the next exercise.

trY it out Implementing the Password Functionality

In this Try It Out, you add PasswordRecovery and ChangePassword controls to the website to enable
users to change and recover their passwords. Because changing a password makes sense only for
logged-in users, you add the ChangePassword control to its own page. In the next chapter, you protect
this page so only authenticated users can access it.

 1. Open up Login.aspx in Markup View and locate the closing </asp:Login> tag inside the
<AnonymousTemplate>. Right after it, type two
 elements (use the br code snippet and
press Tab to complete the element) to create some room below the Login control.

 2. Drag a PasswordRecovery control from the Toolbox into the code editor, right after the two

 elements you added in step 1.

c16.indd 607 2/21/2014 1:21:58 PM

608 ❘ Chapter 16 Security in your ASP.net WebSite

 3. Between the opening and closing tags of the PasswordRecovery control, add a
<MailDefinition> element and then set the Subject of the e-mail to Your New Password for
PlanetWrox.com. Your code should now look like this:

</asp:Login>

<asp:PasswordRecovery ID="PasswordRecovery1" runat="server">
 <MailDefinition Subject="Your New Password for PlanetWrox.com"></MailDefinition>
</asp:PasswordRecovery>

 4. Save your changes and close the file.

 5. In the root of your site, create a new Web Form based on your custom template and call it
MyProfile.aspx. Set the Title of the page to My Profile.

 6. Make sure you’re in Markup View and in the cpMainContent content placeholder, create an <h1>
element (type h1 followed by the Tab key) with its contents set to My Profile. Right below the
heading, type some text that explains that the My Profile page is used for things like changing
passwords. Wrap the text in a pair of <p> tags to denote a paragraph.

 7. Drag a ChangePassword control from the Toolbox and drop it after the closing </p> tag. You
should end up with something like this:

<asp:Content ID="Content2" ContentPlaceHolderID="cpMainContent" runat="Server">
 <h1>My Profile</h1>
 <p>The My Profile page allows you to make changes to your personal profile.
 For now, all you can do is change your password below.</p>
 <asp:ChangePassword ID="ChangePassword1" runat="server"></asp:ChangePassword>

 8. Open the Web.sitemap file from the Solution Explorer and add a new element in the About
section. Let the url point to ~/MyProfile and set the title and description to My Profile.
You should end up with this code:

<siteMapNode url="~/About/Default" title="About"
 description="About this site">
 <siteMapNode url="~/About/Contact" title="Contact Us"
 description="Contact Us" />
 <siteMapNode url="~/About/AboutUs" title="About Us"
 description="About Us" />
 <siteMapNode url="~/MyProfile" title="My Profile"
 description="My Profile" />
</siteMapNode>

 9. Save all changes and close all open files. Right-click Login.aspx
in the Solution Explorer and choose View in Browser. Below
the Login control, you should now see the PasswordRecovery
control, visible in Figure 16-13.

Note that if you were already logged in, you need to click the
Logout link first.

 10. Enter your username in the PasswordRecovery control and click the Submit button. You should
get an e-mail message with your new, auto-generated password.

 11. Use this new password to log in to the site. When you’re logged in, choose About ➪ My Profile
from the Menu or the TreeView. The ChangePassword control visible in Figure 16-14 appears.

figure 16-13

c16.indd 608 2/21/2014 1:21:58 PM

http://PlanetWrox.com

Introducing the Login Controls ❘ 609

 12. Enter the auto-generated password that was sent to you by e-mail, type a new password that is
easier to remember, and then retype the same password. Finally, click Change Password. From
now on, you can log in to the site using your new password.

How It Works

By default, your passwords are stored in a hashed format in the database, which means they cannot
be retrieved. Hashing is an irreversible process that creates a unique fingerprint of your data. Because
it’s irreversible, there is no way to recreate the password from the hash, which makes it safer to store
in a database. When you log in, the password you enter is also hashed and then the two hashes are
compared to see if you are allowed to enter. Because the original password cannot be retrieved, the
PasswordRecovery control generates a new password for you. It then sends this password to the e-mail
address that is associated with the username you entered. As the mail body, it uses a standard template
that contains the username and the new password. To customize the mail body, you can point the
BodyFileName of the MailDefinition to a text file that contains placeholders for the username and
password, just as you saw how to do with the CreateUserWizard.

You may have noticed that the login controls use a couple of defaults that you haven’t been able to
change so far. For example, you need to enter a password with a minimum length of six characters.
You can change these settings for the entire application through the Web.config file.

Configuring Your Web application
When you added the Universal Providers, NuGet added a number of configuration settings for
the Membership, Roles, Profile, and Session state providers. Here’s the code for the Membership
provider after you changed the connection string:

<membership defaultProvider="DefaultMembershipProvider">
 <providers>
 <add name="DefaultMembershipProvider"
 type="System.Web.Providers.DefaultMembershipProvider,
 System.Web.Providers, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"
 connectionStringName="PlanetWroxConnectionString1"
 enablePasswordRetrieval="false" enablePasswordReset="true"
 requiresQuestionAndAnswer="false" requiresUniqueEmail="false"
 maxInvalidPasswordAttempts="5" minRequiredPasswordLength="6"
 minRequiredNonalphanumericCharacters="0" passwordAttemptWindow="10"

figure 16-14

c16.indd 609 2/21/2014 1:21:59 PM

610 ❘ Chapter 16 Security in your ASP.net WebSite

 applicationName="/"
 />
 </providers>
</membership>

This provider configuration features a number of interesting attributes, which are described in the
following table. The default values listed in the description column are applied when you don’t
specify the associated attribute in the configuration file.

attribute desCription

connectionStringName Points to the name of the connection string for
the application.

enablePasswordRetrieval Determines whether users are able to retrieve
their current password. This option cannot
be set when passwordFormat is Hashed (see
passwordFormat). Defaults to false.

enablePasswordReset Determines whether a user is able to request a
new password. Defaults to true.

requiresQuestionAndAnswer Determines whether controls like
CreateUserWizard and PasswordRecovery
have the user enter a security question and
answer. Defaults to true.

applicationName Provides the unique name of the application.
Defaults to a forward slash (/), but you can
change it to support multiple websites using the
same database with different accounts.

requiresUniqueEmail Determines whether the system allows duplicate
e-mail addresses for user accounts. When set to
true, each user must provide a unique username
and a unique e-mail address. Defaults to true.

passwordFormat Determines the way passwords are stored in the
database. It supports the following formats:

Clear — Passwords are stored as plaintext.

Encrypted — Passwords are encrypted in a
reversible format that enables the system to
retrieve the clear text representation of the
password again.

Hashed — Passwords are encrypted with an
irreversible, one-way algorithm. When the
passwordFormat is Hashed, users cannot retrieve
their original passwords anymore. They can
only request a new, auto-generated password.
Defaults to Hashed.

c16.indd 610 2/21/2014 1:21:59 PM

Introducing the Login Controls ❘ 611

maxInvalidPasswordAttempts Specifies the number of times a user can enter an
invalid password or invalid security answer before
their account is locked. Defaults to 5.

minRequiredPasswordLength Determines the minimum length of the password.
Defaults to 7.

minRequiredNonalphanumericCharacters Determines the minimum number of non-
alphanumeric characters that must be included in
the password. Defaults to 1.

passwordAttemptWindow Determines the timeframe in minutes during
which invalid password attempts are counted.
Defaults to 10.

passwordStrengthRegularExpression Enables you to specify a custom regular
expression to enforce a strong password.

Check out the complete list of configuration settings for Membership on the MSDN website at
http://bit.ly/RFxQZT.

In the following Try It Out, you see what it takes to reconfigure the Membership provider for the
Planet Wrox application by changing some of these attributes.

trY it out Configuring Membership

In this short exercise, you see how to override the default behavior for the Membership provider in the
Planet Wrox site to require users to enter a longer and stronger password.

 1. Open Web.config and locate the <membership> element.

 2. Change minRequiredPasswordLength to 7.

 3. Change minRequiredNonalphanumericCharacters to 1. When you’re done, your configuration
settings should look like this:

<membership defaultProvider="DefaultMembershipProvider">
 <providers>
 <add name="DefaultMembershipProvider"
 type="System.Web.Providers.DefaultMembershipProvider,
 System.Web.Providers, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"
 connectionStringName="PlanetWroxConnectionString1"
 enablePasswordRetrieval="false" enablePasswordReset="true"
 requiresQuestionAndAnswer="false" requiresUniqueEmail="false"
 maxInvalidPasswordAttempts="5" minRequiredPasswordLength="7"
 minRequiredNonalphanumericCharacters="1" passwordAttemptWindow="10"
 applicationName="/"
 />
 </providers>
</membership>

c16.indd 611 2/21/2014 1:21:59 PM

http://bit.ly/RFxQZT

612 ❘ Chapter 16 Security in your ASP.net WebSite

 4. Save all your changes and request SignUp.aspx in
the browser.

 5. Fill in the form, but for both password fields, type
something short like pass.

 6. Click the Create User button. Note that the
control now forces you to enter a password with a
minimum length of seven characters that contains
at least one non-alphanumeric character. It displays
an appropriate error message below the control,
shown in Figure 16-15. Note that numbers are not considered non-alphanumeric characters,
so you need to make sure your password contains at least one character like # or $ or *. For
example, Pa55word is not a valid password, but Pass##Word will be accepted. Also note that the
password is case sensitive.

 7. Enter a password of at least seven characters with at least one non-alphanumeric character like #
or % and click the Create User button again. This time your password is accepted and the account
is created.

How It Works

The CreateUserWizard uses the configured Membership provider under the hood to validate the data
and create the user. The provider in turn consults the Web.config file for the configuration information
such as the minimum password length. When you try to create the user, the provider enforces the rules
set in Web.config and cancels the user creation process as soon as one of the rules is not fulfilled.

Having the configuration information in Web.config is especially useful when you deploy your applica-
tion to a different server that uses a different database, because all you need to do is change the settings
in this file. Chapter 19 and Appendix B show you how to do this.

So far, you have seen how to let users sign up for an account so they can log in. But how can you
differentiate between the different users in the system? How can you block access to specific folders
such as the Management folder for unauthorized users? You do this with the Role Manager, another
application service that ships with ASP.NET.

the role manager

Although it’s nice that your users can now sign up and log in to your site, it would be a lot more
useful if you could differentiate among your users. That would enable you to grant access rights
to one or just a few users to access the Management folder so only they can change your reviews
and genres. With the Role Manager that ships with ASP.NET, this is pretty easy to do. The Role
Manager enables you to assign users to different roles. You can then use these roles to open or block
specific functionality in your site. For example, you can block access to the Management folder for
all users except for those in the Managers role. Additionally, you can display different content based
on the roles users have with the LoginView as you saw earlier.

figure 16-15

c16.indd 612 2/21/2014 1:21:59 PM

The Role Manager ❘ 613

the role manager Configuration
As with membership, the settings for the Role Manager are placed in Web.config files. The default
settings added by NuGet when you installed the Universal Providers look like this (except for the
connection string that you changed):

<roleManager defaultProvider="DefaultRoleProvider">
 <providers>
 <add name="DefaultRoleProvider"
 type="System.Web.Providers.DefaultRoleProvider, System.Web.Providers,
 Version=2.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35"
 connectionStringName="PlanetWroxConnectionString1"
 applicationName="/"
 />
 </providers>
</roleManager>

The Role Manager is not enabled by default, and to enable it, you need to add an enabled="true"
attribute to the <roleManager /> element. In the next exercise, you see a way to enable the Role
Manager through the Web Site Administration Tool (WSAT). Just like Membership, the Role
Manager uses a provider under the hood.

Besides the settings shown here, the <roleManager /> element also has a few attributes you can
configure. Most of them are related to how the cookies with the role information are created and
stored. For most cases, the default configuration should be fine, but check out the complete list of
configuration settings for the Role Manager on the MSDN website at http://bit.ly/LmtmB3 if
you have the need to further configure the Role Manager.

With the Membership and Role Manager providers configured and the database created, it’s time to
manage the users and roles in your system. You have a few ways to accomplish that:

➤➤ Using the Web Site Administration Tool, generally referred to as the WSAT

➤➤ Using IIS (the Windows web server) on recent Windows editions (you see more about this in
Chapter 19)

➤➤ Programmatically, using the Role Manager API (application programming interface)

Managing roles using the Role Manager API is beyond the scope of this book. If you want to
learn more about it, get a copy of Wrox’s Professional ASP.NET 4.5 in C# and VB (Jason N.
Gaylord, Christian Wenz, Pranav Rastogi, Todd Miranda, Scott Hanselman; Wiley 2013;
ISBN: 978-1-118-31182-0).

The Web Site Administration Tool is used for a lot more than managing roles alone, and is discussed
in detail in the next section. It is only available from your local machine and as such, it’s great for
setting up the initial users and roles during development, but it isn’t suitable for managing users in a
production environment.

managing users with the Wsat
The WSAT is used for the following tasks:

➤➤ Managing users

➤➤ Managing roles

c16.indd 613 2/21/2014 1:21:59 PM

http://bit.ly/LmtmB3

614 ❘ Chapter 16 Security in your ASP.net WebSite

➤➤ Managing access rules — for example, to determine what user can access which files and
folders

➤➤ Configuring application, mail, and debug settings

➤➤ Taking the site offline so users can’t request any pages and get a friendly error message
instead

Some of the changes you make with the WSAT are persisted in the Web.config file for the
application. Other settings, like users and roles, are stored in the database for the configured
provider.

In the next exercise you see how to start and use the WSAT. You see how to create a new role and a
new user, and how to assign that user to the role.

trY it out Using the WSAT to Manage User Accounts and Roles

To protect your Management folder from users that are not authorized to access it, you need to create a
role that is allowed to access this folder. After you have set up this role, you can grant all users in that
role access to the folder while keeping all other users out. In this Try It Out, you learn how to create the
Managers role and assign a user to it. In a later exercise, you see how to limit access to the Management
folder to Managers only.

Note In versions of Visual Studio before VS 2013, Microsoft included a short-
cut to the WSAT in either the Website or the Project menu. Unfortunately,
Microsoft decided to remove that feature. However, the files needed for the
WSAT are still installed on your machine, so with a bit of trickery, you can still
access them. Take great care when typing the commands from the following
steps as a typo or even an extraneous space can cause the tool not to start up.
If you get stuck getting this exercise to work, be sure to visit the book’s own
forum at http://p2p.wrox.com for a helping hand.

 1. Start a command prompt by typing CMD on the Windows home screen or Start menu and press
Enter.

 2. Navigate to the folder where IIS is installed (which by default is C:\Program Files\IIS
Express) by entering the following command followed by the Enter Key:

cd c:\Program Files\IIS Express

 3. Enter the following command and hit enter:

iisexpress.exe /path:"C:\Windows\Microsoft.NET\Framework\v4.0.30319\ASP.NETWebAdminFiles"
 /vpath:"/ASP.NETWebAdminFiles" /port:8082 /clr:4.0 /ntlm

Note: You should enter all of this on one line. This command should work on 32- and 64-bit versions
of Windows, but check the path to the ASP.NETWebAdminFiles folder in case you get an error when
running the command.

When you press Enter, you should see that IIS Express has started correctly, as shown in Figure 16-16.

c16.indd 614 2/21/2014 1:21:59 PM

http://p2p.wrox.com

The Role Manager ❘ 615

Don’t close the command prompt as that will also close IIS Express.

 4. Start your browser and navigate to the following URL:

http://localhost:8082/asp.netwebadminfiles/default.aspx?applicationPhysicalPath=
 C:\BegASPNET\Site&applicationUrl=/

Again, all of this should be on one line without any spaces. Update the path for the applicationPhys-
icalPath parameter in case you placed your site in a folder other than C:\BegASPNET\Site. When
asked for a username and password, enter the credentials you use to log in to your Windows machine.
After a short delay, the Web Site Administration Tool is loaded, shown in Figure 16-17.

figure 16-16

figure 16-17

 5. In the top-right corner, you see a Help link that takes you to a help file describing how you
can use the tool. Right below the logo of the application, you see four tabs: Home, Security,
Application, and Provider. The Home tab takes you back to the start page you see in Figure
16-17. You use the Application tab to configure different application settings, and the Provider
tab enables you to reconfigure the chosen provider for the application. In this exercise, all that’s
important is the Security tab, so go ahead and click it. You should see the screen displayed in
Figure 16-18.

c16.indd 615 2/21/2014 1:22:00 PM

616 ❘ Chapter 16 Security in your ASP.net WebSite

The bottom part of the screen is divided into three parts: Users, Roles, and Access Rules. You see
how to use Users and Roles in this exercise. Access Rules is used to block or open up specific parts
of your website to users or roles. You won’t see how to use it in this chapter, but instead you learn
how to change some of these settings in Web.config directly in a later exercise.

 6. Make sure that under Users, you see the Create User and Manage Users links. If you don’t see
them, but you see a note about Windows authentication instead, click the Select Authentication
Type link, select From the Internet, and click Done. Your screen should now look like
Figure 16-18.

figure 16-18

 7. In the Roles section, click the Enable Roles link. The page reloads and now offers a link with the
text Create or Manage Roles. Click that link to open the Create New Role page.

 8. Enter Managers as the new role name and click the Add Role button. You should see the new role
appear. Click the Back button at the bottom-right of the page to return to the main Security page.

 9. Click the Create User link in the Users section. You’re taken to a page that enables you to enter
the details for a new user and assign that user to the Managers role at the same time. Type
Manager as the username. As a password, enter something that meets the password rules you
configured earlier. A password like Manager##123 will do. Enter your e-mail address and then
check the check box for the Managers role name in the list of roles on the right.

 10. Click Create User to add the user to the system and then click Continue on the confirmation page.
At the bottom of the page, click the Back button so you reach the main Security page.

 11. On the Security page, click the Manage Users link. You are taken to a page that shows a list of all
available users in the system, shown in Figure 16-19.

c16.indd 616 2/21/2014 1:22:00 PM

The Role Manager ❘ 617

From here you can edit, enable, disable, or delete existing users. For example, if you previously
set DisableCreatedUser to True in the CreateUserWizard, you can enable the user here by
checking the check box in front of the username, visible in Figure 16-19. You can change the roles
that are assigned to the user by clicking the Edit Roles link. Also, using the filter controls and the
alphabet above the user list, you can quickly search for a specific user in case you’re dealing with
a lot of user accounts.

 12. To see where your user and role ended up, close the browser and go back to VS. On the Solution
Explorer, double-click the PlanetWrox.mdf database in the App_Data folder to open it in the
Server Explorer window. Then expand the Tables node, right-click the Roles table, and choose
Show Table Data. The role you created in step 5 should be listed. Open up some of the other
tables such as Memberships and UsersInRoles and inspect the data they contain. In the first
table, you should see the user account you created in steps 9 and 10, and the latter table contains
a relationship between the new role and user account.

How It Works

Just like the login controls, the WSAT eventually talks to the provider you configured in
the Web.config file. In the case of the Planet Wrox application, it means it talks to the
DefaultMembershipProvider and the DefaultRoleProvider, which in turn talk to a SQL Server
Express LocalDB database identified by your connection string. The users and roles you create
are stored in various tables in the database. Users that you create using the WSAT end up in the
exact same location as those created with the CreateUserWizard control. In fact, the WSAT uses a
CreateUserWizard to create new user accounts. This means that any user you enter in the WSAT is
able to log in using your standard Login.aspx page. In a later exercise, you use the Manager account
you created in this exercise to log in to the site and access the Management folder.

To use the role you created in this exercise, you have a few options at your disposal. First, you can use
the role name to block access to specific folders in your web application through settings in the
Web.config file. Secondly, you can use the role in controls like the LoginView to present different
content to different users. Finally, you can use the Role API to check whether the current user is in a
specific role. This gives you fine control over the content or functionality you can offer to certain
privileged users.

figure 16-19

c16.indd 617 2/21/2014 1:22:00 PM

618 ❘ Chapter 16 Security in your ASP.net WebSite

You see how to block access to the Management folder and modify the LoginView in the next
section; using the Role API is discussed in a later exercise.

Configuring the Web application to Work with roles
On the Security page of the WSAT, you saw a section called Access Rules. This part of the tool
enables you to block or open up resources in your site. It enables you to define rules such as “This
folder is blocked for anyone except for users in the Managers role,” or “Anyone can access this file,
except for the users in the Members role and the Joe account.” The tool is quite intuitive to use,
so it isn’t difficult to set up the different rules. However, it has one downside: it stores the security
settings in separate Web.config files, one for each subfolder you configure.

This makes it somewhat difficult to get an overview of all the different security settings.
Fortunately, ASP.NET also enables you to configure the same settings in the main Web.config using
<location> elements. A <location> element has a path attribute that points to a file or folder
you want to configure differently. You can use the <location> element for many (but not all) other
settings from Web.config as well (for example, you could set the theme attribute of the <pages>
element for the Management folder in the main Web.config). For the following exercise, you only set
the child elements of <location> to those related to security.

trY it out Blocking Access to the Management Folder

Obviously, you don’t want just anyone to mess with the reviews and genres that you have posted on
your website. Therefore, it’s important to block access to the Management folder to anyone except site
managers assigned to the Managers role. In this exercise, you see how to modify Web.config to block
the folder so only the user account you assigned to the Managers role earlier can access this folder and
the files it contains.

 1. Open the Web.config file at the root of the site. Scroll all the way down to the closing </
configuration> tag and right before it type a <location> element. Add a path attribute to the
element and set its value to Management. Note that IntelliSense kicks in to help you complete the
element and find the attribute. Complete the configuration by entering the following settings:

 <location path="Management">
 <system.web>
 <authorization>
 <allow roles="Managers" />
 <deny users="*" />
 </authorization>
 </system.web>
 </location>
</configuration>

 2. Save and close the Web.config file.

 3. Open the main master page for the site
(Frontend.master) in Design View and
scroll down to the end of the file. Select
the LoginView control and open its Smart Tasks panel. At the top of the panel, click the Edit
RoleGroups link, shown in Figure 16-20.

figure 16-20

c16.indd 618 2/21/2014 1:22:01 PM

The Role Manager ❘ 619

 4. In the dialog box that opens, click the Add button to insert a new RoleGroup and then set the
Roles property of this group to Managers, as shown in Figure 16-21.

figure 16-21

 5. Click OK to insert the RoleGroup and return to Design View.

 6. Still on the Smart Tasks panel of the LoginView, choose RoleGroup[0] - Managers from the
Views drop-down list. This switches the current template of the control to the RoleGroup for
Managers, so you can add content that is visible only to Managers.

 7. From the Standard category of the Toolbox, drag a HyperLink control and drop it into the
LoginView. Using the Properties Grid, set the Text property of this HyperLink to Manage Site
and set the NavigateUrl to ~/Management/Default.aspx. (You can use the URL picker for the
HyperLink by clicking the small button with the ellipsis on it.) Switch to Markup View and after
the closing tag of the HyperLink control, type the word or followed by a LoginStatus control
that you can drag from the Toolbox, or copy from the existing code in the LoggedInTemplate.
Finally, wrap the HyperLink and LoginStatus in a pair of parentheses just as you did in the
LoggedInTemplate.

When you are ready, your LoginView should contain the following code:

<asp:LoginView ID="LoginView1" runat="server">
 ...
 </LoggedInTemplate>
 <RoleGroups>
 <asp:RoleGroup Roles="Managers">
 <ContentTemplate>
 (<asp:HyperLink ID="HyperLink1" runat="server"
 NavigateUrl="~/Management/Default.aspx">Manage Site</asp:HyperLink> or
 <asp:LoginStatus ID="LoginStatus2" runat="server" />)
 </ContentTemplate>
 </asp:RoleGroup>
 </RoleGroups>
 ...

c16.indd 619 2/21/2014 1:22:01 PM

620 ❘ Chapter 16 Security in your ASP.net WebSite

 8. Save all your changes and then request the homepage (Default.aspx) for the site in your browser.
Verify that you are currently not logged in (check the footer of the page and, if necessary, click the
Logout link).

 9. Click the Login link on the Menu or TreeView and then log in with
the Manager account you created in the previous exercise. Make
sure you don’t check the Remember Me option. The page refreshes
and now shows the Manage Site link in the footer of each page
(see Figure 16-22).

If you don’t see the Manage Site and Logout links in the footer region, close all browser windows,
go back to the WSAT as shown earlier, and ensure the account you’re using is assigned to the
Managers role.

 10. Click the Manage Site link to open the Management section of the website. Copy the current URL
of the page from the browser’s address bar to the clipboard (it should be something like http://
localhost:49666/Management/Default). Click the Back button of your browser to go back to
the homepage and then click the Logout button in the footer. Close all open browser windows
and open a new instance of your browser again. (You can do this from the Windows Start menu
or Start screen or you can right-click a page in VS and choose View in Browser.)

 11. Paste the address you just copied in the address bar of the browser window and press Enter.
Instead of going to an address like this,

http://localhost:49666/Management/Default

you are taken to the Login page:

http://localhost:49666/login?ReturnUrl=%2fManagement%2fDefault

Note that the page you initially requested (Management/Default) is now appended to the query
string. The forward slashes (/) in the address have been encoded to their URL-safe counterpart —
%2f — automatically. Log in with your Manager account and you should see the Management
section appear again. Next, log out again, log in with one of the other accounts, and then try to
access the Management folder again. Because that account doesn’t have permissions to access that
folder, you’re redirected to the Login page again.

How It Works

To see how this works, you need to look at a couple of things. First, look at the settings you added to
the Web.config file to limit access to the Management folder:

<location path="Management">
 <system.web>
 <authorization>
 <allow roles="Managers" />
 <deny users="*" />
 </authorization>
 </system.web>
</location>

When the ASP.NET run time processes the request for a page, it checks the various configuration
files to see whether the current user is allowed to access that resource. For requests to files in the

figure 16-22

c16.indd 620 2/21/2014 1:22:01 PM

http://localhost:49666/Management/Default
http://localhost:49666/Management/Default
http://localhost:49666/Management/Default
http://localhost:49666/login?ReturnUrl=%2fManagement%2fDefault

The Role Manager ❘ 621

Management folder, it encounters the rule set in the <location> element. It starts scanning the vari-
ous allow and deny elements with roles or users attributes to specify the users or roles that are
affected by the rule. The roles and users attributes take one or more role or usernames, separated
by a comma. As soon as a rule is found that matches, the scanning process is stopped and that rule is
applied. If no rule is satisfied, access is granted! Therefore, it’s important to end the rule with a deny
rule to block all other users that haven’t been granted access previously.

If you’d add an authorization element to the Web.config in the Management folder, the settings you
apply there are looked at first because the security model works inside out. That is, it starts by scanning
the Web.config file (if present) in the folder that contains the requested page. If it doesn’t find the file
there or it doesn’t contain settings that block or grant access, it goes up in the folder hierarchy search-
ing for configuration files with authorization elements. In the previous exercise, the run time found the
settings in the Web.config file in the root that were then applied to the folder.

When an unauthenticated user logs in, the first rule won’t match because the anonymous user is not a
member of the Managers role. The user is then denied access because of the deny rule that blocks all
users, indicated by the asterisk (*).

After you logged in as a Manager and requested the same resource, the rule set was scanned again. The
run time then found the allow element that grants access to the Managers role and immediately let
you in. The final rule that blocks access to all other users was not even checked. In addition to specific
roles or usernames and the asterisk (*) to refer to all users, you can also use the question mark (?) to
refer to unauthenticated — or anonymous — users. So, for example, to let any logged-in user access the
Reviews folder regardless of the role they are in, and block access to all other users, you can add the
following <location> element to your configuration file:

<location path="Reviews">
 <system.web>
 <authorization>
 <deny users="?" />
 </authorization>
 </system.web>
</location>

This denies access to all users that are not logged in. Because of the default rule that grants access to
the resource if the current user is not matched by an earlier rule, all logged-in users can successfully
access files in the Reviews folder.

You can specify multiple roles or usernames in the roles and user attributes by separating them with a
comma.

It’s important to understand how the RoleGroups element of the LoginView works. Although you can
specify multiple RoleGroup elements that may all apply to a certain user, only the first that matches is
displayed. Consider a user called Alex assigned to the role WebMasters and to the role Managers and a
web page with the following LoginView:

<asp:LoginView ID="LoginView1" runat="server">
 <RoleGroups>
 <asp:RoleGroup Roles="Managers">
 <ContentTemplate>
 <!--Content for Managers here-->
 </ContentTemplate>

c16.indd 621 2/21/2014 1:22:01 PM

622 ❘ Chapter 16 Security in your ASP.net WebSite

 </asp:RoleGroup>
 <asp:RoleGroup Roles="WebMasters">
 <ContentTemplate>
 <!--Content for WebMasters here-->
 </ContentTemplate>
 </asp:RoleGroup>
 </RoleGroups>
</asp:LoginView>

With this code, the user Alex only sees the content of the first RoleGroup, even though he is also
assigned to the WebMasters role.

programmatically Checking roles
Although it’s easy to use the LoginView control to change the content a user is allowed to see at
run time, this isn’t always enough. At times, you need programmatic control over the data you are
presenting based on someone’s role membership. You can access information about roles for the
current user in a number of ways. First of all, you can access the IsInRole method of the User
property from the current page or user control like this:

VB.NET

If User.IsInRole("Managers") Then
 ' This code runs for Managers only
End If

C#

if (User.IsInRole("Managers"))
{
 // This code runs for Managers only
}

Alternatively, you can access the Roles class that contains a number of static methods that you can
access directly. The following code is functionally equivalent to the previous example:

VB.NET

If Roles.IsUserInRole("Managers") Then
 ' This code runs for Managers only
End If

C#

if (Roles.IsUserInRole("Managers"))
{
 // This code runs for Managers only
}

In addition to the IsUserInRole method, the Roles class contains a lot of other methods that
enable you to work with roles programmatically. For example, you can create and delete roles,
assign users to and remove users from roles, and you can get a list of users that are assigned to a
certain role. For more information about the Roles API, check out the MSDN documentation at
http://tinyurl.com/RolesAPI4-5 or pick up a copy of Professional ASP.NET 3.5 Security,

c16.indd 622 2/21/2014 1:22:01 PM

http://tinyurl.com/RolesAPI4-5

The Role Manager ❘ 623

Membership, and Role Management with C# and VB by Bilal Haidar (Wrox 2008,
ISBN: 978-0-470-37930-1). Although the book targets ASP.NET 3.5, you’ll find that most
topics discussed in that book still apply to ASP.NET 4.5.1.

In the following exercise, you learn how to modify the photo albums page so users logged in as
Managers are able to delete pictures from a photo album. Other users won’t be able to delete a
picture because the Delete button will be hidden for them.

trY it out Checking Roles with IsUserInRole at Run Time

This Try It Out uses a programmatic check for the user’s role to hide or show the Delete but-
ton. Although you could re-create this example by using a LoginView with different templates and
RoleGroups, this exercise serves as an example of programmatic role checking.

 1. Open Default.aspx from the PhotoAlbums folder in Markup View and right after the closing tag
of the ListView control, enter two HTML breaks (you can use the br snippet) followed by a Hyper
Link control (you can use the hyperlink snippet). Set its ID property to EditLink and its Text
property to Edit Photo Album. You assign the NavigateUrl programmatically in the next step.

<asp:HyperLink ID="EditLink" runat="server" Text="Edit Photo Album" />

 2. Switch to Design View, select the ListView control, open up its Properties Grid, and switch to the
Events tab. Double-click DataBound to set up a handler for that event. Inside the handler that VS
created, add the following code:

VB.NET

Protected Sub ListView1_DataBound(sender As Object,
 e As EventArgs) Handles ListView1.DataBound
 If Not String.IsNullOrEmpty(PhotoAlbumList.SelectedValue) Then
 EditLink.NavigateUrl = String.Format(
 "~/ManagePhotoAlbum.aspx?PhotoAlbumId={0}", PhotoAlbumList.SelectedValue)
 EditLink.Visible = True
 Else
 EditLink.Visible = False
 End If
End Sub

C#

protected void ListView1_DataBound(object sender, EventArgs e)
{
 if (!string.IsNullOrEmpty(PhotoAlbumList.SelectedValue))
 {
 EditLink.NavigateUrl = string.Format(
 "~/ManagePhotoAlbum.aspx?PhotoAlbumId={0}", PhotoAlbumList.SelectedValue);
 EditLink.Visible = true;
 }
 else
 {
 EditLink.Visible = false;
 }
}

c16.indd 623 2/21/2014 1:22:01 PM

624 ❘ Chapter 16 Security in your ASP.net WebSite

 3. Open up ManagePhotoAlbum.aspx in the root of the site and switch it to Design View. Select
the ListView and open its Properties Grid. Switch to the Events tab and double-click the
ItemCreated event to set up an event handler for that event.

 4. If you’re using C#, add a using statement for the System.Web.Security namespace at the top of
the Code Behind file. A VB.NET website imports this namespace by default:

using System.Web.Security;

 5. Add the following code to the event handler that VS created:

VB.NET

Protected Sub ListView1_ItemCreated(sender As Object,
 e As ListViewItemEventArgs) Handles ListView1.ItemCreated
 Select Case e.Item.ItemType
 Case ListViewItemType.DataItem
 Dim deleteButton As Button =
 CType(e.Item.FindControl("DeleteButton"), Button)
 deleteButton.Visible = Roles.IsUserInRole("Managers")
 End Select
End Sub

C#

protected void ListView1_ItemCreated(object sender, ListViewItemEventArgs e)
{
 switch (e.Item.ItemType)
 {
 case ListViewItemType.DataItem:
 Button deleteButton = (Button)e.Item.FindControl("DeleteButton");
 deleteButton.Visible = Roles.IsUserInRole("Managers");
 break;
 }
}

 6. Save all your changes and then request Default.aspx from the PhotoAlbums folder in your
browser by right-clicking it and then choosing View in Browser. If you’re not logged in as a
manager, click the Login link in the main Menu or TreeView, log in with the Manager account
you created earlier in this chapter, and return to the Gig Pics page.

 7. Choose one of the photo albums from the drop-down list. The page reloads and shows the
pictures in the photo album.

 8. Click the Edit Photo Album link at the bottom of the page. Notice how each picture is still
associated with a Delete button that deletes the picture when clicked, just as you saw in Chapter
14. Click the Delete button for a picture to confirm that it still works.

 9. Click the Logout link in the footer again and go to the Login page. Log in with an account you
created earlier in this chapter that is not a member of the Managers role. Go to the Gig Pics page
again, select an album from the list and click the Edit Photo Album link. This time, you don’t see
Delete buttons, because the account you’re logged in with is not assigned to the Managers role.
In the next chapter you see how to modify this page once more to also let owners of an album
delete their own pictures. In addition, you’ll see how to hide the Edit Photo Album link for users
without edit permissions.

c16.indd 624 2/21/2014 1:22:02 PM

Practical Security Tips ❘ 625

How It Works

Most of the code in this exercise shouldn’t be new to you. You have seen how you can delete items with
Model Binding and the ListView control. You also learned how to handle events such as ItemCreated
(that fires for each item that is shown in the ListView control) and search for controls in an item using
FindControl.

What’s new in this example is the way you check whether the current user is a member of the
Managers role:

VB.NET

Dim deleteButton As Button = CType(e.Item.FindControl("DeleteButton"), Button)
deleteButton.Visible = Roles.IsUserInRole("Managers")

C#

Button deleteButton = (Button)e.Item.FindControl("DeleteButton");
deleteButton.Visible = Roles.IsUserInRole("Managers");

The IsUserInRole method returns a boolean that indicates whether the current user is a manager.
When the method returns True, it means that the Visible property of the Button is set to True. When
the method returns False, the button is hidden and the user is not able to delete pictures from the
photo album.

praCtiCal seCuritY tips

The following list provides some practical security tips:

➤➤ Although the concept of security is introduced quite late in the book, you shouldn’t see it as
an afterthought. To ensure that you create a solid and secure application, you should keep
security in mind from the very early stages of your website development. Deciding whether
you want to have areas that are accessible only to certain users, and whether you are going
to force users into getting an account for your site before they get access is best done as early
as possible. The later in the process you introduce these concepts, the more difficulties you’ll
face when integrating this functionality.

➤➤ Try to group resources like ASPX pages under folders that represent roles in your system.
Take, for example, the Management folder in the Planet Wrox website. All pages related to the
management of your site are packed together in a single folder, making it very easy to block
the entire folder with a single <location> element in the Web.config file. When the files you
want to protect are scattered throughout your website, you’ll need more time to configure the
application, and you’ll end up with a cluttered view of the active security settings.

➤➤ When you create roles to differentiate between users on your website, try to limit the
number of different roles your system has. You’ll find that your system becomes much easier
to manage with only a handful of logically grouped roles than with a large number of roles
with only one or two users in them.

c16.indd 625 2/21/2014 1:22:02 PM

626 ❘ Chapter 16 Security in your ASP.net WebSite

summarY

You can implement security in your ASP.NET site with several techniques, including Windows
authentication (where the web server takes care of authentication) and Forms authentication, which
is the de facto standard for many of today’s ASP.NET websites.

In general, security encompasses three important concepts: identity, authentication, and
authorization. Together, they determine who you are and what you are allowed to do.

The Membership service (that uses a Membership provider under the hood) enables you to
create and manage users in a central database using handy controls such as CreateUserWizard,
PasswordRecovery, and Login.

The Role Manager (which uses a Role provider under the hood) enables you to group users in
various roles to which you can apply permissions. You can check roles programmatically, or use the
LoginView to present different data depending on the role the user is assigned to.

Users and roles are managed with the WSAT, so you can assign user accounts to different roles,
as you saw in this chapter. You can then open up or block specific resources in your website to
members in a certain role using simple <location> elements in the Web.config file.

The various login controls enable you to customize the content that users get to see. In the next
chapter you discover how to take this one level further, by creating dynamic pages that adapt based
on the user that is accessing them.

exerCises

 1. What’s the difference between authentication and authorization?

 2. Right now the Management folder is blocked for all users except those in the Managers role.
What change do you need to make to the Web.config file if you also want to open up the
folder for the user John and all people in the Editors role?

 3. Imagine you have a website that features a Login page with a single Login control. What
change to the Login control do you need to make to send users to MyProfile.aspx in the
root after they log in?

 4. What’s the difference between the LoginView and LoginStatus controls? When would you
use each one?

You can find answers to these exercises in Appendix A.

c16.indd 626 2/21/2014 1:22:02 PM

Summary ❘ 627

 ➤ What You learned in this Chapter

application services A set of ASP.NET services that you can access from your website to
handle tasks such as membership, role, and profile management.

authentication The process of proving your identity to a system.

authorization The process of determining the permissions a user has in a system.

login controls The set of security controls that ship with ASP.NET and that enable you
to sign up, log in, recover your password, and more.

membership One of the ASP.NET application services that handles membership-
related tasks (including creating users, logging in, and more).

permissions Determine the operations a user in the system is allowed to carry out.

provider model A model where an interchangeable piece of software is used for certain
application tasks. Through configuration, you can assign a different
piece of software that handles the same tasks (but in a different way).

role manager One of the ASP.NET application services that handles role-related tasks
including creating roles, assigning users to roles, and checking their
role membership.

c16.indd 627 2/21/2014 1:22:02 PM

c16.indd 628 2/21/2014 1:22:02 PM

17
Personalizing Websites

What You Will learn in this Chapter:

➤➤ Details about the Profile feature that ships with ASP.NET

➤➤ How to create and consume a user’s profile in a website

➤➤ How you can recognize your users and how to serve them
customized content

➤➤ How you can access the profile of other users of your site

Wrox.Com Code doWnloads for this Chapter

You can find the wrox.com code downloads for this chapter on the Download Code tab at
www.wrox.com/go/begaspnet451. The code is in the Chapter 17 folder.

There is only one thing that beats good content on the web — good personalized content. In
the era of information overload and the huge amount of competitive sites, it’s important to
know your visitors and understand the possibilities you have to present them personalized
content. With a good personalization strategy, you can create a website that lives up to
your users’ expectations by presenting them with exactly the data they are looking for.
Personalization is useful for many different scenarios. For example, on a sports site, you use
personalized content to highlight activities from the user’s favorite team. On a site that deals
with programming, you can personalize content by showing users examples in their preferred
programming language(s) only. On a news website, you can let users choose one or more news
categories (World, Local, Sports, Business, Financial, and so on) and target the content you
show them based on these preferences. You can take this one step further by sending them
e-mail updates when a new article is posted in one of those categories.

c17.indd 629 2/21/2014 1:27:25 PM

http://www.wrox.com/go/begaspnet451
http://wrox.com
http://wrox.com

630 ❘ Chapter 17 Personalizing Websites

However, personalization goes further than just storing personal preferences and adapting the
content to these preferences. With personalization, you can also keep track of other user details,
such as a name, date of birth, visits to the site, items users bought in an online shop, and so on. You
can then use these details to further personalize web pages, creating a closer relationship with your
visitors.

In the Planet Wrox website, personalization is implemented simply yet effectively. The main Reviews
page is designed to show only the reviews for those music genres in which the user is interested. To
see all the available reviews, users can still visit the All.aspx page, but by visiting the personalized
page, they only see reviews in music genres they really like.

Additionally, users can enter personal details about themselves, such as a first and last name, and
a short biography. These details are shown on the Photo Albums details page so you know who
created a particular photo album.

To enable you to add personalization features to a website, ASP.NET 4.5.1 ships with an application
service called Profile. With the Profile service, you can store data for a particular user with very few
lines of code.

By the end of this chapter, you’ll have enough knowledge about the personalization features brought
by Profile to create dynamic and personalized websites.

 understanding profile

The ASP.NET Profile is another application service that ships with ASP.NET. It enables you to
store and retrieve information about users to your site that goes beyond basic information such as
an e-mail address and password that users can enter during sign-up. With Profile, you can store
information such as a first and last name, a date of birth, and much more, as you see later in this
chapter. By keeping track of the user to which that data belongs, ASP.NET is able to map that data
to a user the next time she visits your site, whether that be minutes or weeks later. The cool thing
about Profile is that it enables you to store data for registered users as well as anonymous users. So,
even if your visitors haven’t signed up for an account, you can recognize them and store information
about them.

You access the information in a user’s profile through a clean API with virtually no code. All you
need to do is define the information you want to keep track of in the central Web.config file and
the Profile service takes care of the rest. All interaction with the database to retrieve or store profile
information in the database is handled automatically for you.

Enabling Profile in your web application is a simple, two-step process:

 1. Define the information you want to store for a user in the Web.config file. Based on this
information, the ASP.NET run time generates and compiles a class for you on the fly that
gives you access to the properties you defined. It then dynamically expands a property
called Profile on all web pages in your site, so you can easily access the profile properties
from every page in your site.

 2. In your application, you program directly to this generated class to get and store the profile
information for the current user.

c17.indd 630 2/21/2014 1:27:25 PM

 Understanding Profile ❘ 631

The ASP.NET Profile by default is connected to a logged-in user, although you can also save profile
data for unauthenticated users, as you will see later in this chapter.

In the following section, you see how to define profile properties in Web.config and how to access
them in your web pages.

Note It’s important to realize that the built-in Profile feature works only with
Web Site Projects and not with Web Application Projects. For a discussion on
the difference between the two, refer to Chapter 2. If you find that none of
the examples in this chapter seem to work, check that you haven’t acciden-
tally created a Web Application Project. The simplest way to check is to look
at the Code Behind file of a Web Form. If you see two Code Behind files (one
named after the page with a .cs or .vb extension and one with an additional
Designer extension), you have created a Web Application Project. In that case,
get yourself a copy of the Chapter 16 folder that is part of the source that
comes with this book and use that as the starting point for this chapter.

Configuring the profile
You define a profile for your website in the Web.config file by creating a <profile> element as
a direct child of the <system.web> element. Between the <profile> tags, you need to create a
<properties> element that is used to define the properties you want to expose from your Profile
object. Two types of properties exist: simple properties and complex properties, referred to as
profile groups.

Creating Simple Profile Properties
You define simple properties as direct children of the <properties> element using an <add>
element. The following example demonstrates how to create a property that can be used to hold a
user’s first name and one to hold a date of birth. The FirstName property can be accessed and set
for authenticated and anonymous users, whereas the DateOfBirth property is accessible only to
logged-in users:

<system.web>
 ...
 <profile>
 <properties>
 <add name="FirstName" allowAnonymous="True" />
 <add name="DateOfBirth" type="System.DateTime" />
 </properties>
 </profile>

Because properties are by default of type System.String, there’s no need to define an explicit
type on the property for text-based properties like a first name. However, for other types like
a DateTime, a Boolean, an Integer, or your own types, you need to define the type explicitly
using the type attribute and its fully qualified name including its namespace, as shown for the
DateOfBirth property. The following table lists the most common attributes of the <add>
element that influence the properties of a profile.

c17.indd 631 2/21/2014 1:27:25 PM

632 ❘ Chapter 17 Personalizing Websites

attribute desCription

name Defines the name of the property, such as FirstName,
DateOfBirth, and so forth.

type Sets the full .NET type name of the property, such as System
.String, System.Boolean, System.DateTime, System.Int32 (an
Integer in VB.NET and an int in C#), and so on.

allowAnonymous Specifies whether the property can be written to for anonymous
users. The default is false. When you set this attribute to true,
you also need to enable anonymousIdentification, discussed
later in this chapter.

defaultValue Defines the default value for the property if it hasn’t been set
explicitly. When you leave out this attribute, the profile property
takes the default value for the underlying type (for example, null
for a String, 0 for an Int32, and so on).

readOnly Specifies whether the profile property can be changed at run time.
The default is false, which means you can read from and write to
the property.

Besides simple properties, you can also create profile groups that enable you to group other simple
properties together.

Creating Profile Groups
Profile groups serve two distinct purposes: first, they enable you to logically group related
properties. For example, you can create a group called Address that, in turn, has properties like
Street, PostalCode, and City.

Groups also enable you to have properties with the same name, but located in a different group.
For example, you can have two groups called VisitAddress and PostalAddress that both feature
properties like Street and PostalCode, making it easier for a developer using your Profile object
to find the relevant information.

To create a profile group, you add a <group> element to the <properties> element of your profile
and then specify a name. The <group> element then contains one or more properties. The following
example shows a profile group for a PostalAddress:

<properties>
 <add name="FirstName" />
 <group name="PostalAddress">
 <add name="Street" />
 <add name="PostalCode" />
 <add name="City" />
 <add name="Country" />
 </group>
</properties>

c17.indd 632 2/21/2014 1:27:25 PM

 Understanding Profile ❘ 633

You can have multiple groups within the <properties> tags, but you can have only one level of
groups. This means that you can’t nest a <group> element in another <group> or <add> element.

Using Non-standard Data Types
In addition to the data types listed earlier such as String, DateTime, and Int32, you can also use
your own types (defined in the App_Code folder, for example).

As with the built-in .NET types, you need to refer to your type using its fully qualified name,
which includes the namespace and the class name. Imagine that you have a type called Preference
that contains various properties (implemented as automatic properties in this example) related
to the user’s preference. To include this type in the profile, you need to wrap it in a namespace first:

VB.NET

Namespace PlanetWrox
 Public Class Preference
 Public Property FavoriteColor As String
 ' Other properties go here
 End Class
End Namespace

C#

namespace PlanetWrox
{
 public class Preference
 {
 public string FavoriteColor { get; set; }
 // Other properties go here
 }
}

You then refer to the type in an <add /> element as follows:

<add name="Preferences" type="PlanetWrox.Preference" />

A situation where you need a different syntax to refer to a type in the profile setup is when you are
using generics. Chapter 5 discusses how to use generics to store role names using a List of strings.
Here’s a quick refresher of the code you saw in that chapter:

VB.NET

Dim roles As New List(Of String)
...
roles.Add("Members")

C#

List<string> roles = new List<string>();
...
roles.Add("Members");

To give your profile a property that is of a generic List type, you need to use some special syntax.
The following setting in Web.config creates a profile property called FavoriteGenres that stores
the user’s favorite genres as a List (Of Integer) in VB.NET and as a List<int> in C#:

c17.indd 633 2/21/2014 1:27:25 PM

634 ❘ Chapter 17 Personalizing Websites

<add name="FavoriteGenres"
 type="System.Collections.Generic.List`1[System.Int32]" />

The first part of the type attribute looks quite normal. The List class lives in the System
.Collections.Generic namespace so it makes sense that you need to specify that here as well.
However, right after the class name (List) you see `1. This is not a typo, but the .NET way to refer
to generic types in plaintext. To define a property that is based on a generic type, you need to use
the back tick (̀) followed by a 1. The back tick is usually found to the left of the 1 key on your
keyboard. The `1 is then followed by a pair of square brackets that contains the actual type you
want to use for the list. The type specified in the FavoriteGenres profile property maps to these
VB.NET and C# counterparts:

VB.NET

Dim FavoriteGenres As New List(Of Integer)

C#

List<int> FavoriteGenres = new List<int>();

You see how to make use of this and other profile properties in the following exercises. First, you
learn how to configure Profile in Web.config in the next Try It Out. Later exercises show you how
to work with these properties, and how to use the various methods of the List class.

trY it out Creating a Profile

In this Try It Out, you see how to create a profile that is capable of storing a user’s first and last name,
a date of birth, a short biography, and a list of IDs of the user’s favorite genres. This list is later used to
show only the reviews that match the user’s interest.

 1. Open the Web.config file from the root of the site and locate the <profile> element that was
added by NuGet in an exercise in the preceding chapter. If you don’t have this element yet, refer
to the section “Introducing the Login Controls” in Chapter 16 to learn how to configure your site
for the application services.

 2. Add a new <properties> element as a direct child of <profile>. Make sure you don’t
accidentally add the new element inside the <providers> element.

 3. Complete the <profile> element so it ends up looking like this:

<profile defaultProvider="DefaultProfileProvider">
 <properties>
 <add name="FirstName" />
 <add name="LastName" />
 <add name="DateOfBirth" type="System.DateTime" />
 <add name="Bio" />
 <add name="FavoriteGenres"
 type="System.Collections.Generic.List`1[System.Int32]" />
 </properties>
 <providers>
 ...
</profile>

c17.indd 634 2/21/2014 1:27:25 PM

 Understanding Profile ❘ 635

 4. Save the Web.config. As soon as you save the file, a
background process starts to generate a class file that
is used for the profile. After the class file has been
created and compiled successfully, you can access it
programmatically through the Profile property of
the Page class.

 5. To test the profile, open the MyProfile.aspx file that
you created in the previous chapter in Design View.
Double-click the page to set up an event handler for
the Load event and add the following code containing
your own first and last name:

VB.NET

Protected Sub Page_Load(sender As Object, e As EventArgs) Handles Me.Load
 Profile.FirstName = "Your first name here"
 Profile.LastName = "Your last name here"
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 Profile.FirstName = "Your first name here";
 Profile.LastName = "Your last name here";
}

As soon as you type the dot (.) after Profile, an IntelliSense list appears, showing you the avail-
able profile properties (see Figure 17-1).

 6. When you are finished typing the code, save and close the file because you’re done with it for now.

WarNiNg If nothing shows up when pressing the dot, choose Build ➪ Build
Web Site from the main menu or press Ctrl+Shift+B. This forces VS to start a
recompilation of the application, including the special class for the Profile
property. You see more about compilation in Chapter 19. After a delay of a
few seconds, the properties should now appear in the IntelliSense list for the
Profile property of the Page class. If they still don’t show up, check the Error
List (choose View ➪ Error List from the main menu to open up the Error List) to
verify that you didn’t make any mistakes in the Web.config file and make sure
you are using a Web Site Project and not a Web Application Project.

 7. Switch back to the Web.config file and scroll all the way to the end. Create a copy of the <location>
element that blocks access to the Management folder for unauthorized users and paste it right below
the existing element. Then modify the copy so it blocks access to the MyProfile
.aspx file in the root of the site to all unauthenticated users. You should end up with these settings:

 </location>
 <location path="MyProfile.aspx">
 <system.web>
 <authorization>
 <deny users="?"/>

figure 17-1

c17.indd 635 2/21/2014 1:27:26 PM

636 ❘ Chapter 17 Personalizing Websites

 </authorization>
 </system.web>
 </location>
</configuration>

 8. In the Solution Explorer, right-click the MyProfile.aspx file and choose View in Browser. You
can only view this file when you’re logged in; if you weren’t logged in previously, you are taken to
Login.aspx first. Log in with the username and password you created in the previous chapter and
click Login. You’re taken back to MyProfile.aspx. Although you don’t see anything new in the
page, the code in Page_Load has run and has created a profile for you in the database.

 9. To see this profile, close your browser and go back to Visual Studio. Open the Server Explorer
and expand the Tables element of the PlanetWrox.mdf database. Locate the Profiles table,
right-click it, and choose Show Table Data. You should see something similar to Figure 17-2.

figure 17-2

This figure shows the profile data for a single user. The first and last name you entered in step 5
are stored in the column PropertyValueStrings. Because of the special format this data is stored
in, you shouldn’t modify this data manually. Instead, you should use Profile to change the under-
lying data.

How It Works

When you define profile properties in Web.config, the ASP.NET run time creates a class for you in the
background. This class, called ProfileCommon, gives you access to the strongly typed properties such
as FirstName, LastName, and FavoriteGenres. The ProfileCommon class is then made accessible to
the Page through its Profile property. ProfileCommon inherits from ProfileBase, the base class
defined in the .NET Framework that contains the behavior to access the profile in the database by talk-
ing to the configured provider, the ASP.NET Profile provider. The provider in turn takes care of all the
hard work of persisting the data in the configured database. Just as the Membership and Roles provid-
ers you saw in the preceding chapter, the Profile provider uses the connection string defined in the con-
nectionStringName attribute of the configured provider.

To define properties, you use <add> elements with a name attribute and an optional type if the property
is of a type other than System.String. For example:

<add name="FavoriteGenres"
 type="System.Collections.Generic.List`1[System.Int32]" />

This property sets up a list that can store Integer values to hold the user’s favorite music genres. You
see how to use this property in a later exercise.

After you have set up the profile in Web.config and the background class has been compiled, you can
access the profile in your pages. For example, you can now set properties such as FirstName through
code:

c17.indd 636 2/21/2014 1:27:26 PM

 Understanding Profile ❘ 637

VB.NET

Profile.FirstName = "Your first name here"

C#

Profile.FirstName = "Your first name here";

Although not used in this exercise, you access properties in a group in pretty much the same way. All
you need to do is prefix the property name with the group name and a dot. Given the example of a
PostalAddress, you would store the street for that address like this:

VB.NET

Profile.PostalAddress.Street = "Some Street"

C#

Profile.PostalAddress.Street = "Some Street";

Changes made to the profile are saved automatically for you during EndRequest, an event that fires
very late during the ASP.NET page life cycle. This way, you can change the profile during many of the
stages of the life cycle without having to worry about explicitly saving the profile manually.

In Figure 17-2, you can see how a single row is used to store the entire profile. The first column con-
tains the unique ID of the user to which the profile belongs. The second column contains a list of prop-
erty names that are saved for the current user, together with a starting index of the value and a length.
For example, for the last name you see:

LastName:4:10

This states that the value for the LastName property, which is stored in the PropertyValueStrings
column, starts at position 4 (the fifth character because zero-based positions are used) and has a length
of 10 characters. This dense format enables the Profile provider to store many different properties
in a single column, which eliminates the need to mess with the database schema any time the profile
changes. Earlier versions of the Profile provider used the PropertyValueBinary column to store binary
objects such as images. However, the Profile provider converts these to strings and stores them in the
PropertyValueStrings column as well.

You learn more about reading from and writing to the profile in the following section.

using the profile
As you saw in the previous section, writing to the profile is easy. To change a property like
FirstName, all you need is a single line of code. The profile keeps track of the changes you have
made to it, and, if necessary, automatically saves the changes during EndRequest. Reading from the
profile is just as easy; all you need to do is access one of its properties. The following snippet shows
how to fill a TextBox with the first name from the profile:

VB.NET

FirstName.Text = Profile.FirstName

c17.indd 637 2/21/2014 1:27:26 PM

638 ❘ Chapter 17 Personalizing Websites

C#

FirstName.Text = Profile.FirstName;

Retrieving properties in a group is almost identical. To access the Street property discussed in a
previous example, you need this code:

VB.NET

PostalAddressStreet.Text = Profile.PostalAddress.Street

C#

PostalAddressStreet.Text = Profile.PostalAddress.Street;

Accessing the FavoriteGenres property is slightly different. Because this property is a collection,
you shouldn’t assign a value to it directly. Instead, you use its methods and properties to get data in
and out. The following example clears the entire list first, and then adds the IDs of two genres to it:

VB.NET

Profile.FavoriteGenres.Clear()
Profile.FavoriteGenres.Add(7)
Profile.FavoriteGenres.Add(11)

C#

Profile.FavoriteGenres.Clear();
Profile.FavoriteGenres.Add(7);
Profile.FavoriteGenres.Add(11);

The following exercise shows you how to store basic data in the user’s profile. You see a real-world
implementation of using the FavoriteGenres list in a later exercise.

trY it out Storing Basic User Data in the Profile

In this Try It Out, you modify the Profile page so users can save their first and last name, birthday, and
a short biography in their profile.

 1. Open MyProfile.aspx again and switch to Code Behind. Remove the two lines of code in
Page_Load that set the first and last name.

 2. Switch to Design View and position your cursor between the paragraph and the ChangePassword
control. To position your cursor, click the ChangePassword control once to select it, and then
press the left arrow key once. Next, add an HTML table of five rows and three columns by
choosing Table ➪ Insert Table.

 3. In the second column of each of the first four rows, drag TextBox controls and rename them,
from the first to the last row, FirstName, LastName, DateOfBirth, and Bio by setting their ID
attribute. Figure 17-3 shows you exactly where the TextBox controls should be placed.

 4. In the first column of each of the first four rows, drop Label controls and set their properties as
follows so each label is associated with a TextBox in the same row.

c17.indd 638 2/21/2014 1:27:26 PM

 Understanding Profile ❘ 639

text associatedControlid

First name FirstName

Last name LastName

Date of birth DateOfBirth

Biography Bio

 5. In the second cell of the fifth row, drag a Button and set its ID to SaveButton and its Text to
Save profile. Design View should look like Figure 17-3.

figure 17-3

 6. In the last column of each of the first three rows, drag RequiredFieldValidator controls. Set
their properties as follows, so each validator lines up with a TextBox in the same row. Remember:
you can set the Display property for all controls at once by selecting the controls while pressing
the Ctrl key first.

ControltoValidate display errormessage

FirstName Dynamic First name is required.

LastName Dynamic Last name is required.

DateOfBirth Dynamic Date of birth is required.

c17.indd 639 2/21/2014 1:27:26 PM

640 ❘ Chapter 17 Personalizing Websites

 7. Next to the validator for the DateOfBirth box, drag a CompareValidator and set its properties
as follows:

property Value

Display Dynamic

ErrorMessage Please enter a valid date.

ControlToValidate DateOfBirth

Operator DataTypeCheck

Type Date

 8. Set the TextMode of the Bio control to MultiLine and set its Height and Width properties to
75px and 300px, respectively.

 9. Modify the text above the table to indicate that users can now do more than just change their
password alone. Your Design View should look like Figure 17-4.

figure 17-4

 10. Double-click the Save Profile button and in the Click event handler that VS added for you, write
the following bolded code:

VB.NET

Protected Sub SaveButton_Click(sender As Object,
 e As EventArgs) Handles SaveButton.Click
 If Page.IsValid Then
 Profile.FirstName = FirstName.Text
 Profile.LastName = LastName.Text
 Profile.DateOfBirth = DateTime.Parse(DateOfBirth.Text)
 Profile.Bio = Bio.Text
 End If
End Sub

c17.indd 640 2/21/2014 1:27:27 PM

 Understanding Profile ❘ 641

C#

protected void SaveButton_Click(object sender, EventArgs e)
{
 if (Page.IsValid)
 {
 Profile.FirstName = FirstName.Text;
 Profile.LastName = LastName.Text;
 Profile.DateOfBirth = DateTime.Parse(DateOfBirth.Text);
 Profile.Bio = Bio.Text;
 }
}

 11. In the Page_Load event handler of the same page, add the following code, which fills in the text
box controls with the data from the profile when the page loads:

VB.NET

Protected Sub Page_Load(sender As Object, e As EventArgs) Handles Me.Load
 If Not Page.IsPostBack Then
 FirstName.Text = Profile.FirstName
 LastName.Text = Profile.LastName
 DateOfBirth.Text = Profile.DateOfBirth.ToShortDateString()
 Bio.Text = Profile.Bio
 End If
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 if (!Page.IsPostBack)
 {
 FirstName.Text = Profile.FirstName;
 LastName.Text = Profile.LastName;
 DateOfBirth.Text = Profile.DateOfBirth.ToShortDateString();
 Bio.Text = Profile.Bio;
 }
}

 12. Save all changes and request the page in the browser. If you’re required to log in first, enter your
details, click the Login button and browse to the My Profile page. You should see the data you
entered for the first and last names in the previous Try It Out already filled in. In addition, the
date of birth field is filled with the default value for a DateTime: 1/1/0001. Complete the form
with your details and click the Save Profile button.

 13. Restart your browser and request MyProfile.aspx again. Note that your changes have been
persisted between the two browser sessions.

How It Works

Much of what you have seen in this exercise should be familiar by now. The page contains a number
of TextBox controls that are validated using RequiredFieldValidator and CompareValidator con-
trols. Additionally, the Label controls are hooked up to their respective TextBox controls using the

c17.indd 641 2/21/2014 1:27:27 PM

642 ❘ Chapter 17 Personalizing Websites

AssociatedControlID property. This makes it easy to put focus on the controls in the browser because
clicking a Label now puts the cursor in the associated TextBox.

When you click the Save Profile button, the values are retrieved from the four TextBox controls and
stored in the profile. When the page loads the first time, the reverse of this process takes place: the
controls are prefilled with the values from the profile. To avoid overwriting the data that the user has
entered, the code gets the data from the profile only when the page initially loads, and not during a
postback:

VB.NET

If Not Page.IsPostBack Then
 FirstName.Text = Profile.FirstName

End If

C#

if (!Page.IsPostBack)
{
 FirstName.Text = Profile.FirstName;
 ...
}

Although the example itself is pretty trivial, it lays out a nice foundation for a more advanced
scenario using the List of integers to store the user’s preference for certain music genres. You can
then use this list of favorite genres to limit the list with reviews to those the user is really interested
in. You see how to store the user’s preference in Profile in the following exercise; a later exercise
shows you how to use the saved data again.

trY it out Storing Genre Preferences in the Profile

In this Try It Out, you learn how to fill the FavoriteGenres property of the user profile. To let the
user choose her favorite genres, you’ll add a CheckBoxList that displays the available genres using
Model Binding. When the user saves the data, the items that the user checked are then stored in the
profile.

 1. In MyProfile.aspx, add a table row above the one with the Save Profile button. To do this, make
sure you’re in Design View, right-click an empty spot in the row with the button, and choose
Insert ➪ Row Above from the context menu that appears.

 2. In the second cell of the new row, drag a CheckBoxList control from the Standard category of the
Toolbox and set its ID to PreferredGenres.

 3. In the first cell, drag a Label control, set its Text to Favorite genres and its
AssociatedControlID to PreferredGenres.

c17.indd 642 2/21/2014 1:27:27 PM

 Understanding Profile ❘ 643

 4. Switch to Markup View, locate the CheckBoxList control and add a new SelectMethod attribute
with its value set to PreferredGenres_GetData. Your control should now look like this:

<asp:CheckBoxList ID="PreferredGenres" runat="server"
 SelectMethod="PreferredGenres_GetData">
</asp:CheckBoxList>

 5. Switch to Code Behind and implement the PreferredGenres_GetData method as follows:

VB.NET

Public Function PreferredGenres_GetData() As IEnumerable(Of Genre)
 Using myEntities As New PlanetWroxEntities()
 Return (From genre in myEntities.Genres
 Order By genre.Name
 Select genre).ToList()
 End Using
End Function

C#

public IEnumerable<Genre> PreferredGenres_GetData()
{
 using (var myEntities = new PlanetWroxEntities())
 {
 return (from genre in myEntities.Genres
 orderby genre.Name
 select genre).ToList();
 }
}

 6. Switch to Markup View and add DataTextField and DataValueField attributes so they retrieve
their value from the genre’s Name and Id properties respectively:

<asp:CheckBoxList ID="PreferredGenres" runat="server"
 SelectMethod="PreferredGenres_GetData" DataTextField="Name" DataValueField="Id">
</asp:CheckBoxList>

 7. In Design View, click the CheckBoxList control once, open its Properties Grid, and switch to the
Events tab. Double-click the DataBound event and add the following code in the Code Behind to
preselect the items in the list based on the user’s profile settings:

VB.NET

Protected Sub PreferredGenres_DataBound(sender As Object,
 e As EventArgs) Handles PreferredGenres.DataBound
 For Each myItem As ListItem In PreferredGenres.Items
 Dim currentValue As Integer = Convert.ToInt32(myItem.Value)
 If Profile.FavoriteGenres.Contains(currentValue) Then
 myItem.Selected = True
 End If
 Next
End Sub

c17.indd 643 2/21/2014 1:27:27 PM

644 ❘ Chapter 17 Personalizing Websites

C#

protected void PreferredGenres_DataBound(object sender, EventArgs e)
{
 foreach (ListItem myItem in PreferredGenres.Items)
 {
 int currentValue = Convert.ToInt32(myItem.Value);
 if (Profile.FavoriteGenres.Contains(currentValue))
 {
 myItem.Selected = true;
 }
 }
}

 8. Extend the SaveButton_Click handler with the following code so it also saves the user’s
preferred genres:

VB.NET

Profile.Bio = Bio.Text

' Clear the existing list
Profile.FavoriteGenres.Clear()

' Now add the selected genres
For Each myItem As ListItem In PreferredGenres.Items
 If myItem.Selected Then
 Profile.FavoriteGenres.Add(Convert.ToInt32(myItem.Value))
 End If
Next

C#

Profile.Bio = Bio.Text;

// Clear the existing list
Profile.FavoriteGenres.Clear();

// Now add the selected genres
foreach (ListItem myItem in PreferredGenres.Items)
{
 if (myItem.Selected)
 {
 Profile.FavoriteGenres.Add(Convert.ToInt32(myItem.Value));
 }
}

 9. Save all your changes, request the Profile page in your browser, and log in when required. You
should see the list of genres displayed in the browser, each one preceded by a check box. Select
a couple of your favorite genres and click the Save profile button. Browse to another page and
choose My Profile again from the main Menu or TreeView. The genres you selected should still be
selected in the page, as shown in Figure 17-5.

c17.indd 644 2/21/2014 1:27:27 PM

 Understanding Profile ❘ 645

How It Works

Earlier you defined the FavoriteGenres property in the profile as a generic list that can hold integer
values. Because this property is a List, you do not assign values to it directly; instead, you use its meth-
ods like Add and Clear to add and remove items. Because each genre ID should be stored in the list
only once, the list is cleared to remove any selection made earlier and then the selected items are added
again:

VB.NET

Profile.FavoriteGenres.Clear()

C#

Profile.FavoriteGenres.Clear();

Then when the list is empty, the IDs of the selected genres are added:

VB.NET

For Each myItem As ListItem In PreferredGenres.Items
 If myItem.Selected Then
 Profile.FavoriteGenres.Add(Convert.ToInt32(myItem.Value))
 End If
Next

figure 17-5

c17.indd 645 2/21/2014 1:27:27 PM

646 ❘ Chapter 17 Personalizing Websites

C#

foreach (ListItem myItem in PreferredGenres.Items)
{
 if (myItem.Selected)
 {
 Profile.FavoriteGenres.Add(Convert.ToInt32(myItem.Value));
 }
}

This code loops through all the items in the CheckBoxList. The Selected property determines
whether the user has selected the item in the Profile page. If it has been selected, the value of the genre
is retrieved, converted to an Integer (an int in C#), and then added to the FavoriteGenres list using
the Add method.

That’s really all you need to store complex data like a list of favorite genres in the user’s profile. All
you need to do is add a bunch of numbers to a list. The .NET run time then takes care of persisting
the profile in the database and making it available again in subsequent pages.

Of course, the list with favorite genres isn’t really useful until you actually make use of it in the site.
In the next exercise, you see how to use the list to limit the list of Reviews that users initially see
when they visit the default Reviews page.

trY it out Using Profile in the Reviews Page

Currently your site has two pages in the Reviews folder that are capable of displaying reviews:
AllByGenre.aspx and All.aspx. In this Try It Out, you modify the Default.aspx page so it displays
yet another list of reviews. However, this time the list with reviews is limited to those belonging to the
genres that the user has selected in the My Profile page. When anonymous users see the page, they get a
message that they haven’t set their favorite genres yet.

 1. From the Reviews folder, open Default.aspx in Markup View.

 2. Inside the control for the cpMainContent placeholder, add the following code that creates a
nested Repeater with each selected genre as a heading, followed by a list of reviews belonging to
that genre:

<asp:Repeater ID="GenreRepeater" runat="server">
 <HeaderTemplate>
 <p>Below you find a list with reviews for your favorite music genres.</p>
 </HeaderTemplate>
 <ItemTemplate>
 <h3><asp:Literal ID="Literal1" runat="server"
 Text='<%# Eval("Name") %>'></asp:Literal></h3>
 <asp:Repeater ID="ReviewRepeater" runat="server"
 DataSource='<%# Eval("Reviews")%>' ItemType="Review">
 <ItemTemplate>
 <asp:HyperLink ID="HyperLink1" runat="server" Text='<%# Item.Title %>'
 NavigateUrl='<%# "ViewDetails?ReviewId=" + Item.Id.ToString() %>'>

c17.indd 646 2/21/2014 1:27:27 PM

 Understanding Profile ❘ 647

 </asp:HyperLink>

 </ItemTemplate>
 </asp:Repeater>
 </ItemTemplate>
</asp:Repeater>
<asp:PlaceHolder ID="NoRecords" runat="server" Visible="False">
 <p>Sorry, no reviews were found. You either didn't set your favorite genres
 or you may need to log in first. </p>
</asp:PlaceHolder>
<p>You can change your genre preferences <a href="~/MyProfile"
 runat="server">here.</p>

You can create the Repeater controls manually by writing the necessary code, or you can drag
and drop them from the Data category of the Toolbox. The inner Repeater contains a HyperLink
control that points to the ViewDetails.aspx page that you created in Chapter 15. Note how
the inner Repeater is strongly typed by setting its ItemType to Review (because it’s displaying
Review instances). You can’t do this for the outer Repeater because its data source is a collection
of anonymous objects, set in Page_Load in the Code Behind as you see next.

 3. Double-click the page in Design View to set up a Load handler. Add the following code to the
handler that VS created for you:

VB.NET

Protected Sub Page_Load(sender As Object, e As EventArgs) Handles Me.Load
 Using myEntities As PlanetWroxEntities = New PlanetWroxEntities()
 If Profile.FavoriteGenres.Count > 0 Then
 Dim favGenres = From genre In myEntities.Genres.Include("Reviews")
 Order By genre.Name
 Where Profile.FavoriteGenres.Contains(genre.Id)
 Select New With {genre.Name, genre.Reviews}

 GenreRepeater.DataSource = favGenres.ToList()
 GenreRepeater.DataBind()
 End If

 GenreRepeater.Visible = GenreRepeater.Items.Count > 0
 NoRecords.Visible = Not GenreRepeater.Visible
 End Using
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 using (PlanetWroxEntities myEntities = new PlanetWroxEntities())
 {
 if (Profile.FavoriteGenres.Count > 0)
 {
 var favGenres = from genre in myEntities.Genres.Include("Reviews")
 orderby genre.Name
 where Profile.FavoriteGenres.Contains(genre.Id)
 select new { genre.Name, genre.Reviews };

c17.indd 647 2/21/2014 1:27:27 PM

648 ❘ Chapter 17 Personalizing Websites

 GenreRepeater.DataSource = favGenres.ToList();
 GenreRepeater.DataBind();
 }
 GenreRepeater.Visible = GenreRepeater.Items.Count > 0;
 NoRecords.Visible = !GenreRepeater.Visible;
 }
}

 4. Save all your changes and request the page in the browser. If you selected one or more genres in
the Profile page previously, and reviews are available for those genres, you should see a list similar
to Figure 17-6.

figure 17-6

figure 17-7

If you haven’t set any preferred genres, or you’re not logged in, you get the message shown in
Figure 17-7.

c17.indd 648 2/21/2014 1:27:28 PM

 Understanding Profile ❘ 649

By clicking the link in the message, you are taken to the My Profile page so you can set
or change your preferred genres. Unauthorized users are asked to log in or sign up for an
account before they can access the Profile page.

How It Works

The code in the Code Behind executes a LINQ to Entities query that retrieves all the reviews that
belong to the user’s favorite genres. For anonymous users, the list of favorite genres will be empty
so they always get to see the message about setting their preferences in the Profile page. To avoid an
unnecessary call to the database, the query is executed only when the user has selected at least one pre-
ferred genre by checking the Count property of the FavoriteGenres list.

Because the data source of the nested Repeater you added to the Default.aspx page is a collection of
Review instances, it has been made strongly typed by setting its ItemType and using its Item property
as opposed to using Eval. As you learned previously, this makes it easier to write code and catch errors
earlier.

The nested Repeater looks a bit like the code for the AllByGenre.aspx page that has a Repeater that
contains a BulletedList control. Just as in that page, the nested Repeater gets its data from the outer
Repeater with the DataSource attribute:

<asp:Repeater ID="ReviewRepeater" runat="server" ItemType="Review"
 DataSource='<%# Eval("Reviews")%>'>
 ...
</asp:Repeater>

The nested Repeater then uses the list of Reviews to build up the hyperlinks that take you to the
details page:

<asp:HyperLink ID="HyperLink1" runat="server" Text='<%# Item.Title %>'
 NavigateUrl='<%# "ViewDetails?ReviewId=" + Item.Id.ToString() %>'>
</asp:HyperLink>

The HyperLink control gets its Text from the Review instance that it’s bound to and uses its Id to
build up the NavigateUrl. The ToString method is used on Item.Id to convert the value to a string
before it’s concatenated to the string that contains the URL. This is done to avoid type conversions in
Visual Basic where Item.Id normally results in a number that you can’t concatenate to a string directly.
As an alternative, if you’re following along in VB.NET, you could have used the & character to concat-
enate the value.

To see how these controls get their data, you need to look at the Code Behind that uses a LINQ query
targeting the Entity Framework:

VB.NET

Dim favGenres = From genre In myEntities.Genres.Include("Reviews")
 Order By genre.Name
 Where Profile.FavoriteGenres.Contains(genre.Id)
 Select New With {genre.Name, genre.Reviews}

C#

var favGenres = from genre in myEntities.Genres.Include("Reviews")
 orderby genre.Name
 where Profile.FavoriteGenres.Contains(genre.Id)
 select new { genre.Name, genre.Reviews };

c17.indd 649 2/21/2014 1:27:28 PM

650 ❘ Chapter 17 Personalizing Websites

Except for the highlighted line of code and the variable name, this LINQ query is identical to the one
used in AllByGenre.aspx. What makes this example special is the Where clause that limits the number
of reviews to those that the user is really interested in. Note how the Contains method of the generic
List class is used here. Although at first it may seem that all genres and reviews are retrieved from
the database into the ASPX page and then compared with the values in the profile property called
FavoriteGenres, the reverse is actually the case. The Entity Framework is smart enough to collect all
the IDs from the FavoriteGenres property first and then include them in the SQL statement that is
sent to the database to fetch the requested genres and reviews. This means that filtering of the requested
genres takes place at the database level, and not in the ASPX page. This in turn means that fewer rows
are transferred from the database to the ASPX page (only those that are really needed), which results in
better performance.

The profile property FavoriteGenres returns an empty list, rather than throwing an exception for
anonymous users. So, even users with no profile can safely view this page. Instead of seeing any
reviews, they get a message stating they haven’t set their genre preferences yet, or that they need to log
in first.

In the end of the Page_Load handler, some code determines whether to show or hide the Repeater and
the NoRecords controls:

VB.NET

GenreRepeater.Visible = GenreRepeater.Items.Count > 0
NoRecords.Visible = Not GenreRepeater.Visible

C#

GenreRepeater.Visible = GenreRepeater.Items.Count > 0;
NoRecords.Visible = !GenreRepeater.Visible;

If after data binding the outer Repeater, its Items collection is still empty, it means no genres were
found for the current user. If that’s the case, the entire Repeater is hidden and the PlaceHolder is
shown. However, if the Count property of the Items collection is larger than zero, the Repeater is
made visible and the PlaceHolder is hidden.

In Chapter 14, you created a page called NewPhotoAlbum.aspx that lets users insert new Gig Pics
albums. The current implementation of this page has a few shortcomings. First of all, anyone can
insert a new album. There’s no way to block anonymous users from creating a new album and
uploading pictures.

Secondly, only Managers can remove pictures from an existing photo album. It would be nice if the
owner of an album could also remove her own pictures. Now that you know more about security
and personalizing web pages, this is pretty easy to implement, as you see in the following exercise.

trY it out Letting Users Manage Their Own Photo Albums

In this Try It Out you see how to block the NewPhotoAlbum.aspx and ManagePhotoAlbum.aspx pages
from unauthenticated users. Additionally, you see how to record the name of the user who created the
photo album and use that name later on to enable users to alter their own photo albums.

c17.indd 650 2/21/2014 1:27:28 PM

 Understanding Profile ❘ 651

 1. Open SQL Server Management Studio from the Windows Start menu or Start screen. Open your
PlanetWrox database, and locate the PhotoAlbum table. Right-click it and choose Design. Add
a new column called UserName, set its data type to nvarchar(256), and leave the Allow Nulls
option selected. (This table already contains photo albums without a valid UserName, so you can’t
make the column required at this stage unless you delete these photo albums
and their related pictures from the database first, or manually enter a username
for each existing row.) Save your changes to the table and close SSMS.

 2. Back in Visual Studio, open the ADO.NET Entity Data Model file
PlanetWrox.edmx from the App_Code folder, right-click an empty space in the
designer, and choose Update Model from Database. Wait until VS has analyzed
your database and click Finish. The UserName column in the database now
shows up as a property of the PhotoAlbum class (see Figure 17-8).

Save your changes and close the file.

 3. Open the Web.config file, and below the existing <location> elements, add the following two
<location> elements to block access to the two referenced files for anonymous users:

 </location>
 <location path="ManagePhotoAlbum.aspx">
 <system.web>
 <authorization>
 <deny users="?" />
 </authorization>
 </system.web>
 </location>
 <location path="NewPhotoAlbum.aspx">
 <system.web>
 <authorization>
 <deny users="?" />
 </authorization>
 </system.web>
 </location>
</configuration>

Save your changes and close the Web.config file.

 4. Open the Code Behind of NewPhotoAlbum.aspx and add the following highlighted code that sets
the UserName property of the PhotoAlbum before the changes are saved to the database:

VB.NET

myEntities.PhotoAlbums.Add(photoAlbum)
photoAlbum.UserName = User.Identity.Name
myEntities.SaveChanges()

C#

myEntities.PhotoAlbums.Add(photoAlbum);
photoAlbum.UserName = User.Identity.Name;
myEntities.SaveChanges();

 5. From the PhotoAlbums folder, open Default.aspx and switch to its Code Behind.

figure 17-8

c17.indd 651 2/21/2014 1:27:32 PM

652 ❘ Chapter 17 Personalizing Websites

 6. Extend the DataBound event handler for the ListView control with the following code that shows
the Edit link when the current user is either a Manager or the owner of the photo album:

VB.NET

Protected Sub ListView1_DataBound(sender As Object,
 e As EventArgs) Handles ListView1.DataBound
 If Not String.IsNullOrEmpty(PhotoAlbumList.SelectedValue) Then
 Dim photoAlbumId As Integer = Convert.ToInt32(PhotoAlbumList.SelectedValue)
 Using myEntities As PlanetWroxEntities = New PlanetWroxEntities()
 Dim photoAlbumOwner As String = (From p In myEntities.PhotoAlbums
 Where p.Id = photoAlbumId
 Select p.UserName).Single()

 If User.Identity.IsAuthenticated And (User.Identity.Name = photoAlbumOwner Or
 User.IsInRole("Managers")) Then
 EditLink.NavigateUrl = String.Format(
 "~/ManagePhotoAlbum.aspx?PhotoAlbumId={0}", PhotoAlbumList.SelectedValue)
 EditLink.Visible = True
 Else
 EditLink.Visible = False
 End If
 End Using
 Else
 EditLink.Visible = False
 End If
End Sub

C#

protected void ListView1_DataBound(object sender, EventArgs e)
{
 if (!string.IsNullOrEmpty(PhotoAlbumList.SelectedValue))
 {
 int photoAlbumId = Convert.ToInt32(PhotoAlbumList.SelectedValue);
 using (PlanetWroxEntities myEntities = new PlanetWroxEntities())
 {
 string photoAlbumOwner = (from p in myEntities.PhotoAlbums
 where p.Id == photoAlbumId
 select p.UserName).Single();
 if (User.Identity.IsAuthenticated &&
 (User.Identity.Name == photoAlbumOwner || User.IsInRole("Managers")))
 {
 EditLink.NavigateUrl = string.Format(
 "~/ManagePhotoAlbum.aspx?PhotoAlbumId={0}", PhotoAlbumList.SelectedValue);
 EditLink.Visible = true;
 }
 else
 {
 EditLink.Visible = false;
 }
 }
 }

c17.indd 652 2/21/2014 1:27:32 PM

 Understanding Profile ❘ 653

 else
 {
 EditLink.Visible = false;
 }
}

 7. Open the Code Behind of ManagePhotoAlbum.aspx in the root. Add the following code to a
Page_Load handler. If the handler isn’t there yet, double-click the page in Design View to have VS
set one up for you.

VB.NET

Protected Sub Page_Load(sender As Object, e As EventArgs) Handles Me.Load
 Dim photoAlbumId As Integer =
 Convert.ToInt32(Request.QueryString.Get("PhotoAlbumId"))

 Using myEntities As PlanetWroxEntities = New PlanetWroxEntities()
 Dim photoAlbumOwner As String = (From p In myEntities.PhotoAlbums
 Where p.Id = photoAlbumId
 Select p.UserName).Single()
 If User.Identity.Name <> photoAlbumOwner And
 Not User.IsInRole("Managers") Then
 Response.Redirect("~/")
 End If
 End Using
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 int photoAlbumId = Convert.ToInt32(Request.QueryString.Get("PhotoAlbumId"));

 using (PlanetWroxEntities myEntities = new PlanetWroxEntities())
 {
 string photoAlbumOwner = (from p in myEntities.PhotoAlbums
 where p.Id == photoAlbumId
 select p.UserName).Single();
 if (User.Identity.Name != photoAlbumOwner && !User.IsInRole("Managers"))
 {
 Response.Redirect("~/");
 }
 }
}

 8. Because the entire page is now blocked for users without the proper permissions, there’s no longer
the need to hide the individual buttons in the ListView control. This means you can remove the
code for the ListView1_ItemCreated event handler. If you’re using C#, don’t forget to remove
the handler definition from the ListView’s control in Markup View as well.

 9. Save the changes to all open files (press Ctrl+Shift+S) and request NewPhotoAlbum.aspx in your
browser. If necessary, log in with an account you created earlier.

 10. Enter a new name for the photo album and click Insert. At this stage, the photo album is saved,
together with your username. Proceed by adding a few images to your photo album.

c17.indd 653 2/21/2014 1:27:33 PM

654 ❘ Chapter 17 Personalizing Websites

 11. Click Gig Pics from the main Menu or TreeView and choose the new photo album you just created
from the drop-down list. After the page has reloaded, your new photo album should be displayed,
together with the Edit Photo Album link at the bottom of the screen. Clicking the link takes you
to ManagePhotoAlbum.aspx, which lets you add or remove pictures in your photo album.

 12. Click Logout in the footer of the page. Then go to the Gig Pics page again and choose your new
photo album from the drop-down list. Note that the Edit Photo Album link is now no longer visible.

How It Works

You started this exercise by adding a column for the user’s name to the PhotoAlbum table. With this
column, you can keep track of the user who created the photo album, giving you the opportunity to
display data related to the user together with a photo album. When you run the Update Wizard by
choosing Update Model from Database, changes in the database (such as adding a column to a table)
are reflected in the model.

In the New Photo Album page, you used this new property by assigning it the name of the current user
with this code in the DetailsView1_InsertItem handler:

VB.NET

myPhotoAlbum.UserName = User.Identity.Name

C#

myPhotoAlbum.UserName = User.Identity.Name;

The Page class has a User property that represents the user associated with the current request. This
user, in turn, has an Identity property that contains the user’s Name. The Name is then assigned to the
UserName property of the PhotoAlbum instance, which is retrieved from e.Entity.

At this stage, the name is successfully stored in the database, together with the rest of the photo album.
What’s left is doing something useful with this name. The first place where you use this name is in
the default page of the PhotoAlbums folder. There, you used the following LINQ to Entities query to
retrieve the UserName for a photo album:

VB.NET

Dim photoAlbumOwner As String = (From p In myEntities.PhotoAlbums
 Where p.Id = photoAlbumId
 Select p.UserName).Single()

C#

string photoAlbumOwner = (from p in myEntities.PhotoAlbums
 where p.Id == photoAlbumId
 select p.UserName).Single();

This code uses the Single method to retrieve the UserName for a single photo album; the one specified
in photoAlbumId. The remainder of the code then determines the visibility of the Edit link if the
current user is logged in and is an owner of the photo album or a member of the Managers group. This
way, both owners and all Managers can change existing photo albums.

The code in ManagePhotoAlbum.aspx performs a similar check to stop unauthorized users from
accessing the page directly.

c17.indd 654 2/21/2014 1:27:33 PM

Other Ways of Dealing with Profile ❘ 655

other WaYs of dealing With profile

In the final section of this chapter, you see two other useful ways of dealing with the Profile feature
in ASP.NET. First, you see how to use Profile for anonymous users and then you learn how to access
the profile of a user other than the current user.

anonymous identification
The Profile feature is extremely easy to configure, yet very powerful. All you need to do to give
logged-in users access to their profiles is create a few elements in Web.config, and the ASP.NET
run time takes care of the rest. But what about anonymous users? What if you wanted to store data
for your visitors who haven’t signed up for an account or aren’t logged in yet? For those users, you
need to enable anonymous identification. With anonymous identification, ASP.NET creates an
anonymous user in the Users table for every new visitor to your site. This user then gets a cookie
that is linked to the anonymous user account in the database. On every visit, the browser sends the
cookie with the request, enabling ASP.NET to associate a user, and thus a profile, with the user for
the current request.

To enable an anonymous profile, you need to do two things: turn on anonymous identification and
modify some or all profile properties to expose them to anonymous users.

You enable anonymous identification with the following element in Web.config, directly under
<system.web>:

<anonymousIdentification enabled="true" cookieName="PlanetWroxAnonymous" />

The enabled attribute turns on the feature, and the cookieName attribute is used to give the
application a unique cookie name used to store the user’s ID at the client.

After you have turned on anonymous identification, the next step involves modifying properties
under the <profile> element and setting their allowAnonymous attribute to true:

<add name="FavoriteGenres" type="System.Collections.Generic.List`1[System.Int32]"
 allowAnonymous="true" />

This profile property can now be accessed through code for anonymous users as well. If you try to
set a profile property without the allowAnonymous attribute set to true for a user that is not logged
on, you’ll get an error. It’s up to you to write to these properties from pages that are accessible only
to logged-in users. Reading from a property works just fine, although you’ll get empty values or the
defaults you specified in Web.config.

Once you have enabled profile properties for anonymous users, reading from and writing to them
is identical to how you deal with normal profile properties. In the “Exercises” section at the end of
this chapter, you find code to modify the current theme selector so it uses Profile for anonymous and
logged-in users.

Cleaning up old anonymous profiles
You may wonder what is happening with an anonymous user’s profile when the associated user signs
up for an account and becomes a registered user. The answer is: nothing. The old profile is discarded
and the user gets a new profile that is associated with the registered account. Fortunately, this is easy

c17.indd 655 2/21/2014 1:27:33 PM

656 ❘ Chapter 17 Personalizing Websites

to fix. Whenever a user changes from an anonymous to an authenticated user (that is, when she logs
in), ASP.NET fires the Profile_OnMigrateAnonymous event that you can handle. You handle this
event in a Global.asax, which is used for code that handles application- or session-wide events as
you’ve seen before. Inside an event handler for this event, you can access two profiles for the same
user: the old, anonymous profile that is about to get detached from the user and the new profile that
is associated with the user who is currently logging in. You can then copy over relevant data and
delete the old user account and its related profile data. From then on, you deal with the new profile
only. Although not used in the Planet Wrox website, this event handler is a perfect place to copy
anonymous profile data from the old profile to the new one, as demonstrated by the following code:

VB.NET

Public Sub Profile_OnMigrateAnonymous(sender As Object,
 args As ProfileMigrateEventArgs)
 Dim anonymousProfile As ProfileCommon = Profile.GetProfile(args.AnonymousID)

 ' Copy over anonymous properties only
 Profile.AnonymousProperty = anonymousProfile.AnonymousProperty

 ProfileManager.DeleteProfile(args.AnonymousID)
 AnonymousIdentificationModule.ClearAnonymousIdentifier()
 Membership.DeleteUser(args.AnonymousID, True)
End Sub

C#

public void Profile_OnMigrateAnonymous(object sender, ProfileMigrateEventArgs args)
{
 ProfileCommon anonymousProfile = Profile.GetProfile(args.AnonymousID);

 // Copy over anonymous properties only
 Profile.AnonymousProperty = anonymousProfile.AnonymousProperty;

 ProfileManager.DeleteProfile(args.AnonymousID);
 AnonymousIdentificationModule.ClearAnonymousIdentifier();
 Membership.DeleteUser(args.AnonymousID, true);
}

Note that this code uses Profile.GetProfile(args.AnonymousID) to get an instance of the
previous, anonymous profile of the user. This gets a reference to the profile of the user before she
logged in. args.AnonymousID returns a unique identifier for the anonymous user, which has been
stored as the user’s username in the Users table in the database.

The code then continues to copy over the existing, anonymous profile properties from the old to
the new profile. In this example, only one property — called AnonymousProperty — is copied.
However, you can modify the code to copy more properties. Note that there is no point in copying
over properties that are not accessible by anonymous users. Those types of properties cannot have
been set previously, so there’s nothing to copy.

The final three lines of code then delete the old profile, clear the anonymous user ID from the cookie
and, finally, delete the old, anonymous user account from the database. When this code has finished,
the old profile is migrated successfully to the new profile, and all the old profile stuff has been
successfully deleted from the database and the user’s cookies.

c17.indd 656 2/21/2014 1:27:33 PM

Other Ways of Dealing with Profile ❘ 657

The ProfileManager class — which lives in the System.Web.Profile namespace that you need to
import for the previous example to work — provides you with more useful methods to work with
Profile. For example, you can use DeleteInactiveProfiles to delete profiles for users who have
been inactive for a certain amount of time. For detailed information about the ProfileManager
class, look at this MSDN web page: http://tinyurl.com/ManageProfile4-5.

looking at other users’ profiles
The examples you have seen so far use Profile to access data for the current user. However, what if
you need to display data for a different user? For example, what if you wanted to display a user’s
biography below a Gig Pics album? You won’t be able to use the Profile property of the Page class
in this case directly because it provides information about the current user, not about the user who
created the photo album.

To solve this problem, the ProfileCommon class, the base class of the underlying type of the
Profile property of the Page class, comes with a GetProfile method. The GetProfile method
retrieves an existing profile from the database if the name passed to it exists, or it creates a brand
new profile if it doesn’t exist yet. For example, to get the profile of a user with a username of
Carmen, you can use this code:

VB.NET

Dim theProfile As ProfileCommon = Profile.GetProfile("Carmen")

C#

ProfileCommon theProfile = Profile.GetProfile("Carmen");

With the Profile instance created, you can access its properties as you are used to. The following
code assigns the Bio property of Carmen’s profile to the Text property of a Label control:

VB.NET

BioLabel.Text = theProfile.Bio

C#

BioLabel.Text = theProfile.Bio;

Being able to read someone else’s profile is extremely useful. You can use it to show some of the
properties of the profile to other users, as you see in the final exercise of this chapter. However, you
can also use similar code to update other users’ profiles. For example, you could create a page in the
Management section that enables you to manage the profiles of the users that registered at your site.
When you do modify other users’ profiles, be sure to call the Save method when you’re done. As you
learned earlier, changes to the profile are normally persisted in the database automatically. However,
this applies only to the profile of the current user. To change and persist the previously retrieved
profile, you can use this code:

VB.NET

theProfile.Bio = "New Bio for the Carmen account here"
theProfile.Save()

c17.indd 657 2/21/2014 1:27:33 PM

http://tinyurl.com/ManageProfile4-5

658 ❘ Chapter 17 Personalizing Websites

C#

theProfile.Bio = "New Bio for the Carmen account here";
theProfile.Save();

In the following exercise, you put some of this into practice when you show the name of the user
who created a specific photo album, together with the biography of the user.

trY it out Working with Other Users’ Profiles

The Default.aspx page in the PhotoAlbums folder displays the pictures in a specific photo album.
You can’t see which user created the photo album, so that would be a nice new feature. And to further
improve the page, you can also display the user’s biography. In this Try It Out, you see how to imple-
ment both features.

 1. From the PhotoAlbums folder, open the Default.aspx page in Markup View. Scroll down and
locate the two breaks and the HyperLink to edit the album you added earlier. Just before the
breaks and the HyperLink control, drag a PlaceHolder control from the Toolbox and set its ID
to PhotoAlbumDetails. Inside this PlaceHolder, drag two Label controls and then modify the
code manually so it ends up like this:

</asp:ListView>
<asp:PlaceHolder ID="PhotoAlbumDetails" runat="server">
 <h2>Photo Album Details</h2>
 Created by:
 <asp:Label ID="UserNameLabel" runat="server" Text=""></asp:Label>

 About this user:
 <asp:Label ID="BioLabel" runat="server" Text=""></asp:Label>
</asp:PlaceHolder>

<asp:HyperLink ID="EditLink" runat="server" Text="Edit Photo Album" />

 2. Switch to the Code Behind of the page (press F7) and locate the DataBound event handler for the
ListView control. Right after the nested if statement that hides the HyperLink control when
the user doesn’t have the necessary permissions, add these lines of code that retrieve the profile
for the user who created the photo album and then update the relevant labels:

VB.NET

 EditLink.Visible = False
 End If

 If Not String.IsNullOrEmpty(photoAlbumOwner) Then
 Dim ownerProfile As ProfileCommon = Profile.GetProfile(photoAlbumOwner)
 UserNameLabel.Text = photoAlbumOwner
 BioLabel.Text = ownerProfile.Bio
 PhotoAlbumDetails.Visible = True
 Else
 PhotoAlbumDetails.Visible = False
 End If
 End Using
Else

c17.indd 658 2/21/2014 1:27:33 PM

Other Ways of Dealing with Profile ❘ 659

C#

 EditLink.Visible = false;
 }

 if (!string.IsNullOrEmpty(photoAlbumOwner))
 {
 ProfileCommon ownerProfile = Profile.GetProfile(photoAlbumOwner);
 UserNameLabel.Text = photoAlbumOwner;
 BioLabel.Text = ownerProfile.Bio;
 PhotoAlbumDetails.Visible = true;
 }
 else
 {
 PhotoAlbumDetails.Visible = false;
 }
 }
}
else

 3. Save all your changes and open the page in your browser.

 4. From the drop-down list, choose a photo album you created and you should see the photo album
details appear. If you don’t see them, make sure you selected a recent photo album from the
list. Because you added the UserName column to the database at a later stage, some of the photo
albums don’t have a user associated with them. If the Photo Album Details section remains
hidden, create a new photo album and add one or more pictures to it. This ensures that you have
at least one photo album with the UserName property. If you now select the photo album from the
list, you should see the Photo Album Details below the paging controls, as displayed in
Figure 17-9.

figure 17-9

How It Works

Much of the code in this exercise has been discussed before. After adding a few Label controls in the
Photo Album page, you retrieved the profile for the owner of the album with this code:

VB.NET

Dim ownerProfile As ProfileCommon = Profile.GetProfile(photoAlbumOwner)

C#

ProfileCommon ownerProfile = Profile.GetProfile(photoAlbumOwner);

c17.indd 659 2/21/2014 1:27:33 PM

660 ❘ Chapter 17 Personalizing Websites

This code gets a reference to an existing profile using GetProfile. The class that is returned is of
type ProfileCommon; the underlying data type of the Profile property with the properties such as
FirstName and LastName you set in the Web.config file. When you have the reference, working with
it is almost identical to working with normal profiles. The only difference is that you must call Save to
persist any changes made to the profile in the database as you saw earlier.

praCtiCal personalization tips

The following list provides some personalization tips:

➤➤ Don’t try to access the profile of the current user in the Login page, because it isn’t available
yet. The profile is instantiated early in the page’s life cycle, so when a Login control
authenticates a user in a Login page, it’s too late to associate that user’s profile with the
current request. Use the GetProfile method of ProfileCommon instead or redirect to
another page.

➤➤ Carefully consider what to store in Profile and what is better stored in your own database
tables. Although the single-row structure that ASP.NET uses to store your profile offers you
a simple and convenient solution, it’s not the most efficient one, especially not with large
amounts of data. Don’t try to store complete reviews or even photo albums in Profile, but
use your own database tables instead.

➤➤ The current implementation of Profile makes it difficult to query data from the Profiles
table in your own queries. For example, it’s difficult to answer queries like “Give me all
users that prefer the Rock genre” because all the data is stored in a single column. To work
around these issues, store data in your own tables (using Entity Framework, for example),
or use a different Profile provider that you can download from the Sandbox section of the
official ASP.NET website at www.asp.net/downloads/sandbox/.

➤➤ Take some time to review the new ASP.NET Identity system. Although it targets advanced
scenarios, it’s good to know what it offers in case you need some of its functionality.

summarY

In this chapter, you learned how to use the Profile feature that ships with ASP.NET 4.5.1 to store
user-related data. You can use Profile to keep track of data for authenticated and for anonymous
users.

Setting up a profile is a pretty straightforward operation. You need a <profile> element in the Web
.config file with a <properties> child element, and then you add one or more properties using
<add/> elements. To group related properties, you use the <group> element.

When you have set up the profile, you access its properties through the Profile property of the
Page class. This always accesses the profile for the current user. Any changes you make to this
profile are persisted for you automatically at the end of the ASP.NET life cycle.

c17.indd 660 2/21/2014 1:27:33 PM

http://www.asp.net/downloads/sandbox/

Summary ❘ 661

By design, profile properties are accessible only to logged-in users. However, you can easily change
this by turning on anonymous identification.

To access the profile of a user other than the one associated with the current request, you can use
the GetProfile method. Any changes made to this profile are not persisted automatically, so you
must call Save to send the changes to the database.

Now that your pages contain more and more code, chances are that bugs and problems will creep
into your application. In the next chapter you learn how to use exception handling to avoid those
problems from ending up in the user interface. You also learn how to debug your code, so you can
fix problems before they occur.

exerCises

 1. The favorite theme feature you created earlier would be a great candidate for a profile
property. What code would you need to add to the profile in Web.config to make this
possible?

 2. When you create profile properties in Web.config, the compiler extends the Profile property
only for the Code Behind classes of Web Forms. Therefore, in order to set the favorite theme
(or other properties) in the BasePage, you need to access the profile in a special way. Instead
of accessing the Profile property on the Page class, you access it through the HttpContext
like this:

VB.NET

Dim myProfile As ProfileCommon = CType(HttpContext.Current.Profile, ProfileCommon)

C#

ProfileCommon myProfile = (ProfileCommon) HttpContext.Current.Profile;

 Given this code, how can you rewrite Page_PreInit so it gets the preferred theme from the
profile instead of from a cookie?

 3. What else do you need to change to finalize storing the theme in the profile instead of a
custom cookie?

You can find answers to these exercises in Appendix A.

c17.indd 661 2/21/2014 1:27:33 PM

662 ❘ Chapter 17 Personalizing Websites

 ➤ What You learned in this Chapter

Anonymous identification The ASP.NET feature that enables you to track users to
your site, even if they haven’t signed up for an account or
are not logged in

ASP.NET Profile The ASP.NET application service that enables you to store
and retrieve information about users to your site

EndRequest An event fired by the application in which the changes to
the profile are persisted in the database

OnMigrateAnonymous An event fired by the ASP.NET Profile feature that you can
handle in Global.asax to copy anonymous properties into
the new profile

Personalization The process of targeting users with customized content
based on their preferences or other information

Profile groups The mechanism that enables you to group related profile
properties

Profile provider A provider responsible for storing and retrieving profile-
related data

c17.indd 662 2/21/2014 1:27:34 PM

18
Exception Handling,
Debugging, and Tracing

What You Will learn in this Chapter:

➤➤ How to write code that is able to detect and handle errors that
occur at run time, at the same time shielding your users from the
error details

➤➤ How to detect errors that occur on your production machine so
you can take countermeasures

➤➤ What debugging is and what debugging tools VS offers

➤➤ What tools you can use to gain information about your system
and code while it’s running in a development or production
environment

Wrox.Com Code doWnloads for this Chapter

You can find the wrox.com code downloads for this chapter on the Download Code tab at
www.wrox.com/go/begaspnet451. The code is in the Chapter 18 folder.

You can’t make an omelet without breaking eggs and you cannot write code without creating
bugs. No matter how hard you try and how good you are, your code will contain problems
that affect the behavior of your website.

Of course you should strive to minimize the impact of these bugs, aiming for a “zero bug
count.” To aid you in this, the ASP.NET run time and Visual Studio provide you with a
number of tools.

c18.indd 663 2/21/2014 1:30:29 PM

http://www.wrox.com/go/begaspnet451
http://wrox.com
http://wrox.com

664 ❘ Chapter 18 ExcEption Handling, dEbugging, and tracing

First of all, the languages supported by .NET implement exception handling, a methodology to
identify and handle errors that occur at run time. By handling these errors, you can present your
users a friendly error message. At the same time, you can log these errors, giving you a chance to fix
them before they reoccur. In this chapter, you see how exception handling works, and how to log
your errors.

Before your code goes into production, you need to write and debug it first. To help you debug your
code, VS comes with a rich toolset that includes ways to step through your code line by line, look at
your variables and objects at run time, and even change them as you go. The toolset also provides
you with valuable information about the execution path your code follows: the path that your
application takes through your code, following methods, event handlers, If and Else statements,
and so on. In the next section, you learn more about exception handling, while the debugging tools
are discussed later in this chapter.

Note This chapter focuses on the debugging tools of Visual Studio. However,
most modern browsers have their own debugging tools for client side debugging.
For more information on these tools, check out the following links:

➤➤ F12 Developer Tools for Internet Explorer: http://bit.ly/1lIAVBK

➤➤ Firebug for Firefox: https://getfirebug.com

➤➤ Developer tools for Chrome: http://bit.ly/19WQRuI

exCeption handling

Whenever you write code, there is a chance things won’t turn out as expected, resulting in code that
does not compile, a crash, or otherwise unexpected behavior of your application. Things can go
wrong for a large number of reasons: you introduce a typo in your code, the database server you’re
connecting to at run time suddenly goes down, you got your logic mixed up and accidentally deleted
all rows from a database table instead of just one, you try to delete a row from a database table that
still has associated rows, you try to write a file to a folder without proper permissions, your users
enter incorrect data, and so forth.

To understand these problems and think of ways to anticipate, avoid, and handle them, you
first need to understand the different types of errors that may occur in your website. Once you
understand the main differences, the remainder of this section is spent discussing ways to prevent
and solve them.

different types of errors
You can broadly categorize errors into the following groups:

➤➤ Syntax errors — Errors that are caused by typos, missing keywords, or otherwise incorrect
code.

c18.indd 664 2/21/2014 1:30:29 PM

http://bit.ly/1lIAVBK
https://getfirebug.com
http://bit.ly/19WQRuI

Exception Handling ❘ 665

➤➤ Logic errors — Errors in applications that seem to run fine but that produce unexpected or
unwanted results.

➤➤ Runtime errors — Errors that cause the application to crash or behave unexpectedly at run
time.

Each of these categories is discussed in the following sections, together with information on
avoiding and fixing them.

Syntax Errors
Syntax errors, or compile errors, are the easiest to find and fix because they happen during
development. The IDE tells you when an error occurs and often prevents you from running the
application while it still contains errors. Syntax errors are caused by simple typos, missing or
duplicate keywords and characters, and so on. The following examples all show errors that are
caught at development time by the compiler. A compiler is a program that turns the human-readable
code you write in VB.NET or C# into machine-readable code that can be executed.

VB.NET

mailBody = mailBody.Repalce("##Name##", Name.Text) ' Replace is misspelled

Response.Write() ' Required parameter
 ' for the Write method
 ' is missing

If i > 10 ' Missing keyword Then
 ' Do something here
End If

C#

mailBody = mailBody.Repalce("##Name##", Name.Text); // Replace is misspelled

Response.Write(); // Required parameter for the
 // Write method is missing

if (i > 10) // Missing opening brace or
 // extraneous closing brace
 // Do something here

}

Compile errors are always displayed in the Error List (accessible through the View➤➪➤Error List
menu), shown in Figure 18-1 for a C# website.

c18.indd 665 2/21/2014 1:30:29 PM

666 ❘ Chapter 18 ExcEption Handling, dEbugging, and tracing

You can force the compiler to give you an up-to-date list of all the compilation errors in your site.
To do this, from the main menu choose Build➤➪➤Build Web Site. When you want to force VS to
recompile the entire site (which is slower as it also recompiles files that haven’t changed), choose
Build➤➪➤Rebuild Web Site instead.

To go to the location where the error occurred so you can fix it, double-click the error in the Error
List. To cycle through the errors and the code where the error occurs, click an error in the Error List
and press F8 to go to the next error.

Logic Errors
Logic errors are often harder to find because they compile fine but only happen during the execution
of your code. Consider the following buggy example:

VB.NET

Dim fromAddress As String = "you@example.com"
Dim toAddress As String = EmailAddress.Text
myMessage.From = New MailAddress(toAddress)
myMessage.To.Add(New MailAddress(fromAddress))

C#

string fromAddress = "you@example.com";
string toAddress = EmailAddress.Text;
myMessage.From = new MailAddress(toAddress);
myMessage.To.Add(new MailAddress(fromAddress));

Although it’s easy to see what the problem is in this example (the To and From addresses are
switched), it may be harder to find in a file with 250 lines of code. Additionally, because the
compiler happily accepts your mistake, you won’t notice the error until you see a message in your
Inbox that you thought you sent to your visitors.

The best way to track down and solve logic errors is using the built-in debugging capabilities of VS.
You get an in-depth look at these tools later in the chapter.

Runtime Errors
Runtime errors occur at run time, which makes them incredibly difficult to track. Imagine you have
a site that contains a bug that’s hidden somewhere in a page. You haven’t found it yet, but one of
your visitors did and she gets a nasty error message (more on those later) instead. What can you do?
Probably not much, because there’s a fair chance your visitor won’t even inform you about the mistake.

figure 18-1

c18.indd 666 2/21/2014 1:30:29 PM

Exception Handling ❘ 667

So, it’s important to have a good error handling strategy in place that enables you to avoid errors
when possible, and that handles them gracefully and optionally logs relevant information for you
when they occur.

The following section deals with detecting and handling errors, or exceptions in .NET parlance;
later in this chapter, you learn how to log errors and shield your users from ugly pages with detailed
exception messages.

Catching and handling exceptions
Normally, when serious exceptions occur, the user is presented with an error message. For example,
if you try to send a message to a mail server that isn’t up and running, or doesn’t allow you to
connect to it, you’ll get an exception that provides details about the error. The exception that you
get is an instance of a class that ultimately inherits the System.Exception class, the base class for
all exceptions. Many exception types exist, each serving a distinct purpose.

By default, this exception bubbles up all the way to the user interface where it’s presented as a
so-called Yellow Screen of Death, a reference to Windows’ “Blue Screen of Death” that you get
when Windows crashes. You see a real example of this error in the next exercise.

Obviously, it’s a lot better if you can anticipate the exception and write some code that prevents it
from appearing in the user interface. You could, for example, display a nicely formatted message to
users instead, informing them the message could not be sent at this moment.

Fortunately, support for these kinds of scenarios is integrated deeply in the .NET programming
languages such as C# and Visual Basic .NET. In these languages, you can make use of Try Catch
Finally blocks (try catch finally in C#) where code that could potentially throw an exception
is wrapped in a Try block. Note that the VB.NET and C# versions of these keywords only differ in
case; I’ll refer to the capitalized version in the remainder of the text, except in code blocks.

When an exception occurs, the remainder of the code in the Try block is skipped and some code in
a Catch block can be run to deal with the error. You can have multiple Catch blocks that all deal
with specific exceptions, but only the first block that matches the exception type will fire. Therefore,
it’s important to order the various Catch blocks from specific to generic in order to handle the
exception in the most specific Catch block. You see more of this later.

A Try or a Catch block can be followed by a Finally block. Code in a Finally block is always
fired, regardless of whether an exception occurred and, as such, is an ideal location for some
clean-up code.

Both Catch and Finally blocks are optional, although you always need at least one of them.

The code in the following example tries to send an e-mail and then sets the Text property of a
Label to the value of the variable userMessage. Note: myMessage and mySmtpClient are created
by code not shown in this example. The userMessage variable is assigned a value in either the Try
block (when the code executed successfully) or in the Catch block (when an error occurred). Either
way, this userMessage is always assigned to the Label in the Finally block:

c18.indd 667 2/21/2014 1:30:30 PM

668 ❘ Chapter 18 ExcEption Handling, dEbugging, and tracing

VB.NET

Dim userMessage As String = String.Empty
Try
 mySmtpClient.Send(myMessage)
 userMessage = "Message sent"
Catch ex As Exception
 userMessage = "An unknown error occurred."
Finally
 Message.Text = userMessage
End Try

C#

string userMessage = string.Empty;
try
{
 mySmtpClient.Send(myMessage);
 userMessage = "Message sent";
}
catch (Exception ex)
{
 userMessage = "An unknown error occurred.";
}
finally
{
 Message.Text = userMessage;
}

In this code example, the Catch block is set up to handle an exception of type System.Exception,
the base class of all exceptions in the .NET Framework. This exception is sent to (or caught by) the
Catch block in the ex variable. In C#, you could leave out the ex variable if you don’t use it in your
code:

C#

catch (Exception)
{
 userMessage = "An unknown error occurred.";
}

The ability to specify an Exception type is useful when you think your code can encounter more
than one exception. In that case, you can have multiple Catch blocks for different Exception types.
The following code is capable of handling a specific SmtpException that may occur during the
mail sending operation, and it’s also capable of catching all other exceptions using its generic Catch
block:

VB.NET

Try
 mySmtpClient.Send(myMessage)
Catch smtpException As SmtpException
 userMessage = "Sorry, an error occurred while sending your message."
Catch ex As Exception
 ' Something else went wrong.
End Try

c18.indd 668 2/21/2014 1:30:30 PM

Exception Handling ❘ 669

C#

try
{
 mySmtpClient.Send(myMessage);
}
catch (SmtpException smtpException)
{
 userMessage = "Sorry, an error occurred while sending your message.";
}
catch (Exception ex)
{
 // Something else went wrong.
}

The order of the exception-handling blocks is important. .NET scans the list of Catch blocks from
top to bottom and only fires the code in the first block that matches a specific type of exception.
In the preceding example, when an SmtpException occurs (which is a subclass of Exception), it
will be caught by the Catch block that handles exceptions of type SmtpException. Although an
SmtpException is also an Exception, the code in the last Catch block won’t be fired anymore
because only the first matching Catch block is handled. Therefore, if you reverse the order of the
Catch blocks in this example, the more generic Exception block would be executed, and the code in
the SmtpException block would never run.

WarNiNg The preceding example shows how to catch all exceptions using
the base Exception type in the Catch block. Don’t use this in your own web-
sites. Instead, handle only those types of exceptions that you know how to deal
with, and let all other, unknown exceptions bubble up in the application. Later in
this chapter you see how to centrally handle these unhandled exceptions.

In the following exercise, you see how to use Try Catch Finally in your code.

trY it out Handling Exceptions

In this Try It Out, you see how to write exception-handling code to catch problems with sending
e-mail. These problems may occur when the mail server is down, for example. To simulate a broken
mail server, you’ll temporarily use a nonexistent mail server name causing your code to crash.

You’ll try out the Try Catch Finally code in a separate page in the Demos folder so you can closely
watch its behavior. When you understand how it works, you’ll modify the ContactForm.ascx user
control and incorporate the exception-handling code there. The reason you write this code in the demo
page first is that the user control uses an Ajax UpdatePanel that shields users from the dirty details of
an exception by default, making it difficult to see what’s going on.

 1. Create a new file in the Demos folder and call it ExceptionHandling.aspx. Base the page on your
custom template and set its Title to Exception Handling Demo.

 2. Add a Label control to the main content area and set its ID to Message.

c18.indd 669 2/21/2014 1:30:30 PM

670 ❘ Chapter 18 ExcEption Handling, dEbugging, and tracing

 3. Switch to Design View and set up an event handler for the Load event of the page by double-
clicking the read-only area of the page. Then at the top of the file, add either an Imports or a
using statement for the System.Net.Mail namespace:

VB.NET

Imports System.Net.Mail

C#

using System.Net.Mail;

 4. Add the following code to the event handler that VS created. Notice how this code is almost
identical to the code you added in the ContactForm.ascx user control, so you can save
yourself some typing by copying parts of the code from that file. Notice how the code passes
"DoesNotExist" to the SmtpClient’s constructor as an argument for the mail host. This is done
deliberately to trigger an exception.

VB.NET

Protected Sub Page_Load(sender As Object, e As EventArgs) Handles Me.Load
 Dim myMessage As MailMessage = New MailMessage()
 myMessage.Subject = "Exception Handling Test"
 myMessage.Body = "Test message body"

 myMessage.From = New MailAddress("you@example.com")
 myMessage.To.Add(New MailAddress("you@example.com"))

 Dim mySmtpClient As New SmtpClient("DoesNotExist")
 mySmtpClient.Send(myMessage)
 Message.Text = "Message sent"
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 MailMessage myMessage = new MailMessage();
 myMessage.Subject = "Exception Handling Test";
 myMessage.Body = "Test message body";

 myMessage.From = new MailAddress("you@example.com");
 myMessage.To.Add(new MailAddress("you@example.com"));

 SmtpClient mySmtpClient = new SmtpClient("DoesNotExist");
 mySmtpClient.Send(myMessage);
 Message.Text = "Message sent";
}

Don’t forget to change the two e-mail addresses to your own.

 5. Open Web.config and comment out the <system.net> element (select the entire element and
then press Ctrl+K followed by Ctrl+C). You added this element in Chapter 9 to configure your
site for sending e-mails. By disabling it temporarily, you can ensure that no settings from the

c18.indd 670 2/21/2014 1:30:30 PM

Exception Handling ❘ 671

configuration file are used which in turn will force the SmtpClient to try to deliver the e-mail at
the DoesNotExist server which obviously will fail. Save the changes to the file, but keep it open
so you can easily undo this change in a later step.

 6. Switch back to ExceptionHandling.aspx and press Ctrl+F5 to open up the page in your browser.
You should see the “Yellow Screen of Death” with an error message. Scroll down in the page to
see the Stack Trace, shown in Figure 18-2.

figure 18-2

Note that two exceptions are listed: a WebException (to indicate that the name DoesNotExist
could not be resolved) and a SmtpException. The code in the SmtpClient encountered and
caught the WebException, wrapped it in a new SmtpException and threw that exception to indi-
cate to your code that a problem occurred.

 7. Go back to VS and wrap the code that assigns the addresses and sends the message in a Try
Catch block:

VB.NET

Try
 myMessage.From = New MailAddress("you@example.com")
 myMessage.To.Add(New MailAddress("you@example.com"))
 Dim mySmtpClient As New SmtpClient("DoesNotExist")
 mySmtpClient.Send(myMessage)
 Message.Text = "Message sent"
Catch ex As SmtpException
 Message.Text = "An error occurred while sending your e-mail. Please try again."
End Try

C#

try
{
 myMessage.From = new MailAddress("you@example.com");

c18.indd 671 2/21/2014 1:30:30 PM

672 ❘ Chapter 18 ExcEption Handling, dEbugging, and tracing

 myMessage.To.Add(new MailAddress("you@example.com"));
 SmtpClient mySmtpClient = new SmtpClient("DoesNotExist");
 mySmtpClient.Send(myMessage);
 Message.Text = "Message sent";
}
catch (SmtpException)
{
 Message.Text = "An error occurred while sending your e-mail. Please try again.";
}

Notice how the code still contains an invalid mail server.

 8. Save your changes and request the page in your browser again. You should now see a user-friendly
error message, visible in Figure 18-3.

figure 18-3

The exception that is thrown is now caught in the Catch block. Instead of getting an error page
with all the technical details of the exception, the user now gets a friendly message explaining
that something went wrong.

 9. Go back to ExceptionHandling.aspx and fix the code for the SmtpClient by removing the
server name from the constructor call:

VB.NET

Dim mySmtpClient As New SmtpClient()

C#

SmtpClient mySmtpClient = new SmtpClient();

Also, in Web.config undo the changes you made earlier by restoring the <system.net> element.

 10. Save all open changes and request ExceptionHandling.aspx in your browser again. You’ll now
get a message indicating that the e-mail was sent successfully.

 11. Open ContactForm.ascx from the Controls folder, switch to its Code Behind, and wrap the
code that creates and sends the message in the following Try Catch block. Also, move the line
that sets the visibility of the Message control to the Finally block:

c18.indd 672 2/21/2014 1:30:30 PM

Exception Handling ❘ 673

VB.NET

Try
 Dim myMessage As New MailMessage()
 ...
 System.Threading.Thread.Sleep(5000)
Catch ex As SmtpException
 Message.Text = "An error occurred while sending your e-mail. Please try again."
Finally
 Message.Visible = True
End Try

C#

try
{
 MailMessage myMessage = new MailMessage();
 ...
 System.Threading.Thread.Sleep(5000);
}
catch (SmtpException)
{
 Message.Text = "An error occurred while sending your e-mail. Please try again.";
}
finally
{
 Message.Visible = true;
}

Notice how the line that sets the Message control’s Visible property to True is now in a Finally
block. This way, the Label is made visible, regardless of whether an error occurred.

From now on, whenever an error occurs during the sending of the e-mail, your users will get a
normal error message instead of the full error detail page that .NET displays by default.

How It Works

When an exception occurs at run time, .NET checks if the code is wrapped in a Try Catch block. If
that’s the case, it scans the list of Catch blocks for an Exception type that matches the exception being
thrown. Only the first Catch block that matches the Exception is being called; all remaining Catch
blocks are ignored. Code in the Try block following the line that caused the exception is not executed
anymore.

In this exercise, the code has a Catch block for the SmtpException type, which is executed when an
exception of that type — or one of its subtypes — is encountered. As you learned before the exercise, you
can have multiple Catch blocks, each one dealing with a specific type of exception. All other exceptions
won’t be handled by this code. You see how to deal with these other exceptions in a later section.

With these Try Catch Finally blocks, you can write code that helps you deal with errors that
you think might happen in your code. It’s always a good practice to wrap code that might throw
an error in a Try Catch block so you can deal with it gracefully. Some examples of code that may
throw an exception include:

c18.indd 673 2/21/2014 1:30:31 PM

674 ❘ Chapter 18 ExcEption Handling, dEbugging, and tracing

➤➤ Sending e-mail — The mail server may be down, or you may not have the permissions to
access it.

➤➤ Accessing a database — The server may be down, you may not have permission to access it,
you may get an error due to foreign key constraint violations as you saw in Chapter 15, and
so on.

➤➤ Trying to write an uploaded file to disk — The disk may be full, you may not have the
necessary permissions to write to disk, or you are providing an invalid filename.

Although Try Catch blocks are great to avoid exceptions from bubbling up to the user interface,
you should use them with care, because they come at a cost. A Try Catch block is generally slower
than code without it, so you shouldn’t use a Try Catch block for errors you can avoid otherwise.
Consider the following example that divides two numbers:

VB.NET

Dim value1 As Integer = Convert.ToInt32(ValueBox1.Text)
Dim value2 As Integer = Convert.ToInt32(ValueBox2.Text)
Try
 result = value1 / value2
 ResultLabel.Text = result.ToString()
Catch ex As DivideByZeroException
 ResultLabel.Text = "Sorry, division by zero is not possible."
End Try

C#

int value1 = Convert.ToInt32(ValueBox1.Text);
int value2 = Convert.ToInt32(ValueBox2.Text);
try
{
 result = value1 / value2;
 ResultLabel.Text = result.ToString();
}
catch (DivideByZeroException ex)
{
 ResultLabel.Text = "Sorry, division by zero is not possible.";
}

In this example, the code is set up to expect a DivideByZeroException. This exception is thrown
when value2 contains the value 0. Although at first it seems like a good idea to implement exception
handling here, it’s actually much better to write code that checks for this value before the division is
carried out, instead of letting an exception occur:

VB.NET

If value2 <> 0 Then
 result = value1 / value2
 ResultLabel.Text = result.ToString()
Else
 ResultLabel.Text = "Sorry, division by zero is not possible."
End If

c18.indd 674 2/21/2014 1:30:31 PM

Exception Handling ❘ 675

C#

if (value2 != 0)
{
 result = value1 / value2;
 ResultLabel.Text = result.ToString();
}
else
{
 ResultLabel.Text = "Sorry, division by zero is not possible.";
}

Of course it would even be better if you had placed a CompareValidator on the page, making sure
that ValueBox2 could never contain the value zero. Chapter 9 explains how to use this control.

Although Try Catch blocks are useful to catch exceptions that you anticipate, what about errors
you don’t? How can you deal with unexpected errors? Because they are unexpected, you won’t
know when they occur, so it’s difficult to write code to handle them.

To solve this problem, the next section shows you how you can globally catch and log unhandled
exceptions and send information about them by e-mail. This way, you know they occurred, giving
you, the page developer, a chance to fix them before they happen again.

global error handling and Custom error pages
To shield your users from the technical details of the exception, you should provide them with a
user-friendly error page instead. Fortunately, ASP.NET enables you to define custom error pages:
ASPX pages that are shown to the user when an exception occurs. You can map different types of
errors (server errors, page not found errors, security problems, and so forth) to different pages.

You define the error page or pages you want to show in the customErrors element of the
Web.config file. A typical element looks like this:

<customErrors mode="On" defaultRedirect="~/Errors/Error500.aspx"
 redirectMode="ResponseRewrite">
 <error statusCode="404" redirect="~/Errors/Error404.aspx" />
 <error statusCode="500" redirect="~/Errors/Error500.aspx" />
</customErrors>

The mode attribute determines whether or not a visitor to your site gets to see a detailed error page.
The attribute supports the following three values:

➤➤ On — Every visitor to your site always sees the custom error page when an error occurs.

➤➤ Off — The custom error page is never shown and full error details are displayed on the page.

➤➤ RemoteOnly — The full error details are shown to local users (browsing the site from the
same machine as the site runs on), while all other users get to see the custom error page.
This setting enables you to see error messages on your site during development, while your
users are always presented with the custom error page.

Within the opening and closing tags of the customErrors element you define separate <error />
elements, one for each HTTP status code you want to support. The previous configuration defines
two custom pages: one that is shown when the requested page could not be found (a 404 status
code) and one that is shown when a server error occurs (a 500 code).

c18.indd 675 2/21/2014 1:30:31 PM

676 ❘ Chapter 18 ExcEption Handling, dEbugging, and tracing

For all other HTTP status codes you haven’t defined explicitly, the defaultRedirect attribute is
used to determine the custom error page.

The redirectMode attribute determines the way the new page is shown to the user and is discussed
later in this chapter.

Although custom error pages shield your users from the exception details, they don’t help in
informing you that an exception occurred. All these pages do is hide the real error and show a page
with a custom error message instead. To be notified about these exceptions, you could write some
code that looks at the exception and then sends you an e-mail with the details. Alternatively, you
could write code that inserts the error details in a database, or writes them to a text file.

ASP.NET offers you a handy, central location to write code that is triggered when an exception
occurs. You write this code in a special event handler called Application_Error inside the Global
.asax file that you saw first in Chapter 11. Inside this event handler, you can collect relevant data
about the exception, stick it in an e-mail message, and send it to your own Inbox. This gives you
detailed information about exceptions that occur on your site, aiding in fixing the problem as soon
as possible. You see how to write this code in the next exercise.

trY it out Handling Exceptions Site Wide

In this Try It Out you learn how to write code in the Global.asax file to send the exception message by
e-mail. Additionally, you see how to create global error pages that are shown to your user in case of an
error.

 1. Open the file Global.asax from the root of the website.

 2. At the top of the file, right after the Application directive, add the following Import statement.
Note that when adding an Import statement in Markup View, both VB.NET and C# use the
keyword Import, rather than Imports and using that you normally use in Code Behind:

VB.NET

<%@ Application Language="VB" %>
<%@ Import Namespace="System.Net.Mail" %>

C#

<%@ Application Language="C#" %>
<%@ Import Namespace="System.Net.Mail" %>

 3. Inside the Application_Error handler that should already be present in the Global.asax file,
add the following highlighted code that is triggered whenever an unhandled exception occurs in
your site. If the handler isn’t there, make sure you type all the code from the following snippet,
including the parts that are not bolded:

VB.NET

Sub Application_Error(ByVal sender As Object, ByVal e As EventArgs)
 If HttpContext.Current.Server.GetLastError() IsNot Nothing Then
 Dim myException As Exception =
 HttpContext.Current.Server.GetLastError().GetBaseException()
 Dim mailSubject As String = "Error in page " & Request.Url.ToString()

c18.indd 676 2/21/2014 1:30:31 PM

Exception Handling ❘ 677

 Dim message As String = String.Empty
 message &= "Message
" & myException.Message & "
"
 message &= "Stack Trace
" &
 myException.StackTrace & "
"
 message &= "Query String
" &
 Request.QueryString.ToString()&"
"
 Dim myMessage As MailMessage = New MailMessage("you@example.com",
 "you@example.com", mailSubject, message)
 myMessage.IsBodyHtml = True
 Dim mySmtpClient As SmtpClient = New SmtpClient()
 mySmtpClient.Send(myMessage)
 End If
End Sub

C#

void Application_Error(object sender, EventArgs e)
{
 if (HttpContext.Current.Server.GetLastError() != null)
 {
 Exception myException =
 HttpContext.Current.Server.GetLastError().GetBaseException();
 string mailSubject = "Error in page " + Request.Url.ToString();
 string message = string.Empty;
 message += "Message
" + myException.Message + "
";
 message += "Stack Trace
" + myException.StackTrace +
 "
";
 message += "Query String
" +
 Request.QueryString.ToString() + "
";
 MailMessage myMessage = new MailMessage("you@example.com",
 "you@example.com", mailSubject, message);
 myMessage.IsBodyHtml = true;
 SmtpClient mySmtpClient = new SmtpClient();
 mySmtpClient.Send(myMessage);
 }
}

Don’t forget to change the two e-mail addresses that are passed to the MailMessage’s construc-
tor. The first address represents the sender’s address, and the second one holds the recipient’s
address.

 4. Save all your changes and close the Global.asax file.

 5. Next, open up the Web.config file, and as a direct child of <system.web>, add the following
customErrors element:

<system.web>
 <customErrors mode="On" defaultRedirect="~/Errors/OtherErrors.aspx"
 redirectMode="ResponseRewrite">
 <error statusCode="404" redirect="~/Errors/Error404.aspx" />
 </customErrors>

Save and close the configuration file.

 6. Create a new folder in the root of your website and call it Errors.

c18.indd 677 2/21/2014 1:30:31 PM

678 ❘ Chapter 18 ExcEption Handling, dEbugging, and tracing

 7. Inside this new folder, create two new Web Forms and call them Error404.aspx and
OtherErrors.aspx, respectively. Make sure both of them are based on your custom template so
they are using the main master page and inherit from BasePage. If you followed the exercises in
the previous chapter and now use Profile to store the user’s favorite theme, refer to the Common
Mistakes section at the end of this exercise to learn about the pitfalls of using the master page and
BasePage for your custom 404 error page.

 8. Set the Title of Error404.aspx to File Not Found. Inside the content placeholder for the main
content, add the following markup:

<asp:Content ID="Content2" ContentPlaceHolderID="cpMainContent" runat="Server">
 <h1>File Not Found</h1>
 <p>The page you requested could not be found. Please check out the
 Homepage
 or choose a different page from the menu.</p>
 <p>The Planet Wrox Team</p>
</asp:Content>

 9. Switch to Design View, double-click the page to set up a Page_Load handler, and add the
following code to it:

VB.NET

Protected Sub Page_Load(sender As Object, e As EventArgs) Handles Me.Load
 Response.Status = "404 Not Found"
 Response.StatusCode = 404
 Response.TrySkipIisCustomErrors = True
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 Response.Status = "404 Not Found";
 Response.StatusCode = 404;
 Response.TrySkipIisCustomErrors = true;
}

 10. Open the generic OtherErrors.aspx page, set its Title to An Error Occurred, and enter the
following content:

<asp:Content ID="Content2" ContentPlaceHolderID="cpMainContent" runat="Server">
 <h1>An unknown error occurred</h1>
 <p>An error occurred in the page you requested. The error has been logged and
 we'll fix it ASAP.</p>
 <p>The Planet Wrox Team</p>
</asp:Content>

 11. Double-click the page in Design View and add the following code to the Page_Load handler:

VB.NET

Protected Sub Page_Load(sender As Object, e As EventArgs) Handles Me.Load
 Response.TrySkipIisCustomErrors = True
End Sub

c18.indd 678 2/21/2014 1:30:31 PM

Exception Handling ❘ 679

C#

protected void Page_Load(object sender, EventArgs e)
{
 Response.TrySkipIisCustomErrors = true;
}

Because this page will be used for all possible errors except a 404 error, there’s no point in setting
an explicit Status or StatusCode.

 12. Save the changes to all open files by pressing Ctrl+Shift+S and then close them. Right-click
Default.aspx in the Solution Explorer and choose View In Browser. Once the page has finished
loading, request a nonexistent page like DefaultTest.aspx by changing the address bar of
the browser to something like http://localhost:49186/DefaultTest.aspx. Obviously, the
DefaultTest.aspx page does not exist, so you get an error. But instead of a detailed error page,
you should now get the error page you defined and created in this Try It Out, shown in
Figure 18-4.

figure 18-4

CommoN mistakes If, instead of this error message, you get a generic
“File not found” exception page, check the syntax of the customErrors section
in the Web.config file. Additionally, check that you can successfully view the
actual error pages (Error404.aspx and OtherErrors.aspx) by directly request-
ing them in the browser. If they contain an error (for example, if you forgot to
set the page title) they cannot be used as custom error pages.

You’ll also get the generic error page when you followed the exercises in the preceding chapter and
rewrote the preferred theme selector to use Profile. Because of the way a 404 error is handled internally,
you cannot use Profile in the error page or the master page it’s based on. To work around this problem,
re-create the Error404.aspx page as a standard Web Form not using your master page and BasePage
and things should work fine. You could also set the redirectMode attribute in the Web.config to
ResponseRedirect, but from a Search Engine Optimization (SEO) point of view this is not recom-
mended. You’ll learn more about the redirectMode attribute and why ResponseRedirect is not the
optimal solution in the How it Works section.

c18.indd 679 2/21/2014 1:30:31 PM

http://localhost:49186/DefaultTest.aspx

680 ❘ Chapter 18 ExcEption Handling, dEbugging, and tracing

Besides the error page in the browser, you should also get a message by e-mail that provides more
details about the error. Figure 18-5 shows the message you get when you request a page that does
not exist.

figure 18-5

In the next chapter, you learn how to turn this feature on and off through configuration so you
can disable it during development.

How It Works

Two important parts are worth examining in this exercise. The first part is the way the ASP.NET run
time hides the “Yellow Screen of Death” with the error details from the user with the use of custom
error pages. This serves two purposes. First, it helps you protect potentially private data like passwords
or information about database connections that may end up in the error message. Second, it shields
your users from cryptic error messages they probably don’t understand anyway and gives you the
chance to display a good-looking error page instead that integrates with the site’s look and feel.

The only thing you need to do to make this work is to enable custom errors in the Web.config file and
provide one or more pages you want to display for the errors that may occur in your site. The configu-
ration element lets you set up different pages for different exceptions:

c18.indd 680 2/21/2014 1:30:32 PM

www.SoftGozar.com

Exception Handling ❘ 681

<customErrors mode="On" defaultRedirect="~/Errors/OtherErrors.aspx"
 redirectMode="ResponseRewrite">
 <error statusCode="404" redirect="~/Errors/Error404.aspx" />
</customErrors>

When .NET encounters a 404 exception (when you request a page that cannot be found), the contents
of the Error404.aspx page are shown. The name and content of this page are completely up to you,
giving you the option to provide your own explanation to the user about what went wrong. Note that
this works only for file types that are registered with ASP.NET, like .aspx files. It won’t work out of
the box for .html files or images when you’re not using the Integrated Pipeline mode of IIS, Microsoft’s
web server. You see more about the Integrated Pipeline mode in the next chapter.

This exercise contains two key elements to improve SEO. First, notice how the redirectMode is set to
ResponseRewrite. The other option is ResponseRedirect. Remember the difference between Server.
Transfer and Response.Redirect from Chapter 7? These two settings are based on the same princi-
ples. If you set redirectMode to ResponseRedirect, the browser (and thus a search engine) is redirected
to the error page. The error page then returns a 404 code so the search engine thinks that the error
page itself could not be found. If, however, you set redirectMode to ResponseRewrite, the originally
requested page results in a 404 error code and the contents of the Error404.aspx page are streamed
to the browser. This enables search engines to correctly update their indexes. The only downside of the
ResponseRewrite setting is that you can’t use Profile in the page or a master page it is based on. As you
saw earlier, the best workaround is to create a page that is not based on your custom template.

The second part that improves SEO is the code in the Code Behind of Error404.aspx. That code sets
the HTTP status code to 404 to indicate the page could not be found on the server. Without these two
lines of code, search engines won’t understand the page doesn’t exist and will keep trying to index it.

Notice that only the 404 error code is redirected to its own page. All other exceptions cause the generic
OtherErrors.aspx to be loaded. You can, however, add multiple <error /> elements to the <custom-
Errors> element, each one for a different status code. For a list of HTTP status codes, check out this
knowledge base article: http://support.microsoft.com/default.aspx/kb/943891.

Note the call to Response.TrySkipIisCustomErrors. This tells IIS that it should not try to render its
own custom error pages. Without this setting, you may get IIS’s generic error pages instead of the ones
you defined here. You won’t notice the difference with IIS Express, so this code won’t come into play
until you deploy your site to a production version of IIS as you’ll see in the next chapter.

The other main part of this exercise is the code in Global.asax that fires when an unhandled exception
occurs. In that case, the Application_Error event handler is triggered. Within this handler, you can
retrieve the exception that occurred with this code:

VB.NET

If HttpContext.Current.Server.GetLastError() IsNot Nothing Then
 Dim myException As Exception =
 HttpContext.Current.Server.GetLastError().GetBaseException()

C#

if (HttpContext.Current.Server.GetLastError() != null)
{
 Exception myException =
 HttpContext.Current.Server.GetLastError().GetBaseException();

c18.indd 681 2/21/2014 1:30:32 PM

http://support.microsoft.com/default.aspx/kb/943891

682 ❘ Chapter 18 ExcEption Handling, dEbugging, and tracing

To get at the root exception that caused the problem in the first place, you need to call
GetBaseException() on the Exception that is returned by Server.GetLastError(). This Exception
instance, stored in the myException variable, then gives you access to useful properties such as
Message and StackTrace. In this exercise, the StackTrace displayed in the error e-mail contains infor-
mation that really isn’t of any interest to you. However, with other exceptions, such as one thrown by
an incorrect configuration of the mail server or a division by zero exception, the StackTrace gives you
information about the file that generated the error, the method that caused it, and even the line number
in the code, making it easy to find the error and fix it.

The remainder of the code creates an e-mail message with the error details. It also adds information
about the query string with this code:

VB.NET

message &= "Query String
" &
 Request.QueryString.ToString() & "
"

C#

message += "Query String
" +
 Request.QueryString.ToString() + "
";

Knowledge of the query string helps in debugging a problem if values from the query string are used.
You could extend the code in Application_Error and add other useful information such as cookies
and form collections. For more information about accessing these kinds of collections, pick up a copy
of Professional ASP.NET 4.5 published by Wrox. Alternatively, look into ELMAH — the Error Logging
Modules and Handlers project — at http://code.google.com/p/elmah/, which is an open source
project run by Atif Aziz that is aimed at catching and logging exceptions. The beauty of the ELMAH
project is that it’s extremely simple to integrate in your site (no programming required, you just need to
add a few lines of configuration code to your Web.config file). And even better: there’s a NuGet pack-
age available that adds the necessary files and configuration for you. Simply run the following com-
mand from the Package Manager Console:

Install-Package Elmah

After you have installed ELMAH, you can get a list of the errors that occurred in the site by requesting
a special page called elmah.axd:

http://localhost:49394/elmah.axd

By default, you can access this page only from the local machine. Besides showing the errors in elmah
.axd, you can also configure ELMAH to store errors in the database, send them by e-mail, provide
them as an RSS feed, and much more. Check out the ELMAH project site for more information.

I have been using ELMAH for most of my production websites for the past couple of years, and it has
helped me find many bugs that otherwise would have gone unnoticed.

Although the ability to handle and log exceptions at run time is useful, it’s of course better to
prevent them from happening in the first place. To write solid code with as few bugs as possible, you
need good tools to help you understand the execution of your code so you can debug it. VS comes
with excellent debugging tools that aid you in this process. You see what these tools are and how to
use them in the next section.

c18.indd 682 2/21/2014 1:30:32 PM

http://code.google.com/p/elmah/
http://localhost:49394/elmah.axd

The Basics of Debugging ❘ 683

the BasiCs of deBugging

Debugging is the process of finding and fixing bugs in your code. Although that may sound easy,
it often isn’t. Some bugs are very obvious and easy to spot and thus easy to fix. Others are much
harder to find and require knowledge about the execution environment of your program. The
debugging tools that ship with Visual Studio help you understand this execution environment by
giving you direct access to the inner workings of your program or web page.

Debugging with VS is like snapping your fingers to stop the time. When you do that, everything
halts, except for you, so you can walk around in your code, investigate variables, look into objects,
try out methods, and even execute new code. To tell VS where to halt, you need to set one or more
breakpoints in your code. When the code under the breakpoint is about to be executed, VS stops the
execution of the application (usually a web page, a user control, or code in the App_Code folder) and
then puts focus back on VS so you can diagnose the code and its environment.

You set a breakpoint by pressing F9 on the line of code where you want execution to halt. Instead of
the F9 shortcut key, you can also click the margin of the code, where the big dot appears in
Figure 18-6, or you can choose Debug➤➪➤Toggle Breakpoint from the main menu. Pressing F9,
clicking the same spot in the margin, or choosing the menu item again toggles the presence of the
breakpoint. To clear all breakpoints in your entire website, press Ctrl+Shift+F9.

To give you an idea of how debugging works, and what it can do to help you, the following exercise
shows you the basic operations of debugging. Later parts of this chapter give you a detailed look at
the numerous debugging tools and windows that ship with VS.

trY it out Debugging Your Application

In this Try It Out, you debug the Calculator page you created in a previous chapter. If you don’t have
the file, refer to Chapter 5 or download the code for this chapter from www.wrox.com. The debugging
exercises in this chapter assume you are using Internet Explorer as your browser. If you are using a
different default browser, such as Firefox or Opera, the debugging experience will be largely the same,
although you may find that VS does not always get the focus automatically while breaking into
your code.

1. Open the CalculatorDemo.aspx page from the Demos folder and switch to Code Behind.

2. Click the first line of code in the CalculateButton_Click handler that checks the length of the
text in the two TextBox controls. Then press F9 to set a breakpoint. The line gets highlighted, as
shown in Figure 18-6, and a colored dot appears in the margin of the Document Window.

figure 18-6

c18.indd 683 2/21/2014 1:30:32 PM

www.SoftGozar.com

http://www.wrox.com

684 ❘ Chapter 18 ExcEption Handling, dEbugging, and tracing

 3. Press F5 (instead of Ctrl+F5, which you have been using so far) to open the website in your
browser and start the debugging process. Alternatively, choose Debug➤➪➤Start Debugging from
the main menu. If you get the dialog box in Figure 18-7, click OK to have VS modify the
Web.config file for you.

figure 18-7

Depending on your browser’s setup, you may be confronted with a dialog box (in Internet
Explorer only) about enabling Script Debugging. If you get that dialog box, follow the instruc-
tions it displays, return to VS, and click the Yes button.

 4. The page should load normally, showing you the two TextBox controls, the DropDownList, and
the Button.

CommoN mistakes If you get an error stating that the page title is not
valid, close your browser, return to VS, give the page a title, save your changes,
and press F5 again.

Enter 5 in the first text box, 7 in the second, and then click the Calculate button. Instead of see-
ing the answer in your browser, you are now taken back to VS. If you’re not taken back to VS
directly, you may need to switch to it manually. You’ll see the taskbar icon for VS flash to get your
attention.

 5. In VS, the line with the breakpoint is now highlighted in yellow. Additionally, you see a yellow
arrow in the document margin to indicate this line of code is about to be executed. However,
before it does, you get a chance to look at your controls, variables, and other elements that make
up the execution environment. To see the values you entered in the TextBox controls, hover your
mouse over the Text properties in the highlighted lines. You’ll see, as shown in Figure 18-8, a
small tooltip appear that displays the value you entered.

figure 18-8

c18.indd 684 2/21/2014 1:30:33 PM

The Basics of Debugging ❘ 685

 6. Hover your mouse over some of the variables in the code like result and value1. Note that you
won’t get a tooltip, because the code hasn’t reached the point where these variables are declared.
As far as the debugger is concerned, they don’t exist.

 7. To advance in the code, press F10. This steps over the selected line, executing it. Keep pressing
F10 until the line that declares the value2 variable is highlighted. When you now hover your
mouse over value1, the tooltip appears, indicating that value1 now contains the value 5.0.

 8. Hover your mouse over the SelectedValue property in the Select Case (in VB.NET) or switch
statement (in C#). Note that the tooltip shows you the value you selected in the drop-down list
(the plus symbol). Even if this line of code hasn’t been executed, the DropDownList control has
been instantiated and its SelectedValue has been assigned a value earlier so you can look
at it here.

 9. Right-click the line that assigns the value to the
ResultLabel control and choose Run to Cursor. This
executes all code from the current breakpoint up to this
line. Hover your mouse over the result variable (you may
need to highlight the result variable first with your mouse
if you are using VB.NET) and note that it displays the
value 12.0, which is the outcome of the calculation, shown
in Figure 18-9.

 10. Finally, press F5. By pressing this key, the code continues until it finds the next breakpoint.
Because you haven’t defined another breakpoint in your code, the remainder of the code in the
Click event handler is executed and the result is displayed in the page.

How It Works

Whenever you press Ctrl+F5 to view a page in a browser as you have done up until this chapter, noth-
ing special happens. VS simply opens the browser, which then requests the page from IIS Express.
However, when you press F5 instead, VS gets in debugging mode and respects the breakpoints you have
set in your code. Whenever a breakpoint is hit, execution of the code is stopped so you can look at the
code and its execution environment, which gives you access to variables, controls, methods, and much
more. Note that the code on the line with the breakpoint has not been executed at this point. To con-
tinue executing the code, use F10, F11, or F5. You see more of these shortcuts later.

Before you can debug your code, you need to configure the application to support it. You do this by set-
ting the debug attribute of the compilation element in Web.config to true:

<compilation debug="true">

If you’re using Visual Basic, you may see two additional attributes on this element: strict and
explicit. By default, strict is set to false, which means Visual Basic will do silent casts and conver-
sions for you. The explicit attribute is set to true, which means you need to declare all your variables
before you can use them.

Whenever you start debugging and the debug attribute of the <compilation /> is set to false, you get
the dialog box shown in Figure 18-7 offering to turn it on for you. To avoid the overhead this setting
brings, you should always set it to false on a production server. You see more of this in the next chapter.

figure 18-9

c18.indd 685 2/21/2014 1:30:33 PM

686 ❘ Chapter 18 ExcEption Handling, dEbugging, and tracing

In this exercise you also learned how to use data tips, the small tooltip windows that appear when you
hover your mouse over selected variables. For simple types, such as an Integer or a String, all you see
is the variable’s value. For complex types, such as results returned from a LINQ query, you get a much
richer data tip, providing you with a lot more detail.

Useful as the debugging data tips may seem, they are only a small part of the rich debugging
features. In the next section, you get an overview of all the debugging tools that ship with VS.

tools support for deBugging

With a number of shortcut keys and menu items, VS lets you move around the code that you are
debugging, giving you the option to execute code line by line or larger blocks of code at once.
Additionally, the IDE provides you with a lot of windows that enable you to diagnose and change
the execution environment, including the values of variables at run time. You see how to move
around code first, which is followed by a discussion on the numerous debugging windows.

moving around in debugged Code
When your code has halted on a breakpoint, you can use a number of keyboard shortcuts to
determine what to do next. The following table lists the most common shortcuts.

KeY desCription

F5 Press this key to start debugging, as demonstrated in the previous exercise.
When you press this key during debugging, the code continues until the next
breakpoint is hit, or until all code is finished executing.

F11 Press this key to execute the current line and step into a member that’s being
called, if possible. You see how this works later.

F10 Press this key to execute the current line without stepping into the code that is
being called, unless that code itself contains a breakpoint.

Shift+F11 Press this key combination to complete the code in the current code block and
return to the code that initially called it.

Shift+F5 Press this key combination to stop debugging.

Ctrl+Shift+F5 Press this key combination to restart the debugging process.

In addition to these keyboard shortcuts, you can also use the
Debugging toolbar shown in
Figure 18-10, which offers similar functionality.

This toolbar should appear automatically when you start
debugging, but if it doesn’t, right-click an existing toolbar and
choose Debug. To start debugging using the toolbar, press the
button with the green arrow on the Standard toolbar.

figure 18-10

Step Out (Shift+F11)

Step Into (F11)

Show Next Statement

Stop (Shift+F5) Step Over (F10)

Pause Restart

c18.indd 686 2/21/2014 1:30:33 PM

Tools Support for Debugging ❘ 687

While you are debugging your code in VS, you have a number of debugging windows at your
disposal, which are discussed in the following section.

debugging Windows
The numerous debugging windows enable you to watch the variables in your application and even
change them during run time. Additionally, they provide you with information about where you are
in the application and what code was previously executed. All this information helps you understand
the execution flow of your application.

You access all the debugging windows through the Debug➤➪➤Windows menu option. Not all of them
are available in the Express edition of Visual Studio. Also, to access most of the windows, your
application must be in debug mode first. The next sections show you the different windows that are
available. In the exercise that follows, you get a chance to work with them so you understand how
to use them and why they are useful.

Watching Variables
Knowing the values of your variables is critical to understanding your application. To help you
with this, VS offers three debugging windows that provide you with useful information. All these
windows support changing the value of your variables at run time, enable you to use data tips to dig
deeper into the objects, and enable you to copy and paste data so you can reuse it somewhere else.

The Watch Window
This is probably the most important window for you to keep an eye on. It enables you to watch
variables you’re interested in and dig into them. Figure 18-11 shows the Watch window that is
currently watching the value1 variable used in the Calculator page while the value2 variable is
being added to the list.

figure 18-11

You can add your variables to the Watch window in a few different ways. First of all, you can click
the Watch window once and then start typing a variable name. You can then press Ctrl+Space to
bring up the IntelliSense list, making it easy to complete the variable’s name. Alternatively, you can
right-click a variable in the code editor and choose Add Watch. And finally, you can highlight a
variable in the code editor and then drag it into the Watch window.

c18.indd 687 2/21/2014 1:30:33 PM

688 ❘ Chapter 18 ExcEption Handling, dEbugging, and tracing

When your variables are in the Watch window, you can change their values to influence the execution
of your code. For example, you could change the value of the value1 variable to a different number,
changing the outcome of the calculation. To change a value, double-click it in the Value column of
the Watch window. Alternatively, right-click the watched variable and choose Edit Value.

Besides showing variables’ values, you can also use the Watch window to execute code. For example,
you could call ToString() on the value1 variable to see what its string representation looks
like. To do this, double-click the variable name in the Watch
window so it becomes editable, add .ToString() as shown in
Figure 18-12, and press Enter.

You are not limited to calling ToString in the Watch window.
Most expressions that produce a value can be executed
here, but there are some exceptions (such as LINQ queries).
However, the Immediate window, discussed later, is much more
appropriate for executing code on the fly.

In addition to the Watch window, the Autos and Locals windows are available. They work more or
less the same as the Watch window.

The Autos Window
The Autos window is available only in the commercial versions of Visual Studio and not in the
Express edition. Because it’s so similar to the Watch window, this isn’t really a problem. The Autos
window shows the variables used by the current and previous code statements and is updated
automatically as you step through the code.

The Locals Window
The Locals window is also similar to the Watch and Autos windows, but the Locals window
shows all variables that are currently in scope (they can be “reached” by the code that is currently
executing). This is a useful window, because it shows you all relevant variables without requiring
you to add them manually.

Other Windows
Besides windows to watch variables, VS has a few other useful windows available.

The Breakpoints Window
The Breakpoints window gives you an overview of all breakpoints you have set in code throughout
your entire website. Unfortunately, this window is not available in the Express edition, so you have
to find breakpoints manually by looking at the actual code.

Call Stack Window
The Call Stack window provides you with information about the order in which your code has been
executed or called. Each call from one piece of code into another is placed on a stack of calls that
you can navigate. It looks a bit cryptic at first, but once you understand how it works, it enables you
to jump through your code quite easily. Figure 18-13 shows the Call Stack window inside the Add
method of the Calculator class.

figure 18-12

c18.indd 688 2/21/2014 1:30:34 PM

Tools Support for Debugging ❘ 689

figure 18-13

In the highlighted line, you can see that Calculator.Add is the currently active code. Right below
it you see CalculateButton_Click, the event handler in the Calculator page that called the Add
method. Double-clicking a line in the Call Stack window takes you to the appropriate code location.
At the bottom you see [External Code], which refers to executed code that is not part of your
website, such as executing code coming from the .NET Framework. To expand the [External Code]
item to see what it contains, right-click the Call Stack window and choose Show External Code.

Immediate Window
The last interesting debugging window is the Immediate window. This window enables you to
execute code as if you had written it in a page, for example. You can use this window to test
expressions, see what values a function returns, and so on. For example, when you are in debug
mode, you can enter the following command in the Immediate window:

VB.NET

? New Calculator().Add(3, 4)

C#

? new Calculator().Add(3, 4);

The question mark is used to output to the Immediate window. The code then instantiates a new
Calculator instance and directly passes the values 3 and 4 to its Add method. The code is executed
and the Add method returns 7, which is then printed in the Immediate window.

This window is great for quickly testing out code. Instead of writing code you want to test in a page,
you can type it directly in the Immediate window and see its output.

In the following Try It Out, you see these debugging windows at work.

trY it out Extensive Debugging

In this exercise, you look at all the debugging windows that have been discussed earlier. Because a lot
of windows and options are available, you won’t see a detailed discussion of every step in the process.
Instead, you’re encouraged to experiment. Try adding more variables to the Watch window, type your
own code in the Immediate window, and so on. Experimenting is the best way to discover the large
number of debugging capabilities in VS.

1. If you’re still in debug mode from the preceding exercise, press Shift+F5 or press the Stop button
on the debugging toolbar. Open the Code Behind of CalculatorDemo.aspx again and press
Ctrl+Shift+F9 to clear all previously set breakpoints in all code files. Click Yes to confirm the
deletion.

c18.indd 689 2/21/2014 1:30:34 PM

www.SoftGozar.com

690 ❘ Chapter 18 ExcEption Handling, dEbugging, and tracing

 2. Click the line that declares the variable value1 and press F9 to set a breakpoint. Your Document
Window should look similar to Figure 18-14, which shows the Document Window for the C#
project. Notice how VS draws the locations of the breakpoints as a red square on the scrollbar,
giving you a quick overview of where your breakpoints are located.

figure 18-14

 3. Press F5 or choose Debug➤➪➤Start Debugging from the main menu to start debugging the
application. Enter the number 5 in the first text box, ensure that the plus sign is selected in
the drop-down list, and enter 7 in the second text box. Then click the Calculate button, and VS
breaks at the breakpoint you set in the previous step. If you aren’t taken there automatically,
switch back to VS manually.

 4. Hover your mouse over the OperatorList variable that is used a few lines below the current
breakpoint and notice how VS displays a data tip with a plus (+) symbol in front of it. This means
you can expand the item to get detailed information about the variable. Figure 18-15 displays the
expanded data tip for C#.

figure 18-15

Note that you can expand other items such as the BorderWidth property. If you’re using C#,
you can also expand base to see the DropDownList control’s base class’s properties such as
SelectedValue. With VB.NET, the properties of the base class have been merged into the main
IntelliSense list so you’ll see SelectedValue at the bottom of the list.

 5. Right-click ValueBox1 in the code at the top that checks the length of the text in the TextBox
controls and choose Add Watch. The variable is added to the Watch window where you can
expand it, similar to how you expanded the data tip. Expand the item, scroll down in the list to
the Text property, and you’ll see its value is set to "5".

c18.indd 690 2/21/2014 1:30:34 PM

Tools Support for Debugging ❘ 691

 6. Double-click the value "5" for the Text property, change it to "12" (including the quotes), and
press Enter.

 7. Open the Locals window (choose Debug➤➪➤Windows➤➪➤Locals if the window isn’t visible yet.)
Press F10 to execute the line under the breakpoint. This gets the value from ValueBox1, converts
it to a double, and assigns it to value1. Look at the value1 variable in the Locals window (see
Figure 18-16 that shows the window for the C# website). It now contains 12.0, the value you
assigned to the Text property of the text box in the previous step, now converted to a double.

Note that the value of the value1 variable has changed color as well. This is done to indicate that
the item has recently been changed. Also note that because all of this is happening at the server
during a postback, the browser is unmodified, and the text box still shows the value 5. Only when
the page has finished rendering to the browser will you see the new value show up.

In Figure 18-16, you also see the other variables that are currently in scope, such as result,
myCalculator, and this (Me in Visual Basic) that contains a reference to the page that is cur-
rently being executed.

figure 18-16

 8. Press F10 once more so value2 is updated as well. The color of the value of the value2 variable
has changed to red to indicate it has changed, whereas value1’s value is black again. This makes
it easy to see what variables are modified by the last statement.

 9. Press F10 until you reach the line that calls the Add method on
the Calculator class. Instead of pressing F10 to execute that
line, press F11. This steps into the Add method so you can see
how it performs the calculation. Inside the Add method, you
can hover over the method’s arguments to see their values, as
demonstrated in Figure 18-17.

 10. Choose Debug➤➪➤Windows➤➪➤Call Stack to bring up the Call Stack window (or press Ctrl+Alt+C)
and note that the Add method was called by the CalculateButton’s Click handler, shown in
Figure 18-18.

figure 18-17

figure 18-18

c18.indd 691 2/21/2014 1:30:35 PM

692 ❘ Chapter 18 ExcEption Handling, dEbugging, and tracing

 11. Double-click the second line in the Call Stack window and you are taken back to the Calculator
page. The line that called the Add method is highlighted in green. Note that this doesn’t execute
any code; all it does is show you the relevant code. Double-click the first line and you are taken to
the Add method code again.

 12. Press Shift+F11 to step out of the Add method and return to the calling code in the Calculator
page. If you take another look at the Call Stack window, you’ll see the line for the Add method has
disappeared from the call stack.

At this point, the result variable does not have a value yet because the line of code hasn’t been
fully executed.

 13. Open the Immediate Window (choose Debug➤➪➤Windows➤➪➤Immediate) to test out some code. In
the window that appears, type the following and press Enter:

VB.NET

? New Calculator().Multiply(4, 12)

C#

? new Calculator().Multiply(4, 12);

The Immediate window displays the outcome of the calculation, as shown in Figure 18-19.

figure 18-19

 14. Press F10 to finish executing the line with Calculate.Add. When using C#, press F10 again to
execute the break statement. The yellow marker in the margin of the code editor jumps to the
end of the Select Case / switch block. Drag the marker back to the line with Calculate.Add.
This changes the line that is executed next so you can repeat part of the code that has already
executed. You can then press F11 again to step into the Add method, or press F10 to execute the
line directly.

 15. Finally, press F5. This executes the remainder of the code in the page. The focus is put on the
browser again, which now displays the outcome of the calculation in the Label control. If
everything turned out as planned, you should see the number 19: the sum of 12 (the new value
you entered for ValueBox1.Text in step 6), and 7 (which you entered in step 3).

How It Works

As demonstrated in a previous Try It Out exercise, when you put a breakpoint in your code, execution
is halted as soon as the line with the breakpoint is about to be executed. From there, you can jump
around in your code, investigate variables, and execute statements. In this exercise you saw how to step
in and over code using the F10 and F11 shortcut keys. You usually use F10 to execute a line if you’re
not interested in seeing the underlying code that is being called. You use F11 if you want to see the code
that is being executed, as you saw how to do with the Add method.

c18.indd 692 2/21/2014 1:30:35 PM

Debugging Client-Side Script ❘ 693

The data tips and Watch and Locals windows are invaluable tools in examining and changing variables
and values. For example, even though you entered 5 in the first text box in the browser, you were able
to change that value to 12 during debugging. Any changes you make while debugging are propagated to
the rest of the code that still needs to be executed.

The Immediate window lets you try out small snippets of code. This can be useful to try out some
ideas, without the need to write it in the code window and debug it. In this exercise, you wrote some
code that created a new Calculator instance, called the Multiply method, and outputted the value
using the question mark.

VB.NET

? New Calculator().Multiply(4, 12)

C#

? new Calculator().Multiply(4, 12);

Being able to change the line that is executed next by dragging the yellow arrow is very useful. This
enables you to skip some code you may not want to run during a debugging session, or to repeat some
code you want to see execute again (for example, after changing a variable’s value).

Besides debugging code at the server, VS comes with excellent support for debugging client-side
JavaScript as well.

deBugging Client-side sCript

So far, you have used the debugging tools to debug ASPX pages and Code Behind. However, that’s
not all there is to it. VS also has great support for debugging client-side JavaScript. Debugging
client-side JavaScript requires that you use Internet Explorer and won’t work correctly with other
browsers like Firefox or Opera. The cool thing about debugging client-side JavaScript in VS is
that you already know how to do it. You can use the same familiar tools that you have seen in this
chapter to debug both server-side and client-side code.

The JavaScript that is eventually used by the page in the web browser can come from a lot of
different sources. You can have JavaScript in external script files, embedded in the page, in a master
page, and even server controls can emit their own JavaScript. This makes it difficult sometimes to
break in the right code, because you don’t always know where it comes from. Fortunately, VS has a
great solution for this; it lets you set breakpoints in the final HTML being displayed in the browser.
To show you in what file you’re adding breakpoints or what code you are debugging, VS updates
the Solution Explorer and displays a list of all files containing client-side script that you can step
through as soon as you are in debug mode.

The easiest way to learn the new client-side JavaScript debugging possibilities is by trying them out,
so the next exercise dives right in and shows you how to debug the web service test page that you
created in Chapter 10.

c18.indd 693 2/21/2014 1:30:35 PM

www.SoftGozar.com

694 ❘ Chapter 18 ExcEption Handling, dEbugging, and tracing

trY it out Debugging JavaScript in Internet Explorer

You need to use Microsoft Internet Explorer to carry out the following exercise because most of the fea-
tures shown in this Try It Out work only with that browser. If Internet Explorer is currently not your
default browser in VS, you can choose your browser from the drop-down list next to the green Start
Debugging arrow on the Standard toolbar.

 1. If you’re still in debug mode from the previous exercise, press Shift+F5 to stop debugging.
Then open the NameService.cs or NameService.vb file from the App_Code folder. Locate the
HelloWorld web method and set a breakpoint on the first and only line of code in the method
that returns the personalized greeting. Close the file.

 2. Open WebServices.aspx from the Demos folder in Markup View. Locate the helloWorld
JavaScript method, click the line that declares the yourName variable, and press F9 to set a
breakpoint, visible in Figure 18-20.

figure 18-20

 3. Set another breakpoint on the line that starts with alert in the helloWorldCallback method.

 4. Press F5 to start debugging. The page loads in the browser and you get a text box and two
buttons. Enter your name in the text box and click the Say Hello button. As soon as you click it,
focus is put back on Visual Studio, and the code halts in the JavaScript code block.

CommoN mistakes If your client-side JavaScript breakpoint doesn’t get hit,
close your browser to stop debugging, type the word debugger before the line
you set the breakpoint on, and press F5 again. VS does not always correctly
debug your client-side JavaScript breakpoints, but it works fine when using the
debugger keyword:

debugger
var yourName = document.getElementById('YourName').value;
NameService.HelloWorld(yourName, helloWorldCallback);

 5. Press F10 to execute the highlighted line (you need to press it twice if you’re using the debugger
keyword). The value in the text box is now assigned to the yourName variable. When you hover
your mouse over that variable, a data tip appears.

 6. Open the other debugging windows and notice how they all behave identically to what you saw
before. You can add JavaScript variables to the Watch window to look at their values, enter

c18.indd 694 2/21/2014 1:30:35 PM

Debugging Client-Side Script ❘ 695

JavaScript in the Immediate window for evaluation, and so
on. Also note that the Solution Explorer has changed, showing
the active client-side files containing script right above the web
project (see Figure 18-21).

 7. To look inside these documents, you can double-click them under
the Windows Internet Explorer node that has appeared in the
Solution Explorer. The file WebServices.aspx should already
be open in the Document Window. At first, the file may look like
before. But if you look closely, you can see that this is no longer
the original source file with ASP.NET controls mixed up with
other markup, but the final HTML rendered in the browser.
To warn you that you are looking at the final file, and not the
original source, VS has added the text [dynamic] and a lock
icon to the tab for the file above the Document Window, shown
in Figure 18-22. figure 18-21

figure 18-22

 8. Press F5 to continue executing code. The name you entered in the text box is retrieved and then
sent into the HelloWorld method of the service. Because you added a breakpoint there in step 1,
the code should stop again, enabling you to look at the variable name passed to the web method.
Although this exercise itself is pretty simple, a lot of magic just happened under the hood. You
stepped from some client-side code running in the browser into code running in a web service at
the server, all from the same IDE.

 9. Press F5 again and you are taken back from the server-side web service into the client-side code
where you can see the result of the web service in the helloWorldCallback handler.

 10. Press F5 once more. The code completes and shows a JavaScript alert window with a greeting
containing your name, just as it did in Chapter 10.

 11. Press Shift+F5 to stop debugging.

How It Works

You have a few interesting points to take away from this exercise. First of all, you should understand
the notion of dynamic files, or runtime files. These files are the final result from your ASPX pages and
give you insight in the final HTML, CSS, and JavaScript that ends up in the browser. This is a great
help, because it gives you a total view of all relevant content. Remember, the final markup displayed in
the browser comes from a variety of resources, including master pages, content pages, external CSS and

c18.indd 695 2/21/2014 1:30:35 PM

696 ❘ Chapter 18 ExcEption Handling, dEbugging, and tracing

JavaScript files, and from the various server controls that live in your page. The ability to look at the
combined result from a single location makes it easy to see how everything fits together.

Another important point to remember from this exercise is how the IDE offers you fully integrated
debugging features, from the client-side code in the user interface, all the way up into the server.

Although you may not realize it because everything is taking place on the same computer and in the
same IDE, you are crossing many boundaries when debugging like this. First, VS enables you to debug
client-side script in the browser, so you can hook into that even before any data is sent to the server.
When you press F5 in step 8, the code continues and sends the value to the server where it was used in
the HelloWorld method of the NameService class. Once that server-side web method is done, execu-
tion returns to the client again, enabling you to break on the alert statement that shows the message
from the web service.

For some reason, debugging client-side JavaScript in VS 2013 doesn’t always work. If you’re encounter-
ing issues, remember the debugger keyword. Just add it before the line you want to break on and VS
will halt execution when it encounters this keyword. Don’t forget to remove the debugger keyword
again if you’re done with debugging; otherwise, your browser will try to start a script debugger when it
encounters this keyword, which is meaningless to most of your users.

So far you’ve been looking at debugging code. However, VS now has great support to diagnose the
HTML of your page as well. You see how this works next.

deBugging With the page inspeCtor

If you want to build a site that is easy to maintain, you probably make use of many of the features
that ASP.NET and the browser offers. For example, you’re probably using a master page for the
general layout, you store page-specific content in a content page that uses that master page, you may
have one or more user controls for content you reuse across your site (such as the Contact Form in
the Planet Wrox website), and you may be using themes and skins to separate the design from the
rest of your application.

In the browser, all of this code comes together as a single HTML source document that in turn
includes references to external resources such as JavaScript and CSS files and images. Because it’s a
single file, it can be hard to debug that code and understand where a certain piece of HTML came
from. In addition, because multiple CSS selectors can influence the layout of your page, it may be
hard to track down the file in which a certain piece of CSS is defined. Using the Page Inspector,
introduced in VS 2012, this now becomes much easier.

introducing the page inspector
The Page Inspector is a diagnostics tool that runs inside Visual Studio and that brings a unified
experience between your browser, the ASP.NET run time, and your source files. The Page Inspector
comes with Visual Studio so you don’t need to do anything to make use of it.

Although an upcoming exercise shows you many of the features that the Page Inspector offers, here’s
a quick description of how you can use it:

c18.indd 696 2/21/2014 1:30:36 PM

Debugging with the Page Inspector ❘ 697

➤➤ You start the Page Inspector by choosing it as your target browser in the Debug Target
drop-down on the Standard toolbar. You then start your site as you normally would using
F5 or Ctrl+F5.

➤➤ The Page Inspector presents itself as a browser window in the IDE (so you can see what the
page looks like), along with a number of tools windows to diagnose your code.

➤➤ Once loaded, you can use the Page Inspector’s Inspect button to look at the various elements
available in your page such as navigation elements, buttons, images, and more.

➤➤ While hovering over the elements in the Page Inspector, the code editor window is updated
with a preview of the documents that contributed the HTML you’re inspecting. As
mentioned in the introduction of this section, this could be a master page, a content page, a
user control, and so on.

➤➤ You can make changes to these documents in VS and then you can refresh the Page
Inspector to see them show up in the final page.

➤➤ The Page Inspector also helps you find the CSS rules in your CSS files, whether they are
defined in a theme’s folder or in a custom folder.

If you’ve ever used Firebug (for Firefox) or the IE or Chrome Developer tools, some of this may
sound familiar. These tools also enable you to inspect HTML elements in your page and look at the
associated CSS. What makes the Page Inspector different and very special is that it is able to
relate the final HTML back to the original ASP.NET source files. This in turn enables editing of
the file in the IDE, making changes and previewing the results a breeze.

You get a good look at the Page Inspector and its feature set in the exercise in the next section.

using the page inspector
Getting started with the Page Inspector is pretty simple. Because it ships with VS, it’s ready for
use. However, it has a few prerequisites. First of all, you need to have Internet Explorer 9 or later
installed on your machine. Secondly, your site needs to run against .NET 4 or later. Because
the Planet Wrox sample site runs against .NET 4.5.1, this is not a problem. Thirdly, the Page
Inspector needs to be installed and registered correctly on your machine. Because this is done
during installation of VS, this is not a problem either. The final prerequisite is that your site needs
to be run in debug mode, or you need to add a special key to your Web.config to enable the Page
Inspector. You enabled debugging for the Planet Wrox site earlier in this chapter, which means you
don’t have to do anything else for the Page Inspector to work correctly. For cases where you don’t
have debugging enabled and still want to use the Page Inspector, either enable debugging or add the
following key to your Web.config in the appSettings element:

<appSettings>
 <add key="PageInspector:ServerCodeMappingSupport" value="Enabled"/>
</appSettings>

If debugging is not enabled or this key is not present, VS gives you a warning when you invoke the
Page Inspector and offers to fix the problem automatically for you by turning on debugging.

You see how to use the Page Inspector in the following exercise.

c18.indd 697 2/21/2014 1:30:36 PM

698 ❘ Chapter 18 ExcEption Handling, dEbugging, and tracing

trY it out Using the Page Inspector to Diagnose your Site

In this exercise, you load a few pages into the Page Inspector and diagnose the underlying HTML. You
see how to use the Inspect feature to find the originating source files and how to make changes to the
code and refresh the Page Inspector. This should prepare you for cases where you need to hunt for a
bug in your site.

 1. If you’re still in debug mode from the previous
exercise, press Shift+F5 to stop debugging. Then close
all open files and choose Page Inspector from the
Target Browser drop-down on the Standard toolbar,
shown in Figure 18-23.

 2. Press F5 or click the green arrow next to the Target
Browser drop-down, shown in Figure 18-23. If you
enabled debugging earlier, the Page Inspector should
start without further messages. If you haven’t enabled
debugging earlier, follow the on-screen instructions to
properly configure your site. After a few seconds, the Page Inspector is loaded in the Document
Window in VS, as shown in Figure 18-24.

figure 18-23

figure 18-24

At the top right corner of the Page Inspector, you should see a checkmark to indicate that the Page
Inspector is set up correctly. If you see a yellow icon with an exclamation point instead, click that
icon to see a list of issues and hints on fixing them.

c18.indd 698 2/21/2014 1:30:36 PM

Debugging with the Page Inspector ❘ 699

The bottom of the screen is divided in two. The left half shows you the HTML for the page
(indicated by the active HTML tab). The Inspect button enables you to point at elements in your
page, as you see in a moment. The Files tab shows all server-side files that were used to render
this page. For the homepage of the Planet Wrox site, these are Frontend.master (the master
page), Default.aspx (the homepage), and Banner.ascx (the Banner user control in the Sidebar
<aside>). Clicking any of these files opens them in the code editor side by side with the Page
Inspector.

 3. Click the Inspect button and then hover your mouse over elements in the page. When you do
that, the code file that generated the element is shown side by side with the Page Inspector. For
example, when you hover over the logo, the Frontend.master file appears. If you hover over the
banner image, the Banner.ascx file is loaded, as shown in Figure 18-25.

figure 18-25

Not only is the correct file opened, but the active control is selected for you (the highlighted Image
control in Figure 18-25) as well. In addition, in the client-side HTML at the bottom left, the img
element is highlighted. This makes it super easy to see how it all fits together: the in the
browser came from an Image control in Banner.ascx. If you didn’t know the source code of this
site that well, finding this out without the Page Inspector would have been much more difficult.
You had to diagnose the underlying HTML, find the element, look for the control’s id
attribute, and then search the entire site in VS for the text Image1.

 4. Click once on the <h1> element (with the text that welcomes the user). VS opens up Default.
aspx in Preview mode (indicated by the tab with the page name at the right of the code editor)
and correctly highlights the text. Make a change to the header text (for example, change
“welcome to Planet Wrox” to “welcome to the Planet Wrox website”). Note that as soon as you

c18.indd 699 2/21/2014 1:30:37 PM

700 ❘ Chapter 18 ExcEption Handling, dEbugging, and tracing

start typing, the tab of the page in the code editor moves to the left side, taking the page out of
Preview mode and into Edit mode. In addition, the Page Inspector now indicates that the source
of the page has changed and that it needs to be reloaded to reflect those changes. This is indicated
by a yellow bar above the page, shown in Figure 18-26.

figure 18-26

Click that bar, or press Ctrl+Alt+Enter. The page reloads and now shows the change you made to
the page.

 5. Look at the HTML for the page in the lower-left corner of the Page Inspector, and make a change.
For example, change the page’s title in the <head> section (you need to double-click the text in
order to edit it) or change the text above the theme drop-down list. Changes you make here are not
persisted in your source files, and only show up in the Page Inspector until you reload it.

 6. Switch to the other theme using the drop-down list in the Sidebar. Notice how this “just works”;
because the page runs in Internet Explorer, all client-side functionality, such as JavaScript and
form posts, keep working as if the page was running in a normal browser.

 7. Choose All Reviews from the TreeView or Menu and then click the link for one of the reviews to
go to the details page.

 8. Use the Inspect button and highlight the
summary of the review. You may recall from
an earlier exercise that you gave the summary
label a CSS class called Summary, which you
added to the theme’s style sheet. The Page
Inspector noticed that too, and, as illustrated
in Figure 18-27, shows you the correct
filename in the Styles tab below the Page
Inspector. You need to scroll down in order to see the Summary class.

Click the .Summary selector (not the filename to the right) to open the CSS file that defines the
.Summary selector. Its code gets highlighted automatically. Make a change to the .Summary
 selector, for example by adding a thin grey border to its bottom:

.Summary
{
 font-style: italic;
 display: block;
 border-bottom: 1px solid Grey;
}

figure 18-27

c18.indd 700 2/21/2014 1:30:37 PM

Cross-browser Testing with Browser Link ❘ 701

Just as with the change to the HTML you made, the Page Inspector sees the changes and immedi-
ately applies them to the page without requiring a manual refresh. This is a great time saver when
writing and debugging your CSS code.

 9. Click the Inspect button and highlight the
summary in the text again. Switch to the
Trace Styles tab, shown in Figure 18-28.
Expand a few items such as font-size and
font-style.

This screen shows you all the CSS rules that
are currently in effect for the selected element.
This makes it easy to see the CSS by which
the element is styled and where that CSS
came from. You can’t make changes from this
screen to your source files. You can, however,
disable some of the rules to see how that affects the page. The changes you make are not persisted
and only show up in the Page Inspector until you reload it or browse to another page.

The Layout and Attributes tabs show you the box model for the selected element and enable you
to add additional attributes (a class attribute, for example) to the selected element. The Call
Stack window provides information about elements that have been created dynamically with
JavaScript.

 10. To stop using the Page Inspector, click the Stop button on the toolbar or press Shift+F5.

How It Works

When you enable the Page Inspector, the .NET run time and the IDE keep track of which file or control
contributes which HTML to the final page. It then uses that information to find the responsible file
and highlight the relevant code in it when you inspect page elements in the Page Inspector. Changes
you make to the source files are detected by the IDE so you can refresh the Page Inspector whenever it’s
needed.

Cross-BroWser testing With BroWser linK

Earlier in this book I mentioned that it is important to test your website in many different browsers.
Although most modern browsers render pages almost identically, differences do still exist, which
may cause a page to look great in one browser but sub-optimal or even broken in another. In
versions before VS 2012, cross-browser testing was mostly a manual task; you started a web
browser by pressing Ctrl+F5 or F5, then copied the URL for the site, started another browser and
pasted in the URL. Visual Studio 2012 introduced a great improvement by enabling you to select
multiple start up browsers: click the down arrow next to the browser on the Standard toolbar, select
Browse with and then press Ctrl while you select multiple browsers. Chapter 3 showed how to do
this. Visual Studio 2013 improves this even further with Browser Link as you’ll see next.

figure 18-28

c18.indd 701 2/21/2014 1:30:37 PM

702 ❘ Chapter 18 ExcEption Handling, dEbugging, and tracing

introducing Browser link
Browser Link enables Visual Studio to communicate with any open browser that is displaying a
page from your site. When Browser Link is enabled (it’s on by default) you can let Visual Studio
send a message to all open browsers to refresh the page when you make a change in a page in
Visual Studio. This is a great time saver as reloading across all browsers is done automatically.
Browser Link works by injecting a link to a JavaScript library at the bottom of the page. That
JavaScript library uses SignalR under the hood for communication with Visual Studio. SignalR
enables bi-directional communication between servers and clients and can be used for real-time
communication solutions such as chat and live push notifications. Visual Studio uses it to inform
browsers of changes to the site. You can learn more about SignalR on the ASP.NET site at www.asp.
net/signalr although no knowledge about SignalR is needed to work with Browser Link; as you’ll
in the next section, using Browser Link is really simple.

using Browser link
Since Browser Link is on by default, you don’t
have to do anything to make use of it. You
simply start one or more browsers, make changes
to your site in Visual Studio, and then press
Ctrl+Alt+Enter to refresh the open windows. You
can turn Browser link off and back on by clicking
the down arrow next to the Refresh icon on the
Standard toolbar shown in Figure 18-29.

Using the same menu, you can also refresh all linked
browsers (as an alternative for the Ctrl+Alt+Enter shortcut)
and bring up the Browser Link Dashboard, shown in
Figure 18-30.

The Browser Link Dashboard enables you to manually
refresh an individual browser (by clicking its name). It
also lists any issues you may need to resolve before using
Browser Link (such as enabling the debug option in the
Web.config) file.

In the next exercise you see how to make use of Browser Link.

trY it out Working with Browser Link

In this exercise, you’ll use Browser Link to visualize changes you make to the home page in all open
browsers. You’ll see how to start multiple browsers with Browser Link on. You’ll then make a change
to the home page of the website and see how all browser windows are updated automatically to reflect
the change.

 1. In Visual Studio, make sure that Browser Link is enabled by opening the Browser Link menu as
shown in Figure 18-29.

figure 18-29

figure 18-30

c18.indd 702 2/21/2014 1:30:38 PM

http://www.asp.net/signalr
http://www.asp.net/signalr

Cross-browser Testing with Browser Link ❘ 703

 2. Next, make sure that you have at least two browsers set as the default. Browser Link works with
a single browser as well but its usefulness increases with each additional browser you open. You
can select multiple browsers by clicking the down arrow next to the name of the current default
browser on the Standard toolbar, as explained earlier.

 3. Open Default.aspx from the root of the site in Markup View and press Ctrl+F5 to open the site
in your configured browsers.

 4. Organize the open browsers and Visual Studio so you can see them all side by side, as shown in
Figure 18-31.

figure 18-31

 5. Switch back to Visual Studio and make a change to the code. For example change the text in the
<h1> element back to welcome to Planet Wrox.

 6. Press Ctrl+Alt+Enter or choose Refresh Linked Browsers from the Browser Link menu. Your
open browsers should now reload and display the new content. If nothing happens, check the
Browser Link Dashboard for any issues preventing Browser Link from working, and follow the
instructions to fix them. Then close your browsers and restart this exercise at step 3.

How It Works

When you start the browsers with Browser Link enabled, a link to some JavaScript is appended to the
page. This script sets up a communication channel between Visual Studio and the connected browsers.
When you press Ctrl+Alt+Enter in Visual Studio, it sends a notification to the browsers that they should
reissue a request for the page to the server to show the latest changes.

c18.indd 703 2/21/2014 1:30:38 PM

704 ❘ Chapter 18 ExcEption Handling, dEbugging, and tracing

Browser Link works best with a multi-monitor setup, or on a large monitor. That enables you to have
multiple browsers open side by side. I usually put two or three different browsers on a secondary moni-
tor and hit Ctrl+Alt+Enter from time to time while working in Visual Studio to make sure my site still
looks fine in those browsers.

Note The Browser Link implementation in Visual Studio supports communica-
tion from the server to the browser only. However, the underlying communica-
tion mechanism SignalR supports bidirectional communication. The community
is actively developing plugins to leverage the two-way communication capabili-
ties. One such plugin is the excellent Web Essentials 2013, developed by Mads
Kristensen from the Web Platforms & Tools team at Microsoft. Using that plu-
gin you can make changes to your CSS in the browser, and automatically syn-
chronize those changes back in the source file. You can learn more about Web
Essentials at http://vswebessentials.com and see a video of Browser Link
CSS editing in action at http://bit.ly/17uo2HI. Note: Visual Studio Express
for Web does not support plugins and as such you need a commercial version
of Visual Studio to use this plugin.

Useful as debugging your code may be during the development of your site, it lacks the capability to
investigate the behavior of your site while it’s running in production. Fortunately, ASP.NET has a
solution for that as well: tracing.

traCing Your asp.net WeB pages

Without tracing, finding out the values of variables, objects, the execution path your code follows,
and so on at run time is problematic at best. You would probably add a Label control to the page,
and then write information to it like this:

VB.NET

Dim value2 As Double = Convert.ToDouble(ValueBox2.Text)
DebugLabel.Text &= "The value of value2 = " & value2.ToString() & "
"

C#

double value2 = Convert.ToDouble(ValueBox2.Text);
DebugLabel.Text += "The value of value2 = " + value2.ToString() + "
";

Although this certainly works, it’s quite cumbersome. First, you need to write a lot of code to make
this work. Secondly, you end up with an ugly Label control in your page that you shouldn’t forget
to remove when you’re done with your debugging or tracing. And finally, when you’re ready, you
should remove all the code that sets the DebugLabel label. You could take the easy way out by
setting the Label control’s Visible property to False, but you would still take the performance hit
of assigning the text to the Label control.

c18.indd 704 2/21/2014 1:30:38 PM

http://vswebessentials.com
http://bit.ly/17uo2HI

Tracing Your ASP.NET Web Pages ❘ 705

Tracing in ASP.NET solves all of these problems. It lets your pages, controls, and code write
information to a central location, called the trace, which can then be shown in the browser. Tracing
is built into the ASP.NET Framework, which means you can use it without any manual coding.
Additionally, you can add your own information to the trace. In the following section, you see how
to use the built-in tracing capabilities, giving you a wealth of information about your page. In a later
exercise, you see how to add your own information to the trace.

using the standard tracing Capabilities
Without much work, you can get a lot of good information about the way your pages execute. All
you need to do is enable tracing for your pages. You can do this at the page level or at the site level.
With tracing enabled at the page level, you can choose one or more specific pages you want to trace.
Application-level tracing is useful if you want to look at multiple pages at the same time. This may
help you, for example, to find slow pages in your website.

Tracing with Individual Pages
To enable tracing in a page, you need to set its Trace attribute in the Page directive to true:

<%@ Page Trace="true" %>

When you run a trace-enabled page, you get a long list of details at the bottom of the page.
Figure 18-32 shows the ASP.NET trace for the Calculator demo page you have been working with
in this chapter.

figure 18-32

The trace provides a lot of details about your current page. At the top, you find a summary of the
request details, including the current date and time, the method used to retrieve this page (GET or
POST), and the status code (status 200 in Figure 18-32, to indicate success).

Below that, you see the Trace Information section. The ASP.NET Page class writes to the trace
when you enable it. This is similar to the demo page you wrote in Chapter 15 that wrote to a Label

c18.indd 705 2/21/2014 1:30:38 PM

706 ❘ Chapter 18 ExcEption Handling, dEbugging, and tracing

control from the numerous events triggered during the page’s life cycle. For each trace line you see a
message, a category it’s placed in, and two times. The first time column records the elapsed time in
seconds since the first trace message was processed. The first trace message appears at the top of the
list. The second time column records the elapsed time in seconds between processing of the current
trace message and the preceding trace message.

By default, the data is sorted by time, putting the events in the order in which they occurred. You
can also sort them on the category (more on categories in the section that deals with adding your
own information to the trace) by changing the TraceMode from SortByTime to SortByCategory:

<%@ Page Trace="true" TraceMode="SortByCategory" %>

A little further down the page (not visible in Figure 18-32), you see the control tree, which presents a
hierarchical view of the controls in your page and their size.

Below the control tree, you see the details for a number of important collections, including the
Query String, Cookies, Form, Headers, and Server Variables. Additionally, you see information you
may have stored in Session or Application state. Being able to see these collections can be a great aid
in figuring out a problem. For example, if you have a page that is supposed to read from a cookie,
but that crashes and raises an exception as soon as the page loads, you can look at the Cookies
collection and see if the page receives the data you expect. These collections are invaluable tools in
understanding the execution of your page and can really aid in finding and fixing bugs in your code.
In order for tracing to work when dealing with exceptions, you need to turn custom error pages
off in the Web.config file. Refer to the section “Global Error Handling and Custom Error Pages”
earlier in this chapter to learn more about custom error pages.

Page-level tracing means you need to enable tracing on every page you want to trace. It also means
that you need to disable it on every page after you’re done. Because this can be cumbersome in a
large site, ASP.NET also enables you to trace the entire application.

Tracing the Entire Website
You can enable tracing for the entire website by changing trace settings in the Web.config file. You
do this by creating a <trace /> element under <system.web>. The following table lists the most
important attributes that the <trace /> element takes.

attriBute desCription

enabled Determines whether or not tracing is enabled for the application. By default,
tracing is disabled, so you need to set this attribute to true explicitly.

traceMode Determines the order in which items are sorted in the trace output. It works
identically to the TraceMode attribute of the Page directive.

requestLimit Determines the number of trace requests that ASP.NET keeps available.
When the limit is hit, older trace records will be deleted automatically, leaving
only recent trace requests available.

pageOutput Specifies whether the trace information is displayed on the page. When set to
false (the default), you can only access the tracing information using Trace
.axd, which is discussed later.

c18.indd 706 2/21/2014 1:30:38 PM

Tracing Your ASP.NET Web Pages ❘ 707

attriBute desCription

localOnly Specifies whether the special Trace.axd handler is accessible from the local
host only. From a security point of view, you’re best off to leave this set to
true, which means the trace is not available to outside users.

mostRecent Determines whether old trace records are discarded when the number of
trace requests hits the requestLimit. When set to false, tracing is disabled
automatically when the requestLimit is hit.

When you have enabled tracing, you have two ways to read the trace information. When you have
set pageOutput to true, the trace information is appended to each page, similar to what you saw
with page-level tracing.

However, to make tracing less obtrusive, you can disable pageOutput and then request tracing
information using a special file called Trace.axd. This is a virtual file, which means you won’t find
it in your website when you go looking for it. However, the ASP.NET run time knows it should
provide you with tracing information when you request this special page. Although the file is
virtual, you can still protect it using ASP.NET’s URL security by adding a <location /> element to
the main Web.config file as you’ve done with other file and folders.

You see how to enable tracing for the site in the following exercise.

trY it out Enabling Tracing for the Entire Site

In this Try It Out, you see how to enable site-wide tracing. First, you make a few changes to the Web.
config file. You then browse your site, filling the trace log with your page requests. Finally, you request
the special Trace.axd page to see the available trace log information.

 1. Open Web.config and locate the opening <system.web> tag. As a direct child of that element,
add the following configuration information to enable tracing:

<system.web>
 <trace mostRecent="true" enabled="true" requestLimit="100" pageOutput="false"
 localOnly="true" />

This enables the trace, but doesn’t add its output to the page. Instead, you need to request the
special Trace.axd page to see the trace information. Additionally, you make your system a little
more secure by only allowing requests for the trace information from the local machine. Save and
close Web.config.

 2. Open the Target Browser drop-down on the Standard toolbar and select your preferred browser.
Then right-click Default.aspx in the Solution Explorer and choose View in Browser.

 3. Click around the site, opening pages, changing the theme, filling in the contact form, and so on.

 4. After you have requested at least five pages, change the address bar of your browser as follows so
it requests the special Trace.axd page:

http://localhost:49394/Trace.axd

c18.indd 707 2/21/2014 1:30:39 PM

http://localhost:49394/Trace.axd

708 ❘ Chapter 18 ExcEption Handling, dEbugging, and tracing

Your port number may be different, but it’s important that you request the page Trace.axd on
localhost. You should get a page similar to Figure 18-33. If the page is empty, press Ctrl+F5 to
refresh it.

figure 18-33

 5. The list of traces is sorted based on time, from oldest to newest. Click the View Details link you
see in Figure 18-33 for an ASPX page. You get a page similar to the one shown in Figure 18-32.

 6. Disable tracing by setting the enabled attribute to false in the Web.config file, and then try
requesting Trace.axd again. Notice that ASP.NET doesn’t serve the page, but shows your error
page instead.

How It Works

The ability to see trace information for pages that have been requested is extremely valuable. The infor-
mation can help you understand the flow of information from and to a web page. For example, the
trace information for the Contact.aspx page also shows the information that users have entered in the
text box controls on the page. To see what this information looks like, click the View Details link for
an item you want to zoom in on.

Although the information that ASP.NET traces for you automatically is extremely useful, you’re not
limited to just this information. You can also add your own information to the trace log.

adding Your own information to the trace
Adding your own data to the trace is useful if, for example, you want to see the value of a variable,
or want to find out if a specific event fires, and when it fires exactly.

You can add information to the trace by using the Trace class. This class exposes two useful
methods: Write and Warn. Both do pretty much the same thing: they add information to the trace

c18.indd 708 2/21/2014 1:30:39 PM

Tracing Your ASP.NET Web Pages ❘ 709

that you can optionally put in a category you make up yourself. The only difference between Write
and Warn is that messages written by Warn appear in red. You could use the Warn method for
unexpected situations because the message will draw more attention.

In the following exercise, you see how simple it is to add your own information to the trace using
the Warn and Write methods.

trY it out Adding Trace Data to Your Pages

In this Try It Out, you add some custom information to the ASP.NET trace. You use the Write method
to write out trace information in a normal page execution, and use the Warn method for unexpected
scenarios.

 1. Open CalculatorDemo.aspx, switch to its Code Behind, and locate the Click handler for the
Calculate button.

 2. Right before the Select Case (VB.NET) or switch statement (C#), add the following Trace.
Write call:

VB.NET

Trace.Write(String.Format("Performing the calculation with the {0} operator",
 OperatorList.SelectedValue))
Select Case OperatorList.SelectedValue

C#

Trace.Write(string.Format("Performing the calculation with the {0} operator",
 OperatorList.SelectedValue));
switch (OperatorList.SelectedValue)

 3. Near the bottom of the event handler, modify the Else statement for the check that ensures that
both TextBox controls contain a value:

VB.NET

Else
 ResultLabel.Text = String.Empty
 Trace.Warn("Custom Category",
 "TextBox controls are empty; time to add Validation controls?")
End If

C#

else
{
 ResultLabel.Text = string.Empty;
 Trace.Warn("Custom Category",
 "TextBox controls are empty; time to add Validation controls?");
}

 4. Enable tracing for this page explicitly. You can do this by setting the Trace attribute of the Page
directive in Markup View:

<%@ Page Title="Calculator Demo" ... Trace="true" %>

c18.indd 709 2/21/2014 1:30:39 PM

710 ❘ Chapter 18 ExcEption Handling, dEbugging, and tracing

 5. Save all your changes and request the Calculator page in the browser by pressing Ctrl+F5. Enter
two numbers and click the Calculate button. Note that your custom information is added to the
trace, between the Begin Raise PostBackEvent and End Raise PostBackEvent trace entries
even though tracing is disabled at the site level. Note also that the text is black, and has no
category assigned.

 6. Clear the text from both TextBox controls in the browser and click the Calculate button again.
The trace information should now be easier to spot because of its different color and own
category name, as shown in Figure 18-34.

figure 18-34

 7. Go back to VS once more and disable tracing for the Calculator page by setting the Trace
attribute of the Page directive to false. Save your changes and request the page again. Note that
the page still functions correctly, but no longer outputs the trace information.

How It Works

The Write and Warn methods of the Trace class enable you to write additional information to the
trace. The ASP.NET runtime keeps track of the information and displays it together with the rest of the
trace info, either directly at the bottom of the page in the browser with page-level tracing, or through
the special Trace.axd page you saw earlier.

The Write and Warn methods each have three overloads. The first one (shown only with Write in the
previous example) accepts a single string that is displayed in the Message column. The second overload
also accepts a category name as demonstrated with the Warn method. The final overload, not shown in
the Try It Out exercise, also accepts an Exception object whose message will be added to the trace out-
put. This is useful to trace the information of an exception in a Catch block.

tracing and performance
Although it may seem that leaving Warn and Write statements in your code on your production
system may hurt performance, this isn’t the case. Because you can disable tracing in the Web.config
file by setting the enabled property of the trace element to false, you greatly minimize the
performance overhead of tracing.

a security Warning
Tracing can be very useful, but leaving trace information in your production environment can lead
to information disclosure. Therefore, you should always either disable tracing by setting its enabled

c18.indd 710 2/21/2014 1:30:39 PM

Practical Debugging Tips ❘ 711

attribute in Web.config to false, or at least by setting the localOnly attribute to true.
In Chapter 19, you learn a trick that enables you to make this change for all sites on your
production server, making it easy to block access to the trace functionality.

praCtiCal deBugging tips

The following list provides some practical tips to help you debug your application:

➤➤ Never leave debug="true" in the Web.config file in a production environment. Always set
it to false to improve performance. In Chapter 19, you see an even better solution to ensure
this setting is never set to true on a production server.

➤➤ Try to avoid swallowing exceptions in a Catch block. You may be tempted to wrap your
code in a Try/Catch block and then leave the entire Catch block empty. Although this
certainly avoids exceptions showing up in the user interface, it makes debugging extremely
difficult. Because you are no longer aware a problem occurs, you also cannot write code to
prevent the error from happening in the first place. The general rule here is: Catch errors
that you can handle successfully, for example by displaying a message to the user. If you
can’t handle the exception in your code, let it bubble up and log it in the Application_
Error event handler so you know that the exception occurred.

➤➤ If you need to re-throw an exception in a Catch block, don’t use Throw ex (throw ex in
C#), but use Throw (throw in C#) only. When you use Throw ex, you make it difficult to
track the path the code has followed before the exception occurred, but by using Throw you
maintain this information. Here’s the code showing both options:

VB.NET

Try
 ...
Catch ex As Exception
 ' Do something with the error here, such as logging it
 Throw ex ' Bad example; you lose track of the source of the exception
 Throw ' Good example; forwards the exception
 ' and maintains the call stack
End Try

C#

try
{
 ...
}
catch (Exception ex)
{
 // Do something with the error here, such as logging it
 throw ex; // Bad example; you lose track of the source of the exception
 throw; // Good example; forwards the exception
 // and maintains the call stack
}

c18.indd 711 2/21/2014 1:30:39 PM

712 ❘ Chapter 18 ExcEption Handling, dEbugging, and tracing

➤➤ Try to avoid exception handling when possible. As you saw in this chapter, it’s much better
(and faster) to simply avoid an exception in the first place. For example, you can easily avoid
the DivideByZeroException exception by checking for a value of zero before carrying out
the division.

➤➤ Be as explicit as possible with the Exception types you catch in Try/Catch blocks. Try to
avoid catching generic Exception types and set up multiple, explicit Catch blocks for each
specific type you anticipate.

summarY

No matter how carefully you program, your site is likely to contain some bugs or throw exceptions
at run time. To minimize these exceptions and build a site that runs as smoothly as possible, you can
do a number of things.

First of all, you can use exception-handling techniques, where you write code that is able to catch
exceptions that you foresee and handle them appropriately.

To help you write code with as few bugs as possible, VS offers you a great set of debugging tools.
The ability to break into your code and analyze and change the execution environment from client-
side code all the way into the server is a great aid in your bug-slashing adventures.

Even if you have debugged your application thoroughly, there’s still a chance your site may have
issues in production, whether they are related to performance, logic errors, or other unexpected
reasons. In those cases, you can use the ASP.NET tracing facilities that let you track information
about running pages. Analyzing this trace information can bring you a long way in fixing the
underlying issues.

Now that your website is complete and hopefully bug-free, the next step is to put it online. You see
how to deploy your ASP.NET website in the next chapter.

exerCises

 1. What’s the difference between debugging and tracing?

 2. Imagine you have some code that could potentially throw an exception. For example, you try to
send an e-mail message to a mail server. What kind of exception-handling strategy would you
use to avoid the exception from being displayed in the browser? What code would you need?

 3. You’re taking over a website that has been built by another developer who had never heard
of exception handling. Your client is complaining about the quality of the site and the large
number of “Yellow Screens of Death” that users see. Besides analyzing the code for the
entire application, what would be a quick solution to get information about the errors and the
locations where they occur? And how can you shield the site’s users from the dirty details of
the exception messages?

You can find answers to these exercises in Appendix A.

c18.indd 712 2/21/2014 1:30:39 PM

Summary ❘ 713

 ➤ What You learned in this Chapter

Breakpoint A marker you can set in your code to indicate where you want the
debugger to halt at run time

Browser link A Visual Studio feature that enables VS to communicate with open
browsers to instruct them to refresh the page they are displaying

data tips Tooltips that present simple or rich data about variables during
debugging

debugging The process of finding and fixing bugs in your code

exception The .NET term for an error that may occur in your code

exception handling A methodology to identify and handle errors that occur at run time

page inspector An integrated debugging browser in Visual Studio that enables you
to diagnose and alter source code and see which pages and files
generated that source code

stack trace A visual representation of the current stack of code calls

trace Enables ASP.NET controls and your own custom code to write
information to a central log location at run time

c18.indd 713 2/21/2014 1:30:39 PM

c18.indd 714 2/21/2014 1:30:40 PM

Deploying Your Website
What You Will learn in this Chapter:

➤➤ How to ease the deployment process through simple changes to
your code and configuration

➤➤ How to publish your site from Visual Studio

➤➤ How to install and configure a web server and your website on
your target machine

➤➤ How to avoid common errors you may get when deploying a site

➤➤ How to copy data stored in your SQL Server database to the
target server

Wrox.Com Code doWnloads for this Chapter

You can find the wrox.com code downloads for this chapter on the Download Code tab at
www.wrox.com/go/begaspnet451. The code is in the Chapter 19 folder.

Congratulations! The fact that you’re reading this chapter probably means you now have a
full-featured, database-driven ASP.NET website that is ready for release into the wild. It’s an
exciting time for you and your project. Pretty soon your application will be used and judged
by your target audience.

To make your website accessible to users worldwide, you need to publish it to a production
server that is connected to the Internet. What kind of server this is and where it is located
depends on your own requirements and budget. You can host the site on a home server in your
attic with a private Internet connection (as I used to do with http://imar.spaanjaars.com)
or you can host it with an external (and often commercial) party with a direct connection to
the Internet backbone.

Either way, you need to do some work to get your site from its development location
at C:\BegASPNET\Site to a location where it’s accessible over the Internet.

19

c19.indd 715 2/21/2014 1:37:53 PM

http://www.wrox.com/go/begaspnet451
http://imar.spaanjaars.com
http://wrox.com
http://wrox.com

716 ❘ Chapter 19 Deploying your Website

This chapter deals with a few topics related to successfully deploying your website. You learn about
the process from preparing your site in the development environment to actually running and testing
it at your production server.

The chapter then ends with a list of things you need to take care of when deploying your site.
You can use this checklist to make sure you configure your production site in the most secure and
optimal way.

preparing Your Website for deploYment

When you’re working on the first edition of your website in a development environment, managing
the site and its source code is pretty straightforward. You have only a single version of the site’s
source, making it easy to maintain. However, as soon as you put your site in production, you have two
versions of it: one running in the production environment and the one you use for development. This
makes it difficult to keep things synchronized. For example, you probably use a different database and
connection string in your production environment. You’re also likely to use different e-mail addresses
for the e-mail that is sent by the site. Finally, you may want to disable sending the error e-mails from
the Global.asax files in a development environment. If you make all of these changes in the code
directly when you put your site on a production server, there’s a fair chance that you’ll overwrite some
settings during the next update, which can lead to unwanted results.

This section shows you how to make managing different versions of the same website a little easier.
You see how to move some of the hardcoded settings, such as e-mail addresses, to the Web.config
file. The code in your application then reads these values at run time. The only difference between
your development and production environments is then a single configuration file, making it easy to
have different settings in both environments. You’ll see later how you can let VS generate a Web
.config file for the production environment.

avoiding hard-Coded settings
So far, the pages and user controls you have built use some hard-coded settings for things like e-mail
addresses. For example, ContactForm.ascx, the user control that sends out an e-mail, uses the
following code to set the recipient and sender information:

VB.NET

myMessage.From = New MailAddress("you@example.com", "Planet Wrox")
myMessage.To.Add(New MailAddress("you@example.com", "Planet Wrox"))

C#

myMessage.From = New MailAddress("you@example.com", "Planet Wrox");
myMessage.To.Add(New MailAddress("you@example.com", "Planet Wrox"));

Hard-coding settings in this manner makes it difficult to give them different values in different
environments. Every time you want to roll out your site to production, you need to make sure you’re
not accidentally overwriting settings you changed for the production environment.

Fortunately, ASP.NET comes with a great solution to avoid these kinds of problems: the
Web.config file, expression syntax, and the WebConfigurationManager class you use to read
from Web.config.

c19.indd 716 2/21/2014 1:37:53 PM

Preparing Your Website for Deployment ❘ 717

the Web.config file
You’ve used the Web.config file a number of times in this book to store information about
connection strings, membership, roles and profile information, and more. You also briefly saw the
<appSettings> element that enables you to store data in a key/value pair using <add> elements. The
<appSettings> element enables you to store simple information, such as an e-mail address, and
retrieve that value by its key. For example, to store an e-mail address, you can add the following to
the Web.config file:

<appSettings>
 <add key="FromAddress" value="webmaster@example.com" />
</appSettings>

The <appSettings> element is placed outside the <system.web> element in the Web.config file, yet
still within the parent <configuration> element.

Obviously, you need a way to access the data in <appSettings> at run time. You can do this in
a couple of ways, including expression syntax and the WebConfigurationManager class, both of
which are discussed next.

expression syntax
Expression syntax enables you to bind control properties to resources, such as those found in the
<appSettings> element in Web.config, connection strings, localization resource files, and various
routing settings used in URL rewrite scenarios. To display data from the <appSettings> element,
you use the following syntax, where AppSettingKeyName refers to a key you define in Web.config:

<%$ AppSettings:AppSettingKeyName %>

For example, to display a copyright notice on your pages in a Literal control, you can add the
following setting to Web.config:

<add key="Copyright" value="Copyright by Wrox" />

You can then display this text in a Literal control like this:

<asp:Literal ID="Copyright" runat="server" Text="<%$ AppSettings:Copyright %>" />

To make it even easier to set properties like Text as in the
preceding example, Visual Studio comes with the Expression
Editor. To access this dialog box, select a control in Design or
Markup View, open its Properties Grid, and click the ellipsis
for the (Expressions) item, shown in Figure 19-1. You may find
that the (Expressions) item does not always show up when in
Markup View. If that’s the case, switch to Split View or Design
View first.

The Expressions dialog for the Literal control opens,
enabling you to bind control properties to expressions. Visual
Studio limits the list of properties of the control to those
that can be bound using an expression. To bind the Text property of the Literal control to an
application setting, first click Text on the left side of the dialog box, choose AppSettings from the

figure 19-1

c19.indd 717 2/21/2014 1:37:53 PM

718 ❘ Chapter 19 Deploying your Website

Expression Type drop-down list on the right, and finally, choose the desired AppSetting from the
drop-down list in the Expression Properties section. Figure 19-2 shows the complete Expressions
dialog box for a Literal control used to display the copyright text.

figure 19-2

When you click OK, Visual Studio modifies the Text property of the Literal control so it contains
a reference to the correct application setting.

Getting values from the Web.config using expression syntax is useful, but may not cover all your
needs. Therefore, it’s good to know that you can retrieve the values programmatically as well. To do
this, you can use the WebConfigurationManager class.

the WebConfigurationmanager Class
The WebConfigurationManager class from the System.Web.Configuration namespace provides
access to data that is stored in configuration files. It has special support for the appSettings
and connectionStrings elements of the Web.config file, enabling you to retrieve data from
those sections with a single line of code. The following snippet shows you how to retrieve the
FromAddress value you saw earlier from the <appSettings> element:

VB.NET

Imports System.Web.Configuration
...
Dim fromAddress As String = WebConfigurationManager.AppSettings.Get("FromAddress")

C#

using System.Web.Configuration;
...
string fromAddress = WebConfigurationManager.AppSettings.Get("FromAddress");

c19.indd 718 2/21/2014 1:37:54 PM

Preparing Your Website for Deployment ❘ 719

The Get method always returns data as a string, so you’ll need to convert it to a proper type if
you’re expecting anything other than a string. For example, if you have stored a boolean value in
Web.config like this:

<add key="SendMailOnError" value="true" />

you need to use the following code to retrieve and convert the value:

VB.NET

Dim sendMail As Boolean =
 Convert.ToBoolean(WebConfigurationManager.AppSettings.Get("SendMailOnError"))

C#

bool sendMail =
 Convert.ToBoolean(WebConfigurationManager.AppSettings.Get("SendMailOnError"));

Although you can access the WebConfigurationManager class in the Code Behind of your Web
Forms and user controls directly (provided you have imported the System.Web.Configuration
namespace), I prefer to create static, read-only properties in a custom configuration class that
accesses the Web.config file to get the values. You see how to do this in the following exercise.

trY it out Moving Application Settings to Web.config

In this Try It Out, you create a class with a few properties that get their values from the Web.config
file. You then use the properties of this class in your code to replace the hard-coded values that were
used earlier.

 1. Inside the App_Code folder, create a new class file and call it AppConfiguration.vb or
AppConfiguration.cs. In C#, remove the constructor code, shown in the following code block:

public AppConfiguration()
{
 //
 // TODO: Add constructor logic here
 //
}

Because the class is going to have static properties exclusively, you don’t need the constructor.

 2. At the top of the class file, add an Imports/using statement for the System.Web.Configuration
namespace:

VB.NET

Imports System.Web.Configuration

C#

using System.Web.Configuration;

 3. Add a new Shared (static in C#), read-only property to this class that returns the FromAddress
from the Web.config file. Recall from Chapter 5 that a Shared/static member (like a method or
a property) operates on the class itself, and not on an instance of that class.

c19.indd 719 2/21/2014 1:37:54 PM

720 ❘ Chapter 19 Deploying your Website

VB.NET

Public Class AppConfiguration
 Public Shared ReadOnly Property FromAddress() As String
 Get
 Dim result As String =
 WebConfigurationManager.AppSettings.Get("FromAddress")
 If Not String.IsNullOrEmpty(result) Then
 Return result
 End If
 Throw New Exception("AppSetting FromAddress not found in web.config file.")
 End Get
 End Property
End Class

C#

public class AppConfiguration
{
 public static string FromAddress
 {
 get
 {
 string result = WebConfigurationManager.AppSettings.Get("FromAddress");
 if (!string.IsNullOrEmpty(result))
 {
 return result;
 }
 throw new Exception("AppSetting FromAddress not found in web.config file.");
 }
 }
}

 4. Repeat the previous step, but this time create the following three properties by creating a copy of
FromAddress:

➤➤ FromName

➤➤ ToAddress

➤➤ ToName

Don’t forget to rename all three occurrences of FromAddress to the new property name.

 5. Still inside the AppConfiguration class, create a boolean property called SendMailOnError:

VB.NET

Public Shared ReadOnly Property SendMailOnError() As Boolean
 Get
 Dim result As String =
 WebConfigurationManager.AppSettings.Get("SendMailOnError")
 If Not String.IsNullOrEmpty(result) Then
 Return Convert.ToBoolean(result)
 End If
 Throw New Exception(
 "AppSetting SendMailOnError not found in web.config file.")
 End Get
End Property

c19.indd 720 2/21/2014 1:37:54 PM

Preparing Your Website for Deployment ❘ 721

C#

public static bool SendMailOnError
{
 get
 {
 string result = WebConfigurationManager.AppSettings.Get("SendMailOnError");
 if (!string.IsNullOrEmpty(result))
 {
 return Convert.ToBoolean(result);
 }
 throw new Exception(
 "AppSetting SendMailOnError not found in web.config file.");
 }
}

 6. When you’re ready with the five properties, save and close the AppConfiguration file.

 7. Open the Code Behind of ContactForm.ascx in the Controls folder, locate the code that sets
the From and To addresses, and replace the hard-coded values with their AppConfiguration
counterparts:

VB.NET

myMessage.From = New MailAddress(AppConfiguration.FromAddress,
 AppConfiguration.FromName)
myMessage.To.Add(New MailAddress(AppConfiguration.ToAddress,
 AppConfiguration.ToName))

C#

myMessage.From = new MailAddress(AppConfiguration.FromAddress,
 AppConfiguration.FromName);
myMessage.To.Add(new MailAddress(AppConfiguration.ToAddress,
 AppConfiguration.ToName));

Notice how IntelliSense helps you pick the correct property of your AppConfiguration class.

 8. This is also a good moment to delete the line of code that calls the Sleep method (near the end
of the SendButton_Click method) that you added there in Chapter 10 to simulate a slow mail
server. On your production site, you want this to go as fast as possible.

 9. Save your changes and close the file.

 10. Open the Global.asax file and wrap the entire code in Application_Error in an If check so the
code only runs when SendMailOnError is set to True. Additionally, change the hard-coded e-mail
addresses to use the FromAddress and ToAddress from the AppConfiguration class instead:

VB.NET

Sub Application_Error(ByVal sender As Object, ByVal e As EventArgs)
 If AppConfiguration.SendMailOnError Then
 If HttpContext.Current.Server.GetLastError() IsNot Nothing Then
 ...
 Dim myMessage As MailMessage = New MailMessage(AppConfiguration.FromAddress,
 AppConfiguration.ToAddress, mailSubject, message)
 ...
 End If

c19.indd 721 2/21/2014 1:37:54 PM

722 ❘ Chapter 19 Deploying your Website

 End If
End Sub

C#

void Application_Error(object sender, EventArgs e)
{
 if (AppConfiguration.SendMailOnError)
 {
 if (HttpContext.Current.Server.GetLastError() != null)
 {
 ...
 MailMessage myMessage = new MailMessage(AppConfiguration.FromAddress,
 AppConfiguration.ToAddress, mailSubject, message);
 ...

 }
 }
}

 11. Open Web.config and add the following elements to the <appSettings> element. Change the
e-mail addresses for FromAddress and ToAddress to your own:

<configuration>
 <appSettings>
 ...
 <add key="FromAddress" value="planetwrox@example.com" />
 <add key="FromName" value="Planet Wrox" />
 <add key="ToAddress" value="planetwrox@example.com" />
 <add key="ToName" value="Planet Wrox" />
 <add key="SendMailOnError" value="true" />
 ...

 12. Save all your changes and press Ctrl+F5 to open the homepage in your browser. Go to the Contact
page and fill in the contact form. You should receive an e-mail at the address you specified in the
previous step.

 13. Request a nonexistent page in your browser. For example, change the page name in the address in
the browser’s address bar to DefaultTest.aspx. You should receive a “File Not Found” message
and an e-mail with the exception details, just as in the preceding chapter.

 14. Go back to Visual Studio, open Web.config, and change the setting for SendMailOnError from
true to false:

 <add key="SendMailOnError" value="false" />

 15. Save your changes, and again request a page that doesn’t exist. Because you changed the
SendMailOnError setting, you shouldn’t get an e-mail with the exception details.

How It Works

The properties of the AppConfiguration class look in the Web.config file for the requested application
settings. When the setting is not defined or does not contain a value, each property throws an excep-
tion. This is useful to detect missing application settings at an early stage. Instead of silently returning
an empty value, you now get an exception that reminds you to add the required application setting.

c19.indd 722 2/21/2014 1:37:54 PM

Introducing Bundling and Minification ❘ 723

At run time, the code accesses these properties like this:

VB.NET

myMessage.From = New MailAddress(AppConfiguration.FromAddress,
 AppConfiguration.FromName)

C#

myMessage.From = new MailAddress(AppConfiguration.FromAddress,
 AppConfiguration.FromName);

Because the properties have been defined as Shared (static in C#), you can access them directly on the
AppConfiguration class, without the need to create a new instance of AppConfiguration first.

Although you could access the <appSettings> element in Web.config directly in the code (for exam-
ple, you could use WebConfigurationManager.AppSettings.Get("FromAddress") to get the e-mail
address in ContactForm.ascx directly), it’s better to wrap the <appSettings> elements in shared prop-
erties in their own class. This solution gives you IntelliSense on the AppConfiguration class, making
it easy to see what configuration properties are available. It also enables you to write centralized code
that throws exceptions when the required application settings cannot be found or that supplies sensible
defaults. Notice how the properties throw an exception only when a valid value cannot be returned.
If you access Web.config directly in your own code, you need to check for valid values every
time you access a setting.

The same principle is used for the SendMailOnError setting. When an exception occurs at run time,
the code in Application_Error now consults the SendMailOnError property. This property in turn
checks the <appSettings> element of Web.config to determine if an error message should be e-mailed.
Because the SendMailOnError property is a boolean, the code uses Convert.ToBoolean to convert the
string returned from the Web.config file into a boolean.

By storing values in Web.config instead of hard-coding them, your site becomes easier to maintain
and deploy. When you go live, all you need to do is create a copy of Web.config for your production
environment and change a few settings. This enables you to turn off error logging by e-mail on your
development machine easily.

With the hard-coded application settings moved to the central Web.config file, the next step in the
deployment process is optimizing your external CSS and JavaScript references.

introduCing bundling and minifiCation

Bundling and minification are two features that have been added to ASP.NET 4.5. Both are
designed to improve the performance of your site by minimizing the number and size of your client
CSS and JavaScript files. With bundling, the ASP.NET run time combines one or more CSS or
JavaScript files into a single request. This minimizes the network overhead, as the browser needs to
make fewer requests. Minification works by removing irrelevant code from these files. Combining
these two techniques greatly enhances the performance of your site.

c19.indd 723 2/21/2014 1:37:54 PM

724 ❘ Chapter 19 Deploying your Website

The cool thing about bundling and minification is that they are really simple to do, and require
hardly any code. As an example, imagine you have two CSS files in your Styles folder called 1.css
and 2.css. Without bundling and minification, you may have something like this in your
master page:

<link href="Styles/1.css" rel="stylesheet" type="text/css" />
<link href="Styles/2.css" rel="stylesheet" type="text/css" />

To enable bundling and minification, you change these two lines into the following single line:

<link href="Styles/css" rel="stylesheet" type="text/css" />

Notice that you no longer specify a filename after the folder name. Instead, you just specify a file
extension — css in this case. This instructs the ASP.NET run time to take all files with a .css
extension from the Styles folder, bundle them into a single response, and minify them by removing
unnecessary content like whitespace and comments. This final result is then streamed to the
browser, where it’s interpreted in exactly the same way as it was with the two separate files.

You can bundle and minimize JavaScript files the same way by specifying js as the file extension
rather than css.

One problem with the previous code example is that the browser caches the result for the URL
Styles/css. Even if you change the underlying CSS or JavaScript files, the browser may continue to
use the old files. You can overcome this problem by creating a StyleBundle that collects all the CSS
files in a particular folder which are then rendered as a single <link> element with a unique key for
the files that is appended to the query string. As long as the files are unmodified on disk the same
key is used, which tells the browser it’s safe to keep using a cached copy of the file. However, as soon
as you change one of the files, the key changes as well, which in turn causes the browser to request a
fresh copy of the bundle from the server. You see how this works in the next exercise.

Enabling bundling and minification in your ASP.NET website is a three-step process:

 1. Install the Microsoft.AspNet.Web.Optimization.WebForms package using NuGet.

 2. Enable bundling by writing some code in Global.asax.

 3. Remove existing <link> and <script> elements pointing to CSS and JavaScript files and
replace them with a single control per file type pointing at the correct source folder.

The current Planet Wrox website doesn’t benefit a lot from bundling and minification because the
number of CSS and JavaScript files is quite low. In addition, the CSS for the site is placed in the
Themes folder, which is not supported by the bundling and minification functionality.

However, to show you how to use bundling and minification in your own sites, where it may result
in improved performance, in the following exercise you optimize a few style sheets you add to the
Styles folder so their content is bundled and minified.

trY it out Using Bundling and Minification

In this exercise, you add two new CSS files to the Styles folder. You then enable bundling and minifi-
cation for this folder so you can see how this affects the CSS code that gets sent to the client.

c19.indd 724 2/21/2014 1:37:55 PM

Introducing Bundling and Minification ❘ 725

 1. Create a new folder called Styles in the root of your site. You may already have this folder from
earlier exercises in this book, in which case you can skip this step.

 2. Install the Microsoft.AspNet.Web.Optimization.WebForms package. To do this, choose Tools ➪
Library Package Manager ➪ Package Manager Console and run the following command:

Install-Package Microsoft.AspNet.Web.Optimization.WebForms

 3. Open up your Global.asax file and at the top of the file, below the Import statement for the
System.Net.Mail namespace, add the following Import statement:

<%@ Import Namespace="System.Web.Optimization" %>

 4. In the Application_Start event handler in the same file, add the following code below the line
that creates the ScriptResourceDefinition:

VB.NET

BundleTable.Bundles.Add(New StyleBundle("~/StyleSheets").
 IncludeDirectory("~/Styles", "*.css"))

C#

BundleTable.Bundles.Add(new StyleBundle("~/StyleSheets").
 IncludeDirectory("~/Styles", "*.css"));

The path (~/StyleSheets) that is being passed to the StyleBundle’s constructor is the virtual
path to which the bundle is going to respond. You can make up your own path as long as it
doesn’t map to an existing folder on disk (for example, don’t use ~/Styles, as that folder exists).

 5. Open the Frontend master page and right before the closing <head> tag add the following code:

 <webopt:bundlereference runat="server" path="~/StyleSheets" />
</head>

 6. Add a new CSS file to your Styles folder and call it Test1.css. Remove the existing code and
add the following code to underline all headings at level one:

h1
{
 text-decoration: underline;
}

 7. Add another CSS file to your Styles folder and call it Test2.css. Remove the existing code and
add the following code to change the color of all headings at level one to green:

h1
{
 color: Green;
}

 8. Open up Web.config, locate the <compilation> element, and set the debug attribute to false.

 9. Save all your changes and request the homepage in your browser. Notice how the heading is now
underlined and green.

c19.indd 725 2/21/2014 1:37:55 PM

726 ❘ Chapter 19 Deploying your Website

 10. Open the HTML source for the page in the browser and locate the <link> element near the
opening <body> tag. It should look similar to this:

<link href="/StyleSheets?v=pEehzO8qi6qpAx9iydIGYPTpID2z0pdm3I0s0GMzTv41"
 rel="stylesheet"/>

The v parameter ensures that the browser always gets a fresh copy of the page if you make a
change to the underlying CSS files. The exact value for the v parameter will be different on your
machine.

 11. Request the URL set in the href attribute in your browser directly. Your browser’s address bar
should look similar to this (all on one line):

http://localhost:8631/StyleSheets?v=pEehzO8qi6qpAx9iydIGYPTpID2z0pdm3I0s0GMzTv41

The CSS code you see should look similar to this:

h1{text-decoration:underline}h1{color:green}

 12. Go back to VS and delete Test2.css from the Styles folder.

 13. Request the homepage in your browser again. The heading should still be underlined, but the
green font has now gone.

 14. Repeat steps 10 and 11 and notice how both the query string parameter and the CSS have
changed to reflect the deleted style sheet.

 15. Go back to Web.config, set the debug attribute back to true, save your changes, and reload the
page in the browser. Open the HTML source for the page once more, and notice how Test1.css
is now referenced directly, bypassing the bundling mechanism.

How It Works

When ASP.NET encounters a request for a folder followed by a file extension (for example, /Styles/
css or /Scripts/js), it takes all files with the extension in the folder, combines them into a single file,
and then optimizes the code by removing unneeded code such as comments and irrelevant whitespace.
The result of this operation is streamed back to the browser as a single file. To overcome caching issues,
you don’t point to /Styles/css from your server code directly. Instead, you add a new StyleBundle to
the Bundles collection in the Global.asax’s Application_Start event handler and specify a virtual
path that will render the style sheets. The IncludeDirectory method then scans the requested folder
(~/Styles) for the specified files (all files with a .css extension), which are bundled and minified and
streamed back to the browser whenever a request for the virtual path StyleSheets is made. ASP.NET
adds a v parameter to the path with a cache key so the browser can cache the resulting CSS file. When
the underlying files change (or when you delete or add files to the Styles folder), the cache key changes
as well, which causes the browser to fetch a fresh copy from the server.

Notice how in the final CSS from step 9 the underline property comes first. The standard logic for
the bundling mechanism is to put files in alphabetical order. Some exceptions to this rule exist. For
example, known frameworks such as jQuery that other code may depend on are included first to avoid
dependency issues.

c19.indd 726 2/21/2014 1:37:55 PM

http://localhost:8631/StyleSheets?v=pEehzO8qi6qpAx9iydIGYPTpID2z0pdm3I0s0GMzTv41

Preparing for Deployment ❘ 727

The control you added to the Master page is part of the Optimization package and provides an easy way
to render the resulting CSS file. When you installed the package, the Web.config was updated as well to
register the webopt prefix, similar to how you registered your own Wrox prefix earlier in this chapter:

<add assembly="Microsoft.AspNet.Web.Optimization.WebForms"
 namespace="Microsoft.AspNet.Web.Optimization.WebForms" tagPrefix="webopt" />

Bundling and minification is only active when debugging is turned off in the Web.config file. This
makes it easy to debug your CSS files during development, while a single, optimized file is streamed to
the browser in your production environment.

Bundling and minification are fully extensible, meaning you can fully customize the way the files are
included and minified. For more information, check out this blog post: http://tinyurl.com/c63reut.

Now that you have seen how you optimize your site for the way CSS and script references are
handled, the next step is to publish your site.

preparing for deploYment

During development of your site, you use IIS Express, which ships with Visual Studio. Although this
server is great for local development, it’s not designed to be used in a production environment. To
put your site in production, you need to deploy it to a machine that runs the full version of Internet
Information Services (IIS), Microsoft’s professional web server. If you are using a remote host that
supports Microsoft’s Web Deploy for Hosting Servers you can simply deploy your site using the
Publish command in Visual Studio. If you’re hosting your site yourself and have not installed Web
Deploy, you can publish your site to a local folder that you can deploy to your own IIS server. Later
in this chapter, you see how to install and configure IIS in case you’re hosting the site yourself.

Whether you are hosting the site yourself or using an external web host, you’re likely to have
different settings in Web.config for your development and production environments. Visual Studio
makes it easy to maintain multiple versions of your configuration files — for your development and
production environments, for example. However, in order to use that feature you need what is called
a publishing profile. The next section therefore looks at publishing first, and a later section digs into
maintaining your configuration files.

publishing Your site
To deploy your website to a production server, the deployment options shown in the following table
are available right from within VS.

deploYment option desCription

File System Enables you to create a copy of the site on the local filesystem of your
development machine or a networked machine. This option is useful if
you want to move the files manually to your production server later or if
your production server is accessible over the local network.

continues

c19.indd 727 2/21/2014 1:37:55 PM

http://tinyurl.com/c63reut

728 ❘ Chapter 19 Deploying your Website

deploYment option desCription

FTP Site Enables you to send the files that make up your web application
directly to a remote server using FTP.

Web Deploy Enables you to send the files that make up your web application to
a remote IIS server using Web Deploy. For this option to work, the
remote server needs to have Web Deploy for Hosting Servers installed.
Many providers support this option, which makes it convenient to
publish your changes. Consult your provider to see if they support this
option and for the necessary connection details.

Web Deploy Package Enables you to create a package (a .ZIP file) with all the site’s files that
an administrator can install on a server with IIS and Web Deploy for
Hosting Servers installed. For more information, see http://bit
.ly/1ckGqri.

You can select among these options when you publish your site, as you’ll see in the next exercise.

Before you publish your site, it’s a good idea to check the state of your website. You should do a
full recompile where Visual Studio compiles all the code and pages in your website. This helps you
detect any problems in your website before you deploy it to a production environment.

Deploying a site is also a good moment to do some housekeeping. To avoid slowing down the
deployment process and to keep your site as lean and clean as possible, you should delete the files
from your website that you don’t need in production.

In the next exercise you see how to publish your site to another folder on your local disk. You’ll see
how to republish the site again when the configuration file management capabilities are discussed.

trY it out Publishing Your Website

In this Try It Out, you use the Publish command with the File System option to create a copy of the
site. If your host supports it, you can also choose FTP or the Web Deploy option, in which case your
changes go live immediately. However, for this exercise, you’ll see how to create a local copy of the site,
which you’ll use in a later exercise that show you how to install and configure IIS.

 1. Close all open files in Visual Studio and then choose Build ➪ Rebuild Web Site from the main
menu. Doing so forces Visual Studio to recompile the entire site even if it already had compiled
some parts of it. Visual Studio lists any problems your site may have in the Error List. To verify
that your site is error free, open the Error List (choose View ➪ Error List from the main menu)
and make sure you don’t have any compilation errors. Fix any errors you may have in your site.

 2. When the Error List is empty, right-click the site in the Solution Explorer and choose Publish
Web Site. Make sure you right-click the site and not its parent solution. The Publish Web dialog
appears, as shown in Figure 19-3.

 (continued)

c19.indd 728 2/21/2014 1:37:55 PM

http://bit.ly/1ckGqri
http://bit.ly/1ckGqri

Preparing for Deployment ❘ 729

 3. Open the drop-down at the top of the screen and choose New Profile. Enter a name such as To
local disk and click OK.

 4. On the Connection tab choose File System. In the text box for Target Location, enter C:\
BegASPNET\Release. This folder doesn’t have to exist yet; Visual Studio will create it for you
when publishing the site. Click Next.

Note: If your host supports Web Deploy, you can choose that instead and enter the details, such
as the server and site name and your user credentials. The remaining steps in this exercise assume
you selected File System.

 5. In the Settings tab, Debug should be selected, which is what you need for this exercise. Click Next
again.

 6. On the Preview tab, click Publish to start the publishing process. After a short delay you should
see a message in the Output window that the publishing process has completed successfully. If you
had selected Web Deploy as the publish option, this dialog would have enabled you to request a
preview of the changes by comparing the files on the server with your local files.

 7. On the Solution Explorer, click the Refresh icon and then expand the App_Data folder. You
should see a file called To local disk.pubxml under the PublishProfiles subfolder.

 8. Open the folder C:\BegASPNET\Release in File Explorer. Notice how all files have been copied
to the output folder. If you look at the Web.config file in the Release folder you should see it’s
identical to the one in Visual Studio. You see later how to generate a Web.config specifically for
the deployment server.

figure 19-3

c19.indd 729 2/21/2014 1:37:55 PM

730 ❘ Chapter 19 Deploying your Website

How It Works

The File System option simply creates a copy of all files that make up your website. In this exercise, you
saw how to copy the files to the local filesystem. This is a great way to create a copy that is detached
from the development environment that can be run on a different machine. You’ll see how to make use
of these files later in this chapter. The Web Deploy and FTP options enable you to deploy your changes
to a live server directly, while Web Deploy Package lets you create a setup file that can be run by an
administrator on a server running IIS and Web Deploy for Hosting Servers.

On the Settings tab of the Publish dialog you can choose the option Precompile During Publishing
under the File Publish Options. When you click Configure for that option you can further define the
precompilation process. When you enable precompilation, all the code in the Code Behind of your
ASPX pages, controls, code files in App_Code, and so on are compiled into .NET assemblies — files with
a .dll extension, stored in the bin folder of your site. The main benefits of precompiling are source
protection (others with access to the server can’t look into your source) and an increased performance
the very first time a page is requested. Pages that are not precompiled are compiled on the fly when they
are requested the first time, which takes a little bit of time. Remember that regular visitors to your site
will never be able to see the source of your application. All they’ll be able to see is the final HTML that
gets sent to the browser. When you select Allow Precompiled Site to Be Updatable in the Advanced
Precompile Settings dialog, Visual Studio compiles all your VB.NET and C# code into .NET assemblies
and places them in a bin folder at the root of your site. It leaves the markup in ASPX and ASCX files
alone. However, with this option turned off, all the markup code is compiled into .dll files as well.
The actual files still need to be deployed to the server, but their content has been replaced with place-
holder text: “This is a marker file generated by the precompilation tool, and should not be deleted!”
When the page is requested by a browser, the ASP.NET run time finds the appropriate content in the
assemblies in the bin folder and serves its content as if it were a normal page. This latter option is espe-
cially great if you want to prevent other people with access to your server from altering your site after
it has been deployed. Because all the source and markup is compiled into .dll files, there is no way to
change it on the server anymore, other than uploading a new set of published files.

When you complete the Publish Web wizard, Visual Studio stores the settings in a Publish Profile file
(with a .pubxml extension) in the PublishProfiles folder under App_Data. This file is then used
whenever you publish to the site, so you don’t have to enter all the details again. Visual Studio uses the
publish profile also to maintain multiple versions of your Web.config file, as you’ll see next.

introducing Web.config transformations
If you take a look at the current Web.config file you’ve been working with so far, you’re likely to
have a few settings that will be different on your production server. For example, your connection
string will likely be different on the production server, and so are the settings for the mail server and
maybe even the individual e-mail addresses you added earlier in this chapter. To avoid overwriting
the changes in the production server, developers often skip deploying the Web.config to the
production server, and then manually update the settings in that file. However, this is far from
ideal because you’re likely to forget to add settings to the production server that you have added in
production. To overcome this problem, Microsoft has introduced Web.config Transformations, a
mechanism to generate a Web.config file from the main Web.config in your project, but adjusted
with settings that are specific for the production server (or other environments, such as a test server).

c19.indd 730 2/21/2014 1:37:55 PM

Preparing for Deployment ❘ 731

In order to use Web.config Transformations, you add one or more additional .config files to your
project. These files are named after the publish profiles you saw how to create earlier. When you
publish the site using the Publish Web wizard you saw earlier, Visual Studio takes this additional
configuration file and merges it with the main Web.config file so you get a custom Web.config
file for the environment that the Publish Web wizard is targeting. Inside this file you add just the
elements that are different for your production server, such as the database and e-mail settings.
Then with the special Web.config Transformation syntax you tell the publishing mechanism how
you want this data to be merged into the final .config file. To see how this works, take a look at
the following example that removes the debug attribute from the <compilation> element:

<compilation xdt:Transform="RemoveAttributes(debug)" />

Note the xdt:Transform attribute; this tells the code that carries out the transformation to remove
the debug attribute when generating the final .config file, leaving all other attributes in place. So if
your original <compilation> element in Web.config looked like this:

<compilation debug="true" targetFramework="4.5.1">

it will end up like this in the final file:

<compilation targetFramework="4.5.1">

This way, debugging is always turned off on the production server, which improves performance.

The transformation syntax supports other options as well. The following table lists the ones you’ll
most frequently use. For a complete list of all options, check out the MSDN documentation for Web.
config transformations at http://bit.ly/79XVXE.

sYntax desCription

Locator="Match(name)" Finds an element in a section based on an attribute
defined by name. Often used together with
xdt:Transform="SetAttributes" to override the
attributes on that element.

Transform="SetAttributes" Updates only the attributes defined in the element,
leaving the attributes from the source Web.config alone.

Transform="RemoveAttributes" Removes the specified attributes from the source
element, leaving the other attributes untouched. You
can define multiple attributes by separating them with a
comma.

Transform="Replace" Replaces the original element with the element that is
specified in the transform file.

Transform="Insert" Adds the element that is defined in the transform file as a
sibling to the selected element or elements.

You see how to create the transformation file in the next exercise.

c19.indd 731 2/21/2014 1:37:55 PM

http://bit.ly/79XVXE

732 ❘ Chapter 19 Deploying your Website

trY it out Using Web.config Transformations

In this exercise, you’ll add the file Web.To local disk.config to contain the data that is specific for
your production environment. You then mark it up with various xdt: attributes that define how the file
should be transformed when your site is published.

 1. Expand the App_Data\PublishProfiles folder and right-click the .pubxml file that VS created
in the previous exercise. It should be called To local disk.pubxml if you called your Publish
Profile To local disk. Choose Add Config Transform from the menu that appeared. Visual Studio
adds a file called Web.To local disk.config to the root of this website.

 2. From the root of the Solution Explorer, delete the file Web.Debug.config. Sometimes Visual
Studio picks this file for the transformation instead of your custom file. Deleting this file prevents
that from happening. You may need to expand the Web.config item first.

 3. Right-click Web.To local disk.config and choose Preview Transform. Visual Studio shows
the original file and the generated file side by side and highlights the differences, as shown in
Figure 19-4.

figure 19-4

Notice how the transformed file (on the right) is almost identical to the version on the left, except
for the absence of the debug attribute. The transformation engine will take all content from the
original file and place it in the target file, except for those elements and attributes that have explic-
itly been changed with the various xdt: settings.

 4. Close the Preview window. Back in Web.To local disk.config add the following bolded lines
of code to modify the From and To addresses for outgoing e-mail in the production server:

<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform">
 <appSettings>
 <add key="FromAddress" value=planetwrox-production@example.com
 xdt:Transform="SetAttributes" xdt:Locator="Match(key)" />

c19.indd 732 2/21/2014 1:37:56 PM

Preparing for Deployment ❘ 733

 <add key="ToAddress" value="planetwrox-production@example.com"
 xdt:Transform="SetAttributes" xdt:Locator="Match(key)" />
 </appSettings>
 ...
 <system.web>

The <add /> elements are similar to the source file, except for the inclusion of the xdt: attributes.

 5. Right-click Web.To local disk.config again and choose Preview Transformation. Because the
e-mail addresses are different, they should be highlighted as well.

 6. Next, add the following section above the <appSettings> tag to modify the connection strings.
Update the connectionString attributes with a connection string that your host expects. You
find more information about connection strings later in this chapter and in Appendix B. Also,
your host is likely to provide you with the relevant details that you need to enter here.

<connectionStrings>
 <add name="PlanetWroxConnectionString1" connectionString=" removed to save space "
 xdt:Transform="SetAttributes" xdt:Locator="Match(name)"/>
 <add name="PlanetWroxEntities" connectionString=" removed to save space "
 xdt:Transform="SetAttributes" xdt:Locator="Match(name)"/>
</connectionStrings>
<appSettings>

Note that the Locator uses name to find the correct connection string by its name, whereas the
appSettings you saw in step 4 used key.

 7. Below the <compilation> element within the <system.web> element, add the following code to
turn custom errors on in the production site:

<customErrors mode="On" xdt:Transform="SetAttributes" />

 8. Finally, below the <system.web> element, add the following element to configure the mail server:

</system.web>
<system.net>
 <mailSettings xdt:Transform="Replace">
 <smtp deliveryMethod="Network" from="Planet Wrox <planetwrox@example.com>">
 <network host="your host" />
 </smtp>
 </mailSettings>
</system.net>

 9. Update the code inside the network element to match the requirements for your production
server. Refer to Chapter 9 to learn more about the different settings, and consult your server’s
administrator for the exact details you must supply here.

 10. Request a preview of the transformation once more and verify that the file looks exactly as you
want. If your transformation file contains any errors, they’ll be listed in the Output window.

 11. When you’re done, close the .config file, as you’re done with it for now.

c19.indd 733 2/21/2014 1:37:56 PM

734 ❘ Chapter 19 Deploying your Website

 12. Right-click the site in the Solution Explorer and choose Publish Web Site. Verify that the selected
Publish Profile is To local disk and click Publish.

 13. When Visual Studio is ready with publishing, open a File Explorer and navigate to C:\
BegASPNET\Release. Open the Web.config in Notepad or Visual Studio and verify that the file
contains a combination of the original Web.config file and the configuration file associated with
the Publish Profile.

How It Works

When you request the preview, the transformation engine kicks in and generates the target file based on
the source file (Web.config) and the changes it finds in the transformation file (Web.To local disk
.config). For the connectionStrings and appSettings elements, it finds a Locator attribute that tells
it to copy over the element with a matching key (for appSettings) or name (for the connection string)
and overwrite only those attributes that are defined in the transformation file. That is why the preview
file still contained the providerName attribute, even though it wasn’t specified in the transformation file.
This is a convenient way to update attributes selectively without fully redefining the entire element.

The RemoveAttributes Transform option on the <compilation> element simply removes the debug
attribute. Without this attribute, .NET turns off debugging, which improves the performance of the site.
If you want to remove multiple attributes from an element, simply specify them as a comma-separated
list between the parentheses after RemoveAttributes.

The <mailSettings> element takes a different approach. Because the differences between the
source and target files are quite large, it’s more convenient to just replace the entire element using
xdt:Transform="Replace". Notice that you still need to define the parent elements (<system.net> in
this example) so the transformation engine knows where to add the element in the target file.

When you publish the website using the Publish Web wizard, Visual Studio tries to find a configuration
file named after the Publish Profile and then uses that file to create a custom configuration file on the
fly. This way you can easily manage your main Web.config file in Visual Studio along with the differ-
ences for the production environment. Then when it comes to deploying your site, you can be assured
that the generated Web.config file contains all settings from the main file, with the settings that are
specific to the production environment merged into the final file.

Now that you have a clean copy of your website, the next step is to move the files to your production
server. If your host supports FTP, you can use FTP to copy the files to the remote server. If you want
to host your site on a server you manage yourself, you need to configure IIS, Microsoft’s web server.
Installing and configuring IIS is the topic of the next section.

running Your site under iis

Up until now, you’ve been using IIS Express, which ships with Visual Studio, to debug and test your
application. However, because requests to this server are limited to those coming from the local
host to minimize security implications, you’ll need to use the full IIS, which comes with most major
Windows versions. To have your website run under IIS, you need to perform the following steps:

c19.indd 734 2/21/2014 1:37:56 PM

Running Your Site under IIS ❘ 735

 1. Install and configure IIS.

 2. Install and configure the .NET Framework 4.5.1.

 3. Configure security settings.

Depending on the current state of your system, some of these actions are optional. In the following
sections, you see how to carry out these steps.

Note Installing and configuring a web server can be a complex task. You have
many factors to take into account, including your operating system, its con-
figuration, the account you use to log on to your machine, the final SQL Server
you’re going to use, and more. Don’t panic if you get stuck. Instead, visit the
IIS website at www.iis.net for detailed walkthroughs, or come over to this
book’s own discussion forum at http://p2p.wrox.com, where you’ll find fellow
 programmers (including me) that will help you succeed.

The steps described in the remainder of this chapter should work on Windows
7, Windows 8 and 8.1, Windows Server 2008 R2, and Windows Server 2012 /
2012 R2. For a lot more information about IIS, including help with installing
IIS on older versions of Windows not discussed here, check out the official IIS
website at www.iis.net.

installing and Configuring the Web server
Although IIS ships with most Windows versions, it’s not installed by default, so you need to do that
first. You also need to make sure that your version of Windows supports IIS. Although the Starter
and Home Basic versions of Windows 7 and 8 ship with some parts of IIS, you can’t run ASP.NET
pages on them, so you need at least the Home Premium Edition. On the server-based versions of
Windows, IIS is fully supported. If you’re hosting your site with an external hosting company, you
can skip the following sections on installing IIS.

Note Even though IIS is supported on consumer versions of Windows such
as Windows 7 and 8, it doesn’t mean these operating systems are the best
choices for hosting your website. You typically use these versions of Windows
for local development and testing, whereas the server versions of Windows
(such as Windows Server 2008 R2 and Windows Server 2012 / 2012 R2) are
used for hosting production websites.

To install and configure IIS on your Windows machine, you need to be logged on as an
administrator. If the account you use to log on to your machine does not have administrative
privileges, you need to ask your administrator to install and configure IIS for you.

In addition to installing IIS, you also see how to create and configure the website in IIS. Because of the
way security works under Windows, your site probably won’t work immediately after you configure

c19.indd 735 2/21/2014 1:37:56 PM

http://www.iis.net
http://p2p.wrox.com
http://www.iis.net

736 ❘ Chapter 19 Deploying your Website

IIS unless you change some of the security settings under Windows. You see how to do this in the
section “Understanding Security in IIS” and the Try It Out entitled “Configuring the Filesystem.”

You’ll be able to test out your IIS settings more easily if you already have SQL Server 2012 Express
installed. This is the case if you followed along with the exercises in Chapter 12. If you haven’t
installed SQL Server 2012 Express yet, refer to the section “Installing SQL Server 2012 Express” in
Chapter 12 for installation instructions. If you have one of the commercial versions of SQL Server,
or have SQL Server on a remote machine, pay special attention to the section “Moving Data to a
Remote Server” in this chapter and to Appendix B.

Making Sure IIS Is Installed
The easiest way to install IIS is through the Web Platform Installer (WPI). WPI is installed with
Visual Studio, so if you’re carrying out these steps on your development machine, you already have
the WPI. If you’re following these steps on another machine (running Windows Server, for example),
you need to download and install WPI first. You can download WPI from www.microsoft.com/
web/downloads, where you should see a Download or Download It Now button. If this link ever
changes, search the web for “Web Platform Installer download” to find one of the other Microsoft
locations that lets you download and install WPI.

Once WPI is installed, it may start automatically. When that happens, close it to clear out any
programs that may have been selected to be installed automatically. Start the WPI from the
Windows Start menu or Start screen. When it’s done loading, switch to the Products tab, at the
top of the screen enter IIS recommended, and press Enter. WPI should list the IIS Recommended
Configuration, as shown in Figure 19-5.

figure 19-5

Click Add to add this item to the list of items to be installed. If the Add button is disabled, parts of
IIS are already installed.

Next, use the search box again and search for IIS: ASP.NET. Depending on your version of
Windows, this should bring up an item called IIS: ASP.NET or IIS: ASP.NET 4.5 (as well as other,
unrelated items). The IIS: ASP.NET or IIS: ASP.NET 4.5 item is needed to run ASP.NET under IIS,

c19.indd 736 2/21/2014 1:37:56 PM

http://www.microsoft.com/web/downloads
http://www.microsoft.com/web/downloads

and is a critical component to run your site successfully. Select this item and click Add. If you see
both items choose IIS: ASP.NET 4.5. Finally, click the Install button at the bottom of the screen
and then accept the license terms. After a while, you should get a confirmation that IIS and its
components were installed successfully.

For detailed instructions on manually setting up IIS, check out these articles on the official IIS
website or search www.iis.net:

http://bit.ly/IISOnServer2008

http://bit.ly/IISOnServer2012

When IIS is installed successfully, you need to make sure you have the Microsoft .NET Framework
version 4.5.1 installed.

installing and Configuring asp.net
If you installed Visual Studio 2013 (any edition) on your target machine you already have the .NET
Framework 4.5.1 installed. Otherwise, you need to download the redistributable package from the
Microsoft site at http://msdn.microsoft.com/en-us/netframework. Follow the Download or
Install link or use the search option and search for “download .NET Framework 4.5.1.” Make sure
you download the full version of the .NET 4.5.1 Framework and not an earlier version or the Client
Profile package. After you have downloaded the .NET Framework, run the installer and follow the
on-screen instructions. If you get a message stating that the framework has already been installed
you can close the installer.

If you already had the .NET Framework 4.5.1 on your machine and installed IIS afterward, you need
to tell IIS about the existence of the framework. Normally, this is done during installation of the
.NET Framework, but if you installed IIS later, you need to do this manually. You only need to do this
on Windows 7 and Server 2008 R2. For Windows 8 and Server 2012, ASP.NET 4.5.1 is registered
correctly when you install IIS through the WPI. To register ASP.NET in IIS, follow these steps:

 1. Open a command prompt in Administrative mode. To do this, click the Start button, type
cmd in the search box, and press Ctrl+Shift+Enter to start the command prompt with
elevated permissions.

 2. Navigate to the .NET Framework version 4 folder by entering the following command and
pressing Enter:

cd \Windows\Microsoft.NET\Framework\v4.0.30319

Because .NET 4.5.1 is an in-place replacement for .NET 4, this folder uses the 4.0 version
number. Note that the actual version number following v4.0 may be slightly different on
your machine if newer versions of the .NET Framework have been released by the time
you read this book. Also, if you are using a 64-bit version of Windows, you should use the
Framework64 folder. Use Windows Explorer to find out the correct folder before you enter it
at the command prompt.

 3. Type aspnet_regiis -i and press Enter again.

After a while, you should get a message that ASP.NET was registered with IIS successfully.

Running Your Site under IIS ❘ 737

c19.indd 737 2/21/2014 1:37:56 PM

http://www.iis.net
http://bit.ly/IISOnServer2008
http://bit.ly/IISOnServer2012
http://msdn.microsoft.com/en-us/netframework

738 ❘ Chapter 19 Deploying your Website

Now that IIS and the .NET Framework have been installed and configured correctly, the next step is
to configure your website under IIS. You see how to do this in the next Try It Out exercise. After the
Try It Out, you learn more about configuring security permissions for your system.

trY it out Configuring Your Site

In this exercise, you see how to configure the standard “Default Web Site” that ships with IIS. Although
it’s possible to create more than one site under IIS on Windows 7, Windows 8 / 8.1, Windows Server
2008 R2, and Windows Server 2012 / 2012 R2, this option is not discussed here. Contact your system
administrator or read the documentation that comes with IIS to learn more about creating multiple
websites under IIS. Most of the steps in Windows 8 are identical to those in Windows 7, Windows
Server 2008 R2, and Windows Server 2012. However, the screenshots you see in the following exercise
were taken in Windows 8.1 and are slightly different on the other operating systems.

If you’re doing this exercise on a machine other than the one you used to build the Planet Wrox site, be
sure to copy the BegASPNET folder to the root of the C drive of the target machine. Also make sure this
machine has access to SQL Server 2012, installed either locally or on another remote machine.

 1. Open the Internet Information Services (IIS) Manager. You find this item in the Administrative
Tools section of the Control Panel, which you can access through its System and Security
category. Alternatively, click the Start button or Start screen, type inetmgr, and press Enter. If
you get a question about learning more about WPI, click No (you could click Yes if you wanted
to; if you do, you’re taken to the main WPI section of the Microsoft website).

 2. Expand the tree on the left until you see Application Pools and the Default Web Site, as shown in
Figure 19-6.

figure 19-6

c19.indd 738 2/21/2014 1:37:57 PM

 3. Click the Application Pools item and confirm you have an entry called .NET v4.5 that uses v4.0
as the .NET Framework version and that has its Managed Pipeline Mode set to Integrated. If you
don’t have this item, click Add Application Pool in the Actions panel on the right and create a new
application pool called .NET v4.5 using the .NET Framework v4.0.30319 with Integrated as the
Managed Pipeline mode.

Note Although the website you built runs on .NET 4.5.1, you still need to
choose .NET v4.0 as the framework version for the application pool. The
 reason for this is that ASP.NET 4.5.1 uses the .NET 4.0 run time, which is what
you’re configuring here.

 4. Select the.NET v4.5 application pool (whether
it was already there or not) and click Advanced
Settings in the Actions panel on the right. Locate the
property called Identity and ensure that it is set to
ApplicationPoolIdentity. If it’s not, click the button with
the ellipsis, choose the correct item from the Built-in
Account drop-down list, and click OK. You use this
identity later when configuring security. In the same
dialog box, make sure the Load User Profile option is set
to True. Your final screen should look like Figure 19-7.

Click OK to close the Advanced Settings dialog box.

 5. Click the Default Web Site item to select it and click
Advanced Settings in the Actions panel on the right.

 6. In the Advanced Settings dialog box, click the Physical
Path property, click the ellipsis to open up a folder
browser, select the folder C:\BegASPNET\Release, and
click OK to confirm the path.

 7. In the same dialog box, click Application Pool, then
click the ellipsis, choose the application pool from step
3 labeled .NET v4.5, and click OK. Your Advanced
Settings dialog now looks like Figure 19-8.

Click OK again to close the Advanced Settings
dialog box.

 8. Next you need to make sure that IIS is configured to use
a sensible default document, the document that is served
when you request a folder name or the root of the site.
The Planet Wrox site uses Default.aspx, which is the
most common default document name for ASP.NET
websites. To configure this, make sure Default Web Site
is the selected option in the tree on the left. Then double-
click the Default Document option in the IIS Features list
(visible in Figure 19-6). Make sure that Default.aspx is

figure 19-7

figure 19-8

Running Your Site under IIS ❘ 739

c19.indd 739 2/21/2014 1:37:57 PM

740 ❘ Chapter 19 Deploying your Website

present and at the beginning of the list. If the item is not there, add it manually. To do this, click
the Add link in the Actions panel to add it. Then use the Move Up links to move it to the top of
the list. Click Yes when you see the warning about inheriting changes. Your dialog box should
look similar to Figure 19-9.

figure 19-9

Note The default document is stored in the website’s Web.config file. That
means you need to copy and paste the settings from the current Web.config
file in the Release folder to the development Web.config file as well, to avoid
losing this information the next time you publish.

 9. You can now close the Internet Information Services Manager, because the site is configured
correctly as far as IIS is concerned. However, it still won’t run correctly because you need to
configure security permissions on the filesystem, as you see later.

How It Works

Each new IIS installation has a Default Web Site, the site that listens to http://localhost by default.
In this exercise, you configured this default website to run Planet Wrox, but you can also create a whole
new site that can run side by side with other websites. You pointed the root of the site to the Release
folder that contains your website. With that mapping set up, IIS is able to see what files to serve when
you request a URL like http://localhost. It means that a URL like http://localhost/Login
.aspx is mapped to the physical file at C:\BegASPNET\Release\Login.aspx. You also assigned the
website an application pool — an IIS mechanism to isolate and configure one or more IIS websites in
one fell swoop. Two websites running in different application pools do not affect each other in case

c19.indd 740 2/21/2014 1:37:57 PM

http://localhost
http://localhost
http://localhost/Login

of a problem such as a crash. In this exercise you selected an application pool that uses the .NET 4.5
Framework and that uses the Integrated Pipeline mode. In this mode, IIS and ASP.NET are tightly inte-
grated, which means you can use ASP.NET features (such as Forms Authentication, which you saw in
Chapter 16) in standard IIS functionality such as serving static files. For more information about this
mode, check out the official IIS website via http://bit.ly/IntegratedPipelineMode.

At the end of the exercise, you configured a default document, the file that is served when you request
a URL without an explicit filename, like http://localhost/ or http://localhost/Reviews/. When
you configure Default.aspx as the default document, IIS tries to find and serve a file by that name.

The final thing you need to do to make sure your site runs on your local IIS installation is configure
the security settings. This is discussed in the following two sections.

understanding security in iis
Because of the seamless integration with IIS Express, you may not realize what happens under the
hood, and what security settings are in effect when you browse pages in your site. To use resources
in your site, such as ASPX files, Code Behind files, the database in the App_Data folder, and the
images in your site, your web server needs permissions from Windows to access those resources.
This means that you need to configure Windows and grant access to those resources to the
account that the web server uses. But what exactly is that account? The specific account that needs
permission depends on a number of factors, including the version of Windows, whether you run
your site under IIS or IIS Express, and on a number of settings within IIS.

In most cases, however, you have only two scenarios to consider: using IIS Express or the full
version of IIS as your web server.

In the former case, the account that IIS Express uses is the account you use to log on to your
Windows machine. This account is usually something like DomainName\UserName or MachineName\
UserName. While logged in with this account on Windows, you start up Visual Studio, which in
turn starts up IIS Express. This means that the entire web server runs with your credentials. Because
it’s likely that you’re an administrator or a power user on your local Windows machine and have
permissions to access all files that make up your site, things probably worked fine so far without any
changes to the security settings.

In the latter case, where IIS is used, things are quite different. By default, an ASP.NET site
under IIS runs with a special account created when you installed IIS. This account is called
ApplicationPoolIdentity.

You won’t find the ApplicationPoolIdentity user account on your system directly, because it depends
on the name of the configured application pool.

Because the application pool you saw earlier runs in Integrated Pipeline mode, you only need
to configure a single user account. If you are running in Classic mode (which isn’t necessary for
the Planet Wrox website) you also need to configure another account called IUSR. This account
is used by IIS to serve non-ASP.NET content such as HTML files and images. Consult the IIS
documentation for more information about Classic mode and the IUSR account.

Running Your Site under IIS ❘ 741

c19.indd 741 2/21/2014 1:37:57 PM

http://bit.ly/IntegratedPipelineMode
http://localhost/
http://localhost/Reviews/

742 ❘ Chapter 19 Deploying your Website

After you have determined the account that you need to configure, the final step is to configure the
filesystem.

ntfs settings for planet Wrox
Regardless of the account you are using, you need to make changes to the Windows filesystem so the
web server is allowed to access your resources.

folder name permissions explanation

Release (located at
C:\BegASPNET\)

List folder
contents

Read

The web server account needs to be able to
read all the files and folders that make up the
website. Child folders, like Reviews, need to be
set up to inherit these settings.

App_Data

GigPics

(both located under
C:\BegASPNET\Release)

Modify The web server account needs to be able to
read from and write to the Microsoft SQL Server
databases in the App_Data folder. It also needs
to be able to save the uploaded images in the
GigPics folder.

C:\TempMail Modify If you’re dropping your e-mails locally, you need
to configure the TempMail folder as well.

If you came here from Chapter 12 to learn how to configure NTFS for the App_Data folder, you
can ignore the Release folder that was created earlier in this chapter. Instead, grant Modify
permissions for your own account to the App_Data folder of your site at C:\BegASPNET\Site as per
the instructions in the next exercise. You may need to do the same for the GigPics folder, which
you could create now at the root of your site, or return to this section after you created the folder in
Chapter 14.

In the following exercise, you learn how to configure the security settings for these folders.

trY it out Configuring the Filesystem

In this Try It Out, you see how to configure the filesystem for the Planet Wrox website. The exercise
shows you screenshots from Windows 8.1, but the other flavors of Windows have similar screens.
Search Windows help for “security NTFS” or contact your administrator if you’re having problems car-
rying out the following steps.

 1. Start by opening a File Explorer (called Windows Explorer on versions of Windows before
Windows 8 and Server 2012) and then locate your C drive.

 2. Browse to C:\BegASPNET, visible in Figure 19-10.

 3. Right-click the Release folder, choose Properties, and switch to the Security tab
(see Figure 19-11).

c19.indd 742 2/21/2014 1:37:57 PM

 4. The next step is to add the web server account. Click the
Edit button visible in Figure 19-11, and then click the
Add button. Type IIS AppPool\ followed by the name
of the application pool. If you followed along with the
previous exercises, the application pool is called .NET
v4.5, which means the account name is IIS AppPool\
.NET v4.5. Click OK to add the account.

With the account selected in the Group or User Names
list, ensure that only List Folder Contents and Read
are selected. Your dialog box should end up similar to
Figure 19-12.

 5. Close the dialog box so you return to the Release
Properties dialog box shown in Figure 19-11.

 6. Click the Advanced button to open the Advanced Security
Settings dialog box again. For Windows 7 and Server
2008 R2, click the Change Permissions button and check
the Replace All Child Object Permissions check box. For Windows 8 and Server 2012, you find this
check box on the Advanced Security Settings dialog box directly. This forces Windows to apply the
same security settings to all subfiles and subfolders, replacing all existing settings. Click OK and
then confirm the changes that will be made. Finally, close all remaining open dialog boxes.

 7. Back in File Explorer / Windows Explorer, right-click App_Data from the Release folder, open
its Properties dialog box and then its Security tab, and edit the permissions for the web server
account you added in step 4 by adding Modify permissions (this in turn causes some of the other
permissions to be selected as well). You need to click the Edit button first to bring the Properties
dialog box into editable mode. Figure 19-13 shows the completed dialog.

Click OK to close the dialog box.

figure 19-10 figure 19-11

figure 19-12

Running Your Site under IIS ❘ 743

c19.indd 743 2/21/2014 1:37:58 PM

744 ❘ Chapter 19 Deploying your Website

 8. Repeat this step for the GigPics folder and optionally
for the TempMail folder.

 9. If you are using IIS on a machine that has SQL Server
Express, the final thing you need to do is modify
your connection strings. If you don’t have SQL Server
Express installed, refer to the start of Chapter 12 that
shows you how to install SQL Server Express Edition
as well as SQL Server Management Studio Express
Edition. If you’re using a different database server, or
if you only have SQL Server Local DB Edition installed
and don’t want to install SQL Server Express, look at
the section “Moving Data to a Remote Server” later in
this chapter and look at Appendix B, which explains
how to configure a different SQL Server.

To modify the connection string, open up Web.config
from the Release folder and replace both occurrences
of (LocalDB)\v11.0 in the connection strings with
.\SqlExpress. This targets a named instance of SQL
Server called SqlExpress on the local machine, identified by the dot (.). In addition, add User
Instance=True to both connection strings to run SQL Server under the same user account as the
website. Your connection strings should end up like this:

 <connectionStrings>
 <add name="PlanetWroxConnectionString1" connectionString="Data
 Source=.\SqlExpress;AttachDbFilename=|DataDirectory|\PlanetWrox.mdf;
 Integrated Security=True;User Instance=True"
 providerName="System.Data.SqlClient" />
 <add name="PlanetWroxEntities" connectionString="metadata=
 res://*/App_Code.PlanetWrox.csdl|res://*/App_Code.PlanetWrox.ssdl
 |res://*/App_Code.PlanetWrox.msl;provider=System.Data.SqlClient;
 provider connection string="data source=.\SqlExpress;
 attachdbfilename=|DataDirectory|\PlanetWrox.mdf;
 integrated security=True;User Instance=True;
 MultipleActiveResultSets=True;App=EntityFramework""
 providerName="System.Data.EntityClient" />
 </connectionStrings>

You should also add this code to the transformation file in VS so the connection strings will be
updated correctly the next time you publish the site.

 10. To check if the site works, open a browser and go to http://localhost. You should see the
Planet Wrox website appear. To verify that everything is in order, browse through the site
by requesting pages from the main menu, filling in the contact form, creating a new album,
uploading pictures, and so on. If you get a 404 message for most of the pages in the site, open
Web.config from the Release folder and add the following section as a direct child node of
<configuration>:

figure 19-13

c19.indd 744 2/21/2014 1:37:58 PM

http://localhost

<system.webServer>
 <modules runAllManagedModulesForAllRequests="true"></modules>
</system.webServer>

This maps requests without an extension (which includes all pages in the side due to the
FriendlyUrls package) to .NET, so they are handled correctly. You should add this code to your
transformation file in VS as well so the next time you publish it gets added to your .config file
automatically.

If you get other errors, refer to the section “Troubleshooting Web Server Errors.”

Note If you still can’t make it work, try configuring the filesystem for the
Everyone group. Although, from a security point of view, this is absolutely not
the recommended group to use in a production environment, it may help you
in finding out whether it’s a security issue. If it works for the Everyone account,
it’s indeed security-related, so you need to make sure you configured the cor-
rect accounts. Don’t forget to remove the Everyone account later. If you keep
having problems, refer to the next section, where you will find a number of
problems you may run into while deploying and their solutions.

How It Works

On a standard Windows system, all files and folders are protected using Windows NTFS. To ensure
proper operation of your website, you need to grant the account used by the web server the neces-
sary permissions to the files and folders of your website. For most files and folders, Read permission is
enough. However, for a few folders you need to change the permissions. Both App_Data and GigPics
are written to at run time so you need to grant Modify permissions to these folders. In addition, you
need to configure C:\TempMail if your site drops e-mails there locally.

In order for your site to connect to a database, you changed both connection strings in Web.config to
target an instance of SQL Server called SqlExpress. The Local DB Edition you used before is great for
local development, but not for running your production sites. Instead, you can use SQL Server Express
Edition or one of the commercial versions of SQL Server. Appendix B digs much deeper into configur-
ing your site to work with versions of SQL Server other than Express.

troubleshooting Web server errors
When you try to access your site in a web browser, you may run into a number of problems. The
first thing you need to do to get helpful error messages is to change the <customErrors> section
in Web.config from On to Off or RemoteOnly. This makes it easier to see what’s going on.
Additionally, you may want to check out the Windows Event Viewer (type eventvwr from the Start
menu or Start screen) for more details about errors and hints about how to solve them.

Running Your Site under IIS ❘ 745

c19.indd 745 2/21/2014 1:37:58 PM

746 ❘ Chapter 19 Deploying your Website

This section lists the most common problems and provides a fix for them. You should realize a large
number of possible reasons exist for the errors you may get, so it’s impossible to cover them all here.
If you run into a problem you can’t solve, turn to this book’s forum at the Wrox community site
at http://p2p.wrox.com. You’ll find many helping hands (including mine) that understand your
problem and can help you find a solution for it.

➤➤ It is an error to use a section registered as allowDefinition=‘MachineToApplication’ beyond
application level — You get this error when your website is not at the root of the web
server, or you haven’t configured the folder as a separate application. Given the current
configuration for the Planet Wrox site, you get this error when, for example, you map your
site in IIS to C:\BegASPNET and then browse to http://localhost/Release. To fix this
error, make sure that the root of your IIS website points to the folder that contains your
main Web.config file; C:\BegASPNET\Release, in this case. You get the same error when
you open an incorrect folder in VS; for example, when you open C:\BegASPNET and then
browse to http://localhost:12345/Site. Instead, open C:\BegASPNET\Site as the
website in VS. You may also run into this error if a subfolder in your site contains a
Web.config file that tries to override settings that are meant to be defined at the root of the
site only; for example, if you have a <membership /> element in the Web.config file of
the Management folder.

➤➤ HTTP Error 401.3–Unauthorized — You get this error when the account used by the
web server does not have permission to read the files on disk. To fix this problem, refer to
the Try It Out entitled “Configuring the Filesystem” earlier in this chapter and configure the
correct permissions.

➤➤ Failed to update database “C:\BEGASPNET\RELEASE\APP_DATA\ASPNETDB.MDF”
because the database is read-only — You get this error when the database files have been
marked as read-only, or if the account used by the web server is not allowed to write to
the database files. In the former case, open the file’s Properties in File Explorer / Windows
Explorer and verify that the Read Only check box is cleared. In the latter case, ensure that
the account used by ASP.NET has at least Modify permissions on the App_Data folder.

➤➤ HTTP Error 403.14–Forbidden — Although this error seems to suggest a problem with
NTFS permissions at first, it’s often caused by an incorrect or missing default document. If
you get this error, ensure that the site or folder you are accessing contains a document called
Default.aspx and that you configured that document name as a default document in IIS.

➤➤ HTTP Error 404.0–Not Found — You get this error when you try to request a file or folder
that doesn’t exist, such as http://localhost/DoesNotExist or http://localhost/
DoesNotExist.gif.

➤➤ An error has occurred while establishing a connection to the server. When connecting to
SQL Server 2008, this failure may be caused by the fact that under the default settings
SQL Server does not allow remote connections. (provider: Named Pipes Provider, error:
40–Could not open a connection to SQL Server). Alternatively, you may get the error: A
network-related or instance-specific error occurred while establishing a connection to SQL
Server. The server was not found or was not accessible. Verify that the instance name is

c19.indd 746 2/21/2014 1:37:58 PM

http://p2p.wrox.com
http://localhost/Release
http://localhost:12345/Site
http://localhost/DoesNotExist
http://localhost/DoesNotExist.gif
http://localhost/DoesNotExist.gif

Moving Data to a Remote Server ❘ 747

correct and that SQL Server is configured to allow remote connections. (provider: SQL
Network Interfaces, error: 26 - Error Locating Server/Instance Specified) — You can get
these errors for a number of reasons. Although the error message here mentions SQL Server
2008 explicitly, you can also get this error for other versions of SQL Server. Usually, this
error is caused by problems reaching the configured database server. You can get it when
you misspell the server’s name in a connection string, the server is down, or the server can
only be reached from the local machine and is not accessible over the network. To make
sure that SQL Server is running correctly, open the Services section of the Administrative
Tools (that you find in the Control Panel). Then look under SQL Server and verify that SQL
Server is started. Appendix B explains SQL Server security in more detail and provides
solutions to these problems.

➤➤ Failed to generate a user instance of SQL Server due to failure in retrieving the user’s local
application data path. Please make sure the user has a local user profile on the computer.
The connection will be closed — You can get this error when you forget to enable the
“Load User Profile” option discussed in the Try It Out titled “Configuring your Site.”

➤➤ HTTP Error 500.21 - Internal Server Error Handler “PageHandlerFactory-Integrated”
has a bad module “ManagedPipelineHandler” in its module list Detailed Error
Information — You get this error when ASP.NET is not registered with IIS. Refer to the
section labeled “Installing and Configuring ASP.NET” to learn how to fix this issue.

➤➤ Runtime Error Description: An application error occurred on the server. The current
custom error settings for this application prevent the details of the application error
from being viewed. Details: To enable the details of this specific error message to be
viewable on the local server machine, please create a <customErrors> tag within a “web.
config” configuration file located in the root directory of the current web application.
This <customErrors> tag should then have its “mode” attribute set to “RemoteOnly”. To
enable the details to be viewable on remote machines, please set “mode” to “Off” — You
may get this error when a runtime error occurs and the Web.config does not contain a
<customErrors> element. However, you may also get the same error when the Web.config
file itself contains an error; for example, if you forget to close an element. To fix this latter
category of errors, open the file in Visual Studio and it provides you with more details about
the error.

If you are deploying to a machine that also has SQL Server Express Edition installed, you are
done with the deployment process now. However, if you’re dealing with a different SQL Server, the
only thing that’s left to do is to make sure your new site has the required data. You see how to do
this next.

moving data to a remote server

Releasing a site to IIS on your local machine is pretty straightforward. You simply copy the data to
a new location, configure IIS, change a few security settings, and that’s it. Because the site continues
to use your local copy of SQL Server, it will run fine.

c19.indd 747 2/21/2014 1:37:58 PM

748 ❘ Chapter 19 Deploying your Website

However, in the real world when you need to move your site to an external server or host, things are
not so easy. Although copying the files that make up your site is usually extremely simple using an
FTP program, copying data from your SQL Server database to your host is quite often a bit trickier.
This is because most web hosts don’t support the free Express or LocalDB Editions, so you can’t
just simply copy the .mdf files to the App_Data folder at your remote host. Instead, these hosts often
offer the full versions of SQL Server, which you can access either with a web-based management
tool or with tools such as SQL Server Management Studio.

Getting your database data from your local machine to your remote host is typically a two-step
process:

 1. Create a .sql script from your local SQL Server database.

 2. Send this script to your host and execute it there.

In the next section, you see how to export your database to a .sql file. I won’t show you how to run
that file at your host to re-create the database because this is different from host to host. Instead, I
will give you some general pointers so you know what to look for with your host.

exporting Your data to a file
To make it easy to transfer data from your local SQL Server database into a SQL Server database of
your web host, SQL Server Management Studio comes with a tool to export your database structure
and data to a file. This file contains all the information required to re-create your database and its
data at a remote server.

In the following exercise, you see how to use SSMS to export your database to a file.

trY it out Exporting the Planet Wrox Database

This exercise assumes you’ve already downloaded and
installed SQL Server Management Studio Express
Edition. If you haven’t already done this, refer to the
start of Chapter 12 for more details.

 1. Start SQL Server Management Studio from the
Start menu or Start screen. You should see a screen
similar to Figure 19-14.

 2. Enter (localdb)\v11.0 as the server name, and
click Connect. Your PlanetWrox database should
already be listed under the Databases node, but
if it’s not, right-click the Databases node, click
Attach, and then browse for the PlanetWrox.mdf
file in your C:\BegASPNET\Site\App_Data folder.

 3. Right-click the PlanetWrox database and choose Tasks ➪ Generate Scripts. If you get a welcome
screen, click Next. Ensure that Script Entire Database and All Database Objects is selected, and
then click Next. The dialog box shown in Figure 19-15 appears.

figure 19-14

c19.indd 748 2/21/2014 1:37:59 PM

Moving Data to a Remote Server ❘ 749

 4. In this screen, you can choose between two Output Type options. The first enables you to create
a text file with the necessary SQL statements, and the second option enables you to talk to your
shared hosting provider over the Internet directly. If your host supports this, it can give you the
necessary information to configure a provider here. For now, choose Save Scripts to a Specific
Location. Then click the Advanced button and change the setting for Types of Data to Script to
Schema and Data. The default value of Schema Only would only script your database structure,
but not the actual records your tables contain. Set Script Use Database to False. With this setting
set to True, code will be included to create a database at the App_Data folder, which likely won’t
work on a machine other than your own. Click OK to close the Advanced Scripting Options
dialog box.

 5. Click Next twice and the wizard generates the SQL script for you in your Documents folder (as
specified in the File Name box shown in Figure 19-15). Open the file in Notepad and look at the
SQL statements it contains. Although most of it probably looks like gibberish to you, it can be
used as is to re-create the database structure and data on a compatible SQL Server database.

figure 19-15

c19.indd 749 2/21/2014 1:37:59 PM

750 ❘ Chapter 19 Deploying your Website

How It Works

The contents of a database can be separated into two categories: the structure of the database and the
actual data. When the scripting tool runs, it investigates the structure of your database first and creates
SQL CREATE statements for all the items it finds in your database, such as the tables you created in ear-
lier chapters. It then creates INSERT statements that re-create all records such as Reviews, Genres, and
even users in the target database. By clearing the Script All Objects check box at the beginning of the
wizard, you can selectively choose parts of your database, enabling you to script only a few tables, for
example.

At the end, the scripting tool assembles all the SQL statements and saves them to a single .sql file. This
file is now ready to be run at your host to re-create the database.

recreating the database
Although every host has its own rules and procedures when it comes to providing access to its SQL
Server, they can be grouped in three categories.

Note For detailed information about hosting your site with an external host-
ing party, check out the tutorials in the hosting section of the official ASP.NET
site at www.asp.net/learn/hosting.

First, some hosts don’t give you remote access to their database and require you to submit a .sql
file so they can execute it for you. In this case, you don’t have to do anything other than send the file
and wait for the host to create your database.

The second category contains the hosts that allow you to execute SQL statements through a web
interface. You typically log in to your online control panel and then execute the SQL statements
created by the scripting tool, either by uploading the file or by pasting its contents in a text area in
a web page. Regardless of the method, you then end up with a database that you can access from
your application. How this works exactly is different with each host, so consult the hosting service’s
help or support system for more information. Some known issues exist with web-based database
management tools from some providers, resulting in errors when you try to run the generated SQL
file. Although the file itself is technically valid, the tool may still run into issues with it. If that’s the
case, contact your host for help on resolving the issue. If you run into issues, one of the things you
may want to try is to save your SQL file in a different format. The default format is Unicode, which
not all providers understand. To change the format, choose ANSI Text for the Save As option when
exporting your data, as shown in Figure 19-15.

The final category contains hosts that allow you to connect to their SQL Server over the Internet.
This enables you to use tools like SQL Server Management Studio to connect to the database at your
host right from your desktop and execute the SQL scripts remotely. Refer to the first exercise in the
section “Using SQL to Work with Database Data” of Chapter 12 to learn more about executing
SQL files against a database using SSMS.

c19.indd 750 2/21/2014 1:37:59 PM

http://www.asp.net/learn/hosting

The Deployment Checklist ❘ 751

After your database is re-created at your target server, you need to reconfigure your ASP.NET
application to use the new database by changing the connection strings in your website. For
this to work, you need to modify two connection strings: the PlanetWroxConnectionString1
and the PlanetWroxEntities you created in an earlier chapter. How your connection
string must look depends on the database you are using and its configuration. Your hosting
company or database administrator typically provides this information. For many examples
of proper connection strings, check out www.connectionstrings.com. The following snippet
provides a simple example that reconfigures your application to use a database server called
DatabaseServer. This example shows a connection string for a SQL Server that requires you to
log in with a username and password (in your configuration file, each connection string should
be on a single line):

<connectionStrings>
 <add name="PlanetWroxConnectionString1" connectionString="Data
 Source=DatabaseServer;Initial Catalog=PlanetWrox;User Id=YourUserName;
 Password=YourPassword;" providerName="System.Data.SqlClient"/>
 <add name="PlanetWroxEntities" connectionString="metadata=res://*
 /App _ Code.PlanetWrox.csdl|res://*/App _ Code.PlanetWrox.ssdl|res://*
 /App _ Code.PlanetWrox.msl;provider=System.Data.SqlClient;
 provider connection string="Data Source=DatabaseServer;
 Initial Catalog=PlanetWrox;User Id=YourUserName;Password=YourPassword;
 MultipleActiveResultSets=True""
 providerName="System.Data.EntityClient"/>
</connectionStrings>

This points both connection strings for the PlanetWrox database to a different SQL Server.
Consult Appendix B for more information about configuring your ASP.NET application and SQL
Server to operate with each other. Don’t forget to add the same code to your deployment .config
file in Visual Studio so the next time you publish the site the target Web.config has the correct
settings.

At this stage, you’re pretty much done configuring your newly created website. Congratulations!
However, before you relax and start enjoying your new website, read the following checklist that
helps you secure your site and improve its performance.

the deploYment CheCklist

Instead of ending this chapter with general tips about deployment, this section gives you a practical
list of things to check when you’re ready to put your website in production:

➤➤ Make sure you don’t have debugging enabled in the Web.config file. This causes
unnecessary overhead and decreases performance of your website, because code executes
slower and important files cannot be cached by the browser. To ensure debugging is
disabled, open the Web.config file you are using for your production environment, and
verify that debug is set to false:

<compilation debug="false">

c19.indd 751 2/21/2014 1:37:59 PM

http://www.connectionstrings.com

752 ❘ Chapter 19 Deploying your Website

If you use the Web.config transformations as described in the book, your target Web.config
should have this setting turned off already.

➤➤ Make sure you have turned on custom errors by setting the mode attribute of the
customErrors element in Web.config to either On or RemoteOnly. In the first case,
everyone sees your custom error pages, and in the second case, only users local to the web
server can see the error details. Never leave the mode set to Off, because doing so can
lead to information disclosure. The following snippet shows a safe configuration of the
customErrors element:

<customErrors mode="On" defaultRedirect="~/Errors/OtherErrors.aspx">
 Optional <error /> elements go here
</customErrors>

➤➤ Disable tracing, or at least limit the trace information to users coming from the local
machine. The following <trace /> element from Web.config blocks tracing for users
coming from machines other than the web server itself. Additionally, it stops the trace
information from appearing in the page:

<trace mostRecent="true" enabled="true" requestLimit="1000"
 pageOutput="false" localOnly="true"/>

➤➤ Consider setting the retail attribute of the deployment element in machine.config to
true:

<configuration>
 <system.web>
 <deployment retail="true"/>
 </system.web>
</configuration>

This section is used to indicate that the server hosts production-ready versions of your sites,
and for all sites on the server, changes all three previous items to a secure setting: Debugging
and tracing are disabled, and error messages are accessible only to local users.

To make this change, you need to be logged in as an administrator on your system. Also, be
sure to make a backup copy of the file first. Because it serves as the root configuration file
for all your ASP.NET websites, you don’t want to mess up this file.

➤➤ Scan your site for important files that may contain sensitive information (like Word or text
documents) and either exclude them from the release version or consider moving them to the
App_Data folder. Files in that folder cannot be accessed directly. However, your own code
can still access the files, as you saw in Chapter 9.

➤➤ Make sure you turn on error logging. With the error logging code you created in the
previous chapter, you are notified whenever an error occurs, enabling you to proactively
keep an eye on your server, fixing errors before they get a chance to happen again.

➤➤ If you are using themes in your site, make sure you remove the styleSheetTheme attribute
from the <pages> element in Web.config. The Planet Wrox website uses themes, but you

c19.indd 752 2/21/2014 1:37:59 PM

What’s Next ❘ 753

added the styleSheetTheme attribute to enable design-time support in Visual Studio. On
your production server, all you need is this:

<pages theme="Monochrome">
 ...
</pages>

This way, the page won’t include the same style sheet twice.

What’s next

Now that you have finished your first ASP.NET website, I am sure you are looking forward to
creating your next site. The Planet Wrox site can serve as a basis for new sites you will build. You
probably won’t use any of its pages in your site directly, but hopefully this book and the Planet
Wrox website inspired you enough to build a new website on your own.

Because this book is aimed at beginners, I haven’t been able to provide you with a lot of in-depth
information on some important topics. Most subjects that have their own chapters in this book
easily warrant an entire book on their own. For example, topics like CSS, AJAX, and LINQ are so
extensive that Wrox has published many books about them. Now that you’ve mastered the basics of
these technologies, you can dig deeper into them using the following books in the Wrox Professional
series:

➤➤ Professional CSS: Cascading Style Sheets for Web Design, 3rd Edition (ISBN:
978-0-470-89152-0)

➤➤ Professional ASP.NET 2.0 Design: CSS, Themes, and Master Pages (ISBN:
978-0-470-12448-2)

➤➤ Professional ASP.NET 4.5 in C# and VB (ISBN: 978-1-118-31182-0)

➤➤ Professional LINQ (ISBN: 978-0-470-04181-9)

➤➤ Professional Microsoft IIS 8 (ISBN: 978-1-118-38804-4)

Of course, the web is also a good place for more information. The following URLs may be helpful
in your search for more information about ASP.NET and its related technologies:

➤➤ http://p2p.wrox.com — The public discussion forum from Wrox where you can go for all
your programming-related questions. This book has its own category on that site, enabling
you to ask targeted questions. I am a frequent visitor to these forums and I’ll do my best to
answer each question you may have about this book.

➤➤ http://imar.spaanjaars.com — My own website where I keep you up to date about
various web programming–related topics.

➤➤ http://www.asp.net — The Microsoft community site for ASP.NET technology. Go here
for news on ASP.NET, additional downloads, and tutorials.

➤➤ http://msdn.microsoft.com/asp.net — The official home for ASP.NET at the Microsoft
developers website that gives you a wealth of information on ASP.NET.

c19.indd 753 2/21/2014 1:37:59 PM

http://p2p.wrox.com
http://imar.spaanjaars.com
http://www.asp.net
http://msdn.microsoft.com/asp.net

754 ❘ Chapter 19 Deploying your Website

summarY

Obviously, deployment is an important action at the end of the development cycle of your new
website. However, it’s unlikely that you will deploy your site only once. As soon as you release the
first version of your site, you’ll think of other new and cool features you want to add, making the
development of your site a continuous process. To accommodate for this, you need to make your site
easy to deploy.

One way to do this is by moving hard-coded configuration settings to the Web.config file, giving
you a single location to change parameters for the site in your development and production
environments.

When you’re ready to roll out your site, it’s a good idea to create a copy of your site and clean that
up before you send the files to your target server. Copying and then publishing a site is a breeze with
the Publish Web Site command.

Because you will deploy your site against IIS, you need to understand some important settings of
this web server. In this chapter, you saw how to configure the Default Web Site and make some
configuration changes. Because of the way security works in Windows and IIS, you also need to
configure your hard drive so that the accounts used by the web server can read the files in your site
and write to specific folders such as App_Data and GigPics.

exerCises

This chapter has no exercises, because the Planet Wrox site is now completely finished. However,
your biggest challenge starts now: building websites with the knowledge you gained from this book.
If you ever build a site with the information from this book and want to share it with me, please
contact me through my website at http://imar.spaanjaars.com. Have fun!

c19.indd 754 2/21/2014 1:37:59 PM

http://imar.spaanjaars.com

Summary ❘ 755

 ➤ What You learned in this Chapter

.net assembly A file with a .dll extension that contains executable and
callable .NET code

application pool A mechanism to isolate (one or more) websites in IIS to
give them their own set of resources

deployment The process of releasing a website from your
development environment to the production
environment

expression syntax A technique that enables you to bind control properties
to different resources, such as application settings
defined in Web.config

iis Internet Information Services — Microsoft’s web server
for the Windows platform

integrated pipeline mode With Integrated Pipeline mode turned on for an
application pool in IIS, ASP.NET and IIS are tightly
integrated, enabling you to use ASP.NET techniques for
non-.NET resources such as static files.

precompilation The process of compiling a web application into a set of
.dll files, which can be deployed to a production server;
without precompilation, the ASP.NET files are compiled
on the fly the first time they are requested.

WebConfigurationManager class A .NET Framework class that provides access to data that
is stored in configuration files

c19.indd 755 2/21/2014 1:38:00 PM

c19.indd 756 2/21/2014 1:38:00 PM

Exercise Answers

Chapter 1

exercise 1 Solution
The markup of a page in Visual Studio contains the raw and unprocessed source for the page,
including the HTML, ASP.NET Server Controls, and programming code. The web server then
processes the page and sends out the final HTML to the browser. In the browser this HTML
is then used to render the user interface.

exercise 2 Solution
The easiest way to store HTML fragments that you use often is to select them in the
Document Window and then drag them to a free space on the Toolbox. When the item is
added, you can rename it to a more meaningful name. Now you can simply double-click an
item or drag it from the Toolbox into your page whenever you need it.

exercise 3 Solution
You have a number of ways to reset part of the customization changes you may have made,
including:

➤➤ Resetting the window layout by choosing Window ➪ Reset Window Layout.

➤➤ Resetting the Toolbox by right-clicking it and choosing Reset Toolbox.

➤➤ Resetting all settings of Visual Studio using Tools ➪➤Settings ➪ Import and Export
Settings or Tools ➪ Import and Export Settings, depending on your version of Visual
Studio.

A

bapp01.indd 757 2/21/2014 8:26:11 AM

758 ❘ appeNDIX a ExErcisE AnswErs

exercise 4 Solution
To change the property of a control on a page, you can click the control in Design or Markup View
and then use the Properties Grid (which you can bring up by pressing F4) to change the value of the
property. Alternatively, you can change the property directly in Markup View.

Chapter 2

exercise 1 Solution
A number of files fall in the Web Files category, including .aspx files (Web Forms that end up
as pages in the web browser), .html files (that contain static HTML for your site), .css files
(that contain cascading style sheet information), and .config files (that contain configuration
information for the website). Refer to the table with the different file types in Chapter 2 for a
complete list of files.

exercise 2 Solution
When you want to make a piece of text both bold and italicized, you need to select the text and then
click the Bold button on the Formatting toolbar. Next you need to click the Italic button. The final
HTML code in the page should look like this:

Welcome to Planet Wrox

You may also come across and <i> elements, which have the same effect. However, these are
now considered outdated and you’re encouraged to use and instead.

exercise 3 Solution
The first way is using the Solution Explorer. Right-click your site, choose Add ➪ Existing Item, and
then browse for the item(s) you want to add.

Secondly, you can drag and drop files from File Explorer or Windows Explorer or from your
desktop directly into a VS website. As a third alternative, you could put the files directly in the
site’s folder using Windows Explorer. For example, files you add to the folder C:\BegASPNET\Site
become part of your website automatically. If you don’t see the new files appear in VS directly, click
the Refresh icon on the Solution Explorer toolbar.

exercise 4 Solution
In VS, you have three different views on your code: Design View, Markup View (also referred to as
Source View or Code View), and Split View. The first gives you an impression of how your web page
is going to look in the browser, and the second view shows you the raw markup. Split View enables
you to see both views at the same time. VS also has different views for other files. For example,
programming code for an ASPX page is generally referred to as the Code Behind view or simply
the Code Behind. The new HTML editor (which you cannot use for Web Forms) only has a
Markup View.

bapp01.indd 758 2/21/2014 8:26:11 AM

Chapter 3 ❘ 759

Chapter 3

exercise 1 Solution
The biggest benefit of an external style sheet is the fact that it can be applied to the entire site.
Simply by changing a single rule in that file, you can influence all pages in your site that make use
of that rule. With embedded or inline styles, you need to change all the files in your site manually.
External style sheets also make it much easier to reuse a certain style with many different elements
in your site. Simply create a Class or an ID selector and reuse that wherever you see fit.

exercise 2 Solution
The rule can look like this:

h1
{
 font-family: Arial;
 color: Blue;
 font-size: 18px;
 border-top: 1px solid Blue;
 border-left: 1px solid Blue;
}

Note another shorthand version of the border property. This one looks similar to the border
property you saw earlier in this chapter that enabled you to set the size, style, and color of the
border at once. In this rule, border-top and border-left are used to change the left and top
borders only; the other two directions, the bottom border and right border, are not affected by this
rule.

exercise 3 Solution
The second declaration is more reusable in your site because it denotes a Class selector as opposed to
an ID selector. The latter can only be used once in a single page by an element that has a matching
id attribute: MainContent in this example. The Class selector BoxWithBorders, on the other hand,
can be used by multiple elements in a single page, because you are allowed to apply an identical class
attribute to multiple elements in a page.

exercise 4 Solution
VS lets you attach a style sheet in the following ways:

➤➤ Type in the required <link> element in the <head> of the page in Markup View directly.

➤➤ Drag a CSS file from the Solution Explorer into the <head> section of a page in Markup
View.

➤➤ Drag a CSS file from the Solution Explorer and drop it onto the page in Design View.

➤➤ Use the main menu Format ➪➤Attach Style Sheet and then browse to your CSS file.

➤➤ Use the Manage Styles or Apply Styles windows and click the Attach Style Sheet link.

bapp01.indd 759 2/21/2014 8:26:11 AM

760 ❘ appeNDIX a ExErcisE AnswErs

Chapter 4

exercise 1 Solution
The mechanism that enables controls to maintain their state is called View State.

exercise 2 Solution
The ASP.NET run time stores the values for the controls in a hidden field called __VIEWSTATE.
This hidden field is sent with each postback to the server, where it’s unpacked and then used to
repopulate the controls in the page with their previous values.

exercise 3 Solution
The DropDownList only allows a user to make a single selection whereas the ListBox allows for
multiple selections. In addition, the DropDownList only shows one item in the list when it’s not
expanded, while the ListBox is capable of displaying multiple items simultaneously.

exercise 4 Solution
In order to have a CheckBox control submit back to the server when you select or clear it in the
browser, you need to set the AutoPostBack property to True:

<asp:CheckBox ID="CheckBox1" runat="server" AutoPostBack="True" />

exercise 5 Solution
Many of the ASP.NET Server Controls let you change colors using properties like BackColor and
ForeColor. Additionally, you can use BorderColor, BorderStyle, and BorderWidth to change the
border around a control in the browser. Finally, to affect the size of the control, you need to set its
Height and Width properties.

exercise 6 Solution
Instead of setting individual styles, you’re much better off setting the CssClass property that points
to a rule set. This way, your pages become easier to maintain, as style-related information is stored
in a single place: in the style sheet. At the same time, your page loads faster, as not all the style
information is sent for each control on each request. Instead, the browser reads in the style sheet
once and keeps a locally cached copy.

Chapter 5

exercise 1 Solution
Both the Byte and the SByte data types are designed to hold small, numeric values. Both of them
take up exactly the same amount of computer memory, so you’re probably best off using the Byte

bapp01.indd 760 2/21/2014 8:26:11 AM

Chapter 6 ❘ 761

data type. Because it doesn’t allow you to store negative numbers, it’s clear from the start that it
can only contain a number between 0 and 255. However, it’s much better not to store someone’s
age, but the date of birth instead. That way, you can always extract the age from the date of birth
by comparing it with today’s date. Because the date of birth is a fixed point in time, it will always
reflect someone’s age correctly without the need to annually update it.

exercise 2 Solution
This piece of code toggles the visibility of the DeleteButton control. It uses both the assignment
operator and the negation operator. First, the negation operator is applied to the current value of
Visible. When that value is currently True, the Not (! in C#) operator turns it into False and
vice versa. This result is then assigned back to the Visible property. So, where the button was
previously hidden, it is now visible. Where it was visible before, it’s now made invisible.

exercise 3 Solution
To create a specialized version of Person, you need to create a second class that inherits the Person
class and extend its behavior by adding the StudentId property.

VB.NET

Public Class Student
 Inherits Person
 Public Property StudentId As String
End Class

C#

public class Student : Person
{
 public string StudentId { get; set; }
}

Chapter 6

exercise 1 Solution
The ContentPlaceHolder element should be placed in the master page. It defines a region that
content pages can fill in. The Content control should be placed in a content page that is based on
the master page. It is used to supply the content for the ContentPlaceHolder element that it is
connected to.

exercise 2 Solution
To link a Content control to its ContentPlaceHolder in the master page, you need to set the
ContentPlaceHolderID:

<asp:Content ID="Content1" ContentPlaceHolderID="IdOfContentPlaceHolder"
 runat="Server">
</asp:Content>

bapp01.indd 761 2/21/2014 8:26:12 AM

762 ❘ appeNDIX a ExErcisE AnswErs

exercise 3 Solution
You have a few ways to do this. First, you can create a named skin with a different CSS class in the
same skin file:

<asp:Button runat="server" SkinID="RedButton" CssClass="RedButton" />

You then hook up the control you want to change to this named skin using the SkinID attribute:

<asp:Button ID="Button1" runat="server" Text="Button" SkinID="RedButton" />

Alternatively, you can disable theming on the Button control and give it a different CSS class
directly in the ASPX page:

<asp:Button ID="Button1" runat="server" EnableTheming="False"
 CssClass="RedButton" Text="Button" />

In both solutions, you need a CSS class that sets the background color:

.RedButton
{
 background-color: Red;
}

exercise 4 Solution
A StyleSheetTheme is applied early in the page’s life cycle. This gives controls in the ASPX
page the opportunity to override settings they initially got from the StyleSheetTheme. This means
that the StyleSheetTheme just suggests the look and feel of controls, giving the individual controls
the ability to override that look.

A Theme, on the other hand, overrides any settings applied by the controls. This enables you as a
page developer to enforce the look and feel of controls in your site with the settings from the theme.
If you still need to change individual controls, you can disable theming by setting EnableTheming to
False.

exercise 5 Solution
You have three ways to set the Theme property in an ASP.NET website. The first option is to set the
property directly in the @ Page directive so it applies to that page only:

<%@ Page Language="C#" Theme="Monochrome" %>

To apply a theme to all pages in your site, you set the theme attribute of the <pages> element in the
Web.config file:

<pages theme="Monochrome" ...

The final option you have is to set the theme programmatically. You have to do this in the PreInit
event of the Page class, which you can handle in individual pages in your site or at a central location
using the BasePage class as you did in Chapter 6.

bapp01.indd 762 2/21/2014 8:26:12 AM

Chapter 7 ❘ 763

exercise 6 Solution
A base page enables you to centralize behavior for all the pages in your site. Instead of recoding the
same functionality over and over again in every page, you move this code to the base page so all
ASPX pages can use it. When you implement the theme switcher, all you have to do is write some
code in the central BasePage class. All pages in your site that inherit from this BasePage class then
automatically set the selected theme, without the need for any additional code.

Chapter 7

exercise 1 Solution
To change the background color of items in the TreeView control you can use the NodeStyle
element as follows:

<asp:TreeView ID="TreeView1" runat="server"
 DataSourceID="SiteMapDataSource1" ShowExpandCollapse="False">
 <NodeStyle BackColor="White" />
 ...
</asp:TreeView>

Instead of setting the BackColor property (which results in an inline style), you’re better off setting
the CssClass property:

<NodeStyle CssClass="TreeViewNodeStyle" />

You then need to create a separate class in your CSS file:

.TreeViewNodeStyle
{
 background-color: White;
}

This way, it’s easier to manage the styling from a central location.

exercise 2 Solution
To redirect a user to another page programmatically, you can use Response.Redirect, Response.
RedirectPermanent, or Server.Transfer. The first two options send a redirect instruction to the
browser and are thus considered client-side redirects. Server.Transfer, on the other hand, takes
place at the server, enabling you to serve a different page without affecting the user’s address bar.

exercise 3 Solution
To display a TreeView that doesn’t have the ability to expand or collapse nodes, you need to set its
ShowExpandCollapse property to False.

bapp01.indd 763 2/21/2014 8:26:12 AM

764 ❘ appeNDIX a ExErcisE AnswErs

Chapter 8

exercise 1 Solution
A standard property uses a normal backing variable to store its value, whereas a View State property
uses the ViewState collection for this. A normal property is reset on each postback, whereas a View
State property is able to maintain its value. This advantage of the View State property comes at a
cost, however. Storing the value in View State adds to the size of the page, during both the request
and the response. A normal property doesn’t have this disadvantage. You should carefully consider
what you store in View State to minimize the page size.

exercise 2 Solution
To make the property maintain its state across postbacks, you need to turn it into a View State
property. The required code is almost identical to that of the NavigateUrl, but it uses the
Direction data type instead of a String. You need to remove the automatic property and replace it
with the following code:

VB.NET

Public Property DisplayDirection() As Direction
 Get
 Dim _ displayDirection As Object = ViewState("DisplayDirection")
 If _ displayDirection IsNot Nothing Then
 Return CType(_ displayDirection, Direction)
 Else
 Return Direction.Horizontal ' Not found in View State; return a default value
 End If
 End Get

 Set(Value As Direction)
 ViewState("DisplayDirection") = Value
 End Set
End Property

C#

public Direction DisplayDirection
{
 get
 {
 object _ displayDirection = ViewState["DisplayDirection"];
 if (_ displayDirection != null)
 {
 return (Direction) _ displayDirection;
 }
 else
 {
 return Direction.Horizontal; // Not found in View State;
 // return a default value
 }
 }

bapp01.indd 764 2/21/2014 8:26:12 AM

Chapter 9 ❘ 765

 set
 {
 ViewState["DisplayDirection"] = value;
 }
}

exercise 3 Solution
Using a custom data type like the Direction enumeration has two benefits over using numeric or
String data types. Because of the way IntelliSense helps you select the right item, you don’t have
to memorize magic numbers or strings like 0 or 1. Additionally, the compiler helps you check the
spelling, so if you type Direction.Vrtical instead of Direction.Vertical, you get an error at
development time.

Chapter 9

exercise 1 Solution
First, you need to write a property in the Code Behind of the user control, similar to the
DisplayDirection property you created in the previous chapter for the Banner control. This
property could look like this:

VB.NET

Public Property PageDescription As String

C#

public string PageDescription { get; set; }

You then need to modify the control declaration. For example, in Contact.aspx, you can modify
the control like this:

<uc1:ContactForm ID="ContactForm" runat="server" PageDescription="Contact Page"/>

Note that the PageDescription property contains a short description of the containing page.

Obviously, you can put whatever text you see fit in the property to describe the page. Finally, you
need to add the PageDescription to the subject or body of the e-mail message. The following code
snippet shows you how to extend the subject with the value of this new property:

VB.NET

myMessage.Subject = "Response from web site. Page: " & PageDescription
myMessage.From = New MailAddress("you@example.com", "Sender Name")

C#

myMessage.Subject = "Response from web site. Page: " + PageDescription;
myMessage.From = new MailAddress("you@example.com", "Sender Name");

From now on, this custom page description is added to the subject of the mail message. This solution
becomes particularly useful if you have multiple Web Forms using this contact form and you want
to find out which page was used to send the information.

bapp01.indd 765 2/21/2014 8:26:12 AM

766 ❘ appeNDIX a ExErcisE AnswErs

exercise 2 Solution
If you don’t inspect the IsValid property, your system is vulnerable to invalid data. Users can
disable JavaScript in their browsers and submit invalid data directly into your page. By checking the
IsValid property you can tell whether or not it’s safe to continue with the submitted data.

exercise 3 Solution
The From property of the MailMessage class is of type MailAddress, meaning that you can directly
assign a single instance of this class to it. Because you can potentially have more than one recipient,
the To property is a collection of MailAddress objects, and so you need to use its Add method to
add instances of MailAddress to it.

exercise 4 Solution
To call a client-side validation function, you need to set the ClientValidationFunction property
of the CustomValidator like this:

<asp:CustomValidator ID="CustomValidator1" runat="server"
 ClientValidationFunction="functionName">*</asp:CustomValidator>

The client function that you need to add to the markup of the page must have the following
signature:

function functionName(source, args)
{ ... }

The source argument contains a reference to the actual CustomValidator control in the client-side
HTML code. The args argument provides context information about the data and enables you to
indicate whether or not the data is valid. The names of the arguments don’t have to be source and
args; however, when using these names, the client-side function looks as close to its server-side
counterpart as possible. Another common naming scheme, used for almost all other event handlers
in ASP.NET, is to use sender and e, respectively.

exercise 5 Solution
To tell the validation mechanism whether the data you checked is valid, you set the IsValid
property of the args argument in your custom validation method. This applies to both client- and
server-side code. The following snippet shows how this is done in the client-side validation method
for the ContactForm.ascx control:

if (phoneHome.value != '' || phoneBusiness.value != '')
{
 args.IsValid = true;
}
else
{
 args.IsValid = false;
}

bapp01.indd 766 2/21/2014 8:26:12 AM

Chapter 10 ❘ 767

Chapter 10

exercise 1 Solution
The ScriptManager control is a required component in almost all Ajax-related operations. It takes
care of registering client-side JavaScript files, handles interaction with web services defined in your
website, and is responsible for the partial page updates. You usually place the ScriptManager
directly in a content page if you think you need Ajax capabilities on only a handful of pages.
However, you can also place the ScriptManager in a master page so it becomes available
throughout the entire site.

When you have the ScriptManager in the master page you can use the ScriptManagerProxy to
register individual web services or script files on content pages. Because you can have only one
ScriptManager in a page, you can’t add another one in a content page that uses your master page
with the ScriptManager. The ScriptManagerProxy serves as a bridge between the content page
and the ScriptManager, giving you great flexibility as to where you register your services.

exercise 2 Solution
You can let your users know a partial page update is in progress by adding an
UpdateProgress control to the page. You connect this control to an UpdatePanel using its
AssociatedUpdatePanelID. Inside the <ProgressTemplate> you define whatever markup you
see fit to inform your user an update is in progress. A typical <ProgressTemplate> contains an
animated icon, some text, or both.

exercise 3 Solution
To create a script-callable service, you first need to add an AJAX-enabled WCF service file to
your site using the Add New Item dialog box. The class file that is created for you already has the
ServiceContract and AspNetCompatibilityRequirements attributes applied.

VB.NET

<ServiceContract(Namespace:="")>
<AspNetCompatibilityRequirements(
 RequirementsMode:=AspNetCompatibilityRequirementsMode.Allowed)>
Public Class NameOfYourService

C#

[ServiceContract(Namespace = "")]
[AspNetCompatibilityRequirements(
 RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)]
public class NameOfYourService

You then need to decorate each method within this class that you want exposed as a web method
with the OperationContract attribute:

VB.NET

<OperationContract()>
Public Function NameOfYourMethod(parameters) As DataType

bapp01.indd 767 2/21/2014 8:26:12 AM

768 ❘ appeNDIX a ExErcisE AnswErs

C#

[OperationContract]
public DataType NameOfYourMethod(parameters)

Once you’ve registered the WCF service in a ScriptManager or ScriptManagerProxy control, you
can call the service as follows from your client-side JavaScript:

NameOfYourService.NameOfYourMethod(
 parameters, successCallback, errorCallback);

Chapter 11

exercise 1 Solution
To accomplish this, you first need to set the ClientIDMode of VerticalPanel to Static in the
markup of Banner.ascx. This makes it easier to work with the client IDs of the controls inside the
panel:

<asp:Panel ID="VerticalPanel" runat="server" ClientIDMode="Static">

Then you need to add a element just below VerticalPanel with the text Hide Banner. The
style attribute changes the mouse cursor into a hand so users understand the text is clickable when
they hover over it. You need to add a runat attribute and a server-side ID so you can hide the link
in the Code Behind. You also need to give it a class attribute so you can find the element using
jQuery. You should end up with this span element:

<span id="HideBanner" style="cursor: pointer;" runat="server"
 class="HideBanner">Hide Banner

In a script block below the last panel, you need to add the following code:

<script>
 $(function ()
 {
 $('.HideBanner').bind('click', function ()
 {
 $('#VerticalPanel').slideToggle('fast', function ()
 {
 if ($(this).css('display') == 'block')
 {
 $('.HideBanner').text('Hide Banner');
 }
 else
 {
 $('.HideBanner').text('Show Banner');
 }
 });
 });
 });
</script>

This code dynamically binds some code to the click event of the element found by
using $('.HideBanner'). Then inside the handler for the click, the code finds the whole panel

bapp01.indd 768 2/21/2014 8:26:12 AM

Chapter 11 ❘ 769

(#VerticalPanel) and calls slideToggle, which hides items in the matched set when they
are visible and shows them when they aren’t. The if check then uses the css method on the
VerticalPanel element (now referred to with the this keyword) and asks for its display property.
When it is block it means the banner is visible, and thus the text must be Hide Banner. Otherwise,
the text is set to Show Banner. Finally, you need to hide the link when the banner is in horizontal
mode in the banner control’s Code Behind:

VB.NET

Case Direction.Horizontal
 HorizontalPanel.Visible = True
 VerticalPanel.Visible = False
 HorizontalLink.HRef = NavigateUrl
 HideBanner.Visible = False

C#

case Direction.Horizontal:
 HorizontalPanel.Visible = true;
 VerticalPanel.Visible = false;
 HorizontalLink.HRef = NavigateUrl;
 HideBanner.Visible = false;
 break;

exercise 2 Solution
The slideUp method hides elements by slowly decreasing their height. slideDown shows hidden
elements instead by doing the reverse: slowly increasing the height of an element until it’s fully
visible. Both methods accept, among other arguments, a speed parameter that either accepts
a fixed value (slow, normal, or fast) or a number specifying the speed of the animation in
milliseconds.

exercise 3 Solution
jQuery’s document ready function fires when the page is finished loading in the browser, only
during the initial request. The pageLoad method fires both when the page first loads and after an
asynchronous postback, for example, when using an UpdatePanel. This difference enables you to
choose the desired behavior. Need to fire some code on initial load and after a postback? Choose
pageLoad. Otherwise, choose jQuery’s document ready function.

exercise 4 Solution
You use the special _references.js file in the Scripts folder to enable IntelliSense. VS will read
this file and parse all JavaScript files that you added with this syntax:

/// <reference path="Path/To/File.js" />

This way, you get IntelliSense in files where it would otherwise not be supported (such as user
controls) or for JavaScript files that you’re not directly linking to in your website.

bapp01.indd 769 2/21/2014 8:26:12 AM

770 ❘ appeNDIX a ExErcisE AnswErs

Chapter 12

exercise 1 Solution
The DELETE statement fails because there is a relationship between the Id of the Genre table and the
GenreId of the Review table. As long as this relationship is in effect, you cannot delete genres that
still have reviews attached to them. To be able to delete the requested genre, you need to delete the
associated reviews first, or assign them to a different genre using an UPDATE statement. Exercise 4
shows you how you can accomplish this.

exercise 2 Solution
The relationship between the Genre and Review tables is a one-way relationship. The relationship
enforces that the GenreId assigned to a review must exist as an Id in the Genre table. At the
same time, it blocks you from deleting genres that have reviews attached to them. However, the
relationship doesn’t stop you from deleting rows from the Review table.

exercise 3 Solution
To delete reviews with an Id of 100 or less, you need the following SQL statement:

DELETE FROM Review WHERE Id <= 100

exercise 4 Solution
Before you can delete the genre, you need to reassign the existing reviews to a new genre first. You
can do this with the following UPDATE statement:

UPDATE Review SET GenreId = 11 WHERE GenreId = 4

This assigns the GenreId of 11 to all reviews that previously had their GenreId set to 4. This in
turn means that the genre with an Id of 4 no longer has any reviews attached to it, so you can now
remove it with the following SQL statement:

DELETE FROM Genre WHERE Id = 4

exercise 5 Solution
To update the name you need to execute an UPDATE statement. To limit the number of affected
rows to just the Rock genre, you need to use a WHERE clause. You can use the WHERE clause to filter
the rows based on the genre’s Id or on its Name. The following SQL statements are functionally
equivalent:

UPDATE Genre SET Name = 'Punk Rock' WHERE Id = 7
UPDATE Genre SET Name = 'Punk Rock' WHERE Name = 'Rock'

This code assumes that the current Rock genre has an Id of 7.

bapp01.indd 770 2/21/2014 8:26:12 AM

Chapter 13 ❘ 771

Chapter 13

exercise 1 Solution
The best control for this scenario is the GridView control. It’s easy to set up and has built-in support
for paging, updating, and deleting of data. Together with a DetailsView control you can offer your
users all four CRUD operations. To connect to your database you need to use a SqlDataSource
control. Chapter 14 provides you with alternatives for both the GridView and the SqlDataSource.

exercise 2 Solution
For a simple, unordered list, you’re probably best off using a Repeater control hooked up to a
SqlDataSource control. The biggest benefit of the Repeater control is that it emits no HTML code
of its own, enabling you to control the final markup. A downside of the control is that it doesn’t
support editing or deletion of data, which isn’t a problem if all you need to do is present the data in
a list. Chapter 14 shows you how to use the Repeater control.

exercise 3 Solution
A BoundField is directly tied to a column in your data source and offers only limited ways to
customize its appearance. The TemplateField, on the other hand, gives you full control over the
way the field is rendered. As such, it’s an ideal field for more complex scenarios — for example, when
you want to add validation controls to the page, or if you want to let the user work with a different
control, like a DropDownList instead of the default TextBox.

exercise 4 Solution
You should always store your connection strings in the Web.config file. This file has an element
called <connectionStrings> that is designed specifically for storing connection strings. By storing
them in Web.config, you make it very easy to find your connection strings and modify them. If
you store them at the page level, you have to search through your entire project for the relevant
connection strings.

You can access the connection strings using expression binding syntax. For example, to set the
connection string in a SqlDataSource, you can use code like this:

ConnectionString="<%$ ConnectionStrings:PlanetWroxConnectionString1 %>"

For this code to work, you need a connection string similar to this in your Web.config file:

<connectionStrings>
 <add name="PlanetWroxConnectionString1" connectionString="Data
 Source=(localdb)\v11.0;AttachDbFilename=|DataDirectory|\PlanetWrox.mdf;
 Integrated Security=True"
 providerName="System.Data.SqlClient" />
</connectionStrings>

bapp01.indd 771 2/21/2014 8:26:12 AM

772 ❘ appeNDIX a ExErcisE AnswErs

Chapter 14

exercise 1 Solution
To get the 10 most recent reviews from the system, your query needs two important LINQ
constructs: First, it needs an Order By (orderby in C#) clause to order the list in descending order.
It then needs the Take method to take the first 10 reviews from that result set:

VB.NET

Using myEntities As New PlanetWroxEntities()
 Dim recentReviews = (
 From myReview In myEntities.Reviews
 Order By myReview.CreateDateTime Descending
 Select New With {
 myReview.Title, myReview.Genre.Name
 }
).Take(10).ToList()
 GridView1.DataSource = recentReviews
 GridView1.DataBind()
End Using

C#

using (PlanetWroxEntities myEntities = new PlanetWroxEntities())
{
 var recentReviews = (from myReview in myEntities.Reviews
 orderby myReview.CreateDateTime descending
 select new
 {
 myReview.Title,
 myReview.Genre.Name
 }).Take(10).ToList();
 GridView1.DataSource = recentReviews;
 GridView1.DataBind();
}

This code also uses the New keyword (new in C#) to create a new, anonymous type that contains
only the review’s title and the genre’s name.

exercise 2 Solution
The biggest benefit of the ListView control is that it combines the strengths of those other data
controls. Just like the GridView control, the ListView control makes it easy to display data in a
grid format that users can edit from within the grid. Additionally, the ListView control enables you
to insert new rows, behavior that is found in controls like DetailsView and FormView but not in
GridView.

Finally, the ListView control gives you full control over the markup that gets sent to the browser,
an important feature that only the Repeater control gives you out of the box.

exercise 3 Solution
First you would need to change the Default.aspx page in the PhotoAlbums folder so it links
each thumbnail to a details page and passes the ID of the picture to this new page. In the

bapp01.indd 772 2/21/2014 8:26:13 AM

Chapter 14 ❘ 773

<ItemTemplate> of the ListView control in Default.aspx, add this HyperLink control around the
Image control that was already there:

<asp:HyperLink ID="HyperLink1" runat="server"
 NavigateUrl='<%# "PictureDetails?Id=" + Item.Id.ToString() %>'>
<asp:Image ID="Image1" runat="server" ImageUrl='<%# Item.ImageUrl %>'
 ToolTip='<%# Item.ToolTip %>' />
</asp:HyperLink>

Note that the NavigateUrl is built up from the static text PictureDetails?Id= and the ID of the
picture in the database.

Then create a new page called PictureDetails.aspx and add an Image control in the markup:

<asp:Content ID="Content2" ContentPlaceHolderID="cpMainContent" runat="server">
 <asp:Image ID="Image1" runat="server" />
</asp:Content>

Finally, you need to execute the following LINQ query in the Load event of the page in the Code
Behind to set the ImageUrl:

VB.NET

Protected Sub Page_Load(sender As Object, e As EventArgs) Handles Me.Load
 Dim pictureId As Integer = Convert.ToInt32(Request.QueryString.Get("Id"))
 Using myEntities As New PlanetWroxEntities()
 Dim imageUrl As String = (From picture In myEntities.Pictures
 Where picture.Id = pictureId
 Select picture).Single().ImageUrl
 Image1.ImageUrl = imageUrl
 End Using
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 int pictureId = Convert.ToInt32(Request.QueryString.Get("Id"));
 using (PlanetWroxEntities myEntities = new PlanetWroxEntities())
 {
 string imageUrl = (from picture in myEntities.Pictures
 where picture.Id == pictureId
 select picture).Single().ImageUrl;
 Image1.ImageUrl = imageUrl;
 }
}

This code gets the ID of the picture from the query string first and then feeds it to the LINQ query.

The Single method is used to retrieve a single picture from the Picture table whose ImageUrl is
then used to display the image in the browser.

exercise 4 Solution
To delete the picture, you need to extend the code in ListView1_DeleteItem. You can retrieve the
ImageUrl from the picture that is about to be deleted, convert the URL to a physical location, and
delete the image using a call to File.Delete, like this:

bapp01.indd 773 2/21/2014 8:26:13 AM

774 ❘ appeNDIX a ExErcisE AnswErs

VB.NET

Dim fileName As String = Server.MapPath(picture.ImageUrl)
System.IO.File.Delete(fileName)
myEntities.Pictures.Remove(picture)

C#

string fileName = Server.MapPath(picture.ImageUrl);
System.IO.File.Delete(fileName);
myEntities.Pictures.Remove(picture);

exercise 5 Solution
To display only genres that have at least one review, all you need to do is filter out empty genres
using Where with a Count method like this:

VB.NET

Dim genresWithReviews = From genre In myEntities.Genres
 Order By genre.Name
 Where genre.Reviews.Count() > 0
 Select New With {genre.Name, genre.Reviews}

C#

var genresWithReviews = from genre in myEntities.Genres
 orderby genre.Name
 where genre.Reviews.Count() > 0
 select new { genre.Name, genre.Reviews };

Chapter 15

exercise 1 Solution
The Load event of the Page always fires before user-triggered events such as a Button control’s
Click.

exercise 2 Solution
To preselect the correct item in the drop-down list after a user has inserted or edited a review,
you need to make two modifications. First, you need to change the Redirect statement in the
AddEditReviewHandCoded.aspx page so it includes the ID of the genre:

VB.NET

Response.Redirect(String.Format("Reviews.aspx?GenreId={0}",
 GenreList.SelectedValue))

C#

Response.Redirect(string.Format("Reviews.aspx?GenreId={0}",
 GenreList.SelectedValue));

Using String.Format makes this code a bit easier to read as opposed to plain string concatenation
using the ampersand (&) in VB.NET and the plus (+) in C#.

bapp01.indd 774 2/21/2014 8:26:13 AM

Chapter 15 ❘ 775

If you now insert or edit a new review, you’ll see that the ID of the genre is passed back to the
Reviews.aspx page. On that page, you can use that ID to preselect the correct item in the
DropDownList control, which you can accomplish with the following code in the Page_Load
method:

VB.NET

Protected Sub Page_Load(sender As Object, e As EventArgs) Handles Me.Load
 If Not Page.IsPostBack Then
 Dim genreId As String = Request.QueryString.Get("GenreId")
 If Not String.IsNullOrEmpty(genreId) Then
 DropDownList1.DataBind()
 Dim myItem As ListItem = DropDownList1.Items.FindByValue(genreId)
 If myItem IsNot Nothing Then
 myItem.Selected = True
 End If
 End If
 End If
End Sub

C#

protected void Page_Load(object sender, EventArgs e)
{
 if (!Page.IsPostBack)
 {
 string genreId = Request.QueryString.Get("GenreId");
 if (!string.IsNullOrEmpty(genreId))
 {
 DropDownList1.DataBind();
 ListItem myItem = DropDownList1.Items.FindByValue(genreId);
 if (myItem != null)
 {
 myItem.Selected = true;
 }
 }
 }
}

Only when the page loads from a new request (and not from a postback) does this code fire. The
code then tries to find a GenreId in the query string. If it can find it, it tries to find an item with that
requested value in the DropDownList. Because the DropDownList control hasn’t been data bound
yet it doesn’t contain any items. Therefore, you need to call DataBind()first. This gets the genres
from the database using EF and puts them in the DropDownList. Once that’s done and the item is
found in the Items collection, it’s made the active item by setting its Selected property to True/
true. The SqlDataSource control watches this DropDownList so when the data source gets its
reviews, it does so for the correct genre.

exercise 3 Solution
The various data-bound controls can raise exceptions that you can handle in their event handlers.

Once you have dealt with the exception appropriately, you need to set the ExceptionHandled
property of the e argument to True. The following code snippet shows how a Label control

bapp01.indd 775 2/21/2014 8:26:13 AM

776 ❘ appeNDIX a ExErcisE AnswErs

is updated with an error message. ExceptionHandled is then set to stop the Exception from getting
passed on into the user interface where it would otherwise result in a “Yellow Screen of Death.”

VB.NET

Protected Sub SqlDataSource1 _ Deleted(sender As Object,
 e As SqlDataSourceStatusEventArgs) Handles SqlDataSource1.Deleted
 If e.Exception IsNot Nothing Then
 ErrorMessage.Text = "We're sorry, but something went terribly wrong while " &
 "deleting your genre."
 e.ExceptionHandled = True
 End If
End Sub

C#

protected void SqlDataSource1 _ Deleted(object sender,
 SqlDataSourceStatusEventArgs e)
{
 if (e.Exception != null)
 {
 ErrorMessage.Text = @"We're sorry, but something went terribly wrong while
 deleting your genre.";
 e.ExceptionHandled = true;
 }
}

Chapter 16

exercise 1 Solution
Authentication is all about proving your identity to a system like a website. After you have been
authenticated, authorization then determines what you can and cannot do in the system.

exercise 2 Solution
To expand the access to the Management folder for John and all users in the Editors role, you need to
expand the current roles attribute to include Editors, and add an additional allow element with its
users attribute set to John:

<system.web>
 <authorization>
 <allow roles="Managers, Editors" />
 <allow users="John" />
 <deny users="*" />
 </authorization>
</system.web>

The roles attribute enables you to specify multiple roles separated by a comma. To grant the John
account access, you need to add an additional allow element and then fill in John’s name in the
users attribute.

From a maintainability perspective, it would be a lot better to add John to the Managers or Editors
role if possible. However, you may end up giving John more rights than you want (he could then

bapp01.indd 776 2/21/2014 8:26:13 AM

Chapter 17 ❘ 777

access anything that a Manager or an Editor could access). Generally, it’s best to manage users
through roles as much as possible, but it’s good to know that you can grant individual accounts the
necessary rights as well (or explicitly take those rights away using a deny element).

exercise 3 Solution
If you want to redirect all users to the same page, all you need to set is the DestinationPageUrl:

<asp:Login ID="Login1" runat="server" DestinationPageUrl="~/MyProfile.aspx">

When a user is logged in successfully, she’s taken to MyProfile.aspx automatically.

exercise 4 Solution
The LoginStatus simply displays a simple link that indicates whether or not the user is logged in.
By default the text that is displayed is Login when the user is currently not logged in, and Logout
when the user is already logged in. Clicking the link either sends the user to the default Login page,
or logs the user out.

The LoginView is somewhat similar in that it displays different content depending on whether the
user is currently logged in. However, because the control is completely template driven, you can fully
control the content that is displayed. To enable you to differentiate between different user roles, you
can use the RoleGroups element to set up templates that are shown only to users in specific roles.

Chapter 17

exercise 1 Solution
You would implement the favorite theme as a String property and call it FavoriteTheme. To ensure
that you always have a valid theme, you could also set a default value. Finally, you should make the
property accessible to anonymous users. Your final profile property could end up like this:

<add name="FavoriteTheme" defaultValue="Monochrome" allowAnonymous="true" />

To support anonymous profiles, you need to explicitly enable them by adding an
<anonymousIdentification> element as a direct child of <system.web> in the Web.config file:

<system.web>
 <anonymousIdentification enabled="true" cookieName="PlanetWroxAnonymous" />

exercise 2 Solution
Given the syntax you saw in the question, you could now access the new property and use it to
change the current theme in the BasePage:

VB.NET

Private Sub Page_PreInit(sender As Object, e As EventArgs) _
 Handles Me.PreInit
 Dim myProfile As ProfileCommon =
 CType(HttpContext.Current.Profile, ProfileCommon)

bapp01.indd 777 2/21/2014 8:26:13 AM

778 ❘ appeNDIX a ExErcisE AnswErs

 If Not String.IsNullOrEmpty(myProfile.FavoriteTheme) Then
 Page.Theme = myProfile.FavoriteTheme
 End If
End Sub

C#

private void BasePage_PreInit(object sender, EventArgs e)
{
 ProfileCommon myProfile = (ProfileCommon) HttpContext.Current.Profile;
 if (!string.IsNullOrEmpty(myProfile.FavoriteTheme))
 {
 Page.Theme = myProfile.FavoriteTheme;
 }
}

exercise 3 Solution
To finalize the theme selector using Profile, you also need to change the code in the master page
Frontend.master. Instead of storing the user-selected theme in a cookie, you should now store it in
Profile. Change the code in Page_Load as follows:

VB.NET

If Not Page.IsPostBack Then
 Dim selectedTheme As String = Page.Theme
 If Not String.IsNullOrEmpty(Profile.FavoriteTheme) Then
 selectedTheme = Profile.FavoriteTheme
 End If
 If Not String.IsNullOrEmpty(selectedTheme) Then
 Dim item As ListItem = ThemeList.Items.FindByValue(selectedTheme)
 If item IsNot Nothing Then
 item.Selected = True
 End If
 End If
End If
Select Case Page.Theme.ToLower()

C#

if (!Page.IsPostBack)
{
 string selectedTheme = Page.Theme;
 if (!string.IsNullOrEmpty(Profile.FavoriteTheme))
 {
 selectedTheme = Profile.FavoriteTheme;
 }
 if (!string.IsNullOrEmpty(selectedTheme))
 {
 ListItem item = ThemeList.Items.FindByValue(selectedTheme);
 if (item != null)
 {
 item.Selected = true;
 }
 }
}
switch (Page.Theme.ToLower())

bapp01.indd 778 2/21/2014 8:26:13 AM

Chapter 18 ❘ 779

You can then simplify the code in ThemeList_SelectedIndexChanged in the master page to:

VB.NET

Protected Sub ThemeList_SelectedIndexChanged(sender As Object,
 e As EventArgs) Handles ThemeList.SelectedIndexChanged
 Profile.FavoriteTheme = ThemeList.SelectedValue
 Response.Redirect(Request.Url.ToString())
End Sub

C#

protected void ThemeList_SelectedIndexChanged(object sender, EventArgs e)
{
 Profile.FavoriteTheme = ThemeList.SelectedValue;
 Response.Redirect(Request.Url.ToString());
}

Chapter 18

exercise 1 Solution
Debugging is the process of watching your code execute in the development environment —
investigating variables and looking into objects in order to understand the execution path of your
code — looking for bugs with the aim to fix them. Debugging usually takes place at development
time in your Visual Studio IDE.

Tracing, on the other hand, provides you with information on the runtime execution of your code.
As discussed in this chapter, you can use tracing to get information about events that fire and the
order in which they fire. Additionally, you can add your own information to the trace. Because
disabling tracing through configuration greatly minimizes the performance overhead associated
with it, you can leave your trace calls in the code, making it easy to disable and enable tracing
whenever you need it.

exercise 2 Solution
The best way to stop a possible exception from ending up in the user interface is to wrap your code
in a Try/Catch block. That way you can display an error message to the user in case something goes
wrong. Your code could end up looking like this:

VB.NET

Try
 ' Execute code here to send an e-mail.
Catch ex As SmtpException
 ErrorMessage.Text = "Something went wrong while sending your message."
End Try

C#

try
{
 // Execute code here to send an e-mail.

bapp01.indd 779 2/21/2014 8:26:13 AM

780 ❘ appeNDIX a ExErcisE AnswErs

}
catch (SmtpException ex)
{
 ErrorMessage.Text = "Something went wrong while sending your message.";
}

exercise 3 Solution
To understand which exceptions occur in the site and find out where they occur (that is, what
pages or code files are causing the exceptions) you can log all exceptions using some code in the
Application_Error event handler. The exception details you can intercept in this method should
help you understand the cause of the exception, which in turn should help in finding a fix for it.

To prevent your users from seeing the “Yellow Screen of Death” error messages, you need to use
custom error pages. You should create a simple Web Form that tells the user something went wrong.

To tell the ASP.NET run time to show the contents of that file instead of the error message, you need
the following element in your Web.config:

<customErrors mode="On" defaultRedirect="~/Errors/AllOtherErrors.aspx"
 redirectMode="ResponseRewrite">
 <error statusCode="500" redirect="~/Errors/Error500.aspx" />
</customErrors>

This element sets up a special page for error code 500 that occurs when your code crashes
unexpectedly.

When other exceptions occur, such as a “Page not found” error, users are sent to the more generic
AllOtherErrors.aspx page.

bapp01.indd 780 2/21/2014 8:26:13 AM

B
Configuring SQL Server 2012

So far, the exercises in the book assume that you are using Microsoft SQL Express 2012
LocalDB Edition 11.0 as the database for the Planet Wrox project. SQL Express LocalDB
Edition 11.0 is great for development because it’s free, lightweight, and easy to use. However,
it’s not designed to be used in a production environment and is limited in terms of proces-
sor and memory usage and database size. In cases where the LocalDB edition is not enough,
you need to look at its bigger brothers: SQL Server 2012 Express edition or the commercial
versions of SQL Server 2012, such as the Standard or Enterprise Editions. In this appendix
you learn more about SQL Server 2012, its security model, how to enable your SQL Server
2012 database and ASP.NET 4.5.1 website to work together, and how to use SQL Server
Management Studio Express, a free tool from Microsoft that lets you manage your database.

Although this appendix doesn’t discuss earlier versions of SQL Server, you’ll find that most of
the concepts apply to these older versions as well. In fact, you can also use SQL Server 2012
Management Studio Express to manage older SQL Server 2005 and 2008 databases. This
appendix uses SQL Server Express edition because it’s a free download, but the same prin-
ciples apply to the commercial versions of SQL Server.

Configuring SQL Server 2012

Before you can configure your database, you need to be aware of the various security concepts
that are inevitably associated with databases and web applications. In Chapter 19 you learned
how the account used by the web server plays a big role when configuring security settings for
the filesystem, and that’s no different when connecting to SQL Server. In the following section,
you get a quick primer on the different ways to connect to SQL Server. In the section that fol-
lows you see how to attach your .mdf database files to SQL Server, followed by a discussion of
configuring your application and database so they can talk to each other.

bapp02.indd 781 2/21/2014 8:27:41 AM

782 ❘ APPenDiX B Configuring SQL Server 2012

Terminology and Concepts
When you connect to a SQL Server database, SQL Server needs to know who you are so it can
enforce the correct access policies on the objects, like tables in the database. SQL Server supports
two different authentication mechanisms: SQL Server Authentication and Windows Authentication
(often called Integrated Security). Both come with a few advantages of their own and require you to
write different connection strings to connect to SQL Server. In the following section you see the two
most common connection strings, but you’re advised to visit www.connectionstrings.com for an
extensive list of possible connection strings.

SQL Server Authentication
With SQL Server Authentication, SQL Server takes care of user management. You manage the users
for your SQL Server database with Microsoft SQL Server Management Studio, either the Express
edition (which you see how to use a little later in this appendix) or the full versions that ship with
the commercial versions of SQL Server. SQL Server uses a login that handles authentication. You
define this login at the server level by providing a login name and a password. A login can then be
mapped to a database user to grant access to a specific database.

To connect your web application to a SQL Server installation that requires you to use SQL Server
Authentication, you need to pass a username and password in the connection string of your applica-
tion. A typical connection string looks like this:

Data Source=ServerName;Initial Catalog=DatabaseName;
 User Id=UserName;Password=Password;

In this case the Data Source points to an unnamed instance of SQL Server: the SQL server is
addressed by its machine name alone. It’s also possible to install SQL Server as a named instance.
With a named instance, the name of the server is followed by a back slash (\) and the name of a
particular SQL Server instance. For example:

Data Source=ServerName\InstanceName;Initial Catalog=DatabaseName;
 User Id=UserName;Password=Password;

SQL Server Authentication is often used when you need to connect to a remote SQL Server over the
Internet because Windows Authentication, discussed next, is not supported in that scenario.

Windows Authentication
With Windows Authentication, the Windows OS takes care of user management. All interaction
with the database is done in the context of the calling user so the database knows who’s accessing
the system. You still need to map a Windows login to a SQL Server database user so SQL Server can
determine whether the account has sufficient permissions. I show you how to do this later.

A typical connection string using Windows Authentication looks like this:

Data Source=ServerName;Initial Catalog=DatabaseName;Trusted_Connection=True

Instead of specifying a username and password, you add Trusted_Connection=True to the con-
nection string to indicate you want to connect to the server with the user context of the calling user.
You may also come across the setting Integrated Security=True, which has the same effect.

bapp02.indd 782 2/21/2014 8:27:41 AM

http://www.connectionstrings.com

Configuring SQL Server 2012 ❘ 783

Because both authentication methods eventually do the same thing (they enable you to connect to
SQL Server), you may wonder which one of the two you should use.

Choosing between Windows and Server Authentication
In general, it’s recommended to use Windows Authentication when possible. The fact that you
don’t need to use a password in the connection string means your application will be a bit safer.
You don’t need to send the password over the wire, and it’s also not stored in a configuration file
for your application.

However, SQL Server Authentication is a bit easier to set up. Because you specify the username and
password explicitly, you don’t need to know the final user account that your application runs under.

Later in this appendix you see how to use both authentication mechanisms to connect to your data-
base. However, you need to look at something else first: the tools used to manage SQL Server.

using SQL Server Management Studio
You use SQL Server Management Studio to manage your SQL server and databases. It enables you
to attach and detach databases to and from your SQL Server; create new database objects like tables
in existing databases; select, create, edit, and delete data; and much more.

So far, you’ve been using the LocalDB version of SQL Server, the developer-friendly version. In
addition to LocalDB, Microsoft has another free version of SQL Server called SQL Server Express.
The following sections of this appendix show you how to work with this free SQL Server
Express edition, because it’s very similar in use to its commercial and production-ready databases.
If you only installed LocalDB, you need to download and install SQL Server Express along with the
free SQL Server Management Studio Express. The section “Installing SQL Server 2012 Express” in
Chapter 12 explains how to acquire SQL Server 2012 Express Edition as well as its Management
Studio component.

If you are already using a commercial version of SQL Server, you already have access to the full ver-
sion of SQL Server Management Studio, because it comes bundled with the database engine.

If you are having trouble connecting to a remote SQL Server (for example, an instance of SQL
Server that is not on the same physical server as the one on which you’re running Management
Studio), you may need to enable remote connections for that SQL Server first. This is discussed next.

Enabling Remote Connections in SQL Server
When working with SQL Server, you may receive an error stating that the server was not found, not
accessible, or that remote connections may not be configured properly.

Although you may get this error when the database server is down, you also get this error when
SQL Server is not configured for remote connections. In a default installation, SQL Server allows
only local applications to connect and blocks remote connections automatically. To resolve this, and
grant remote systems access to the server as well, follow these steps:

 1. Open the SQL Server Configuration Manager from the Start menu or Start screen.
Depending on the version of SQL Server you’re using, this item may be located under the
Microsoft SQL Server 2012/Configuration Tools submenu.

bapp02.indd 783 2/21/2014 8:27:41 AM

784 ❘ APPenDiX B Configuring SQL Server 2012

3. In the list with protocols on the right, right-click Named Pipes and choose Enable if its sta-
tus is currently set to Disabled. Click OK to the message that explains you need to restart
SQL Server to apply the changes.

4. Repeat the previous step, but now enable TCP/IP.

5. Restart SQL Server. To do this, click SQL Server Services in the SQL Server Configuration
Manager (shown in Figure B-1), then right-click your server and choose Restart. If you get
an error about security permissions, you may need to reboot your computer instead.

SQL Server now allows incoming connections from remote machines. However, before you can
actually use your databases, you need to attach them to SQL Server first. This is described in the
following section.

Note If you have trouble connecting to SQL Server, make sure that SQL
Server is installed and running. To verify this, open the Control Panel and then
open the Administrative Tools section found in the System and Security cate-
gory. Next, open the Services item and then verify that the SQL Server instance
you are connecting to is running. If you installed SQL Server Express on your
local machine with the default instance name, the service is called SQL Server
(SQLEXPRESS).

Attaching Databases to SQL Server
SQL Server Express enables you to work with database files in two ways: You can either attach them
at run time using a special attribute in the connection string, or you can attach them using tools
such as Management Studio before you start using the database.

2. In the window that appears, expand SQL Server Network Configuration, and click the
Protocols for SQLEXPRESS option to display the list with available protocols (the named
instance SQLEXPRESS could be different on your machine). If you’re running a 64-bit ver-
sion of Windows, you see an additional node with this name, followed by (32-bit). In that
case, find the one that contains the Protocols for SQLEXPRESS node. Figure B-1 shows the
list for a SQL Server instance called SQLEXPRESS on a 64-bit machine.

figure B-1

bapp02.indd 784 2/21/2014 8:27:41 AM

www.SoftGozar.com

Configuring SQL Server 2012 ❘ 785

You’ve been using the first option in all database-related chapters so far using the LocalDB version
of SQL Server. The Planet Wrox connection string you used looks like this:

<add name="PlanetWroxConnectionString1"
 connectionString="Data Source=(localdb)\v11.0;
 AttachDbFilename=|DataDirectory|\PlanetWrox.mdf;Trusted_Connection=True;"
 providerName="System.Data.SqlClient" />

This connection string points to a database called PlanetWrox.mdf located in the website’s
App_Data folder (determined by |DataDirectory|). The connection string instructs SQL Server to
attach this database file to SQL Server LocalDB on the fly when it’s used. When the database is no
longer needed, it is detached again. You can use the same connection string to target SQL Server
Express by changing the data source to .\SqlExpress.

This is a great solution for local development because it enables you to easily create and use
SQL Server databases and move them around from project to project. However, with a
production database this option isn’t good enough and you need to attach the database to
SQL Server first. The following steps explain how to attach the PlanetWrox.mdf database
to an instance of SQL Server in case you have the need. You can follow the exact same
steps if you want to use SQL Server Management Studio to perform maintenance tasks on a
SQL Server database that you cannot do in Visual Studio (managing users and roles, for
example).

1. Create a folder that will hold your new database, such as C:\Data\SqlServer.

2. Move the PlanetWrox.mdf file and its associated .ldf file from the website’s App_Data
folder at C:\BegASPNET\Release to this new folder.

3. Enable Modify permissions on the folder where the database resides (C:\Data\SqlServer)
for the account used by SQL Server (which is the Network Service account by default)
and for your own account. Chapter 19 explains how to set these permissions.

4. Open SQL Server Management Studio and log in to your SQL Server instance to which
you want to attach the database. Depending on your security settings, you may have to run
this process as an administrator. To do this for Windows 7 or Server 2008, right-click the
Management Studio Start menu item and choose Run as Administrator. For Windows 8 or
Server 2012, right-click the item in the Start screen and then choose Run as Administrator
from the Options bar that has appeared.

5. Right-click the Databases node and choose Attach.

6. In the dialog box that follows, click the Add button and then select the PlanetWrox.mdf file
you moved to C:\Data\SqlServer in step 2.

7. Click the value in the Attach As column to make it editable and type PlanetWrox as the new
name that will be given to the database. Once you’re done, your dialog box should look like
Figure B-2.

bapp02.indd 785 2/21/2014 8:27:41 AM

www.SoftGozar.com

786 ❘ APPenDiX B Configuring SQL Server 2012

 8. Click OK to attach the database to SQL Server. If you get
an error, make sure your own account (or the Users group
you are part of) and the Network Service account both
have Modify permissions on the C:\Data\SqlServer folder
and the .mdf files this folder contains. Also, try running SQL
Server Management Studio as an administrator as explained
in step 4.

 9. Your database is now accessible under the Databases node
of Management Studio’s Object Explorer. If you expand
the Databases element and then look into your database,
you should see familiar items like tables that you also saw
in the Server Explorer in Visual Studio earlier in the
book. Figure B-3 shows the attached database and its tables.

At this stage, only administrative accounts (Windows administrators
or the built-in SQL Server administrative account called SA) have
access to the database. To have the Planet Wrox website work with this
 database, you need to configure both SQL Server security and your
website. You see how to do this next.

figure B-2

figure B-3

bapp02.indd 786 2/21/2014 8:27:42 AM

Configuring SQL Server 2012 ❘ 787

Connecting Your Application to SQL Server 2012
In the following section, I show you how to connect to SQL Server from two different but common
scenarios: using SQL Server Authentication and using Windows Authentication when IIS and SQL
Server are on the same server. For both scenarios, you see how to configure SQL Server, the Planet
Wrox website, and if necessary, your Windows accounts.

You’re likely to use the first scenario when dealing with an external hosting company that hosts
your site. When web hosts offer SQL Server, they often use SQL Server Authentication and, as such,
require you to pass a username and password to the database server.

The second scenario is useful if you host the site yourself and have both SQL Server 2012 and IIS on
the same machine.

More advanced scenarios, such as using Windows Authentication with IIS and SQL Server on two
different machines, are beyond the scope of this appendix. For more information about config-
uring and securing SQL Server, get yourself a copy of Professional Microsoft SQL Server 2012
Administration by Adam Jorgensen, Steven Wort, Ross LoForte, and Brian Knight, 2012 (Wrox,
ISBN: 978-1-1181-0688-4).

Scenario 1 — Using SQL Server Authentication
From a configuration point of view, this is probably the easiest scenario to configure: All you need to
do is make sure that your SQL Server installation supports SQL Server Authentication, create a user
in SQL Server, and then use that account in the connection string of the Planet Wrox website. To do
this, follow these steps:

 1. In SQL Server Management Studio, right-click the server name in the Object Explorer
shown in Figure B-3, choose Properties, and switch to the Security category. The dialog
box shown in Figure B-4 appears.

figure B-4

bapp02.indd 787 2/21/2014 8:27:42 AM

788 ❘ APPenDiX B Configuring SQL Server 2012

 2. If not already selected, choose the SQL Server and Windows Authentication Mode item
at the top of the screen. Before you click OK, click the Help item at the top of the screen
and read a bit more about SQL and Windows Authentication, and determine if you really
need SQL Server Authentication. Windows Authentication is more secure than SQL Server
Authentication, so you’re advised to use that option whenever possible.

 3. If you changed the server authentication, restart SQL Server. You can do this by right-
clicking the server in the Object Explorer and choosing Restart. If you get an error about
security permissions, you may need to reboot your computer instead.

 4. Back in SQL Server Management Studio’s Object Explorer, expand the server’s Security
node visible at the bottom of Figure B-3. Make sure you choose the one under your server
name, and not the one belonging to a specific database. Right-click Logins and choose
New Login.

 5. Type a login name, then select the SQL Server Authentication option and type a password
(twice). In this and the following examples, I’ll use PlanetWroxUser as the username, and
Pa$$w0rD (with a zero instead of the letter o) as the password.

 6. Clear the Enforce Password Expiration option. This also disables User Must Change
Password at Next Login. Your dialog box should end up looking like the one in Figure B-5.

figure B-5

bapp02.indd 788 2/21/2014 8:27:42 AM

Configuring SQL Server 2012 ❘ 789

If you want to learn more about the individual settings on this screen, click the Help button
at the top of the screen.

 7. Click OK to create the new account.

With the account created, the next step is to give this new account the proper permissions to your
database:

 1. On the Object Explorer, expand Databases, then the PlanetWrox database, followed by the
Security node. Finally, right-click the Users node and choose New User.

 2. In the User Type drop-down, choose SQL User with Login (this option doesn’t exist in ear-
lier versions of Management Studio). In the User Name text box, type PlanetWroxUser.

 3. In the Login Name text box, type PlanetWroxUser again. Alternatively, click the ellipsis
button, then click Browse, and select the user from the list that has appeared.

 4. Click Membership in the list on the left and you see a box labeled Database Role
Membership (in earlier versions of SQL Server Management Studio this box is on the same
page where you enter the username.) In this box, you can choose a number of roles that
you can grant to your new user. The rule here is: give users as few permissions as possible.
A good choice is db_datareader and db_datawriter, which allows the account to both read
from and write to tables in the database, so check these two options, visible in Figure B-6.

figure B-6

bapp02.indd 789 2/21/2014 8:27:43 AM

790 ❘ APPenDiX B Configuring SQL Server 2012

Note Check out SQL Server’s Books Online for more information about the
various roles.

 5. If you want to set fine-grained security options for your database objects, click the
Securables option you see in the left-hand part of Figure B-6. This dialog box enables you
to determine permissions for the user account on objects in your database like tables, views,
and stored procedures. For the Planet Wrox website, you don’t need to make any changes in
this dialog box.

 6. Finally, click OK to create the PlanetWroxUser account and to assign it to the db_datareader
and db_datawriter roles.

 7. You can close SQL Server Management Studio because you’re done with it for now.

Now that SQL Server and your user accounts are configured correctly, the final phase is to configure
the website to use this new user account.

 1. Open the Web.config file of the deployed Planet Wrox application from the C:\BegASPNET\
Release folder.

 2. Modify the <connectionStrings> element as follows:

<connectionStrings>
 <add name="PlanetWroxConnectionString1" connectionString="Data Source=ServerName;
 Initial Catalog=PlanetWrox;User ID=PlanetWroxUser;password=Pa$$w0rD"
 providerName="System.Data.SqlClient"
 />
 <add name="PlanetWroxEntities" connectionString="
 metadata=res://*/App _ Code.PlanetWrox.csdl|res://*/App _ Code.PlanetWrox.ssdl|res
 ://*/App _ Code.PlanetWrox.msl;provider=System.Data.SqlClient;provider connection
 string="Data Source=ServerName;Initial Catalog=PlanetWrox;
 User ID=PlanetWroxUser;password=Pa$$w0rD;MultipleActiveResultSets=True""
 providerName="System.Data.EntityClient"
 />
</connectionStrings>

In your configuration file, each connection string should be on a single line. Don’t forget
to replace the value ServerName in the Data Source attributes with a valid server name.
Depending on your server and configuration, this could be as simple as (local) or
.\SqlExpress to point to a SQL Server on the local machine, DatabaseServer to point
to a server called DatabaseServer on the network, or something like DatabaseServer\
Sql2012 that points to a named instance called Sql2012 on a machine called
DatabaseServer.

 3. Save the changes and then open the site by starting your browser and going to http://
localhost. Everything should still work, but the site no longer uses the database in the
App_Data folder; it uses the SQL Server you defined in your connection strings instead.

 4. To make sure this new connection string remains available in future updates of the site, you
should also add it to the file Web.To local disk.config in the website in Visual Studio.

bapp02.indd 790 2/21/2014 8:27:43 AM

http://localhost
http://localhost

Configuring SQL Server 2012 ❘ 791

If you get an error when browsing to the site on your local host, you may need to turn off
custom errors in Web.config (for security reasons, set it to RemoteOnly instead of to Off)
to see the actual error message. Possible reasons for an error include an incorrect username,
password, or server name in the connection string, and an incorrectly configured database
role membership for the PlanetWroxUser account.

Scenario 2 — Using Windows Authentication with IIS and the
Database on the Same Machine

This is a common scenario, especially when you’re running your site on a local machine that
you control yourself. Both the web server (either IIS or the built-in development web server)
and SQL Server run on the same physical machine. This scenario makes it easy to use Windows
Authentication because both the web server and SQL Server can use the same Windows account. To
configure your server for this scenario, follow these steps:

 1. Determine the account used by your web server. Refer to Chapter 19 for precise details
on how to do this, but you’re likely to need the ApplicationPoolIdentity account (called
IIS AppPool\.NET v4.5 by default). I am using the account IIS AppPool\.NET v4.5 in the
remainder of this section.

 2. Next, you need to map this Windows account to a SQL Server login. To do this, open SQL
Server Management Studio and log in to your SQL Server instance. Expand the Security
node for the server (and not of an individual database), as shown at the bottom of Figure
B-3. Then right-click Logins and choose New Login.

 3. In the Login Name box, enter IIS AppPool\.NET v4.5 and click OK to add the new login.

With the login created, the next step is to map this login to a database user that has the proper
permissions to your database:

 1. Open the Security node of the PlanetWrox database, right-click the Users node, and choose
New User.

 2. In the User Type drop-down, choose SQL User with Login (this option doesn’t exist in
earlier versions of Management Studio). In the User Name text box, type .NET v4.5.

 3. For the Login Name text box, click the ellipsis button and then click Browse so you can
select a username. Choose the account you configured earlier (called IIS AppPool\.NET 4.5)
and click OK twice.

 4. Click Membership in the list on the left and you see a box labeled Database Role
Membership (in earlier versions of SQL Server Management Studio this box is on the same
page where you enter the username). In this box, you can choose a number of roles that
you can grant to your new user. The rule here is: give users as few permissions as possible.
A good choice is db_datareader and db_datawriter, which allows the account to both read
from and write to tables in the database, so check these two options, shown earlier in
Figure B-6.

Note Check out SQL Server’s Books Online for more information about the
various roles.

bapp02.indd 791 2/21/2014 8:27:43 AM

792 ❘ APPenDiX B Configuring SQL Server 2012

 5. If you want to set fine-grained security options for your database objects, click the
Securables option visible in Figure B-6. This dialog box enables you to determine permis-
sions for the user account on objects in your database like tables, views, and stored proce-
dures. For the Planet Wrox website, you don’t need to make any changes in this dialog box.

 6. Finally, click OK to create the database user and assign it to the db_datareader and db_
datawriter roles.

Now that SQL Server and your user accounts are configured correctly, the final step is to configure
the website to use this new user account.

 1. Open the Web.config file of the Planet Wrox application from the C:\BegASPNET\Release
folder.

 2. Modify the <connectionStrings> element so it ends up like this:

<connectionStrings>
 <add name="PlanetWroxConnectionString1" connectionString="Data Source=ServerName;
 Initial Catalog=PlanetWrox;Trusted _ Connection=True"
 providerName="System.Data.SqlClient"
 />
 <add name="PlanetWroxEntities" connectionString="
 metadata=res://*/App _ Code.PlanetWrox.csdl|res://*/App _ Code.PlanetWrox.ssdl|res
 ://*/App _ Code.PlanetWrox.msl;provider=System.Data.SqlClient;provider connection
 string="Data Source=ServerName;Initial Catalog=PlanetWrox;
 Trusted _ Connection=True;MultipleActiveResultSets=True""
 providerName="System.Data.EntityClient"
 />
</connectionStrings>

In your configuration file, each connection string should be on a single line. Don’t forget
to replace the value ServerName in the Data Source attributes with a valid server name.
Depending on your server and configuration, this could be as simple as (local) or
.\SqlExpress to point to a SQL Server on the local machine, DatabaseServer to point to
a server on the network called DatabaseServer, or something like DatabaseServer\Sql2012
that points to a named instance called Sql2012 on a machine called DatabaseServer.

 3. Save the changes and then open the site by starting your browser and going to http://
localhost. Everything should still work as expected, but the site no longer uses the
 database in the App_Data folder; it uses the SQL Server defined in your connection strings
instead through Windows Authentication, as identified by the Trusted_Connection=True
attribute in the connection string.

 4. To make sure this new connection string remains available in future updates of the site, you
should also add it to the file Web.To local disk.config in the website in Visual Studio.

If you get an error when browsing to the site, you may need to turn off custom errors in the
Web.config file (or set it to RemoteOnly) to see the actual error message. Possible reasons
for the error are an incorrect server name in the connection string and an incorrectly config-
ured database role membership for the configured account.

Once you find out the correct account and have configured SQL Server correctly, using Windows
Authentication isn’t that hard. In fact, your connection string now becomes a little easier and more
secure, because you don’t need to store a username and password in it anymore.

bapp02.indd 792 2/21/2014 8:27:43 AM

http://localhost
http://localhost

Configuring Application Services ❘ 793

Configuring APPLiCATion ServiCeS

Earlier in this book you learned that the ASP.NET application services make use of a SQL Server
database. You also saw how to make sure your own website and the application services use the
same database.

If you chose not to merge your database and the one used by the application services, your site now
uses two databases: your own and one called aspnetdb.mdf. However, you can still merge them
later if you want. In earlier versions of ASP.NET, this involved quite a bit of work, including changes
to the Web.config file and running command-line tools. However, with the updated providers this
is now pretty simple. Follow these steps to let the application services use your own database:

 1. First, make sure the application services point to a connection string you want to use. To
do this, you need to set the connectionStringName to a connection string defined in your
config file. The following example shows how to do this for the Membership section, but the
other services follow a similar pattern:

<membership defaultProvider="DefaultMembershipProvider">
 <providers>
 <add name="DefaultMembershipProvider"
 type="System.Web.Providers.DefaultMembershipProvider,
 System.Web.Providers, Version=1.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"
 connectionStringName="PlanetWroxConnectionString1"
 enablePasswordRetrieval="false" enablePasswordReset="true"
 requiresQuestionAndAnswer="false" requiresUniqueEmail="false"
 maxInvalidPasswordAttempts="5" minRequiredPasswordLength="7"
 minRequiredNonalphanumericCharacters="1" passwordAttemptWindow="10"
 applicationName="/"
 /> </providers>
</membership>

Notice how connectionStringName points to the connection string called
PlanetWroxConnectionString1, defined elsewhere in the config file.

 2. Make sure the account used by the web server has permissions to alter the database schema.
You can accomplish this by adding the account to the db_ddladmin group, shown in Figure
B-6. This grants the account the permissions to execute Data Definition Language state-
ments, which means it can create and alter tables and other objects in the database.

 3. Restart IIS. To do this, start the IIS Server Manager (type inetmgr in the Start menu or Start
screen), click your server name, and then click Restart in the Actions panel on the right. To
minimize impact on the server, you could also recycle just the application pool used by the
site by right-clicking it and choosing Recycle.

 4. Browse to your site and request the Login page. Try to log in with a fake username and
password. At this stage, the .NET run time will modify the database and add the necessary
tables to it. If you look in the database defined in the connection string used by the member-
ship services, you’ll notice it now contains the tables that are used by Membership, Roles,
and Profile.

 5. For security reasons, you should now remove the account from the db_ddladmin group
because using Membership at run time does not require these permissions.

bapp02.indd 793 2/21/2014 8:27:43 AM

bapp02.indd 794 2/21/2014 8:27:43 AM

795

Index

Symbols
%>

ASP.NET Server Controls, 102
expression syntax, 450

>=
comparison operator, 151
WHERE, 413

: (colon)
anonymous objects, 387
CSS text editor, 85–89
declarations, 69
inheritance, 187

. (dot, period)
anonymous types, 501
constructors, 52
CSS, 67
selectors, 90

.. (dots, periods-double)
href, 60
user controls, 280

; (semi-colon)
C#, 52, 53
declarations, 69

*/, comments, 87, 251
/*, comments, 87, 251
<=, comparison operator, 151
<%$, expression syntax, 450
& (ampersand)

concatenation operator, 152–153, 365, 774
logical operator, 154

&& (ampersand-double), logical operator, 154
<> (angle brackets)

ASP.NET tags, 15
comparison operator, 151
CSS, 66
tags, 7
VB.NET, 353
WHERE, 413
XML, 322

' (apostrophe), VS, 56
* (asterisk)

arithmetic operator, 148
Management, 621
SELECT, 412–413
Universal selector, 70
validation controls, 309

@ (at symbol)
\ (backslash), 327
e-mail, 326
parameters, 445

\ (backslash)
arithmetic operator, 148
C#, 327
escape, 212, 327

^ (carrot symbol), arithmetic operator, 148
 (curly braces)

anonymous objects, 387
anonymous types, 499
CSS text editor, 85–89
placeholders, 364

$ (dollar sign), jQuery, 379
"" (double quotes)

CSS, 66
error message, 212
HTML5 attributes, 15

= (equals sign)
ASP.NET Server Controls, 102
comparison operator, 151
VS, 508
WHERE, 413

== (equals symbol-double), C# comparison
operator, 151

! (exclamation mark), logical operator, 154
/ (forward slash)

applicationName, 610
arithmetic operator, 148
ASP.NET tags, 15, 103
CSS, 222
HTML elements, 11
Management, 620

// (forward slash-double)
C#, 138, 176
comments, 176

bindex.indd 795 25-02-2014 10:45:42

www.SoftGozar.com

796

AppConfiguration – ASP.NET# (hash symbol) – App_Code

(hash symbol)
color, 57
CSS, 57

text editor, 85–89
ID selectors, 25, 71

(hash symbol-double), placeholders, 332
- (minus sign), arithmetic operator, 148
() (parentheses), methods, 145
% (percentage symbol)

arithmetic operator, 148
tags, 7

| (pipe symbol), logical operator, 154
|| (pipe symbol-double), logical operator, 154
+ (plus sign)

arithmetic operator, 148
C#, 52
concatenation operator, 152–153, 365, 774
data tips, 690

? (question mark), Management, 621
'' (single quotes)

HTML5 attributes, 14–15
INSERT, 421

[] (square brackets)
C#, 143

attributes, 353
functions, 168
VS tables, 445

' (tick)
C#, 138
comments, 176

` (back tick), 634
~ (tilde), user controls, 279
_ (underscore)

backing variables, 181
Visual Basic, 52

@ Page, 200, 762
C#, 577
Title, 219

<% Password %>, 607
@ Register, user controls, 277–280
<% UserName %>, 607
<%, ASP.NET Server Controls, 102
} (closing curly bracket), rule sets, 68
', HTML, 56

A
<a>, 72, 88, 260

HTML tag, 12, 59, 60
master pages, 199
user controls, 277, 280

About, 347
absolute expiration date, Cache API, 584
absolute URLs, 242

abstract classes, 188
access modifiers, 168, 189
AccessKey, 107
Account, 36
Active Server Pages (ASP), 1
ActiveStepIndex, 120
Add, 578–579, 646
<add>, 631, 636, 717
Add Existing Item, 45
Add Tab, Toolbox, 24
addClass, 382, 387
AddEditReview, 462, 467, 469, 475, 565, 578, 585
AddEditReviewHandCoded.aspx, 774
ADO.NET Entity Data Model, 44, 489–495, 651
ADO.NET Entity Framework (EF), 37, 485–538

data source controls, 440
databases, 406
hand-coding data access code, 574
IEnumerable, 534–535
lazy loading, 493
practical tips, 536

AdRotator, 121
Advanced SQL Generation Options, SSMS, 459
a:hover, 88
AJAX. See Asynchronous JavaScript and XML
AjaxFrameworkMode, 345
alert, 390
All.aspx, 582, 630
allowAnonymous, 631
AllowCustomErrorsRedirect, ScriptManager, 344
AllowPaging, 445
AllowSorting, 445
alt, 277
AlternateText, 277
AlternatingItemStyle, 549
<AlternatingItemTemplate>, 512
AlternatingRowStyle, 542
And, logical operator, 154
AND, WHERE, 414
AndAlso, logical operator, 154
animate, 377, 392
anonymous identification, 655–657
anonymous objects, 387, 499–504, 559
anonymous profiles, 777
anonymous types, LINQ queries, 499–504
AnonymousProperty, 656
AnonymousTemplate, 600
ANSI 92 SQL standard, 408–409
App_Code, 136, 651

ASP.NET programming, 169–173
base page, 206
debugging, 683
extension-less URLs, 261
LINQ to Entities, 489

NameService, 358
Profile, 633
user controls, 295, 296
Web.config, 719

AppConfiguration, 720, 721, 722, 723
App_Data, 36, 441, 442

IIS, 741
LINQ to Entities, 489
NTFS settings, 742
remote server, 748, 749
SQL Server Authentication, 790
SSMS, 785
web deployment, 752
WSAT, 617

AppendAllText, 328
application folder, relative URLs, 241
Application Lifecycle Management, 19
Application Mapping, 10
Application Pool, IIS, 450
application services

security, 591–593
SQL Server, 793

Application_Error, 261, 676, 681,
723, 780

cookies, 682
applicationName, 610
ApplicationPoolIdentity, IIS, 741
Application_Start, 725
Apply Styles window, 84, 93, 94–96
appSettings, 398, 717, 734
App_Themes, 217
args, 319, 766
arithmetic operators, 148–151
ArrayList, 142, 144, 145
Array.Resize, VB.NET, 144
arrays, 142–144
<article>, 12
.asax, 43
ASC, 414
.ascx, 42
<aside>, 12
aside, CSS Box Model, 81
ASMX, 353
ASP. See Active Server Pages
asp:, 102
<asp:Button>, 122
<asp:Content>, 7, 200, 202
<asp:DropDownList>, 119, 122
<asp:HyperLink>, 59
<asp:Image>, 528
<asp:Label>, 105
<asp:ListItem>, 113
ASP.NET

adding existing files, 44–45

bindex.indd 796 25-02-2014 10:45:42

797

AppConfiguration – ASP.NET# (hash symbol) – App_Code

abstract classes, 188
access modifiers, 168, 189
AccessKey, 107
Account, 36
Active Server Pages (ASP), 1
ActiveStepIndex, 120
Add, 578–579, 646
<add>, 631, 636, 717
Add Existing Item, 45
Add Tab, Toolbox, 24
addClass, 382, 387
AddEditReview, 462, 467, 469, 475, 565, 578, 585
AddEditReviewHandCoded.aspx, 774
ADO.NET Entity Data Model, 44, 489–495, 651
ADO.NET Entity Framework (EF), 37, 485–538

data source controls, 440
databases, 406
hand-coding data access code, 574
IEnumerable, 534–535
lazy loading, 493
practical tips, 536

AdRotator, 121
Advanced SQL Generation Options, SSMS, 459
a:hover, 88
AJAX. See Asynchronous JavaScript and XML
AjaxFrameworkMode, 345
alert, 390
All.aspx, 582, 630
allowAnonymous, 631
AllowCustomErrorsRedirect, ScriptManager, 344
AllowPaging, 445
AllowSorting, 445
alt, 277
AlternateText, 277
AlternatingItemStyle, 549
<AlternatingItemTemplate>, 512
AlternatingRowStyle, 542
And, logical operator, 154
AND, WHERE, 414
AndAlso, logical operator, 154
animate, 377, 392
anonymous identification, 655–657
anonymous objects, 387, 499–504, 559
anonymous profiles, 777
anonymous types, LINQ queries, 499–504
AnonymousProperty, 656
AnonymousTemplate, 600
ANSI 92 SQL standard, 408–409
App_Code, 136, 651

ASP.NET programming, 169–173
base page, 206
debugging, 683
extension-less URLs, 261
LINQ to Entities, 489

NameService, 358
Profile, 633
user controls, 295, 296
Web.config, 719

AppConfiguration, 720, 721, 722, 723
App_Data, 36, 441, 442

IIS, 741
LINQ to Entities, 489
NTFS settings, 742
remote server, 748, 749
SQL Server Authentication, 790
SSMS, 785
web deployment, 752
WSAT, 617

AppendAllText, 328
application folder, relative URLs, 241
Application Lifecycle Management, 19
Application Mapping, 10
Application Pool, IIS, 450
application services

security, 591–593
SQL Server, 793

Application_Error, 261, 676, 681,
723, 780

cookies, 682
applicationName, 610
ApplicationPoolIdentity, IIS, 741
Application_Start, 725
Apply Styles window, 84, 93, 94–96
appSettings, 398, 717, 734
App_Themes, 217
args, 319, 766
arithmetic operators, 148–151
ArrayList, 142, 144, 145
Array.Resize, VB.NET, 144
arrays, 142–144
<article>, 12
.asax, 43
ASC, 414
.ascx, 42
<aside>, 12
aside, CSS Box Model, 81
ASMX, 353
ASP. See Active Server Pages
asp:, 102
<asp:Button>, 122
<asp:Content>, 7, 200, 202
<asp:DropDownList>, 119, 122
<asp:HyperLink>, 59
<asp:Image>, 528
<asp:Label>, 105
<asp:ListItem>, 113
ASP.NET

adding existing files, 44–45

building websites, 33–62
code files, 43
complexity, 2
connecting pages, 59–60
CSS, 63–99
data files, 43–44
designing web pages, 63–99
Dynamic Data Entities Web Site template, 37
Empty Web Site template, 36, 37
file types, 41–44
HTML, 54–59
markup, 54–59
organizing website, 45–46
page life cycle, 207–208
programming, 135–194

App_Code, 169–173
arrays, 142–144
collections, 144–145
data types, 137–147
functions, 167–169
generics, 145–147
loops, 162–167
making decisions, 155–162
methods, 167–169
namespaces, 173–175
OO, 178–191
operators, 147–156
organizing code, 167–178
practical tips, 191–192
statements, 147–167
subroutines, 167–169
variables, 137–147

Server Controls, 10, 101–133
Ajax Extensions, 124
ASPX, 102, 105
container, 114–117
data, 123
Dynamic Data, 124
HTML, 101–107, 122–123
list, 110–114
login, 123–124
navigation, 123
pages, 106
postback, 105
practical tips, 131
properties, 106–109
Standard, 109–122
types, 109–124
validation, 123
View State, 129–130
VS, 101
Web Forms, 101
WebParts controls, 124
Wizard, 117–121

bindex.indd 797 25-02-2014 10:45:43

798

backing store – C#ASP.NET (continued) – background-image

backing store, 290
backing variables, 180–181
bandwidth, CSS, 65
Banner, 765
base page, 206–216, 763

implementing, 208–212
templates, 212–216

BasePage, 210, 211, 679, 762, 763, 777–778
Basic Settings mode, 17
BegASPNET, 38
BeginRequest, 261
behaviorConfiguration, 363
BETWEEN, 414
bgcolor, 64
bigint, 426
binary, 426
Bind(), 519, 522
bind(), 389
binding expressions, 462
BindItem, 523, 524
Bio, 639, 640
bit, 425
block, 769
Body, 429, 469, 583
<body>, 12, 196, 378, 726
BodyContent, 7
BodyLabel, 580
Boolean, 462, 631
Bootstrap, 36, 244
border, 73, 75, 89, 759
border, CSS Box Model, 76
BorderColor, 107, 232, 541
BorderStyle, 107, 541
BorderWidth, 107, 541
bound fields, 446
BoundField, 448, 458, 771
Box Model, CSS, 76–82, 89
BoxWithBorders, 759
breadcrumbs, 123, 258, 259–260
breakpoints, 683
Breakpoints window, 688
Browser Link, 701–704
Browser Link Dashboard, 702
bulleted lists, 59
BulletedList, 110, 503, 649
bundling, 723–727
Button, 21, 109, 112, 303, 340, 341, 604

Click, 169, 261, 351, 388, 549, 554, 569, 774
hand-coding data access code, 566
NavigateUrl, 290
Select Case/switch, 160
skins, 233–234
Smart Tasks panel, 111
state engine, 126

special file types, 46
state engine, 124–131
tables, 57–59
tags, 15–16
text, 54–56
validation controls, 301–320
web files, 41–42
Web Forms, 47–61
Web Forms Site, 36
Web Pages, 36
working with website files, 41–46

ASP.NET 1.0, VS, 1
ASP.NET 2.0, 2, 196
ASP.NET 4.5.1

authentication, 593
authorization, 593
creating first website, 5–9
HTML, 10–15
introduction, 9–16
sample application, 29–30

ASP.NET Identity, 593, 660
AspNetCompatibilityRequirements, 353, 767
<asp:Panel>, 287
<asp:Table>, 122
<asp:View>, 114
ASPX

ASP.NET Server Controls, 102, 105
Code Behind, 758
content pages, 202
custom error pages, 675
debugging, 693
dynamic files, 9, 695
event handling, 549
HTML, 8–9
Markup View, 47
master pages, 196
named skins, 234
namespaces, 173
navigation, 240
runtime files, 695
user controls, 274
validation controls, 302

.aspx, 758
Default.aspx, 10
URL, 461
user controls, 274
Web Forms, 42

assignment operators, 147–148
AssociatedControlID, 642
AssociatedUpdatePanelID, 767
asynchronous calls, 337
Asynchronous JavaScript and XML (AJAX)

ASP.NET, 337–368

data source code, 564
flicker-free pages, 340–350
pageLoad, 396
practical tips, 365–366
ScriptManager, 344–345, 360–365, 767
Timer, 350–351
UpdatePanel, 340–344, 564
UpdateProgress, 346–350
user feedback, 345–350
WCF, 352–365, 767

JSON, 359
web services, 351–365

AsyncPostBackErrorMessage, 345
Atkinson, Paul, 420
AttachDbFileName, 450
Attachment, 322
attr(attributeName), 387
attr(attributeName, value), 388
attributes

C#, 353
CSS, 82
GridView, 445
HTML, 14

styles, 541
HTML5, 14–15
Page Inspector, 701

<audio>, HTML tag, 13
authentication, 590, 776

ASP.NET 4.5.1, 593
SQL Server, 782–783, 787–792

authentication, 595, 598
authorization, 591, 593, 776
authorization, 621
authorization rules, 591
Authorized, 429, 461
authorizedReviews, 494
AutoGenerateColumns, 495
AutoID, 283
automatic properties, 172
AutoPostBack, 115, 116, 228, 456, 534, 760
Autos window, debugging, 688
auto-style, 56
auto-style1, 94
Average, 497

B
BackColor, 107, 541, 760

CssClass, 763
skins, 232, 234

background, 75
background-color, 73, 389
background-image, 73

ASP.NET (continued)

bindex.indd 798 25-02-2014 10:45:43

799

backing store – C#ASP.NET (continued) – background-image

backing store, 290
backing variables, 180–181
bandwidth, CSS, 65
Banner, 765
base page, 206–216, 763

implementing, 208–212
templates, 212–216

BasePage, 210, 211, 679, 762, 763, 777–778
Basic Settings mode, 17
BegASPNET, 38
BeginRequest, 261
behaviorConfiguration, 363
BETWEEN, 414
bgcolor, 64
bigint, 426
binary, 426
Bind(), 519, 522
bind(), 389
binding expressions, 462
BindItem, 523, 524
Bio, 639, 640
bit, 425
block, 769
Body, 429, 469, 583
<body>, 12, 196, 378, 726
BodyContent, 7
BodyLabel, 580
Boolean, 462, 631
Bootstrap, 36, 244
border, 73, 75, 89, 759
border, CSS Box Model, 76
BorderColor, 107, 232, 541
BorderStyle, 107, 541
BorderWidth, 107, 541
bound fields, 446
BoundField, 448, 458, 771
Box Model, CSS, 76–82, 89
BoxWithBorders, 759
breadcrumbs, 123, 258, 259–260
breakpoints, 683
Breakpoints window, 688
Browser Link, 701–704
Browser Link Dashboard, 702
bulleted lists, 59
BulletedList, 110, 503, 649
bundling, 723–727
Button, 21, 109, 112, 303, 340, 341, 604

Click, 169, 261, 351, 388, 549, 554, 569, 774
hand-coding data access code, 566
NavigateUrl, 290
Select Case/switch, 160
skins, 233–234
Smart Tasks panel, 111
state engine, 126

ButtonField, 458
ButtonType, 604
ByRef, 168
Byte, 760
ByVal, 168

C
C#, 2, 137–138

access modifiers, 189
anonymous identification, 656
anonymous types, 499, 500, 502
arithmetic operators, 148–151
arrays, 143
ASP.NET Server Controls, 103
attributes, 353
base page, 212
Cache API, 581–582, 583, 584, 585
CheckBoxList, 113
classes, 179
Code Behind, 103
comments, 176–178
comparison operators, 151–152
concatenation operators, 152–153
constructors, 184–186
cookies, 225
custom error pages, 676–679
CustomValidator, 319
DataPager, 531, 533
debugging, 690
DetailsView, 468–469, 474–475
EF, 488, 491
e-mail, 326–327
event handling, 551, 552
events, 190–191
exception handling, 668–675
fields, 180
hand-coding data access code, 567, 569–574
inheritance, 186–188
Label, 52
LINQ, 486
LINQ queries, Model Binding, 508–509
ListView, 514–515, 516, 518, 519–520,

528, 529
logic errors, 666
logical operators, 154–155
ManagePhotoAlbum, 651, 652–653
methods, 183–184

functions, and subroutines, 167–169
namespaces, 173–175
NavigateUrl, 293
objects, 179
OperationMethod, 360

data source code, 564
flicker-free pages, 340–350
pageLoad, 396
practical tips, 365–366
ScriptManager, 344–345, 360–365, 767
Timer, 350–351
UpdatePanel, 340–344, 564
UpdateProgress, 346–350
user feedback, 345–350
WCF, 352–365, 767

JSON, 359
web services, 351–365

AsyncPostBackErrorMessage, 345
Atkinson, Paul, 420
AttachDbFileName, 450
Attachment, 322
attr(attributeName), 387
attr(attributeName, value), 388
attributes

C#, 353
CSS, 82
GridView, 445
HTML, 14

styles, 541
HTML5, 14–15
Page Inspector, 701

<audio>, HTML tag, 13
authentication, 590, 776

ASP.NET 4.5.1, 593
SQL Server, 782–783, 787–792

authentication, 595, 598
authorization, 591, 593, 776
authorization, 621
authorization rules, 591
Authorized, 429, 461
authorizedReviews, 494
AutoGenerateColumns, 495
AutoID, 283
automatic properties, 172
AutoPostBack, 115, 116, 228, 456, 534, 760
Autos window, debugging, 688
auto-style, 56
auto-style1, 94
Average, 497

B
BackColor, 107, 541, 760

CssClass, 763
skins, 232, 234

background, 75
background-color, 73, 389
background-image, 73

bindex.indd 799 25-02-2014 10:45:43

800

CategoryID – Colors, Document WindowC# (continued) – Catch

CategoryID, 265
CDN. See Content Delivery Network
CellPadding, 547
chaining, 379, 388
ChangePassword, 607–609, 638
char, 425
Chart, 440
CheckBox, 109, 115, 116, 760
CheckBoxField, 457, 458
CheckBoxList, 112, 113, 642, 643, 646
ChildrenAsTriggers, 343
class, 59, 71–72, 93, 94

HTML elements, 548
ListView, 521
Menu, 253–254
skins, 234

class files, 136
Class selector, 71–72, 380, 759
classes

abstract, 188
.cs, 43
CSS, 69, 97, 379

ASP.NET Server Controls, 108
Page Inspector, 700
skins, 762
styles, 546

EF, 490
inheritance, 761
.NET Framework, 141
OO, 179
Style, 541
.vb, 43

classic ASP, 1
clear, 81
Clear Styles button, 94
Click

ASP.NET Server Controls, 106
Button, 169, 261, 351, 388, 549, 554, 569, 774

click, , 768
client ID, master pages, 205
ClientID, 106–107

id, 318
user controls, 282–283

ClientIDMode, 206, 283–284, 318, 439, 768
ClientIDRowSuffix, 439
client-side code, WCF, 354–355
client-side events, jQuery, 368
client-side script, debugging, 693–696
client-side validation, 302, 766
ClientValidationFunction, 315, 766
Code Behind, 10

ASPX, 758
base page, 208

@ Page, 577
Profile, 633, 634, 635, 636, 638, 642, 643, 644,

645, 646, 658
programmatic caching, 579, 580
programmatically checking roles, 623, 633
properties, 180–183
read-only and write-only properties, 183
Reviews, 647
roles, 622
RowDataBound, 556, 557–558, 559, 560
syntax errors, 665
System.Linq, 487
templates, 215
themes, 227, 231
this, 212
tracing, 704, 709
value, 172
var, 494
variables, 139–140
WCF, 353, 355–356, 358–359
Web.config, 720, 721, 723
WebConfigurationManager, 719

Cache, 578
Cache API, 576, 580–585
cache dependency, 576
cache invalidation, 576
CacheDependency, 576, 579
caching, 574–585

data source controls, 578
output, 576–578
pitfalls, 575–576
practical tips, 585–586
programmatic, 578–585
stale data, 575–576
web applications, 576–585
Web.config, 576

CalculateButton_Click, 683
Calendar, 121
Call Stack window, 688–689, 691–692
callback methods, 354–355
CallerMemberName, 553
camel case, 138, 316, 354
cascading style sheet (CSS), 14, 222

adding existing files, 44–45
adding to web pages, 82–84
AJAX, 338
ASP.NET, 63–99
attributes, 82
bandwidth, 65
Box Model, 76–82, 89
bundling, 724
Cache API, 582

case sensitivity, 67, 68
CheckBoxList, 113
class, 59
Class selector, 71–72
classes, 69, 97, 379

ASP.NET Server Controls, 108
Page Inspector, 700
skins, 762
styles, 546

.css, 42
declarations, 69
designing web pages, 63–99
Formatting toolbar, 56
hand-coding data access code, 571
HTML, 64–65, 97
ID selector, 71
inline styles, ASP.NET Server Controls, 108
introduction, 65–84
language, 69
ListView, 521–522
master pages, 205
methods, jQuery, 386–388
mixed data, 65
<p>, 69
paragraphs, 69
practical tips, 97
properties, 69, 73–74, 75, 97, 541
Properties Grid, 84, 91–92, 97
RowDataBound, 560
rule sets, 68, 96, 97, 251, 701
selectors, 68–73, 222, 251, 696

grouping and combining, 72–73
shorthand, 75–76
SiteMapPath, 260
skins, 232
static text, 10
style sheets, 70–82
themes, 216, 219
Type selector, 71
Universal selector, 70–71
values, 69, 74–75
VS, 84–96

styles, 93–96
text editor, 85–89

Case, 559
case sensitivity

ASP.NET Server Controls, 103
CSS, 67, 68
ID selectors, 71
JavaScript, 362
jQuery, 375, 398
Replace, 332

Catch, 667, 668, 671, 673, 712, 779–780

C# (continued)

bindex.indd 800 25-02-2014 10:45:44

801

CategoryID – Colors, Document WindowC# (continued) – Catch

CategoryID, 265
CDN. See Content Delivery Network
CellPadding, 547
chaining, 379, 388
ChangePassword, 607–609, 638
char, 425
Chart, 440
CheckBox, 109, 115, 116, 760
CheckBoxField, 457, 458
CheckBoxList, 112, 113, 642, 643, 646
ChildrenAsTriggers, 343
class, 59, 71–72, 93, 94

HTML elements, 548
ListView, 521
Menu, 253–254
skins, 234

class files, 136
Class selector, 71–72, 380, 759
classes

abstract, 188
.cs, 43
CSS, 69, 97, 379

ASP.NET Server Controls, 108
Page Inspector, 700
skins, 762
styles, 546

EF, 490
inheritance, 761
.NET Framework, 141
OO, 179
Style, 541
.vb, 43

classic ASP, 1
clear, 81
Clear Styles button, 94
Click

ASP.NET Server Controls, 106
Button, 169, 261, 351, 388, 549, 554, 569, 774

click, , 768
client ID, master pages, 205
ClientID, 106–107

id, 318
user controls, 282–283

ClientIDMode, 206, 283–284, 318, 439, 768
ClientIDRowSuffix, 439
client-side code, WCF, 354–355
client-side events, jQuery, 368
client-side script, debugging, 693–696
client-side validation, 302, 766
ClientValidationFunction, 315, 766
Code Behind, 10

ASPX, 758
base page, 208

Button, 112
C#, 103
Cache API, 582, 583–584
.cs/.vb, 43
DataBound, 658
DataPager, 531, 533
debugging, 683, 693
DetailsView, 468
EF, 492
event handling, 549
exception handling, 672
GetData, 567
hand-coding data access code, 565
Handles, 318
IIS, 741
jQuery, 394
LINQ queries, 649

Model Binding, 505
ListView, 514, 525, 526
ManagePhotoAlbum, 651
master pages, 197, 227
NameService, 358
namespaces, 173
NavigateUrl, 290
navigation, 240
Panel, 115, 116
Place Code in Separate File, 57
properties, 765
Reviews, 647, 649
RowDataBound, 556, 557
SqlException, 561
state engine, 125
templates, 215
TreeView, 258
user controls, 274, 287
Web Forms, 49–53, 61, 509, 556
Web.config, 721

Code Beside, 10
code files, ASP.NET, 43
Code Only mode, 17
code snippets

VS, 84, 303
Code View, 20, 115
CodeBehind.aspx, 51
CodeFile, 197
CollapseImageToolTip, 255
CollapseImageUrl, 255
collections, ASP.NET programming, 144–145
color, 57, 73, 91
colors

CSS text editor, 85
transparency, 74

Colors, Document Window, 26–27

case sensitivity, 67, 68
CheckBoxList, 113
class, 59
Class selector, 71–72
classes, 69, 97, 379

ASP.NET Server Controls, 108
Page Inspector, 700
skins, 762
styles, 546

.css, 42
declarations, 69
designing web pages, 63–99
Formatting toolbar, 56
hand-coding data access code, 571
HTML, 64–65, 97
ID selector, 71
inline styles, ASP.NET Server Controls, 108
introduction, 65–84
language, 69
ListView, 521–522
master pages, 205
methods, jQuery, 386–388
mixed data, 65
<p>, 69
paragraphs, 69
practical tips, 97
properties, 69, 73–74, 75, 97, 541
Properties Grid, 84, 91–92, 97
RowDataBound, 560
rule sets, 68, 96, 97, 251, 701
selectors, 68–73, 222, 251, 696

grouping and combining, 72–73
shorthand, 75–76
SiteMapPath, 260
skins, 232
static text, 10
style sheets, 70–82
themes, 216, 219
Type selector, 71
Universal selector, 70–71
values, 69, 74–75
VS, 84–96

styles, 93–96
text editor, 85–89

Case, 559
case sensitivity

ASP.NET Server Controls, 103
CSS, 67, 68
ID selectors, 71
JavaScript, 362
jQuery, 375, 398
Replace, 332

Catch, 667, 668, 671, 673, 712, 779–780

bindex.indd 801 25-02-2014 10:45:44

802

.css – default documents<Columns> – css

.css, 42, 45
css(name), 387
css(name, value), 386
css(properties), 387
CssClass, 107, 315, 542, 561, 760

BackColor, 763
Menu, 247
RequiredFieldValidator, 304
skins, 232, 233, 234
Standard validation controls, 308
TreeView, 255

C:\TempMail, 742
CTS. See Common Type System
CType, 141, 142
custom error pages, 675–682, 752
customErrors, 752
<customErrors>, 681, 745
CustomValidator, 314–320, 766

d
dashed, 75
data access code, 564–574
data controls, 123, 437–481

customization, 457–464
events, 555–560
ListView, 772
page life cycle, 555–560

data files, ASP.NET, 43–44
data source controls, 437–481. See also specific

controls
caching, 578
data-bound controls, 441–457
event handling, 560–564

data stores, 593
data tips, 686, 690
data types

ASP.NET programming, 137–147
converting and casting, 140–142
HTML5, validation, 305–308
.NET Framework, 137
Profile, 633–634
properties, user controls, 284–289
SQL Server, 425–427

Database Engine Services, 408
databases, 405–436. See also Structured Query

Language
exception handling, 674
relational, 406, 407–408
remote server, 750–751

DataBaseServer, 790
DataBind(), 495, 504, 573
DataBinding, 554

<Columns>, 446, 458–464
Combined selector, 380–381
CommandField, 446, 461, 555

data-bound controls, 458
ItemStyle-Width, 547
ShowInsertButton, 509

comments, 176–178, 251
CSS text editor, 86
HTML, 14
inline, 175–176
VS, 87

Common Type System (CTS), 139–140
CompareValidator, 310–311, 313,

641, 675
comparison operators, 151–152
Compatibility Mode, 353
<compilation>, 725, 731, 733
compile errors. See syntax errors
CompositeScript, 345
concatenation operators, 152–153
.config, 40, 758
<configuration>, 322, 717, 744
connecting pages, 59
connection strings, 449–451
ConnectionString, 445
connectionString, 733
connectionStringName, 610, 793
<connectionStrings>, 449–451, 595, 771,

790
constructors, OO, 184–186
contact form

e-mail, 328–332
extending, 311–314

Contact.aspx, 304, 347, 399
ContactForm.ascx, 394, 766

exception handling, 669, 670, 672
Markup View, 393
Web.config, 721

container controls, 114–117
Containers:aspx, 117
Contains, 650
Content, 204, 206, 550, 761
Content Delivery Network (CDN), 374
content pages, 196, 200–206, 277–280
ContentPlaceHolder, 379, 441, 761

master pages, 197, 199, 204, 206, 548
programmatic redirection, 265

ContentPlaceHolderID, 761
ContentTemplate, 343, 349, 532
<ContentTemplate>, 342
ContinueDestinationPageUrl, 604
Control, 321
Control State, 130, 207
ControlParameter, 451

controls. See also specific types and specific controls
properties, 758
runtime, 760
styles, 540–549
View State, 760

Controls, 45
ControlToCompare, 311
ControlToValidate, 302, 303, 313, 470

Profile, 640
RequiredFieldValidator, 304, 305
Standard validation controls, 309

Convert, 141
Convert to Hyperlink, 59, 87
Convert.ToBoolean, 723
CookieParameter, 451
cookies, 224–225, 228–231, 682
CookieValueProvider, 510
Copy, 328
copy, 635
COUNT, 557
Count, 497, 560, 649, 774
cpClientScript, 381
cpMainContent, 442, 532, 550

Cache API, 580
login controls, 594
master pages, 204
programmatic redirection, 265
UpdatePanel, 341
user controls, 288

CREATE, 750
Create, Read, Update, Delete (CRUD), 434, 441, 478,

771
LINQ queries, Model Binding, 504, 505
LINQ to ADO.NET, 487
parameters, 445
RowDataBound, 560

CreateDate, 182–183
CreateDateTime, 430, 461, 476

anonymous types, 501
DetailsView, 465
hand-coding data access code, 571
tables, 429

CreateUserText, 594, 599
CreateUserUrl, 594, 599
CreateUserWizard, 597, 604–607, 617
CreatUserButtonImageUrl, 604
CROSS JOIN, 420
Cross Site Scripting, 321
cross-browser testing, 701–704
CRUD. See Create, Read, Update, Delete
.cs, 43
.csproj, 35
CSS. See cascading style sheet
css, 377

bindex.indd 802 25-02-2014 10:45:45

803

.css – default documents<Columns> – css

.css, 42, 45
css(name), 387
css(name, value), 386
css(properties), 387
CssClass, 107, 315, 542, 561, 760

BackColor, 763
Menu, 247
RequiredFieldValidator, 304
skins, 232, 233, 234
Standard validation controls, 308
TreeView, 255

C:\TempMail, 742
CTS. See Common Type System
CType, 141, 142
custom error pages, 675–682, 752
customErrors, 752
<customErrors>, 681, 745
CustomValidator, 314–320, 766

d
dashed, 75
data access code, 564–574
data controls, 123, 437–481

customization, 457–464
events, 555–560
ListView, 772
page life cycle, 555–560

data files, ASP.NET, 43–44
data source controls, 437–481. See also specific

controls
caching, 578
data-bound controls, 441–457
event handling, 560–564

data stores, 593
data tips, 686, 690
data types

ASP.NET programming, 137–147
converting and casting, 140–142
HTML5, validation, 305–308
.NET Framework, 137
Profile, 633–634
properties, user controls, 284–289
SQL Server, 425–427

Database Engine Services, 408
databases, 405–436. See also Structured Query

Language
exception handling, 674
relational, 406, 407–408
remote server, 750–751

DataBaseServer, 790
DataBind(), 495, 504, 573
DataBinding, 554

DataBound, 554, 623, 643, 652, 658
event handling, 549

data-bound controls, 437–481, 540–541, 775–776
<Columns>, 458–464
data source controls, 441–457
<Fields>, 458–464
list controls, 438–439
paging controls, 440
single-item controls, 439
strongly typed, LINQ queries, 522–535

[DataDirectory], 450
DataField, 446, 510
DataFormatString, 461
DataItem, 559
DataKeyNames, 445, 449
DataList, 438, 439
DataNavigateUrlFields, 460, 461
DataNavigateUrlFormatString, 460,

461
DataPager, 440, 530–535
DataSource, 440, 494, 502, 503, 504
DataSourceID, 247, 445, 448, 494, 512
DataTextField, 455, 460, 502, 530,

643
DataTypeCheck, 640
DataValueField, 455, 530, 643
Date, 640
date, 426
DateOfBirth, 639
DateTime, 109, 141, 631, 633
datetime, 425
datetime2, 426
DbContext, 492
debug, 685, 726, 732
debugger, 696
debugging, 683–701, 779

Autos window, 688
Breakpoints window, 688
Call Stack window, 688–689, 691–692
client-side script, 693–696
F5, 8
Immediate window, 689
JavaScript, 693–696
Locals window, 688, 693
Page Inspector, 696–701
practical tips, 711–712
variables, 687–688
Watch window, 687–688, 693
Web.config, 751
windows, 687–693

DebugLabel, 704
decimal, 426
declarations, 69, 90, 94
default documents, 243

controls. See also specific types and specific controls
properties, 758
runtime, 760
styles, 540–549
View State, 760

Controls, 45
ControlToCompare, 311
ControlToValidate, 302, 303, 313, 470

Profile, 640
RequiredFieldValidator, 304, 305
Standard validation controls, 309

Convert, 141
Convert to Hyperlink, 59, 87
Convert.ToBoolean, 723
CookieParameter, 451
cookies, 224–225, 228–231, 682
CookieValueProvider, 510
Copy, 328
copy, 635
COUNT, 557
Count, 497, 560, 649, 774
cpClientScript, 381
cpMainContent, 442, 532, 550

Cache API, 580
login controls, 594
master pages, 204
programmatic redirection, 265
UpdatePanel, 341
user controls, 288

CREATE, 750
Create, Read, Update, Delete (CRUD), 434, 441, 478,

771
LINQ queries, Model Binding, 504, 505
LINQ to ADO.NET, 487
parameters, 445
RowDataBound, 560

CreateDate, 182–183
CreateDateTime, 430, 461, 476

anonymous types, 501
DetailsView, 465
hand-coding data access code, 571
tables, 429

CreateUserText, 594, 599
CreateUserUrl, 594, 599
CreateUserWizard, 597, 604–607, 617
CreatUserButtonImageUrl, 604
CROSS JOIN, 420
Cross Site Scripting, 321
cross-browser testing, 701–704
CRUD. See Create, Read, Update, Delete
.cs, 43
.csproj, 35
CSS. See cascading style sheet
css, 377

bindex.indd 803 25-02-2014 10:45:45

804

DestinationPageUrl – ElseIf

themes, 220, 227
UpdatePanel, 341
user controls, 274, 279, 287, 288
VS, 48
Wizard, 118, 119, 120

DestinationPageUrl, 594, 599, 777
DetailsView, 439

CRUD, 478
data-bound controls, 438
DataSourceID, 448
Design View, 471, 473
event handling, 469–478
GridView, 447–449, 771
hand-coding data access code, 570
inserting data, 447–449, 464–478
InsertMethod, 509
LINQ queries, Model Binding, 505
ListView, 512
Properties Grid, 473
updating data, 464–478
validation, 476
VS, 473

development profiles, 17
DirectCast, 141–142
Direction, 764–765
DisableCreatedUser, 604, 617
DisappearAfter, 247
Display, 308, 315, 640
display, 73, 769
DisplayAfter, 346
DisplayDirection, 286–289, 290,

293, 765
DisplayMode, 315, 502
DisplayRememberMe, 599
<div>

BodyContent, 7
Code Behind, 50
CSS, 97

Box Model, 76, 81
HTML tag, 13
Panel, 115
PleaseWait, 349, 382
themes, 226
user controls, 280

DivideByZeroException, 674, 712
.dll, 139, 173, 490
DOCTYPE, 15
document object model (DOM), 378–379,

386–391
Document Window, 47, 287

debugging, 683
HTML, 757
paragraphs, 68
SQL, 416

default value, 430
Default Web Site, IIS, 739, 740
Default.aspx, 7, 8

.aspx, 10
connecting pages, 59
content pages, 200–201, 203
CSS

Box Model, 77, 79, 80
text editor, 87

custom error pages, 679
DataPager, 533
Design View, 89, 93
embedded style sheets, 92
href, 60
IIS, 739
Index.aspx, 264
Management, 620
Markup View, 95
master pages, 199
Page Inspector, 699
PhotoAlbums, 651, 658, 772–773
programmatically checking roles, 623, 633
relative URLs, 241
Reviews, 646
Solution Explorer, 88, 201
themes, 219, 228
user controls, 279, 288

DefaultMembershipProvider, 593, 617
DefaultMode, 449, 468
DefaultProfileProvider, 593
defaultRedirect, 676
DefaultRoleProvider, 593, 617
DefaultTest.aspx, 722
Default.Test.aspx, 679
defaultValue, 631
DELETE, 422, 425, 459, 770
Delete, 328, 563
DeleteButton, 761
DeleteCommand, 578
DeleteInactiveProfiles, 657
DeleteItem, 521
deleteLink, 560
DeleteMethod, 505
<DeleteParameters>, 445
deployment, 715–755

bundling, 723–727
checklist, 751–753
expression syntax, 717–718
IIS, 727, 734–747
minification, 723–727
preparing, 727–734
publishing, 727–730
remote server, 747–751
VS, 727–730

Web.config, 717, 719–723
Web.config Transformations, 730–734
WebConfigurationManager, 718–719

DESC, 414
Description, 506, 519, 525, 532
description, 245
Design View, 21, 758

AddEditReview.aspx, 469
anonymous types, 502
ASP.NET Server Controls, 104, 106
Button, 112
Cache API, 581
connecting pages, 59
contact form, 313
Containers:aspx, 117
content pages, 202
controls, 758
cpClientScript, 381
CSS, 67

Box Model, 79
text editor, 87

CustomValidator, 316
Default.aspx, 89, 93
Design button, 47
DetailsView, 465, 471, 473
Document Window, 20, 47
DropDownList, 530
EF, 490
exception handling, 670
expression syntax, 717
Formatting toolbar, 54
Global.asax, 678
GridView, 551
hand-coding data access code, 565, 569
HTML, 48
jQuery, 381
login controls, 594
Management, 618
ManagePhotoAlbum, 653
master pages, 199, 204
NavigateUrl, 290
page life cycle, 550, 551
Page_Load, 678
Panel, 115, 116
Profile, 638
programmatic redirection, 265
rendering, 47
RequiredFieldValidator, 303, 304
RowDataBound, 556
Split button, 48
Split View, 48
SqlDataSource, 470
state engine, 126
text, 54, 56

default value – Design View

bindex.indd 804 25-02-2014 10:45:45

805

DestinationPageUrl – ElseIf

themes, 220, 227
UpdatePanel, 341
user controls, 274, 279, 287, 288
VS, 48
Wizard, 118, 119, 120

DestinationPageUrl, 594, 599, 777
DetailsView, 439

CRUD, 478
data-bound controls, 438
DataSourceID, 448
Design View, 471, 473
event handling, 469–478
GridView, 447–449, 771
hand-coding data access code, 570
inserting data, 447–449, 464–478
InsertMethod, 509
LINQ queries, Model Binding, 505
ListView, 512
Properties Grid, 473
updating data, 464–478
validation, 476
VS, 473

development profiles, 17
DirectCast, 141–142
Direction, 764–765
DisableCreatedUser, 604, 617
DisappearAfter, 247
Display, 308, 315, 640
display, 73, 769
DisplayAfter, 346
DisplayDirection, 286–289, 290,

293, 765
DisplayMode, 315, 502
DisplayRememberMe, 599
<div>

BodyContent, 7
Code Behind, 50
CSS, 97

Box Model, 76, 81
HTML tag, 13
Panel, 115
PleaseWait, 349, 382
themes, 226
user controls, 280

DivideByZeroException, 674, 712
.dll, 139, 173, 490
DOCTYPE, 15
document object model (DOM), 378–379,

386–391
Document Window, 47, 287

debugging, 683
HTML, 757
paragraphs, 68
SQL, 416

document.getElementById, 356, 365,
375–376

$(document).ready, 375
Documents, 38, 749
DoesNotExist, 671
DOM. See document object model
dotted, 75
Double, 142
double, 75
DropDownList, 110, 113, 140, 457, 478, 760

ASP.NET page life cycle, 207
AutoPostBack, 228, 534
DataPager, 531
debugging, 684, 685, 690
Design View, 530
hand-coding data access code, 565, 566, 573
INSERT, 478
ListView, 535
Page_Load, 775
QueryString, 535
Select Case/switch, 160
SelectMethod, 534, 567
Smart Tasks panel, 111, 472, 473
SqlDataSource, 451–457, 775
themes, 226, 229
Wizard, 118

Duration, 577
Dynamic, 247, 640
Dynamic Data, ASP.NET Server Controls, 124
Dynamic Data Entities Web Site template, 37
dynamic files, 9, 695
DynamicLayout, 346

e
each, 389–390
EditItemTemplate, 470, 528, 560, 571
<EditItemTemplate>, 461, 512
EditLink, 623
editors

text, CSS, 85–89
VS, 48

EditRowStyle, 543
.edmx, 44, 492
EF. See ADO.NET Entity Framework
effects, jQuery, 391–396
elements

HTML, 11–13, 379, 548
HTML5, 14, 15
selectors, 68–69

ELMAH, 682
Else, 156–158
ElseIf, 156–158

Web.config, 717, 719–723
Web.config Transformations, 730–734
WebConfigurationManager, 718–719

DESC, 414
Description, 506, 519, 525, 532
description, 245
Design View, 21, 758

AddEditReview.aspx, 469
anonymous types, 502
ASP.NET Server Controls, 104, 106
Button, 112
Cache API, 581
connecting pages, 59
contact form, 313
Containers:aspx, 117
content pages, 202
controls, 758
cpClientScript, 381
CSS, 67

Box Model, 79
text editor, 87

CustomValidator, 316
Default.aspx, 89, 93
Design button, 47
DetailsView, 465, 471, 473
Document Window, 20, 47
DropDownList, 530
EF, 490
exception handling, 670
expression syntax, 717
Formatting toolbar, 54
Global.asax, 678
GridView, 551
hand-coding data access code, 565, 569
HTML, 48
jQuery, 381
login controls, 594
Management, 618
ManagePhotoAlbum, 653
master pages, 199, 204
NavigateUrl, 290
page life cycle, 550, 551
Page_Load, 678
Panel, 115, 116
Profile, 638
programmatic redirection, 265
rendering, 47
RequiredFieldValidator, 303, 304
RowDataBound, 556
Split button, 48
Split View, 48
SqlDataSource, 470
state engine, 126
text, 54, 56

default value – Design View

bindex.indd 805 25-02-2014 10:45:46

806

filters – GridView – FileUpload

filters
jQuery, 383–386
SQL, 413–414
SQLDataSource, 451–457

Finally, 667, 672, 673
Find Results window, 23
FindControl, 528, 560
Firebug, 342
First, 498–499
FirstName, 180, 631, 637, 639
FirstOrDefault, 498–499
float, 73, 81, 426, 522
fluent programming, 379
Font, 107, 542
font, 75
, 64
font-family, 73
Fonts, Document Window, 26–27
font-size, 73, 701
font-style, 73, 701
font-weight, 73
Footer, 559
footer, 77, 81
<footer>, 12
FooterStyle, 543
For, 163–164
for, 356
For Each, 164–165
foreach, 113, 164–165, 356
ForeColor, 107, 232, 541, 760
foreign key constraint error, 563
foreign keys, 407, 430, 520–521
Form, 301
<form>, 13, 127, 198, 441
Format menu, Web Forms, 61
Formatting toolbar, 54, 56, 59, 87
FormParameter, 451
forms, 127

contact form
e-mail, 328–332
extending, 311–314

Forms, 595
<forms>, 598
FormValueProvider, 510
FormView, 438, 439
Frameworks64, 737
Friend, 189
friendly URLs, 10
FriendlyUrls, 261–263
From, 265, 327, 486, 496, 766
Frontend.master, 375, 381, 778
FrontPage Server Extensions, 40
FTP, 38, 40, 728, 748
fully qualified name, 631

, 12
Email, 109
e-mail

configuring website, 322–323
contact form, 328–332
creating messages, 323–327
exception handling, 674
security, 590
user input validation, 321–327

Email.aspx, 324, 325
embedded style sheets, 82, 83–84

creating, 89–93
declarations, 94
selectors, 94

Empty Web Site template, 36, 37, 39
EmptyDataRowStyle, 543
<EmptyDataTemplate>, 512
<EmptyItemTemplate>, 512
EnableClientScript, 309
Enabled, 107, 130–131, 232, 560
enabled, 706, 710–711
EnablePartialRendering, 345
enablePasswordReset, 610
enablePasswordRetrieval, 610
enableSsl, 325
EnableTheming, 217, 762
EnableViewState, 130, 232, 561
enableWebScript, 363
encapsulating data, 181
Encrypted, 610
EndEditing, 474
EndRequest, 637
endResponse, 264
Entity Designer, 489, 490
Entity Framework. See ADO.NET Entity

Framework
entity sets, 492
EntityDataSource, 440, 578
enum, 284–285
Error List, 22
Error404.aspx, 675, 678, 681
ErrorMessage, 302, 309, 315

contact form, 313
CssClass, 561
Profile, 640
RequiredFieldValidator,

304, 305
Standard validation controls, 308

errors. See exceptions
Eval, 519, 522
event arguments class, 190
event handling, 190, 549–564

base page, 212
Code Behind, 549

CustomValidator, 318
data source controls, 560–564
DetailsView, 469–478
exception throwing, 212
jQuery, 388–389
page life cycle, 549–560
postback, ASP.NET page life cycle, 208
VS, 491

events, 190–191
data controls, 555–560
jQuery, 378

client-side, 368
Events tab, Properties Grid, 119
eventvwr, 745
Exception, 560, 563, 668, 710, 712
exception handling, 664–682

catching exceptions, 667–675
custom error pages, 675–682
global error handling, 675–682

exception throwing, 212, 301
ExceptionHandled, 560, 775–776
ExceptionHandling.aspx, 669, 672
exceptions

runtime, 666–667
types of, 665–666

exercise answers, 757–780
Exists, 328
ExpandDepth, 255
ExpandImageToolTip, 255
ExpandImageUrl, 255
Expert Settings mode, 17
explicit, 685
expression syntax, 449–450, 717–718
extension-less URLs, 261–263
external style sheets, 82, 83–84, 759

F
F5, 8, 667
F10, 667
F11, 667
fadeIn(), 392
fadeOut(), 392
fadeTo(), 392
FavoriteGenres, 633–636, 638, 642, 649
FavoriteTheme, 777
Fiddler, 342
<Fields>, 458–464
fields, OO, 180
File, 327, 328
File Explorer, 39, 215, 220, 734, 758
File.Delete, 773
FileUpload, 121, 525, 528

bindex.indd 806 25-02-2014 10:45:46

807

filters – GridView – FileUpload

filters
jQuery, 383–386
SQL, 413–414
SQLDataSource, 451–457

Finally, 667, 672, 673
Find Results window, 23
FindControl, 528, 560
Firebug, 342
First, 498–499
FirstName, 180, 631, 637, 639
FirstOrDefault, 498–499
float, 73, 81, 426, 522
fluent programming, 379
Font, 107, 542
font, 75
, 64
font-family, 73
Fonts, Document Window, 26–27
font-size, 73, 701
font-style, 73, 701
font-weight, 73
Footer, 559
footer, 77, 81
<footer>, 12
FooterStyle, 543
For, 163–164
for, 356
For Each, 164–165
foreach, 113, 164–165, 356
ForeColor, 107, 232, 541, 760
foreign key constraint error, 563
foreign keys, 407, 430, 520–521
Form, 301
<form>, 13, 127, 198, 441
Format menu, Web Forms, 61
Formatting toolbar, 54, 56, 59, 87
FormParameter, 451
forms, 127

contact form
e-mail, 328–332
extending, 311–314

Forms, 595
<forms>, 598
FormValueProvider, 510
FormView, 438, 439
Frameworks64, 737
Friend, 189
friendly URLs, 10
FriendlyUrls, 261–263
From, 265, 327, 486, 496, 766
Frontend.master, 375, 381, 778
FrontPage Server Extensions, 40
FTP, 38, 40, 728, 748
fully qualified name, 631

Function, 358
functions, 167–169

G
generics, 145–147
Genre, 407, 411, 441, 449, 550, 770

anonymous types, 500
GenreId, 429, 432, 457, 770, 775
Genres.aspx, 543
GET, 127, 300, 338, 705
Get, 580
GetBaseException(), 682
GetBooleanText, 462
GetData, 567
getElementById, 318
GetLatestReviews, 356
getLatestReviewsCallback, 356
get_message(), 364
Get-Package, 372
GetProfile, 660
GigPics, 742
Global Application Class, 43
global error handling, 675–682
Global.asax, 263, 721

Application_Error, 676, 681
bundling, 724
extension-less URLs, 261
jQuery validation, 397, 398
unobtrusive JavaScript, 397, 399

GridView, 540–541
attributes, 445
AutoGenerateColumns, 495
CRUD, 478
customizing columns, 458–464
DataBind(), 495
data-bound controls, 438
DataField, 446
DataSourceID, 494
Delete, 563
Design View, 551
DetailsView, 447–449, 771
EF, 490
event handling, 560–564
jQuery, 547
ListView, 439
page life cycle, 551, 554
RowDataBound, 555, 557
skins, 233
Smart Tasks panel, 455, 550
SqlDataSource, 441–447
SqlDatSource, 494
styles, 542–543

CustomValidator, 318
data source controls, 560–564
DetailsView, 469–478
exception throwing, 212
jQuery, 388–389
page life cycle, 549–560
postback, ASP.NET page life cycle, 208
VS, 491

events, 190–191
data controls, 555–560
jQuery, 378

client-side, 368
Events tab, Properties Grid, 119
eventvwr, 745
Exception, 560, 563, 668, 710, 712
exception handling, 664–682

catching exceptions, 667–675
custom error pages, 675–682
global error handling, 675–682

exception throwing, 212, 301
ExceptionHandled, 560, 775–776
ExceptionHandling.aspx, 669, 672
exceptions

runtime, 666–667
types of, 665–666

exercise answers, 757–780
Exists, 328
ExpandDepth, 255
ExpandImageToolTip, 255
ExpandImageUrl, 255
Expert Settings mode, 17
explicit, 685
expression syntax, 449–450, 717–718
extension-less URLs, 261–263
external style sheets, 82, 83–84, 759

F
F5, 8, 667
F10, 667
F11, 667
fadeIn(), 392
fadeOut(), 392
fadeTo(), 392
FavoriteGenres, 633–636, 638, 642, 649
FavoriteTheme, 777
Fiddler, 342
<Fields>, 458–464
fields, OO, 180
File, 327, 328
File Explorer, 39, 215, 220, 734, 758
File.Delete, 773
FileUpload, 121, 525, 528

bindex.indd 807 25-02-2014 10:45:46

808

HyperText Transfer Protocol (HTTP) – innerHTMLGridView (continued) – HyperText Markup Language (HTML)

CSS, 64–65, 97
Box Model, 76, 79

CustomValidator, 319
Design View, 48
Document Window, 27, 757
elements, 11–13, 379

class, 548
<form>, 127
formatting problems, 64–69
Formatting toolbar, 56
hand-coding data access code, 565
jQuery, 388, 389

library, 375
validation, 397

Label, 105
ListView, 512
markup, 64
Markup View, 47, 94
master pages, 196, 200
Menu, 250, 253–254
output caching, 576–577
Page Inspector, 696, 697, 700
Panel, 116
paragraphs, 11
postback, 22
programmatically checking roles, 623
Repeater, 439
runtime, 64
ScriptManagerProxy, 361
selectors, 69
Server Controls, 47
server-side redirects, 268
SiteMapPath, 260
skins, 232, 233
Source View, 47
SqlDataSource, 441
state engine, 127
static files, 9
static text, 10
style sheets, 83–84
styles, 543
tables, ListView, 522
tags, 11–13, 59, 60, 97
text, 56
themes, 219
Toolbox, 26
TreeView, 258
UpdatePanel, 342
user controls, 274, 280
VS, 56
Web Forms, 48–49, 61

HyperText Transfer Protocol (HTTP), 9, 38,
352, 675–676. See also specific HTTP
errors

<tr>, 548
VS, 457

GridViewRowEventArgs, 559
<group>, 633
GROUP BY, 557
Grouped selector, 380–381
<GroupSeparatorTemplate>, 512
<GroupTemplate>, 512
Guid.NewGuid(), 529

H
<h2>, 11
hand-coding data access code, 564–574

AddEditReview.aspx, 565
Button, 566
C#, 567, 569–574
Code Behind, 565
CreateDateTime, 571
CSS, 571
DataBind(), 573
Design View, 565, 569
DetailsView, 570
DropDownList, 565, 566, 573
EditItemTemplate, 571
EF, 574
HTML, 565
ID, 566
_id, 571
INSERT, 572
InsertItemTemplate, 570
Label, 565–566
LINQ to Entities, 572
Page_Load, 567
Review, 567, 573
Reviews.aspx, 572
SaveChanges, 572
SelectMethod, 573
Text, 566
TextBox, 565–566
TextMode, 566
UPDATE, 572
UpdateDateTime, 571
VB.NET, 567–568, 571, 572–574
Web Forms, 565

Handler Mapping, 10
handlerName, 553
Handles, 211, 318, 351
Hanselman, Scott, 263
hard-coded settings, website deployment, 716
Hashed, 610
Hashtable, 144
<head>, 66, 84, 196

Cache API, 585
embedded style sheets, 92
HTML tag, 11
themes, 216, 220, 221

Header, 559
header, 77, 81
<header>, 12
HeaderStyle, 543
HeaderText, 317, 460, 461, 547
Height, 107, 470, 542, 640
height, 73, 76, 84
HiddenField, 122
Hide Extensions for Known File Types, 45
hierarchical indent, 84, 86
Highlight, 71–72
HorizontalAlign, 542
hotspots, 121
:hover, 88
href, 60, 82, 240, 726
HTML. See HyperText Markup Language
.html, 42, 48
<html>, 11, 196
HTML5

attributes, 14–15
CSS Box Model, 79
data types, validation, 305–308
DOCTYPE, 15
elements, 14, 15
Modernizr, 80
rules, 14–15
, 399
unobtrusive JavaScript, 399

HTTP. See HyperText Transfer Protocol
HTTP error 401.3, 746
HTTP error 403.14, 746
HTTP error 404.0, 746
HTTP error 500.21, 747
Hungarian Notation, 138
HyperLink, 109, 462, 619, 647, 649
HyperLinkField, 458, 460, 461
HyperText Markup Language (HTML). See also

HTML5
AJAX, 338
ASP.NET, 54–59

Server Controls, 101–107, 122–123
ASP.NET 4.5.1, 10–15
ASPX pages, 8–9
attributes, 14

styles, 541
border, 75
bundling, 726
Class selector, 71–72
classic ASP, 1
comments, 14
content pages, 203

GridView (continued)

bindex.indd 808 25-02-2014 10:45:47

809

HyperText Transfer Protocol (HTTP) – innerHTMLGridView (continued) – HyperText Markup Language (HTML)

CSS, 64–65, 97
Box Model, 76, 79

CustomValidator, 319
Design View, 48
Document Window, 27, 757
elements, 11–13, 379

class, 548
<form>, 127
formatting problems, 64–69
Formatting toolbar, 56
hand-coding data access code, 565
jQuery, 388, 389

library, 375
validation, 397

Label, 105
ListView, 512
markup, 64
Markup View, 47, 94
master pages, 196, 200
Menu, 250, 253–254
output caching, 576–577
Page Inspector, 696, 697, 700
Panel, 116
paragraphs, 11
postback, 22
programmatically checking roles, 623
Repeater, 439
runtime, 64
ScriptManagerProxy, 361
selectors, 69
Server Controls, 47
server-side redirects, 268
SiteMapPath, 260
skins, 232, 233
Source View, 47
SqlDataSource, 441
state engine, 127
static files, 9
static text, 10
style sheets, 83–84
styles, 543
tables, ListView, 522
tags, 11–13, 59, 60, 97
text, 56
themes, 219
Toolbox, 26
TreeView, 258
UpdatePanel, 342
user controls, 274, 280
VS, 56
Web Forms, 48–49, 61

HyperText Transfer Protocol (HTTP), 9, 38,
352, 675–676. See also specific HTTP
errors

I
ID, 102, 232, 566, 642

anonymous types, 502
exception handling, 669
named skins, 234
programmatically checking roles, 623
themes, 226

Id, 428, 445, 649
DataNavigateUrlFields, 460
Genre, 770
LINQ queries, Model Binding, 506
Review, 356
SQL, 421, 770
SqlDataSource, 446
styles, 546–547
tables, 429, 432

id, 71, 72, 205, 280, 318
_id, 571
ID selectors, 25, 71, 205, 380
IDE. See integrated development environment
identity, 590
identity columns, 422, 424, 427–430
IEnumerable, 534–535
If, 156–158
iframe, 339
IIS. See Internet Information Services
Image, 277, 699
ImageButton, 121
ImageField, 458
ImageMap, 121
images, themes, 222–224
ImageUrl, 506, 525, 526, 529, 604
img, 84
, 12, 14, 280, 699
Immediate window, 689
Import, 725
Imports, 670
Include, 493
IncludesStyleBlock, 247
index, 143
Index.aspx, 264
informational windows, 22–23
inheritance, 186–188, 761
Inherits, 174, 197, 461
Init, 207, 274
init, 434
InitComplete, 207
inline code, 49–53
inline comments, 175–176
inline style sheets, 82, 83–84, 89–93, 96
inline styles, 108
INNER JOIN, 419, 420
innerHTML, 356, 390

Cache API, 585
embedded style sheets, 92
HTML tag, 11
themes, 216, 220, 221

Header, 559
header, 77, 81
<header>, 12
HeaderStyle, 543
HeaderText, 317, 460, 461, 547
Height, 107, 470, 542, 640
height, 73, 76, 84
HiddenField, 122
Hide Extensions for Known File Types, 45
hierarchical indent, 84, 86
Highlight, 71–72
HorizontalAlign, 542
hotspots, 121
:hover, 88
href, 60, 82, 240, 726
HTML. See HyperText Markup Language
.html, 42, 48
<html>, 11, 196
HTML5

attributes, 14–15
CSS Box Model, 79
data types, validation, 305–308
DOCTYPE, 15
elements, 14, 15
Modernizr, 80
rules, 14–15
, 399
unobtrusive JavaScript, 399

HTTP. See HyperText Transfer Protocol
HTTP error 401.3, 746
HTTP error 403.14, 746
HTTP error 404.0, 746
HTTP error 500.21, 747
Hungarian Notation, 138
HyperLink, 109, 462, 619, 647, 649
HyperLinkField, 458, 460, 461
HyperText Markup Language (HTML). See also

HTML5
AJAX, 338
ASP.NET, 54–59

Server Controls, 101–107, 122–123
ASP.NET 4.5.1, 10–15
ASPX pages, 8–9
attributes, 14

styles, 541
border, 75
bundling, 726
Class selector, 71–72
classic ASP, 1
comments, 14
content pages, 203

bindex.indd 809 25-02-2014 10:45:47

810

jQuery Plugin Registry – LINQ queries<input> – jQuery

Code Behind, 394
Combined selector, 380–381
CSS methods, 386–388
DOM, 378–379

modifying, 386–391
each, 389–390
effects, 391–396
event handling, 388–389
events, 378
filters, 383–386
GridView, 547
Grouped selector, 380–381
ID selectors, 25, 380
JavaScript, 394
library, 374–377
markup, 388
Markup View, 375
matched set, 379
miscellaneous functionality, 389–390
mistakes, 390–391
NuGet, 369–373
pageLoad, 769
parent, 390
practical tips, 401
prev, 390
references, 373–374
RequiredFieldValidator, 305
<script>, 547
selecting items, 379–386
selectors, 379–382
syntax, 378–386
Universal selector, 380
unobtrusive JavaScript, 397–401
validation, 397–401
VS, IntelliSense, 393
Web Forms, 369

jQuery Plugin Registry, 400
jQuery.aspx, 375
.js, 42, 45
JSON. See JavaScript Object Notation
Juice UI, 400

K
keyboard shortcuts, 28
keywords, LINQ, 486, 494

L
Label, 109, 118, 532, 550, 775–776

C#, 52
Cache API, 580, 584
exception handling, 667, 669

<input>, 13
INSERT, 421–422, 459, 478, 572, 750
Insert, 449, 468, 477, 578–579
InsertCommand, 477, 578
Inserting, 477, 549
InsertItem, 528
InsertItemPosition, 512
InsertItemTemplate, 470, 473, 570

ListView, 519, 520
strongly typed data-bound controls, 524

<InsertItemTemplate>, ListView, 512
InsertMethod, 505, 509, 519, 525, 528
<InsertParameters>, 477
Installed Templates, 6
Install-Package, 372
instantiating, 178
int, 426
Int32, 633
Integer, 142

DateTime, 141
debugging, 686
Profile, 631, 633, 636

integrated development environment (IDE)
ASP.NET 4.5.1, 16–29
Page Inspector, 701
VS, 31

Integrated Pipeline mode, 741
Integrated Security, 450
IntelliSense, 80, 635

ASP.NET Server Controls, 103
JavaScript, 769
jQuery, 377
properties, 75
strongly typed data-bound controls, 523
user controls, 288, 295
VS, 50, 84, 363–364

jQuery, 393
Watch window, 687
WCF, 363–364

intellisense.js, 394
internal, 189
Internet Information Services (IIS), 8

Application Pool, 450
application services, 793
creating and opening new websites, 37
custom error pages, 681
FTP, 38, 40
HTTP, 38
ListView, 525
NTFS settings, 742–745
programmatic redirection, 266
security, 741–742
web deployment, 727, 734–747
web server, 735–747
WPI, 736

Intranet Settings, 8
Introduction, 94
.Introduction, 97
Is, 151
IsInRole, 622
IsNullOrEmpty, 212
IsUserInRole, 622, 634
IsValid, 309, 319–320, 766
Item, 523
ItemContainer, 516
ItemCreated, 634
ItemDeleted, 465
ItemDeleting, 465
ItemInserted, 465, 474, 513
ItemInserting, 465, 474, 477, 513
itemPlaceholder, 518
ItemPlaceholderID, 512
<ItemSeparatorTemplate>, 512
ItemStyle, 549
ItemStyle-Width, 547
ItemTemplate, 469, 519, 528, 560
<ItemTemplate>, 503, 512
ItemType, 523, 524, 647
ItemUpdated, 465, 474
ItemUpdating, 465, 474, 477
IUSR, 741

J
JavaScript, 42, 45, 250, 318, 356. See also

Asynchronous JavaScript and XML
camel case, 316, 354
case sensitivity, 362
CSS Box Model, 79
debugging, 693–696
IntelliSense, 769
IsValid, 766
jQuery, 389, 394
master pages, 204
Page Inspector, 696
Reviews, 357
static text, 10
unobtrusive, 397–401
URL, 240
validation controls, 302
ValidationSummary, 315

JavaScript Object Notation (JSON), 337, 357, 359
JOIN, 418–421
jQuery, 367–403

alert, 390
case sensitivity, 375, 398
CellPadding, 547
Class selector, 380
client-side events, 368

bindex.indd 810 25-02-2014 10:45:48

811

jQuery Plugin Registry – LINQ queries<input> – jQuery

Code Behind, 394
Combined selector, 380–381
CSS methods, 386–388
DOM, 378–379

modifying, 386–391
each, 389–390
effects, 391–396
event handling, 388–389
events, 378
filters, 383–386
GridView, 547
Grouped selector, 380–381
ID selectors, 25, 380
JavaScript, 394
library, 374–377
markup, 388
Markup View, 375
matched set, 379
miscellaneous functionality, 389–390
mistakes, 390–391
NuGet, 369–373
pageLoad, 769
parent, 390
practical tips, 401
prev, 390
references, 373–374
RequiredFieldValidator, 305
<script>, 547
selecting items, 379–386
selectors, 379–382
syntax, 378–386
Universal selector, 380
unobtrusive JavaScript, 397–401
validation, 397–401
VS, IntelliSense, 393
Web Forms, 369

jQuery Plugin Registry, 400
jQuery.aspx, 375
.js, 42, 45
JSON. See JavaScript Object Notation
Juice UI, 400

K
keyboard shortcuts, 28
keywords, LINQ, 486, 494

L
Label, 109, 118, 532, 550, 775–776

C#, 52
Cache API, 580, 584
exception handling, 667, 669

hand-coding data access code, 565–566
HTML, 105
Profile, 638, 642
programmatic redirection, 265
Select Case/switch, 159
server-side redirects, 268
Smart Tasks panel, 111
strongly typed data-bound controls, 524
Text, 104, 129, 657
tracing, 704
UpdatePanel, 340, 341
Visible, 704
WriteMessage, 553

label, 113
Language, 277
Language-Integrated Query (LINQ), 485–538.

See also LINQ queries; LINQ to ADO.NET;
LINQ to Entities; LINQ to XML

practical tips, 536
RowDataBound, 560

Last, 498–499
LastName, 186, 637, 639
LastOrDefault, 498–499
LayoutTemplate, 518, 535
<LayoutTemplate>, 512
lazy loading, 493
LEFT OUTER JOIN, 420
Lerman, Julia, 488, 574
LevelStyles, 258
, 13, 253, 356, 518, 522
Library Package Manager, 369
LIKE, 414
line-height, 349
Link, 604
<link>, 240, 724, 726

CSS, 82
master pages, 199
themes, 220
VS, 79

LinkButton, 121, 560
LINQ. See Language-Integrated Query
LINQ queries

From, 496
anonymous types, 499–504
Average, 497
Code Behind, 649
Count, 497
EF, 492–493
Load, 773
Max, 497
Min, 497
Model Binding, 504–536

application, 505–512
ListView, 512–522

Intranet Settings, 8
Introduction, 94
.Introduction, 97
Is, 151
IsInRole, 622
IsNullOrEmpty, 212
IsUserInRole, 622, 634
IsValid, 309, 319–320, 766
Item, 523
ItemContainer, 516
ItemCreated, 634
ItemDeleted, 465
ItemDeleting, 465
ItemInserted, 465, 474, 513
ItemInserting, 465, 474, 477, 513
itemPlaceholder, 518
ItemPlaceholderID, 512
<ItemSeparatorTemplate>, 512
ItemStyle, 549
ItemStyle-Width, 547
ItemTemplate, 469, 519, 528, 560
<ItemTemplate>, 503, 512
ItemType, 523, 524, 647
ItemUpdated, 465, 474
ItemUpdating, 465, 474, 477
IUSR, 741

J
JavaScript, 42, 45, 250, 318, 356. See also

Asynchronous JavaScript and XML
camel case, 316, 354
case sensitivity, 362
CSS Box Model, 79
debugging, 693–696
IntelliSense, 769
IsValid, 766
jQuery, 389, 394
master pages, 204
Page Inspector, 696
Reviews, 357
static text, 10
unobtrusive, 397–401
URL, 240
validation controls, 302
ValidationSummary, 315

JavaScript Object Notation (JSON), 337, 357, 359
JOIN, 418–421
jQuery, 367–403

alert, 390
case sensitivity, 375, 398
CellPadding, 547
Class selector, 380
client-side events, 368

bindex.indd 811 25-02-2014 10:45:48

812

LINQ queries (continued) – Markup View .master – named instance

CSS, 66
Box Model, 77, 80

CustomValidator, 316
DataPager, 530
Default.aspx, 95
DetailsView, 467
Document Window, 20
<EditItemTemplate>, 461
expression syntax, 717
HTML, 47, 94
InsertItemTemplate, 473
ItemTemplate, 469
jQuery, 375
ListView, 525
ManagePhotoAlbum, 653
master pages, 200, 204
page life cycle, 550
Page_Load, 51
Panel, 115, 116
Profile, 643
programmatically checking roles, 623
RequiredFieldValidator, 304
Reviews, 646
RowDataBound, 555–556, 560
Solution Explorer, 304
Split button, 48
styles, 546
text, 54, 56
TextBox, 303
themes, 226
UpdatePanel, 341
user controls, 274, 279, 287, 295
VS, 92, 508
Wizard, 119, 120

.master, 42
@Master, 196
master pages, 45, 196–206, 227, 548

bundling, 725
caveats, 205–206
content pages, 200–206
creating, 198–200
nesting, 204–205
Profile, 778
ScriptManager, 360, 374
user controls, 277–280

MasterPageFile, 200
MasterPages, 45, 198, 375, 381, 441, 546
matched set, jQuery, 379
Max, 497
MaximumDynamicDisplayLevels, 247
MaximumValue, 310
maxInvalidPasswordAttempts, 611
.mdf, 44, 781

strongly typed data-bound controls,
522–535

syntax, 495–504
Watch window, 688
Where, 496

LINQ to ADO.NET, 487–488
LINQ to Entities, 489–495, 572, 584, 649, 654
LINQ to Objects, 487
LINQ to XML, 487
LinqDataSource, 440, 578
List, 633, 634
list controls, 110–114, 438–439
-ListAvailable, 372
ListBox, 109, 110, 760
ListControls.aspx, 119
ListItem, 113, 114
list-style, 75
ListView, 439

data controls, 772
data source code, 564
DataBound, 652, 658
data-bound controls, 438
DataPager, 440, 530–535
DropDownList, 535
inserting and deleting data, 513–522
LINQ queries, Model Binding, 512–522
ManagePhotoAlbum, 653
markup, 772
performance, 535–536
programmatically checking roles, 634
strongly typed data-bound controls, 524
styles, 543
templates, 525–529

Literal, 121, 503, 717, 718
Load, 207, 274

anonymous types, 502
exception handling, 670
LINQ queries, 773
Page, 491, 550, 567, 774

load phase, ASP.NET page life cycle, 207
LocalDB, 411, 415, 593
localhost, 790
Localize, 121
localOnly, 707
Locals window, 688, 693
<location>, 618, 621, 635, 651
Locator="Match()", 731
LoggedInTemplate, 600–601, 619
logic errors, 666
logical operators, 154–155
Login, 594, 597, 598–600
login, SQL Server, 782

login controls, 123–124
security, 593–612

Login.aspx, 203, 211, 241, 594
LoginCreateUser, 605
LoginImageUrl, 601
LoginName, 602–604
LoginStatus, 594, 597, 601, 619, 777
LoginText, 601
LoginView, 512, 600–601, 618, 619, 621, 777

caching, 577
programmatically checking roles, 623
WSAT, 617

LogoutAction, 601
LogoutPageUrl, 601
LogoutText, 601
loops, ASP.NET programming, 162–167

M
machine.config, 752
MailAddress, 321, 327, 766
mailBody, 332
MailDefinition, 605
MailMessage, 321, 327, 332, 766
<mailSettings>, 323, 734
MainContent, 72, 81
MainContent<section>, 77, 199, 375, 379
Manage NuGet Packages dialog box, 370–371
Manage Styles window, 84, 94–96
Management, 46, 241, 441

blocking access, 618
Genres.aspx, 543
roles, 776

Management.master, 546
ManagePhotoAlbum, 650–655
margin, 73, 75, 76, 89, 96
margin, CSS Box Model, 76
markup, 108, 772

ASP.NET, 54–59
ASP.NET Server Controls, 103
HTML, 64
jQuery, 388

Markup View, 21, 26, 758
ASP.NET Server Controls, 104, 106
ASPX, 47
base page, 210
Cache API, 580
CheckBoxList, 112
connecting pages, 60
ContactForm.ascx, 393
Content, 550
controls, 758

LINQ queries (continued)

bindex.indd 812 25-02-2014 10:45:48

813

LINQ queries (continued) – Markup View .master – named instance

CSS, 66
Box Model, 77, 80

CustomValidator, 316
DataPager, 530
Default.aspx, 95
DetailsView, 467
Document Window, 20
<EditItemTemplate>, 461
expression syntax, 717
HTML, 47, 94
InsertItemTemplate, 473
ItemTemplate, 469
jQuery, 375
ListView, 525
ManagePhotoAlbum, 653
master pages, 200, 204
page life cycle, 550
Page_Load, 51
Panel, 115, 116
Profile, 643
programmatically checking roles, 623
RequiredFieldValidator, 304
Reviews, 646
RowDataBound, 555–556, 560
Solution Explorer, 304
Split button, 48
styles, 546
text, 54, 56
TextBox, 303
themes, 226
UpdatePanel, 341
user controls, 274, 279, 287, 295
VS, 92, 508
Wizard, 119, 120

.master, 42
@Master, 196
master pages, 45, 196–206, 227, 548

bundling, 725
caveats, 205–206
content pages, 200–206
creating, 198–200
nesting, 204–205
Profile, 778
ScriptManager, 360, 374
user controls, 277–280

MasterPageFile, 200
MasterPages, 45, 198, 375, 381, 441, 546
matched set, jQuery, 379
Max, 497
MaximumDynamicDisplayLevels, 247
MaximumValue, 310
maxInvalidPasswordAttempts, 611
.mdf, 44, 781

Me, 212
membership, 591, 611–612, 793
membership provider, 592
Memberships, 597
Menu, 633, 654, 700

navigation, 240
navigation controls, 246–254
styles, 251–254

Message, 672
metadata, 359
MetaDescription, 584, 585
MetaKeywords, 585
method signature, 168
method syntax, 499
methods, 140, 145, 167–169, 183–184, 386–388

callback, 354–355
Microsoft Intermediate Language (MSIL), 136
Microsoft.AspNet.FriendlyUrls, 261–263
Min, 497
minification, 723–727
MinimumValue, 310
minRequiredNonalphanumericCharacters, 611
minRequiredPasswordLength, 611
Mod, 148
mode, 598, 675
Model Binding, 440

LINQ queries, 504–536
application, 505–512
ListView, 512–522
strongly typed data-bound controls, 522–535

programmatically checking roles, 634
ModelState.IsValid, 526
Modernizr, 79–80
mostRecent, 707
mouseout, 388, 389
mouseover, 388
Move, 328
MSDN. See Microsoft Developer Network
MSIL. See Microsoft Intermediate Language
MultiLine, 306, 469, 525, 640
MultiView, 114
MVC, 35
myEntities, 492
myException, 682
MyProfile.aspx, 635, 636, 641
mySmtpClient, 667

n
Name, 424, 446, 506, 510, 654
name, 205, 631
named instance, 450, 782

login controls, 123–124
security, 593–612

Login.aspx, 203, 211, 241, 594
LoginCreateUser, 605
LoginImageUrl, 601
LoginName, 602–604
LoginStatus, 594, 597, 601, 619, 777
LoginText, 601
LoginView, 512, 600–601, 618, 619, 621, 777

caching, 577
programmatically checking roles, 623
WSAT, 617

LogoutAction, 601
LogoutPageUrl, 601
LogoutText, 601
loops, ASP.NET programming, 162–167

M
machine.config, 752
MailAddress, 321, 327, 766
mailBody, 332
MailDefinition, 605
MailMessage, 321, 327, 332, 766
<mailSettings>, 323, 734
MainContent, 72, 81
MainContent<section>, 77, 199, 375, 379
Manage NuGet Packages dialog box, 370–371
Manage Styles window, 84, 94–96
Management, 46, 241, 441

blocking access, 618
Genres.aspx, 543
roles, 776

Management.master, 546
ManagePhotoAlbum, 650–655
margin, 73, 75, 76, 89, 96
margin, CSS Box Model, 76
markup, 108, 772

ASP.NET, 54–59
ASP.NET Server Controls, 103
HTML, 64
jQuery, 388

Markup View, 21, 26, 758
ASP.NET Server Controls, 104, 106
ASPX, 47
base page, 210
Cache API, 580
CheckBoxList, 112
connecting pages, 60
ContactForm.ascx, 393
Content, 550
controls, 758

bindex.indd 813 25-02-2014 10:45:49

814

Optional – POSTnamed skins – operators

concatenation, 152–153
logical, 154–155

Optional, 553
optional parameters, 553
Options dialog box, 31
OR, 414
Or, 154
ORDER BY, 412–413, 414, 418, 424, 470, 772
Order By, 493, 496
ordered lists, 59, 439
OrElse, 154
Orientation, 247
ORM. See Object Relational Mapper
OtherErrors.asax, 678
OUTER JOIN, 419
output caching, 576–578
Output window, 22
OutputCache, 577
overloads, 264
Overridable, 188
override, 187
Overrides, 187

P
<p>, 11, 69, 93, 97, 203
Package Manager Console, 371–373, 398, 594, 682
packages.config, 80
padding, 73, 75, 76, 89, 96
Page, 211, 710, 762

Load, 491, 550, 567, 774
ManagePhotoAlbum, 654
page life cycle, 554
Profile, 635, 636, 657
Trace, 705
TryUpdateModel, 510

@ Page, 200, 219
page initialization phase, ASP.NET page life cycle, 207
Page Inspector, 696–701
page life cycle

ASP.NET, 207–208
data controls, 555–560
event handling, 549–560
StyleSheetTheme, 762

page request phase, ASP.NET page life cycle, 207
PageDescription, 765
Page.IsPostBack, 290, 293
Page.IsValid, 526
Page_IsValid, 396
pageLoad, 396, 769
Page_Load, 52, 641, 647, 650, 653, 678, 775

Cache API, 581
DetailsView, 467

named skins, 234–235
NameService, 354, 358, 361, 363
NameServiceAspNetAjaxBehavior, 363
namespaces, 140, 173–175
nav, 81
<nav>, 441
NavigateUrl, 289–295, 649, 764–765, 773
navigation, 259–271

different ways, 240–243
relative URLs, 241–242

navigation controls, 123, 243–260
Bootstrap, 244
Menu, 246–254
SiteMapPath, 258–260
TreeView, 254–258
Web.sitemap, 244–246

nchar, 425
nesting

HTML5 elements, 15
master pages, 204–205

.NET Framework
arrays, 144
classes, 141
data types, 137
DataPager, 440
IIS, 737
inheritance, 186–188
Integrated Pipeline mode, 741
LINQ, 486
LINQ to ADO.NET, 487
MSIL, 136
namespaces, 173
primitive types, 139
variables, 139–140
WCF, 352

.NET Framework 1.0, 1

.NET Framework 1.1, 2

.NET Framework 4.5.1, 36
network, 733
<network>, 325
Network Service, 786
New Web Site, 5, 6
NodeStyle, 258, 763
NoPostBack, 550
no-repeat, 349
Not, 154
Notification window, 17
ntext, 426
NTFS settings, 742–745
NuGet, 369–373, 609, 634

Get-Package, 374
Install-Package, 80, 261, 374, 400, 594,

682, 725

Manage NuGet Packages dialog box, 370–371
Package Manager Console, 371–373, 682
Role Manager, 613

Null Reference exception, 573
Number, 109, 564
numbered lists, 59
nvarchar, 426

O
Object, 140
object, 580
Object Explorer, 427, 432
object initializers, 186
object model, 489–495
object orientation (OO)

access modifiers, 189
ASP.NET programming, 178–191
classes, 179
comments, 176–178
constructors, 184–186
events, 190–191
fields, 180
inheritance, 186–188
methods, 183–184
objects, 178–179
properties, 180–183
read-only properties, 183
write-only properties, 183

Object Relational Mapper (ORM), 488
ObjectDataSource, 440, 478
object-oriented programming (OOP), 2
objects

anonymous, 387, 559
ASP.NET programming, 178–179
SSMS, 411

, 13, 59, 439
OnCheckedChanged, 115
onclick, 362, 365
One ASP.NET, 34
OnMigrateAnonymous, 656
OnTick, 351
OO. See object orientation
OOP. See object-oriented programming
Operation Contract, 352
OperationContract, 353, 767–768
OperationMethod, 360
Operator, 311, 640
OperatorList, 690
operators, 147–156

arithmetic, 148–151
assignment, 147–148
comparison, 151–152

bindex.indd 814 25-02-2014 10:45:49

815

Optional – POSTnamed skins – operators

concatenation, 152–153
logical, 154–155

Optional, 553
optional parameters, 553
Options dialog box, 31
OR, 414
Or, 154
ORDER BY, 412–413, 414, 418, 424, 470, 772
Order By, 493, 496
ordered lists, 59, 439
OrElse, 154
Orientation, 247
ORM. See Object Relational Mapper
OtherErrors.asax, 678
OUTER JOIN, 419
output caching, 576–578
Output window, 22
OutputCache, 577
overloads, 264
Overridable, 188
override, 187
Overrides, 187

P
<p>, 11, 69, 93, 97, 203
Package Manager Console, 371–373, 398, 594, 682
packages.config, 80
padding, 73, 75, 76, 89, 96
Page, 211, 710, 762

Load, 491, 550, 567, 774
ManagePhotoAlbum, 654
page life cycle, 554
Profile, 635, 636, 657
Trace, 705
TryUpdateModel, 510

@ Page, 200, 219
page initialization phase, ASP.NET page life cycle, 207
Page Inspector, 696–701
page life cycle

ASP.NET, 207–208
data controls, 555–560
event handling, 549–560
StyleSheetTheme, 762

page request phase, ASP.NET page life cycle, 207
PageDescription, 765
Page.IsPostBack, 290, 293
Page.IsValid, 526
Page_IsValid, 396
pageLoad, 396, 769
Page_Load, 52, 641, 647, 650, 653, 678, 775

Cache API, 581
DetailsView, 467

hand-coding data access code, 567
Markup View, 51
NavigateUrl, 290, 293, 294
page life cycle, 554
programmatic redirection, 265, 266
themes, 227, 229
user controls, 296

pageOutput, 706
Page_PreRender, 211
Page_PreRenderComplete, 553
PagerStyle, 543
<pages>, 220, 221, 443, 618, 752, 762
PageWrapper, 81
paging controls, 440
Panel, 114, 115–117, 120
paragraphs, 11, 68, 69
Parameter, 451
parameter list, 168
parameterized, 167
parameters

CRUD, 445
optional, 553

parent, 390
Pascal, 354
Password, 306
password, 325
passwordAttemptWindow, 611
passwordFormat, 610
PasswordRecovery, 607
PasswordRecoveryText, 599
PasswordRecoveryUrl, 599
passwordStrengthRegularExpression, 611
Path, 361, 400, 529
path, 618
PathDirection, 258
PathSeparator, 258, 260
performance

ListView, 535–536
tracing, 710
View State, 130–131

permissions, 591
personalization, 629–662

practical tips, 660
Profile, 630–660

PhotoAlbumId, 506, 515
PhotoAlbums, 651, 658, 772–773
Place Code in Separate File, 57
PlaceHolder, 114, 321
placeholders, 332, 364, 550, 607
PleaseWait, 349, 382
port, 325
port numbers, 323
POST, 127, 128, 300, 338, 705

Manage NuGet Packages dialog box, 370–371
Package Manager Console, 371–373, 682
Role Manager, 613

Null Reference exception, 573
Number, 109, 564
numbered lists, 59
nvarchar, 426

O
Object, 140
object, 580
Object Explorer, 427, 432
object initializers, 186
object model, 489–495
object orientation (OO)

access modifiers, 189
ASP.NET programming, 178–191
classes, 179
comments, 176–178
constructors, 184–186
events, 190–191
fields, 180
inheritance, 186–188
methods, 183–184
objects, 178–179
properties, 180–183
read-only properties, 183
write-only properties, 183

Object Relational Mapper (ORM), 488
ObjectDataSource, 440, 478
object-oriented programming (OOP), 2
objects

anonymous, 387, 559
ASP.NET programming, 178–179
SSMS, 411

, 13, 59, 439
OnCheckedChanged, 115
onclick, 362, 365
One ASP.NET, 34
OnMigrateAnonymous, 656
OnTick, 351
OO. See object orientation
OOP. See object-oriented programming
Operation Contract, 352
OperationContract, 353, 767–768
OperationMethod, 360
Operator, 311, 640
OperatorList, 690
operators, 147–156

arithmetic, 148–151
assignment, 147–148
comparison, 151–152

bindex.indd 815 25-02-2014 10:45:49

816

PostBack – providers pseudo class selectors – Role Manager

pseudo class selectors, 88
Public, 181, 189
public, 189

Q
Query Designer, 415, 418
query strings, 264–265
QueryExtender, 440
QueryString, 301, 515, 520, 535
QueryStringParameter, 451
QueryStringValueProvider, 510
Quick Launch, 26–27

R
RadioButton, 109
range variables, 496
RangeValidator, 301, 310
Razor v2, 36
Razor v3, 36
ReadAllText, 328
readOnly, 631
read-only properties, 183
Redirect, 264, 774
redirectMode, 676
redirects, server-side, 266–268
references, 168, 373–374
_references.js, 393, 394, 769
Regions, 86
@ Register, 277–280
RegisterRoutes, 263
regular expressions, 310
RegularExpressionValidator, 310, 313
relational databases, 406, 407–408
relationships, tables, SQL, 430–433
relative URLs, 241–242
Release, 739, 740, 742, 744, 790
Remember Me Next Time, 598
RememberMeSet, 599
remote server

database, 750–751
exporting data, 748–750
web deployment, 747–751

RemoteOnly, 675, 745, 752
Remove, 521, 579
Remove Inline Style, 96
RemoveAttributes, 734
removeClass, 387
RenderCurrentNodeAsLink, 259
rendering, 11, 47, 208
RenderingMode, 247, 248
RenderMode, 343

PostBack, 550
postbacks

ASP.NET Server Controls, 105
event handling, ASP.NET page life cycle, 208
HTML, 22
Page_Load, 294
Panel, 117
properties, 764–765
View State, 289

precompilation, 730
Predictable, 283, 439
Preference, 633
PreferredTheme, 229, 231
PreInit, 207, 224, 229, 762
PreLoad, 207
-PreRelease, 372
PreRender, 208, 211, 274
PreRenderComplete, 552
prev, 390
primary keys, 427–430
primitive types, 139
privacy, 225
Private, 181, 189
private, 189
Profile

anonymous identification, 655–657
configuration, 631–637
data types, 633–634
IntelliSense, 635
looking at others’, 29–32
ManagePhotoAlbum, 650–655
personalization, 630–660
Reviews, 646–650
using, 636–654
web applications, 630–631

Profile, 778
IntelliSense, 635
Page, 635, 636, 657
properties, 630–631

<profile>, 631, 634
profile groups, 631, 632–633
profile provider, 636
ProfileCommon, 636, 657, 660
Profile.GetProfile(), 656
ProfileManager, 657
Profile_OnMigrateAnonymous, 656
ProfileParameter, 451
profiles

anonymous, 777
application services, 591
development, 17

ProfileValueProvider, 510
programmatic caching, 578–585

programmatic redirection, 263–268
client, 264–266
server-side redirects, 266–268

programmatically checking roles, 622–625
<ProgressTemplate>, 348, 349, 767
project files, 35
properties

ASP.NET Server Controls, 106–109
automatic, 172
Code Behind, 765
controls, 758
CSS, 69, 73–74, 75

Properties Grid, 97
styles, 541

data types, user controls, 284–289
IntelliSense, 75
OO, 180–183
postbacks, 764–765
Profile, 630–631
read-only, 183
Style, 541–542
View State, user controls, 289–295
write-only, 183

<properties>, 631, 633, 634
Properties Grid, 104

ASP.NET Server Controls, 106
contact form, 313
controls, 758
CSS, 84, 91–92

properties, 97
DataPager, 530
DetailsView, 473
EF, 490
Events tab, 119
expression syntax, 717
HyperLinkField, 460
Login, 594
Panel, 115
Profile, 643
SiteMapPath, 258
state engine, 127
Table Designer, 428
UpdatePanel, 341
user controls, 277, 288, 295
Wizard, 119, 120

PropertyValueBinary, 636
PropertyValueStrings, 636
Protected, 189
protected, 189
ProviderName, 444–445
providers

application services, 592–593
membership, 592
profile, 636

bindex.indd 816 25-02-2014 10:45:50

817

PostBack – providers pseudo class selectors – Role Manager

pseudo class selectors, 88
Public, 181, 189
public, 189

Q
Query Designer, 415, 418
query strings, 264–265
QueryExtender, 440
QueryString, 301, 515, 520, 535
QueryStringParameter, 451
QueryStringValueProvider, 510
Quick Launch, 26–27

R
RadioButton, 109
range variables, 496
RangeValidator, 301, 310
Razor v2, 36
Razor v3, 36
ReadAllText, 328
readOnly, 631
read-only properties, 183
Redirect, 264, 774
redirectMode, 676
redirects, server-side, 266–268
references, 168, 373–374
_references.js, 393, 394, 769
Regions, 86
@ Register, 277–280
RegisterRoutes, 263
regular expressions, 310
RegularExpressionValidator, 310, 313
relational databases, 406, 407–408
relationships, tables, SQL, 430–433
relative URLs, 241–242
Release, 739, 740, 742, 744, 790
Remember Me Next Time, 598
RememberMeSet, 599
remote server

database, 750–751
exporting data, 748–750
web deployment, 747–751

RemoteOnly, 675, 745, 752
Remove, 521, 579
Remove Inline Style, 96
RemoveAttributes, 734
removeClass, 387
RenderCurrentNodeAsLink, 259
rendering, 11, 47, 208
RenderingMode, 247, 248
RenderMode, 343

repeat, 349
Repeater, 439, 771

anonymous types, 503, 504
BulletedList, 649
Cache API, 582
data-bound controls, 438
Page_Load, 650
Reviews, 647
styles, 543

Replace, 332
ReplyToList, 332
request validation, 320–321
requestLimit, 706
Request.QueryString, 274
request.QueryString, 265
RequiredFieldValidator, 301, 303–305, 313, 470,

639, 641
RequireEmail, 605
requireQuestionAndAnswer, 610
requiresUniqueEmail, 610
Reset Toolbox, 24
Reset Window Layout, 28
Resig, John, 368
Resources, 38
Response, 264
ResponseRedirect, 679
Response.Redirect, 266, 267, 763
Response.RedirectPermanent, 263–264,

266, 763
Response.TrySkipCustomErrors, 681
result, 356, 365
ResultLabel, 685
Review, 356, 441, 457, 465, 493, 494, 770

anonymous types, 500
Cache API, 583
hand-coding data access code, 567, 573
HyperLink, 649
JOIN, 418, 420
RowDataBound, 557

ReviewId, 583
Reviews, 560, 621

anonymous types, 503–504
Cache API, 580, 582
EF, 490
JavaScript, 357
Profile, 646–650

Reviews.aspx, 459, 467, 572
rgb, 74
rgba, 74
RightAligned, 67, 68, 69
Role Manager

NuGet, 613
security, 612–625
WSAT, 613–618

programmatic redirection, 263–268
client, 264–266
server-side redirects, 266–268

programmatically checking roles, 622–625
<ProgressTemplate>, 348, 349, 767
project files, 35
properties

ASP.NET Server Controls, 106–109
automatic, 172
Code Behind, 765
controls, 758
CSS, 69, 73–74, 75

Properties Grid, 97
styles, 541

data types, user controls, 284–289
IntelliSense, 75
OO, 180–183
postbacks, 764–765
Profile, 630–631
read-only, 183
Style, 541–542
View State, user controls, 289–295
write-only, 183

<properties>, 631, 633, 634
Properties Grid, 104

ASP.NET Server Controls, 106
contact form, 313
controls, 758
CSS, 84, 91–92

properties, 97
DataPager, 530
DetailsView, 473
EF, 490
Events tab, 119
expression syntax, 717
HyperLinkField, 460
Login, 594
Panel, 115
Profile, 643
SiteMapPath, 258
state engine, 127
Table Designer, 428
UpdatePanel, 341
user controls, 277, 288, 295
Wizard, 119, 120

PropertyValueBinary, 636
PropertyValueStrings, 636
Protected, 189
protected, 189
ProviderName, 444–445
providers

application services, 592–593
membership, 592
profile, 636

bindex.indd 817 25-02-2014 10:45:50

818

RoleGroups – Server Controls Server Explorer – Split button

types, 109–124
validation, 123
View State, 129–130
VS, 101
Web Forms, 101
WebParts controls, 124
Wizard, 117–121

Server Explorer, 18–19, 432
Server.GetLastError(), 682
server-side controls, 241–242
server-side redirects, 266–268
server-side validation, 302
Server.Transfer, 264, 267, 268, 763
Service Contract, WCF, 352, 353
ServiceContract, 353, 767
serviceMethodNameCallback, 354
ServiceReference, 361
Services, 345
<Services>, 360
<services>, 363
SessionParameter, 451
SetFocusOnError, 309
Shared, 719
shorthand, 75–76, 90
ShowDeleteButton, 446
ShowEditButton, 446
ShowExpandCollapse, 255, 763
ShowInsertButton, 509
ShowLines, 255
ShowMessageBox, 317
ShowSelectButton, 446
ShowSummary, 317
ShowToolTips, 259
SignalR, 702
Signup.aspx, 595
Single, 498, 654, 773
single-item controls, 439
SingleLine, 306
SingleOrDefault, 498, 584
Site Map, 42, 44
.sitemap, 42
SiteMapDataSource, 245, 258, 440, 578
siteMapNode, 245
SiteMapPath, 123, 245, 258–260
.skin, 42
SkinID, 234
skins, 42, 232–235

CSS classes, 762
named, 234–235
styles, 545–549
themes, 216, 545–549

Skip, 497–498, 560
SkipWhile, 497–498
Sleep, 721

RoleGroups, 601, 621
roles

application services, 591, 793
programmatically checking, 622–625
web applications, 618–622

roles, 621, 776
root-based relative URLs, 241
RootNodeStyle, 258
RouteConfig, 261, 263
routing, 260–263
RowCreated, 552, 554
RowDataBound, 552, 554, 555–560
RowStyle, 542
RowType, 559
rule sets, CSS, 68, 96, 97, 251, 701
runat, 102–103
runtime

application services, 793
controls, 760
errors, 666–667
files, ASPX, 695
HTML, 64
state engine, 128
Web.config, 780

Runtime Error Description, 747

S
SaveButton_Click, 571
SaveChanges, 572
SByte, 760
script, 375
<script>, 250, 321, 375, 394, 547, 724
ScriptManager, 340, 343

AJAX, 344–345, 360–365, 767
jQuery validation, 397, 400
master pages, 360, 374
unobtrusive JavaScript, 397, 399, 400
Web Forms, 360

ScriptManagerProxy, 340, 351, 361
ScriptReference, 399
ScriptResourceDefinition, 399, 400, 725
Scripts, 45, 345, 372, 393, 769
<Scripts>, 345, 374
search engine optimization (SEO), 585, 679
SearchEngineDescription, 585
section, 77
<section>, 12, 72, 377
section#MainContent, 85–86
Secure Sockets Layer (SSL), 323
security, 589–627. See also authentication; authorization

application services, 591–593
e-mail, 590
identity, 590

IIS, 741–742
login controls, 593–612
permissions, 591
practical tips, 625
Role Manager, 612–625
tracing, 710–711
web applications, 609–612

SELECT, 412–413, 415, 419, 424
Select, 486, 493, 495–496
<select>, 13
SELECT *, 434, 455
Select Case/switch, 158–162, 294, 295
SelectCommand, 447, 457, 461, 578
Selected, 646
SelectedIndex, 110
SelectedIndexChanged, 226, 530, 554
SelectedItem, 109, 110
<SelectedItemTemplate>, 512
SelectedRowStyle, 542
SelectedValue, 110, 140, 685
Selecting, 551
SelectMethod, 505, 531, 573

DropDownList, 534, 567
ListView, 514, 515, 519
Profile, 643

selectors. See also specific types
CSS, 68–73, 222, 251

grouping and combining, 72–73
Page Inspector, 696
text editor, 88

elements, 68–69
embedded style sheets, 94
jQuery, 379–382

SelectParameters, 455, 466
SendButton_Click, 394, 721
SendMailOnError, 720, 722
SEO. See search engine optimization
Separator, 559
serialization, 357
Server Controls, ASP.NET, 101–133

Ajax Extensions, 124
ASPX, 102, 105
container, 114–117
data, 123
Dynamic Data, 124
HTML, 101–107, 122–123
list, 110–114
login, 123–124
navigation, 123
pages, 106
postback, 105
practical tips, 131
properties, 106–109
Standard, 109–122

bindex.indd 818 25-02-2014 10:45:51

819

RoleGroups – Server Controls Server Explorer – Split button

types, 109–124
validation, 123
View State, 129–130
VS, 101
Web Forms, 101
WebParts controls, 124
Wizard, 117–121

Server Explorer, 18–19, 432
Server.GetLastError(), 682
server-side controls, 241–242
server-side redirects, 266–268
server-side validation, 302
Server.Transfer, 264, 267, 268, 763
Service Contract, WCF, 352, 353
ServiceContract, 353, 767
serviceMethodNameCallback, 354
ServiceReference, 361
Services, 345
<Services>, 360
<services>, 363
SessionParameter, 451
SetFocusOnError, 309
Shared, 719
shorthand, 75–76, 90
ShowDeleteButton, 446
ShowEditButton, 446
ShowExpandCollapse, 255, 763
ShowInsertButton, 509
ShowLines, 255
ShowMessageBox, 317
ShowSelectButton, 446
ShowSummary, 317
ShowToolTips, 259
SignalR, 702
Signup.aspx, 595
Single, 498, 654, 773
single-item controls, 439
SingleLine, 306
SingleOrDefault, 498, 584
Site Map, 42, 44
.sitemap, 42
SiteMapDataSource, 245, 258, 440, 578
siteMapNode, 245
SiteMapPath, 123, 245, 258–260
.skin, 42
SkinID, 234
skins, 42, 232–235

CSS classes, 762
named, 234–235
styles, 545–549
themes, 216, 545–549

Skip, 497–498, 560
SkipWhile, 497–498
Sleep, 721

slideDown(), 392
slideToggle(), 392, 769
slideUp, 382, 392, 769
smallint, 426
Smart Tasks panel, 111, 118, 204, 381, 448, 555

DetailsView, 465, 467
DropDownList, 472, 473
GridView, 455, 550
Management, 618, 619
page life cycle, 550
Reviews.aspx, 459
SqlDataSource, 442, 459
state engine, 125
themes, 226

SMTP, 322, 325
<smtp>, 322
SmtpClient, 322, 323, 671
SmtpException, 668–669
solid, 75
Solution Explorer, 18, 39, 41, 46, 60, 758

adding existing files, 44–45
CodeBehind.aspx, 51
CSS Box Model, 79
Default.aspx, 88, 201
Markup View, 304
MyProfile.aspx, 636
RequiredFieldValidator, 304
Start Page, 53
themes, 216

SortByCategory, 706
SortByTime, 706
Sorted, 554
SortedAscendingCellStyle, 543
SortedAscendingHeaderStyle, 543
SortedDescendingCellStyle, 543
SortedDescendingHeaderStyle, 543
Sorting, 554
SortOrder, 416–418, 424, 432, 547

anonymous types, 504
ORDER BY, 470
SqlDataSource, 443, 446
Table Designer, 428

Source, 38
source, 766
<source>, 13
Source View, 20, 47, 758
Source.aspx, 265, 267
, 72, 94, 768

HTML tag, 13
HTML5, 399
UpdatePanel, 342

SpecifiedPickupDirectory, 326
speed, 769
Split button, 48

IIS, 741–742
login controls, 593–612
permissions, 591
practical tips, 625
Role Manager, 612–625
tracing, 710–711
web applications, 609–612

SELECT, 412–413, 415, 419, 424
Select, 486, 493, 495–496
<select>, 13
SELECT *, 434, 455
Select Case/switch, 158–162, 294, 295
SelectCommand, 447, 457, 461, 578
Selected, 646
SelectedIndex, 110
SelectedIndexChanged, 226, 530, 554
SelectedItem, 109, 110
<SelectedItemTemplate>, 512
SelectedRowStyle, 542
SelectedValue, 110, 140, 685
Selecting, 551
SelectMethod, 505, 531, 573

DropDownList, 534, 567
ListView, 514, 515, 519
Profile, 643

selectors. See also specific types
CSS, 68–73, 222, 251

grouping and combining, 72–73
Page Inspector, 696
text editor, 88

elements, 68–69
embedded style sheets, 94
jQuery, 379–382

SelectParameters, 455, 466
SendButton_Click, 394, 721
SendMailOnError, 720, 722
SEO. See search engine optimization
Separator, 559
serialization, 357
Server Controls, ASP.NET, 101–133

Ajax Extensions, 124
ASPX, 102, 105
container, 114–117
data, 123
Dynamic Data, 124
HTML, 101–107, 122–123
list, 110–114
login, 123–124
navigation, 123
pages, 106
postback, 105
practical tips, 131
properties, 106–109
Standard, 109–122

bindex.indd 819 25-02-2014 10:45:51

820

Style – TextSplit View – Structured Query Language (SQL)

UPDATE, 422
validation, 416
WHERE, 413–414

Style, 541–542
style, 66, 108, 234, 389
<style>, 66, 82
style sheets

CSS, 70–82
embedded, 82, 83–84
external, 82, 83–84
HTML, 83–84
inline, 82, 83–84
VS, 759

style.background-color, 389
StyleBundle, 724
styles

applying, 543–545
controls, 540–549
CSS

properties, 541
VS, 93–96

GridView, 542–543
HTML attributes, 541
Menu, 251–254
skins, 545–549
themes, 545–549

Styles, 45, 85, 724–725
Styles.css, 77, 94, 96
StyleSheets, 726
StyleSheetTheme, 217, 218, 221, 762
styleSheetTheme, 752–753
submit, 396
subroutines, 167–169
Substitute, 121
Substring, 172
Sum, 497
Summary, 429, 469, 470, 583
.Summary, 700
SummaryLabel, 580
.svc, 43
switch, 685
syntax errors, 664
System.Caching.Cache.NoSlidingExpiration,

584
System.Data.SqlClient, 563
System.EventArgs, 190
System.Exception, 668
System.IO, 327, 529
System.Linq, 487
<system.net>, 322, 670
System.Net.Mail, 321, 670, 725
System.String, 631, 636
<system.web>, 595, 706, 777

Split View, 20, 48, 67, 274, 717
SQL. See Structured Query Language
SQL Server

application services, 592, 593, 793
attaching databases, 784–786
authentication, 782–783, 787–792
configuration, 781–793
connecting applications, 787–792
data types, 425–427
installation, 408
.mdf, 44
NTFS settings, 744, 745
Number, 564

SQL Server Authentication, 782–783, 787–791
SQL Server Management Studio (SSMS), 407, 783–786

Advanced SQL Generation Options, 459
attaching databases, 784–786
installation, 408
ManagePhotoAlbum, 651
objects, 411
Query Designer, 415, 418
remote server, 748, 783–784
Table Designer, 427–430

SqlDataSource, 441–457
caching, 578
CreateDateTime, 476
CRUD, 441, 478
data source controls, 440
DataKeyNames, 449
DataSourceID, 445
Design View, 470
DetailsView, 469
DropDownList, 451–457, 775
event handling, 549
filters, 451–457
GridView, 441–447, 494
Id, 446
Name, 446
page life cycle, 550, 551, 554
Repeater, 771
Review, 457
RowDataBound, 559
SelectCommand, 447, 461
Selecting, 551
SelectParameters, 455
Smart Tasks panel, 459
SortOrder, 446
strongly typed data-bound controls, 523
UpdateCommand, 446, 476
<UpdateParameters>, 446

SqlException, 561, 563
SqlExpress, 745
SqlRoleProvider, 593

Src, 278
src, 14
SSL. See Secure Sockets Layer
SSMS. See SQL Server Management Studio
StackTrace, 682
stale data, 575–576
Standard controls, 109–122, 308–309
Start Page, 20, 53
start phase, ASP.NET page life cycle, 207
state engine, 124–131
stateless, 124
statements, ASP.NET programming,

147–167
Static, 247, 283, 768
static, 719
static files, 9
static text, 10
StaticEnableDefaultPopOutImage, 247
StepType, 118, 120
strict, 685
String, 212, 358, 765, 777

debugging, 686
postbacks, 764–765
Profile, 633
themes, 229

String.Format, 364, 365, 774
String.IsNullOrEmpty, 172
, 12, 758
strongly typed

ArrayList, 145
LINQ queries, 494, 522–535
ObjectDataSource, 478

Structured Query Language (SQL), 405–436. See also
SQL Server; SQL Server Authentication; SQL Server
Management Studio

creating data, 421–422
database data, 408–412
DELETE, 422
filters, 413–414
Id, 770
identity columns, 427–430
INSERT, 421–422
JOIN, 418–421
joining data, 418–421
LINQ, 486
ORDER BY, 414
ordering data, 414–418
primary keys, 427–430
reading data, 412–421
retrieving and manipulating data, 412–425
SELECT, 412–413
tables relationships, 430–433
T-SQL, 409

bindex.indd 820 25-02-2014 10:45:52

821

Style – TextSplit View – Structured Query Language (SQL)

UPDATE, 422
validation, 416
WHERE, 413–414

Style, 541–542
style, 66, 108, 234, 389
<style>, 66, 82
style sheets

CSS, 70–82
embedded, 82, 83–84
external, 82, 83–84
HTML, 83–84
inline, 82, 83–84
VS, 759

style.background-color, 389
StyleBundle, 724
styles

applying, 543–545
controls, 540–549
CSS

properties, 541
VS, 93–96

GridView, 542–543
HTML attributes, 541
Menu, 251–254
skins, 545–549
themes, 545–549

Styles, 45, 85, 724–725
Styles.css, 77, 94, 96
StyleSheets, 726
StyleSheetTheme, 217, 218, 221, 762
styleSheetTheme, 752–753
submit, 396
subroutines, 167–169
Substitute, 121
Substring, 172
Sum, 497
Summary, 429, 469, 470, 583
.Summary, 700
SummaryLabel, 580
.svc, 43
switch, 685
syntax errors, 664
System.Caching.Cache.NoSlidingExpiration,

584
System.Data.SqlClient, 563
System.EventArgs, 190
System.Exception, 668
System.IO, 327, 529
System.Linq, 487
<system.net>, 322, 670
System.Net.Mail, 321, 670, 725
System.String, 631, 636
<system.web>, 595, 706, 777

System.Web.Configuration, 719
System.Web.ModelBinding, 515
System.Web.Providers.dll, 594
System.Web.UI, 174, 211
System.Web.UI.Page, 206, 208, 210
System.Web.UI.WebControls, 541

T
T4 template, 489, 492
tab size, Document Window, 27
TabIndex, 107
<table>, 13, 59, 439
Table Designer, 427–430
Table menu, 61
tables

ASP.NET, 57–59
HTML, ListView, 522
JOIN, 420
relational database, 406
relationships, SQL, 430–433
Table Designer, 427–430
VS, 445

Tables node, Object Explorer, 432
Tag Selector, 94
TagName, 278
TagPrefix, 278
tags, 7

ASP.NET, 15–16
HTML, 11–13, 59, 60, 97
master pages, 198
user controls, 277–278

Take, 497–498, 560, 772
TakeWhile, 497–498
target, 277
Target.aspx, 265
<td>, 13, 59
Team Explorer, 19
Team Foundation Server (TFS), 19
TemplateField, 458, 555, 771
templates

base page, 212–216
ListView, 525–529

temporary redirect, 264
_TestPage, 215
text, 54–56
Text

Cache API, 581
CustomValidator, 315
debugging, 684
ErrorMessage, 309
exception handling, 667

Src, 278
src, 14
SSL. See Secure Sockets Layer
SSMS. See SQL Server Management Studio
StackTrace, 682
stale data, 575–576
Standard controls, 109–122, 308–309
Start Page, 20, 53
start phase, ASP.NET page life cycle, 207
state engine, 124–131
stateless, 124
statements, ASP.NET programming,

147–167
Static, 247, 283, 768
static, 719
static files, 9
static text, 10
StaticEnableDefaultPopOutImage, 247
StepType, 118, 120
strict, 685
String, 212, 358, 765, 777

debugging, 686
postbacks, 764–765
Profile, 633
themes, 229

String.Format, 364, 365, 774
String.IsNullOrEmpty, 172
, 12, 758
strongly typed

ArrayList, 145
LINQ queries, 494, 522–535
ObjectDataSource, 478

Structured Query Language (SQL), 405–436. See also
SQL Server; SQL Server Authentication; SQL Server
Management Studio

creating data, 421–422
database data, 408–412
DELETE, 422
filters, 413–414
Id, 770
identity columns, 427–430
INSERT, 421–422
JOIN, 418–421
joining data, 418–421
LINQ, 486
ORDER BY, 414
ordering data, 414–418
primary keys, 427–430
reading data, 412–421
retrieving and manipulating data, 412–425
SELECT, 412–413
tables relationships, 430–433
T-SQL, 409

bindex.indd 821 25-02-2014 10:45:52

822

Triggers – validationtext (continued) – TreeView

Triggers, 343
Try, 667, 673, 779–780
TryCast, 142, 580, 584
TryUpdateModel, 510
T-SQL. See Transact SQL
.tt, 489, 490, 492
.txt, 45
Type, 310, 311, 640
type, 82, 305, 631, 636
type inference, 494
Type selector, 71

U
, 59, 439, 521, 532

HTML tag, 13
Menu, 250, 253

underline, 726
uniform resource locator (URL), 240

absolute, 242
.aspx, 461
default documents, 243
extension-less, 261–263
friendly, 10
IIS, 739, 740
relative, 241–242
server-side redirects, 267
strongly typed data-bound controls, 524

uniqueidentifier, 426, 434
Universal Providers, 592, 609
Universal selector, 70–71, 380
unload phase, ASP.NET page life cycle, 208
unnamed instance, 782
unobtrusive JavaScript, 397–401
unordered lists, 59, 439, 771
Untitled Page, 206, 207
UPDATE, 424, 770

DropDownList, 478
GridView, 459
hand-coding data access code, 572
SQL, 422
WHERE, 425

Update, 477
UpdateCommand, 446, 476, 578
UpdateDateTime, 469, 474, 477, 501

default value, 430
hand-coding data access code, 571
tables, 429

UpdateMethod, 505
UpdateMode, 343
UpdatePanel, 349, 350–351, 767

AJAX, 340–344, 564
exception handling, 669

expression syntax, 717
Label, 104, 129, 657
programmatically checking roles, 623
RequiredFieldValidator, 304
Standard validation controls, 308
TextBox, 109

text, SQL, 426
text editor, CSS, 85–89
text files, validation, 327–332
<textarea>, 13
TextBox, 109

Body, 469
ControlToValidate, 470
debugging, 684
hand-coding data access code, 565–566
markup, 108
Markup View, 303
Profile, 637, 638, 641
RequiredFieldValidator, 305
Select Case/switch, 159, 160
state engine, 126, 127
strongly typed data-bound controls, 524
Summary, 469
Title, 470, 476
Toolbox, 21
Wizard, 118

TextMode, 109, 469, 470
hand-coding data access code, 566
HTML5, 305–306
Profile, 640

TFS. See Team Foundation Server
<th>, 13
Theme, 217, 218, 221, 762
themes, 216–231

applying, 218–221
disabling, 235
extending, 222–224
images, 222–224
skins, 232, 545–549
styles, 545–549
switching, 224–231
types, 217
user selection, 226–231

this, 212, 389
$(this), 389
time, 426
timeout, 598
Timer, 340, 350–351
tinyint, 426
Title, 219, 375, 462, 678

anonymous types, 504
base page, 210, 211

Cache API, 580, 583, 585
exception handling, 669
HeaderText, 460
HyperLinkField, 461
InsertItemTemplate, 470
login controls, 594
Review, 356
SQL, 421
tables, 429
TextBox, 470, 476

title, 245
<title>, 12, 66
title case search, 77–78, 80
TitleLabel, 580
To, 327
ToBoolean, 141
ToDateTime, 141
toggleClass, 387
ToList, 495, 504
toolbar area

text, 54
Toolbox

Button, 21, 112
CheckBoxList, 112
HTML, 26
TextBox, 21
VS, 109

ListView, 514
UpdatePanel, 341
user controls, 274

Wizard, 117
ToolTip, 107, 506, 518, 523, 524, 532
TOP, 412–413
ToString(), 140, 688
ToUpper(), 172
<tr>, 13, 59, 390, 548
Trace, 705, 709
TraceMode, 706
traceMode, 706
tracing, 704–711
Transact SQL (T-SQL), 409
Transfer, 267
Transform="Insert," 731
Transform="RemoveAttributes," 731
Transform="Replace," 731
Transform="SetAttributes," 731
transparency, 74
TreeView, 123, 654, 763

Login, 597
navigation controls, 254–258
Page Inspector, 700
Profile, 644
programmatically checking roles, 633

Text (continued)

bindex.indd 822 25-02-2014 10:45:52

823

Triggers – validationtext (continued) – TreeView

Triggers, 343
Try, 667, 673, 779–780
TryCast, 142, 580, 584
TryUpdateModel, 510
T-SQL. See Transact SQL
.tt, 489, 490, 492
.txt, 45
Type, 310, 311, 640
type, 82, 305, 631, 636
type inference, 494
Type selector, 71

U
, 59, 439, 521, 532

HTML tag, 13
Menu, 250, 253

underline, 726
uniform resource locator (URL), 240

absolute, 242
.aspx, 461
default documents, 243
extension-less, 261–263
friendly, 10
IIS, 739, 740
relative, 241–242
server-side redirects, 267
strongly typed data-bound controls, 524

uniqueidentifier, 426, 434
Universal Providers, 592, 609
Universal selector, 70–71, 380
unload phase, ASP.NET page life cycle, 208
unnamed instance, 782
unobtrusive JavaScript, 397–401
unordered lists, 59, 439, 771
Untitled Page, 206, 207
UPDATE, 424, 770

DropDownList, 478
GridView, 459
hand-coding data access code, 572
SQL, 422
WHERE, 425

Update, 477
UpdateCommand, 446, 476, 578
UpdateDateTime, 469, 474, 477, 501

default value, 430
hand-coding data access code, 571
tables, 429

UpdateMethod, 505
UpdateMode, 343
UpdatePanel, 349, 350–351, 767

AJAX, 340–344, 564
exception handling, 669

<UpdateParameters>, 446
UpdateProgress, 340, 346–350
<UpdateProgress>, 348
Updating, 477
URL. See uniform resource locator
url(), 240
URL-rewrite scenarios, 267
user controls, 273–297

caveats, 282–284
ClientID, 282–283
ClientIDMode, 283–284
content pages, 277–280
creating, 274–277
logic, 284–295
master pages, 277–280
practical tips, 295
properties data types, 284–289
sitewide registration, 280–282
tags, 277–278
View State properties, 289–295
Web.config, 280–282

user input
exception throwing, 301
GET, 300
POST, 300
validation, 299–335

e-mail, 321–327
Web Forms, 301–320

userContext, 355
userMessage, 667
userName, 325
Users, 597
users, 621
UsersInRoles, 617

V
ValidateRequestMode, 321
validation

client-side, 302, 766
DetailsView, 476
HTML5 data types, 305–308
jQuery, 397–401
practical tips, 333
processing data at server, 321–332
request, 320–321
server-side, 302
SQL, 416
Standard controls, 308–309
text files, 327–332
user input, 299–335

e-mail, 321–327
Web Forms, 301–320

Cache API, 580, 583, 585
exception handling, 669
HeaderText, 460
HyperLinkField, 461
InsertItemTemplate, 470
login controls, 594
Review, 356
SQL, 421
tables, 429
TextBox, 470, 476

title, 245
<title>, 12, 66
title case search, 77–78, 80
TitleLabel, 580
To, 327
ToBoolean, 141
ToDateTime, 141
toggleClass, 387
ToList, 495, 504
toolbar area

text, 54
Toolbox

Button, 21, 112
CheckBoxList, 112
HTML, 26
TextBox, 21
VS, 109

ListView, 514
UpdatePanel, 341
user controls, 274

Wizard, 117
ToolTip, 107, 506, 518, 523, 524, 532
TOP, 412–413
ToString(), 140, 688
ToUpper(), 172
<tr>, 13, 59, 390, 548
Trace, 705, 709
TraceMode, 706
traceMode, 706
tracing, 704–711
Transact SQL (T-SQL), 409
Transfer, 267
Transform="Insert," 731
Transform="RemoveAttributes," 731
Transform="Replace," 731
Transform="SetAttributes," 731
transparency, 74
TreeView, 123, 654, 763

Login, 597
navigation controls, 254–258
Page Inspector, 700
Profile, 644
programmatically checking roles, 633

bindex.indd 823 25-02-2014 10:45:53

824

validation controls – View State ViewDetails.aspx – Visual Studio Express 2013 for Web (VSEW)

ViewDetails.aspx, 580, 582–583, 585,
647

ViewState, 764
__VIEWSTATE, 128, 130, 342, 760
ViewStateMode, 130–131
virtual, 188
virtualFolder, 529
visibility, 74
Visible, 107, 115, 469, 477, 704

exception handling, 673
programmatically checking roles, 634
tracing, 704

VisibleWhenLoggedIn, 599
Visual Basic, 52, 113, 172, 211, 287
Visual Basic.NET, 2
Visual Studio (VS)

AJAX, 338
ASP.NET, Server Controls, 101, 106
ASP.NET 1.0, 1
base page, 210
Browser Link, 702–704
class, 93
code snippets, 303
comments, 87
content pages, 203
CSS, 84–96

properties, 74
styles, 93–96
text editor, 85–89

data tips, 690
debugging, 684
Design View, 48
DetailsView, 473
DropDownList, 457
editors, 48
event handling, 491
expression syntax, 717
File Explorer, 215, 220
GridView, 457
HTML, 56
IDE, 31
IIS, 737
inline style sheets, 96
IntelliSense, 50, 363–364

jQuery, 393
keyboard shortcuts, 28
<link>, 79
LINQ to ADO.NET, 487
Markup View, 92, 508
NuGet, 369–373
Panel, 116
practical tips, 30–31
result, 356
shorthand declarations, 90

validation controls, 123, 207, 301–320. See also
specific controls

ValidationGroup, 309, 320
ValidationSummary, 308, 314–320
Value, 113, 114, 457
value, 172
Value Providers, 510
values

CSS, 69, 74–75
declarations, 69

ValueToCompare, 311
var, 494
varbinary, 426
varchar, 426
variables

ASP.NET programming, 137–147
backing, 180–181
C#, 139–140
camel case, 138
debugging, 687–688
.NET Framework, 139–140
range, 496
reference, 168
VB.NET, 139–140

VaryByParam, 577
.vb, 43
VB.NET, 139

access modifiers, 189
anonymous identification, 656
anonymous types, 499, 500, 502
arithmetic operators, 148–150
Array.Resize, 144
base page, 212
Cache API, 581, 583, 584–585
casting data types, 141–142
classes, 179
comments, 176–178
comparison operators, 151–152
concatenation operators, 152–153
constructors, 184–186
cookies, 224–225
custom error pages, 676–678
CustomValidator, 319
DataPager, 531, 532, 533
debugging, 685
DetailsView, 468, 474
EF, 488, 491
e-mail, 326–327
event handling, 551, 552
events, 190–191
exception handling, 668–674
fields, 180
generics, 146–147
hand-coding data access code, 567–568, 571,

572–574

inheritance, 186–188
Inherits, 461
LINQ, 486
LINQ queries, 494

Model Binding, 508
ListView, 514, 515–516, 517, 519, 520,

521, 528
logic errors, 666
logical operators, 154–155
ManagePhotoAlbum, 651, 652
Me, 212
methods, 183–184

functions, and subroutines, 167–169
namespaces, 173–175
NavigateUrl, 293
objects, 179
OnTick, 351
OperationMethod, 360
Optional, 553
Profile, 633, 634, 635, 636, 637–638, 642, 643,

644, 645, 657
programmatic caching, 579, 580
programmatically checking roles, 623,

633
properties, 180–183
read-only and write-only properties, 183
Reviews, 647
roles, 622
RowDataBound, 556, 557, 559, 560
syntax errors, 665
templates, 215
themes, 231
tracing, 704, 709
value, 172
variables, 139–140
WCF, 353, 355, 358
Web.config, 720, 721, 723
WebConfigurationManager, 719

.vbproj, 35
VerticalAlign, 542
VerticalPanel, 768
<video>, 13
Vieira, Robert, 420
View menu, Notification window, 17
View Page Source, 9, 116, 202, 397
View Source, 9, 116, 202, 397
View State

ASP.NET page life cycle, 207
ASP.NET Server Controls, 129–130
controls, 760
performance, 130–131
properties, user controls, 289–295
state engine, 128
ViewState, 764
Wizard, 120

bindex.indd 824 25-02-2014 10:45:53

825

validation controls – View State ViewDetails.aspx – Visual Studio Express 2013 for Web (VSEW)

ViewDetails.aspx, 580, 582–583, 585,
647

ViewState, 764
__VIEWSTATE, 128, 130, 342, 760
ViewStateMode, 130–131
virtual, 188
virtualFolder, 529
visibility, 74
Visible, 107, 115, 469, 477, 704

exception handling, 673
programmatically checking roles, 634
tracing, 704

VisibleWhenLoggedIn, 599
Visual Basic, 52, 113, 172, 211, 287
Visual Basic.NET, 2
Visual Studio (VS)

AJAX, 338
ASP.NET, Server Controls, 101, 106
ASP.NET 1.0, 1
base page, 210
Browser Link, 702–704
class, 93
code snippets, 303
comments, 87
content pages, 203
CSS, 84–96

properties, 74
styles, 93–96
text editor, 85–89

data tips, 690
debugging, 684
Design View, 48
DetailsView, 473
DropDownList, 457
editors, 48
event handling, 491
expression syntax, 717
File Explorer, 215, 220
GridView, 457
HTML, 56
IDE, 31
IIS, 737
inline style sheets, 96
IntelliSense, 50, 363–364

jQuery, 393
keyboard shortcuts, 28
<link>, 79
LINQ to ADO.NET, 487
Markup View, 92, 508
NuGet, 369–373
Panel, 116
practical tips, 30–31
result, 356
shorthand declarations, 90

style sheets, 759
<table>, 59
tables, 445
<td>, 59
templates, 215
text, 56
themes, 220
Toolbox, 109

ListView, 514
UpdatePanel, 341
user controls, 274

<tr>, 59
Untitled Page, 207
user controls, 280
WCF, 357
web deployment, 727–730
Web Forms, 48
Web.sitemap, 245
Windows Explorer, 45
WSAT, 614

Visual Studio 2005, 2
Visual Studio 2008, 2
Visual Studio 2013, 2

creating websites, 34–41
opening existing websites, 40–41
Web Application Projects, 34–35
Web Site Projects, 34
website templates, 35–37

Visual Studio 2013 IDE, 16–29
customization, 23–29
development area, 16–22
development profiles, 17
Document Window, 19–20

customization, 26–27
Error List, 22
Find Results window, 23
informational windows, 22–23
keyboard shortcuts, customization, 28
Main menu, 17
Notification window, 17
Output window, 22
Properties Grid, 19
resetting changes, 28–29
Server Explorer, 18–19
Solution Explorer, 18
Start Page, 20
Team Explorer, 19
toolbar area, 17–18

customization, 27
Toolbox, 18

modifying, 24–26
resetting, 28

Visual Studio Express 2013, 2, 139
Visual Studio Express 2013 for Web (VSEW), 2–5, 17

inheritance, 186–188
Inherits, 461
LINQ, 486
LINQ queries, 494

Model Binding, 508
ListView, 514, 515–516, 517, 519, 520,

521, 528
logic errors, 666
logical operators, 154–155
ManagePhotoAlbum, 651, 652
Me, 212
methods, 183–184

functions, and subroutines, 167–169
namespaces, 173–175
NavigateUrl, 293
objects, 179
OnTick, 351
OperationMethod, 360
Optional, 553
Profile, 633, 634, 635, 636, 637–638, 642, 643,

644, 645, 657
programmatic caching, 579, 580
programmatically checking roles, 623,

633
properties, 180–183
read-only and write-only properties, 183
Reviews, 647
roles, 622
RowDataBound, 556, 557, 559, 560
syntax errors, 665
templates, 215
themes, 231
tracing, 704, 709
value, 172
variables, 139–140
WCF, 353, 355, 358
Web.config, 720, 721, 723
WebConfigurationManager, 719

.vbproj, 35
VerticalAlign, 542
VerticalPanel, 768
<video>, 13
Vieira, Robert, 420
View menu, Notification window, 17
View Page Source, 9, 116, 202, 397
View Source, 9, 116, 202, 397
View State

ASP.NET page life cycle, 207
ASP.NET Server Controls, 129–130
controls, 760
performance, 130–131
properties, user controls, 289–295
state engine, 128
ViewState, 764
Wizard, 120

bindex.indd 825 25-02-2014 10:45:53

826

Web.config Transformations – zero-based

RequiredFieldValidator, 304–305
ResponseRedirect, 679
runtime, 780
ScriptManager, 363
SMTP, 325
Solution Explorer, 39
SQL Server Authentication, 791
styles, 546
<system.net>, 322
<system.web>, 777
themes, 218, 219
tracing, 707, 708
unobtrusive JavaScript, 397, 400
user controls, 280–282
WCF, 357, 362
web deployment, 717, 719–723, 752
WSAT, 617
XML, 44

Web.config Transformations, 730–734, 752
WebConfigurationManager, 718–719
Web.Debug.config, 39
WebException, 671
WebForms, 399
WebParts controls, 124
WebResource.axd, 250–251
WebServices, 358
WebServices.aspx, 362
website templates, 35–37
Web.sitemap, 244–246, 255, 533
Web.To local disk.config, 732
WHERE, 418, 425, 770

SelectParameters, 455
SQL, 413–414

Where, 486, 493, 496, 515, 650, 774
While loop, 165–166
whitespace, 76
Width, 107, 470, 542, 640
width, 73, 76, 84
Window menu, 28
Windows, 598
windows, debugging, 687–693
Windows Authentication, 782–783, 791–792
Windows Communication Foundation (WCF)

AJAX, 339, 352–365, 767
JSON, 359

Visual Studio.NET – Web.config

Visual Studio.NET, 1
Visual Web Developer (VWD), 63
VS. See Visual Studio
VSEW. See Visual Studio Express 2013 for Web
VWD. See Visual Web Developer

W
W3C. See World Wide Consortium
Warn, 709
Watch window, 687–688, 693
WCF. See Windows Communication Foundation
WCF Services, 43
Web API, 35
Web Application Projects, 34–35
web applications

caching, 576–585
configuration, 609–612
Profile, 630–631
roles, 618–622
security, 609–612

Web Deploy, 728
Web Deploy Package, 728
web deployment, 715–755

bundling, 723–727
checklist, 751–753
expression syntax, 717–718
IIS, 727, 734–747
minification, 723–727
preparing, 727–734
publishing, 727–730
remote server, 747–751
VS, 727–730
Web.config, 717, 719–723
Web.config Transformations, 730–734
WebConfigurationManager, 718–719

Web Essentials, 704
Web Forms, 8

adding with code, 49–53
application services, 592
ASP.NET, 47–61
ASP.NET Server Controls, 101
.aspx, 42
Code Behind, 49–53, 61, 509, 556
CSS, 66
DetailsView, 465
Document Window, 27, 47
Format menu, 61
Global.asax, 678
hand-coding data access code, 565
HTML, 48–49, 61
inline code, 49–53
jQuery, 369
LINQ queries, Model Binding, 505

Panel, 115
POST, 128
practical tips, 61
programmatic redirection, 265
RowDataBound, 556
ScriptManager, 360
Signup.aspx, 595
state engine, 128
Table menu, 61
user input validation, 301–320
VS, 48
Web Application Projects, 34
Web Site Projects, 34

Web Forms Site, 36
Web Pages, 36
Web Platform Installer (WPI), 3, 736
web server

IIS, 735–747
troubleshooting, 745–747

web services
AJAX, 351–365
creating, 357–365

Web Site Administration Tool (WSAT), 613–618
Web Site Projects, 169

opening websites, 40
Profile, 631, 635
Visual Studio 2013, 34

Web User Control, 42
Web.config, 42, 723

application services, 793
<appSettings>, 398, 717
authentication, 598
<authentication>, 595, 598
bundling, 725, 727
caching, 576
connection strings, 449–451
<connectionStrings>, 449–451, 595, 771
<customerrors>, 745
debugging, 751
enabled, 710–711
exception handling, 670
expression syntax, 718
IIS, 739, 740
jQuery validation, 397, 400
Management, 618, 620, 621
ManagePhotoAlbum, 651
NTFS settings, 744
Page Inspector, 697
<pages>, 221, 762
Profile, 631, 633, 634, 635, 636
<profile>, 631, 634
Profile service, 630
ProviderName, 445
Release, 739, 740

bindex.indd 826 25-02-2014 10:45:54

www.SoftGozar.com

827

Web.config Transformations – zero-based

RequiredFieldValidator, 304–305
ResponseRedirect, 679
runtime, 780
ScriptManager, 363
SMTP, 325
Solution Explorer, 39
SQL Server Authentication, 791
styles, 546
<system.net>, 322
<system.web>, 777
themes, 218, 219
tracing, 707, 708
unobtrusive JavaScript, 397, 400
user controls, 280–282
WCF, 357, 362
web deployment, 717, 719–723, 752
WSAT, 617
XML, 44

Web.config Transformations, 730–734, 752
WebConfigurationManager, 718–719
Web.Debug.config, 39
WebException, 671
WebForms, 399
WebParts controls, 124
WebResource.axd, 250–251
WebServices, 358
WebServices.aspx, 362
website templates, 35–37
Web.sitemap, 244–246, 255, 533
Web.To local disk.config, 732
WHERE, 418, 425, 770

SelectParameters, 455
SQL, 413–414

Where, 486, 493, 496, 515, 650, 774
While loop, 165–166
whitespace, 76
Width, 107, 470, 542, 640
width, 73, 76, 84
Window menu, 28
Windows, 598
windows, debugging, 687–693
Windows Authentication, 782–783, 791–792
Windows Communication Foundation (WCF)

AJAX, 339, 352–365, 767
JSON, 359

client-side code, 354–355
complex objects, 355–360
IntelliSense, 363–364
JSON, 357
metadata, 359
serialization, 357
VS, 357
Web.config, 357, 362

Windows Event Viewer, 745
Windows Explorer, 45, 758
Windows Regional Settings, 9
Wizard, 117–121

Smart Tasks panel, 118
Toolbox, 117

WizardStep, 118
World Wide Consortium (W3C), 66
WPI. See Web Platform Installer
Wrap, 542
Write, 710
WriteAllText, 328
WriteMessage, 553
write-only properties, 183
WSAT. See Web Site Administration Tool

x
XHTML, 14
XML, 44, 250, 255. See also Asynchronous JavaScript

and XML; LINQ to XML
caching, 578
comments, 177–178
e-mail, 322
LINQ to XML, 487

XML, 122
.xml, 44
XmlDataSource, 440
XMLHttpRequest, 339

Y
Yellow Screen of Death, 564, 667, 680, 780

Z
zero-based, 143

Visual Studio.NET – Web.config

Panel, 115
POST, 128
practical tips, 61
programmatic redirection, 265
RowDataBound, 556
ScriptManager, 360
Signup.aspx, 595
state engine, 128
Table menu, 61
user input validation, 301–320
VS, 48
Web Application Projects, 34
Web Site Projects, 34

Web Forms Site, 36
Web Pages, 36
Web Platform Installer (WPI), 3, 736
web server

IIS, 735–747
troubleshooting, 745–747

web services
AJAX, 351–365
creating, 357–365

Web Site Administration Tool (WSAT), 613–618
Web Site Projects, 169

opening websites, 40
Profile, 631, 635
Visual Studio 2013, 34

Web User Control, 42
Web.config, 42, 723

application services, 793
<appSettings>, 398, 717
authentication, 598
<authentication>, 595, 598
bundling, 725, 727
caching, 576
connection strings, 449–451
<connectionStrings>, 449–451, 595, 771
<customerrors>, 745
debugging, 751
enabled, 710–711
exception handling, 670
expression syntax, 718
IIS, 739, 740
jQuery validation, 397, 400
Management, 618, 620, 621
ManagePhotoAlbum, 651
NTFS settings, 744
Page Inspector, 697
<pages>, 221, 762
Profile, 631, 633, 634, 635, 636
<profile>, 631, 634
Profile service, 630
ProviderName, 445
Release, 739, 740

bindex.indd 827 25-02-2014 10:45:54

www.SoftGozar.com

Try Safari Books Online FREE
for 15 days and take 15% off

for up to 6 Months*
Gain unlimited subscription access to thousands of books and videos.

START YOUR FREE TRIAL TODAY!
Visit: www.safaribooksonline.com/wrox

*Discount applies to new Safari Library subscribers only and
is valid for the first 6 consecutive monthly billing cycles.
Safari Library is not available in all countries.

With Safari Books Online, learn without limits
from thousands of technology, digital media and
professional development books and videos from
hundreds of leading publishers. With a monthly or
annual unlimited access subscription, you get:

• Anytime, anywhere mobile access with Safari To
Go apps for iPad, iPhone and Android

• Hundreds of expert-led instructional videos on
today’s hottest topics

• Sample code to help accelerate a wide variety of
software projects

• Robust organizing features including favorites,
highlights, tags, notes, mash-ups and more

• Rough Cuts pre-published manuscripts

badvert.indd 828 2/21/2014 10:50:20 AM

http://www.safaribooksonline.com/wrox

Programmer to Programmer™

Contact Us.
We love feedback! Have a book idea? Need community support?
Let us know by e-mailing wrox-partnerwithus@wrox.com

Connect with Wrox.
Participate
Take an active role online by participating
in our P2P forums @ p2p.wrox.com

Wrox Blox
Download short informational pieces and code
to keep you up to date and out of trouble

Join the Community
Sign up for our free monthly newsletter
at newsletter.wrox.com

Wrox.com
Browse the vast selection of Wrox titles, e-books,
and blogs and find exactly what you need

User Group Program
Become a member and take advantage of all
the benefits

Wrox on
Follow @wrox on Twitter and be in the know
on the latest news in the world of Wrox

Wrox on
Join the Wrox Facebook page at
facebook.com/wroxpress and get updates
on new books and publications as well
as upcoming programmer conferences
and user group events

www.SoftGozar.com

https://twitter.com/p2p.wrox.com
https://twitter.com/wrox
http://newsletter.wrox.com
http://facebook.com/wroxpress
mailto:wrox-partnerwithus@wrox.com
http://Wrox.com

www.SoftGozar.com

	Beginning ASP.NET 4.5.1: in C# and VB
	Copyright
	About the Author
	Credits
	Acknowledgments
	Contents
	Foreword
	Introduction
	Who This Book Is For
	What This Book Covers
	How This Book Is Structured
	What You Need to Use This Book
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Chapter 1: Getting Started with ASP.NET 4.5.1
	Microsoft Visual Studio Express for Web
	Getting Visual Studio
	Installing Visual Studio Express for Web (VSEW)

	Creating Your First ASP.NET 4.5.1 Website
	An Introduction to ASP.NET 4.5.1
	Understanding HTML
	A First Look at ASP.NET Markup

	A Tour of the IDE
	The Main Development Area
	Informational Windows

	Customizing the IDE
	Rearranging Windows
	Modifying the Toolbox
	Customizing the Document Window
	Customizing Toolbars
	Customizing Keyboard Shortcuts
	Resetting Your Changes

	The Sample Application
	Practical Tips on Visual Studio
	Summary

	Chapter 2: Building an ASP.NET Website
	Creating Websites with Visual Studio 2013
	Different Project Types
	Choosing the Right Website Template
	Creating and Opening a New Website

	Working with Files in Your Website
	The Many File Types of an ASP.NET Website
	Adding Existing Files
	Organizing Your Site
	Special File Types

	Working with Web Forms
	The Different Views on Web Forms
	Choosing between Code Behind and Pages with Inline Code
	Adding Markup to Your Page
	Connecting Pages

	Practical Tips on Working with Web Forms
	Summary

	Chapter 3: Designing Your Web Pages
	Why Do You Need CSS?
	Problems with Using HTML Formatting
	How CSS Fixes Formatting Problems

	An Introduction to CSS
	CSS — The Language
	The Style Sheet
	Adding CSS to Your Pages

	Working with CSS in Visual Studio
	Using the CSS Editor
	Creating Embedded and Inline Style Sheets
	Applying Styles
	Managing Styles

	Practical Tips on Working with CSS
	Summary

	Chapter 4: Working with ASP.NET Server Controls
	Introduction to Server Controls
	A Closer Look at ASP.NET Server Controls
	Defining Controls in Your Pages
	Common Properties for All Controls

	Types of Controls
	Standard Controls
	HTML Controls
	Data Controls
	Validation Controls
	Navigation Controls
	Login Controls
	Ajax Extensions
	WebParts
	Dynamic Data

	The ASP.NET State Engine
	What Is State and Why Is It Important?
	How the State Engine Works
	Not All Controls Rely on View State
	A Note about View State and Performance

	Practical Tips on Working with Controls
	Summary

	Chapter 5: Programming Your ASP.NET Web Pages
	Introduction to Programming
	Data Types and Variables
	Converting and Casting Data Types
	Using Arrays and Collections

	Statements
	Operators
	Making Decisions
	Loops

	Organizing Code
	Methods: Functions and Subroutines
	The App_Code Folder
	Organizing Code with Namespaces
	Writing Comments

	Object Orientation Basics
	Important OO Terminology
	Events

	Practical Tips on Programming
	Summary

	Chapter 6: Creating Consistent Looking Websites
	Consistent Page Layout with Master Pages
	Creating Master Pages
	Creating Content Pages

	Using a Centralized Base Page
	An Introduction to the ASP.NET Page Life Cycle
	Implementing the Base Page
	Creating Reusable Page Templates

	Themes
	Different Types of Themes
	Choosing Between Theme and StyleSheetTheme
	Applying Themes
	Extending Themes
	Dynamically Switching Themes

	Skins
	Creating a Skin File
	Named Skins
	Disable Theming for Specific Controls

	Practical Tips on Creating Consistent Pages
	Summary

	Chapter 7: Navigation
	Different Ways to Move Around Your Site
	Understanding Absolute and Relative URLs
	Understanding Default Documents

	Using the Navigation Controls
	Architecture of the Navigation Controls
	Examining the Web.sitemap File
	Using the Menu Control
	Using the TreeView Control
	Using the SiteMapPath Control

	Routing
	Setting up Extension-less URLs
	Considerations for Extension-less URLs

	Programmatic Redirection
	Programmatically Redirecting the Client to a Different Page
	Server-Side Redirects

	Practical Tips on Navigation
	Summary

	Chapter 8: User Controls
	Introduction to User Controls
	Creating User Controls
	Adding User Controls to a Content Page or Master Page
	Sitewide Registration of User Controls
	User Control Caveats

	Adding Logic to Your User Controls
	Creating Your Own Data Types for Properties
	Implementing View State Properties
	View State Considerations

	Practical Tips on User Controls
	Summary

	Chapter 9: Validating User Input
	Gathering Data from the User
	Validating User Input in Web Forms
	Understanding Request Validation

	Processing Data at the Server
	Sending E-mail from Your Website
	Reading from Text Files

	Practical Tips on Validating Data
	Summary

	Chapter 10: ASP.NET AJAX
	Introducing Ajax
	Using ASP.NET AJAX in Your Projects
	Creating Flicker-free Pages
	Providing Feedback to Users
	The Timer Control

	Using Web Services in Ajax Websites
	What Are Web Services?
	Creating Web Services

	Practical Ajax Tips
	Summary

	Chapter 11: jQuery
	An Introduction to jQuery
	Introducing NuGet
	Choosing the Location for Your jQuery Reference
	Different Ways to Include the jQuery Library

	jQuery Syntax
	jQuery Core
	Selecting Items Using jQuery

	Modifying the DOM with jQuery
	CSS Methods
	Handling Events
	Miscellaneous jQuery Functionality
	Common Mistakes When Working with jQuery

	Effects with jQuery
	jQuery and Validation
	Practical Tips on jQuery
	Summary

	Chapter 12: Introducing Databases
	What Is a Database?
	Different Kinds of Relational Databases
	Installing SQL Server 2012 Express

	Using SQL to Work with Database Data
	Retrieving and Manipulating Data with SQL
	Reading Data
	Creating Data
	Updating Data
	Deleting Data

	Creating Your Own Tables
	Data Types in SQL Server
	Understanding Primary Keys and Identities
	Creating Relationships between Tables

	Practical Database Tips
	Summary

	Chapter 13: Displaying and Updating Data
	Data Controls
	Data-bound Controls
	Data Source Controls
	Other Data Controls

	Data Source and Data-bound Controls Working Together
	Displaying and Editing Data with GridView
	Inserting Data with DetailsView
	Storing Your Connection Strings in Web.config
	Filtering Data

	Customizing the Appearance of the Data Controls
	Configuring Columns or Fields of Data-bound Controls

	Updating and Inserting Data
	Using DetailsView to Insert and Update Data

	Practical Tips for Displaying and Updating Data
	Summary

	Chapter 14: LINQ and the ADO.NET Entity Framework
	Introducing LINQ
	LINQ to Objects
	LINQ to XML
	LINQ to ADO.NET

	Introducing the ADO.NET Entity Framework
	Mapping Your Data Model to an Object Model
	Introducing Query Syntax
	Standard Query Operators
	Shaping Data with Anonymous Types

	Using Model Binding with LINQ Queries
	Introducing Model Binding
	A Note about Performance

	Practical LINQ and ADO.NET Entity Framework Tips
	Summary

	Chapter 15: Working with Data — Advanced Topics
	Formatting Your Controls Using Styles
	An Introduction to Styles
	Combining Styles, Themes, and Skins

	Handling Events
	The ASP.NET Page and Control Life Cycles Revisited
	The ASP.NET Page Life Cycle and Events in Data Controls
	Handling Errors That Occur in the Data Source Controls

	Hand-Coding Data Access Code
	Caching
	Common Pitfalls with Caching Data
	Different Ways to Cache Data in ASP.NET Web Applications

	Practical Data Tips
	Summary

	Chapter 16: Security in Your ASP.NET Website
	Introducing Security
	Identity: Who Are You?
	Authentication: How Can You Prove Who You Are?
	Authorization: What Are You Allowed to Do?
	An Introduction to the ASP.NET Application Services

	Introducing the Login Controls
	The Login Controls
	Configuring Your Web Application

	The Role Manager
	The Role Manager Configuration
	Managing Users with the WSAT
	Configuring the Web Application to Work with Roles
	Programmatically Checking Roles

	Practical Security Tips
	Summary

	Chapter 17: Personalizing Websites
	Understanding Profile
	Configuring the Profile
	Using the Profile

	Other Ways of Dealing with Profile
	Anonymous Identification
	Cleaning Up Old Anonymous Profiles
	Looking at Other Users’ Profiles

	Practical Personalization Tips
	Summary

	Chapter 18: Exception Handling, Debugging,and Tracing
	Exception Handling
	Different Types of Errors
	Catching and Handling Exceptions
	Global Error Handling and Custom Error Pages

	The Basics of Debugging
	Tools Support for Debugging
	Moving Around in Debugged Code
	Debugging Windows

	Debugging Client-Side Script
	Debugging with the Page Inspector
	Introducing the Page Inspector
	Using the Page Inspector

	Cross-browser Testing with Browser Link
	Introducing Browser Link
	Using Browser Link

	Tracing Your ASP.NET Web Pages
	Using the Standard Tracing Capabilities
	Adding Your Own Information to the Trace
	Tracing and Performance
	A Security Warning

	Practical Debugging Tips
	Summary

	Chapter 19: Deploying Your Website
	Preparing Your Website for Deployment
	Avoiding Hard-Coded Settings
	The Web.config File
	Expression Syntax
	The WebConfigurationManager Class

	Introducing Bundling and Minification
	Preparing for Deployment
	Publishing Your Site
	Introducing Web.config Transformations

	Running Your Site Under IIS
	Installing and Configuring the Web Server
	Installing and Configuring ASP.NET
	Understanding Security in IIS
	NTFS Settings for Planet Wrox
	Troubleshooting Web Server Errors

	Moving Data to a Remote Server
	Exporting Your Data to a File
	Recreating the Database

	The Deployment Checklist
	What’s Next
	Summary

	Appendix A: Exercise Answers
	Chapter 1
	Exercise 1 Solution
	Exercise 2 Solution
	Exercise 3 Solution
	Exercise 4 Solution

	Chapter 2
	Exercise 1 Solution
	Exercise 2 Solution
	Exercise 3 Solution
	Exercise 4 Solution

	Chapter 3
	Exercise 1 Solution
	Exercise 2 Solution
	Exercise 3 Solution
	Exercise 4 Solution

	Chapter 4
	Exercise 1 Solution
	Exercise 2 Solution
	Exercise 3 Solution
	Exercise 4 Solution
	Exercise 5 Solution
	Exercise 6 Solution

	Chapter 5
	Exercise 1 Solution
	Exercise 2 Solution
	Exercise 3 Solution

	Chapter 6
	Exercise 1 Solution
	Exercise 2 Solution
	Exercise 3 Solution
	Exercise 4 Solution
	Exercise 5 Solution
	Exercise 6 Solution

	Chapter 7
	Exercise 1 Solution
	Exercise 2 Solution
	Exercise 3 Solution

	Chapter 8
	Exercise 1 Solution
	Exercise 2 Solution
	Exercise 3 Solution

	Chapter 9
	Exercise 1 Solution
	Exercise 2 Solution
	Exercise 3 Solution
	Exercise 4 Solution
	Exercise 5 Solution

	Chapter 10
	Exercise 1 Solution
	Exercise 2 Solution
	Exercise 3 Solution

	Chapter 11
	Exercise 1 Solution
	Exercise 2 Solution
	Exercise 3 Solution
	Exercise 4 Solution

	Chapter 12
	Exercise 1 Solution
	Exercise 2 Solution
	Exercise 3 Solution
	Exercise 4 Solution
	Exercise 5 Solution

	Chapter 13
	Exercise 1 Solution
	Exercise 2 Solution
	Exercise 3 Solution
	Exercise 4 Solution

	Chapter 14
	Exercise 1 Solution
	Exercise 2 Solution
	Exercise 3 Solution
	Exercise 4 Solution
	Exercise 5 Solution

	Chapter 15
	Exercise 1 Solution
	Exercise 2 Solution
	Exercise 3 Solution

	Chapter 16
	Exercise 1 Solution
	Exercise 2 Solution
	Exercise 3 Solution
	Exercise 4 Solution

	Chapter 17
	Exercise 1 Solution
	Exercise 2 Solution
	Exercise 3 Solution

	Chapter 18
	Exercise 1 Solution
	Exercise 2 Solution
	Exercise 3 Solution

	Appendix B: Configuring SQL Server 2012
	Configuring SQL Server 2012
	Terminology and Concepts
	Using SQL Server Management Studio
	Connecting Your Application to SQL Server 2012

	Configuring Application Services

	Index
	Advertisement

