

 Web framework for Python

Django Book: pdf version

compiled by Suvash Sedhain

 bir2su.blogspot.com

Visit www.djangobook.com for online version of the book

The Django Book

The Django Book

Table of contents
Beta, English

October 30, 2006 Chapter 1: Introduction to Django

October 30, 2006 Chapter 2: Getting started

November 6, 2006 Chapter 3: The basics of generating Web pages

November 7, 2006 Chapter 4: The Django template system

November 13, 2006 Chapter 5: Interacting with a database: models

November 13, 2006 Chapter 6: The Django admin site

TBA Chapter 7: Form processing

December 11, 2006 Chapter 8: Advanced views and URLconfs

November 20, 2006 Chapter 9: Generic views

December 4, 2006 Chapter 10: Extending the template engine

December 11, 2006 Chapter 11: Outputting non-HTML content

December 24, 2006 Chapter 12: Sessions, users, and registration

TBA Chapter 13: Comments

November 20, 2006 Chapter 14: Caching

December 18, 2006 Chapter 15: Other contributed sub-frameworks

December 25, 2006 Chapter 16: Middleware

December 25, 2006 Chapter 17: Integrating with legacy databases and applications

January 3, 2007 Chapter 18: Customizing the Django admin

file:///D|/books/computer/programming/python/books/DJANGO BOOK/TOC.HTML (1 of 2)9/28/2007 2:33:44 PM

file:///D|/books/computer/programming/python/books/DJANGO BOOK/chapter01/
file:///D|/books/computer/programming/python/books/DJANGO BOOK/chapter01/
file:///D|/books/computer/programming/python/books/DJANGO BOOK/chapter02/
file:///D|/books/computer/programming/python/books/DJANGO BOOK/chapter02/
file:///D|/books/computer/programming/python/books/DJANGO BOOK/chapter03/
file:///D|/books/computer/programming/python/books/DJANGO BOOK/chapter03/
file:///D|/books/computer/programming/python/books/DJANGO BOOK/chapter04/
file:///D|/books/computer/programming/python/books/DJANGO BOOK/chapter04/
file:///D|/books/computer/programming/python/books/DJANGO BOOK/chapter05/
file:///D|/books/computer/programming/python/books/DJANGO BOOK/chapter05/
file:///D|/books/computer/programming/python/books/DJANGO BOOK/chapter06/
file:///D|/books/computer/programming/python/books/DJANGO BOOK/chapter06/
file:///D|/books/computer/programming/python/books/DJANGO BOOK/chapter08/
file:///D|/books/computer/programming/python/books/DJANGO BOOK/chapter08/
file:///D|/books/computer/programming/python/books/DJANGO BOOK/chapter09/
file:///D|/books/computer/programming/python/books/DJANGO BOOK/chapter09/
file:///D|/books/computer/programming/python/books/DJANGO BOOK/chapter10/
file:///D|/books/computer/programming/python/books/DJANGO BOOK/chapter10/
file:///D|/books/computer/programming/python/books/DJANGO BOOK/chapter11/
file:///D|/books/computer/programming/python/books/DJANGO BOOK/chapter11/
file:///D|/books/computer/programming/python/books/DJANGO BOOK/chapter12/
file:///D|/books/computer/programming/python/books/DJANGO BOOK/chapter12/
file:///D|/books/computer/programming/python/books/DJANGO BOOK/chapter14/
file:///D|/books/computer/programming/python/books/DJANGO BOOK/chapter14/
file:///D|/books/computer/programming/python/books/DJANGO BOOK/chapter15/
file:///D|/books/computer/programming/python/books/DJANGO BOOK/chapter15/
file:///D|/books/computer/programming/python/books/DJANGO BOOK/chapter16/
file:///D|/books/computer/programming/python/books/DJANGO BOOK/chapter16/
file:///D|/books/computer/programming/python/books/DJANGO BOOK/chapter17/
file:///D|/books/computer/programming/python/books/DJANGO BOOK/chapter17/
file:///D|/books/computer/programming/python/books/DJANGO BOOK/chapter18/
file:///D|/books/computer/programming/python/books/DJANGO BOOK/chapter18/

The Django Book

January 8, 2007 Chapter 19: Internationalization and localization

January 8, 2007 Chapter 20: Security

January 24, 2007 Chapter 21: Deploying Django

TBA Appendix A: Case studies

TBA Appendix B: Model definition reference

TBA Appendix C: Database API reference

TBA Appendix D: URL dispatch reference

TBA Appendix E: Settings reference

TBA Appendix F: Built-in template tag/filter reference

TBA Appendix G: The django-admin utility

TBA Appendix H: Request and response object reference

TBA Appendix I: Regular expression reference

Copyright 2006 Adrian Holovaty and Jacob Kaplan-Moss.
This work is licensed under the GNU Free Document License.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/TOC.HTML (2 of 2)9/28/2007 2:33:44 PM

file:///D|/books/computer/programming/python/books/DJANGO BOOK/chapter19/
file:///D|/books/computer/programming/python/books/DJANGO BOOK/chapter19/
file:///D|/books/computer/programming/python/books/DJANGO BOOK/chapter20/
file:///D|/books/computer/programming/python/books/DJANGO BOOK/chapter20/
file:///D|/books/computer/programming/python/books/DJANGO BOOK/chapter21/
file:///D|/books/computer/programming/python/books/DJANGO BOOK/chapter21/
file:///license/

The Django Book
table of contents ◊ next »

Chapter 1: Introduction to Django
If you go to the Web site djangoproject.com using your Web browser — or, depending on the decade in which you’re reading this
destined-to-be-timeless literary work, using your cell phone, electronic notebook, shoe, or any Internet-superceding contraption
— you’ll find this explanation:

“Django is a high-level Python Web framework that encourages rapid development and clean, pragmatic design.”

That’s a mouthful — or eyeful or pixelful, depending on whether this book is being recited, read on paper or projected to you on a
Jumbotron, respectively.

Let’s break it down.

Django is a high-level Python Web framework…

A high-level Web framework is software that eases the pain of building dynamic Web sites. It abstracts common problems of Web
development and provides shortcuts for frequent programming tasks.

For clarity, a dynamic Web site is one in which pages aren’t simply HTML documents sitting on a server’s filesystem somewhere.
In a dynamic Web site, rather, each page is generated by a computer program — a so-called “Web application” — that you, the
Web developer, create. A Web application may, for instance, retrieve records from a database or take some action based on user
input.

A good Web framework addresses these common concerns:

● It provides a method of mapping requested URLs to code that handles requests. In other words, it gives you a way
of designating which code should execute for which URL. For instance, you could tell the framework, “For URLs that look
like /users/joe/, execute code that displays the profile for the user with that username.”

● It makes it easy to display, validate and redisplay HTML forms. HTML forms are the primary way of getting input data
from Web users, so a Web framework had better make it easy to display them and handle the tedious code of form display
and redisplay (with errors highlighted).

● It converts user-submitted input into data structures that can be manipulated conveniently. For example, the
framework could convert HTML form submissions into native data types of the programming language you’re using.

● It helps separate content from presentation via a template system, so you can change your site’s look-and-feel
without affecting your content, and vice-versa.

● It conveniently integrates with storage layers — such as databases — but doesn’t strictly require the use of a
database.

● It lets you work more productively, at a higher level of abstraction, than if you were coding against, say, HTTP. But it
doesn’t restrict you from going “down” one level of abstraction when needed.

● It gets out of your way, neglecting to leave dirty stains on your application such as URLs that contain “.aspx” or “.php”.

Django does all of these things well — and introduces a number of features that raise the bar for what a Web framework should
do.

The framework is written in Python, a beautiful, concise, powerful, high-level programming language. To develop a site using
Django, you write Python code that uses the Django libraries. Although this book doesn’t include a full Python tutorial, it
highlights Python features and functionality where appropriate, particularly when code doesn’t immediately make sense.

…that encourages rapid development…

Regardless of how many powerful features it has, a Web framework is worthless if it doesn’t save you time. Django’s philosophy
is to do all it can to facilitate hyper-fast development. With Django, you build Web sites in a matter of hours, not days; weeks,
not years.

This is possible largely thanks to Python itself. Oh, Python, how we love thee, let us count the bullet points:

● Python is an interpreted language, which means there’s no need to compile code. Just write your program and execute it.
In Web development, this means you can develop code and immediately see results by hitting “reload” in your Web browser.

● Python is dynamically typed, which means you don’t have to worry about declaring data types for your variables.
● Python syntax is concise yet expressive, which means it takes less code to accomplish the same task than in other, more

verbose, languages such as Java. One line of python usually equals 10 lines of Java. (This has a convenient side benefit:
Fewer lines of code means fewer bugs.)

● Python offers powerful introspection and meta-programming features, which make it possible to inspect and add

Chapter 1: Introduction to Django

file:///C|/Documents and Settings/Suren/Desktop/Chapter 1 Introduction to Django.htm (1 of 4)9/28/2007 4:13:54 PM

http://www.djangobook.com/en/beta/
http://www.djangobook.com/en/beta/chapter02/

Chapter 1: Introduction to Django

behavior to objects at runtime.

Beyond the productivity advantages inherent in Python, Django itself makes every effort to encourage rapid development. Every
part of the framework was designed with productivity in mind. We’ll see examples throughout this book.

…and clean, pragmatic design

Finally, Django strictly maintains a clean design throughout its own code and makes it easy to follow best Web-development
practices in the applications you create.

That means, if you think of Django as a car, it would be an elegant sports car, capable not only of high speeds and sharp turns,
but delivering excellent mileage and clean emissions.

The philosophy here is: Django makes it easy to do things the “right” way.

Specifically, Django encourages loose coupling: the programming philosophy that different pieces of the application should be
interchangeable and should communicate with each other via clear, concise APIs.

For example, the template system knows nothing about the database-access system, which knows nothing about the HTTP
request/response layer, which knows nothing about caching. Each one of these layers is distinct and loosely coupled to the rest.
In practice, this means you can mix and match the layers if need be.

Django follows the “model-view-controller” (MVC) architecture. Simply put, this is a way of developing software so that the code
for defining and accessing data (the model) is separate from the business logic (the controller), which in turn is separate from the
user interface (the view).

MVC is best explained by an example of what not to do. For instance, look at the following PHP code, which retrieves a list of
people from a MySQL database and outputs the list in a simple HTML page. (Yes, we realize it’s possible for disciplined
programmers to write clean PHP code; we’re simply using PHP to illustrate a point.):

<html>
<head><title>Friends of mine</title></head>
<body>

<h1>Friends of mine</h1>

<?php
$connection = @mysql_connect("localhost", "my_username", "my_pass");
mysql_select_db("my_database");
$people = mysql_query("SELECT name, age FROM friends");
while ($person = mysql_fetch_array($people, MYSQL_ASSOC)) {
?>

<?php echo $person['name'] ?> is <?php echo $person['age'] ?> years old.

<?php } ?>

</body>
</html>

While this code is conceptually simple for beginners — because everything is in a single file — it’s bad practice for several reasons:

1. The presentation is tied to the code. If a designer wanted to edit the HTML of this page, he or she would have to edit this
code, because the HTML and PHP core are intertwined.

By contrast, the Django/MVC approach encourages separation of code and presentation, so that presentation is governed by
templates and business logic lives in Python modules. Programmers deal with code, and designers deal with HTML.

2. The database code is tied to the business logic. This is a problem of redundancy: If you rename your database tables or
columns, you’ll have to rewrite your SQL.

By contrast, the Django/MVC approach encourages a single, abstracted data-access layer that’s responsible for all data
access. In Django’s case, the data-access layer knows your database table and column names and lets you execute SQL
queries via Python instead of writing SQL manually. This means, if database table names change, you can change it in a
single place — your data-model definition — instead of in each SQL statement littered throughout your code.

3. The URL is coupled to the code. If this PHP file lives at /foo/index.php, it’ll be executed for all requests to that address.
But what if you want this same code to execute for requests to /bar/ and /baz/? You’d have to set up some sort of includes
or rewrite rules, and those get unmanageable quickly.

file:///C|/Documents and Settings/Suren/Desktop/Chapter 1 Introduction to Django.htm (2 of 4)9/28/2007 4:13:54 PM

Chapter 1: Introduction to Django

By contrast, Django decouples URLs from callback code, so you can change the URLs for a given piece of code.

4. The database connection parameters and backend are hard-coded. It’s messy to have to specify connection
information — the server, username and password — within this code, because that’s configuration, not programming logic.
Also, this example hard-codes the fact that the database engine is MySQL.

By contrast, Django has a single place for storing configuration, and the database-access layer is abstracted so that
switching database servers (say, from MySQL to PostgreSQL) is easy.

What Django doesn’t do

Of course, we want this book to be fair and balanced. With that in mind, we should be honest and outline what Django doesn’t do:

● Feed your cat.
● Mind-read your project requirements and implement them on a carefully timed basis so as to fool your boss into thinking

you’re not really staying home to watch “The Price is Right.”

On a more serious note, Django does not yet reverse the effects of global warming.

Why was Django developed?

Django is deeply rooted in the problems and solutions of the Real World. It wasn’t created to be marketed and sold to developers,
nor was it created as an academic exercise in somebody’s spare time. It was built from Day One to solve daily problems for an
industry-leading Web-development team.

It started in fall 2003, at — wait for it — a small-town newspaper in Lawrence, Kansas.

For one reason or another, The Lawrence Journal-World newspaper managed to attract a talented bunch of Web designers and
developers in the early 2000s. The newspaper’s Web operation, World Online, quickly turned into one of the most innovative
newspaper Web operations in the world. Its three main sites, LJWorld.com (news), Lawrence.com (entertainment/music) and
KUsports.com (college sports), began winning award after award in the online-journalism industry. Its innovations were many,
including:

● The most in-depth local entertainment site in the world, Lawrence.com, which merges databases of local events, bands,
restaurants, drink specials, downloadable songs and traditional-format news stories.

● A summer section of LJWorld.com that treated local Little League players like they were the New York Yankees — giving each
team and league its own page, hooking into weather data to display forecasts for games, providing 360-degree panoramas
of every playing field in the vicinity and alerting parents via cell-phone text messages when games were cancelled.

● Cell-phone game alerts for University of Kansas basketball and football games, which let fans get notified of scores and key
stats during games, and a second system that used artificial-intelligence algorithms to let fans send plain-English text
messages to the system to query the database (“how many points does giddens have” or “pts giddens”).

● A deep database of all the college football and basketball stats you’d ever want, including a way to compare any two or more
players or teams in the NCAA.

● Giving out blogs to community members and featuring community writing prominently — back before blogs were trendy.

Journalism pundits worldwide pointed to World Online as an example of the future of journalism. The New York Times did a front-
page business-section story on the company; National Public Radio did a two-day series on it. World Online’s head editor, Rob
Curley, spoke nearly weekly at journalism conferences across the globe, showcasing World Online’s innovative ideas and site
features. In a bleak, old-fashioned industry resistant to change, World Online was a rare exception.

Much of World Online’s success was due to the technology behind its sites, and the philosophy that computer programmers are
just as important in creating quality 21st Century journalism as are journalists themselves.

This is why Django was developed: World Online’s developers needed a framework for developing complex database-driven Web
sites painlessly, easily and on journalism deadlines.

In fall 2003, World Online’s two developers, Adrian Holovaty and Simon Willison, set about creating this framework. They decided
to use Python, a language with which they’d recently fallen in love. After exploring (and being disappointed by) the available
Python Web-programming libraries, they began creating Django.

Two years later, in summer 2005, after having developed Django to a point where it was efficiently powering most of World
Online’s sites, the World Online team, which now included Jacob Kaplan-Moss, decided it’d be a good idea to open-source the
framework. That way, they could give back to the open-source community, get free improvements from outside developers, and
generate some buzz for their commercial Django-powered content-management system, Ellington (http://www.ellingtoncms.
com/). Django was open-sourced in July 2005 and quickly became popular.

Although Django is now an open-source project with contributors across the planet, the original World Online developers still
provide central guidance for the framework’s growth, and World Online contributes other important aspects such as employee
time, marketing materials and hosting/bandwidth for the framework’s Web site (http://www.djangoproject.com/).

file:///C|/Documents and Settings/Suren/Desktop/Chapter 1 Introduction to Django.htm (3 of 4)9/28/2007 4:13:54 PM

http://www.ellingtoncms.com/
http://www.ellingtoncms.com/
http://www.djangoproject.com/

Chapter 1: Introduction to Django

Who uses Django?

Web developers around the world use Django. Some specific examples:

● World Online, of course, continues to use Django for all its Web sites, both internal and for commercial clients. Some of its
Django-powered sites are:

❍ http://www.ljworld.com/

❍ http://www.lawrence.com/

❍ http://www.6newslawrence.com/

❍ http://www.visitlawrence.com/

❍ http://www.lawrencechamber.com/

❍ http://www2.kusports.com/stats/

● The Washington Post’s Web site, washingtonpost.com, uses Django for database projects and various bits of functionality
across the site. Some examples:

❍ The U.S. Congress votes database, http://projects.washingtonpost.com/congress/

❍ The staff directory and functionality that lets readers contact reporters, appearing as links on most article pages.
❍ Faces of the Fallen, http://projects.washingtonpost.com/fallen/

● Chicagocrime.org, a freely browsable database of crime reported in Chicago and one of the original Google Maps mashups,
was developed in Django.

● Tabblo.com, an innovative photo-sharing site, uses Django. The site lets you piece together your photos to create photo
pages that tell stories.

● Texasgigs.com, a local music site in Dallas, Texas, was written with Django.

● Grono.net, a Polish social-networking site, started replacing its Java code with Django. It found that Django not only was
faster (and more fun) to develop in — it performed better than Java and required less hardware.

● Traincheck.com was developed in Django. The site lets you send text-messages from your cell phone to get subway train
schedules for your immediate location.

An up-to-date list of dozens of sites that use Django is located at http://code.djangoproject.com/wiki/DjangoPoweredSites

About this book

The goal of this book is to explain all the things Django does — and to make you an expert at using it.

By reading this book, you’ll learn the skills needed to develop powerful Web sites quickly, with code that’s clean and easy to
maintain.

We’re glad you’re here!

table of contents ◊ next »
Copyright 2006 Adrian Holovaty and Jacob Kaplan-Moss.
This work is licensed under the GNU Free Document License.

file:///C|/Documents and Settings/Suren/Desktop/Chapter 1 Introduction to Django.htm (4 of 4)9/28/2007 4:13:54 PM

http://www.ljworld.com/
http://www.lawrence.com/
http://www.6newslawrence.com/
http://www.visitlawrence.com/
http://www.lawrencechamber.com/
http://www2.kusports.com/stats/
http://projects.washingtonpost.com/congress/
http://projects.washingtonpost.com/fallen/
http://code.djangoproject.com/wiki/DjangoPoweredSites
http://www.djangobook.com/en/beta/
http://www.djangobook.com/en/beta/chapter02/
http://www.djangobook.com/license/

The Django Book
« previous ◊ table of contents ◊ next »

Chapter 2: Getting started
Let’s get started, shall we?

Fortunately, installing Django is easy. Because Django runs anywhere Python does, Django can be configured in many ways.
We’ve tried to cover the common scenarios for Django installations in this chapter.

Installing Python

Django is written in 100% pure Python code, so you’ll need to install Python on your system. Django requires Python 2.3 or
higher.

If you’re on Linux or Mac OS X, you probably already have Python installed. Type python at a command prompt (or in Terminal,
in OS X). If you see something like this, then Python is installed:

Python 2.4.1 (#2, Mar 31 2005, 00:05:10)
[GCC 3.3 20030304 (Apple Computer, Inc. build 1666)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

Otherwise, if you see an error such as "command not found", you’ll have to download and install Python. See http://www.python.
org/download/ to get started. The installation is fast and easy.

Installing Django

Installing an official release

Most people will want to install the latest official release from http://www.djangoproject.com/download/. Django uses the
standard Python distutils installation method, which in Linux land looks like:

1. Download the tarball, which will be named something like Django-1.0.tar.gz.

2. tar xzvf Django-*.tar.gz

3. cd Django-*

4. sudo python setup.py install

If everything worked, you should be able to import the module django from the Python interactive interpreter.

>>> import django
>>> django.VERSION
(1, 0, ‘official’)

The Python interactive interpreter:

The Python interactive interpreter is a command-line program that lets you write a Python program interactively. To
start it, just run the command python at the command line. Throughout this book, we’ll feature example Python
code that’s printed as if it’s being entered in the interactive interpreter. The triple greater-than signs (“>>>”)
signify a prompt.

Installing Django from Subversion

If you want to work on the bleeding edge, or if you want to contribute code to Django itself, you should install Django from its
Subversion repository.

Subversion is a free, open-source revision-control system similar to CVS, and the Django team uses it to manage changes to the
Django codebase. At any given time, you can use a Subversion client to grab the very latest Django source code, and, at any
given time, you can update your local version of the Django code — known as your “local checkout” — to get the latest changes
and improvements made by Django developers.

The latest-and-greatest Django development code is referred to as “the trunk.”

Chapter 2: Getting started

file:///C|/Documents and Settings/Suren/Desktop/DJANGO/CH2.html (1 of 4)9/28/2007 2:07:18 PM

http://www.djangobook.com/en/beta/chapter01/
http://www.djangobook.com/en/beta/
http://www.djangobook.com/en/beta/chapter03/
http://www.python.org/download/
http://www.python.org/download/
http://www.djangoproject.com/download/

Chapter 2: Getting started

To grab the latest Django trunk:

1. Make sure you have a Subversion client installed. You can get the software free from http://subversion.tigris.org/ and
excellent documentation from http://svnbook.red-bean.com/

2. Check out the trunk using the command svn co http://code.djangoproject.com/svn/django/trunk django_src

3. Symlink django_src/django so that django is within your Python site-packages directory, or update your PYTHONPATH to
point to it.

When installing from Subversion, you don’t need to run python setup.py install.

Because the Django trunk changes often with bug fixes and feature additions, you’ll probably want to update it every once in a
while — or hourly, if you’re really obsessed. To update the code, just run the command svn update from within the django_src
directory. When you run that command, Subversion will contact our Web server, see if any code has changed and update your
local version of the code with any changes that have been made since you last updated. It’s quite slick.

Setting up a database

Django’s only prerequisite is a working installation of Python. However, this book focuses on one of Django’s sweet spots, which
is developing database-backed Web sites — so you’ll need to install a database server of some sort, for storing your data.

If you just want to get started playing with Django, skip ahead to Starting a project, but trust us — you’ll want to install a
database eventually. All of the examples in the book assume you’ve got a database set up.

As of version 1.0, Django supports five database engines:

● PostgreSQL (http://www.postgresql.org/)

● SQLite 3 (http://www.sqlite.org/)

● MySQL (http://www.mysql.com/)

● Microsoft SQL Server (http://www.microsoft.com/sql/)

● Oracle (http://www.oracle.com/database/)

We’re quite fond of PostgreSQL ourselves, for reasons outside the scope of this book, so we mention it first. However, all those
engines will work equally well with Django.

SQLite also deserves special notice: It’s an extremely simple in-process database engine that doesn’t require any sort of server
set up or configuration. It’s by far the easiest to set up if you just want to play around with Django.

Using Django with PostgreSQL

If you’re using PostgreSQL, you’ll need the psycopg package available from http://initd.org/projects/psycopg1. Make sure you
use version 1, not version 2 (which is still in beta).

If you’re using PostgreSQL on Windows, you can find precompiled binaries of psycopg at http://stickpeople.com/projects/python/
win-psycopg/.

Using Django with SQLite 3

You’ll need SQLite 3 — not version 2 — and the pysqlite package from http://initd.org/tracker/pysqlite. Make sure you
have pysqlite version 2.0.3 or higher.

Using Django with MySQL

Django requires MySQL 4.0 or above; the 3.x versions don’t support transactions, nested procedures, and some other fairly
standard SQL statements. You’ll also need the MySQLdb package from http://sourceforge.net/projects/mysql-python.

Using Django with MSSQL

Using Django with Oracle

Using Django without a database

As mentioned above, Django doesn’t actually require a database. If you just want to use it to serve dynamic pages that don’t hit
a database, that’s perfectly fine.

file:///C|/Documents and Settings/Suren/Desktop/DJANGO/CH2.html (2 of 4)9/28/2007 2:07:18 PM

http://subversion.tigris.org/
http://svnbook.red-bean.com/
http://www.postgresql.org/
http://www.sqlite.org/
http://www.mysql.com/
http://www.microsoft.com/sql/
http://www.oracle.com/database/
http://initd.org/projects/psycopg1
http://stickpeople.com/projects/python/win-psycopg/
http://stickpeople.com/projects/python/win-psycopg/
http://initd.org/tracker/pysqlite
http://sourceforge.net/projects/mysql-python

Chapter 2: Getting started

With that said, bear in mind that some of the extra tools bundled with Django do require a database, so if you choose not to use
a database, you’ll miss out on those features. (We’ll highlight these features throughout this book.)

Starting a project

If this is your first time using Django, you’ll have to take care of some initial setup.

Run the command django-admin.py startproject mysite. That’ll create a mysite directory in your current directory.

Note

django-admin.py should be on your system path if you installed Django via its setup.py utility. If it’s not on your
path, you can find it in site-packages/django/bin; consider symlinking to it from some place on your path, such
as /usr/local/bin.

A project is a collection of settings for an instance of Django — including database configuration, Django-specific options and
application-specific settings. Let’s look at what startproject created:

mysite/
 __init__.py
 manage.py
 settings.py
 urls.py

These files are:

manage.py
A command-line utility that lets you interact with this Django project in various ways.

settings.py
Settings/configuration for this Django project.

urls.py
The URL declarations for this Django project; a “table of contents” of your Django-powered site.

Where should this code live?

If your background is in PHP, you’re probably used to putting code under the Web server’s document root (in a
place such as /var/www). With Django, you don’t do that. It’s not a good idea to put any of this Python code within
your Web server’s document root, because it risks the possibility that people may be able to view your code over
the Web. That’s not good for security.

Put your code in some directory outside of the document root, such as /home/mycode.

The development server

Change into the mysite directory, if you haven’t already, and run the command python manage.py runserver. You’ll see
something like this:

Validating models...
0 errors found.

Django version 1.0, using settings 'mysite.settings'
Development server is running at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

You’ve started the Django development server, a lightweight Web server you can use while developing your site. We’ve included
this with Django so you can develop things rapidly, without having to deal with configuring your production Web server (e.g.,
Apache) until you’re ready for production. This development server watches your code for changes and automatically reloads,
helping you make many rapid changes to your project without needing to restart anything.

Although the development server is extremely nice for, well, development, resist the temptation to use this server in anything
resembling a production environment. The development server can only handle a single request at a time reliably, and it has not
gone through a security audit of any sort. When the time comes to launch your site, see Chapter XXX for information on how to
deploy Django.

Changing the host or the port

file:///C|/Documents and Settings/Suren/Desktop/DJANGO/CH2.html (3 of 4)9/28/2007 2:07:18 PM

Chapter 2: Getting started

By default, the runserver command starts the development server on port 8000, listening only for local
connections. If you want to change the server’s port, pass it as a command-line argument:

python manage.py runserver 8080

You can also change the IP address that the server listens on. This is especially helpful if you’d like to share a
development site with other developers:

python manage.py runserver 0.0.0.0:8080

will make Django listen on any network interface, thus allowing other computers to connect to the development
server.

Now that the server’s running, visit http://127.0.0.1:8000/ with your Web browser. You’ll see a “Welcome to Django” page, in
pleasant, light-blue pastel. It worked!

What’s next?

Now that we’ve got everything installed and the development server running, let’s write some basic code that demonstrates how
to serve Web pages using Django.

« previous ◊ table of contents ◊ next »
Copyright 2006 Adrian Holovaty and Jacob Kaplan-Moss.
This work is licensed under the GNU Free Document License.

file:///C|/Documents and Settings/Suren/Desktop/DJANGO/CH2.html (4 of 4)9/28/2007 2:07:18 PM

http://127.0.0.1:8000/
http://www.djangobook.com/en/beta/chapter01/
http://www.djangobook.com/en/beta/
http://www.djangobook.com/en/beta/chapter03/
http://www.djangobook.com/license/

The Django Book
« previous ◊ table of contents ◊ next »

Chapter 3: The basics of dynamic Web pages
In the previous chapter, we explained how to set up a Django project and run the Django development server. Of course, that
site doesn’t actually do anything useful yet — all it does is display the “It worked!” message. Let’s change that.

This chapter introduces how to create dynamic Web pages with Django.

Your first view: Dynamic content
As our first goal, let’s create a Web page that displays the current date and time. This is a good example of a dynamic Web page,
because the contents of the page are not static — rather, the contents change according to the result of a computation (in this
case, a calculation of the current time).

This simple example doesn’t involve a database or any sort of user input — just the output of your server’s internal clock.

To create this page, we’ll write a view function. A view function, or view for short, is simply a Python function that takes a Web
request and returns a Web response. This response can be the HTML contents of a Web page, or a redirect, or a 404 error, or an
XML document, or an image…or anything, really. The view itself contains whatever arbitrary logic is necessary to return that
response.

Here’s a view that returns the current date and time, as an HTML document:

from django.http import HttpResponse
import datetime

def current_datetime(request):
 now = datetime.datetime.now()
 html = "<html><body>It is now %s.</body></html>" % now
 return HttpResponse(html)

Let’s step through this code one line at a time:

● First, we import the class HttpResponse, which lives in the django.http module.

● Next, we import the datetime module from Python’s standard library — the set of useful modules that comes with Python.
The datetime module contains several functions and classes for dealing with dates and times, including a function that
returns the current time.

● Next, we define a function called current_datetime. This is the view function, and, as such, it takes an HttpRequest
object as its first parameter. Each view function takes an HttpRequest object as its first parameter. In this case, we call that
parameter request.

Note that the name of the view function doesn’t matter; Django doesn’t care what it’s called, and it doesn’t have to be
named in a certain way in order for Django to recognize it. We’re calling it current_datetime here, because that name
clearly indicates what it does, but it could just as well be named super_duper_awesome_current_time, or something equally
revolting. Django doesn’t care. (How does Django find this function, then? We’ll get to that in a moment.)

● The first line of code within the function calculates the current date/time, as a datetime.datetime object, and stores that as
the local variable now.

● The second line of code within the function constructs an HTML response using Python’s format-string capability. The %s
within the string is a placeholder, and the percent sign after the string means “replace the %s with the value of the
variable now.”

(A note to the HTML purists: Yes, we know we’re missing a DOCTYPE, and a <head>, and all that stuff. We’re trying to keep
it simple.)

● Finally, the view returns an HttpResponse object that contains the generated HTML. Each view function is responsible for
returning an HttpResponse object. (There are exceptions, but we’ll get to those later.)

Your first URLconf
So, to recap, this view function returns an HTML page that includes the current date and time. But where should this code live,
how do we tell Django to use this code?

The answer to the first question is: This code can live anywhere you want, as long as it’s on your Python path. There’s no other

Chapter 3: The basics of generating Web pages

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH3.html (1 of 9)9/28/2007 2:08:35 PM

http://www.djangobook.com/en/beta/chapter02/
http://www.djangobook.com/en/beta/
http://www.djangobook.com/en/beta/chapter04/

Chapter 3: The basics of generating Web pages

requirement — no “magic,” so to speak. For the sake of putting it somewhere, let’s create a file called views.py, copy this view
code into that file and save it into the mysite directory you created in the previous chapter.

Your Python path

The Python path is the list of directories on your system where Python looks when you use the Python import
statement.

For example, let’s say your Python path is set to ['', '/usr/lib/python2.4/site-packages', '/home/mycode'].
If you execute the Python code from foo import bar, Python will first check for a module called foo.py in the
current directory. (The first entry in the Python path, an empty string, means “the current directory.”) If that file
doesn’t exist, Python will look for the file /usr/lib/python2.4/site-packages/foo.py. If that file doesn’t exist, it
will try /home/mycode/foo.py. Finally, if that file doesn’t exist, it will raise ImportError.

If you’re interested in seeing the value of your Python path, start the Python interactive interpreter and
type import sys, followed by print sys.path.

Generally you don’t have to worry about setting your Python path — Python and Django will take care of things for
you automatically behind the scenes. (If you’re curious, setting the Python path is one of the things that
the manage.py file does.)

How do we tell Django to use this view code? That’s where URLconfs come in.

A URLconf is like a table of contents for your Django-powered Web site. Basically, it’s a mapping between URL patterns and the
view functions that should be called for those URL patterns. It’s how you tell Django “For this URL, call this code, and for that
URL, call that code.”

When you executed django-admin.py startproject in the previous chapter, the script created a URLconf for you automatically:
the file urls.py. Let’s edit that file. By default, it looks something like this:

from django.conf.urls.defaults import *

urlpatterns = patterns('',
 # Example:
 # (r'^mysite/', include('mysite.apps.foo.urls.foo')),

 # Uncomment this for admin:
(r'^admin/', include('django.contrib.admin.urls')),
)

Let’s step through this code one line at a time:

● The first line imports all objects from the django.conf.urls.defaults module, including a function called patterns.

● The second line calls the function patterns() and saves the result into a variable called urlpatterns. The patterns()
function gets passed only a single argument — the empty string. The rest of the lines are commented out.

The main thing to see here is the variable urlpatterns. This defines the mapping between URLs and the code that handles those
URLs.

By default, everything in the URLconf is commented out — your Django application is a blank slate. (As a side note, that’s how
Django knew to show you the “It worked!” page in the last chapter: If your URLconf is empty, Django assumes you just started a
new project and, hence, displays that message.)

Let’s edit this file to expose our current_datetime view:

from django.conf.urls.defaults import *
from mysite.views import current_datetime

urlpatterns = patterns('',
 (r'^now/$', current_datetime),
)

We made two changes here. First, we imported the current_datetime view from its module (mysite/views.py, which translates
into mysite.views in Python import syntax). Next, we added the line (r'^now/$', current_datetime),. This line is referred to
as a URLpattern — it’s a Python tuple in which the first element is a simple regular expression and the second element is the
view function to use for that pattern.

In a nutshell, we just told Django that any request to the URL /now/ should be handled by the current_datetime view function.

A few things are worth pointing out:

● Note that, in this example, we passed the current_datetime view function as an object without calling the function. This is

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH3.html (2 of 9)9/28/2007 2:08:35 PM

Chapter 3: The basics of generating Web pages

a key feature of Python (and other dynamic languages): Functions are first-class objects, which means you can pass them
around just like any other variables. Cool stuff, eh?

● There’s no need to add a slash at the beginning of the '^now/$' expression in order to match /now/. Django automatically
puts a slash before every expression.

● The caret character ('^') and dollar sign character ('$') are important. The caret means “require that the pattern matches
the start of the string,” and the dollar sign means “require that the pattern matches the end of the string.”

This concept is best explained by example. If we had instead used the pattern '^now/' (without a dollar sign at the end),
then any URL that starts with now/ would match — such as /now/foo and /now/bar, not just /now/. Similarly, if we had left
off the initial caret character ('now/$'), Django would match any URL that ends with now/ — e.g., /foo/bar/now/. Thus, we
use both the caret and dollar sign to ensure that only the URL /now/ matches. Nothing more, nothing less.

To test our changes to the URLconf, start the Django development server, as you did in Chapter 1, by running the
command python manage.py runserver. (If you left it running, that’s fine, too. The development server automatically detects
changes to your Python code and reloads as necessary, so you don’t have to restart the server between changes.) The server is
running at the address http://127.0.0.1:8000/, so open up a Web browser and go to http://127.0.0.1:8000/now/ — and
you should see the output of your Django view.

Hooray! You’ve made your first Django-powered Web page.

How Django processes a request
We should point out several things about what just happened. Here’s the nitty-gritty of what goes on when you run the Django
development server and make requests to Web pages:

● The command python manage.py runserver looks for a file called settings.py. This file contains all sorts of optional
configuration for this particular Django instance, but one of the most important settings is one called ROOT_URLCONF.
The ROOT_URLCONF setting tells Django which Python module should be used as the URLconf for this Web site.

Remember when django-admin.py startproject created the files settings.py and urls.py? Well, the auto-
generated settings.py has a ROOT_URLCONF that points to the auto-generated urls.py. Convenient.

● When a request comes in — say, a request to the URL /now/ — Django loads the URLconf pointed-to by the ROOT_URLCONF
setting. Then it checks each of the URLpatterns in that URLconf in order, comparing the requested URL with the patterns one
at a time, until it finds one that matches. When it finds one that matches, it calls the view function associated with that
pattern, passing a HttpRequest object as the first parameter to the function. (More on HttpRequest later.)

● The view function is responsible for returning an HttpResponse object.

With this knowledge, you know the basics of how to make Django-powered pages. It’s quite simple, really — just write view
functions and map them to URLs via URLconfs.

URLconfs and loose coupling
Now’s a good time to point out a key philosophy behind URLconfs, and behind Django in general: the principle of loose coupling.
Simply put, loose coupling is a software-development approach that values the importance of making pieces interchangeable. If
two pieces of code are “loosely coupled,” then making changes to one of the pieces will have little-to-no effect on the other.

Django’s URLconfs are a good example of this principle in practice. In a Django Web application, the URL definitions and the view
functions they call are loosely coupled; that is, the decision of what the URL should be for a given function, and the
implementation of the function itself, reside in two separate places. This lets a developer switch out one piece without affecting
the other.

In contrast, other Web development platforms couple the URL to the program. In basic PHP (http://www.php.net/), for example,
the URL of your application is designated by where you place the code on your filesystem. In the CherryPy Python Web
framework (http://www.cherrypy.org/), the URL of your application corresponds to the name of the method in which your code
lives. This may seem like a convenient shortcut in the short term, but it can get unmanageable in the long run.

For example, consider the view function we wrote above, which displays the current date and time. If we wanted to change the
URL for the application — say, move it from /now/ to /currenttime/ — we could make a quick change to the URLconf, without
having to worry about the underlying implementation of the function. Similarly, if we wanted to change the view function —
altering its logic somehow — we could do that without affecting the URL to which the function is bound. Furthermore, if we
wanted to expose the current-date functionality at several URLs, we could easily take care of that by editing the URLconf, without
having to touch the view code.

That’s loose coupling in action. And we’ll continue to point out examples of this important philosophy throughout this book.

404 errors
In our URLconf thus far, we’ve only defined a single URLpattern — the one that handles requests to the URL /now/. What happens
when a different URL is requested?

To find out, try running the Django development server and hitting a page such as http://127.0.0.1:8000/hello/

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH3.html (3 of 9)9/28/2007 2:08:35 PM

http://www.php.net/
http://www.cherrypy.org/

Chapter 3: The basics of generating Web pages

or http://127.0.0.1:8000/does-not-exist/, or even http://127.0.0.1:8000/ (the site “root”).

You should see a “Page not found” message. (Pretty, isn’t it? We Django people sure do like our pastel colors.) Django displays
this message because you requested a URL that’s not defined in your URLconf.

The utility of this page goes beyond the basic 404 error message: It also tells you precisely which URLconf Django used and every
pattern in that URLconf. From that information, you should be able to tell why the requested URL threw a 404.

Naturally, this is sensitive information intended only for you, the Web developer. If this were a production site deployed live on
the Internet, we wouldn’t want to expose that information to the public. For that reason, this “Page not found” page is only
displayed if your Django project is in debug mode. We’ll explain how to deactivate debug mode later. For now, just know that
every Django project is in debug mode automatically when you start it.

Your second view: Dynamic URLs
In our first view example, the contents of the page — the current date/time — were dynamic, but the URL (“/now/”) was static.
In most dynamic Web applications, though, a URL contains parameters that influence the output of the page.

As another (slightly contrived) example, let’s create a second view, which displays the current date and time offset by a certain
number of hours. The goal is to craft a site in such a way that the page /now/plus1hour/ displays the date/time one hour into
the future, the page /now/plus2hours/ displays the date/time two hours into the future, the page /now/plus3hours/ displays
the date/time three hours into the future, and so on.

A novice might think to code a separate view function for each hour offset, which might result in a URLconf that looked like this:

urlpatterns = patterns('',
 (r'^now/$', current_datetime),
 (r'^now/plus1hour/$', one_hour_ahead),
 (r'^now/plus2hours/$', two_hours_ahead),
 (r'^now/plus3hours/$', three_hours_ahead),
 (r'^now/plus4hours/$', four_hours_ahead),
)

Clearly, this line of thought is flawed. Not only would this result in redundant view functions, but the application is fundamentally
limited to supporting only the predefined hour ranges — one, two, three or four hours. If, all of a sudden, we wanted to create a
page that displayed the time five hours into the future, we’d have to create a separate view and URLconf line for that, furthering
the duplication and insanity. We need to do some abstraction here.

A word about pretty URLs
If you’re experienced in another Web development platform, such as PHP or Java, you may be thinking: “Hey, let’s use a query-
string parameter!” That’d be something like /now/plus?hours=3, in which the hours would be designated by the hours parameter
in the URL’s query string (the part after the ?).

You can do that with Django — and we’ll tell you how later, if you really must know — but one of Django’s core philosophies is
that URLs should be beautiful. The URL /now/plus3hours/ is far cleaner, simpler, more readable, easier to recite to somebody
aloud and … just plain prettier than its query-string counterpart. Pretty URLs are a sign of a quality Web application.

Django’s URLconf system encourages pretty URLs by making it easier to use pretty URLs than not to.

Wildcard URLpatterns
Continuing with our hours_ahead example, let’s put a wildcard in the URLpattern. As we mentioned above, a URLpattern is a
regular expression, and, hence, we can use the regular expression pattern \d+ to match one or more digits:

from django.conf.urls.defaults import *
from mysite.views import current_datetime, hours_ahead

urlpatterns = patterns('',
 (r'^now/$', current_datetime),
 (r'^now/plus\d+hours/$', hours_ahead),
)

This URLpattern will match any URL such as /now/plus2hours/, /now/plus25hours/ or even /now/plus100000000000hours/.
Come to think of it, let’s limit it so that the maximum allowed offset is 99 hours. That means we want to allow either one- or two-
digit numbers; in regular expression syntax, that translates into \d{1,2}:

(r'^now/plus\d{1,2}hours/$', hours_ahead),

(When building Web applications, it’s always important to consider the most outlandish data input possible, and decide whether
the application should support that input or not. We’ve curtailed the outlandishness here by limiting the offset to 99 hours. And,
by the way, The Outlandishness Curtailers would be a fantastic, if verbose, band name.)

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH3.html (4 of 9)9/28/2007 2:08:35 PM

Chapter 3: The basics of generating Web pages

Regular expressions

Regular expressions (or “regexes”) are a compact way of specifying patterns in text. While Django URLconfs allow
arbitrary regexes for powerful URL-matching capability, you’ll probably only use a few regex patterns in practice.
Here’s a small selection of common patterns:

Symbol Matches
. (dot) Any character
\d Any digit
[A-Z] Any character from A-Z (uppercase)
[a-z] Any character from a-z (lowercase)
[A-Za-z] Any character from a-z (case-insensitive)
[^/]+ All characters until a forward slash (excluding the slash itself)
+ One or more of the previous character (e.g., \d+ matches one or more digit)
? Zero or more of the previous character (e.g., \d* matches zero or more digits)
{1,3} Between one and three (inclusive) of the previous character

For more on regular expressions, see Appendix XXX, Regular Expressions.

Now that we’ve designated a wildcard for the URL, we need a way of passing that data to the view function, so that we can use a
single view function for any arbitrary hour offset. We do this by placing parentheses around the data in the URLpattern that we
want to save. In the case of our example, we want to save whatever number was entered in the URL — so let’s put parentheses
around the \d{1,2}:

(r'^now/plus(\d{1,2})hours/$', hours_ahead),

If you’re familiar with regular expressions, you’ll be right at home here; we’re using parentheses to capture data from the
matched text.

The final URLconf, including our previous current_datetime view, looks like this:

from django.conf.urls.defaults import *
from mysite.views import current_datetime, hours_ahead

urlpatterns = patterns('',
 (r'^now/$', current_datetime),
 (r'^now/plus(\d{1,2})hours/$', hours_ahead),
)

With that taken care of, let’s write the hours_ahead view.

..admonition:: Coding order

In this case, we wrote the URLpattern first and the view second, but in the previous example, we wrote the view
first, then the URLpattern. Which technique is better?

Well, every developer is different.

If you’re a big-picture type of person, it may make most sense to you to write all of the URLpatterns for your
application at the same time, at the start of your project, then coding up the views. This has the advantage of
giving you a clear to-do list, and it essentially defines the parameter requirements for the view functions you’ll
need to write.

If you’re more of a bottom-up developer, you might prefer to write the views first, then anchor them to URLs
afterward. That’s OK, too.

In the end, it comes down to what fits your brain the best. Either approach is valid.

hours_ahead is very similar to the current_datetime view we wrote earlier, with a key difference: it takes an extra argument,
the number of hours of offset. Here it is:

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH3.html (5 of 9)9/28/2007 2:08:35 PM

Chapter 3: The basics of generating Web pages

from django.http import HttpResponse
import datetime

def hours_ahead(request, offset):
 offset = int(offset)
 dt = datetime.datetime.now() + datetime.timedelta(hours=offset)
 html = "<html><body>In %s hour(s), it will be %s.</body></html>" % (offset, dt)
 return HttpResponse(html)

Let’s step through this code one line at a time:

● Just as we did for our current_datetime view, we import the class django.http.HttpResponse and the datetime module.

● The view function, hours_ahead, takes two parameters: request and offset.

❍ request is an HttpRequest object, just as in current_datetime. We’ll say it again: Each view always takes
an HttpRequest object as its first parameter.

❍ offset is the string captured by the parentheses in the URLpattern. For example, if the requested URL
were /now/plus3hours/, then offset would be the string '3'. If the requested URL were /now/plus21hours/,
then offset would be the string '21'. Note that captured strings will always be strings, not integers, even if the string is
composed of only digits, such as '21'.

We decided to call the variable offset, but you can call it whatever you’d like, as long as it’s a valid Python identifier. The
variable name doesn’t matter; all that matters is that it’s the second argument to the function (after request).

● The first thing we do within the function is call int() on offset. This converts the string value to an integer.

Note that Python will raise a ValueError exception if you call int() on a value that cannot be converted to an integer, such
as the string 'foo'. However, we don’t have to worry about catching that exception, because we can be certain offset will
be a string containing only digits. We know that because the regular-expression pattern in our URLconf — \d{1,2} —
captures only digits. This illustrates another nicety of URLconfs: They provide a fair level of input validation.

● The next line of the function shows why we called int() on offset. On this line, we calculate the current time plus a time
offset of offset hours, storing the result in dt. The datetime.timedelta function requires the hours parameter to be an
integer.

● Next, we construct the HTML output of this view function, just as we did in current_datetime. A small difference in this line
from the previous line is that it uses Python’s format-string capability with two values, not just one. Hence, there are two %s
symbols in the string and a tuple of values to insert — (offset, dt).

● Finally, we return an HttpResponse of the HTML — again, just as we did in current_datetime.

With that view function and URLconf written, start the Django development server (if it’s not already running), and
visit http://127.0.0.1:8000/now/plus3hours/ to verify it works. Then try http://127.0.0.1:8000/now/plus5hours/.
Then http://127.0.0.1:8000/now/plus24hours/. Finally, visit http://127.0.0.1:8000/now/plus100hours/ to verify that the
pattern in your URLconf only accepts one- or two-digit numbers; Django should display a “Page not found” error in this case, just
as we saw in the “404 errors” section above. The URL http://127.0.0.1:8000/now/plushours/ (with no hour designation)
should also throw a 404.

If you’re following along while coding at the same time, you’ll notice that the views.py file now contains two views. (We omitted
the current_datetime view from the last set of examples for clarity.) Put together, views.py should look like this:

from django.http import HttpResponse
import datetime

def current_datetime(request):
 now = datetime.datetime.now()
 html = "<html><body>It is now %s.</body></html>" % now
 return HttpResponse(html)

def hours_ahead(request, offset):
 offset = int(offset)
 dt = datetime.datetime.now() + datetime.timedelta(hours=offset)
 html = "<html><body>In %s hour(s), it will be %s.</body></html>" % (offset, dt)
 return HttpResponse(html)

Django’s pretty error pages
Take a moment to admire the fine Web application we’ve made so far…and break it!

Let’s deliberately introduce a Python error into our views.py file, by commenting-out the offset = int(offset) line in
the hours_ahead view:

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH3.html (6 of 9)9/28/2007 2:08:35 PM

Chapter 3: The basics of generating Web pages

def hours_ahead(request, offset):
 # offset = int(offset)
 dt = datetime.datetime.now() + datetime.timedelta(hours=offset)
 html = "<html><body>In %s hour(s), it will be %s.</body></html>" % (offset, dt)
 return HttpResponse(html)

Now load up the development server and navigate to /now/plus3hours/. You’ll see an error page with a significant amount of
information, including a TypeError message displayed at the very top: “unsupported type for timedelta hours component: str”.

What happened?

Well, the datetime.timedelta function expects the hours parameter to be an integer, and we commented-out the bit of code
that converted offset to an integer. That caused datetime.timedelta to raise the TypeError. It’s the typical kind of small bug
that every programmer runs into at some point.

The point of this example was to demonstrate Django’s error pages. Take some time to explore the error page and get to know
the various bits of information it gives you.

Some highlights:

● At the top of the page, you get the key information about the exception: the type of exception, any parameters to the
exception (e.g., the "unsupported type" message in this case), the file in which the exception was raised and the offending
line number.

● Under that, the page displays the full Python traceback for this exception. This is similar to the standard traceback you get in
Python’s command-line interpreter, except it’s more interactive. For each frame in the stack, Django displays the name of
the file, the function/method name, the line number and the source code of that line.

Click the line of source code (in dark gray), and you’ll see several lines from before and after the erroneous line, to give you
context.

Click “Local vars” under any frame in the stack to view a table of all local variables, and their values, in that frame, at the
exact point in the code at which the exception was raised. This debugging information is invaluable.

● Note the “Switch to copy-and-paste view” text just under the “Traceback” header. Click those words, and the traceback will
switch to a alternate version that can be easily copied and pasted. Use this when you want to share your exception
traceback with others to get technical support — such as the kind folks in the Django IRC chat room or on the Django users
mailing list.

● Next, the “Request information” section includes a wealth of information about the incoming Web request that spawned the
error: GET and POST information, cookie values and meta information, such as CGI headers. If this information seems like
gibberish to you at the moment, don’t fret — we’ll explain it later in this book.

Below, the “Settings” section lists all of the settings for this particular Django installation. Again, we’ll explain settings later
in this book. For now, take a look at the settings to get an idea of the information available.

The Django error page is capable of displaying more information in certain special cases, such as the case of template syntax
errors. We’ll get to those later, when we discuss the Django template system. For now, uncomment the offset = int(offset)
line to get the view function working properly again.

Are you the type of programmer who likes to debug with the help of carefully placed print statements? You can use the Django
error page to do just that — just without the print statements. At any point in your view, temporarily insert an assert False to
trigger the error page. Then, you can view the local variables and state of the program. (There’s a more advanced way to debug
Django views, which we’ll explain later, but this is the quickest and easiest.)

Finally, it’s obvious that much of this information is sensitive — it exposes the innards of your Python code and Django
configuration — and it would be foolish to show this information on the public Internet. A malicious person could use it to attempt
to reverse-engineer your Web application and do nasty things. For that reason, the Django error page is only displayed when
your Django project is in debug mode. We’ll explain how to deactivate debug mode later. For now, just know that every Django
project is in debug mode automatically when you start it. (Sound familiar? The “Page not found” errors, described in the “404
errors” section above, work the same way.)

Exercises
Here are a few exercises that will solidify some of the things you learned in this chapter. (Hint: Even if you think you understood
everything, at least give these exercises, and their respective answers, a read. We introduce a couple of new tricks here.)

1. Create another view, hours_behind, that works like hours_ahead but instead displays the date/time with an offset into the
past, not the future. This view should bind to URLs in the style /now/minusXhours/, where X is the offset, in hours.

2. Once you’ve done that, be a good programmer and notice how similar the hours_ahead and hours_behind views are. How
redundant! Eliminate the redundancy and combine them into a single view, hour_offset. The URLs should stay the same as
before: e.g., /now/minusXhours/ and /now/plusXhours/. Don’t forget to change the HTML to say either “In X hour(s)” or “X
hour(s) ago”, depending on whether the offset is positive or negative.

3. We were lazy and hard-coded the plural form of “hour” in the URL, resulting in the grammatic atrocity /now/plus1hours/.
Do your part to uphold proper English grammar, and improve the application so that it accepts the URL /now/plus1hour/.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH3.html (7 of 9)9/28/2007 2:08:35 PM

Chapter 3: The basics of generating Web pages

For bonus points, be a perfectionist: allow /now/plus1hour/ and /now/plus2hours/ but disallow /now/plus1hours/
and /now/plus2hour/.

4. Similarly, we were lazy in the HTML display, saying "In %s hour(s), it will be %s." Fix this to remove the hour(s).
The (s) was such a cop-out! If the offset is singular, use 'hour'; otherwise, use 'hours'.

Answers to exercises
1. Here’s one implementation of the hours_behind view:

def hours_behind(request, offset):
 offset = int(offset)
 dt = datetime.datetime.now() - datetime.timedelta(hours=offset)
 html = "<html><body>%s hour(s) ago, it was %s.</body></html>" % (offset, dt)
 return HttpResponse(html)

Not much is different between this view and hours_ahead — only the calculation of dt and the text within the HTML.

The URLpattern would look like this:

(r'^now/minus(\d{1,2})hours/$', hours_behind),

2. Here’s one implementation of the hour_offset view:

def hour_offset(request, plus_or_minus, offset):
 offset = int(offset)
 if plus_or_minus == 'plus':
 dt = datetime.datetime.now() + datetime.timedelta(hours=offset)
 html = 'In %s hour(s), it will be %s.' % (offset, dt)
 else:
 dt = datetime.datetime.now() - datetime.timedelta(hours=offset)
 html = '%s hour(s) ago, it was %s.' % (offset, dt)
 html = '<html><body>%s</body></html>' % html
 return HttpResponse(html)

The URLpattern would look like this:

(r'^now/(plus|minus)(\d{1,2})hours/$', hour_offset),

In this implementation, we capture two values from the URL — the offset, as we did before, but also the string that
designates whether the offset should be positive or negative. They’re passed to the view function in the order in which
they’re captured.

Inside the view code, the variable plus_or_minus will be either the string 'plus' or the string 'minus'. We test that to
determine how to calculate the offset — either by adding or subtracting a datetime.timedelta.

If you’re particularly anal, you may find it inelegant that the view code is “aware” of the URL, having to test for the
string 'plus' or 'minus' rather than some other variable that has been abstracted from the URL. There’s no way around
that; Django does not include any sort of “middleman” layer that converts captured URL parameters to abstracted data
structures, for simplicity’s sake.

3. To accomplish this, we wouldn’t have to change the hour_offset view at all. We’d just need to edit the URLconf slightly.
Here’s one way to do it, by using two URLpatterns:

(r'^now/(plus|minus)(1)hour/$', hour_offset),
(r'^now/(plus|minus)([2-9]|\d\d)hours/$', hour_offset),

More than one URLpattern can point to the same view; Django processes the patterns in order and doesn’t care how many
times a certain view is referenced. In this case, the first pattern matches the URLs /now/plus1hour/ and /now/minus1hour/
. The (1) is a neat little trick — it passes the value '1' as the captured value, without allowing any sort of wildcard.

The second pattern is more complex, as it uses a slightly tricky regular expression. The key part is ([2-9]|\d\d). The pipe
character ('|') means “or,” so the pattern in full means “match either the pattern [2-9] or \d\d.” In other words, that
matches any one-digit number from 2 through 9, or any two-digit number.

4. Here’s a basic way of accomplishing this. Alter the hour_offset function like so:

def hour_offset(request, plus_or_minus, offset):
 offset = int(offset)
 if offset == 1:

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH3.html (8 of 9)9/28/2007 2:08:35 PM

Chapter 3: The basics of generating Web pages

 hours = 'hour'
 else:
 hours = 'hours'
 if plus_or_minus == 'plus':
 dt = datetime.datetime.now() + datetime.timedelta(hours=offset)
 output = 'In %s %s, it will be %s.' % (offset, hours, dt)
 else:
 dt = datetime.datetime.now() - datetime.timedelta(hours=offset)
 output = '%s %s ago, it was %s.' % (offset, hours, dt)
 output = '<html><body>%s</body></html>' % output
 return HttpResponse(output)

Ideally, though, we wouldn’t have to edit Python code to make small presentation-related changes like this. Wouldn’t it be
nice if we could separate presentation from Python logic? Ah, foreshadowing…

« previous ◊ table of contents ◊ next »
Copyright 2006 Adrian Holovaty and Jacob Kaplan-Moss.
This work is licensed under the GNU Free Document License.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH3.html (9 of 9)9/28/2007 2:08:35 PM

http://www.djangobook.com/en/beta/chapter02/
http://www.djangobook.com/en/beta/
http://www.djangobook.com/en/beta/chapter04/
http://www.djangobook.com/license/

The Django Book
« previous ◊ table of contents ◊ next »

Chapter 4: The Django template system
In the previous chapter, you may have noticed something peculiar in how we returned the HTML in our example views. Namely, the
HTML was hard-coded directly in our Python code!

This arrangement leads to several problems:

● Obviously, any change to the design of the page would require a change to the Python code. The design of a site tends to
change far more frequently than the underlying Python code, so it would be convenient if the frequency of HTML changes were
separated from changes to Python code.

● Second, writing backend Python code and designing/coding HTML are two different disciplines, and most professional Web
development environments split these responsibilities across separate people (or even separate departments). Designers and
HTML/CSS coders shouldn’t have to edit Python code to get their job done; they should deal with HTML.

● Similarly, it’s most efficient if programmers can work on Python code and designers can work on templates at the same time,
rather than one person waiting for the other to finish editing a single file that contains both Python and HTML.

For these reasons, it’s much cleaner and more maintainable to separate the design of the page from the Python code itself. We can
do this with Django’s template system.

Template system basics
A Django template is a string of text that is intended to separate the presentation of a document from its data. A template defines
placeholders and various bits of basic logic — tags — that regulate how the document should be displayed. Usually, templates are
used for outputting HTML, but Django templates are equally capable of generating any text-based format.

Let’s dive in with a simple example template. This template describes an HTML page that thanks a person for making an order from
a company. Think of it as a form letter:

<html>
<head><title>Ordering notice</title></head>

<body>

<p>Dear {{ person_name }},</p>

<p>Thanks for placing an order from {{ company }}. It's scheduled to
ship on {{ ship_date|date:"F j, Y" }}.</p>

<p>Here are the items you've ordered:</p>

Chapter 4: The Django template system

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH4.html (1 of 34)9/28/2007 2:09:26 PM

http://www.djangobook.com/en/beta/chapter03/
http://www.djangobook.com/en/beta/
http://www.djangobook.com/en/beta/chapter05/

Chapter 4: The Django template system

{% for item in item_list %}
{{ item }}
{% endfor %}

{% if ordered_warranty %}
<p>Your warranty information will be included in the packaging.</p>
{% endif %}

<p>Sincerely,
{{ company }}</p>

</body>
</html>

This template is basic HTML with some variables and template tags thrown in. Let’s step through it:

● Any text surrounded by a pair of braces — e.g., {{ person_name }} — is a variable. This means “insert the value of the
variable with the given name.” (How do we specify the values of the variables? We’ll get to that in a moment.)

● Any text that’s surrounded by curly braces and percent signs — e.g., {% if ordered_warranty %} — is a block tag. The
definition of a block tag is quite broad: A block tag just tells the template system to do something.

This example template contains two block tags — the {% for item in item_list %} tag (a “for” tag) and
the {% if ordered_warranty %} tag (an “if” tag). A “for” tag acts as a simple loop construct, letting you loop over each item
in a sequence. An “if” tag, as you may expect, acts as a logical “if” statement. In this particular case, the tag checks whether
the value of the ordered_warranty variable evaluates to True. If it does, the template system will display everything between
the {% if ordered_warranty %} and {% endif %}. If not, the template system won’t display it. The template system also
supports {% else %} and other various logic statements.

Each Django template has access to several built-in block tags. In addition, you can write your own tags.

● Finally, the second paragraph of this template has an example of a filter. Filters are a way to alter the display of a variable. In
this example — {{ ship_date|date:"F j, Y" }} — we’re passing the ship_date variable to the date filter, giving the date
filter an argument "F j, Y". The date filter formats dates in a given format, as specified by that argument. Filters are
attached using a pipe character (|), as a reference to Unix pipes.

Each Django template has access to several built-in filters. In addition, you can write your own filters.

Using the template system
To use the template system in Python code, just follow these two steps:

● First, create a Template object by providing the raw template code as a string. Django also offers a way to create Template
objects by designating the path to a template file on the filesystem; we’ll see that in a bit.

● Then, call the render() method of the Template object with a given set of variables — the context. This returns a fully
rendered template, as a string, with all of the variables and block tags evaluated according to the context.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH4.html (2 of 34)9/28/2007 2:09:26 PM

Chapter 4: The Django template system

Creating template objects
The easiest way to create a Template object is to instantiate it directly. The Template class lives in the django.template module,
and the constructor takes one argument, the raw template code. Let’s dip into the Python interactive interpreter to see how this
works in code. (Type python at the command line to start the interactive interpreter.) Here’s a basic walkthrough:

>>> from django.template import Template
>>> t = Template("My name is {{ my_name }}.")
>>> print t

If you’re following along interactively, you’ll see something like this after typing print t:

<django.template.Template object at 0xb7d5f24c>

That 0xb7d5f24c will be different every time, and it doesn’t really matter; it’s simply the Python “identity” of the Template object.

Interactive interpreter examples

Throughout this book, we’ll feature example Python interactive interpreter sessions. You can recognize these
examples by spotting the triple greater-than signs (>>>), which designate the interpreter’s prompt. If you’re copying
examples from this book, don’t copy those greater-than signs.

Multiline statements in the interactive interpreter are padded with three dots (...). For example:

>>> print """This is a
... string that spans
... three lines."""
This is a
string that spans
three lines.
>>> def my_function(value):
... print value
>>> my_function('hello')
hello

Those three dots at the start of the additional lines are inserted by the Python shell — they’re not part of our input.
We include them here to be faithful to the actual output of the interpreter. If you copy our examples to follow along,
don’t copy those dots.

When you create a Template object, the template system compiles the raw template code into an internal, optimized form, ready
for rendering. But if your template code includes any syntax errors, the call to Template() will cause a TemplateSyntaxError
exception:

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH4.html (3 of 34)9/28/2007 2:09:26 PM

Chapter 4: The Django template system

>>> from django.template import Template
>>> t = Template('{% notatag %} ')
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 ...
 django.template.TemplateSyntaxError: Invalid block tag: 'notatag'

The system raises a TemplateSyntaxError exception for any of the following cases:

● Invalid block tags
● Invalid arguments to valid block tags
● Invalid filters
● Invalid arguments to valid filters
● Invalid template syntax
● Unclosed block tags (for block tags that require closing tags)

Rendering a template
Once you have a Template object, you can pass it data by giving it a context. A context is simply a set of variables and their
associated values. A template uses this to populate its variable tags and evaluate its block tags.

A context is represented in Python by the Context class, which lives in the django.template module. Its constructor takes one
optional argument: a dictionary mapping variable names to variable values. Call the Template object’s render() method with the
context to “fill” the template. For example:

>>> from django.template import Context, Template
>>> t = Template("My name is {{ name }}.")
>>> c = Context({"name": "Stephane"})
>>> t.render(c)
'My name is Stephane.'

Variable names must begin with a letter (A-Z or a-z) and may contain digits, underscores and dots. (Dots are a special case we’ll
get to in a moment.) Variable names are case sensitive.

Here’s an example of template compilation and rendering, using the sample template from the beginning of this chapter:

>>> from django.template import Template, Context
>>> raw_template = """<p>Dear {{ person_name }},</p>
...
... <p>Thanks for ordering {{ product }} from {{ company }}. It's scheduled to
... ship on {{ ship_date|date:"F j, Y" }}.</p>
...
... {% if ordered_warranty %}
... <p>Your warranty information will be included in the packaging.</p>

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH4.html (4 of 34)9/28/2007 2:09:26 PM

Chapter 4: The Django template system

... {% endif %}

...

... <p>Sincerely,
{{ company }}</p>"""
>>> t = Template(raw_template)
>>> import datetime
>>> c = Context({'person_name': 'John Smith',
... 'product': 'Super Lawn Mower',
... 'company': 'Outdoor Equipment',
... 'ship_date': datetime.date(2009, 4, 2),
... 'ordered_warranty': True})
>>> t.render(c)
"<p>Dear John Smith,</p>\n\n<p>Thanks for ordering Super Lawn Mower from Outdoor Equipment.
It's scheduled to ship on April 2, 2009.</p>\n\n<p>Your warranty information will be included
in the packaging.</p>\n\n\n<p>Sincerely,
Outdoor Equipment</p>"

Let’s step through this one statement at a time:

● First, we import the classes Template and Context, which both live in the module django.template.

● Next, we save the raw text of our template into the variable raw_template. Note that we use a triple quote marks to designate
the string, because it wraps over multiple lines; strings designated with single quote marks cannot be wrapped over multiple
lines.

● Next, we create a template object t by passing raw_template to the Template class constructor.

● Then we import the datetime module from Python’s standard library, because we’ll need it in the following statement.

● Next, we create a context object c. The Context constructor takes a Python dictionary mapping variable names to values.
Here, for example, we specify that the person_name is 'John Smith', product is 'Super Lawn Mower', etc.

● Finally, we call the render() method on our template object, passing it the context. This returns the rendered template — that
is, it replaces template variables with the actual values of the variables, and it executes any block tags.

Note that the warranty paragraph was displayed because the ordered_warranty variable evaluated to True. Also note the
date, April 2, 2009, which is displayed according to the format string 'F j, Y'. (We’ll explain format strings for the date
filter shortly.)

If you’re new to Python, you may wonder why this output includes newline characters ('\n') rather than displaying the line
breaks. That’s happening because of a subtlety in the Python interactive interpreter: The call to t.render(c) returns a string,
and by default the interactive interpreter displays the representation of the string, rather than the printed value of the string.
If you want to see the string with line breaks displayed as true line breaks rather than '\n' characters, use the print
statement: print t.render(c).

Those are the fundamentals of using the Django template system — just write a template, create a template object, create a
context and call the render() method.

Multiple contexts, same template
file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH4.html (5 of 34)9/28/2007 2:09:26 PM

Chapter 4: The Django template system

Once you have a template object, you can render multiple contexts through it. For example:

>>> from django.template import Template, Context
>>> t = Template('Hello, {{ name }}')
>>> print t.render(Context({'name': 'John'}))
Hello, John
>>> print t.render(Context({'name': 'Julie'}))
Hello, Julie
>>> print t.render(Context({'name': 'Pat'}))
Hello, Pat

Whenever you’re using the same template to render multiple contexts like this, it’s most efficient to create the Template object
once, then call render() on it multiple times. For example:

Bad
for name in ('John', 'Julie', 'Pat'):
 t = Template('Hello, {{ name }}')
 print t.render(Context({'name': name}))

Good
t = Template('Hello, {{ name }}')
for name in ('John', 'Julie', 'Pat'):
 print t.render(Context({'name': name}))

Django’s template parsing is quite fast. Behind the scenes, most of the parsing happens via a single call to a short regular
expression. This is a stark contrast to XML-based templating engines, which incur the overhead of an XML parser and tend to be
orders of magnitude slower than Django’s template rendering engine.

Context variable lookup
In the examples so far, we’ve passed simple values in the template contexts — mostly strings, plus a datetime.date example.
However, the template system elegantly handles more complex data structures, such as lists, dictionaries and custom objects.

The key to traversing complex data structures in Django templates is the dot (.) character. Use a dot to access dictionary keys,
attributes, indices or methods of an object.

This is best illustrated with a few examples. First, say you’re passing a Python dictionary to a template. To access the values of that
dictionary by dictionary key, use a dot:

>>> from django.template import Template, Context
>>> person = {'name': 'Sally', 'age': '43'}
>>> t = Template('{{ person.name }} is {{ person.age }} years old.')
>>> c = Context({'person': person})
>>> t.render(c)
'Sally is 43 years old.'

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH4.html (6 of 34)9/28/2007 2:09:26 PM

Chapter 4: The Django template system

Similarly, dots also allow access of object attributes. For example, a Python datetime.date object has year, month and day
attributes, and you can use a dot to access those attributes in a Django template:

>>> from django.template import Template, Context
>>> import datetime
>>> d = datetime.date(1993, 5, 2)
>>> d.year
1993
>>> d.month
5
>>> d.day
2
>>> t = Template('The month is {{ date.month }} and the year is {{ date.year }}.')
>>> c = Context({'date': d})
>>> t.render(c)
'The month is 5 and the year is 1993.'

This example uses a custom class:

>>> from django.template import Template, Context
>>> class Person(object):
... def __init__(self, first_name, last_name):
... self.first_name, self.last_name = first_name, last_name
>>> t = Template('Hello, {{ person.first_name }} {{ person.last_name }}.')
>>> c = Context({'person': Person('John', 'Smith')})
>>> t.render(c)
'Hello, John Smith.'

Dots are also used to access list indices. For example:

>>> from django.template import Template, Context
>>> t = Template('Item 2 is {{ items.2 }}.')
>>> c = Context({'items': ['apples', 'bananas', 'carrots']})
>>> t.render(c)
'Item 2 is carrots.'

Negative list indices are not allowed. For example, the template variable {{ items.-1 }} would cause a TemplateSyntaxError.

Finally, dots are also used to call methods on objects. For example, each Python string has the methods upper() and isdigit(),
and you can call those in Django templates using the same dot syntax:

>>> from django.template import Template, Context
>>> t = Template('{{ var }} -- {{ var.upper }} -- {{ var.isdigit }}')

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH4.html (7 of 34)9/28/2007 2:09:26 PM

Chapter 4: The Django template system

>>> t.render(Context({'var': 'hello'}))
'hello -- HELLO -- False'
>>> t.render(Context({'var': '123'}))
'123 -- 123 -- True'

Note that, in the method calls, you don’t include parentheses. Also, it’s not possible to pass arguments to the methods; you can
only call methods that have no required arguments. (We’ll explain this philosophy later in this chapter.)

The dot lookups can be summarized like this: When the template system encounters a dot in a variable name, it tries the following
lookups, in this order:

● Dictionary lookup. Example: foo["bar"]

● Attribute lookup. Example: foo.bar

● Method call. Example: foo.bar()

● List-index lookup. Example: foo[bar]

The system uses the first lookup type that works. It’s short-circuit logic.

Dot lookups can be nested multiple levels deep. For instance, the following example uses {{ person.name.upper }}, which
translates into a dictionary lookup (person['name']), then a method call (upper()):

>>> from django.template import Template, Context
>>> person = {'name': 'Sally', 'age': '43'}
>>> t = Template('{{ person.name.upper }} is {{ person.age }} years old.')
>>> c = Context({'person': person})
>>> t.render(c)
'SALLY is 43 years old.'

A word about method calls

Method calls are slightly more complex than the other lookup types. Here are some things to keep in mind:

● If, during the method lookup, a method raises an exception, the exception will be propagated, unless the exception has an
attribute silent_variable_failure whose value is True. If the exception does have a silent_variable_failure attribute,
the variable will render as an empty string. For example:

>>> t = Template("My name is {{ person.first_name }}.")
>>> class PersonClass3:
... def first_name(self):
... raise AssertionError, "foo"
>>> p = PersonClass3()
>>> t.render(Context({"person": p}))
Traceback (most recent call last):
...
AssertionError: foo

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH4.html (8 of 34)9/28/2007 2:09:26 PM

Chapter 4: The Django template system

>>> class SilentAssertionError(AssertionError):
... silent_variable_failure = True
>>> class PersonClass4:
... def first_name(self):
... raise SilentAssertionError
>>> p = PersonClass4()
>>> t.render(Context({"person": p}))
"My name is ."

● A method call will only work if the method has no required arguments. Otherwise, the system will move to the next lookup
type (list-index lookup).

● Obviously, some methods have side effects, and it’d be foolish at best, and possibly even a security hole, to allow the template
system to access them.

Say, for instance, you have a BankAccount object that has a delete() method. The template system shouldn’t be allowed to
do something like this:

I will now delete this valuable data. {{ account.delete }}

To prevent this, set a function attribute alters_data on the method. The template system won’t execute a method if the
method has alters_data=True set. For example:

def delete(self):
 # Delete the account
delete.alters_data = True

How invalid variables are handled

By default, if a variable doesn’t exist, the template system renders it as an empty string, failing silently. For example:

>>> from django.template import Template, Context
>>> t = Template('Your name is {{ name }}.')
>>> t.render(Context())
'Your name is .'
>>> t.render(Context({'var': 'hello'}))
'Your name is .'
>>> t.render(Context({'NAME': 'hello'}))
'Your name is .'
>>> t.render(Context({'Name': 'hello'}))
'Your name is .'

The system fails silently rather than raising an exception because it’s intended to be resilient to human error. In the real world, it’s
unacceptable for a Web site to become inaccessible due to a small template syntax error.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH4.html (9 of 34)9/28/2007 2:09:26 PM

Chapter 4: The Django template system

Note that it’s possible to change Django’s default behavior in this regard, by tweaking a setting in your Django configuration. We’ll
discuss this in Chapter 10, “Extending the template engine.”

Playing with Context objects
Most of the time, you’ll instantiate Context objects by passing in a fully-populated dictionary to Context(). But you can add and
delete items from a Context object once it’s been instantiated, too, using standard Python dictionary syntax:

>>> from django.template import Context
>>> c = Context({"foo": "bar"})
>>> c['foo']
'bar'
>>> del c['foo']
>>> c['foo']
''
>>> c['newvariable'] = 'hello'
>>> c['newvariable']
'hello'

A Context object is a stack. That is, you can push() and pop() it. If you pop() too much, it’ll
raise django.template.ContextPopException:

>>> c = Context()
>>> c['foo'] = 'first level'
>>> c.push()
>>> c['foo'] = 'second level'
>>> c['foo']
'second level'
>>> c.pop()
>>> c['foo']
'first level'
>>> c['foo'] = 'overwritten'
>>> c['foo']
'overwritten'
>>> c.pop()
Traceback (most recent call last):
...
django.template.ContextPopException

Using a Context as a stack comes in handy in some custom template tags, as you’ll see in Chapter 10.

Basic template tags and filters
As we’ve mentioned already, the template system ships with built-in tags and filters. Here’s a rundown of the most common ones.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH4.html (10 of 34)9/28/2007 2:09:26 PM

Chapter 4: The Django template system

Appendix 6 includes a full list of all built-in tags and filters, and it’s a good idea to familiarize yourself with that list to have an idea
of what’s possible.

if/else
The {% if %} tag evaluates a variable, and if that variable is “true” (i.e., it exists, is not empty, and is not a false boolean value),
the system will display everything between {% if %} and {% endif %}. For example:

{% if today_is_weekend %}
 <p>Welcome to the weekend!</p>
{% endif %}

An {% else %} tag is optional:

{% if today_is_weekend %}
 <p>Welcome to the weekend!</p>
{% else %}
 <p>Get back to work.</p>
{% endif %}

The {% if %} tag accepts and, or or not for testing multiple variables, or to negate a given variable. For example:

{% if athlete_list and coach_list %}
 Both athletes and coaches are available.
{% endif %}

{% if not athlete_list %}
 There are no athletes.
{% endif %}

{% if athlete_list or coach_list %}
 There are some athletes or some coaches.
{% endif %}

{% if not athlete_list or coach_list %}
 There are no athletes or there are some coaches (OK, so
 writing English translations of boolean logic sounds
 stupid; it's not our fault).
{% endif %}

{% if athlete_list and not coach_list %}
 There are some athletes and absolutely no coaches.
{% endif %}

{% if %} tags don’t allow and and or clauses within the same tag, because the order of logic would be ambiguous. For example,
file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH4.html (11 of 34)9/28/2007 2:09:26 PM

Chapter 4: The Django template system

this is invalid:

{% if athlete_list and coach_list or cheerleader_list %}

If you need to combine and and or to do advanced logic, just use nested {% if %} tags. For example:

{% if athlete_list %}
 {% if coach_list or cheerleader_list %}
 We have athletes, and either coaches or cheerleaders!
 {% endif %}
{% endif %}

Multiple uses of the same logical operator are fine, as long as you use the same operator. For example, this is valid:

{% if athlete_list or coach_list or parent_list or teacher_list %}

There is no {% elif %} tag. Use nested {% if %} tags to accomplish the same thing:

{% if athlete_list %}
 <p>Here are the athletes: {{ athlete_list }}.</p>
{% else %}
 <p>No athletes are available.</p>
 {% if coach_list %}
 <p>Here are the coaches: {{ coach_list }}.</p>
 {% endif %}
{% endif %}

Make sure to close each {% if %} with an {% endif %}. Otherwise, Django will throw a TemplateSyntaxError.

for
The {% for %} tag allows you to loop over each item in a sequence. As in Python’s for statement, the syntax is for X in Y,
where Y is the sequence to loop over and X is the name of the variable to use for a particular cycle of the loop. Each time through
the loop, the template system will render everything between {% for %} and {% endfor %}.

For example, to display a list of athletes given a variable athlete_list:

{% for athlete in athlete_list %}
 {{ athlete.name }}
{% endfor %}

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH4.html (12 of 34)9/28/2007 2:09:26 PM

Chapter 4: The Django template system

Add reversed to the tag to loop over the list in reverse:

{% for athlete in athlete_list reversed %}
...
{% endfor %}

It’s possible to nest {% for %} tags:

{% for country in countries %}
 <h1>{{ country.name }}</h1>

 {% for city in country.city_list %}
 {{ city }}
 {% endfor %}

{% endfor %}

There is no support for “breaking” out of a loop before the loop is finished. If you want to accomplish this, change the variable
you’re looping over so that it only includes the values you want to loop over. Similarly, there is no support for a “continue”
statement that would instruct the loop processor to return immediately to the front of the loop. (See “Philosophies and limitations”
later in this chapter for the reasoning behind this design decision.)

The {% for %} tag sets a magic forloop template variable within the loop. This variable has a few attributes that give you
information about the progress of the loop:

● forloop.counter is always set to an integer representing the number of times the loop has been entered. This is one-indexed,
so the first time through the loop, forloop.counter will be set to 1. Example:

{% for item in todo_list %}
 <p>{{ forloop.counter }}: {{ item }}</p>
{% endfor %}

● forloop.counter0 is like forloop.counter, except it’s zero-indexed. Its value will be set to 0 the first time through the loop.

● forloop.revcounter is always set to an integer representing the number of remaining items in the loop. The first time
through the loop, forloop.revcounter will be set to the total number of items in the sequence you’re traversing. The last
time through the loop, forloop.revcounter will be set to 1.

● forloop.revcounter0 is like forloop.revcounter, except it’s zero-indexed. The first time through the
loop, forloop.revcounter0 will be set to the number of elements in the sequence minus one. The last time through the loop,
it will be set to 0.

● forloop.first is a boolean value set to True if this is the first time through the loop. This is convenient for special-casing:

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH4.html (13 of 34)9/28/2007 2:09:26 PM

Chapter 4: The Django template system

{% for object in objects %}
 {% if forloop.first %}<li class="first">{% else %}{% endif %}
 {{ object }}

{% endfor %}

● forloop.last is a boolean value set to True if this is the last time through the loop. An example use for this would be to put
pipe characters between a list of links:

{% for link in links %}{{ link }}{% if not forloop.last %} | {% endif %}{% endfor %}

● forloop.parentloop is a reference to the forloop object for the parent loop, in case of nested loops. For example:

{% for country in countries %}
 <table>
 {% for city in country.city_list %}
 <tr>
 <td>Country #{{ forloop.parentloop.counter }}</td>
 <td>City #{{ forloop.counter }}</td>
 <td>{{ city }}</td>
 </tr>
 {% endfor %}
 </table>
{% endfor %}

The magic forloop variable is only available within loops. After the template parser has reached {% endfor %}, forloop
disappears.

If your template context already contains a variable called forloop, Django will override it within {% for %} tags. In other, non-
loop parts of the template, your forloop will still be available and unchanged. We advise against setting template variables with
the name forloop, but if you need to do this and want to access your custom forloop from within a {% for %} tag, you can
use forloop.parentloop, described above.

ifequal/ifnotequal
The Django template system deliberately is not a full-fledged programming language and, thus, does not allow you to execute
arbitrary Python statements. (More on this in “Philosophies and limitations” below.) However, it’s quite a common template
requirement to compare two values and display something if they’re equal — and Django provides an {% ifequal %} tag for that
purpose.

The {% ifequal %} tag compares two values and displays everything between {% ifequal %} and {% endifequal %} if the values
are equal.

This example compares the template variables user and currentuser:

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH4.html (14 of 34)9/28/2007 2:09:26 PM

Chapter 4: The Django template system

{% ifequal user currentuser %}
 <h1>Welcome!</h1>
{% endifequal %}

The arguments can be hard-coded strings, with either single or double quotes, so the following is valid:

{% ifequal section 'sitenews' %}
 <h1>Site News</h1>
{% endifequal %}

{% ifequal section "community" %}
 <h1>Community</h1>
{% endifequal %}

Just like {% if %}, the {% ifequal %} tag supports an optional {% else %}:

{% ifequal section 'sitenews' %}
 <h1>Site News</h1>
{% else %}
 <h1>No News Here</h1>
{% endifequal %}

Only template variables, strings, integers and decimal numbers are allowed as arguments to {% ifequal %}. These are valid
examples:

{% ifequal variable 1 %}
{% ifequal variable 1.23 %}
{% ifequal variable 'foo' %}
{% ifequal variable "foo" %}

Any other types of variables, such as Python dictionaries, lists or booleans, can not be hard-coded in {% ifequal %}. These are
invalid examples:

{% ifequal variable True %}
{% ifequal variable [1, 2, 3] %}
{% ifequal variable {'key': 'value'} %}

If you need to test whether something is true or false, use the {% if %} tags instead of {% ifequal %}.

Comments
Just as in HTML or in a programming language such as Python, the Django template language allows for comments. To designate a
comment, use {# #}. For example:

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH4.html (15 of 34)9/28/2007 2:09:26 PM

Chapter 4: The Django template system

{# This is a comment #}

Comment will not be output when the template is rendered.

A comment cannot span multiple lines. In the following template, the rendered output will look exactly the same as the template (i.
e., the comment tag will not be parsed as a comment):

This is a {# comment goes here
and spans another line #}
test.

Filters
As explained earlier in this chapter, template filters are simple ways of altering the value of variables before they’re displayed.

Filters look like this:

{{ name|lower }}

This displays the value of the {{ name }} variable after being filtered through the lower filter, which converts text to lowercase.
Use a pipe (|) to apply a filter.

Filters can be chained — that is, the output of one filter is applied to the next. Here’s a common idiom for escaping text contents,
then converting line breaks to <p> tags:

{{ my_text|escape|linebreaks }}

Some filters take arguments. A filter argument looks like this:

{{ bio|truncatewords:"30" }}

This displays the first 30 words of the bio variable. Filter arguments always are in double quotes.

Here are a few of the most important filters:

● addslashes — Adds a backslash before any backslash, single quote or double quote. This is useful if you’re outputting some
text into a JavaScript string.

● date — Formats a date or datetime object according to a format string given in the parameter. For example:

{{ pub_date|date:"F j, Y" }}

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH4.html (16 of 34)9/28/2007 2:09:26 PM

Chapter 4: The Django template system

Format strings are defined in Appendix 6.

● escape — Escapes ampersands, quotes and angle brackets in the given string. This is useful for sanitizing user-submitted data
and for ensuring data is valid XML or XHTML. Specifically, escape makes these conversions:

❍ Converts & to &

❍ Converts < to <

❍ Converts > to >

❍ Converts " (double quote) to "

❍ Converts ' (single quote) to '

● length — Returns the length of the value. You can use this on a list or a string, or any Python object that knows how to
determine its length (i.e., any object that has a __len__() method).

Philosophies and limitations
Now that you’ve gotten a feel for the Django template language, we should point out some of its intentional limitations, along with
some philosophies on why it works the way it works.

More than any other component of Web applications, programmer opinions on template systems vary wildly — a statement
supported by the fact that Python alone has dozens, if not hundreds, of open-source template-language implementations, each
inevitably created because its developer deemed all existing template languages inadequate. (In fact, it is said to be a rite of
passage for a Python developer to write his or her own template language! And if you haven’t done this yet, consider it. It’s a fun
exercise.)

With that in mind, the first Django philosophy to point out is that Django doesn’t require that you use its template language.
Because Django is intended to be a full-stack Web framework that provides all the pieces necessary to be a productive Web
developer, many times it’s more convenient to use Django’s template system than other Python template libraries, but it’s not a
strict requirement in any sense. As we’ll see in the section “Using templates in views” below, it’s very easy to use another template
language with Django — almost as easy as to use Django’s template language.

Still, it’s clear we have a strong preference for the way Django’s template language works. The template system has roots in how
Web development is done at World Online and the combined experience of Django’s creators. Here are a few of those philosophies:

● Business logic should be separated from presentation logic. We see a template system as a tool that controls
presentation and presentation-related logic — and that’s it. The template system shouldn’t support functionality that goes
beyond this basic goal.

For that reason, it’s impossible to call Python code directly within Django templates. All “programming” is fundamentally
limited to the scope of what template tags can do. It is possible to write custom template tags that do arbitrary things, but the
out-of-the-box Django template tags intentionally do not allow for arbitrary Python code execution.

● Syntax should be decoupled from HTML/XML. Although Django’s template system is used primarily to output HTML, it’s
intended to be just as usable for non-HTML formats, such as plain text. Some other template languages are XML-based,
placing all template logic within XML tags or attributes, but Django deliberately avoids this limitation. Requiring valid XML to
write templates introduces a world of human mistakes and hard-to-understand error messages, and using an XML engine to
parse templates incurs an unacceptable level of overhead in template processing.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH4.html (17 of 34)9/28/2007 2:09:26 PM

Chapter 4: The Django template system

● Designers are assumed to be comfortable with HTML code. The template system isn’t designed so that templates
necessarily are displayed nicely in WYSIWYG editors such as Dreamweaver. That is too severe of a limitation and wouldn’t
allow the syntax to be as nice as it is. Django expects template authors are comfortable editing HTML directly.

● Designers are assumed not to be Python programmers. The template system authors recognize that Web page
templates are most often written by designers, not programmers, and therefore should not assume Python knowledge.

However, the system also intends to accomodate small teams in which the templates are created by Python programmers. It
offers a way to extend the system’s syntax by writing raw Python code. (More on this in Chapter 10.)

● The goal is not to invent a programming language. The goal is to offer just enough programming-esque functionality,
such as branching and looping, that is essential for making presentation-related decisions.

As a result of these design philosophies, the Django template language has the following limitations:

● A template cannot set a variable or change the value of a variable. It’s possible to write custom template tags that
accomplish these goals (see Chapter 10), but the stock Django template tags do not allow it.

● A template cannot call raw Python code. There’s no way to “drop into Python mode” or use raw Python constructs. Again,
it’s possible to write custom template tags to do this, but the stock Django template tags don’t allow it.

Using templates in views
We’ve learned the basics of using the template system; now, let’s integrate this into a view. Recall the current_datetime view
from the previous chapter. Here’s what it looked like:

from django.http import HttpResponse
import datetime

def current_datetime(request):
 now = datetime.datetime.now()
 html = "<html><body>It is now %s.</body></html>" % now
 return HttpResponse(html)

Let’s change this view to use Django’s template system. At first, you might think to do something like this:

from django.template import Template, Context
from django.http import HttpResponse
import datetime

def current_datetime(request):
 now = datetime.datetime.now()
 t = Template("<html><body>It is now {{ current_date }}.</body></html>")
 html = t.render(Context({'current_date': now}))
 return HttpResponse(html)

Sure, that uses the template system, but it doesn’t solve the problems we pointed out in the introduction of this chapter. Namely,
file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH4.html (18 of 34)9/28/2007 2:09:26 PM

Chapter 4: The Django template system

the template is still embedded in the Python code. Let’s fix that by putting the template in a separate file, which this view will load.

The simple, “dumb” way to do this would be to save your template somewhere on your filesystem and use Python’s built-in file-
opening functionality to read the contents of the template. Here’s what that might look like, assuming the template was saved as
the file /home/djangouser/templates/mytemplate.html:

from django.template import Template, Context
from django.http import HttpResponse
import datetime

def current_datetime(request):
 now = datetime.datetime.now()
 # Simple, "dumb" way of saving templates on the filesystem.
 # This doesn't account for missing files!
 fp = open('/home/djangouser/templates/mytemplate.html')
 t = Template(fp.read())
 fp.close()
 html = t.render(Context({'current_date': now}))
 return HttpResponse(html)

This approach, however, is inelegant for these reasons:

● For one, it doesn’t handle the case of a missing file. If the file mytemplate.html doesn’t exist or isn’t readable, the open() call
would raise an IOError exception.

● Second, it hard-codes your template location. If you were to use this technique for every view function, you’d be duplicating
the template locations. Not to mention that’s a lot of typing!

● Third, it includes a lot of boring boilerplate code. The calls to open(), fp.read() and fp.close() require a lot of typing and
not much creativity.

To solve these issues, we’ll use template loading and template directories.

Template loading
Django provides a convenient and powerful API for loading templates from disk, with the goal of removing redundancy both in your
template-loading calls and in your templates themselves.

In order to use this template-loading API, first you’ll need to tell the framework where you store your templates. The place to do
this is in your settings file.

A Django settings file is the place to put configuration for your Django instance (aka your Django project). It’s a simple Python
module with module-level variables, one for each setting.

When you ran django-admin.py startproject mysite in Chapter 2, the script created a default settings file for you, aptly
named settings.py. Have a look at the file’s contents. It contains variables that look like this (though not necessarily in this
order):

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH4.html (19 of 34)9/28/2007 2:09:26 PM

Chapter 4: The Django template system

DEBUG = True
TIME_ZONE = 'America/Chicago'
USE_I18N = True
ROOT_URLCONF = 'mysite.urls'

This is pretty self-explanatory; the settings and their respective values are simple Python variables. And because the settings file is
just a plain Python module, you can do dynamic things such as checking the value of one variable before setting another. (This also
means that you should avoid Python syntax errors in your settings file.)

We’ll cover settings files in depth later in this book, but for now, have a look at the TEMPLATE_DIRS setting. This setting tells
Django’s template loading mechanism where to look for templates. By default, it’s an empty tuple. Pick a directory where you’d like
to store your templates, and add it to TEMPLATE_DIRS, like so:

TEMPLATE_DIRS = (
 '/home/django/mysite/templates',
)

A few things to note:

● You can specify any directory you want, as long as the directory and templates within that directory are readable by the user
account under which your Web server runs. If you can’t think of an obvious place to put your templates, we recommend
creating a templates directory within your Django project (i.e., within the mysite directory you created in Chapter 2, if you’ve
been following along with our examples).

● Don’t forget the comma at the end of the template-directory string! Python requires commas within single-element tuples to
disambiguate the tuple from a parenthetical statement. This is a common newbie gotcha.

If you want to avoid this error, you can make TEMPLATE_DIRS a list instead of a tuple, because single-element lists don’t
require a trailing comma:

TEMPLATE_DIRS = [
 '/home/django/mysite/templates'
]

A tuple is slightly more efficient than a list, though, so we recommend using a tuple for your TEMPLATE_DIRS setting.

● It’s simplest to use absolute paths, i.e. directory paths that start at the root of the filesystem. If you want to be a bit more
flexible and decoupled, though, you can take advantage of the fact that Django settings files are just Python code by
constructing the contents of TEMPLATE_DIRS dynamically. For example:

import os.path

TEMPLATE_DIRS = (
 os.path.join(os.path.basename(__file__), 'templates'),
)

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH4.html (20 of 34)9/28/2007 2:09:26 PM

Chapter 4: The Django template system

This example uses the “magic” Python variable __file__, which is automatically set to the filename of the Python module in
which the code lives.

● If you’re on Windows, include your drive letter and use Unix-style forward slashes rather than backslashes. For example:

TEMPLATE_DIRS = (
 'C:/www/django/templates',
)

With TEMPLATE_DIRS set, the next step is to change the view code to use Django’s template-loading functionality rather than hard-
coding the template paths. Returning to our current_datetime view, let’s change it like so:

from django.template.loader import get_template
from django.template import Context
from django.http import HttpResponse
import datetime

def current_datetime(request):
 now = datetime.datetime.now()
 t = get_template('current_datetime.html')
 html = t.render(Context({'current_date': now}))
 return HttpResponse(html)

In this example, we’re using the function django.template.loader.get_template() rather than loading the template from the
filesystem manually. The get_template() function takes a template name as its argument, figures out where the template lives on
the filesystem, opens that file and returns a compiled Template object.

If get_template() cannot find the template with the given name, it raises a TemplateDoesNotExist exception. To see what that
looks like, fire up the Django development server again, as in Chapter 3, by running python manage.py runserver within your
Django project’s directory. Then, point your browser at the page that activates the current_datetime view (e.
g., http://127.0.0.1:8000/now/). Assuming your DEBUG setting is set to True and you haven’t yet created
a current_datetime.html template, you should see a Django error page highlighting the TemplateDoesNotExist error.

(We’ll have a screenshot here.)

This error page is similar to the one we explained in Chapter 3, with one additional piece of debugging information: a “Template-
loader postmortem” section. This section tells you which templates Django tried to load, along with the reason each attempt failed
(e.g., “File does not exist”). This information is invaluable when you’re trying to debug template-loading errors.

As you can probably tell by looking at the error messages, Django attempted to look for a template by combining the directory in
your TEMPLATE_DIRS setting with the template name you passed to get_template(). So if your TEMPLATE_DIRS
contained '/home/django/templates', it would look for the file '/home/django/templates/current_datetime.html'.

Moving along, create the current_datetime.html file within your template directory, using the following template code:

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH4.html (21 of 34)9/28/2007 2:09:26 PM

Chapter 4: The Django template system

<html><body>It is now {{ current_date }}.</body></html>

Refresh the page in your Web browser, and you should see the fully rendered page.

render_to_response()
Because it’s such a common idiom to load a template, fill a Context and return an HttpResponse object with the result of the
rendered template, Django provides a shortcut that lets you do those things in one line of code. This shortcut is a function
called render_to_response(), which lives in the module django.shortcuts. Most of the time, you’ll be
using render_to_response() rather than loading templates and creating Context and HttpResponse objects manually.

Here’s the ongoing current_datetime example rewritten to use render_to_response():

from django.shortcuts import render_to_response
import datetime

def current_datetime(request):
 now = datetime.datetime.now()
 return render_to_response('current_datetime.html', {'current_date': now})

What a difference! Let’s step through the code changes:

● We no longer have to import get_template, Template, Context or HttpResponse. Instead, we
import django.shortcuts.render_to_response. The import datetime remains.

● Within the current_datetime function, we still calculate now, but the template loading, context creation, template rendering
and HttpResponse creation is all taken care of by the render_to_response() call. Because render_to_response() returns
an HttpResponse object, we can simply return that value in the view.

The first argument to render_to_response() should be the name of the template to use, relative to your template directory. The
second argument, if given, should be a dictionary to use in creating a Context for that template. If you don’t provide a second
argument, render_to_response() will use an empty dictionary.

The locals() trick
Consider our latest incarnation of current_datetime:

def current_datetime(request):
 now = datetime.datetime.now()
 return render_to_response('current_datetime.html', {'current_date': now})

Many times, as in this example, you’ll find yourself calculating some values, storing them in variables (e.g., now above) and sending
those variables to the template. Particularly lazy programmers would note that it’s slightly redundant to have to give names for
temporary variables and give names for the template variables. Not only is it redundant; it’s extra typing.

So if you’re one of those lazy programmers and you like keeping code particularly concise, you can take advantage of a built-in

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH4.html (22 of 34)9/28/2007 2:09:26 PM

Chapter 4: The Django template system

Python function called locals(). locals() returns a dictionary of all variables defined within the local scope, along with their
values. Thus, the above view could be rewritten like so:

def current_datetime(request):
 current_date = datetime.datetime.now()
 return render_to_response('current_datetime.html', locals())

Here, instead of manually specifying the context dictionary as before, we instead pass the value of locals(), which will include all
variables defined at that point in the function’s execution. As a consequence, we’ve renamed the now variable to current_date,
because that’s the variable name that the template expects. In this example, locals() doesn’t offer a huge improvement, but this
technique can save you some typing if you’ve got several template variables to define — or if you’re lazy.

One thing to watch out for when using locals() is that it includes every local variable, which may comprise more variables than
you actually want your template to have access to. In the above example, locals() will also include request. Whether this
matters to you depends on your application.

A final thing to consider is that locals() incurs a small bit of overhead, because when you call it, Python has to create the
dictionary dynamically. If you specify the context dictionary manually, you avoid this overhead.

Subdirectories in get_template()
It can get unwieldy to store all of your templates in a single directory. You might like to store templates in subdirectories of your
template directory, and that’s fine. (In fact, we’d recommend it, and some more advanced Django features, such as the generic
views system we’ll cover in Chapter 9, expect this template layout as a default convention.)

Accomplishing that is easy. In your calls to get_template(), just include the subdirectory name and a slash before the template
name, like so:

t = get_template('dateapp/current_datetime.html')

Because render_to_response() is a small wrapper around get_template(), you can do the same thing with the first argument
to render_to_response().

There’s no limit to the depth of your subdirectory tree. Feel free to use subdirectories of subdirectories of subdirectories.

Windows users, note: Make sure to use forward slashes rather than backslashes. get_template() assumes a Unix-style filename
designation.

The include template tag
Now that we’ve covered the template loading mechanism, we can introduce a built-in template tag that takes advantage of
it: {% include %}. This tag allows you to include the contents of another template. The argument to the tag should be the name of
the template to include, and the template name can be either a variable or a hard-coded (quoted) string, in either single or double
quotes.

These two examples include the contents of the template nav.html. The examples are equivalent and illustrate that either single or
double quotes are allowed:

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH4.html (23 of 34)9/28/2007 2:09:26 PM

Chapter 4: The Django template system

{% include 'nav.html' %}
{% include "nav.html" %}

This example includes the contents of the template includes/nav.html:

{% include 'includes/nav.html' %}

This example includes the contents of the template whose name is contained in the variable template_name:

{% include template_name %}

As in get_template(), the filename of the template is determined by adding the template directory from TEMPLATE_DIRS to the
requested template name.

If an included template contains any template code — such as tags or variables — then it will get evaluated with the context of the
template that’s including it.

If a template with the given name isn’t found, Django will do one of two things:

● If your DEBUG setting is set to True, you’ll see the TemplateDoesNotExist exception on a Django error page.

● If your DEBUG setting is set to False, the tag will fail silently, displaying nothing in the place of the tag.

Template inheritance
Our template examples so far have been tiny HTML snippets, but in the real world, you’ll be using Django’s template system to
output entire HTML pages. This leads to a common Web development problem: Across a Web site, how does one reduce the
duplication and redundancy of common page areas, such as sitewide navigation?

A classic way of solving this problem is to use server-side includes, directives you can embed within your HTML pages to “include”
one Web page inside another. Indeed, Django supports that approach, with the {% include %} template tag we described above.
But the preferred way of solving this problem with Django is to use a more elegant strategy called template inheritance.

In essence, template inheritance lets you build a base “skeleton” template that contains all the common parts of your site and
defines “blocks” that child templates can override.

Let’s see an example of this by creating a more complete template for our current_datetime view, by editing
the current_datetime.html file:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<html lang="en">
<head>
 <title>The current time</title>
</head>

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH4.html (24 of 34)9/28/2007 2:09:26 PM

Chapter 4: The Django template system

<body>
 <h1>My helpful timestamp site</h1>
 <p>It is now {{ current_date }}.</p>

 <hr>
 <p>Thanks for visiting my site.</p>
</body>
</html>

That looks just fine, but what happens when we want to create a template for another view — say, the hours_ahead view from
Chapter 3? If we want again to make a nice, valid, full HTML template, we’d create something like:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<html lang="en">
<head>
 <title>Future time</title>
</head>
<body>
 <h1>My helpful timestamp site</h1>
 <p>In {{ hour_offset }} hour(s), it will be {{ next_time }}.</p>

 <hr>
 <p>Thanks for visiting my site.</p>
</body>
</html>

Clearly, we’ve just duplicated a lot of HTML. Imagine if we had a few stylesheets included on every page, maybe a navigation bar,
perhaps some JavaScript… We’d end up putting all sorts of redundant HTML into each template.

The server-side include solution to this problem would be to factor out the common bits in both templates and save them in
separate template snippets, which would then be included in each template. Perhaps you’d store the top bit of the template in a file
called header.html:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<html lang="en">
<head>

And perhaps you’d store the bottom bit in a file called footer.html:

 <hr>
 <p>Thanks for visiting my site.</p>
</body>
</html>

With an include-based strategy, headers and footers are easy. But it’s the middle ground that’s messy. In this example, both pages
file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH4.html (25 of 34)9/28/2007 2:09:26 PM

Chapter 4: The Django template system

feature a title — <h1>My helpful timestamp site</h1> — but that title can’t fit into header.html because the <title> on both
pages is different. If we included the <h1> in the header, we’d have to include the <title>, which wouldn’t allow us to customize it
per page. See where this is going?

Django’s template inheritance system solves these problems. You can think of it as an “inside out” version of server-side includes.
Instead of defining the snippets that are common, you define the snippets that are different.

The first step is to define a base template — a skeleton of your page that child templates will later fill in. Here’s a base template
for our ongoing example:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<html lang="en">
<head>
 <title>{% block title %}{% endblock %}</title>
</head>
<body>
 <h1>My helpful timestamp site</h1>
 {% block content %}{% endblock %}
 {% block footer %}
 <hr>
 <p>Thanks for visiting my site.</p>
 {% endblock %}
</body>
</html>

This template, which we’ll call base.html, defines a simple HTML skeleton document that we’ll use for all the pages on the site. It’s
the job of child templates to override, or add to, or leave alone the contents of the blocks. (If you’re following along at home, save
this file to your template directory.)

We’re using a template tag here that you haven’t seen before — the {% block %} tag. All the {% block %} tags do is to tell the
template engine that a child template may override those portions of the template.

Now that we’ve got this base template, we can modify our existing current_datetime.html template to use it:

{% extends "base.html" %}

{% block title %}The current time{% endblock %}

{% block content %}
<p>It is now {{ current_date }}.</p>
{% endblock %}

While we’re at it, let’s create a template for the hours_ahead view from Chapter 3. (If you’re following along with code, we’ll leave
it up to you to change hours_ahead to use the template system.) Here’s what that would look like:

{% extends "base.html" %}
file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH4.html (26 of 34)9/28/2007 2:09:26 PM

Chapter 4: The Django template system

{% block title %}Future time{% endblock %}

{% block content %}
<p>In {{ hour_offset }} hour(s), it will be {{ next_time }}.</p>
{% endblock %}

Isn’t this beautiful? Each template contains only the code that’s unique to that template. No redundancy needed. If you need to
make a sitewide design change, just make the change to base.html, and all of the other templates will immediately reflect the
change.

Here’s how it works:

● When you load the template current_datetime.html, the template engine sees the {% extends %} tag, noting that this
template is a child template. The engine immediately loads the parent template — in this case, base.html.

● At that point, the template engine notices the three {% block %} tags in base.html and replaces those blocks with the
contents of the child template. So, the title we’ve defined in {% block title %} will be used, as will the {% block content %}
.

Note that since the child template doesn’t define the footer block, the template system uses the value from the parent
template instead. Content within a {% block %} tag in a parent template is always used as a fallback.

You can use as many levels of inheritance as needed. One common way of using inheritance is the following three-level approach:

● Create a base.html template that holds the main look-and-feel of your site. This is the stuff that rarely, if ever, changes.

● Create a base_SECTION.html template for each “section” of your site. For example, base_photos.html, base_forum.html.
These templates all extend base.html and include section-specific styles/design.

● Create individual templates for each type of page, such as a forum page or a photo gallery. These templates extend the
appropriate section template.

This approach maximizes code reuse and makes it easy to add items to shared areas, such as section-wide navigation.

Here are some tips for working with template inheritance:

● If you use {% extends %} in a template, it must be the first template tag in that template. Otherwise, template inheritance
won’t work.

● Generally, the more {% block %} tags in your base templates, the better. Remember, child templates don’t have to define all
parent blocks, so you can fill in reasonable defaults in a number of blocks, then only define the ones you need in the child
templates. It’s better to have more hooks than fewer hooks.

● If you find yourself duplicating code in a number of templates, it probably means you should move that code to a {% block %}
in a parent template.

● If you need to get the content of the block from the parent template, the {{ block.super }} variable will do the trick. This is
useful if you want to add to the contents of a parent block instead of completely overriding it.

● You may not define multiple {% block %} tags with the same name in the same template. This limitation exists because a
block tag works in “both” directions. That is, a block tag doesn’t just provide a hole to fill — it also defines the content that fills

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH4.html (27 of 34)9/28/2007 2:09:26 PM

Chapter 4: The Django template system

the hole in the parent. If there were two similarly-named {% block %} tags in a template, that template’s parent wouldn’t
know which one of the blocks’ content to use.

● The template name you pass to {% extends %} is loaded using the same method that get_template() uses. That is, the
template name is appended to your TEMPLATE_DIRS setting.

● In most cases, the argument to {% extends %} will be a string, but it can also be a variable, if you don’t know the name of
the parent template until runtime. This lets you do some cool, dynamic stuff.

Exercises
Here are a few exercises that will solidify some of the things you learned in this chapter. (Hint: Even if you think you understood
everything, at least give these exercises, and their respective answers, a read. We introduce a couple of new tricks here.)

1. You’ve got a list of musicians and the genre of music each one plays. This data is stored as a list of dictionaries, which will be
hard-coded in your view module. (Usually we’d use a database for this, but we haven’t yet covered Django’s database layer.)
The list looks like this:

MUSICIANS = [
 {'name': 'Django Reinhardt', 'genre': 'jazz'},
 {'name': 'Jimi Hendrix', 'genre': 'rock'},
 {'name': 'Louis Armstrong', 'genre': 'jazz'},
 {'name': 'Pete Townsend', 'genre': 'rock'},
 {'name': 'Yanni', 'genre': 'new age'},
 {'name': 'Ella Fitzgerald', 'genre': 'jazz'},
 {'name': 'Wesley Willis', 'genre': 'casio'},
 {'name': 'John Lennon', 'genre': 'rock'},
 {'name': 'Bono', 'genre': 'rock'},
 {'name': 'Garth Brooks', 'genre': 'country'},
 {'name': 'Duke Ellington', 'genre': 'jazz'},
 {'name': 'William Shatner', 'genre': 'spoken word'},
 {'name': 'Madonna', 'genre': 'pop'},
]

Write a Django view and corresponding template(s) that display an HTML <table> with a row for each musician in this list, in
order. Each row should have two columns: the musician’s name and the type of music he/she plays.

2. Once you’ve done that: For all the musicians who play jazz or rock — but not the others — bold their names by applying
a style="font-weight: bold;" to their <td> cells.

3. Once you’ve done that: For all the musicians who have a one-word name — but not the others — display an asterisk after their
name. Add a footnote to the page that says “* Pretentious.” Maintain the style="font-weight bold;" from the previous
exercise.

4. Given the following three templates, devise a template-inheritance scheme that removes as much redundancy as possible.

Template 1:

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH4.html (28 of 34)9/28/2007 2:09:26 PM

Chapter 4: The Django template system

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<html lang="en">
<head>
 <link rel="stylesheet" href="default.css" type="text/css">
 <title>My to-do list</title>
</head>
<body>
 <h1 id="top">Latest tasks</h1>
 {% if task_list %}

 {% for task in task_list %}{{ task }}{% endfor %}

 {% else %}
 <p>You have no tasks.</p>
 {% endif %}
 <hr>
 <p>Back to top.</p>
</body>
</html>

Template 2:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<html lang="en">
<head>
 <title>Task: {{ task.title }} | To-do list</title>
 <link rel="stylesheet" href="default.css" type="text/css">
</head>
<body>
 <h1 id="top">{{ task.title }}</h1>
 <p>{{ task.description }}</p>
 <hr>
 <p>Back to top.</p>
</body>
</html>

Template 3:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<html lang="en">
<head>
 <title>Completed tasks | To-do list</title>
 <link rel="stylesheet" href="default.css" type="text/css">
 <script type="text/javascript" src="completed.js">
</head>

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH4.html (29 of 34)9/28/2007 2:09:26 PM

Chapter 4: The Django template system

<body>
 <h1 id="top">{{ task.title }}</h1>
 <p>{{ task.description }}</p>
 <hr>
 <p>Back to top.</p>
</body>
</html>

Answers to exercises
1. Here’s one possible implementation of the view:

from django.shortcuts import render_to_response

MUSICIANS = [
 # ...
]

def musician_list(request):
 return render_to_response('musician_list.html', {'musicians': MUSICIANS})

And here’s the template:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<html lang="en">
<head>
 <title>Musician list</title>
</head>
<body>
 <table>
 <tr><th>Musician</th><th>Genre</th></tr>
 {% for musician in musicians %}
 <tr>
 <td>{{ musician.name }}</td>
 <td>{{ musician.genre }}</td>
 </tr>
 {% endfor %}
 </table>
</body>
</html>

2. A rather clumsy way to do this would be to use {% ifequal %} in the template. The view would stay the same as in the
answer to the last exercise, and the template’s {% for %} loop would change to something like this:

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH4.html (30 of 34)9/28/2007 2:09:26 PM

Chapter 4: The Django template system

{% for musician in musicians %}
 <tr>
 <td {% ifequal musician.genre 'jazz' %}style="font-weight: bold;"{% endifequal %}
 {% ifequal musician.genre 'rock' %}style="font-weight: bold;"{% endifequal %}>
 {{ musician.name }}
 </td>
 <td>{{ musician.genre }}</td>
 </tr>
{% endfor %}

This is overly verbose, repetitive and error-prone — and it illustrates an important point. A key to mastering Django’s template
system is to know what to pass to the template. Because templates do not have the full programming-language power of an
environment you might be used to, it’s more important in a Django environment to do as much business logic (as opposed to
presentation logic) as possible in your view.

In this case, a cleaner way of solving the problem would be to have the view precalculate whether a musician’s name is
bolded. After all, this is business logic, not presentation logic. The presentation logic dictates how the special-case genres
should be displayed, not which genres are special-cased. This is an important distinction.

Here’s one way to code the view:

def musician_list(request):
 musicians = []
 for m in MUSICIANS:
 musicians.append({
 'name': m['name'],
 'genre': m['genre'],
 'is_important': m['genre'] in ('rock', 'jazz'),
 })
 return render_to_response('musician_list.html', {'musicians': musicians})

And with that view, you could use this template code:

{% for musician in musicians %}
 <tr>
 <td{% if musician.is_important %} style="font-weight: bold;"{% endif %}>
 {{ musician.name }}
 </td>
 <td>{{ musician.genre }}</td>
 </tr>
{% endfor %}

See how much cleaner that is in the template? Even this is more complex than it usually will be, because usually you’ll be
dealing with database objects, and database objects can have custom methods (such as is_important()). We’ll cover
database objects in the next chapter.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH4.html (31 of 34)9/28/2007 2:09:26 PM

Chapter 4: The Django template system

3. This is a similar problem to the previous exercise, and the solution is also similar. The key is to precalculate whether a
musician deserves an asterisk next to his or her name. Because that’s business logic, it belongs in the view.

Here’s one possible view implementation:

def musician_list(request):
 musicians = []
 for m in MUSICIANS:
 musicians.append({
 'name': m['name'],
 'genre': m['genre'],
 'is_important': m['genre'] in ('rock', 'jazz'),
 'is_pretentious': ' ' not in m['name'],
 })
 return render_to_response('musician_list.html', {'musicians': musicians})

We’re using the expression ' ' not in m['name'], which returns True if m['name'] doesn’t include a space. You could also
use the .find() method, like this:

'is_pretentious': m['name'].find(' ') == -1

Note that we’re calling this variable is_pretentious rather than has_asterisk, because the fact that we’re using asterisks is
a presentation decision.

With the above view, you could use this template code:

{% for musician in musicians %}
 <tr>
 <td{% if musician.is_important %} style="font-weight: bold;"{% endif %}>
 {% if musician.is_pretentious %}* {% endif %}{{ musician.name }}
 </td>
 <td>{{ musician.genre }}</td>
 </tr>
{% endfor %}

Don’t forget the “* Pretentious.” at the bottom of the template.

For bonus points, be a perfectionist and only display the “* Pretentious” footnote if there’s at least one pretentious musician.
Determine the presence of a pretentious musician in the view, like so:

def musician_list(request):
 musicians = []
 has_pretentious = False
 for m in MUSICIANS:

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH4.html (32 of 34)9/28/2007 2:09:26 PM

Chapter 4: The Django template system

 if ' ' not in m['name']:
 has_pretentious = True
 musicians.append({
 'name': m['name'],
 'genre': m['genre'],
 'is_important': m['genre'] in ('rock', 'jazz'),
 'is_pretentious': ' ' not in m['name'],
 })
 return render_to_response('musician_list.html', {
 'musicians': musicians,
 'has_pretentious': has_pretentious,
 })

In this implementation, we pass an extra template variable, has_pretentious, to the template. Then use it in the template
like so:

{% if has_pretentious %}* Pretentious{% endif %}

4. Here’s one way to write the base template:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
 <html lang="en">
 <head>
 <link rel="stylesheet" href="default.css" type="text/css">
 <title>{% block title %}{% endblock %}</title>
 {% block extrahead %}{% endblock %}
 </head>
 <body>
 <h1 id="top">{% block headline %}{% endblock %}</h1>
 {% block content %}{% endblock %}
 <hr>
 <p>Back to top.</p>
 </body>
 </html>

And, with that base template, here’s how the child templates might look.

Template 1:

{% extends "base.html" %}

{% block title %}My to-do list{% endblock %}

{% block headline %}Latest tasks{% endblock %}

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH4.html (33 of 34)9/28/2007 2:09:26 PM

Chapter 4: The Django template system

{% block content %}
{% if task_list %}

 {% for task in task_list %}{{ task }}{% endfor %}

{% else %}
 <p>You have no tasks.</p>
{% endif %}
{% endblock %}

Template 2:

{% extends "base.html" %}

{% block title %}Task: {{ task.title }} | To-do list{% endblock %}

{% block headline %}{{ task.title }}{% endblock %}

{% block content %}<p>{{ task.description }}</p>{% endblock %}

Template 3:

{% extends "base.html" %}

{% block title %}Completed tasks | To-do list{% endblock %}

{% block extrahead %}<script type="text/javascript" src="completed.js">{% endblock %}

{% block headline %}{{ task.title }}{% endblock %}

{% block content %}<p>{{ task.description }}</p>{% endblock %}

Note that we like to put an empty line of space between {% block %} sections, but that’s just our personal style. Any text
outside of {% block %} tags in child templates will not be rendered.

« previous ◊ table of contents ◊ next »
Copyright 2006 Adrian Holovaty and Jacob Kaplan-Moss.
This work is licensed under the GNU Free Document License.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH4.html (34 of 34)9/28/2007 2:09:26 PM

http://www.djangobook.com/en/beta/chapter03/
http://www.djangobook.com/en/beta/
http://www.djangobook.com/en/beta/chapter05/
http://www.djangobook.com/license/

The Django Book
« previous ◊ table of contents ◊ next »

Chapter 5: Interacting with a database: Models
In Chapter 3, we covered the fundamentals of building dynamic Web sites with Django: setting up views and URLconfs. As we
explained, a view is responsible for doing some arbitrary logic, then returning a response. In the example, our arbitrary logic was
to calculate the current date and time.

In modern Web applications, the arbitrary logic often involves interacting with a database. Behind the scenes, a database-
driven Web site connects to a database server, retrieves some data out of it and displays that data, nicely formatted, on a Web
page. Or, similarly, the site could provide functionality that lets site visitors populate the database on their own.

Many complex Web sites provide some combination of the two. Amazon.com, for instance, is a great example of a database-
driven site. Each product page is essentially an extract of Amazon’s product database formatted as HTML, and when you post a
customer review, it gets inserted into the database of reviews.

Django is very well-suited for making database-driven Web sites, as it comes with easy yet powerful ways of performing database
queries using Python. This chapter explains that functionality — Django’s database layer.

(Note: While it’s not strictly necessary to know basic database theory and SQL in order to use Django’s database layer, it’s highly
recommended. An introduction to those concepts is out of the scope of this book, but keep reading even if you’re a database
newbie. You’ll probably be able to follow along and grasp concepts based on context.)

The “dumb” way to do database queries in views
Just as the previous chapter detailed a “dumb” way to output HTML within a view (by hard-coding HTML directly within the view),
there’s a “dumb” way to retrieve data from a database in a view. It’s simple: Just use any existing Python library to execute an
SQL query and do something with the results.

In this example view, we use the MySQLdb library (available at http://sourceforge.net/projects/mysql-python) to connect to a
MySQL database, retrieve some records and feed them to a template for display as a Web page:

from django.shortcuts import render_to_response
import MySQLdb

def book_list(request):
 db = MySQLdb.connect(user='me', db='mydb', passwd='secret', host='localhost')
 cursor = db.cursor()
 cursor.execute('SELECT name FROM books ORDER BY name')
 names = [row[0] for row in cursor.fetchall()]
 db.close()
 return render_to_response('book_list.html', {'names': names})

This approach works, but some problems should jump out at you immediately:

● We’re hard-coding the database connection parameters. Ideally, these parameters would be stored in the Django
configuration.

● We’re having to write a fair bit of boilerplate code: creating a connection, creating a cursor, executing a statement and
closing the connection. Ideally, all we’d have to do is specify which results we wanted.

● It ties us to MySQL. If, down the road, we switch from MySQL to PostgreSQL, we’ll have to use a different database adapter
(e.g., psycopg rather than MySQLdb), alter the connection parameters and — depending on the nature of the SQL statement
— possibly rewrite the SQL. Ideally, the database server we’re using would be abstracted, so that a database server change
could be made in a single place.

As you might expect, Django’s database layer aims to solve these problems. Here’s a sneak preview of how the above view can
be rewritten using Django’s database API:

from django.shortcuts import render_to_response
from mysite.books.models import Book

def book_list(request):
 books = Book.objects.order_by('name')
 return render_to_response('book_list.html', {'books': books})

We’ll explain this code a little later in this chapter. For now, just get a feel for how it looks.

The MTV development pattern

Chapter 5: Interacting with a database: models

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH5.html (1 of 9)9/28/2007 2:09:56 PM

http://www.djangobook.com/en/beta/chapter04/
http://www.djangobook.com/en/beta/
http://sourceforge.net/projects/mysql-python

Chapter 5: Interacting with a database: models

Before we delve into any more code, let’s take a moment to consider the overall design of a database-driven Django Web
application.

As we’ve mentioned in previous chapters, Django is designed to encourage loose coupling and strict separation between pieces of
an application. If you follow this philosophy, it’s easy to make changes to one particular piece of the application without affecting
other pieces of the application. In view functions, for instance, we discussed the importance of separating the business logic from
the presentation logic by using a template system. With the database layer, we’re applying that same philosophy to data-access
logic.

Those three pieces together — data-access logic, business logic and presentation logic — comprise a concept that’s sometimes
called the “Model View Controller” (MVC) pattern of software architecture. In this pattern, “Model” refers to the data-access layer,
“View” refers to the part of the system that selects what to display and how to display it, and “Controller” refers to the part of the
system that decides which view to use, depending on user input, accessing the model as needed.

Why the acronym?

MVC? MTV? What’s the point of these terms?

The goal of explicitly defining patterns such as MVC is mostly to streamline communication among developers.
Instead of having to tell your coworkers, “Let’s make an abstraction of the data-access, then have a separate layer
that handles data display, and let’s put a layer in the middle that regulates this,” you can take advantage of a
shared vocabulary and say, “Let’s use the MVC pattern here.”

Django follows this MVC pattern closely enough that it can be called an MVC framework. Here’s roughly how the M, V and C break
down in Django:

● M, the data-access portion, is handled by Django’s database layer, which is described in this chapter.
● V, the portion that selects which data to display and how to display it, is handled by views and templates.
● C, the portion that delegates to a view depending on user input, is handled by the framework itself by following your

URLconf and calling the appropriate Python function for the given URL.

Because the “C” is handled by the framework itself and most of the excitement in Django happens in models, templates and
views, Django has been referred to as an MTV framework. In the MTV development pattern,

● “M” stands for model, the data-access layer. This layer contains anything and everything about the data: how to access it,
how to validate it, which behaviors it has and the relationships between the data.

● “T” stands for template, the presentation layer. This layer contains presentation-related decisions: how something should be
displayed on a Web page or other type of document.

● “V” stands for view, the business-logic layer. This layer contains the logic that access the model and defers to the
appropriate template(s). You can think of it as the bridge between models and templates.

If you’re familiar with other MVC Web-development frameworks, such as Ruby on Rails, you may consider Django views to be the
“controllers” and Django templates to be the “views.” This is an unfortunate confusion brought about by differing interpretations
of MVC. In Django’s interpretation of MVC, the “view” describes the data that gets presented to the user; it’s not necessarily just
how the data looks, but which data is presented. In contrast, Ruby on Rails and similar frameworks suggest that the controller’s
job includes deciding which data gets presented to the user, whereas the view is strictly how the data looks, not which data is
presented.

Neither interpretation is more “correct” than the other. The important thing is to understand the underlying concepts.

Configuring the database
With all of that philosophy in mind, let’s start exploring Django’s database layer. First, we need to take care of some initial
configuration; we need to tell Django which database server to use and how to connect to it.

We’ll assume you’ve set up a database server, activated it and created a database within it (e.g., using a CREATE DATABASE
statement). SQLite is a special case; in that case, there’s no database to create, because SQLite uses standalone files on the
filesystem to store its data.

As TEMPLATE_DIRS in the previous chapter, database configuration lives in the Django settings file, called settings.py by default.
Edit that file and look for the database settings:

DATABASE_ENGINE = ''
DATABASE_NAME = ''
DATABASE_USER = ''
DATABASE_PASSWORD = ''
DATABASE_HOST = ''
DATABASE_PORT = ''

Here’s a rundown of each setting.

● DATABASE_ENGINE tells Django which database engine to use. If you’re using a database with Django, DATABASE_ENGINE
must be set to one of the following strings:

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH5.html (2 of 9)9/28/2007 2:09:56 PM

Chapter 5: Interacting with a database: models

Setting Database Required adapter
postgresql PostgreSQL psycopg version 1.x, http://initd.org/projects/psycopg1

postgresql_psycopg2 PostgreSQL psycopg version 2.x, http://initd.org/projects/psycopg2

mysql MySQL MySQLdb, http://sourceforge.net/projects/mysql-python

sqlite3 SQLite No adapter needed if using Python 2.5+.
Otherwise, pysqlite, http://initd.org/tracker/pysqlite

ado_mssql Microsoft SQL Server adodbapi version 2.0.1+, http://adodbapi.sourceforge.net/

oracle Oracle cx_Oracle, http://www.python.net/crew/atuining/cx_Oracle/

Note that for whichever database backend you use, you’ll need to download and install the appropriate database adapter.
Each one is available for free on the Web.

● DATABASE_NAME tells Django what the name of your database is. If you’re using SQLite, specify the full filesystem path to the
database file on your filesystem, e.g., '/home/django/mydata.db'

● DATABASE_USER tells Django which username to use when connecting to your database. If you’re using SQLite, leave this
blank.

● DATABASE_PASSWORD tells Django which password to use when connecting to your database. If you’re using SQLite or have
an empty password, leave this blank.

● DATABASE_HOST tells Django which host to use when connecting to your database. If your database is on the same computer
as your Django installation (i.e., localhost), leave this blank. If you’re using SQLite, leave this blank.

MySQL is a special case here. If this value starts with a forward slash ('/') and you’re using MySQL, MySQL will connect via
a Unix socket to the specified socket. For example:

DATABASE_HOST = '/var/run/mysql'

If you’re using MySQL and this value doesn’t start with a forward slash, then this value is assumed to be the host.

● DATABASE_PORT tells Django which port to use when connecting to your database. If you’re using SQLite, leave this blank.
Otherwise, if you leave this blank, the underlying database adapter will use whichever port is default for your given database
server. In most cases, the default port is fine, so you can leave this blank.

Once you’ve entered those settings, test your configuration. First, from within the mysite project directory you created in Chapter
2, run the command python manage.py shell.

You’ll notice this starts a Python interactive interpreter. Looks can be deceiving, though! There’s an important difference between
running the command python manage.py shell within your Django project directory and the more generic python. The latter is
the basic Python shell, but the former tells Django which settings file to use before it starts the shell. This is a key requirement
for doing database queries: Django needs to know which settings file to use in order to get your database connection information.

Behind the scenes, python manage.py shell sets the environment variable DJANGO_SETTINGS_MODULE. We’ll cover the subtleties
of this later, but for now, just know that you should use python manage.py shell whenever you need to drop into the Python
interpreter to do Django-specific tinkering.

Once you’ve entered the shell, type these commands to test your database configuration:

>>> from django.db import connection
>>> cursor = connection.cursor()

If nothing happens, then your database is configured properly. Otherwise, check the error message for clues about what’s wrong.
Here are some common errors:

Error message Solution
You haven’t set the DATABASE_ENGINE setting
yet.

Set the DATABASE_ENGINE setting to something other than
an empty string.

Environment variable
DJANGO_SETTINGS_MODULE is undefined.

Run the command python manage.py shell rather
than python.

Error loading _____ module: No module named
_____.

You haven’t installed the appropriate database-specific
adapter (e.g. psycopg or MySQLdb).

_____ isn’t an available database backend. Set your DATABASE_ENGINE setting to one of the valid
engine settings described above. Perhaps you made a typo?

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH5.html (3 of 9)9/28/2007 2:09:56 PM

http://initd.org/projects/psycopg1
http://initd.org/projects/psycopg2
http://sourceforge.net/projects/mysql-python
http://initd.org/tracker/pysqlite
http://adodbapi.sourceforge.net/
http://www.python.net/crew/atuining/cx_Oracle/

Chapter 5: Interacting with a database: models

database _____ does not exist
Change the DATABASE_NAME setting to point to a database
that exists, or execute the appropriate CREATE DATABASE
statement in order to create it.

role _____ does not exist Change DATABASE_USER setting to point to a user that
exists, or create the user in your database.

could not connect to server Make sure DATABASE_HOST and DATABASE_PORT are set
correctly, and make sure the server is running.

Your first app
Now that you’ve verified the connection is working, it’s time to create a Django app — a bundle of Django code, including
models and views, that lives together in a single Python package and represents a full Django application.

It’s worth explaining the terminology here, because this tends to trip up beginners. We’d already created a project, in Chapter 2,
so what’s the difference between a project and an app? The difference is that of configuration vs. code:

● A project is an instance of a certain set of Django apps, plus the configuration for those apps.

Technically, the only requirement of a project is that it supplies a settings file, which defines the database connection
information, the list of installed apps, the TEMPLATE_DIRS, etc.

● An app is a portable set of Django functionality, usually including models and views, that lives together in a single Python
package.

For example, Django comes with a number of apps, such as a commenting system and an automatic admin interface. A key
thing to note about these apps is that they’re portable and reusable across multiple projects.

There are very few hard-and-fast rules about how you fit your Django code into this scheme; it’s flexible. If you’re building a
simple Web site, you may only use a single app. If you’re building a complex Web site with several rather unrelated pieces such
as an e-commerce system and a message board, you’ll probably want to split those into separate apps so that you’ll be able to
reuse them individually in the future.

Indeed, you don’t necessarily need to create apps at all, as evidenced by the example view functions we’ve created so far in this
book. In those cases, we simply created a file called views.py, filled it with view functions and pointed our URLconf at those
functions. No “apps” were needed.

However, there’s one requirement regarding the app convention: If you’re using Django’s database layer (models), you must
create a Django app. Models must live within apps. Thus, in order to start writing our models, we’ll need to create a new app.

Within the mysite project directory you created in Chapter 2, type this command to create a new app:

python manage.py startapp books

(Why books? That’s the sample book app we’ll be building together.)

This command does not result in any output, but it will have created a books directory within the mysite directory. Let’s look at
the contents of that directory:

books/
 __init__.py
 models.py
 views.py

These files will contain your models and views for this app.

Have a look at models.py and views.py in your favorite text editor. Both files are empty, except for an import in models.py. This
is the blank slate for your Django app.

Defining models in Python
As we discussed above, the “M” in “MTV” stands for “Model.” A Django model is a description of the data in your database,
represented as Python code. It’s your data layout — the equivalent of your SQL CREATE TABLE statements — except it’s in Python
instead of SQL, and it includes more than just database definitions. Django uses a model to execute SQL code behind the scenes
and return convenient Python data structures representing the rows in your database tables. Django also uses models to
represent higher-level concepts that SQL can’t necessarily handle.

If you’re familiar with databases, your immediate thought might be, “Isn’t it redundant to define data models in Python and in
SQL?” Django works the way it does for several reasons:

● Introspection requires overhead and is imperfect.

In order to provide convenient data-access APIs, Django needs to know the database layout somehow, and there are two

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH5.html (4 of 9)9/28/2007 2:09:56 PM

Chapter 5: Interacting with a database: models

ways of accomplishing this. The first way would be to explicitly describe the data in Python, and the second way would be to
introspect the database at runtime to determine the data models.

This second way seems cleaner, because the metadata about your tables only lives in one place, but it introduces a few
problems. First, introspecting a database at runtime obviously requires overhead. If the framework had to introspect the
database each time it processed a request, or even when the Web server was initialized, this would incur an unacceptable
level of overhead. (While some believe that level of overhead is acceptable, Django’s developers aim to trim as much
framework overhead as possible, and this approach has succeeded in making Django faster than its high-level framework
competitors in benchmarks.) Second, some databases, notably older versions of MySQL, do not store sufficient metadata for
accurate and complete introspection.

● Writing Python is fun, and keeping everything in Python limits the number of times your brain has to do a “context switch.”
It helps productivity if you keep yourself in a single programming environment/mentality for as long as possible. Having to
write SQL, then Python, then SQL again, is disruptive.

● Having data models stored as code rather than in your database makes it easier to keep your models under version control.
This way, you can easily keep track of changes to your data layouts.

● SQL only allows for a certain level of metadata about a data layout. Most database systems, for example, do not provide a
specialized data type for representing e-mail addresses or URLs. Django models do. The advantage of higher-level data
types is higher productivity and more reusable code.

● SQL is inconsistent across database platforms. If you’re distributing a Web application, for example, it’s much more
pragmatic to distribute a Python module that describes your data layout than separate sets of CREATE TABLE statements for
MySQL, PostgreSQL and SQLite.

A drawback of this approach, however, is that it’s possible for the Python code to get out of sync with what’s actually in the
database. If you make changes to a Django model, you’ll need to make the same changes inside your database to keep your
database consistent with the model. We’ll detail some strategies for handling this problem later in this chapter.

Finally, we should note that Django includes a utility that can generate models by introspecting an existing database. This is
useful for quickly getting up and running with legacy data.

Your first model
As an ongoing example in this chapter and the next chapter, we’ll focus on a basic book/author/publisher data layout. We use this
as our example because the conceptual relationships between books, authors and publishers are well-known, and this is a
common data layout used in introductory SQL textbooks. You’re also reading a book, written by authors, produced by a publisher!

We’ll suppose the following concepts, fields and relationships:

● An author has a salutation (e.g., Mr. or Mrs.), a first name, a last name, an e-mail address and a headshot photo.
● A publisher has a name, a street address, a city, a state/province, a country and a Web site.
● A book has a title and a publication date. It also has one or more authors (a many-to-many relationship to author) and a

single publisher (a one-to-many relationship, aka foreign key, to publisher).

The first step in using this database layout with Django is to express it as Python code. In the models.py file that was created by
the startapp command, enter the following:

from django.db import models

class Publisher(models.Model):
 name = models.CharField(maxlength=30)
 address = models.CharField(maxlength=50)
 city = models.CharField(maxlength=60)
 state_province = models.CharField(maxlength=30)
 country = models.CharField(maxlength=50)
 website = models.URLField()

class Author(models.Model):
 salutation = models.CharField(maxlength=10)
 first_name = models.CharField(maxlength=30)
 last_name = models.CharField(maxlength=40)
 email = models.EmailField()
 headshot = models.ImageField(upload_to='/tmp')

class Book(models.Model):
 title = models.CharField(maxlength=100)
 authors = models.ManyToManyField(Author)
 publisher = models.ForeignKey(Publisher)
 publication_date = models.DateField()

We will cover model syntax and options throughout this chapter, but let’s quickly examine this code to cover the basics. The first
thing to notice is that each model is represented by a Python class that is a subclass of django.db.models.Model. The parent
class, Model, contains all the machinery necessary to make these objects capable of interacting with a database — and that

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH5.html (5 of 9)9/28/2007 2:09:56 PM

Chapter 5: Interacting with a database: models

leaves our models responsible solely for defining their fields, in a nice and compact syntax. Believe it or not, this is all the code
we need to write to have basic data access with Django.

Each model generally corresponds to a single database table, and each attribute on a model generally corresponds to a column in
that database table. The attribute name corresponds to the column’s name, and the type of field (e.g., CharField) corresponds
to the database column type (e.g., varchar). For example, the Publisher model is equivalent to the following table (assuming
PostgreSQL CREATE TABLE syntax):

CREATE TABLE "books_publisher" (
 "id" serial NOT NULL PRIMARY KEY,
 "name" varchar(30) NOT NULL,
 "address" varchar(50) NOT NULL,
 "city" varchar(60) NOT NULL,
 "state_province" varchar(30) NOT NULL,
 "country" varchar(50) NOT NULL,
 "website" varchar(200) NOT NULL
);

Indeed, Django can generate that CREATE TABLE statement itself, as we’ll see in a moment.

The exception to the one-class-per-database-table rule is the case of many-to-many relationships. In our example models, Book
has a ManyToManyField called authors. This designates that a book has one or many authors, but the Book database table
doesn’t get an authors column. Rather, Django creates an additional table — a many-to-many “join table” — that handles the
mapping of books to authors.

Finally, note we haven’t explicitly defined a primary key in any of these models. Unless you instruct it otherwise, Django
automatically gives every model an integer primary key field called id. Each Django model is required to have a single-column
primary key.

Installing the model
We’ve written the code; now, let’s create the tables in our database. In order to do that, the first step is to activate these models
in our Django project. We do that by adding this books app to the list of installed apps in the settings file.

Edit the settings.py file again, and look for the INSTALLED_APPS setting. INSTALLED_APPS tells Django which apps are activated
for a given project. By default, it looks something like this:

INSTALLED_APPS = (
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.sites',
)

Temporarily comment out all four of those strings by putting a hash character (#) in front of them. (They’re included by default as
a common-case convenience, but we’ll activate them and discuss them later.) Then, add 'mysite.books' to the INSTALLED_APPS
list, so the setting ends up looking like this:

INSTALLED_APPS = (
 #'django.contrib.auth',
 #'django.contrib.contenttypes',
 #'django.contrib.sessions',
 #'django.contrib.sites',
 'mysite.books',
)

(As we’re dealing with a single-element tuple here, don’t forget the trailing comma. By the way, this book’s authors prefer to put
a comma after every element of a tuple, regardless of whether the tuple has only a single element. This avoids the issue of
forgetting commas, and there’s no penalty for using that extra comma.)

'mysite.books' refers to the books app we’re working on. Each app in INSTALLED_APPS is represented by its full Python path —
that is, the path of packages, separated by dots, leading to the app package.

Now that the Django app has been activated in the settings file, we can create the database tables in our database. First, let’s
validate the models by running this command:

python manage.py validate

The validate command checks whether your models’ syntax and logic are correct. If all is well, you’ll see the
message 0 errors found. If you don’t, make sure you typed in the model code correctly. The error output should give you
helpful information about what was wrong with the code.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH5.html (6 of 9)9/28/2007 2:09:56 PM

Chapter 5: Interacting with a database: models

Any time you think you have problems with your models, run python manage.py validate. It tends to catch all the common
model problems.

If your models are valid, run the following command for Django to generate CREATE TABLE statements for your models in
the books app (with colorful syntax highlighting available if you’re using Unix):

python manage.py sqlall books

In this command, books is the name of the app. It’s what you specified when you ran the command manage.py startapp. When
you run the command, you should see something like this:

BEGIN;
CREATE TABLE "books_publisher" (
 "id" serial NOT NULL PRIMARY KEY,
 "name" varchar(30) NOT NULL,
 "address" varchar(50) NOT NULL,
 "city" varchar(60) NOT NULL,
 "state_province" varchar(30) NOT NULL,
 "country" varchar(50) NOT NULL,
 "website" varchar(200) NOT NULL
);
CREATE TABLE "books_book" (
 "id" serial NOT NULL PRIMARY KEY,
 "title" varchar(100) NOT NULL,
 "publisher_id" integer NOT NULL REFERENCES "books_publisher" ("id"),
 "publication_date" date NOT NULL
);
CREATE TABLE "books_author" (
 "id" serial NOT NULL PRIMARY KEY,
 "salutation" varchar(10) NOT NULL,
 "first_name" varchar(30) NOT NULL,
 "last_name" varchar(40) NOT NULL,
 "email" varchar(75) NOT NULL,
 "headshot" varchar(100) NOT NULL
);
CREATE TABLE "books_book_authors" (
 "id" serial NOT NULL PRIMARY KEY,
 "book_id" integer NOT NULL REFERENCES "books_book" ("id"),
 "author_id" integer NOT NULL REFERENCES "books_author" ("id"),
 UNIQUE ("book_id", "author_id")
);
CREATE INDEX books_book_publisher_id ON "books_book" ("publisher_id");
COMMIT;

Note the following:

● Table names are automatically generated by combining the name of the app (books) and the lowercase name of the model
— publisher, book and author. You can override this behavior, as we’ll see later in this chapter.

● As we mentioned above, Django adds a primary key for each table automatically — the id fields. You can override this, too.

● By convention, Django appends "_id" to the foreign key field name. As you might have guessed, you can override this
behavior, too.

● The foreign key relationship is made explicit by a REFERENCES statement.

● These CREATE TABLE statements are tailored to the database you’re using, so database-specific field types such
as auto_increment (MySQL), serial (PostgreSQL), or integer primary key (SQLite) are handled for you automatically.
The same goes for quoting of column names — e.g., using double quotes or single quotes. This example output is in
PostgreSQL syntax.

The sqlall command doesn’t actually create the tables or otherwise touch your database — it just prints output to the screen so
you can see what SQL Django would execute if you asked it. If you wanted to, you could copy and paste this SQL into your
database client, or use Unix pipes to pass it directly. However, Django provides an easier way of committing the SQL to the
database. Run the syncdb command, like so:

python manage.py syncdb

You’ll see something like this:

Creating table books_publisher
Creating table books_book
Creating table books_author
Installing index for books.Book model

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH5.html (7 of 9)9/28/2007 2:09:56 PM

Chapter 5: Interacting with a database: models

The syncdb command is a simple “sync” of your models to your database. It looks at all of the models in each app in
your INSTALLED_APPS setting, checks the database to see whether the appropriate tables exist yet, and creates the tables if they
don’t yet exist. Note that syncdb does not sync changes in models or deletions of models; if you make a change to a model or
delete a model, and you want to update the database, syncdb will not handle that. (More on this later.)

If you run python manage.py syncdb again, nothing happens, because you haven’t added any models to the books app, or
added any apps to INSTALLED_APPS. Ergo, it’s always safe to run python manage.py syncdb — it won’t clobber things.

If you’re interested, take a moment to dive into your database server’s command-line client and see the database tables Django
created. You can manually run the command-line client — e.g., psql for PostgreSQL — or you can run the
command python manage.py dbshell, which will figure out which command-line client to run, depending on
your DATABASE_SERVER setting. The latter is almost always more convenient.

Basic data access
Once you’ve created a model, Django automatically provides a high-level Python API for working with those models. Try it out by
running python manage.py shell and typing the following:

>>> from books.models import Publisher
>>> p = Publisher(name='Apress', address='2560 Ninth St.',
... city='Berkeley', state_province='CA', country='U.S.A.',
... website='http://www.apress.com/')
>>> p.save()
>>> p = Publisher(name="O'Reilly", address='10 Fawcett St.',
... city='Cambridge', state_province='MA', country='U.S.A.',
... website='http://www.oreilly.com/')
>>> p.save()
>>> publisher_list = Publisher.objects.all()
>>> publisher_list
[<Publisher: Publisher object>, <Publisher: Publisher object>]

In only a few lines of code, this has accomplished quite a bit. The highlights:

● To create an object, just import the appropriate model class and instantiate it by passing in values for each field.
● To save the object to the database, call the save() method on the object. Behind the scenes, Django executes an

SQL INSERT statement here.

● To retrieve objects from the database, use the attribute Publisher.objects. Fetch a list of all Publisher objects in the
database with the statement Publisher.objects.all(). Behind the scenes, Django executes an SQL SELECT statement
here.

Naturally, you can do quite a lot with the Django database API — but first, let’s take care of a small annoyance.

Adding model string representations
Above, when we printed out the list of publishers, all we got was this unhelpful display that makes it difficult to tell the Publisher
objects apart:

[<Publisher: Publisher object>, <Publisher: Publisher object>]

We can fix this easily by adding a method called __str__() to our Publisher object. A __str__() method tells Python how to
display the “string” representation of an object. You can see this in action by adding a __str__() method to the three models:

class Publisher(models.Model):
 name = models.CharField(maxlength=30)
 address = models.CharField(maxlength=50)
 city = models.CharField(maxlength=60)
 state_province = models.CharField(maxlength=30)
 country = models.CharField(maxlength=50)
 website = models.URLField()

 def __str__(self):
 return self.name

class Author(models.Model):
 salutation = models.CharField(maxlength=10)
 first_name = models.CharField(maxlength=30)
 last_name = models.CharField(maxlength=40)
 email = models.EmailField()
 headshot = models.ImageField(upload_to='/tmp')

 def __str__(self):

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH5.html (8 of 9)9/28/2007 2:09:56 PM

Chapter 5: Interacting with a database: models

 return '%s %s' % (self.first_name, self.last_name)

class Book(models.Model):
 title = models.CharField(maxlength=100)
 authors = models.ManyToManyField(Author)
 publisher = models.ForeignKey(Publisher)
 publication_date = models.DateField()

 def __str__(self):
 return self.title

As you can see, a __str__() method can do whatever it needs to do in order to return a string representation. Here,
the __str__() methods for Publisher and Book simply return the object’s name and title, respectively, but the __str__()
for Author is slightly more complex — it pieces together the first_name and last_name fields. The only requirement
for __str__() is that it return a string. If __str__() doesn’t return a string — if it returns, say, an integer — then Python will
raise a TypeError with a message like "__str__ returned non-string".

For the changes to take effect, exit out of the Python shell and enter it again with python manage.py shell. (This is the easiest
way to make code changes take effect.) Now, the list of Publisher objects is much easier to understand:

>>> from books.models import Publisher
>>> publisher_list = Publisher.objects.all()
>>> publisher_list
[<Publisher: Apress>, <Publisher: O'Reilly>]

Make sure any model you define has a __str__() method — not only for your own convenience when using the interactive
interpreter, but also because Django uses the output of __str__() in several places when it needs to display objects.

Finally, note that __str__() is a good example of adding behavior to models. A Django model describes more than the database
table layout for an object; it also describes any functionality that object knows how to do. __str__() is one example of such
functionality — a model knows how to display itself.

Creating and modifying objects
This chapter is not yet finished.

« previous ◊ table of contents ◊ next »
Copyright 2006 Adrian Holovaty and Jacob Kaplan-Moss.
This work is licensed under the GNU Free Document License.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/CH5.html (9 of 9)9/28/2007 2:09:56 PM

http://www.djangobook.com/en/beta/chapter04/
http://www.djangobook.com/en/beta/
http://www.djangobook.com/license/

The Django Book
« previous ◊ table of contents ◊ next »

Chapter 6: The Django admin site
There’s one part of Web development we’ve always hated: writing administration interfaces. Developing the parts of the site that the
general public sees is always different and interesting, but the bits that the administrators use to modify the site are always the same.
You’ve got to deal with authenticating users, display and handle forms, deal with tricky validation issues… It’s boring, and it’s
repetitive.

Django’s approach to this boring, repetitive task? Do it all for you — in just a couple of lines of code, no less.

One of the oldest and most powerful parts of Django is the automatic admin interface. It hooks off of metadata in your model to
provide a powerful and production-ready interface that content producers can immediately use to start adding content to the site.

Activating the admin interface
We think the admin interface is the coolest part of Django — and most Djangonauts agree — but since not everyone actually needs it,
it’s an optional piece. That means there are three steps you’ll need to follow to activate the admin interface:

1. Add admin metadata to your models.

Not all models can (or should) be editable by admin users, so you need to “mark” models that should have an admin interface.
You do that be adding an inner Admin class to your model (alongside the Meta class, if you have one). So, to add an admin
interface to our Book model from the previous chapter:

class Book(models.Model):
 title = models.CharField(maxlength=100)
 authors = models.ManyToManyField(Author)
 publisher = models.ForeignKey(Publisher)
 publication_date = models.DateField()

 class Admin:
 pass

The Admin declaration flags the class as having an admin interface. There are a number of options that you can put beneath Admin
, but for now we’re sticking with all the defaults, so we put pass in there to signify to Python that the Admin class is empty.

If you’re following this example with your own code, it’s probably a good idea to add Admin declarations to the Publisher
and Author classes at this point.

2. Install the admin models. Simply add "django.contrib.admin" to your INSTALLED_APPS setting and
run python manage.py syncdb to install the extra tables the admin uses.

Chapter 6: The Django admin site

http://www.djangobook.com/en/beta/chapter06/ (1 of 14)9/28/2007 2:24:34 PM

http://www.djangobook.com/en/beta/chapter05/
http://www.djangobook.com/en/beta/
http://www.djangobook.com/en/beta/chapter08/

Chapter 6: The Django admin site

Note

When you first ran syncdb, you were probably asked about creating a superuser. If you didn’t that time, you’ll need
to run django/contrib/auth/bin/create_superuser.py to create an admin user. Otherwise you won’t be able to
log into the admin interface.

3. Add the URL pattern to your urls.py. If you’re still using the one created by startproject, the admin URL pattern should be
already there, but commented out. Either way, your URL patterns should look like:

from django.conf.urls.defaults import *

urlpatterns = patterns('',
 (r'^admin/', include('django.contrib.admin.urls')),
)

That’s it. Now run python manage.py runserver to start the development server; you’ll see something like:

Validating models...
0 errors found.

Django version 0.96-pre, using settings 'ch6.settings'
Development server is running at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

Now you can visit the URL given to you by Django (http://127.0.0.1:8000/admin/ in the example above), log in, and play around.

Using the admin interface
The admin interface is designed to be used by non-technical users, and as such should be pretty self-explanatory. Nevertheless, a few
notes about the features of the admin are in order.

The first thing you’ll see is a login screen:

http://www.djangobook.com/en/beta/chapter06/ (2 of 14)9/28/2007 2:24:34 PM

http://127.0.0.1:8000/admin/

Chapter 6: The Django admin site

You’ll use the username and password you set up when you first ran syncdb here. Once you’ve logged in, you’ll see that you can
manage users, groups, and permissions in the admin; see more on that below.

Each object given an Admin declaration shows up on the main index page. Links to add and change objects lead to two pages we refer
to as object “change lists” and “edit forms”:

http://www.djangobook.com/en/beta/chapter06/ (3 of 14)9/28/2007 2:24:34 PM

Chapter 6: The Django admin site

Change lists are essentially index pages of objects in the system:

http://www.djangobook.com/en/beta/chapter06/ (4 of 14)9/28/2007 2:24:34 PM

Chapter 6: The Django admin site

There are a number of options that can control which fields appear on these lists and the appearance of extra features like date drill
downs, search fields, and filter interfaces. There’s more about these features below.

Edit forms are used to edit existing objects and create new ones. Each field defined in your model appears here, and you’ll notice that
fields of different types get different widgets (i.e. date/time fields have calendar controls; foreign keys use a select box, etc.):

http://www.djangobook.com/en/beta/chapter06/ (5 of 14)9/28/2007 2:24:34 PM

Chapter 6: The Django admin site

You’ll notice that the admin also handles input validation for you; try leaving a required field blank, or putting an invalid time into a
time field and you’ll see those errors when you try to save:

http://www.djangobook.com/en/beta/chapter06/ (6 of 14)9/28/2007 2:24:34 PM

Chapter 6: The Django admin site

This validation actually is done with a powerful validation framework which is discussed in Chapter 7.

When editing an existing object, you’ll notice a “history” link in the upper-right. Every change made through the admin is logged, and
you can examine this log by clicking the history button:

http://www.djangobook.com/en/beta/chapter06/ (7 of 14)9/28/2007 2:24:34 PM

Chapter 6: The Django admin site

Deletions in the admin cascade. That is, when deleting an existing object, you’ll see that the admin asks you to confirm the delete
action to avoid costly mistakes. What might not be instantly obvious is that this page will show you all the related objects that will be
deleted as well:

http://www.djangobook.com/en/beta/chapter06/ (8 of 14)9/28/2007 2:24:34 PM

Chapter 6: The Django admin site

Users, groups, and permissions
Since you’re logged in as a superuser, you have access to create, edit, and delete any object. However, the admin has a user
permissions system that you can use to give other users access only to the portions of the admin they need.

http://www.djangobook.com/en/beta/chapter06/ (9 of 14)9/28/2007 2:24:34 PM

Chapter 6: The Django admin site

You edit these users and permissions through the admin just like any other object; the link to the User and Group models is there on
the admin index along with all the objects you’ve defined yourself.

User objects have the standard username, password, email, and real name fields you might expect, along with a set of fields that
define what the user is allowed to do in the admin. First, there’s a set of three flags:

● The “is active” flag controls whether the user is active at all. If this flag is off, the user has no access to any URLs that require
login.

● The “is staff” flag controls whether the user is allowed to log into the admin (i.e. is considered a “staff member” in your
organization). Since this same user system can be used to control access to public (i.e. non-admin) sites (see Chapter 12), this
flag differentiates between public users and administrators.

● The “is superuser” flag gives the user full unfettered access to every item in the admin; regular permissions are ignored.

For “normal” admin users — active, non-superuser staff members — the access they are granted depends on a set of assigned
permissions. Each object editable through the admin has three permissions: a “create” permission, an “edit” permission, and a
“delete” permission. Assigning permissions to a user grants the user access to do what is described by those permissions.

Note

Notice that access to edit users and permissions is also controlled by this permission system. If you give a user
permission to edit users, she will be able to edit her own permissions, which might not be what you want!

You can also assign users to groups. A group is simply a set of permissions to apply to all members of that group. Groups are
extremely useful for granting a large number of users identical permissions.

Customizing the admin interface
There are a number of ways to customize the way the admin interface looks and behaves. We’ll cover just a few of them below as they
relate to our `` Book`` model, but Chapter 12 covers customizing the admin interface in detail.

As it stands now, the change list for our books show only the string representation of the model we added to its __str__. This works
fine for just a few books, but if we had hundreds or thousands of books, it would be very hard to locate a single needle in the
haystack. However, we can easily add some display, searching, and filtering functions to this interface. Change the Admin declaration
to:

class Book(models.Model):
 title = models.CharField(maxlength=100)
 authors = models.ManyToManyField(Author)
 publisher = models.ForeignKey(Publisher)
 publication_date = models.DateField()

 class Admin:
 list_display = ('title', 'publisher', 'publication_date')
 list_filter = ('publisher', 'publication_date')
 ordering = ('-publication_date',)
 search_fields = ('title',)

http://www.djangobook.com/en/beta/chapter06/ (10 of 14)9/28/2007 2:24:34 PM

Chapter 6: The Django admin site

These four lines of code dramatically change our list interface:

Each of those lines instructed the admin to construct a different piece of this interface:

http://www.djangobook.com/en/beta/chapter06/ (11 of 14)9/28/2007 2:24:34 PM

Chapter 6: The Django admin site

● The ordering option controls what order the objects are presented in the admin. It’s simply a list of fields to order the results by;
prefixing a field with a minus sign reverses the given order. So in this example, we’re ordering by publication date, most recent
first.

● The list_display option controls which columns appear in the change list table. By default, only a single column with the
object’s string representation appears; here we’ve changed that to show the title, publisher, and publication date.

● The list_filter option creates the filtering bar on the right side of the list. We’ve allowed filtering either by date (which allows
you to see only books published in the last week, month, etc.), and by publisher.

You can instruct the admin to filter by any field, but foreign keys or any field with a choices attribute set work best.

● Finally, the search_fields option creates a field that allows text searches. This allows searches by the title field (so you could
type “Django” to show all books with “Django” in the title).

Using these options — and the other ones described in Chapter 12 — you can with only a few lines of code make a very powerful,
production-ready interface for data editing.

Customize the admin look and feel
Clearly, having “Django administration” at the top of each admin page is ridiculous. It’s just placeholder text.

That’s easy to change, though, using Django’s template system. The Django admin is powered by Django itself, and its interfaces use
Django’s own template system. (How meta!)

Open your settings file (mysite/settings.py, remember) and look at the TEMPLATE_DIRS setting. TEMPLATE_DIRS is a tuple of
filesystem directories to check when loading Django templates. It’s a search path.

By default, TEMPLATE_DIRS is empty. So, let’s add a line to it, to tell Django where our templates live:

TEMPLATE_DIRS = (
 "/home/mytemplates", # Change this to your own directory.
)

Note

Make sure to include the trailing comma there — Python uses it to distinguish between single-element tuples and
parenthesized expressions.

Now copy the template admin/base_site.html from within the default Django admin template directory
(django/contrib/admin/templates) into an admin subdirectory of whichever directory you’re using in TEMPLATE_DIRS. For example,
if your TEMPLATE_DIRS includes "/home/mytemplates", as above, then
copy django/contrib/admin/templates/admin/base_site.html to /home/mytemplates/admin/base_site.html. Don’t forget
that admin subdirectory.

Then, just edit the new admin/base_site.html file to replace the generic Django text with your own site’s name as you see fit.

http://www.djangobook.com/en/beta/chapter06/ (12 of 14)9/28/2007 2:24:34 PM

Chapter 6: The Django admin site

Note that any of Django’s default admin templates can be overridden. To override a template, just do the same thing you did
with base_site.html — copy it from the default directory into your custom directory and make changes to the copy.

Astute readers wonder how, if TEMPLATE_DIRS was empty by default, Django was finding the default admin templates? The answer is
that, by default, Django automatically looks for templates within a templates/ subdirectory in each app package as a fallback. See
“Template loaders” in Chapter 10 for more information about how this works.

Customize the admin index page
On a similar note, you might want to customize the look and feel of the Django admin index page.

By default, it displays all available apps, according to your INSTALLED_APPS setting, sorted by the name of the application. You might,
however, want to change this order to make it easier to find the apps you’re looking for. After all, the index is probably the most
important page of the admin, so it should be easy to use.

The template to customize is admin/index.html. (Remember to copy admin/base_site.html to your custom template directory as in
the previous example.) Edit the file, and you’ll see it uses a template tag called {% get_admin_app_list as app_list %}. That’s the
magic that retrieves every installed Django app. Instead of using that, you can hard-code links to object-specific admin pages in
whatever way you think is best. If hard-coding links doesn’t appeal to you, you can also see Chapter 10 for details on implementing
your own template tags.

Django offers another shortcut in this department. Run the command python manage.py adminindex <app> to get a chunk of
template code for inclusion in the admin index template. It’s a useful starting point.

For full details on customizing the look and feel of the Django admin site in general, see Chapter 12.

When and why to use the admin interface
We think Django’s admin interface is pretty spectacular. In fact, we’d call it one of Django’s “killer features”. However, we often get
asked questions about “use cases” for the admin — when do we use it, and why? Over the years, we’ve discovered a number of
patterns for using the admin interface that we think might be helpful.

Obviously, it’s extremely useful for editing data (fancy that). If you have any sort of data entry tasks, the admin simply can’t be beat.
We suspect that the vast majority of readers of this book will have a whole host of data entry tasks.

Django’s admin especially shines when non-technical users need to be able to enter data; that’s the original genesis of the feature. At
the newspaper where Django was first developed, development of a typical online feature — a special report on water quality in the
municipal supply, say — goes something like this:

● The reporter responsible for the story meets with one of the developers and goes over the available data.
● The developer designs a model around this data, and then opens up the admin interface to the reporter.
● While the reporter enters data into Django, the programmer can focus on developing the publicly-accessible interface (the fun

part!)

In other works, the raison d’être of Django’s admin is facilitating the simultaneous work of content producers and programmers.

However, beyond the obvious data-entry tasks, we find the admin useful in a few other cases:

http://www.djangobook.com/en/beta/chapter06/ (13 of 14)9/28/2007 2:24:34 PM

Chapter 6: The Django admin site

● Inspecting data models: the first thing we do when we’ve defined a new model is to call it up in the admin and enter some
dummy data. This is usually when we find any data modeling errors; having a graphical interface to a model quickly reveals those
mistakes.

● Managing acquired data: there’s little actual data entry associated with a site like chicagocrime.org since most of the data comes
from an automated source. However, when problems with the automatically acquired data crop up, it’s very useful to be able to
go in and edit that data easily.

What’s next?
So far we’ve created a few models and configured a top-notch interface for editing that data. In the next chapter, we’ll move onto the
real “meat and potatoes” of Web development: form creation and processing.

So grab another cup of your favorite beverage and let’s get started.

« previous ◊ table of contents ◊ next »
Copyright 2006 Adrian Holovaty and Jacob Kaplan-Moss.
This work is licensed under the GNU Free Document License.

http://www.djangobook.com/en/beta/chapter06/ (14 of 14)9/28/2007 2:24:34 PM

http://www.djangobook.com/en/beta/chapter05/
http://www.djangobook.com/en/beta/
http://www.djangobook.com/en/beta/chapter08/
http://www.djangobook.com/license/

The Django Book
« previous ◊ table of contents ◊ next »

Chapter 8: Advanced views and URLconfs
In Chapter 3, we explained the basics of Django view functions and URLconfs. This chapter goes into more detail about advanced
functionality in those two pieces of the framework.

URLconf tricks

Streamlining function imports
Consider this URLconf, which builds on the example in Chapter 3:

from django.conf.urls.defaults import *
from mysite.views import current_datetime, hours_ahead, hours_behind, now_in_chicago,
now_in_london

urlpatterns = patterns('',
 (r'^now/$', current_datetime),
 (r'^now/plus(\d{1,2})hours/$', hours_ahead),
 (r'^now/minus(\d{1,2})hours/$', hours_behind),
 (r'^now/in_chicago/$', now_in_chicago),
 (r'^now/in_london/$', now_in_london),
)

As explained in Chapter 3, each entry in the URLconf includes its associated view function, passed directly as a function object.
This means it’s necessary to import the view functions at the top of the module.

But as a Django application grows in complexity, its URLconf grows, too, and keeping those imports can be tedious to manage.
(For each new view function, you’ve got to remember to import it, and the import statement tends to get overly long if you use
this approach.) It’s possible to avoid that tedium by importing the views module itself. This example URLconf is equivalent to the
previous one:

from django.conf.urls.defaults import *
from mysite import views

urlpatterns = patterns('',
 (r'^now/$', views.current_datetime),
 (r'^now/plus(\d{1,2})hours/$', views.hours_ahead),
 (r'^now/minus(\d{1,2})hours/$', views.hours_behind),
 (r'^now/in_chicago/$', views.now_in_chicago),
 (r'^now/in_london/$', views.now_in_london),
)

Django offers another way of specifying the view function for a particular pattern in the URLconf: You can pass a string containing
the module name and function name rather than the function object itself. Continuing the ongoing example:

from django.conf.urls.defaults import *

urlpatterns = patterns('',
 (r'^now/$', 'mysite.views.current_datetime'),
 (r'^now/plus(\d{1,2})hours/$', 'mysite.views.hours_ahead'),
 (r'^now/minus(\d{1,2})hours/$', 'mysite.views.hours_behind'),
 (r'^now/in_chicago/$', 'mysite.views.now_in_chicago'),
 (r'^now/in_london/$', 'mysite.views.now_in_london'),
)

Using this technique, it’s no longer necessary to import the view functions; Django automatically imports the appropriate view
function the first time it’s needed, according to the string describing the name and path of the view function.

A further shortcut you can take when using the string technique is to factor out a common “view prefix.” In our URLconf example,
each of the view strings starts with 'mysite.views', which is redundant to type. We can factor out that common prefix and pass
it as the first argument to patterns(), like this:

from django.conf.urls.defaults import *

Chapter 8: Advanced views and URLconfs

file:///D|/books/computer/programming/python/books/DJANGO BOOK/ch8.html (1 of 11)9/28/2007 2:27:13 PM

http://www.djangobook.com/en/beta/
http://www.djangobook.com/en/beta/chapter09/

Chapter 8: Advanced views and URLconfs

urlpatterns = patterns('mysite.views',
 (r'^now/$', 'current_datetime'),
 (r'^now/plus(\d{1,2})hours/$', 'hours_ahead'),
 (r'^now/minus(\d{1,2})hours/$', 'hours_behind'),
 (r'^now/in_chicago/$', 'now_in_chicago'),
 (r'^now/in_london/$', 'now_in_london'),
)

Note that you don’t put a trailing dot (".") in the prefix, nor do you put a leading dot in the view strings. Django puts that in
automatically.

With these two approaches in mind, which is better? It really depends on your personal coding style and needs.

Advantages of the string approach are:

● It’s more compact, because it doesn’t require you to import the view functions.
● It results in more readable and manageable URLconfs if your view functions are spread across several different Python

modules.

Advantages of the function object approach are:

● It allows for easy “wrapping” of view functions. See “Wrapping view functions” later in this chapter.
● It’s more “Pythonic” — that is, it’s more in line with Python traditions, such as passing functions as objects.

Both approaches are valid, and you can even mix them within the same URLconf. The choice is yours.

Multiple view prefixes
In practice, if you use the string technique, you’ll probably end up mixing views to the point where the views in your URLconf
won’t have a common prefix. However, you can still take advantage of the view prefix shortcut to remove duplication. Just add
multiple patterns() objects together, like this:

Old:

from django.conf.urls.defaults import *

urlpatterns = patterns('',
 (r'^/?$', 'mysite.views.archive_index'),
 (r'^(\d{4})/([a-z]{3})/$', 'mysite.views.archive_month'),
 (r'^tag/(\w+)/$', 'weblog.views.tag'),
)

New:

from django.conf.urls.defaults import *

urlpatterns = patterns('mysite.views',
 (r'^/?$', 'archive_index'),
 (r'^(\d{4})/([a-z]{3})/$','archive_month'),
)

urlpatterns += patterns('weblog.views',
 (r'^tag/(\w+)/$', 'tag'),
)

All the framework cares about is that there’s a module-level variable called urlpatterns. This variable can be constructed
dynamically, as we do in this example.

Named groups
In all of our URLconf examples so far, we’ve used simple, non-named regular-expression groups — i.e., we put parentheses
around parts of the URL we wanted to capture, and Django passes that captured text to the view function as a positional
argument. In more advanced usage, it’s possible to use named regular-expression groups to capture URL bits and pass them as
keyword arguments to a view.

Keyword arguments vs. positional arguments

A Python function can be called using keyword arguments or positional arguments — and, in some cases, both at
the same time. In a keyword argument call, you specify the names of the arguments along with the values you’re
passing. In a positional argument call, you simply pass the arguments without explicitly specifying which argument
matches which value; the association is implicit in the arguments’ order.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/ch8.html (2 of 11)9/28/2007 2:27:13 PM

Chapter 8: Advanced views and URLconfs

For example, consider this simple function:

def sell(item, price, quantity):
 print "Selling %s unit(s) of %s at %s" % (quantity, item, price)

To call it with positional arguments, you specify the arguments in the order in which they’re listed in the function
definition:

sell('Socks', '$2.50', 6)

To call it with keyword arguments, you specify the names of the arguments along with the values. The following
statements are equivalent:

sell(item='Socks', price='$2.50', quantity=6)
sell(item='Socks', quantity=6, price='$2.50')
sell(price='$2.50', item='Socks', quantity=6)
sell(price='$2.50', quantity=6, item='Socks')
sell(quantity=6, item='Socks', price='$2.50')
sell(quantity=6, price='$2.50', item='Socks')

In Python regular expressions, the syntax for named regular-expression groups is (?P<name>pattern), where name is the name
of the group and pattern is some pattern to match.

Here’s an example URLconf that uses non-named groups:

from django.conf.urls.defaults import *
from mysite import views

urlpatterns = patterns('',
 (r'^articles/(\d{4})/$', views.year_archive),
 (r'^articles/(\d{4})/(\d{2})/$', views.month_archive),
)

Here’s the same URLconf, rewritten to use named groups:

from django.conf.urls.defaults import *
from mysite import views

urlpatterns = patterns('',
 (r'^articles/(?P<year>\d{4})/$', views.year_archive),
 (r'^articles/(?P<year>\d{4})/(?P<month>\d{2})/$', views.month_archive),
)

This accomplishes exactly the same thing as the previous example, with one subtle difference: The captured values are passed to
view functions as keyword arguments rather than positional arguments.

For example, with non-named groups, a request to /articles/2006/03/ would result in a function call equivalent to this:

month_archive(request, '2006', '03')

With named groups, though, the same request would result in this function call:

month_archive(request, year='2006', month='03')

In practice, using named groups makes your URLconfs slightly more explicit and less prone to argument-order bugs — and you
can reorder the arguments in your views’ function definitions. Following the above example, if we wanted to change the URLs to
include the month before the year, and we were using non-named groups, we’d have to remember to change the order of
arguments in the month_archive view. If we were using named groups, changing the order of the captured parameters in the
URL would have no effect on the view.

Of course, the benefits of named groups come at the cost of brevity; some developers find the named-group syntax ugly and too
verbose.

The matching/grouping algorithm
If you use both named and non-named groups in the same pattern in your URLconf, you should be aware of how Django treats
this special case. Here’s the algorithm the URLconf parser follows, with respect to named groups vs. non-named groups in a
regular expression:

file:///D|/books/computer/programming/python/books/DJANGO BOOK/ch8.html (3 of 11)9/28/2007 2:27:13 PM

Chapter 8: Advanced views and URLconfs

● If there are any named arguments, it will use those, ignoring non-named arguments.
● Otherwise, it will pass all non-named arguments as positional arguments.
● In both cases, it will pass any extra keyword arguments as keyword arguments. See “Passing extra options to view

functions” below.

Passing extra options to view functions
Sometimes you’ll find yourself writing view functions that are quite similar, with only a few small differences. For example, say
you’ve got two views whose contents are identical except for the template they use:

urls.py

from django.conf.urls.defaults import *
from mysite import views

urlpatterns = patterns('',
 (r'^foo/$', views.foo_view),
 (r'^bar/$', views.bar_view),
)

views.py

from django.shortcuts import render_to_response
from mysite.models import MyModel

def foo_view(request):
 m_list = MyModel.objects.filter(is_new=True)
 return render_to_response('template1.html', {'m_list': m_list})

def bar_view(request):
 m_list = MyModel.objects.filter(is_new=True)
 return render_to_response('template2.html', {'m_list': m_list})

We’re repeating ourselves in this code, and that’s inelegant. At first, you may think to remove the redundancy by using the same
view for both URLs, putting parenthesis around the URL to capture it, and checking the URL within the view to determine the
template, like so:

urls.py

from django.conf.urls.defaults import *
from mysite import views

urlpatterns = patterns('',
 (r'^(foo)/$', views.foobar_view),
 (r'^(bar)/$', views.foobar_view),
)

views.py

from django.shortcuts import render_to_response
from mysite.models import MyModel

def foobar_view(request, url):
 m_list = MyModel.objects.filter(is_new=True)
 if url == 'foo':
 template_name = 'template1.html'
 elif url == 'bar':
 template_name = 'template2.html'
 return render_to_response(template_name, {'m_list': m_list})

The problem with that solution, though, is that it couples your URLs to your code. If you decide to rename /foo/ to /fooey/,
you’ll have to remember to change the view code.

The elegant solution involves a feature called extra URLconf options. Each pattern in a URLconf may include a third item — a
dictionary of keyword arguments to pass to the view function.

With this in mind, we can rewrite our ongoing example like this:

urls.py

from django.conf.urls.defaults import *

file:///D|/books/computer/programming/python/books/DJANGO BOOK/ch8.html (4 of 11)9/28/2007 2:27:13 PM

Chapter 8: Advanced views and URLconfs

from mysite import views

urlpatterns = patterns('',
 (r'^foo/$', views.foobar_view, {'template_name': 'template1.html'}),
 (r'^bar/$', views.foobar_view, {'template_name': 'template2.html'}),
)

views.py

from django.shortcuts import render_to_response
from mysite.models import MyModel

def foobar_view(request, template_name):
 m_list = MyModel.objects.filter(is_new=True)
 return render_to_response(template_name, {'m_list': m_list})

As you can see, the URLconf in this example specifies template_name in the URLconf. The view function treats it as just another
parameter.

This extra URLconf options technique is a nice way of sending additional information to your view functions with minimal fuss. As
such, it’s used by a couple of Django’s bundled applications, most notably its generic views system, which we’ll cover in Chapter 9.

Here are a couple of ideas on how you can use the extra URLconf options technique in your own projects:

Faking captured URLconf values

Say you’ve got a set of views that match a pattern, along with another URL that doesn’t fit the pattern but whose view logic is the
same. In this case, you can “fake” the capturing of URL values by using extra URLconf options to handle that extra URL with the
same view.

For example, you might have an application that displays some data for a particular day, with URLs such as this:

/mydata/jan/01/
/mydata/jan/02/
/mydata/jan/03/
...
/mydata/dec/30/
/mydata/dec/31/

This is simple enough to deal with; you can capture those in a URLconf like this (using named group syntax):

urlpatterns = patterns('',
 (r'^mydata/(?P<month>\w{3})/(?P<day>\d\d)/$', views.my_view),
)

And the view function signature would look like this:

def my_view(request, month, day):
 #

This is straightforward — it’s nothing we haven’t seen before. The trick comes in when you want to add another URL that
uses my_view but whose URL doesn’t include a month and/or day.

For example, you might want to add another URL, /mydata/birthday/, which would be equivalent to /mydata/jan/06/. We can
take advantage of extra URLconf options like so:

urlpatterns = patterns('',
 (r'^mydata/birthday/$', views.my_view, {'month': 'jan', 'day': '06'}),
 (r'^mydata/(?P<month>\w{3})/(?P<day>\d\d)/$', views.my_view),
)

The cool thing here is that we don’t have to change our view function at all. The view function only cares that it gets month
and day parameters — it doesn’t matter whether they come from the URL capturing itself or extra parameters.

Making a view generic

It’s good programming practice to “factor out” commonalities in code. For example, with these two Python functions:

def say_hello(person_name):
 print 'Hello, %s' % person_name

file:///D|/books/computer/programming/python/books/DJANGO BOOK/ch8.html (5 of 11)9/28/2007 2:27:13 PM

Chapter 8: Advanced views and URLconfs

def say_goodbye(person_name):
 print 'Goodbye, %s' % person_name

…we can factor out the greeting to make it a parameter:

def greet(person_name, greeting):
 print '%s, %s' % (greeting, person_name)

You can apply this same philosophy to your Django views by using extra URLconf parameters.

With this in mind, you can start making higher-level abstractions of your views. Instead of thinking to yourself, “This view
displays a list of Event objects,” and “That view displays a list of BlogEntry objects,” realize they’re both specific cases of “A view
that displays a list of objects, where the type of object is variable.”

Take this code, for example:

urls.py

from django.conf.urls.defaults import *
from mysite import views

urlpatterns = patterns('',
 (r'^events/$', views.event_list),
 (r'^blog/entries/$', views.entry_list),
)

views.py

from django.shortcuts import render_to_response
from mysite.models import Event, BlogEntry

def event_list(request):
 obj_list = Event.objects.all()
 return render_to_response('mysite/event_list.html', {'event_list': obj_list})

def entry_list(request):
 obj_list = BlogEntry.objects.all()
 return render_to_response('mysite/blogentry_list.html', {'entry_list': obj_list})

The two views do essentially the same thing: they display a list of objects. So let’s factor out the type of object they’re displaying:

urls.py

from django.conf.urls.defaults import *
from mysite import models, views

urlpatterns = patterns('',
 (r'^events/$', views.object_list, {'model': models.Event}),
 (r'^blog/entries/$', views.object_list, {'model': models.BlogEntry}),
)

views.py

from django.shortcuts import render_to_response

def object_list(request, model):
 obj_list = model.objects.all()
 template_name = 'mysite/%s_list.html' % model.__name__.lower()
 return render_to_response(template_name, {'object_list': obj_list})

With those small changes, we suddenly have a reusable, model-agnostic view! From now on, any time we need a view that lists a
set of objects, we can simply reuse this object_list view rather than writing view code. Here are a couple of notes about what
we did:

● We’re passing the model classes directly, as the model parameter. The dictionary of extra URLconf options can pass any type
of Python object — not just strings.

● The model.objects.all() line is an example of duck typing: “If it walks like a duck and talks like a duck, we can treat it
like a duck.” Note the code doesn’t know what type of object model is; the only requirement is that model have an objects
attribute, which in turn has an all() method.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/ch8.html (6 of 11)9/28/2007 2:27:13 PM

Chapter 8: Advanced views and URLconfs

● We’re using model.__name__.lower() in determining the template name. Every Python class has a __name__ attribute that
returns the class name. This feature is useful at times like these, when we don’t know the type of class until runtime.

For example, the BlogEntry class’ __name__ is the string 'BlogEntry'.

● In a slight difference between this example and the previous example, we’re passing the generic variable name object_list
to the template. We could easily change this variable name to be blogentry_list or event_list, but we’ve left that as an
exercise for the reader.

Because database-driven Web sites have several common patterns, Django comes with a set of “generic views” that use this
exact technique to save you time. We’ll cover Django’s built-in generic views in the next chapter.

Giving a view configuration options

If you’re distributing a Django application, chances are that your users will want some degree of configuration. In this case, it’s a
good idea to add hooks to your views for any configuration options you think people may want to change. You can use extra
URLconf parameters for this purpose.

A common bit of an application to make configurable is the template name:

def my_view(request, template_name):
 var = do_something()
 return render_to_response(template_name, {'var': var})

Precedence of captured values vs. extra options

When there’s a conflict, extra URLconf parameters get precedence over captured parameters. In other words, if your URLconf
captures a named-group variable and an extra URLconf parameter includes a variable with the same name, the extra URLconf
parameter value will be used.

For example, consider this URLconf:

from django.conf.urls.defaults import *

urlpatterns = patterns('',
 (r'^mydata/(?P<id>\d+)/$', views.my_view, {'id': 3}),
)

Here, both the regular expression and the extra dictionary include an id. The hard-coded id gets precedence. That means any
request — e.g., /mydata/2/ or /mydata/432432/ — will be treated as if id is set to 3, regardless of the value captured in the URL.

Astute readers will note that in this case, it’s a waste of time and typing to capture the id in the regular expression, because its
value will always be overridden by the dictionary’s value. Those astute readers would be correct. We bring this up only to help
you avoid making the mistake.

Using default view arguments
Another convenient trick is to specify default parameters for a view’s arguments. This tells the view which value to use for a
parameter by default if none is specified.

For example:

urls.py

from django.conf.urls.defaults import *

urlpatterns = patterns('',
 (r'^blog/$', views.page),
 (r'^blog/page(?P<num>\d+)/$', views.page),
)

views.py

def page(request, num="1"):
 # Output the appropriate page of blog entries, according to num.
 # ...

Here, both URL patterns point to the same view — views.page — but the first pattern doesn’t capture anything from the URL. If
the first pattern matches, the page() function will use its default argument for num, "1". If the second pattern matches, page()
will use whatever num value was captured by the regex.

It’s common to use this technique in conjunction with configuration options, as explained above. This example makes a slight

file:///D|/books/computer/programming/python/books/DJANGO BOOK/ch8.html (7 of 11)9/28/2007 2:27:13 PM

Chapter 8: Advanced views and URLconfs

improvement to the example in the Giving a view configuration options section by providing a default value for template_name:

def my_view(request, template_name='mysite/my_view.html'):
 var = do_something()
 return render_to_response(template_name, {'var': var})

Special-casing views
Sometimes you’ll have a pattern in your URLconf that handles a large set of URLs but you’ll need to special-case one of them. In
this case, take advantage of the linear way a URLconf is processed and put the special case first.

For example, the “add an object” pages in Django’s admin site are represented by this URLconf line:

urlpatterns = patterns('',
 # ...
 ('^([^/]+)/([^/]+)/add/$', 'django.contrib.admin.views.main.add_stage'),
 # ...
)

This matches URLs such as /myblog/entries/add/ and /auth/groups/add/. However, the “add” page for a user object
(/auth/user/add/) is a special case — it doesn’t display all of the form fields, it displays two password fields, etc. We could solve
this by special-casing in the view, like so:

def add_stage(request, app_label, model_name):
 if app_label == 'auth' and model_name == 'user':
 # do special-case code
 else:
 # do normal code

…but that’s inelegant for a reason we’ve touched on multiple times in this chapter: it puts URL logic in the view. As a more
elegant solution, we can take advantage of the fact that URLconfs are processed in order from top to bottom:

urlpatterns = patterns('',
 # ...
 ('^auth/user/add/$', 'django.contrib.admin.views.auth.user_add_stage'),
 ('^([^/]+)/([^/]+)/add/$', 'django.contrib.admin.views.main.add_stage'),
 # ...
)

With this in place, a request to /auth/user/add/ will be handled by the user_add_stage view. Although that URL matches the
second pattern, it matches the top one first. (This is short-circuit logic.)

Notes on capturing text in URLs
Each captured argument is sent to the view as a plain Python string, regardless of what sort of match the regular expression
makes. For example, in this URLconf line:

(r'^articles/(?P<year>\d{4})/$', views.year_archive),

…the year argument to views.year_archive() will be a string, not an integer, even though the \d{4} will only match integer
strings.

This is important to keep in mind when you’re writing view code. Many built-in Python functions are fussy (and rightfully so)
about accepting only objects of a certain type. A common error is to attempt to create a datetime.date object with string values
instead of integer values:

>>> import datetime
>>> datetime.date('1993', '7', '9')
Traceback (most recent call last):
 ...
TypeError: an integer is required
>>> datetime.date(1993, 7, 9)
datetime.date(1993, 7, 9)

Translated to a URLconf and view, the error looks like this:

urls.py

from django.conf.urls.defaults import *

file:///D|/books/computer/programming/python/books/DJANGO BOOK/ch8.html (8 of 11)9/28/2007 2:27:13 PM

Chapter 8: Advanced views and URLconfs

urlpatterns = patterns('',
 (r'^articles/(\d{4})/(\d{2})/(\d{2})/$', views.day_archive),
)

views.py

import datetime

def day_archive(request, year, month, day)
 # The following statement raises a TypeError!
 date = datetime.date(year, month, day)

Instead, day_archive() can be written correctly like this:

def day_archive(request, year, month, day)
 date = datetime.date(int(year), int(month), int(day))

Note that int() itself raises a ValueError when you pass it a string that is not comprised solely of digits, but we’re avoiding that
error in this case because the regular expression in our URLconf has ensured that only strings containing digits are passed to the
view function.

What the URLconf searches against
When a request comes in, Django tries to match the URLconf patterns against the requested URL, as a normal Python string (not
as a Unicode string). This does not include GET or POST parameters, or the domain name. It also does not include the leading
slash, because every URL has a leading slash.

For example, in a request to http://www.example.com/myapp/, Django will try to match myapp/.

In a request to http://www.example.com/myapp/?page=3, Django will try to match myapp/.

The request method — e.g., POST, GET, HEAD — is not taken into account when traversing the URLconf. In other words, all request
methods will be routed to the same function for the same URL. It’s the responsibility of a view function to perform branching
based on request method.

Including other URLconfs
At any point, your URLconf can “include” other URLconf modules. This essentially “roots” a set of URLs below other ones.

For example, this URLconf includes other URLconfs:

from django.conf.urls.defaults import *

urlpatterns = patterns('',
 (r'^weblog/', include('mysite.blog.urls')),
 (r'^photos/', include('mysite.photos.urls')),
 (r'^about/$', 'mysite.views.about'),
)

There’s an important gotcha here: The regular expressions in this example that point to an include() do not have a $ (end-of-
string match character) but do include a trailing slash. Whenever Django encounters include(), it chops off whatever part of the
URL matched up to that point and sends the remaining string to the included URLconf for further processing.

Continuing this example, here’s the URLconf mysite.blog.urls:

from django.conf.urls.defaults import *

urlpatterns = patterns('',
 (r'^(\d\d\d\d)/$', 'mysite.blog.views.year_detail'),
 (r'^(\d\d\d\d)/(\d\d)/$', 'mysite.blog.views.month_detail'),
)

With these two URLconfs, here’s how a few sample requests would be handled:

● /weblog/2007/ — In the first URLconf, the pattern r'^weblog/' matches. Because it is an include(), Django strips all the
matching text, which is 'weblog/' in this case. The remaining part of the URL is 2007/, which matches the first line in
the mysite.blog.urls URLconf.

● /weblog//2007/ — In the first URLconf, the pattern r'^weblog/' matches. Because it is an include(), Django strips all the
matching text, which is 'weblog/' in this case. The remaining part of the URL is /2007/ (with a leading slash), which does
not match any of the lines in the mysite.blog.urls URLconf.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/ch8.html (9 of 11)9/28/2007 2:27:13 PM

Chapter 8: Advanced views and URLconfs

● /about/ — Matches the view mysite.views.about in the first URLconf. This demonstrates that you can mix include()
patterns with non-include() patterns.

How captured parameters work with include()
An included URLconf receives any captured parameters from parent URLconfs. For example:

root urls.py

from django.conf.urls.defaults import *

urlpatterns = patterns('',
 (r'^(?P<username>\w+)/blog/', include('foo.urls.blog')),
)

foo/urls/blog.py

from django.conf.urls.defaults import *

urlpatterns = patterns('',
 (r'^$', 'foo.views.blog_index'),
 (r'^archive/$', 'foo.views.blog_archive'),
)

In this example, the captured username variable is passed to the included URLconf and, hence, to every view function within that
URLconf.

Note that the captured parameters will always be passed to every line in the included URLconf, regardless of whether the line’s
view actually accepts those parameters as valid. For this reason, this technique is only useful if you’re certain that every view in
the the included URLconf accepts the parameters you’re passing.

How extra URLconf options work with include()
Similarly, you can pass extra URLconf options to include(), just as you can pass extra URLconf options to a normal view — as a
dictionary. When you do this, each line in the included URLconf will be passed the extra options.

For example, these two URLconf sets are functionally identical:

Set one:

urls.py

from django.conf.urls.defaults import *

urlpatterns = patterns('',
 (r'^blog/', include('inner'), {'blogid': 3}),
)

inner.py

from django.conf.urls.defaults import *

urlpatterns = patterns('',
 (r'^archive/$', 'mysite.views.archive'),
 (r'^about/$', 'mysite.views.about'),
 (r'^rss/$', 'mysite.views.rss'),
)

Set two:

urls.py

from django.conf.urls.defaults import *

urlpatterns = patterns('',
 (r'^blog/', include('inner')),
)

inner.py

from django.conf.urls.defaults import *

file:///D|/books/computer/programming/python/books/DJANGO BOOK/ch8.html (10 of 11)9/28/2007 2:27:13 PM

Chapter 8: Advanced views and URLconfs

urlpatterns = patterns('',
 (r'^archive/$', 'mysite.views.archive', {'blogid': 3}),
 (r'^about/$', 'mysite.views.about', {'blogid': 3}),
 (r'^rss/$', 'mysite.views.rss', {'blogid': 3}),
)

Note that extra options will always be passed to every line in the included URLconf, regardless of whether the line’s view actually
accepts those options as valid. For this reason, this technique is only useful if you’re certain that every view in the the included
URLconf accepts the extra options you’re passing.

View tricks
This chapter is not yet finished. What else would you like to see? Leave a comment on this paragraph and let us know!
Interaction is cool.

« previous ◊ table of contents ◊ next »
Copyright 2006 Adrian Holovaty and Jacob Kaplan-Moss.
This work is licensed under the GNU Free Document License.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/ch8.html (11 of 11)9/28/2007 2:27:13 PM

http://www.djangobook.com/en/beta/
http://www.djangobook.com/en/beta/chapter09/
http://www.djangobook.com/license/

The Django Book
« previous ◊ table of contents ◊ next »

Chapter 9: Generic views
Here again is a recurring theme of this book: at its worst, web development is boring and monotonous.

So far we’ve covered how Django tries to take away some of that monotony at the model and template layers, but web
developers also experience this boredom at the view level.

Django’s generic views were to developed to ease that pain. They take certain common idioms and patterns in view
development and abstract them so that you can quickly write common views of onto data without having to write too much code.

In fact, nearly every view example in the preceding chapters could be re-written with the help of generic views.

Django contains generic views to do the following:

● Perform common “simple” tasks: redirect to a different page, and render a given template.
● Display list and detail pages for a single object. For example, the Django documentation index (http://www.djangoproject.

com/documentation/) and individual document pages are built this way. The crime index and list of crimes by type views
from Chapter 5 could easily be re-written to use generic views; we’ll do so below.

● Present date-based objects in year/month/day archive pages, associated detail and “latest” pages. The Django weblog’s
(http://www.djangoproject.com/weblog/) year, month, and day archives are built with these, as are ljworld.com’s news
archives, and a whole host of others.

● Allow users to create, update, and delete objects — with or without authorization.

Taken together, these views provide easy interfaces to perform the most common tasks developers encounter.

Using generic views
All of these views are used by creating configuration dictionaries in your URLconf files and passing those dictionaries as the third
member of the URLconf tuple for a given pattern.

For example, here’s the URLconf for the simple weblog app that drives the blog on djangoproject.com:

from django.conf.urls.defaults import *
from django_website.apps.blog.models import Entry

info_dict = {
 'queryset': Entry.objects.all(),
 'date_field': 'pub_date',
}

urlpatterns = patterns('django.views.generic.date_based',
 (r'^(?P<year>\d{4})/(?P<month>[a-z]{3})/(?P<day>\w{1,2})/(?P<slug>[-\w]+)/$',
'object_detail', dict(info_dict, slug_field='slug')),
 (r'^(?P<year>\d{4})/(?P<month>[a-z]{3})/(?P<day>\w{1,2})/$',
'archive_day', info_dict),
 (r'^(?P<year>\d{4})/(?P<month>[a-z]{3})/$',
'archive_month', info_dict),
 (r'^(?P<year>\d{4})/$',
'archive_year', info_dict),
 (r'^/?$',
'archive_index', info_dict),
)

As you can see, this URLconf defines a few options in info_dict. 'queryset' gives the generic view a QuerySet of objects to use
(in this case, all of the Entry objects) and tells the generic view which model is being used. The remaining arguments to each
generic view are taken from the named captures in the URLconf.

This is really all the “view” code for Django’s weblog! The only thing that’s left is writing a template.

Documentation of each generic view follows, along with a list of all keyword arguments that a generic view expects. Remember
that as in the example above, arguments may either come from the URL pattern (as month, day, year, etc. do above) or from the
additional-information dictionary (as for queryset, date_field, etc.).

Most generic views require the queryset key, which is a QuerySet instance; see the database API reference in Appendix 3 for
more information about QuerySet objects.

Chapter 9: Generic views

file:///D|/books/computer/programming/python/books/DJANGO BOOK/09.html (1 of 17)9/28/2007 2:27:38 PM

http://www.djangobook.com/en/beta/chapter08/
http://www.djangobook.com/en/beta/
http://www.djangobook.com/en/beta/chapter10/
http://www.djangoproject.com/documentation/
http://www.djangoproject.com/documentation/
http://www.djangoproject.com/weblog/

Chapter 9: Generic views

Most views also take an optional extra_context dictionary that you can use to pass any auxiliary information you wish to the
view. The values in the extra_context dictionary can be either functions (or other callables) or other objects. Functions are
evaluated just before they are passed to the template.

“Simple” generic views
The django.views.generic.simple module contains simple views to handle a couple of common cases: rendering a template
when no view logic is needed, and issuing a redirect.

Rendering a template
The function django.views.generic.simple.direct_to_template renders a given template, passing it a {{ params }}
template variable, which is a dictionary of the parameters captured in the URL.

Example

Given the following URL patterns:

urlpatterns = patterns('django.views.generic.simple',
 (r'^foo/$', 'direct_to_template', {'template': 'foo_index.html'}),
 (r'^foo/(?P<id>\d+)/$', 'direct_to_template', {'template': 'foo_detail.html'}),
)

a request to /foo/ would render the template foo_index.html, and a request to /foo/15/ would render the foo_detail.html
with a context variable {{ params.id }} that is set to 15.

Required arguments

template
The full name of a template to use.

Redirecting to another URL
django.views.generic.simple.redirect_to redirects to another URL. The given URL may contain dictionary-style string
formatting, which will be interpolated against the parameters captured in the URL.

If the given URL is None, Django will return an HTTP 410 (Gone) message.

Example

This example redirects from /foo/<id>/ to /bar/<id>/:

urlpatterns = patterns('django.views.generic.simple',
 ('^foo/(?p<id>\d+)/$', 'redirect_to', {'url': '/bar/%(id)s/'}),
)

This example returns a 410 HTTP error for requests to /bar/:

urlpatterns = patterns('django.views.generic.simple',
 ('^bar/$', 'redirect_to', {'url': None}),
)

Required arguments

url
The URL to redirect to, as a string. Or None to return a 410 (“gone”) HTTP response.

More complex generic views
Although the simple generic views certainly are useful, the real power in Django’s generic views comes from the more complex
views that allow you to build common CRUD (Create/Retrieve/Update/Delete) pages with a minimum amount of code.

These views break down into a few different types:

● List/detail views, which provide flat lists of objects and individual object detail pages (for example, a list of places and
individual place information pages).

● Date-based views, which provide year/month/day drill-down pages of date-centric information.
● Create/update/delete views, which allow you to quickly create views to create, modify, or delete objects.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/09.html (2 of 17)9/28/2007 2:27:38 PM

Chapter 9: Generic views

Common optional arguments
Most of these views take a large number of optional arguments that can control various bits of behavior. Many of these
arguments may be given to any of these views, so many of the views below refer back to this list of optional arguments:

allow_empty
A boolean specifying whether to display the page if no objects are available. If this is False and no objects are available, the
view will raise a 404 instead of displaying an empty page. By default, this is False.

context_processors
A list of template-context processors to apply to the view’s template. See Chapter 10 for information on template context
processors.

extra_context
A dictionary of values to add to the template context. By default, this is an empty dictionary. If a value in the dictionary is
callable, the generic view will call it just before rendering the template.

mimetype
The MIME type to use for the resulting document. Defaults to the value of the DEFAULT_MIME_TYPE setting.

template_loader
The template loader to use when loading the template. By default, it’s django.template.loader. See Chapter 10 for
information on template loaders.

template_name
The full name of a template to use in rendering the page. This lets you override the default template name derived from
the QuerySet.

template_object_name
Designates the name of the template variable to use in the template context. By default, this is 'object'. Views list list more
than one objec will append '_list' to the value of this parameter.

List/detail generic views
The list-detail generic views (in the module django.views.generic.list_detail) handles the common case of displaying a list
of items at one view, and individual “detail” views of those items at another.

For the examples in the rest of this chapter, we’ll be working with the simple book/author/publisher objects from chapters 5 and
6:

class Publisher(models.Model):
 name = models.CharField(maxlength=30)
 address = models.CharField(maxlength=50)
 city = models.CharField(maxlength=60)
 state_province = models.CharField(maxlength=30)
 country = models.CharField(maxlength=50)
 website = models.URLField()

class Author(models.Model):
 salutation = models.CharField(maxlength=10)
 first_name = models.CharField(maxlength=30)
 last_name = models.CharField(maxlength=40)
 email = models.EmailField()
 headshot = models.ImageField()

class Book(models.ModelField):
 title = models.CharField(maxlength=100)
 authors = models.ManyToManyField(Author)
 publisher = models.ForeignKey(Publisher)
 publication_date = models.DateField()

We’ll also be working with a URL module; if you’re following along, you can start with an skeleton URL config in bookstore.urls:

from django.conf.urls.defaults import *
from django.views.generic import list_detail, date_based, create_update
from bookstore.models import Publisher, Author, Book

urlpatterns = patterns('',
 # We'll add URL patterns here.
)

We’ll build this up with generic views as we go.

Lists of objects

file:///D|/books/computer/programming/python/books/DJANGO BOOK/09.html (3 of 17)9/28/2007 2:27:38 PM

Chapter 9: Generic views

The view django.views.generic.list_detail.object_list is used to create a page representing a list of objects.

Example

We can use the object_list view to show a simple list of all authors in the bookstore. First, we’ll need to construct a info
dictionary for the generic view. Add the following to the top of the bookstore/urls.py file:

author_list_info = {
 'queryset' : Author.objects.all(),
 'allow_empty': True,
}

Then, we need to register this view at a certain URL. We can do that by adding this URL config piece (inside the patterns
directive):

(r'authors/$', list_detail.object_list, author_list_info)

From there, we just need to make a template for this generic view to render. Since we didn’t provide the template_name
parameter (see below), Django will guess the name of the template; here it’ll use bookstore/author_list.html. See below for
more details on how this “guess” is made.

Required arguments

queryset
A QuerySet of objects to list

Optional arguments

paginate_by
An integer specifying how many objects should be displayed per page. If this is given, the view will paginate objects
with paginate_by objects per page. The view will expect either a page query string parameter (via GET) containing a zero-
indexed page number, or a page variable specified in the URLconf. See “Notes on pagination” below.

Additionally, this view may take any of these common arguments described above:

● allow_empty

● context_processors

● extra_context

● mimetype

● template_loader

● template_name

● template_object_name

Template name

If template_name isn’t specified, this view will use the template <app_label>/<model_name>_list.html by default. Both the app
label and the model name are derived from the queryset parameter: the app label is the name of the app that the model is
defined in, and the model name is the lower-cased version of the name of the model class.

So, if we passed Author.objects.all() as the queryset, the app label would be bookstore and the model name would
be author. This means the default template would be bookstore/author_list.html.

Template context

In addition to extra_context, the template’s context will contain:

object_list
The list of objects. This variable’s name depends on the template_object_name parameter, which is 'object' by default.
If template_object_name is 'foo', this variable’s name will be foo_list.

is_paginated
A boolean representing whether the results are paginated. Specifically, this is set to False if the number of available objects is
less than or equal to paginate_by.

If the results are paginated, the context will contain these extra variables:

results_per_page
The number of objects per page. (Same as the paginate_by parameter.)

has_next

file:///D|/books/computer/programming/python/books/DJANGO BOOK/09.html (4 of 17)9/28/2007 2:27:38 PM

Chapter 9: Generic views

A boolean representing whether there’s a next page.

has_previous
A boolean representing whether there’s a previous page.

page
The current page number, as an integer. This is 1-based.

next
The next page number, as an integer. If there’s no next page, this will still be an integer representing the theoretical next-page
number. This is 1-based.

previous
The previous page number, as an integer. This is 1-based.

pages
The total number of pages, as an integer.

hits
The total number of objects across all pages, not just this page.

A note on pagination:

If paginate_by is specified, Django will paginate the results. You can specify the page number in the URL in one of
two ways:

● Use the page parameter in the URLconf. For example, this is what your URLconf might look like:

(r'^objects/page(?P<page>[0-9]+)/$', 'object_list', dict(info_dict))

● Pass the page number via the page query-string parameter. For example, a URL would look like this:

/objects/?page=3

In both cases, page is 1-based, not 0-based, so the first page would be represented as page 1.

Detail views
The django.views.generic.list_detail.object_detail gives a “detail” view of a single object.

Example

Extending the example above, we could make a detail view for a given author. Given an info dict like this:

author_detail_info = {
 "queryset" : Author.objects.all(),
 "template_object_name" : "author",
}

We could use a urlpattern like:

(r'^authors/(?P<object_id>\d+)/$', list_detail.object_detail, author_detail_info),

to show details about a given book, rendered in the bookstore/author_detail.html template. In that template, the Author
object itself would be put into the {{ author }} variable.

Required arguments

queryset`
A QuerySet that will be searched for the object.

Either:

object_id
The value of the primary-key field for the object.

or:

slug
The slug of the given object. If you pass this field, then the slug_field argument (below) is also required.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/09.html (5 of 17)9/28/2007 2:27:38 PM

Chapter 9: Generic views

Optional arguments

slug_field
The name of the field on the object containing the slug. This is required if you are using the slug argument, but must be
absent if you’re using the object_id argument.

template_name_field

The name of a field on the object whose value is the template name to use. This lets you store template names in your data.

In other words, if your object has a field 'the_template' that contains a string 'foo.html', and you set template_name_field
to 'the_template', then the generic view for this object will use the template 'foo.html'.

It’s a bit of a brain-bender, but it’s useful in some cases.

This view may also take these common arguments (documented above):

● context_processors

● extra_context

● mimetype

● template_loader

● template_name

● template_object_name

Template name

If template_name and template_name_field aren’t specified, this view will use the
template <app_label>/<model_name>_detail.html by default.

Template context

In addition to extra_context, the template’s context will be:

object
The object. This variable’s name depends on the template_object_name parameter, which is 'object' by default.
If template_object_name is 'foo', this variable’s name will be foo.

Date-based generic views
Date-based generic views are generally used to provide a set of “archive” pages for dated material. Think year/month/day
archives for a newspaper, or a blog like the official Django blog described at the beginning of this chapter.

For the examples, we’ll be using the Book object from above, and build up a way to browse books by year, month, and day
published. Notice that for each of these views, we have to tell Django the name of the date field we want to key off of. We have
to provide this information since models could contain multiple date or datetime fields.

Into the future…

By default, these views ignore objects with dates in the future.

This means that if you try to visit an archive page in the future, Django will automatically show a 404 (“not found”)
error, even if there are objects published that day.

Thus, you can publish post-dated objects that don’t appear publically until after their publication date.

However, for different types of date-based objects this isn’t appropriate (for example, a calendar of upcoming
events). For these views, setting the allow_future option to True will make the future objects appear (and allow
users to visit “future” archive pages).

Archive index
The django.views.generic.date_based.archive_index view provides a top-level index page showing the “latest” objects, by
date.

Example

A typical publisher probably wants to highlight recently-published books. We can use the archive_index view for this common
task. Here’s a info dict:

book_info = {

file:///D|/books/computer/programming/python/books/DJANGO BOOK/09.html (6 of 17)9/28/2007 2:27:38 PM

Chapter 9: Generic views

 "queryset" : Book.objects.all(),
 "date_field" : "publication_date"
}

And the corresponding urlconf piece (which roots this index at the bottom level of wherever it’s included):

(r'^books/$', date_based.archive_index, book_info),

Required arguments

date_field:
The name of the DateField or DateTimeField in the QuerySet‘s model that the date-based archive should use to determine
the objects on the page.

queryset
A QuerySet of objects for which the archive serves.

Optional arguments

allow_future
A boolean specifying whether to include “future” objects on this page, as described in the note above.

num_latest
The number of latest objects to send to the template context. By default, it’s 15.

This view may also take these common arguments (documented above):

● allow_empty

● context_processors

● extra_context

● mimetype

● template_loader

● template_name

Template name

If template_name isn’t specified, this view will use the template <app_label>/<model_name>_archive.html by default.

Template context

In addition to extra_context, the template’s context will be:

date_list

A list of datetime.date objects representing all years that have objects available according to queryset. These are ordered in
reverse.

For example, if you have blog entries from 2003 through 2006, this list will contain four datetime.date objects: one for each
of those years.

latest
The num_latest objects in the system, ordered descending by date_field. For example, if num_latest is 10, then latest will
be a list of the latest 10 objects in queryset.

Year archives
The django.views.generic.date_based.archive_year view provides a yearly archive page showing all available months in a
given year.

Example

Contuting on with our example, we’ll want to add a way to view all the books published in a given year. We can keep using
the book_info dictionary from the above example, but this time we’ll wire it up to the archive_year view:

(r'^books/(?P<year>\d{4})/?$', date_based.archive_year, book_info),

Since there are likely many, many books published each year, we won’t display them on this page, just a list of years in which
books are available. Conveniently for us, this is what Django does by default; to change it we could use the make_object_list
argument; see below.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/09.html (7 of 17)9/28/2007 2:27:38 PM

Chapter 9: Generic views

Required arguments

date_field
As above.

queryset
A QuerySet of objects for which the archive serves.

year
The four-digit year for which the archive serves (usually taken from URL parameters).

Optional arguments

make_object_list
A boolean specifying whether to retrieve the full list of objects for this year and pass those to the template. If True, this list of
objects will be made available to the template as object_list. (The name object_list may be different; see the information
about object_list in the “Template context” section below.) By default, this is False.

allow_future
A boolean specifying whether to include “future” objects on this page, as described in the note above.

This view may also take these common arguments (documented above):

● allow_empty

● context_processors

● extra_context

● mimetype

● template_loader

● template_name

● template_object_name

Template name

If template_name isn’t specified, this view will use the template <app_label>/<model_name>_archive_year.html by default.

Template context

In addition to extra_context, the template’s context will be:

date_list
A list of datetime.date objects representing all months that have objects available in the given year, according to queryset,
in ascending order.

year
The given year, as a four-character string.

object_list

If the make_object_list parameter is True, this will be set to a list of objects available for the given year, ordered by the date
field. This variable’s name depends on the template_object_name parameter, which is 'object' by default.
If template_object_name is 'foo', this variable’s name will be foo_list.

If make_object_list is False, object_list will be passed to the template as an empty list.

Monthly archives
The django.views.generic.date_based.archive_month views provides a monthly archive page showing all objects in a given
month.

Example

Continuing on with our example, creating month views should look mighty familiar:

(r'^(?P<year>\d{4})/(?P<month>[a-z]{3})/$', date_based.archive_month, book_info),

Required arguments

year
The four-digit year for which the archive serves (a string).

month
The month for which the archive serves, formatted according to the month_format argument.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/09.html (8 of 17)9/28/2007 2:27:38 PM

Chapter 9: Generic views

queryset
A QuerySet of objects for which the archive serves.

date_field
The name of the DateField or DateTimeField in the QuerySet‘s model that the date-based archive should use to determine
the objects on the page.

Optional arguments

month_format
A format string that regulates what format the month parameter uses. This should be in the syntax accepted by
Python’s time.strftime. (See Python’s strftime docs at http://www.python.org/doc/current/lib/module-time.html#l2h-1941)
It’s set to "%b" by default, which is a three-letter month abbreviation (i.e. “jan”, “feb”, etc.). To change it to use numbers,
use "%m".

allow_future
A boolean specifying whether to include “future” objects on this page, as described in the note above.

This view may also take these common arguments (documented above):

● allow_empty

● context_processors

● extra_context

● mimetype

● template_loader

● template_name

● template_object_name

Template name

If template_name isn’t specified, this view will use the template <app_label>/<model_name>_archive_month.html by default.

Template context

In addition to extra_context, the template’s context will be:

month
A datetime.date object representing the given month.

next_month
A datetime.date object representing the first day of the next month. If the next month is in the future, this will be None.

previous_month
A datetime.date object representing the first day of the previous month. Unlike next_month, this will never be None.

object_list
A list of objects available for the given month. This variable’s name depends on the template_object_name parameter, which
is 'object' by default. If template_object_name is 'foo', this variable’s name will be foo_list.

Week archives
The django.views.generic.date_based.archive_week view shows all objects in a given week.

Note

Django believes that weeks start on Sunday, for the perfectly arbitrary reason that Python does, too.

Example

Are you starting to see a pattern here yet?

(r'^(?P<year>\d{4})/(?P<week>\d{2})/$', date_based.archive_week, book_info),

Required arguments

year
The four-digit year for which the archive serves (a string).

week
The week of the year for which the archive serves (a string).

file:///D|/books/computer/programming/python/books/DJANGO BOOK/09.html (9 of 17)9/28/2007 2:27:38 PM

http://www.python.org/doc/current/lib/module-time.html#l2h-1941

Chapter 9: Generic views

queryset
A QuerySet of objects for which the archive serves.

date_field
The name of the DateField or DateTimeField in the QuerySet‘s model that the date-based archive should use to determine
the objects on the page.

Optional arguments

allow_future
A boolean specifying whether to include “future” objects on this page, as described in the note above.

This view may also take these common arguments (documented above):

● allow_empty

● context_processors

● extra_context

● mimetype

● template_loader

● template_name

● template_object_name

Template name

If template_name isn’t specified, this view will use the template <app_label>/<model_name>_archive_week.html by default.

Template context

In addition to extra_context, the template’s context will be:

week
A datetime.date object representing the first day of the given week.

object_list
A list of objects available for the given week. This variable’s name depends on the template_object_name parameter, which
is 'object' by default. If template_object_name is 'foo', this variable’s name will be foo_list.

Day archives
The django.views.generic.date_based.archive_day view provides a page showing all objects in a given day.

Example

Keep on keepin’ on:

(r'^(?P<year>\d{4})/(?P<month>[a-z]{3})/(?P<day>\d{2})/$', date_based.archive_day, book_info),

Required arguments

year
The four-digit year for which the archive serves (a string).

month
The month for which the archive serves, formatted according to the month_format argument.

day
The day for which the archive serves, formatted according to the day_format argument.

queryset
A QuerySet of objects for which the archive serves.

date_field
The name of the DateField or DateTimeField in the QuerySet‘s model that the date-based archive should use to determine
the objects on the page.

Optional arguments

month_format
A format string that regulates what format the month parameter uses. See the detailed explanation above.

day_format
Like month_format, but for the day parameter. It defaults to "%d" (day of the month as a decimal number, 01-31).

file:///D|/books/computer/programming/python/books/DJANGO BOOK/09.html (10 of 17)9/28/2007 2:27:38 PM

Chapter 9: Generic views

allow_future
A boolean specifying whether to include “future” objects on this page, as described in the note above.

This view may also take these common arguments (documented above):

● allow_empty

● context_processors

● extra_context

● mimetype

● template_loader

● template_name

● template_object_name

Template name

If template_name isn’t specified, this view will use the template <app_label>/<model_name>_archive_day.html by default.

Template context

In addition to extra_context, the template’s context will be:

day
A datetime.date object representing the given day.

next_day
A datetime.date object representing the next day. If the next day is in the future, this will be None.

previous_day
A datetime.date object representing the given day. Unlike next_day, this will never be None.

object_list
A list of objects available for the given day. This variable’s name depends on the template_object_name parameter, which
is 'object' by default. If template_object_name is 'foo', this variable’s name will be foo_list.

Archive for today
The django.views.generic.date_based.archive_today view shows all objects for today. This is exactly the same
as archive_day, except the year/month/day arguments are not used, and today’s date is used instead.

Date-based detail pages
The django.views.generic.date_based.object_detail view shows a page representing an individual object. This differs from
the object_detail page in their respective URLs; the object_detail view uses URLs like /entries/<slug>/, while this one
uses URLs like /entries/2006/aug/27/<slug>/.

Note

If you’re using date-based detail pages with slugs in the URLs, you probably also want to use the unique_for_date
option on the slug field to validate that slugs aren’t duplicated in a single day. See Appendix 2 for details
on unique_for_date.

Example

This one differs (slightly) from all the other examples in that we need to either provide an object ID or a slug so that Django can
look up the object in question.

Since the object we’re using doesn’t have a slug field, we’ll use the slightly uglyier ID-based URLs. In practice we’d prefer to use
a slug field, but in the interest of simplicity we’ll let it go.

We’ll add the following to the URLconf:

(r'^(?P<year>\d{4})/(?P<month>[a-z]{3})/(?P<day>\d{2})/(?P<object_id>[\w-]+)/$', date_based.
object_detail, book_info),

Required arguments

year
The object’s four-digit year (a string).

month

file:///D|/books/computer/programming/python/books/DJANGO BOOK/09.html (11 of 17)9/28/2007 2:27:38 PM

Chapter 9: Generic views

The object’s month , formatted according to the month_format argument.

day
The object’s day , formatted according to the day_format argument.

queryset
A QuerySet that contains the object.

date_field
The name of the DateField or DateTimeField in the QuerySet‘s model that the generic view should use to look up the object
according to year, month and day.

Either:

object_id
The value of the primary-key field for the object.

or:

slug
The slug of the given object. If you pass this field, then the slug_field argument (below) is also required.

Optional arguments

allow_future
A boolean specifying whether to include “future” objects on this page, as described in the note above.

day_format
Like month_format, but for the day parameter. It defaults to "%d" (day of the month as a decimal number, 01-31).

month_format
A format string that regulates what format the month parameter uses. See the detailed explanation above.

slug_field
The name of the field on the object containing the slug. This is required if you are using the slug argument, but must be
absent if you’re using the object_id argument.

template_name_field

The name of a field on the object whose value is the template name to use. This lets you store template names in the data. In
other words, if your object has a field 'the_template' that contains a string 'foo.html', and you set template_name_field
to 'the_template', then the generic view for this object will use the template 'foo.html'.

It’s a bit of a brain-bender, but it’s useful in some cases.

This view may also take these common arguments (documented above):

● context_processors

● extra_context

● mimetype

● template_loader

● template_name

● template_object_name

Template name

If template_name isn’t specified, this view will use the template <app_label>/<model_name>_detail.html by default.

Template context

In addition to extra_context, the template’s context will be:

object
The object. This variable’s name depends on the template_object_name parameter, which is 'object' by default.
If template_object_name is 'foo', this variable’s name will be foo.

Create/update/delete generic views

Note

These views will change slightly when Django’s revised form architecture (currently under development
as django.newforms) is finalized. This section will be updated accordingly.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/09.html (12 of 17)9/28/2007 2:27:38 PM

Chapter 9: Generic views

The django.views.generic.create_update module contains a set of functions for creating, editing and deleting objects.

Create object view
The django.views.generic.create_update.create_object view displays a form for creating an object, redisplays the form with
validation errors (if there are any) and saves the object. This uses the automatic manipulators that come with Django models.

These views all present forms if accessed with a GET and perform the requested action (create/update/delete) if accessed via POST
.

Note that these views all have a very rough idea of security. Although they take a login_required attribute which if given will
restrict access to logged-in users, that’s as far as it goes. They won’t, for example, check that the user editing an object is the
same user that created it, nor will they validate any sort of permissions.

Much of the time, however, those features can be accomplished by writing a small wrapper around the generic view; see
“extending generic views”, below, for more about this topic.

Example

If we wanted to allow users to create new books in our database, we could do something like this:

(r'^books/create/$', create_update.create_object, {'model' : Book}),

Required arguments

model
The Django model of the object that the form will create.

Note

Notice that this view takes the model to be created, not a QuerySet (as all the list/detail/date-based views above
do).

Optional arguments

post_save_redirect
A URL to which the view will redirect after saving the object. By default, it’s object.get_absolute_url().

post_save_redirect
May contain dictionary string formatting, which will be interpolated against the object’s field attributes. For example, you could
use post_save_redirect="/polls/%(slug)s/".

login_required

A boolean that designates whether a user must be logged in, in order to see the page and save changes. This hooks into the
Django authentication system. By default, this is False.

If this is True, and a non-logged-in user attempts to visit this page or save the form, Django will redirect the request
to /accounts/login/.

This view may also take these common arguments (documented above):

● context_processors

● extra_context

● template_loader

● template_name

Template name

If template_name isn’t specified, this view will use the template <app_label>/<model_name>_form.html by default.

Template context

In addition to extra_context, the template’s context will be:

form:

A FormWrapper instance representing the form for editing the object. This lets you refer to form fields easily in the template
system.

For example, if the model has two fields, name and address:

file:///D|/books/computer/programming/python/books/DJANGO BOOK/09.html (13 of 17)9/28/2007 2:27:38 PM

Chapter 9: Generic views

<form action="" method="post">
<p><label for="id_name">Name:</label> {{ form.name }}</p>
<p><label for="id_address">Address:</label> {{ form.address }}</p>
</form>

See Chapter 7 for more information about working with forms.

Update object view
The django.views.generic.create_update.update_object view is almost identical to the create-object view above, but this
one allows the editing of an existing object instead of the creation of a new one.

Example

Following the above example, we could provide an edit interface for a single book with this URLconf snippet:

(r'^books/edit/(?P<object_id>\d+)/$', create_update.update_object, {'model' : Book}),

Required arguments

model
The Django model the form will be editing.

Either:

object_id
The value of the primary-key field for the object.

or:

slug
The slug of the given object. If you pass this field, then the slug_field argument (below) is also required.

Optional arguments

slug_field
The name of the field on the object containing the slug. This is required if you are using the slug argument, but must be
absent if you’re using the object_id argument.

Additionally, this view takes all same optional arguments as the creation view (above), plus the template_object_name common
argument.

Template name

This view uses the same default template name (<app_label>/<model_name>_form.html) as the creation view.

Template context

In addition to extra_context, the template’s context will be:

form:
A FormWrapper instance representing the form for editing the object. See the create object (above) for more about this value.

object:
The original object being edited (this variable may be named differently if you’ve provided the template_object_name
argument).

Delete object view
The django.views.generic.create_update.delete_object view is also very similar to the other two.

If this view is fetched with GET, it will display a confirmation page (i.e. “do you really want to delete this object?”). If the view is
submitted with POST, the object will be deleted without confirmation.

All the arguments are the same as for the update object view, as is the context; the template name for this view
is <app_label>/<model_name>_confirm_delete.html

Extending generic views
There’s no question that using generic views can speed up development substantially. In most projects, however, there comes a

file:///D|/books/computer/programming/python/books/DJANGO BOOK/09.html (14 of 17)9/28/2007 2:27:38 PM

Chapter 9: Generic views

moment when the generic views no longer suffice. Indeed, the most common question asked by new Django developers is about
how to make generic views handle a wider array of situations.

Luckily, in nearly every one of these cases, there are ways to simply extend generic views to handle a larger array of use cases.
These situations usually fall into a couple of patterns:

Adding extra context
Often you simply need to present some extra information than that provided by the generic view. For example, think of showing a
list of all publishers on a book’s detail page; the object_detail generic view provides the book to the context, but it seems
there’s no way to get a list of publishers in that template.

But there is: all generic views take an extra optional parameter extra_context. This is a dictionary of extra objects which will be
added to the template’s context. So, to provide the list of publishers in the book detail view, we’d use an info dict like this:

book_info = {
 "queryset" : Book.objects.all(),
 "date_field" : "publication_date",
 "extra_context" : {
 "publisher_list" : Publisher.objects.all(),
 }
}

This would populate a {{ publisher_list }} variable in the template context. This pattern can be used to pass any information
down into the template for the generic view; it’s very handy.

More complex filtering with wrapper functions
Another common need is to filter down the objects given in a list page by some key in the URL. For example, let’s look at
providing an interface to browse books by title. We’d like to provide URLs of the form /books/by-title/a/, /books/by-title/b/
, etc. — one list page for each letter of the alphabet.

The problem seems to be that the generic view has no concept of reading variables from the URL; if we wired a URL pattern
matching those URLs up to the object_list view, we’d get twenty-six pages displaying all the books. Although we could write
twenty-six different info dicts (each with a different queryset argument), that’s just silly. The right technique involves writing a
simple “wrapper” function around the generic view.

In our alphabetic-browsing example, we’d start by adding a small bit to the URLconf:

from bookstore.views import browse_alphabetically

urlpatterns = patterns('',
 # ...
 (r'^books/by-title/([a-z])/$', browse_alphabetically)
)

As you can see, this wires the set of URLs to the browse_alphabetically function, so let’s take a look at how that function could
be written:

from bookstore.models. import Book
from django.views.generic import list_detail

def browse_alphabetically(request, letter):
 return list_detail.object_list(
 request,
 queryset = Book.objects.filter(title__istartswith=letter),
 template_name = "bookstore/browse_alphabetically.html",
 extra_context = {
 'letter' : letter,
 }
)

That’s it!

This works because there’s really nothing special about generic views — they’re just Python functions. Like any view function,
generic views expect a certain set of arguments and return HttpResponse objects. Thus, it’s incredibly easy to wrap a small
function around a generic view that does additional work before — or after; see below — handing things off to the generic view.

Note

Notice that in the above example we’ve passed the current letter being display in the extra_context. This is usually
a good idea in wrappers of this nature; it lets the template know which letter is currently being browsed.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/09.html (15 of 17)9/28/2007 2:27:38 PM

Chapter 9: Generic views

Also (while we’re on the topic of templates) notice that we’ve passed in a custom template name. Without that, it
would try to use the same template as a “vanilla” object_list, which could conflict with other generic views.

Performing extra work
The last common pattern we’ll look at involves doing some extra work before or after calling the generic view.

Imagine we had a last_accessed field on our Author object that we were using to keep track of the last time a anybody looked
at that author. The generic object_detail view, of course, wouldn’t know anything about this field, but once again we could
easily write a custom view to keep that field updated.

First, we’d need to modify the author detail bit in the URLconf to point to a custom view:

from bookstore.views import author_detail

urlpatterns = patterns('',
 #...
 (r'^authors/(?P<author_id>d+)/$', author_detail),
)

Then we’d write our wrapper function:

import datetime
from bookstore.models import Author
from django.views.generic import list_detail
from django.shortcuts import get_object_or_404

def author_detail(request, author_id):
 # Look up the Author (and raise a 404 if she's not found)
 author = get_object_or_404(Author, pk=author_id)

 # Record the last accessed date
 author.last_accessed = datetime.datetime.now()
 author.save()

 # Show the detail page
 return list_detail.object_detail(
 request,
 queryset = Author.objects.all(),
 object_id = author_id,
)

Note

This code won’t actually work unless you add the last_accessed field to your Author model.

We can use a similar idiom to alter the response returned by the generic view. If we wanted to provide a downloadable plain-text
version of the list of authors, we could use a view like this:

def author_list_plaintext(request):
 response = list_detail.object_list(
 queryset = Author.objects.all(),
 mimetype = "text/plain",
 template_name = "bookstore/author_list.txt"
)
 response["Content-Disposition"] = "attachment; filename=authors.txt"
 return response

This works because the generic views return simple HttpResponse objects which can be treated like dictionaries to set HTTP
headers. This Content-Disposition business, by the way, instructs the browser to download and save the page instead of
displaying it in the browser.

What’s next?
Until now, we’ve treated the template engine as a mostly static tool you can use to render your content. It’s true that most of the
time you’ll just treat it in that way, but the template engine is actually quite extensible.

In the next chapter we’ll delve deep into the inner workings of Django’s templates, showing all the cool ways it can be extended.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/09.html (16 of 17)9/28/2007 2:27:38 PM

Chapter 9: Generic views

Onward, comrades!

« previous ◊ table of contents ◊ next »
Copyright 2006 Adrian Holovaty and Jacob Kaplan-Moss.
This work is licensed under the GNU Free Document License.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/09.html (17 of 17)9/28/2007 2:27:38 PM

http://www.djangobook.com/en/beta/chapter08/
http://www.djangobook.com/en/beta/
http://www.djangobook.com/en/beta/chapter10/
http://www.djangobook.com/license/

The Django Book
« previous ◊ table of contents ◊ next »

Chapter 10: Inside the template engine
Most of your interaction with Django’s template language will probably be in the role of a template author. This chapter delves
much deeper into the guts of Django’s template system; read on if you need to extend the template system, or if you’re just
curious about how it works internally.

If you’re looking to use the Django template system as part of another application — i.e., without the rest of the framework —
make sure to read the configuration section later in this document.

Basics
A template is a text document, or a normal Python string, that is marked-up using the Django template language. A template
can contain block tags or variables.

A block tag is a symbol within a template that does something.

This definition is deliberately vague. For example, a block tag can output content, serve as a control structure (an “if” statement
or “for” loop), grab content from a database or enable access to other template tags.

Block tags are surrounded by {% and %}:

{% if is_logged_in %}
 Thanks for logging in!
{% else %}
 Please log in.
{% endif %}

A variable is a symbol within a template that outputs a value.

Variable tags are surrounded by {{ and }}:

My first name is {{ first_name }}. My last name is {{ last_name }}.

A context is a “name” -> “value” mapping (similar to a Python dictionary) that is passed to a template.

A template renders a context by replacing the variable “holes” with values from the context and executing all block tags.

Using the template object
At its lowest level, using the template system in Python is a two-step process:

● First, you compile the raw template code into a Template object.

● Then, you call the render() method of the Template object with a given context.

Compiling a string
The easiest way to create a Template object is by instantiating it directly. The constructor takes one argument — the raw
template code:

>>> from django.template import Template
>>> t = Template("My name is {{ my_name }}.")
>>> print t
<django.template.Template object at 0x1150c70>

Behind the scenes

The system only parses your raw template code once — when you create the Template object. From then on, it’s
stored internally as a “node” structure for performance.

Even the parsing itself is quite fast. Most of the parsing happens via a single call to a single, short, regular
expression.

Chapter 10: Extending the template engine

file:///D|/books/computer/programming/python/books/DJANGO BOOK/10.html (1 of 15)9/28/2007 2:28:08 PM

http://www.djangobook.com/en/beta/chapter09/
http://www.djangobook.com/en/beta/
http://www.djangobook.com/en/beta/chapter11/

Chapter 10: Extending the template engine

Rendering a context
Once you have a compiled Template object, you can render a context — or multiple contexts — with it. The Context constructor
takes one (optional) argument: a dictionary mapping variable names to variable values.

Call the Template object’s render() method with the context to “fill” the template:

>>> from django.template import Context, Template
>>> t = Template("My name is {{ my_name }}.")

>>> c = Context({"my_name": "Adrian"})
>>> t.render(c)
"My name is Adrian."

>>> c = Context({"my_name": "Dolores"})
>>> t.render(c)
"My name is Dolores."

Variable names must consist of any letter (A-Z), any digit (0-9), an underscore or a dot.

Dots have a special meaning in template rendering. A dot in a variable name signifies lookup. Specifically, when the template
system encounters a dot in a variable name, it tries a number of possible options. For example, the variable {{ foo.bar }} could
expand to any of the following:

● Dictionary lookup: foo["bar"]

● Attribute lookup: foo.bar

● Method call: foo.bar()

● List-index lookup: foo[bar]

The template system uses the first lookup type that works; it’s short-circuit logic.

Here are a few examples:

>>> from django.template import Context, Template
>>> t = Template("My name is {{ person.first_name }}.")

>>> d = {"person": {"first_name": "Joe", "last_name": "Johnson"}}
>>> t.render(Context(d))
"My name is Joe."

>>> class Person:
... def __init__(self, first_name, last_name):
... self.first_name, self.last_name = first_name, last_name
...
>>> p = Person("Ron", "Nasty")
>>> t.render(Context({"person": p}))
"My name is Ron."

>>> class Person2:
... def first_name(self):
... return "Samantha"
...
>>> p = Person2()
>>> t.render(Context({"person": p}))
"My name is Samantha."

>>> t = Template("The first stooge in the list is {{ stooges.0 }}.")
>>> c = Context({"stooges": ["Larry", "Curly", "Moe"]})
>>> t.render(c)
"The first stooge in the list is Larry."

Method lookups are slightly more complex than the other lookup types. Here are some things to keep in mind:

● If, during the method lookup, a method raises an exception, the exception will be propagated unless the exception has an
attribute silent_variable_failure whose value is True.

If the exception does have such an attribute, the variable will render as an empty string.

For example:

>>> t = Template("My name is {{ person.first_name }}.")

file:///D|/books/computer/programming/python/books/DJANGO BOOK/10.html (2 of 15)9/28/2007 2:28:08 PM

Chapter 10: Extending the template engine

>>> class Person3:
... def first_name(self):
... raise AssertionError("foo")
...
>>> p = Person3()
>>> t.render(Context({"person": p}))
Traceback (most recent call last):
...
AssertionError: foo

>>> class SilentAssertionError(AssertionError):
... silent_variable_failure = True
...
>>> class Person4:
... def first_name(self):
... raise SilentAssertionError("foo")
...
>>> p = PersonClass4()
>>> t.render(Context({"person": p}))
"My name is ."

Note that django.core.exceptions.ObjectDoesNotExist, which is the base class for all Django database API DoesNotExist
exceptions, has silent_variable_failure = True. So if you’re using Django templates with Django model objects,
any DoesNotExist exception will fail silently.

● A method call will only work if the method has no required arguments. Otherwise, the system will move to the next lookup
type (list-index lookup).

● Obviously, some methods have side effects, and it’d be either foolish or a security hole to allow the template system to
access them.

A good example is the delete() method on each Django model object. The template system shouldn’t be allowed to do
something like this:

I will now delete this valuable data. {{ data.delete }}

To prevent this, set a function attribute alters_data on the method. The template system won’t execute a method if the
method has alters_data=True set:

def sensitive_function(self):
 self.database_record.delete()
sensitive_function.alters_data = True

The dynamically-generated delete() and save() methods on Django model objects get alters_data=True automatically,
for example.

How invalid variables are handled

Generally, if a variable doesn’t exist, the template system inserts the value of the TEMPLATE_STRING_IF_INVALID setting, which is
set to the empty string by default.

Filters that are applied to an invalid variable will only be applied if TEMPLATE_STRING_IF_INVALID is set to its default value.
If TEMPLATE_STRING_IF_INVALID is set to any other value, variable filters will be ignored.

This behavior is slightly different for the if, for and regroup template tags. If an invalid variable is provided to one of these
template tags, the variable will be interpreted as None. Filters are always applied to invalid variables within these template tags.

Playing with Context objects
Most of the time, you’ll instantiate Context objects by passing in a fully-populated dictionary to Context(). But you can add and
delete items from a Context object once it’s been instantiated, too, using standard dictionary syntax:

>>> c = Context({"foo": "bar"})
>>> c['foo']
'bar'
>>> del c['foo']
>>> c['foo']
''
>>> c['newvariable'] = 'hello'
>>> c['newvariable']
'hello'

file:///D|/books/computer/programming/python/books/DJANGO BOOK/10.html (3 of 15)9/28/2007 2:28:08 PM

Chapter 10: Extending the template engine

Furthermore, a Context object acts like a stack. That is, you can push() and pop() additional contexts onto the stack. All setting
operations happen to the top-most context on the stack, but get operations search the stack (top-down) until a value is found.

If you pop() too much, you’ll get a django.template.ContextPopException.

Here’s an example of how these multiple levels might work:

Create a new blank context and set a simple value:
>>> c = Context()
>>> c['foo'] = 'first level'

Push a new context onto the stack:
>>> c.push()
>>> c['foo'] = 'second level'

The value of "foo" is now what we set at the second level:
>>> c['foo']
'second level'

After popping a layer off, the old value is still there:
>>> c.pop()
>>> c['foo']
'first level'

If we don't push() again, we'll overwrite existing values:
>>> c['foo'] = 'overwritten'
>>> c['foo']
'overwritten'

There's only one context on the stack, so pop()ing will fail:
>>> c.pop()
Traceback (most recent call last):
...
django.template.ContextPopException

Using a Context as a stack comes in handy in some custom template tags, as you’ll see below.

RequestContext and context processors
Django comes with a special Context class, django.template.RequestContext, that acts slightly differently than the
normal django.template.Context. The first difference is that takes an HttpRequest object (see Chapter XXX) as its first
argument:

c = RequestContext(request, {
 'foo': 'bar',
}

The second difference is that it automatically populates the context with a few variables, according to
your TEMPLATE_CONTEXT_PROCESSORS setting.

The TEMPLATE_CONTEXT_PROCESSORS setting is a tuple of callables called context processors that take a request object as their
argument and return a dictionary of items to be merged into the context. By default, TEMPLATE_CONTEXT_PROCESSORS is set to:

("django.core.context_processors.auth",
 "django.core.context_processors.debug",
 "django.core.context_processors.i18n")

Each processor is applied in order. That is, if one processor adds a variable to the context and a second processor adds a variable
with the same name, the second will override the first. The default processors are explained below.

Also, you can give RequestContext a list of additional processors, using the optional, third argument, processors. In this
example, the RequestContext instance gets a ip_address variable:

def ip_address_processor(request):
 return {'ip_address': request.META['REMOTE_ADDR']}

def some_view(request):
 # ...
 return RequestContext(request, {

file:///D|/books/computer/programming/python/books/DJANGO BOOK/10.html (4 of 15)9/28/2007 2:28:08 PM

Chapter 10: Extending the template engine

 'foo': 'bar',
 }, processors=[ip_address_processor])

Here’s what each of the default processors does:

django.core.context_processors.auth

If TEMPLATE_CONTEXT_PROCESSORS contains this processor, every RequestContext will contain these three variables:

user
A djangol.contrib.auth.models.User instance representing the currently logged-in user (or an AnonymousUser instance, if
the client isn’t logged in).

messages

A list of messages (as strings) for the currently logged-in user. Behind the scenes, this
calls request.user.get_and_delete_messages() for every request. That method collects the user’s messages and deletes
them from the database.

Note that messages are set with user.add_message().

perms
An instance of django.core.context_processors.PermWrapper, representing the permissions that the currently logged-in
user has.

See Chapter XXX for more on users, permissions, and messages.

django.core.context_processors.debug

This processor pushed debugging information down to the template layer. If it is enabled, it will only actually operate if:

● the DEBUG setting is True, and

● the request came from an IP address in the INTERNAL_IPS setting.

If those conditions are met, the following variables will be set:

debug
Set to True; you can use this in templates to test whether you’re in DEBUG mode.

sql_queries
A list of {'sql': ..., 'time': ...} dictionaries, representing every SQL query that has happened so far during the request
and how long it took. The list is in order by query.

django.core.context_processors.i18n

If this processor is enabled this processor, every RequestContext will contain these two variables:

LANGUAGES
The value of the LANGUAGES setting.

LANGUAGE_CODE
request.LANGUAGE_CODE, if it exists. Otherwise, the value of the LANGUAGE_CODE setting

Appendix XXX has more information about these two settings.

django.core.context_processors.request

If enabled, every RequestContext will contain a variable request, which is the current HttpRequest object. Note that this
processor is not enabled by default; you’ll have to activate it.

Loading templates
Generally, you’ll store templates in files on your filesystem (or in other places if you’ve written custom template loaders) rather
than using the low-level Template API yourself.

Django searches for template directories in a number of places, depending on your template-loader settings (see “Loader types”
below), but the most basic way of specifying template directories is by using the TEMPLATE_DIRS setting.

This should be set to a list or tuple of strings that contain full paths to your template directory(ies):

TEMPLATE_DIRS = (
 "/home/html/templates/lawrence.com",
 "/home/html/templates/default",
)

file:///D|/books/computer/programming/python/books/DJANGO BOOK/10.html (5 of 15)9/28/2007 2:28:08 PM

Chapter 10: Extending the template engine

Your templates can go anywhere you want, as long as the directories and templates are readable by the Web server. They can
have any extension you want, such as .html or .txt, or they can have no extension at all.

Note that these paths should use Unix-style forward slashes, even on Windows.

The Python API

Django has two ways to load templates from files:

django.template.loader.get_template(template_name)
get_template returns the compiled template (a Template object) for the template with the given name. If the template
doesn’t exist, it raises django.template.TemplateDoesNotExist.

django.template.loader.select_template(template_name_list)
select_template is just like get_template, except it takes a list of template names. Of the list, it returns the first template
that exists.

For example, if you call get_template('story_detail.html') and have the above TEMPLATE_DIRS setting, here are the files
Django will look for, in order:

● /home/html/templates/lawrence.com/story_detail.html

● /home/html/templates/default/story_detail.html

If you call select_template(['story_253_detail.html', 'story_detail.html']), here’s what Django will look for:

● /home/html/templates/lawrence.com/story_253_detail.html

● /home/html/templates/default/story_253_detail.html

● /home/html/templates/lawrence.com/story_detail.html

● /home/html/templates/default/story_detail.html

When Django finds a template that exists, it stops looking.

Tip

You can use select_template() for super-flexible “templatability.” For example, if you’ve written a news story and
want some stories to have custom templates, use something
like select_template(['story_%s_detail.html' % story.id, 'story_detail.html']). That’ll allow you to use
a custom template for an individual story, with a fallback template for stories that don’t have custom templates.

Using subdirectories

It’s possible — and preferable — to organize templates in subdirectories of the template directory. The convention is to make a
subdirectory for each Django app, with subdirectories within those subdirectories as needed.

Do this for your own sanity. Storing all templates in the root level of a single directory gets messy.

To load a template that’s within a subdirectory, just use a slash, like so:

get_template('news/story_detail.html')

Using the same TEMPLATE_DIRS setting from above, this example get_template() call will attempt to load the following
templates:

● /home/html/templates/lawrence.com/news/story_detail.html

● /home/html/templates/default/news/story_detail.html

Again, use UNIX-style forward slashes, even on Windows.

Template loaders

By default, Django loads templates from the filesystem, but Django comes with a few other template loaders which know how
to load templates from other sources.

Some of these other loaders are disabled by default, but you can activate them by editing your TEMPLATE_LOADERS
setting. TEMPLATE_LOADERS should be a tuple of strings, where each string represents a template loader. These template loaders
ship with Django:

django.template.loaders.filesystem.load_template_source

file:///D|/books/computer/programming/python/books/DJANGO BOOK/10.html (6 of 15)9/28/2007 2:28:08 PM

Chapter 10: Extending the template engine

Loads templates from the filesystem, according to TEMPLATE_DIRS.

This loader is enabled by default.

django.template.loaders.app_directories.load_template_source

Loads templates from Django apps on the filesystem. For each app in INSTALLED_APPS, the loader looks for a templates
subdirectory. If the directory exists, Django looks for templates in there.

This means you can store templates with your individual apps. This also makes it easy to distribute Django apps with default
templates.

For example, if INSTALLED_APPS contains ('myproject.polls', 'myproject.music'), then get_template('foo.html') will
look for templates in in this order:

❍ /path/to/myproject/polls/templates/foo.html

❍ /path/to/myproject/music/templates/foo.html

Note that the loader performs an optimization when it is first imported: It caches a list of which INSTALLED_APPS packages
have a templates subdirectory.

This loader is enabled by default.

django.template.loaders.eggs.load_template_source

Just like app_directories above, but it loads templates from Python eggs rather than from the filesystem.

This loader is disabled by default; you’ll need to enable it if you’re using eggs to distribute your app.

Django uses the template loaders in order according to the TEMPLATE_LOADERS setting. It uses each loader until a loader finds a
match.

Extending the template system
Although the Django template language comes with several default tags and filters, you might want to write your own, and it’s
easy to do.

First, create a templatetags package in the appropriate Django app’s package. It should be on the same level as models.py
, views.py, etc. For example:

polls/
 models.py
 templatetags/
 views.py

Add two files to the templatetags package: an __init__.py file (to indicate to Python that this is a module containing Python
code) and a file that will contain your custom tag/filter definitions.

The name of the latter file is the name you’ll use to load the tags later. For example, if your custom tags/filters are in a file
called poll_extras.py, you’d do the following in a template:

{% load poll_extras %}

The {% load %} tag looks at your INSTALLED_APPS setting and only allows the loading of template libraries within installed
Django apps. This is a security feature: It allows you to host Python code for many template libraries on a single computer
without enabling access to all of them for every Django installation.

If you write a template library that isn’t tied to any particular models/views, it’s perfectly OK to have a Django app package that
only contains a templatetags package.

There’s no limit on how many modules you put in the templatetags package. Just keep in mind that a {% load %} statement will
load tags/filters for the given Python module name, not the name of the app.

Once you’ve created that Python module, you’ll just have to write a bit of Python code, depending on whether you’re writing
filters or tags.

To be a valid tag library, the module contain a module-level variable named register that is a template.Library instance, in
which all the tags and filters are registered. So, near the top of your module, put the following:

from django import template

register = template.Library()

file:///D|/books/computer/programming/python/books/DJANGO BOOK/10.html (7 of 15)9/28/2007 2:28:08 PM

Chapter 10: Extending the template engine

Behind the scenes

For a ton of examples, read the source code for Django’s default filters and tags. They’re
in django/template/defaultfilters.py and django/template/defaulttags.py, respectively.

The apps in django.contrib also contain numerous examples.

Writing custom template filters
Custom filters are just Python functions that take one or two arguments:

● The value of the variable (input).
● The value of the argument, which this can have a default value, or be left out altogether.

For example, in the filter {{ var|foo:"bar" }}, the filter foo would be passed the variable var and the argument "bar".

Filter functions should always return something. They shouldn’t raise exceptions and should fail silently. If there’s an error, they
should return either the original input or an empty string — whichever makes more sense.

Here’s an example filter definition:

def cut(value, arg):
 "Removes all values of arg from the given string"
 return value.replace(arg, '')

And here’s an example of how that filter would be used:

{{ somevariable|cut:"0" }}

Most filters don’t take arguments. In this case, just leave the argument out of your function:

def lower(value): # Only one argument.
 "Converts a string into all lowercase"
 return value.lower()

When you’ve written your filter definition, you need to register it with your Library instance, to make it available to Django’s
template language:

register.filter('cut', cut)
register.filter('lower', lower)

The Library.filter() method takes two arguments:

1. The name of the filter (a string).
2. The compilation function (a Python function, not the name of the function).

If you’re using Python 2.4 or above, you can use register.filter() as a decorator instead:

@register.filter(name='cut')
def cut(value, arg):
 return value.replace(arg, '')

@register.filter
def lower(value):
 return value.lower()

If you leave off the name argument, as in the second example above, Django will use the function’s name as the filter name.

Writing custom template tags
Tags are more complex than filters, because tags can do nearly anything.

A quick overview

Above, this chapter describes how the template system works in a two-step process: compiling and rendering. To define a custom
template tag, you need to tell Django how to manage both steps when it gets to your tag.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/10.html (8 of 15)9/28/2007 2:28:08 PM

Chapter 10: Extending the template engine

When Django compiles a template, it splits the raw template text into ‘’nodes’‘. Each node is an instance
of django.template.Node and has a render() method. Thus, a compiled template is simply a list of Node objects.

When you call render() on a compiled template, the template calls render() on each Node in its node list, with the given
context. The results are all concatenated together to form the output of the template.

Thus, to define a custom template tag, you specify how the raw template tag is converted into a Node (the compilation function),
and what the node’s render() method does.

Writing the compilation function

For each template tag the template parser encounters, it calls a Python function with the tag contents and the parser object itself.
This function is responsible for returning a Node instance based on the contents of the tag.

For example, let’s write a template tag, {% current_time %}, that displays the current date/time, formatted according to a
parameter given in the tag, in strftime syntax (see http://www.python.org/doc/current/lib/module-time.html#l2h-1941). It’s a
good idea to decide the tag syntax before anything else. In our case, let’s say the tag should be used like this:

<p>The time is {% current_time "%Y-%m-%d %I:%M %p" %}.</p>

Note

Yes, this template tag is redundant; Django’s default {% now %} tag does the same task with simpler syntax. This
one’s just for an example.

The parser for this function should grab the parameter and create a Node object:

from django import template

def do_current_time(parser, token):
 try:
 # split_contents() knows not to split quoted strings.
 tag_name, format_string = token.split_contents()
 except ValueError:
 raise template.TemplateSyntaxError("%r tag requires a single argument" % token.
contents[0])
 return CurrentTimeNode(format_string[1:-1])

There’s actually a lot going here:

● parser is the template parser object. We don’t need it in this example.

● token.contents is a string of the raw contents of the tag. In our example, it’s 'current_time "%Y-%m-%d %I:%M %p"'.

● The token.split_contents() method separates the arguments on spaces while keeping quoted strings together. The more
straightforward token.contents.split() wouldn’t be as robust, as it would naively split on all spaces, including those
within quoted strings. It’s a good idea to always use token.split_contents().

● This function is responsible for raising django.template.TemplateSyntaxError, with helpful messages, for any syntax
error.

● Don’t hard-code the tag’s name in your error messages, because that couples the tag’s name to your
function. token.contents.split()[0] will ‘’always’’ be the name of your tag — even when the tag has no arguments.

● The function returns a CurrentTimeNode (which we’ll create below) containing everything the node needs to know about this
tag. In this case, it just passes the argument — "%Y-%m-%d %I:%M %p". The leading and trailing quotes from the template
tag are removed with format_string[1:-1].

● Template tag compilation functions must return a Node subclass; any other return value is an error.

● The parsing is very low-level. We’ve experimented with writing small frameworks on top of this parsing system (using
techniques such as EBNF grammars) but those experiments made the template engine too slow. Low level is fast.

Writing the template node

The second step in writing custom tags is to define a Node subclass that has a render() method. Continuing the above example,
we need to define CurrentTimeNode:

import datetime

class CurrentTimeNode(template.Node):

 def __init__(self, format_string):
 self.format_string = format_string

 def render(self, context):

file:///D|/books/computer/programming/python/books/DJANGO BOOK/10.html (9 of 15)9/28/2007 2:28:08 PM

http://www.python.org/doc/current/lib/module-time.html#l2h-1941

Chapter 10: Extending the template engine

 return datetime.datetime.now().strftime(self.format_string)

These two functions (__init__ and render) map directly to the two steps in template processing (compilation and rendering).
Thus, the initialization function only needs to store the format string for later use, and the render() function does the real work.

Like template filters, these rendering functions should fail silently instead of raising errors. The only time that template tags are
allowed to raise errors is at compilation time.

Registering the tag

Finally, you need to register the tag with your module’s Library instance, as explained in “Writing custom template filters” above:

register.tag('current_time', do_current_time)

The tag() method takes two arguments:

1. The name of the template tag (string). If this is left out, the name of the compilation function will be used.
2. The compilation function.

As with filter registration, it is also possible to use this as a decorator in Python 2.4 and above:

@register.tag(name="current_time")
def do_current_time(parser, token):
 # ...

@register.tag
def shout(parser, token):
 # ...

If you leave off the name argument, as in the second example above, Django will use the function’s name as the tag name.

Setting a variable in the context

The above example simply output a value. Often it’s useful to set template variables instead of outputting values. That way,
template authors can simply use the values that your template tags create.

To set a variable in the context, just use dictionary assignment on the context object in the render() method. Here’s an updated
version of CurrentTimeNode that sets a template variable current_time instead of outputting it:

class CurrentTimeNode2(template.Node):

 def __init__(self, format_string):
 self.format_string = format_string

 def render(self, context):
 context['current_time'] = datetime.datetime.now().strftime(self.format_string)
 return ''

Note that render() returns the empty string; render() should always return string output, so if all the template tag does is set a
variable, render() should return an empty string.

Here’s how you’d use this new version of the tag:

{% current_time "%Y-%M-%d %I:%M %p" %}
<p>The time is {{ current_time }}.</p>

But, there’s a problem with CurrentTimeNode2: the variable name current_time is hard-coded. This means you’ll need to make
sure your template doesn’t use {{ current_time }} anywhere else, because the {% current_time %} will blindly overwrite that
variable’s value.

A cleaner solution is to make the template tag specify the name of the output variable, like so:

{% get_current_time "%Y-%M-%d %I:%M %p" as my_current_time %}
<p>The current time is {{ my_current_time }}.</p>

To do that, you’ll need to refactor both the compilation function and the Node class, like so:

import re

file:///D|/books/computer/programming/python/books/DJANGO BOOK/10.html (10 of 15)9/28/2007 2:28:08 PM

Chapter 10: Extending the template engine

class CurrentTimeNode3(template.Node):

 def __init__(self, format_string, var_name):
 self.format_string = format_string
 self.var_name = var_name

 def render(self, context):
 context[self.var_name] = datetime.datetime.now().strftime(self.format_string)
 return ''

def do_current_time(parser, token):
 # This version uses a regular expression to parse tag contents.
 try:
 # Splitting by None == splitting by spaces.
 tag_name, arg = token.contents.split(None, 1)
 except ValueError:
 raise template.TemplateSyntaxError("%r tag requires arguments" % token.contents[0])

 m = re.search(r'(.*?) as (\w+)', arg)
 if m:
 format_string, var_name = m.groups()
 else:
 raise template.TemplateSyntaxError("%r tag had invalid arguments" % tag_name)

 if not (format_string[0] == format_string[-1] and format_string[0] in ('"', "'")):
 raise template.TemplateSyntaxError("%r tag's argument should be in quotes" % tag_name)

 return CurrentTimeNode3(format_string[1:-1], var_name)

Now, do_current_time() grabs the format string and the variable name, passing both to CurrentTimeNode3.

Parsing until another block tag

Template tags can work as blocks containing other tags. For example, the standard {% comment %} tag hides everything
until {% endcomment %}.

To create a template tag like this, use parser.parse() in your compilation function.

Here’s how the standard {% comment %} tag is implemented:

def do_comment(parser, token):
 nodelist = parser.parse(('endcomment',))
 parser.delete_first_token()
 return CommentNode()

class CommentNode(template.Node):
 def render(self, context):
 return ''

parser.parse() takes a tuple of names of block tags to parse until. It returns an instance of django.template.NodeList, which
is a list of all Node objects that the parser encountered before it encountered any of the tags named in the tuple.

So in the above example, nodelist is a list of all nodes between the {% comment %} and {% endcomment %}, not
counting {% comment %} and {% endcomment %} themselves.

After parser.parse() is called, the parser hasn’t yet “consumed” the {% endcomment %} tag, so the code needs to explicitly
call parser.delete_first_token() to prevent that tag from being processed twice.

Then, CommentNode.render() simply returns an empty string. Anything between {% comment %} and {% endcomment %} is
ignored.

Parsing until another block tag and saving contents

In the previous example, do_comment() discarded everything between {% comment %} and {% endcomment %}. Instead of doing
that, it’s possible to do something with the code between block tags.

For example, here’s a custom template tag, {% upper %}, that capitalizes everything between itself and {% endupper %}:

{% upper %}
 This will appear in uppercase, {{ your_name }}.
{% endupper %}

file:///D|/books/computer/programming/python/books/DJANGO BOOK/10.html (11 of 15)9/28/2007 2:28:08 PM

Chapter 10: Extending the template engine

As in the previous example, we’ll use parser.parse(). This time, we pass the resulting nodelist to the Node:

@register.tag
def do_upper(parser, token):
 nodelist = parser.parse(('endupper',))
 parser.delete_first_token()
 return UpperNode(nodelist)

class UpperNode(template.Node):

 def __init__(self, nodelist):
 self.nodelist = nodelist

 def render(self, context):
 output = self.nodelist.render(context)
 return output.upper()

The only new concept here is the self.nodelist.render(context) in UpperNode.render().

For more examples of complex rendering, see the source code for {% if %}, {% for %}, {% ifequal %} and {% ifchanged %}.
They live in django/template/defaulttags.py.

Shortcut for simple tags

Many template tags take a single argument — a string or a template variable reference — and return a string after doing some
processing based solely on the input argument and some external information. For example, the current_time tag we wrote
above is of this variety: we give it a format string, it returns the time as a string.

To ease the creation of the types of tags, Django provides a helper function, simple_tag. This function, which is a method
of django.template.Library, takes a function that accepts one argument, wraps it in a render function and the other necessary
bits mentioned above and registers it with the template system.

Our earlier current_time function could thus be written like this:

def current_time(format_string):
 return datetime.datetime.now().strftime(format_string)

register.simple_tag(current_time)

In Python 2.4, the decorator syntax also works:

@register.simple_tag
def current_time(token):
 ...

A couple of things to notice about the simple_tag helper function:

● Only the (single) argument is passed into our function.
● Checking for the required number of arguments has already been done by the time our function is called, so we don’t need

to do that.
● The quotes around the argument (if any) have already been stripped away, so we just receive a plain string.

Inclusion tags

Another common type of template tag is the type that displays some data by rendering another template.

For example, Django’s admin interface uses custom template tags to display the buttons along the bottom of the “add/change”
form pages. Those buttons always look the same, but the link targets change depending on the object being edited. They’re a
perfect case for using a small template that is filled with details from the current object.

These sorts of tags are called inclusion tags.

Writing inclusion tags is probably best demonstrated by example. Let’s write a tag that outputs a list of choices for a simple
multiple-choice Poll object. We’ll use the tag like this:

{% show_results poll %}

…and the output will be something like this:

file:///D|/books/computer/programming/python/books/DJANGO BOOK/10.html (12 of 15)9/28/2007 2:28:08 PM

Chapter 10: Extending the template engine

 First choice
 Second choice
 Third choice

First, we define the function that takes the argument and produces a dictionary of data for the result. Notice that we only need to
return a dictionary, not anything more complex. This will be used as the context for the template fragment:

def show_results(poll):
 choices = poll.choice_set.all()
 return {'choices': choices}

Next, we create the template used to render the tag’s output. Following our example, the template is very simple:

{% for choice in choices %}
 {{ choice }}
{% endfor %}

Finally, we create and register the inclusion tag by calling the inclusion_tag() method on a Library object.

Following our example, if the above template is in a file called polls/result_snippet.html, we’d register the tag like this:

register.inclusion_tag('polls/result_snippet.html')(show_results)

As always, Python 2.4 decorator syntax works as well, so we could have instead written:

@register.inclusion_tag('results.html')
def show_results(poll):
 ...

Sometimes, your inclusion tags need access to the context in the parent template.

To solve this, Django provides a takes_context option for inclusion tags. If you specify takes_context in creating a template
tag, the tag will have no required arguments, and the underlying Python function will have one argument — the template context
as of when the tag was called.

For example, say you’re writing an inclusion tag that will always be used in a context that contains home_link and home_title
variables that point back to the main page. Here’s what the Python function would look like:

@register.inclusion_tag('link.html', takes_context=True)
def jump_link(context):
 return {
 'link': context['home_link'],
 'title': context['home_title'],
 }

Note

The first parameter to the function must be called context.

The template link.html might contain:

Jump directly to {{ title }}.

Then, any time you want to use that custom tag, load its library and call it without any arguments, like so:

{% jump_link %}

Note that when you’re using takes_context=True, there’s no need to pass arguments to the template tag. It automatically gets
access to the context.

Writing custom template loaders
Django’s built-in template loaders will usually cover all your template-loading needs, but it’s pretty easy to write your own if you

file:///D|/books/computer/programming/python/books/DJANGO BOOK/10.html (13 of 15)9/28/2007 2:28:08 PM

Chapter 10: Extending the template engine

need special loading logic.

A template loader — that is, each entry in the TEMPLATE_LOADERS settings — is expected to be a callable with this interface:

load_template_source(template_name, template_dirs=None)

The template_name argument is the name of the template to load (as passed to loader.get_template()
or loader.select_template()), and template_dirs is an optional list of directories to search instead of TEMPLATE_DIRS.

If a loader is able to successfully load a template, it should return a tuple: (template_source, template_path).
Here, template_source is the template string which will be compiled by the template engine, and template_path is the path the
template was loaded from. That path might be shown to the user for debugging purposes, so it should quickly identify where the
template was loaded from.

If the loader is unable to load a template, it should raise django.template.TemplateDoesNotExist.

Each loader function should also have an is_usable function attribute. This is a boolean that informs the template engine
whether or not this loader is available in the current Python installation.

For example, the eggs loader (which is capable of loading templates from Python eggs) sets is_usable to False if
the pkg_resources module isn’t installed, because pkg_resources is necessary to read data from eggs.

An example should help clarify all of this. Here’s a template loader function that can load templates from a ZIP file. It uses a
custom setting, TEMPLATE_ZIP_FILES as a search path instead of TEMPLATE_DIRS, and expects each item on that path to be a ZIP
file containing templates:

import zipfile
from django.conf import settings
from django.template import TemplateDoesNotExist

def load_template_source(template_name, template_dirs=None):
 """Template loader that loads templates from a ZIP file."""

 # Lookup ZIP file list from settings if it's not already given.
 if template_zipfiles is None:
 template_zipfiles = getattr(settings, "TEMPLATE_ZIP_FILES", [])

 # Try each ZIP file in TEMPLATE_ZIP_FILES.
 for fname in template_zipfiles:
 try:
 z = zipfile.ZipFile(fname)
 source = z.read(template_name)
 except (IOError, KeyError):
 continue

 # We found a template, so return the source.
 template_path = "%s:%s" % (fname, template_name)
 return (source, template_path)

 # If we reach here, the template couldn't be loaded
 raise TemplateDoesNotExist(template_name)

This loader is always usable (since zipfile is a Python standard library function)
load_template_source.is_usable = True

The only step left if we wanted to use this loader is to add it to the TEMPLATE_LOADERS setting. If we put this code in a module
called myproject.zip_loader, then we’d add myproject.zip_loader.load_template_source to TEMPLATE_LOADERS.

Using the built-in template reference
Django’s admin interface includes a complete reference of all template tags and filters available for a given site. It’s designed to
be a tool that Django programmers give to template developers. To see it, go to your admin interface and click the
“Documentation” link in the upper right of the page.

The reference is divided into 4 sections: tags, filters, models, and views.

The tags and filters sections describe all the built-in tags (in fact, the tag and filter references below come directly from those
pages) as well as any custom tag or filter libraries available.

The views page is the most valuable. Each URL in your site has a separate entry here, and clicking on a URL will show you:

● The name of the view function that generates that view.
● A short description of what the view does.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/10.html (14 of 15)9/28/2007 2:28:08 PM

Chapter 10: Extending the template engine

● The context, or a list of variables available in the view’s template.
● The name of the template or templates that are used for that view.

Each view documentation page also has a bookmarklet that you can use to jump from any page to the documentation page for
that view.

Because Django-powered sites usually use database objects, the models section of the documentation page describes each type
of object in the system along with all the fields available on that object.

Taken together, the documentation pages should tell you every tag, filter, variable and object available to you in a given template.

Configuring the template system in standalone mode

Note

This section is only of interest to people trying to use the template system as an output component in another
application. If you are using the template system as part of a Django application, nothing here applies to you.

Normally, Django will load all the configuration information it needs from its own default configuration file, combined with the
settings in the module given in the DJANGO_SETTINGS_MODULE environment variable. But if you’re using the template system
independently of the rest of Django, the environment variable approach isn’t very convenient, because you probably want to
configure the template system in line with the rest of your application rather than dealing with settings files and pointing to them
via environment variables.

To solve this problem, you need to use the manual configuration option described in Appendix XXX.

Simply import the appropriate pieces of the template system and then, before you call any of the template functions,
call django.conf.settings.configure() with any settings you wish to specify.

You might want to consider setting at least TEMPLATE_DIRS (if you are going to use template loaders), DEFAULT_CHARSET
(although the default of utf-8 is probably fine) and TEMPLATE_DEBUG. All available settings are described in the Chapter XXX, and
any setting starting with TEMPLATE_ is of obvious interest.

« previous ◊ table of contents ◊ next »
Copyright 2006 Adrian Holovaty and Jacob Kaplan-Moss.
This work is licensed under the GNU Free Document License.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/10.html (15 of 15)9/28/2007 2:28:08 PM

http://www.djangobook.com/en/beta/chapter09/
http://www.djangobook.com/en/beta/
http://www.djangobook.com/en/beta/chapter11/
http://www.djangobook.com/license/

The Django Book
« previous ◊ table of contents ◊ next »

Chapter 11: Generating non-HTML content
Usually when we talk about developing web sites, we’re talking about producing some flavor of HTML. Of course, there’s a lot
more to the web than HTML, though; we use the web to distribute all kinds of content, not just HTML.

Until this point, we’ve focused just on the common case of HTML production, but in this chapter we’ll take a detour and look at
using Django to produce other types of content.

Django has convenient built-in tools that you can use to produce some common non-HTML content:

● RSS/Atom syndication feeds.
● Sitemaps — consumed by Google, Yahoo and Microsoft’s search engines.
● JSON and XML serialized representations of models (usually used for AJAX functions).

We’ll cover each of those tools a little later on, but first, some basics.

The basics
Remember this from Chapter 3?

A view function, or view for short, is simply a Python function that takes a Web request and returns a Web
response. This response can be the HTML contents of a Web page, or a redirect, or a 404 error, or an XML
document, or an image…or anything, really.

More formally, a Django view function must:

● Accept an HttpRequest instance as its first argument, and

● return an HttpResponse instance.

The key to returning non-HTML content from a view lies in the HttpResponse class, and specifically the mimetype constructor
argument. By tweaking the mime-type, we can indicate to the browser that we’ve returned an object of a different type.

For a very simple example, let’s look at a view that returns a PNG image. To keep things simple, we’ll just read the file off the
disk:

from django.http import HttpResponse

def my_image(request):
 image_data = open("/path/to/my/image.png", "rb").read()
 return HttpResponse(image_data, mimetype="image/png")

That’s it! If you replace the image path in the open() call with a path to a real image, you can use this very simple view to serve
an image, and the browser will display it correctly.

The other important thing to keep in mind is that HttpResponse objects implement Python’s standard file API. This means that
you can pass in an HttpResponse instance to any place Python (or a third-party library) expects a file.

For an example of how that works, let’s take a look at producing CSV with Django.

Producing CSV
CSV is a simple data format usually used by spreadsheet software. It’s basically a series of table rows, with each cell in the row
separated by commas (CSV stands for “Comma Separated Values”). For example, here’s a list of the number of “unruly” airline
passengers over the last 10 years, as compiled by the FAA:

Year,Unruly Airline Passengers
1995,146
1996,184
1997,235
1998,200
1999,226
2000,251
2001,299

Chapter 11: Outputting non-HTML content

file:///D|/books/computer/programming/python/books/DJANGO BOOK/11.html (1 of 12)9/28/2007 2:28:28 PM

http://www.djangobook.com/en/beta/chapter10/
http://www.djangobook.com/en/beta/
http://www.djangobook.com/en/beta/chapter12/

Chapter 11: Outputting non-HTML content

2002,273
2003,281
2004,304
2005,203

Note

See http://www.faa.gov/data_statistics/passengers_cargo/unruly_passengers/ for the source of this data.

Unfortunately, CSV It’s not a format that’s ever been formally defined; different pieces of software produce and consume different
variants of CSV, making it a bit tricky to use. Luckily, Python comes with a standard CSV library, csv, that is pretty much
bulletproof.

The key to using this library with Django is that the csv module’s CSV-creation capability acts on file-like objects, and
Django’s HttpResponse objects are file-like objects:

import csv
from django.http import HttpResponse

Number of unruly passengers each year 1995 - 2005
UNRULY_PASSENGERS = [146,184,235,200,226,251,299,273,281,304,203]

def unruly_passengers_csv(request):
 # Create the HttpResponse object with the appropriate CSV header.
 response = HttpResponse(mimetype='text/csv')
 response['Content-Disposition'] = 'attachment; filename=unruly.csv'

 # Create the CSV writer using the HttpResponse as the "file"
 writer = csv.writer(response)
 writer.writerow(['Year', 'Unruly Airline Passengers'])
 for (year, num) in zip(range(1995, 2006), UNRULY_PASSENGERS):
 writer.writerow([year, num])

 return response

The code and comments should be pretty clear, but a few things deserve a mention:

● The response is given the text/csv mime-type. This tells browsers that the document is a CSV file, rather than an HTML file.

● The response gets an additional Content-Disposition header, which contains the name of the CSV file. This header (well,
the “attachment” part) will instruct the browser to prompt for a location to save the file (instead of just displaying it). This
filename is arbitrary; call it whatever you want. It’ll be used by browsers in the “Save as…” dialogue

● Hooking into the CSV-generation API is easy: Just pass response as the first argument to csv.writer. The csv.writer
function expects a file-like object, and HttpResponse objects fit the bill.

● For each row in your CSV file, call writer.writerow, passing it an iterable object such as a list or tuple.

● The CSV module takes care of quoting for you, so you don’t have to worry about escaping strings with quotes or commas in
them. Just pass information to writerow(), and it’ll do the right thing.

You’ll usually repeat this pattern — create an HttpResponse response object (with a special mime-type), pass it to something
expecting a file, then return the response — any time you generate non-HTML content.

Let’s look at a few more examples:

Generating PDFs
PDF (Portable Document Format) is a format developed by Adobe that’s used to represent printable documents, complete with
pixel-perfect formatting, embedded fonts, and 2D vector graphics. You can think of a PDF document as the digital equivalent of a
printed document; indeed, PDFs are usually used when you need to give a document to someone else to print.

You can easily generate PDFs with Python and Django thanks to the excellent excellent open-source ReportLab library (http://
www.reportlab.org/rl_toolkit.html).

The advantage of generating PDF files dynamically is that you can create customized PDFs for different purposes — say, for
different users or different pieces of content.

For example, we used Django and ReportLab at KUSports.com to generate customized, printer-ready NCAA tournament brackets
for people participating in a March Madness (college basketball) contest.

Installing ReportLab
Before you do any PDF generation, however, you’ll need to install ReportLab. It’s usually pretty simple: just download and install

file:///D|/books/computer/programming/python/books/DJANGO BOOK/11.html (2 of 12)9/28/2007 2:28:28 PM

http://www.faa.gov/data_statistics/passengers_cargo/unruly_passengers/
http://www.reportlab.org/rl_toolkit.html
http://www.reportlab.org/rl_toolkit.html

Chapter 11: Outputting non-HTML content

the library from http://www.reportlab.org/downloads.html.

The user guide (not coincidentally, a PDF file) at http://www.reportlab.org/rsrc/userguide.pdf has additional help on installation.

Note

If you’re using a modern Linux distribution, you might want to check your package management utility before
installing ReportLab by hand; most package repositories have added ReportLab.

For example, if you’re using the (excellent) Ubuntu distribution, a simple aptitude install python-reportlab will
do the trick nicely.

Test your installation by importing it in the Python interactive interpreter:

>>> import reportlab

If that command doesn’t raise any errors, the installation worked.

Writing your view
Again, key to generating PDFs dynamically with Django is that the ReportLab API acts on file-like objects, and
Django’s HttpResponse objects are file-like objects.

Here’s a “Hello World” example:

from reportlab.pdfgen import canvas
from django.http import HttpResponse

def hello_pdf(request):
 # Create the HttpResponse object with the appropriate PDF headers.
 response = HttpResponse(mimetype='application/pdf')
 response['Content-Disposition'] = 'attachment; filename=hello.pdf'

 # Create the PDF object, using the response object as its "file."
 p = canvas.Canvas(response)

 # Draw things on the PDF. Here's where the PDF generation happens.
 # See the ReportLab documentation for the full list of functionality.
 p.drawString(100, 100, "Hello world.")

 # Close the PDF object cleanly, and we're done.
 p.showPage()
 p.save()
 return response

Like above, a few notes are in order:

● Here we use the application/pdf mime-type. This tells browsers that the document is a PDF file, rather than an HTML file.
If you leave this off, browsers will probably interpret the output as HTML, which will result in scary gobbledygook in the
browser window.

● Hooking into the ReportLab API is easy: Just pass response as the first argument to canvas.Canvas. The Canvas class
expects a file-like object, and HttpResponse objects fit the bill.

● All subsequent PDF-generation methods are called on the PDF object (in this case, p) — not on response.

● Finally, it’s important to call showPage() and save() on the PDF file (or else you’ll end up with a corrupted PDF file).

Complex PDFs
If you’re creating a complex PDF document with ReportLab, consider using the cStringIO library as a temporary holding place for
your PDF file. The cStringIO library provides a file-like object interface that is particularly efficient (much more so than the
naive HttpResponse-as-file implementation).

Here’s the above “Hello World” example rewritten to use cStringIO:

from cStringIO import StringIO
from reportlab.pdfgen import canvas
from django.http import HttpResponse

def hello_pdf(request):
 # Create the HttpResponse object with the appropriate PDF headers.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/11.html (3 of 12)9/28/2007 2:28:28 PM

http://www.reportlab.org/downloads.html
http://www.reportlab.org/rsrc/userguide.pdf

Chapter 11: Outputting non-HTML content

 response = HttpResponse(mimetype='application/pdf')
 response['Content-Disposition'] = 'attachment; filename=hello.pdf'

 buffer = StringIO()

 # Create the PDF object, using the StringIO object as its "file."
 p = canvas.Canvas(buffer)

 # Draw things on the PDF. Here's where the PDF generation happens.
 # See the ReportLab documentation for the full list of functionality.
 p.drawString(100, 100, "Hello world.")

 # Close the PDF object cleanly.
 p.showPage()
 p.save()

 # Get the value of the StringIO buffer and write it to the response.
 response.write(buffer.getvalue())
 return response

Other possibilities
There’s a whole world of other types of content you can generate in Python. Here are a few more ideas, and some pointers to
libraries you could use to implement them:

● Generating ZIP files: Python’s standard library ships with the zipfile module, which can both read and write compressed
ZIP files. You could use it to provide on-demand archives of a bunch of files, or perhaps compress large documents when
requested. You could similarly produce TAR files using the standard library tarfile module.

● Dynamic image generation: the Python Imaging Library (http://www.pythonware.com/products/pil/) is a fantastic toolkit
for producing images (PNG, JPEG, GIF, and a whole lot more). You could use it to automatically scale down images into
thumbnails, composite multiple images into a single frame, or even do web-based image processing.

● Plots and charts: there are a number of incredibly powerful Python plotting and charting libraries you could use to produce
on-demand maps, charts, plots, and graphs. We can’t possibly list them all, so here are a couple of the highlights:

❍ matplotlib (http://matplotlib.sourceforge.net/), which can be used to produce the type of high-quality plots usually
generated with MatLab or Mathematica.

❍ pygraphviz (https://networkx.lanl.gov/wiki/pygraphviz), an interface to the Graphviz graph layout toolkit (http://
graphviz.org/), used for generating structured diagrams of graphs and networks.

In general, any Python library capable of writing to a file can be hooked into Django; the possibilities really are endless.

Now that we’ve looked at the basics of generating non-HTML content, let’s step up a level of abstraction. Django ships with some
pretty nifty built-in tools for generating some common types of non-HTML content.

The syndication feed framework
Django comes with a high-level syndication-feed-generating framework that makes creating RSS and Atom feeds easy.

What’s RSS? What’s Atom?

RSS and Atom are both XML-based formats you can use to provide automatically updating “feeds” of your site’s
content. Read more about RSS at http://www.whatisrss.com/, and more about Atom at http://www.atomenabled.
org/.

To create any syndication feed, all you have to do is write a short Python class. You can create as many feeds as you want.

Django also comes with a lower-level feed-generating API. Use this if you want to generate feeds outside of a Web context, or in
some other lower-level way.

The high-level framework

Overview

The high-level feed-generating framework is a view that’s hooked to /feeds/ by default. Django uses the remainder of the URL
(everything after /feeds/) to determine which feed to output.

To create a feed, just write a Feed class and point to it in your URLconf (see Chapters 3 and 8 fore more about URLconfs).

file:///D|/books/computer/programming/python/books/DJANGO BOOK/11.html (4 of 12)9/28/2007 2:28:28 PM

http://www.pythonware.com/products/pil/
http://matplotlib.sourceforge.net/
https://networkx.lanl.gov/wiki/pygraphviz
http://graphviz.org/
http://graphviz.org/
http://www.whatisrss.com/
http://www.atomenabled.org/
http://www.atomenabled.org/

Chapter 11: Outputting non-HTML content

Initialization

To activate syndication feeds on your Django site, add this line to your URLconf:

(r'^feeds/(?P<url>.*)/$', 'django.contrib.syndication.views.feed', {'feed_dict': feeds}),

This tells Django to use the RSS framework to handle all URLs starting with "feeds/". (You can change that "feeds/" prefix to fit
your own needs.)

This URLconf line has an extra argument: {'feed_dict': feeds}. Use this extra argument to pass the syndication framework
the feeds that should be published under that URL.

Specifically, feed_dict should be a dictionary that maps a feed’s slug (short URL label) to its Feed class.

You can define the feed_dict in the URLconf itself. Here’s a full example URLconf:

from django.conf.urls.defaults import *
from myproject.feeds import LatestEntries, LatestEntriesByCategory

feeds = {
 'latest': LatestEntries,
 'categories': LatestEntriesByCategory,
}

urlpatterns = patterns('',
 # ...
 (r'^feeds/(?P<url>.*)/$', 'django.contrib.syndication.views.feed',
 {'feed_dict': feeds}),
 # ...
)

The above example registers two feeds:

● The feed represented by LatestEntries will live at feeds/latest/.

● The feed represented by LatestEntriesByCategory will live at feeds/categories/.

Once that’s set up, you just need to define the Feed classes themselves.

Feed classes

A Feed class is a simple Python class that represents a syndication feed. A feed can be simple (e.g., a “site news” feed, or a basic
feed displaying the latest entries of a blog) or more complex (e.g., a feed displaying all the blog entries in a particular category,
where the category is variable).

Feed classes must subclass django.contrib.syndication.feeds.Feed. They can live anywhere in your code tree.

A simple example

This simple example, taken from chicagocrime.org, describes a feed of the latest five news items:

from django.contrib.syndication.feeds import Feed
from chicagocrime.models import NewsItem

class LatestEntries(Feed):
 title = "Chicagocrime.org site news"
 link = "/sitenews/"
 description = "Updates on changes and additions to chicagocrime.org."

 def items(self):
 return NewsItem.objects.order_by('-pub_date')[:5]

The important things to notice here:

● The class subclasses django.contrib.syndication.feeds.Feed.

● title, link and description correspond to the standard RSS <title>, <link> and <description> elements, respectively.

● items() is simply a method that returns a list of objects that should be included in the feed as <item> elements. Although
this example returns NewsItem objects using Django’s database API, items() doesn’t have to return model instances.

You do get a few bits of functionality “for free” by using Django models, but items() can return any type of object you want.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/11.html (5 of 12)9/28/2007 2:28:28 PM

Chapter 11: Outputting non-HTML content

There’s just one more step. In an RSS feed, each <item> has a <title>, <link> and <description>. We need to tell the
framework what data to put into those elements.

● To specify the contents of <title> and <description>, create Django templates (see Chapter 4)
called feeds/latest_title.html and feeds/latest_description.html, where latest is the slug specified in the URLconf
for the given feed.

Note that the .html extension is required.

The RSS system renders that template for each item, passing it two template context variables:

obj

The current object (one of whichever objects you returned in items()).

site

A django.models.core.sites.Site object representing the current site. This is useful for {{ site.domain }}
or {{ site.name }}.

If you don’t create a template for either the title or description, the framework will use the template "{{ obj }}" by default
— that is, the normal string representation of the object.

You can also change the names of these two templates by specifying title_template and description_template as
attributes of your Feed class.

● To specify the contents of <link>, you have two options. For each item in items(), Django first tries executing
a get_absolute_url() method on that object. If that method doesn’t exist, it tries calling a method item_link() in the Feed
class, passing it a single parameter, item, which is the object itself.

Both get_absolute_url() and item_link() should return the item’s URL as a normal Python string.

● For the LatestEntries example above, we could have very simple feed templates. latest_title.html contains:

{{ obj.title }}

and latest_description.html contains:

{{ obj.description }}

It’s almost too easy…

A complex example

The framework also supports more complex feeds, via parameters.

For example, chicagocrime.org offers an RSS feed of recent crimes for every police beat in Chicago. It’d be silly to create a
separate Feed class for each police beat; that would violate the DRY (Don’t Repeat Yourself) principle and would couple data to
programming logic.

Instead, the syndication framework lets you make generic feeds that output items based on information in the feed’s URL.

On chicagocrime.org, the police-beat feeds are accessible via URLs like this:

● /rss/beats/0613/ — Returns recent crimes for beat 0613.

● /rss/beats/1424/ — Returns recent crimes for beat 1424.

The slug here is "beats". The syndication framework sees the extra URL bits after the slug — 0613 and 1424 — and gives you a
hook to tell it what those URL bits mean, and how they should influence which items get published in the feed.

An example makes this clear. Here’s the code for these beat-specific feeds:

from django.core.exceptions import ObjectDoesNotExist

class BeatFeed(Feed):
 def get_object(self, bits):
 # In case of "/rss/beats/0613/foo/bar/baz/", or other such
 # clutter, check that bits has only one member.
 if len(bits) != 1:
 raise ObjectDoesNotExist
 return Beat.objects.get(beat__exact=bits[0])

file:///D|/books/computer/programming/python/books/DJANGO BOOK/11.html (6 of 12)9/28/2007 2:28:28 PM

Chapter 11: Outputting non-HTML content

 def title(self, obj):
 return "Chicagocrime.org: Crimes for beat %s" % obj.beat

 def link(self, obj):
 return obj.get_absolute_url()

 def description(self, obj):
 return "Crimes recently reported in police beat %s" % obj.beat

 def items(self, obj):
 crimes = Crime.objects.filter(beat__id__exact=obj.id)
 return crimes.order_by('-crime_date')[:30]

Here’s the basic algorithm the RSS framework follows, given this class and a request to the URL /rss/beats/0613/:

1. The framework gets the URL /rss/beats/0613/ and notices there’s an extra bit of URL after the slug. It splits that
remaining string by the slash character ("/") and calls the Feed class’ get_object() method, passing it the bits.

In this case, bits is ['0613']. For a request to /rss/beats/0613/foo/bar/, bits would be ['0613', 'foo', 'bar'].

2. get_object() is responsible for retrieving the given beat, from the given bits.

In this case, it uses the Django database API to retrieve the beat. Note that get_object() should
raise django.core.exceptions.ObjectDoesNotExist if given invalid parameters. There’s no try/except around
the Beat.objects.get() call, because it’s not necessary; that function raises Beat.DoesNotExist on failure,
and Beat.DoesNotExist is a subclass of ObjectDoesNotExist. Raising ObjectDoesNotExist in get_object() tells Django
to produce a 404 error for that request.

3. To generate the feed’s <title>, <link> and <description>, Django uses the title(), link() and description()
methods. In the previous example, they were simple string class attributes, but this example illustrates that they can be
either strings or methods. For each of title, link and description, Django follows this algorithm:

1. First, it tries to call a method, passing the obj argument, where obj is the object returned by get_object().

2. Failing that, it tries to call a method with no arguments.
3. Failing that, it uses the class attribute.

4. Finally, note that items() in this example also takes the obj argument. The algorithm for items is the same as described in
the previous step — first, it tries items(obj), then items(), then finally an items class attribute (which should be a list).

Full documentation on all the methods and attributes of Feed classes is always available from the official Django documentation;
see http://www.djangoproject.com/documentation/syndication/.

Specifying the type of feed

By default, feeds produced in by framework use RSS 2.0.

To change that, add a feed_type attribute to your Feed class:

from django.utils.feedgenerator import Atom1Feed

class MyFeed(Feed):
 feed_type = Atom1Feed

Note that you set feed_type to a class object, not an instance. Currently available feed types are:

Feed class Format
django.utils.feedgenerator.Rss201rev2Feed RSS 2.01 (default).
django.utils.feedgenerator.RssUserland091Feed RSS 0.91.
django.utils.feedgenerator.Atom1Feed Atom 1.0.

Enclosures

To specify enclosures, such as those used in creating podcast feeds, use the item_enclosure_url, item_enclosure_length
and item_enclosure_mime_type hooks. For example:

from myproject.models import Song

class MyFeedWithEnclosures(MyFeed):
 title = "Example feed with enclosures"
 link = "/feeds/example-with-enclosures/"

file:///D|/books/computer/programming/python/books/DJANGO BOOK/11.html (7 of 12)9/28/2007 2:28:28 PM

http://www.djangoproject.com/documentation/syndication/

Chapter 11: Outputting non-HTML content

 def items(self):
 return Song.objects.all()[:30]

 def item_enclosure_url(self, item):
 return item.song_url

 def item_enclosure_length(self, item):
 return item.song_length

 item_enclosure_mime_type = "audio/mpeg"

This assumes, of course, you’ve created a Song object with song_url and song_length (i.e. the size in bytes) fields.

Language

Feeds created by the syndication framework automatically include the appropriate <language> tag (RSS 2.0) or xml:lang
attribute (Atom). This comes directly from your LANGUAGE_CODE setting.

URLs

The link method/attribute can return either an absolute URL (e.g. "/blog/") or a URL with the fully-qualified domain and
protocol (e.g. "http://www.example.com/blog/"). If link doesn’t return the domain, the syndication framework will insert the
domain of the current site, according to your SITE_ID setting.

Atom feeds require a <link rel="self"> that defines the feed’s current location. The syndication framework populates this
automatically, using the domain of the current site according to the SITE_ID setting.

Publishing Atom and RSS feeds in tandem

Some developers like to make available both Atom and RSS versions of their feeds. That’s easy to do with Django: Just create a
subclass of your feed class and set the feed_type to something different. Then update your URLconf to add the extra versions.

Here’s a full example:

from django.contrib.syndication.feeds import Feed
from chicagocrime.models import NewsItem
from django.utils.feedgenerator import Atom1Feed

class RssSiteNewsFeed(Feed):
 title = "Chicagocrime.org site news"
 link = "/sitenews/"
 description = "Updates on changes and additions to chicagocrime.org."

 def items(self):
 return NewsItem.objects.order_by('-pub_date')[:5]

class AtomSiteNewsFeed(RssSiteNewsFeed):
 feed_type = Atom1Feed

And the accompanying URLconf:

from django.conf.urls.defaults import *
from myproject.feeds import RssSiteNewsFeed, AtomSiteNewsFeed

feeds = {
 'rss': RssSiteNewsFeed,
 'atom': AtomSiteNewsFeed,
}

urlpatterns = patterns('',
 # ...
 (r'^feeds/(?P<url>.*)/$', 'django.contrib.syndication.views.feed',
 {'feed_dict': feeds}),
 # ...
)

The sitemap framework
Django also comes with a high-level Sitemap generating framework that’s similar to the syndication framework.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/11.html (8 of 12)9/28/2007 2:28:28 PM

Chapter 11: Outputting non-HTML content

A Sitemap is an XML file on your Web site that tells search-engine indexers how frequently your pages change and how
“important” certain pages are in relation to other pages on your site. This information helps search engines index your site.

For more on Sitemaps, see http://www.sitemaps.org/.

The Django sitemap framework automates the creation of this XML file by letting you express this information in Python code. To
create a sitemap, you just need to write a Sitemap class and point to it in your URLconf.

Installation
To install the sitemap app, follow these steps:

1. Add 'django.contrib.sitemaps' to your INSTALLED_APPS setting.

2. Make sure 'django.template.loaders.app_directories.load_template_source' is in your TEMPLATE_LOADERS setting.
It’s in there by default, so you’ll only need to change this if you’ve changed that setting.

3. Make sure you’ve installed the sites framework (see Chapter 15).

Note

The sitemap application doesn’t install any database tables. The only reason it needs to go into INSTALLED_APPS is
so that the load_template_source template loader can find the default templates.

Initialization
To activate sitemap generation on your Django site, add this line to your URLconf:

(r'^sitemap.xml$', 'django.contrib.sitemaps.views.sitemap', {'sitemaps': sitemaps})

This tells Django to build a sitemap when a client accesses /sitemap.xml.

The name of the sitemap file is not important, but the location is. Search engines will only index links in your sitemap for the
current URL level and below. For instance, if sitemap.xml lives in your root directory, it may reference any URL in your site.
However, if your sitemap lives at /content/sitemap.xml, it may only reference URLs that begin with /content/.

The sitemap view takes an extra, required argument: {'sitemaps': sitemaps}. sitemaps should be a dictionary that maps a
short section label (e.g., blog or news) to its Sitemap class (e.g., BlogSitemap or NewsSitemap). It may also map to an instance
of a Sitemap class (e.g., BlogSitemap(some_var)).

Sitemap classes
A Sitemap class is a simple Python class that represents a “section” of entries in your sitemap. For example, one Sitemap class
could represent all the entries of your weblog, while another could represent all of the events in your events calendar.

In the simplest case, all these sections get lumped together into one sitemap.xml, but it’s also possible to use the framework to
generate a sitemap index that references individual sitemap files, one per section. (See below.)

Sitemap classes must subclass django.contrib.sitemaps.Sitemap. They can live anywhere in your code tree.

For example, let’s assume you have a blog system, with an Entry model, and you want your sitemap to include all the links to
your individual blog entries. Here’s how your sitemap class might look:

from django.contrib.sitemaps import Sitemap
from mysite.blog.models import Entry

class BlogSitemap(Sitemap):
 changefreq = "never"
 priority = 0.5

 def items(self):
 return Entry.objects.filter(is_draft=False)

 def lastmod(self, obj):
 return obj.pub_date

After looking at the syndication framework this should look pretty familiar:

● changefreq and priority are class attributes corresponding to <changefreq> and <priority> elements, respectively. They
can be made callable as functions, as lastmod was in the example.

● items() is simply a method that returns a list of objects. The objects returned will get passed to any callable methods
corresponding to a sitemap property (location, lastmod, changefreq, and priority).

file:///D|/books/computer/programming/python/books/DJANGO BOOK/11.html (9 of 12)9/28/2007 2:28:28 PM

http://www.sitemaps.org/

Chapter 11: Outputting non-HTML content

● lastmod should return a Python datetime object.

● There is no location method in this example, but you can provide it in order to specify the URL for your object. By
default, location() calls get_absolute_url() on each object and returns the result.

Sitemap methods/attributes
Like Feed classes, Sitemap members can be either methods or attributes; see the steps under “A complex example”, above, for
more about how this works.

A Sitemap class can define the following methods/attributes:

items (required)
Provides list of objects. The framework doesn’t care what type of objects they are; all that matters is that these objects get
passed to the location(), lastmod(), changefreq() and priority() methods.

location (optional)

Gives he absolute URL for a given object,

Here, “absolute URL” means a URL that doesn’t include the protocol or domain. Examples:

❍ Good: '/foo/bar/'

❍ Bad: 'example.com/foo/bar/'

❍ Bad: 'http://example.com/foo/bar/'

If location isn’t provided, the framework will call the get_absolute_url() method on each object as returned by items().

lastmod (optional)
The object’s “last modification” date, as a Python datetime object.

changefreq (optional)

How often the object changes. Possible values (as given by the Sitemaps spec) are:

❍ 'always'

❍ 'hourly'

❍ 'daily'

❍ 'weekly'

❍ 'monthly'

❍ 'yearly'

❍ 'never'

priority (optional)
A suggested indexing priority, between 0.0 and 1.0. The default priority of a page is 0.5; see the sitemaps.org documentation
for more about how priority works.

Shortcuts
The sitemap framework provides a couple convenience classes for common cases:

FlatPageSitemap

The django.contrib.sitemaps.FlatPageSitemap class looks at all flat pages defined for the current site and creates an entry in
the sitemap. These entries include only the location attribute — not lastmod, changefreq or priority.

See Chapter 15 for more about flat pages.

GenericSitemap

The GenericSitemap class works with any generic views (see Chapter 9) you already have.

To use it, create an instance, passing in the same info_dict you pass to the generic views. The only requirement is that the
dictionary have a queryset entry. It may also have a date_field entry that specifies a date field for objects retrieved from
the queryset. This will be used for the lastmod attribute in the generated sitemap. You may also pass priority and changefreq
keyword arguments to the GenericSitemap constructor to specify these attributes for all URLs.

Here’s an example of a URLconf using both FlatPageSitemap and GenericSiteMap (with the hypothetical Entry object from
above):

from django.conf.urls.defaults import *
from django.contrib.sitemaps import FlatPageSitemap, GenericSitemap

file:///D|/books/computer/programming/python/books/DJANGO BOOK/11.html (10 of 12)9/28/2007 2:28:28 PM

Chapter 11: Outputting non-HTML content

from mysite.blog.models import Entry

info_dict = {
 'queryset': Entry.objects.all(),
 'date_field': 'pub_date',
}

sitemaps = {
 'flatpages': FlatPageSitemap,
 'blog': GenericSitemap(info_dict, priority=0.6),
}

urlpatterns = patterns('',
 # some generic view using info_dict
 # ...

 # the sitemap
 (r'^sitemap.xml$', 'django.contrib.sitemaps.views.sitemap', {'sitemaps': sitemaps})
)

Creating a sitemap index
The sitemap framework also has the ability to create a sitemap index that references individual sitemap files, one per each
section defined in your sitemaps dictionary. The only differences in usage are:

● You use two views in your URLconf: django.contrib.sitemaps.views.index
and django.contrib.sitemaps.views.sitemap.

● The django.contrib.sitemaps.views.sitemap view should take a section keyword argument.

Here is what the relevant URLconf lines would look like for the example above:

(r'^sitemap.xml$', 'django.contrib.sitemaps.views.index', {'sitemaps': sitemaps})
(r'^sitemap-(?P<section>.+).xml$', 'django.contrib.sitemaps.views.sitemap', {'sitemaps':
sitemaps})

This will automatically generate a sitemap.xml file that references both sitemap-flatpages.xml and sitemap-blog.xml.
The Sitemap classes and the sitemaps dictionary don’t change at all.

Pinging Google
You may want to “ping” Google when your sitemap changes, to let it know to reindex your site. The framework provides a
function to do just that: django.contrib.sitemaps.ping_google().

Note

At the time this book was written, only Google responded to sitemap pings. However, it’s quite likely that Yahoo and/
or Microsoft will soon support these pings as well.

At that time, we’ll likely change the name of ping_google() to something like ping_search_engines(), so make
sure to check the latest sitemap documentation at http://www.djangoproject.com/documentation/sitemaps/.

ping_google() takes an optional argument, sitemap_url, which should be the absolute URL of your site’s sitemap (e.
g., '/sitemap.xml'). If this argument isn’t provided, ping_google() will attempt to figure out your sitemap by performing a
reverse looking in your URLconf.

ping_google() raises the exception django.contrib.sitemaps.SitemapNotFound if it cannot determine your sitemap URL.

One useful way to call ping_google() is from a model’s save() method:

from django.contrib.sitemaps import ping_google

class Entry(models.Model):
 # ...
 def save(self):
 super(Entry, self).save()
 try:
 ping_google()
 except Exception:
 # Bare 'except' because we could get a variety
 # of HTTP-related exceptions.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/11.html (11 of 12)9/28/2007 2:28:28 PM

http://www.djangoproject.com/documentation/sitemaps/

Chapter 11: Outputting non-HTML content

 pass

A more efficient solution, however, would be to call ping_google() from a cron script, or some other scheduled task. The
function makes an HTTP request to Google’s servers, so you may not want to introduce that network overhead each time you
call save().

What’s next?
Next, we’ll continue to dig deeper into all the nifty built-in tools Django gives you. Chapter 12 looks at all the tools you need to
provide user-customized sites: sessions, users, and authentication.

Onwards!

« previous ◊ table of contents ◊ next »
Copyright 2006 Adrian Holovaty and Jacob Kaplan-Moss.
This work is licensed under the GNU Free Document License.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/11.html (12 of 12)9/28/2007 2:28:28 PM

http://www.djangobook.com/en/beta/chapter10/
http://www.djangobook.com/en/beta/
http://www.djangobook.com/en/beta/chapter12/
http://www.djangobook.com/license/

The Django Book
« previous ◊ table of contents ◊ next »

Chapter 12: Sessions, users, and registration
It’s time for a confession: we’ve been deliberately ignoring an incredibly important aspect of web development prior to this point.
So far, we’ve thought of the traffic visiting our sites as some faceless, anonymous mass hurtling itself against our carefully
designed pages.

This isn’t true, of course; the browsers hitting our sites have real humans behind them (some of the time, at least). That’s a big
thing to ignore: the Internet is at its best when it serves to connect people, not machines. If we’re going to develop truly
compelling sites, eventually we’re going to have to deal with the bodies behind the browsers.

Unfortunately, it’s not all that easy. HTTP is designed to be stateless; that is, each and every request happens in a vacuum.
There’s no persistence between one request and the next, and we can’t count on any aspects of a request (IP address, user-
agent, etc.) to consistently indicate successive requests from the same person.

Browser developers long ago recognized that HTTP’s statelessness poses a huge problem for web developers, and thus cookies
were born. A cookie is a small piece of information that browsers store on behalf of web servers; every time a browser requests a
page from a certain server, it gives back the cookie that it initially received.

Cookies
Let’s take a look how this might work. When you open your browser and type in google.com, your browser sends an HTTP
request to Google that starts something like this:

GET / HTTP/1.1
Host: google.com
...

When Google replies, the HTTP response looks something like:

HTTP/1.1 200 OK
Content-Type: text/html
Set-Cookie: PREF=ID=5b14f22bdaf1e81c:TM=1167000671:LM=1167000671;
 expires=Sun, 17-Jan-2038 19:14:07 GMT;
 path=/; domain=.google.com
Server: GWS/2.1
...

Notice the Set-Cookie header. Your browser will store that cookie value
(PREF=ID=5b14f22bdaf1e81c:TM=1167000671:LM=1167000671) and serve it back to Google every time you access the site. So
the next time you access Google, your browser is going to send a request like this:

GET / HTTP/1.1
Host: google.com
Cookie: PREF=ID=5b14f22bdaf1e81c:TM=1167000671:LM=1167000671
...

Google then can use that Cookie value to know that you’re the same person who accessed the site earlier. This value might, for
example, be a key into a database that stores user information; Google could (and does) use it to display your name on the page.

Getting and setting cookies
When dealing with persistence in Django, most of the time you’ll want to use the higher-level session and/or user frameworks
discussed a little later on. However, we’ll pause and look at how to read and write cookies in Django anyway. It should help you
understand how the rest of the pieces discussed in the chapter actually work, and it’ll come in handy if you ever need to play with
cookies directly.

Reading cookies that are already set is incredibly simple: every request object has a COOKIES object that acts like a dictionary;
you can use it to read any cookies that the browser has sent to the view:

def show_color(request):
 if "favorite_color" in request.COOKIES:
 return HttpResponse("Your favorite color is %s" % \
 request.COOKIES["favorite_color"])
 else:
 return HttpResponse("You don't have a favorite color.")

Chapter 12: Sessions, users, and registration

file:///D|/books/computer/programming/python/books/DJANGO BOOK/12.html (1 of 15)9/28/2007 2:29:08 PM

http://www.djangobook.com/en/beta/chapter11/
http://www.djangobook.com/en/beta/
http://www.djangobook.com/en/beta/chapter14/

Chapter 12: Sessions, users, and registration

Writing cookies is slightly more complicated; you need to use the set_cookie() method on a HttpResponse object. Here’s an
example that sets the favorite_color cookie based on a GET parameter:

def set_color(request):
 if "favorite_color" in request.GET:

 # Create an HttpResponse object...
 response = HttpResponse("Your favorite color is now %s" % \
 request.GET["favorite_color"])

 # ... and set a cookie on the response
 response.set_cookie("favorite_color",
 request.GET["favorite_color"])

 else:
 return HttpResponse("You didn't give a favorite color.")

You can also pass a number of optional arguments to request.set_cookie() that control aspects of the cookie:

Parameter Default Description

max_age None Age (in seconds) that the cookie should last. If None, the cookie will last only until the
browser is closed.

expires None
The actual date/time when the cookie should expire. Needs to be in the
format "Wdy, DD-Mth-YY HH:MM:SS GMT". If given, this overrides the max_age
parameter.

path "/"

The path prefix that this cookie is valid for. Browsers will only pass the cookie back to
pages below this path prefix, so you can use this to prevent cookies from being sent to
other sections of your site.

This is especially useful when you don’t control the top level of your site’s domain.

domain None

The domain that this cookie is valid for. You can use this to set a cross-domain cookie.
For example, domain=”.example.com” will set a cookie that is readable by the
domains www.example.com, www2.example.com and an.other.sub.domain.example.com
.

If set to None, a cookie will only be readable by the domain that set it.

secure False If set to True, this instructs the browser to only return this cookie to pages accessed
over HTTPS.

The mixed blessing of cookies
You might notice a number of potential problems with the way cookies work. Let’s look at some of the more important ones:

● Cookies are essentially voluntary; browser don’t guarantee storage of cookies. In fact, every browser on the planet will let
you control your browser’s policy for accepting cookies. If you want to see just how vital cookies are to the web, try turning
on your browser’s “prompt to accept every cookie” option. Even a big blue monster would fill up on all those cookies!

This means, of course, that cookies are the definition of unreliability; developers should check that a user actually accepts
cookies before relying on them.

More importantly, you should never store important data in cookies. The web is filled with horror stories of developers
who’ve stored unrecoverable information in browser cookies only to have that data purged by the browser for one reason or
another.

● Cookies are not in any way secure. Because HTTP data is sent in cleartext, cookies are extremely vulnerable to snooping
attacks. That is, an attacker snooping on the wire can intercept a cookie and read it. This means you should never store
sensitive information in a cookie.

There’s an even more insidious attack known as a “man in the middle” attack, wherein an attacker intercepts a cookie and
uses it to pose as another user. Chapter 20 discusses attacks of this nature in depth, as well as ways to prevent it.

● Cookies aren’t even secure from their intended recipients. Most browsers provide easy ways to edit the content of individual
cookies, and resourceful users can always use tools like mechanize to construct HTTP requests by hand.

So you can’t store data in cookies that might be sensitive to tampering. The canonical mistake in this scenario is storing
something like IsLoggedIn=1 in a cookie when a user logs in. You’d be amazed at the number of sites that make mistakes of
this nature; it takes only a second to fool these sites’ “security” systems.

Django’s session framework

file:///D|/books/computer/programming/python/books/DJANGO BOOK/12.html (2 of 15)9/28/2007 2:29:08 PM

http://wwwsearch.sourceforge.net/mechanize/

Chapter 12: Sessions, users, and registration

With all of these limitations and potential security holes, it’s obvious that cookies and persistent sessions are another of those
“pain points” in web development. Of course, Django’s goal is to be an effective painkiller, so Django comes with a session
framework designed to smooth over these difficulties for you.

This session framework lets you store and retrieve arbitrary data on a per-site-visitor basis. It stores data on the server side and
abstracts the sending and receiving of cookies. Cookies use only a hashed session ID — not the data itself — thus protecting you
from most of the common cookie problems.

Enabling sessions
Sessions are implemented via a piece of middleware (see Chapter 16) and a Django model. To enable sessions, you’ll need to:

1. Edit your MIDDLEWARE_CLASSES setting and make sure MIDDLEWARE_CLASSES
contains 'django.contrib.sessions.middleware.SessionMiddleware'.

2. Make sure 'django.contrib.sessions' is in your INSTALLED_APPS setting (and run manage.py syncdb if you have to add
it).

The default skeleton settings created by startproject has both of these bits already installed, so unless you’ve removed them,
you probably don’t have to change anything to get sessions to work.

If you don’t want to use sessions, you might want to remove the SessionMiddleware line from MIDDLEWARE_CLASSES
and 'django.contrib.sessions' from your INSTALLED_APPS. It’ll only save you a very small amount of overhead, but every
little bit counts.

Using sessions in views
When SessionMiddleware is activated, each HttpRequest object — the first argument to any Django view function — will have
a session attribute, which is a dictionary-like object. You can read it and write to it in the same way you’d use a normal
dictionary. For example, in a view you could do stuff like this:

Set a session value:
request.session["fav_color"] = "blue"

Get a session value -- this could be called in a different view,
or many requests later (or both):
fav_color = request.session["fav_color"]

Clear an item from the session:
del request.session["fav_color"]

Check if the session has a given key:
if "fav_color" in request.session:
 ...

You can also use other mapping methods like keys() and items() on request.session.

There are a couple of simple rules for using Django’s sessions effectively:

● Use normal Python strings as dictionary keys on request.session (as opposed to integers, objects, etc.). This is more of a
convention than a hard-and-fast rule, but it’s worth following.

● Session dictionary keys that begin with an underscore are reserved for internal use by Django. In practice the framework
only uses a very small number of underscore-prefixed session variables, but unless you know what they all are (and are
willing to keep up with any changes in Django itself), staying away from underscore prefixes will keep Django from
interfering with your app.

● Don’t override request.session with a new object, and don’t access or set its attributes. Use it like a Python dictionary.

Let’s take a look at a few quick examples. This simplistic view sets a has_commented variable to True after a user posts a
comment. It doesn’t let a user post a comment more than once:

def post_comment(request, new_comment):
 if request.session.get('has_commented', False):
 return HttpResponse("You've already commented.")
 c = comments.Comment(comment=new_comment)
 c.save()
 request.session['has_commented'] = True
 return HttpResponse('Thanks for your comment!')

This simplistic view logs in a “member” of the site:

def login(request):
 m = members.get_object(username__exact=request.POST['username'])
 if m.password == request.POST['password']:

file:///D|/books/computer/programming/python/books/DJANGO BOOK/12.html (3 of 15)9/28/2007 2:29:08 PM

Chapter 12: Sessions, users, and registration

 request.session['member_id'] = m.id
 return HttpResponse("You're logged in.")
 else:
 return HttpResponse("Your username and password didn't match.")

And this one logs a member out, according to login() above:

def logout(request):
 try:
 del request.session['member_id']
 except KeyError:
 pass
 return HttpResponse("You're logged out.")

Note

In practice, this is a lousy way of logging users in. The authentication framework discussed below handles this for
you in a much more robust and useful manner; these examples are just here to provide easily understood examples.

Setting test cookies
As mentioned above, you can’t rely on every browser accepting cookies. So, as a convenience, Django provides an easy way to
test whether the user’s browser accepts cookies. You just need to call request.session.set_test_cookie() in a view, and
check request.session.test_cookie_worked() in a subsequent view — not in the same view call.

This awkward split between set_test_cookie() and test_cookie_worked() is necessary due to the way cookies work. When
you set a cookie, you can’t actually tell whether a browser accepted it until the browser’s next request.

It’s good practice to use delete_test_cookie() to clean up after yourself. Do this after you’ve verified that the test cookie
worked.

Here’s a typical usage example:

def login(request):

 # If we submitted the form...
 if request.method == 'POST':

 # Check that the test cookie worked (we set it below):
 if request.session.test_cookie_worked():

 # The test cookie worked, so delete it.
 request.session.delete_test_cookie()

 # In practice, we'd need some logic to check username/password
 # here, but since this is an example...
 return HttpResponse("You're logged in.")

 # The test cookie failed, so display an error message. If this
 # was a real site we'd want to display a more friendly message.
 else:
 return HttpResponse("Please enable cookies and try again.")

 # If we didn't post, send the test cookie along with the login form.
 request.session.set_test_cookie()
 return render_to_response('foo/login_form.html')

Note

Again, the built-in login and logout functions handle this check for you.

Using sessions outside of views
Internally, each session is just a normal Django model defined in django.contrib.sessions.models. Because it’s a normal
model, you can access sessions using the normal Django database API:

>>> from django.contrib.sessions.models import Session
>>> s = Session.objects.get_object(pk='2b1189a188b44ad18c35e113ac6ceead')

file:///D|/books/computer/programming/python/books/DJANGO BOOK/12.html (4 of 15)9/28/2007 2:29:09 PM

Chapter 12: Sessions, users, and registration

>>> s.expire_date
datetime.datetime(2005, 8, 20, 13, 35, 12)

You’ll need to call get_decoded() to get the actual session data. This is necessary because the dictionary is stored in an encoded
format:

>>> s.session_data
'KGRwMQpTJ19hdXRoX3VzZXJfaWQnCnAyCkkxCnMuMTExY2ZjODI2Yj...'
>>> s.get_decoded()
{'user_id': 42}

When sessions are saved
By default, Django only saves to the session database when the session has been modified — that is if any of its dictionary values
have been assigned or deleted:

Session is modified.
request.session['foo'] = 'bar'

Session is modified.
del request.session['foo']

Session is modified.
request.session['foo'] = {}

Gotcha: Session is NOT modified, because this alters
request.session['foo'] instead of request.session.
request.session['foo']['bar'] = 'baz'

To change this default behavior, set the SESSION_SAVE_EVERY_REQUEST setting to True. If SESSION_SAVE_EVERY_REQUEST is True,
Django will save the session to the database on every single request, even if it wasn’t changed.

Note that the session cookie is only sent when a session has been created or modified. If SESSION_SAVE_EVERY_REQUEST is True,
the session cookie will be sent on every request.

Similarly, the expires part of a session cookie is updated each time the session cookie is sent.

Browser-length sessions vs. persistent sessions
You might have noticed above that the cookie Google sent use contained expires=Sun, 17-Jan-2038 19:14:07 GMT;. Cookies
can optionally contain an expiration date which advises the browser on when to remove the cookie. If a cookie doesn’t contain an
expiration value, the browser will expire it when the user closes her browser window. You can control the session framework’s
behavior in this regard with the SESSION_EXPIRE_AT_BROWSER_CLOSE setting.

By default, SESSION_EXPIRE_AT_BROWSER_CLOSE is set to False, which means session cookies will be stored in users’ browsers
for SESSION_COOKIE_AGE seconds (which defaults to 2 weeks — 1209600 seconds). Use this if you don’t want people to have to
log in every time they open a browser.

If SESSION_EXPIRE_AT_BROWSER_CLOSE is set to True, Django will use browser-length cookies.

Other session settings
Besides the settings already mentioned, there are a few other settings that influence how Django’s session framework uses
cookies:

Setting Explanation Default

SESSION_COOKIE_DOMAIN
The domain to use for session cookies. Set this to a string such
as ".lawrence.com" for cross-domain cookies, or use None for a
standard cookie.

None

SESSION_COOKIE_NAME The name of the cookie to use for sessions. This can be any string. "sessionid"

SESSION_COOKIE_SECURE
Whether to use a “secure” cookie for the session cookie. If this is set
to True, the cookie will be marked as “secure,” which means that
browsers will ensure that the cookie is only sent via HTTPS.

False

Technical details

For the curious, here are a few technical notes about the inner workings of the session framework:

● The session dictionary accepts any pickleable Python object. See the documentation for Python’s built-
in pickle module for more information about how this works.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/12.html (5 of 15)9/28/2007 2:29:09 PM

Chapter 12: Sessions, users, and registration

● Session data is stored in a database table named django_session.

● Session data is ready “lazily”: if you never access request.session, Django won’t hit that database table.

● Django only sends a cookie if it needs to. If you don’t set any session data, it won’t send a session cookie
(unless SESSION_SAVE_EVERY_REQUEST is set to True).

● The Django sessions framework is entirely, and solely, cookie-based. It does not fall back to putting session
IDs in URLs as a last resort, as some other tools (PHP, JSP) do.

This is an intentional design decision. Putting sessions in URLs don’t just make URLs ugly, they makes your site
vulnerable to a certain form of session-ID theft via the “Referer” header.

If you’re still curious, the source is pretty straightforward; look in django.contrib.sessions for the streight dope.

Users and authentication
So now we’re halfway to linking browsers directly to Real People. Sessions give us a way of persisting data between multiple
browser requests; the second part of the equation is using those sessions to for user login. Of course, we can’t just trust that
users are who they say they are, so we’ll need to authenticate them along the way.

Naturally, Django provides tools to handle this common task (and many others). Django’s user authentication system handles
user accounts, groups, permissions and cookie-based user sessions. This system is often referred to as an “auth/auth” system —
authentication and authorization. That name recognizes that dealing with users is often a two step process; we need to

1. verify (authenticate) that a user is who she claims to be (usually by checking a username and password against a database
of users), and then

2. verify that the user is authorized to perform some given operation (usually checking against a table of permissions).

Following these needs, Django’s auth/auth system consists of a number of parts:

● Users
● Permissions: binary (yes/no) flags designating whether a user may perform a certain task.
● Groups: a generic way of applying labels and permissions to more than one user.
● Messages: a simple way to queue and display system messages to users.
● Profiles: a mechanism to extend the user object with custom fields.

If you’ve used the admin tool (Chapter 6), you’ve already seen many of these tools, and if you’ve edited users or groups in the
admin you’ve actually been editing data in the auth system’s database tables.

Installation
Like the session tools, authentication support is bundled as a Django application in django.contrib which needs to be installed.
Like the session system it’s also installed by default, but if you’ve removed it you’ll need to follow these steps to install it:

1. Make sure the session framework is installed (see above). Keeping track of users obviously requires cookies, and thus builds
on the session framework.

2. Put 'django.contrib.auth' in your INSTALLED_APPS setting and run manage.py syncdb.

3. Make sure that 'django.contrib.auth.middleware.AuthenticationMiddleware' is in your MIDDLEWARE_CLASSES setting
— after SessionMiddleware.

With that installation out of the way, we’re ready to deal with users in view functions. The main interface you’ll use to access
users within a view is request.user; this is an object that represents the currently logged-in user. If the user isn’t logged in, this
will instead be an AnonymousUser object (see below for more details).

You can easily tell if a user is logged in with the is_authenticated() method:

if request.user.is_authenticated():
 # Do something for authenticated users.
else:
 # Do something for anonymous users.

Using users
Once you’ve got ahold of a user — often from request.user, but possibly through one of the other methods discussed below —
you’ve got a number of fields methods available on that object. AnonymousUser objects emulate some of these fields and
methods, but not all of them, so you should always check user.is_authenticated() before assuming you’re dealing with a bona-
fide user object.

Fields on Userobjects

file:///D|/books/computer/programming/python/books/DJANGO BOOK/12.html (6 of 15)9/28/2007 2:29:09 PM

Chapter 12: Sessions, users, and registration

Field Description

username Required. 30 characters or fewer. Alphanumeric characters only (letters, digits and
underscores).

first_name Optional. 30 characters or fewer.
last_name Optional. 30 characters or fewer.
email Optional. E-mail address.

password Required. A hash of, and metadata about, the password (Django doesn’t store the raw
password). See the “Passwords” section below for more about this value

is_staff Boolean. Designates whether this user can access the admin site.

is_active Boolean. Designates whether this account can be used to log in. Set this flag to False instead
of deleting accounts.

is_superuser Boolean. Designates that this user has all permissions without explicitly assigning them.
last_login A datetime of the user’s last login. Is set to the current date/time by default.

date_joined A datetime designating when the account was created. Is set to the current date/time by
default when the account is created.

Methods on Userobjects

Method Description

is_authenticated()
Always returns True for “real” User objects. This is a way to tell if the user has
been authenticated. This does not imply any permissions, and doesn’t check if
the user is active - it only indicates that the user has sucessfully authenticated.

is_anonymous()
Returns True only for AnonymousUser objects (and False for “real” User
objects). Generally, you should prefer using is_authenticated() to this
method.

get_full_name() Returns the first_name plus the last_name, with a space in between.

set_password(passwd) Sets the user’s password to the given raw string, taking care of the password
hashing. This doesn’t actually save the User object.

check_password(passwd) Returns True if the given raw string is the correct password for the user. This
takes care of the password hashing in making the comparison.

get_group_permissions() Returns a list of permission strings that the user has through the groups she
belongs to.

get_all_permissions() Returns a list of permission strings that the user has, both through group and
user permissions.

has_perm(perm)
Returns True if the user has the specified permission, where perm is in the
format "package.codename". If the user is inactive, this method will always
return False.

has_perms(perm_list) Returns True if the user has all of the specified permissions, If the user is
inactive, this method will always return False.

has_module_perms(appname) Returns True if the user has any permissions in the given appname If the user is
inactive, this method will always return False.

get_and_delete_messages() Returns a list of Message objects in the user’s queue and deletes the messages
from the queue.

email_user(subj, msg)
Sends an e-mail to the user. This email is sent from the DEFAULT_FROM_EMAIL
setting. You can also pass a third argument, from_email, to override the from
address on the email.

get_profile() Returns a site-specific profile for this user; see the section on profiles, below,
for more on this method

Finally, User objects have two many-to-many fields: groups and permissions. User objects can access their related objects in
the same way as any other many-to-many field:

Set a users groups:
myuser.groups = group_list

Add a user to some groups:
myuser.groups.add(group1, group2,...)

Remove a user from some groups:
myuser.groups.remove(group1, group2,...)

Remove a user from all groups:

file:///D|/books/computer/programming/python/books/DJANGO BOOK/12.html (7 of 15)9/28/2007 2:29:09 PM

Chapter 12: Sessions, users, and registration

myuser.groups.clear()

Permissions work the same way
myuser.permissions = permission_list
myuser.permissions.add(permission1, permission2, ...)
myuser.permissions.remove(permission1, permission2, ...)
myuser.permissions.clear()

Logging in and out
Django provides built-in view functions for handling logging in and out (and a few other nifty tricks), but before we get to those
let’s take a look at how to log users in and out “by hand”. Django provides two functions to perform these actions
in django.contrib.auth: authenticate() and login().

To authenticate a given username and password, use authenticate(). It takes two keyword arguments, username and password
, and it returns a User object if the password is valid for the given username. If the password is invalid, authenticate()
returns None:

>>> from django.contrib import auth authenticate
>>> user = auth.authenticate(username='john', password='secret')
>>> if user is not None:
... print "Correct!"
... else:
... print "Oops, that's wrong!"
Oops, that's wrong!

To log a user in, in a view, use login(). It takes an HttpRequest object and a User object and saves the user’s ID in the session,
using Django’s session framework.

This example shows how you might use both authenticate() and login() within a view function:

from django.contrib import auth

def login(request):
 username = request.POST['username']
 password = request.POST['password']
 user = auth.authenticate(username=username, password=password)
 if user is not None and user.is_active:
 # Correct password, and the user is marked "active"
 auth.login(request, user)
 # Redirect to a success page.
 return HttpResponseRedirect("/account/loggedin/")
 else:
 # Show an error page
 return HttpResponseRedirect("/account/invalid/")

To log out a user who has been logged, use django.contrib.auth.logout() within your view. It takes an HttpRequest object
and has no return value:

from django.contrib import auth

def logout(request):
 auth.logout(request)
 # Redirect to a success page.
 return HttpResponseRedirect("/account/loggedout/")

Note that logout() doesn’t throw any errors if the user wasn’t logged in.

Logging in and out, the easy way

In practice, you’ll usually not need to write your own login/logout functions; the auth system comes with a set of views for
generically handling logging in and out.

The first step in using the authentication views is to wire ‘em up in your URLconf. You’ll need to add this snippet:

from django.contrib.auth.views import login, logout

urlpatterns = patterns('',
 # existing patterns here...
 (r'^accounts/login/$', login)
 (r'^accounts/logout/$', logout)

file:///D|/books/computer/programming/python/books/DJANGO BOOK/12.html (8 of 15)9/28/2007 2:29:09 PM

Chapter 12: Sessions, users, and registration

)

/accounts/login/ and /accounts/logout/ are the default URLs that Django uses for these views, but you can put them
anywhere you like with a little effort.

By default, the login view renders a template at registration/login.html (you can change this template name by passing an
extra view argument template_name). This form needs to contain a username and a password field. A simple template might look
like:

{% extends "base.html" %}

{% block content %}

 {% if form.errors %}
 <p class="error">Sorry, that's not a valid username or password</p>
 {% endif %}

 <form action='.' method='post'>
 <label for="username">User name:</label>
 <input type="text" name="username" value="" id="username">
 <label for="password">Password:</label>
 <input type="password" name="password" value="" id="password">

 <input type="submit" value="login" />
 <input type="hidden" name="next" value="{{ next }}" />
 <form action='.' method='post'>

{% endblock %}

If the user successfully logs in, she’ll be redirected to /accounts/profile/ by default. You can override this by providing a
hidden field called next with the URL to redirect to after logging in. You can also pass this value as a GET parameter to the login
view and it’ll be automatically added to the context as a variable called next that you can insert into that hidden field.

The log out view works a little differently; by default it renders a template at registration/logged_out.html (which usually
contains a “you’ve successfully logged out” message). However, you can call the view with an extra argument, next_page, which
will instruct the view to redirect after a log out.

Limiting access to logged-in users
Of course, the reason we’re going through all this trouble is so that we can limit access to parts of our site.

The simple, raw way to limit access to pages is to check request.user.is_authenticated() and redirect to a login page:

from django.http import HttpResponseRedirect

def my_view(request):
 if not request.user.is_authenticated():
 return HttpResponseRedirect('/login/?next=%s' % request.path)
 # ...

Or perhaps display an error message:

def my_view(request):
 if not request.user.is_authenticated():
 return render_to_response('myapp/login_error.html')
 # ...

As a shortcut, you can use the convenient login_required decorator:

from django.contrib.auth.decorators import login_required

@login_required
def my_view(request):
 # ...

login_required does the following:

● If the user isn’t logged in, redirect to /accounts/login/, passing the current absolute URL in the query string as next. For
example: /accounts/login/?next=/polls/3/.

● If the user is logged in, execute the view normally. The view code can then assume that the user is logged in.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/12.html (9 of 15)9/28/2007 2:29:09 PM

Chapter 12: Sessions, users, and registration

Note

If you’re into programming patterns, note that this decorator and the ones discussed below are examples of the
“Guard” pattern. Aren’t patterns fun?

Limiting access to users that pass a test
Limiting access based on certain permissions or some other test, or providing a different location for the log-in view works
essentially the same way.

The raw way is to run your test on request.user in the view directly. For example, this view checks to make sure the user is
logged in and has the permission polls.can_vote (see below for more about how permissions work):

def vote(request):
 if request.user.is_authenticated() and request.user.has_perm('polls.can_vote')):
 # vote here
 else:
 return HttpResponse("You can't vote in this poll.")

Again, Django provides a shortcut. This one is called user_passes_test which is actually a decorator factory: it takes
arguments and generates a specialized decorator for your particular situation. For example:

def user_can_vote(user):
 return user.is_authenticated() and user.has_perm("polls.can_vote")

@user_passes_text(user_can_vote, login_url="/login/")
def vote(request):
 # Code here can assume a logged in user with the correct permission.
 ...

user_passes_test takes one required argument: a callable that takes a User object and returns True if the user is allowed to
view the page. Note that user_passes_test does not automatically check that the User is authenticated; you should do that
yourself.

In this example we’re also showing the second optional argument, login_url, which lets you specify the URL for your login page
(/accounts/login/ by default).

Since it’s a relatively common task to check whether a user has a particular permission, Django provides a shortcut for that case:
the permission_required() decorator. Using this decorator, the earlier example can be written as:

from django.contrib.auth.decorators import permission_required

@permission_required('polls.can_vote', login_url="/login/")
def vote(request):
 # ...

Note that permission_required() also takes an optional login_url parameter which also defaults to '/accounts/login/'.

Limiting access to generic views

One of the most frequently asked questions on the Django-users list deals with limiting access to a generic view. To pull this off,
you’ll need to write a thin wrapper around the view, and point your URLconf to your wrapper instead of the generic view itself:

from dango.contrib.auth.decorators import login_required
from django.views.generic.date_based import object_detail

@login_required
def limited_object_detail(*args, **kwargs):
 return object_detail(*args, **kwargs)

You can, of course, replace login_required with any of the other limiting decorators.

Managing users, permissions, and groups
The easiest way by far to manage the auth system is through the admin. Chapter 6 discusses how to use Django’s admin to edit
users and control their permissions and access, and most of the time you’ll just use that interface.

However, there are low-level APIs you can delve into when you need absolute control.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/12.html (10 of 15)9/28/2007 2:29:09 PM

Chapter 12: Sessions, users, and registration

Creating users

The basic way to create users is to use the create_user helper function:

>>> from django.contrib.auth.models import User
>>> user = User.objects.create_user(username='john',
... email='jlennon@beatles.com',
... password='glass onion')

At this point, user is a User instance ready to be saved to the database. You can continue to change its attributes before saving,
too:

>>> user.is_staff = True
>>> user.save()

Changing passwords

You can change a password with set_password():

>>> user = User.objects.get(username='john')
>>> user.set_password('goo goo goo joob')
>>> user.save()

Don’t set the password attribute directly unless you know what you’re doing; the password is actually stored as a salted hash
and thus can’t be edited directly.

More formally, the password attribute of a User object is a string in this format:

hashtype$salt$hash

That’s a hash type, the salt and the hash itself, separated by the dollar-sign character.

hashtype is either sha1 (default) or md5 — the algorithm used to perform a one-way hash of the password. Salt is a random
string used to salt the raw password to create the hash.

For example:

sha1$a1976$a36cc8cbf81742a8fb52e221aaeab48ed7f58ab4

The User.set_password() and User.check_password() functions handle the setting and checking of these values behind the
scenes.

Is that some kind of drug?

No, a salted hash has nothing to do with marijuana; it’s actually a common way to securly store passwords. A
hash is a one-way crytographic function; that is, you can easily compute the hash of a given value, but it’s nearly
impossible to take a hash and reconstruct the original value.

If we stored passwords as plain text, anyone who got their hands on the password database would instantly know
everyone’s password. Storing passwords as hashes reduces the value of a compromised database.

However, an attacker with the password database could still run a brute force attack, hashing millions of
passwords and comparing those hashes against the stored values. This might take some time, but less than you
think — computers are incredibly fast.

Worse, there are publically available rainbow tables — databases of precomputed hashes of millions of passwords.
With a rainbow table, an attacker can break most passwords in seconds.

Adding a salt — basically an initial random value — to the stored hash adds another layer of difficulty. Since the salt
will differ from password to password, salts also prevent the use of a rainbow table, thus forcing attackers to fall
back on a brute force attack — itself made more difficult by the extra entropy added to the hash by the salt.

While salted hashes aren’t absolutely the most secure way of storing passwords, they’re a good middle ground
between security and convience.

Handling registration

We can use these low-level tools to create views that allow users to sign up. Nearly every developer wants to implement
registration differently, so Django leaves writing a registration view up to you; luckily, it’s pretty easy.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/12.html (11 of 15)9/28/2007 2:29:09 PM

Chapter 12: Sessions, users, and registration

At its simplest, we could provide a small view that prompts for the required user information and creates those users. Django
provides a built-in form you can use for this purpose, which we’ll use in this example:

from django import oldforms as forms
from django.http import HttpResponseRedirect
from django.shortcuts import render_to_response
from django.contrib.auth.forms import UserCreationForm

def register(request):
 form = UserCreationForm()

 if request.method == 'POST':
 data = request.POST.copy()
 errors = form.get_validation_errors(data)
 if not errors:
 new_user = form.save()
 return HttpResponseRedirect("/accounts/created/")
 else:
 data, errors = {}, {}

 return render_to_response("registration/register.html", {
 'form' : forms.FormWrapper(form, data, errors)
 })

This assumes a template named registration/register.html; here’s an example of what that template might look like:

{% extends "base.html" %}

{% block title %}Create an account{% endblock %}

{% block content %}
 <h1>Create an account</h1>
 <form action="." method="post">
 {% if form.error_dict %}
 <p class="error">Please correct the errors below.</p>
 {% endif %}

 {% if form.username.errors %}
 {{ form.username.html_error_list }}
 {% endif %}
 <label for="id_username">Username:</label> {{ form.username }}

 {% if form.password1.errors %}
 {{ form.password1.html_error_list }}
 {% endif %}
 <label for="id_password1">Password: {{ form.password1 }}

 {% if form.password2.errors %}
 {{ form.password2.html_error_list }}
 {% endif %}
 <label for="id_password2">Password (again): {{ form.password2 }}

 <input type="submit" value="Create the account" />
 </label>
{% endblock %}

Using authentication data in templates
The currently logged-in user and his/her permissions are made available in the template context when you use RequestContext
(see Chapter 10).

Note

Technically, these variables are only made available in the template context if you use RequestContext and
your TEMPLATE_CONTEXT_PROCESSORS setting contains "django.core.context_processors.auth", which is default.
Again, see Chapter 10 for the full skinny.

When using RequestContext, the current user — either a User instance or an``AnonymousUser`` instance — is stored in the
template variable {{ user }}:

file:///D|/books/computer/programming/python/books/DJANGO BOOK/12.html (12 of 15)9/28/2007 2:29:09 PM

Chapter 12: Sessions, users, and registration

{% if user.is_authenticated %}
 <p>Welcome, {{ user.username }}. Thanks for logging in.</p>
{% else %}
 <p>Welcome, new user. Please log in.</p>
{% endif %}

This user’s permissions are stored in the template variable {{ perms }}. This is is a template-friendly proxy of to a couple of
permission methods. See the section on permissions, below, for more about what these methods map to.

There are two ways you can use this perms object. You can use something like {{ perms.polls }} to check if the user has any
permissions some given app, or you can use something like {{ perms.polls.can_vote }} to check if the user has a specific
permission.

Thus, you can check permissions in template {% if %} statements:

{% if perms.polls %}
 <p>You have permission to do something in the polls app.</p>
 {% if perms.polls.can_vote %}
 <p>You can vote!</p>
 {% endif %}
{% else %}
 <p>You don't have permission to do anything in the polls app.</p>
{% endif %}

The other bits: permissions, groups, messages, and profiles
There’s a few other bits of the authentication framework that we’ve only dealt with in passing. Let’s take a closer look at them:

Permissions
Permissions are a simple way to “mark” users and groups as being able to perform some action. It’s usually used by the Django
admin site, but you can easily use it in your own code.

The Django admin site uses permissions as follows:

● Access to view the “add” form and add an object is limited to users with the “add” permission for that type of object.
● Access to view the change list, view the “change” form and change an object is limited to users with the “change” permission

for that type of object.
● Access to delete an object is limited to users with the “delete” permission for that type of object.

Permissions are set globally per type of object, not per specific object instance. For example, it’s possible to say “Mary may
change news stories,” but it’s not currently possible to say “Mary may change news stories, but only the ones she created herself”
or “Mary may only change news stories that have a certain status, publication date or ID.”

These three basic permissions — add, create and delete — are automatically created for each Django model that has
a class Admin. Behind the scenes, these permissions are added to the auth_permission database table when you
run manage.py syncdb.

These permissions will be of the form "<app>.<action>_<object_name>". That is, if you’ve got a polls app with a Choice
model, you’ll get permissions named "polls.add_choice", "polls.change_choice" and "polls.delete_choice".

Note that if your model doesn’t have class Admin set when you run syncdb, the permissions won’t be created. If you initialize
your database and add class Admin to models after the fact, you’ll need to run syncdb again to create any missing permissions
for your installed apps.

You can also create custom permissions for a given model object, using the permissions attribute on Meta. This example model
creates three custom permissions:

class USCitizen(models.Model):
 # ...
 class Meta:
 permissions = (
 # Permission identifier human-readable permission name
 ("can_drive", "Can drive"),
 ("can_vote", "Can vote in elections"),
 ("can_drink", "Can drink alcohol"),
)

This only creates those extra permissions when you run syncdb; it’s up to you to check for these permissions in your views (see
above).

Just like users, permissions are implemented in a Django model that lives in django.contrib.auth.models; this means that you

file:///D|/books/computer/programming/python/books/DJANGO BOOK/12.html (13 of 15)9/28/2007 2:29:09 PM

Chapter 12: Sessions, users, and registration

can use Django’s database API to interact directly with permissions if you like.

Groups
Groups are a generic way of categorizing users so you can apply permissions, or some other label, to those users. A user can
belong to any number of groups.

A user in a group automatically has the permissions granted to that group. For example, if the group Site editors has the
permission can_edit_home_page, any user in that group will have that permission.

Beyond permissions, groups are a convenient way to categorize users to give them some label, or extended functionality. For
example, you could create a group 'Special users', and you could write code that could, say, give them access to a members-
only portion of your site, or send them members-only e-mail messages.

Like users, the easiest way to manage groups in through the admin. However, groups are also just Django models that live
in django.contrib.auth.models, so once again you can always use Django’s database APIs to deal with groups at a low level.

Messages
The message system is a lightweight way to queue messages for given users. A message is associated with a User. There’s no
concept of expiration or time stamps.

Messages are used by the Django admin after successful actions. For example, when you create an object, you’ll notice a “The
object was created successfully” message at the top of the admin page.

You can use the same API to queue and display messages in your own app. The API is simple:

● To create a new message, use user.message_set.create(message='message_text').

● To retrieve/delete messages, use user_obj.get_and_delete_messages(), which returns a list of Message objects in the
user’s queue (if any) and deletes the messages from the queue.

In this example view, the system saves a message for the user after creating a playlist:

def create_playlist(request, songs):
 # Create the playlist with the given songs.
 # ...
 request.user.message_set.create(
 message="Your playlist was added successfully."
)
 return render_to_response("playlists/create.html",
 context_instance=RequestContext(request))

When you use RequestContext, the currently logged-in user and his/her messages are made available in the template context as
the template variable {{ messages }}. Here’s an example of template code that displays messages:

{% if messages %}

 {% for message in messages %}
 {{ message }}
 {% endfor %}

{% endif %}

Note that RequestContext calls get_and_delete_messages behind the scenes, so any messages will be deleted even if you don’t
display them.

Finally, note that this messages framework only works with users in the user database. To send messages to anonymous users,
use the session framework directly.

Profiles
The final piece of the puzzle is the profile system. To understand what profiles are all about, let’s first look at the problem:

In a nutshell, many sites need to store more user information than is available on the standard User object. To compound the
problem, most sites will have different “extra” fields. Thus, Django provides a lightweight way of defining a “profile” object that’s
linked to a given user; this profile object can differ from project to project, and can even handle different profiles for different
sites served from the same database.

The first step in creating a profile is to define a model that holds the profile information. The only requirement Django places on
this model is that it have a unique ForeignKey to the User model; this field must be named user Other that that, you can use
any other fields you like. Here’s a strictly arbitrary profile model:

file:///D|/books/computer/programming/python/books/DJANGO BOOK/12.html (14 of 15)9/28/2007 2:29:09 PM

Chapter 12: Sessions, users, and registration

from django.db import models
from django.contrib.auth.models import User

class MySiteProfile(models.Model):
 # This is the only required field
 user = models.ForeignKey(User, unique=True)

 # The rest is completely up to you...
 favorite_band = models.CharField(maxlength=100, blank=True)
 favorite_cheese = models.CharField(maxlength=100, blank=True)
 lucky_number = models.IntegerField()

Next, you’ll need to tell Django where to look for this profile object. You do that by setting the AUTH_PROFILE_MODULE setting to
the identifier for your model. So, if your model lives in an app called myapp, you’d put this in your settings file:

AUTH_PROFILE_MODULE = "myapp.mysiteprofile"

Once that’s done, you can access a user’s profile by calling user.get_profile(). This function will raise
a SiteProfileNotAvailable exception if AUTH_PROFILE_MODULE isn’t defined, and it also might raise a DoesNotExist exception if
the user doesn’t have a profile already (you’ll usually catch that exception and create a new profile at that time).

Wrapping up
Yes, the session and authorization system is a lot to absorb. Most of the time you won’t need all the features described in this
chapter, but when you need to allow complex interactions between users, it’s good to have all that power available.

In the next chapter, we’ll take a look at a piece of Django that builds on top of this session/user system: the comments app. It
allows you to easily attach comments — from anonymous or authenticated users — to arbitrary objects.

Onwards and upwards!

« previous ◊ table of contents ◊ next »
Copyright 2006 Adrian Holovaty and Jacob Kaplan-Moss.
This work is licensed under the GNU Free Document License.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/12.html (15 of 15)9/28/2007 2:29:09 PM

http://www.djangobook.com/en/beta/chapter11/
http://www.djangobook.com/en/beta/
http://www.djangobook.com/en/beta/chapter14/
http://www.djangobook.com/license/

Chapter 14: Caching

The Django Book
« previous ◊ table of contents ◊ next »

Chapter 14: Caching
Static websites, in which simple files are served directly to the Web, scale like crazy. But a fundamental tradeoff in dynamic Web
sites is, well, they’re dynamic. Each time a user requests a page, the Web server makes all sorts of calculations — from database
queries to template rendering to business logic — to create the page that your site’s visitor sees. From a processing-overhead
perspective, this is a lot more expensive.

For most Web applications, this overhead isn’t a big deal. Most Web applications aren’t washingtonpost.com or slashdot.org;
they’re simply small- to medium-sized sites with so-so traffic. But for medium- to high-traffic sites, it’s essential to cut as much
overhead as possible.

That’s where caching comes in.

To cache something is to save the result of an expensive calculation so that you don’t have to perform the calculation next time.
Here’s some pseudocode explaining how this would work for a dynamically generated Web page:

given a URL, try finding that page in the cache
if the page is in the cache:
 return the cached page
else:
 generate the page
 save the generated page in the cache (for next time)
 return the generated page

Django comes with a robust cache system that lets you save dynamic pages so they don’t have to be calculated for each request.
For convenience, Django offers different levels of cache granularity. You can cache the output of specific views, you can cache
only the pieces that are difficult to produce, or you can cache your entire site.

Django also works well with “upstream” caches, such as Squid (http://www.squid-cache.org/) and browser-based caches. These
are the types of caches that you don’t directly control but to which you can provide hints (via HTTP headers) about which parts of
your site should be cached, and how.

Setting up the cache
The cache system requires a small amount of setup. Namely, you have to tell it where your cached data should live — whether in
a database, on the filesystem or directly in memory. This is an important decision that affects your cache’s performance; yes,
some cache types are faster than others. In-memory caching will generally be much faster than filesystem or database caching,
because the former lacks the overhead of hitting the filesystem or database.

Your cache preference goes in the CACHE_BACKEND setting in your settings file. If you use caching and do not
specify CACHE_BACKEND, Django will use simple:/// by default. Here’s an explanation of all available values for CACHE_BACKEND.

Memcached
By far the fastest, most efficient type of cache available to Django, Memcached is an entirely memory-based cache framework
originally developed to handle high loads at LiveJournal.com and subsequently open-sourced by Danga Interactive(http://www.
danga.com). It’s used by sites such as Slashdot and Wikipedia to reduce database access and dramatically increase site
performance.

Memcached is available for free at http://danga.com/memcached/ . It runs as a daemon and is allotted a specified amount of
RAM. Its primary feature is to provide an interface — a super-lightning-fast interface — for adding, retrieving and deleting
arbitrary data in the cache. All data is stored directly in memory, so there’s no overhead of database or filesystem usage.

After installing Memcached itself, you’ll need to install the Memcached Python bindings, which are not bundled with Django
directly. These bindings are in a single Python module, memcache.py, available at http://www.djangoproject.com/thirdparty/
python-memcached/ .

To use Memcached with Django, set CACHE_BACKEND to memcached://ip:port/, where ip is the IP address of the Memcached
daemon and port is the port on which Memcached is running.

In this example, Memcached is running on localhost (127.0.0.1) port 11211:

CACHE_BACKEND = 'memcached://127.0.0.1:11211/'

One excellent feature of Memcached is its ability to share cache over multiple servers. This means you can run Memcached

file:///D|/books/computer/programming/python/books/DJANGO BOOK/Chapter 14 Caching.htm (1 of 3)9/28/2007 2:29:35 PM

http://www.djangobook.com/en/beta/chapter12/
http://www.djangobook.com/en/beta/
http://www.djangobook.com/en/beta/chapter15/
http://www.squid-cache.org/
http://www.danga.com/
http://www.danga.com/
http://danga.com/memcached/
http://www.djangoproject.com/thirdparty/python-memcached/
http://www.djangoproject.com/thirdparty/python-memcached/

Chapter 14: Caching

daemons on multiple machines, and the program will treat the group of machines as a single cache, without the need to duplicate
cache values on each machine. To take advantage of this feature with Django, include all server addresses in CACHE_BACKEND,
separated by semicolons.

In this example, the cache is shared over Memcached instances running on the IP addresses 172.19.26.240 and 172.19.26.242,
both on port 11211:

CACHE_BACKEND = 'memcached://172.19.26.240:11211;172.19.26.242:11211/'

In this example, the cache is shared over Memcached instances running on the IP addresses 172.19.26.240 (port 11211),
172.19.26.242 (port 11212) and 172.19.26.244 (port 11213):

CACHE_BACKEND = 'memcached://172.19.26.240:11211;172.19.26.242:11212;172.19.26.244:11213/'

A final point about Memcached is that memory-based caching has one important disadvantage. Because the cached data is stored
only in memory, the data will be lost if your server crashes. Clearly, memory isn’t intended for permanent data storage, so don’t
rely on memory-based caching as your only data storage. Without a doubt, none of the Django caching backends should be used
for permanent storage — they’re all intended to be solutions for caching, not storage — but we point this out here because
memory-based caching is particularly temporary.

Database caching
To use a database table as your cache backend, create a cache table in your database and point Django’s cache system at that
table.

First, create a cache table by running this command:

python manage.py createcachetable [cache_table_name]

…where [cache_table_name] is the name of the database table to create. This name can be whatever you want, as long as it’s a
valid table name that’s not already being used in your database. This command creates a single table in your database that is in
the proper format Django’s database-cache system expects.

Once you’ve created that database table, set your CACHE_BACKEND setting to "db://tablename", where tablename is the name of
the database table. In this example, the cache table’s name is my_cache_table:

CACHE_BACKEND = 'db://my_cache_table'

The database caching backend uses the same database as specified in your settings file. You can’t use a different database
backend for your cache table.

Filesystem caching
To store cached items on a filesystem, use the "file://" cache type for CACHE_BACKEND, specifying the directory on your
filesystem that should store the cached data.

For example, to store cached data in /var/tmp/django_cache, use this setting:

CACHE_BACKEND = 'file:///var/tmp/django_cache'

Note that there are three forward slashes toward the beginning of that example. The first two are for file://, and the third is
the first character of the directory path, /var/tmp/django_cache. If you’re on Windows, put the drive letter after the file://,
like so:: file://c:/foo/bar.

The directory path should be absolute — that is, it should start at the root of your filesystem. It doesn’t matter whether you put a
slash at the end of the setting.

Make sure the directory pointed-to by this setting exists and is readable and writable by the system user under which your Web
server runs. Continuing the above example, if your server runs as the user apache, make sure the
directory /var/tmp/django_cache exists and is readable and writable by the user apache.

Each cache value will be stored as a separate file whose contents are the cache data saved in a serialized (“pickled”) format,
using Python’s pickle module. Each file’s name is the cache key, escaped for safe filesystem use.

Local-memory caching
If you want the speed advantages of in-memory caching but don’t have the capability of running Memcached, consider the local-
memory cache backend. This cache is multi-process and thread-safe, but isn’t as efficient as Memcached due to its simplistic
locking and memory allocation strategies.

To use it, set CACHE_BACKEND to 'locmem:///'. For example:

file:///D|/books/computer/programming/python/books/DJANGO BOOK/Chapter 14 Caching.htm (2 of 3)9/28/2007 2:29:35 PM

Chapter 14: Caching

CACHE_BACKEND = 'locmem:///'

Simple caching (for development)
A simple, single-process memory cache is available as 'simple:///'. This merely saves cached data in process, which means it
should only be used in development or testing environments. For example:

CACHE_BACKEND = 'simple:///'

Dummy caching (for development)
Finally, Django comes with a “dummy” cache that doesn’t actually cache — it just implements the cache interface without doing
anything.

This is useful if you have a production site that uses heavy-duty caching in various places but a development/test environment on
which you don’t want to cache. In that case, set CACHE_BACKEND to 'dummy:///' in the settings file for your development
environment. As a result, your development environment won’t use caching and your production environment still will. For
example:

CACHE_BACKEND = 'dummy:///'

CACHE_BACKEND arguments
Each cache backend may take arguments. They’re given in query-string style on the CACHE_BACKEND setting. Valid arguments are:

●

file:///D|/books/computer/programming/python/books/DJANGO BOOK/Chapter 14 Caching.htm (3 of 3)9/28/2007 2:29:35 PM

The Django Book
« previous ◊ table of contents ◊ next »

Chapter 15: Other contributed sub-frameworks
One of the many strengths of Python is its “batteries included” philosophy; when you install Python, it comes with a large
“standard library” of commonly used modules that you can start using immediately, without having to download anything else.
Django aims to follow this philosophy, as it includes its own standard library of add-ons useful for common Web development
tasks. This chapter covers that collection of add-ons.

About the standard library
Django’s standard library lives in the package django.contrib. Within, each subpackage is a separate piece of add-on
functionality. These pieces are not necessarily related, but some django.contrib subpackages may require other ones.

There’s no hard requirement for the types of functionality in django.contrib. Some of the packages include models (and, hence,
require you to install their database tables into your database), but others consist solely of middleware or template tags.

The single characteristic the django.contrib packages have in common is this: If you were to remove the django.contrib
package entirely, you could still use Django’s fundamentals with no problems. When the developers of Django add new
functionality to the framework, they use this rule of thumb in deciding whether the new functionality should live
in django.contrib or elsewhere.

django.contrib consists of these packages:

● admin — The automatic admin site. See Chapter 6.

● auth — Django’s authentication framework. See Chapter 12.

● comments — A comments application. See Chapter 13.

● contenttypes — A framework for hooking into “types” of content, where each installed Django model is a separate content
type. See “Content types” below.

● csrf — Protection against Cross Site Request Forgeries. See “CSRF protection” below.

● flatpages — A framework for managing simple “flat” HTML content in a database. See “Flatpages” below.

● formtools — A set of high-level abstractions for Django forms. See “Form tools” below.

● humanize — A set of Django template filters useful for adding a “human touch” to data. See “Humanizing data” below.

● markup — A set of Django template filters that implement a number of common markup languages. See “Markup filters”
below.

● redirects — A framework for managing redirects. See “Redirects” below.

● sessions — Django’s session framework. See Chapter 12.

● sitemaps — A framework for generating sitemap XML files. See “Sitemaps” below.

● sites — A framework that lets you operate multiple Web sites off of the same database and Django installation. See “Sites”
below.

● syndication — A framework for generating syndication feeds in RSS and Atom. See “Syndication feeds” below.

The rest of this chapter goes into detail about each django.contrib package that hasn’t yet been covered in this book.

Sites
Django’s “sites” system is a generic framework that lets you operate multiple Web sites off of the same database and Django
project. As this is an abstract concept, it can be tricky to understand — so we’ll start with a couple of examples.

Example 1: Reusing data on multiple sites
As we explained in Chapter 1, the Django-powered sites LJWorld.com and Lawrence.com are operated by the same news
organization — the Lawrence Journal-World newspaper in Lawrence, Kansas. LJWorld.com focuses on news, while Lawrence.com
focuses on local entertainment. But sometimes editors want to publish an article on both sites.

The brain-dead way of solving the problem would be to use a separate database for each site, and to require site producers to
publish the same story twice: once for LJWorld.com and again for Lawrence.com. But that’s inefficient for site producers, and it’s
redundant to store multiple copies of the same story in the database.

The better solution is simple: Both sites use the same article database, and an article is associated with one or more sites via a
many-to-many relationship. The Django sites framework provides the database table to which articles can be related. It’s a hook
for associating data with one or more “sites.”

Example 2: Storing your site name/domain in one place

Chapter 15: Other contributed sub-frameworks

file:///D|/books/computer/programming/python/books/DJANGO BOOK/15.html (1 of 9)9/28/2007 2:30:07 PM

http://www.djangobook.com/en/beta/chapter14/
http://www.djangobook.com/en/beta/
http://www.djangobook.com/en/beta/chapter16/

Chapter 15: Other contributed sub-frameworks

LJWorld.com and Lawrence.com both have e-mail alert functionality, which lets readers sign up to get notifications when news
happens. It’s pretty basic: A reader signs up on a Web form, and he immediately gets an e-mail saying, “Thanks for your
subscription.”

It’d be inefficient and redundant to implement this signup-processing code twice, so the sites use the same code behind the
scenes. But the “thank you for signing up” notice needs to be different for each site. By using Site objects, we can abstract the
“thank you” notice to use the values of the current site’s name (e.g., 'LJWorld.com') and domain (e.g., 'www.ljworld.com').

The Django sites framework provides a place for you to store the name and domain for each site in your Django project, which
means you can reuse those values in a generic way.

Using the sites framework
The sites framework is more of a series of conventions than a framework. The whole thing is based on two simple concepts:

● The Site model, found in django.contrib.sites, has domain and name fields.

● The SITE_ID setting specifies the database ID of the Site object associated with that particular settings file.

How you use these two concepts is up to you, but Django uses them in a couple of ways automatically via simple conventions.

To install the sites app, follow these steps:

1. Add 'django.contrib.sites' to your INSTALLED_APPS.

2. Run the command manage.py syncdb to install the django_site table into your database.

3. Add one or more Site objects, either through the Django admin site or via the Python API. Create a Site object for each
site/domain that this Django project powers.

4. Define the SITE_ID setting in each of your settings files. This value should be the database ID of the Site object for the site
powered by that settings file.

Things you can do with the sites framework

Reusing data on multiple sites

To reuse data on multiple sites, as explained in “Example 1,” just create a ManyToManyField to Site in your models. For example:

from django.db import models
from django.contrib.sites.models import Site

class Article(models.Model):
 headline = models.CharField(maxlength=200)
 # ...
 sites = models.ManyToManyField(Site)

That’s the necessary infrastructure you need in order to associate articles with multiple sites in your database. With that in place,
you can reuse the same Django view code for multiple sites. Continuing the Article example, here’s what an article_detail
view might look like:

from django.conf import settings

def article_detail(request, article_id):
 try:
 a = Article.objects.get(id=article_id, sites__id=settings.SITE_ID)
 except Article.DoesNotExist:
 raise Http404
 # ...

This view function is reusable because it checks the article’s site dynamically, according to the value of the SITE_ID setting.

For example, say LJWorld.com’s settings file has a SITE_ID set to 1 and Lawrence.com’s settings file has a SITE_ID set to 2. If
this view is called when LJWorld.com’s settings file is active, then it will limit the article lookup to articles in which the list of sites
includes LJWorld.com.

Associating content with a single site

Similarly, you can associate a model to the Site model in a many-to-one relationship, using ForeignKey.

For example, if an article is only allowed on a single site, you’d use a model like this:

from django.db import models
from django.contrib.sites.models import Site

file:///D|/books/computer/programming/python/books/DJANGO BOOK/15.html (2 of 9)9/28/2007 2:30:07 PM

Chapter 15: Other contributed sub-frameworks

class Article(models.Model):
 headline = models.CharField(maxlength=200)
 # ...
 site = models.ForeignKey(Site)

This has the same benefits as described in the last section.

Hooking into the current site from views

On a lower level, you can use the sites framework in your Django views to do particular things based on what site in which the
view is being called. For example:

from django.conf import settings

def my_view(request):
 if settings.SITE_ID == 3:
 # Do something.
 else:
 # Do something else.

Of course, it’s ugly to hard-code the site IDs like that. This sort of hard-coding is best for hackish fixes that you need done
quickly. A slightly cleaner way of accomplishing the same thing is to check the current site’s domain:

from django.conf import settings
from django.contrib.sites.models import Site

def my_view(request):
 current_site = Site.objects.get(id=settings.SITE_ID)
 if current_site.domain == 'foo.com':
 # Do something
 else:
 # Do something else.

The idiom of retrieving the Site object for the value of settings.SITE_ID is quite common, so the Site model’s manager
(Site.objects) has a get_current() method. This example is equivalent to the previous one:

from django.contrib.sites.models import Site

def my_view(request):
 current_site = Site.objects.get_current()
 if current_site.domain == 'foo.com':
 # Do something
 else:
 # Do something else.

Note that in this final example, you don’t have to import django.conf.settings.

Getting the current domain for display

For a DRY (Don’t Repeat Yourself) approach to storing your site’s name and domain name, as explained in “Example 2,” just
reference the name and domain of the current Site object. For example:

from django.contrib.sites.models import Site
from django.core.mail import send_mail

def register_for_newsletter(request):
 # Check form values, etc., and subscribe the user.
 # ...
 current_site = Site.objects.get_current()
 send_mail('Thanks for subscribing to %s alerts' % current_site.name,
 'Thanks for your subscription. We appreciate it.\n\n-The %s team.' % current_site.
name,
 'editor@%s' % current_site.domain,
 [user_email])
 # ...

Continuing our ongoing example of LJWorld.com and Lawrence.com: On Lawrence.com, this e-mail has the subject line “Thanks
for subscribing to lawrence.com alerts.” On LJWorld.com, the e-mail has the subject “Thanks for subscribing to LJWorld.com
alerts.” This same site-specific behavior is done in the e-mail’s message body.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/15.html (3 of 9)9/28/2007 2:30:07 PM

Chapter 15: Other contributed sub-frameworks

Note that an even more flexible (but more heavyweight) way of doing this would be to use Django’s template system. Assuming
Lawrence.com and LJWorld.com have different template directories (TEMPLATE_DIRS), you could simply delegate to the template
system like so:

from django.core.mail import send_mail
from django.template import loader, Context

def register_for_newsletter(request):
 # Check form values, etc., and subscribe the user.
 # ...
 subject = loader.get_template('alerts/subject.txt').render(Context({}))
 message = loader.get_template('alerts/message.txt').render(Context({}))
 send_mail(subject, message, 'do-not-reply@example.com', [user_email])
 # ...

In this case, you’d have to create subject.txt and message.txt templates in both the LJWorld.com and Lawrence.com template
directories. That gives you more flexibility, but it’s also more complex.

It’s a good idea to exploit the Site objects as much as possible, to remove unneeded complexity and redundancy.

Getting the current domain for full URLs

Django’s get_absolute_url() convention is nice for getting your objects’ URL without the domain name, but in some cases you
might want to display the full URL — with http:// and the domain and everything — for an object. To do this, you can use the
sites framework. A simple example:

>>> from django.contrib.sites.models import Site
>>> obj = MyModel.objects.get(id=3)
>>> obj.get_absolute_url()
'/mymodel/objects/3/'
>>> Site.objects.get_current().domain
'example.com'
>>> 'http://%s%s' % (Site.objects.get_current().domain, obj.get_absolute_url())
'http://example.com/mymodel/objects/3/'

The CurrentSiteManager
If Sites play a key role in your application, consider using the helpful CurrentSiteManager in your model(s). It’s a model
manager (see Chapter 5) that automatically filters its queries to include only objects associated with the current Site.

Use CurrentSiteManager by adding it to your model explicitly. For example:

from django.db import models
from django.contrib.sites.models import Site
from django.contrib.sites.managers import CurrentSiteManager

class Photo(models.Model):
 photo = models.FileField(upload_to='/home/photos')
 photographer_name = models.CharField(maxlength=100)
 pub_date = models.DateField()
 site = models.ForeignKey(Site)
 objects = models.Manager()
 on_site = CurrentSiteManager()

With this model, Photo.objects.all() will return all Photo objects in the database, but Photo.on_site.all() will return only
the Photo objects associated with the current site, according to the SITE_ID setting.

In other words, these two statements are equivalent:

Photo.objects.filter(site=settings.SITE_ID)
Photo.on_site.all()

How did CurrentSiteManager know which field of Photo was the Site? It defaults to looking for a field called site. If your model
has a ForeignKey or ManyToManyField called something other than site, you need to explicitly pass that as the parameter
to CurrentSiteManager. The following model, which has a field called publish_on, demonstrates this:

from django.db import models
from django.contrib.sites.models import Site
from django.contrib.sites.managers import CurrentSiteManager

file:///D|/books/computer/programming/python/books/DJANGO BOOK/15.html (4 of 9)9/28/2007 2:30:07 PM

Chapter 15: Other contributed sub-frameworks

class Photo(models.Model):
 photo = models.FileField(upload_to='/home/photos')
 photographer_name = models.CharField(maxlength=100)
 pub_date = models.DateField()
 publish_on = models.ForeignKey(Site)
 objects = models.Manager()
 on_site = CurrentSiteManager('publish_on')

If you attempt to use CurrentSiteManager and pass a field name that doesn’t exist, Django will raise a ValueError.

Finally, note that you’ll probably want to keep a normal (non-site-specific) Manager on your model, even if you
use CurrentSiteManager. As explained in Chapter 5, if you define a manager manually, then Django won’t create the
automatic objects = models.Manager() manager for you. Also, note that certain parts of Django — namely, the Django admin
site and generic views — use whichever manager is defined first in the model, so if you want your admin site to have access to all
objects (not just site-specific ones), put objects = models.Manager() in your model, before you define CurrentSiteManager.

How Django uses the sites framework
Although it’s not required that you use the sites framework, it’s strongly encouraged, because Django takes advantage of it in a
few places. Even if your Django installation is powering only a single site, you should take the two seconds to create the site
object with your domain and name, and point to its ID in your SITE_ID setting.

Here’s how Django uses the sites framework:

● In the redirects framework (see “Redirects” below), each redirect object is associated with a particular site. When Django
searches for a redirect, it takes into account the current SITE_ID.

● In the comments framework (see Chapter 13), each comment is associated with a particular site. When a comment is
posted, its site is set to the current SITE_ID, and when comments are listed via the appropriate template tag, only the
comments for the current site are displayed.

● In the flatpages framework (see “Flatpages” below), each flatpage is associated with a particular site. When a flatpage is
created, you specify its site, and the flatpage middleware checks the current SITE_ID in retrieving flatpages to display.

● In the syndication framework (see “Syndication feeds” below), the templates for title and description automatically have
access to a variable {{{ site }}}, which is the Site object representing the current site. Also, the hook for providing item
URLs will use the domain from the current Site object if you don’t specify a fully-qualified domain.

● In the authentication framework (see Chapter 12), the django.contrib.auth.views.login view passes the current Site
name to the template as {{{ site_name }}}.

● The shortcut view (see Chapter XX) uses the domain of the current Site object when calculating an object’s URL.

Flatpages
Often times, you’ll have a database-driven Web application up and running, but you’ll need to add a couple “one-off” static pages,
such as an “About” page or a “Privacy Policy” page. It’d be possible to use a standard Web server such as Apache to serve these
files as flat HTML files, but that introduces an extra level of complexity into your application, because then you have to worry
about configuring Apache, you’ve got to set up access for your team to edit those files, and you can’t take advantage of Django’s
template system to style the pages.

The solution to this problem is Django’s “flatpages” app, which lives in the package django.contrib.flatpages. This app lets
you manage such “one-off” pages via Django’s admin site, and it lets you specify templates for them using Django’s template
system. It uses Django models behind the scenes, which means it stores the pages in a database, just like the rest of your data,
and you can access flatpages with the standard Django database API.

Flatpages are keyed by their URL and site. When you create a flatpage, you specify which URL it’s associated with, along with
which site(s) it’s on. (For more on sites, see the “Sites” section above.)

Using flatpages
To install the flatpages app, follow these steps:

1. Add 'django.contrib.flatpages' to your INSTALLED_APPS.

2. Add 'django.contrib.flatpages.middleware.FlatpageFallbackMiddleware' to your MIDDLEWARE_CLASSES setting.

3. Run the command manage.py syncdb to install the two required tables into your database.

How it works
The flatpages app creates two tables in your database: django_flatpage and django_flatpage_sites. django_flatpage is a
lookup table that simply maps a URL to a title and bunch of text content. django_flatpage_sites is a many-to-many table that
associates a flatpage with one or more sites.

The app comes with a single FlatPage model, defined in django/contrib/flatpages/models.py. It looks like this:

from django.db import models
from django.contrib.sites.models import Site

file:///D|/books/computer/programming/python/books/DJANGO BOOK/15.html (5 of 9)9/28/2007 2:30:07 PM

Chapter 15: Other contributed sub-frameworks

class FlatPage(models.Model):
 url = models.CharField(maxlength=100)
 title = models.CharField(maxlength=200)
 content = models.TextField()
 enable_comments = models.BooleanField()
 template_name = models.CharField(maxlength=70, blank=True)
 registration_required = models.BooleanField()
 sites = models.ManyToManyField(Site)

Let’s cover these fields one at a time:

● url — The URL at which this flatpage lives, excluding the domain name but including the leading slash.
Example: '/about/contact/.

● title — The title of the flatpage. The framework doesn’t do anything special with this. It’s your responsibility to display it in
your template.

● content — The content of the flatpage, i.e., the HTML of the page. The framework doesn’t do anything special with this. It’s
your responsibility to display it in the template.

● enable_comments — Whether to enable comments on this flatpage. The framework doesn’t do anything special with this. You
can check this value in your template and display a comment form if needed.

● template_name — The name of the template to use for rendering this flatpage. This is optional. If it’s not given, the
framework will use the template flatpages/default.html.

● registration_required — Whether registration is required for viewing this flatpage. This integrates with Django’s
authentication/user framework, which was explained in Chapter 12.

● sites — The sites that this flatpage lives on. This integrates with Django’s sites framework, which was explained in the
“Sites” section above.

You can create flatpages through either the Django admin interface or the Django database API. For more, see “How to add,
change and delete flatpages” below.

Once you’ve created flatpages, the FlatpageFallbackMiddleware does all of the work. Each time any Django application raises a
404 error, this middleware checks the flatpages database for the requested URL as a last resort. Specifically, it checks for a
flatpage with the given URL with a site ID that corresponds to the SITE_ID setting.

If it finds a match, it loads the flatpage’s template, or flatpages/default.html if the flatpage has not specified a custom
template. It passes that template a single context variable, flatpage, which is the flatpage object. It uses RequestContext in
rendering the template.

If it doesn’t find a match, the request continues to be processed as usual.

Note that this middleware only gets activated for 404s — not for 500s or responses of any other status code. Also note that the
order of MIDDLEWARE_CLASSES matters. Generally, you can put FlatpageFallbackMiddleware at the end of the list, because it’s a
last resort.

How to add, change and delete flatpages

Via the admin interface

If you’ve activated the automatic Django admin interface, you should see a “Flatpages” section on the admin index page. Edit
flatpages as you edit any other object in the system.

Via the Python API

As described above, flatpages are represented by a standard Django model that lives in django/contrib/flatpages/models.py.
Hence, you can access flatpage objects via the Django database API. For example:

>>> from django.contrib.flatpages.models import FlatPage
>>> from django.contrib.sites.models import Site
>>> fp = FlatPage(
... url='/about/',
... title='About',
... content='<p>About this site...</p>',
... enable_comments=False,
... template_name='',
... registration_required=False,
...)
>>> fp.save()
>>> fp.sites.add(Site.objects.get(id=1))
>>> FlatPage.objects.get(url='/about/')
<FlatPage: /about/ -- About>

file:///D|/books/computer/programming/python/books/DJANGO BOOK/15.html (6 of 9)9/28/2007 2:30:07 PM

Chapter 15: Other contributed sub-frameworks

Flatpage templates
By default, flatpages are rendered via the template flatpages/default.html, but you can override that for a particular flatpage.

Creating the flatpages/default.html template is your responsibility. In your template directory, just create a flatpages
directory containing a file default.html.

Flatpage templates are passed a single context variable, flatpage, which is the flatpage object.

Here’s a sample flatpages/default.html template:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/REC-html40/loose.dtd">
<html>
<head>
<title>{{ flatpage.title }}</title>
</head>
<body>
{{ flatpage.content }}
</body>
</html>

Redirects
Django’s redirects framework lets you manage redirects easily by storing them in a database and treating them as any other
Django model object. For example, you can use the redirects framework to tell Django, “redirect any request to /music/
to /sections/arts/music/.”

Using the redirects framework
To install the redirects app, follow these steps:

1. Add 'django.contrib.redirects' to your INSTALLED_APPS.

2. Add 'django.contrib.redirects.middleware.RedirectFallbackMiddleware' to your MIDDLEWARE_CLASSES setting.

3. Run the command manage.py syncdb to install the single required table into your database.

How it works
manage.py syncdb creates a django_redirect table in your database. This is a simple lookup table with site_id, old_path
and new_path fields.

You can create redirects through either the Django admin interface or the Django database API. For more, see “How to add,
change and delete redirects” below.

Once you’ve created redirects, the RedirectFallbackMiddleware does all of the work. Each time any Django application raises a
404 error, this middleware checks the redirects database for the requested URL as a last resort. Specifically, it checks for a
redirect with the given old_path with a site ID that corresponds to the SITE_ID setting. (See “Sites” above for more on SITE_ID
and the sites framework.) Then, it follows these steps:

● If it finds a match, and new_path is not empty, it redirects to new_path.

● If it finds a match, and new_path is empty, it sends a 410 (“Gone”) HTTP header and empty (content-less) response.

● If it doesn’t find a match, the request continues to be processed as usual.

The middleware only gets activated for 404s — not for 500s or responses of any other status code.

Note that the order of MIDDLEWARE_CLASSES matters. Generally, you can put RedirectFallbackMiddleware at the end of the list,
because it’s a last resort.

How to add, change and delete redirects

Via the admin interface

If you’ve activated the automatic Django admin interface, you should see a “Redirects” section on the admin index page. Edit
redirects as you edit any other object in the system.

Via the Python API

Redirects are represented by a standard Django model that lives in django/contrib/redirects/models.py. Hence, you can
access redirect objects via the Django database API. For example:

>>> from django.contrib.redirects.models import Redirect

file:///D|/books/computer/programming/python/books/DJANGO BOOK/15.html (7 of 9)9/28/2007 2:30:07 PM

Chapter 15: Other contributed sub-frameworks

>>> from django.contrib.sites.models import Site
>>> red = Redirect(
... site=Site.objects.get(id=1),
... old_path='/music/',
... new_path='/sections/arts/music/',
...)
>>> red.save()
>>> Redirect.objects.get(old_path='/music/')
<Redirect: /music/ ---> /sections/arts/music/>

CSRF protection
The django.contrib.csrf package provides easy-to-use protection against Cross-Site Request Forgeries (CSRF).

CSRF explained
CSRF, also known as “session riding,” is a Web-site security exploit. It happens when a malicious Web site tricks a user into
unknowingly loading a URL from a site at which they’re already authenticated — hence, taking advantage of their authenticated
status. This can be a bit tricky to understand at first, so we’ve included two examples here:

A simple example

Say you’re logged into a webmail account at example.com. Say this webmail site has a “Log out” button that points to the
URL example.com/logout — that is, the only action you need to take in order to log out is to visit the page example.com/logout.

A malicious site can coerce you to visit the URL example.com/logout by including that URL as a hidden <iframe> on its own
(malicious) page. Thus, if you’re logged into the example.com webmail account and visit the malicious page that has an <iframe>
to example.com/logout, the act of visiting the malicious page will log you out from example.com.

Clearly, being logged out of a webmail site against your will is not a terrifying breach of security, but this same type of exploit can
happen to any site that “trusts” users — such as bank sites or e-commerce sites.

A more complex example

In previous example, example.com was partially at fault because it allowed a state change (i.e., logging yourself out) to be
requested via the HTTP GET method. It’s much better practice to require an HTTP POST for any request that changes state on the
server. But even Web sites that require POST for state-changing actions are vulnerable to CSRF.

Say example.com has upgraded its “Log out” functionality so that it’s a <form> button that is requested via POST to the
URL example.com/logout. Furthermore, the log-out <form> includes this hidden field:

<input type="hidden" name="confirm" value="true" />

This ensures that a simple POST to the URL example.com/logout won’t perform the logging out; in order for a user to log out, the
user must request example.com/logout via POST and send the confirm POST variable with a value of 'true'.

Well, despite the extra security, this arrangement can still be exploited by CSRF; the malicious page just needs to do a little more
work. Instead of loading the example.com/logout page in an <iframe>, it can call that URL via POST using JavaScript, passing
the confirm=true variable.

Prevention

How, then, can your site protect itself from this exploit?

The first step is to make sure all GET requests are free of side effects. That way, if a malicious site includes one of your pages as
an <iframe>, it won’t have a negative effect.

That leaves POST requests. The second step, then, is to give each POST <form> a hidden field whose value is secret and is
generated from the user’s session ID. Then, when processing the form on the server side, check for that secret field and raise an
error if it doesn’t validate.

This is exactly what Django’s CSRF prevention layer does.

Using the CSRF middleware
The django.csrf package contains only one module: middleware.py. This module contains a Django middleware
class, CsrfMiddleware, which implements the CSRF protection.

To use it, add 'django.contrib.csrf.middleware.CsrfMiddleware' to the MIDDLEWARE_CLASSES setting in your settings file.
This middleware needs to process the response after SessionMiddleware, so CsrfMiddleware must appear
before SessionMiddleware in the list. Also, it must process the response before the response gets compressed or otherwise
mangled, so CsrfMiddleware must come after GZipMiddleware.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/15.html (8 of 9)9/28/2007 2:30:07 PM

Chapter 15: Other contributed sub-frameworks

Once you’ve added that to your MIDDLEWARE_CLASSES setting, you’re done. That’s all you need to do.

How it works
In case you’re interested, here’s how CsrfMiddleware works. It does these two things:

1. It modifies outgoing requests by adding a hidden form field to all POST forms, with the name csrfmiddlewaretoken and a
value that is a hash of the session ID plus a secret. The middleware does not modify the response if there’s no session ID
set, so the performance penalty is negligible for requests that don’t use sessions.

2. On all incoming POST requests that have the session cookie set, it checks that the csrfmiddlewaretoken is present and
correct. If it isn’t, the user will get a 403 HTTP error. The contents of the 403 error page are the message “Cross Site
Request Forgery detected. Request aborted.”

This ensures that only forms originating from your Web site can be used to POST data back.

This middleware deliberately only targets HTTP POST requests (and the corresponding POST forms). As we explained above, GET
requests ought never to have side effects; ensuring this is your own responsibility.

POST requests that are not accompanied by a session cookie are not protected, but they don’t need to be protected, because a
malicious Web site could make these kind of requests anyway.

To avoid altering non-textual requests, the middleware checks the response’s Content-Type header before modifying it. Only
pages that are served as text/html or application/xml+xhtml are modified.

Limitations
CsrfMiddleware requires Django’s session framework to work. (See Chapter 12 for more on sessions.) If you’ve using a custom
session or authentication framework that manually manages session cookies, this middleware will not help you.

If your app creates HTML pages and forms in some unusual way — e.g., if it sends fragments of HTML in
JavaScript document.write statements — you might bypass the filter that adds the hidden field to the form. In this case, the
form submission would always fail. (This would happen because the CsrfMiddleware uses a regular expression to add
the csrfmiddlewaretoken field to your HTML before the page is sent to the client, and the regular expression sometimes cannot
handle wacky HTML.) If you suspect this might be happening, just view source in your Web browser to see whether
the csrfmiddlewaretoken was inserted into your <form>.

For more CSRF information and examples, visit http://en.wikipedia.org/wiki/Csrf

Content types
This section hasn’t been written yet.

Form tools
This section hasn’t been written yet.

Humanizing data
This section hasn’t been written yet.

Markup filters
This section hasn’t been written yet.

Syndication feeds
This section hasn’t been written yet.

« previous ◊ table of contents ◊ next »
Copyright 2006 Adrian Holovaty and Jacob Kaplan-Moss.
This work is licensed under the GNU Free Document License.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/15.html (9 of 9)9/28/2007 2:30:07 PM

http://en.wikipedia.org/wiki/Csrf
http://www.djangobook.com/en/beta/chapter14/
http://www.djangobook.com/en/beta/
http://www.djangobook.com/en/beta/chapter16/
http://www.djangobook.com/license/

The Django Book
« previous ◊ table of contents ◊ next »

Chapter 16: Middleware
On occasion, you’ll need to run a piece of code on each and every request that Django handles. This code might need to modify
the request before the view handles it, or maybe log information about the request for debugging purposes, etc.

Django’s middleware framework is essentially a set of hooks into Django’s request/response processing. It’s a light, low-level
“plugin” system for globally altering Django’s input and/or output.

Each middleware component is responsible for doing some specific function. If you’re reading this book linearly — sorry,
postmodernists — you’ll have already seen middleware a number of times:

● All of the nifty session and user tools that we looked at in Chapter 12 are made possible by a few small pieces of middleware
(more specifically, the middleware makes request.session and request.user available to you in views).

● The site-wide cache discussed in Chapter 12 is actually just a piece of middleware that short-circuits the call to your view
function if the response for that view has already been cached.

● The flatpages, redirects and csrf contributed apps from Chapter 15 all do their magic through the use of middleware
components

This chapters dives deeper into exactly what middleware is and how it works, and explains how you can write your own
middleware.

What’s middleware?
Middleware is actually incredible simple. A middleware component is simply a Python class that conforms to a certain API — duck
typing strikes again! Before diving into the formal aspects of what that API is, let’s look at a very simple example.

High-traffic sites often need to deploy Django behind a load balancing proxy (see Chapter 21). This can cause a few small
complications, one of which is that every request’s remote IP (request.META["REMOTE_IP"]) will be that of the load balancer, not
the actual IP making the request. Load balancers deal with this by setting a special header, X-Forwarded-For, to the actual
requesting IP address.

So here’s a small bit of middleware that lets sites running behind a proxy still see the correct IP address
in request.META["REMOTE_IP"]:

class SetRemoteAddrFromForwardedFor(object):

 def process_request(self, request):
 try:
 real_ip = request.META['HTTP_X_FORWARDED_FOR']
 except KeyError:
 pass
 else:
 # HTTP_X_FORWARDED_FOR can be a comma-separated list of IPs.
 # Take just the first one.
 real_ip = real_ip.split(",")[0]
 request.META['REMOTE_ADDR'] = real_ip

If this is installed (see below), every request’s X-Forwarded-For value will be automatically inserted
into request.META['REMOTE_ADDR']. Simple, isn’t it?

In fact, this is a common enough need that this piece of middleware is a built-in part of Django; it lives
in django.middleware.http, and you can read a bit more about it below.

Installing middleware
The linear readers in the crowd are probably old hands at this already; many of the examples in the previous few chapters will
only work if you’ve already figured out how to enable middleware. However, for completeness — and for the benefit of Julio
Cortázar fans who’ve torn all the pages out of this book, shuffled them, and are now reading them in random order — let’s break
it down.

To activate a middleware component, add it to the MIDDLEWARE_CLASSES list in your settings module. In MIDDLEWARE_CLASSES,
each middleware component is represented by a string: the full Python path to the middleware’s class name. For example, here’s
the default MIDDLEWARE_CLASSES created by django-admin.py startproject:

MIDDLEWARE_CLASSES = (
 'django.middleware.common.CommonMiddleware',

Chapter 16: Middleware

file:///D|/books/computer/programming/python/books/DJANGO BOOK/16.html (1 of 4)9/28/2007 2:30:22 PM

http://www.djangobook.com/en/beta/chapter15/
http://www.djangobook.com/en/beta/
http://www.djangobook.com/en/beta/chapter17/

Chapter 16: Middleware

 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django.middleware.doc.XViewMiddleware',
)

A Django installation doesn’t require any middleware — e.g., MIDDLEWARE_CLASSES can be empty, if you’d like — but it’s strongly
suggested that you use CommonMiddleware.

The order is significant. On the request and view phases, Django applies middleware in the order given in MIDDLEWARE_CLASSES,
and on the response and exception phases, Django applies middleware in reverse order. That is, Django
treats MIDDLEWARE_CLASSES as a sort of “wrapper” around the view function: on the request, it walks down the list to the view,
and on the response it walks back up.

Middleware methods
Now that we know what middleware is and how to install it, let’s take a look at all the available methods that middleware classes
may define.

Initializer: __init__(self)
If middleware classes define an initializer (i.e. an __init__ method), it should take no arguments (beyond the standard self).

For performance reasons, middleware classes are only instantiated once in long-running server processes; this means that you
can’t count on __init__ getting called every time a request runs, only once at server startup.

Middleware classes may also use initialization time to remove themselves from being installed. If an initializer
raises django.exceptions.MiddlewareNotUsed, Django will remove that piece of middleware from the middleware stack. You
might use this to check for some piece of software that the middleware class depends on, or whether the server is running in
debug mode, or any other sort of environmental situation that might make you want to disable the middleware.

Request pre-processor: process_request(self, request)
This method gets called as soon as the request as been received, and before the URL has been resolved to determine which view
to run. It’s passed the HttpRequest object, which you may modify at will.

process_request() should return either None or an HttpResponse object. If it returns None, Django will continue processing this
request, executing any other middleware and then the appropriate view.

If a request middleware returns an HttpResponse object, Django won’t bother calling any other middleware (of any type) or the
appropriate view; it’ll return that HttpResponse.

View pre-processor: process_view(self, request, view, args, kwargs)
This method gets called after the request middleware has run, and after the URL has been resolved into a view, but before that
view has actually been called.

The arguments passed to this view are:

Argument Explanation
request The HttpRequest object.

view The Python function that Django will call to handle this request. This is the actual function object
itself, not the name of the function as a string.

args The list of positional arguments that will be passed to the view, not including the request
argument (which is always the first argument to a view).

kwargs The dictionary of keyword arguments that will be passed to the view.

Just like process_request(), process_view() should return either None or an HttpResponse object. If it returns None, Django
will continue processing this request, executing any other view middleware and then the appropriate view.

If any view middleware returns an HttpResponse object, Django won’t bother calling any other middleware or the appropriate
view; it’ll return that response.

Response post-processor: process_response(self, request, response)
This method gets called after the view function has already been called and the response has been generation. This is where
middleware can modify the output of a response; output compression (see below) is one obvious use for response middleware.

The parameters should be pretty self-explanatory — request is the request object, and response is the response object returned
from the view.

Unlike the request and view middleware methods which may return None, process_response() must return an HttpResponse
object. That response could be the original one passed into the function (possibly modified), or a brand new one.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/16.html (2 of 4)9/28/2007 2:30:22 PM

Chapter 16: Middleware

Exception post-processor: process_exception(self, request, exception)
This method only gets called if something goes wrong and a view raises an uncaught exception, not including Http404 exceptions.
You can use this hook to send error notifications, dump post-mortem information to a log, or even try to recover from the error
automatically.

The parameters to this function are the same request object we’ve been dealing with all along, and exception, which is the
actual Exception object raised by the view function.

process_exception() may return an HttpResponse which will be used as the response shown to the browser, or it may
return None to continue with Django’s built-in exception handling.

Examples
Django ships with a number of middleware classes — discussed below — that make good examples; reading the code for them
should give you a good feel for the power of middleware.

You can also find a number of community-contributed examples on Django’s wiki: http://code.djangoproject.com/wiki/
ContributedMiddleware.

Built-in middleware
Django comes with some built-in middleware to deal with common problems.

Authentication support middleware
Middleware class: django.contrib.auth.middleware.AuthenticationMiddleware

Enables authentication support. Technically, this middleware adds the request.user attribute, representing the currently-logged-
in user, to every incoming HttpRequest object.

See Chapter 15 for the complete details.

“Common” middleware
Middleware class: django.middleware.common.CommonMiddleware.

Adds a few conveniences for perfectionists:

● Forbids access to user agents in the DISALLOWED_USER_AGENTS setting, which should be a list of strings.

● Performs URL rewriting based on the APPEND_SLASH and PREPEND_WWW settings. If APPEND_SLASH is True, URLs that lack a
trailing slash will be redirected to the same URL with a trailing slash, unless the last component in the path contains a
period. So foo.com/bar is redirected to foo.com/bar/, but foo.com/bar/file.txt is passed through unchanged.

If PREPEND_WWW is True, URLs that lack a leading “www.” will be redirected to the same URL with a leading “www.”

Both of these options are meant to normalize URLs. The philosophy is that each URL should exist in one, and only one, place.
Technically a URL foo.com/bar is distinct from foo.com/bar/ — a search-engine indexer would treat them as separate URLs
— so it’s best practice to normalize URLs.

● Handles ETags based on the USE_ETAGS setting. If USE_ETAGS is set to True, Django will calculate an ETag for each request
by MD5-hashing the page content, and it’ll take care of sending Not Modified responses, if appropriate.

Compression middleware
Middleware class: django.middleware.gzip.GZipMiddleware

If enabled, this middleware will automatically compress content for browsers that understand gzip compression (all modern
browsers).

This can greatly reduce the amount of bandwidth a web server consumes at the expense of processing time. We usually prefer
speed over bandwidth, but if you’d like to take the opposite side of this trade-off, just enable this middleware.

Conditional GET middleware
Middleware class: django.middleware.http.ConditionalGetMiddleware

If enabled, provides support for conditional GET operations. If the response has a ETag or Last-Modified header, and the request
has If-None-Match or If-Modified-Since, the response is replaced by an 304 (“Not modified”) response.

Also removes the content from any response to a HEAD request and sets the Date and Content-Length response-headers for all

file:///D|/books/computer/programming/python/books/DJANGO BOOK/16.html (3 of 4)9/28/2007 2:30:22 PM

http://code.djangoproject.com/wiki/ContributedMiddleware
http://code.djangoproject.com/wiki/ContributedMiddleware

Chapter 16: Middleware

requests.

Reverse proxy support (X-Forwarded-For middleware)
Middleware class: django.middleware.http.SetRemoteAddrFromForwardedFor

This is the example we looked at above. It sets request.META['REMOTE_ADDR'] based
on request.META['HTTP_X_FORWARDED_FOR'], if the latter is set. This is useful if you’re sitting behind a reverse proxy that causes
each request’s REMOTE_ADDR to be set to 127.0.0.1.

Danger, Will Robinson!

This does not validate HTTP_X_FORWARDED_FOR.

If you’re not behind a reverse proxy that sets HTTP_X_FORWARDED_FOR automatically, do not use this middleware.
Anybody can spoof the value of HTTP_X_FORWARDED_FOR, and because this sets REMOTE_ADDR based
on HTTP_X_FORWARDED_FOR, that means anybody can fake their IP address.

Only use this middlware when you can absolutely trust the value of HTTP_X_FORWARDED_FOR.

Session support middleware
Middleware class: django.contrib.sessions.middleware.SessionMiddleware.

Enables session support; see Chapter 15 for details.

Site-wide cache middleware
Middleware class: django.middleware.cache.CacheMiddleware.

If this is enabled, each Django-powered page will be cached. This is discussed in detail in Chapter 14.

Transaction middleware
Middleware class: django.middleware.transaction.TransactionMiddleware

Binds a database COMMIT or ROLLBACK to the request/response phase. If a view function runs successfully, a COMMIT is done. If it
fails with an exception, a ROLLBACK is done.

The order of this middleware in the stack is important: middleware modules running outside of it run with commit-on-save - the
default Django behavior. Middleware modules running inside it (coming later in the stack) will be under the same transaction
control as the view functions.

See XXX for more about information about database transactions.

“X-View” middleware
Middleware class: django.middleware.doc.XViewMiddleware

Sends custom X-View HTTP headers to HEAD requests that come from IP addresses defined in the INTERNAL_IPS setting. This is
used by Django’s automatic documentation system.

« previous ◊ table of contents ◊ next »
Copyright 2006 Adrian Holovaty and Jacob Kaplan-Moss.
This work is licensed under the GNU Free Document License.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/16.html (4 of 4)9/28/2007 2:30:22 PM

http://www.djangobook.com/en/beta/chapter15/
http://www.djangobook.com/en/beta/
http://www.djangobook.com/en/beta/chapter17/
http://www.djangobook.com/license/

The Django Book
« previous ◊ table of contents ◊ next »

Chapter 17: Integrating with legacy databases and applications
Although Django is best suited for developing projects from scratch — so-called “green-field” development — it’s possible to
integrate the framework into legacy databases and applications. This chapter explains a few integration strategies.

Integrating with a legacy database
Django’s database layer generates SQL schemas from Python code — but in the case of a legacy database, you already have the
SQL schemas. In that case, you’ll need to write models for your existing database tables. (For performance reasons, Django’s
database layer does not support on-the-fly object-relational mapping by introspecting the database at run time; in order to use
the database API, you’re required to write model code.) Fortunately, Django comes with a utility that can generate model code by
reading your database table layouts. This utility is called manage.py inspectdb.

Using inspectdb
The inspectdb utility introspects the database pointed to by your settings file, determines the Django model representation of
your tables and prints the Python model code to standard output. Here’s a walkthrough of a typical legacy-database process from
scratch; the only things it assumes are that Django is installed and that you have a legacy database.

1. Create a Django project by running django-admin.py startproject mysite (where mysite is your project’s name). We’ll
use mysite as the project name in this example.

2. Edit the settings file in that project, mysite/settings.py, to tell Django what your database connection parameters are,
and what the name of the database is. Specifically, you’ll want to specify the DATABASE_NAME, DATABASE_ENGINE
, DATABASE_USER, DATABASE_PASSWORD, DATABASE_HOST and DATABASE_PORT settings.

3. Create a Django app within your project by running python mysite/manage.py startapp myapp (where myapp is your app’s
name). We’ll use myapp as the project name here.

4. Run the command python mysite/manage.py inspectdb. This will examine the tables in the DATABASE_NAME database and
print the model class for each table. Take a look at the output to get an idea of what inspectdb can do.

5. Save that output to the models.py file within your app by using standard shell output redirection:

python mysite/manage.py inspectdb > mysite/myapp/models.py

6. Edit the mysite/myapp/models.py file to clean up the generated models and make whatever customizations you need to
make. We’ll give some hints for this in the next section.

Cleaning up generated models

As you might expect, the database introspection isn’t perfect, and you’ll need to do some light cleanup of the resulting model
code. Here are a few pointers for dealing with the generated models:

1. Each database table is converted to a model class — i.e., there is a one-to-one mapping between database tables and model
classes. This means that you’ll need to refactor the models for any many-to-many join tables into ManyToManyField objects.

2. Each generated model has an attribute for every field — including id primary-key fields. However, recall that Django
automatically adds an id primary-key field if a model doesn’t have a primary key. Thus, if you’re particularly anal, you’ll
want to remove any lines that look like this, because they’re redundant:

id = models.IntegerField(primary_key=True)

3. Each field’s type (e.g., CharField, DateField) is determined by looking at the database column type (e.g., VARCHAR, DATE).
If inspectdb cannot map a column’s type to a model field type, it will use TextField and will insert the Python
comment 'This field type is a guess.' next to the field in the generated model. Keep an eye out for that, and change
the field type accordingly if needed.

4. If a database column name is a Python reserved word (such as pass, class or for), inspectdb will append '_field' to the
attribute name. For example, if a table has a column for, the generated model will have a field for_field, with
the db_column attribute set to 'for'. inspectdb will insert the Python
comment 'Field renamed because it was a Python reserved word.' next to the field.

5. If your database contains tables that refer to other tables (as most databases do), you might need to rearrange the order of
the generated models so that models that refer to other models are ordered properly. For example, if model Foo has
a ForeignKey to model Bar, model Bar should be defined before model Foo.

Chapter 17: Integrating with legacy databases and applications

file:///D|/books/computer/programming/python/books/DJANGO BOOK/17.html (1 of 2)9/28/2007 2:31:09 PM

http://www.djangobook.com/en/beta/chapter16/
http://www.djangobook.com/en/beta/
http://www.djangobook.com/en/beta/chapter18/

Chapter 17: Integrating with legacy databases and applications

6. inspectdb detects primary keys for PostgreSQL, MySQL and SQLite. That is, it inserts primary_key=True where appropriate.
For other databases, you’ll need to insert primary_key=True for at least one field in each model, because Django models are
required to have a primary_key=True field.

7. Foreign-key detection only works with PostgreSQL and with certain types of MySQL tables. In other cases, foreign-key fields
will be generated as IntegerField``s, assuming the foreign-key column was an ``INT column.

More
What else would you like to see in this chapter? What problems/questions do you have with integrating Django with legacy
databases/applications? Leave a comment on this paragraph and let us know.

« previous ◊ table of contents ◊ next »
Copyright 2006 Adrian Holovaty and Jacob Kaplan-Moss.
This work is licensed under the GNU Free Document License.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/17.html (2 of 2)9/28/2007 2:31:09 PM

http://www.djangobook.com/en/beta/chapter16/
http://www.djangobook.com/en/beta/
http://www.djangobook.com/en/beta/chapter18/
http://www.djangobook.com/license/

The Django Book
« previous ◊ table of contents ◊ next »

Chapter 18: Extending Django’s admin interface
Chapter 6 introduced Django’s admin interface, and now it’s time to circle back and take a closer look.

As we’ve said a few times before, the admin is one of Django’s “killer features,” and most Django developers quickly fall in love with all
its timesaving features. It follows naturally, then, that eventually most Django developers look to customize or extend the admin.

The last few sections of Chapter 6 talk about some simple ways to customize certain parts of the admin interface. It’s probably a good
idea to go read back over that material; it covers some simple ways to customize the admin change lists and edit forms, as well as an
easy way to “re-brand” the admin to match your site.

Chapter 6 also discusses when and why you’d want to use the admin interface, and since that material makes a good jumping-off point
for the rest of this chapter, we’ll reproduce it here:

Obviously, [the admin is] extremely useful for editing data (fancy that). If you have any sort of data entry tasks, the
admin simply can’t be beat. We suspect that the vast majority of readers of this book will have a whole host of data
entry tasks.

Django’s admin especially shines when non-technical users need to be able to enter data; that’s the original genesis of
the feature. At the newspaper where Django was first developed, development of a typical online feature — a special
report on water quality in the municipal supply, say — goes something like this:

● The reporter responsible for the story meets with one of the developers and goes over the available data.

● The developer designs a model around this data, and then opens up the admin interface to the reporter.

● While the reporter enters data into Django, the programmer can focus on developing the publicly-accessible
interface (the fun part!)

In other works, the raison d’être of Django’s admin is facilitating the simultaneous work of content producers and
programmers.

However, beyond the obvious data-entry tasks, we find the admin useful in a few other cases:

Chapter 18: Customizing the Django admin

file:///D|/books/computer/programming/python/books/DJANGO BOOK/18.html (1 of 10)9/28/2007 2:31:28 PM

http://www.djangobook.com/en/beta/chapter17/
http://www.djangobook.com/en/beta/
http://www.djangobook.com/en/beta/chapter19/

Chapter 18: Customizing the Django admin

● Inspecting data models: the first thing we do when we’ve defined a new model is to call it up in the admin and
enter some dummy data. This is usually when we find any data modeling errors; having a graphical interface to a
model quickly reveals those mistakes.

● Managing acquired data: there’s little actual data entry associated with a site like chicagocrime.org since most of
the data comes from an automated source. However, when problems with the automatically acquired data crop
up, it’s very useful to be able to go in and edit that data easily.

Django’s admin handles these common cases with little or no customization. As with most design trade-offs, though, handling these
common cases so well means that Django’s admin doesn’t handle some other modes of editing very well at all.

We’ll talk about the cases that Django’s admin isn’t designed to cover a bit later on, but first, a brief digression on philosophy:

The Zen of Admin
At it’s core, Django’s admin is designed for a single activity:

Trusted users editing structured content.

Yes, extremely simple — but in that simplicity lies a whole host of suppositions that the admin takes as given. The entire philosophy of
Django’s admin follows directly from these assumptions, so let’s dig into the subtext of this phrase:

“Trusted users …”
The admin is designed to be used by people who you, the developer, trust. This doesn’t just mean “people who have been
authenticated;” it means that Django assumes that your content editors can be trusted to do the right thing.

This means that there’s no “approval” process for editing content — if you trust your users, nobody needs to approve of their edits. It
also means that the permission system, while powerful, has no support for limiting access on a per-object basis. If you trust someone
to edit their own stories, you trust them not to edit anyone else’s without permission.

“.. editing …”
The primary purpose of Django’s admin is to let people edit stuff. This seems obvious at first, but again has some subtle and powerful
repercussions.

For instance, although the admin is quite useful for reviewing data (see above), it’s not designed with that purpose as a goal: note the
lack of a “can view” permission (see Chapter 12). Django assumes that if people are allowed to view content in the admin, they’re also
allowed to edit it.

Another more important note is the lack of anything even remotely approaching “workflow.” If some given tasks requires a series of
steps, there’s no support for enforcing that they be done in any particular order. Django’s admin focuses on editing, not on activities
surrounding that editing. This avoidance of workflow also stems from the principle of trust: the admin’s philosophy is that workflow is
a personnel issue, not one to be implemented in code.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/18.html (2 of 10)9/28/2007 2:31:28 PM

Chapter 18: Customizing the Django admin

Finally, note the lack of aggregation in the admin. That is, there’s no support for displaying totals, averages, etc. Again, the admin is
for editing — it’s expected that you’ll write custom views for all the rest.

“… structured content”
As with the rest of Django, the admin wants you to work with structured data. Thus, the admin only supports editing data stored in
Django models; for anything else, you’ll need custom views.

Full stop
It should be clear by now that Django’s admin does not try to be all things to all people; instead we choose to focus tightly on one
thing, and do that thing extremely well.

When it comes to extending Django’s admin, much of that same philosophy holds (note that “extensibility” shows up nowhere in our
goals). Because custom Django views can do anything — and because they can easily be visually integrated into the admin (see
below) — the built-in opportunities for customizing the admin are somewhat limited by design.

Customizing admin templates
Out of the box, you’ve got a number of tools for customizing the built-in admin templates which we’ll go over below, but for tasks
beyond that — anything requiring custom workflow or granular permissions, for example — you’ll need to read the section on custom
admin views at the end of this chapter.

For now, though, let’s look at some quick ways of customizing the appearance (and, to some extent, behavior) of the admin. Chapter
6 covers a few of the most common tasks — “re-branding” the Django admin (for those pointy-haired bosses who hate blue) and
providing a custom admin form.

Past that point, the goal usually involves changing some of the templates for a particular item. Each of the admin views — the change
lists, edit forms, delete confirmation pages, and history views — has an associated template which can be overridden in a number of
ways.

First, you can override the template globally. The admin view looks for templates using the standard template loading mechanism, so
if you create templates in one of your template directories, Django will load those instead of the default admin templates bundles with
Django.

These global templates are:

View Base template name
Change list admin/change_list.html

Add/edit form admin/change_form.html

Delete confirmation admin/delete_confirmation.html

Object history admin/object_history.html

However, most of the time you’ll want to change the template just for a single object or app (not globally). Thus, each admin view
looks for model- and app-specific templates first. Those views look for templates in this order:

● admin/<app_label>/<object_name>/<template>.html

file:///D|/books/computer/programming/python/books/DJANGO BOOK/18.html (3 of 10)9/28/2007 2:31:28 PM

Chapter 18: Customizing the Django admin

● admin/<app_label>/<template>.html

● admin/<template>.html

For example, the add/edit form view for a Book model in the bookstore app (i.e. the example from Chapter 6) looks for templates in
this order:

● admin/bookstore/book/change_form.html

● admin/bookstore/change_form.html

● admin/change_form.html

Custom model templates
Most of the time, you’ll usually want to use the first template to create a model-specific template; this is usually best done by
extending the base template and adding information to one of the blocks defined in that template.

For example, let’s say we wanted to add a little bit of help text to the top of that book page. Maybe something like this:

file:///D|/books/computer/programming/python/books/DJANGO BOOK/18.html (4 of 10)9/28/2007 2:31:28 PM

Chapter 18: Customizing the Django admin

This is pretty easy to do: simple create a template called admin/bookstore/book/change_form.html`, and insert this code:

{% extends "admin/change_form.html" %}

file:///D|/books/computer/programming/python/books/DJANGO BOOK/18.html (5 of 10)9/28/2007 2:31:28 PM

Chapter 18: Customizing the Django admin

{% block form_top %}
 <p>Insert meaningful help message here...</p>
{% endblock %}

All these templates define a number of blocks you can override. As with most programs, the best documentation is the code, so we
encourage you to look through the admin templates (they like in django/contrib/admin/templates/) for the most up-to-date
information.

Custom JavaScript

A common use for these custom model templates involves adding custom JavaScript to admin pages — perhaps to implement some
special widget or client-side behavior.

Luckily, that couldn’t be easier. Each admin template defines a {% block extrahead %} which you can use to put extra content in to
the <head> element. For example, if you wanted to include jQuery in one of your admin history, it’s as simple as:

{% extends "admin/object_history.html" %}

{% block extrahead %}
 <script src="http://media.example.com/javascript/jquery.js" type="text/javascript"></script>
 <script type="text/javascript">

 // code to actually use jQuery here...

 </script>
{% endblock %}

(I’m not sure why you’d need jQuery on the object history page, but of course this example applies to any of the admin templates.)

You can use this technique to include any sort of extra JavaScript widgets you might need.

Custom admin views
At this point, anyone looking to add custom behavior to Django’s admin is probably starting to get a bit frustrated. “All you’ve talked
about is how to change the the admin visually,” they’ll cry, “but how do I change the way the admin works?”

Well, cry no more, for here comes the answer.

The first thing to understand is that it’s not magic. That is, nothing the admin does is “special” in any way — the admin is just a set
of views (they live in django.contrib.admin.views) that manipulate data just like any other view.

Sure, there’s quite a bit of code in there; it has to deal with all the various options, field types, and settings that influence model
behavior. Still, when you realize that the admin is just a set of views, adding custom admin views becomes easier to understand.

By way of example, let’s add a “publisher report” view to our book app from Chapter 6. We’ll build an admin view that shows the list of
books broken down by publisher — a pretty typical example of a custom admin “report” view you might need to build.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/18.html (6 of 10)9/28/2007 2:31:28 PM

http://jquery.com/

Chapter 18: Customizing the Django admin

First, we’ll wire up a view in our URLconf. We need to insert this line:

(r'^admin/bookstore/report/$', 'bookstore.admin_views.report'),

before the line including the admin views. A bare-bones URLconf might look like:

from django.conf.urls.defaults import *

urlpatterns = patterns('',
 (r'^admin/bookstore/report/$', 'bookstore.admin_views.report'),
 (r'^admin/', include('django.contrib.admin.urls')),
)

Why put the custom view before the admin inclusion? Well, recall that Django processes URL patterns in order. Because the admin
URLs match nearly anything that falls under the inclusion point, if we reverse the order of those lines Django will find a built-in admin
view for that pattern, which of course won’t work. In this particular case, it’ll try to load a change list for a Report model in
the bookstore app, which doesn’t exist.

Now let’s write our view. For the sake of simplicity, we’ll just load all books into the context and let the template handle the grouping
with the {% regroup %} tag. Create a file bookstore/admin_views.py with this code:

from bookstore.models import Book
from django.template import RequestContext
from django.shortcuts import render_to_response
from django.contrib.admin.views.decorators import staff_member_required

@staff_member_required
def report(request):
 return render_to_response(
 "admin/bookstore/report.html",
 {'book_list' : Book.objects.all()},
 RequestContext(request, {}),
)

Because we left the grouping up to the template, this view is pretty simple. However, there are some subtle bits here worth making
explicit:

● We use the staff_member_required decorator from django.contrib.admin.views.decorators. This is the similar to
the login_required decorator discussed in Chapter 12, but this one also checks that the given user is marked as a “staff”
member, and thus is allowed access to the admin.

This decorator protects all the built-in admin views, and thus makes the authentication logic for your view match the rest of the
admin.

● We render a template located under admin/. While this isn’t strictly required, it’s considered good practice to keep all your admin
templates grouped in an admin directory. We’ve also put the template in a directory named bookstore after our app — also a
best practice.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/18.html (7 of 10)9/28/2007 2:31:28 PM

Chapter 18: Customizing the Django admin

● We use RequestContext as the third parameter (context_instance) to render_to_response. This ensures that information
about the current user is available to the template.

See Chapter 10 for more about RequestContext.

Finally, we’ll make a template for this view. We’ll extend the built-in admin templates to make this view visually appear to be part of
the admin:

{% extends "admin/base_site.html" %}

{% block title %}List of books by publisher{% endblock %}

{% block content %}
<div id="content-main">
 <h1>List of books by publisher:</h1>
 {% regroup book_list|dictsort:"publisher.name" by publisher as books_by_publisher %}
 {% for publisher in books_by_publisher %}
 <h3>{{ publisher.grouper }}</h3>

 {% for book in publisher.list|dictsort:"title" %}
 {{ book }}
 {% endfor %}

 {% endfor %}
</div>
{% endblock %}

By extending admin/base_site.html we get the look and feel of the Django admin “for free.” Here’s what the end result looks like:

file:///D|/books/computer/programming/python/books/DJANGO BOOK/18.html (8 of 10)9/28/2007 2:31:28 PM

Chapter 18: Customizing the Django admin

Where do you want to admin today?
You can use this technique to add anything you can dream of to the admin. Remember that these so-called “custom admin views” are
really just normal Django views; you can use all the techniques you learn in the rest of this book to provide as complex an admin as

file:///D|/books/computer/programming/python/books/DJANGO BOOK/18.html (9 of 10)9/28/2007 2:31:28 PM

Chapter 18: Customizing the Django admin

you need.

We’ll close out this chapter with some ideas for custom admin views:

Overriding built-in views
At times the default admin views just don’t cut it. You can easily swap in your own custom view for any stage of the admin; just let
your URL shadow the built-in admin one.

For example, we could replace the built-in “create” view for a book with a form that lets the user simply enter an ISBN We could then
look up the book’s information from http://isbn.nu/ and create the object automatically.

The code for such a view is left as an exercise to the reader, but the important part is this URLconf snippet:

(r'^admin/bookstore/book/add/$', 'bookstore.admin_views.add_by_isbn'),

If this bit comes before the admin URLs in your URLconf, the add_by_isbn view will completely replace the standard admin view.

We could follow a similar tact to replace a delete confirmation page, the edit stage, or any other part of the admin.

Contribute!
This section is not yet complete. Are there other types of custom admin views you’d like covered? Leave a comment on this paragraph
and let us know!

« previous ◊ table of contents ◊ next »
Copyright 2006 Adrian Holovaty and Jacob Kaplan-Moss.
This work is licensed under the GNU Free Document License.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/18.html (10 of 10)9/28/2007 2:31:28 PM

http://isbn.nu/
http://www.djangobook.com/en/beta/chapter17/
http://www.djangobook.com/en/beta/
http://www.djangobook.com/en/beta/chapter19/
http://www.djangobook.com/license/

The Django Book
« previous ◊ table of contents ◊ next »

Chapter 19: Internationalization
Django has full support for internationalization of text in code and templates. Here’s how it works.

Overview
The goal of internationalization is to allow a single Web application to offer its content and functionality in multiple languages.

You, the Django developer, can accomplish this goal by adding a minimal amount of hooks to your Python code and templates.
These hooks are called translation strings. They tell Django: “This text should be translated into the end user’s language, if a
translation for this text is available in that language.”

Django takes care of using these hooks to translate Web apps, on the fly, according to users’ language preferences.

Essentially, Django does two things:

● It lets developers and template authors specify which parts of their apps should be translatable.
● It uses these hooks to translate Web apps for particular users according to their language preferences.

How to internationalize your app: in three steps
1. Embed translation strings in your Python code and templates.
2. Get translations for those strings, in whichever languages you want to support.
3. Activate the locale middleware in your Django settings.

Behind the scenes

Django’s translation machinery uses the standard gettext module that comes with Python.

If you don’t need internationalization
Django’s internationalization hooks are on by default, and that means there’s a bit of i18n-related overhead in certain places of
the framework. If you don’t use internationalization, you should take the two seconds to set USE_I18N = False in your settings
file. If USE_I18N is set to False, then Django will make some optimizations so as not to load the internationalization machinery.

You’ll probably also want to remove 'django.core.context_processors.i18n' from your TEMPLATE_CONTEXT_PROCESSORS
setting.

How to specify translation strings
Translation strings specify “This text should be translated.” These strings can appear in your Python code and templates. It’s your
responsibility to mark translatable strings; the system can only translate strings it knows about.

In Python code

Standard translation

Specify a translation string by using the function _(). (Yes, the name of the function is the “underscore” character.) This function
is available globally in any Python module; you don’t have to import it.

In this example, the text "Welcome to my site." is marked as a translation string:

def my_view(request):
 output = _("Welcome to my site.")
 return HttpResponse(output)

The function django.utils.translation.gettext() is identical to _(). This example is identical to the previous one:

from django.utils.translation import gettext
def my_view(request):
 output = gettext("Welcome to my site.")
 return HttpResponse(output)

Chapter 19: Internationalization and localization

file:///D|/books/computer/programming/python/books/DJANGO BOOK/19.html (1 of 9)9/28/2007 2:31:46 PM

http://www.djangobook.com/en/beta/chapter18/
http://www.djangobook.com/en/beta/
http://www.djangobook.com/en/beta/chapter20/

Chapter 19: Internationalization and localization

Translation works on computed values. This example is identical to the previous two:

def my_view(request):
 words = ['Welcome', 'to', 'my', 'site.']
 output = _(' '.join(words))
 return HttpResponse(output)

Translation works on variables. Again, here’s an identical example:

def my_view(request):
 sentence = 'Welcome to my site.'
 output = _(sentence)
 return HttpResponse(output)

(The caveat with using variables or computed values, as in the previous two examples, is that Django’s translation-string-
detecting utility, make-messages.py, won’t be able to find these strings. More on make-messages later.)

The strings you pass to _() or gettext() can take placeholders, specified with Python’s standard named-string interpolation
syntax. Example:

def my_view(request, n):
 output = _('%(name)s is my name.') % {'name': n}
 return HttpResponse(output)

This technique lets language-specific translations reorder the placeholder text. For example, an English translation may
be "Adrian is my name.", while a Spanish translation may be "Me llamo Adrian." — with the placeholder (the name) placed
after the translated text instead of before it.

For this reason, you should use named-string interpolation (e.g., %(name)s) instead of positional interpolation (e.g., %s or %d). If
you used positional interpolation, translations wouldn’t be able to reorder placeholder text.

Marking strings as no-op

Use the function django.utils.translation.gettext_noop() to mark a string as a translation string without translating it. The
string is later translated from a variable.

Use this if you have constant strings that should be stored in the source language because they are exchanged over systems or
users — such as strings in a database — but should be translated at the last possible point in time, such as when the string is
presented to the user.

Lazy translation

Use the function django.utils.translation.gettext_lazy() to translate strings lazily — when the value is accessed rather
than when the gettext_lazy() function is called.

For example, to translate a model’s help_text, do the following:

from django.utils.translation import gettext_lazy

class MyThing(models.Model):
 name = models.CharField(help_text=gettext_lazy('This is the help text'))

In this example, gettext_lazy() stores a lazy reference to the string — not the actual translation. The translation itself will be
done when the string is used in a string context, such as template rendering on the Django admin site.

If you don’t like the verbose name gettext_lazy, you can just alias it as _ (underscore), like so:

from django.utils.translation import gettext_lazy as _

class MyThing(models.Model):
 name = models.CharField(help_text=_('This is the help text'))

Always use lazy translations in Django models. And it’s a good idea to add translations for the field names and table names, too.
This means writing explicit verbose_name and verbose_name_plural options in the Meta class, though:

from django.utils.translation import gettext_lazy as _

class MyThing(models.Model):
 name = models.CharField(_('name'), help_text=_('This is the help text'))

file:///D|/books/computer/programming/python/books/DJANGO BOOK/19.html (2 of 9)9/28/2007 2:31:46 PM

Chapter 19: Internationalization and localization

 class Meta:
 verbose_name = _('my thing')
 verbose_name_plural = _('mythings')

Pluralization

Use the function django.utils.translation.ngettext() to specify pluralized messages. Example:

from django.utils.translation import ngettext
def hello_world(request, count):
 page = ngettext('there is %(count)d object', 'there are %(count)d objects', count) % {
 'count': count,
 }
 return HttpResponse(page)

ngettext takes three arguments: the singular translation string, the plural translation string and the number of objects (which is
passed to the translation languages as the count variable).

In template code
Using translations in Django templates uses two template tags and a slightly different syntax than in Python code. To give your
template access to these tags, put {% load i18n %} toward the top of your template.

The {% trans %} template tag translates a constant string or a variable content:

<title>{% trans "This is the title." %}</title>

If you only want to mark a value for translation, but translate it later from a variable, use the noop option:

<title>{% trans "value" noop %}</title>

It’s not possible to use template variables in {% trans %} — only constant strings, in single or double quotes, are allowed. If your
translations require variables (placeholders), use {% blocktrans %}. Example:

{% blocktrans %}This will have {{ value }} inside.{% endblocktrans %}

To translate a template expression — say, using template filters — you need to bind the expression to a local variable for use
within the translation block:

{% blocktrans with value|filter as myvar %}
This will have {{ myvar }} inside.
{% endblocktrans %}

If you need to bind more than one expression inside a blocktrans tag, separate the pieces with and:

{% blocktrans with book|title as book_t and author|title as author_t %}
This is {{ book_t }} by {{ author_t }}
{% endblocktrans %}

To pluralize, specify both the singular and plural forms with the {% plural %} tag, which appears within {% blocktrans %}
and {% endblocktrans %}. Example:

{% blocktrans count list|count as counter %}
There is only one {{ name }} object.
{% plural %}
There are {{ counter }} {{ name }} objects.
{% endblocktrans %}

Internally, all block and inline translations use the appropriate gettext / ngettext call.

Each RequestContext has access to two translation-specific variables:

● LANGUAGES is a list of tuples in which the first element is the language code and the second is the language name (in that
language).

● LANGUAGE_CODE is the current user’s preferred language, as a string. Example: en-us. (See “How language preference is
discovered”, below.)

● LANGUAGE_BIDI is the current language’s direction. If True, it’s a right-to-left language, e.g: Hebrew, Arabic. If False it’s a

file:///D|/books/computer/programming/python/books/DJANGO BOOK/19.html (3 of 9)9/28/2007 2:31:46 PM

Chapter 19: Internationalization and localization

left-to-right language, e.g: English, French, German etc.

If you don’t use the RequestContext extension, you can get those values with three tags:

{% get_current_language as LANGUAGE_CODE %}
{% get_available_languages as LANGUAGES %}
{% get_current_language_bidi as LANGUAGE_BIDI %}

These tags also require a {% load i18n %}.

Translation hooks are also available within any template block tag that accepts constant strings. In those cases, just use _()
syntax to specify a translation string. Example:

{% some_special_tag _("Page not found") value|yesno:_("yes,no") %}

In this case, both the tag and the filter will see the already-translated string, so they don’t need to be aware of translations.

How to create language files
Once you’ve tagged your strings for later translation, you need to write (or obtain) the language translations themselves. Here’s
how that works.

Message files
The first step is to create a message file for a new language. A message file is a plain-text file, representing a single language,
that contains all available translation strings and how they should be represented in the given language. Message files have a .po
file extension.

Django comes with a tool, bin/make-messages.py, that automates the creation and upkeep of these files.

To create or update a message file, run this command:

bin/make-messages.py -l de

…where de is the language code for the message file you want to create. The language code, in this case, is in locale format. For
example, it’s pt_BR for Brazilian and de_AT for Austrian German.

The script should be run from one of three places:

● The root django directory (not a Subversion checkout, but the one that is linked-to via $PYTHONPATH or is located
somewhere on that path).

● The root directory of your Django project.
● The root directory of your Django app.

The script runs over the entire Django source tree and pulls out all strings marked for translation. It creates (or updates) a
message file in the directory conf/locale. In the de example, the file will be conf/locale/de/LC_MESSAGES/django.po.

If run over your project source tree or your application source tree, it will do the same, but the location of the locale directory
is locale/LANG/LC_MESSAGES (note the missing conf prefix).

No gettext?

If you don’t have the gettext utilities installed, make-messages.py will create empty files. If that’s the case, either
install the gettext utilities or just copy the English message file (conf/locale/en/LC_MESSAGES/django.po) and
use it as a starting point; it’s just an empty translation file.

The format of .po files is straightforward. Each .po file contains a small bit of metadata, such as the translation maintainer’s
contact information, but the bulk of the file is a list of messages — simple mappings between translation strings and the actual
translated text for the particular language.

For example, if your Django app contained a translation string for the text "Welcome to my site.", like so:

_("Welcome to my site.")

…then make-messages.py will have created a .po file containing the following snippet — a message:

#: path/to/python/module.py:23
msgid "Welcome to my site."

file:///D|/books/computer/programming/python/books/DJANGO BOOK/19.html (4 of 9)9/28/2007 2:31:46 PM

Chapter 19: Internationalization and localization

msgstr ""

A quick explanation:

● msgid is the translation string, which appears in the source. Don’t change it.

● msgstr is where you put the language-specific translation. It starts out empty, so it’s your responsibility to change it. Make
sure you keep the quotes around your translation.

● As a convenience, each message includes the filename and line number from which the translation string was gleaned.

Long messages are a special case. There, the first string directly after the msgstr (or msgid) is an empty string. Then the content
itself will be written over the next few lines as one string per line. Those strings are directly concatenated. Don’t forget trailing
spaces within the strings; otherwise, they’ll be tacked together without whitespace!

Mind your charset

When creating a .po file with your favorite text editor, first edit the charset line (search for "CHARSET") and set it to
the charset you’ll be using to edit the content. Generally, utf-8 should work for most languages, but gettext should
handle any charset you throw at it.

To reexamine all source code and templates for new translation strings and update all message files for all languages, run this:

make-messages.py -a

Compiling message files
After you create your message file — and each time you make changes to it — you’ll need to compile it into a more efficient form,
for use by gettext. Do this with the bin/compile-messages.py utility.

This tool runs over all available .po files and creates .mo files, which are binary files optimized for use by gettext. In the same
directory from which you ran make-messages.py, run compile-messages.py like this:

bin/compile-messages.py

That’s it. Your translations are ready for use.

How Django discovers language preference
Once you’ve prepared your translations — or, if you just want to use the translations that come with Django — you’ll just need to
activate translation for your app.

Behind the scenes, Django has a very flexible model of deciding which language should be used — installation-wide, for a
particular user, or both.

To set an installation-wide language preference, set LANGUAGE_CODE in your settings file. Django uses this language as the default
translation — the final attempt if no other translator finds a translation.

If all you want to do is run Django with your native language, and a language file is available for your language, all you need to
do is set LANGUAGE_CODE.

If you want to let each individual user specify which language he or she prefers, use LocaleMiddleware. LocaleMiddleware
enables language selection based on data from the request. It customizes content for each user.

To use LocaleMiddleware, add 'django.middleware.locale.LocaleMiddleware' to your MIDDLEWARE_CLASSES setting. Because
middleware order matters, you should follow these guidelines:

● Make sure it’s one of the first middlewares installed.
● It should come after SessionMiddleware, because LocaleMiddleware makes use of session data.

● If you use CacheMiddleware, put LocaleMiddleware after it.

For example, your MIDDLEWARE_CLASSES might look like this:

MIDDLEWARE_CLASSES = (
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.middleware.locale.LocaleMiddleware',
 'django.middleware.common.CommonMiddleware',
)

LocaleMiddleware tries to determine the user’s language preference by following this algorithm:

file:///D|/books/computer/programming/python/books/DJANGO BOOK/19.html (5 of 9)9/28/2007 2:31:46 PM

Chapter 19: Internationalization and localization

● First, it looks for a django_language key in the the current user’s session.

● Failing that, it looks for a cookie called django_language.

● Failing that, it looks at the Accept-Language HTTP header. This header is sent by your browser and tells the server which
language(s) you prefer, in order by priority. Django tries each language in the header until it finds one with available
translations.

● Failing that, it uses the global LANGUAGE_CODE setting.

Notes:

● In each of these places, the language preference is expected to be in the standard language format, as a string. For
example, Brazilian is pt-br.

● If a base language is available but the sublanguage specified is not, Django uses the base language. For example, if a user
specifies de-at (Austrian German) but Django only has de available, Django uses de.

● Only languages listed in the LANGUAGES setting can be selected. If you want to restrict the language selection to a subset of
provided languages (because your application doesn’t provide all those languages), set LANGUAGES to a list of languages. For
example:

LANGUAGES = (
 ('de', _('German')),
 ('en', _('English')),
)

This example restricts languages that are available for automatic selection to German and English (and any sublanguage,
like de-ch or en-us).

● If you define a custom LANGUAGES setting, as explained in the previous bullet, it’s OK to mark the languages as translation
strings — but use a “dummy” gettext() function, not the one in django.utils.translation. You should never
import django.utils.translation from within your settings file, because that module in itself depends on the settings, and
that would cause a circular import.

The solution is to use a “dummy” gettext() function. Here’s a sample settings file:

gettext = lambda s: s

LANGUAGES = (
 ('de', gettext('German')),
 ('en', gettext('English')),
)

With this arrangement, make-messages.py will still find and mark these strings for translation, but the translation won’t
happen at runtime — so you’ll have to remember to wrap the languages in the real gettext() in any code that
uses LANGUAGES at runtime.

● The LocaleMiddleware can only select languages for which there is a Django-provided base translation. If you want to
provide translations for your application that aren’t already in the set of translations in Django’s source tree, you’ll want to
provide at least basic translations for that language. For example, Django uses technical message IDs to translate date
formats and time formats — so you will need at least those translations for the system to work correctly.

A good starting point is to copy the English .po file and to translate at least the technical messages — maybe the validator
messages, too.

Technical message IDs are easily recognized; they’re all upper case. You don’t translate the message ID as with other
messages, you provide the correct local variant on the provided English value. For example, with DATETIME_FORMAT
(or DATE_FORMAT or TIME_FORMAT), this would be the format string that you want to use in your language. The format is
identical to the format strings used by the now template tag.

Once LocaleMiddleware determines the user’s preference, it makes this preference available as request.LANGUAGE_CODE for
each request object. Feel free to read this value in your view code. Here’s a simple example:

def hello_world(request, count):
 if request.LANGUAGE_CODE == 'de-at':
 return HttpResponse("You prefer to read Austrian German.")
 else:
 return HttpResponse("You prefer to read another language.")

Note that, with static (middleware-less) translation, the language is in settings.LANGUAGE_CODE, while with dynamic
(middleware) translation, it’s in request.LANGUAGE_CODE.

The set_language redirect view

file:///D|/books/computer/programming/python/books/DJANGO BOOK/19.html (6 of 9)9/28/2007 2:31:46 PM

Chapter 19: Internationalization and localization

As a convenience, Django comes with a view, django.views.i18n.set_language, that sets a user’s language preference and
redirects back to the previous page.

Activate this view by adding the following line to your URLconf:

(r'^i18n/', include('django.conf.urls.i18n')),

(Note that this example makes the view available at /i18n/setlang/.)

The view expects to be called via the GET method, with a language parameter set in the query string. If session support is
enabled, the view saves the language choice in the user’s session. Otherwise, it saves the language choice in a django_language
cookie.

After setting the language choice, Django redirects the user, following this algorithm:

● Django looks for a next parameter in the query string.

● If that doesn’t exist, or is empty, Django tries the URL in the Referer header.

● If that’s empty — say, if a user’s browser suppresses that header — then the user will be redirected to / (the site root) as a
fallback.

Here’s example HTML template code:

<form action="/i18n/setlang/" method="get">
<input name="next" type="hidden" value="/next/page/" />
<select name="language">
{% for lang in LANGUAGES %}
<option value="{{ lang.0 }}">{{ lang.1 }}</option>
{% endfor %}
</select>
<input type="submit" value="Go" />
</form>

Using translations in your own projects
Django looks for translations by following this algorithm:

● First, it looks for a locale directory in the application directory of the view that’s being called. If it finds a translation for the
selected language, the translation will be installed.

● Next, it looks for a locale directory in the project directory. If it finds a translation, the translation will be installed.

● Finally, it checks the base translation in django/conf/locale.

This way, you can write applications that include their own translations, and you can override base translations in your project
path. Or, you can just build a big project out of several apps and put all translations into one big project message file. The choice
is yours.

Note

If you’re using manually configured settings, the locale directory in the project directory will not be examined,
since Django loses the ability to work out the location of the project directory. (Django normally uses the location of
the settings file to determine this, and a settings file doesn’t exist if you’re manually configuring your settings.)

All message file repositories are structured the same way. They are:

● $APPPATH/locale/<language>/LC_MESSAGES/django.(po|mo)

● $PROJECTPATH/locale/<language>/LC_MESSAGES/django.(po|mo)

● All paths listed in LOCALE_PATHS in your settings file are searched in that order
for <language>/LC_MESSAGES/django.(po|mo)

● $PYTHONPATH/django/conf/locale/<language>/LC_MESSAGES/django.(po|mo)

To create message files, you use the same make-messages.py tool as with the Django message files. You only need to be in the
right place — in the directory where either the conf/locale (in case of the source tree) or the locale/ (in case of app messages
or project messages) directory are located. And you use the same compile-messages.py to produce the binary django.mo files
that are used by gettext.

Application message files are a bit complicated to discover — they need the LocaleMiddleware. If you don’t use the middleware,
only the Django message files and project message files will be processed.

Finally, you should give some thought to the structure of your translation files. If your applications need to be delivered to other

file:///D|/books/computer/programming/python/books/DJANGO BOOK/19.html (7 of 9)9/28/2007 2:31:46 PM

Chapter 19: Internationalization and localization

users and will be used in other projects, you might want to use app-specific translations. But using app-specific translations and
project translations could produce weird problems with make-messages: make-messages will traverse all directories below the
current path and so might put message IDs into the project message file that are already in application message files.

The easiest way out is to store applications that are not part of the project (and so carry their own translations) outside the
project tree. That way, make-messages on the project level will only translate strings that are connected to your explicit project
and not strings that are distributed independently.

Translations and JavaScript
Adding translations to JavaScript poses some problems:

● JavaScript code doesn’t have access to a gettext implementation.

● JavaScript code doesn’t have access to .po or .mo files; they need to be delivered by the server.
● The translation catalogs for JavaScript should be kept as small as possible.

Django provides an integrated solution for these problems: It passes the translations into JavaScript, so you can call gettext,
etc., from within JavaScript.

The javascript_catalog view
The main solution to these problems is the javascript_catalog view, which sends out a JavaScript code library with functions
that mimic the gettext interface, plus an array of translation strings. Those translation strings are taken from the application,
project or Django core, according to what you specify in either the {{{info_dict}}} or the URL.

You hook it up like this:

js_info_dict = {
 'packages': ('your.app.package',),
}

urlpatterns = patterns('',
 (r'^jsi18n/$', 'django.views.i18n.javascript_catalog', js_info_dict),
)

Each string in packages should be in Python dotted-package syntax (the same format as the strings in INSTALLED_APPS) and
should refer to a package that contains a locale directory. If you specify multiple packages, all those catalogs are merged into
one catalog. This is useful if you have JavaScript that uses strings from different applications.

You can make the view dynamic by putting the packages into the URL pattern:

urlpatterns = patterns('',
 (r'^jsi18n/(?P<packages>\S+?)/$, 'django.views.i18n.javascript_catalog'),
)

With this, you specify the packages as a list of package names delimited by ‘+’ signs in the URL. This is especially useful if your
pages use code from different apps and this changes often and you don’t want to pull in one big catalog file. As a security
measure, these values can only be either django.conf or any package from the INSTALLED_APPS setting.

Using the JavaScript translation catalog
To use the catalog, just pull in the dynamically generated script like this:

<script type="text/javascript" src="/path/to/jsi18n/"></script>

This is how the admin fetches the translation catalog from the server. When the catalog is loaded, your JavaScript code can use
the standard gettext interface to access it:

document.write(gettext('this is to be translated'));

There even is a ngettext interface and a string interpolation function:

d = {
 count: 10
};
s = interpolate(ngettext('this is %(count)s object', 'this are %(count)s objects', d.count),
d);

The interpolate function supports both positional interpolation and named interpolation. So the above could have been written

file:///D|/books/computer/programming/python/books/DJANGO BOOK/19.html (8 of 9)9/28/2007 2:31:46 PM

Chapter 19: Internationalization and localization

as:

s = interpolate(ngettext('this is %s object', 'this are %s objects', 11), [11]);

The interpolation syntax is borrowed from Python. You shouldn’t go over the top with string interpolation, though: this is still
JavaScript, so the code will have to do repeated regular-expression substitutions. This isn’t as fast as string interpolation in
Python, so keep it to those cases where you really need it (for example, in conjunction with ngettext to produce proper
pluralizations).

Creating JavaScript translation catalogs
You create and update the translation catalogs the same way as the other Django translation catalogs — with the {{{make-
messages.py}}} tool. The only difference is you need to provide a -d djangojs parameter, like this:

make-messages.py -d djangojs -l de

This would create or update the translation catalog for JavaScript for German. After updating translation catalogs, just
run compile-messages.py the same way as you do with normal Django translation catalogs.

Notes for users familiar with gettext
If you know gettext, you might note these specialities in the way Django does translation:

● The string domain is django or djangojs. The string domain is used to differentiate between different programs that store
their data in a common message-file library (usually /usr/share/locale/). The django domain is used for python and
template translation strings and is loaded into the global translation catalogs. The djangojs domain is only used for
JavaScript translation catalogs to make sure that those are as small as possible.

● Django only uses gettext and gettext_noop. That’s because Django always uses DEFAULT_CHARSET strings internally. There
isn’t much use in using ugettext, because you’ll always need to produce utf-8 anyway.

● Django doesn’t use xgettext alone. It uses Python wrappers around xgettext and msgfmt. That’s mostly for convenience.

« previous ◊ table of contents ◊ next »
Copyright 2006 Adrian Holovaty and Jacob Kaplan-Moss.
This work is licensed under the GNU Free Document License.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/19.html (9 of 9)9/28/2007 2:31:46 PM

http://www.djangobook.com/en/beta/chapter18/
http://www.djangobook.com/en/beta/
http://www.djangobook.com/en/beta/chapter20/
http://www.djangobook.com/license/

The Django Book
« previous ◊ table of contents ◊ next »

Security
The internet can be a scary place.

In the past few years, internet horror stories have been in the news almost continuously. We’ve seen viruses spread with amazing
speed, swarms of compromised computers wielded as weapons, a never-ending arms race against spammers, and many, many
reports of identify theft from compromised web sites.

As good web developers, it’s our duty to do what we can to combat these forces of darkness. Every web developer needs to treat
security as a fundamental aspect of web programming. Unfortunately, it turns out that security is hard — attackers only need to
find a single vulnerability, but defenders have to protect every single one.

Django attempts to mitigate this difficulty. It’s designed to automatically protect you from many of the common security mistakes
that new (and even experienced) web developers make. Still, it’s important to understand what these problems are, how Django
protects you, and — most importantly — the steps you can take to make your code even more secure.

First, though, an important disclaimer: we’re in no way experts in this realm, and so we won’t try to explain each vulnerability in
a comprehensive manner. Instead, we’ll give a short synopsis of security problems as they apply to Django.

The theme of web security
If you learn only one thing from this chapter, let it be this:

Never — under any circumstances — trust data from the browser.

You never know who’s on the other side of that HTTP connection. It might be one of your users, but it just as easily could be a
cracker or script kiddie looking for an opening.

Any data of any nature that comes from the browser needs to be treated with a healthy dose of paranoia. This includes data
that’s both “in band” — i.e. submitted from web forms — and “out of band” — i.e. HTTP headers, cookies, and other request info.
It’s trivial to spoof the request metadata that browsers usually add automatically.

Every one of the vulnerabilities discussed in this chapter stems directly from trusting data that comes over the wire and then
failing to sanitize that data before using it. You should make it a general practice to continuously ask, “where does this data come
from?”.

SQL injection
SQL injection is a common exploit in which an attacker alters Web-page parameters (such as GET/POST data or URLs) to insert
arbitrary SQL snippets that a naive Web application executes in its database directly. It’s probably the most dangerous — and
unfortunately one of the most common — vulnerabilities in the wild.

This vulnerability most commonly crops up when constructing SQL “by hand” from user input. For example, imagine writing a
function to gather a list of a contact info from a contact search page. To prevent spammers from reading every single email in our
system, we’ll force the user to type in someone’s username before we provide their email address:

def user_contacts(request):
 user = request.GET['username']
 sql = "SELECT * FROM user_contacts WHERE username = '%s';" % username
 # execute the SQL here...

Note

In this example, and all similar “don’t do this” examples that follow, we’ve deliberately left out most of the code
needed to make the functions actually work. We don’t want this code to work if someone accidentally takes it out of
context.

Though at first this doesn’t look dangerous, it really is.

First, our attempt at protecting our entire email list will fail with a cleverly constructed query. Think about what happens if an
attacker types "' OR 'a'='a" into the query box. In that case, the query that the string interpolation will construct will be:

SELECT * FROM user_contacts WHERE username = '' OR 'a' = 'a';

Chapter 20: Security

file:///D|/books/computer/programming/python/books/DJANGO BOOK/20.html (1 of 6)9/28/2007 2:32:01 PM

http://www.djangobook.com/en/beta/chapter19/
http://www.djangobook.com/en/beta/
http://www.djangobook.com/en/beta/chapter21/

Chapter 20: Security

Because we allowed unsecured SQL into the string, the attacker’s added OR clause ensures that every single row is returned.

However, that’s the least scary attack. Imagine what will happen if the attacker
submits "'; DELETE FROM user_contacts WHERE 'a' = 'a“. We’ll end up with this complete query:

SELECT * FROM user_contacts WHERE username = ''; DELETE FROM user_contacts WHERE 'a' = 'a';

Yikes! Where’d our contact list go?

The solution
Although this problem is insidious and sometimes hard to spot, the solution is simple: never trust user-submitted data, and
always escape it when passing it into SQL.

The Django database API does this for you. It automatically escapes all special SQL parameters, according to the quoting
conventions of the database server you’re using (e.g. PostgreSQL, MySQL).

For example, in this API call:

foo.get_list(bar__exact="' OR 1=1")

Django will escape the input accordingly, resulting in a statement like this:

SELECT * FROM foos WHERE bar = '\' OR 1=1'

Completely harmless.

This applies to the entire Django database API, with a couple of exceptions:

● The where argument to the extra() method (see Appendix XXX). That parameter accepts raw SQL by design.

● Queries done “by hand” using the lower-level database API.

In each of these cases, it’s easy to keep yourself protected. In each case, avoid string interpolation in favor of passing in “bind
parameters”. That is, the example we started this section with should be written:

from django.db import connection

def user_contacts(request):
 user = request.GET['username']
 sql = "SELECT * FROM user_contacts WHERE username = %s;"
 cursor = connection.cursor()
 cursor.execute(sql, [user])
 # ... do something with the results

The low-level execute method takes a SQL string with %s placeholders, and automatically escapes and inserts parameters from
the list passed as the second argument. You should always construct custom SQL this way.

Unfortunately, you can’t use bind parameters everywhere in SQL; they’re not allowed as identifiers (i.e. table or column names).
Thus, if you need to, say, dynamically construct a list of tables from a POST variable, you’ll need to escape that name in your
code. Django provides a function, django.db.backend.quote_name, which will escape the identifier according to the current
database’s quoting scheme.

Cross-site Scripting (XSS)
Probably the most common web vulnerability, cross-site scripting, or XSS, is found in web applications that fail to properly
escape user-submitted content before rendering it into HTML. This allows an attacker to maliciously insert arbitrary HTML, usually
in the form of <script> tags.

Attackers often use XSS attacks to steal cookie and session info, or to trick users into giving private information to the wrong
person (a.k.a phishing).

This type of attack can take a number of different forms, and has almost infinite permutations, so we’ll just look at a typical
example. Let’s look at a extremely simple “hello world” view:

def say_hello(request):
 name = request.GET.get('name', 'world')
 return render_to_response("hello.html", {"name" : name})

This view simply reads a name from a GET parameter and passes that name to the hello.html template. We might write a
template for this view like:

file:///D|/books/computer/programming/python/books/DJANGO BOOK/20.html (2 of 6)9/28/2007 2:32:01 PM

Chapter 20: Security

<h1>Hello, {{ name }}!</h1>

So if we accessed http://example.com/hello/name=Jacob, the rendered page would contain:

<h1>Hello, Jacob!</h1>

But wait — what happens if we access http://example.com/hello/name=<i>Jacob</i>? Then we’d get:

<h1>Hello, <i>Jacob</i>!</h1>

Of course, an attacker wouldn’t use something as benign as <i> tags; he could include a whole set of HTML that hijacked your
page with arbitrary content. This type of attack has been used to trick users into entering data into what looks like their bank’s
website, but in fact is an XSS-hijacked form that submits your back account information to an attacker.

This gets worse if you storing this data in the database and later display it it on your site.

For example, at one point MySpace was found to be vulnerable to an XSS attack of this nature. A user inserted javascript into his
profile that automatically added him as your friend when you visited his profile page. Within a few days he had millions of friends.

Now, this may sound relatively benign, but keep in mind that this attacker managed to get his code — not MySpace’s — running
on your computer. This violoates the assumed trust that all the code on MySpace is actually written by MySpace.

MySpace was extremely lucky that this malicious code didn’t automatically delete viewer’s accounts, change their passwords,
flood the site with spam, or any of the other nightmare scenarios this vulnerability unleashes.

The solution
The solution is simple: always escape any content that might have come from a user. If we simply rewrite our template as:

<h1>Hello, {{ name|escape }}!</h1>

then we’re no longer vulnerable. You should always use the escape tag (or an analogue) when displaying user-submitted content
on your site.

Why doesn’t Django just do this for you?

Modifying Django to automatically escape all variables displayed in templates is a frequent topic of discussion on the
Django developer mailing list.

So far, Django’s templates have avoided this behavior because it subtley and invisibly changes what should be
relatively streightforward behavior (displaying variables). It’s a tricky issue and a difficult trade-off to evaluate.
Adding hidden implicit behavior is against Django’s core ideals (and Python’s, for that matter), but security is
equally important.

All this to say, then, that there’s a fair chance that Django will grow some form of auto-escaping (or nearly-auto-
escaping) behavior in the future. It’s always a good idea to check the official Django documentation; it’ll always be
more up-to-date than this book (especially the dead-tree version).

Even if Django does add this feature, however, you should still be in the habit of thinking “where does this data
come from?” at all times. No automatic solution will ever protect your site from XSS attacks 100% of the time.

Cross-site Request Forgery (CSRF)
CSRF happens when a malicious Web site tricks a user into unknowingly loading a URL from a site at which they’re already
authenticated — hence, taking advantage of their authenticated status.

Django has built-in tools to protect from this kind of attack; both the attack itself and those tools are covered in great detail in
Chapter 15.

Session forging/hijacking
This isn’t a specific attack, but rather a general class of attacks on a user’s session data. It can take a number of different forms:

● A man-in-the-middle attack, where an attacker snoops on session data as it travels over the wire (or wireless) network.

● Session forging, where an attacker uses a fake session ID (perhaps obtained through a man-in-the-middle attack) to
pretend to be another user.

An example of this first two would be an attacker in a coffee shop using the wireless network to capture a session cookie; he

file:///D|/books/computer/programming/python/books/DJANGO BOOK/20.html (3 of 6)9/28/2007 2:32:01 PM

Chapter 20: Security

could then use that cookie to impersonate the original user.

● A cookie forging attack, where an attacker overrides the supposedly read-only data stored in a cookie. Chapter 12 explains
in details how cookies work, and one of the salient points is that it’s trivial for browsers and malicious users to change
cookies without your knowledge.

There’s a long history of web sites that have stored a cookie like IsLoggedIn=1 or even LoggedInAsUser=jacob; it’s almost
too easy to exploit these types of attackers.

On a more subtle level, though, it’s never a good idea to trust anything stored in a cookie; you never know who’s been
poking at them.

● Session fixation, where an attacker tricks a user into setting or reseting their session ID.

For example, PHP allows session identifiers to be passed in the URL (i.
e. http://example.com/?PHPSESSID=fa90197ca25f6ab40bb1374c510d7a32). An attacker who tricks a user into clicking on a
link with a hardcoded session ID will cause the user to pick up that session.

This has been used in phishing attacks to trick users into entering personal information into the an account which the
attacker owns; he can later log into that account and retrieve the data.

● Session poisoning, where an attacker injects potentially dangerous data into a user’s session — usually through a web
form that the user submits to set session data.

A canonical example is a site that stores a simple user preference (like a page’s background color) in a cookie. An attacker
could trick a user into clicking on a link to submit a “color” that actually contains an XSS attack; if that color isn’t escaped
(see above) the user could again inject malicious code into the user’s environment.

The solution
There are a number of general principles that can protect from these attacks:

● Never allow session information to be contained in the URL.

Django’s session framework (see Chapter 12) simply doesn’t allow sessions to be contained in the URL.

● Don’t store data in cookies directly; instead, store a session ID that maps to session data stored on the backend.

If you use Django’s built-in session framework (i.e. request.session), this is handled automatically for you. The only cookie
that the session framework uses is a single session ID; all the session data is stored in the database.

● Remember to escape session data if you display it in the template. See the XSS section above, and remember that it applies
to any user-created content. You should treat session information as user-created.

● Prevent attackers from spoofing session IDs whenever possible.

Although it’s nearly impossible to detect someone who’s hijacked a session ID, Django does have built-in protection against
a brute-force session attack. Session IDs are stored as hashes (instead of sequential numbers) which prevents a brute-force
attack, and a user will always get a new session ID if they try a non-existent one which prevent session fixation.

Notice that none of those principles and tools prevent man-in-the-middle attacks. These types of attacks are nearly impossible to
detect. If your site allows logged-in users to see any sort of sensitive data, you should always serve that site over HTTPS.
Additionally, if you’ve got an SSL-enabled site, you should set the SESSION_COOKIE_SECURE setting to True; this will make Django
only send session cookies over HTTPS.

E-mail header injection
SQL injection’s less-well-known sibling, e-mail header injection hijacks email-sending web forms and uses them to send spam.
Any form that constructs email headers from web form data is a target for this kind of attack.

Let’s look at the canonical contact form found on many sites. Usually this emails a hard-coded email address, and so at first
glance doesn’t appear vulnerable to spam abuse.

However, most of these forms also allow the user to type in his own subject for the email (along with a from address, body, and
sometimes a few other fields). This subject field is used to construct the “subject” header of the email message.

If that header is unescaped when building the email message, an attacker could use something
like "hello\ncc:spamvictim@example.com" (where "\n” is a newline character). That would make the constructed email headers
turn into:

To: hardcoded@example.com
Subject: hello
cc: spamvictim@example.com

Like SQL injection, if we trust the subject line given by the user, we’ll allow him to construct a malicious set of headers, and they

file:///D|/books/computer/programming/python/books/DJANGO BOOK/20.html (4 of 6)9/28/2007 2:32:01 PM

Chapter 20: Security

can use our contact form to send spam.

The solution
We can prevent this attack in the same way we prevent SQL injection: always escape or validate user-submitted content.

Django’s built-in mail functions (in django.core.mail) simply do not allow newlines in any fields used to construct headers (the
from and to addresses and the subject). If you try to use django.core.mail.send_mail with a subject that contains newlines,
Django will raise a BadHeaderError exception.

If you decide to use other methods of sending email, you’ll need to make sure that newlines in headers either cause an error or
are stripped. You may want to examine the SafeMIMEText class in django.core.mail to see how Django does this.

Directory traversal
Directory traversal is another injection-style attack wherein a malicious user tricks filesystem code into reading and/or writing
files that the web server shouldn’t have access to.

An example might be a view that reads files from the disk without carefully sanitizing the file name:

def dump_file(request):
 filename = request.GET["filename"]
 filename = os.path.join(BASE_PATH, filename)
 content = open(filename).read()

 # ...

Thought it looks like that view restricts file access to files beneath BASE_PATH (by using os.path.join), if the attacker passes in
a filename containing .. (that’s two periods, the UNIX shorthand for “the parent directory”), he can access files
“above” BASE_PATH. It’s only a matter of time before he can discover the correct number of dots to successfully access,
say, ../../../../../etc/passwd.

Anything that reads files without proper escaping is vulnerable to this problem. Views that write files are just as vulnerable, but
the consequences are doubly dire.

Another permutation of this problem lies in code that dynamically loads modules based on the URL or other request information.
A well-publicized example came from the world of Ruby on Rails. Prior to mid-2006, Rails used URLs
like http://example.com/person/poke/1 directly to load modules and call methods. The result was that a carefully-constructed
URL could automatically load arbitrary code, including a database reset script!

The solution
If your code ever needs to read or write files based on user input, you need to very carefully sanitize the requested path to
ensure that an attacker isn’t able to escape from the base directory you’re restricting access to.

Note

Needless to say, you should never write code that can read from any area of the disk!

A good example of how to do this escaping lies in the Django’s built-in static content serving view (in django.views.static).
Here’s the relevant code:

import os
import posixpath

...

path = posixpath.normpath(urllib.unquote(path))
newpath = ''
for part in path.split('/'):
 if not part:
 # strip empty path components
 continue

 drive, part = os.path.splitdrive(part)
 head, part = os.path.split(part)
 if part in (os.curdir, os.pardir):
 # strip '.' amd '..' in path
 continue

 newpath = os.path.join(newpath, part).replace('\\', '/')

file:///D|/books/computer/programming/python/books/DJANGO BOOK/20.html (5 of 6)9/28/2007 2:32:01 PM

Chapter 20: Security

Django itself doesn’t read files (unless you use the static.serve function, but that’s protected with the code shown above), so
this vulnerability doesn’t affect the core code much.

In addition, the use of the URLconf abstraction means that Django will never load code you’ve not explicitly told it to load. There’s
no way to create a URL that causes Django to load something not mentioned in a URLconf.

Exposed error messages
During development, being able to see tracebacks and errors live in your browser is extremely useful. Django has “pretty” and
informative debug messages specifically to make debugging easier.

However, if these errors get displayed once the site goes live, they can sometimes unintentionally reveal aspects of your code or
configuration that could aid an attacker.

Furthermore, errors and tracebacks aren’t at all useful to end users. Django’s philosophy is that site visitors should never see
application-related error messages. If your code raises an unhandled exception, a site visitor should not see the full traceback —
or any hint of code snippets or Python (programmer-oriented) error messages. Instead, the visitor should see a friendly “This
page is unavailable” message.

Naturally, of course, developers need to see tracebacks to debug problems in their code. So the framework should hide all error
messages from the public, but it should display them to the trusted site developers.

The solution
Django has a simple flag that controls the display of these error messages. If the DEBUG setting is set to True, error messages will
be displayed in the browser. If not, Django will render return a HTTP 500 (“internal server error”) message and render an error
template that you provide. This error template is called 500.html, and should live in the root of one of your template directories.

Since developers still need to see errors generated on a live site, any errors handled this way will send an email with the full
traceback to any addresses given in the ADMINS setting.

Users deploying under Apache and mod_python should also make sure they have PythonDebug Off in their Apache conf files;
this will ensure that any errors that occur before Django’s had a chance to load won’t be displayed publicly.

A final word
Hopefully all this talk of security problems isn’t too intimidating. It’s true that the web can be a wild and wooly world, but with a
little bit of foresight you can have an incredibly secure website.

Keep in mind that web security is a constantly changing field; if you’re reading the dead-tree version of this book, be sure to
check more up-to-date security resources for any new vulnerabilities that have been discovered. In fact, it’s always a good idea
to spend some time each month or week researching and keeping current on the state of web application security. It’s a small
investment to make, but the protection you’ll get for your site and your users is priceless.

Did we miss anything? Are there other security vulnerabilities you think we should cover in this chapter? Did we get something
wrong ($DEITY forbid)? Leave a note on this paragraph and let us know!

« previous ◊ table of contents ◊ next »
Copyright 2006 Adrian Holovaty and Jacob Kaplan-Moss.
This work is licensed under the GNU Free Document License.

file:///D|/books/computer/programming/python/books/DJANGO BOOK/20.html (6 of 6)9/28/2007 2:32:01 PM

http://www.djangobook.com/en/beta/chapter19/
http://www.djangobook.com/en/beta/
http://www.djangobook.com/en/beta/chapter21/
http://www.djangobook.com/license/

	Django
	Frontpage
	Table of contents
	Chapter 1: Introduction to Django
	Chapter 2: Getting started
	Chapter 3: The basics of generating Web pages
	Chapter 4: The Django template system
	Chapter 5: Interacting with a database: models
	Chapter 6: The Django admin site
	Chapter 8: Advanced views and URLconfs
	Chapter 9: Generic views
	Chapter 10: Extending the template engine
	Chapter 11: Outputting non-HTML content
	Chapter 12: Sessions, users, and registration
	Chapter 14: Caching
	Chapter 15: Other contributed sub-frameworks
	Chapter 16: Middleware
	Chapter 17: Integrating with legacy databases and applications
	Chapter 18: Customizing the Django admin
	Chapter 19: Internationalization and localization
	Chapter 20: Security

		2007-09-28T16:23:55-0700
	Suvash Sedhain

