
www.allitebooks.com

http://www.allitebooks.org

Instant Pygame
for Python Game
Development How-to

Create engaging and fun games with Pygame,
Python's Game development library

Ivan Idris

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

FM-2

Instant Pygame for Python Game
Development How-to

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: March 2013

Production Reference: 1180313

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-286-5

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

FM-3

Credits

Author
Ivan Idris

Reviewer
Will McGugan

Acquisition Editor
Kartikey Pandey

Commissioning Editor
Poonam Jain

Technical Editor
Jalasha D'costa

Project Coordinator
Sherin Padayatty

Proofreader
Katherine Tarr

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

Cover Image
Valentina D'silva

www.allitebooks.com

http://www.allitebooks.org

FM-4

About the Author

Ivan Idris has an MSc in Experimental Physics. His graduation thesis had a strong emphasis
on Applied Computer Science. After graduating, he worked for several companies as a Java
Developer, Data warehouse Developer, and QA Analyst. His main professional interests are
Business Intelligence, Big Data, and Cloud Computing. Ivan Idris enjoys writing clean, testable
code and interesting technical articles. Ivan Idris is the author of NumPy 1.5 Beginner's Guide
and NumPy Cookbook by Packt Publishing. You can find more information and a blog with a
few NumPy examples at ivanidris.net.

I would like to take this opportunity to thank the reviewers and the team
at Packt Publishing for making this book possible. Also thanks goes to my
teachers, professors, and colleagues who taught me about science and
programming. Last but not least, I would like to acknowledge my parents,
family, and friends for their support.

www.allitebooks.com

http://www.allitebooks.org

FM-5

About the Reviewer

Will McGugan is a freelance software developer based in London and the author of Game
Development with Python and PyGame. Will worked in the video games industry for many
years, on PC and console titles, where he specialized in graphics technology. Since leaving
the games industry, he has focused on the Python programming language for web application
development, and associated frontend technologies.

Currently, he is working on a web-based platform to monitor and remotely administer
unattended sensor devices. He also maintains a number of open source libraries.
For more information on Will's projects, see his blog at http://www.willmcgugan.com.

I'd like to thank the fine people at Packt for their assistance with this project,
and Ivan Idris for his work on this title.

FM-6

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

FM-7

FM-8

FM-9

To my family and friends

FM-10

Table of Contents
Preface 1
Instant Pygame for Python Game Development How-to 7

Preparing your development environment (Simple) 8
Running a simple game (Simple) 9
Drawing with Pygame (Simple) 12
Animating objects (Simple) 14
Using fonts (Simple) 17
Using Matplotlib with Pygame (Simple) 20
Accessing surface pixel data (Intermediate) 24
Accessing sound data (Simple) 26
Playing a movie (Intermediate) 28
Pygame on Android (Intermediate) 29
Artificial intelligence (Intermediate) 32
Drawing sprites (Intermediate) 36
Using OpenGL with Pygame (Advanced) 40
Detecting collisions (Intermediate) 44
Adding networking functionality (Advanced) 45
Debugging your game (Intermediate) 49
Profiling your code (Intermediate) 50
Puzzle game with Pygame (Advanced) 52
Simulating with Pygame (Advanced) 55

ii

Table of Contents

Preface
Pygame is a fun Python API with which we can easily create simple games. It has support
for drawing, sound, images, animation, OpenGL, and more. We will explore many aspects of
Pygame with more than 20 recipes in this book. The book is self-contained and only assumes
that you have basic knowledge of Python programming. You are encouraged to try out all the
example games and modify them to your own needs.

What this book covers
Preparing your development environment (Simple) is a basic recipe that will help you with
the installation of all the necessary software required in your development environment.

Running a simple game (Simple) is where we will create a basic game to get us started.
The game demonstrates fonts and screen management in the time-honored tradition of
Hello world examples.

Drawing with Pygame (Simple) teaches us how to draw basic shapes such as rectangles,
ovals, circles, lines, and others. We will also learn important information about colors and
color management.

Animating objects (Simple) starts with the "Hit the avatar!" running game example of this
book. We will learn how to animate objects in our funny little game.

Using fonts(Simple) is about fonts and font management.

Using Matplotlib with Pygame (Simple) lets us plot a graph within Pygame with the amazing
open source Python plotting library Matplotlib. Matplotlib is highly versatile and offers a ton
of features for plotting and visualization.

Accessing surface pixel data (Intermediate) shows us how to manipulate pixel data stored in
special arrays for efficient drawing. The efficient NumPy open source Python mathematical
library is introduced in this recipe.

Preface

2

Accessing sound data (Simple) has us process audio data as arrays. This recipe requires
you to listen well while running the example code for this recipe.

Playing a movie (Intermediate) guides us through the steps required to play a movie.
The value an in-game movie will add to your game is just priceless.

Pygame on Android (Intermediate) introduces us to the wonderful world of Android. Android
is a well-known open source mobile computing framework originally created by Google.
We create an example Android game in the process.

Artificial intelligence (Intermediate) is a hot topic these days. We dive right in with the popular
Scikits-learn open source Python framework. Of course, this is a huge topic that could require
years to master. We expose the tip of the iceberg and give clustering a go.

Drawing sprites (Intermediate) talks us through sprite management. Sprites is a term from
computer graphics denoting two-dimensional visible objects that we can manipulate on the
screen. Sprites can be grouped together for easier management.

Using OpenGL with Pygame (Advanced) helps us get a hold on OpenGL, a famous open
source graphics framework that is available on a variety of platforms and programming
languages. OpenGL is used in the industry to render complex two-dimensional and
three-dimensional objects.

Detecting collisions (Intermediate) is essential for good game development, whether we are
crashing into a car, deploying air-to-air missiles, or playing football. We will give tips on how to
detect collisions with ease.

Adding networking functionality (Advanced) runs us through a rudimentary client-server setup.
We will use the brilliant open source Python Twisted framework to create a networked game.
The game requires us to guess a word that is only known at the server side.

Debugging your game (Intermediate) gives you the life-saving debugging techniques you
will need to create a robust working game. Debugging is stressful, so it helps when you
have reliable tools. We will introduce such a tool.

Profiling your code (Intermediate) is something you should do to ensure that your game
performs well. Tips and ideas are given in this recipe to facilitate the profiling process.

Puzzle game with Pygame (Advanced) showcases an interactive client-server game,
building on all the previously learned material.

Simulating with Pygame (Advanced) simulates life in a simplistic yet fun manner.

Preface

3

What you need for this book
This book is pretty self-contained. Instructions to install required software are given
throughout the book.

Who this book is for
This book is for Pythonistas who are interested in learning how to create games with all the
accompanying bells and whistles. Even if you don't know Python that well, the book should
be easy to follow.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: " We can sort with the following sort command."

A block of code is set as follows:

import os, pygame
from pygame.locals import *
import numpy
from scipy import ndimage

def get_pixar(arr, weights):
 states = ndimage.convolve(arr, weights, mode='wrap')

 bools = (states == 13) | (states == 12) | (states == 3)

 return bools.astype(int)

Any command-line input or output is written as follows:

ffmpeg -i <infile> -vcodec mpeg1video -acodec libmp3lame -intra <outfile.
mpg>

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "you should see Hello being
displayed followed by 1 IMPORTANT MESSAGE! to 19 IMPORTANT MESSAGE!".

Warnings or important notes appear in a box like this.

Preface

4

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in
the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can
visit http://www.PacktPub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/support, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded on our website, or added to any list of existing errata, under the Errata section
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

5

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Preface

6

Instant Pygame
for Python Game

Development How-to

Welcome to Pygame for Python Game Development How-to. This book is for developers who
want to create games with Pygame quickly and easily and get familiar with the important
aspects of it. The typical things you would learn are as follows:

 f Pygame basics

 f Sprites

 f OpenGL

Pygame is part of the Python framework, originally written by Pete Shinners, that as its name
suggests can be used to create video games. Pygame is free and open source since 2004 and
licensed under the GPL license, which means that you are allowed to basically make any type
of game. Pygame is built on top of the Simple DirectMedia Layer (SDL). SDL is a C framework
that gives access to graphics, sound, keyboard, and other input devices on various operating
systems including Linux, Mac OS X, and Windows.

Instant Pygame for Python Game Development How-to

8

Preparing your development environment
(Simple)

We will install Python, Pygame, and other software we will need.

Getting ready
Before we install Pygame, we need to have Python installed. On some operating systems
Python is already installed. Pygame should be compatible with all Python versions. We will
also need the NumPy numerical library. I am the author of two books published by Packt
Publishing about NumPy – NumPy Beginner's Guide and NumPy Cookbook. Please refer to
these books for more info about NumPy.

How to do it...
 f Installing on Debian and Ubuntu

Python might be already installed on Debian and Ubuntu, but the development
headers are usually not. On Debian and Ubuntu, install python and python-dev
with these commands:
sudo apt-get install python

sudo apt-get install python-dev

Pygame can be found in the Debian archives http://packages.qa.debian.
org/p/pygame.html. We can install NumPy with the following command:

sudo apt-get install python-numpy

 f Installing on Windows

The Windows Python installer can be found on www.python.org/download.
On this website we can also find installers for Mac OS X and source tarballs for Linux,
Unix, and Mac OS X.

From the Pygame website (http://www.pygame.org/download.shtml), we can
download the appropriate binary installer for the Python version we are using.

Download a NumPy installer for Windows from the SourceForge website
(http://sourceforge.net/projects/numpy/files/).

 f Installing Python on the Mac

Python comes preinstalled on Mac OS X. We can also get Python via MacPorts, Fink,
or similar projects. We can install for instance the Python 2.6 port by running the
following command:
sudo port install python26

Instant Pygame for Python Game Development How-to

9

Binary Pygame packages for Mac OS X 10.3 and up can be found on http://
www.pygame.org/download.shtml. We can get a NumPy installer from the
SourceForge website (http://sourceforge.net/projects/numpy/files/).
Download the appropriate .DMG file. Usually the latest one is the best.

 f Installing from source

Pygame is using the distutils system for compiling and installing. To start
installing Pygame with the default options, simply run the following command:
python setup.py

If you need more information about the available options, type the
following command:
python setup.py help

In order to compile the code, you need to have a compiler for your operating
system. Setting this up is beyond the scope of this book. More information about
compiling Pygame on Windows can be found on http://pygame.org/wiki/
CompileWindows. More information about compiling Pygame on Mac OS X can be
found at http://pygame.org/wiki/MacCompile.

Running a simple game (Simple)
We will create a simple game that we will improve on further in the book. As is traditional
in books about programming, we will start with a Hello World! example. It's not a game per
se. It's important to notice the so-called main game loop where all the action happens and
the usage of the Font module to render text. In this program we will manipulate a Pygame's
Surface object, that is used for drawing and we will handle a quit event.

How to do it...
1. Imports: First we will import the required Pygame modules. If Pygame is installed

properly, we should get no errors, otherwise please return to the Preparing your
development environment (Simple) recipe:
import pygame, sys
from pygame.locals import *

2. Initialization: We will initialize Pygame by creating a display of 400 by 300 pixels
and setting the window title to Hello world:
pygame.init()
screen = pygame.display.set_mode((400, 300))

pygame.display.set_caption('Hello World!')

Instant Pygame for Python Game Development How-to

10

3. The main game loop: Games usually have a game loop, which runs forever until, for
instance, a quit event occurs. In this example, we will only set a label with the text
Hello world at coordinates (100, 100). The text has a font size of 19, red color,
and falls back to the default font:

while True:
 sys_font = pygame.font.SysFont("None", 19)
 rendered = sys_font.render('Hello World', 0, (255, 100, 100))
 screen.blit(rendered, (100, 100))

 for event in pygame.event.get():
 if event.type == QUIT:
 pygame.quit()
 sys.exit()

 pygame.display.update()

We get the following screenshot as the end result:

The following is the complete code for the Hello World example:

import pygame, sys
from pygame.locals import *

pygame.init()
screen = pygame.display.set_mode((400, 300))

pygame.display.set_caption('Hello World!')

while True:
 sysFont = pygame.font.SysFont("None", 19)
 rendered = sysFont.render('Hello World', 0, (255, 100, 100))
 screen.blit(rendered, (100, 100))

Instant Pygame for Python Game Development How-to

11

 for event in pygame.event.get():
 if event.type == QUIT:
 pygame.quit()
 sys.exit()

 pygame.display.update()

How it works...
It might not seem like much, but we learned a lot in this recipe. The functions that passed the
review are summarized in the following table:

Function Description
pygame.init() This function performs the initialization and

needs to be called before any other Pygame
functions are called.

pygame.display.set_mode((400,
300))

This function creates a so-called Surface
object to draw on. We give this function a
tuple representing the width and height of the
surface.

pygame.display.set_
caption('Hello World!')

This function sets the window title to a
specified string value.

pygame.font.SysFont("None",
19)

This function creates a system font from a
comma-separated list of fonts (in this case
none) and a font size parameter.

sysFont.render('Hello World',
0, (255, 100, 100))

This function draws text on a surface. The
second parameter indicates whether anti-
aliasing is used. The last parameter is a tuple
representing the RGB values of a color.

screen.blit(rendered, (100,
100))

This function draws on a surface.

pygame.event.get() This function gets a list of Event objects.
Events represent some special occurrence in
the system, such as a user quitting the game.

pygame.quit() This function cleans up resources used by
Pygame. Call this function before exiting the
game.

pygame.display.update() This function refreshes the surface.

Instant Pygame for Python Game Development How-to

12

Drawing with Pygame (Simple)
Before we start creating cool games, we need an introduction to the drawing functionality of
Pygame. As we noticed in the previous recipe, in Pygame we draw on the Surface objects.
There is a myriad of drawing options—different colors, rectangles, polygons, lines, circles,
ellipses, animation, and different fonts.

How to do it...
The following steps will help you diverge into the different drawing options you can use
with Pygame:

1. Imports: We will need the NumPy library to randomly generate RGB values for the
colors, so we will add an extra import for that:
import numpy

2. Initializing colors: Generate four tuples containing three RGB values each
with NumPy:
colors = numpy.random.randint(0, 255, size=(4, 3))

Then define the white color as a variable:

WHITE = (255, 255, 255)

3. Set the background color: We can make the whole screen white with the
following code:
screen.fill(WHITE)

4. Drawing a circle: Draw a circle in the center with the window using the first color
we generated:
pygame.draw.circle(screen, colors[0], (200, 200), 25, 0)

5. Drawing a line: To draw a line we need a start point and an end point. We will use
the second random color and give the line a thickness of 3:
pygame.draw.line(screen, colors[1], (0, 0), (200, 200), 3)

6. Drawing a rectangle: When drawing a rectangle, we are required to specify a color,
the coordinates of the upper-left corner of the rectangle, and its dimensions:
pygame.draw.rect(screen, colors[2], (200, 0, 100, 100))

7. Drawing an ellipse: You might be surprised to discover that drawing an ellipse
requires similar parameters as for rectangles. The parameters actually describe an
imaginary rectangle that can be drawn around the ellipse:

pygame.draw.ellipse(screen, colors[3], (100, 300, 100, 50), 2)

Instant Pygame for Python Game Development How-to

13

The resulting window with a circle, line, rectangle, and ellipse using random colors:

The code for the drawing demo is as follows:

import pygame, sys
from pygame.locals import *
import numpy

pygame.init()
screen = pygame.display.set_mode((400, 400))

pygame.display.set_caption('Drawing with Pygame')
colors = numpy.random.randint(0, 255, size=(4, 3))

WHITE = (255, 255, 255)

#Make screen white
screen.fill(WHITE)

#Circle in the center of the window
pygame.draw.circle(screen, colors[0], (200, 200), 25, 0)

Half diagonal from the upper-left corner to the center
pygame.draw.line(screen, colors[1], (0, 0), (200, 200), 3)

pygame.draw.rect(screen, colors[2], (200, 0, 100, 100))

pygame.draw.ellipse(screen, colors[3], (100, 300, 100, 50), 2)

while True:

Instant Pygame for Python Game Development How-to

14

 for event in pygame.event.get():
 if event.type == QUIT:
 pygame.quit()
 sys.exit()

 pygame.display.update()

Animating objects (Simple)
Now that we know how to draw with Pygame, it's time to try something more dynamic. Most
games, even the most static ones, have some level of animation. From a programmer's
standpoint, animation is nothing more than displaying an object at a different place at a
different time, thus simulating movement.

Pygame offers a Clock object that manages how many frames are drawn per second.
This ensures that animation is independent of how fast the user's CPU is.

How to do it...
We will load an image and use NumPy again to define a clockwise path around the screen:

1. First, we need to create a clock as follows:
clock = pygame.time.Clock()

2. Loading an image: As part of the source code accompanying this book, there should
be a picture of a head. We will load this image and move it around on the screen:
img = pygame.image.load('head.jpg')

3. Initializing arrays: We will define some arrays to hold the coordinates of the
positions, where we would like to put the image during the animation. Since the
object will be moved, there are four logical sections of the path: right, down, left,
and up. Each of these sections will have 40 equidistant steps. We will initialize
all the values in the sections to 0:
steps = numpy.linspace(20, 360, 40).astype(int)
right = numpy.zeros((2, len(steps)))
down = numpy.zeros((2, len(steps)))
left = numpy.zeros((2, len(steps)))
up = numpy.zeros((2, len(steps)))

4. Setting the coordinates of the positions: It's trivial to set the coordinates of the
positions of the image. However, there is one tricky bit to notice, the [::-1] notation
leads to reversing the order of the array elements:
right[0] = steps
right[1] = 20

Instant Pygame for Python Game Development How-to

15

down[0] = 360
down[1] = steps

left[0] = steps[::-1]
left[1] = 360

up[0] = 20
up[1] = steps[::-1]

5. Joining the sections: The path sections can be joined, but before we can do this, the
arrays have to be transposed with the T operator:
pos = numpy.concatenate((right.T, down.T, left.T, up.T))

6. Setting the clock rate: In the main event loop, we will let the clock tick at a rate of
30 frames per second:
 clock.tick(30)

The following screenshot is of the moving head:

You should be able to watch a movie of this animation on
https://www.youtube.com/watch?v=m2TagGiq1fs.

The code of this example uses almost everything we learned so far, but should still be
simple enough to understand:

import pygame, sys
from pygame.locals import *
import numpy

pygame.init()
clock = pygame.time.Clock()
screen = pygame.display.set_mode((400, 400))

pygame.display.set_caption('Animating Objects')
img = pygame.image.load('head.jpg')

Instant Pygame for Python Game Development How-to

16

steps = numpy.linspace(20, 360, 40).astype(int)
right = numpy.zeros((2, len(steps)))
down = numpy.zeros((2, len(steps)))
left = numpy.zeros((2, len(steps)))
up = numpy.zeros((2, len(steps)))

right[0] = steps
right[1] = 20

down[0] = 360
down[1] = steps

left[0] = steps[::-1]
left[1] = 360

up[0] = 20
up[1] = steps[::-1]

pos = numpy.concatenate((right.T, down.T, left.T, up.T))
i = 0

while True:
 # Erase screen
 screen.fill((255, 255, 255))

 if i >= len(pos):
 i = 0

 screen.blit(img, pos[i])
 i += 1

 for event in pygame.event.get():
 if event.type == QUIT:
 pygame.quit()
 sys.exit()

 pygame.display.update()
 clock.tick(30)

Instant Pygame for Python Game Development How-to

17

How it works...
We learned a bit about animation in this recipe. The most important concept we learned is the
clock. The new functions that we used are described in the following table:

Function Description
pygame.time.Clock() This function creates a game clock
numpy.linspace(20, 360,
40)

This function creates an array with 40 equidistant
values between 20 and 360

numpy.zeros((2,
len(steps)))

This function creates an array of the specified
dimensions filled with zeroes

numpy.
concatenate((right.T,
down.T, left.T, up.T))

This function concatenates arrays to form a new array

clock.tick(30) This function executes a tick of the game clock, where
30 is the number of frames per second

Using fonts (Simple)
Frequently there is a need to display some text, for instance, a counter or a message.

How to do it...
Pygame has a font module that can help us to show text.

1. Creating a font: We can create a font by specifying, the font filename, and font size
as constructor parameters:
font = pygame.font.Font('freesansbold.ttf', 32)

2. Displaying text: Since we made an image move around the edge in the previous
recipe, it would be great to display a counter and the position of the image in the
center of the screen with a blue background and red letters. The following code
snippet accomplishes this:

text = "%d %d %d" % (i, pos[i][0], pos[i][1])
rendered = font.render(text, True, RED, BLUE)
screen.blit(rendered, (150, 200))

Instant Pygame for Python Game Development How-to

18

A screenshot of the animation is shown as follows and should be on YouTube
too at https://www.youtube.com/watch?v=xhjfcFhaXN0.

The code is almost the same as for the previous recipe, with the addition of code
for the creation and display of fonts:

import pygame, sys
from pygame.locals import *
import numpy

pygame.init()
clock = pygame.time.Clock()
screen = pygame.display.set_mode((400, 400))

pygame.display.set_caption('Animating Objects')
img = pygame.image.load('head.jpg')

steps = numpy.linspace(20, 360, 40).astype(int)
right = numpy.zeros((2, len(steps)))
down = numpy.zeros((2, len(steps)))
left = numpy.zeros((2, len(steps)))
up = numpy.zeros((2, len(steps)))

right[0] = steps
right[1] = 20

down[0] = 360
down[1] = steps

Instant Pygame for Python Game Development How-to

19

left[0] = steps[::-1]
left[1] = 360

up[0] = 20
up[1] = steps[::-1]

pos = numpy.concatenate((right.T, down.T, left.T, up.T))
i = 0

create a font
font = pygame.font.Font('freesansbold.ttf', 32)
RED = (255, 0, 0)
BLUE = (0, 0, 255)

while True:
 # Erase screen
 screen.fill((255, 255, 255))

 if i >= len(pos):
 i = 0

 screen.blit(img, pos[i])

 # displaying text in the center of the screen
 text = "%d %d %d" % (i, pos[i][0], pos[i][1])
 rendered = font.render(text, True, RED, BLUE)
 screen.blit(rendered, (150, 200))
 i += 1

 for event in pygame.event.get():
 if event.type == QUIT:
 pygame.quit()
 sys.exit()

 pygame.display.update()
 clock.tick(30)

Instant Pygame for Python Game Development How-to

20

Using Matplotlib with Pygame (Simple)
Matplotlib is an open source library for easy plotting. We can integrate Matplotlib into
Pygame game and create various plots. You can find the Matplotlib installation instructions
at http://matplotlib.org/users/installing.html.

How to do it...
In this recipe we will take the position coordinates of the previous recipe and make a graph
of them:

1. Using a non-interactive backend: In order to integrate Matplotlib with Pygame,
we need to use a non-interactive backend, otherwise Matplotlib will present us with
a GUI window by default. We will import the main Matplotlib module and call the
use function. This function has to be called immediately after importing the main
matplotlib module and before other matplotlib modules are imported:
import matplotlib

matplotlib.use("Agg")

2. Creating a Matplotlib canvas: Non-interactive plots can be drawn on a Matplotlib
canvas. Creating this canvas requires imports, a figure, and a subplot. We will
specify the figure to be 3 by 3 inches large. More details can be found at the end
of this recipe:
import matplotlib.pyplot as plt
import matplotlib.backends.backend_agg as agg

fig = plt.figure(figsize=[3, 3])
ax = fig.add_subplot(111)
canvas = agg.FigureCanvasAgg(fig)

3. Plotting data: In a non-interactive mode, plotting data is a bit more complicated than
in the default mode. Since we need to plot repeatedly, it makes sense to organize the
plotting code in a function. The plot is eventually drawn on the canvas. The canvas
adds a bit of complexity to our setup. At the end of this example, you can find more
detailed explanation of the functions:

def plot(data):
 ax.plot(data)
 canvas.draw()
 renderer = canvas.get_renderer()

 raw_data = renderer.tostring_rgb()
 size = canvas.get_width_height()

Instant Pygame for Python Game Development How-to

21

 return pygame.image.fromstring(raw_data, size, "RGB")

The following screenshot shows the animation in action. You can also
view a screencast on YouTube at https://www.youtube.com/
watch?v=t6qTeXxtnl4.

We get the following code after the changes:

import pygame, sys
from pygame.locals import *
import numpy
import matplotlib

matplotlib.use("Agg")

import matplotlib.pyplot as plt
import matplotlib.backends.backend_agg as agg

fig = plt.figure(figsize=[3, 3])
ax = fig.add_subplot(111)
canvas = agg.FigureCanvasAgg(fig)

def plot(data):
 ax.plot(data)

Instant Pygame for Python Game Development How-to

22

 canvas.draw()
 renderer = canvas.get_renderer()

 raw_data = renderer.tostring_rgb()
 size = canvas.get_width_height()

 return pygame.image.fromstring(raw_data, size, "RGB")

pygame.init()
clock = pygame.time.Clock()
screen = pygame.display.set_mode((400, 400))

pygame.display.set_caption('Animating Objects')
img = pygame.image.load('head.jpg')

steps = numpy.linspace(20, 360, 40).astype(int)
right = numpy.zeros((2, len(steps)))
down = numpy.zeros((2, len(steps)))
left = numpy.zeros((2, len(steps)))
up = numpy.zeros((2, len(steps)))

right[0] = steps
right[1] = 20

down[0] = 360
down[1] = steps

left[0] = steps[::-1]
left[1] = 360

up[0] = 20
up[1] = steps[::-1]

pos = numpy.concatenate((right.T, down.T, left.T, up.T))
i = 0
history = numpy.array([])
surf = plot(history)

while True:
 # Erase screen
 screen.fill((255, 255, 255))

 if i >= len(pos):
 i = 0

Instant Pygame for Python Game Development How-to

23

 surf = plot(history)

 screen.blit(img, pos[i])
 history = numpy.append(history, pos[i])
 screen.blit(surf, (100, 100))

 i += 1

 for event in pygame.event.get():
 if event.type == QUIT:
 pygame.quit()
 sys.exit()

 pygame.display.update()
 clock.tick(30)

How it works...
The plotting-related functions are explained in this table:

Function Description
matplotlib.use("Agg") This function specifies to use the non-

interactive backend
plt.figure(figsize=[3, 3]) This function creates a figure of 3 by 3 inches
fig.add_subplot(111) This function creates a subplot (in this case we

only need 1 subplot)
agg.FigureCanvasAgg(fig) This function creates a canvas in non-

interactive mode
ax.plot(data) This function creates a plot using specified data
canvas.draw() This function draws on the canvas
canvas.get_renderer() This function gets a renderer for the canvas

Instant Pygame for Python Game Development How-to

24

Accessing surface pixel data (Intermediate)
The Pygame surfarray module handles the conversion between Pygame Surface
objects and NumPy arrays. As you may recall, NumPy can manipulate big arrays in a fast
and efficient manner.

How to do it...
In this recipe we will tile a small image to fill the game screen.

1. Copying pixels to array: The array2d function copies pixels into a two-dimensional
array. There is a similar function for three-dimensional arrays. We will copy the pixels
from the avatar image into an array:
pixels = pygame.surfarray.array2d(img)

2. Creating the game screen: A NumPy array has a shape attribute that corresponds
to the dimensions of the array. This attribute is a tuple. A two-dimensional array for
instance, will have a two-element shape tuple. Let's create the game screen from the
shape of the pixels array using the shape attribute of the array. The screen will be
seven times larger in both directions:
X = pixels.shape[0] * 7
Y = pixels.shape[1] * 7
screen = pygame.display.set_mode((X, Y))

3. Tiling the image: Tiling the image is easy with the NumPy tile function. The data
needs to be converted to integer values, since colors are defined as integers:
new_pixels = numpy.tile(pixels, (7, 7)).astype(int)

4. Displaying the array: The surfarray module has the following special function
(blit_array) to display the array on the screen:

pygame.surfarray.blit_array(screen, new_pixels)

Instant Pygame for Python Game Development How-to

25

The following screenshot displays the result of the code:

The following code does the tiling of the image:

import pygame, sys
from pygame.locals import *
import numpy

pygame.init()
img = pygame.image.load('head.jpg')
pixels = pygame.surfarray.array2d(img)
X = pixels.shape[0] * 7
Y = pixels.shape[1] * 7
screen = pygame.display.set_mode((X, Y))
pygame.display.set_caption('Surfarray Demo')
new_pixels = numpy.tile(pixels, (7, 7)).astype(int)

while True:
 screen.fill((255, 255, 255))
 pygame.surfarray.blit_array(screen, new_pixels)

 for event in pygame.event.get():
 if event.type == QUIT:
 pygame.quit()
 sys.exit()

 pygame.display.update()

Instant Pygame for Python Game Development How-to

26

How it works...
The following table gives us a brief description of the new functions and attributes we used:

Function Description
pygame.surfarray.array2d(img) This copies pixel data into a 2D array
pixels.shape[0] The shape attribute holds the dimensions

of a NumPy array as a tuple
numpy.tile(pixels, (7, 7)) This tiles an array the given dimensions

specified as a tuple
pygame.surfarray.blit_
array(screen, new_pixels)

This displays array values on the screen

Accessing sound data (Simple)
A good game needs to have great music and sound effects. The Pygame mixer module lets
us play a sound or any audio for that matter.

How to do it...
We will download a WAV audio file using standard Python. We will play this sound when the
game quits. This example requires you to actually execute the example code, because this
book has no audio support.

1. Creating a sound object: We can create a Pygame Sound object after specifying
the name of the audio file. This class as you would expect embodies the concept
of sounds:
audio = pygame.mixer.Sound(WAV_FILE)

2. Playing the sound: The Sound object has a play method, which has a number
of loops parameters. If the value of this parameter is set to -1, the sound will
loop indefinitely:
audio.play(-1)

3. Pausing the game: Sometimes we need to pause the execution of a game,
as in our case in order to be able to hear a sound. We can do this with the
following code snippet:
pygame.time.delay(TIMEOUT * 1000)

The delay is specified in milliseconds, that's why we are multiplying by 1000.

Instant Pygame for Python Game Development How-to

27

4. Stopping the sound: After a while we need to stop the sound with the corresponding
stop method:

audio.stop()

The audio demo code is listed as follows:

import pygame, sys
from pygame.locals import *
import numpy
import urllib2
import time

WAV_FILE = 'smashingbaby.wav'

def play():
 audio = pygame.mixer.Sound(WAV_FILE)
 audio.play(-1)
 TIMEOUT = 1
 pygame.time.delay(TIMEOUT * 1000)
 audio.stop()
 time.sleep(TIMEOUT)

pygame.init()
pygame.display.set_caption('Sound Demo')
response = urllib2.urlopen('http://www.thesoundarchive.com/
austinpowers/smashingbaby.wav')
filehandle = open(WAV_FILE, 'w')
filehandle.write(response.read())
filehandle.close()
screen = pygame.display.set_mode((400, 400))

while True:
 sys_font = pygame.font.SysFont("None", 19)
 rendered = sys_font.render('Smashing Baby', 0, (255, 100, 100))
 screen.blit(rendered, (100, 100))

 for event in pygame.event.get():
 if event.type == QUIT:
 play()
 pygame.quit()
 sys.exit()

 pygame.display.update()

Instant Pygame for Python Game Development How-to

28

How it works...
The most important functions of this demo are summed up in the following table:

Function Description
pygame.mixer.Sound(WAV_FILE) This function creates a Sound object given

a filename.
audio.play(-1) This function plays and loops indefinitely (-1

means indefinitely). By default the sound
is played only once. This corresponds with
0 loops. If the value is 2, the sound will
be played once and then repeated 2 more
times.

pygame.time.delay(TIMEOUT * 1000) This function pauses the game for a
specified number of milliseconds.

audio.stop() This function stops audio playback.

Playing a movie (Intermediate)
Most commercial games these days have small movie clips that try to explain the plot to us. For
instance, a first-person shooter could have a movie showing a briefing about the next mission.
Movie playback is a cool feature to have. Pygame offers limited support for MPEG movies.

Getting ready
We need to have a MPEG movie for this demo. Once you have a movie you can convert it to be
used in a Pygame game with the following command:

ffmpeg -i <infile> -vcodec mpeg1video -acodec libmp3lame -intra <outfile.
mpg>

Installing ffmpeg and the command-line options are outside the scope of this book,
but shouldn't be too difficult (see http://ffmpeg.org/).

How to do it...
The movie playback is set up similarly to the audio playback that we covered in the previous
recipe. The following code demonstrates playing a MPEG video. Pay particular attention to the
play function:

import pygame, sys
from pygame.locals import *
import time

Instant Pygame for Python Game Development How-to

29

pygame.init()
screen = pygame.display.set_mode((400, 400))
pygame.display.set_caption('Movie Demo')

def play():
 movie = pygame.movie.Movie('out.mpg')
 movie.play()
 TIMEOUT = 7
 pygame.time.delay(TIMEOUT * 1000)
 movie.stop()

while True:
 screen.fill((255, 255, 255))

 for event in pygame.event.get():
 if event.type == QUIT:
 play()
 pygame.quit()
 sys.exit()

 pygame.display.update()

How it works...
The relevant functions for the movie playback can found in this table:

Function Description
pygame.movie.Movie('out.mpg') This function creates a Movie object given the

filename of the MPEG movie
movie.play() This function starts playing the movie
movie.stop() This function stops playback of the movie

Pygame on Android (Intermediate)
Android is an open source smartphone operating system initially developed by Google. Most
of the Android apps are written in the Java programming language and run on a Java-based
virtual machine. Fortunately, we can create Pygame games for Android phones. This is not a
trivial matter and we will only cover the bare basics.

Instant Pygame for Python Game Development How-to

30

Getting ready
We will install the Pygame Subset For Android (PGS4A). You will need to have the JDK,
Python 2.7 or a later version installed before we start. Download the appropriate software
for your operating system from http://pygame.renpy.org/dl.

To install the necessary software, we will require an Internet connection and quite a lot of
room on your hard drive. If you don't have a couple of gigabytes to spare, you may need to
make more space. We can install the Android SDK and other software we will need such as
Apache Ant by running the following command:

android.py installsdk

This will start a wizard that will guide you through the installation. It's safe to accept all the
default options during the installation procedure, but you do have to generate a key. Unless
you are really serious about creating apps, you don't have to worry how secure this key is.

How to do it...
We will create a simple game that prints "Hello World From Android!" and call it mygame.

1. Setting up the game: Create a directory with the same name as the name of the
game and place a main.py file in there with the following contents:
import pygame

Import the android module. If we can't import it, set it to None
- this
lets us test it, and check to see if we want android-specific
behavior.
try:
 import android
except ImportError:
 android = None

Event constant.
TIMEREVENT = pygame.USEREVENT

The FPS the game runs at.
FPS = 30

def main():
 pygame.init()

 # Set the screen size.
 screen = pygame.display.set_mode((480, 800))

Instant Pygame for Python Game Development How-to

31

 # Map the back button to the escape key.
 if android:
 android.init()
 android.map_key(android.KEYCODE_BACK, pygame.K_ESCAPE)

 # Use a timer to control FPS.
 pygame.time.set_timer(TIMEREVENT, 1000 / FPS)

 while True:
 ev = pygame.event.wait()

 # Android-specific:
 if android:
 if android.check_pause():
 android.wait_for_resume()

 # Draw the screen based on the timer.
 if ev.type == TIMEREVENT:
 screen.fill((255, 255, 255))
 font = pygame.font.Font('freesansbold.ttf', 32)
 rendered = font.render('Hello From Android!', 0, (255,
100, 100))
 screen.blit(rendered, (100, 100))
 pygame.display.flip()

 # When the user hits back, ESCAPE is sent. Handle it and
 # end the game.
 elif ev.type == pygame.KEYDOWN and ev.key == pygame.K_
ESCAPE:
 break

This isn't run on Android.
if __name__ == "__main__":
 main()

This is basically the code from the PGS4A website changed to print a welcome
message. A more thorough explanation will be given at the end of the recipe.

Instant Pygame for Python Game Development How-to

32

2. Configuring the game: We can configure the game with the following command:
android.py configure mygame

We will accept all the defaults and set the storage setting to internal.

3. Building, installing, and running the game: Android is essentially a Java framework,
so there is a lot of compiling involved. This is a bit different than in the Python world.
Since this game is simple, building will not take that long. First we will start the
emulator—this is an application that mimics the behavior of an actual phone. Find the
android executable that is part of the Android SDK. Launch it and choose Tools |
Manage AVDs… | New… in the GUI application that opens. Create an Android Virtual
Device (AVD) and give it a name. Hit the Launch… button. A phone emulator will
start. If it is locked, you can unlock it by pressing F2.

We can now build and install the game with the command:
android.py build mygame release install

How it works...
The relevant functions used in this code are described as follows:

Function Description

android.init() This function initializes Android
android.map_key(android.KEYCODE_
BACK, pygame.K_ESCAPE)

This function maps the Android back
button to the Pygame escape button

pygame.time.set_
timer(TIMEREVENT, 1000 / FPS)

This function fires events at specified time
intervals given in milliseconds

android.check_pause() This function checks for a pause request
android.wait_for_resume() This function puts the game in sleep mode

Artificial intelligence (Intermediate)
Often we need to mimic intelligent behavior within a game. The scikits-learn project aims
to provide an API for Machine Learning. What I like most about it is the amazing documentation.

Instant Pygame for Python Game Development How-to

33

Getting ready
We can install scikit-learn by typing the following command at the command line:

pip install -U scikit-learn

Or:

easy_install -U scikit-learn

This might not work because of permissions, so you might need to put sudo in front of the
commands or log in as admin.

How to do it...
We will generate some random points and cluster them, which means that points that are
close to each other are put in the same cluster. This is only one of the many techniques that
you can apply with scikits-learn. Clustering is a type of machine learning algorithm that
aims to group items based on similarities.

1. Generating random points: We will generate 30 random point positions within a
square of 400 by 400 pixels:
positions = numpy.random.randint(0, 400, size=(30, 2))

2. Calculating the affinity matrix: We will use the Euclidean distance to the origin as
the affinity metric. The affinity matrix is a matrix holding affinity scores, in this case
distances:
positions_norms = numpy.sum(positions ** 2, axis=1)

S = - positions_norms[:, numpy.newaxis] - positions_norms[numpy.
newaxis, :] + 2 * numpy.dot(positions, positions.T)

3. Clustering the points: Give the AffinityPropagation class the result from the
previous step. This class labels the points with the appropriate cluster number:
aff_pro = sklearn.cluster.AffinityPropagation().fit(S)

labels = aff_pro.labels_

4. Drawing polygons: We will draw polygons for each cluster. The function involved
requires a list of points, a color (let's paint it red), and a surface:
pygame.draw.polygon(screen, (255, 0, 0), polygon_points[i])

Instant Pygame for Python Game Development How-to

34

The result is a bunch of polygons for each cluster as shown in the
following screenshot:

The clustering example code is shown as follows:

import numpy
import sklearn.cluster
import pygame, sys
from pygame.locals import *

positions = numpy.random.randint(0, 400, size=(30, 2))

positions_norms = numpy.sum(positions ** 2, axis=1)
S = - positions_norms[:, numpy.newaxis] - positions_norms[numpy.
newaxis, :] + 2 * numpy.dot(positions, positions.T)

aff_pro = sklearn.cluster.AffinityPropagation().fit(S)
labels = aff_pro.labels_

polygon_points = []

for i in xrange(max(labels) + 1):
 polygon_points.append([])

Sorting points by cluster

Instant Pygame for Python Game Development How-to

35

for i, l in enumerate(labels):
 polygon_points[l].append(positions[i])

pygame.init()
screen = pygame.display.set_mode((400, 400))

while True:
 for point in polygon_points:
 pygame.draw.polygon(screen, (255, 0, 0), point)

 for event in pygame.event.get():
 if event.type == QUIT:
 pygame.quit()
 sys.exit()

 pygame.display.update()

How it works...
The most important lines in the artificial intelligence recipe are described in more detail in the
following table:

Function Description
numpy.random.randint(0, 400, size=(30,
2))

This creates an array of 30
by 2 random integers. This
corresponds to 30 points in two-
dimensional space. The values
are between 0 and 400.

numpy.sum(positions ** 2, axis=1) This sums an array of the square
of the positions array.

numpy.dot(positions, positions.T) This computes the dot product
of the positions array and its
transpose.

sklearn.cluster.AffinityPropagation().
fit(S)

This creates an
AffinityPropagation
object and performs a fit using
an affinity matrix.

pygame.draw.polygon(screen, (255, 0, 0),
polygon_points[i])

This draws a polygon given a
surface, a color (red in this case),
and a list of points.

Instant Pygame for Python Game Development How-to

36

Drawing sprites (Intermediate)
Sprite is a term from computer graphics meaning a two-dimensional visible object, that has
been optimized for rendering. Pygame offers the Sprite class that deals with sprites. It can
draw sprites on a Surface object. It also has collision functions. For complex games, we can
group sprites together for easy management. Sprites are not thread safe, so you should take
care when using multiple threads.

How to do it...
We will redo the animation demo, but this time with sprites and using Rect objects, which
represent rectangles. A Rect object has left, top, width, and height attributes. We will
use these and other attributes throughout the example. Also we will let the avatar spin when
the mouse button is clicked. However, we will not care for now where we click exactly.

We will create a class that extends the Sprite class. Sprite classes have an update
method which fires for each frame. All logic involving the movement of the sprite should
be placed here.

1. Constructor: First, we need to create the sprite and perform subclassing. All the
initialization logic goes here. Further details for the functions can be found in the
next section. We define an image, rectangle, and variables tracking the movement
of the avatar:
class Head(pygame.sprite.Sprite):
 def __init__(self):
 pygame.sprite.Sprite.__init__(self)
 self.image, self.rect = load_image('head.jpg', -1)
 screen = pygame.display.get_surface()
 self.area = screen.get_rect()
 self.STEP = 9
 self.MARGIN = 12
 self.xstep = self.STEP
 self.ystep = 0
 self.dizzy = 0
 self.direction = 'right'

2. The update method: The update method calls helper methods that either cause
the head to spin or move it in clockwise direction. The movement is achieved with
this line:

newpos = self.rect.move((self.xstep, self.ystep))

Instant Pygame for Python Game Development How-to

37

The following line take care of the rotation:
self.image = pygame.transform.rotate(self.original, self.degrees)

You can find a short clip of the game on YouTube (https://www.
youtube.com/watch?v=EFQlc_siPrI). A screenshot of the game
is shown as follows:

The complete code of the Sprite demo is listed as follows:

import os, pygame
from pygame.locals import *

def load_image(name, colorkey=None):
 try:
 image = pygame.image.load(name)
 except pygame.error, message:
 print 'Cannot load image:', name

 image = image.convert()

 return image, image.get_rect()

class Head(pygame.sprite.Sprite):
 def __init__(self):
 pygame.sprite.Sprite.__init__(self)
 self.image, self.rect = load_image('head.jpg', -1)
 screen = pygame.display.get_surface()
 self.area = screen.get_rect()
 self.STEP = 9
 self.MARGIN = 12
 self.xstep = self.STEP
 self.ystep = 0
 self.degrees = 0
 self.direction = 'right'

 def update(self):

Instant Pygame for Python Game Development How-to

38

 if self.degrees:
 self._spin()
 else:
 self._move()

 def _move(self):
 newpos = self.rect.move((self.xstep, self.ystep))

 if self.direction == 'right' and self.rect.right > self.
area.right - self.MARGIN:
 self.xstep = 0
 self.ystep = self.STEP
 self.direction = 'down'

 if self.direction == 'down' and self.rect.bottom > self.
area.bottom - self.MARGIN:
 self.xstep = -self.STEP
 self.ystep = 0
 self.direction = 'left'

 if self.direction == 'left' and self.rect.left < self.
area.left + self.MARGIN:
 self.xstep = 0
 self.ystep = -self.STEP
 self.direction = 'up'

 if self.direction == 'up' and self.rect.top < self.area.
top + self.MARGIN:
 self.xstep = self.STEP
 self.ystep = 0
 self.direction = 'right'

 self.rect = newpos

 def _spin(self):
 center = self.rect.center
 self.degrees = self.degrees + 12
 if self.degrees >= 360:
 self.degrees = 0
 self.image = self.original
 else:
 self.image = pygame.transform.rotate(self.original,
self.degrees)
 self.rect = self.image.get_rect(center=center)

Instant Pygame for Python Game Development How-to

39

 def hit(self):
 if not self.degrees:
 self.degrees = 1
 self.original = self.image

def main():
 pygame.init()
 screen = pygame.display.set_mode((400, 400))
 pygame.display.set_caption('Sprite Demo')

 background = pygame.Surface(screen.get_size())
 background = background.convert()
 background.fill((250, 250, 250))

 if pygame.font:
 font = pygame.font.Font(None, 36)
 text = font.render("Hit the avatar!", 1, (0, 0, 200))
 textpos = text.get_rect(centerx = background.get_
width()/2, centery = background.get_height()/2)
 background.blit(text, textpos)

 screen.blit(background, (0, 0))
 pygame.display.flip()

 clock = pygame.time.Clock()
 head = Head()
 sprite = pygame.sprite.RenderPlain(head)

 while True:
 clock.tick(60)

 for event in pygame.event.get():
 if event.type == QUIT:
 return
 elif event.type == MOUSEBUTTONDOWN:
 head.hit()

 sprite.update()

 screen.blit(background, (0, 0))
 sprite.draw(screen)
 pygame.display.flip()

Instant Pygame for Python Game Development How-to

40

if __name__ == '__main__':
 main()

How it works...
A more in-depth description of the various functions used in this demo is given as follows:

Function Description
pygame.sprite.Sprite.__init__(self) This creates sprites.
screen.get_rect() This gets a Rect object.
pygame.display.get_surface() This gets a Surface object.
self.rect.move((self.xstep, self.
ystep))

This moves a rectangle given a x and y
coordinate.

pygame.transform.rotate(self.
original, self.degrees)

This rotates an image given a Surface
object and angle in degrees. Positive
values correspond with counter
clockwise rotation, negative with
clockwise rotation.

self.image.get_rect(center=center) This gets the rectangle for the image
given its center coordinates.

pygame.sprite.RenderPlain(head) This renders the sprite.

Using OpenGL with Pygame (Advanced)
OpenGL specifies an API for 2D and 3D computer graphics. The API consists of functions
and constants. We will be concentrating on the Python implementation called PyOpenGL.

Getting ready
Install PyOpenGL with the following command:

pip install PyOpenGL PyOpenGL_accelerate

You might need to have root access to execute this command. The corresponding
easy_install command is as follows:

easy_install PyOpenGL PyOpenGL_accelerate

Instant Pygame for Python Game Development How-to

41

How to do it...
For the purpose of demonstration we will draw a Sierpinski gasket with OpenGL. This is a
fractal pattern in the shape of a triangle created by the mathematician Waclaw Sierpinski.
The triangle is obtained via a recursive and in principle infinite procedure.

1. OpenGL Initialization: First, we will start out by initializing some of the OpenGL-
related primitives. This includes setting the display mode and background color.
A line-by-line explanation is given at the end of the recipe:
def display_openGL(w, h):

 pygame.display.set_mode((w,h), pygame.OPENGL|pygame.DOUBLEBUF)

 glClearColor(0.0, 0.0, 0.0, 1.0)

 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)

 gluOrtho2D(0, w, 0, h)

2. Displaying points: The algorithm requires us to display points, the more the better.
First, we set the drawing color to red. Second, we define the vertices (I call them
points myself) of a triangle. Then we define random indices, which are to be used to
choose one of the three triangle vertices. We pick a random point somewhere in the
middle, it doesn't really matter where. After that we draw points halfway between the
previous point and one of the vertices picked at random. Finally, we "flush" the result:

 glColor3f(1.0, 0, 0)
 vertices = numpy.array([[0, 0], [DIM/2, DIM], [DIM, 0]])
 NPOINTS = 9000
 indices = numpy.random.random_integers(0, 2, NPOINTS)
 point = [175.0, 150.0]

 for index in indices:
 glBegin(GL_POINTS)
 point = (point + vertices[index])/2.0
 glVertex2fv(point)
 glEnd()

 glFlush()

Instant Pygame for Python Game Development How-to

42

The Sierpinski triangle looks like this:

The full Sierpinski gasket demo code with all the imports is shown as follows:

import pygame
from pygame.locals import *
import numpy

from OpenGL.GL import *
from OpenGL.GLU import *

def display_openGL(w, h):
 pygame.display.set_mode((w,h), pygame.OPENGL|pygame.DOUBLEBUF)

 glClearColor(0.0, 0.0, 0.0, 1.0)
 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)

 gluOrtho2D(0, w, 0, h)

def main():
 pygame.init()
 pygame.display.set_caption('OpenGL Demo')
 DIM = 400
 display_openGL(DIM, DIM)
 glColor3f(1.0, 0, 0)
 vertices = numpy.array([[0, 0], [DIM/2, DIM], [DIM, 0]])

Instant Pygame for Python Game Development How-to

43

 NPOINTS = 9000
 indices = numpy.random.random_integers(0, 2, NPOINTS)
 point = [175.0, 150.0]

 for index in indices:
 glBegin(GL_POINTS)
 point = (point + vertices[index])/2.0
 glVertex2fv(point)
 glEnd()

 glFlush()
 pygame.display.flip()

 while True:
 for event in pygame.event.get():
 if event.type == QUIT:
 return

if __name__ == '__main__':
 main()

How it works...
As promised here is a line-by-line explanation of the most important parts of the example:

Function Description
pygame.display.set_mode((w,h),
pygame.OPENGL|pygame.DOUBLEBUF)

This sets the display mode to the
required width, height, and OpenGL
display.

glClear(GL_COLOR_BUFFER_BIT|GL_
DEPTH_BUFFER_BIT)

This clears the buffers using a mask.
Here we clear the color buffer and depth
buffer bits.

gluOrtho2D(0, w, 0, h) This defines a 2D orthographic
projection matrix with the coordinates of
the left, right, top, and bottom clipping
planes.

glColor3f(1.0, 0, 0) This defines the current drawing color
using three float values for RGB (0-1
instead of 0-255 that is usual for
Pygame). In this case we will be painting
in red.

Instant Pygame for Python Game Development How-to

44

Function Description
glBegin(GL_POINTS) This delimits the vertices of primitives or

a group of primitives. Here the primitives
are points.

glVertex2fv(point) This renders a point given a vertex.
glEnd() This closes a section of code started with

glBegin.
glFlush() This forces execution of GL commands.

Detecting collisions (Intermediate)
In the sprite demo, we left out the collision detection bit. Pygame has a number of useful
collision detection functions in the Rect class. For instance, we can check whether a point
is in a rectangle or whether two rectangles overlap.

How to do it...
Beside the collision detection we will replace the mouse cursor with an image of a hammer
that we created. It's not a very pretty image, but it beats the boring old cursor.

1. Updating the hit method: We will update the hit method of the sprite demo code.
In the new version, we check whether the mouse cursor is within the avatar sprite.
Actually to make it easier to hit the head, we create a slightly bigger rectangle:
def hit(self):
 mouse_x, mouse_y = pygame.mouse.get_pos()
 collided = False
 bigger_rect = self.rect.inflate(40, 40)

 if bigger_rect.collidepoint(mouse_x, mouse_y):
 collided = True

 if not self.degrees and collided:
 self.degrees = 1
 self.original = self.image
 self.nhits += 1
 else:
 self.nmisses += 1

2. Replacing the mouse cursor: All the steps necessary to replace the mouse
cursor were already covered. Except making the mouse cursor invisible:
pygame.mouse.set_visible(False)

Instant Pygame for Python Game Development How-to

45

A screenshot of the game is shown as follows:

The complete code for this example can be found in the code bundle of this book.

How it works...
We learned a bit about collision detection, the mouse cursor, and rectangles in this recipe:

Function Description
pygame.mouse.get_pos() This gets the mouse position as a tuple.
self.rect.inflate(40, 40) This creates a bigger rectangle based on an

offset. If the offset is negative this results in
a smaller rectangle.

bigger_rect.
collidepoint(mouse_x, mouse_y)

This checks whether a point is within a
rectangle.

pygame.mouse.set_visible(False) This hides the mouse cursor.

Adding networking functionality (Advanced)
Games become more engaging when you are able to play against other people. Usually this
means playing over the Internet using some sort of client-server architecture. In the Python
world, Twisted is commonly used for this kind of architecture.

Instant Pygame for Python Game Development How-to

46

Getting ready
Twisted can be installed in several ways depending on your operating system. For more
information see https://twistedmatrix.com/trac/wiki/Downloads.

How to do it...
Unfortunately, we cannot create a massive multiplayer game in this tutorial, but we can
create a simple client-server setup, which will lay the foundations for a puzzle we will create
in a later recipe.

1. The server: First, we will set up the server, which will echo the message from the
client and prepend it with a sequence number:
from twisted.internet import reactor, protocol

class Server(protocol.Protocol):
 def __init__(self):
 self.count = 0

 def dataReceived(self, msg):
 self. count += 1
 self.transport.write("%d %s" % (self.count, msg))

def main():
 factory = protocol.ServerFactory()
 factory.protocol = Server
 reactor.listenTCP(8888,factory)
 reactor.run()

if __name__ == '__main__':
 main()

As you can see the server runs on port 8888 over TCP (see http://
en.wikipedia.org/wiki/Transmission_Control_Protocol).

2. Client setup: The client sends messages over the same port as the server and also
shows the messages from the server in a Pygame GUI. We will go over the details in
the next section. In a later example we will do more interesting things with this code:

from twisted.internet import reactor, protocol
from pygame.locals import *
import pygame

class Client(protocol.Protocol):

Instant Pygame for Python Game Development How-to

47

 def __init__(self):
 self.msg = 'Hello'
 self.end_msg = False

 def sendMessage(self, msg):
 self.transport.write(msg)
 self.update(msg)

 def dataReceived(self, msg):
 self.msg = msg

 if msg.startswith("19"):
 self.end_msg = True

 def update(self, msg):
 screen = pygame.display.get_surface()

 screen.fill((255, 255, 255))
 font = pygame.font.Font(None, 36)
 text = font.render(self.msg, 1, (200, 200, 200))
 textpos = text.get_rect(centerx=screen.get_width()/2,
centery=screen.get_height()/2)
 screen.blit(text, textpos)
 pygame.display.flip()

 if self.end_msg:
 reactor.stop()

def send(p):
 p.sendMessage("Hello!")

 for i in xrange(1, 20):
 reactor.callLater(i * .1, p.sendMessage, "IMPORTANT
MESSAGE!")

def main():
 pygame.init()
 screen = pygame.display.set_mode((400, 400))
 pygame.display.set_caption('Network Demo')

 c = protocol.ClientCreator(reactor, Client)
 c.connectTCP("localhost", 8888).addCallback(send)
 reactor.run()

Instant Pygame for Python Game Development How-to

48

 while True:
 for event in pygame.event.get():
 if event.type == QUIT:
 return

if __name__ == '__main__':
 main()

We need to start the server, before we can start the client. In the game GUI, you
should see Hello being displayed followed by 1 IMPORTANT MESSAGE! to 19
IMPORTANT MESSAGE! as shown in the following screenshot:

How it works...
We saw in this example how to create a simple server and client with a Pygame GUI. In
principle, we can now extend this setup to create a multiplayer game. The details of the
Twisted client and server setup are given as follows:

Function Description
self.transport.write("%d %s" %
(self.count, msg))

This writes a message. In this case we are
prepending a sequence number to the
message.

factory = protocol.
ServerFactory()

This creates a Twisted server factory, which
itself creates Twisted servers.

reactor.
listenTCP(8888,factory)

This listens to port 8888 using the given
factory.

reactor.run() This starts the server or client.

Instant Pygame for Python Game Development How-to

49

Function Description
reactor.stop() This stops the client or server.
reactor.callLater(i * .1,
p.sendMessage, "IMPORTANT
MESSAGE!")

This registers a callback function with a
parameter to be executed after a specified
time in seconds.

protocol.
ClientCreator(reactor, Client)

This creates a Twisted client.

c.connectTCP("localhost",
8888).addCallback(send)

This connects the client via TCP on port 8888
and registers a callback function.

Debugging your game (Intermediate)
Debugging is one of those things that nobody really likes, but is very important to master.
It can take hours, and because of Murphy's law you, most likely, don't have that time.
Therefore, it is important to be systematic and know your tools well. After you are done
finding the bug and implementing a fix, you should have a test in place. This way at least
you will not have to go through the hell of debugging again.

PuDB is a visual full screen, console-based Python debugger that is easy to install. PuDB
supports cursor keys and vi commands. The debugger can also be integrated with IPython,
if required.

Getting ready
In order to install puDB, we only need to execute the following command:

sudo easy_install pudb

How to do it...
To debug the collision demo code, type the following command on the command line:

python -m pudb collision_demo.py

The source code should be available for download from
the Packt Publishing website.

Instant Pygame for Python Game Development How-to

50

The following screenshot shows the most important debugging commands at the top:

We can also see the code being debugged, variables, the stack, and the defined breakpoints.
Typing q exits most menus. Typing n moves the debugger to the next line. We can also move
with the cursor keys or vi J and K keys to, for instance, set a breakpoint by typing b.

Profiling your code (Intermediate)
Performance is important for games, luckily there are many Python profiling tools. Profiling is
about building a profile of a software program in order to collect information about memory
usage or time complexity.

cProfile is a C extension introduced in Python 2.5. It can be used for deterministic
profiling. Deterministic profiling means that the time measurements are precise and no
sampling is used. Contrast this with statistical profiling, where measurements come from
random samples.

How to do it...
The following steps will help you profile your code:

1. Creating a profile file: We will profile the collision demo code and store the profile
output in a file as follows:
python -m cProfile -o collision_demo.profile collision_demo.py

Instant Pygame for Python Game Development How-to

51

2. The pstats browser: After creating the file, we can view and sort the data in a special
command-line browser:
python -m pstats collision_demo.profile

Welcome to the profile statistics browser.

3. Getting help: Being able to get help is always a good thing, just type the following
commands at the command line:
collision_demo.profile% help

Documented commands (type help <topic>):

==

EOF add callees callers help quit read reverse sort stats
strip

4. Sorting: We can sort with the following sort command:
collision_demo.profile% sort

Valid sort keys (unique prefixes are accepted):

stdname -- standard name

nfl -- name/file/line

pcalls -- call count

file -- file name

calls -- call count

time -- internal time

line -- line number

cumulative -- cumulative time

module -- file name

name -- function name

5. Top 3 called functions: We can get the top 3 called functions by sorting and calling
stats:

collision_demo.profile% sort calls

collision_demo.profile% stats 3

 380943 function calls (380200 primitive calls) in 18.056
seconds

 Ordered by: call count

 List reduced from 801 to 3 due to restriction <3>

Instant Pygame for Python Game Development How-to

52

 ncalls tottime percall cumtime percall
filename:lineno(function)

 52156 0.013 0.000 0.013 0.000 {method 'endswith'
of 'str' objects}

31505/31368 0.003 0.000 0.003 0.000 {len}

 27573 0.022 0.000 0.022 0.000 {method 'lower' of
'str' objects}

How it works...
We profiled the collision demo. The following table summarizes the profiler output:

Column Description
Ncalls Number of calls
Tottime Total time spent in a function

Percall
Time per call, calculated by dividing the total
time by the calls count

Cumtime
Cumulative time spent in function and functions
called by the function, including recursive calls

Puzzle game with Pygame (Advanced)
We will pick up where we left in the networking example. This time we will create a puzzle game
that lets us guess a word. This is just a prototype mind you. It still needs a lot of polishing.

How to do it...
The following steps will help you to create the intended puzzle game:

1. Server changes: The changes in the server are pretty trivial. We just check whether
we guessed the correct word:
from twisted.internet import reactor, protocol

class Server(protocol.Protocol):
 def dataReceived(self, msg):
 resp = '*' * 20
 print msg

 if msg == 'secret':
 resp = msg

 self.transport.write(resp)

Instant Pygame for Python Game Development How-to

53

def main():
 factory = protocol.ServerFactory()
 factory.protocol = Server
 reactor.listenTCP(8888,factory)
 reactor.run()

if __name__ == '__main__':
 main()

2. Client changes: The most important changes are the handling of key presses in an
input box and handling of the response from the server. The input box lets us type
text, edit it with the Backspace key, and submit with the Enter key. A label above
the textbox displays the number of attempts and the game status. We use a Twisted
looping callback to update the GUI every 30 milliseconds:

from twisted.internet import reactor, protocol
from pygame.locals import *
import pygame
from twisted.internet.task import LoopingCall

class Client(protocol.Protocol):
 def __init__(self):
 self.STARS = '*' * 20
 self.msg = self.STARS
 self.font = pygame.font.Font(None, 22)
 self.screen = pygame.display.get_surface()
 self.label = 'Guess the word:'
 self.attempts = 0

 def sendMessage(self, msg):
 self.transport.write(msg)

 def dataReceived(self, msg):
 self.msg = msg

 if self.msg != self.STARS:
 self.label = 'YOU WIN!!!!'

 self.update_prompt()

 def update_prompt(self):

Instant Pygame for Python Game Development How-to

54

 self.screen.fill((255, 255, 255))
 BG = (0, 255, 0)
 FG = (0, 0, 0)

 pygame.draw.rect(self.screen, BG, (100, 200, 200, 20))

 self.screen.blit(self.font.render(self.msg, 1, FG), (100,
200))
 self.screen.blit(self.font.render("%d %s" % (self.
attempts, self.label), 1, FG),
 (140, 180))
 pygame.display.flip()

def handle_events(p):
 while True:
 for event in pygame.event.get():
 if event.type == QUIT:
 reactor.stop()
 return
 elif event.type == KEYDOWN:
 key = event.key

 if p.msg == '*' * 20:
 p.msg = ''

 if key == K_BACKSPACE:
 p.msg = p.msg[0:-1]
 p.update_prompt()
 elif key == K_RETURN:
 p.attempts += 1
 p.sendMessage(p.msg)
 return
 elif ord('a') <= key <= ord('z'):
 p.msg += chr(key)
 p.update_prompt()

def send(p):
 p.update_prompt()
 tick = LoopingCall(handle_events, p)
 tick.start(.03)

def main():
 pygame.init()

Instant Pygame for Python Game Development How-to

55

 screen = pygame.display.set_mode((400, 400))
 pygame.display.set_caption('Puzzle Demo')

 c = protocol.ClientCreator(reactor, Client)
 c.connectTCP("localhost", 8888).addCallback(send)
 reactor.run()

if __name__ == '__main__':
 main()

The following screenshot was taken after guessing the word:

How it works...
Although this seems to be a pretty extensive recipe, only a few lines of the code might require
some explanation:

Function Description
LoopingCall(handle_events, p) This creates a looping callback. A callback

function that is called periodically.

tick.start(.03) This starts the looping callback with a period
of 30 milliseconds.

Simulating with Pygame (Advanced)
As the last example, we will simulate life with Conway's Game of Life. The original game of life
is based on a few basic rules. We start out with a random configuration on a two-dimensional
square grid. Each cell in the grid can be either dead or alive. This state depends on the eight
neighbors of the cell. Convolution can be used to evaluate the basic rules of the game. We will
need the SciPy package for the convolution bit.

Instant Pygame for Python Game Development How-to

56

Getting ready
Install SciPy with either of the following two commands:

 f sudo pip install scipy

 f easy_install scipy

How to do it...
The following code is an implementation of Game of Life with some modifications:

 f Clicking once with the mouse draws a cross until we click again

 f The R key resets the grid to a random state

 f Pressing B creates blocks based on the mouse position

 f G creates gliders

The most important data structure in the code is a two-dimensional array holding the color
values of the pixels on the game screen. This array is initialized with random values and then
recalculated in the game loop. More information about the involved functions can be found in
the next section. As previously mentioned, the following is the code:

import os, pygame
from pygame.locals import *
import numpy
from scipy import ndimage

def get_pixar(arr, weights):
 states = ndimage.convolve(arr, weights, mode='wrap')

 bools = (states == 13) | (states == 12) | (states == 3)

 return bools.astype(int)

def draw_cross(pixar):
 (posx, posy) = pygame.mouse.get_pos()
 pixar[posx, :] = 1
 pixar[:, posy] = 1

def random_init(n):
 return numpy.random.random_integers(0, 1, (n, n))

def draw_pattern(pixar, pattern):
 print pattern

Instant Pygame for Python Game Development How-to

57

 if pattern == 'glider':
 coords = [(0,1), (1,2), (2,0), (2,1), (2,2)]
 elif pattern == 'block':
 coords = [(3,3), (3,2), (2,3), (2,2)]
 elif pattern == 'exploder':
 coords = [(0,1), (1,2), (2,0), (2,1), (2,2), (3,3)]
 elif pattern == 'fpentomino':
 coords = [(2,3),(3,2),(4,2),(3,3),(3,4)]

 pos = pygame.mouse.get_pos()

 xs = numpy.arange(0, pos[0], 10)
 ys = numpy.arange(0, pos[1], 10)

 for x in xs:
 for y in ys:
 for i, j in coords:
 pixar[x + i, y + j] = 1

def main():
 pygame.init ()

 N = 400
 pygame.display.set_mode((N, N))
 pygame.display.set_caption("Life Demo")

 screen = pygame.display.get_surface()

 pixar = random_init(N)
 weights = numpy.array([[1,1,1], [1,10,1], [1,1,1]])

 cross_on = False

 while True:
 pixar = get_pixar(pixar, weights)

 if cross_on:
 draw_cross(pixar)

 pygame.surfarray.blit_array(screen, pixar * 255 ** 3)
 pygame.display.flip()

Instant Pygame for Python Game Development How-to

58

 for event in pygame.event.get():
 if event.type == QUIT:
 return
 if event.type == MOUSEBUTTONDOWN:
 cross_on = not cross_on
 if event.type == KEYDOWN:
 if event.key == ord('r'):
 pixar = random_init(N)
 print "Random init"
 if event.key == ord('g'):
 draw_pattern(pixar, 'glider')
 if event.key == ord('b'):
 draw_pattern(pixar, 'block')
 if event.key == ord('e'):
 draw_pattern(pixar, 'exploder')
 if event.key == ord('f'):
 draw_pattern(pixar, 'fpentomino')

if __name__ == '__main__':
 main()

You should be able to view a screencast on YouTube at
https://www.youtube.com/watch?v=NNsU-yWTkXM.

A screenshot of the game in action is shown as follows:

Instant Pygame for Python Game Development How-to

59

How it works...
We used some NumPy and SciPy functions that need explaining:

Function Description
ndimage.convolve(arr, weights,
mode='wrap')

This applies the convolve operation on the given
array, using weights in wrap mode. The mode
has to do with the array borders. See http://
en.wikipedia.org/wiki/Convolution
for the mathematical details.

bools.astype(int) This converts the array of Booleans to integers.
numpy.arange(0, pos[0], 10) This creates an array from 0 to pos[0] in

steps of 10. So if pos[0] is equal to 1000, we
will get 0, 10, 20 … 990.

http://en.wikipedia.org/wiki/Convolution
http://en.wikipedia.org/wiki/Convolution

1

Thank you for buying
Instant Pygame for Python Game
Development How-to

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

2

Panda3D 1.6 Game Engine
Beginner's Guide
ISBN: 978-1-84951-272-5 Paperback: 356 pages

Create your own computer game with this 3D rendering
and game development framework

1. The first and only guide to building a finished
game using Panda3D

2. Learn about tasks that can be used to handle
changes over time

3. Respond to events like keyboard key presses,
mouse clicks, and more

4. Take advantage of Panda3D's built-in shaders and
filters to decorate objects with gloss, glow, and
bump effects

TortoiseSVN 1.7 Beginner's
Guide
ISBN: 978-1-84951-344-9 Paperback: 260 pages

Perform version control in the easiest way with the best
SVN client - TortoiseSVN

1. Master version control techniques with
TortoiseSVN without the need for boring theory

2. Revolves around a real-world example based on a
software company

3. The first and the only book that focuses on version
control with TortoiseSVN

4. Reviewed by Stefan Kung, lead developer for the
TortoiseSVN project

Please check www.PacktPub.com for information on our titles

3

Cocos2d for iPhone 1 Game
Development Cookbook
ISBN: 978-1-84951-400-2 Paperback: 446 pages

Over 90 recipes for iOS 2D game development using
cocos2d

1. Discover advanced Cocos2d, OpenGL ES, and
iOS techniques spanning all areas of the game
development process

2. Learn how to create top-down isometric games,
side-scrolling platformers, and games with
realistic lighting

3. Full of fun and engaging recipes with modular
libraries that can be plugged into your projectl

Construct Game Development
Beginners Guide
ISBN: 978-1-84951-660-0 Paperback: 298 pages

A guide to escalate beginners to intermediate game
creators through teaching practical game creation using
Scirra Construct

1. Learn the skills necessary to make your own
games through the creation of three very different
sample games

2. Create animated sprites, use built-in physics and
shadow engines of Construct Classic

3. A wealth of step-by-step instructions and images
to lead the way

Please check www.PacktPub.com for information on our titles

	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Instant Pygame for Python Game Development How-to
	Preparing your development environment (Simple)
	Running a simple game (Simple)
	Drawing with Pygame (Simple)
	Animating objects (Simple)
	Using fonts (Simple)
	Using Matplotlib with Pygame (Simple)
	Accessing surface pixel data (Intermediate)
	Accessing sound data (Simple)
	Playing a movie (Intermediate)
	Pygame on Android (Intermediate)
	Artificial intelligence (Intermediate)
	Drawing sprites (Intermediate)
	Using OpenGL with Pygame (Advanced)
	Detecting collisions (Intermediate)
	Adding networking functionality (Advanced)
	Debugging your game (Intermediate)
	Profiling your code (Intermediate)
	Puzzle game with Pygame (Advanced)
	Simulating with Pygame (Advanced)

