

JavaScript	for	.NET	Developers

Table	of	Contents

JavaScript	for	.NET	Developers
Credits
About	the	Author
About	the	Reviewer
www.PacktPub.com

eBooks,	discount	offers,	and	more
Why	subscribe?

Preface
What	this	book	covers
What	you	need	for	this	book
Who	this	book	is	for
Conventions
Reader	feedback
Customer	support

Downloading	the	example	code
Downloading	the	color	images	of	this	book
Errata
Piracy
Questions

1.	JavaScript	for	Modern	Web	Applications
Importance	of	JavaScript

What	is	JavaScript?
Comparing	runtimes

Setting	up	your	environment
New	editing	experience	of	JavaScript	in	Visual	Studio	2015	IDE

Programming	in	JavaScript
Core	fundamentals	of	JavaScript

Adding	JavaScript	to	an	HTML	page
Statements	in	JavaScript
Literals	and	variables
Data	types

Array	in	JavaScript
What	is	JSON?

Simple	objects	in	JSON
Declaring	arrays	in	JSON
Nesting	data	in	JSON

Conversions	in	data	types
Elements	of	JavaScript

Constants	in	JavaScript
Comments
Case	sensitivity

Character	set
Expressions

The	this	keyword
Sequence	of	code	execution	in	JavaScript
Using	the	this	keyword	on	a	calling	method
The	function	statement	and	expression
Class	statement	and	expression
Grouping	operator
new
super

Operators
Assignment	operators
Arithmetic	operators
Unary	operators
Comparison	operators

Strict	equal	operator
Strict	not	equal	operator

Logical	operators
Logical	AND
Logical	OR
Logical	NOT

Bitwise	operators
Bitwise	AND
Bitwise	OR
Bitwise	NOT
Bitwise	XOR

Bitwise	shift	operators
Bitwise	left	shift
Bitwise	right	shift

The	typeof	operator
The	void	operator
The	delete	operator
Miscellaneous	operators

Conditional	operators
Spread	operator

Built-in	display	methods	in	JavaScript
Displaying	messages

Alert	box
Confirm	box
Prompt	box

Writing	on	a	page
Writing	into	the	browser's	console	window

Browser	Object	Models	in	JavaScript
Window

Document
Navigator

Properties
Screen

Properties
History

Methods
Location

Properties
Methods

Summary
2.	Advanced	JavaScript	Concepts

Variables	–	scope	and	hoisting
Declaring	let

Conditions	where	let	is	efficient	to	use
Functions	in	loops

Events	in	JavaScript
Function	arguments
Object-oriented	programming	in	JavaScript

Creating	objects
Defining	objects	using	object	literal	notation
Defining	objects	using	a	constructor	pattern

Using	the	class	keyword
Properties

Defining	properties	using	object	literal	notation
Defining	properties	using	a	constructor	pattern
Defining	properties	using	setters/getters	in	ECMAScript	6
JavaScript	property	descriptors

Display	property	descriptors
Managing	property	descriptors
Using	getters	and	setters

Methods
Defining	methods	through	object	literal	notation	approach
Defining	objects	using	the	constructor	function	approach

Extending	properties	and	methods
Private	and	public	members
Inheritance

Chaining	constructors	in	JavaScript
Inheritance	using	Object.create()
Predefined	properties	of	Object.create()
Defining	inheritance	using	class

Encapsulation
Abstraction
new.target

Namespace
Exception	handling

Error
RangeError
ReferenceError
SyntaxError
TypeError
URIError

Closures
Practical	use

JavaScript	typed	arrays
Typed	array	architecture

The	array	buffer
Creating	a	buffer

Maps,	sets,	weak	maps,	and	weak	sets
Maps	and	weak	maps
Sets	and	weak	sets
The	strict	mode

Summary
3.	Using	jQuery	in	ASP.NET

Getting	started	with	jQuery
Using	a	content	delivery	network

The	use	of	CDN
The	document	ready	event
The	jQuery	selectors

Selecting	the	DOM	elements	using	the	ID
Selecting	the	DOM	elements	using	TagName
Selecting	nodes	by	the	class	name
Selecting	by	the	attribute	value
Selecting	input	elements
Selecting	all	the	elements
Selecting	the	first	and	last	child	elements
The	contains	selector	in	jQuery
Selecting	the	even	and	odd	rows	selectors

Manipulating	DOM
Modifying	an	element's	properties
Creating	new	elements
Removing	elements	and	attributes

Event	handling	in	jQuery
Registering	events	in	jQuery
Binding	events	using	on	and	off
Using	the	hover	events

Summary
4.	Ajax	Techniques

Introducing	Ajax
How	Ajax	works

Ajax	requests	using	the	classic	XHR	object
XHR	methods
XHR	events
XHR	properties

Making	an	Ajax	request	using	jQuery
jQuery.ajax()

Ajax	properties
Pre-filtering	Ajax	requests
Setting	default	values	for	all	future	Ajax	requests

Loading	data	through	the	get	functions	in	jQuery
Using	jQuery.get()
Using	jQuery.getJSON()
Using	jQuery.getScript()

Posting	data	to	server	using	the	post	function
Ajax	events

Local	events
Global	events

Cross-origin	requests
JSON-P

Using	JSON-P
CORS

Specifying	the	CORS	policy	at	services	level
Enable	CORS	at	the	Configure	method

Calling	WCF	services	from	JavaScript
Summary

5.	Developing	an	ASP.NET	Application	Using	Angular	2	and	Web	API
TypeScript

Compilation	architecture	of	TypeScript
Advantages	of	TypeScript

Superset	of	JavaScript
Support	for	classes	and	modules
Static	type	checking
ECMAScript	6	feature	support
Optional	typing
Declaring	types	in	TypeScript

Core	elements	of	TypeScript
Declaring	variables
Types
Classes	and	interfaces

Defining	interfaces
Deriving	classes	and	interfaces
Generic	classes

Functions
Generic	functions

Iterators
Modules	and	namespaces

Introduction	to	Angular	2
Angular	2	architecture

Events	of	component	life	cycle
Modules
Components

Core	properties	of	Angular	2	components
Templates	and	selectors
Inputs	and	outputs

Using	inputs
Using	outputs

Directives
Creating	a	simple	Hello	World	directive

Structural	directives
Attribute	directive
Providers

Dependency	injection	in	Angular
Routing	in	Angular

Developing	a	to-do	application	in	ASP.NET	Core
Creating	a	Common	project
Creating	a	TodoServiceApp	project

Enabling	MVC	in	a	Web	API	project
Installing	Entity	Framework
Adding	AppSettings	to	store	a	connection	string
Configuring	AppSettings	in	the	Startup	class
Adding	data	access	in	Web	API
Enabling	CORS	in	the	ASP.NET	Web	API
Running	database	migration
Creating	a	controller

Creating	a	TodoWebApp	project
Configuring	Angular	2	in	the	TodoWebApp	project
Dependencies

Development	dependencies
Configuring	TypeScript
Configuring	Gulp

Adding	Angular	components
Adding	the	to-do	service	component
Adding	a	to-do	view	component

Creating	the	main	to-do	page
Creating	a	custom	to-do	tag	helper
Adding	a	to-do	MVC	controller

Generating	views	for	the	TodoController	action	methods
Developing	the	Create	Todo	component

Summary
6.	Exploring	the	WinJS	Library

Introduction	to	WinJS
WinJS	features

JavaScript	coding	and	language	patterns
Stylesheets
Windows	runtime	access
Security
App	model
Databinding
Controls
Utilities

Usage	of	WinJS
Adding	the	WinJS	library	in	the	ASP.NET	application

CDN
NPM
NuGet

Getting	started	with	WinJS
Using	WinJS	in	the	ASP.NET	application
Existing	Windows	app	template	in	Visual	Studio

Exploring	WinJS	core	fundamentals
Classes	and	namespaces

Defining	classes	in	WinJS
Deriving	classes	in	WinJS
Namespaces	in	WinJS

Mixin
Events	in	WinJS
Databinding

One	time	databinding
One	way	databinding
Two	way	databinding
A	databinding	working	model

Promises
Other	operations	of	promises

Chaining	promises	and	handling	errors
Canceling	promises
Joining	promises
Checking	promise
Wrapping	non-promise	into	promise

Exploring	WinJS	controls	and	styles
Adding	WinJS	controls
Setting	properties	of	WinJS	controls

Using	Windows	runtime	features
Hosted	apps	and	accessing	the	camera

Creating	the	ASP.NET	core	application
Converting	an	ASP.NET	application	into	Windows	application	using	the	Hosted	app

concept
Summary

7.	JavaScript	Design	Patterns
Creational	patterns

Singleton	design	pattern
Factory	pattern
Abstract	factory	pattern
Prototype	pattern

Structural	patterns
Adapter	pattern
Decorator	pattern
Facade	pattern
Bridge	pattern

Behavioral	pattern
Chain	of	responsibility	pattern
Observer	pattern
Pub/sub	pattern
Promises

Summary
8.	Node.js	for	ASP.NET	Developers

Introduction	to	Node.js
Request	processing	by	the	Node.js	web	server
Comparison	of	Node.js	with	.NET
NPM

Installing	Node.js
Using	Node.js	with	Visual	Studio	2015

Simple	console	application	using	Node.js
Web	applications	with	Node.js
Creating	blank	Node.js	applications
Using	the	Express	framework	for	web	applications	in	Node.js

Extend	simple	Node.js	to	use	Express
Express	view	engines

EJS	view	engine
Jade	view	engine
Routing	in	the	Express	application

Middleware
MVC	with	the	Express	framework

MVC	pattern
Creating	a	controller
Creating	data	services

Accessing	the	Microsoft	SQL	server	in	Node.js
Reading	a	record	from	the	Microsoft	SQL	server	database
Creating	a	record	in	the	Microsoft	SQL	server	database

Summary
9.	Using	JavaScript	for	Large-Scale	Projects

Think	before	proceeding
Developing	highly	scalable	and	maintainable	applications

Modularization
Implementing	the	module	pattern
Modularizing	JavaScript	code	through	RequireJS

Creating	modules	using	the	RequireJS	API
Bootstrapping	RequireJS

Event-driven	messaging
Implementing	mediator	pattern	for	communication	between	modules

Encapsulating	complex	code
Generating	documentation

Installing	JSDoc3	in	ASP.NET	Core
Adding	comments

Deployment	optimization
Summary

10.	Testing	and	Debugging	JavaScript
Testing	the	JavaScript	code

Unit	testing
Writing	unit	tests

Jasmine
Karma
Grunt

Developing	unit	test	using	Jasmine,	Karma,	and	Grunt
Adding	packages
Adding	the	Grunt	file

Adding	Karma	specifications
Load	npm	task
Register	task

Source	JavaScript	file
Adding	unit	test	script	file
Running	test	task
Implementing	Model-View-ViewModel	using	Knockout	and	Run	test

Adding	the	Knockout	package
Adding	ProductViewModel
Add	the	Product	view
Modifying	test	configuration
Modifying	the	product-testing	script

Debugging	JavaScript
Debugging	options	in	Visual	Studio	2015

Debugging	from	Visual	Studio	with	Internet	Explorer
Debugging	from	Visual	Studio	with	Google	Chrome
Developer	Tools

Debugging	options	in	Microsoft	Edge
Standard	breakpoints
Conditional	breakpoints
Tracepoints
Event

Add	event	tracepoint
Add	event	breakpoints

XHR
Debugging	TypeScript
Debugger	keyword	supported	by	all	browsers

Summary
Index

JavaScript	for	.NET	Developers

JavaScript	for	.NET	Developers
Copyright	©	2016	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or
transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its	dealers
and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused	directly	or
indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,
Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	July	2016

Production	reference:	1260716

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78588-646-1

www.packtpub.com

http://www.packtpub.com

Credits
Author

Ovais	Mehboob	Ahmed	Khan

Reviewer

Nicholas	Suter

Commissioning	Editor

Edward	Gordon

Acquisition	Editor

Nitin	Dasan

Content	Development	Editor

Deepti	Thore

Technical	Editors

Pranil	Pathare

Deepti	Tuscano

Copy	Editor

Vibha	Shukla

Project	Coordinator

Shweta	H	Birwatkar

Proofreader

Safis	Editing

Indexer

Mariammal	Chettiyar

Graphics

Disha	Haria

Production	Coordinator

Nilesh	Mohite

Cover	Work

Nilesh	Mohite

About	the	Author
Ovais	Mehboob	Ahmed	Khan	is	a	seasoned	programmer	and	solution	architect	with	more
than	13	years	of	software	development	experience.	He	has	worked	in	different	organizations
across	Pakistan,	the	USA,	and	the	Middle	East.	Currently,	he	is	working	for	a	government
entity	based	in	Dubai,	and	also	provides	consultancy	services	to	a	Microsoft	gold	partner	firm
based	in	New	Jersey.

He	is	a	Microsoft	MVP	in	Visual	Studio	and	Development	Technologies	and	specializes
mainly	in	Microsoft	.NET	and	web	development.	He	has	authored	numerous	technical	articles
on	different	websites	such	as	MSDN,	TechNet,	DZone,	and	personal	blog	at
http://ovaismehboob.wordpress.com.

He	is	an	active	speaker	and	group	leader	of	Microsoft	Developers	UAE	Meetup,	Microsoft
Technology	Practices,	and	Developers	and	Enterprise	Practices	user	groups,	and	has
presented	various	technical	sessions	in	different	events	and	conferences.

In	short,	Ovais	is	a	passionate	developer	who	is	always	interested	in	learning	new
technologies.	He	can	be	reached	at	<ovaismehboob@hotmail.com>	and	on	Twitter,
@ovaismehboob.

I	would	like	to	thank	my	family	for	supporting.	Especially	my	mother,	wife,	and	brother,	who
have	always	encouraged	me	in	every	goal	of	my	life.	My	father,	may	he	rest	in	peace,	would
have	been	proud	of	my	achievements.

http://ovaismehboob.wordpress.com
mailto:ovaismehboob@hotmail.com

About	the	Reviewer
Nicholas	Suter	is	a	.NET	software	craftsman,	focused	on	patterns,	practices,	and	quality
development	in	a	Microsoft	environment.	He	has	been	nominated	for	Microsoft	.NET	MVP
since	2014.

He	works	for	Cellenza,	a	French	agile	consulting	company	based	in	Paris,	where	he	leads,
trains,	and	audits	teams	more	on	technical	matters	than	team	practices.

He	wrote	a	book	in	2013	on	web	development	called	Visual	Studio	2013,	Concevoir	et
développer	des	projets	Web,	les	gérer	avec	TFS	2013,	(French)	for	ENI	Editions,	and	reviewed
Entity	Framework	Tutorial,	Second	Edition,	for	Packt	Publishing	in	2015.

www.PacktPub.com

eBooks,	discount	offers,	and	more
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and	ePub
files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as	a	print
book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with	us	at
<customercare@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up	for	a
range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books	and
eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt's	online	digital	book
library.	Here,	you	can	search,	access,	and	read	Packt's	entire	library	of	books.

http://www.PacktPub.com
mailto:customercare@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Preface
This	is	a	book	about	the	JavaScript	programming	language,	and	is	targeted	at	.NET
developers	who	want	to	develop	responsive	web	applications	using	popular	client-side
JavaScript-based	frameworks	and	create	a	rich	user	experience.	It	is	also	intended	for
programmers	who	have	a	basic	knowledge	of	the	JavaScript	programming	language	and
wanted	to	learn	some	core	and	advanced	concepts	followed	by	some	industry-wide	best
practices	and	patterns	to	structure	and	design	web	applications.

This	book	starts	with	the	basics	of	JavaScript	and	helps	the	reader	to	gain	knowledge	about
the	core	concepts	and	then	proceeds	towards	some	advanced	topics.	There	is	a	chapter	that
primarily	focuses	on	the	jQuery	library,	which	is	widely	used	throughout	web	application
development,	followed	by	a	chapter	on	Ajax	techniques	that	help	developers	to	understand
how	asynchronous	requests	can	be	made.	This	is	followed	by	the	options	to	make	requests
either	through	the	plain	vanilla	JavaScript	XHR	object	or	through	the	jQuery	library.	There	is
also	a	chapter	that	develops	a	complete	application	using	Angular	2	and	ASP.NET	Core,	and
introduces	TypeScript,	a	superset	of	JavaScript	that	supports	the	latest	and	evolving	features
of	ECMAScript	2015.	We	will	also	explore	the	Windows	JavaScript	(WinJS)	library	to
develop	Windows	applications	using	JavaScript	and	HTML	and	use	this	library	to	bring
Windows	behavior,	look,	and	feel	to	ASP.NET	web	applications.	There	is	a	complete	chapter
on	Node.js	that	helps	developers	to	learn	how	powerful	the	JavaScript	language	is	on	the
server	side,	followed	by	a	chapter	on	using	JavaScript	in	a	large-scale	project.	Finally,	this
book	will	end	with	a	chapter	about	testing	and	debugging	and	discuss	what	testing	suites	and
debugging	techniques	are	there	to	troubleshoot	and	make	an	application	robust.

This	book	has	some	very	dense	topics	that	require	full	concentration,	hence	is	ideal	for
someone	having	some	prior	knowledge.	All	the	chapters	are	related	to	JavaScript	and	work
around	JavaScript	frameworks	and	libraries	to	build	rich	web	applications.	With	this	book,
the	reader	will	get	the	end-to-end	knowledge	about	the	JavaScript	language	and	its
frameworks	and	libraries	built	on	top	of	it,	followed	by	the	techniques	to	test	and	troubleshoot
the	JavaScript	code.

What	this	book	covers
Chapter	1,	JavaScript	for	Modern	Web	Applications,	focuses	on	the	basic	concepts	of
JavaScript	that	involve	declaration	of	variables,	datatypes,	implementing	arrays,	expressions,
operators,	and	functions.	We	will	write	simple	programs	in	JavaScript	using	Visual	Studio
2015,	and	see	what	this	IDE	offers	for	writing	JavaScript	programs.	We	will	also	study	how
JavaScript	code	can	be	written	and	compare	the	.NET	runtime	with	the	JavaScript	runtime	to
clarify	the	execution	cycle	of	code-compilation	process.

Chapter	2,	Advanced	JavaScript	Concepts,	covers	the	advanced	concepts	of	JavaScript	and
gives	developers	an	insight	into	the	JavaScript	language.	It	will	show	the	extent	to	which	the
JavaScript	language	can	be	used	as	far	as	features	are	concerned.	We	will	discuss	variables
hoisting	and	their	scope,	property	descriptors,	object-oriented	programming,	closures,	typed
arrays,	and	exception	handling.

Chapter	3,	Using	jQuery	in	ASP.NET,	discusses	jQuery	and	how	to	use	it	in	web	applications
developed	in	ASP.NET	Core.	We	will	discuss	the	options	jQuery	provides	and	the	advantages
it	has	when	comparing	it	with	the	plain	vanilla	JavaScript	for	manipulating	DOM	elements,
attaching	events,	and	performing	complex	operations.

Chapter	4,	Ajax	Techniques,	discusses	the	techniques	of	making	asynchronous	requests	known
as	Ajax	requests.	We	will	explore	the	core	concepts	of	using	the	XMLHttpRequest	(XHR)
object	and	study	the	basic	architecture	of	how	Ajax	request	is	processed	and	the	events	and
methods	it	provides.	On	the	other	hand,	we	will	also	explore	what	the	jQuery	library	provides
in	comparison	with	the	plain	XHR	object.

Chapter	5,	Developing	an	ASP.NET	Application	Using	Angular	2	and	Web	API,	teaches	the
basic	concepts	of	TypeScript	and	uses	it	with	Angular	2.	We	will	develop	a	simple	application
in	ASP.NET	Core	using	Angular	2	as	a	frontend	client-side	framework,	Web	API	for	backend
services,	and	Entity	Framework	Core	for	database	persistence.	At	the	time	of	writing,	Angular
2	was	in	a	beta	version,	and	we	have	used	the	beta	version	in	this	chapter.	With	the	future
releases	of	Angular	2,	there	are	chances	of	having	some	changes	in	the	framework,	but	the
basic	concepts	will	almost	be	the	same.	For	future	updates,	you	can	refer	to	http://angular.io/.

Chapter	6,	Exploring	the	WinJS	Library,	explores	the	Microsoft	developed	WinJS	library,
which	is	a	JavaScript	library	to	not	only	develop	Windows	applications	using	JavaScript	and
HTML,	but	also	use	it	with	ASP.NET	and	other	web	frameworks.	We	will	discuss	the	core
concepts	of	defining	classes,	namespaces,	deriving	classes,	mixins,	and	promises.	We	will
also	look	into	the	data-binding	techniques	and	how	to	use	Windows	controls	or	specific
attributes	in	HTML	elements	to	change	the	behaviour,	look,	and	feel	of	the	control.	Moreover,
we	will	end	up	using	the	WinRT	API	to	access	a	device's	camera	in	our	web	application	and
discuss	the	concepts	of	a	Hosted	app	through	which	any	web	application	can	be	transformed
into	a	Windows	application	using	a	Universal	Window	template	in	Visual	Studio	2015.

http://angular.io/

Chapter	7,	JavaScript	Design	Patterns,	shows	that	design	patterns	provide	efficient	solutions
to	software	design.	We	will	discuss	some	of	the	industry-wide	best	design	patterns	spread	into
creational,	structural,	and	behavioral	categories.	Each	category	will	be	covering	four	types	of
design	patterns	that	can	be	used	and	implemented	using	JavaScript	to	solve	a	particular	design
problem.

Chapter	8,	Node.js	for	ASP.NET	Developers,	focuses	on	the	basics	of	Node.js	and	how	to	use	it
to	develop	server-side	applications	using	JavaScript.	In	this	chapter,	we	will	discuss	view
engines	such	as	EJS	and	Jade	and	the	use	of	controllers	and	services	to	implement	the	MVC
pattern.	Moreover,	we	will	end	this	chapter	by	performing	some	examples	of	accessing	a
Microsoft	SQL	Server	database	to	perform,	create,	and	retrieve	operations	on	a	database.

Chapter	9,	Using	JavaScript	for	Large-Scale	Projects,	provides	best	practices	of	using
JavaScript	for	large-scale	applications.	We	will	discuss	how	to	structure	our	JavaScript-based
projects	by	splitting	them	into	modules	to	increase	the	scalability	and	maintainability.	We	will
see	how	effectively	we	can	use	the	Mediator	pattern	to	provide	communication	between
modules	and	the	documentation	frameworks	that	increase	the	maintainability	of	your
JavaScript	code.	Finally,	we	will	discuss	how	the	application	can	be	optimized	by
compressing	and	merging	JavaScript	files	into	a	minified	version	and	increase	performance.

Chapter	10,	Testing	and	Debugging	JavaScript,	focuses	on	the	testing	and	debugging
JavaScript	applications.	We	will	discuss	one	of	the	most	popular	testing	suites	of	JavaScript
code	known	as	Jasmine,	and	use	it	with	Karma	to	run	the	test	cases.	For	debugging,	we	will
discuss	some	tips	and	techniques	to	debug	JavaScript	with	Visual	Studio	and	what	Microsoft
Edge	offers	to	make	debugging	easy.	In	the	end,	we	will	study	the	basic	concepts	of	how
Microsoft	Edge	enables	debugging	for	TypeScript	files	and	the	configuration	needed	to
achieve	it.

What	you	need	for	this	book
Throughout	the	book,	we	will	be	using	Visual	Studio	2015	to	practice	examples.	For	the
server-side	technology,	we	have	used	ASP.NET	Core	for	web	application	development,	and
used	JavaScript	on	top	of	it.	In	Chapter	8,	Node.js	for	ASP.NET	Developers,	we	used	Node.js	to
show	how	JavaScript	can	be	used	on	the	server	side.	For	Node.js,	we	will	require	some
extensions	for	Visual	Studio	2015	to	be	installed,	and	the	details	are	specified	in	the	chapter.

Who	this	book	is	for
This	book	is	targeted	at	.NET	developers	who	have	solid	programming	experience	in
ASP.NET	Core.	Throughout	this	book,	we	have	used	ASP.NET	Core	for	web	development	and
assumed	that	developers	have	thorough	knowledge	or	working	experience	in	.NET	Core	and
ASP.NET	Core.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds	of
information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their	meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,	pathnames,
dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	"JavaScript	can	be	placed
in	the	<head>	or	<body>	sections	of	your	HTML	page."

A	block	of	code	is	set	as	follows:

<html>

		<head>

				<script>

						alert("This	is	a	simple	text");

				</script>

		</head>

</html>

Any	command-line	input	or	output	is	written	as	follows:

dotnet	ef	database	update	–verbose

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	for
example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	"When	the	page	loads,	it	will
show	the	pop-up	message	and	a	text	as	This	is	a	simple	text."

Note

Warnings	or	important	notes	appear	in	a	box	like	this.

Tip

Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this	book—
what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us	develop	titles
that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book's	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help	you	to
get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	this	book	from	your	account	at
http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT 	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you're	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

You	can	also	download	the	code	files	by	clicking	on	the	Code	Files	button	on	the	book's
webpage	at	the	Packt	Publishing	website.	This	page	can	be	accessed	by	entering	the	book's
name	in	the	Search	box.	Please	note	that	you	need	to	be	logged	in	to	your	Packt	account.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using	the
latest	version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at
https://github.com/PacktPublishing/JavaScript-For-.NET-Developers.	We	also	have	other	code
bundles	from	our	rich	catalog	of	books	and	videos	available	at
https://github.com/PacktPublishing/.	Check	them	out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/JavaScript-For-.NET-Developers
https://github.com/PacktPublishing/

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams	used
in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the	output.	You
can	download	this	file	from
https://www.packtpub.com/sites/default/files/downloads/JavaScriptForNETDevelopers_ColorImages.pdf

https://www.packtpub.com/sites/default/files/downloads/JavaScriptForNETDevelopers_ColorImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do	happen.
If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the	code—we
would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other	readers	from
frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find	any	errata,
please	report	them	by	visiting	http://www.packtpub.com/submit-errata,	selecting	your	book,
clicking	on	the	Errata	Submission	Form	link,	and	entering	the	details	of	your	errata.	Once
your	errata	are	verified,	your	submission	will	be	accepted	and	the	errata	will	be	uploaded	to
our	website	or	added	to	any	list	of	existing	errata	under	the	Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the	search
field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come	across
any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with	the
location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated	material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	JavaScript	for	Modern	Web
Applications
The	growth	in	web	development	evolved	with	a	rapid	pace	in	recent	years.	Most	of	the
business	applications	that	developed	on	a	desktop	platform	are	now	shifted	to	the	web
platform,	and	the	reason	is	the	ease	of	access	and	continuous	addition	of	rich	capabilities	on
the	web	platform.	Typically,	any	web	application	that	provides	the	characteristics	of	the
desktop	applications	is	considered	as	rich	web	application.	Thus,	it	involves	extensive	use	of
JavaScript	and	its	frameworks	and	libraries.

JavaScript	plays	an	important	role	in	developing	rich	applications	and	allows	developers	to
do	less	server-side	post-backs	and	call	server-side	functions	through	ajaxified	requests.	Not
only	this,	but	now	many	companies	and	communities	are	developing	good	frameworks	such
as	Angular,	Knockout,	ReactJS,	and	so	on	to	bring	state-of-the-art	and	groundbreaking
capabilities.	Microsoft	has	also	released	the	WinJS	library	to	access	mobile	native	device
features	such	as	camera,	storage,	and	so	on	from	a	web	application	running	on	mobile
browsers.	myNFC	is	also	a	great	JavaScript	library	that	allows	developers	to	create
applications	for	smartphones.

Importance	of	JavaScript
All	the	client-side	frameworks	are	based	on	JavaScript.	Being	an	ASP.NET	developer,	we
should	have	solid	concepts	of	JavaScript	before	using	or	integrating	them	in	our	applications.
JavaScript	is	the	client-side	scripting	language	and	one	of	the	most	popular	programming
languages	of	all	times	that	run	on	top	of	a	browser.	When	working	on	a	web	development
project,	this	language	serves	you	in	many	better	ways	to	make	user	interface	(UI)	responsive.
With	JavaScript,	you	can	manipulate	HTML	page	Document	Object	Model	(DOM)	elements,
call	server-side	code	through	ajaxified	requests	and	bring	new	rich	experience	to	your
customers.	There	are	many	innovations	being	done	at	the	core	JavaScript	library,	and
different	frameworks	and	various	libraries	have	been	developed.

What	is	JavaScript?
JavaScript	is	a	programming	language	created	in	1995	by	Brenden	Eich.	Initially,	it	was	only
supported	by	Netscape	Browser,	but	later	they	decided	to	release	a	standard	known	as	ECMA
specification	to	let	other	browsers	implement	and	provide	engines	to	execute	JavaScript	on
their	browsers.	The	reason	for	providing	the	standard	is	to	have	the	complete	specification
details	for	the	party	to	follow	and	provide	consistent	behavior.

Earlier	it	was	only	targeted	to	execute	on	browsers	and	perform	client-side	operations	that
work	with	HTML	pages	and	provide	features	such	as	manipulating	DOM	elements	and
defining	event	handlers	and	other	functionalities.	Later,	and	in	recent	years,	it	has	become	a
powerful	language	and	not	only	bounded	to	the	client-side	operations.	With	Node.js,	we	can
use	JavaScript	on	server	side	and	there	are	various	modules	and	plugins	provided	by	Node	to
perform	I/O	operations,	server-side	events,	and	more.

Comparing	runtimes
As	this	book	is	targeted	for	.NET	developers,	let's	compare	the	JavaScript	runtime	with	.NET
runtime.	There	are	a	few	things	in	common,	but	the	basic	runtime	is	different.

In	.NET,	Common	Language	Runtime	(CLR)	does	the	just-in-time	(JIT)	compilation	on	the
code	that	is	running	and	provides	memory	management.	JIT	compilation	is	done	on	the
Intermediate	Language	(IL)	code	that	is	generated	once	you	build	your	project.

In	the	JavaScript	world,	browser	engine	is	the	runtime	for	the	JavaScript	language.	Every
browser	interprets	JavaScript	in	its	own	way,	but	follows	the	ECMA	scripting	standards.
Different	browsers	have	different	implementations,	for	example,	Microsoft	Edge	uses	Chakra
engine,	Chrome	uses	V8,	and	Firefox	has	Monkey	engines.	Initially,	JavaScript	was
implemented	as	an	interpreted	language,	but	few	modern	browsers	now	perform	JIT
compilation.	Every	engine	provides	a	set	of	services	such	as	memory	management,
compilation,	and	processing.

The	following	diagram	shows	the	comparison	between	both	the	architectures:

The	JavaScript	parser	parses	and	tokenizes	the	JavaScript	code	into	a	syntax	tree.	All	the
browsers,	except	Google	V8,	parse	the	syntax	tree	and	generate	a	bytecode	that	finally
converts	into	a	machine	code	through	JIT	compilation.	On	the	other	hand,	Google	V8	engine
parses	the	syntax	tree	and	instead	of	generating	a	bytecode	first,	it	directly	generates	the
machine	code.

The	.NET	source	code	is	compiled	by	its	own	language	compiler,	such	as	C#	or	VB.NET

compiler	and	passes	through	the	several	stages	of	the	compiler	pipeline	to	generate	an	IL
code.	This	IL	code	is	then	read	by	the	JIT	compiler	that	generates	the	native	machine	code.

Setting	up	your	environment
Before	going	through	this	book,	let's	set	up	your	environment.	There	are	many	renowned
editors	available	in	the	market	to	create	JavaScript	projects	such	as	Sublime	Text,	Komodo
IDE,	NetBeans,	Eclipse,	and	more,	but	we	will	use	Visual	Studio	2015	that	came	up	with	some
good	improvements,	helping	developers	to	work	on	JavaScript	in	a	better	way	than	before.

To	proceed,	let's	download	and	install	Visual	Studio	2015.	You	can	download	the	Visual
Studio	2015	community	edition	from	https://www.visualstudio.com/,	it's	a	free	version	and
provides	certain	improvements	as	described	in	the	following	section.

https://www.visualstudio.com/

New	editing	experience	of	JavaScript	in	Visual	Studio	2015
IDE
The	new	Visual	Studio	2015	IDE	provides	many	rich	features	for	developing	web	applications
and	various	templates	are	available	to	create	projects	on	different	frameworks	and	application
models.	The	earlier	version	already	supported	IntelliSense,	colorization,	and	formatting	but
the	new	Visual	Studio	2015	IDE	has	some	more	improvements	that	are	as	follows:

Added	support	for	the	ECMAScript	6	scripting	language,	which	is	formally	known	as
ES2015.	With	the	new	ES2015,	many	features	have	been	added,	you	can	now	define
classes,	lambdas,	spread	operator,	and	proxy	objects.	So,	with	Visual	Studio	2015,	you
can	get	all	IntelliSense	using	these	features	in	your	JavaScript	code.
Support	for	popular	JavaScript	client-side	frameworks	such	as	Angular,	ReactJS,	and	so
on.
Documentation	comments	that	help	you	add	comments	to	your	JavaScript	methods	and
show	the	description	when	you	use	them:

IntelliSense	for	new	JavaScript	APIs	such	as	touch	event	and	Web	Audio	API.
You	can	use	tokens	such	as	//TODO,	//HACK,	and	//UNDONE,	and	it	gives	you	a	listing	in
the	Task	List	window	that	helps	to	trace	the	to-do	items:

With	JavaScript	files,	Visual	Studio	2015	provides	the	same	navigation	bar	we	used	to
see	when	writing	classes	in	any	.NET	language.	Selecting	and	navigating	to	different
methods	of	JavaScript	is	far	easier	with	this	feature:

Programming	in	JavaScript
JavaScript	is	one	of	the	most	powerful	languages	that	plays	a	vital	role	in	any	web
development	project	and	delivers	client-side	support	and	rich	functionality.	In	this	section,	we
will	discuss	the	core	concepts	of	writing	programs	in	JavaScript	and	use	them	in	web
applications.

Core	fundamentals	of	JavaScript
Like	any	other	programming	language,	JavaScript	also	has	statements,	expressions,
operators,	and	specific	syntax	to	write	and	run	programs.	We	will	go	through	the	following
topics	in	this	section:

Adding	JavaScript	to	an	HTML	page
Statements
Literals	and	variables
Data	types
Expressions	and	operators

Adding	JavaScript	to	an	HTML	page

Every	modern	browser	has	a	JavaScript	engine	that	compiles	your	JavaScript	defined	on	the
page.	JavaScript	can	be	placed	in	the	<head>	or	<body>	sections	of	your	HTML	page.	Any
statement	that	is	defined	under	<script></script>	tags	will	be	considered	a	JavaScript
statement	and	will	be	processed	and	understood	by	the	browser's	engine.

The	following	code	snippet	shows	a	simple	HTML	page	containing	the	<script></script>
tags	defined	within	the	<head></head>	section:

<html>

		<head>

				<script>

						alert("This	is	a	simple	text");

				</script>

		</head>

</html>

When	the	page	loads,	it	will	show	the	pop-up	message	and	a	text	as	This	is	a	simple	text.	The
browser's	JavaScript	engine	executes	any	script	that	is	defined	under	the	<script>	tag	and
runs	the	statements	defined	within	this	block.	Any	statement	that	is	defined	directly	under	the
scripting	tag	is	executed	every	time	the	page	is	loaded.

Similarly,	we	can	also	define	the	JavaScript	within	the	<body>	section	of	the	HTML	page:

<html>

		<body>

				<script>

						alert("hello	world");

				</script>

		</body>

</html>

Tip

It	is	a	good	idea	to	place	scripts	at	the	bottom	of	the	page	because	the	compilation	can	slow
down	the	page	loading.

Normally,	in	every	project,	irrespective	of	the	project	size,	separating	the	<script>	section
from	HTML	makes	the	code	look	cleaner	and	easy	to	maintain.	JavaScript	file	extensions	are
named	.js	and	you	can	also	create	these	files	separately	in	some	scripts	folder	and	reference
them	in	our	HTML	page.

In	Visual	Studio,	you	can	easily	create	a	JavaScript	file	using	the	Add	|	JavaScript	File	option
as	shown	in	the	following:

Once	the	file	is	created,	we	can	directly	write	the	JavaScript	syntax	without	any	<script>
</script>	tags.	JavaScript	files	can	be	referenced	in	your	HTML	page	using	the	src	attribute
of	<script></script>	tags.	Here	we	referenced	test.js	in	the	HTML	page:

<script	src="~/test.js">

</script>

Placing	the	<script>	tag	either	in	the	<head>	or	in	the	<body>	section	depends	on	the	page.	If
your	page	referencing	some	large	JavaScript	files	takes	a	long	time	to	load,	it	is	better	to
define	them	at	the	end	of	the	<body>	section.	This	is	a	better	approach,	so	when	the	browser
starts	parsing	your	page,	it	is	not	stuck	downloading	your	scripts	and	delaying	the	rendering.
On	the	other	hand,	we	can	define	JavaScript	files	in	the	<head>	section	only	if	they	do	not
impact	the	performance	or	page	life	cycle.	Scripts	defined	at	the	bottom	get	parsed	when	the
whole	page	loads.	There	are	also	a	few	attributes	such	as	async	and	defer	that	we	can	use
within	the	<script>	tag	and	most	of	the	browsers	support	this.

The	following	is	an	example	showing	the	use	of	async	in	the	<script>	tag:

<script	src="~/test1.js"	async></script>

<script	src="~/test2.js"	async></script>

Scripts	defined	with	async	are	executed	asynchronously	without	blocking	the	browser	to	load
the	page.	However,	if	multiple	scripts	are	there,	then	each	script	will	be	executed
asynchronously	and	at	the	same	time.	This	may	lead	to	the	possibility	of	completing	the
second	script	before	the	first	one	gets	completed	and	might	throw	some	errors	if	one	is
dependent	on	the	other.	For	example,	when	working	with	some	client-side	frameworks,	such

as	Angular	framework,	JavaScript	code	that	is	using	Angular	components	is	dependent	on
AngularJS	library,	and	in	this	case,	if	our	custom	JS	files	are	loaded	before	the	AngularJS
library	on	which	they	are	dependent,	they	will	throw	an	exception.

To	overcome	this	scenario,	we	can	use	defer	to	execute	scripts	in	a	sequence.	We	can	use
defer	as	follows:

<script	src="~/test1.js"	defer></script>

<script	src="~/test2.js"	defer></script>

The	basic	difference	between	async	and	defer	is	that	async	downloads	the	file	during	HTML
parsing	and	pauses	the	HTML	parser	to	execute	it	until	it	is	completely	downloaded,	whereas
defer	downloads	the	file	during	the	HTML	parsing	and	executes	it	after	the	HTML	parser	is
completed.

Statements	in	JavaScript

Statements	are	the	collection	of	words,	expressions,	and	operators	to	perform	a	specific	task.
Like	other	programming	languages,	statements	in	JavaScript	could	also	be	assigning	a	value
to	the	variable,	performing	arithmetic	operations,	implementing	conditional	logic,	iterating
through	collection,	and	so	on.

For	example:

var	a;	//variable	declaration

a	=	5;	//value	assignment

a	=	5	*	b;	//value	assignment

a++;	//	equivalent	to	a=	a+1

a--;	//	equivalent	to	a=	a-1

var	method	=	function	()	{	…	}	//	declare	function

alert("Hello	World")	//	calling	built-in	function

if(…)	{…}	else	{…}

for	(…)	{…}

while(…)	{…}

However,	you	can	use	semicolons	with	the	do	while	loop:

do	{…}	while	(…);

function	statement

function	(arg)	{	//to	do	}

Tip

If	multiple	statements	are	defined	in	the	same	line,	they	should	be	separated	by	a	semicolon,
otherwise	they	will	be	treated	as	a	single	statement.	On	different	lines,	a	semicolon	is	not
mandatory	but	a	good	practice	to	use.

Literals	and	variables

There	are	two	types	of	values	in	JavaScript:	literals	or	fixed	values	and	variables.

Literals	could	be	number,	string,	or	date	objects.

For	example:

Numbers

22.30

26

Strings

"John"

"10/Jan/2015"

Variables	are	used	to	store	values.	In	JavaScript,	we	can	define	variables	using	the	var
keyword.	JavaScript	is	not	a	type-safe	language	and	the	type	is	identified	when	the	value	is
assigned.

For	example:

var	x=6;

var	x="Sample	value";

Data	types

Every	programming	language	has	certain	data	types	available	to	hold	specific	data.	For
example,	in	C#,	we	can	use	String	to	hold	string	values,	int	to	hold	32-bit	integer	value,
DateTime	to	hold	value	in	the	date	and	time	format,	and	so	on.	JavaScript	does	not	provide
strong	data	types	such	as	C#	and	other	programming	languages,	and	it's	a	loosely	typed
language.	As	per	the	latest	ECMA	6	standard,	JavaScript	provides	six	primitive	data	types	and
an	object.	All	primitive	data	types	are	immutable,	this	means	that	assigning	a	new	value	will
be	allocated	into	a	separate	memory.	Object	is	mutable	and	its	values	can	be	changed.

The	primitive	types	are	as	follows:

Boolean:	This	holds	the	logical	value	true	or	false.
Null:	This	holds	the	null	value.
Undefined:	This	is	a	variable	that	does	not	assign	a	value	and	has	value	as	undefined.
Number:	This	holds	numeric	values.	The	size	of	the	number	type	is	double-precision	64
bit	in	which	the	number	(fraction)	is	stored	from	0	to	51	bits,	the	exponent	in	11	bits
from	52	to	62,	and	sign	in	1	bit	63.
String:	This	holds	any	kind	of	textual	value.

Complex	types	are	termed	as	object.	In	JavaScript,	the	object	is	formulated	in	a	JSON	format.

Array	in	JavaScript

Array	is	used	to	store	collections	of	data.	You	can	simply	define	an	array	in	JavaScript	as
shown	in	the	following:

var	browsers	=	["Microsoft	Edge",	"Google	Chrome",	"Mozilla	Firefox",	"Safari"];

You	can	access	them	through	the	array	index.	The	index	starts	from	0	till	the	number	of	items
in	the	array.

We	can	access	the	array	items	as	follows:

var	a=	browsers[0];	//returns	Microsoft	Edge

var	b=	browsers[1];	//returns	Google	Chrome

var	c=	browsers[3];	//returns	Safari

In	order	to	get	the	total	number	of	items	in	an	array,	you	can	use	the	length	property:

var	totalItems	=	browsers.length;

The	following	is	a	list	of	some	of	the	most	commonly	used	methods:

Method Description

indexOf()
This	returns	the	first	index	of	an	element	available	within	the	array	equal	to
the	specific	value,	returns	-1	if	not	found.

lastIndexOf()
This	returns	the	last	index	of	an	element	available	within	an	array	equal	to
the	specified	value,	returns	-1	if	not	found.

pop() This	deletes	the	last	element	from	an	array	and	returns	that	element.

push() This	adds	one	element	to	an	array	and	returns	the	length	of	an	array.

reverse()
This	reverses	the	order	of	elements	in	an	array.	The	first	element	becomes
the	last	and	last	one	becomes	the	first.

shift() This	deletes	the	first	element	and	returns	that	element.

splice() This	is	used	to	add	or	remove	elements	from	an	array.

toString() This	returns	all	the	elements	in	a	string	representation.

unshift() This	adds	elements	to	the	front	of	an	array	and	returns	the	new	length.

Tip

Downloading	the	example	code

Detailed	steps	to	download	the	code	bundle	are	mentioned	in	the	Preface	of	this	book.	Please
have	a	look.

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at
https://github.com/PacktPublishing/JavaScript-For-.NET-Developers.	We	also	have	other	code
bundles	from	our	rich	catalog	of	books	and	videos	available	at
https://github.com/PacktPublishing/.	Check	them	out!

What	is	JSON?

JavaScript	Object	Notation	(JSON)	is	a	lightweight,	interchangeable	format	for	defining
objects	in	JavaScript.	Any	kind	of	object	can	be	defined	through	JSON	and	it	is	used	to	build
universal	data	structures.	Whether	it's	a	simple	object,	arrays,	nested	arrays,	or	complex
object,	each	can	handle	in	the	JSON	format.

Simple	objects	in	JSON

The	following	code	snippet	shows	the	person	object	that	has	three	properties,	namely	name,
email,	and	phone:

var	person	=	{

		"name"	:	"John	Martin",

		"email":	johnmartin@email.com,

		"phone":	"201892882"

}

We	can	access	these	object	properties	as	follows:

person.name;

person.email;

person.phone;

Declaring	arrays	in	JSON

The	following	code	snippet	shows	the	way	of	declaring	arrays	in	JSON:

var	persons	=

[{	

		"name":"John",

		"email":	"john@email.com",

		"phone":"201832882"

},

{

		"name":"Steve",

		"email":	"steve@email.com",

		"phone":"201832882"

},

{

"name":"Smith",

"email":	"smith@email.com",

https://github.com/PacktPublishing/JavaScript-For-.NET-Developers
https://github.com/PacktPublishing/

"phone":"201832882"

}]

According	to	the	preceding	declaration	of	an	array,	it	can	be	accessed	as	follows:

//returns	name	of	the	first	item	in	the	collection	i.e.	John

Persons[0].name

//returns	email	of	the	first	item	in	the	collection	i.e.	john@email.com

Persons[0].email

//returns	name	of	the	second	item	in	the	collection	i.e.	Steve

Persons[1].name

Nesting	data	in	JSON

The	JSON	format	easily	handles	nested	arrays.	Let's	look	at	the	complex	objects	containing	an
employee	object	that	contains	the	Experiences	array	with	the	nested	array	to	hold	projects,	and
each	project	has	a	nested	array	to	hold	technologies	used	in	each	project:

var	employee=

{

		"ID":"00333",

		"Name":"Scott",

		"DateOfJoining":"01/Jan/2010",

		"Experiences":[

				{

						"companyName":"ABC",

						"from":"Nov	2008",

						"to":"Oct	2009",

						"projects"	:[

								{

								"title":"Sharepoint	Migration",

								"noOfTeamMembers":5,

								"technologyUsed":[{"name":"SharePoint	Server"},	{"name":"C#"},	

{"name":"SQL	Server"}]

								},

								{

								"title":"Messaging	Gateway",

								"noOfTeamMembers":5,

								"technologyUsed":[{"name":"ASP.NET"},	{"name":"C#"},	{"name":"SQL	

Server"}]

								}

]

				},

				{

						"companyName":"XYZ",

						"from":"Nov	2009",

						"to":"Oct	2015",

						"projects"	:[

								{

								"title":"ERP	System",

								"noOfTeamMembers":5,

								"technologyUsed":[{"name":"ASP.NET"},	{"name":"C#"},	{"name":"SQL	

Server"}]

								},

								{

								"title":"Healthcare	System",

								"noOfTeamMembers":4,

								"technologyUsed":[{"name":"ASP.NET"},	{"name":"C#"},	{"name":"SQL	

Server"}]

								}

]

				}

]

}

In	the	preceding	script,	the	array	has	an	employee	object	containing	some	properties	such	as
ID,	name,	and	date	of	joining,	and	then	one	experiences	property	that	holds	an	array	of
experiences	and	each	experience	holds	the	projects	that	the	employee	did	in	a	particular
workplace.

Conversions	in	data	types

As	the	data	types	in	JavaScript	are	dynamic	in	nature	and	data	type	is	determined	based	on	the
value	assignment,	JavaScript	does	not	throw	any	exception	on	type	conversion	and	deals	in
several	ways	as	follows.

For	example,	the	following	is	the	JavaScript	code	snippet	showing	the	assignment	of	different
expressions.

First	assign	the	string	to	the	res	variable:

var	res="Hello	World";

Then	assign	numeric	to	the	same	res	variable:

res=	2;

Finally,	concatenate	string	3	to	the	res	variable	that	holds	the	following	numeric,	but	due	to
the	higher	precedence	of	numerical	value,	the	resultant	value	becomes	5:

var	result	=	res	+	"3"

So,	no	matter	what	was	the	type	of	the	variable	first	assigned	to	it,	it	will	change	its	type	based
on	the	assignment	and	dynamically	handle	the	conversions.

Elements	of	JavaScript
Here	are	some	of	the	important	elements	of	JavaScript	that	are	essential	to	learn	before	we
start	programming	in	JavaScript.

Constants	in	JavaScript

Constants	in	JavaScript	can	be	defined	with	a	const	keyword.	Constants	are	the	immutable
values	that	are	known	at	compile	time,	and	values	do	not	change	throughout	the	life	cycle	of
the	program.

The	following	is	the	JavaScript	code	showing	the	assignment	of	a	constant	variable.	When
using	const,	var	is	not	required	and	you	can	declare	constant	values	with	only	the	const
keyword:

const	pi=	3.42

Comments

Comments	can	be	added	with	//	and	/*	*/.	To	comment	a	single	line,	you	can	use	//,
otherwise	/*	*/	for	a	block	of	code.

The	following	is	the	JavaScript	code	showing	the	way	of	commenting	a	single	line	or	block
of	code:

<script	type="text/javascript">

function	showInformation()	{

		//var	spObj	=	window.document.getElementById("spInfo");

		spObj.innerHTML	=

				"Available	Height:	"	+	screen.availHeight	+	"
"	+

				/*"Available	Width:	"	+	screen.availWidth	+	"
"	+

				"Height:	"	+	screen.height	+	"
"	+*/

				"Width:	"	+	screen.width	+	"
"

}

</script>

Case	sensitivity

JavaScript	is	a	case-sensitive	language	and	it	follows	the	Pascal	naming	convention	to	define
variables	and	methods.

For	example,	if	the	method	name	is	doWork(),	it	can	only	be	accessed	by	calling	it	with	the
exact	case,	and	calling	either	DoWork()	or	Dowork()	will	not	work	and	throw	exception.

Character	set

JavaScript	is	based	on	a	Unicode	character	set	and	follows	the	Unicode	Standard.

Note

What	is	the	Unicode	Standard?

It	is	a	worldwide	coding	standard	that	most	languages	use.	C#	and	VB.NET	follow	the	same
Unicode	Standard.	It	provides	a	unique	number	for	every	character,	for	example,	A	=	41,	a	=
61,	and	so	on.

The	current	version	of	the	Unicode	Standard	is	Unicode	8.0.0	and	the	documentation	can	be
located	at	http://www.unicode.org/versions/Unicode8.0.0/.

http://www.unicode.org/versions/Unicode8.0.0/

Expressions
Expression	can	be	recognized	as	the	statement	of	code	that	assigns	some	value	to	the	variable.
Expressions	are	categorized	into	two	types.

The	first	type	of	expression	can	be	termed	as	simple	expressions	that	assigns	a	value	to	the
variable:

var	x	=	2;

The	preceding	example	denotes	the	simple	expression	of	assigning	numeric	value	2	to	an	x
variable.

The	second	type	of	expression	can	be	termed	as	any	arithmetic	or	string	operation	to	the
values	on	the	right	and	assigning	them	to	any	variable.	These	type	of	expressions	perform	the
operation	first	before	assigning	value	to	the	variable:

var	x	=	2+3

var	x	=	"Hello"	+	"World";

This	is	an	example	of	the	second	type	of	expression	that	adds	two	numbers	and	assigns	the
resultant	value	to	the	x	variable.	Same	goes	for	the	second	statement	that	performs	the	string
concatenation	operation	and	assigns	the	Hello	World	value	to	the	x	variable.

The	this	keyword

Just	like	C#	and	other	object-oriented	languages,	JavaScript	has	objects	and	there	are	certain
ways	to	define	classes,	functions,	and	so	on	that	we	will	study	later	in	this	chapter.	Just	like
C#,	in	JavaScript,	we	can	access	the	object	and	its	properties	through	the	this	keyword.	Let's
take	a	look	at	some	examples	showing	the	scope	of	the	this	keyword	in	JavaScript.

The	following	is	a	customer	object	that	contains	a	few	properties	and	the	utilization	of	the
this	keyword:

var	customer	=

		{

				name:	"John	Marting",

				email:	"john@xyz.com",

				mobile:	"109293988844",

				show:	function	()	{

						alert("Name:	"+this.name	+	"	Email:	"	+	this.email	+	"	Mobile:	"	+	

this.mobile);

				}

		}

In	the	preceding	example,	we	have	defined	a	JavaScript	object	that	contains	three	properties
and	a	function.	To	access	these	properties,	we	can	use	the	this	keyword	just	like	C#.
However,	we	can	also	access	the	properties	using	the	customer	variable,	as	shown	in	the
following:

var	customer	=

		{

				name:	"John	Marting",

				email:	"john@xyz.com",

				mobile:	"109293988844",

				show:	function	()	{

						alert("Name:	"+	customer.name	+	"	Email:	"	+	customer.email	+	"	Mobile:	"	+	

customer.mobile);

				}

		}

The	scope	of	the	this	keyword	is	limited	within	the	boundary	of	an	object.	Whereas,	the
customer	variable	in	the	preceding	example	could	be	defined	somewhere	else	on	the	page	and
may	lead	to	an	incorrect	behavior.	It	is	a	better	approach	to	use	the	this	keyword	wherever
possible	and	avoid	using	object	variables	directly.

All	variables	and	functions	defined	directly	under	the	<script>	tag	are	termed	as	global
variables	and	functions.	We	can	also	access	them	through	the	this	keyword.	In	this	case,	this
will	be	referred	as	the	global	window	object	and	not	the	child,	that	is,	the	customer	object	we
have	used	in	the	previous	example:

<script	type="text/javascript">

		var	name	=	"";

		function	ShowMessage()	{

				alert(this.name);

		}

</script>

Unlike	this,	you	can	also	refer	the	variables	and	functions	through	the	window	keyword.	The
following	code	snippet	will	show	the	name	of	the	window	in	the	dialog	box:

alert(window.name);

Let's	take	a	look	at	the	complete	example,	where	we	have	global	variables	defined,	as	well	as
child	objects,	and	the	scope	of	this	will	be	determined	based	on	the	context	of	its	call:

<script	type="text/javascript">

		var	name	=	"Scott	Watson";

		var	customer	=

				{

						name:	"John	Marting",

						email:	"john@xyz.com",

						mobile:	"109293988844",

						show:	function	()	{

								alert("Name:	"	+	this.name	+	"	Email:	"	+	this.email	+	"	Mobile:	"	+	

this.mobile);

						}

				}

		function	ShowMessage()	{

				alert("Global	name	is	"	+	this.name);

				alert("Customer	info	is	"	+	customer.show());

		}

</script>

In	this	preceding	example,	we	will	get	two	JavaScript	alert	messages.	The	first	alert	will
display	Scott	Watson,	which	is	defined	globally,	and	the	second	popup	shows	the	customer
name,	e-mail	address,	and	mobile	number.	Hence,	we	can	use	this	in	two	places,	but	the	scope
is	determined	based	on	the	context	from	where	it	is	calling	from.

Sequence	of	code	execution	in	JavaScript

When	programming	in	JavaScript,	we	have	to	keep	the	sequence	of	defining	things	before
they	get	called.	Considering	the	preceding	example,	if	we	define	the	customer	object	after	the
ShowMessage()	method,	it	will	not	be	recognized	and	nothing	will	be	displayed.

Using	the	this	keyword	on	a	calling	method

Let's	take	a	look	at	the	sample	HTML	page	that	has	a	JavaScript	function	named	Multiply	and
takes	two	parameters:	obj	and	val.	This	method	will	be	called	when	the	user	enters	any	input
into	the	textbox	and	it	will	pass	the	reference	of	the	textbox	control	at	the	first	parameter.	This
can	be	passed	through	the	this	keyword:

<html>

<head>

		<script	type="text/javascript">

				function	Multiply(obj,	val)	{

						alert(obj.value	*	val);

				}

		</script>

</head>

<body>

		<input	type="text"	onchange	="Multiply(this,	2);"	/>

</body>

</html>

The	function	statement	and	expression

The	function	statements	are	a	way	of	defining	methods	in	JavaScript.	Each	function	has	a
signature,	containing	the	name	and	parameters	passed	in.	Functions	can	be	declared	in	many
ways	in	JavaScript.	For	example,	the	following	is	the	sample	GetPerson(id)	function	that
returns	the	person	object	based	on	the	ID	passed	as	a	parameter.	This	is	the	normal	way	of
declaring	function	in	JavaScript:

<script>

		

		function	GetPerson(id)	{

				return	service.GetPerson(id);

		}

		

</script>

The	function	return	type	is	computed	at	runtime	and	not	part	of	the	function	signature.

Returning	values	is	not	mandatory	and	you	can	keep	functions	without	returning	any	values.

On	the	other	hand,	anonymous	functions	do	not	have	any	name	and	they	can	either	be	passed
as	an	argument	to	other	functions	or	defined	without	a	function	name.	The	following	are	the
examples	of	anonymous	functions:

var	showMessage	=	function(message){

		console.log(message);

}

showMessage("Hello	World");

Another	example	of	defining	anonymous	function	and	passing	it	as	a	parameter	is	as	follows:

function	messageLogger(message	,logMessage)	{

		logMessage();

}

function	consoleMessage()	{

		alert("Hello	World");

}

messageLogger(consoleMessage());

The	function	expression	is	equivalent	to	function,	but	the	only	difference	is	that	it	should	not
start	with	the	function	name.

Class	statement	and	expression

With	ECMAScript	6,	we	can	create	classes	in	JavaScript.	Just	like	other	programming
languages,	we	can	create	a	class	using	the	class	keyword.	With	this,	we	can	write	cleaner
code	than	developing	functions	that	were	represented	as	classes	in	the	earlier	version	of
ECMAScript.

Let's	take	a	look	at	the	Rectangle	class	that	calculates	an	area:

<script>

		class	Rectangle	{

				constructor(height,	width)	{

						this.height=height;

						this.width=width;

				}

				get	Area()	{

						return	this.calcArea();

				}

				calcArea(){

						alert("Area	is	"+	this.height	*	this.width);

				}

		}

</script>

Each	class	should	have	one	constructor	and	give	an	error	if	multiple	constructors	are
specified.	Class	expression	is	another	way	of	defining	classes.	Just	like	anonymous	functions,
we	can	define	classes	in	a	similar	way.

Let's	take	a	look	at	the	example	of	the	same	class	defined	earlier:

<script>

		var	Rectangle	=	class{

				constructor(height,	width)	{

						this.height=height;

						this.width=width;

				}

				get	Area()	{

						return	this.calcArea();

				}

				calcArea(){

						alert("Area	is	"+	this.height	*	this.width);

				}

		}

</script>

The	next	chapter	will	cover	more	details	about	classes	and	the	attributes	and	keywords
available	to	structure	them.

Grouping	operator

For	any	arithmetic	expression,	JavaScript	uses	the	BODMAS	rule.	The	precedence	will	be
given	to	brackets	then	multiplication,	division,	addition,	and	subtraction.	The	grouping
operator	is	used	to	give	higher	precedence	to	the	expression	if	any	of	the	member	in	the
expression	have	higher	precedence	by	default.

For	example:

var	a	=	1;

var	b	=	2;

var	c	=	3;

var	x	=	a	+	b	*	c;

The	resultant	x	will	be	7	as	multiplication	gets	the	higher	precedence.	However,	what	if	we
need	to	perform	addition	first?

We	can	use	grouping	operator	as	follows	that	gives	the	result	9:

var	x	=	(a	+	b)	*	c;

new

In	the	same	way	as	C#,	the	new	keyword	is	used	to	instantiate	any	object	in	JavaScript.	In	order
to	create	an	instance	of	any	user-defined	or	predefined	type,	use	the	new	keyword:

var	obj=new	objectType();

super

The	super	keyword	is	used	to	call	methods	of	the	parent	object.	In	C#,	we	use	the	base
keyword	to	call	the	base	class	method	or	properties.	In	JavaScript,	we	can	use	it	as	follows:

super.functionOnParent();

Operators
Operators	are	the	object	used	to	manipulate	values	of	an	operand.	For	example,	1	+	2	results
in	3,	where	1	and	2	are	operands	and	+	is	an	operator.	In	JavaScript,	we	can	use	almost	all	the
operators	to	concatenate	strings,	do	arithmetic	operations,	and	so	on.	In	this	section,	let's	see
what	type	of	operators	we	can	use	when	writing	programs	in	JavaScript	language.

We	will	discuss	the	following	operators	in	this	section:

Assignment	operators
Arithmetic	operators
Unary	operators
Comparison	operators
Logical	operators
Bitwise	operators
Bitwise	shift	operators
The	typeof	operator
The	void	operator
The	delete	operator
Miscellaneous	operators

Assignment	operators

Assignment	operator	is	represented	as	(=)	and	the	assignment	is	done	from	right	to	left.

For	example,	x=y	means	that	the	value	of	y	is	assigned	to	x.

Arithmetic	operators

The	following	is	a	list	of	arithmetic	operators	you	can	use	to	perform	addition,	subtraction,
division,	and	multiplication	and	use	them	with	the	assignment	statements:

Name Operator Meaning

Addition x	+	y The	value	of	x	is	added	to	y

Subtraction x	–	y The	value	of	y	is	subtracted	from	x

Division x	/	y The	value	of	x	is	divided	by	y

Multiplication x	*	y The	value	of	x	is	multiplied	to	y

Remainder x	%	y The	value	of	x	is	divided	by	y	and	the	remainder	is	returned

Addition	assignment x	+=	y
x	=	x	+	y

that	is,	the	value	of	x	and	y	will	be	added	and	assigned	to	x

Subtraction
assignment

x	-=	y

x=	x	–	y

that	is,	the	value	of	x	and	y	will	be	subtracted	and	assigned	to
x

Multiplication
assignment

x	*=	y

x	=	x	*	y

that	is,	the	value	of	x	and	y	will	be	multiplied	and	assigned
to	x

Division	assignment x	/=	y
x	=	x	/	y

that	is,	the	value	of	x	will	be	divided	by	y	and	assigned	to	x

Remainder
assignment

x	%=	y

x	=	x	%	y

that	is,	the	value	of	x	will	be	divided	by	y	and	the	remainder
will	be	assigned	to	x

Exponentiation
assignment

x	**=	y

x	=	x	**	y

that	is,	the	value	of	x	will	be	exponentially	multiplied	twice
to	y	and	assigned	to	x

Unary	operators

Unary	operator	works	with	only	one	operand.	It	can	be	used	for	increment,	decrement,
inversion,	and	so	on:

Name Operator Meaning

Increment	operator x++ The	value	of	x	will	be	incremented	by	1

Decrement	operator x-- The	value	of	x	will	be	decremented	by	1

Logical	complement	operator !(x) This	inverts	the	value	of	x

Comparison	operators

Comparison	operator	is	used	to	compare	operands	that	returns	a	Boolean	true	value	if	the
comparison	is	true.	Operands	can	be	of	any	data	type,	have	an	associativity	from	left	to	right,
and	perform	dynamic	conversion	if	they	are	of	different	types.

For	example,	if	the	value	of	x	is	2	and	y	is	"2".	Here,	y	denotes	that	it's	a	string,	but	in
comparison,	it	will	return	true:

x==y	//returns	true

Similar	to	C#	or	any	programming	language,	JavaScript	supports	all	these	operators,	such	as
equal	(==),	not	equal	(!=),	greater	than	(>),	and	less	than(<),	but	due	to	the	dynamic	type
binding,	it	also	provides	two	operators	such	as	strict	equal	(===)	and	strict	not	equal	(!===)	to
confirm	if	the	type	is	also	the	same	if	the	value	is	same	and	vice	versa.

We	will	now	have	a	look	at	strict	operators.	There	are	the	following	two	types	of	strict
operators:

Strict	equal	operator
Strict	not	equal	operator

Strict	equal	operator

In	the	previous	section,	we	discussed	that	JavaScript	provides	dynamic	binding	and	if	the
value	of	two	different	data	types,	suppose	number	and	string,	are	the	same,	it	will	return	true
on	comparison.	For	example,	if	x	is	1	and	y	is	"1",	it	will	return	true.	Now,	what	if	we	have	to
do	the	comparison	work	only	if	the	type	is	also	the	same?	Here	comes	the	strict	equal
operator	that	does	not	only	check	the	value,	but	also	match	the	types	of	both	the	operands.

The	strict	equal	operator	can	be	represented	as	===.

For	example,	if	x	=	1	and	y	=	"1"	and	the	comparison	is	done	like	(x===y),	it	will	return
false	as	x	represents	number	and	y	represents	string.

Strict	not	equal	operator

Contrary	to	the	strict	equal	operator,	if	we	want	to	compare	the	values	of	two	operands	of
same	type,	we	can	use	the	strict	not	equal	operator.

The	strict	not	equal	operator	can	be	represented	as	!===.

If	x	=	1	and	y	=	2	and	the	comparison	is	done	like	(x!==y),	it	will	return	true.	This	is
because	the	types	are	the	same	and	the	values	are	different.

Logical	operators

Just	like	C#,	JavaScript	uses	the	same	types	of	logical	operators	to	handle	logical	conditions.
Logical	operators	are	used	to	handle	multiple	conditions	in	a	logical	statement.

Logical	AND

Logical	AND	is	represented	as	&&	and	is	used	in	two	or	more	operands	or	conditions	in
statements.

For	example,	the	following	is	the	code	snippet	that	shows	the	method	that	takes	three
parameters	and	the	logic	is	defined	that	checks	whether	number1	is	equal	to	number2	and	the
summation	of	number1	and	number2	is	equal	to	number3	to	return	true:

<script>

		function	CheckNumbers(number1,	number2,	number3)	{

				if	((number1	==	number2)	&&	((number1	+	number2)	==	number3))	{

						return	true;

				}

		}

<script>

Logical	OR

Logical	OR	is	represented	as	||	and	is	used	with	two	or	more	operands	or	logical	conditions.

For	example,	the	following	is	the	code	snippet	that	shows	the	method	that	takes	three
parameters,	and	if	any	of	the	numbers	is	equal	to	the	value	10,	it	will	return	true:

<script>

		function	AnyNumber10(number1,	number2,	number3)	{

				if	((number1	==10	||	number2	==	10	||	number3	==10)	{

						return	true;

				}

		}

</script>

Logical	NOT

Logical	NOT	is	represented	as	!	and	used	with	conditions	that	return	a	Boolean	value.	For
example,	if	any	logical	condition	returns	true,	this	operator	will	make	it	false.	It	can	be	used
as	follows.	In	the	code	snippet,	if	number1,	number2,	and	number3	are	equal	to	10,	the	method
will	return	false.	If	they	are	different,	the	return	value	will	be	true:

<script>

		function	AnyNumber10(number1,	number2,	number3)	{

				return	!(number1	==10	&&	number2	==	10	&&	number3==10)	{

				}

		}

</script>

Bitwise	operators

Bitwise	operators	consider	each	number	or	operand	as	binary	(a	combination	of	0	and	1).

Every	number	has	specific	binary	corresponding	to	it.	For	example,	number	1	binary	is
represented	as	0001	and	5	represented	as	0101.

Bitwise	operators	work	on	32-bit	numbers	and	any	numeric	operand	is	first	converted	into	a
32-bit	number	and	then	converted	back	to	JavaScript	number.

Bitwise	operators	perform	their	operations	in	binary	and	return	the	result	as	numbers.

For	example,	x	is	1	and	y	is	9.

1	represented	as	0001.

9	represented	as	1001.

Bitwise	AND

Bitwise	AND	is	represented	as	&	and	the	following	is	the	comparison	of	each	bit	of	operand	1
and	9.	If	both	value	on	each	bit	is	1,	the	result	will	be	1,	otherwise	0:

Number	=	1 Number	=	9 Result

0 1 0

0 0 0

0 0 0

1 1 1

In	the	JavaScript	code,	we	can	use	it	as	follows:

<script>

		var	a	=	"1";

		var	b	=	"9";

		var	c	=	a	&	b;

</script>

Finally,	the	resultant	value	will	be	0001,	which	is	equal	to	1.

Bitwise	OR

Bitwise	OR	is	represented	as	|	and	the	following	is	how	the	bit	OR	will	be	operated:

Number	=	1 Number	=	9 Result

0 1 1

0 0 0

0 0 0

1 1 1

The	following	code	snippet	shows	the	usage	in	JavaScript:

<script>

		var	a	=	"1";

		var	b	=	"9";

		var	c	=	a	|	b;

</script>

Finally,	the	resultant	value	will	be	1001,	which	is	equal	to	9.

Bitwise	NOT

Bitwise	NOT	is	represented	as	~	and	it	works	on	a	single	operand	and	inverse	each	bit	of	the
binary.

For	example,	if	the	number	9	is	represented	as	1001,	it	will	be	converted	to	a	32-bit	number
and	then	bitwise	NOT	will	make	it	11111111111111111111111111110110,	which	is	equal	to
-10.

The	following	is	the	code	snippet:

<script>

		var	a	=	~9;

</script>

Bitwise	XOR

Bitwise	XOR	is	represented	as	^	and	it	works	with	two	or	more	operands.

The	following	table	shows	how	the	bitwise	XOR	is	operated:

Number	=	1 Number	=	9 Result

0 1 1

0 0 0

0 0 0

1 1 0

The	following	code	snippet	shows	the	usage	in	JavaScript:

<script>

		var	a	=	"1";

		var	b	=	"9";

		var	c	=	a	^	b;

</script>

Finally,	the	resultant	value	will	be	1000,	which	is	equal	to	8.

Bitwise	shift	operators

There	are	three	kinds	of	bitwise	shift	operators,	as	follows:

Bitwise	left	shift	operator
Bitwise	right	shift	operator

Bitwise	left	shift

It	is	represented	as	<<	and	is	used	to	shift	a	bit	from	the	right	side	to	the	binary	value	of	any
number.

For	example,	number	9	is	represented	as	01001,	and	if	we	use	bitwise	left,	the	resultant	value
will	be	10010,	which	shifted	one	bit	from	the	right.

The	following	code	snippet	shows	the	usage	in	JavaScript:

<script>

		var	a	=	9;

		var	result	=	a	<<	1;

</script>

Finally,	the	resultant	value	will	be	10010,	which	is	equal	to	18.

Bitwise	right	shift

It	is	represented	as	>>	and	is	used	to	shift	a	bit	from	the	left	side	to	the	binary	value	of	any
number.

For	example,	number	9	is	represented	as	1001,	using	bitwise	right	will	give	the	resultant	value
as	0100.

The	following	code	snippet	shows	the	usage	in	JavaScript:

<script>

		var	a	=	"9";

		var	result	=	a	>>	1;

</script>

Finally,	the	resultant	value	will	be	0100,	which	is	equal	to	4.

The	typeof	operator

This	is	used	to	check	whether	the	type	of	the	variable	is	an	object,	undefined,	number,	and	so
on.	In	JavaScript,	we	can	use	this	as	follows:

<script>

		if	(typeof	a=="number")	{

				alert("this	is	a	number");

		}

</script>

Here	is	the	list	of	possible	values	returned	by	the	typeof	operator:

Value	returned Description

"number" If	operand	is	a	number

"string" If	operand	is	a	string

"boolean" If	operand	is	a	Boolean

"object" If	operand	is	an	object

null If	operand	is	null

"undefined" If	operand	is	not	defined

The	void	operator

The	void	operator	prevents	an	expression	to	return	any	value.	It	is	essential	in	conditions
where	you	need	to	evaluate	the	expression	but	don't	need	the	return	value	in	the	program.

You	can	write	any	expression	or	statement	inside	the	void	method.

For	example,	the	following	code	snippet	shows	the	simple	example	of	using	a	void	operator

to	display	alert	message	when	the	link	is	clicked.	Here,	the	alert	expression	is	evaluated	once
the	user	clicks	on	the	link:

<html>

<head></head>

<body>

		

		

</body>

</html>

When	the	page	runs	and	the	user	clicks	on	the	link,	it	will	display	an	alert	message	box	as
shown	in	the	following:

Moreover,	passing	0	as	an	expression	within	the	void	method	will	do	nothing:

<html>

<head></head>

<body>

		

		Do	Nothing

		

</body>

</html>

Another	example	here	is	using	void	to	add	two	numbers	and	returning	undefined	for	the
assigned	operand:

<script>

		var	n1	=	6;

		var	n2	=	7;

		var	n3;

		var	result	=	void	(n3	=	n1	+	n2);

		alert	("result="	+	result	+	"and	n3	="	+	n3);

</script>

The	delete	operator

A	delete	operator	is	used	to	delete	objects	and	its	properties,	but	not	the	local	variables.	The
following	example	shows	the	way	you	can	use	the	delete	operator	in	JavaScript:

var	country	=	{	id:	1,	name:	"USA"	};

		delete	country.id;

		alert(country.id);

Calling	country.id	will	return	undefined,	as	this	was	already	deleted	in	the	preceding
statement.	On	the	other	hand,	if	we	delete	the	country	object,	it	would	not	delete	and	display
the	country	ID	as	1:

var	country	=	{	id:	1,	name:	"USA"	};

		delete	country;

		alert(country.id);

Miscellaneous	operators

Here	are	few	other	operators	that	are	available	in	JavaScript.

Conditional	operators

Conditional	operator	is	represented	as	(?:):

expression1	?	expression2:	expression3

It	works	as	cross-selector	to	evaluate	expressions.	If	the	first	expression	is	true,	the	second
expression	will	be	executed,	otherwise	the	third	will	be	executed.

The	following	is	the	code	snippet	for	using	conditional	operator	to	evaluate	expression.
There	is	a	compareValues()	function	that	takes	two	parameters,	and	an	alert	will	be	displayed
stating	whether	both	the	parameters	are	equal	or	not	equal:

<script>

		function	compareValues(n1,	n2)

				(n1	==	n2)	?	alert("Both	values	are	equal")	:	alert("Passed	values	are	not	

equal");

</script>

Spread	operator

The	spread	operator	is	represented	as	(…).	It	is	used	where	you	expect	multiple	arguments	to

be	passed	in	for	a	function	call.

For	example,	if	your	function	is	taking	five	parameters,	you	can	either	pass	those	values	one
by	one	as	the	parameter	value	when	calling	that	method	or	keep	them	in	an	array	and	pass	that
array	through	the	spread	operator.

The	following	code	snippet	shows	the	actual	example	of	using	this	in	JavaScript:

function	multipleArgs(a,	b,	c,	d,	e){

}

var	args	=	[1,2,3,4,5]

multipleArgs(…args);

Built-in	display	methods	in	JavaScript
The	following	are	the	display	methods	available	in	JavaScript	to	provide	notifications	and
messages	to	users	in	different	forms.

Displaying	messages

There	are	the	following	three	types	of	pop-up	dialog	boxes:

Alert	message	box
Confirmation	message	box
Prompt	message	box

Alert	box

Using	window.alert(),	we	can	pop	up	an	alert	dialog	box:

<!DOCTYPE	html>

<html>

<body>

		<h1>My	First	Web	Page</h1>

		<p>My	first	paragraph.</p>

<script>

		window.alert(5	+	6);

</script>

</body>

</html>

Confirm	box

Using	window.confirm(),	we	can	pop	up	a	confirm	dialog	box	that	returns	the	event	result	the
user	has	taken.	When	a	confirm	dialog	box	pops	up,	it	provides	two	action	events:	OK	and
Cancel.	If	a	user	click	on	OK,	true	will	be	returned,	otherwise	false.	The	following	code
shows	the	usage	of	the	confirm	dialog	box	on	your	HTML	page.

The	following	is	the	code	snippet	for	using	a	confirm	dialog	box	to	confirm	with	the	user
before	saving	a	record:

<!DOCTYPE	html>

<html>

<body>

<script>

		var	r	=	window.confirm("are	you	sure	to	save	record");

		if(r==true){

				alert("Record	saved	successfully");

		}

		else	{

				alert("Record	couldn't	be	saved");

		}

</script>

</body>

</html>

Prompt	box

Prompt	dialog	box	is	used	in	cases	when	you	want	the	user	to	supply	the	value.	It	can	be	used
in	conditions	where	you	require	user	input.

The	following	code	snippet	shows	the	way	of	using	a	prompt	message	box	in	the	JavaScript
program:

<!DOCTYPE	html>

<html>

<body>

<script>

		var	name	=	window.prompt("Enter	your	name","N/A");

		if(name	!=null){

				alert("hello	"+	name	"+,	how	are	you	today!");

		}

</script>

</body>

</html>

Writing	on	a	page

We	can	use	the	document.write()	method	to	write	anything	on	the	screen.

The	following	code	snippet	shows	the	way	of	writing	any	text	on	a	web	page	in	JavaScript:

<!DOCTYPE	html>

<html>

<body>

		<script>

		document.write("Hello	World");

		</script>

</body>

</html>

Writing	into	the	browser's	console	window

Using	console.log(),	we	can	write	any	text	into	the	browser's	console	window.

The	following	code	snippet	shows	the	way	of	writing	text	into	the	browser	console	window
for	tracing	or	debugging	purposes	in	JavaScript:

<!DOCTYPE	html>

<html>

<body>

		<h1>My	First	Web	Page</h1>

		<p>My	first	paragraph.</p>

		<script>

		console.log("Entered	into	script	execution	context");

		</script>

</body>

</html>

Browser	Object	Models	in	JavaScript
JavaScript	provides	some	predefined	global	objects	that	you	can	use	to	manipulate	the	DOM,
close	browsers,	and	so	on.	The	following	are	the	browser	objects	we	can	use	to	perform
different	operations:

Window
Navigator
Screen
History
Location

Window

Window	object	refers	to	the	open	window	in	a	browser.	If	in	the	HTML	markup,	some	iframes
are	defined,	a	separate	window	object	will	created.	Through	the	window	object,	we	can	access
the	following	objects:

All	global	variables
All	global	functions
The	DOM

The	following	shows	an	example	of	accessing	the	DOM	from	the	window	object	and
accessing	the	textbox	control.

Document

window.document	returns	the	document	object	and	we	can	use	its	properties	and	methods	for	a
specific	reason:

<html>

<body>

		<input	type="text"	name="txtName"	/>

		<script>

		var	textbox	=	Window.document.getElementById("txtName");

		textbox.value="Hello	World";

		</script>

</body>

</html>

The	window	object	itself	contains	many	methods	and	few	of	them	are	as	follows:

Event Description Syntax

Close To	close	current	window window.close();

Open To	open	new	window window.open();

Move To	move	window	to	the	specified	position window.moveTo();

Resize To	resize	window	to	specified	width	and	height window.resizeTo();

Navigator

This	object	provides	the	information	about	the	browser.	It	is	beneficial	when	you	need	to	run
specific	scripts	based	on	the	browser	version	or	do	something	specific	to	the	browser.	Let's
look	into	the	methods	it	exposes.

Properties

The	properties	are	described	as	follows:

appCodeName:	This	returns	the	code	name	of	the	browser
appName:	This	returns	the	name	of	the	browser
appVersion:	This	returns	the	version	of	the	browser
cookieEnabled:	This	determines	whether	cookies	are	enabled	in	the	browser
geoLocation:	This	gets	the	location	of	the	user	accessing	the	page
language:	This	returns	the	language	of	the	browser
online:	This	determines	whether	the	browser	is	online
platform:	This	returns	the	platform	that	the	browser	has	compiled
product:	This	returns	the	engine	name	of	the	browser
userAgent:	This	returns	the	user	agent	header	sent	by	the	browser	to	the	server

The	example	code	is	as	follows:

<!DOCTYPE	html>

<html>

<head>

		<script	type="text/javascript">

				function	showInformation()	{

						var	spObj	=	window.document.getElementById("spInfo");

						spObj.innerHTML	=

						"Browser	Code	Name:	"	+	navigator.appCodeName	+	"
"	+

						"Application	Name:	"	+	navigator.appName	+	"
"	+

						"Application	Version:	"	+	navigator.appVersion	+	"
"	+

						"Cookie	Enabled?	"	+	navigator.cookieEnabled	+	"
"	+

						"Language:	"	+	navigator.language	+	"
"	+

						"Online:	"	+	navigator.onLine	+	"
"	+

						"Platform:	"	+	navigator.platform	+	"
"	+

						"Product:	"	+	navigator.product	+	"
"	+

						"User	Agent:	"	+	navigator.userAgent;

						navigator.geolocation.getCurrentPosition(showPosition);

				}

				function	showPosition(position)	{

						var	spObj	=	window.document.getElementById("spInfo");

						spObj.innerHTML	=		spObj.innerHTML	+	"
	Latitude:	"	+	

position.coords.latitude	+

						"
Longitude:	"	+	position.coords.longitude;

				}

		</script>

</head>

<body	onload="showInformation();">

		

</body>

</html>

The	output	is	shown	as	follows:

Screen

Through	the	screen	object,	you	can	get	information	about	the	user's	screen.	This	is	helpful	to
know	from	which	screen	the	user	is	viewing	the	content.	If	it's	a	mobile	browser	or	standard
desktop	screen,	you	can	get	the	size	and	other	information	and	modify	the	content	as	required.

Properties

The	properties	are	described	as	follows:

availHeight	:	This	returns	the	height	of	the	screen
availWidth:	This	returns	the	width	of	the	screen
colorDepth:	This	returns	the	bit	depth	of	the	color	palette	for	displaying	images
height:	This	returns	the	total	height	of	the	screen
pixelDepth:	This	returns	the	color	resolution	(in	bits	per	pixel)	of	the	screen
width:	This	returns	the	total	width	of	the	screen

The	example	code	is	as	follows:

<!DOCTYPE	html>

<html>

<head>

		<script	type="text/javascript">

				function	showInformation()	{

						var	spObj	=	window.document.getElementById("spInfo");

						spObj.innerHTML	=

						"Available	Height:	"	+	screen.availHeight	+	"
"	+

						"Available	Width:	"	+	screen.availWidth	+	"
"	+

						"Height:	"	+	screen.height	+	"
"	+

						"Width:	"	+	screen.width	+	"
"

				}

		</script>

</head>

<body	onload="showInformation();">

		

</body>

</html>

The	output	is	shown	as	follows:

History

This	contains	the	URLs	that	the	user	visited.	You	can	access	it	through	the	window.history
object.

You	can	use	this	object	to	navigate	to	the	recently	visited	links.

Methods

The	methods	are	described	as	follows:

Window.history.back():	This	loads	the	previous	URL
Window.history.forward():	This	loads	the	recent	URL	in	the	history	list
Window.history.go():	This	loads	a	specific	URL	available	in	the	history	list

Location

The	location	object	gives	you	information	about	the	current	URL.	Just	like	history,	it	can	also
be	accessed	through	window.location.	There	are	a	few	methods	and	properties	you	can	use	to
perform	specific	operations.

Properties

The	properties	are	described	as	follows:

window.location.host:	This	returns	the	hostname	and	port	number	of	the	URL
window.location.hostname:	This	returns	only	the	hostname	of	the	URL
window.location.href:	This	provides	the	complete	URL
window.location.origin:	This	returns	the	hostname,	port	number,	and	protocol	of	the
URL
window.location.pathname:	This	returns	the	pathname	of	the	URL
window.location.port:	This	returns	only	the	port	number	of	the	URL
window.location.protocol:	This	returns	the	protocol	of	the	URL,	for	example,	HTTP	or
HTTPS
window.location.search:	This	returns	the	query	string	of	the	URL

Methods

The	methods	are	described	as	follows:

window.location.assign():	This	loads	a	new	document.
window.location.reload():	This	reloads	the	current	URL.
window.location.replace():	This	can	be	used	to	replace	the	current	URL	with	the	new
one.	Replace	does	not	refresh	the	page,	it	can	only	change	the	URL.

Summary
In	this	chapter,	we	discussed	the	basic	concepts	of	JavaScript	and	how	to	use	it	in	our	web
applications.	We	discussed	the	core	fundamentals	of	declaring	variables	and	implementing
arrays,	functions,	and	data	types	to	start	writing	programs	in	JavaScript.	In	the	next	chapter,
we	will	discuss	some	advanced	concepts	about	object-oriented	programming	and	working
with	closures,	scopes,	and	prototype	functions	with	practical	implementation.

Chapter	2.	Advanced	JavaScript	Concepts
JavaScript,	when	initially	designed,	was	not	expected	to	become	the	core	programming
language	for	Web	development.	It	was	normally	used	to	perform	some	basic	client-side
operations	that	require	some	manipulation	of	the	Document	Object	Model	(DOM)	elements.
Later	on,	with	the	recent	pace	in	Web	development,	things	have	pretty	much	changed.	Now,
many	applications	are	purely	using	JavaScript	and	HTML	to	handle	complex	situations.	From
time	to	time,	with	different	versions,	different	features	were	added	and,	as	per	the
specification	of	ECMAScript	6,	you	can	now	have	classes,	you	can	do	inheritance	as	you	do
with	any	other	programming	language,	such	as	C#	or	Java.	Closures,	prototype	functions,
property	descriptors,	and	many	more	that	we	will	discuss	in	this	chapter	make	it	more
powerful	and	robust.

In	the	previous	chapter,	we	learned	the	core	concepts	and	some	basic	fundamentals	of	writing
programs	in	JavaScript	and	what	features	as	a	language	it	provides.	In	this	chapter,	we	will	be
focusing	more	on	the	advanced	topics,	which	help	us	to	use	these	concepts	in	large	and
complex	applications.

We	will	also	focus	on	scoping	and	hoisting	variables,	object-oriented	programming,
prototype	functions,	property	descriptors,	closures,	exception	handling,	and	so	on.	Some
topics,	such	as	promises,	asynchronous	patterns	and	Asynchronous	JavaScript	and	XML
(Ajax)	techniques,	are	broader	topics	and	are	covered	in	other	chapters.

Variables	–	scope	and	hoisting
We	already	know	how	variables	are	declared	in	JavaScript	using	the	var	keyword.	Any
variable	that	is	declared	using	the	var	keyword	is	termed	a	hoisted	variable,	and	the	term
hoisting	is	the	JavaScript	default	behavior	of	moving	declarations	to	the	top.	When	JavaScript
is	compiled	by	the	JavaScript	engine,	all	the	variables	that	are	declared	using	the	var	keyword
are	placed	at	the	top	within	its	scope.	This	means	that	if	the	variable	is	declared	within	a
function	block,	it	will	be	placed	at	the	top	of	the	function;	otherwise,	if	it's	declared	outside
any	function	and	at	the	root	of	the	script,	it	will	become	globally	available.	Let's	have	a	look
at	this	example	to	clarify	our	understanding.

Let's	suppose	the	following	code	is	the	simple	program	that	returns	the	GMT	of	the	country
name	passed	in	the	function's	parameter:

function	getCountryGMT(countryName)	{

		if	(countryName	==	"Pakistan")	{

				var	gmt	=	"+5.00";

		}

		else	if	(country	==	"Dubai")	{

				var	gmt	=	"+4.00";

		}	else	{

				return	null;

		}

}

When	the	JavaScript	engine	compiles	the	script,	the	var	gmt	variable	will	be	placed	at	the	top:

function	getCountryGMT(countryName)	{

		var	gmt;	

		if	(countryName	==	"Pakistan")	{

				gmt	=	"+5.00";

		}

		else	if	(country	==	"Dubai")	{

				gmt	=	"+4.00";

		}	else	{

				return	null;

		}

}

This	is	called	hoisting,	where	the	var	variables	are	placed	at	the	top	within	its	scope.
Moreover,	if	you	try	to	access	the	variable	value	in	the	last	else	condition,	it	will	give	an
undefined	value	and	could	be	accessible	in	every	condition	block.

This	code	shows	another	example	of	declaring	the	gmt	variable	globally	and	declaring	it	in
the	bottom	of	the	code:

function	getCountryGMT(countryName)	{

		if	(countryName	==	"Pakistan")	{

				gmt	=	"+5.00";

		}

		else	if	(country	==	"Dubai")	{

				gmt	=	"+4.00";

		}	else	{

				return	null;

		}

}

var	gmt;

When	the	script	compiles,	it	will	put	the	declaration	of	gmt	at	the	top	of	the	code:

var	gmt;

function	getCountryGMT(countryName)	{

		if	(countryName	==	"Pakistan")	{

				gmt	=	"+5.00";

		}

		else	if	(country	==	"Dubai")	{

				gmt	=	"+4.00";

		}	else	{

				return	null;

		}

}

To	overcome	this	behavior	in	ECMAScript	6,	there	is	a	new	let	keyword	introduced	to
declare	variables	and	the	scope	remains	where	it	is	defined.	These	variables	are	inaccessible
outside	its	scope.

Tip

Note	that	ECMAScript	6	is	not	supported	by	older	browser	versions	but	Microsoft	Edge,
Google	Chrome	11,	and	Mozilla	Firefox	support	it.

Declaring	let
As	with	var,	you	can	use	let	to	declare	variables	in	the	same	way.	You	can	use	this	keyword
in	your	programs	but	it	will	be	accessible	within	the	scope	where	it	is	defined.	So,	for
example,	if	some	variable	is	defined	within	the	condition	block,	it	will	not	be	accessible
outside	its	scope.

Let's	have	a	look	at	the	following	example,	where	a	variable	is	declared	inside	a	condition
block	and	the	final	output	after	compilations	remains	as	it	is.	This	is	beneficial	in	conditions
where	you	want	to	declare	variables	within	a	scope	for	a	particular	logic	or	scenario.	In	the
else	condition,	gmt	will	not	be	accessible,	as	it	is	defined	within	the	if	condition:

function	getCountryGMT(countryName)	{

		if	(countryName	==	"Pakistan")	{

				let	gmt	=	"+5.00";

		}

		else	{

				return	null;

		}

}

Once	the	let	variable	is	declared	within	the	scope	of	the	function	or	script,	it	cannot	be
redeclared.	Also,	if	the	variables	are	declared	using	the	var	keyword,	they	cannot	be
redeclared	using	let.

This	code	will	not	throw	an	exception	as	the	scope	is	different.	However,	within	the	same
block,	it	cannot	be	redeclared:

function	getCountryGMT(countryName)	{

		var	gmt;

		if	(countryName	==	"Pakistan")	{

				let	gmt	=	"+5.00";

		}

		else	{

				return	null;

		}

}

Conditions	where	let	is	efficient	to	use

Here	are	the	conditions	where	let	is	used.

Functions	in	loops

If	we	use	the	var	variables	in	functions	inside	loop,	these	variables	generate	issues.	Consider
the	following	example,	where	there	is	an	array	of	values	and,	through	looping,	we	are
inserting	a	function	at	each	index	of	any	array.	This	will	make	an	error	and	pass	the	i	variable
as	a	reference.	So,	if	you	traverse	each	index	and	call	function,	the	same	value,	that	is,	10,	will
be	printed:

var	values	=	[];

for(var	i=0;i<10;i++)

		{

				values.push(function	()	{	console.log("value	is	"	+	i)	});

		}

		values.forEach(function(valuesfunc)	{

				valuesfunc();

		})

Whereas	with	let,	each	value	will	be	passed	by	value	and	does	not	change	when	the	variable
value	is	updated	inside	the	loop.

The	code	snippet	of	using	let	is	as	follows:

var	values	=	[];

		for(let	i=0;i<10;i++)

		{

				values.push(function	()	{	console.log("value	is	"	+	i)	});

		}

		values.forEach(function(valuesfunc)	{

				valuesfunc();

		})

Events	in	JavaScript
Events	play	an	important	role	in	any	business	application	where	you	want	to	save	a	record	on
a	button-click	event,	or	show	some	message,	or	change	some	element's	background	color.
Any	of	these	events	can	be	defined	from	the	control	level	itself	or	register	directly	through
the	script.

Let's	have	a	look	at	this	example,	which	changes	the	inner	html	code	of	the	div	control	when
the	mouse	is	entered:

<html>

		<body>

				<div	id="contentPane"	style="width:200px;	height:200px;">

				</div>

				<script>

						var	divPane	=	document.getElementById("contentPane");

						divPane.onmouseenter	=	function	()	{

								divPane.innerHTML	=	"You	are	inside	the	div";

						};

						divPane.onmouseleave	=	function	()	{

								divPane.innerHTML	=	"You	are	outside	the	div";

						};

				</script>

		</body>

</html>

The	preceding	example	registered	two	events	on	the	script	side	for	an	HTML	div	control.	It
changes	text,	if	the	mouse	has	entered	the	function	or	has	left	the	boundary	of	div.
Alternatively,	we	can	also	register	events	on	the	control	itself,	and	this	example	shows	the	way
you	can	display	a	message	on	a	button-click	event.	If	you	have	noticed	the	scripting	block	is
defined	after	the	div	pane,	the	reason	is	that	when	the	page	loads,	it	will	try	to	execute	the
script	and	throw	an	error	because	the	contentPane	element	was	not	created	at	that	time:

<html>

		<body>

				<script>

						function	displayMessage()	{

								alert("you	have	clicked	button");

						}

				</script>	

				<input	type="button"	onclick="displayMessage();"	/>

		</body>

</html>

In	this	example,	the	scripting	block	is	defined	at	the	top	of	the	page.	In	this	scenario,	it	can	be
defined	anywhere	in	the	page	because	it	will	only	be	executed	when	the	user	clicks	on	a
button.

Function	arguments
We	already	know	that	the	JavaScript	functions	can	have	parameters.	However,	the	type	of	the
parameters	cannot	be	specified	when	creating	a	function.	JavaScript	neither	performs	any	type
checking	on	the	parameter	values	passed	nor	validates	the	number	of	parameters	when	the
function	is	called.	So,	for	example,	if	a	JavaScript	function	is	taking	two	parameters,	as
shown	in	this	code,	we	can	even	call	it	without	passing	any	parameter	value	or	by	passing	any
type	of	the	values	or	more	values	than	the	expected	number	of	the	parameters	defined:

function	execute(a,	b)	{

		//do	something

}

//calling	without	parameter	values

execute();

//passing	numeric	values

execute(1,	2);

//passing	string	values

execute("hello","world");

//passing	more	parameters

execute(1,2,3,4,5);

The	missing	parameters	are	set	as	undefined,	whereas	if	more	parameters	are	passed,	these
parameters	can	be	accessed	through	the	arguments	object.	The	arguments	object	is	a	built-in
object	in	JavaScript	that	contains	an	array	of	the	arguments	used	when	the	function	is	invoked.
We	can	use	it	as	shown	in	this	code:

function	execute(a,	b)	{

		//do	something

		alert(arguments[0]);

		alert(arguments[1]);

		alert(arguments[2]);

		alert(arguments[3]);

		alert(arguments[4]);

}

		//passing	more	parameters

		execute(1,	2,	3,	4,	5);

}

Arguments	are	passed	by	value;	this	means	if	the	values	are	changed	inside	the	function,	it
will	not	change	the	parameter's	original	value.

Object-oriented	programming	in	JavaScript
All	the	objects	in	JavaScript	are	inherited	from	an	object.	JavaScript	provides	different
patterns	to	adhere	to	the	object-oriented	programming	(OOP)	principles	when	building
applications.	There	are	different	patterns,	such	as	constructor	patterns,	prototype	patterns,	and
object	literal	representation,	and,	with	ECMAScript	6,	a	completely	new	way	of	representing
objects	through	classes	and	inheriting	a	base	class	using	the	extends	keyword.

In	this	section,	we	will	see	how	we	can	implement	the	OOP	principles	with	different
methodologies.

Creating	objects
A	class	represents	the	structure	of	an	object	and	every	class	has	certain	methods	and
properties	used	by	the	object,	whereas	an	object	is	an	instance	of	a	class	and	is	known	as	a
class	instance.

JavaScript	is	a	prototype-based	language	and	based	on	objects.	In	a	class-based	language	such
as	C#	and	Java,	we	have	to	first	define	the	class	that	contains	some	methods	and	properties
and	then	use	its	constructor	to	create	objects.	In	JavaScript,	any	object	can	be	used	as	a
template	to	create	new	objects	and	use	the	properties	or	methods	defined	within	it.	New
objects	can	also	define	their	own	properties	or	methods	and	can	be	associated	as	a	prototype
for	another	object.	ECMAScript	6,	however,	introduces	classes	in	JavaScript,	which	is
syntactical	sugar	over	existing	paradigms	and	makes	it	easy	for	developers	to	write	simpler
and	cleaner	code	to	create	objects.	In	the	next	section,	we	will	see	different	ways	of	creating
objects	in	JavaScript.

Defining	objects	using	object	literal	notation

Object	literals	are	comma-separated	lists	of	name	value	pairs	wrapped	in	curly	braces.

Object	literals	are	defined	using	the	following	syntax	rules:

A	colon	separates	a	property	name	from	a	value
A	value	can	be	any	data	type,	including	array	literals,	functions,	and	nested	object	literals
Each	name	value	pair	is	separated	by	a	comma	from	the	next	name	value	pair	defined
The	last	name	value	pair	should	not	contain	any	comma	after	it

Here	is	the	basic	representation	of	a	person	object	in	object	literal	notation:

var	person	=	{id:	"001",	name:	"Scott",	isActive:	true,	

		Age:	35	};

Here	is	another	representation	of	a	personModel	object	with	a	savePerson()	method	in	object
literal	notation:

var	personModel	=	{id:	"001",	name:	"Scott",	isActive:	true,	

		Age:	35,	function:	savePerson(){	//code	to	save	person	record	}	};

Defining	objects	using	a	constructor	pattern

Classes	can	be	defined	using	functions	in	JavaScript.	This	code	shows	the	simple	way	of
defining	a	customer	class	in	JavaScript:

var	person	=	new	function(){};

The	preceding	code	just	defined	an	empty	class	with	a	default	constructor	and	no	properties
and	methods.	Objects	can	be	initialized	using	a	new	keyword,	as	shown	in	this	code:

var	p1	=	new	person();

The	same	function	can	be	defined	in	a	regular	function	declaration	style:

function	person(){};

With	the	regular	function	declaration,	the	JavaScript	engine	knows	to	fetch	the	function	when
it	is	needed.	For	example,	if	you	call	it	before	the	function	declaration	in	your	script,	it	will
call	this	function,	whereas	the	variable	defining	approach	needs	the	variable	to	be	declared
first	before	calling	it.

Using	the	class	keyword

ECMAScript	6	provides	a	new	way	of	defining	classes	and	introduced	a	class	keyword,	which
can	be	used	just	like	in	other	programming	languages.	This	code	is	the	representation	of
defining	a	customer	object.	The	default	constructor	is	constructor()	that	takes	no	parameters
and	can	be	overridden	with	more	parameters,	depending	on	the	requirements.	Each	class
allows	you	to	define	only	one	constructor,	and	if	the	constructor	is	overridden,	the	default
constructor	will	not	be	used	to	instantiate	objects:

class	Person	{

		constructor()	{	}

}

Properties

Properties	are	used	to	store	and	return	values.	We	can	define	properties	when	initializing
functions	and	these	properties	will	be	available	each	time	the	object	is	created.

Defining	properties	using	object	literal	notation

Properties	can	be	defined	in	objects	as	literal	strings.	For	example,	in	this	code,	there	is	the
customer	object	containing	two	properties	and	a	method.	The	drawback	with	this	approach	is
that	there	is	no	constructor	and	we	cannot	restrict	users	to	supply	property	values	when
initializing	an	object.	Either	it	can	be	set	as	hardcoded,	as	shown	here,	or	after	initializing	an
object:

var	person	=	{

		id:	"001",

		name:"Person	1",

		savePerson:	function(){

		}

}

Defining	properties	using	a	constructor	pattern

A	constructor	function	pattern	allows	you	to	define	parameters	that	restrict	users	to	pass
property	values	when	instantiating	objects.	Consider	this	example;	it	contains	a	customer
object	with	two	properties,	namely	id	and	name:

var	person	=	function(id,	name){

		this._id	=	id;

		this._name	=	name;

}

The	this	keyword	refers	to	the	current	object	and	properties	can	be	accessed	using	this	when
calling	inside	the	class,	or	through	the	instance	variable,	as	shown	in	the	following	code:

var	p1	=	new	person("001","Person	1");

console.log("Person	ID:	"+	p1.PersonID);

console.log("Person	Name:	"+	p1.name);

Property	values	can	also	be	set	after	initializing	an	object,	as	shown	in	the	following	code:

var	person	=	function(){

}

var	p1	=	new	person();

p1.id="001";

p1.name="Person	1";

This	snippet	also	represents	the	same	approach	of	defining	a	person	object	that	takes	two
parameters.	We	will	see	the	limitations	of	using	this	approach	in	the	next	section	when	dealing
with	prototypes:

function	person(id,	name){

		this.id	=	id;

		this.name	=	name;

		this.logToConsole:	function(){

				console.log("Person	ID	is	"+	this.id		+",Name:	"+	this.name);

		};

}

Defining	properties	using	setters/getters	in	ECMAScript	6

In	ECMAScript	6,	there	is	a	new	way	of	defining	properties	and	it	follows	the	standard	way
like	other	programming	languages:

class	Person	{

		constructor(id,	name)	{

				this.id	=	id;

				this.name	=	name;

		}

}

var	p1	=	new	person("001",	"Person	1");

console.log	("Person	ID:	"	+	p1.id);

Unlike	this	approach,	we	can	also	define	setters	and	getters	using	the	set	and	get	keywords.
Constructors	are	optional	in	JavaScript	when	defining	classes;	if	no	constructor	is	defined,
the	default	constructor,	constructor(),	will	be	invoked	on	object	initialization.	Let's	have	a
look	at	this	example	containing	a	personName	property	for	both	setter	and	getter:

class	Person	{

		set	Name(name)	{

				this.personName	=	name;

		}

		get	Name()	{

				return	this.personName;

		}

}

var	p1	=	new	Person();

p1.Name	=	"Person	1";

console.log("personName	"	+	p1.Name);

JavaScript	property	descriptors

Every	property	has	the	property	descriptor,	which	is	used	to	configure,	and	has	the	following
meaning:

Writable:	This	attribute	is	used	to	make	the	code	read-only	or	writable.	The	false
keyword	makes	it	read-only	and	the	value	cannot	be	modified.
Enumerable:	This	attribute	is	used	to	hide/unhide	the	property	to	be	accessible	or
serializable.	Setting	this	attribute	to	false	will	not	show	up	the	property	when	you	iterate
through	an	object's	members	and	also	could	not	be	serialized	when	using
JSON.stringify.
Configurable:	This	attribute	is	used	for	the	on	and	off	configuration	changes.	For
example,	setting	this	attribute	to	false	will	prevent	a	property	to	be	modified	or	deleted.

All	these	attributes	are	true	by	default	but	can	be	overridden,	as	shown	in	the	following
example.	This	example	has	a	car	object	containing	two	properties,	namely	name	and	color:

var	car	=	{

		name:	"BMW",

		color:	"black"

};

Display	property	descriptors

You	can	display	the	existing	properties	using	the	following	statement:

display(Object.getOwnPropertyDescriptor(car,	'name'));

Managing	property	descriptors

The	property	descriptors	of	any	object's	property	can	be	managed	as	shown	in	the	following
code:

Object.defineProperty(car,	'color',{enumerable:	false});

Object.defineProperty(car,	'color',{configurable:	false});

Object.defineProperty(car,	'color',{writable:	false});

Using	getters	and	setters

Through	Object.defineProperty,	we	can	also	add	setters	and	getters	for	properties.	This
example	adds	the	full	name	of	the	car	by	concatenating	make	and	name,	and	then	splitting	name
to	get	the	model	and	name	through	two	different	properties:

var	car	=	{	name:	{	make:	"honda",		brand:	"accord"}	};

Object.defineProperty(car,	'fullname',	

{

		get:	function(){

				return	this.name.make	+	'	'	+	this.name.brand	

		},

		set:	function	(value)	{

				var	names=	value.split('	');

				this.name.make	=	names[0];

				this.name.brand	=	names[1];

		}

});

car.fullname	=	"Honda	Accord";

display(car.fullname);

Methods

Methods	are	the	actions	that	can	be	performed	on	objects.	In	JavaScript,	it	can	be	represented
as	a	property	containing	a	function	definition.	Let's	have	a	look	at	a	different	approach	to
defining	the	methods	of	the	JavaScript	objects.

Defining	methods	through	object	literal	notation	approach

An	example	showing	the	logToConsole()	method	defined	in	the	object	literal	notation
approach	is	shown	here:

var	person	=	{

		id:	"001",

		name:"Person	1",

		logToConsole:	function()

		{

				console.log("Person	ID	is	"+	this.id		+",	Customer	Name:	"+	this.name);

		}

}

Defining	objects	using	the	constructor	function	approach

The	constructor	function	approach	to	defining	methods	is	shown	in	the	following	code:

var	person	=	function	(id,	name)	{

		this._id	=	id;

		this._name	=	name;

		this.LogToConsole=	function(){

				console.log("Person	Name	is	"+	this._name);

		}

}

var	p1	=	new	person("001",	"Person	1");

p1.LogToConsole();

Another	way	is	to	declare	the	constructor	function	approach	is	as	follows:

function	person(id,	name)	{

		this._id	=	id;

		this._name	=	name;

		this.LogToConsole=	function(){

				console.log("Name	is	"+	this._name);

		}

}

var	p1	=	new	person("001","Person	1");

p1.LogToConsole();

In	ECMAScript	6,	there	is	a	better	syntax	for	defining	methods.	The	code	snippet	with	the
same	example	is	as	follows:

class	Person	{

		constructor()	{

				

		}

		set	Name(name)	{

				this._name	=	name;

		}

		get	Name()	{

				return	this._name;

		}

		logToConsole()	{

				console.log("Person	Name	is	"	+	Name);

		}

}

var	p1	=	new	Person();

p1.Name	=	"Person	1";

p1.logToConsole();

The	method	return	type	is	not	needed	when	defining	a	method	and	it	is	realized	based	on	the
method	body.

Extending	properties	and	methods

Every	JavaScript	object	has	an	object	known	as	a	prototype.	A	prototype	is	a	pointer	to
another	object.	This	prototype	can	be	used	to	extend	the	object	properties	and	methods.	For
example,	if	you	are	trying	to	access	some	property	of	an	object	that	is	not	defined,	it	will	look
into	the	prototype	object	and	proceed	through	the	prototype	chain	until	it	is	found	or	returns
undefined.	Therefore,	whether	an	object	is	created	using	a	literal	syntax	approach	or	a
constructor	function	approach,	it	inherits	all	the	methods	and	properties	from	a	prototype
known	as	Object.prototype.

For	example,	an	object	created	using	new	Date()	inherits	from	Date.prototype,	and	so	on.
However,	the	base	object	itself	does	not	have	any	prototype.

We	can	easily	add	properties	and	functions	to	objects,	as	shown	here:

var	Person	=	function	(name)	{

		this.name	=	name;

}

var	p1	=	new	Person("Person	1");

p1.phoneNo	=	"0021002010";

alert(p1.name);

Extending	existing	functions	without	initializing	an	object	is	done	using	a	prototype	object.
Let's	have	a	look	at	this	example,	where	we	add	one	method,	logToConsole(),	and	a	phoneNo
property	on	a	Person	function:

var	Person	=	function	(name)	{

		this.name	=	name;

}

Person.prototype.phoneNo	=	"";

Person.prototype.logToConsole	=	function	()	{

		alert("Person	Name	is	"	+	this.name	+"	and	phone	No	is	"+	this.phoneNo)

};

var	p1	=	new	person("Person	1");

p1.phoneNo	=	"XXX"

p1.logToConsole();

Private	and	public	members

In	JavaScript,	there	are	no	access	modifiers	like	we	have	in	C#.	All	the	members	that	are
defined	as	this	or	with	prototypes	are	accessible	from	the	instance,	whereas	other	members,
which	are	defined	in	some	other	way,	are	non-accessible.

Let's	have	a	look	at	this	example,	which	enables	only	the	y	and	y1()	methods	to	be	accessible
outside	the	function:

function	a()	{

		var	x	=	1;

		this.y	=	2;

		x1	=	function	()	{

				console.log("this	is	privately	accessible");

		}

		this.y1	=	function	()	{

				console.log("this	is	publicly	accessible");

		}

}

Inheritance

Inheritance	is	a	core	principle	of	OOP.	In	JavaScript,	if	you	are	working	with	an	older	version
that	does	not	comply	with	the	ES6	standard,	it	is	done	using	prototype-based	programming.

Prototype-based	programming	is	an	OOP	model	that	does	not	use	classes	but	extends	objects
or	inheritance	using	the	prototype	chain.	This	means	that	every	object	has	an	internal
prototype	property,	which	points	to	a	particular	object	or	null	if	not	used.	This	property	is
not	accessible	through	the	program	and	is	private	to	the	JavaScript	engine.	So,	for	example,
if	you	are	calling	some	property,	such	as	customer.getName,	it	will	first	check	the	getName
property	locally	on	the	object	itself,	otherwise	go	through	the	chaining	process	and	try	to	find
it	by	linking	objects	through	the	prototype	property	until	it	is	found.	If	no	property	is	defined,

it	will	return	undefined.

Consider	the	following	entity–relationship	model	(ERD)	that	has	a	base	person	object	with
some	generic	properties	and	two	child	objects,	namely	Vendor	and	Employee,	with	specific
properties:

In	order	to	articulate	the	same	inheritance	using	the	JavaScript	constructor	function	approach,
we	can	use	the	prototype	property	of	both	Vendor	and	Employee	to	the	person	object,	as
shown	in	this	code:

var	Person	=	function	(id,	name)	{

		this.id	=	id;

		this.name	=	name;

}

var	Vendor	=	function	(companyName,	location)	{

		this.companyName	=	companyName;

		this.location	=	location;

}

var	Employee	=	function	(employeeType,	dateOfJoining)	{

		this.employeeType	=	employeeType;

		this.dateOfJoining	=	dateOfJoining;

}

Vendor.prototype	=	new	Person("001",	"John");

Employee.prototype	=	new	Person("002",	"Steve");

var	vendorObj	=	new	Vendor("ABC",	"US");

alert(vendorObj.id);

In	the	preceding	example,	vendorObj	is	an	object	that	was	created	from	the	Vendor	constructor
function.	The	Vendor	constructor	is	both	an	object	and	a	function	because	functions	are
objects	in	JavaScript,	and	the	vendorObj	object	can	have	its	own	properties	and	methods.	It
can	also	inherit	methods	and	properties	from	the	Vendor	object.

By	setting	the	prototype	property	of	the	Vendor	and	Employee	objects	to	the	Person	instance
through	the	constructor	function,	it	inherits	all	the	properties	and	methods	of	the	Person
object	and	becomes	accessible	by	the	Vendor	and	Employee	objects.

Object's	properties	and	methods	defined	using	the	prototype	object	are	inherited	by	all	the
instances	that	referenced	it.	So,	in	our	example,	we	extended	the	Vendor	and	Employee	objects
through	the	prototype	property	and	assigned	them	to	the	Person	instance.	This	way,	whenever
any	instance	of	the	Vendor	or	Employee	object	is	created,	it	can	access	all	the	properties	or
methods	of	an	object	of	Person.

Properties	and	methods	can	also	be	added	through	the	object;	for	example,	we	can	add	a
property	to	the	Vendor	object,	as	shown	in	the	following	code,	but	this	will	become	the	static
property	and	not	accessible	by	the	Vendor	instance:

Vendor.id="001";

On	the	other	hand,	we	can	also	add	properties	and	methods	to	the	Vendor	instance	as	well	but
this	will	be	accessible	by	that	particular	instance	only:

var	vendorObj	=	new	Vendor("ABC",	"US");

vendorObj.id="001";

Another	technique	of	achieving	inheritance	is	by	assigning	the	parent's	prototype	to	the	child's
prototype	object,	as	shown	here:

Vendor.prototype	=	Person.prototype;	

With	this	technique,	any	methods	or	properties	added	in	the	Person	prototype	will	be
accessible	by	the	Vendor	object:

var	Person	=	function	(id,	name)	{

		this.id	=	id;

		this.name	=	name;

}

//Adding	method	to	the	Person's	prototype	to	show	message

Person.prototype.showMessage	=	function	(message)	{

		alert(message);

}

var	Vendor	=	function	(companyName,	location)	{

		this.companyName	=	companyName;

		this.location	=	location;

}

//Assigning	the	parent's	prototype	to	child's	prototype

Vendor.prototype	=	Person.prototype;

var	vendorObj	=	new	Vendor("XYZ",	"Dubai");

vendorObj.showMessage(vendorObj	instanceof	Person);

After	running	this	script,	it	will	show	true	in	an	alert	message.	This	is	because	the	Vendor

object	becomes	an	instance	of	the	Person	object	and	any	method	or	property	added	in	any	of
the	objects	will	be	accessible	by	both.

If	we	modify	the	preceding	example	and	add	another	method	through	a	Vendor	prototype
property	after	the	assignment	of	the	Person	prototype	to	the	Vendor	prototype,	it	will	be
accessible	by	the	Person	object.	This	is	because,	in	JavaScript,	when	the	child's	object
prototype	is	set	to	the	parent's	object	prototype,	any	methods	or	properties	added	in	either
object	after	the	assignment	will	be	accessible	by	both.

Let's	add	a	showConsoleMessage()	method	in	the	Vendor	object	through	a	prototype	property
and	access	it	through	the	Person	instance,	as	shown	in	this	code:

var	Person	=	function	(id,	name)	{

		this.id	=	id;

		this.name	=	name;

}

//Adding	method	to	the	Person's	prototype	to	show	message

Person.prototype.showMessage	=	function	(message)	{

		alert(message);

}

var	Vendor	=	function	(companyName,	location)	{

		this.companyName	=	companyName;

		this.location	=	location;

}

//Assigning	the	parent's	prototype	to	child's	prototype

Vendor.prototype	=	Person.prototype;

//Adding	method	to	the	Vendor's	prototype	to	show	at	console

Vendor.prototype.showConsoleMessage	=	function	(message)	{

		console.log(message);

}

var	personObj	=	new	Person("001",	"John");

//Person	object	access	the	child's	object	method

personObj.showConsoleMessage("Console");

Chaining	constructors	in	JavaScript

In	the	example	in	the	previous	section,	we	have	seen	how	to	inherit	objects.	However,	if	some
base	object	has	some	overloaded	constructor,	accepting	properties	will	require	some	extra
effort.	Every	function	in	JavaScript	has	a	call	method,	which	is	used	to	chain	constructors	for
an	object.	We	can	use	the	call	method	to	chain	constructors	and	call	base	constructors.	As	the
Person	object	takes	two	parameters,	we	will	modify	the	Vendor	function	and	two	properties,
id	and	number,	which	can	be	passed	while	creating	a	Vendor	object.	So,	whenever	the	Vendor
object	is	created,	the	Person	object	will	be	created	and	the	values	will	be	populated:

var	Person	=	function	(id,	name)	{

		this.id	=	id;

		this.name	=	name;

}

var	Vendor	=	function	(companyName,	location,	id,	name)	{

		this.companyName	=	companyName;

		this.location	=	location;

		Person.call(this,	id,	name);

}

var	employee	=	function	(employeeType,	dateOfJoining,	id,	name)	{

		this.employeeType	=	employeeType;

		this.dateOfJoining	=	dateOfJoining;

		Person.call(this,	id,	name);

}

Vendor.prototype	=	Person.prototype;

Employee.prototype	=	Person.prototype;

var	vendorObj	=	new	Vendor("ABC",	"US",	"V-01","Vendor	1");

alert(vendorObj.name);

Inheritance	using	Object.create()

With	ECMAScript	5,	you	can	easily	inherit	your	base	object	through	the	Object.create()
method.	This	method	takes	two	parameters,	the	object	to	use	as	a	prototype	and	an	object
containing	properties	and	methods	for	the	new	object	to	create.	The	Object.create()	method
improves	constructor-based	inheritance.	It's	a	good	choice	for	creating	an	object	without
going	through	its	constructor.	Let's	see	the	example	of	Vendor	and	Employee	inheriting	the
Person	object	using	the	Object.create()	approach:

var	Person	=	function	(id,	name)	{

		this.id	=	id;

		this.name	=	name;

}

var	Vendor	=	function	(companyName,	location,	id,	name)	{

		this.companyName	=	companyName;

		this.location	=	location;

		Person.call(this,	id,	name);

}

var	Employee	=	function	(employeeType,	dateOfJoining,	id,	name)	{

		this.employeeType	=	employeeType;

		this.dateOfJoining	=	dateOfJoining;

		Person.call(this,	id,	name);

}

Vendor.prototype	=	Object.create(Person.prototype);

Employee.prototype	=	Object.create(Person.prototype);

var	vendorObj	=	new	Vendor("ABC",	"US",	"V-01",	"Vendor	1");

alert(vendorObj.name);

In	the	preceding	example,	we	used	Object.create()	to	inherit	the	Person	object	to	the	Vendor
and	Employee	objects.	Whenever	the	Vendor	or	Employee	instances	are	created,	they	can	access

the	properties	of	the	Person	object.	The	Object.create()	method	automatically	instantiates	an
instance	of	an	object	defined	as	the	parameter	in	its	call	method.

Predefined	properties	of	Object.create()

An	Object.create()	method	does	not	execute	the	Person	function;	instead,	it	will	just	set	the
Person	function	as	a	prototype	of	the	customer	function.	Another	representation	of	the
customer	object,	containing	property	as	CustomerCode,	is	shown	in	the	following	code:

var	customerObj	=	Object.create(Object.prototype,	{

		customerCode:	{

				value:	"001",

				enumerable:	true,

				writable:	true,

				configurable:	true

		}

});

alert(""	+	customerObj.customerCode);

Here,	value	is	the	actual	value	representing	the	customer	code,	whereas	enumerable,
writable,	and	configurable	are	predefined	attributes.

Defining	inheritance	using	class

In	the	example	in	the	previous	section,	we	have	already	seen	how	to	define	classes	using
ECMAScript	6.	Just	like	Java,	we	can	inherit	a	parent	class	using	the	extends	keyword.

An	example	of	using	extends	is	shown	here:

class	Person	{

						

		constructor(id,	name)	{

				this._id	=	id;

				this._name	=	name;

		}

		get	GetID()	{return	this._id;}

		get	GetName()	{return	this._name;}

}

class	Vendor	extends	Person	{

		constructor(phoneNo,	location,	id,	name){

				super(id,	name);

				this._phoneNo	=	phoneNo;

				this._location	=	location;

				

		}

		logToConsole()	{

				alert("Person	ID	is	"	+	this.GetID);

		}

}

var	vendorObj	=	new	Vendor("XXX",	"US",	"V-01",	"Vendor	1");

vendorObj.logToConsole();

With	ECMAScript	6,	you	can	get	the	true	essence	of	declaring	static	variables	and	methods	in
the	class.	Let's	have	a	look	at	the	following	example,	which	contains	one	static	method,
logToConsole(),	and	calls	it	from	the	customer	class	without	initializing	its	object	after
inheriting	it	from	the	Person	class:

class	Person	{

		static	logToConsole()	{

				console.log("Hello	developers!");

		}

}

class	Vendor	extends	Person	{

}

Vendor.logToConsole();

Encapsulation

In	the	example	in	the	previous	section,	the	Vendor	object	doesn't	need	to	know	the
implementation	of	the	logToConsole()	method	in	the	Person	class	and	can	use	that	method.
The	Vendor	class	doesn't	need	to	define	this	method	unless	overriding	for	a	specific	reason.
This	is	called	encapsulation,	in	which	the	Vendor	object	doesn't	need	to	know	the	actual
implementation	of	the	logToConsole()	method	and	each	Vendor	object	can	use	this	method	to
log	to	console.	This	is	how	the	encapsulation	is	done,	through	which	every	class	is
encapsulated	into	a	single	unit.

Abstraction

Abstraction	is	used	to	hide	all	the	information	except	the	data,	which	is	relevant	about	an
object,	to	reduce	complexity	and	increase	efficiency.	This	is	one	of	the	core	principles	of
OOP.

In	JavaScript,	there	is	no	built-in	support	for	abstraction	and	it	does	not	provide	any	type	such
as	an	interface	or	abstract	to	create	interfaces	or	abstract	classes	to	achieve	abstraction.
However,	there	are	certain	patterns	through	which	you	can	implement	abstraction	but	still	it
does	not	restrict	and	ensures	that	all	the	abstract	methods	are	completely	implemented	by	the
concrete	class	or	function.

Let's	have	a	look	at	the	following	example,	where	we	have	a	person	controller	that	takes	a
concrete	object	as	a	parameter,	and	then	calls	its	specific	implementation:

var	person	=	function	(id,	name)	{

		this._id	=	id;

		this._name	=	name;

		this.showMessage	=	function	()	{	};

}

var	vendor	=	function	(companyName,	location,	id,	name)	{

		this._companyName	=	companyName;

		this._location	=	location;

		person.call(this,	id,	name);

		this.showMessage	=	function	()	{

				alert("this	is	Vendor");

		}

}

var	employee	=	function	(employeeType,	dateOfJoining,	id,	name)	{

		this._employeeType	=	employeeType;

		this._dateOfJoining	=	dateOfJoining;

		person.call(this,	id,	name);

		this.showMessage	=	function	()	{

				alert("this	is	Employee");

		}

}

vendor.prototype	=	Object.create(person.prototype);

employee.prototype	=	Object.create(person.prototype);

var	personController	=	function	(person)	{

		this.personObj	=	person;

		this.showMessage	=	function	()	{

				this.personObj.showMessage();

		}

}

var	v1	=	new	vendor("ABC",	"USA",	"V-01",	"Vendor	1");

var	p1	=	new	personController(v1);

p1.showMessage();

Alternatively,	with	ECMAScript	6,	we	can	implement	the	same	scenario,	as	shown	in	the
following	code:

class	person	{

		constructor(id,	name)	{

				this._id	=	id;

				this._name	=	name;

		}

		showMessage()	{	};

}

class	vendor	extends	person	{

		constructor(companyName,	location,	id,	name)	{

				super(id,	name);

				this._companyName	=	companyName;

				this._location	=	location;

				

		}

		showMessage()	{

				alert("this	is	Vendor");

		}

}

class	employee	extends	person	{

		constructor(employeeType,	dateOfJoining,	id,	name)	{

				super(id,	name);

				this._employeeType	=	employeeType;

				this._dateOfJoining	=	dateOfJoining;

		}

		showMessage()	{

				alert("this	is	Employee");

		}

}

class	personController	{

		constructor(person)	{

				this.personObj	=	person;

		}

		showMessage()	{

				this.personObj.showMessage();

		}

}

var	v1	=	new	vendor("ABC",	"USA",	"V-01",	"Vendor	1");

var	p1	=	new	personController(v1);

p1.showMessage();

new.target

The	new.target	property	is	used	to	detect	whether	the	function	or	a	class	is	called	using	the
new	keyword.	It	returns	a	reference	to	the	function	or	a	class	if	it	is	called,	otherwise	null.
Considering	the	example	in	the	previous	section,	we	can	restrict	creating	the	call	objects	of
person	by	using	new.target:

class	person	{

		constructor(id,	name)	{

				if(new.target	===	person){

						throw	new	TypeError("Cannot	create	an	instance	of	Person	class	as	its	

abstract	in	nature");

				}

				this._id	=	id;

				this._name	=	name;

		}

		

		showMessage()	{	};

}

Namespace

ECMAScript	6	introduced	modules	through	which	you	can	define	namespaces	and	use	the
export	and	import	keywords	but	they	are	still	in	draft	and	no	implementations	are	present	so
far.

However,	with	earlier	versions,	namespaces	can	be	simulated	using	local	objects.	For
example,	here	is	the	syntax	to	define	a	local	object	represented	as	a	namespace	and	we	can	add
functions	and	objects	inside	it:

var	BusinessLayer	=	BusinessLayer	||	{};

We	can	then	add	functions,	as	shown	in	this	code:

BusinessLayer.PersonManager	=	function(){

};

Moreover,	more	nested	namespace	hierarchy	can	also	be	defined,	as	shown	in	the	following
code:

var	BusinessLayer	=	BusinessLayer	||	{};

var	BusinessLayer.Managers	=	BusinessLayer.Managers	||	{};

Exception	handling
JavaScript	is	becoming	a	powerful	platform	for	developing	large	applications,	and	exception
handling	plays	an	important	role	in	handling	exceptions	in	programs	and	propagate	them
where	needed.	Just	like	C#	or	any	other	programming	language,	JavaScript	provides	the	try,
catch,	and	finally	keywords	to	annotate	code	for	handling	errors.	JavaScript	provides	the
same	way	of	using	the	nested	try	catch	statements	and	conditions	for	handling	different
conditions	in	the	catch	block.

When	an	exception	occurs,	an	object	is	created	that	represents	the	error	thrown.	Just	like	C#,
we	have	different	types	of	exception,	such	as	InvalidOperationException,
ArgumentException,	NullException,	and	Exception.	JavaScript	provides	six	error	types,
which	are	as	follows:

Error

RangeError

ReferenceError

SyntaxError

TypeError

URIError

Error

The	Error	object	represents	generic	exceptions	and	is	mostly	used	in	returning	user-defined
exceptions.	An	Error	object	contains	two	properties,	namely	name	and	message.	Name
returns	the	type	of	error	and	message	returns	the	actual	error	message.	We	can	throw	error
exceptions,	as	shown	here:

try{	}catch{throw	new	Error("Some	error	occurred");}

RangeError

The	RangeError	exception	is	thrown	if	the	range	of	any	number	is	exceeded.	For	example,
creating	an	array	with	a	negative	length	will	throw	RangeError:

var	arr=	new	Array(-1);

ReferenceError

The	ReferenceError	exception	occurs	when	accessing	an	object	or	variable	that	does	not
exist;	for	example,	the	following	code	will	throw	a	ReferenceError	exception:

function	doWork(){

		arr[0]=1;

}

SyntaxError

As	the	name	states,	SyntaxError	is	thrown	if	there	is	any	syntax	problem	in	the	JavaScript

code.	So,	if	some	closing	bracket	is	missing,	loops	are	not	structured	properly,	and	so	on,	this
will	come	under	the	SyntaxError	category.

TypeError

The	TypeError	exception	occurs	when	a	value	is	not	of	the	excepted	type.	The	following	code
throws	a	TypeError	exception	as	the	object	is	trying	to	call	a	method	that	does	not	exist:

var	person	={};

person.saveRecord();

URIError

The	URIError	exception	occurs	with	encodeURI()	and	decodeURI()	when	an	invalid	URI	is
specified.	The	following	code	throws	this	error:

encodeURIComponent("-");

Closures
Closures	are	one	of	the	most	powerful	features	of	JavaScript.	Closures	provide	a	way	to
expose	inner	functions	that	are	inside	the	body	of	other	functions.	A	function	can	be	termed	a
closure	when	one	of	the	inner	functions	is	made	accessible	outside	the	function	in	which	it
was	contained	and	can	be	executed	after	the	outer	function	is	executed	and	use	the	same	local
variables,	parameters,	and	function	declarations	when	the	outer	function	was	called.

Let's	have	a	look	at	the	following	example:

function	Incrementor()	{

		var	x	=	0;

		return	function	()	{

				x++;

				console.log(x);

		}

}

var	inc=	Incrementor();

inc();

inc();

inc();

This	is	a	simple	closure	example,	in	which	inc()	becomes	the	closure	that	references	the
inner	function,	which	increments	the	x	variable	defined	in	the	outer	function.	The	x	variable
will	be	incremented	on	each	call	and	the	value	will	become	3	on	the	last	call.

A	closure	is	a	special	kind	of	object	that	combines	the	function	and	the	environment	in	which
that	function	was	created.	So,	calling	it	multiple	times	will	use	the	same	environment	and	the
values	being	updated	in	the	previous	call.

Let's	have	a	look	at	another	example,	where	we	have	a	table	generator	function	that	takes	a
table	number	and	returns	the	function,	which	can	be	used	to	get	the	result	of	any	number
multiplication	with	the	table	number	supplied	on	the	first	call:

function	tableGen(number)	{

		var	x	=	number;

		return	function	(multiplier)	{

				var	res	=	x	*	multiplier;

				console.log(x	+"	*	"+	multiplier	+"	=	"+	res);

		}

}

var	twotable	=	tableGen(2);

var	threetable	=	tableGen(3);

twotable(5);

threetable(6);

The	resultant	values	after	calling	the	twotable()	and	threetable()	methods	will	be	10	and

18.	This	is	because	the	twoTable()	function	object	was	initialized	by	passing	2	as	the
parameter	to	the	tableGen()	function.	This	tableGen()	function	then	stores	the	value	passed
as	a	parameter	in	the	x	variable	and	multiplies	it	with	the	variable	passed	in	the	second	call
when	it	is	executed	through	the	twoTable()	and	threeTable()	method	calls.

Hence,	the	output	of	the	twoTable(5)	function	call	will	be	10,	as	shown	in	the	following
screenshot:

The	output	of	the	second	statement,	threeTable(6),	will	be	18,	as	shown	in	the	following
screenshot:

Practical	use

We	have	seen	what	closures	are	and	how	we	can	implement	them.	However,	let's	consider
their	practical	implications.	Closures	let	you	associate	some	environment	with	a	function	that
operates	within	that	environment	or	data.

In	JavaScript,	functions	mostly	execute	on	any	event	or	trigger	on	any	action	taken	by	the
user.	Let's	have	a	look	at	the	following	example	of	the	practical	use	of	closures	to	log
messages	on	a	console	and	dialog	window:

<body>

		<input	type="text"	id="txtMessage"	/>

		<button	id="consoleLogger">	Log	to	Console	</button>

		<button	id="dialogLogger">Log	to	Dialog	</button>

		<script>

				function	getLogger(loggerType)	{

						return	function	()	{

								var	message	=	document.getElementById("txtMessage").value;

								if	(loggerType	==	"console")

								console.log(message);

								else	if	(loggerType	==	"dialog")

								alert(message);

						}

				}

				var	consoleLogger	=	getLogger("console");

				var	dialogLogger	=	getLogger("dialog");

				document.getElementById("consoleLogger").onclick	=	consoleLogger;

				document.getElementById("dialogLogger").onclick	=	dialogLogger;

		</script>

</body>

In	the	preceding	example,	we	have	two	logger	closures:	one	that	logs	to	the	console	and	the
other	one	to	a	pop-up	dialog	window.	We	can	initialize	these	closures	and	use	them
throughout	our	program	to	log	messages.

JavaScript	typed	arrays
Client-side	development	in	JavaScript	has	become	a	powerful	platform	and	there	are	certain
APIs	and	libraries	available	that	allow	you	to	work	with	media	files,	Web	sockets,	and	so	on,
and	handle	data	in	binary.	When	working	with	binary	data,	it	is	required	to	save	it	in	its	own
specific	format.	Here	comes	the	role	of	typed	arrays,	which	allow	developers	to	manipulate
data	in	a	raw	binary	format.

Typed	array	architecture

Typed	arrays	keep	the	data	in	two	portions,	namely	buffer	and	view.	Buffer	contains	the	actual
data	in	binary	but	it	cannot	be	accessible	without	view.	View	tells	the	actual	metadata
information	and	context	about	the	buffer,	such	as	data	type,	starting	offset,	and	number	of
elements.

The	array	buffer

The	array	buffer	is	a	data	type	that	is	used	to	represent	binary	data.	Its	content	cannot	be
manipulated	until	it	is	assigned	to	a	view,	which	represents	the	buffer	in	a	specific	format	and
performs	manipulation	on	the	data.

There	are	different	types	of	type	array	views,	which	are	as	follows:

Type Size	in	bytes Description

Int8Array 1 This	array	is	8-bit	signed	integer.

UInt8Array 1 This	array	is	8-bit	unsigned	integer.

Int16Array 2 This	array	is	16-bit	signed	integer.

UInt16Array 2 This	array	is	16-bit	unsigned	integer.

Int32Array 4 This	array	is	32-bit	signed	integer.

UInt32Array 4 This	array	is	32-bit	unsigned	integer.

Float32Array 4 This	array	is	32-bit	IEEE	floating	point	number.

Float64Array 8 This	array	is	64-bit	IEEE	floating	point	number.

UInt8ClampedArray 1 This	array	is	8-bit	unsigned	integer	(clamped).

Now,	let's	go	through	an	example	to	see	how	we	can	store	data	in	a	buffer	and	manipulate	it
through	a	view.

Creating	a	buffer

First	of	all,	we	need	to	create	a	buffer,	as	shown	in	this	code:

var	buffer	=	new	ArrayBuffer(32);

The	preceding	statement	allocates	the	memory	for	32	bytes.	Now	we	can	use	any	of	the	type
array	views	to	manipulate	it:

var	int32View=	new	Int32Array(buffer);

And	finally,	we	can	access	the	fields,	as	shown	here:

for(var	i=0;i<	int32View.length;	i++){

		int32View[i]	=	i;

}

This	code	will	make	eight	entries	into	the	view,	from	0	to	7.	The	output	will	look	as	follows:

0	1	2	3	4	5	6	7

The	same	buffer	can	also	be	manipulated	with	the	other	view	types.	For	example,	if	we	wanted
to	read	the	populated	buffer	with	a	16-bit	array	view,	the	result	will	be	like	this:

var	Int16View	=new	Int16Array(buffer);

for(var	i=0;i<	int16View.length;i++){

		console.log(int16View[0]);

}

The	output	will	look	as	follows:

0	0	1	0	2	0	3	0	4	0	5	0	6	0	7	0

This	is	how	easily	we	can	manipulate	single	buffer	data	with	multiple	views	of	different	types
and	interact	with	the	data	objects	containing	multiple	data	types.

Maps,	sets,	weak	maps,	and	weak	sets
Maps,	weak	maps,	sets,	and	weak	sets	are	objects	that	represent	collections.	Maps	are	keyed
collections	that	hold	values	in	name	value	pairs,	whereas	sets	store	unique	values	of	any	type.
We	will	discuss	each	of	them	in	the	next	sections.

Maps	and	weak	maps

A	Map	object	provides	a	simple	key/value	map	and	iterates	it	based	on	the	insertion.	The	first
inserted	value	will	be	retrieved	first.	Weak	maps	are	non-enumerable	and	hold	object	types
only.	No	primitive	types	are	allowed	in	weak	maps	and	each	key	represents	an	object.	Let's
have	a	look	at	the	following	example	of	using	a	map	for	currencies:

var	currencies	=	new	Map();

currencies.set("US",	"US	Dollar");

currencies.set("UK",	"British	Pound");

currencies.set("CA",	"Canadian	Dollar");

currencies.set("PK",	"Rupee");

currencies.set("UAE",	"Dirham");

for	(var	currency	of	currencies)	{

		console.log(currency[0]	+	"	currency	is	"	+	currency[1]);

}

Some	other	properties	and	methods	available	on	the	Map	object	are	shown	in	the	following
code:

currencies.get("UAE");	//	returns	dirham

currencies.size;	//	returns	5	

currencies.has("PK")	//	returns	true	if	found	

currencies.delete("CA")	//	delete	Canada	from	the	list

Instead	of	simple	primitive	values,	weak	maps	hold	objects	and	their	keys	are	represented	as
weak	keys.	This	is	because	if	there	is	no	reference	to	the	object	stored	in	a	weak	map	value
and	got	collected	in	garbage,	the	key	will	become	weak.	It	is	normally	used	to	store	private
data	for	an	object	or	to	hide	implementation	details.

We	learned	in	the	previous	section	that	everything	that	is	exposed	on	the	instance	level	and
prototype	level	is	public.	The	practical	example	containing	a	function	to	authenticate	a	user
from	a	Twitter	account	is	shown	in	the	following	code.	For	open	authentication	(OAuth),
Twitter	needs	two	keys:	the	consumer	API	key	and	a	secret	key.	We	don't	wanted	to	expose	and
let	the	user	to	change	this	information.	Therefore,	we	have	kept	this	information	using	weak
maps,	and	then	retrieved	it	in	the	prototype	function	to	authenticate	the	user:

var	authenticatorsecrets	=	new	WeakMap();

function	TwitterAuthenticator()	{

		const	loginSecret	=	{

				apikey:	'testtwitterapikey',

				secretkey:	'testtwittersecretkey'

		};

		authenticatorsecrets.set(this,	loginSecret);

}

TwitterAuthenticator.prototype.Authenticate	=	function	()	{

		const	loginSecretVal	=	authenticatorsecrets(this);

		//to	do	authenticate	with	twitter

};

Sets	and	weak	sets

Sets	are	the	collections	of	values	where	each	value	should	be	unique.	So,	for	example,	if	at
any	index	you	have	a	value,	1,	already	defined,	you	cannot	insert	it	into	the	same	set	instance.

Sets	are	not	typed	and	you	can	put	any	data,	irrespective	of	any	data	type:

var	set	=	new	Set();

set.add(1);

set.add("Hello	World");

set.add(3.4);

set.add(new	Date());

On	the	other	hand,	weak	sets	are	collections	of	unique	objects	and	not	the	arbitrary	values	of
any	type.	Just	like	weak	maps,	if	there	is	no	other	reference	to	the	object	stored,	it	will	be
disposed	and	garbage	collected.	Similar	to	weak	maps,	they	are	not	enumerable:

var	no	=	{	id:	1	};

var	abc	=	{	alphabets:	['a',	'b',	'c']	};

var	x	=	new	WeakSet();

x.add(no);

x.add(abc);

The	strict	mode

The	strict	mode	is	a	literal	expression	introduced	in	ECMAScript	5.	It	is	used	to	write	a
secure	JavaScript	and	throws	errors	if	there	are	any	minor	errors	on	your	script	and	doesn't
overlook	them.	Secondly,	it	runs	faster	than	the	normal	JavaScript	code	because	it	sometimes
fixes	mistakes,	which	helps	JavaScript	engines	to	perform	optimizations	and	make	your	code
run	faster.

We	can	invoke	the	strict	mode	on	a	global	script	level	or	a	function	level:

"use	strict;"

For	example,	in	the	following	code,	it	will	throw	an	error	as	the	x	variable	is	not	defined:

"use	strict";

x=100;

function	execute(){

		"use	strict;"

		x=100;

}

For	larger	applications,	it's	a	better	choice	to	use	the	strict	mode,	which	will	throw	an	error
if	something	is	missing	or	not	defined.	The	list	of	scenarios	where	using	the	strict	mode
will	result	in	an	error	is	shown	in	the	following	table:

Code Reason	for	error

x=100; In	this	code,	variable	is	not	declared.

x=	{id:1,	name:'ABC'}; In	this	code,	object	variable	is	not	declared.

function(x,x){}
Duplicating	the	parameter	name	caused	the	error	in	this
code.

var	x	=	0001 In	this	code,	octal	numeric	literals	are	used.

var	x=\0001 Escape	is	not	allowed,	so	the	error	occurred.

var	x	=	{get	val()	{return

'A'}};

x.val	=	'B'

Writing	to	a	get	value	caused	the	error	in	this	code.

delete	obj.prototype;
Deleting	object	prototype	is	not	allowed,	so	the	error
occurred.

var	x=	2;

delete	x;

Deleting	a	variable	is	not	allowed,	so	the	error	occurred.

Moreover,	there	are	certain	reserved	keywords,	such	as	arguments,	eval,	implements,
interface,	let,	package,	private,	protected,	public,	static,	and	yield,	which	are	not
allowed	as	well.

Summary
In	this	chapter,	we	learnt	about	some	advanced	concepts	of	JavaScript,	such	as	hoisted
variables	and	their	scope,	property	descriptors,	OOP,	closures,	typed	arrays	to	store	types	of
data,	and	exception	handling.	In	the	next	chapter,	we	will	learn	about	the	most	extensively	used
library,	jQuery,	to	perform	DOM	traversal	and	manipulation,	event	handling,	and	more	in	a
very	simple	and	easy	way.

Chapter	3.	Using	jQuery	in	ASP.NET
We	will	start	off	this	chapter	with	a	short	introduction	to	jQuery.	jQuery	is	a	JavaScript
library	developed	to	provide	a	better	development	experience	and	a	faster	coding	experience
by	writing	less	code	to	do	complex	operations	much	faster	compared	to	plain	vanilla
JavaScript.	However,	JavaScript	is	still	there	when	writing	custom	scripts	for	specific	reasons.
So,	jQuery	helps	you	perform	DOM	manipulation,	selecting	elements	based	on	class,	element
name,	and	so	on,	and	provides	a	better	event	handling	model	to	make	it	simpler	for
developers	to	use	in	their	routine	projects.

Compared	to	JavaScript,	another	advantage	is	the	cross	browser	issues.	It	offers	consistent
behavior	across	browsers.	JavaScript,	on	the	other	hand,	is	implemented	differently	by	each
browser.	Also,	in	order	to	handle	cross-browser	issues	in	JavaScript,	a	developer	tends	to
write	some	conditional	logic	to	check	what	browser	version	JavaScript	is	running	on	and
handle	it	accordingly;	whereas	jQuery	handles	all	the	heavy	lifting	of	what	the	browser	is	and
provides	consistent	behavior.

Some	powerful	features	of	jQuery	that	we	will	discuss	in	the	current	chapter	are	as	follows:

Working	with	selectors
Manipulating	the	DOM	elements
Handling	events

Getting	started	with	jQuery
The	jQuery	library	can	be	downloaded	from	http://jquery.com.	The	latest	version	of	jQuery	is
3.0.0	and	you	can	use	this	library	if	you	are	targeting	modern	browsers;	for	example,	IE	9	and
Microsoft	Edge	support	this	version.	For	older	versions—for	example,	IE	6-8—you	can
download	jQuery	1.x.

Once	jQuery	is	downloaded,	you	can	add	it	to	your	project	and	reference	it,	as	shown	here:

<head>

		<script	src="~/scripts/jquery.js"></script>

</head>

<body>

</body>

http://jquery.com

Using	a	content	delivery	network
Instead	of	loading	jQuery	from	your	server,	we	can	also	load	it	from	some	other	server,	such
as	the	Microsoft	server	or	Google	server.	These	servers	are	called	the	content	delivery
network	(CDN)	and	they	can	be	referenced	as	shown	here:

Referencing	the	Microsoft	CDN:

<script	src="http://ajax.microsoft.com/ajax/jquery/jquery-2.0.js">

</script>

Referencing	the	Google	CDN:

<script	src="http://ajax.googleapis.com/ajax/libs/jquery/2.0/jquery.min.js">

</script>

The	use	of	CDN

Actually,	these	CDNs	are	very	common	and	most	of	the	sites	already	use	them.	When	running
any	application	that	references	a	CDN,	there	are	chances	that	some	other	website	might	have
also	used	the	same	CDN	of	Microsoft	or	Google,	and	the	same	file	might	be	cached	on	the
client	side.	This	increases	the	page	rendering	performance.	Also,	downloading	the	jQuery
library	again	from	your	local	server	uses	the	cached	version	of	CDN.	Moreover,	Microsoft
and	Google	have	different	servers	available,	based	on	different	regions,	and	the	user	will	get
some	speed	benefits	too	when	using	it	from	a	CDN.

However,	there	are	certain	cases	when	the	CDN	might	be	down,	and	in	this	case,	you	might
have	to	refer	to	and	download	scripts	from	your	own	server.	To	handle	this	scenario,	we	can
specify	the	fallback	URL,	which	detects	whether	it	has	been	downloaded	from	CDN;
otherwise,	it	downloads	from	the	local	server.	We	can	use	the	following	script	to	specify	the
fallback:

<script	src="//ajax.googleapis.com/ajax/libs/jquery/1.2.6/jquery.min.js">

</script>

<script>if	(!window.jQuery)	{	document.write('<script	

src="/path/to/your/jquery"><\/script>');	}

</script>

The	window.jQuery	instance	tells	us	whether	jQuery	is	loaded;	otherwise,	it	writes	the	script
on	the	DOM,	which	refers	to	the	local	server.

Alternatively,	in	ASP.NET	Core,	we	can	use	the	asp-fallback-src	attribute	to	specify	the
fallback	URL.	ASP.NET	Core	1.0	provides	a	wide	range	of	tag	helpers.	Compared	to	the
HTML	helpers,	these	helpers	can	be	used	just	by	adding	the	HTML	attributes	to	the	page
elements	and	they	offer	developers	the	same	experience	as	writing	the	frontend	code.

The	same	code	can	be	written	in	a	simple	way	to	handle	the	fallback	scenarios	in	ASP.NET:

<script	src="https://ajax.aspnetcdn.com/ajax/jquery/jquery-2.1.4.min.js"

		asp-fallback-src="~/lib/jquery/dist/jquery.min.js"

		asp-fallback-test="window.jQuery">

</script>

In	ASP.NET	Core,	there	is	one	more	tag	helper,	<environment>,	which	can	be	used	to	load
scripts	based	on	the	current	environment	set	in	the	launchSettings.json	file:

Based	on	the	current	environment	set	in	the	project's	profile,	we	can	load	scripts	to	cater	to
debugging	and	production	scenarios.	For	example,	in	a	production	environment,	preferably,
we	used	to	specify	the	minified	version	of	the	JavaScript	libraries	as	it	removes	all	the	white
spaces	and	renames	the	variables	to	make	it	more	compressed	in	size	to	load	fast.	However,
for	debugging	purposes,	the	standard	non-minified	version	is	much	better	as	far	as	the
development	experience	is	concerned.	Therefore,	we	can	use	the	environment	tag	helper,	as
shown	in	the	following	code,	to	load	the	minified	version	for	production	and	standard	when
developing	an	application:

<environment	names="Development">

		<script	src="~/lib/jquery/dist/jquery.js"></script>

		<script	src="~/lib/bootstrap/dist/js/bootstrap.js"></script>

		<script	src="~/js/site.js"	asp-append-version="true"></script>

</environment>

<environment	names="Staging,Production">

		<script	src="https://ajax.aspnetcdn.com/ajax/jquery/jquery-2.1.4.min.js"

				asp-fallback-src="~/lib/jquery/dist/jquery.min.js"

				asp-fallback-test="window.jQuery">

		</script>

		<script	src="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.5/bootstrap.min.js"

				asp-fallback-src="~/lib/bootstrap/dist/js/bootstrap.min.js"

				asp-fallback-test="window.jQuery	&&	window.jQuery.fn	&&	

window.jQuery.fn.modal">

		</script>

		<script	src="~/js/site.min.js"	asp-append-version="true"></script>

</environment>

The	document	ready	event
The	jQuery	library	can	be	accessed	through	a	$	sign	or	simply	by	writing	jQuery.	However,
preferably,	developers	access	it	using	a	dollar	sign.	It	also	provides	a	way	to	catch	an	event
when	the	DOM	hierarchy	is	completely	loaded.	This	means	that	once	the	DOM	structure	is
loaded,	you	can	catch	this	event	to	perform	different	operations,	such	as	associating	the	CSS
class	with	controls	and	manipulating	control	values.	The	DOM	hierarchy	is	not	dependent	on
the	the	images	or	CSS	files	when	the	page	is	loading	and	the	document	ready	event	is	raised	in
parallel	irrespective	of	whether	the	images	or	CSS	files	are	downloaded	or	not.

We	can	use	the	document	ready	event,	as	shown	in	this	code:

<html>

		<head>

				<script	src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.12.0.min.js">

</script>

				<script>

						$(document).ready(function	()	{

								console.log("Document	is	lo	 aded");

						});

				</script>

		</head>

</html>

As	explained	in	the	preceding	code,	$	is	the	way	of	accessing	a	jQuery	object.	It	takes	a
document	object,	which	is	passed	as	a	parameter,	whereas	ready	checks	whether	the	document
object	model	hierarchy	is	loaded	completely	once.	Finally,	it	takes	an	anonymous	function	in
which	we	can	write	the	operation	that	we	need	to	perform.	In	the	preceding	example,	we	are
just	displaying	a	simple	text	message	when	the	DOM	hierarchy	gets	loaded.

The	jQuery	selectors
For	DOM	manipulation,	the	jQuery	selectors	play	an	important	role	and	provide	a	better	and
easy	one-line	approach	to	select	any	element	from	DOM	and	manipulate	its	values	and
attributes,	for	example,	searching	a	list	of	elements	with	a	specific	CSS	class	is	easier	with	the
jQuery	selectors.

The	jQuery	selectors	can	be	written	with	a	dollar	sign	and	parentheses.	We	can	use	the	jQuery
selectors	to	select	elements	based	on	the	element's	ID,	tag	name,	class,	attribute	value,	and
input	nodes.	We	will	look	into	these	elements	one	by	one	with	a	practical	example	in	the	next
section.

Selecting	the	DOM	elements	using	the	ID

The	following	example	shows	you	the	way	of	selecting	a	div	element	with	its	ID:

<!DOCTYPE	html>

<html>

		<head>

				<script	src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.12.0.min.js">

</script>

				<script>

						$(document).ready(function	()	{

								$('#mainDiv').html("<h1>Hello	World</h1>");

						});

				</script>

		</head>		

		<body>

				<div	id="mainDiv">

				

				</div>

		</body>

</html>

After	selecting	an	element,	we	can	call	various	methods	to	set	values.	In	the	given	example,
we	called	the	html()	method	that	takes	the	html	string	and	sets	Hello	World	as	the	first
heading.	On	the	other	hand,	the	html	content	can	be	retrieved	by	calling	this	code:

<script>

		$(document).ready(function	()	{

				var	htmlString=	$('#mainDiv').html();

		});

</script>

Selecting	the	DOM	elements	using	TagName

In	JavaScript,	we	can	retrieve	the	DOM	elements	by	calling
document.getElementsByTagName().	This	element	returns	an	array	of	elements	matched	with
the	tag	name.	In	jQuery,	this	can	be	achieved	in	an	easier	way	and	the	syntax	is	quite	simple.

Consider	the	following	example:

$('div')	//returns	all	the	div	elements	

Let's	have	a	look	at	the	following	example	to	clarify	our	understanding:

<!DOCTYPE	html>

<html>

		<head>

				<script	src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.12.0.min.js">

</script>

				<script>

						$(document).ready(function	()	{

								$('div').css('text-align,	'left');

						});

				</script>

		</head>		

		<body>

				<div	id="headerDiv">

						<h1>Header</h1>

				</div>

				<div	id="mainDiv">

						<p>Main</p>

				</div>

				<div	id="footerDiv">

						<footer>Footer</footer>

				</div>

		</body>

</html>

The	preceding	example	sets	all	the	div	child	controls	alignment	to	the	left.	If	you	note	here,
we	didn't	have	to	loop	through	all	the	div	controls	to	set	the	background	color	and	the	style
has	been	set	on	all.	However,	there	are	certain	cases	in	which	you	might	need	to	set	different
values	based	on	the	index	of	each	element	residing,	and	this	can	be	done	using	the	each()
function	on	div.	For	example,	the	following	script	shows	you	the	way	of	assigning	an	index
value	as	an	html	string	on	each	div	control	using	the	each	function:

<script>

		$(document).ready(function	()	{

				$('div').each(function	(index,	element)	{

						$(element).html(index);

				});

		});

</script>

Each	function	takes	a	function	with	the	index	and	elements	as	a	parameter.	We	can	access	each
element	using	a	dollar	sign,	as	shown	in	the	preceding	code,	and	set	the	index	as	the	content
by	calling	the	html	method.	The	output	will	be	similar	to	the	following	screenshot:

Let's	have	a	look	at	another	example	that	displays	the	content	of	each	div	control	in	a	console
window.	Here,	the	each()	function	takes	no	parameters	and	each	item	in	the	loop	can	be
accessed	through	the	this	keyword:

<!DOCTYPE	html>

<html>

		<head>

				<script	src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.12.0.min.js">

</script>

				<script>

						$(document).ready(function	()	{

								$('div').each(function	()	{

										alert($(this).html());

								});

						});

				</script>

		</head>		

		<body>

				<div	id="headerDiv">

						<h1>Demo	</h1>

				</div>

				<div	id="mainDiv">

						<p>This	is	a	demo	of	using	jQuery	for	selecting	elements</p>

				</div>

				<div	id="footerDiv">

						<footer>	Copyright	-	JavaScript	for	.Net	Developers	</footer>

				</div>

		</body>

</html>

The	output	will	be	as	follows:

There	are	various	other	methods	available,	which	you	can	refer	to	in	the	jQuery
documentation.	Therefore,	with	selectors,	we	can	search	any	element	in	a	faster	and	more
efficient	way.

Another	example	is	selecting	multiple	elements	using	the	tag	name,	as	follows.

<html>

		<head>

				<script	src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.12.0.min.js">

</script>

				<script>

						$(document).ready(function	()	{

								$('div,	h1,	p,	footer').each(function	()	{

										console.log($(this).html());

								});

						});

				</script>

		</head>		

		<body>

				<div	id="headerDiv">

						<h1>Demo	</h1>

				</div>

				<div	id="mainDiv">

						<p>This	is	a	demo	of	using	jQuery	for	selecting	elements</p>

				</div>

				<div	id="footerDiv">

						<footer>	Copyright	-	JavaScript	for	.Net	Developers	</footer>

				</div>

		</body>

</html>

The	result	will	be	as	follows.	Each	item's	inner	html	code	will	be	logged	in	the	console:

Selecting	nodes	by	the	class	name

The	class	name	selector	is	quite	similar	to	the	ID	selector;	the	only	difference	is	that	it	uses	a
period	character,	.,	before	the	class	name.	It	facilitates	traversing	all	the	DOM	elements	and
finding	the	elements	that	have	the	same	class	name	specified	in	the	selector.	It	can	be	used	as
follows:

$(.classname);

Let's	have	a	look	at	the	following	example	that	shows	you	the	way	of	selecting	elements	based
on	the	class	name	selector.	In	the	following	code	snippet,	we	use	the	bootstrap	theme	and
apply	different	classes	to	the	buttons.	With	the	help	of	the	class	name	selector,	we	can	select
controls	and	update	the	class	name.	The	following	example	will	return	two	elements	based	on
the	selection	criteria	specified:

<!DOCTYPE	html>

<html>

		<head>

				<link	rel="stylesheet"	type="text/css"	href="Content/bootstrap.css"	/>

				<script	src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.12.0.min.js">

</script>

				<script>

						$(document).ready(function	()	{

								var	lst	=	$('.btn-primary');

								alert(lst.length);

						});

				</script>

		</head>		

		<body>

				<div	class="container">

						<p></p>

						<button	type="button"	class="btn	btn-primary	active">Edit	</button>

						<button	type="button"	class="btn	btn-primary	disabled">Save</button>

						<button	type="button"	class="btn	btn-danger"	

value="Cancel">Cancel</button>

				</div>

		</body>

</html>

Unlike	accessing	class	names,	we	can	restrict	the	search	by	specifying	the	tag	name	before	the
period	and	class	name.	You	can	use	$('button.active')	to	search	for	all	the	buttons	that	are
active.

Selecting	by	the	attribute	value

In	certain	cases,	you	may	have	to	select	the	elements	based	on	the	attribute	or	its	value.	The
jQuery	library	provides	a	very	concise	way	of	searching	elements	based	not	only	on	the
attribute,	but	its	value	as	well.

The	syntax	of	using	this	selector	is	specifying	the	element	name	followed	by	a	square	bracket
containing	the	attribute	name	and	value,	which	is	optional:

$(elementName[attributeName=value])

For	example,	the	following	code	selects	all	the	elements	that	have	type	as	an	attribute:

<!DOCTYPE	html>

<html>

		<head>

				<link	rel="stylesheet"	type="text/css"	href="Content/bootstrap.css"	/>

				<script	src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.12.0.min.js">

</script>

				<script>

						$(document).ready(function	()	{

								var	lst	=	$('input[type]');

								console.log(lst.length);

						});

				</script>

		</head>		

		<body>

				<div	class="container">

						<p></p>

						<input	type="text"	value="hello	world"	/>

						<input	type="text"	value="this	is	a	demo"	/>

						<input	type="button"	value="Save"	/>

				</div>

		</body>

</html>

In	this	example,	we	have	three	input	controls	that	have	a	type	attribute.	So,	the	result	will	be	3.
In	the	same	way,	if	you	want	to	search	for	the	elements	that	have	a	value	equal	to	hello
world,	we	can	use	the	following	code:

<script>

		$(document).ready(function	()	{

				var	lst	=	$('input[value="hello	world"]');

				alert(lst.length);

		});

</script>

One	thing	to	note	is	that	the	attribute	value	is	case	sensitive,	and	so,	with	this	expression,	you
should	consider	the	exact	case	as	the	attribute	value.	However,	there	are	other	ways	as	well,
that	is,	using	^	to	search	a	value	that	contains,	starts,	or	ends	with	particular	text.

Let's	have	a	look	at	the	following	example,	alert,	which	is	based	on	searching	a	value	that
starts	with	an	expression:

<!DOCTYPE	html>

<html>

		<head>

				<link	rel="stylesheet"	type="text/css"	href="Content/bootstrap.css"	/>

				<script	src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.12.0.min.js">

</script>

				<script>

						$(document).ready(function	()	{

								var	lst	=	$('input[value^="Pr"]');

								alert(lst.length);

						});

				</script>

		</head>

		<body>

				<div	class="container">

						<p></p>

						<input	type="text"	value="Product	1"	/>

						<input	type="text"	value="This	is	a	description"	/>

						<input	type="button"	value="Process"	/>

				</div>

		</body>

</html>

On	the	other	hand,	we	can	also	search	a	value	that	ends	with	a	text	using	the	$	symbol.	Here	is
the	code	to	search	the	text	that	ends	with	1:

<script>

		$(document).ready(function	()	{

				var	lst	=	$('input[value$="1"]');

				alert(lst.length);

		});

</script>

Finally,	searching	for	a	text	that	contains	some	text	can	be	achieved	using	*	and	here	is	the
code	to	run	this	example:

<script>

		$(document).ready(function	()	{

				var	lst	=	$('input[value*="ro"]');

				alert(lst.length);

		});

</script>

Selecting	input	elements

Input	controls	in	HTML	have	a	wide	range	of	different	controls.	Controls	such	as	textarea,
button,	input,	select,	image,	and	radio	are	input	controls.	These	controls	are	normally	used
in	form-based	applications.	Therefore,	jQuery	specifically	provides	the	selecting	option	to
select	input	controls	based	on	different	criteria.

This	selector	starts	with	a	dollar	and	the	input	keyword	followed	by	the	attribute	and	value:

$(':input[attributeName=value]);

However,	in	the	previous	section,	we	have	already	seen	how	to	search	any	element	with	the
attribute	name	and	value.	So,	if	we	want	to	search	all	the	input	controls	with	the	type	that
equals	to	text,	it	is	achievable.

This	selector	is	less	performance-efficient	in	particular	scenarios	and	searches	out	all	the
controls	that	are	a	part	of	the	input	group	and	finds	the	attribute	with	its	value;	whereas,	this
selector	will	only	search	in	the	input	controls.	When	writing	programs,	using	this	method	is	a
better	choice	if	something	is	specifically	targeting	the	input	control	properties.

Let's	have	a	look	at	the	following	example	in	ASP.NET	Core	MVC	6	that	applies	the	CSS
properties	once	the	document	is	loaded	completely:

@model	WebApplication.ViewModels.Book.BookViewModel

@{

		ViewData["Title"]	=	"View";

}

<script	src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.12.0.min.js">

</script>

<script>

		$(document).ready(function	()	{

				$(':input').each(function	()	{

						$(this).css({	'color':	'darkred',	'background-color':	'ivory',	'font-

weight':	'bold'	});				});

		});

</script>

<form	asp-action="View"	class="container">

		

		<div	class="form-horizontal">

				<div	class="form-group">

						<label	asp-for="Name"	class="col-md-2	control-label"></label>

						<div	class="col-md-10">

								<input	asp-for="Name"	class="form-control"	/>

								

						</div>

				</div>

				<div	asp-validation-summary="ValidationSummary.ModelOnly"	class="text-

danger"></div>

				<div	class="form-group">

						<label	asp-for="Description"	class="col-md-2	control-label"></label>

						<div	class="col-md-10">

								<textarea	asp-for="Description"	class="form-control"	></textarea>

								

						</div>

				</div>

				<div	class="form-group">

						<div	class="col-md-offset-2	col-md-10">

								<input	type="submit"	value="Save"	class="btn	btn-primary"	/>

						</div>

				</div>

		</div>

</form>

<div>

		<a	asp-action="Index">Back	to	List

</div>

The	output	of	the	preceding	code	snippet	is	as	follows:

Selecting	all	the	elements

The	jQuery	library	provides	you	with	a	special	selector	that	brings	the	collection	of	all	the
elements	defined	in	a	DOM.	Instead	of	the	standard	controls,	it	also	returns	the	elements,	such
as	<html>,	<head>,	<body>,	<link>,	and	<script>.

The	syntax	of	getting	all	the	elements	is	$("*")	and	the	following	example	lists	down	all	the
elements	of	the	DOM	on	the	browser's	console:

<!DOCTYPE	html>

<html>

		<head>

				<link	rel="stylesheet"	type="text/css"	href="Content/bootstrap.css"	/>

				<script	src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.12.0.min.js">

</script>

				<script>

						$(document).ready(function	()	{

								$("*").each(function	()	{

										console.log($(this).prop('nodeName'));

								});				

						});

				</script>

		</head>		

		<body>

				<form	class="container">

						<div	class="form-group">

								<label>Name</label>

								<input	type="text"	class="form-control"/>

						</div>

				</form>		

		</body>

</html>

In	the	preceding	code,	we	used	the	prop	method	that	takes	the	property	name	to	display
element	names.	Here,	in	the	prop	method,	we	can	use	either	tagName	or	nodeName	to	display
name	types.	Finally,	on	the	browser's	console,	a	login	page	will	be	displayed,	as	follows:

Selecting	the	first	and	last	child	elements

The	jQuery	library	provides	special	selectors	to	select	all	the	first	elements	or	last	elements
of	their	parent	element.

The	syntax	of	selecting	the	first	child	of	all	the	parent	elements	is	as	follows:

$(elementName:first-child);

The	syntax	of	selecting	the	last	child	of	all	the	parent	elements	is	as	follows:

$(elementName:last-child);

The	following	example	shows	you	the	way	of	changing	the	font	style	of	the	first	and	last	child
of	the	select	options:

<!DOCTYPE	html>

<html>

		<head>

				<link	rel="stylesheet"	type="text/css"	href="Content/bootstrap.css"	/>

				<script	src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.12.0.min.js">

</script>

				<script>

						$(document).ready(function	()	{

								$('option:first-child').css('font-style',	'italic');

								$('option:last-child').css('font-style',	'italic');

								alert(lst.length);

						});

				</script>

		</head>

		<body>

				<select>

						<option>--select--</option>

						<option>USA</option>

						<option>UK</option>

						<option>Canada</option>

						<option>N/A</option>

				</select>

		</body>

</html>

The	output	will	be	as	follows:

The	contains	selector	in	jQuery

The	contains	selector	is	used	to	find	the	text	in	the	HTML	container	elements,	such	as	<div>
and	<p>.	This	selector	searches	all	the	elements	of	a	specific	type	and	finds	the	text	passed	as	a
parameter	to	the	contains()	function.	An	example	that	displays	the	text	of	the	div	elements
that	contains	the	text	is	shown	in	the	following	code.	This	is	case-sensitive,	so	make	sure	to
supply	the	correct	case	when	searching.

The	following	code	will	display	an	alert	with	the	value,	2,	as	it	finds	two	div	elements
containing	the	text,	demo:

<!DOCTYPE	html>

<html>

		<head>

				<link	rel="stylesheet"	type="text/css"	href="Content/bootstrap.css"	/>

				<script	src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.12.0.min.js">

</script>

				<script>

						$(document).ready(function	()	{

								var	lst	=	$('div:contains("demo")');

								alert(lst.length);

						});

				</script>

		</head>

		<body>

				<div>

						This	is	a	sample	demo	for	contains	selector

				</div>

				<div>

						Demo	of	the	selector	

				</div>

				<div>

						Sample	demo

				</div>

		</body>

</html>

Selecting	the	even	and	odd	rows	selectors

These	types	of	selectors	work	on	the	rows	in	a	table	and	are	usually	used	to	provide	special
formatting	to	the	odd	or	even	rows	by	changing	the	color	of	each	odd	row	to	make	it	look
more	like	a	grid.	We	can	use	this	type	of	selector	with	the	following	syntax:

$('tr:even');

$('tr:odd');

Let's	have	a	look	at	the	following	example	to	change	all	the	row	colors	in	a	table	to	gray:

<!DOCTYPE	html>

<html>

		<head>

				<link	rel="stylesheet"	type="text/css"	href="Content/bootstrap.css"	/>

				<script	src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.12.0.min.js">

</script>

				<script>

						$(document).ready(function	()	{

								$('tr:odd').css('background-color',	'grey');

						});

				</script>

		</head>

		<body>

				<table>

						<thead>

								<tr><th>Product	Name</th><th>Description</th><th>Price</th></tr>

						</thead>

						<tbody>

								<tr><td>Product	1</td><td>This	is	Product	1</td><td>$100</td></tr>

								<tr><td>Product	2</td><td>This	is	Product	2</td><td>$500</td></tr>

								<tr><td>Product	3</td><td>This	is	Product	3</td><td>$330</td></tr>

								<tr><td>Product	4</td><td>This	is	Product	4</td><td>$50</td></tr>

								<tr><td>Product	5</td><td>This	is	Product	5</td><td>$1000</td></tr>

								<tr><td>Product	6</td><td>This	is	Product	6</td><td>$110</td></tr>

								<tr><td>Product	7</td><td>This	is	Product	7</td><td>$130</td></tr>

								<tr><td>Product	8</td><td>This	is	Product	8</td><td>$160</td></tr>

								<tr><td>Product	9</td><td>This	is	Product	9</td><td>$20</td></tr>

								<tr><td>Product	10</td><td>This	is	Product	10</td><td>$200</td></tr>

						</tbody>

				</table>

		</body>

</html>

Manipulating	DOM
In	this	section,	we	will	see	some	examples	of	manipulating	DOM	through	the	jQuery	methods.
The	jQuery	library	provides	an	extensive	library	of	performing	different	operations	on	the
DOM	elements.	We	can	easily	modify	the	element	attributes,	apply	styles,	and	iterate	through
different	nodes	and	properties.	We	have	already	seen	some	examples	in	the	previous	section,
and	this	section	will	focus	on	the	DOM	manipulation	specifically.

Modifying	an	element's	properties

When	working	with	a	client-side	scripting	language,	modifying	an	element's	attributes	and
reading	them	is	a	vital	task.	In	plain	JavaScript,	this	can	be	achievable	by	writing	a	few	lines
of	code;	however,	with	jQuery,	it	can	be	achieved	in	a	quicker	and	nicer	way.

Modifying	any	properties	of	an	element,	which	is	to	be	selected,	can	be	done	with	the	various
options	listed	in	the	previous	section.	Each	property	listed	in	the	following	table	provides
both	the	get	and	set	options	and	takes	parameter(s)	when	setting	something	and	no
parameters	when	reading	it.

There	are	some	common	methods	available	to	modify	an	element,	namely	html,	value,	and
so	on,	in	jQuery.	For	more	methods,	you	can	refer	to
http://api.jquery.com/category/manipulation/.

The	get
method The	set	method Description

.val() .val('any	value')
This	method	is	used	to	read	or	write	any	value	of	the
DOM	element.

.html()
.html('any	html

string')

This	method	is	used	to	read	or	write	any	HTML
content	of	the	DOM	element.

.text() .text('any	text')
This	method	is	used	to	read	or	write	the	text	content.
HTML	will	not	be	returned	in	this	method.

.width() .width('any	value')
This	method	is	used	to	update	the	width	of	any
element.

.height() .height('any	value')
This	method	is	used	to	read	or	modify	the	height	of
any	element.

http://api.jquery.com/category/manipulation/

.attr() .attr('attributename',

'value')
This	method	is	used	to	read	or	modify	the	value	of	a
specific	element's	attribute.

.prop() .prop()

This	method	is	the	same	as	attr()	but	more
efficient	when	dealing	with	the	value	property	that
returns	the	current	state.	For	example,	the	attr()
checkbox	provides	the	default	value	whereas	prop()
gives	the	current	state,	that	is,	true	or	false.

.css('style-

property')

.css({'style-

property1':	value1,

'style-property2':

value2,	'style-

propertyn':valueN	}

This	method	is	used	to	set	any	property	of	style,
such	as	the	font	size,	font	family,	and	width	for	a
particular	element.

Let's	have	a	look	at	the	following	example,	which	uses	the	html(),	text(),	and	css()
modifiers	and	updates	the	p	element	with	html,	text,	and	increaseFontSize:

<!DOCTYPE	html>

<html>

		<head>

				<link	rel="stylesheet"	type="text/css"	href="Content/bootstrap.css"	/>

				<script	src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.12.0.min.js">

</script>

				<script>

						function	updateHtml()	{

								$('p').html($('#txtHtml').val());

						}

						function	updateText()	{

								$('p').text($('#txtText').val());

						}

						function	increaseFontSize()	{

								var	fontSize	=	parseInt($('p').css('font-size'));

								var	fontSize	=	fontSize	+	1	+"px";

								$('p').css({'font-size':	fontSize});

						}

				</script>

		</head>

		<body	>

				<form	class="form-control">

						<div	class="form-group">

								<p>this	is	a	book	for	JavaScript	for	.Net	Developers</p>

						</div>

						<div	class="form-group">

								Enter	HTML:	<input	type="text"	id="txtHtml"	/>

								<button	onclick="updateHtml()">Update	Html</button>

						</div>

						<div	class="form-group">

								Update	Text:	<input	type="text"	id="txtText"	/>

								<button	onclick="updateText()">Update	Text</button>

						</div>

						<div	class="form-group">

								<button	onclick="increaseFontSize()">Increase	Font	Size</button>

						</div>

				</form>

		</body>

</html>

The	outcome	of	the	preceding	HTML	code	is	as	follows:

You	can	update	HTML	by	clicking	on	the	Update	Html	button	and	plain	text	by	clicking	on
the	Update	Text	button:

Finally,	the	font	size	can	be	increased	by	clicking	on	the	Increase	Font	Size	button:

Creating	new	elements

The	jQuery	library	provides	a	smart	way	of	creating	new	elements.	Elements	can	be	created
using	the	same	$()	method	and	passing	html	as	a	parameter.	Once	the	element	is	created,	it
cannot	be	shown	until	it	is	added	to	the	DOM.	There	are	various	methods	available	that	help
append,	insert	after,	or	insert	before	any	element,	and	so	on.	The	following	table	shows	the
list	of	all	the	methods	used	to	add	new	elements	to	the	DOM:

The	get	method Description

.append()
This	method	is	used	to	insert	the	HTML	content	into	the	element	from
which	it	has	been	called

.appendTo()
This	method	is	used	to	insert	every	element	at	the	end	from	which	it	has
been	called

.before()
This	method	is	used	to	insert	the	HTML	content	before	the	element	from
which	it	has	been	called

.after()
This	method	is	used	to	insert	the	HTML	content	after	the	element	from
which	it	has	been	called

.insertAfter()
This	method	is	used	to	insert	the	HTML	content	after	every	element	from
which	it	has	been	called

.insertBefore()
This	method	is	used	to	insert	the	HTML	content	before	every	element
from	which	it	has	called

.prepend()
This	method	is	used	to	insert	the	HTML	content	into	the	element	at	the
starting	position	from	which	it	has	been	called

.prepend()
This	method	is	used	to	insert	the	HTML	content	from	the	starting	position
for	each	element	from	which	it	has	been	called

The	following	example	creates	a	form	with	two	fields,	Name	and	Description,	and	a	button	to
save	these	values:

<!DOCTYPE	html>

<html>

		<head>

				<link	rel="stylesheet"	type="text/css"	href="Content/bootstrap.css"	/>

				<script	src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.12.0.min.js">

</script>

				<script>

						$(document).ready(function	()	{

								var	formControl	=	$("<form	id='frm'	class='container'	></form>");

								$('body').append(formControl);

								var	nameDiv	=	$("<div	class='form-group'><label	id='lblName'>Enter	Name:

</label>	<input	type='text'	id='txtName'	class='form-control'	/></div>");

								var	descDiv	=	$("<div	class='form-group'><label	id='lblDesc'>Enter	

Description:	</label>	<textarea	class='form-control'	type='text'	

id='txtDescription'	/></div>");

								var	btnSave	=	$("<button	class='btn	btn-primary'>Save</button>")

								formControl.append(nameDiv);

								formControl.append(descDiv);

								formControl.append(btnSave);						

						});

						</script>

				</head>							

		<body>

		</body>

</html>

This	code	will	give	the	following	output:

Removing	elements	and	attributes

With	the	option	of	using	different	methods	to	create	and	render	elements	in	the	DOM,	jQuery
also	provides	a	few	methods	to	remove	elements	from	the	DOM.	The	following	table	is	a	list
of	methods	that	we	can	use	to	remove	a	particular	element,	set	of	elements,	or	all	child	nodes:

Methods Description

.empty() This	method	removes	the	inner	HTML	code	from	the	element

.detach() This	method	removes	the	set	of	matched	elements	from	the	DOM

.remove() This	method	removes	the	set	of	matched	elements	from	the	DOM

.removeAttr() This	method	removes	a	particular	attribute	from	the	element

.removeClass() This	method	removes	a	class	from	an	element

.removeProp() This	method	removes	a	property	from	an	element

The	difference	between	remove()	and	detach()	is	that	remove	removes	the	content	from	the
DOM	permanently;	this	means	that	if	the	element	has	specific	events	or	data	associated,	these
events	or	data	will	also	be	removed.	However,	detach	just	separates	and	isolates	the	element
from	the	DOM	and	returns	the	content	that	you	can	save	in	some	variable	for	later	attachment:

@model	WebApplication.ViewModels.Book.BookViewModel

@{

		ViewData["Title"]	=	"View";

}

<script	src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.12.0.min.js">

</script>

<script>

		var	mainDivContent=undefined

		$(document).ready(function	()	{

				$('button').click(function	()	{

						if	(mainDivContent)	{

								mainDivContent.appendTo('#pageDiv');

								mainDivContent	=	null;

						}	else	{

								mainDivContent	=	$('#mainDiv').detach();

						}

				});

		});

</script>

<div	id="pageDiv"	class="container">

		

		<div	id="mainDiv"	class="form-horizontal">

				<div	class="form-group">

						<label	asp-for="Name"	class="col-md-2	control-label"></label>

						<div	class="col-md-10">

								<input	asp-for="Name"	class="form-control"	/>

						</div>

				</div>

		</div>

		<div	class="form-group">

				<div	class="col-md-offset-2	col-md-10">

						<button	class="btn	btn-primary">	Detach/Attach</button>

				</div>

		</div>

</div>

On	detaching,	the	output	will	be	as	follows:

On	attaching,	the	output	will	be	similar	to	the	following	screenshot:

Event	handling	in	jQuery
The	jQuery	event	model	provides	a	better	way	of	handling	events	on	the	DOM	elements.
Programmatically,	if	developers	want	to	register	any	event	of	the	user's	action;	for	example,	a
button	click	event	can	be	a	cumbersome	process	when	working	with	plain	JavaScript.	This	is
because	different	browsers	have	different	implementations	and	the	syntax	is	somehow
different	from	one	another.	The	jQuery	library,	on	the	other	hand,	provides	a	cleaner	syntax
and	developers	don't	have	to	work	on	the	cross	browser	issues.

Registering	events	in	jQuery

There	are	many	shortcuts	available	in	jQuery	to	register	events	to	different	elements.	The
following	table	shows	you	a	list	of	all	these	events	with	specific	descriptions:

Events Description

click() This	event	is	used	when	the	mouse	click	occurs

.dblclick() This	event	is	used	when	the	double-click	occurs

.mousedown() This	event	is	used	when	any	of	the	mouse	buttons	are	pressed

.mouseup() This	event	is	used	when	any	of	the	mouse	buttons	are	released

.mouseenter() This	event	is	used	when	the	mouse	enters	the	section

.mouseleave() This	event	is	used	when	the	mouse	leaves	the	section

.keydown() This	event	is	used	when	a	keyboard	key	is	pressed

.keyup() This	event	is	used	when	the	keyboard	key	is	released

.focus() This	event	is	used	when	the	element	is	focused

.blur() This	event	is	used	when	the	element	loses	focus

.change() This	event	is	used	when	the	item	is	changed

There	are	various	other	events,	which	you	can	check	out	at
http://api.jquery.com/category/events.

Registering	an	event	is	quite	simple	using	jQuery.	First	of	all,	the	element	has	to	be	selected
by	choosing	any	of	the	selectors	and	then	registering	the	events	by	calling	a	specific	event
handler;	for	example,	the	following	code	snippet	will	register	the	click	event	for	the	button:

$(document).ready(function({

		$('#button1').click(function(){

				console.log("button	has	been	clicked");

		});

)};

After	the	preceding	example	code,	register	the	asp.net	button	click	event	and	call	the	Contact
action	of	the	controller	of	Home	in	ASP.NET:

<script	src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.12.0.min.js">

</script>

<script>

		var	mainDivContent=undefined

		$(document).ready(function	()	{

				$('#btnSubmit').click(function	()	{

						window.location.href	=	'@Url.Action("Contact",	"Home")';		

				});

		});

</script>

<div	id="pageDiv"	class="container">

		

			

		<div	class="form-group">

				<div	class="col-md-offset-2	col-md-10">

						<button	id="btnSubmit"	class="btn	btn-primary">	Submit</button>

				</div>

		</div>

</div>

In	the	preceding	example,	we	used	the	HTML	helper,	Url.Action,	through	the	Razor	syntax,
which	generated	the	URL	and	set	it	to	the	href	property	of	the	window's	current	location.
Now,	click	on	the	button	shown	in	the	following	screenshot:

The	following	contact	page	will	be	displayed:

http://api.jquery.com/category/events

Another	example	shown	here	will	change	the	background	color	of	all	input	controls	to
aliceblue	when	the	control	is	focused	and	change	back	to	white	when	it	blurs:

@model	WebApplication.ViewModels.Book.BookViewModel

@{

		ViewData["Title"]	=	"View";

}

<script	src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.12.0.min.js">

</script>

<script>

		var	mainDivContent=undefined

		$(document).ready(function	()	{

				$('#btnSubmit').click(function	()	{

						window.location.href	=	'@Url.Action("Contact",	"Home")';		

				});

				$('input').each(function	()	{

						$(this).focus(function	()	{

								$(this).css('background-color',	'aliceblue');

						})

						$(this).blur(function	()	{

								$(this).css('background-color',	'white');

						});

				});

		});

</script>

<div	id="pageDiv"	class="container">

		

		<div	id="mainDiv"	class="form-horizontal">

				<div	class="form-group">

						<label	asp-for="Name"	class="col-md-2	control-label"></label>

						<div	class="col-md-10">

								<input	asp-for="Name"		class="form-control"	/>

						</div>

				</div>

				<div	class="form-group">

						<label	asp-for="Description"	class="col-md-2	control-label"></label>

						<div	class="col-md-10">

								<input	asp-for="Description"	class="form-control"	/>

						</div>

				</div>

		</div>

		<div	class="form-group">

				<div	class="col-md-offset-2	col-md-10">

						<button	id="btnSubmit"	class="btn	btn-primary">	Submit</button>

				</div>

		</div>

</div>

Binding	events	using	on	and	off

Apart	from	registering	events	directly	by	calling	the	event	handler,	we	can	also	register	them
using	on	and	off.	These	events	register	and	deregister	the	event	for	specific	elements.

Here	is	a	simple	example	of	binding	a	click	event	to	a	button	using	on:

$(document).ready(function	()	{

		$('#btnSubmit').on('click',	function	()	{

				window.location.href	=	'@Url.Action("Contact",	"Home")';

		});

});

This	is	a	very	useful	technique	and	can	be	used	in	certain	conditions	where	you	want	to
deregister	any	event.	For	example,	business	applications	are	mostly	related	to	form	handling,
and	forms	can	be	submitted	using	some	button	that	posts	the	request	to	some	server.	In	certain
conditions,	we	have	to	restrict	the	user	to	submit	multiple	times	until	the	first	request	has	been
processed.	To	handle	this	problem,	we	can	use	the	on()	and	off()	events	to	register	and
deregister	them	when	the	user	clicks	the	first	time.	Here	is	an	example	that	deregisters	the
button-click	event	when	it	is	clicked	for	the	first	time:

<script	src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.12.0.min.js">

</script>

<script>

		$(document).ready(function	()	{

				$('#btnSubmit').on('click',	function	()	{

						$('#btnSubmit').off('click');							

				});

		});

</script>

The	preventDefault()	event	is	just	the	cancel	event	that	we	used	to	have	in	.NET.	This	event
is	used	to	cancel	the	event	from	execution.	It	can	be	used	as	follows:

<script	src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.12.0.min.js">

</script>

<script>

		$(document).ready(function	()	{

				$('#btnSubmit').on('click',	function	(event)	{

						event.preventDefault();

				});

		});

</script>

The	on()	method	is	equivalent	to	the	delegate()	method	used	with	the	previous	version	of
jQuery.	Since	jQuery	1.7,	delegate()	has	been	replaced	with	on().

There	is	one	more	overloaded	method,	on,	which	takes	four	parameters:

$(element).on(events,	selector,	data,	handler);

Here,	element	is	the	control	name,	events	is	the	event	that	you	want	to	register,	and	selector
is	a	new	thing,	which	can	be	the	child	element	of	the	parent	control.	For	example,	for	a	table
element	selector,	it	could	be	td;	and	on	each	click	event	of	td,	we	can	do	something	as
follows:

@model	IEnumerable<WebApplication.ViewModels.Book.BookViewModel>

<script	src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.12.0.min.js">

</script>

<script>

		$(document).ready(function	()	{

				$('table').on('click','tr',	null,	function()	{

						$(this).css('background-color',	'aliceblue');

				});

		});

</script>

<p>

		<a	asp-action="Create">Create	New

</p>

<table	class="table">

		<tr>

				<th>

						@Html.DisplayNameFor(model	=>	model.Description)

				</th>

				<th>

						@Html.DisplayNameFor(model	=>	model.Name)

				</th>

				<th></th>

		</tr>

		

		@foreach	(var	item	in	Model)	{

				<tr>

						<td>

								@Html.DisplayFor(modelItem	=>	item.Description)

						</td>

						<td>

								@Html.DisplayFor(modelItem	=>	item.Name)

						</td>

						<td>

								<a	asp-action="Edit"	asp-route-id="@item.Id">Edit	|

								<a	asp-action="Details"	asp-route-id="@item.Id">Details	|

								<a	asp-action="Delete"	asp-route-id="@item.Id">Delete

						</td>

				</tr>

		}

</table>

The	preceding	code	snippet	output	would	be	similar	to	the	following	screenshot.	When	the
user	clicks	on	any	row,	the	background	color	will	be	changed	to	Alice	blue:

Using	the	hover	events

We	can	use	the	hover	events	when	the	mouse	enters	or	exits	a	particular	element.	It	can	be
used	by	calling	the	hover()	method	on	any	element	of	the	DOM.	The	syntax	of	calling	this
method	is	as	follows:

$(selector).hover(mouseEnterHandler,	mouseExitHandler);

The	following	example	changes	the	input	text	control's	border	color	when	the	mouse	enters
or	exits:

@{

		ViewData["Title"]	=	"View";

}

<script	src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.12.0.min.js">

</script>

<02>

		$(document).ready(function	()	{

				$("input[type	=	'text']").hover(function	()	{

						$(this).css('border-color',	'red');

				},

				function	()	{

						$(this).css('border-color',	'black');

				}

		});

		</script>

		<div	id="pageDiv"	class="container">

				

		<div	id="mainDiv"	class="form-horizontal">

				<div	class="form-group">

						<label	asp-for="Name"	class="col-md-2	control-label"></label>

						<div	class="col-md-10">

								<input	asp-for="Name"	class="form-control"	/>

						</div>

				</div>

				<div	class="form-group">

						<label	asp-for="Description"	class="col-md-2	control-label"></label>

						<div	class="col-md-10">

								<input	asp-for="Description"	class="form-control"	/>

						</div>

				</div>

		</div>

		<div	class="form-group">

				<div	class="col-md-offset-2	col-md-10">

						<button	id="btnSubmit"	class="btn	btn-primary">	Submit</button>

				</div>

		</div>

</div>

The	following	screenshot	will	be	the	output	of	the	preceding	code	snippet.	This	will	change
the	border	color	of	the	input	text	control	to	red	when	the	mouse	enters	and	black	when	it	exits:

Summary
In	this	chapter,	you	learned	about	jQuery	basics	and	how	to	use	them	in	web	applications,
especially	in	ASP.NET	core	1.0.	This	is	a	very	powerful	library.	It	eliminates	cross-browser
issues	and	provides	consistent	behavior	across	all	browsers.	This	library	provides	simple	and
easy	methods	to	select	elements,	modify	attributes,	attach	events,	and	perform	complex
operations	by	writing	code	in	a	cleaner	and	more	precise	manner.	In	the	next	chapter,	we	will
look	into	the	various	techniques	of	doing	Ajax	requests	using	jQuery	and	plain	JavaScript	to
perform	server-side	operations.

Chapter	4.	Ajax	Techniques
One	of	the	core	characteristics	of	making	responsive	web	applications	is	Ajax.	Traditionally,
in	server-side	postbacks,	whenever	a	user	performs	any	action,	the	information	supplied	in
the	form	is	sent	back	to	the	server	and	the	same	page	loads	again,	containing	all	the	images,
CSS,	and	JavaScript	files	loaded	again	on	the	client	side.	This	approach	is	quite	heavy	in
terms	of	the	size	of	the	request	and	response	being	sent	from	the	client	and	server.	Thus,	the
application	becomes	less	responsive	and	the	user	has	to	wait	for	the	page	to	refresh	every
time	any	action	is	taken.	In	this	chapter,	we	will	discuss	how	to	simplify	the	whole	process	and
avoid	heavy	server-side	postbacks	through	Ajax.

Introducing	Ajax
Ajax	stands	for	Asynchronous	JavaScript	and	XML;	it	creates	asynchronous	requests	on
server	without	sending	and	rendering	the	whole	page	again	on	client	side,	whereas	it	only
sends	a	bit	of	information	that	needs	to	be	sent	out	to	the	server	and	receives	response	in	a
specific	format	to	update	a	specific	section	or	the	elements	of	DOM	through	JavaScript.	This
allows	developers	to	develop	responsive	web	applications	and	dynamically	update	the	content
of	the	page	without	reloading	it	every	time	for	a	particular	action.	For	example,	in	a	master-
child	page	relationship,	the	child	content	is	dependent	on	the	parent	item	selection;	and	with	a
classic	approach,	every	time	the	parent	item	is	selected,	the	page	is	being	posted	back	to	the
server	side,	where	the	server	does	some	backend	job	to	fill	the	child	section	and	returns	the
HTML	code,	which	is	then	rendered	on	the	client	side.	Through	Ajax,	this	can	be	achieved	by
making	an	asynchronous	request	to	send	the	selected	information	and	update	the	selected	parts
of	the	page	content.

How	Ajax	works
Ajax	uses	the	XMLHttpRequest	(XHR)	object	to	invoke	the	server-side	methods
asynchronously.	XHR	is	developed	by	Microsoft,	and	it	was	initially	provided	with	Internet
Explorer	5.	It	was	used	initially	by	calling	an	ActionXObject	instance	to	create	an	instance;
however,	with	modern	versions,	every	browser	supports	initializing	the	XHR	object	through
the	XMLHttpRequest	object.

The	following	diagram	shows	the	architectural	view	of	how	Ajax	works:

Traditionally,	when	any	action	is	taken	from	the	client	side,	the	entire	data	is	sent	back	to	the
server	and	is	loaded	again	on	the	client	side	once	the	response	is	received.	Instead	of	updating
the	data,	which	needs	to	be	updated,	including	all	the	static	files	such	as	CSS,	JavaScript,	and
images,	it	is	loaded	from	the	server	again	and	rendered	on	the	client	side,	unless	some
caching	mechanism	is	implemented.	With	Ajax,	we	send	the	data	in	a	JSON	string	or	XML	and
get	the	response	in	a	JSON,	XML,	HTML,	or	any	other	format,	depending	on	the	server.	We
can	also	use	request	header,	such	as	Accept,	when	sending	the	request,	so	the	server	knows
what	the	client	is	accepting;	and	based	on	the	formatter,	it	can	serialize	the	data	into	a
particular	format.	In	ASP.NET	MVC	6,	there	are	two	formatters	implemented	by	default	for

JSON	and	XML,	which	send	the	data,	based	on	the	request	Accept	header	and	serialize	the
object	accordingly.	Custom	formatters	can	also	be	implemented	on	a	server	level	to	handle
specific	scenarios.

Ajax	requests	using	the	classic	XHR	object

All	browsers,	including	Internet	Explorer,	Chrome,	Firefox,	and	Safari,	provide	this	object
that	can	be	used	from	JavaScript	to	execute	the	Ajax	requests.

In	JavaScript,	we	can	initialize	the	XMLHttpRequest	object	as	follows:

var	xhr	=	new	XMLHttpRequest();

Every	request	could	be	a	GET	or	POST	request.	Once	the	response	is	received	from	server,	a
few	properties	get	populated	and	event	handlers	are	invoked,	which	can	be	configured	for	the
XHR	object	when	making	the	Ajax	request.

Let's	look	into	the	details	of	what	methods,	properties,	and	events	the	XHR	object	provides.

XHR	methods

The	XHR	object	provides	various	methods	as	follows,	but	the	two	most	important	methods	to
initiate	an	Ajaxified	request	are	open()	and	send():

Sending	request:

Request	can	either	be	GET	or	POST.	When	making	any	request,	will	we	first	have	to	invoke
the	open	method	and	specify	the	HTTP	method,	such	as	GET	or	POST,	and	the	URL	of	the
server.	Rest	of	the	parameters,	such	as	async	bit,	user,	and	password,	are	optional.

The	signature	of	the	open	method	is	as	follows:

void	Open(

		DOMString	method,	

		DOMString	URL,	

		optional	boolean	async,	

		optional	DOMString	user?,	

		optional	DOMString	password

);

The	send	method	is	used	to	send	the	request	to	the	server.	This	is	the	actual	method,
which	sends	the	request	to	the	server	and	it	accepts	the	data	in	various	formats.

The	following	table	shows	the	overloaded	methods	available	for	the	send	method:

Methods Description

void	send() This	method	is	used	when	making	the	GET	requests

void	send	(DOMString?

Data)
This	method	is	used	when	passing	the	data	in	string

void	send(Document	data) This	method	is	used	when	passing	the	document	data

void	send(Blob	data)
This	method	is	used	to	pass	the	blob	data	or	data	in
binary

void	send(FormData	data) This	method	is	used	to	pass	the	whole	form

Aborting	request:

There	are	certain	cases	in	which	developers	might	need	to	abort	the	current	request.	This
can	be	done	by	calling	the	abort()	function	of	the	XHR	object:

var	xhr	=	new	XMLHttpRequest();

xhr.abort();

Setting	request	headers:

XHR	provides	several	techniques	of	making	an	Ajax	request.	This	means	that	there	are
cases	when	we	need	to	send	data	in	the	JSON,	XML,	or	some	custom	format,	based	on
the	server	implementation.	For	example,	when	working	with	ASP.NET	MVC	6,	there	are
two	default	formatters	implemented,	JSON	and	XML,	and	if	you	want	to	implement	your
own	custom	formatter,	this	is	also	possible.	When	sending	data	in	a	specific	format,	we
need	to	tell	the	format	to	the	server	through	request	headers.	This	helps	the	server	in
identifying	the	formatter	that	has	to	be	loaded	to	serialize	the	response	and	process	the
request.

The	following	table	shows	the	default	headers	that	can	be	supplied	with	the	Ajax	request:

Headers Description

Cookie This	header	specifies	any	cookie	set	in	the	client	side

Host This	header	specifies	the	domain	name	of	the	page

Connection This	header	specifies	the	type	of	connection

Accept This	header	specifies	the	content	type	that	the	client	can	handle

Accept-charset This	header	specifies	the	character	set	that	the	client	can	display

Accept-

encoding
This	header	specifies	the	encodings	that	client	can	handle

Accept-

language

This	header	specifies	the	preferred	natural	languages	accepted	as	a
response

User-Agent This	header	specifies	a	user	agent	string

Referer This	header	specifies	the	URL	of	the	page

Through	the	XHR	object,	we	can	set	the	request	headers	through	the	setRequestHeader()
function,	as	shown	in	the	following	code:

var	xhr=	new	XMLHttpRequest();

xhr.setRequestHeader('Content-Type',	'application/json');

Getting	response	headers:

When	the	response	is	returned	by	the	server,	we	can	read	the	response	headers	by	using
the	following	two	methods:

var	xhr=	new	XMLHttpRequest();

function	callback(){

		var	arrHeaders	=	xhr.getAllResponseHeaders();

		//or

		var	contentType	=	xhr.getResponseHeader('Content-Type');

}

The	getAllResponseHeaders()	function	returns	the	list	of	all	the	response	headers,
whereas	the	getResponseHeader()	function	accepts	the	header	name	and	returns	the	value
of	the	header	name	supplied.

XHR	events

The	most	useful	event	handler	in	the	XHR	object,	which	is	invoked	when	the	value	of	the
readystate	property	is	changed,	is	the	onreadystatechange	event.	On	initiating	request,	we
can	associate	the	function	with	this	event	handler	and	read	the	response:

var	xhr=	new	XMLHttpRequest();

xhr.onreadystatechange	=	callback;

function	callback(){

		//do	something

}

Another	core	event	handler	is	ontimeout,	which	can	be	used	in	conditions	to	handle	the
request	timed-out	scenario.	When	initiating	an	XHR	request,	there	is	a	timeout	property
through	which	the	timeout	can	be	set	in	milliseconds,	and	if	the	request	exceeds	the	timed-out
value,	the	ontimeout	event	handler	will	be	invoked.	The	example,	where	timeout	is	set	to
5,000	milliseconds,	if	it	exceeds	the	timeout	property,	the	timeout	handler	function	will	be
invoked,	as	shown	here:

var	xhr	=	new	XMLHttpRequest();

xhr.timeout	=	5000;	

xhr.ontimeout	=	timeouthandler;

function	timeouthandler(){

		//do	something

}

XHR	properties

The	list	of	properties	available	for	the	XMLHttpRequest	object	is	as	follows:

GET	request	state:

This	property	returns	the	status	information	about	the	response.	It	is	normally	used	to
take	action	based	on	the	request	status:

	var	xhr=new	XMLHttpRequest();

	xhr.readystate;

The	list	of	statuses	with	their	meaning	available	for	the	readystate	property	is	given	in
the	following	table:

Status
value State Description

0 UNSENT
In	this	state,	the	XMLHttpRequest	object	is	created,	but	the
open()	method	is	not	called

1 OPENED In	this	state,	the	open	method	is	called

2 HEADERS_RECEIVED
This	state	occurs	once	send()	is	called	and	headers	are
received

3 LOADING This	state	occurs	when	the	response	is	downloading

4 DONE

This	state	occurs	when	the	response	is	complete

Get	response	data:

Response	can	be	retrieved	by	calling	the	response	or	responseText	property.	The
difference	between	these	properties	is	that	the	responseText	property	returns	the
response	as	a	string,	whereas	the	response	property	returns	the	response	as	a	response
object.	The	response	object	can	be	a	document,	blob,	or	JavaScript	object:

var	xhr=	new	XMLHttpRequest();

xhr.response;

//or	

xhr.responseText;

Get	response	status:

Response	status	can	be	retrieved	by	calling	the	status	or	statusText	property.	The
difference	between	these	properties	is	that	the	status	property	returns	the	numerical
value,	for	example,	200,	if	the	request	is	successfully	processed	by	server,	whereas	the
statusText	property	includes	the	complete	text,	such	as	200	OK	and	so	on:

var	xhr=	new	XMLHttpRequest();

xhr.status;

or	

xhr.statusText;

Let's	take	a	look	at	the	following	example	that	makes	the	form	POST	request	using	the	XHR
object	in	ASP.NET	MVC	6.	The	following	form	has	two	fields,	Name	and	Description:

Here	is	the	code	snippet	that	sends	the	request	to	server	side	using	the	XHR	object.	This
example	sends	the	data	in	JSON:

@model	WebApplication.ViewModels.Book.BookViewModel

@{

		ViewData["Title"]	=	"View";

}

<script>

		var	xhr	=	null;

		function	submit()	{

				xhr	=	new	XMLHttpRequest();

				xhr.open("POST",	'/Book/SaveData');

				var	name	=	document.getElementById("Name").value;

				var	description	=	document.getElementById("Description").value;

				var	data	=

				{

						"Name":	name,

						"Description":	description

				};

				xhr.setRequestHeader('Content-Type',	'application/json;	charset=utf-8');

				xhr.onreadystatechange	=	callback;

				xhr.send(JSON.stringify(data));

		}

		function	callback()	{

				if	(xhr.readyState	==	4)	{

						var	msg	=	xhr.responseText;r	

						document.getElementById("msg").innerHTML	=	msg;

						document.getElementById("msgDiv").style.display	=	'block';

				}

		}

</script>

<form	asp-action="SaveData"	id="myForm">

		<p>	</p>

		<div	id="msgDiv"	style="display:none"	class="alert	alert-success">

				×

				Success!	<label	id="msg"></label>

		</div>

		<div	id="pageDiv"	class="container">

				

				<div	id="mainDiv"	class="form-horizontal">

						<div	class="form-group">

								<label	asp-for="Name"	class="col-md-2	control-label"></label>

								<div	class="col-md-10">

										<input	asp-for="Name"	class="form-control"	/>

								</div>

						</div>

						<div	class="form-group">

								<label	asp-for="Description"		class="col-md-2	control-label"></label>

								<div	class="col-md-10">

										<textarea	asp-for="Description"	class="form-control"	></textarea>

								</div>

						</div>

				</div>

				<div	class="form-group">

						<div	class="col-md-offset-2	col-md-10">

								<button	id="btnSubmit"	onclick="submit()"	type="submit"	class="btn	btn-

primary">	Submit</button>

						</div>

				</div>

		</div>

</form>

In	ASP.NET	Core,	for	JSON	and	XML,	we	have	to	explicitly	annotate	the	complex	type	with
the	[FromBody]	attribute.	This	is	because	MVC	6	first	searches	for	the	values	in	the	query
string	irrespective	of	its	type,	whether	a	complex	type	or	a	primitive	type.	For	the	JSON	and
XML	data,	we	need	to	explicitly	annotate	the	method's	parameter	with	the	[FromBody]	attribute
so	that	the	data	can	be	easily	bound	without	any	issue:

public	IActionResult	SaveData([FromBody]BookViewModel	bookViewModel)

{

		return	Content("Data	saved	successfully");	

}

In	the	preceding	code	snippet,	we	read	the	form	values	through	document.getElementById
and	then	made	a	JSON	string	to	pass	the	form	data	in	a	JSON	format.

The	output	will	be	as	follows:

However,	there	is	a	library	provided	by	Google,	which	serializes	the	form	data	by	calling	the
serialize()	function.	The	only	difference	is	setting	the	request	header	'Content-Type'	to
'application/x-www-form-urlencoded',	and	adding	the	following	script	file:

<script	src=http://form-serialize.googlecode.com/svn/trunk/serialize-0.2.min.js	

/>

The	following	code	is	the	revised	version	of	the	submit	function,	which	serializes	the	form
data	through	the	serialize()	function	and	sends	the	data	as	form-encoded	values:

function	submit()	{

		xhr	=	new	XMLHttpRequest();

		xhr.open('POST',	'/Book/SaveData');

		xhr.setRequestHeader('Content-Type',	'application/x-www-form-urlencoded');

		var	html	=	serialize(document.forms[0]);

		xhr.onreadystatechange	=	callback;

		xhr.send(html);

}

For	the	form-encoded	values,	we	will	remove	the	[FromBody]	attribute.	This	is	because	the
form-encoded	values	are	sent	as	the	name	value	pairs	in	the	query	string:

public	IActionResult	SaveData(BookViewModel	bookViewModel)

{

		return	Content("Data	saved	successfully");	

}

In	the	previous	versions	of	ASP.NET	Web	API,	if	the	action	method	of	Web	API	controller
contains	a	complex	type,	Web	API	framework	automatically	bound	the	values	from	the
request	body.	Whereas	with	ASP.NET	Core,	the	Web	API	and	MVC	have	become	one	unified
framework,	and	the	model	binding	is	not	equivalent	to	what	we	has	in	the	previous	versions
of	Web	API.

In	the	preceding	examples,	we	saw	how	easily	we	can	make	a	POST	request	and	send	data	in
JSON	and	form-encoded	values.	Now,	let's	see	another	example	in	which	we	will	load	the
partial	view	based	on	the	JSON	response	sent	from	server.

The	following	screenshot	is	of	the	ASP.NET	page	that	contains	a	button	to	load	the	list	of
books	in	a	table:

Here	is	the	code	snippet	for	the	main	page:

@model	WebApplication.ViewModels.Book.BookViewModel

@{

		ViewData["Title"]	=	"Books";

}

<script>

		var	xhr	=	null;

		function	loadData()	{

				xhr	=	new	XMLHttpRequest();

				xhr.open('GET',	'/Book/Books',true);

				xhr.onreadystatechange	=	callback;

				xhr.send();

		}

		function	callback()	{

				if	(xhr.readyState	==	4)	{

						var	msg	=	xhr.responseText;

						document.getElementById("booksDiv").innerHTML	=	msg;

				}

		}

</script>

<div	class="container">		

		<button	id="btnLoad"	onclick="loadData()"	type="submit"	class="btn	btn-

primary">Load</button>

		<hr	/>

		<div	id="booksDiv">

		</div>

</div>

The	following	is	the	partial	view	that	displays	the	list	of	books	in	a	table:

@{	

		Layout	=	null;

}

@model	IEnumerable<WebApplication.ViewModels.Book.BookViewModel>

<script	src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.12.0.min.js">

</script>

<script>

		$(document).ready(function	()	{

				$('table').on('click','tr',	null,	function()	{

						$(this).css('background-color',	'aliceblue');

				});

		});

</script>

<p>

		<a	asp-action="Create">Create	New

</p>

<table	class="table">

		<tr>

				<th>

						@Html.DisplayNameFor(model	=>	model.Description)

				</th>

				<th>

						@Html.DisplayNameFor(model	=>	model.Name)

				</th>

				<th></th>

		</tr>

		

@foreach	(var	item	in	Model)	{

		<tr>

				<td>

						@Html.DisplayFor(modelItem	=>	item.Description)

				</td>

				<td>

						@Html.DisplayFor(modelItem	=>	item.Name)

				</td>

				<td>

						<a	asp-action="Edit"	asp-route-id="@item.Id">Edit	|

						<a	asp-action="Details"	asp-route-id="@item.Id">Details	|

						<a	asp-action="Delete"	asp-route-id="@item.Id">Delete

				</td>

		</tr>

}

</table>

Here	is	the	code	snippet	of	the	ASP.NET	MVC	Books	controller	that	contains	the	Books	action
method	that	returns	a	list	of	books:

public	class	BookController	:	Controller

{

		//	GET:	/<controller>/

		public	IActionResult	Index()

		{

				return	View();

		}

		public	IActionResult	Books()

		{

				List<BookViewModel>	books	=	new	List<BookViewModel>();

				books.Add(new	BookViewModel	{	Id	=	1,	Name	=	"JavaScript	for	.Net	

Developers",	Description	=	"Book	for	.NET	Developers"	});

				books.Add(new	BookViewModel	{	Id	=	1,	Name	=	"Beginning	ASP.NET	Core	1.0",	

Description	=	"Book	for	beginners	to	learn	ASP.NET	Core	1.0"	});

				books.Add(new	BookViewModel	{	Id	=	1,	Name	=	"Mastering	Design	Patterns",	

Description	=	"All	about	Design	Patterns"	});

				return	View(books);

		}

		public	IActionResult	Create()

		{

				return	View();

		}

}

So,	with	this	in	place,	when	the	user	clicks	on	the	Load	button,	the	request	will	be	made	to	the
server	and	the	ASP.NET	MVC	controller	Books	action	method	will	be	invoked,	which	returns
View	that	renders	the	partial	view	that	will	be	rendered	inside	the	booksDiv	element	on	the
main	page:

Making	an	Ajax	request	using	jQuery

In	the	previous	sections,	we	discussed	how	to	send	an	Ajax	request	using	a	plain
XMLHttpRequest	object,	which	is	available	in	all	browsers.	In	this	section,	we	will	see	what
jQuery	offers	in	making	the	Ajax	request	and	how	to	use	the	HTTP	GET	and	POST	requests
through	the	jQuery	object.

jQuery.ajax()

This	method	is	used	to	make	both	GET	and	POST	asynchronous	requests.	The	following	code	is
the	signature	of	this	method,	which	takes	two	parameters:	URL	and	options.	The	URL	parameter
is	the	actual	server	URL,	whereas	options	takes	the	configure	request	headers	and	other
properties	in	a	JSON	representation:

$.([URL],[options]);

$.([options]);

The	following	example	shows	how	to	make	an	asynchronous	request	on	the	MVC	controller
and	displays	an	alert	on	successful	response	being	returned	from	server:

<script	src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.12.0.min.js">

</script>

<script>

		$(document).ready(function	()	{

				$.ajax('/Book/Books',	{

						success:	function	(data)	{

								$('#booksDiv').html(data);

						},

						error:	function	(data)	{

								$('#booksDiv').html(data);

						}

				});

		});

</script>

The	Books	action	method	returns	the	ASP.NET	MVC	view,	which	passes	the	list	of	books	that
will	be	populated	inside	the	booksDiv	DOM	element:

Ajax	properties

The	following	table	shows	some	core	properties	that	you	can	specify	to	configure	the	Ajax
request:

Name Type Description

accepts PlainObject
This	property	tells	the	server	about	the	type	of	response	that	the
client	will	accept.

async Boolean
By	default,	this	property	is	true	(for	asynchronous	request),	but
it	can	be	set	to	false	(synchronous).

cache Boolean
If	this	property	is	set	to	false,	force	requested	pages	will	not	be
cached	by	the	browser.

contents PlainObject
This	property	is	used	to	specify	regular	expressions	for	parsing
response.

This	property	tells	the	server	about	the	type	of	data	passed	in	the

contentType String	or
Boolean

request.	The	default	value	is	application/x-www-form-
urlencoded;	charset=UTF-8.

crossDomain Boolean
This	property	is	set	to	true	if	you	want	to	force	the	cross-domain
request.

data

PlainObject,
String,	or
Array

This	property	can	be	used	to	pass	the	data	in	JSON,	XML,	or	any
other	format.

dataType String
This	property	specifies	the	type	of	data	expecting	from	server.
Some	core	datatypes	are	XML,	JSON,	script,	and	HTML.

Pre-filtering	Ajax	requests

This	is	a	great	feature	to	filter	the	existing	request	options	and	configuration	attributes	before
they	are	sent	out.	It	provides	two	overloaded	methods:	one	that	takes	a	function	that	injects	the
options,	originalOptions,	and	jqXHR	objects,	and	the	other	that	takes	a	string	where	you	can
filter	out	the	configuration	attributes	for	specific	requests	followed	with	the	function
accepting	parameters	as	options,	originalOptions,	and	jqXHR.	The	following	code	is	the
signature	of	both	overloaded	methods:

$.ajaxPrefilter(function(options,	originalOptions,	jqXHR){

		//Modify	options,	originalOptions	and	store	jqXHR

}

$.ajaxPrefilter('dataType',	function(options,	originalOptions,	jqXHR){

		//Modify	options,	originalOptions	and	store	jqXHR

}

The	objects	in	the	preceding	code	are	explained	as	follows:

options:	These	objects	are	the	same	as	the	request	options	supplied	in	the	Ajax	request,
but	they	can	be	overridden	and	filtered	accordingly.
originalOptions:	These	objects	provide	the	actual	options	being	supplied	in	the	Ajax
request.	They	can	be	used	to	refer	and	cannot	be	modified.	Any	change	in	the
configuration	can	be	done	using	the	options	object.
jqXHR:	This	object	is	equivalent	to	the	XMLHttpRequest	object	in	jQuery.

Let's	take	a	look	at	the	following	example,	which	appends	the	fromAjax	parameter	to	tell	the
MVC	controller	that	the	request	is	executed	from	JavaScript:

<script>

		$(document).ready(function	()	{

				$.ajaxPrefilter(function	(options,	originalOptions,	jqXHR)	{

						options.url	+=	((options.url.indexOf('?')	<	0)	?	'?'	:	'&')+	

'fromAjax=true';

				});

				$.ajax('/Book/Books',	{

						success:	function	(data)	{

								$('#booksDiv').html(data);

						},

						error:	function	(data)	{

								$('#booksDiv').html(data);

						}

				});

		});

</script>

The	following	code	is	the	controller	action	method	that	returns	the	list	of	books	if	the	request
is	an	Ajax	request:

public	IActionResult	Books(bool	fromAjax)

{

		if	(fromAjax)

		{

				List<BookViewModel>	books	=	new	List<BookViewModel>();

				books.Add(new	BookViewModel	{	Id	=	1,	Name	=	"JavaScript	for	.Net	

Developers",	Description	=	"Book	for	.NET	Developers"	});

				books.Add(new	BookViewModel	{	Id	=	1,	Name	=	"Beginning	ASP.NET	Core	1.0",	

Description	=	"Book	for	beginners	to	learn	ASP.NET	Core	1.0"	});

				books.Add(new	BookViewModel	{	Id	=	1,	Name	=	"Mastering	Design	Patterns",	

Description	=	"All	about	Design	Patterns"	});

				return	View(books);

		}

		return	Content("Request	to	this	method	is	only	allowed	from	Ajax");

}

There	are	various	properties	for	options	available,	which	you	can	refer	at
http://api.jquery.com.

Setting	default	values	for	all	future	Ajax	requests

With	the	$.ajax.setup	function,	we	can	set	the	configuration	values	for	all	the	future	requests
to	be	made	through	the	$.ajax()	or	$.get()	function.	This	can	be	used	to	set	the	default
settings	before	calling	the	$.ajax()	function,	and	the	ajax	function	will	pick	the	settings
defined	in	the	$.ajaxSetup()	function.

The	following	is	the	signature	to	call	$.ajax.setup:

$.ajaxSetup({name:value,	name:value,	name:value,	…});

The	following	example	sets	the	default	URL	for	the	ajax	request	being	made	through	the
$.ajax	function:

<script>

		$(document).ready(function	()	{

http://api.jquery.com

				$.ajaxSetup({	url:	"/Book/Books"});

				$.ajax({

						success:	function	(data)	{

								$('#booksDiv').html(data);

						},

						error:	function	(data)	{

								$('#booksDiv').html(data);

						}

				});

		});

</script>

Loading	data	through	the	get	functions	in	jQuery

The	jQuery	library	provides	different	functions	for	retrieving	data	from	server.	The	function,
such	as	$.get(),	can	be	used	to	load	the	data	by	using	the	HTTP	GET	request,	whereas
$.getJSON()	is	specifically	used	to	load	the	JSON-encoded	data,	and	$.getScript()	is	used	to
load	and	execute	a	JavaScript	from	the	server.

Using	jQuery.get()

The	$.get()	function	is	a	shorthand	function	of	$.ajax()	and	only	allows	the	GET	request.	It
abstracts	most	of	the	configuration	values	to	default	values.	Similar	to	the	$.ajax()	function,
it	returns	the	data	to	the	callback	function,	but	does	not	provide	an	error	callback.	So,	if	any
error	occurred	during	the	request	processing,	it	cannot	be	tracked.

It	takes	four	parameters,	URL,	data,	callback,	and	type.	Where	URL	is	the	address	to	which
the	request	is	sent,	data	that	takes	a	string	that	is	sent	to	the	server	when	the	request	is	made,
callback	refers	to	the	function	which	is	executed	when	the	request	is	succeeded	and	type
denotes	the	type	of	data	expected	from	the	server	like	XML,	JSON	and	so	on.

The	following	is	the	signature	of	the	$.get()	function:

$.get('URL',data,	callback,	type);

Here	is	the	example	that	loads	the	books,	which	contain	a	net	string	in	its	title:

<script>

		$(document).ready(function	()	{

				

				$.get('/Book/Books',	{filter	:	"net"},	function	(data)	{

								$('#booksDiv').html(data);

						}

);

		});

</script>

Using	jQuery.getJSON()

The	jQuery.getJSON()	function	is	used	to	load	JSON	from	the	server.	It	can	be	used	by

calling	the	$.getJSON()	function:

$.getJSON('URL',	{name:value,	name:value,	name:value,…});

The	following	is	the	example	that	loads	the	JSON	by	calling	an	action	method,	which	returns
the	JSON	response	and	displays	the	book	title	in	the	booksDiv	element:

<script>

		$(document).ready(function	()	{

				

				$.getJSON('/Book/Books',	function	(data)	{

						$.each(data,	function	(index,	field)	{

								$('#booksDiv').append(field.Name	+	"
	");

						});

				}

);

</script>

The	Action	method	returns	the	JSON	response	as	follows:

public	IActionResult	Books()

{

		List<BookViewModel>	books	=	new	List<BookViewModel>();

		books.Add(new	BookViewModel	{	Id	=	1,	Name	=	"JavaScript	for	.Net	Developers",	

Description	=	"Book	for	.NET	Developers"	}

		books.Add(new	BookViewModel	{	Id	=	1,	Name	=	"Beginning	ASP.NET	Core	1.0",	

Description	=	"Book	for	beginners	to	learn	ASP.NET	Core	1.0"	});

		books.Add(new	BookViewModel	{	Id	=	1,	Name	=	"Mastering	Design	Patterns",	

Description	=	"All	about	Design	Patterns"	});

		return	Json(books);

						

}

On	the	page,	the	book	titles	will	be	rendered	as	shown	in	the	following	screenshot:

Using	jQuery.getScript()

The	jQuery.getScript()	function	is	a	shorthand	of	$.ajax(),	and	it	is	specifically	designed
to	load	the	script	from	the	server.	The	following	is	the	signature	of	the	$.getScript()
function:

$.getScript(url,	callback);

The	following	example	loads	the	custom	.js	file	once	the	document	is	loaded:

<script>

		$(document).ready(function	()	{

				

		$.getScript("/wwwroot/js/custom.js");

</script>

Posting	data	to	server	using	the	post	function

Similar	to	the	$.get()	function,	jQuery	also	provides	a	$.post()	function,	which	is	a
shorthand	of	$.ajax(),	and	is	specifically	designed	to	only	make	the	HTTP	POST	requests.

Here	is	the	signature	of	the	$.post()	function:

$.post(url,	data,	callback,	type);

The	following	example	submits	the	form	data	using	the	$.post()	function:

<script>

		function	submit()	{

				$.post('/Book/SaveData',	$("form").serialize(),	function	(data)	{

						alert("form	submitted");

				});

		}

</script>

The	following	is	the	code	snippet	of	the	Book	controller's	SaveData	action	method	that	takes
the	object	and	returns	the	response	as	a	string:

public	IActionResult	SaveData(BookViewModel	bookViewModel)

{

		//call	some	service	to	save	data	

		return	Content("Data	saved	successfully")

}

Similarly,	we	can	pass	data	in	JSON	by	specifying	the	type	as	json:

<script>

		function	submit()	{

				$.post('/Book/SaveData',	{Name:"Design	Patterns",	Description:	"All	about	

design	patterns"},	function	(data)	{

				},'json');

		}

</script>

Ajax	events

Ajax	events	are	categorized	into	local	and	global	events.	Local	events	can	be	declared	when
making	an	Ajax	request	using	the	$.ajax	function.	Events	such	as	success	and	error	are
termed	as	local	events,	whereas	global	events	work	with	every	Ajax	request	executed	within
the	page.

Local	events

The	following	is	the	list	of	local	events,	and	it	is	specifically	related	to	the	$.ajax()	function.
Other	shorthand	functions,	such	as	$.get()	and	$.post(),	do	not	have	these	methods
available,	as	each	of	them	have	specific	values	to	pass	the	parameters	and	configuration
attributes:

beforeSend:	This	event	is	triggered	before	the	ajax	request	is	being	made.
success:	This	event	occurs	when	the	successful	response	is	being	made	from	the	server.
error:	This	event	occurs	when	an	error	is	occurred	during	the	ajax	request.
complete:	This	event	occurs	when	the	request	is	completed.	It	does	not	check	whether	an
error	has	occurred	or	the	response	was	successful	and	executed	when	the	request	is
completed.

Global	events

The	following	is	the	list	of	global	events,	and	it	works	with	all	other	shorthand	functions	as
well,	such	as	$.post(),	$.get(),	and	$.getJSON:

ajaxStart:	This	event	is	used	when	there	is	no	ajax	request	in	the	pipeline	and	the	first
ajax	request	is	starting	up
ajaxSend:	This	event	is	used	when	an	ajax	request	is	sent	to	the	server
ajaxSuccess:	This	event	is	used	when	any	of	the	successful	response	returns	from	the
server
ajaxError:	When	an	error	occurs	for	any	ajax	request,	this	event	is	fired
ajaxComplete:	This	event	is	used	when	any	of	the	ajax	request	is	completed

The	following	code	is	a	simple	example	of	ASP.NET	that	calls	the	action	method,	Books,	of
BookController,	which	returns	the	list	of	books	and	triggers	global	and	local	events:

@model	WebApplication.ViewModels.Book.BookViewModel

@{

		ViewData["Title"]	=	"Books";

}

<script	src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.12.0.min.js">

</script>

<script>

		$(document).ready(function	()	{

				$(document).ajaxComplete(function	(e)	{

						alert("Ajax	request	completed");

				}).ajaxSend(function	()	{

						alert("Ajax	request	sending");

				}).ajaxSend(function	()	{

						alert("Ajax	request	sent	to	server");

				}).ajaxStop(function	()	{

						alert("Ajax	request	stopped");

				}).ajaxError(function	()	{

						alert("Some	error	occurred	in	Ajax	request");

				}).ajaxSuccess(function	()	{

						alert("Ajax	request	was	successful");

				})

				$('#btnLoad').click(function(){

						$.ajax('/Book/Books',	{

								success:	function	(data)	{

										$('#booksDiv').html(data);

								},

								error:	function	(data)	{

										$('#booksDiv').html(data);

								}

						});

				});

		});

</script>

<div	class="container">

		

		<h4>Books	View</h4>

		<h5>Click	on	the	button	to	load	all	the	books</h5>

		<button	id="btnLoad"	type="submit"	class="btn	btn-primary">Load</button>

		<hr	/>

		<div	id="booksDiv">

		</div>

</div>

Cross-origin	requests
Due	to	security	reasons,	every	browser	restricts	web	applications	to	make	cross-origin
request	through	JavaScript.	Cross-origin	requests	are	the	requests	that	make	an	HTTP	request
to	another	server,	which	is	the	outside	domain.	For	example,	if	the	application-based	URL	is
localhost,	and	you	are	going	to	make	a	request	on	anotherdomain.com,	it	will	not	work.
However,	there	are	few	differences	between	browsers'	implementation,	as	in	Chrome	if	the
port	number	differs,	it	won't	allow	you	to	make	a	request;	whereas	Internet	Explorer	ignores
this.

Cross-origin	request	is	only	restricted	to	the	request	being	made	from	the	XMLHttpRequest
object;	however,	we	can	still	have	resources	such	as	CSS,	images,	and	script	files	loaded	from
other	sources	or	domains.

The	reason	for	not	enabling	this	is	to	protect	the	data	from	malicious	site	attacks.	However,	to
handle	these	scenarios,	we	can	either	use	JSON-P	(an	older	technique)	or	CORS,	which	will
be	discussed	in	the	following	section.

JSON-P

The	JavaScript	Object	Notation	Padding	(JSON-P)	technique	is	used	with	older	browsers.
This	technique	is	obsolete	now,	and	alternatively,	CORS	is	safer	and	neater.

Using	JSON-P

JSON-P	is	a	technique	that	fakes	a	browser	for	making	cross-origin	request.	It	works	by
specifying	a	<script>	tag	that	makes	a	cross-origin	request	to	some	other	server,	and	the
response	returned	is	actually	the	function	name,	which	is	already	defined	in	the	web	page.	It
then	passes	the	data	as	a	parameter	to	the	function	when	the	script	is	executed.

It	can	be	implemented	by	adding	a	<script>	tag,	specifying	the	request	URL	in	the	src
attribute	and	JavaScript	callback	function	in	a	query	string	for	the	same	URL.	For	example,
consider	the	following	request	URL:

http://otherdomain.com?Id=1

Append	the	function	in	the	request	URL,	which	will	be	invoked	when	the	script	is	loaded:

http://otherdomain.com?Id=1&callback=jsonPCallback

The	following	code	snippet	calls	the	geo	service	and	specifies	a	callback	parameter,	which
points	to	the	jsonCallback	function	defined	in	the	script.	This	script	will	be	loaded	when	the
page	loads	and	executes	the	src	URL,	which	finally	calls	the	jsonCallback	method	and	passes
the	response.

This	code	snippet	is	a	sample	HTTP	GET	request	that	uses	the	Bing	API	to	get	the	location
information	based	on	the	latitude	and	longitude	values	provided:

<script>

		var	scrpt	=	document.createElement('script');

		scrpt.setAttribute('src','	

http://dev.virtualearth.net/REST/v1/Locations/latitudeNo,longitudeNo?

o=json&key=BingMapsKey);

		document.body.appendChild(scrpt);

		function	jsonCallback(data)	{

				alert("Cross	Origin	request	got	made");

		}

</script>

On	the	other	hand,	with	jQuery,	cross-origin	requests	can	be	made	by	specifying	the	dataType
attribute	as	jsonp	and	crossDomain	as	true	in	the	$.ajax	call:

$.ajax({

		url:	serviceURL,

		type:	"GET",

		dataType:	"jsonp",

		method:"GetResult",

		crossDomain:	true,

		error:	function	()	{

				alert("list	failed!");

		},

		success:	function	(data)	{

				alert(data);

		}

});

CORS

Alternatively,	CORS	is	a	more	preferred	way	when	making	cross-origin	requests.	It	is	a	W3C
standard	and	allows	a	server	to	send	cross-origin	requests	from	any	domain.	This	needs	to	be
enabled	on	the	server	side.

ASP.NET	Core	provides	an	easy	way	of	enabling	CORS	on	the	server	side,	and	this	can	be
done	by	adding	Microsoft.AspNet.WebApi.Cors	through	NuGet,	or	by	modifying
project.json	and	adding	a	dependency	as	follows:

"Microsoft.AspNet.Cors":	"6.0.0-rc1-final"

Enable	the	CORS	service	using	the	ConfigureServices	method	in	the	Startup	class:

public	void	ConfigureServices(IServiceCollection	services

{

		services.AddCors();

}

Add	the	CORS	middleware	by	using	the	UseCors()	method	in	the	Configure	method.	The
UseCors	method	provides	two	overloaded	methods:	one	that	takes	the	CORS	policy	and	other
that	takes	the	delegate,	which	can	be	used	as	a	builder	to	build	policy.

Note

Note	that	UseCors()	should	be	added	before	UseMVC.

Through	the	CORS	policy,	we	can	define	the	allowed	origins,	headers,	and	methods.	The
CORS	policy	can	either	be	defined	at	the	ConfigureServices	or	Configure	method	when
defining	middleware.

Specifying	the	CORS	policy	at	services	level

This	section	will	cover	the	way	of	defining	the	policy	at	the	ConfigureServices	method	and
referring	when	adding	middleware.	The	AddPolicy	method	takes	two	parameters:	the	name	of
the	policy	and	a	CorsPolicy	object.	The	CorsPolicy	object	allows	chaining	methods	and
allows	you	to	define	origins,	methods,	and	headers	using	the	WithOrigins,	WithMethods,	and
WithHeaders	methods.

Here	is	the	sample	code	snippet	that	allows	all	origins,	methods,	and	headers.	So,	whatever	the
request	origin	(domain)	and	HTTP	methods	or	request	headers	are	passed,	the	request	will	be
processed:

public	void	ConfigureServices(IServiceCollection	services)

{					

		services.AddCors(options	=>	{

				options.AddPolicy("AllowAllOrigins",	builder	=>	

builder.AllowAnyOrigin().AllowAnyMethod().AllowAnyHeader());

		});

}

In	the	preceding	code,	Origins	represents	the	domain	names,	Method	represents	the	HTTP
methods,	and	Header	represents	the	HTTP	request	headers.	It	can	be	simply	used	in	the
Configure	method	as	follows:

public	void	Configure(IApplicationBuilder	app,	IHostingEnvironment	env,	

ILoggerFactory	loggerFactory

{

		app.UseCors("AllowAllOrigin");

}

We	can	also	define	multiple	policies,	as	follows:

public	void	ConfigureServices(IServiceCollection	services)

{

		services.AddCors(options	=>	{

				options.AddPolicy("AllowAllOrigins",	builder	=>	

builder.AllowAnyOrigin().AllowAnyMethod().AllowAnyHeader());

						options.AddPolicy("AllowOnlyGet",	builder	=>	

builder.WithMethods("GET").AllowAnyHeader().AllowAnyOrigin());

		});

Enable	CORS	at	the	Configure	method

Alternatively,	we	can	define	the	CORS	policy	on	the	Configure	method	itself.	The	UseCors

method	has	two	overloaded	methods:	one	that	takes	the	policy	name	that	is	already	defined	in
the	ConfigureServices	method,	and	the	other	is	CorsPolicyBuilder	through	which	the	policy
can	define	directly	on	the	UseCors	method	itself:

public	void	Configure(IApplicationBuilder	app,	IHostingEnvironment	env,	

ILoggerFactory	loggerFactory)

{

		app.UseCors(policyBuilder	=>	policyBuilder.WithHeaders("accept,content-

type").AllowAnyOrigin().WithMethods("GET,	POST"));

}

Defining	on	the	ConfigureMethod	class	enables	the	CORS	policy	throughout	the	application.
Instead	of	using	the	EnableCors	attribute,	we	can	specifically	define	the	policy	name	per
controller,	and	action	level	as	well,	and	use	the	policy	defined	in	the	ConfigureServices
method.

Defining	through	attribute	is	an	alternative,	which	refers	to	the	policy	name	from	the
ConfigureServices	method	and	ignores	the	policy	defined	at	the	middleware	level.	Here	are
the	ways	of	enabling	CORS	at	controller,	action,	and	global	level:

Enabling	CORS	at	the	controller	level:

The	following	code	enables	the	CORS	policy	at	the	MVC-controller	level:

[EnableCors("AllowAllOrigins")]

public	class	BookController	:	Controller

{

		//to	do

}

Enabling	CORS	at	the	action	level:

The	following	code	enables	the	CORS	policy	at	the	MVC	action	method	level:

[EnableCors("AllowAllOrigins")]

public	IActionResult	GetAllRecords(

{

		//Call	some	service	to	get	records

		return	View();

}

Enabling	CORS	globally:

Globally,	CORS	can	be	enabled	by	defining	at	the	middleware	level,	as	we	have	seen
through	the	Configure	method.	Otherwise,	if	it	is	defined	at	the	ConfigureServices
level,	enabling	it	globally	can	be	achieved	by	using	the
CorsAuthorizationFilterFactory	object,	as	shown	here:

public	void	ConfigureServices(IServiceCollection	services)

{

		services.AddCors(options	=>	{

				options.AddPolicy("AllowAllOrigins",	builder	=>	

builder.AllowAnyOrigin().AllowAnyMethod().AllowAnyHeader());

				options.AddPolicy("AllowOnlyGet",	builder	=>	

builder.WithMethods("GET").AllowAnyHeader().AllowAnyOrigin());

		});

		services.Configure<MvcOptions>(options	=>

		{

				options.Filters.Add(new	CorsAuthorizationFilterFactory("AllowOnlyGet"));

		});

}

The	preceding	code	snippet	contains	two	policies:	AllowAllOrigins	and	AllowOnlyGet,	and
through	CorsAuthorizationFilterFactory,	we	can	pass	the	AllowOnlyGet	policy	as	the
policy	name	and	make	it	global.

Calling	WCF	services	from	JavaScript
To	consume	the	WCF	service	methods	from	JavaScript,	we	need	to	expose	them	as	the
RESTful	service	methods	that	accept	and	return	the	data	in	either	JSON	or	XML	formats.	This
helps	developers	to	consume	the	WCF	services	as	easily	as	the	REST	services,	and	use	them
with	the	jQuery	$.ajax	or	$.getJSON	(shorthand	method	of	$.ajax)	methods.	To	expose	a
WCF	service	as	a	REST	service,	we	need	to	annotate	the	WCF	service	methods	with	the
WebGet	or	WebInvoke	attributes.	The	WebGet	attribute	is	mostly	used	when	making	any	HTTP
GET	request,	whereas	WebInvoke	is	used	for	all	HTTP	request	methods.

The	following	code	shows	the	representation	of	using	the	WebGet	attribute	on	a	WCF
operation	contract	that	returns	the	product	based	on	productCode	passed	during	the	method
call:

[OperationContract]

[WebGet(ResponseFormat	=	WebMessageFormat.Json,	BodyStyle	=	

WebMessageBodyStyle.Wrapped,	UriTemplate	=	"json/{productCode}")]

Product	GetProduct(string	productCode);

We	can	also	represent	the	same	method	using	WebInvoke,	as	shown	in	the	following	code:

[OperationContract]

		[WebInvoke(Method	="GET",		ResponseFormat	=	WebMessageFormat.Json,	BodyStyle	=	

WebMessageBodyStyle.Wrapped,	UriTemplate	=	"products/{productCode}")]

Product	GetProduct(string	productCode);

The	following	code	shows	the	representation	of	using	WebInvoke	for	the	HTTP	POST	request:

[OperationContract]

[WebInvoke(Method	=	"POST",	ResponseFormat	=	WebMessageFormat.Json,	RequestFormat	

=	WebMessageFormat.Json,	BodyStyle	=	WebMessageBodyStyle.Wrapped,	UriTemplate	=	

"products	/SaveProduct")]

bool	SaveProduct(Product	product);

If	you	notice,	the	POST	method	contains	both	RequestFormat	and	ResponseFormat	attributes	that
tell	the	server	the	type	of	data	provided	when	making	any	HTTP	POST	request	and	the	response
will	be	returned	based	on	the	ResponseFormat	type	defined.

When	working	with	the	RESTful	services,	make	sure	that	the	binding	is	set	to
webHttpBinding,	as	shown	in	the	following	screenshot.	Also	with	the	.NET	framework	4	and
higher,	Microsoft	introduced	another	attribute	known	as	crossDomainScriptAccessEnabled,
which	can	be	set	to	true	to	deal	with	cross-origin	requests:

Moreover,	in	order	to	enable	CORS,	you	can	specify	standardEndpoints,	as	shown	in	the
following	screenshot,	under	system.serviceModel:

Add	custom	headers	as	follows.	Specifying	asterisk	(*)	allows	everything,	whereas	for
security	purpose,	origin,	headers,	and	methods	can	be	defined	explicitly	to	specific	values	that
are	separated	by	commas:

The	following	table	shows	the	description	of	each	access	control	keys:

Access	control
key Description

Access-

Control-

Allow-Origin

This	key	is	used	to	allow	the	client's	domain	from	where	the	service	will	be
invoked

Access-

Control-

Allow-Headers

This	key	is	used	to	specify	the	headers	permitted	when	the	client	is	making	a
request

Access-

Control-

Allow-Method

Using	this	key,	the	HTTP	methods	allowed	when	the	client	is	making	a
request

Access-

Control-Max-

Age

This	key	takes	the	value	in	seconds	to	see	how	long	the	response	to	the
preflight	request	can	be	cached	for	without	sending	the	another	preflight
request

To	invoke	the	SaveProduct	method,	we	can	use	the	jQuery	$.ajax()	method	and	supply	the
following	parameters,	as	shown	in	the	following	code.	If	you	notice,	we	defined	contentType
as	well	as	dataType.	The	difference	is	that	contentType	is	used	to	tell	the	server	about	the	type
of	data	client	is	sending,	whereas	dataType	is	used	to	let	the	server	know	the	type	of	data	the
client	is	expecting	to	receive	in	response.	The	dataType	values	can	be	json,	jsonp,	xml,	html,
or	script:

function	SaveProduct(){

		var	product	=	{

				"ProductName":"Product1",

				"ProductDescription":"This	is	Product	A"

		};

					

		$.ajax({

				type:"POST",

				url:"http://localhost/products/SaveProduct",

				data:JSON.stringify(product),

				contentType:	"application/json",

				dataType:"json",

				processData:true,

				success:	function(data,	status,	xhr){

						alert(data);

						

				},

				error:	function(error){

						alert(error);

						

				}

				

		});

}

In	order	to	make	a	call	to	another	domain,	we	can	use	jsonp,	so	the	server	wraps	the	JSON
data	in	a	JavaScript	function,	which	is	known	as	a	callback	function,	and	when	the	response
comes	back	to	the	client,	it	will	automatically	call	the	success	method.	The	modified	version
of	the	preceding	method	to	handle	cross-origin	request	is	shown	in	the	following	code.

In	this	code,	we	modified	the	URL	and	passed	the	callback=?	query	string	as	a	parameter.
Moreover,	the	crossDomain	attribute	is	used	to	ensure	that	the	request	will	be	crossDomain.
When	the	server	responds,	?	specified	in	the	callback	query	and	the	string	will	be	replaced	by
the	function	name,	such	as	json43229182_22822992,	and	will	call	the	success	method:

function	SaveProduct(){

		var	product	=	{

				"ProductName":"Product1",

				"ProductDescription":"This	is	Product	A"

		};

				

		$.ajax({

				type:"POST",

				url:"	http://localhost:4958/ProductService.svc/products/SaveProduct?

callback=?",

				data:JSON.stringify(product),

				contentType:	"application/json",

				dataType:"jsonp",

				crossDomain:	true,	

				processData:true,

				success:	function(data,	status,	xhr){

						alert(data);

						

				},

				error:	function(error){

						alert(error);

						

				}

				

		});

}

Similarly,	we	can	invoke	the	GetProduct	method	as	shown	in	the	following	code:

(function	()	{

		var	productCode=	"Prod-001";

		var	webServiceURL	=	

"http://localhost:4958/ProductService.svc/products/GetProduct/"+productCode;

		$.ajax({

				type:	"GET",

				url:	webServiceURL,

				dataType:	"json",

				processData:	false,

				success:	function	(data)	{

						alert(data);

				},

				error:	function	(error)	{

						alert(error);

				}

		});

});

For	cross	domain,	it	can	be	modified	as	follows:

(function	()	{

		var	productCode=	"Prod-001";

		var	webServiceURL	=	

"http://localhost:4958/ProductService.svc/products/GetProduct/"+productCode;

		$.ajax({

				type:	"GET",

				url:	webServiceURL+"?callback=?",

				dataType:	"jsonp",

				crossDomain:true,			

				processData:	false,

				success:	function	(data)	{

						alert(data);

				},

				error:	function	(error)	{

						alert(error);

				}

		});

});

Alternatively,	for	the	preceding	solution,	we	can	also	override	the	callback	function	name	in
a	jsonp	request,	and	the	value	specified	in	jsonpCallback	will	be	used	instead	of	callback=?
passed	in	a	URL.	The	following	code	snippet	calls	your	local	function	whose	name	is
specified	in	the	jsonpCallback	value:

function	callbackFn(data){

					

}

(function	()	{

		var	productCode=	"Prod-001";

		var	webServiceURL	=	

"http://localhost:4958/ProductService.svc/products/GetProduct/"+productCode;

		$.ajax({

				type:	"GET",

				url:	webServiceURL,

				dataType:	"jsonp",

				crossDomain:true,			

				processData:	false,

				jsonpCallback:	callbackFn,

				success:	function	(data)	{

						alert(data);

				},

				error:	function	(error)	{

						alert(error);

				}

		});

});

Summary
In	this	chapter,	we	discussed	Ajax	techniques	and	concepts	of	using	the	XMLHttpRequest
object.	We	have	seen	the	basic	architecture	of	how	the	Ajax	request	is	processed	and	what
events	and	methods	it	provides.	Similarly,	we	also	discussed	what	jQuery	offers	and	the
extensive	library	it	has	for	performing	different	types	of	the	HTTP	GET	and	POST	requests.	In
the	next	chapter,	we	will	discuss	the	basics	of	TypeScript,	and	one	of	the	most	popular	client-
side	framework,	Angular	2.	We	will	also	go	through	developing	a	simple	application	using
ASP.NET	Core	MVC	6	with	Angular	2	as	a	frontend	framework	and	Entity	Framework	7	for
backend	operations.

Chapter	5.	Developing	an	ASP.NET	Application
Using	Angular	2	and	Web	API
In	this	chapter,	we	will	develop	a	complete	application	on	ASP.NET	Core	using	MVC	6	for
MVC	views	and	Web	API	for	web	services.	For	the	client	side,	we	will	use	Angular	2,	which	is
one	of	the	most	popular	frameworks	for	client-side	development.	Angular	2	is	written	in
TypeScript,	but	it	provides	the	option	to	write	code	in	JavaScript	and	Dart.	In	this	chapter,	we
will	use	TypeScript	because	it	adheres	to	the	ECMAScript	6	standard,	with	a	provision	to
generate	JavaScript	when	you	build	your	project	in	ECMAScript	3,	ECMAScript	4,	and
ECMAScript	5	standards.	TypeScript	is	a	superset	of	JavaScript	and	most	of	the	things	are
common	to	both;	in	fact,	TypeScript	provides	some	features	that	in	JavaScript	are	not
implemented	by	many	browsers,	except	Mozilla	Firefox.

This	chapter	focuses	on	the	basic	concepts	and	takes	you	through	a	sample	application	to
learn	how	Angular	2	can	be	used	with	ASP.NET	Core	and	MVC	6.

TypeScript
TypeScript	is	a	language	developed	by	Microsoft	and	is	a	superset	of	JavaScript.	TypeScript
transpiles	into	JavaScript	at	compile	time.	Visual	Studio	2015	automatically	builds	the
TypeScript	into	JavaScript	files	and	places	them	inside	a	folder	configured	with	the
TypeScript.tsconfig	configuration	file.	It	provides	a	lot	more	than	JavaScript	provides,	but
developers	can	still	use	some	of	the	types	and	objects	in	TypeScript	that	they	use	in	JavaScript.
However,	TypeScript	generates	cleaner	and	more	optimized	code,	which	is	then	run	by	the
Angular	2	framework.	So,	when	the	TypeScript	compiles,	it	generates	JavaScript	and	stores	a
map	file	to	handle	debugging	scenarios.	Suppose	you	want	to	debug	your	TypeScript	code
from	Visual	Studio	2015;	this	mapping	file	contains	the	mapping	information	of	the	source
TypeScript	file	and	generated	JavaScript	file	being	run	inside	your	Angular	page	and	the
break	points	can	be	set	on	your	TypeScript	file.

Compilation	architecture	of	TypeScript
The	TypeScript	compiler	goes	through	several	stages	to	compile	TypeScript	files	and
generate	JavaScript	files.

The	compilation	process	starts	with	a	pre-processor,	which	determines	what	files	need	to	be
included	by	following	reference	///	<reference	path=…/>	tags	and	import	statements.	Once
the	files	are	identified,	the	parser	parses	and	tokenizes	the	source	code	into	an	Abstract
Syntax	Tree	(AST).

An	AST	represents	the	syntactical	structure	of	the	source	code	in	a	tree	format	that	consists	of
nodes.	The	binder	then	passes	over	the	AST	nodes	and	generates	and	binds	symbols.	One
symbol	is	created	for	each	named	entity	and	if	there	are	multiple	entities	with	the	same	name,
they	will	have	the	same	symbol.

Symbols	represent	named	entities	and	merge	multiple	files	if	several	declarations	are	found.
To	represent	a	global	view	of	all	the	files,	a	program	is	build.	A	program	is	the	main	entry
point	to	the	type	system	and	code	generation.	Once	the	program	is	created,	a	type	checker	and
an	emitter	can	be	created.

A	type	checker	is	the	core	part	of	the	TypeScript	system,	consolidates	all	the	symbols	from
multiple	files	into	a	single	view,	and	builds	a	symbol	table.	This	symbol	table	contains	the
types	of	each	symbol	identified	and	merged	into	a	common	symbol.	A	type	checker	contains
complete	information	about	which	symbol	belongs	to	which	node,	the	type	of	a	particular
symbol,	and	so	on.

Finally,	an	emitter	is	used	by	the	TypeScript	compiler,	through	a	program,	to	generate	the
output	file:	.js,	.js.map,	.jxs,	or	d.ts.

Advantages	of	TypeScript
The	following	are	some	core	benefits	of	using	TypeScript	with	Angular	2.

Superset	of	JavaScript

TypeScript	is	a	typed	superset	of	JavaScript	that	compiles	to	JavaScript.	The	basic	advantage
of	being	a	superset	is	that	it	provides	the	latest	features	of	JavaScript	that	many	browsers	do
not	support	yet.	Developers	use	features	such	as	async	functions,	decorators,	and	others
during	application	development,	which	then	compile	into	a	JavaScript	file	that	targets	the
ECMAScript	4	or	ECMAScript	3	versions,	which	browsers	can	easily	understand	and
interpret.

Support	for	classes	and	modules

Typescript	supports	class,	interface,	extends,	and	implements	keywords.

Here	is	how	you	can	define	class	in	TypeScript:

class	Person	{

		private	personId:	string	=	'';

		private	personName:	string	=	'';

		private	dateOfBirth:	Date;

		constructor()	{}

		getPersonName():	string	{

		return	this.personName;

		}

		setPersonName(value):	void	{

		this.personName	=	value;

}}

Here	is	the	transpiled	version	of	TypeScript	in	JavaScript:

var	Person	=	(function	()	{

function	Person()	{

		this.personId	=	'';

		this.personName	=	'';

}

Person.prototype.getPersonName	=	function	()	{

		return	this.personName;

};

Person.prototype.setPersonName	=	function	(value)	{

		this.personName	=	value;

};

		return	Person;

})();

Static	type	checking

The	main	benefit	of	using	TypeScript	is	static	type	checking.	When	you	build	your	project,	the
TypeScript	compiler	checks	the	semantics	and	gives	errors	at	compile	time	to	avoid	runtime

errors.	For	example,	the	following	code	will	give	an	error	at	compile	time:

var	name:	string

name	=2;//give	error

Here	is	another	example	that	extends	the	Person	class	and	gives	a	type	mismatched	error	at
compile	type:

class	Person	{

		constructor(name:	string)	{

		}

}

class	Employee	extends	Person{

		constructor()	{

		super(2);	//error	

		}

}

ECMAScript	6	feature	support

At	the	time	of	writing,	most	browsers	still	do	not	support	ECMAScript	6	completely,	but	with
TypeScript,	we	can	write	code	and	use	ECMAScript	6	features.	As	ECMAScript	6	supports
backward	compatibility,	we	can	set	the	target	version	through	the	TypeScript	configuration
file,	which	generates	the	JavaScript	based	on	the	version	specified.	This	helps	developers	to
write	code	using	ECMAScript	6	features	and	the	output	JS	files	will	be	generated	in
ECMAScript	3,	ECMAScript	4,	or	ECMAScript	5	standards.

Optional	typing

TypeScript	supports	strict	typing	and	validates	types	at	compile	type,	but	using	strict	typing	is
not	mandatory.	You	can	even	declare	a	variable	without	specifying	its	type	and	it	will	be
resolved	when	the	value	is	assigned.

Declaring	types	in	TypeScript

Here	is	an	example	of	declaring	a	variable	without	its	type:

private	sNo	=	1;

private	text	=	'Hello	world';

Here	is	an	example	of	declaring	a	variable	with	types:

private	sNo:	number	=	1;

private	text:	string	=	'Hello	world';

Core	elements	of	TypeScript
This	section	discusses	the	core	elements	of	TypeScript:

Declaring	variables
Types
Classes	and	interfaces
Functions
Iterators
Modules	and	namespaces

Declaring	variables

Variable	declaration	is	equivalent	to	what	we	do	in	JavaScript.	However,	as	TypeScript
follows	the	ECMAScript	6	standard,	it	provides	strong	types	as	well.	Strong	types	can	be
declared	by	naming	a	variable	followed	by	a	colon	(:)	and	its	type.

Here	is	a	simple	variable	declaration	in	JavaScript:

var	name;

It	can	be	declared	in	TypeScript	as	follows:

var	name:	string;

Variables	can	be	initialized	in	TypeScript	as	follows:

var	name:	string	=	"Hello	World";				

Types

Most	of	the	types	available	in	TypeScript	are	equivalent	to	JavaScript	types.	The	following
table	contains	a	list	of	all	available	types,	with	a	code	snippet	for	using	them:

Type Description Code	snippet

Number
TypeScript	provides	a	number	type	that	holds	all
types	of	decimal,	hexadecimal,	binary,	and	octal
values.

let	decimal:	number	=	2;

let	hex:	number	=	0x001;

let	binary:	number	=	

0b1010;

let	octal:	number	=	0o744;

String
It's	the	same	as	we	use	in	any	other	language.	String
values	can	be	surrounded	with	single	or	double
quotes.

let	x:	string	=	'Hello';

let	y:	string	=	"Hello";

Array
TypeScript	supports	simple	arrays,	and	generic
arrays	as	well.

let	countries	=	['US',	

'UK',	'UAE'];

let	countries<string>	=	

['US',	'UK',	'UAE'];

Tuple Through	tuples,	we	can	define	an	array	whose
element	types	are	known.

let	val:	[string,	number,	

Date];

val	=	['Hello	World',	10,	

new	Date()];

val[0];//print	Hello	World

Enum
Used	to	give	names	to	the	numerical	values.	By
default,	the	first	value	specified	is	0	but	can	be	set
explicitly	to	any	number.

enum	Status	{InProcess,	

Active,	Ready,	Success,	

Error}

let	s:	Status	=	

Status.Active;

//specify	values	

explicitly

enum	Status	{InProcess=1,	

Active=2,	Ready=3,	

Success=4,	Error=5}

Any This	type	can	be	used	in	cases	where	the	type	is	not
known	and	is	dependent	on	an	assignment.

let	x:	any;

x=['Hello',	1,	2];	

//tuple;

x=1;	//number

x='Hello	World';	//string

Classes	and	interfaces

The	following	are	the	ways	of	defining	interfaces,	deriving	classes	and	interfaces,	and	writing
generic	classes	in	TypeScript.

Defining	interfaces

Just	like	C#,	TypeScript	allows	you	to	define	interfaces	that	can	be	implemented	in	TypeScript
classes	and	force	the	implementer	class	to	implement	all	the	members	defined	in	the	interface.

Here	is	the	code	to	define	an	interface	in	TypeScript:

interface	IShape	{

		shapeName:	string;

		draw();

}

class	TodoService	implements	IShape		{

		constructor(private	http:	Http)	{

		this.shapeName	=	"Square";

		}

		shapeName:	string;

		draw()	{

		alert("this	is	"	+	this.shapeName);

		}

}

Deriving	classes	and	interfaces

Like	C#,	classes	and	interfaces	can	be	extended	by	deriving	from	base	classes	or	interfaces.
To	extend	any	class,	we	can	use	the	extends	keyword,	and	for	an	interface	we	can	use
implements,	as	shown	here:

interface	IPerson	{

		id:	number;

		firstName:	string;

		lastName:	string;

		dateOfBirth:	Date;

}

interface	IEmployee	extends	IPerson{

		empCode:	string;

		designation:	string;

}

class	Person	implements	IPerson	{

		id:	number;

		firstName:	string;

		lastName:	string;

		dateOfBirth:	Date;

}

class	Employee	extends	Person	implements	IEmployee	{

		empCode:	string;

		designation:	string;

}

In	the	previous	code	snippet,	we	have	declared	two	interfaces,	IPerson	and	IEmployee.
IPerson	contains	common	properties	such	as	id,	firstName,	lastName,	and	dateOfBirth,
which	can	be	used	in	all	derived	interfaces,	such	as	IEmployee	or	any	other.

Then,	we	have	implemented	the	IPerson	interface	in	the	Person	class,	and	finally	derived	the
Employee	class	from	Person	and	implemented	the	IEmployee	interface.	If	you	have	noticed,	as
the	Person	class	already	implements	the	IPerson	interface,	we	do	not	have	to	implement	it
again	and	only	implement	the	properties,	such	as	empCode	and	designation	in	the	Employee
class.

Generic	classes

Generic	classes	are	useful	to	define	a	particular	class	whose	type	is	generic	and	determined
when	it	is	called.	Generic	classes	can	be	defined	by	using	<T>	followed	by	the	class	name.

Here	is	a	simple	example	that	shows	the	generic	class	process,	which	can	work	as	per	the	type
specified	during	initialization.	The	getTypeInfo()	method	will	print	a	specific	message	based
on	the	type	of	object	initialized:

class	Process<T>{

		value:	T;

		getTypeInfo(){

		if	(typeof	this.value	==	"string")

				console.log("Type	is	a	string");

		else	if	(typeof	this.value	==	"number")

				console.log("Type	is	a	number");

		else	alert("type	is	unknown");

					

		}

}

let	pString	=	new	Process<string>();

pString.getTypeInfo();	//print	Type	is	a	string

let	pNumber	=	new	Process<number>();

pNumber.getTypeInfo();	//print	Type	is	a	number

Functions

Functions	can	be	defined	in	the	same	way	as	JavaScript.	TypeScript	supports	both	named	and
anonymous	functions.	In	TypeScript,	function	parameters	can	be	typed	parameters,	as	shown
here:

function	concat(x:	string,	y:	string):	string	{

		return	x	+"	"+	y;	

}

Functions	can	also	have	optional	parameters	and	can	be	declared	by	using	(?)	as	shown	here:

function	concat(x:	string,	y:	string,	z?:	string):	string	{

		return	x	+	"	"	+	y	+	"	"	+	z;	

}

With	this	option,	we	can	call	the	function	by	passing	two	parameters	or	three	parameters
because	the	third	parameter	is	optional.

Generic	functions

TypeScript	allows	you	to	define	generic	functions,	which	accept	any	type	of	argument	or
return	type.	Generic	functions	can	be	defined	by	specifying	the	<T>	after	the	function	name,	as
shown	in	the	following	code,	and	the	arguments	or	returned	type	can	also	be	generic	and
refer	to	the	same	T	type.	This	is	useful	to	define	a	particular	function	that	accepts	all	types	of
arguments	and	works	as	expected.	The	following	example	shows	the	process	function	based
on	the	type	of	argument	concatenated	or	added:

function	process<T>(x:	T,	y:	T):	string{

		if	(typeof	x	==	"string")

		return	x	+	"	"	+	y;

		else	if	(typeof	x	==	"number")

		return	"Sum	is:	"+	x	+	y	;

		else	

		return	"Type	in	unknown";

}

Iterators

Apart	from	standard	loops	such	as	for,	while,	TypeScript	also	provides	two	types	of	for
statements,	for..of	and	for..in.	Both	statements	iterate	on	collections.	The	difference
between	these	is	that	the	for..of	statement	returns	the	keys	of	the	object	whereas	for..in
returns	the	values:

countries	=	['USA',	'UK',	'UAE'];		

		//this	loop	will	display	keys	0,	1,	2

for	(let	index	in	this.countries)	{

		console.log(index);

}

//this	loop	will	display	values	USA,	UK,	UAE

for	(let	index	of	this.countries)	{

		console.log(index);

}

Modules	and	namespaces

ECMAScript	6	introduces	the	concept	of	modules.	Modules	can	be	thought	of	as	logical
containers	that	have	their	own	scope.	Any	class,	variable,	or	method	declared	inside	a	module
is	scoped	within	its	own	container	and	accessible	to	other	modules	only	if	it	is	allowed
explicitly.	In	TypeScript,	any	file	containing	imports	or	exports	at	a	top	level	are	considered
modules.	Modules	import	one	another	using	a	module	loader,	and	at	runtime	the	module
loader	is	responsible	for	loading	all	the	dependencies	of	the	module	defined	within	it.
Modules	can	be	exported	using	the	export	keyword	and	other	modules	can	import	it	using	the
import	keyword.

Here	is	an	example	of	defining	and	exporting	a	module	in	TypeScript:

//BaseManager.ts

export	class	BaseManager{

}

To	use	the	module	in	some	other	area	requires	you	to	use	the	import	keyword,	as	shown	here:

//ServiceManager.ts

export	class	ServiceManager	extends	BaseManager{

}

Modules	can	be	imported	by	using	the	import	keyword.	When	importing	any	module,	you
have	to	use	the	import	keyword,	followed	by	the	class	name	in	brackets	{},	followed	by	the
actual	filename	that	contains	the	class.	For	example,	the	following	code	shows	the	way	of
importing	ServiceManager	into	Main.ts:

//Main.ts

import	{ServiceManager}	from	"./ServiceManager"

We	can	also	give	a	friendly	name	to	the	class,	as	follows:

//Main.ts

import	{ServiceManager	as	serviceMgr}	from	"./ServiceManager"

Namespaces,	on	the	other	hand,	are	the	logical	modules	to	categorize	classes,	methods,	and	so
on.	Just	like	C#,	they	can	be	defined	by	using	a	namespace	keyword.	One	namespace	can	be
split	across	different	TypeScript	files	and	this	gives	developers	a	handy	way	of	categorizing
specific	files	to	a	single	namespace.	The	following	example	shows	the	way	to	categorize
TypeScript	files	into	a	single	namespace	and	using	them:

//PersonManager.ts

namespace	BusinessManagers{

		export	class	PersonManager{}

}

//SecurityManager.ts

namespace	BusinessManagers{

		export	class	SecurityManager(){

}

}

//main.ts

///	<reference	path="personmanager.ts"	/>

		///		<reference	path="SecurityManager.ts"	/>

personObj	=	new	BusinessManagers.PersonManager();

securityObj	=new	BusinessManagers.SecurityManager();

If	you	notice,	we	have	used	a	triple-slash	directive,	which	is	used	to	refer	to	the	dependent
files	before	executing	the	code	in	the	TypeScript	file.	Therefore,	as	these	files	persist
somewhere	else,	we	have	to	explicitly	reference	them	in	the	preceding	code.

To	summarize,	namespaces	are	a	better	method	to	use	than	modules	as	they	categorize	files
logically	by	providing	a	friendly	name,	and	allow	developers	to	structure	code	properly	when
working	with	medium-to-large-sized	projects.

We	can	also	give	a	shortened	name	to	a	namespace	if	it's	unfriendly	by	using	an	import
keyword	as	shown	here:

namespace	BusinessManagers	{

		export	class	PersonManager	{

		}

}

import	mgr	=	BusinessManagers;

let	personObj	=	new	mgr.PersonManager();

To	LC:	Apply	code	to:

"namespace	BusinessManagers	{

		export	class	PersonManager	{

		}

}

import	mgr	=	BusinessManagers;

let	personObj	=	new	mgr.PersonManager();

So	this	winds	up	the	core	topics	of	TypeScript.	To	learn	more	about	TypeScript,	you	can	refer
to	http://www.typescriptlang.org/.

http://www.typescriptlang.org/

Introduction	to	Angular	2
Angular	2	is	a	client-side	framework	to	build	web	applications.	It	is	very	flexible	in	terms	of
being	used	with	both	mobile	and	web	platforms.	The	basic	advantage	of	using	Angular	is	that
it	follows	the	ECMAScript	6	standard	and	developers	can	do	object-oriented	programming,
define	classes	and	interfaces,	implement	classes,	and	define	data	structures	using	Plain	Old
JavaScript	Objects	(POJO)	for	binding	data.	Another	big	advantage	in	terms	of
performance	is	the	unidirectional	data	flow.	Unlike	Angular	1.x,	Angular	2	provides	both	the
option	of	doing	two-way	data	binding	or	unidirectional	data	binding.	In	certain	cases,
unidirectional	binding	is	good	for	performance.	For	example,	when	submitting	a	form,	two
way	bindings	with	controls	may	be	overkill.

Angular	2	architecture
Angular2	consist	of	a	number	of	components.	Each	component	can	be	bound	to	the	page	by
either	a	selector,	for	example	<my-app>	</my-app>,	or	a	routing	module.	Each	component
has	a	selector,	template	HTML	or	template	reference	link,	directives,	providers,	and	a
controller	class	whose	properties	and	methods	can	be	accessed	in	the	associated	view.	When
the	web	application	first	starts,	System.import	loads	the	main	component	of	the	application,
which	bootstraps	the	root	component.	Here	is	a	sample	main	component	bootstrapping	an
Angular	app:

//Loading	module	through	Import	statement

Import	{AppComponent}	from	'path	of	my	component'

bootstrap(AppComponent,	[Providers]);

Providers	can	be	defined	inside	square	brackets.	There	are	various	providers	available,	which
we	will	discuss	in	a	later	chapter.

This	bootstrap	object	is	in	angular2/platform/browser,	which	can	be	imported	into	the
TypeScript	file	with	the	import	command:

import	{bootstrap}	from	'angular2/platform/browser';

This	bootstrap	object	directs	Angular	to	load	the	component	defined	in	it.	When	the
component	is	loaded,	all	the	attributes	or	metadata	defined	for	the	component	are	evaluated.
Each	component	should	have	the	@Component	annotation,	some	properties	to	define	metadata
about	the	component,	and	one	or	more	classes	termed	as	component	controllers	that	contain
properties	and	methods	accessible	by	the	template	defined	in	the	@Component	template	or
templateUri	properties.

Here	is	a	sample	app.component.ts	that	contains	a	selector,	a	template,	and	a	class,
AppComponent:

//app.component.ts

import	{	Component,	View}	from	'angular2/core';

		import	{bootstrap}	from	'angular2/platform/browser';

		@Component({

		selector:	"my-app",

		template:	`<p>This	is	a	first	component</p>`,

		})		

		class	AppComponent		{

		}

		bootstrap(AppComponent);

Events	of	component	life	cycle

When	the	component	initializes,	it	goes	through	several	events	and	has	a	very	structured	life
cycle	process.	We	can	implement	these	events	to	do	specific	operations.	The	following	table
shows	the	list	of	events	we	can	use	in	our	component	controller	class:

Event Description

ngOnInit()
It	is	called	after	the	component	is	initialized	and	the	controller
constructor	is	executed.

ngOnDestroy()
It	is	used	to	clean	up	resources	when	the	component	is	disposed
of.

ngDoCheck()
It	is	used	to	override	the	default	change	detection	algorithm	for	a
directive.

ngOnChanges(changes)

It	is	invoked	when	any	of	the	component	selector	property	values
get	modified.	(Custom	properties	of	the	selectors	can	be	defined
through	inputs.)

ngAfterContentInit()
It	is	invoked	when	the	directive's	content	is	initialized.	(Directives
are	defined	later.)

ngAfterContentChecked() It	is	invoked	every	time	the	directive's	content	is	checked.

ngAfterViewInit() It	is	invoked	when	the	view	is	completely	initialized.

ngAfterViewChecked() It	is	invoked	on	every	check	of	your	component's	view.

Modules

A	module	represents	a	container	that	contains	classes,	interfaces,	and	more,	to	export
functionality,	so	other	modules	can	be	imported	using	the	import	statement.	For	example,
here	is	math.ts,	used	to	perform	different	arithmetic	operations:

//math.ts

import	{Component}	from	'angular2/core';

@Component({

		

})

export	class	MathService	{

		constructor()	{

		}

		public	sum(a:	number,	b:	number):	number	{

		return	a	+	b;

		}

		public	subtract(a:	number,	b:	number):	number	{

		return	a	-	b;

		}

		public	divide(a:	number,	b:	number):	number	{

		return	a	/	b;

		}

		public	multiply(a:	number,	b:	number):	number	{

		return	a	*	b;

		}

}

Components

A	component	is	a	combination	of	the	@Component	annotation	to	define	metadata	properties	and
the	associated	controller	class	that	contains	the	actual	code,	such	as	the	class	constructor,
methods,	and	properties.	The	@Component	annotation	contains	the	following	metadata
properties:

@Component({

		providers:	string[],

		selector:	string,

		inputs:	string[],

		outputs:	string[],

		properties:	string[],

		events:	string[],

		host:	{	[key:	string]:	string	},

		exportAs:	string,

		moduleId:	string,

		viewProviders:	any[],

		queries:	{	[key:	string]:	any	},

		changeDetection:	ChangeDetectionStrategy,

		templateUrl:	string,

		template:	string,

		styleUrls:	string[],

		styles:	string[],

		directives:	Array	<	Type	|	any[]	>,

		pipes:	Array	<	Type	|	any[]	>,

		encapsulation:	ViewEncapsulation

})

Core	properties	of	Angular	2	components
When	defining	a	component,	we	can	specify	various	properties,	as	listed	previously.	Here	we
will	see	some	of	the	core	properties	that	are	often	required	when	creating	Angular	2
components:

Templates	and	selectors
Inputs	and	outputs
Directives
Providers

Templates	and	selectors

The	following	real	example	contains	the	template	and	the	selector	defined	in	the	component
class.	When	the	button	is	clicked,	it	will	call	the	logMessage()	method,	which	prints	the
message	in	the	<p>	element.	If	you	notice,	we	have	not	used	the	export	keyword	with	the	class
because	we	have	already	bootstrapped	the	component	on	the	same	file	and	this	component
does	not	need	to	be	referenced	anywhere	else:

import	{	Component,	View	}	from	'angular2/core';

import	{bootstrap}	from	'angular2/platform/browser';

@Component({

		selector:	"my-app",

		template:	"<p>	{{message}}</p><button	(click)='logMessage()'>Log	

Message</button>"

})

class	AppComponent	{

		logMessage()	{

				this.message	=	"Hello	World";

		}

		message:	string	=	"";

}

bootstrap(AppComponent);

The	app	selector	can	be	used	anywhere	in	the	HTML	or	index.cshtml	page	if	working	on	an
ASP.NET	project,	and	the	template	will	be	rendered	inside	it.	Here	is	an	example	of	using	the
custom	tag	my-app:

<html>

<body>

		<my-app></my-app>

</body>

</html>

Once	the	page	runs,	it	will	render	the	output	with	this	generated	source:

<html>

<body>

		<p>Hello	World</p>

		<button	(click)='logMessage()'>Log	Message</button>

</body>

</html>

Inputs	and	outputs

Inputs	allow	developers	to	specify	the	custom	attributes	mapped	to	some	property	of	the
component	class	downward	in	the	hierarchy	of	components,	whereas	outputs	are	used	to
define	custom	event	handlers	on	the	component	that	can	be	raised	upward	in	the	hierarchy	of
components.	In	short,	inputs	are	used	to	send	data	from	parent	to	child	components,	whereas
outputs	are	used	to	invoke	events	from	child	to	parent	components.	In	the	previous	example,
we	saw	how	selectors	can	be	used,	and	the	associated	template	is	rendered	in	place	of	a
selector,	with	the	provision	of	having	all	the	members	of	the	component	class	available.	In
certain	cases,	we	have	to	specify	some	attributes	in	our	custom	selector	to	pass	the	value	to
handle	particular	actions.	For	example,	we	may	need	some	attribute	in	the	previous	<my-app>
tag	to	specify	the	logging	type,	such	as	to	log	on	to	a	developer's	console	or	show	an	alert
message.

Using	inputs

In	this	example,	we	will	create	two	input	attributes,	logToConsole	and	showAlert.	We	can
define	input	attributes	in	the	@Component	annotation.	The	following	code	snippet	is	the
separate	component	defined	in	child.component.ts	and	contains	the	selector	as	child;	the
template	displays	the	Boolean	values	of	the	logToConsole	and	showAlert	attributes	specified
in	the	child	tag.	The	inputs	contain	the	list	of	string	variables	that	will	be	defined	as	the	child
tag	attributes:

//child.component.ts

import	{	Component}	from	'angular2/core';

@Component({

		selector:	'child',

		template:	`<div>	Log	to	Console:	{{logToConsole}},	Show	Alert:	{{showAlert}}	

<button	(click)="logMessage()"	>Log</button>	</div>`,

		inputs:	['logToConsole',	'showAlert'],

})

Here	is	the	ChildComponent	class	that	contains	the	logToConsole	and	showAlert	Boolean
variables.	These	variables	actually	hold	the	values	supplied	from	the	notification	tag.	Finally,
we	have	the	logMessage()	method	that	will	be	invoked	on	a	button	click	event	and	either	log
the	message	on	the	developer's	console	or	show	an	alert	message	based	on	the	value	that	has
been	set	by	the	parent	component	in	the	hierarchy:

export	class	ChildComponent	{

		public	logToConsole:	boolean;

		public	showAlert:	boolean;

		logMessage(message:	string)	{

				if	(this.logToConsole)	{

						console.log("Console	logging	is	enabled");

				}

				if	(this.showAlert)	{

						alert("Showing	alert	message	is	enabled");

				}

				

		}

}

In	the	app.component.ts	file,	where	we	have	the	main	AppComponent	defined,	we	can	use	the
child	selector	as	shown	in	the	following	code.	When	defining	the	child	selector,	we	can	set	the
values	for	custom	inputs	defined	in	the	ChildComponent,	logToConsole	and	showAlert.	This
way	the	parent	component	can	specify	the	values	to	the	child	component	through	inputs.	Here
is	the	complete	code	of	AppComponent:

//app.component.ts

import	{	Component,	View	}	from	'angular2/core';

import	{bootstrap}	from	'angular2/platform/browser';

import	{ChildComponent}	from	'./child.component';

@Component({

		selector:	"my-app",

		template:	`<child	[logToConsole]=true	[showAlert]=true></child>`,

		directives:	[ChildComponent]

})

export	class	AppComponent	{

}

bootstrap(AppComponent);

Tip

When	using	template	to	define	HTML,	we	can	use	a	backtick	(`)	rather	than	the	double	quotes
('')	or	single	quotes	('),	as	shown	the	preceding	example.	This	allows	the	HTML	content	to
span	multiple	lines.

Using	outputs

Outputs	are	used	to	invoke	events	on	the	parent	component	from	child	components	in	the
hierarchy	of	components.	We	will	modify	the	preceding	example	and	add	the	outputs	event	in
the	ChildComponent,	then	register	it	in	the	AppComponent	using	the	ChildComponent	selector.

Here	is	the	modified	code	snippet	for	ChildComponent:

		//child.component.ts

import	{	Component,	EventEmitter,	Output}	from	'angular2/core';

@Component({

		selector:	'child',

		template:	`<div>	Log	to	Console:	{{logToConsole}},	Show	Alert:	{{showAlert}}		

<button	(click)="logMessage()"	>Log</button>	</div>`,

		inputs:	['logToConsole',	'showAlert']

})

export	class	ChildComponent	{

		public	logToConsole:	boolean;

		public	showAlert:	boolean;

		@Output()	clickLogButton	=	new	EventEmitter();

		

		logMessage(message:	string)	{

				this.clickLogButton.next("From	child");

		}

}

The	@Output	property	lists	clickLogButton	as	a	custom	event	that	ChildComponent	can	emit,
which	its	parent	AppComponent	will	receive.

We	have	added	EventEmitter	in	the	import	statement.	EventEmitter	is	a	built-in	class	that
ships	with	Angular	and	provides	methods	for	defining	and	firing	custom	events.	Once	the
logMessage()	method	is	executed,	it	will	execute	the	clickLogButton.next()	method	from
the	ChildComponent,	which	finally	calls	the	event	registered	in	the	AppComponent.

We	have	added	the	clickLogButton	in	the	AppComponent,	as	shown	in	the	following	code.	In
Angular	2,	we	can	specify	the	event	by	specifying	the	event	name	in	brackets	()	followed	by
the	method	that	will	be	called	when	the	event	is	raised.	This	is	how	the	event	is	registered.
Here,	logMessage	is	the	local	method	defined	in	the	AppComponent:

(clickLogButton)="logMessage($event)"

Here	is	the	code	snippet	for	AppComponent:

		//app.component.ts	

import	{	Component,	View	}	from	'angular2/core';

import	{bootstrap}	from	'angular2/platform/browser';

import	{ChildComponent}	from	'./child.component';

@Component({

		selector:	"my-app",

		template:	`<child	[logToConsole]=true	[showAlert]=true	

(clickLogButton)="logMessage($event)"	></child>`,

		directives:	[ChildComponent]

})

export	class	AppComponent	{

		logMessage(value)	{

				alert(value);

		}

}

bootstrap(AppComponent);

The	logMessage	method	is	the	method	that	will	be	invoked	when	the	event	is	raised	from	the
ChildComponent.

Directives

Directives	are	custom	tags	that	render	the	HTML	at	runtime	but	encapsulate	the	rendering
content	in	the	directive	itself.	We	can	relate	it	to	the	tag	helpers	in	ASP.NET.	There	are	three
kinds	of	directives,	components,	structural	directives,	and	attribute	directives:

Components:	It	is	a	directive	with	a	template.
Structural	directive:	It	is	a	directive	to	add	or	remove	DOM	elements.	There	are	some
built-in	structural	directives	that	Angular	provides.	Directives	such	as	ngIf,	ngSwitch,
and	ngFor	are	structural	directives.

Attribute	directive:	It	changes	the	appearance	of	any	DOM	element.
Creating	a	simple	Hello	World	directive

Directives	can	be	created	in	a	simple	way,	as	a	component	is	created,	and	can	be	referenced	in
the	calling	component	through	its	selector	tag.

Here	is	an	example	of	HelloWorldComponent	that	defines	a	simple	directive	to	display	a
"Hello	world"	message	in	the	heading	format:

//helloworld.component.ts

import	{Component}	from	'angular2/core';

@Component({

		selector:	"helloworld",

		template:	"<h1>Hello	world</h1>"

})

export	class	HelloWorldComponent	{

		

}

The	following	example	is	the	component	that	uses	this	directive.	When	using	any	directive,	it
has	to	be	first	imported	through	the	import	statement,	then	the	@Component	metadata	property
needs	to	be	set	to	access	it	in	the	associated	template:

import	{	Component,	View,	provide,	Inject	}	from	'angular2/core';

		import	{bootstrap}	from	'angular2/platform/browser';

		import	{HelloWorldComponent}	from	'./helloworld.component';

		@Component({

				selector:	"my-app",

				template:	`<helloworld></helloworld>`,

				directives:	[,	HelloWorldComponent],

		})

		export	class	AppComponent{

	

		}

		bootstrap(AppComponent);

This	directive	can	be	used	on	the	page	as	follows:

<helloworld></helloworld>

Structural	directives

Structural	directives	can	be	used	to	add	or	remove	DOM	elements.	For	example,	we	can	add
the	list	of	countries	as	a	table	through	*ngFor,	as	shown	in	the	following	code,	and	hide	or
unhide	the	div	through	the	*ngIf	directive:

		<div	*ngIf="display">

				<table>

						<thead>

								<tr>

										<th>

												Country

										</th>

										<th>

												Currency

										</th>

								</tr>

						</thead>

						<tbody	*ngFor="#country	of	countries">

								<tr><td>{{country.CountryName}}</td><td>{{country.Currency}}</td></tr>

						</tbody>

				</table>

		</div>

Here	is	the	backend	countries.component.ts,	which	uses	the	HTTP	module	to	call	the
ASP.NET	Web	API	service.	It	returns	a	list	of	countries,	which	is	assigned	to	the	countries
array.	The	display	default	value	is	set	to	true,	which	generates	the	table.	By	setting	the
display	value	to	false,	the	table	will	not	be	generated:

///<reference	path="../../node_modules/angular2/typings/browser.d.ts"	/>

import	{Component}	from	'angular2/core';

import	{Http,	Response}	from	'angular2/http';

@Component({

		selector:	'app',

		templateUrl:	'Countries'

})

export	class	TodoAppComponent	{

		countries	=	[];

		display:	boolean	=	true;

		//constructor

		constructor(private	http:	Http)	{

		}

		//Page	Initialized	Event	Handler

		ngOnInit()	{

				this.getCountries();

		}

		getCountries()	{

				this.http.get("http://localhost:5000/api/todo").map((res:	Response)	=>	

res.json())

						.subscribe(data	=>	{

								this.countries	=	data;

						},

						err	=>	console.log(err),

						()	=>	console.log("done")

);

		}

}

This	is	how	structural	directives	can	be	used	in	Angular	2.	In	the	following	chapter,	we
develop	a	sample	application	and	discuss	each	artifact	for	making	HTTP	GET	and	POST

requests	using	Angular	2.

Attribute	directive

An	attribute	directive	requires	building	a	controller	class	annotated	with	@Directive	and
defines	a	selector	to	identify	the	attribute	associated	with	it.	In	the	following	example,	we	will
develop	a	simple	myFont	directive	that	changes	the	text	to	italic	when	it	is	applied	to	any	page
elements.	Here	is	the	font.directive.ts	file:

import	{	Directive,	ElementRef,	Input	}	from	'angular2/core';

@Directive({	selector:	'[myFont]'	})

export	class	FontDirective	{

		constructor(el:	ElementRef)	{

				el.nativeElement.style.fontStyle	=	'italic';

		}

}

For	each	matching	element	on	the	page,	Angular	creates	a	new	instance	and	injects
ElementRef	into	the	constructor.	ElementRef	is	a	service	through	which	we	can	directly	access
the	element	through	its	nativeElement	property	and	access	other	attributes.	In	the	preceding
code	snippet,	we	are	changing	the	font	style	to	italic	for	the	elements	that	have	the	myFont
directive	applied.

On	the	page	level,	it	can	be	used	as	follows:

<p	myFont>myFont	is	an	Attribute	directive</p>

Providers

Providers	are	used	to	register	the	types	that	gets	instantiated	through	the	dependency	injection
framework	of	Angular	2.	When	a	component	is	initialized,	Angular	creates	a	dependency
injector	which	registers	all	the	types	specified	in	the	providers	array.	Then	at	the	constructor
level,	if	there	is	any	type	defined	in	the	providers	array,	it	will	get	initialized	and	injected	into
the	constructor.

The	following	example	is	MathComponent,	which	will	be	injected	into	the	main	app	component
constructor	and	call	the	sum	method	to	add	two	numbers	together:

//math.component.ts

import	{	Component	}	from	'angular2/core';

@Component({})

export	class	MathComponent	{

		

		public	sum(a:	number,	b:	number)	:	number{

				return	a	+	b;

		}

		public	divide(a:	number,	b:	number):	number	{

				return	a	/	b;

		}

		public	subtract(a:	number,	b:	number):	number	{

				return	a	-	b;

		}

		public	multiply(a:	number,	b:	number):	number	{

				return	a	*	b;

		}

}

The	following	example	is	AppComponent,	showing	how	to	import	a	math	component,	then
defining	the	provider	and	injecting	it	at	the	constructor	level:

//app.component.ts

import	{	Component,	View	}	from	'angular2/core';

import	{bootstrap}	from	'angular2/platform/browser';

import	{MathComponent}	from	'./servicemanager.component';

		@Component({

				selector:	"my-app",

				template:	"<button	(click)="add()"	>Log</button>",

				providers:	[MathComponent]

		})		

		export	class	AppComponent		{

				obj:	MathComponent;

				constructor(mathComponent:	MathComponent)	{

						this.obj	=	mathComponent;

				}

				public	add()	{

						console.log(this.obj.sum(1,	2));

				}

		}

		bootstrap(AppComponent);

Other	primitive	types	can	also	be	injected	in	a	slightly	different	way	using	the	Inject	Angular
module.	We	can	also	define	a	type	using	the	provide	keyword,	which	takes	a	key	and	the
value:

providers:	[provide('Key',	{useValue:	'Hello	World'})]

The	preceding	syntax	can	also	be	used	when	defining	types	in	providers,	as	follows:

providers:	[provide(MathComponent,	{mathComponent:	MathComponent	})]

One	of	the	main	benefits	of	defining	providers	with	the	provide	keyword	is	when	testing.
When	testing	applications,	we	can	replace	the	actual	components	with	the	mock	or	test
components.	For	example,	suppose	we	have	a	class	that	calls	some	SMS	service	to	send	SMS
using	some	paid	gateway,	and	in	the	testing	cycle	we	don't	want	to	use	the	production	SMS
gateway	component,	but	rather	we	would	like	to	have	some	custom	test	component	that	just
inserts	the	SMS	into	a	local	database.	In	this	case,	we	can	associate	some	mock	class,	such	as
SMSTestComponent,	to	perform	testing	scenarios.

The	following	example	injects	the	string	value	into	the	constructor.	We	need	to	add	the	Inject
module	as	specified	in	the	following	code,	and	then	use	@Inject	to	inject	the	value	associated
to	the	key:

		//app.component.ts

import	{	Component,	View,	provide,	Inject	}	from	'angular2/core';

		import	{bootstrap}	from	'angular2/platform/browser';

		import	{MathComponent}	from	'./servicemanager.component';

		@Component({

				selector:	"my-app",

				template:	`button	(click)="logMessage()"	>Log</button>`,

				providers:	[MathComponent,	provide('SampleText',	{useValue:	'Sample	Value'})]

		})

		export	class	AppComponent{

				obj:	MathComponent;

				Val:	string;

				constructor(mathComponent:	MathComponent,	@Inject('SampleText')	value)	{

						this.obj	=	mathComponent;

						this.Val	=	value;

				}

						

		public	logMessage()	{

				alert(this.kVal);

		}

		}

		bootstrap(AppComponent);

Dependency	injection	in	Angular
Angular	chains	dependency	injection	and	injects	components	into	the	child	components	if	they
are	defined	in	the	providers	array	of	the	parent	component.	However,	a	child	component	can
define	the	same	component	in	its	own	providers	array.	The	scope	of	the	component	travels
through	the	chain	of	components.	However,	components	that	are	defined	in	the
viewproviders	array	aren't	injected	or	inherited	by	the	child	components	in	the	hierarchical
chain.

Let's	take	a	simple	example	that	contains	one	main	component	in	app.ts	and	AppComponent
defines	two	providers:	ChildComponent	and	MathComponent.	ChildComponent	is	the	child	of	the
parent	component,	whereas	MathComponent	is	used	in	both	the	parent	and	child	components.	If
you	notice,	in	the	following	code	snippet,	we	have	not	specified	the	MathComponent	in	the
providers	array	of	the	ChildComponent,	and	as	it	is	defined	in	the	ParentComponent,	it	is
already	injected	by	the	Angular	dependency	injection	module.

Here	is	the	code	snippet	for	AppComponent	(parent):

		//app.component.ts

		import	{	Component}	from	'angular2/core';

		import	{bootstrap}	from	'angular2/platform/browser';

		import	{MathComponent}	from	'./servicemanager.component';

		import	{ChildComponent}	from	'./child.component';

		@Component({

				selector:	"my-app",

				template:	`<button	(click)="callChildComponentMethod()">Log</button>`,

				providers:	[MathComponent,	ChildComponent]

		})

		export	class	AppComponent		{

				childObj:	ChildComponent;

						constructor(childComponent:	ChildComponent)	{

						this.childObj	=	childComponent;

		

		}

				public	callChildComponentMethod()	{

						this.childObj.addNumbers(1,	2);			

						

				}

		}

		bootstrap(AppComponent);

The	following	is	the	code	snippet	for	MathComponent,	which	contains	some	basic	arithmetic
operations:

//math.component.ts

import	{	Component	}	from	'angular2/core';

@Component({})

export	class	MathComponent	{

		

		public	sum(a:	number,	b:	number)	:	number{

				return	a	+	b;

		}

		public	divide(a:	number,	b:	number):	number	{

				return	a	/	b;

		}

		public	subtract(a:	number,	b:	number):	number	{

				return	a	-	b;

		}

		public	multiply(a:	number,	b:	number):	number	{

				return	a	*	b;

		}

}

Finally,	here	is	the	ChildComponent	code,	which	does	not	have	the	MathComponent	provider
defined	in	the	providers	array:

//child.component.ts

import	{Component}	from	'angular2/core';

import	{MathComponent}	from	'./servicemanager.component';

@Component({

		selector:	'child-app',

		template:	'<h1>Hello	World</h1>'

})

export	class	ChildComponent	{

		obj:	MathComponent;

		constructor(mathComponent:	MathComponent)	{

				this.obj	=	mathComponent;

		}	

		public	addNumbers(a:	number,	b:	number)	{

				alert(this.obj.sum(a,	b));

		}

}

Routing	in	Angular
Routing	has	an	essential	role	when	working	with	large	applications.	Routing	is	used	to
navigate	to	different	pages.	Routing	can	be	defined	in	three	steps:

1.	 Define	@RouteConfig	at	any	component	level:

@RouteConfig([

		{	path:	'/page1',	name:	'Page1',	component:	Page1Component,	useAsDefault:	

true	},

		{	path:	'/page2',	name:	'Page2',	component:	Page2Component	}]

)

2.	 Use	the	[routerLink]	attribute	on	the	anchor	HTML	tag	and	specify	the	route	name
configured	in	@RouteConfig.

3.	 Finally,	add	the	<router-outlet>	tag	to	render	the	page	on	the	current	navigated	route.

The	following	example	contains	two	components,	Page1Component	and	Page2Component,	and
the	main	AppComponent	has	routing	defined	like	this:

//app.component.ts

import	{Component}	from	'angular2/core';

import	{RouteConfig,	ROUTER_DIRECTIVES}	from	'angular2/router';

import	{Page1Component}	from	'./page1.component';

import	{Page2Component}	from	'./page2.component';

@Component({

		selector:	"my-app",

		template:	`{{name}}

				<a	[routerLink]="['Page2']">Page	2

				<router-outlet></router-outlet>`,

		directives:	[ROUTER_DIRECTIVES],

})

@RouteConfig([

		{	path:	'/',	name:	'Page1',	component:	Page1Component,	useAsDefault:true	},

		{	path:	'/page2',	name:	'Page2',	component:	Page2Component	}]

)

export	class	AppComponent	{

}

In	the	preceding	code,	first	we	imported	the	RouteConfig	and	ROUTER_DIRECTIVES	from
angular2/router	and	then	defined	the	RouteConfig	for	page	1	and	page	2.	In	the	inline
template,	we	placed	the	anchor	tag	and	defined	the	route	name	for	page	2.	When	the
application	runs,	page	1	is	set	as	a	default	page	on	a	root	path	/,	so	the	page	1	content	will	be
displayed	in	place	of	the	router	outlet.	When	the	user	clicks	on	the	Page2	link,	the	page	2
content	will	be	rendered	in	the	same	place.

Here	is	the	code	of	page1.component.ts:

//page1.component.ts

import	{Component}	from	'angular2/core';

@Component({

		template:'<h1>Page1	Content</h1>'

})

export	class	Page1Component	{

}

Here	is	the	code	of	page2.component.ts:

//page2.component.ts

import	{Component}	from	'angular2/core';

@Component({

		template:	'<h1>Page2	Content</h1>'

})

export	class	Page2Component	{

}

Developing	a	to-do	application	in	ASP.NET
Core
We	have	learned	the	core	features	of	Angular	2	and	how	to	write	programs	in	TypeScript.
Now	it's	time	to	develop	a	simple	to-do	application	using	Angular	2	and	ASP.NET	Core.
ASP.NET	Core	is	the	latest	web	development	platform	from	Microsoft,	which	is	more
optimized	and	modular	than	previous	versions	of	ASP.NET.	It	provides	an	option	to	use	the
machine-wide	.NET	Framework,	or	a	new	.NET	Core	which	runs	on	an	app-by-app	basis	and
even	contains	the	framework	binaries	in	the	published	web	application	folder	itself.	With	the
new	ASP.NET	Core,	we	are	not	dependent	for	running	our	application	on	IIS,	and	there	are
several	other	servers	provided	to	run	cross-platform	using	Kestrel.	To	learn	more	about
ASP.NET	Core,	please	refer	to	http://docs.asp.net.

We	will	go	through	a	step-by-step	tutorial	that	leads	to	a	working	to-do	application.	The
following	screenshot	show	a	snapshot	of	the	main	page.	Once	the	user	logs	in,	it	will	show	a
list	of	all	the	to-do	items	available.	User	can	add	a	new	to-do	item	by	clicking	a	Create	Todo
button	and	deleting	the	existing	one	as	well.	We	will	not	be	covering	the	security
authentication	and	authorization	module	in	this	chapter,	instead	focusing	on	how	to	use
Angular	2	with	ASP.NET	Core:

In	this	application,	we	will	have	three	projects.	TodoWebApp	calls	the	TodoServiceApp,	and
Common	is	used	by	Web	API,	which	holds	the	entity	models.	The	following	diagram	shows	how
to	develop	these	three	projects	and	configure	and	use	Angular	2:

http://docs.asp.net

Creating	a	Common	project
Common	projects	hold	the	entities	that	will	be	used	by	the	Entity	framework	to	create	a	database.
We	will	reference	this	assembly	in	the	Web	API	project	at	a	later	stage:

1.	 Create	a	.NET	Core	Class	Library	project:

2.	 Add	a	new	folder,	Models,	and	add	a	TodoItem	class	as	follows:

using	System;

using	System.Collections.Generic;

using	System.Linq;

using	System.Threading.Tasks;

namespace	Common

{

		public	class	TodoItem

		{

				public	int	Id	{	get;	set;	}

				public	string	Title	{	get;	set;	}

				public	string	Description	{	get;	set;	}

				public	DateTime	DueDateTime	{	get;	set;	}

				public	int	UserId	{	get;	set;	}

		}

}

The	preceding	TodoItem	class	contains	the	Id	(primary	key)	and	Title,	Description,
DueDateTime,	and	the	UserID	to	save	to-dos	for	a	specific	user.

Creating	a	TodoServiceApp	project
In	this	project,	we	will	create	a	web	API	that	will	reference	the	Common	project	which	contains
the	TodoItem	POCO	model.	In	this	project,	we	will	expose	services	and	create	a	database
repository	that	will	use	Entity	Framework	Core	to	perform	Create,	Read,	Update,	and
Delete	(CRUD)	operations	in	the	Microsoft	SQL	Server	database:

1.	 Create	a	new	Web	API	project,	choosing	ASP.NET	Core	template.	Web	API	and	ASP.NET
MVC	have	been	merged	into	one	unified	framework,	so	there	is	no	separate	project
template	for	Web	API.	In	this	case,	we	will	use	the	Empty	Project	Model	available	in	the
ASP.NET	Core	project	templates.

2.	 Open	project.json	and	add	a	reference	to	our	Common	assembly:

"dependencies":	{

		"Microsoft.NETCore.App":	{

				"version":	"1.0.0-rc2-3002702",

				"type":	"platform"

		},

		"Microsoft.AspNetCore.Server.IISIntegration":	"1.0.0-rc2-final",

		"Microsoft.AspNetCore.Server.Kestrel":	"1.0.0-rc2-final",

		"Common":	"1.0.0-*"

}

Enabling	MVC	in	a	Web	API	project

In	order	to	enable	the	MVC	project,	we	have	to	call	AddMvc()	in	the	ConfigureServices
method,	and	UseMvc()	in	the	Configure	method:

1.	 Add	the	MVC	package	in	project.json:

"Microsoft.AspNetCore.Mvc":	"1.0.0-rc2-final"

2.	 Call	AddMvc()	from	the	ConfigureServices	method:

public	void	ConfigureServices(IServiceCollection	services)

		{

				services.AddMvc();

		}

3.	 Finally,	call	UseMvc()	from	the	Configure	method:

public	void	Configure(IApplicationBuilder	app)

		{

				app.UseMvc();

		}

Installing	Entity	Framework

Here	are	the	steps	to	install	Entity	Framework:

1.	 Add	two	Entity	Framework	assemblies,	Microsoft.EntityFrameworkCore.SqlServer	and
Microsoft.EntityFrameworkCore.Tools,	as	shown	in	the	following	code:

		"dependencies":	{

		"Microsoft.NETCore.App":	{

				"version":	"1.0.0-rc2-3002702",

				"type":	"platform"

		},

		"Microsoft.AspNetCore.Server.IISIntegration":	"1.0.0-rc2-final",

		"Microsoft.AspNetCore.Server.Kestrel":	"1.0.0-rc2-final",

		"common":	"1.0.0-*",

		"Microsoft.AspNetCore.Mvc":	"1.0.0-rc2-final",

		"Microsoft.EntityFrameworkCore.SqlServer":	"1.0.0-rc2-final",

		"Microsoft.EntityFrameworkCore.Tools":	{

				"type":	"build",

				"version":	"1.0.0-preview1-final"

		}

}

Adding	AppSettings	to	store	a	connection	string

ASP.NET	Core	provides	various	options	for	storing	application	settings.	The	default
configuration	file	is	now	appsettings.json,	which	stores	the	data	in	a	JSON	format.
However,	there	are	other	methods	available	as	well	to	store	data	in	the	environment	variables,
XML,	and	INI	formats	as	well.	In	this	project,	we	will	store	the	connection	string	in	the
appsettings.json	file:

1.	 Add	the	ASP.NET	configuration	file	appsettings.json	and	specify	the	connection	string
as	follows:

{

		"Data":	{

				"DefaultConnection":	{

						"ConnectionString":	"Data	Source	=.;	Initial	Catalog	=	tododatabase;	

Integrated	Security	=	True;MultiSubnetFailover	=	False;	"

				}

		}

}

2.	 Add	the	following	packages	in	project.json:

"Microsoft.Extensions.Configuration.Json":	"1.0.0-rc2-final",

"Microsoft.Extensions.Options.ConfigurationExtensions":	"1.0.0-rc2-final",

Configuring	AppSettings	in	the	Startup	class

The	new	configuration	system	of	ASP.NET	Core	is	based	on	System.Configuration.	To	use
settings	in	our	project,	we	will	instantiate	a	Configuration	object	in	our	Startup	class	and
use	the	Options	pattern	to	access	individual	settings.

The	Options	pattern	converts	any	class	into	a	settings	class	and	then	we	can	inject	that	class
into	the	controllers	through	ASP.NET's	built-in	dependency	injection.	Through	the	options
class,	the	developer	can	access	the	settings	keys	and	values,	as	shown	in	the	following	steps:

1.	 In	the	Startup	class	constructor,	we	will	add	the	appsettings.json	file	using	the

ConfigurationBuilder	object.	ConfigurationBuilder	allows	a	provision	to	add
different	providers	and	have	a	build	method	that	builds	the	configuration	stores	in
different	providers	and	returns	the	IConfigurationRoot	instance:

public	Startup()

		{

				//	Set	up	configuration	sources.

				var	builder	=	new	ConfigurationBuilder()

						.AddJsonFile("appsettings.json")

				Configuration	=	builder.Build();

		}

		public	IConfigurationRoot	Configuration	{	get;	set;	}

Tip

If	multiple	providers	have	the	same	keys,	the	last	one	specified	in	the
ConfigurationBuilder	will	be	used.

2.	 Now	we	can	use	the	Configuration	property	to	access	the	connection	string,	as	follows:

Configuration["Data:DefaultConnection:ConnectionString"];

Adding	data	access	in	Web	API

In	this	section,	we	will	add	a	TodoContext	and	TodoRepository	class	to	perform	CRUD
operations:

1.	 Add	a	new	folder,	DataAccess,	and	add	the	TodoContext	class,	which	will	be	derived	from
the	DbContext	class.	This	is	the	main	TodoContext	class	Entity	Framework	used	to	create
the	database:

using	Common;

using	Microsoft.Data.Entity;

using	System;

using	System.Collections.Generic;

using	System.Linq;

using	System.Threading.Tasks;

namespace	TodoServiceApp.DataAccess

{

		public	class	TodoContext	:	DbContext

		{

				public	DbSet<TodoItem>	TodoItem	{	get;	set;	}

		}

}

2.	 We	have	to	now	override	the	OnConfiguring()	method	and	call	the	UseSqlServer()
method	of	the	DbContextOptionsBuilder	object.	The	OnConfiguring()	method	is	called
every	time	the	Context	object	is	initialized	and	configures	the	options	specified.	The
UseSqlServer()	method	takes	the	connection	string	that	is	defined	in	the
appsettings.json	file,	which	we	have	configured	in	the	Startup	class.	Now	we	want	to

inject	the	app	settings	object	into	this	class.	In	order	to	do	so,	we	will	use	the	Options
pattern.	As	per	the	options	pattern,	we	shouldn't	use	the	Configuration	property	we	have
defined	in	the	Startup	class	directly,	and	instead	we	will	create	a	custom	POCO	class	that
contains	the	same	keys	we	have	in	our	app	settings	file	and	overload	the	default
TodoContext	constructor,	which	accepts	IOptions<T>,	where	T	is	our	custom	POCO	app
settings	class.

3.	 As	the	connection	string	is	defined	in	a	nested	object,	our	Data	class	will	be	as	follows:

using	System;

using	System.Collections.Generic;

using	System.Linq;

using	System.Threading.Tasks;

namespace	TodoServiceApp

{

		public	class	Data

		{

				public	DefaultConnection	DefaultConnection	{	get;	set;	}

		}

		public	class	DefaultConnection	{

				public	string	ConnectionString	{	get;	set;	}	

		}

}

4.	 In	the	Startup	class,	we	will	call	the	services.Configure()	method	to	populate	this	Data
object	with	the	keys	specified	in	the	appsettings.json	file,	and	inject	it	in	the	repository
we	will	be	creating	next.

5.	 Create	a	TodoRepository	class	that	contains	an	ITodoRepository	interface	and	its
implementation,	TodoRepository.	This	class	will	use	the	TodoContext	object	to	perform
database	operations.	Here	is	the	code	snippet	for	the	TodoRepository	class:

using	Common;

using	System;

using	System.Collections.Generic;

using	System.Linq;

using	System.Threading.Tasks;

using	TodoServiceApp.DataAccess;

namespace	TodoServiceApp.Repository

{

		public	interface	ITodoRepository

		{

				void	CreateTodo(TodoItem	todoItem);

				void	DeleteTodo(int	todoItemId);

				List<TodoItem>	GetAllTodos(int	userId);

				void	UpdateTodo(TodoItem	todoItem);

		}

		public	class	TodoRepository	:	ITodoRepository

		{

				private	TodoContext	context;

				public	TodoRepository()

				{

						context	=	new	TodoContext();

				}

				public	List<TodoItem>	GetAllTodos(int	userId)

				{

						return	context.TodoItems.ToList();

				}

				public	void	CreateTodo(TodoItem	todoItem)

				{

						context.TodoItems.Add(todoItem);

						context.SaveChanges();

				}

				public	void	DeleteTodo(int	todoItemId)

				{

						var	item	=	context.TodoItems.Where(i	=>	i.Id	==	

todoItemId).FirstOrDefault();

						context.Remove(item);

						context.SaveChanges();

				}

				public	void	UpdateTodo(TodoItem	todoItem)

				{

						context.Update(todoItem);

						context.SaveChanges();

				}

				

		}

}

6.	 In	the	Startup	class,	add	the	Entity	Framework	in	the	ConfigureServices()	method,	as
shown	the	following	code.	Our	Web	API	controllers	will	have	an	overloaded	constructor
that	takes	the	ITodoRepository	object.	We	will	use	the	services.AddScoped()	method	to
inject	TodoRepository	wherever	ITodoRepository	is	required.	Finally,	call	the
services.Configure()	method	to	populate	the	Data	object	with	the	keys	specified	in	the
appsettings.json	file:

public	void	ConfigureServices(IServiceCollection	services)

{

		string	connString	=	

Configuration["Data:DefaultConnection:ConnectionString"];

		services.AddDbContext<TodoContext>(options	=>	

options.UseSqlServer(connString));

		services.AddMvc();

		services.AddScoped<ITodoRepository,	TodoRepository>();

		services.Configure<Data>(Configuration.GetSection("Data"));

}

Enabling	CORS	in	the	ASP.NET	Web	API

We	learned	about	CORS	in	the	previous	chapter;	we	have	to	enable	CORS	in	our	Web	API
project,	so	that	from	Angular	services	we	can	make	a	request	to	access	the	TodoService

methods:

1.	 Call	services.AddCors()	in	the	ConfigureServices	method	in	the	Startup	class:

services.AddCors(options	=>	{	options.AddPolicy("AllowAllRequests",	builder	

=>	builder.AllowAnyOrigin().AllowAnyMethod().AllowAnyHeader());	});

2.	 Call	app.UseCors()	in	the	Configure	method	in	Startup	class:

app.UseCors("AllowAllRequests");

Running	database	migration

We	are	using	the	Entity	Framework	Code	First	model,	so	now	we	want	to	create	a	database	in
Microsoft	SQL	Server.	To	do	so,	we	will	first	add	the	Entity	Framework	tool	support	in	the
project.json	file	of	the	TodoServiceApp,	and	then	run	.NET	CLI	commands	to	add
migrations	and	create	the	database:

1.	 Add	Microsoft.EntityFrameworkCore.Tools	in	the	project.json	file,	as	shown	here:

"tools":	{

		"Microsoft.AspNetCore.Server.IISIntegration.Tools":	{

				"version":	"1.0.0-preview1-final",

				"imports":	"portable-net45+win8+dnxcore50"

		},

		"Microsoft.EntityFrameworkCore.Tools":	{

				"imports":	["portable-net451+win8"],

				"version":	"1.0.0-preview1-final"

		}

		},

2.	 Now	we	can	run	commands,	create	migrations,	and	update	the	database.
3.	 To	create	migrations,	go	to	the	command	prompt	and	navigate	to	the	TodoServiceApp

project	where	project.json	resides.
4.	 Then,	run	dotnet	ef	migrations	add	Initial,	where	Initial	is	the	name	of	the

migration	created.	Running	this	command	will	add	the	Migrations	folder	and	a	class
containing	code	about	the	DDL	operations.

The	following	screenshot	shows	the	Migrations	folder	created	after	running	the
preceding	command,	and	the	creation	of	the	20160405115641_Initial.cs	file	that
contains	the	actual	migration	code	snippets	to	apply	or	remove	migration	from	the
database:

5.	 To	create	a	database,	we	need	to	execute	another	command	in	the	same	folder	where
project.json	resides	in	the	TodoServiceApp	project:

dotnet	ef	database	update	–verbose	

6.	 This	will	create	a	database,	and	we	can	now	go	through,	adding	a	controller	to	handle
different	HTTP	requests	and	access	the	database.

Creating	a	controller

Follow	these	steps	to	create	a	controller:

1.	 Add	a	new	Controllers	folder	and	add	a	class	named	TodoController.
2.	 Here	is	the	code	snippet	for	the	TodoController	class:

using	System;

using	System.Collections.Generic;

using	System.Linq;

using	System.Threading.Tasks;

using	Microsoft.AspNetCore.Mvc;

using	Common;

using	TodoServiceApp.Repository;

namespace	TodoApi.Controllers

{

		[Route("api/[controller]")]

		public	class	ToDoController	:	Controller

		{

				ITodoRepository	repository;

				public	ToDoController(ITodoRepository	repo)

				{

						repository	=	repo;

				}

				//	GET:	api/values

				[HttpGet]

				public	IEnumerable<string>	Get()

				{

						return	repository.GetAllTodos();

				}

				//	GET	api/values/5

				[HttpGet("{id}")]

				public	IEnumerable<TodoItem>	Get(int	id)

				{

						return	repository.GetAllTodos(id);

				}

				//	POST	api/values

				[HttpPost]

				public	void	Post([FromBody]TodoItem	value)

				{

						repository.CreateTodo(value);

				}

				//	PUT	api/values/5

				[HttpPut("{id}")]

				//	DELETE	api/values/5

				[HttpDelete("{id}")]

				public	void	Delete(int	id)

				{

						repository.DeleteTodo(id);

				}

		}

}

Now	we	have	completed	our	TodoService	project,	so	we	will	develop	a	todo	web	application
project	and	configure	Angular	2.

Creating	a	TodoWebApp	project
We	will	develop	a	single-page	application	and	use	the	MVC	view	to	render	it	using	Angular	2.
This	application	will	have	one	main	page	that	lists	all	the	to-do	items	for	a	particular	user,
whereas	to	add	a	new	to-do	item,	a	new	page	will	open	in	a	modal	dialog	window:

1.	 To	start,	let's	create	an	empty	project	using	the	ASP.NET	Core	project	template	available
in	Visual	Studio	2015,	and	name	it	TodoWebApp.

2.	 Add	an	MVC	reference	in	project.json:

"Microsoft.AspNetCore.Mvc":	"1.0.0-rc2-final",

"Microsoft.AspNetCore.StaticFiles":	"1.0.0-rc2-final",

3.	 In	the	Startup	class,	add	the	AddMvc()	method	in	the	ConfigureServices	method	and	the
UseMvc()	method	in	the	Configure	method.	Here	is	the	code	snippet	of	the	Startup	class:

namespace	TodoWebApp

{

		public	class	Startup

		{

				//	This	method	gets	called	by	the	runtime.	Use	this	method	to	add	

services	to	the	container.

				//	For	more	information	on	how	to	configure	your	application,	visit	

http://go.microsoft.com/fwlink/?LinkID=398940

				public	void	ConfigureServices(IServiceCollection	services)

				{

						services.AddMvc();

				}

				//	This	method	gets	called	by	the	runtime.	Use	this	method	to	configure	

the	HTTP	request	pipeline.

				public	void	Configure(IApplicationBuilder	app)

				{

						app.UseStaticFiles();

						app.UseMvc(routes	=>

						{

								routes.MapRoute(name:	"default",	template:	"

{controller=Home}/{action=Index}/{id?}");

				}

}

Configuring	Angular	2	in	the	TodoWebApp	project

Angular	2	is	part	of	the	Node	module,	and	we	can	add	Node	packages	through	the	Node
Package	Manager	(NPM)	configuration	file,	package.json.	In	package.json,	we	can	add
packages	through	the	devDependencies	node	and	the	dependencies	node.	The
devDependencies	node	holds	the	packages	that	are	used	during	development,	such	as	Gulp,
which	can	be	used	to	concatenate	and	minify	JavaScript	and	CSS	files,	TypeScript	for
developing	Angular	2	components,	and	rimraf	to	delete	the	files.	In	the	dependencies	node,
we	will	specify	packages	such	as	angular2,	systemjs,	reflect-metadata,	rxjs,	and	zone.js,
which	will	be	used	when	the	application	runs:

1.	 Add	a	new	package.json	file	from	the	Visual	Studio	project	template	option	NPM

Configuration	File	and	add	the	following	JSON	snippet:

{

		"name":	"ASP.NET",

		"version":	"0.0.0",

		"dependencies":	{

		"angular2":	"2.0.0-beta.9",

		"systemjs":	"0.19.24",

		"reflect-metadata":	"0.1.3",

		"rxjs":	"5.0.0-beta.2",

		"zone.js":	"0.6.4"

		},

		"devDependencies":	{

				"gulp":	"3.8.11",

				"typescript":	"1.8.7",

		}

}

2.	 Visual	Studio	automatically	downloads	and	restores	packages	specified	in	the
package.json	file,	creates	a	node_modules	folder	in	the	project	itself,	and	places	all	the
packages	there.	The	Node_modules	folder	is	basically	hidden	by	default	in	Visual	Studio,
but	can	be	made	visible	by	enabling	the	ShowAllFiles	option.

Dependencies

The	following	is	the	list	of	dependencies	with	their	descriptions:

angular2:	It	is	the	Angular	2	package.
systemjs:	It	provides	System.import	to	hook	up	the	main	entry	point	of	Angular.
reflect-metadata:	It	is	a	proposal	to	add	decorators	to	ES7.	Through	this,	we	can
specify	the	metadata	to	our	class	in	Angular	2.
rxjs:	It	is	a	reactive	streams	library	that	allows	working	with	asynchronous	data	streams.
zone.js:	It	provides	an	execution	context	that	persists	across	asynchronous	tasks.

Development	dependencies

The	following	is	the	list	of	development	dependencies	with	their	descriptions:

gulp:	Used	to	copy	the	files	to	the	wwwroot	folder
typescript:	Used	to	write	programs	in	TypeScript

Configuring	TypeScript

To	configure	TypeScript,	perform	the	following	steps:

1.	 Add	the	Scripts	folder	where	all	the	TypeScript	files	reside.	In	the	current	version	of
ASP.NET,	there	is	a	restriction	on	naming	this	folder	Scripts,	and	it	should	be	added	in
the	root	of	the	project;	otherwise,	TypeScript	files	will	not	be	transpiled	to	JavaScript
files.

2.	 After	adding	the	Scripts	folder,	add	the	TypeScript	configuration	file	(tsconfig.json)
and	add	the	following	configuration	to	it:

{

		"compilerOptions":	{

		"noImplicitAny":	false,

		"noEmitOnError":	true,

		"removeComments":	false,

		"sourceMap":	true,

		"target":	"es5",

		"module":	"commonjs",

		"moduleResolution":	"node",

		"outDir":	"../wwwroot/todosapp",

		"mapRoot":	"../scripts",

		"experimentalDecorators":	true,

		"emitDecoratorMetadata":	true

		},

		"exclude":	[

				"node_modules",

				"wwwroot"

]

}

Configurations	defined	within	the	compilerOptions	node	are	used	by	Visual	Studio	when	you
build	your	project.	Based	on	the	configuration,	the	JavaScript	files	are	generated	and	stored	in
the	output	directory.	The	following	table	shows	the	description	of	each	property	specified	in
the	preceding	code:

Compiler	options Description

noImplicitAny If	true,	then	it	warns	the	expression	implied	with	any	type

noEmitOnError
If	true,	it	does	not	generate	JavaScript	if	any	errors	are	present	in
the	TypeScript

removeComments It	true,	removes	comments	when	generating	JavaScript	files

sourceMap If	true,	then	generates	the	corresponding	map	file

Target Sets	the	target	ECMA	script	version,	such	as	ES5

modulez
Specifies	the	module	that	generated	the	code,	such	as	commonjs,
AMD,	or	system

moduleResolution Specifies	the	module	resolution	strategy,	such	as	node

outDir Path	where	the	generated	JavaScript	files	will	be	dumped

mapRoot Path	where	the	map	files	will	be	located

experimentalDecorators If	true,	it	enables	support	for	ES7	experimental	decorators

emitDecoratorMetadata
If	true,	it	emits	design-type	metadata	for	decorator	declarations	in
source

Configuring	Gulp

In	this	section,	we	will	use	Gulp	to	minify	the	JavaScript	generated	by	the	TypeScript
compiler:

1.	 Add	the	Gulp	configuration	file,	gulpfile.js.
2.	 Gulp	is	used	to	run	tasks,	and	Visual	Studio	provides	a	task	runner	window	that	lists	all

the	tasks	specified	in	the	gulpfile.js,	and	also	allows	us	to	bind	those	tasks	to	build
events.

3.	 Let's	add	the	following	script	in	gulpfile.js:

///	<binding	Clean='clean'	/>

"use	strict";

var	gulp	=	require("gulp")

var	paths	=	{

		webroot:	"./wwwroot/"

};

var	config	=	{

		libBase:	'node_modules',

		lib:	[

				require.resolve('systemjs/dist/system.js'),

				require.resolve('systemjs/dist/system.src.js'),

				require.resolve('systemjs/dist/system-polyfills.js'),

				require.resolve('angular2/bundles/angular2.dev.js'),

				require.resolve('angular2/bundles/angular2-polyfills.js'),

				require.resolve('angular2/bundles/router.dev.js'),

				require.resolve('angular2/bundles/http.dev.js'),

				require.resolve('angular2/bundles/http.js'),

				require.resolve('angular2/bundles/angular2'),

				require.resolve('rxjs/bundles/Rx.js')

]

};

gulp.task('build.lib',	function	()	{

		return	gulp.src(config.lib,	{	base:	config.libBase	})

		.pipe(gulp.dest(paths.webroot	+	'lib'));

});

In	the	preceding	gulpfile.js,	we	have	first	declared	the	objects	of	Gulp.	Then	the	paths
variable	defines	the	root	folder	(./wwwroot)	for	static	files.	In	ASP.NET	Core,	all	the	static
files	should	reside	under	the	wwwroot	folder;	otherwise,	they	cannot	be	accessed.	Now	we
need	to	copy	the	Angular	and	other	related	JavaScript	files	into	the	wwwroot	folder.	Therefore,
we	have	added	the	task	build.lib	that	calls	gulp.src()	and	chains	the	gulp.dest()	method
to	copy	the	files	from	the	node_modules/*	folder	to	the	wwwroot/lib	folder.	Here	is	the
screenshot	of	the	wwwroot	folder,	which	creates	the	lib	folder	when	you	run	the	preceding
steps:

Tip

Tasks	can	run	through	the	task	runner	window	in	Visual	Studio.

Adding	Angular	components

We	have	installed	the	Angular	packages	and	configured	Gulp	to	copy	the	packaged	JavaScript
files	to	the	wwwroot	folder.	Now	we	will	add	Angular	components	to	define	our	main
application	selector	and	render	the	ASP.NET	page	inside	it:

1.	 In	the	Scripts	folder,	create	two	folders,	app	and	services.	The	app	folder	holds	the
components	that	we	will	use	in	the	view,	whereas	the	services	folder	holds	the	services
that	will	be	used	to	call	the	Web	API	methods.

2.	 Add	a	main	TypeScript	file,	which	will	bootstrap	the	main	TodoAppComponent.	Here	is	the

code	of	main.ts:

//main.ts

import	{bootstrap}	from	'angular2/platform/browser';

import	{TodoAppComponent}	from	'./apps/todoapp.component';

import	{HTTP_PROVIDERS}	from	'angular2/http';

import	'rxjs/add/operator/map';

bootstrap(TodoAppComponent,	[HTTP_PROVIDERS]);		

In	the	preceding	code	snippet,	we	have	added	a	bootstrap	component	to	bootstrap	our	first
TodoAppComponent.	HTTP_PROVIDERS	contains	all	the	providers	to	make	any	HTTP	request.	It
is	provided	while	bootstrapping,	so	the	TodoAppComponent	or	the	chain	of	components	in	the
following	hierarchy	can	do	HTTP-based	operations.	Rxjs/add/operator/map	is	a	dependent
package	for	HTTP_PROVIDERS,	which	needs	to	be	added	as	well:

1.	 Add	a	new	TypeScript	file	and	name	it	todoapp.component.ts.
2.	 Add	the	following	code	snippet	for	TodoAppComponent.	In	order	to	first	test	whether

everything	is	configured	properly,	we	will	simply	add	a	sample	heading	tag	that	shows
Hello	World:

//todoapp.component.ts

///<reference	path="../../node_modules/angular2/typings/browser.d.ts"	/>

import	{Component}	from	'angular2/core';

@Component({

		selector:	'todo',

		template:	'<h1>{{message}}</h1>'

})

export	class	TodoAppComponent	{

		message:	string	=	"Hello	World";

		

}

3.	 Now	we	will	add	two	files,	importer.js	and	angular_config.js.	importer.js	calls
System.import	and	points	to	the	main	file	that	bootstraps	the	application	component.
angular_config.js	holds	the	configuration	property	to	allow	default	JavaScript
extensions	to	be	set	to	true.

Here	is	the	code	snippet	for	importer.js:

		System.import('todosapp/Main')

				.then(null,	console.error.bind(console));

Here	is	the	code	for	angular_config.js:

System.config({	defaultJSExtensions:	true	});

4.	 Now	we	need	to	add	the	MVC	layout	page	and	add	all	the	scripts.	Add	the	following
scripts:

//_Layout.cshtml

		<environment	names="Development">

				<link	rel="stylesheet"	href="~/lib/bootstrap/dist/css/bootstrap.css"	/>

				<link	rel="stylesheet"	href="~/css/site.css"	/>

				<script	src="~/lib/angular2/bundles/angular2-polyfills.js"></script>

				<script	src="~/lib/systemjs/dist/system.js"></script>

				<script	src="~/lib/custom/angular_config.js"></script>

				<script	src="~/lib/rxjs/bundles/Rx.js"></script>

				<script	src="~/lib/angular2/bundles/angular2.dev.js"></script>

				<script	src="~/lib/angular2/bundles/router.dev.js"></script>

				<script	src="~/lib/angular2/bundles/http.js"></script>

				<script	src="~/lib/custom/importer.js"></script>

				<script	src="https://ajax.aspnetcdn.com/ajax/jquery/jquery-2.1.4.min.js"

						asp-fallback-src="~/lib/jquery/dist/jquery.min.js"

						asp-fallback-test="window.jQuery">

				</script>

				<script	

src="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.5/bootstrap.min.js"

						asp-fallback-src="~/lib/bootstrap/dist/js/bootstrap.min.js"

						asp-fallback-test="window.jQuery	&&	window.jQuery.fn	&&	

window.jQuery.fn.modal">

				</script>

		</environment>

5.	 Now	let's	add	HomeController	and	view	Index.cshtml.
6.	 In	Index.cshtml,	add	the	to-do	selector	todo-app:

@{

		ViewData["Title"]	=	"Todo	Applications";

		Layout	=	"~/Views/Shared/_Layout.cshtml";

}

<div	id="myCarousel"	class="container"	data-ride="carousel"	data-

interval="6000">

		<todo-app>Loading...</todo-app>

</div>

7.	 Build	and	run	the	application	and	it	will	show	Hello	World:

Adding	the	to-do	service	component

We	will	now	add	the	components	inside	the	services	folder	that	will	be	responsible	for
getting	data	by	calling	the	Todo	service:

1.	 First	of	all,	add	the	BaseService	component,	which	contains	baseURL.	All	the	service
components	will	derive	from	BaseService	so	they	can	use	the	base	URL	property	for
making	Ajax	requests.	Add	a	new	TypeScript	file	and	name	it	baseservice.component.ts.
Here	is	the	code	snippet	for	baseservice.component.ts:

//baseservice.component.ts

import	{Component}	from	'angular2/core';

import	{Http,	Headers}	from	'angular2/http';

@Component({})

export	class	BaseService	{

		baseUrl:	string;

		constructor()	{

				this.baseUrl	=	"http://localhost:7105/api/";

		}

}

2.	 Now	add	todoservice.component.ts,	which	contains	the	methods	to	get	all	to-do	items,
add	a	new	to-do	item,	and	delete	an	existing	to-do	item.	Here	is	the	code	snippet	for
TodoService:

//todoservice.component.ts

import	{Component}	from	'angular2/core';

import	{Http,	Headers}	from	'angular2/http';

import	{BaseService}	from	'../services/baseservice.component';

@Component({

		providers:	[TodoService]

})

export	class	TodoService	extends	BaseService	{

		constructor(private	http:	Http)	{

				super();

		}

		public	getTodoItems()	{

				return	this.http.get(this.baseUrl	+	'todo/1');

		}

		public	createTodo(item)	{

				var	path	=	this.baseUrl	+	'todo';

				const	headers	=	new	Headers({	'Content-Type':	'application/json'	});

				return	this.http.post(path,	JSON.stringify(item),	{	headers:	headers	});

		}

		public	deleteTodo(itemId)	{

				var	path	=	this.baseUrl	+	'todo';

				return	this.http.delete(path	+	"/"	+	itemId);

		}

}

In	the	preceding	code,	we	imported	the	http	component	and	injected	the	constructor.	The
http	object	provides	methods	such	as	get,	post,	put,	and	delete	to	read,	insert,	update,
and	delete	operations.	In	our	TodoService	Web	API	project,	we	have	these	methods
available,	which	we	call	as	shown	in	the	preceding	code.	Each	method	returns	a	promise,
and	in	the	calling	components	we	will	check	the	result	and	take	appropriate	actions.

Adding	a	to-do	view	component

We	have	already	added	todoapp.component.ts	in	the	preceding	step	to	check	whether	Angular
is	configured	properly.	Now	we	will	modify	the	same	component	to	call	the
TodoServiceComponent	and	display	the	results	on	a	web	page.

Here	is	the	code	snippet	for	TodoApp.Component.ts:

//todoApp.component.ts

///<reference	path="../../node_modules/angular2/typings/browser.d.ts"	/>

import	{Component}	from	'angular2/core';

import	{Http,	Response}	from	'angular2/http';

import	{CreateTodoComponent}	from	'../apps/createTodo.component';

import	{TodoService}	from	'../services/todoservice.component';

@Component({

		selector:	'todo-app',

		templateUrl:	'Todo',

		directives:	[CreateTodoComponent],

		providers:	[TodoService]

})

export	class	TodoAppComponent	{

		//member	variables

		todos	=	[

];

		//constructor

		constructor(private	http:	Http,	private	todoService:	TodoService)	{

		}

		//Page	Initialized	Event	Handler

		ngOnInit()	{

				this.getTodoItems();

		}

		//Member	Functions

		getTodoItems()	{

				this.todoService.getTodoItems().map((res:	Response)	=>	res.json())

						.subscribe(data	=>	{

								this.todos	=	data

								this.parseDate();

						},

						err		=>	console.log(err),

						()	=>	console.log('done')

);

		}

		deleteTodoItem(itemID)	{

				var	r	=	confirm("Are	you	sure	to	delete	this	item");

				if	(r	==	true)	{

						this.todoService.deleteTodo(itemID)

								.map(r=>	r.json())

								.subscribe(result	=>	{

										alert("record	deleted");

				});

		}

		this.getTodoItems();

		}

		parseDate()	{

				for	(let	todo	of	this.todos)	{

						let	todoDate	=	new	Date(todo.DueDateTime);

						todo.DueDateTime	=	todoDate;

				}

		}

		handleRefresh(args)	{

				this.getTodoItems();

		}

}

In	TodoAppComponent,	we	have	first	added	the	CreateTodoComponent	directive	we	will	be	using
in	the	Todo/Index.cshtml	page	in	a	later	step.	We	have	implemented	the	ngOnInit()	event
handler	that	gets	the	list	of	to-dos	and	bound	it	to	the	todos	array	object.	The	getTodoItems()
method	calls	the	TodoService	to	get	the	list	of	to-do	items,	whereas	deleteTodoItem()	is	used
to	delete	the	item.

Every	request	in	Angular	returns	an	Observable	response	object	that	provides	a	map	method	to
tell	Angular	to	parse	the	response	in	a	specific	format.	The	map	also	returns	the	Observable
object,	which	can	be	used	to	subscribe	to	the	data	once	it	is	parsed	into	the	JSON	format,	as	in
our	case.	Finally,	we	have	called	the	subscribe	method	and	sent	the	JSON	response	data	to	the
todos	array.	To	handle	errors,	we	can	chain	the	call	with	the	err	method.	The	anonymous
expression()	method	is	invoked	in	every	call,	irrespective	of	the	response	status.	That	means
whether	the	result	is	a	success	or	an	error,	the	code	defined	under	the	anonymous
expression()	method	will	be	executed.

For	creating	new	to-dos,	we	will	create	another	CreateTodoComponent	later,	which	will	call	the
handleRefresh()	method	through	the	Outputs	event	to	refresh	the	list	and	reflect	the	newly
added	item	on	the	main	page.

Creating	the	main	to-do	page

We	have	created	the	Angular	components	that	we	will	use	in	the	MVC	view.	We	have	already
bootstrapped	the	Angular	components	in	the	previous	section	and	placed	the	<todo-app>	tag
in	the	Home/Index.cshtml	page,	which	is	the	landing	page	of	our	application.	Next,	we	will
create	a	custom	tag	helper,	then	add	a	TodoController,	and	use	this	tag	helper	in	the	index
page.

Creating	a	custom	to-do	tag	helper

On	the	main	page,	we	will	list	all	the	to-do	items	for	a	particular	user.	For	this,	we	will	create
a	custom	tag	helper	in	ASP.NET:

Perform	the	following	steps	to	create	this	tag	helper:

1.	 Create	a	new	controls	folder	in	the	root	of	the	TodoWebApp	project	and	add	a
TodoTagHelper	class.	Here	is	the	code	for	TodoTagHelper,	which	uses	Angular	2
ngControl	to	bind	values	from	Angular	TodoAppComponent	to	the	form:

		[HtmlTargetElement("todo")]

		public	class	TodoTagHelper	:	TagHelper

		{

				public	override	void	Process(TagHelperContext	context,	TagHelperOutput	

output)

				{

						string	todo	=	"<div	class='thumbnail'><div	class='caption'><nav	

class='nav	navbar-inverse'	role='navigation'></nav>";

						todo	+=	"<label	class='date'>{{todo.DueDateTime	|	date:'short'}}

</label>	";

						todo	+=	"<h4>{{todo.Title}}</h4>";

						todo	+=	"<textarea	readonly	class='form-control'	style='resize:none;'	

rows='4'	cols='28'>{{todo.Description}}</textarea></div></div>";

						output.Content.AppendHtml(todo);

				}

		}

2.	 Add	the	tag	helper	in	_ViewImports.cshtml:

@addTagHelper	"*,	TodoWebApp"

Adding	a	to-do	MVC	controller

Add	TodoController	in	the	TodoWebApp	project	and	specify	two	methods	for	the	index	view,
which	is	the	main	view	that	displays	all	the	items	and	creates	a	new	to-do	item:

using	System.Linq;

using	Microsoft.AspNetCore.Mvc;

using	TodoNotes.Models;

namespace	TodoNotes.Controllers

{

		public	class	TodoController	:	Controller

		{

				public	TodoController()

				{

						_context	=	context;		

				}

				//	GET:	Todo

				public	IActionResult	Index()

				{

						return	View();

				}

				//	GET:	Todo/Create

				public	IActionResult	Create()

				{

						return	View();

				}

}

Generating	views	for	the	TodoController	action	methods

Generate	views	for	the	preceding	action	methods	Index	and	Create.

Here	is	the	code	snippet	for	Todo/Index.cshtml:

@{

		Layout	=	null;

}

<div	class="col-md-3">

		<p	class="lead">ToDo	Items</p>

		<div	class="list-group">

				<h4>

						Want	to	add	new	Todo?

				</h4>

				<p>Click	on	the	button	below</p>

				<div	class="col-md-3">

						<a	class="btn	btn-primary"	data-toggle="modal"	data-

target="#todoModal">Create	Todo

						

				</div>

		</div>

</div>

<div	id="todoModal"	class="modal	fade"	role="dialog">

		<div	class="modal-dialog">

				<!--	Modal	content-->

				<div	class="modal-content">

						<div	class="modal-header">

								<button	type="button"	class="close"	data-dismiss="modal">×</button>

								<h4	class="modal-title">Insert	Todo</h4>

						</div>

						<div	class="modal-body">

						<createTodo	(refreshTodos)="handleRefresh($event)"></createTodo>

						</div>

					

				</div>

		</div>

</div>

<div	class="col-md-9">

		<div	class="row"	>

				<div	class="col-sm-4	col-lg-4	col-md-4"	*ngFor="#todo	of	todos">

						<todo></todo>

					</div>

				

		</div>

</div>

In	the	preceding	HTML	markup,	we	have	first	defined	a	button	that	opens	up	a	modal	dialog,
todoModal.	In	the	todoModal	dialog	markup,	we	have	used	the	createTodo	directive,	which	is
defined	in	the	todoapp.component.ts	file	associated	with	this	page,	and	the	link	actually	points
to	the	Todo/Create	MVC	view,	which	will	be	rendered	at	the	place	of	router-outlet.	With	the
combination	of	the	router	link	and	the	router	outlet,	we	can	render	the	template.	In
todoapp.component.ts,	we	will	see	how	we	can	use	routing	in	Angular.	Finally,	we	have	used
the	custom	tag	helper	<todo>	to	display	each	item	available	in	the	to-do	list.

Developing	the	Create	Todo	component

In	this	section,	we	will	add	the	Angular	component	and	name	it	CreateTodoComponent.	This	is
needed	because	we	will	be	opening	a	new	MVC	view	in	a	modal	dialog	through	a	custom
createTodo	selector,	and	CreateTodoComponent	has	a	method	to	save	a	new	to-do	in	the
database,	as	shown	in	the	following	code.

Add	a	new	createtodo.component.ts	under	the	Scripts>apps	folder,	and	then	add	the
following	code	snippet:

//createtodo.component.ts

///<reference	path="../../node_modules/angular2/typings/browser.d.ts"	/>

import	{Component}	from	'angular2/core';

import	{Http,	Response}	from	'angular2/http';

import	{FormBuilder,	Validators}	from	'angular2/common';

import	{TodoService}	from	'../services/todoservice.component';

	

@Component({

		selector:	'createTodo',

		templateUrl:	'Todo/Create'

})

export	class	CreateTodoComponent	{

		@Output()	refreshTodos	=	new	EventEmitter();

		addTodoForm:	any;

		constructor(fb:	FormBuilder,	private	todoService:	TodoService)	{

				this.addTodoForm	=	fb.group({

						title:	["",	Validators.required],

						description:	["",	Validators.required],

						dueDateTime:	["",	Validators.required]

				});

		}

		addTodoItem():	void	{

				this.todoService.createTodo(this.addTodoForm.value)

						.map(r=>	r.json())

						.subscribe(result	=>	{});

				this.refreshTodos.next([]);

				alert("Record	added	successfully");

		}

		

}

In	the	preceding	code	snippet,	we	have	imported	the	Http	and	Response	objects	to	handle	the
response	received	from	TodoService.	In	the	@Component	annotation,	we	have	defined	the
selector	that	is	used	in	the	parent	TodoAppComponent	component	to	render	the	Create	Todo
view	inside	the	modal	dialog.

FormBuilder	and	Validator	are	used	to	define	properties	with	specific	validators	that	can	be
bound	to	the	HTML	form	using	the	ngControl	directive.	Lastly,	we	have	the	addTodoItem
method,	which	will	be	invoked	on	form	submission	and	make	a	to-do	entry	in	the	database	by
calling	TodoService.

Now	let's	add	the	following	code	in	Create.cshtml:

@{

		Layout	=	null;

}

<form	[ngFormModel]="addTodoForm"	(submit)="addTodoItem($event)"	

class="container"	>

		<div	class="form-horizontal">

				<div	class="form-group">

						<label	class="col-md-2	control-label">Title</label>

						<div	class="col-md-10">

								<input	ngControl="title"	class="form-control"	id="Title"	

placeholder="Enter	Todo	Title"	[(ngModel)]="title"	/>

						</div>

				</div>

				<div	class="form-group">

						<label	class="col-md-2	control-label">Description</label>

						<div	class="col-md-10">

								<textarea	ngControl="description"		class="form-control"	

placeholder="Enter	Description"></textarea>

								{{description}}

						</div>

				</div>

				<div	class="form-group">

						<label	class="col-md-2	control-label">Due	Date</label>

						<div	class="col-md-10">

								<input	ngControl="dueDateTime"	class="form-control"	type="datetime-local"

placeholder="Enter	Due	Date"	/>

						</div>

				</div>

				<div	class="form-group">

						<div	class="col-md-offset-2	col-md-10">

								<input	type="submit"	value="Create"	class="btn	btn-primary"	/>

						</div>

				</div>

		</div>

</form>

@section	Scripts	{

		<script	src="~/lib/jquery/dist/jquery.min.js"></script>

		<script	src="~/lib/jquery-validation/dist/jquery.validate.min.js"></script>

		<script	src="~/lib/jquery-validation-

unobtrusive/jquery.validate.unobtrusive.min.js"></script>

}

In	the	preceding	code	snippet,	we	have	set	the	ngFormModel	to	the	model	we	defined	in	the
createtodo.component.ts	and	the	submit	form,	and	we	are	calling	the	addTodoItem	method,
which	sends	all	the	values	bound	with	the	ngControl	directive.	ngControl	is	a	new	directive
introduced	in	Angular	2	that	provides	unidirectional	binding.	With	forms,	ngControl	not	only
binds	the	value,	but	also	tracks	the	state	of	the	control.	If	the	value	is	invalid,	it	updates	the
control	with	special	CSS	classes	to	tell	the	user	that	the	value	is	invalid.

Summary
In	this	chapter,	we	learned	about	the	core	components	of	TypeScript	and	writing	programs
using	TypeScript.	We	also	learned	the	core	fundamentals	and	concepts	of	the	Angular	2
framework	and	developed	a	simple	to-do	application	using	ASP.NET	Core,	Angular	2,	MVC
6	for	Web	API,	and	Entity	Framework	Core	for	data	access	providers.	In	the	next	chapter,	we
will	learn	about	Windows	JavaScript	Library	(WinJS),	developed	by	Microsoft,	and	see
how	we	can	access	Windows	runtime	features,	change	the	appearance	of	HTML	controls,	and
other	options	available	in	this	library.

Chapter	6.	Exploring	the	WinJS	Library
Web	development	has	led	to	revolutionary	experiences.	With	frameworks	like	bootstrap,
material,	and	others	,	we	are	now	able	to	run	web	applications	at	their	best	on	different	screen
sizes	and	adjust	their	content	accordingly.	Developers	target	web	applications	to	run	on
different	platforms	providing	a	consistent	experience	to	their	customers.	For	example,	any
web	application	using	bootstrap	and	other	frameworks	can	run	on	a	browser,	tablet,	and	a
mobile	device	providing	the	best	user	experience	ever	imagined.	With	these	benefits,	new
prospects	were	introduced	and	allow	web	applications	to	target	different	devices	bringing	the
need	for	accessing	client-side	device-specific	features	and	layouts	as	well.	With	these
revolutionary	experiences,	companies	started	bringing	JavaScript-based	libraries	that	not
only	changed	the	look	and	feel	of	the	applications	running	on	devices	but	also	allowed
developers	to	use	device-specific	features	like	sending	toast	notifications,	accessing	the
camera	to	upload	pictures,	and	so	on,	leveraging	user	experience.

Introduction	to	WinJS
Windows	JavaScript	(WinJS)	library	is	an	open	source	JavaScript	library	developed	by
Microsoft.	It	was	released	in	April	2014	during	the	Microsoft	build	conference	and	with
Windows	10,	Microsoft	officially	released	version	4.0.	Currently	it's	open	source	and	under
an	Apache	2.0	license.

It	was	initially	targeted	for	Windows	store	apps	that	were	based	on	JavaScript,	CSS,	and
HTML	but	later	supported	in	modern	browsers	as	well.	Today	developers	can	develop	mobile
applications	for	any	platform	including	Windows	apps,	Android	apps,	and	iOS	apps	using
JavaScript,	CSS,	and	HTML	and	they	can	use	this	library	to	transform	the	user	interface	(UI)
to	a	native	mobile	interface	with	the	provision	of	accessing	features	of	the	Windows	runtime.
The	WinJS	library	exposes	not	only	the	Windows	runtime	modules	but	also	provides
Windows	UI	control	setup	for	use	in	web	applications.	WinJS	provides	Windows	runtime
features	like	the	classes	and	runtime	components	and	they	can	be	accessed	through	JavaScript
code.	Users	can	build	apps	that	access	device	features	like	the	camera,	storage,	geolocations,
filesystems,	and	style	applications	that	give	the	best	user	experience.	It	also	provides	a	layer
of	security	which	keeps	the	device	features	safe	and	protects	them	from	malicious	attacks.	As
far	as	browser	compatibility	is	concerned,	all	the	modern	browsers	including	Microsoft
Edge,	Google	Chrome,	and	others	support	this	library.	The	basic	advantage	is	that	now	web
developers	can	build	Windows	store	applications	using	WinJS	controls	suite	and	library	to
use	Windows	runtime	features.	Moreover,	Microsoft	has	also	empowered	WinJS	library	to
integrate	with	popular	client-side	frameworks	like	AngularJS,	Knockout,	Ember,	and
Backbone	and	you	can	use	WinJS	directives	in	your	HTML	with	other	controls	directives	and
it	works	as	expected.

WinJS	features
WinJS	is	not	only	designed	to	serve	universal	windows	apps	that	are	based	on	HTML	and
JavaScript	but	a	generalized	JavaScript	library	that	can	be	used	with	web	applications	as	well.
WinJS	brings	various	features	that	we	will	discuss	in	the	following	section.

JavaScript	coding	and	language	patterns

WinJS	provides	the	coding	pattern	of	defining	custom	namespaces	and	classes	performing
binding	implementations	and	promises.

Stylesheets

It	provides	two	stylesheets,	namely	UI-dark	and	UI-light,	which	can	be	used	with	HTML
elements	to	give	a	particular	Windows	app	a	themed	appearance.	Also,	it	allows	you	to	handle
different	screen	sizes	and	orientation	like	landscape	and	portrait.

Windows	runtime	access

We	can	access	the	windows	runtime	features	like	filesystem,	camera,	geo-location,	and	others
which	are	applicable	through	the	native	application	API.

Security

With	the	provision	of	enabling	windows	runtime	features,	WinJS	also	restricts	the	access	to
sensitive	data	on	the	device.

App	model

App	model	offers	events	initiated	by	a	Windows	application	and	can	be	registered	in	our
JavaScript	to	do	a	specific	operation.	For	example,	suspend,	resume,	and	initialization	are
some	useful	events	we	can	use	to	handle	specific	tasks	through	registering	them	in	WinJS.

Databinding

Just	like	other	frameworks	like	AngularJS,	KnockOut,	and	so	on,	WinJS	also	provides
specific	databinding	directives	and	syntax	that	is	used	to	bind	HTML	controls	with	the	data
supplied	or	that	exist	in	your	JavaScript	code.

Controls

WinJS	provides	specific	controls	apart	from	the	extended	attributes	on	HTML	elements.	These
controls	are	available	in	the	native	Windows	apps	project	and	with	WinJS	we	can	use	them	in
our	HTML	page	to	bring	the	same	experience.

Utilities

WinJS	provides	several	utilities	to	perform	localization,	animations,	and	DOM	selectors.

Usage	of	WinJS
Microsoft	has	developed	various	applications	using	WinJS	library.	Applications	like	Skype,
Store,	Weather,	News,	and	others	are	all	developed	in	HTML,	CSS,	and	JavaScript	using
WinJS	library.	The	modern	era	of	web	development	made	JavaScript	a	core	framework	of
developing	responsive	and	rich	applications	that	run	on	any	platform	and	on	any	device.	This
lead	Microsoft	to	invest	heavily	on	WinJS	and	to	make	this	library	useful	for	web	developers
who	want	to	create	Windows	apps	or	use	Windows	platform	features	from	web	applications.
With	the	release	of	Universal	Windows	Platform	(UWP),	Microsoft	released	the	new
Universal	App	Platform	(UAP),	a	super	set	of	the	WinRT	platform	used	by	Windows	8
applications.	With	UWP	there	is	a	new	Hosted	app	concept	introduced,	that	allows	any	web
application	to	convert	into	the	Windows	app	with	a	very	minimum	set	of	configuration
properties.

Adding	the	WinJS	library	in	the	ASP.NET
application
WinJS	can	be	added	through	Node	Package	Manager	(NPM),	NuGet,	and	by	referencing	a
CDN.	This	depends	on	whether	you	want	to	keep	the	files	local	on	the	server	or	as	reference
from	CDN.

CDN
Here	is	the	CDN	library	that	contains	JavaScript	and	CSS	files	that	you	can	add	in	your
application:	https://cdnjs.com/libraries/winjs.

https://cdnjs.com/libraries/winjs

NPM
To	install	it	with	NPM	you	can	run	npm	install	winjs	or	just	add	the	winjs	package	in	the
package.json	file	when	working	in	the	ASP.NET	core	application.

NuGet
To	install	it	via	NuGet	you	can	add	the	WinJS	package	through	the	NuGet	package	manager
console	or	just	run	the	following	command	in	the	ASP.NET	application:

Install-Package	WinJs

The	WinJS	package	comes	with	a	set	of	JavaScript	files	and	the	CSS	stylesheets	for	darker	or
lighter	UI.	The	following	table	defines	the	files	and	their	usage:

File Type Usage

Base.js JavaScript This	is	a	core	module	and	it	is	used	by	UI.js	to	provideWindows	runtime	features

UI.js JavaScript Contains	UI	controls

WinJS.intellisense.js JavaScript Provide	intellisense	when	using	WinJS	components	in
JavaScript

ui-dark.css CSS Stylesheet	for	darker	UI	theme

ui-light.css CSS Stylesheet	for	lighter	UI	theme

Getting	started	with	WinJS
Microsoft	has	provided	certain	templates	in	Visual	Studio	to	develop	store	applications	using
JavaScript	and	HTML,	on	the	other	hand,	we	can	also	add	it	in	our	ASP.NET	application	to
bring	certain	functionalities	of	Windows	runtime	features	or	changing	a	look	and	feel
accordingly.

Using	WinJS	in	the	ASP.NET	application
You	can	start	using	WinJS	by	adding	the	JavaScript	to	use	Windows	runtime	features	and	CSS
to	make	UI	as	Windows	applications.	In	the	ASP.NET	web	application	you	can	add	the	package
through	NPM	by	making	an	entry,	as	follows:

On	saving	the	file,	the	package	will	be	downloaded	automatically	in	Visual	Studio	2015	under
the	node_modules\npm	folder.

Here	is	a	screenshot	of	the	folders	the	WinJS	library	contains.	JS	contains	winjs	modules,
css,	and	fonts	that	can	be	used	to	change	UI	look	and	feel:

You	can	use	Gulp.js	to	copy	the	css	and	js	files	to	the	wwwroot	folder	and	reference	them	on
the	page,	we	can	add	the	following	sample	code	that	displays	the	You	have	clicked!	text	on	a
button	click	event:

<!DOCTYPE	html>

<html>

<head>

				<meta	charset="utf-8"	/>

				<title></title>

				<script	src="lib/winjs/js/base.js"></script>

				<script	src="lib/winjs/js/ui.js"></script>

				<script	src="lib/winjs/js/winjs.intellisense-setup.js"></script>

				<script	src="lib/winjs/js/winjs.intellisense.js"></script>

				<script	src="http://ajax.aspnetcdn.com/ajax/jquery/jquery-1.9.0.js"></script>

				<link	rel="stylesheet"	href="lib/winjs/css/ui-dark.css"	/>

</head>

<body>				

				<div	class="win-container">

								<button	class="win-button"	id="btn">Show</button>

								

				</div>

				<script>

								(function	()	{

												WinJS.UI.processAll().done(function	()	{

																$('#btn').click(function	()	{

																				$('#txtMessage').text("You	have	clicked!");

																});

												});

								})();

				</script>

</body>

</html>

The	following	is	the	output:

On	page	load,	the	function	will	be	executed	that	registers	the	click	event	for	the	button	when
all	the	WinJS	controls	are	processed.	The	WinJS.UI.processAll()	method	parses	whole
document	object	model	(DOM)	and	searches	for	the	WinJS	controls	to	process	and	return	a
promise	after	the	binding	is	done	for	all	the	controls.

Under	the	hood,	WinJS.UI.processAll()	only	processes	those	controls	which	have	the
isDeclarativeControlContainer	property	set	as	true.	This	tells	WinJS	which	controls	need
to	be	bound	with	the	WinJS	library.	If	you	are	using	custom	controls	then	you	need	to	specify
this	isDeclarativeControlContainer	property	so	it	can	be	processed	by	WinJS.

Events	can	be	registered	through	declarative	binding	or	by	registering	an	event	from
JavaScript.	In	the	preceding	code	we	have	registered	the	button	click	event	through	JavaScript
however;	declaratively	you	can	also	set	the	event	and	call	some	JavaScript	functions	that	can
be	invoked	when	the	button	is	clicked.

Existing	Windows	app	template	in	Visual	Studio
Windows	apps	can	be	developed	either	using	the	XAML	and	C#	or	by	using	an	HTML,	CSS,
and	JavaScript	project	template.	Visual	Studio	provides	certain	templates	for	both	the	models
and	auto	configures	the	WinJS	library	to	start	adding	features	in	your	application	instead	of
adding	packages	and	configurations	for	each	project	manually.	You	can	add	the	new	project
form	with	the	following	options	in	Visual	Studio	2015.	As	shown	in	the	following	screenshot:

This	template	adds	all	the	related	CSS,	JavaScript,	and	related	images	that	WinJS	provides	and
also	adds	the	default.js	file	that	contains	the	winJs.ProcessAll()	function	to	bind	the
HTML	elements	with	WinJS	library.	The	following	is	the	default.html	page	snippet	that
contains	the	WinJS	libraries	and	default.js:

<!DOCTYPE	html>

<html>

<head>

				<meta	charset="utf-8"	/>

				<title>App1</title>

				<!--	WinJS	references	-->

				<link	href="WinJS/css/ui-dark.css"	rel="stylesheet"	/>

				<script	src="WinJS/js/base.js"></script>

				<script	src="WinJS/js/ui.js"></script>

				<!--	App1	references	-->

				<link	href="/css/default.css"	rel="stylesheet"	/>

				<script	src="/js/default.js"></script>

</head>

<body	class="win-type-body">

				<p>Content	goes	here</p>

</body>

</html>

And	here	is	the	code	snippet	for	default.js:

(function	()	{

		"use	strict";

		

		var	app	=	WinJS.Application;

		var	activation	=	Windows.ApplicationModel.Activation;

		app.onactivated	=	function	(args)	{

				if	(args.detail.kind	===	activation.ActivationKind.launch)	{

						if	(args.detail.previousExecutionState	!==	

activation.ApplicationExecutionState.terminated)	{

						}	else	{

						}

						args.setPromise(WinJS.UI.processAll());

				}

		};

		app.oncheckpoint	=	function	(args)	{

		};

		app.start();

})();

Exploring	WinJS	core	fundamentals
Before	using	WinJS	library	in	any	of	the	projects,	it	is	best	to	know	the	core	concepts	that
help	us	to	write	quality	programs	and	use	the	best	of	what	the	library	offers.

Classes	and	namespaces
Through	WinJS	we	can	create	classes	and	namespace	with	some	special	syntax.	This	is
provided	in	the	WinJS	library	to	handle	complex	scenarios.	As	we	know,	classes	and
namespaces	are	the	features	of	ECMAScript	6,	but	unfortunately	none	of	the	browsers	have
proper	implementation	yet.	However,	with	WinJS	we	can	define	classes	and	namespaces	and
it's	a	useful	option	to	use	them	where	needed.

Defining	classes	in	WinJS

Classes	in	WinJS	can	be	defined	through	the	WinJS.Class.define()	method.	Here	is	the
sample	code	of	a	class	in	WinJS:

<script>

								var	Logger	=	WinJS.Class.define(function	(value)	{

												//constructor

												console.log("Constructor	is	executing,	value	passed	is:	"	+	value);

								}					

);

			//Initializing	Logger	class	object				

				var	log	=	new	Logger("Hello	World");

</script>

In	the	preceding	code	we	have	created	a	class	named	Logger,	where	the	first	function's
parameter	is	the	constructor,	second	is	for	any	instanceMembers	like	properties	and	methods
and	third	for	staticMembers	to	define	static	members	and	properties.	The	following	is	the
signature	of	the	define	method:

Now	let's	add	the	property	message	and	the	LogMessage()	method	in	the	same	class	Logger:

<script>

								var	Logger	=	WinJS.Class.define(function	(value)	{

															this.logName	=	value;

															this.enabled;

									//constructor

												console.log("Constructor	is	executing,	value	passed	is	"	+	value);

								},	{

												logMessage:	function	(message)	{

																if	(this.logEnabled)	{

																				alert("The	message	is"	+	message);

																}

												},

		logEnabled:	{

																	get:	function	()	{	return	this.enabled;	},

																	set:	function	(value)	{	this.enabled	=	value;	}

													}

								}

);

							var	log	=	new	Logger("Sample	log");

							log.logEnabled	=	true;

							log.logMessage("Hello	World");

<script>

The	syntax	of	defining	the	methods	for	the	class	is	a	method	name	followed	with	a	colon	(:)
and	the	function	body	as	follows:

logMessage:	function	(message)	{

														alert("The	message	is"	+	message);

							}

The	properties	can	be	defined	with	get	and	set	function	methods	as	shown	in	the	following
code:

logEnabled:	{

																get:	function	()	{	return	this.enabled;	},

																set:	function	(value)	{	this.enabled	=	value;	}

												}

Multiple	properties	and	methods	can	be	defined	in	a	same	way	separated	with	comma	as
shown	in	the	following	code:

		logEnabled:	{

																get:	function	()	{	return	this.enabled;	},

																set:	function	(value)	{	this.enabled	=	value;	}

													},

												logType:	{

																get:	function	()	{	return	this.loggerType;	},

																set:	function	(value)	{	this.loggerType	=	value;}

												}

Deriving	classes	in	WinJS

Classes	in	WinJS	can	be	derived	by	using	the	WinJS.class.derive()	method.	Considering	the
previous	example,	we	can	also	add	the	logEnabled	and	logType	properties	on	the	base	class
and	then	derive	the	Logger	class	from	the	BaseLogger	class.	Here	is	the	code	to	derive	classes
in	WinJS:

<script>

								var	BaseLogger	=	WinJS.Class.define(function	(logName)	{

												this.enabled;

												this.loggerType;

												this.loggerName	=	logName;

								},	{

												logEnabled:	{

																get:	function	()	{	return	this.enabled;	},

																set:	function	(value)	{	this.enabled	=	value;	}

												},

												logType:	{

																get:	function	()	{	return	this.loggerType;	},

																set:	function	(value)	{	this.loggerType	=	value;	}

												}

								});

								var	Logger	=	WinJS.Class.derive(BaseLogger,	function	(logName)	{

												//calling	base	constructor	and	passing	the	LogName	to	the	base	

constructor

												BaseLogger.call(this,	logName);

								},

								{

												logMessage:	function	(message)	{

																if	(Object.getOwnPropertyDescriptor(BaseLogger.prototype,	

"logEnabled").get.call(this)	==	true)	{

																				alert("The	message	is	"	+	message);

																}

												},

												

								}

);

								var	log	=	new	Logger("Hello	World");

								log.logEnabled	=	true;

								log.logType	=	"Alert";

								log.logMessage("hello");

</script>

In	the	above	script	we	have	taken	both	the	properties	logType	and	logEnabled	to	the	base
class	BaseLogger.	In	WinJS,	base	properties	can	be	accessed	through	the	following	syntax:

Object.getOwnPropertyDescriptor(BaseLogger.prototype,	

"logEnabled").get.call(this)

Settings	can	be	done	by	calling	the	set	method	after	the	getOwnPropertyDescriptor()
method	call:

Object.getOwnPropertyDescriptor(BaseLogger.prototype,	

"logEnabled").set.call(this)	=	true;

Now	if	you	want	to	take	the	logMessage()	method	on	the	BaseLogger	class,	we	can	do	it
through	prototyping,	as	follows:

BaseLogger.prototype.logMessage.call(this);

Namespaces	in	WinJS

In	object	oriented	programming,	namespaces	play	an	important	role	in	organizing	classes
and	categorizing	your	code.	For	example,	the	services	can	reside	under	the
ApplicationName.Services	namespace;	models	can	reside	under	the
ApplicationName.Models	namespace,	and	so	on.

We	should	always	use	namespaces	where	possible	as	it	solves	many	problems	that	could
occur	in	mid-size	to	larger	projects.	For	example,	we	have	two	JavaScript	files	added	in	our
page	that	have	similar	names	of	properties	or	functions.	The	one	referenced	later	will
supersede	the	member	functions	or	variables	of	the	previous	ones	if	they	have	the	same	name.

WinJS	provides	an	easy	way	to	logically	organize	classes	into	namespaces	and	you	can	define
a	namespace	by	calling	WinJS.Namespace.define("namespace	name",	{}))).

Here	is	the	example	that	encapsulates	both	the	BaseLogger	and	Logger	class	into	the
Demo.App.Utilities	namespace:

WinJS.Namespace.define("DemoApp.Utilities",	{

												//BaseLogger	class

												BaseLogger:	WinJS.Class.define(function	(logName)	{

																this.enabled;

																this.loggerType;

																this.loggerName	=	logName;

												},	{

																logEnabled:	{

																				get:	function	()	{	return	this.enabled;	},

																				set:	function	(value)	{	this.enabled	=	value;	}

																},

																logType:	{

																				get:	function	()	{	return	this.loggerType;	},

																				set:	function	(value)	{	this.loggerType	=	value;	}

																},

												}),

												//Logger	class

												Logger:	WinJS.Class.derive(BaseLogger,	function	(logName)	{

																//calling	base	constructor	and	passing	the	LogName	to	the	base	

constructor

																BaseLogger.call(this,	logName);

												},

												{

																logMessage:	function	(message)	{

																				if	(Object.getOwnPropertyDescriptor(BaseLogger.prototype,	

"logEnabled").get.call(this)	==	true)	{

																								alert("The	message	is	"	+	message);

																				}

																},

												})

								});

Now	the	Log	class	can	be	accessed	by	specifying	its	namespace,	as	shown	in	the	following
code:

var	log	=	new	DemoApp.Utilities.Logger("Sample	Logger");

								log.logEnabled	=	true;

								log.logType	=	"Alert";

								log.logMessage("hello");

Mixin
Most	of	the	languages	do	not	support	multiple	inheritance.	However,	in	WinJS	we	can	do	it
through	mixins.	Like	class,	mixin	is	a	collection	of	methods	and	properties	but	the	object	of
mixins	cannot	be	instantiated.	It	is	used	to	mix	with	a	class	to	bring	the	methods	and	properties
that	mixins	have.	For	example,	the	following	is	a	Mixin	logMixin	that	contains	a
logMessage()	method:

		var	logMixin	=	{

					logMessage:	function	(message)	{

																alert(message);

												}

								};

								var	SampleClass	=	WinJS.Class.define(function(){

								});

								WinJS.Class.mix(SampleClass,	logMixin);

								var	sample	=	new	SampleClass();

								

								sample.logMessage("Mixin");

We	can	add	as	many	mixins	when	calling	the	mix	method.	If	two	or	more	have	common
methods	or	properties,	later	one	will	override	the	existing	one.	Let's	look	into	the	examples
which	have	two	mixins,	namely	logMixin	and	logConsoleMixin.	Both	the	mixins	and	a
SampleClass	have	a	same	logMessage()method.	Now	based	on	the	specification,	the	methods
will	be	overridden	and	when	the	logMessage()	is	invoked	it	will	write	a	message	on	a	console
log:

								//First	Mixin

								var	logMixin	=	{

												logMessage:	function	(message)	{

																alert(message);

												}

								};

								//Second	Mixin

								var	logConsoleMixin	=	{

												logMessage:	function	(message)	{

																console.log(message);

												}

								}

								//Class

								var	SampleClass	=	WinJS.Class.define(function	()	{

								},

								logMessage=	function(message){

								var	result	=	confirm(message);

								});

								

								WinJS.Class.mix(SampleClass,	logMixin,	logConsoleMixin);

								var	sample	=	new	SampleClass();

								sample.logMessage("Mixin");

Events	in	WinJS
WinJS	provides	an	eventMixin	object	that	can	be	used	to	register,	unregister,	and	dispatch
events	through	the	following	basic	steps:

1.	 First	of	all,	the	class	from	which	we	need	to	call	the	dispatch	event	needs	to	have
WinJS.Utilities.eventMixin	added.	We	can	add	this	through	the	WinJS.Class.mix
method,	as	follows:

WinJS.Class.mix(SampleClass,	WinJS.Utilities.eventMixin);

2.	 Once	the	eventMixin	is	inherited	by	the	SampleClass,	we	can	call	the	dispatchEvent()
method	to	dispatch	on	a	particular	action.	Here	is	the	code	of	the	Sample	class	that
dispatches	the	event	once	the	execute	method	is	called:

								var	SampleClass	=	WinJS.Class.define(function	()	{

								},

								{

												execute:	function(message){

																this.dispatchEvent("executeInvoked",	{	message:	"Executed"	

});

												}

								});

3.	 Next,	we	can	add	the	addEventListener()	method	and	provide	the	eventHandler()	that
will	be	invoked	once	the	dispatch	message	is	called:

								var	sampleClass	=	new	SampleClass();

								var	sampleEventHandler	=	function	(event)	{

												alert(event.detail.message);

								};

								sampleClass.addEventListener("executeInvoked",	sampleEventHandler);

								

								sampleClass.execute("hello");							

Databinding
WinJS	provides	an	easy	way	of	binding	any	JavaScript	data	source	to	the	HTML	element.	Any
JavaScript	data	source	can	be	bound	using	data-win-bind	attribute	on	an	HTML	element.
Databinding	facilitates	in	separating	the	data	with	the	view	and	allows	you	to	write	less	code
and	bind	the	data	with	the	elements	using	WinJS,	which	provides	three	types	of	databinding	as
follows.

One	time	databinding

One	time	databinding	is	used	to	bind	the	element	on	an	HTML	page	from	a	JavaScript	data
source.	It	is	unidirectional,	that	means	if	the	JavaScript	data	source	is	updated	it	will	not
reflect	the	change	on	the	HTML	to	which	it	is	bound	to.

Here	is	the	HTML	code	that	has	two	controls	which	binds	the	properties	name	and	description
with	the	view	model	defined	in	your	JavaScript:

<div	id="rootDiv">

								<div>	Course	Name:

												loading

								</div>

								<div>

												Course	Description:

												<span	id="divForm"	data-win-bind="innerText:	

description">loading

								</div>

				</div>

Below	is	the	JavaScript	code	which	defines	the	view	model

let	ViewModel	=	WinJS.Class.define(function	()	{

																this.nameProp;

																this.descProp;

												},

												{

																name:	{

																				get:	function	()	{	return	this.nameProp;	},

																				set:	function	(value)	{	this.nameProp	=	value;	}

																},

																description:	{

																				get:	function	()	{	return	this.descProp;	},

																				set:	function	(value)	{	this.descProp	=	value;	}

																}

												});

												let	viewModel	=	new	ViewModel();

												viewModel.name	=	"WinJS	databinding";

												viewModel.description	=	"Introduction	to	WinJS	databinding";

												var	personDiv	=	document.querySelector('#rootDiv');

												WinJS.Binding.processAll(personDiv,	viewModel);

One	way	databinding

One	way	databinding	is	a	unidirectional	binding.	Once	the	HTML	element	is	bound	to	the

JavaScript	data	source,	any	changes	in	the	data	source	will	reflect	the	change	on	the	HTML
page	but	if	something	is	updated	on	the	HTML	element,	it	will	not	update	the	backend
JavaScript	data	source.	One	way	databinding	can	be	done	by	making	the	source	model
observable.	So	if	anything	changes	on	the	source	object	it	will	update	the	UI	element	to	which
it	is	bound	to.	It	can	either	be	done	by	using	the	WinJS.binding.as()	method	or	adding	the
observableMixin	with	the	source	class.

The	following	is	an	example	of	one	way	databinding	that	binds	the	properties	Name	and
Description	and	on	the	button	click	event,	updates	the	HTML	element	and	sets	the	value	set
from	the	backend	data	source.	Adding	a	button	in	the	previous	HTML	page	added	in	the	One
time	databinding	section:

//HTML	markup

<button	id="btnUpdate">Click</button>

//JavaScript

			let	ViewModel	=	WinJS.Class.define(function	()	{

																						this.nameProp;

																						this.descProp;

											},

											{

	name:	{

				get:	function	()	{	return	this.nameProp;	},

				set:	function	(value)	{	this.nameProp	=	value;	}

								},

	description:	{

				get:	function	()	{	return	this.descProp;	},

				set:	function	(value)	{	this.descProp	=	value;	}

								}

	});

let	viewModel	=	new	ViewModel();

viewModel.name	=	"WinJS	databinding";

viewModel.description	=	"Introduction	to	WinJS	databinding";

var	personDiv	=	document.querySelector('#rootDiv');

let	observableViewModel	=	WinJS.Binding.as(viewModel);

			WinJS.Binding.processAll(personDiv,	observableViewModel);

document.querySelector('#btnUpdate').onclick	=	function	()	{

			observableViewModel.name	=	"new	name";

		observableViewModel.description	="new	description";

}

Two	way	databinding

Two	way	databinding	works	in	both	directions.	Once	the	JavaScript	object	is	bound	to	the
HTML	control,	any	changes	done	on	the	control	itself	or	if	the	value	of	the	JavaScript	object
gets	changed,	the	control	value	will	be	updated	and	vice	versa.	Implementing	two	way	binding
in	WinJS	is	not	straight	forward.	We	need	to	have	the	one	way	binding	in	place	to	reflect	any
change	happening	on	the	backend	data	source	to	reflect	on	the	frontend,	as	well	as	to	update

the	backend	data	source	from	any	changes	done	on	the	UI	element.	This	can	be	done	by
implementing	onPropertyChange(),	onKeyDown(),	onChange(),	or	onClick()	and	others
based	on	the	HTML	element:

someTextboxElement.onpropertychange=function(){

						someModel.property	=	someTextboxElement.value;

}

Another	approach	is	to	implement	a	custom	binding	initializer	which	can	be	used	as
highlighted	in	the	following	code:

<input	type="text"	data-win-bind="value:	someProperty	Binding	twoWayBinding"	/>

Let's	create	a	custom	two	way	binding	initializer	and	extend	the	same	viewModel	to	accept	the
name	and	description	updates	through	textboxes.	Here	is	the	code	of	our	custom	two	way
binding	initializer:

//Defining	Binding	initializer	to	support	two	way	binding

WinJS.Namespace.define("Binding.Mode",	{

						twoway:	WinJS.Binding.initializer(function	

																								(source,	sourceProperties,	destination,	

destinationProperties)	{

										WinJS.Binding.defaultBind(source,	sourceProperties,	destination,	

destinationProperties);

										destination.onchange	=	function	()	{

														var	destValue	=	destination[destinationProperties[0]];

														source[sourceProperties[0]]	=	destValue;

										}

						})

		});

Then	create	a	class	that	contains	two	properties,	namely	name	and	description:

//Defining	class

let	ViewModel	=	WinJS.Class.define(function	()	{

																						this.nameProp;

																						this.descProp;

																		},

{

name:	{

get:	function	()	{	return	this.nameProp;	},

set:	function	(value)	{	this.nameProp	=	value;	}

},

description:	{

get:	function	()	{	return	this.descProp;	},

set:	function	(value)	{	this.descProp	=	value;	}

}

});

//Initializing	class	Instance

let	viewModel	=	new	ViewModel();

viewModel.name	=	"WinJS	databinding";

viewModel.description	=	"Introduction	to	WinJS	databinding";

var	rootDiv	=	document.querySelector('#rootDiv');

let	observableViewModel	=	WinJS.Binding.as(viewModel);

WinJS.Binding.processAll(rootDiv,	observableViewModel);

In	the	above	code,	we	have	first	defined	the	binding	initializer	using
WinJS.Binding.initializer.	When	defining	this	initializer	we	have	to	pass	four	properties
namely	source	element	and	its	properties	object	and	destination	element	and	its	properties.	So
for	example,	in	our	case	the	source	element	is	a	textbox	and	the	source	property	is	its	value,
whereas	the	destination	element	will	be	a	span	and	innerText	as	its	destination	property.
WinJS.Binding.defaultBind	creates	the	one	way	binding	and	then	we	can	register	the
onchange()	event	of	the	source	property	which	updates	the	destination	property.	Then	we
defined	a	class	and	then	initialized	the	values	by	initializing	an	instance.	And	finally,	we	have
transformed	the	model	into	the	observable	model	to	provide	two	way	binding.

Now,	in	the	HTML	element,	we	can	add	the	binding	as	follows:

<div	id="rootDiv">

												<div

	<input	type="text"	data-win-bind="value:	name	Binding.twoWayBinding"	/>

												</div>

												<div>

																Course	Name:

																<span	id="spanName"	data-win-bind="innerText:	

name">loading

												</div>

												<div>

<input	type="text"	data-win-bind="value:	description	Binding.twoWayBinding"	/>

												</div>

												<div>

																Course	Description:

																<span	id="spanDesc"	data-win-bind="innerText:	

description">loading

												</div>

												</div>

A	databinding	working	model

When	the	databinding	is	done	in	WinJS,	the	WinJS.processAll()	method	has	to	be	called	if
it's	done	using	WinJS.	This	method	scans	all	the	elements	which	specify	the	data-win-bind
attributes.	For	each	element,	it	checks	if	the	data	bound	with	the	element	is	observable	or
not.	This	is	a	crucial	step	which	identifies	the	type	of	binding	and	declares	whether	the	binding
is	a	one	way	binding,	one	time	binding,	or	two	way	binding.

Promises
Promises	represent	an	object	that	contains	a	value	that	might	be	available	at	any	time.	It's	a
promise	which	satisfies	the	consumer	that	the	resource	will	be	available	and	the	consumer	can
do	the	rest	of	the	work	without	waiting	for	the	resource	in	an	asynchronous	manner.

It	works	as	an	async/await	feature	of	C#.	Promises	allow	consumers	to	do	other	work	rather
than	waiting	for	the	value	to	return	and	provides	certain	methods	to	acknowledge	the
consumer	once	the	promise	is	received.	In	certain	cases,	there	is	a	chance	of	not	having	the
response	return	due	to	some	error	and	that	can	also	be	handled	by	implementing	specific
callbacks.

In	WinJS,	promise	is	an	object	with	functions	then	and	done.	We	can	initialize	promise	as
follows:

var	promise	=	new	WinJS.Promise(function	(completed,	error,	progress)

//Call	if	we	need	to	update	consumer	that	still	in	progress

progress("progress");

//Call	if	any	error	occurs

error("error");

//Call	when	the	function	is	completed

completed("completed");

}

);

The	preceding	code	is	the	way	of	defining	a	function	that	returns	a	promise.	We	can	then	call
a	progress	method	if	the	method	is	not	completed	and	we	need	to	notify	the	consumer	if
something	is	in	progress.	Once	the	promise	is	defined,	we	can	use	the	then	and	done	methods
to	implement	callback	methods	that	will	be	triggered	by	promise.	The	then	method	returns	a
promise	and	denotes	the	intermediate	stage	of	the	operation	whereas	done	is	the	final	stage	of
the	operation	and	does	not	return	a	promise:

promise.then(

function	()	{	console.log("completed");	},	

function	()	{	console.log("error")	},	

function	()	{	console.log("promise")	}

);

The	following	example	shows	the	function	that	displays	the	table	in	a	console	window	and
returns	completed	once	the	promise	is	processed:

function	executeTable(table,	max)

{

		return	new	WinJS.Promise(function(completed,	error,	progress){

		for	(i	=	1;	i	<	max;	i++)	{

					console.log(table	+'	X	'+	i	+'	=	'	+	(table	*	i));

		}

		completed("executed	table")

	});

	};

		executeTable(2,	10).then(

												function	(completedVal)	{

																				console.log(completedVal);

													},	function	(errorVal)	{

																				console.log(errorVal);

													},

													function	(onProgressVal)	{

																				console.log(onProgressVal);

													}

)

The	following	is	the	output:

Now	let's	modify	the	same	example	and	invoke	progress	to	send	intermediate	results	to	the
consumer	on	each	iteration.	The	preceding	method	is	synchronous	and	returning	promise
doesn't	mean	the	method	will	be	executed	asynchronously.	To	make	this	method	run
asynchronously	we	can	wrap	the	block	of	code	through	the	setImmediate()	function.

setImmediate()	is	the	JavaScript	function	which	is	used	to	interrupt	the	execution	of	the
function	and	returns	the	callback	function	immediately,	that	eventually	invokes	the
onProgress()	function	of	promise	in	our	case.	Here	is	the	modified	version	with	the
setImmediate()	and	onProgress()	methods:

function	executeTable(table,	max)

												{

																return	new	WinJS.Promise(function	(completed,	error,	

onProgress)	{

																				window.setImmediate(function	()	{

																								for	(i	=	1;	i	<=	max;	i++)	{

																												var	row	=	table	+	'	X	'	+	i	+	'	=	'	+	(table	*	i);

																												onProgress(row);

																								}

																								completed("executed	table")

																				},	0);

																});

												};	

		executeTable(2,	10).then(

												function	(completedVal)	{

																				console.log(completedVal);

													},	function	(errorVal)	{

																				console.log(errorVal);

													},

													function	(onProgressVal)	{

																				console.log(onProgressVal);

													}

)

The	result	of	the	preceding	code	snippet	will	be	the	same	as	shown	in	the	previous	example.
However,	the	use	of	the	setImmediate()	function	allows	the	onProgress()	method	to	write
messages	to	the	console	window	asynchronously	and	is	more	efficient	in	terms	of
performance.

Other	operations	of	promises

There	are	several	other	methods	on	promises	that	can	be	used	to	cancel	any	promises,	chain
promises,	timeout,	wrap,	and	so	on.	Let's	look	over	each	method	and	see	how	it	can	be	used.

Chaining	promises	and	handling	errors

Multiple	promises	can	be	chained	using	then	and	based	on	the	order	they	are	chained,	get
executed	one	by	one	sequentially.	Here	is	the	simple	example	that	loads	the	web	page	using	the
WinJS.xhr()	method.	This	method	is	the	built	in	method	that	returns	a	promise	and	we	can
use	this	method	to	make	HTTP	requests:

var	promise1	=	function	()	{	return	WinJS.xhr({	url:	"http://microsoft.com"	})	

};

												var	promise2	=	function	()	{	return	WinJS.xhr({	url:	

"http://google.com"	})	};

												var	promise3	=	function	()	{	return	WinJS.xhr({	url:	

"http://techframeworx.com"	})	};

												var	promise4	=	function	()	{	return	WinJS.xhr({	url:	

"http://msdn.microsoft.com"	})	};

												promise1().then(function	(dataPromise1)	{

																console.log("got	the	response	from	promise	1");

																return	promise2();

												}).then(function	(dataPromise2)	{

																console.log("got	the	response	from	promise	2");

																return	promise3();

												}).then(function	(dataPromise3)	{

																console.log("got	the	response	from	promise	3");

																return	promise4();

												}).done(function	(dataPromise4)	{

																console.log("got	the	response	from	promise4");

																console.log("completed	the	promise	chain");

												});

In	the	preceding	code	we	are	returning	the	next	promise	on	every	promise	chain	execution
block.	This	is	required	when	chaining	promises	otherwise	it	would	not	call	the	next	promise
in	the	pipeline.	For	the	last	promise	in	the	pipeline,	we	have	used	done	instead	of	then	which
actually	tells	us	that	there	isn't	a	promise	next	in	the	chain	and	no	chaining	can	be	done	now.
Another	benefit	is	to	perform	error	handling.	In	the	done	method,	we	can	get	all	the	errors
being	thrown	by	any	of	the	promises	in	the	chain.	If	we	don't	use	done	then	we	will	not	be	able
to	access	any	errors	thrown	in	the	promise	chain.	The	following	example	is	the	modified
version	of	the	previous	example	with	error	handling:

												var	promise1	=	function	()	{	return	WinJS.xhr({	url:	

"http://microsoft.com"	})	};

												var	promise2	=	function	()	{	return	WinJS.xhr({	url:	

"http://google.com"	})	};

												var	promise3	=	function	()	{	return	WinJS.xhr({	url:	

"htt://techframeworx.com"	})	};

												var	promise4	=	function	()	{	return	WinJS.xhr({	url:	

"http://msdn.microsoft.com"	})	};

												promise1().then(function	(dataPromise1)	{

																console.log("got	the	response	from	promise	1");

																return	promise2();

												}).then(function	(dataPromis2)	{

																console.log("got	the	response	from	promise	2");

																return	promise3();

												}).then(function	(dataPromise3)	{

																console.log("got	the	response	from	promise	3");

																return	promise4();

												}).done(function	(dataPromise4)	{

																console.log("got	the	response	from	promise	4");

																console.log("completed	the	promise	chain");

												},	function	(error)	{

																console.log("some	error	occurred,	cause:	"	+	error);

												});

In	the	preceding	example	we	have	used	done	in	the	final	promise	in	the	chain.	Now,	if	you
have	noticed,	the	promise	2	URL	is	not	valid	and	there	is	a	typo	mistake.	Now	if	we	execute
the	preceding	code,	promise1	and	promise2	will	be	executed	and	will	write	the	messages	in
the	console	log	window.	Whereas,	the	promise	will	not	be	executed	but	the	error	method	will
be	invoked	and	defined	under	the	done	method	and	will	write	the	error	description	in	the
console	log	window:

Canceling	promises

Promises	can	be	canceled	by	calling	the	cancel	method	on	the	promise	object.	The	following
is	an	example	to	cancel	any	promise:

var	promiseGoogle	=	function	()	{	return	WinJS.xhr({	url:	"http://google.com"	})	

};

												googlePromiseObj	=	promiseGoogle();

												googlePromiseObj.cancel();

Promises	can	only	be	canceled	if	it's	not	completed	and	went	into	the	error	state	once	it	was
canceled.

Joining	promises

Multiple	promises	can	be	joined	together	and	return	when	all	of	them	are	finished.	We	can
join	promises,	as	shown	in	the	following	code:

			var	promise1	=	function	()	{	return	WinJS.xhr({	url:	"http://microsoft.com"	

})	};

												var	promise2	=	function	()	{	return	WinJS.xhr({	url:	

"http://googe.com"	})	};

												var	promise3	=	function	()	{	return	WinJS.xhr({	url:	

"http://techframeworx.com"	})	};

WinJS.Promise.join([promise1,	promise2,	promise3])

.done(function(){

		console.log("All	the	promises	are	finished");

});

Promise.any()	can	be	used	in	cases	when	we	need	to	know	if	any	of	the	defined	promises
inside	the	any	method	have	executed:

var	promise1	=	function	()	{	return	WinJS.xhr({	url:	"http://microsoft.com"	})	

};

var	promise2	=	function	()	{	return	WinJS.xhr({	url:	"http://googe.com"	})	};

var	promise3	=	function	()	{	return	WinJS.xhr({	url:	"http://techframeworx.com"	

})	};

WinJS.Promise.any([promise1,	promise2,	promise3])

.done(function(){

		console.log("One	of	the	promises	is	finished");

});

Checking	promise

WinJS.Promise.is()	is	a	method	that	takes	a	value	as	a	parameter	and	checks	if	that	value	is	a
promise	or	not.	For	example,	calling	WinJS.xhr	in	the	WinJS.Promise.is()	method	will
return	true:

WinJS.Promise.is(WinJS.xhr({	url:	"http://microsoft.com"	}));

Wrapping	non-promise	into	promise

Any	function	can	be	wrapped	into	the	promise	using	the	WinJS.Promise.as()	method.	The
following	code	wraps	the	non-promise	displayMessage()	method	into	a	promise:

function	displayMessage()	{

																console.log("This	is	a	non	promise	function")

												}

												var	promiseDisplayMessage	=	WinJS.Promise.as(displayMessage);

												promiseDisplayMessage.done(function	()	{	console.log("promise	is	

executed")	});

Exploring	WinJS	controls	and	styles
Windows	library	for	JavaScript	provides	a	rich	set	of	controls,	databinding	options,	and
promises	and	in	this	section	we	will	explore	a	few	popular	controls	and	styling	options.

None	of	the	WinJS	controls	have	separate	markup,	instead	WinJS	library	provides	several
attributes	that	can	be	used	with	the	existing	HTML	elements.

Adding	WinJS	controls
As	we	have	seen,	there	are	no	any	markups	for	WinJS	controls	and	they	can	be	added	through
attributes	on	the	HTML	elements.	WinJS	controls	can	be	added	by	adding	any	HTML	element
and	setting	its	data-win-control	attribute	value	to	the	name	of	the	WinJS	control.

In	the	following	example,	we	are	changing	a	simple	HTML	button	element	into	the	back
button	usually	seen	in	store	apps.	And	this	can	be	done	by	adding	the	data-win-control
attribute	and	setting	a	fully	qualified	name	to	WinJS.UI.BackButton.

Here	is	the	HTML	markup:

<button	data-win-control="WinJS.UI.BackButton">WinJS	button</button>

When	you	run	it,	it	will	render	a	back	button	on	the	page,	as	shown	in	the	following	figure:

Also	it	does	not	only	change	the	look	but	also	provides	the	backward	navigation	functionality
out	of	the	box.

Setting	properties	of	WinJS	controls
Every	HTML	element	has	several	properties	which	can	be	addressed	by	specifying	values
through	attributes.	For	example,	rating	control	allows	a	user	to	rate	any	item	and	we	can	set
the	properties,	like	the	max	and	min	range	of	stars	to	be	displayed:

<div	id="ratingControl"	data-win-control="WinJS.UI.Rating"

									data-win-options="{minRating:	1,	averageRating	:	5,	maxRating:	10}">

</div>

The	output	of	the	preceding	mark-up	will	generate	a	rating	control	like	the	following	figure:

There	are	other	Windows	specific	controls	like	ListView,	FlipView,	and	Zoom	that	you	can
use	in	your	page	and	bring	high	performance	on	large	collections	or	objects.	You	can	learn
more	about	controls	at	the	Windows	Dev	Center	website	at:	https://msdn.microsoft.com/en-
us/library/windows/apps/mt502392.aspx

https://msdn.microsoft.com/en-us/library/windows/apps/mt502392.aspx

Using	Windows	runtime	features
WinJS	provides	a	complete	API	to	use	Windows	runtime	features	and	device	specific	features.
When	accessing	the	device	specific	features	using	WinJS,	the	web	application	should	run	as	a
windows	application	and	accessing	it	from	a	browser	will	result	in	an	error.	Also,	Microsoft
has	released	the	concept	of	Hosted	apps	which	enable	any	web	application	to	host	as	a
windows	application	with	a	few	configuration	steps.

Hosted	apps	and	accessing	the	camera
Hosted	apps	were	introduced	with	the	launch	of	UWP.	Let's	create	a	simple	example	to	convert
a	simple	ASP.NET	core	application	into	a	Windows	application	using	the	Hosted	app	concept
and	access	the	camera.

Creating	the	ASP.NET	core	application

Create	a	simple	ASP.NET	core	application	in	Visual	Studio	2015	and	add	the	WinJS	packages
through	NPM.	Here	is	the	code	snippet	of	package.json:

{

		"version":	"1.0.0",

		"name":	"ASP.NET",

		"private":	true,

		"dependencies":	{

				"winjs":	"4.4.0"

		},

		"devDependencies":	{

				"gulp":	"^3.9.1"

		}

			}

We	can	add	WinJS	under	the	dependencies	section	and	on	saving	the	package.json	file,	the
package	will	be	downloaded	automatically.	We	have	to	add	gulp	as	well	to	copy	the	related
libraries	and	CSS	files	in	the	wwwroot	folder.	After	this,	add	the	gulpfile.js	and	add	the
following	script:

///	<binding	Clean='clean'	/>

"use	strict";

var	gulp	=	require("gulp");

var	paths	=	{

				webroot:	"./wwwroot/"

};

var	config	=	{

				libBase:	'node_modules',

				lib:	[

							require.resolve('winjs/js/base.js'),

							require.resolve('winjs/js/ui.js'),

							require.resolve('winjs/js/winjs.intellisense.js'),

							require.resolve('winjs/js/winjs.intellisense-setup.js')

],

				libCss:	[require.resolve('winjs/css/ui-dark.css'),

								require.resolve('winjs/css/ui-light.css')

]

};

gulp.task('build.lib',	function	()	{

				return	gulp.src(config.lib,	{	base:	config.libBase	})

				.pipe(gulp.dest(paths.webroot	+	'lib'));

});

gulp.task('build.libCss',	function	()	{

				return	gulp.src(config.libCss,	{	base:	config.libBase	})

				.pipe(gulp.dest(paths.webroot	+	"lib"));

});

When	you	run	the	build.lib	and	build.LibCss	tasks	through	a	task	runner	tab	in	Visual
Studio	2015,	it	will	copy	the	WinJS	libraries	and	CSS	files	inside	the	wwwroot	folder:

In	this	application,	we	will	have	a	simple	HTML	page	that	we	can	directly	add	into	the	wwwroot
folder,	for	this	we	need	to	call	the	app.UseStaticFiles()	method	in	the	Configure()	method
and	add	the	package	in	project.json:

"Microsoft.AspNet.StaticFiles":	"1.0.0-rc1-final"

Let's	add	the	Index.html	page	inside	the	wwwroot	folder	and	add	the	following	scripts	in	the
HTML	head	element:

				<script	src="lib/winjs/js/base.js"></script>

				<script	src="lib/winjs/js/ui.js"></script>

				<script	src="lib/winjs/js/winjs.intellisense-setup.js"></script>

				<script	src="lib/winjs/js/winjs.intellisense.js"></script>

				<script	src="http://ajax.aspnetcdn.com/ajax/jquery/jquery-1.9.0.js"></script>

We	will	be	using	the	light	Windows	theme	so	add	ui-light.css,	as	follows:

				<link	rel="stylesheet"	href="lib/winjs/css/ui-light.css"	/>

Now	add	the	page	content	which	contains	a	button	Capture	to	capture	the	image	and	an	image
element	to	display	the	captured	image:

		<div	id="rootDiv">

								<div	class="col-md-4">

											Click	to	capture	image	<input	type="button"	value="Capture"	

onclick="return	CaptureCamera();"	/>

								</div>

								

								

					</div>

The	following	is	the	output	of	the	page:

Now	add	the	following	script	to	access	the	camera	and	attach	the	captured	image	with	the
image	element:

						<script>

												if	(window.Windows)	{

																function	CaptureCamera()	{

																				var	notifications	=	Windows.UI.Notifications;

																				var	dialog	=	new	Windows.Media.Capture.CameraCaptureUI();

																				var	aspectRatio	=	{	width:	1,	height:	1	};

																				dialog.photoSettings.croppedAspectRatio	=	aspectRatio;

																				

dialog.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo).done(fun

ction	(capturedImage)	{

																								if	(capturedImage)	{

																												var	imageURL	=	URL.createObjectURL(capturedFile,	{	

oneTimeOnly:	true	});

																												document.getElementById("img").src	=	imageURL;

																								}

																								else	{

																												WinJS.log	&&	WinJS.log("No	image	captured	yet",	

"WinJSTestApp",	"Status");

																								}

																				},	function	(err)	{

																								WinJS.log	&&	WinJS.log(err,	"WinJSTestApp",	"Error");

																				});

																}

												}	else	{

																function	CaptureCamera()	{

																				alert("Cannot	access	camera,	it	should	be	hosted	as	a	

windows	application");

																}

												}

				</script>

Converting	an	ASP.NET	application	into	Windows	application	using	the
Hosted	app	concept

Converting	any	web	application	into	the	Windows	application	is	very	simple.	In	Visual	Studio
2015	you	can	start	creating	a	simple	JavaScript	based	Windows	application	using	the	Blank
App	(Universal	Windows)	template	as	shown	in	the	following	screenshot:

When	you	add	a	project	it	will	add	the	css,	images,	js,	and	winjs	folders.	We	have	to	delete
the	css,	js,	and	winjs	folders	as	we	will	not	be	using	any	of	the	files	in	this	project	and

configure	the	web	application	created	above	and	transform	it	to	a	Windows	application.

Open	the	package.appxmanifest	window.	Add	the	URL	in	the	Start	Page	textbox	as	shown	in
the	following	screenshot.	Our	sample	ASP.NET	application	created	above	was	hosted	on	port
41345:

In	the	Content	URIs	tab,	add	the	URI	of	our	web	application	and	select	All	under	WinRT
Access.	You	can	specify	the	URL	of	any	web	application	which	should	be	hosted	somewhere.
In	the	preceding	screenshot	we	are	using	localhost	which	actually	points	to	a	web	application
hosted	locally:

This	window	allows	us	to	specify	access	rules	to	WinRT	features	and	we	can	set	it	to	None,
All,	or	Allow	for	web	only.

Building	and	running	the	application	will	show	the	windows	application	dialog	hosting	our
web	application	index.html	page:

Clicking	on	the	Capture	button	will	provide	a	popup	of	another	dialog	to	take	a	snapshot,	as
shown	in	the	following	screenshot:

After	taking	the	desired	shot,	it	will	ask	you	to	save	or	reject	through	tick	and	cross	buttons:

Selecting	tick	will	render	the	photo	in	the	img	HTML	element,	as	shown	in	the	following
screenshot:

Summary
In	this	chapter,	we	explored	the	WinJS	Windows	library	for	JavaScript	library	which	is	open
source	and	under	an	Apache	license.	We	learned	the	core	concepts	of	defining	classes,
namespaces,	deriving	classes,	mixins,	and	promises.	We	also	looked	into	the	databinding
techniques	and	how	to	use	the	windows	controls	or	attributes	in	HTML	elements	to	change	the
behavior	and	look	and	feel	of	the	control.	And	finally,	we	used	the	WinRT	API	to	access	the
device	camera	in	our	web	application	and	learned	the	concept	of	Hosted	app	and	transforming
any	web	application	into	the	Windows	apps	using	the	Universal	Window	template	in	Visual
Studio	2015.	In	the	next	chapter,	we	will	learn	about	a	few	good	design	patterns	that	can	be
implemented	in	JavaScript	to	achieve	specific	requirements.

Chapter	7.	JavaScript	Design	Patterns
In	every	mid-	to	large-sized	projects,	good	architecture	and	design	always	plays	an	important
role	in	handling	complex	scenarios	and	increasing	the	maintainability	of	the	product.	Design
patterns	are	best	practices	developed	and	used	by	professional	developers	to	solve	a	particular
problem.	If	a	design	pattern	has	been	used	in	the	application	for	specific	scenarios,	it	evades
many	of	the	issues	one	could	face	during	development	or	when	running	the	application	in
production.	Design	patterns	solve	the	problems	by	providing	the	guidelines	which	are
industry	best	practices	to	handle	problems	or	to	achieve	or	implement	any	requirement.	A
singleton	pattern,	for	example,	is	used	to	create	only	one	instance	that	is	shared	among	all,
whereas	a	prototype	is	used	to	extend	the	existing	functionality	of	an	object	by	adding	more
properties	and	methods	and	so	on.	Design	patterns	are	classified	into	three	categories,	namely
creational,	structural,	and	behavioral	patterns.	The	topics	which	we	will	cover	in	this	chapter
are	as	follows:

Creational	patterns:	The	following	are	the	creational	patterns	we	will	discuss	in	this
chapter:

Singleton	pattern
Factory	pattern
Abstract	factory	pattern
Prototype	pattern

Structural	patterns:	The	following	are	the	list	of	structural	patterns	we	will	discuss	in
this	chapter:

Adapter	pattern
Decorator	pattern
Facade	pattern
Bridge	pattern

Behavioral	patterns:	The	following	are	the	list	of	behavioral	patterns	we	will	discuss	in
this	chapter:

Chain	of	responsibility
Observer	pattern
Pub/sub	pattern
Promises

Creational	patterns
Creational	patterns	are	used	for	object	instantiation.	They	are	used	in	situations	where	the
basic	form	of	object	creation	could	result	in	design	problems	or	increase	complexity	to	the
design.	In	the	following	section,	we	will	discuss	all	four	creational	patterns	mentioned
previously,	and	how	to	implement	them	in	JavaScript.

Singleton	design	pattern
Singleton	is	the	most	widely	used	pattern.	It	is	used	in	scenarios	where	we	need	to	share	the
same	instance	of	a	class	or	function	(in	terms	of	JavaScript)	between	different	objects.	It
ensures	that	there	is	only	one	instance	of	particular	object	which	can	be	accessed	globally	at
any	point:

In	a	singleton	pattern,	the	constructor	should	be	private	which	restricts	the	user	to	create
objects	using	a	new	keyword	and	exposes	one	method	that	creates	an	instance	and	verifies	that
only	one	instance	exists.	A	simple	example	could	be	a	logger	object	that	writes	the	log	to	the
browser's	console	window:

<script>

				var	Logger	=	(function	()	{

								//private	variable

								var	instance;

								//private	method

								function	initializeInstance()	{

												//closure	returns	the	public	access	to	the	writeLog	function	that	

can	be	accessible	by	the	singleton	object

												return	{

																writeLog:	function	(message)	{

																				console.log(message);

																}

												};

								};

								//closure	that	returns	the	public	access	to	the	getInstance	method	that	

returns	the	singleton	object

								return	{

												//This	is	a	public	method	that	returns	the	singleton	instance

												getInstance:	function	()	{

																if	(!instance)	{

																				instance	=	initializeInstance();

																}

																return	instance;

												},

								};

				})();

				var	logger	=	Logger.getInstance();

				logger.writeLog("Hello	world");

</script>

Tip

In	JavaScript	(ES5	standard),	classes	are	still	represented	through	functions.

In	JavaScript,	to	implement	a	singleton,	we	can	use	closures.	Closures	are	inner	objects	that
have	access	to	the	private	members	of	the	function,	such	as	accessing	variables	and	methods
defined	within	a	parent	function,	and	are	accessible	from	closures.

Brackets	()	in	the	last	statement	are	specified	to	assign	the	object	returning	to	the	logger
variable	rather	than	the	function	itself.	This	actually	restricts	the	object	from	initializing
through	a	new	keyword.

In	the	preceding	script,	the	function	first	returns	the	closure	that	has	one	getInstance()
method,	which	actually	checks	the	private	member	variable	instance	and	if	it	is	not	initialized
it	calls	the	initializeInstance()	method	that	returns	another	closure	containing	the
writeLog()	method.	We	can	add	more	methods	or	variables	separated	by	commas	and	they
will	be	accessible	with	the	logger	object.	Here	is	the	modified	version	of	the
initializeInstance()	method	that	has	one	more	method,	showAlert(),	and	a	variable,
logEnabled:

function	initializeInstance()	{

												//closure	returns	the	public	access	to	the	writeLog	function	that	

can	be	accessible	by	the	singleton	object

												return	{

																writeLog:	function	(message)	{

																				if(this.logEnabled)

																					console.log(message);

																},		

																showAlert:	function	(message)	{

																				if(this.logEnabled)

																								alert(message);

																},

																logEnabled:	false

												};

								};

Factory	pattern
The	factory	pattern	delegates	object	instantiation	to	the	centralized	class.	Instead	of
instantiating	the	object	using	a	new	keyword,	we	call	the	factory	method	that	returns	the	type
of	the	object	requested:

Here	is	an	example	of	the	LoggerFactory	that	creates	the	logger	instances	based	on	the	logger
type:

//LoggerFactory	to	instantiate	objects	based	on	logger	type

				function	LoggerFactory()	{

								var	logger;

								this.createLogger	=	function	(loggerType)	{

												if	(loggerType	===	"console")	{

																logger	=	new	ConsoleLogger();

												}

												else	if	(loggerType	===	"alert")	{

																logger	=	new	AlertLogger();

												}

												return	logger;

								}

				}

				//Console	logger	function

				var	ConsoleLogger=	function(){

								this.logMessage=function(message){

												console.log(message);

								}	

				};

				//Alert	logger	function

				var	AlertLogger=	function(){

								this.logMessage=	function(message){

												alert(message);

								}	

				};

			

				var	factory	=	new	LoggerFactory();

				//creating	Console	logger	object	using	LoggerFactory

				var	consoleLogger	=	factory.createLogger("console");

				consoleLogger.logMessage("Factory	pattern");

				//create	Alert	logger	object	using	LoggerFactory

				var	alertLogger	=	factory.createLogger("alert");

				alertLogger.logMessage("Factory	pattern");

In	our	example,	the	factory	class	is	LoggerFactory	that	creates	instances	of	ConsoleLogger
and	AlertLogger	objects.	LoggerFactory	exposes	a	createLogger()	method	that	takes	the	type
of	logger	as	a	parameter	to	determine	which	object	needs	to	be	instantiated.	Each	type	of
logger	has	its	own	logMessage()	method	to	either	log	on	the	console	window	or	show	an
alert	message.

Abstract	factory	pattern
The	abstract	factory	pattern	encapsulates	the	collection	of	factories	to	create	instances.	The
instance	exposes	the	same	method	that	can	be	invoked	by	the	factory.	The	following	is	an
example	of	two	factories,	ShapeFactory	and	CarFactory	and	each	one	returns	two	types	of
instance.	ShapeFactory	returns	Circle	and	Square	instances	whereas	CarFactory	returns
HondaCar	and	NissanCar	instances.	Each	of	the	instance	have	the	same	method	make()	that	can
be	called	for	any	instance:

Here	is	the	code	for	ShapeFactory:

<script>

				//Shape	Factory	to	create	instances	of	Circle	and	Square

				var	ShapeFactory	=	function()	{

								var	shape;

								this.createShape	=	function	(shapeType)	{

												if	(shapeType	===	"circle")	{

																return	new	CircleShape();

												}

												else	if	(shapeType	===	"square")	{

																return	new	SquareShape();

												}

								}

				}

				//Circle	object	to	draw	circle

				var	CircleShape	=	function	()	{

								this.make	=	function	()	{

												var	c	=	document.getElementById("myCanvas");

												var	ctx	=	c.getContext("2d");

												ctx.beginPath();

												ctx.arc(100,	75,	50,	0,	2	*	Math.PI);

												ctx.stroke();

								}

				}

				//Square	object	to	draw	square

				var	SquareShape	=	function	()	{

								this.make	=	function	()	{

												var	c	=	document.getElementById("myCanvas");

												var	ctx	=	c.getContext("2d");

												ctx.beginPath();

												ctx.rect(50,	50,	50,	50);

												ctx.stroke();

								}

				}

The	following	is	the	code	for	CarFactory	that	creates	instances	of	Honda	and	Nissan	cars:

				//Car	factory	to	create	cars

				var	CarFactory=	function()	{

								var	car

								this.createCar	=	function	(carType)	{

												if	(carType	===	"honda")	{

																return	new	HondaCar();

												}

												else	if	(carType	===	"nissan")	{

																return	new	NissanCar();

												}

								}

				}

				//Honda	object

				var	HondaCar	=	function	()	{

								this.make	=	function	()	{

												console.log("This	is	Honda	Accord");

								}

				}

				//Nissan	object

				var	NissanCar	=	function	()	{

								this.make	=	function	()	{

												console.log("This	is	Nissan	Patrol")

								}

				}

We	call	the	execute	method	on	a	button	click	event	which	creates	the	instances	and	holds	them
in	an	array.	Eventually	the	objects	make()	method	will	be	executed	that	draws	the	circle	on	a
HTML	canvas	and	writes	messages	on	the	console.	As	in	JavaScript,	we	cannot	define	abstract
methods;	we	have	to	explicitly	define	the	same	method,	such	as	make()	in	our	case	that
completes	our	abstract	factory	pattern:

				function	execute()	{

								//initializing	an	array	to	hold	objects

								var	objects	=	[];

								//Creating	Shape	Factory	to	create	circle	shape

								var	shapeFactory	=	new	ShapeFactory();

								var	circleShape	=	shapeFactory.createShape("circle");

								//Creating	Car	Factory	to	create	cars

								var	carFactory	=	new	CarFactory();

								var	hondaCar=	carFactory.createCar("honda");

								var	nissanCar	=	carFactory.createCar("nissan");

								//Adding	all	the	instances	created	through	factories

								objects.push(circleShape);

								objects.push(hondaCar);

								objects.push(nissanCar);

								//Calling	make	method	of	all	the	instances.	

								for	(var	i	=	0;	i	<	objects.length;	i++)	{

												alert(objects[i]);

												objects[i].make();

								}

				}

</script>

Here	is	the	HTML	code	containing	a	canvas	and	a	button:

				<div>

								<input	type="button"	onclick="execute()"	value="Execute"	/>

				</div>

				<div>

								<canvas	id="myCanvas"></canvas>

				</div>

The	output	will	be	as	follows	on	a	button	click	event.	The	circle	will	be	drawn	and	two
messages	will	be	printed	on	the	console	window	for	Honda	and	Nissan	car	objects:

Prototype	pattern
The	prototype	pattern	is	used	to	create	instances	that	are	clones	of	existing	instances.	It	is	used
in	scenarios	where	we	need	to	auto	configure	the	object	with	some	specific	values	or
properties	and	users	don't	have	to	explicitly	define:

The	following	is	the	code	that	implements	the	prototype	pattern:

<script>

				function	Car(make,	model,	year,	type)

				{

								this.make	=	make;

								this.model	=	model;

								this.year	=	year;

								this.type	=	type;

								this.displayCarDetails	=	function(){

								}

							

				}

				function	CarPrototype(carPrototype)	{

								var	car	=	new	Car();

								this.getPrototype	=	function	()	{

												car.make	=	carPrototype.make;

												car.model	=	carPrototype.model;

												car.year	=	carPrototype.year;

												car.type	=	carPrototype.type;

												return	car;

								}

				}

				(function	()	{

								var	car	=	new	Car("Honda",	"Accord",	"2016","sedan");

								var	carPrototype	=	new	CarPrototype(car);

								var	clonedCar	=	carPrototype.getPrototype();

								

				})();

</script>

In	the	preceding	code	snippet,	there	is	a	car	object	that	accepts	four	parameters,	make,	model,
year	and	type.	CarPrototype()	is	a	function	that	accepts	the	car	object	and	returns	the	cloned
version	of	the	car	object.	This	pattern	is	performance	efficient	and	saves	developers	time
creating	a	clone	copy	of	the	object	by	just	calling	the	prototype	object's	clone	method.	The
user	does	not	need	to	care	about	populating	the	properties	after	object	instantiation;	it
initializes	when	the	object	is	created	and	gets	the	same	values	as	the	original	object.	It	is	used
in	conditions	where	we	need	to	clone	instances	of	objects	when	they	are	in	a	specific	state	and
can	be	easily	cloned	by	calling	the	getProtoype()	method.

Structural	patterns
Structural	patterns	are	used	to	simplify	the	relationships	between	objects.	In	the	following
sections,	we	will	discuss	all	four	structural	patterns	mentioned	previously,	and	how	to
implement	them	in	JavaScript.

Adapter	pattern
The	adapter	pattern	is	used	in	situations	in	which	our	application	is	dependent	on	any	object
whose	properties	and	methods	change	frequently	and	we	want	to	avoid	modifying	the	code	to
use	them.	The	adapter	pattern	allows	us	to	wrap	the	interface	of	a	specific	object	as	what	the
client	expects	and	rather	than	changing	the	whole	implementation	we	can	just	call	the	wrapper
object	which	contains	the	code	as	per	the	modified	version.	This	wrapper	object	is	called	an
adapter.	Let's	have	a	look	at	a	basic	example	that	uses	the	PersonRepository	to	save	the
person	object	by	performing	an	Ajax	request:

The	following	is	the	old	interface	of	the	PersonRepository	object:

//	old	interface

				function	PersonRepository(){

								this.SavePerson=	function(name,	email,	phoneNo){

												//Call	ajax	to	save	person

												console.log("Name:	"	+	name	+	",	Email:	"	+	email	+	",	Phone	No:	"	+	

phoneNo);

								}

				}

The	preceding	interface	has	one	SavePerson()	method	that	takes	three	parameters:	name,

email,	and	phoneNo.	Here	is	the	original	code	for	using	the	SavePerson()	method:

var	execute	=	function	()	{

								var	personRepository	=	new	PersonRepository();

								personRepository.SavePerson("John",	"john@email.com",	"1201111111");

				

				}

Suppose	this	interface	has	changed	and	the	new	person	repository	interface	accepts	the	person
JSON	object,	instead	of	passing	values	as	parameters.	One	way	is	to	modify	the	function	here
itself	and	encapsulate	these	parameters	in	the	JSON	object	and	send.	Alternatively,	we	can
implement	an	adapter	pattern	which	contains	an	adapter	function	that	takes	three	parameters,
calls	the	new	PersonRepository	object	and	passes	the	JSON	object.

The	following	is	the	new	interface	of	PersonRepository:

function	PersonRepository()	{

								this.SavePerson	=	function	(person)	{

												//call	ajax	to	send	JSON	person	data

										console.log("Name:	"	+	person.name	+	",	Email:	"	+	person.email	+	",	

Phone	No:	"	+	person.phoneNo);

								}

				}

Here	is	the	adapter	pattern	that	encapsulates	the	parameters	in	a	JSON	object	and	calls	the	new
PersonRepository	interface:

				function	PersonRepositoryAdapter()	{

								this.SavePerson	=	function	(name,	email,	phoneNo)	{

												var	person	=	{	"name":	name,	"email":	email,	"phoneNo":	phoneNo	};

										

												var	personRepository	=	new	PersonRepository();

												//calling	new	Person	Repository

personRepository.SavePerson(person);

								}

				}

Here	is	the	modified	version	that	calls	the	adapter	pattern	rather	than	calling	the	old
PersonRespository	interface:

				var	execute	=	function	()	{

				//old	interface

//	var	personRepository	=	new	PersonRepository();

		//	personRepository.SavePerson("John",	"john@email.com",	"1201111111");

						//calling	adapter	pattern

								var	personAdapter	=	new	PersonRepositoryAdapter();

								personAdapter.SavePerson("John",	"john@email.com",	"1201111111");

				}

Decorator	pattern
The	decorator	pattern	is	used	to	change	the	behavior	of	the	object	at	runtime.	Decorators	are
like	annotation	attributes	in	C#.	Likewise,	we	can	add	multiple	decorators	on	one	object	as
well.	The	decorator	pattern	can	be	implemented	by	creating	a	decorator	object	and	associating
that	with	the	target	object	whose	behavior	needs	to	be	changed:

The	following	is	an	example	of	a	decorator	that	adds	the	Tax	and	Courier	charge	decorators
on	the	Product	object:

<script>

				var	Product=	function	(code,	quantity,	price)	{

								this.code	=	code;

								this.quantity	=	quantity;

								this.price	=	price

								

								this.total	=	function	()	{

												this.price	=	price	*	quantity;

												return	this.price;

								}

				}

				//Decorator	that	takes	product	and	percent	as	parameter	to	apply	Tax

				function	AddTax(product,	percent)	{

								product.total	=	function	()	{

													product.price	=	product.price	+	(product.price	*	percent	/	100);

												return		product.price;

								}

				}

				//Decorator	to	add	Courier	charges	in	the	total	amount.

				function	AddCourierCharges(product,	amount)	{

								product.total	=	function	()	{

												product.price	=	product.price	+	amount;

												return	product.price;

								}

				}

				var	execute	=	(function	()	{

								var	prod	=	new	Product("001",	2,	20);

								console.log("Total	price:	"	+	prod.total());

								AddTax(prod,	15);

								console.log("Total	price	after	Tax:	"	+	prod.total());

								AddCourierCharges(prod,	200);

								console.log("Total	price	after	Courier	Charges:	"	+	prod.total());

				})();

The	product	object	takes	three	parameters,	code,	quantity,	and	price,	and	calculates	the	total
price	based	on	quantity	and	price.	AddTax()	and	AddCourierCharges()	are	two	decorator
objects	product	object	followed	with	a	parameter	to	apply	specific	calculation	on	change	the
total	price.	The	AddTax()	method	applies	the	tax	based	on	the	value	supplied,	whereas
AddCourierCharges()	will	add	the	courier	charge	amount	to	the	total	price.	The	Execute()
method	will	be	called	immediately	when	the	page	renders	and	displays	the	following	output	in
the	console	window:

Facade	pattern
The	façade	pattern	is	used	to	simplify	various	interfaces	or	subsystems	into	one	unified
interface.	It	simplifies	things	to	the	user	and	rather	than	understanding	the	complexities	of
different	subsystems,	the	user	can	call	the	façade	interface	to	perform	a	specific	operation.

Let's	see	the	following	example,	which	has	three	methods	to	load	permissions,	the	user
profile,	and	the	user	chat	window	on	successful	login.	It	has	three	interfaces,	and	with	façade
we	can	simplify	it	to	one	unified	interface.	This	allows	the	user	to	call	UserFacade	only	once
if	the	login	is	successful	and	it	will	load	the	permissions,	user	chat,	and	user	profile	from	one
interface:

<script>

				var	Permission	=	function	()	{

								this.loadPermission	=	function	(userId)	{

												//load	user	permissions	by	calling	service	and	populate	HTML	element

												var	repo	=	new	ServiceRepository();

												repo.loadUserPermissions(userId);

								}

				}

				var	Profile	=	function	()	{

								this.loadUserProfile	=	function	(userId)	{

												//load	user	profile	and	set	user	name	and	image	in	HTML	page

												var	repo	=	new	ServiceRepository();

												repo.loadUserProfile(userId);

								}

				}

				var	Chat	=	function	()	{

								this.loginUserChat	=	function	(userId)	{

												//Login	user	chat	and	update	HTML	element

												var	repo	=	new	ServiceRepository();

												repo.loadUserChat(userId);

								}

				}

				var	UserFacade	=	function	()	{

								this.loadUser	=	function	(userId)	{

												var	userPermission	=	new	Permission();

												var	userProfile	=	new	Profile();

												var	userChat	=	new	Chat();

												userPermission.loadPermission(userId);

												userProfile.loadUserProfile(userId);

												userChat.loginUserChat(userId);

								}

				}

				var	loginUser	=	(function	(username,	password)	{

												//Service	to	login	user

												var	repo	=	new	ServiceRepository();

												//On	successfull	login,	user	id	is	returned

												var	userId	=	repo.login(username,	password);

												

												var	userFacade	=	new	UserFacade();

												userFacade.loadUser(userId);

											

				})();

<

Bridge	pattern
The	bridge	pattern	is	used	to	decouple	the	abstraction	from	its	implementation	and	make
concrete	implementation	independent	from	the	interface.	This	is	achieved	by	providing	a
bridge	between	the	interface	and	the	concrete	implementer:

The	following	code	shows	the	bridge	pattern	implementation:

<script>

				var	Invitation	=	function	(email)	{

								this.email	=	email;

								this.sendInvite	=	function	()	{

												this.email.sendMessage();

								}

				}

				var	Reminder	=	function	(sms)	{

								this.sms	=	sms;

								this.sendReminder	=	function	()	{

												this.sms.sendMessage();

								}

				}

				var	SMS	=	function	()	{

								//send	SMS

								this.sendMessage	=	function	()	{	console.log("SMS	sent");	}

				}

				var	Email	=	function	()	{

								//send	email

								this.sendMessage	=	function	()	{	console.log("Email	sent");}

				}

				var	execute	=	(function	()	{

								var	email	=	new	Email();

								var	sms	=	new	SMS();

								var	invitation	=	new	Invitation(email);

								var	reminder	=	new	Reminder(sms);

								invitation.sendInvite();

								reminder.sendReminder();

				})();

</script>

The	objective	of	the	preceding	example	is	to	separate	the	notification	types	(Invitation	and
Reminder)	from	the	notification	gateway	(Email	and	SMS).	So	any	notification	can	be	sent
through	any	gateway	and	can	handle	any	notification	that	separates	the	gateway	to	the
notification	types	and	disable	the	bounding	with	the	type	of	the	notification.

Behavioral	pattern
Behavioral	patterns	are	used	to	delegate	responsibilities	between	objects.	In	the	following
section,	we	will	discuss	all	four	behavioral	patterns	mentioned	previously,	and	how	to
implement	them	in	JavaScript.

Chain	of	responsibility	pattern
The	chain	of	responsibility	pattern	provides	a	chain	of	objects	executed	in	order	as	they	are
chained	to	fulfill	any	request.	A	good	example	for	ASP.NET	developers	is	the	OWIN	pipeline
that	chains	the	components	or	OWIN	middleware	together	and	is	based	on	the	appropriate
request	handler	being	executed:

Let's	look	into	a	very	basic	example	that	executes	the	chain	of	objects	and	displays	the	table
for	2,	3	and	4:

<script>

				//Main	component

				var	Handler	=	function	(table)	{

								this.table	=	table;

								this.nextHandler	=	null;

				}

				//Prototype	to	chain	objects

				Handler.prototype	=	{

								generate:	function	(count)	{

												for	(i	=	1;	i	<=	count;	i++)	{

																console.log(this.table	+	"	X	"	+	i	+	"	=	"	+	(this.table	*	i));

												}

												//If	the	next	handler	is	available	execute	it

												if	(this.nextHandler	!=	null)

																this.nextHandler.generate(count);

								},

								//Used	to	set	next	handler	in	the	pipeline

								setNextHandler:	function	(handler)	{

												this.nextHandler	=	handler;

								}

				}

				//function	executed	on	Page	load

				var	execute	=	(function	()	{

								//initializing	objects

								var	handler1	=	new	Handler(2),

									handler2	=	new	Handler(3),

									handler3	=	new	Handler(4);

								//chaining	objects

								handler1.setNextHandler(handler2);

								handler2.setNextHandler(handler3);

								//calling	first	handler	or	the	component	in	the	pipeline

								handler1.generate(10);

				})();

<script>

Let's	get	into	a	more	practical	example	which	takes	the	amount	and	checks	the	budget	owner
in	the	objects	chained	in	the	pipeline.	The	following	code	have	a	main	handler	object	that
takes	the	budget	amount	and	the	budget	owner	to	set	the	budget	amount	for	Line	Manager,
Head	of	Department,	CTO,	and	CEO.	Finally,	we	can	set	the	main	entry	point	in	the	chain	by
calling	the	handler1	method,	which	first	checks	whether	the	amount	is	under	the	line
manager's	budget,	then	the	head	of	department's,	then	the	CTO's,	and	finally	the	CEO's:

<script>

				//Main	component

				var	Handler	=	function	(budget,	budgetOwner)	{

								this.budget	=	budget;

								this.budgetOwner	=	budgetOwner;

								this.nextHandler	=	null;

				}

				//Prototype	to	chain	objects

				Handler.prototype	=	{

								checkBudget:	function	(amount)	{

												var	budgetFound	=	false;

												if	(amount	<=	this.budget)	{

																console.log("Amount	is	under	"	+	this.budgetOwner	+	"	level");

																budgetFound	=	true;

												}

												//If	the	next	handler	is	available	and	budget	is	not	found

												if	(this.nextHandler	!=	null	&&	!budgetFound)

																this.nextHandler.checkBudget(amount);

								},

								//Used	to	set	next	handler	in	the	popeline

								setNextHandler:	function	(handler)	{

												this.nextHandler	=	handler;

								}

				}

				//funciton	executed	on	Page	load

				var	execute	=	(function	()	{

								//initializing	objects

								var	handler1	=	new	Handler(10000,	"Line	Manager"),

									handler2	=	new	Handler(50000,	"Head	of	Department"),

									handler3	=	new	Handler(100000,	"CTO"),

									handler4	=	new	Handler(1000000,	"CEO");

								//chaining	objects

								handler1.setNextHandler(handler2);

								handler2.setNextHandler(handler3);

								handler3.setNextHandler(handler4);

								//calling	first	handler	or	the	component	in	the	pipeline

								handler1.checkBudget(20000);

				})();

</script>

And	the	following	is	the	output:

Observer	pattern
The	observer	pattern	is	widely	used	to	implement	a	publisher/subscriber	model	in	which	if	a
state	of	any	object	changes,	it	notifies	all	the	observers	subscribed.	Observer	patterns	have
three	methods,	namely	to	add,	remove,	and	notify	observers:

The	following	is	the	code	snippet	that	implements	the	observer	pattern:

<script>

				//Sample	function	to	convert	text	to	French	language

				function	translateTextToFrench(value)	{

								//	call	some	service	to	convert	text	to	French	language

								return	value;

				}

				

				//Sample	function	to	convert	text	to	Arabic	language

				function	translateTextToArabic(value)	{

								//cal	some	service	to	convert	text	to	Arabic	language

								return	value;

				}

				//Helper	function	used	by	the	Observer	implementors	

				var	HelperFunction	=	function	(type)	{

								var	txtEntered	=	document.getElementById("txtEntered");

								var	englishText	=	document.getElementById("englishText");

								var	frenchText	=	document.getElementById("frenchText");

								var	arabicText	=	document.getElementById("arabicText");

								if	(type	==	"english")	{

												englishText.innerText	=	txtEntered.value;

								}	else	if	(type	==	"french")	{

												frenchText.innerText	=	translateTextToFrench(txtEntered.value);

								}	else	if	(type	==	"arabic")	{

												arabicText.innerText	=	translateTextToArabic(txtEntered.value);

								}

				}

				var	EnglishTranslator	=	{

								update:	function	()	{

												//Call	helper	function	to	change	text	to	English

												HelperFunction("english");

								}

				}

				var	FrenchTranslator	=	{

								update:	function	()	{

												//Call	helper	function	to	change	text	to	French

												HelperFunction("french");

								}

				}

				

				var	ArabicTranslator	=	{

								update:	function	()	{

												//Call	helper	function	to	change	text	to	Arabic

												HelperFunction("arabic");

								}

				}

				//Observer	function	that	contains	the	list	of	observer	handlers

				function	Observer()	{

								this.observers	=	[];

				}

				//to	add	observer

				Observer.prototype.addObserver	=	function	(object)	{

								console.log('added	observer:	'	+	object);

								this.observers.push(object);

				};

				//to	remove	observer

				Observer.prototype.removeObserver	=	function	(object)	{

								console.log("removing	observer");

								for	(i	=	0;	i	<	this.observers.length;	i++)	{

												if	(this.observers[i]	==	object)	{

																this.observers.splice(object);

																return	true;

												}

								}

								return	false;

				};

				//To	notify	all	observers	and	call	their	update	method

				Observer.prototype.notify	=	function	()	{

								for	(i	=	0;	i	<	this.observers.length;	i++)	{

												this.observers[i].update();

								}

				}

				//Adding	objects	as	observers	that	implements	the	update	method

				var	observer	=	new	Observer();

				observer.addObserver(EnglishTranslator);

				observer.addObserver(FrenchTranslator);

				observer.addObserver(ArabicTranslator);

				//Execute	will	be	called	on	button	click	to	notify	observers

				var	execute	=	function	()	{

								observer.notify();

				};

							

</script>

<body>

				<div>

								Specify	some	text:	<input	type="text"	id="txtEntered"	/>

								<input	type="button"	onclick="execute()"	value="Notify"	/>

				</div>

				<div>

								

								

								

				</div>

</body>

In	the	above	example,	we	have	taken	a	scenario	that	translates	the	text	for	all	the	languages
added	as	observer	objects.	We	extended	the	Observer	object	and	defined	three	methods,
namely	addObserver(),	removeObserver(),	and	notify()	through	a	prototype.	Adding
methods	through	a	prototype	consumes	less	memory	and	each	method	is	shared	among	all
instances.	These	methods	are	created	once	and	then	inherited	by	each	instance.	On	the	other
hand,	methods	that	are	defined	inside	the	constructor	function	are	created	every	time	the	new
instance	is	created	and	consume	more	memory.

The	addObserver()	method	is	used	to	add	any	object	in	an	observer	list,	removeObserver()	is
used	to	remove	a	specific	object	from	observer	list,	and	notify()	executes	the	observer's
update()	method.

EnglishTranslator,	FrenchTranslator	and	ArabicTranslation	are	objects	that	have
implemented	the	update()	method	which	is	called	when	notify()	is	executed.	On	page	load
we	have	registered	all	the	translator	objects	as	observers	and	provided	a	textbox	with	a	button
through	which	the	user	can	type	any	text	on	the	textbox	and	on	a	button	click	event	it	will	call
the	observer's	notify()	method	that	eventually	calls	the	registered	observer's	update()
method.

Pub/sub	pattern
The	pub/sub	pattern	is	an	alternative	pattern	to	the	observer	pattern	with	a	slight	difference	in
its	implementation.	In	the	observer	pattern,	the	Observer	object	can	invoke	the	notify()
method	of	all	the	observers,	whereas	in	the	publisher/subscriber	pattern,	there	is	a	centralized
event	system	which	is	used	to	publish	events	to	the	subscribers.	In	this	pattern,	publishers	and
subscribers	are	loosely	tied	and	neither	the	publisher	nor	the	subscriber	know	to	whom	the
message	was	sent	or	received.

The	following	example	implements	a	pub/sub	pattern	that	holds	a	two-dimensional	array.	The
user	can	add	events	based	on	an	event	name	and	a	callback	function.	It	has	three	methods:
subscribe()	to	subscribe	to	events	in	an	events	array,	unsubscribe()	to	remove	events	from
an	array,	and	publish()	to	call	the	callback	functions	for	a	specific	event	name:

The	following	is	a	code	snippet	to	implement	the	pub/sub	pattern	in	JavaScript:

var	PubSub	=	function	()	{

								this.events	=	[];

								this.subscribe	=	function	(eventName,	func)	{

												this.events[eventName]	=	this.events[eventName]	||	[];

												this.events[eventName].push(func);

								};

								this.unsubscribe	=	function	(eventName,	func)	{

												if	(this.events[eventName])	{

																for	(i	=	0;	i	<	this.events[eventName].length;	i++)	{

																				if	(this.events[eventName][i]	===	func)	{

																								this.events[eventName].splice(i,	1);

																								break;

																				}

																}

												}

								};

								this.publish	=	function	(eventName,	data)	{

												console.log(data);

												if	(this.events[eventName])	{

																this.events[eventName].forEach(function	(event)	{

																				event(data);

																})

												}

								};

				};

				var	execute	=	(function	()	{

								var	pubSub	=	new	PubSub();

								pubSub.subscribe("myevent1",	function	()	{

												console.log("event1	is	occurred");

								});

								pubSub.subscribe("myevent1",	function	()	{

												console.log("event1	is	occurred");

								});

								

								pubSub.subscribe("myevent2",	function	(value)	{

												console.log("event2	is	occurred,	value	is	"+	value);

								});

								pubSub.publish("myevent1",	null);

								pubSub.publish("myevent2",	"my	event	two");

				})();

In	the	preceding	example,	we	have	one	PubSub	object	that	provides	three	methods	to
subscribe,	unsubscribe,	and	publish	events.	The	Subscribe()	method	is	used	to	subscribe
for	any	event	and	takes	two	parameters,	the	event	name	and	function,	and	adds	them	to	the
array	for	a	specific	event	name.	If	the	event	name	does	not	exist	a	new	array	will	be	initialized
for	that	event	name,	otherwise	the	existing	instance	will	be	retrieved	to	add	the	item.	The	user
can	register	as	many	events	as	they	want,	by	passing	the	event	name	and	the	anonymous
function	body	that	will	be	executed	when	the	event	is	published.	To	publish	events,	the
publish()	method	can	be	called	that	takes	the	event	name	and	the	data	you	want	to	pass	to	the
corresponding	function,	which	has	been	executed.

Promises
Promises	are	one	of	the	most	popular	patterns	extensively	used	in	JavaScript	APIs	and
frameworks	to	make	asynchronous	calls	simpler.	An	asynchronous	operation	in	JavaScript
needs	to	have	a	callback	function	register,	which	invokes	when	the	value	is	returned.	With
promises,	when	you	make	any	asynchronous	call,	it	immediately	returns	a	promise	and
provides	objects	such	as	then	and	done	to	define	a	function	when	the	resultant	value	is
resolved.	In	the	real	world,	promises	are	just	like	a	token	or	a	receipt	for	the	food	you	order
in	a	fast	food	restaurant,	and	that	receipt	guarantees	you	to	have	the	food	delivered	when	it	is
ready.	Promises	are	tokens	that	confirm	you	get	a	response	to	a	specific	request:

In	JavaScript,	promises	are	widely	used	by	APIs	and	frameworks	such	as	AngularJS,	Angular
2,	and	more.	Let's	have	a	look	at	the	following	example	that	implements	the	promise	pattern:

//Defining	Promise	that	takes	a	function	as	a	parameter.

				var	Promise	=	function	(func)	{

								//Declared	member	variable	

								var	callbackFn	=	null;

								//Expose	done	function	that	can	be	invoked	by	the	object	returning	

promise

								//done()	function	takes	a	callback	function	which	can	be	define	when	

using	done	method.

								this.done	=	function	(callback)	{

											callbackFn	=	callback;

								};

								function	resolve(value)	{

												setTimeout(function	()	{

																callbackFn(value)

												},3000)

								}

								

								//Here	we	are	actually	executing	the	function	defined	when	initializing	

the	promise	below.

								func(resolve);

				}

				//Object	that	is	used	to	order	food	and	returns	a	promise

				var	orderFood	=	function	(food)	{

								//returns	the	Promise	instance	and	pass	anonymous	function	that	call	

resolve	method	which	actually	serve	the	request	after	delaying	3	seconds.

								return	new	Promise(function	(resolve)	{

												resolve(food);

								});

				}

				//Initialized	orderFood	that	returns	promise

				var	order	=	new	orderFood("Grilled	Burger");

				//Calling	done	method	which	will	be	invoked	once	the	order	is	ready

				order.done(function	(value)	{

								console.log(value);

				});

In	the	preceding	example,	we	have	developed	a	Promise	function	that	contains	done	and
resolve	methods,	where	done	is	used	to	invoke	the	callback	function	implemented	by	the
consumer	object	and	resolve	is	called	internally	to	execute	the	actual	task.	The	second
function	is	orderFood,	which	returns	a	promise	object	and	calls	the	resolve	method	to
actually	run	the	task	when	orderFood	is	initialized	by	the	consumer.	The	following	snapshot
shows	the	steps	of	how	this	code	is	executed:

If	you	have	noticed,	in	the	preceding	example	we	have	used	the	setTimeout()	function	to
delay	the	response	for	3	seconds.	We	have	to	use	setTimeout()	to	represent	an	asynchronous
scenario	where	setTimout()	and	the	registering	of	the	done	callback	handler	are	executed	in
parallel.

The	preceding	code	snippet	is	a	very	basic	implementation	of	a	promise	pattern.	However,
there	are	other	parts	of	the	promise	pattern	that	we	can	implement	to	make	it	robust.	Promises
have	states	and	the	following	is	the	modified	version	that	not	only	maintains	the	states	for
inprogress,	done,	and	failed	but	also	provides	the	failed	handler	to	catch	exceptions.	The
following	is	the	description	of	the	states:

In	progress:	When	the	resolve	method	is	called	the	state	will	be	set	to	in	progress.	This
state	will	persist	until	we	register	the	handlers	for	done	and	failed	scenarios.
Done:	When	done	is	invoked,	the	status	will	be	set	to	done.

Failed:	When	any	exception	occurs,	the	status	will	be	set	to	fail.

The	following	is	the	modified	version	of	the	orderFood	example:

				//Defining	Promise	that	takes	a	function	as	a	parameter.

				var	Promise	=	function	(func)	{

							

								//Default	status	when	the	promise	is	created

								var	status	=	'inprogress';

								var	error	=	null;

								//Declared	member	variable	

								var	doneCallbackFn	=	null;

								var	failedCallbackFn	=	null;

								//Expose	done	function	that	can	be	invoked	by	the	object	returning	

promise

								this.done		=	function	(callback)	{

												//Assign	the	argument	value	to	local	variable

												doneCallbackFn	=	callback;

												if	(status	===	"done")	{

																doneCallbackFn(data);

												}	else	{

																doneCallbackFn(status);

												}

												//return	promise	to	register	done	or	failed	methods	in	chain

												return	this;

								};

								//Expose	failed	function	to	catch	errors

								this.failed	=	function	(callback)	{

												if	(status	===	"failed")	{

																failedCallbackFn(error);

												}

												//return	promise	instance	to	register	done	or	failed	methods	in	

chain

												return	this;

								};

								function	prepareFood()	{

												setTimeout(function	()	{

																status	=	"done";

																console.log("food	is	prepared");

																if	(doneCallbackFn)	{

																				doneCallbackFn(data);

																}

												},	3000);

												

								}

								function	resolve(value)	{

												try	{

																//set	the	value

																data	=	value;

																//check	if	doneCallbackFn	is	defined

																if	(doneCallbackFn)	{

																				doneCallbackFn(value);

																}

																prepareFood();

																											

												}	catch	(error)	{

																//set	the	status	to	failed

																status	=	"failed";

																//set	the	exception	in	error

																error	=	error;

																//check	if	failedCallbackFn	is	defined

																if	(failedCallbackFn)	{

																				failedCallbackFn(value);

																}

												}

								}

								//Here	we	are	actually	executing	the	function	defined	when	initializing	

the	promise	below.

								func(resolve);

				}

				//Object	that	is	used	to	order	food	and	returns	a	promise

				var	orderFood	=	function	(food)	{

								//returns	the	Promise	instance	and	pass	anonymous	function	that	call	

resolve	method	which	

								//actually	serve	the	request	after	delaying	3	seconds.

								return	new	Promise(function	(resolve)	{

												resolve(food);

								});

				}

				//Initialized	orderFood	that	returns	promise

				var	order	=	new	orderFood("Grilled	Burger").done(function	(value)	{	

console.log(value);	}).failed(function	(error)	{	console.log(error);})

Summary
In	this	chapter,	we	have	learned	the	importance	of	design	patterns	in	small-to-large	scale
applications	and	how	we	can	use	them	effectively	to	resolve	specific	problems.	We	have
covered	four	types	of	design	patterns	for	each	category,	such	as	when	creating	objects,
structuring	objects,	and	adding	a	behavioral	change	or	states	to	objects.	There	are	various
more	design	patterns	available	and	documented,	which	can	be	referred	to	here:
http://www.dofactory.com/javascript/design-patterns.

In	the	next	chapter,	we	will	learn	about	Node.js	that	runs	JavaScript	on	the	server	side.	We	will
see	how	web	applications	can	be	developed	in	Node.js	using	Visual	Studio	2015	and	explore
some	popular	frameworks	and	view	the	engines	it	provides.

http://www.dofactory.com/javascript/design-patterns

Chapter	8.	Node.js	for	ASP.NET	Developers
JavaScript	has	become	one	of	the	most	prevalent	languages	that	not	only	runs	on	the	client
side,	but	also	runs	on	the	server	side	as	well.	Node.js	empowers	JavaScript	to	run	on	the
server	side	and	provide	non-blocking	I/O,	an	event	driven	model	that	makes	it	more
lightweight,	scalable	and	efficient.	Today,	it	is	more	widely	used	in	performing	real-time
operations,	developing	business	applications,	database	operations,	and	more.	JavaScript	on
Node.js	can	relate	to	ASP.NET	that	runs	on	IIS	or	any	other	web	server.

Introduction	to	Node.js
Node.js	is	a	powerful	platform	to	build	server-side	applications	using	JavaScript.	Node.js
itself	is	not	written	in	JavaScript	but	provides	a	runtime	environment	to	run	JavaScript	code.	It
allows	JavaScript	code	that	runs	on	the	server	side,	providing	the	runtime	built	on	the	Google
V8	JavaScript	engine,	which	is	an	open	source	JavaScript	engine	written	in	C++,	and	used	by
Google	Chrome,	to	compile	JavaScript	code	into	machine	code,	at	the	time	of	executing
through	the	V8	JIT	compiler.

Node.js	works	on	a	single	thread;	unlike	other	server-side	technologies	that	create	a	separate
thread	for	each	request,	Node.js	uses	the	event	callback	system	that	processes	the	request
using	a	single	thread.	If	multiple	requests	arrive	they	have	to	wait	until	the	thread	becomes
available	and	then	acquire	it.	In	the	case	of	errors,	Node.js	does	not	throw	an	error	and	this	is
an	essential	technique	to	avoid	error	bubbling	and	the	abortion	of	the	single	thread.	If	any
error	arises	while	serving	a	request,	Node.js	sends	the	error	log,	in	the	callback	parameters,
in	the	response	itself.	This	allows	the	main	thread	to	propagate	the	error	and	delay	the
response.	Node.js	is	good	for	writing	network	applications.	It	consists	of	HTTP	requests,
other	network	communications	tasks,	and	real-time	client/server	communications	using	web
sockets.

Request	processing	by	the	Node.js	web	server
The	Node.js	web	server	maintains	a	limited	thread	pool	to	handle	client	requests.	When	the
request	gets	to	the	server,	the	Node.js	web	server	places	that	request	into	an	event	queue.	The
request	is	then	picked	up	by	the	event	loop	component	that	works	in	an	infinite	loop	and
processes	the	request	when	it	is	free.	This	event	loop	component	is	single-threaded,	and	if	the
request	involves	I/O	blocking	operations	such	as	filesystem	access,	database	access,	or	others,
it	checks	the	availability	of	the	thread	in	the	internal	thread	pool	and	assigns	the	request	to	the
available	thread.	Otherwise,	it	processes	the	request	and	sends	the	response	back	to	the	client
in	a	single	go.	When	the	I/O	blocking	request	is	completed	by	the	internal	thread,	it	sends	the
response	back	to	the	event	loop	first,	which	sends	the	response	back	to	the	client.

Comparison	of	Node.js	with	.NET
Both	ASP.NET	and	Node.js	are	server-side	technologies.	The	following	diagram	shows	the
comparison	of	Node.js	with	.NET:

NPM
Node	Package	Manager	(NPM)	is	the	Node.js	package	manager	used	to	install	Node
modules.	Node.js	provides	a	way	to	write	modules	in	JavaScript,	and	with	NPM	we	can	add
and	reuse	those	modules	in	other	applications.	With	ASP.NET	Core,	we	already	use	some
modules,	such	as	Gulp	and	Grunt	for	minifying	the	CSS	and	JavaScript	files,	and	doing
copying	and	merging	operations.	The	package.json	file	is	the	configuration	file	that	holds	the
metadata	information	about	the	application	and	Node	modules	used	in	our	project.	Here	is	the
sample	screenshot	of	the	package.json	file:

Dependencies	can	be	installed	by	executing	the	following	command:

npm	install	NAME_OF_THE_PACKAGE	–save

Example:

npm	install	gulp	–save

--save	is	used	to	update	the	package.json	dependencies	section	and	add	the	packages
downloaded.

Installing	Node.js
Visual	Studio	provides	great	support	for	developing	programs	using	Node.js.	To	configure
the	Node.js	development	environment	on	the	Windows	platform,	download	and	install	Node.js
from	http://nodejs.org.	There	are	various	installers	available	as	per	the	platform,	as	shown	in
the	following	screenshot:

For	Windows,	we	will	download	the	64-bit	Windows	installer	that	downloads	the	.msi
package	and	take	you	through	some	simple	wizard	screens.	You	will	notice	that	the	Node.js
installer	contains	a	runtime	to	run	node	programs	and	NPM	to	reference	other	Node	modules
in	your	program.	This	can	be	seen	in	the	following	screenshot:

http://nodejs.org

Commands	such	as	npm	and	node	are	already	added	in	the	environment	path	and	we	can
execute	these	commands	directly	from	the	command	prompt.	Therefore,	if	we	open	the
command	prompt	and	write	node,	it	will	give	you	the	Node	prompt,	which	allows	you	to	write
JavaScript	code	on	the	fly	and	execute,	as	shown	in	the	following	screenshot:

Alternatively,	we	can	also	run	the	.js	file	by	calling	node	javascriptfile.js.

The	following	is	the	sample	example1.js	file	that	sums	the	numbers	defined	in	an	array:

console.log("NodeJs	example");

var	numbers=	[100,20,29,96,55];

var	sum=0;

for(i=0;	i<	numbers.length;	i++)

{

				sum	+=	numbers[i];

}

console.log("total	sum	is	"+	sum);

The	following	is	the	output:

Using	Node.js	with	Visual	Studio	2015
There	are	many	Integrated	Development	Environments	(IDEs)	available	in	the	market	that
have	Node.js	tooling	support.	IDEs	such	as	Visual	Studio	Code,	Sublime,	Komodo	and	Node
Eclipse	are	popular	IDEs	to	work	with	Node.js,	but	in	practice,	most	.NET	developers	are
more	comfortable	and	familiar	working	with	the	Visual	Studio	IDE.	Therefore,	we	will	be
using	the	Visual	Studio	2015	Community	edition	in	this	chapter.

Node.js	templates	can	be	installed	in	Visual	Studio	2015	by	installing	its	extensions.
Extensions	can	be	installed	from	the	Visual	Studio	menu	option	Tools	|	Extensions	and
Updates:

This	extension	of	Node.js	is	installed	with	various	templates	to	start	developing	applications
using	Node.js.	There	is	a	template	to	develop	console	applications	using	the	blank	Node.js
console	application	template,	a	web	application	using	Node.js	express	templates,	and	so	on:

The	basic	advantage	of	using	these	templates	is	to	save	time	in	configuring	things	manually,
and	these	templates	facilitate	developers	by	providing	the	basic	project	structure	to	kick-start
the	Node.js	application	right	away.

Let's	start	by	creating	a	basic	console	application	template.	The	basic	console	application	has
an	npm	folder,	containing	node	packages,	package.json	that	contains	the	metadata	information
and	other	configuration	attributes,	and	app.js,	which	contains	actual	JavaScript	code:

This	extension	for	Node.js	provides	a	handy	feature	for	adding	Node	modules	by	simply
right-clicking	on	the	npm	folder	and	selecting	the	Install	New	npm	Packages	option,	as	shown
in	the	following	screenshot:

On	selecting	this	option,	Visual	Studio	opens	up	the	window	that	helps	to	search	any	node
package	and	add	it	to	your	application	with	a	few	clicks:

The	preceding	diagram	shows	the	versions	of	Gulp	packages	that	can	be	added	through	this
option.

Interactive	Window	is	another	nice	feature	in	Visual	Studio,	which	opens	up	the	command
prompt	integrated	in	the	Visual	Studio	tab,	and	you	can	write	JavaScript	code	and	execute
commands	instantly,	as	shown	in	the	following	screenshot:

There	are	several	other	benefits	of	using	Visual	Studio:	you	can	use	the	Git	or	TFS	version
repositories,	debug	your	code	and	enable	breakpoints	on	your	JavaScript	files,	and	so	on.	The
Visual	Studio-specific	project	file	for	Node.js	is	known	as	.njsproj	and	resides	in	the	root
folder	of	your	project.

Simple	console	application	using	Node.js
A	Node.js	application	consists	of	one	or	more	JavaScript	files	that	provide	specific
functionality	to	the	application.	Writing	thousands	of	lines	of	code	in	one	JavaScript	file	is	not
practically	possible,	and	also	increases	maintainability	issues.	In	Node.js,	we	can	create
multiple	JavaScript	files	and	use	them	through	require	and	export	objects,	which	are	parts	of
the	Common	JS	module	system:

export:	used	to	export	variables,	functions	and	objects	

//exportexample.js

module.exports.greeting	=	"Hello	World";

require:	To	use	the	objects	resides	in	different	JavaScript	files	using	require	

object.	

//consumerexample.js	–	referencing	through	file

var	obj	=	require('./exportexample.js');

Alternatively	we	can	also	call	require	without	specifying	the	.js	file	extension,	and	it
automatically	loads	the	file	that	exists	on	a	particular	path.	If	the	path	corresponds	to	a	folder,
all	the	JavaScript	files	will	be	loaded:

//consumerexample.js	–	referencing	through	file

var	obj=	require('./exportexample');

The	main	entry	point	when	the	application	is	bootstrapped	is	defined	under	package.json.	In
the	following	screenshot,	app.js	is	the	main	entry	point	file	that	is	loaded	first	and	executed
by	Node.js:

Let's	implement	a	basic	example	that	has	two	files,	namely	app.js	(main	entry)	and	cars.js,
and	returns	a	few	properties	of	the	car	object,	such	as	name,	model,	and	engine.	To	start,	create
a	console	application	project	and	add	one	cars.js	file.

Here	is	the	code	for	cars.js:

module.exports.cars	=	[

{name:"Honda	Accord"	,	model:"2016",	engine:	"V6"},	

{name:"BMW	X6",	model:"2015",	engine:	"V8"},	

{name:"Mercedez	Benz",model:"2016",	engine:"V12"}

];

Through	module.exports,	we	can	export	any	object.	Whether	it's	a	variable,	a	function,	or	a
JSON	object,	it	can	be	exported	through	this.	Furthermore,	the	objects	exported	can	be	used
through	the	require	object	in	app.js,	as	shown	in	the	following	code:

var	cars	=	require('./cars.js');

console.log(cars);

The	following	is	the	output:

The	preceding	code	displays	the	JSON	output	as	defined	in	the	cars.js	file.	In	order	to
initialize	the	cars	object,	and	loop	through	the	car	items	defined	in	the	list,	we	need	to	export
it	as	a	function	and	define	it	through	the	this	keyword.	Specifying	it	through	this	will	make
the	list	accessible	from	the	cars	object	we	create	in	the	app.js	file.

Here	is	the	modified	version	of	cars.js:

module.exports	=	function	()	{

		this.carsList	=			

		[

				{	name:	"Honda	Accord"	,	model:	"2016",	engine:	"V6"	},	

				{	name:	"BMW	X6",	model:	"2015",	engine:	"V8"	},	

				{	name:	"Mercedez	Benz",	model:	"2016",	engine:	"V12"	}

];

};

And	here	is	the	modified	version	of	the	app.js	file	that	initialized	the	cars	object	and	loops
through	the	list:

var	cars	=	require('./cars.js');

var	c	=	new	cars();

var	carsList	=	c.carsList;

for	(i	=	0;	i	<	carsList.length;	i++)	{	

		console.log(carsList[i].name);

}

Web	applications	with	Node.js
There	are	various	Node.js	web	frameworks	available.	Frameworks	such	as	Express	and
Hapi.js	are	powerful	frameworks	and	have	different	architectures	and	designs.	In	this	section,
we	will	use	the	Express	framework,	which	is	one	of	the	most	widely	used	web	frameworks
for	Node.js,	for	both	web	and	mobile	applications,	and	also	provides	the	application
framework	model	to	develop	web	Application	Programming	Interfaces	(APIs).

Creating	blank	Node.js	applications
An	extension	of	Node.js	for	Visual	Studio	provides	various	templates	to	develop	web
applications.	We	will	start	by	creating	a	blank	Node.js	web	application,	as	shown	in	the
following	screenshot:

A	blank	Node.js	application	template	creates	one	server.js	file	and	sets	the	main	attribute	in
the	package.json	file	to	load	server.js.	The	content	of	server.js	is	as	follows:

The	first	statement	adds	the	dependency	of	an	http	module	of	Node.js,	the	second	statement	is
the	port	number	at	which	the	server	will	listen	for	HTTP	requests,	and	the	third	statement
creates	the	server	using	an	http	object,	once	it	is	started	and	returns	the	response	as	Hello
World.	When	the	server	starts,	a	request	can	be	made	by	calling	http://localhost:1337.

The	preceding	code	snippet	chains	the	listen()	method	that	actually	listens	for	the	incoming
requests,	and	sends	the	response	using	the	res.end()	method.	Alternatively,	we	can	also
specify	the	content	we	are	returning	using	the	res.write()	method.	Here	is	the	more
simplified	version	of	the	same	code,	to	understand	how	the	pieces	fit	together:

//Initialized	http	object

var	http	=	require('http');

//declared	port

var	port	=	process.env.port	||	1337;

//Initialized	http	server	object	and	use	res.write()	to	send	actual	response	

content

var	httpServer=	http.createServer(function	(req,	res)	{

				res.writeHead(200,	{	'Content-Type':	'text/plain'	});

				res.write('Hello	World\n');

				res.end();

});

//listening	for	incoming	request

httpServer.listen(port);

Using	the	Express	framework	for	web	applications	in	Node.js
In	any	programming	language,	a	framework	has	an	important	benefit	that	minimizes	the
effort	required	to	develop	web	applications.	The	framework	plays	the	important	role	of
processing	requests,	such	as	loading	a	specific	view,	injecting	models	into	a	view,	and	more.
As	with	ASP.NET,	where	w	have	two	web-application	frameworks,	ASP.NET	Web	Forms	and
ASP.NET	MVC,	Node.js	provides	Express	EJS,	Jade,	and	many	other	web	application
frameworks	to	build	robust	web	applications.

Extend	simple	Node.js	to	use	Express

With	the	Node.js	extension	for	Visual	Studio,	you	can	get	all	the	templates	to	start	working
with	the	Express	3.0	and	Express	4.0	application	frameworks.	Express	4.0	is	the	most	recent
version	and	has	some	new	features	and	improvements.	We	can	use	the	template	that	bootstraps
most	of	the	configuration-level	stuff	for	you	but,	in	order	to	get	more	clarity,	we	will	extend
the	simple	Node.js	example	created	previously,	and	use	the	Express	framework	to	develop	a
simple	web	application	on	top	of	it.

To	use	Express,	we	have	to	add	its	package	dependency	using	NPM,	as	shown	in	the
following	screenshot:

Once	you	add	the	Express	package,	you	can	add	the	following	code	snippet	to	kick	start	the
Express	app:

//Initialized	http	object

var	http	=	require('http');

//adding	express	dependency

var	express	=	require('express');

//creating	express	application

var	expressApp	=	express();

//Configuring	root	call	where	'/'	represents	root	path	of	the	URL

expressApp.get("/",	function	(req,	res)	{

				res.send("<html><body><div>Hello	World</div></body></html>");

});

//declared	port

var	port	=	process.env.port	||	1337;

//Initialized	http	server	object	and	use	res.write()	to	send	actual	response	

content

var	httpServer	=	http.createServer(expressApp);

//listening	for	incoming	request

httpServer.listen(port);

This	is	a	simple	Hello	World	example	that	returns	the	HTML	content.	Now,	in	scenarios
where	we	want	to	return	a	specific	view	instead	of	the	static	HTML	content,	we	achieve	this	by
using	Express	view	engines,	which	will	be	discussed	next.

Express	view	engines

Express	has	various	view	engines,	although	Jade	and	EJS	are	the	most	widely	used.	We	will
go	through	these	one	by	one	and	see	what	the	differences	are.

EJS	view	engine

In	the	EJS	view	engine,	views	are	HTML	pages	and	the	model	properties	can	be	bound	using
scriptlets:	<%	%>.

To	start	using	EJS,	we	need	to	add	the	EJS	package	through	the	NPM	package	manager	option
in	Visual	Studio,	or	by	executing	the	npm	install	ejs	–save	command:

Once	this	is	added,	we	can	set	the	view	engine	to	ejs,	as	shown	in	the	following	code	snippet:

//Initialized	http	object

var	http	=	require('http');

//adding	express	dependency

var	express	=	require('express');

//creating	express	application

var	expressApp	=	express();

//Set	jade	for	Node.js	application

expressApp.set('view	engine',	'ejs')	

Set	the	path	of	the	ejs	view	by	calling	the	response	object	render()	method,	as	shown	in	the
following	code:

//Configuring	root	call	where	'/'	represents	root	path	of	the	URL

expressApp.get("/",	function	(req,	res)	{

				res.render("ejsviews/home/index");

});

Add	the	index.ejs	file	inside	the	home	folder.	All	the	views	should	reside	under	the	root	Views
folder,	otherwise	they	won't	be	loaded	when	the	application	is	run.	Therefore,	the	ejsviews
folder	should	be	defined	under	the	Views	folder	and	home	inside	the	ejsviews	folder,	as	shown
in	the	following	screenshot:

The	following	is	the	content	of	the	EJS	view	that	will	be	rendered	when	the	application	starts:

<html>

	<body>

		<div>	<h1>	This	is	EJS	View	</h1>	</div>

	</body>

</html>

Add	the	code	at	the	bottom	of	the	ejsserver.js	file	that	creates	the	server	which	listens	for
requests	on	port	number	1337:

//declared	port

var	port	=	process.env.port	||	1337;

//Initialized	http	server	object	and	use	res.write()	to	send	actual	response	

content

var	httpServer	=	http.createServer(expressApp);

//listening	for	incoming	request

httpServer.listen(port);

When	the	application	runs,	index.ejs	will	be	loaded	and	will	render	the	HTML	content	as
shown	in	the	following	figure:

We	can	also	pass	the	model	in	the	representation	of	the	JSON	object.	Suppose	we	need	to	pass
the	application	name	and	description;	we	can	pass	these	values	when	calling	a	render()

method	of	the	response	object,	as	shown	in	the	following	code:

//Configuring	root	call	where	'/'	represents	root	path	of	the	URL

expressApp.get("/",	function	(req,	res)	{

				res.render("ejsviews/home/index",	{	appName:	"EJSDemo",	message:	"This	is	our	

first	EJS	view	engine	example!"	});

});

In	index.ejs,	we	can	use	and	bind	these	values	with	HTML	controls	using	scriptlets:

<html>

	<body>

			<h1>	<%=	appName	%>	</h1>

		<p>	<%=	message	%></p>

	</body>

</html>

EJS	also	supports	layout	pages	that	contain	the	static	content,	such	as	the	header	and	footer	of
the	web	application.	So,	a	developer	doesn't	need	to	define	the	main	layout	content	again	and
again	on	every	page,	and	we	can	keep	it	centralized,	just	like	we	do	in	ASP.NET	MVC	using
_layout.cshtml	and	Site.master	in	ASP.NET	web	forms.

To	work	with	master	pages,	we	need	to	add	one	more	package,	known	as	ejs-local.	This
package	can	be	added	using	the	NPM	package	manager	window	in	Visual	Studio,	or	by
running	the	npm	command	as	npm	install	ejs-local	--save:

After	adding	this	package,	we	can	add	ejs-locals,	as	shown	in	the	following	code.	It	has	to	be
set	before	setting	the	view	engine:

//Initialized	http	object

var	http	=	require('http');

//adding	express	dependency

var	express	=	require('express');

var	ejsLocal	=	require('ejs-locals');

//creating	express	application

var	expressApp	=	express();

//Add	engine	that	supports	master	pages

app.engine('ejs',	ejsLocal);

Add	the	layout.ejs	page	in	the	same	ejsviews	folder	and	specify	the	HTML	content:

<html>

<head>

		<title>	<%=	appName	%>	</title>

</head>

<body>

		<%=	body	%>

</body>

</html>

The	content	of	the	child	page	will	be	rendered	on	the	line	where	the	body	is	defined	in	the
layout	page,	as	shown	in	the	preceding	code.	Here	is	the	code	snippet	of	the	index.ejs	file:

<%	layout('../layout.ejs')	-%>

<h1><%=	appName	%></h1>

<p>	<%=	message	%></p>

The	following	output	is	generated:

Jade	view	engine

The	Jade	view	engine	is	another	Node.js	view	engine	and	the	syntax	is	quite	different,	when
defining	views,	than	we	have	seen	in	EJS.	To	start	with	the	Jade	view	engine,	we	need	to	install
the	Jade	view	engine	node	package	using	NPM.	We	can	install	this	from	the	Visual	Studio
NPM	package	manager	or	by	running	the	npm	install	jade	–save	command:

When	you	install	it,	it	will	add	the	Jade	package	in	the	package.json	dependencies	section.	We
will	start	by	setting	the	Jade	view	engine	in	the	app.js	file	(the	main	entry	point	to	kick	start
the	Node.js	project).

Here	is	the	code	to	set	up	the	Jade	view	engine	in	app.js:

//adding	express	dependency

var	express	=	require('express');

//creating	express	application

var	expressApp	=	express();

//Set	jade	for	Node.js	application

expressApp.set('view	engine',	'jade');

You	will	notice	that	we	have	not	specified	the	Jade	reference	through	the	require	object.	This
is	because	when	the	Express	framework	is	loaded,	it	will	automatically	register	the
dependencies	of	Jade.	The	following	code	snippet	loads	the	Jade	view:

//Configuring	root	call	where	'/'	represents	root	path	of	the	URL

expressApp.get("/",	function	(req,	res)	{

res.render("home/index",	

{	

appName:	"JadeDemo",			

message:	"This	is	our	first	Jade	view	engine	example!"

}

);

});

The	Jade	view	syntax	is	typically	different	from	HTML	and	all	the	view	extensions	should	be
.jade.	In	the	preceding	code,	we	are	pointing	to	index.jade,	where	Jade	is	not	required	to	be
specified	explicitly.	Index.jade	should	reside	under	the	views/home	folder.	Let's	create	a
folder	called	views	and	then	the	home	folder	inside	it.	Add	a	new	Jade	file	and	named	it
index.jade.	Here	is	the	code	that	displays	the	appName	and	message	in	HTML	elements:

doctype

html

				body

								h1=	appName

								p=	message

With	Jade	syntax,	you	don't	have	to	define	the	complete	HTML	tags,	you	simply	specify	it
through	their	names,	followed	by	the	value	assigned	to	them.	For	example,	in	the	preceding
example,	we	are	setting	the	appName	and	message	values	passed	as	a	JSON	object	to	this	view
through	the	response	render()	method.	However,	there	are	many	more	attributes	that	HTML
elements	support,	such	as	setting	control	width,	font	color,	font	style,	and	so	on.	In	a	later
section,	we	will	see	how	we	can	achieve	this	in	Jade.

The	equal	to	(=)	operator	is	only	required	if	you	are	binding	to	any	value	injecting	in	to	the
view.	If	you	want	to	specify	a	hardcoded	static	value,	then	it	can	easily	be	set	without	using	the
equal	to	operator,	as	shown	in	the	following	code:

doctype

html

				body

								h1	Jade	App

								p	This	is	Jade	View

Here	are	a	few	examples	of	using	Jade	syntax	for	HTML-specific	scenarios:

Attributes Jade HTML

Textbox
input(type='text'	

name='txtName')
<input	type='text'	name='txtName'/>

Anchor	tag
a(href='microsoft.com')	

Microsoft
Microsoft

Checkbox
input(type='checkbox',	

checked)

<input	type="checkbox"	

checked="checked"/>

Anchor	with
style	attributes

a(style	=	{color:	'green',	

background:	'black'})

Link	button
input(type='button'	

name='btn')
<input	type="button"	name="btn"/>

You	can	learn	more	about	the	Jade	language	here:	http://jade-lang.com/.

Jade's	framework	also	supports	layout	pages.	Layout	pages	hold	the	static	information	of	the
website,	which	is	mostly	placed	in	the	header,	footer,	or	side	bars,	and	the	content	actually
changes	as	per	the	page	requested.	In	ASP.Net	web	forms,	we	define	master	pages	with
<asp:ContentPlaceHolder>	tags,	which	render	the	content	of	the	page	reference	to	that	master
page.	In	ASP.NET	MVC,	this	can	be	done	using	the	Razor	@RenderBody	element.	In	Jade,	we
can	define	the	content	block	using	a	block	keyword	followed	by	the	name	of	the	block.	For
example,	the	following	is	the	layout.jade	that	contains	the	block	contentBlock	statement,
where	block	represents	where	the	content	of	the	child	page	renders,	and	contentBlock	is	the
name	of	the	block	that	has	to	be	defined	in	the	child	page.	Multiple	blocks	can	also	be	defined
in	a	single	view.

The	following	is	the	content	of	the	layout	page:

doctype	html

html

		head

				title	Jade	App

		body

		block	contentBlock

The	layout	page	can	be	used	with	the	extends	keyword	followed	by	the	layout	page	name.	The
Jade	view	engine	automatically	searches	the	page	with	that	name	and	if	it's	found,	searches	for
the	block	name	and	places	the	content	there.	Here	is	the	child	page	index.jade	that	uses	the
layout	page	layout.jade:

extends	layout

block	contentBlock

								h1=	appName

								p=	message

The	output	will	be	as	follows:

http://jade-lang.com/

Routing	in	the	Express	application

We	have	now	learned	the	basics	of	the	EJS	and	Jade	view	engines.	Both	offer	similar	features,
but	the	syntax	is	different.	In	the	previous	examples,	we	sent	a	response	that	points	to	a
specific	page	which	renders	the	content	on	the	client	side.

The	Express	framework	provides	several	methods	that	correspond	to	HTTP	methods,	such	as
get,	post,	put,	delete,	and	so	on.	We	can	use	the	get	method	to	retrieve	something,	post	to
create	a	record,	put	to	update,	and	so	on.	Pages	can	reside	anywhere	within	the	Views	folder,
but	the	routing	actually	defines	which	page	has	to	be	loaded	when	the	request	is	made	on	a
specific	URL	path.

Let's	create	an	EJS	page	inside	the	Views/ejsviews/home	folder	and	name	it	about.ejs.

Routing	can	be	defined	using	the	Express	application	object,	as	shown	in	the	following	code:

expressApp.get("/About",	function	(req,	res)	{

				res.render("ejsviews/home/about");

});

When	the	user	browses	to	http://localhost/About,	it	shows	the	About	page.

Middleware
Node.js	Express	also	provides	a	special	routing	method,	all(),	which	is	not	mapped	to	any
HTTP	method.	But	it	is	used	to	load	Middleware	at	a	path,	irrespective	of	the	HTTP	method
being	requested.	For	example,	making	HTTP	GET	and	POST	requests	at
http://localhost/middlewareexample	will	execute	the	same	all()	method	shown	in	the
following	code:

expressApp.all('/middlewareexample',	function	(req,	res)	{

				console.log('Accessing	the	secret1	section	...');

});

Just	like	in	.NET,	we	have	OWIN	middleware	that	can	be	chained	in	the	request	pipeline.	In	the
same	way,	Node.js	Express	middleware	can	also	be	chained	and	can	be	invoked	by	calling	the
next	middleware	with	a	little	change	in	the	function	signature.	Here	is	the	modified	version
that	takes	the	next	parameter	after	the	response	object	which	provides	a	handler	to	the	next
middleware	in	the	pipeline,	defined	in	a	sequence	for	a	particular	request	path:

expressApp.all('/middlewareexample',	function	(req,	res,	next)	{

				console.log('Accessing	the	secret1	section	...');

				next();

});

For	example,	suppose	we	have	two	middlewares	and	the	first	middleware	just	logs	the
information	to	the	console	window,	whereas	the	second	returns	the	HTML	content	back	to	the
client.	Here	is	the	server.js	file	that	contains	the	two	middlewares	in	the	EJS	view	engine:

//Initialized	http	object

var	http	=	require('http');

//adding	express	dependency

var	express	=	require('express');

//creating	express	application

var	expressApp	=	express();

expressApp.all('/middlewareexample',	function	(req,	res,	next)	{

				console.log('Middleware	executed	now	calling	next	middleware	in	the	

pipeline');

				next();	//	pass	control	to	the	next	handler

});

expressApp.all('/middlewareexample',	function	(req,	res)	{

				res.send("<html><body><div>Middleware	executed</div></body></html>");				

});

//declared	port

var	port	=	process.env.port	||	1337;

//Initialized	http	server	object	and	use	res.write()	to	send	actual	response	

content

var	httpServer	=	http.createServer(expressApp);

//listening	for	incoming	request

httpServer.listen(port);

Now	when	we	access	the	URL	path	http://localhost/middlewareexample,	the	message	will
be	printed	on	the	console	and	renders	the	HTML	content	in	the	browser:

Here	is	the	HTML	content	that	will	render	in	the	browser:

MVC	with	the	Express	framework
Almost	every	application	consists	of	numerous	pages,	and	defining	all	the	logic	and	routing
on	the	main	server.js	is	not	practical	or	maintainable.	In	this	section,	we	will	see	how	the
Model	View	Controller	(MVC)	pattern	can	be	implemented	with	the	Express	framework.	We
will	develop	a	simple	application	to	see	how	controllers	and	data	services	can	be	developed,
and	how	the	controller	loads	the	view	and	injects	the	model	using	the	Express	framework.

MVC	pattern
MVC	is	a	software	architectural	pattern	used	to	separate	an	application's	concerns.	The	model
represents	the	entity	that	contains	properties	to	hold	information,	whereas	the	controller	is
used	to	inject	the	model	into	the	view	and	load	the	view.	The	controller	is	also	used	to	store
the	model	in	the	database,	whereas	the	view	is	the	page	that	renders	the	model	injected	by	the
controller	and	uses	it	wherever	needed.

Creating	a	controller

We	will	start	by	creating	a	simple	homeController	to	render	a	home	page.	Let's	extend	the	EJS
view	engine	example	developed	above,	and	create	a	Controllers	folder	at	the	root	of	your
project.	Inside	the	Controllers	folder,	create	a	HomeController.js	file	and	place	the
following	code	snippet	there:

(function	(homeController)	{

				homeController.load	=	function	(expressApp)	{

								expressApp.get('/',	function	(req,	res)	{

												res.render("ejsviews/home/index",	{appName:	"EJS	Application",	

message:"EJS	MVC	Implementation"})

								});

				};

})(module.exports);

In	the	preceding	code,	there	is	an	anonymous	JavaScript	function	that	takes	the	module.export
object	and	binds	it	to	the	homeController	when	it	is	executed.	The	basic	advantage	of
implementing	it	in	this	way	is	that	every	method	or	property	defined	with	the	homeController
object	will	be	exportable	and	accessible	by	the	calling	object.	In	the	preceding	example,	we
have	defined	a	load()	method	that	defines	the	routing	at	the	root	path	(/)	and	returns	the
Index	page	to	the	client.

In	the	main	ejsserver.js	file,	we	can	use	the	controller	by	using	the	require	object	as	shown
in	the	following	code:

//Initialized	http	object

var	http	=	require('http');

//adding	express	dependency

var	express	=	require('express');

//adding	ejs	locals

var	ejsLocal	=	require('ejs-locals');

//creating	express	application

var	expressApp	=	express();

//Add	engine	that	supports	master	pages

expressApp.engine('ejs',	ejsLocal);

//Set	jade	for	Node.js	application

expressApp.set('view	engine',	'ejs');

//Initializing	HomeController

var	homeController	=	require('./Controllers/HomeContoller.js');

homeController.load(expressApp);

//declared	port

var	port	=	process.env.port	||	1337;

//Initialized	http	server	object	and	use	res.write()	to	send	actual	response	

content

var	httpServer	=	http.createServer(expressApp);

//listening	for	incoming	request

httpServer.listen(port);

In	the	preceding	code,	we	have	added	the	HomeController	object	using	the	require	object	and
called	the	load()	method	to	define	the	routing	that	navigates	to	the	index	page	when	the
website	runs.

Creating	data	services

Every	business	application	involves	lots	of	CRUD	(create,	read,	update,	and	delete)
operations.	For	a	better	design,	these	operations	can	be	separately	implemented	in	data	service
objects,	so	if	multiple	controllers	wanted	to	use	the	same	service,	they	can	use	them	without
writing	the	same	code	repeatedly.	In	this	section,	we	will	create	a	data	service	JavaScript	file
that	reads	the	data	and	passes	it	in	the	routing	function.	To	start	with,	let's	create	a	folder	name
DataServices	at	the	root	of	the	application	and	create	ProductService.js	inside	it.	Here	is	the
code	for	ProductService.js,	which	returns	the	products	array:

(function(data){

				data.getProducts	=	function	()	{

								return	[{

																name:	'Product1',

																price:	200,

												},	

												{

																name:	'Product2',

																price:	500

												},

												{

																name:	'Product3',

																price:	1000

												}

];

				};

})(module.exports);

We	can	use	this	ProductService	inside	HomeController	through	the	require	object:

(function	(homeController)	{

				var	productService	=	require('../DataServices/ProductService');

				homeController.load	=	function	(expressApp)	{

								expressApp.get('/',	function	(req,	res)	{

												var	products	=	productService.getProducts();

												res.render("ejsviews/home/index",	{	appName:	"EJS	Application",	

message:	"EJS	MVC	Implementation",	data:	products	});

								});

				};

})(module.exports);

And	here	is	the	index.ejs	file,	which	loops	through	the	products	and	displays	the	product
name	and	price:

<%	layout('../layout.ejs')	-%>

<h1><%=	appName	%></h1>

<p>	<%=	message	%></p>

<div>

	<%	data.forEach(function(product)	{	%>

			<%=	product.name	%>	-	<%=	product.price	%>

	<%	});	%>

</div>

Finally,	the	output	looks	like	the	following:

Accessing	the	Microsoft	SQL	server	in	Node.js
Node.js	provides	different	database	drivers	that	can	be	added	as	node	packages.	There	are
packages	for	the	MongoDB	driver,	the	Microsoft	SQL	Server	driver,	and	more.	We	will	use
the	MS	SQL	driver	for	Node.js	to	connect	with	Microsoft	SQL	server	databases.	To	install
mssql	you	can	run	the	npm	install	mssql	–save	command,	or	add	it	from	the	NPM	package
manager	window,	as	shown	in	the	following	screenshot:

Tip

With	the	MSSQL	driver,	TCP/IP	should	be	enabled	for	a	corresponding	SQL	server	instance.

Reading	a	record	from	the	Microsoft	SQL	server	database
In	the	DataService.js	file,	we	will	add	the	getProducts()	method,	which	loads	the	list	of
products	from	the	SQL	Server	database.

The	following	is	the	getProducts()	method,	which	accepts	the	callback	function,	so	as	soon
the	products	list	is	fetched	from	the	database,	it	will	be	passed	in	the	callback	function	on	the
caller	side:

(function(data){

data.getRecords	=	function	(callbackFn)	{

								//loaded	SQL	object

								var	sql	=	require('mssql');

								

								//database	configuration	attributes	to	connect

								var	config	=	{

												user:	'sa',

												password:	'123',

												server:	'ovais-pc',	//	You	can	use	'localhost\\instance'	to	connect	

to	named	instance	

												database:	'products'

								}

								

								var	products	=	null;

								//Connect	to	SQL	Server	returns	a	promise	and	on	successfull	connection	

executing	a	query	using	Request	object

								sql.connect(config).then(function	()	{

												new	sql.Request().query('select	*	from	products',	function	(err,	

recordset)	{						

																callbackFn(recordset);								

												});

								});

								

								

					};

})(module.exports);

In	the	preceding	code,	we	initialized	the	sql	object	using	the	require	object.	The	Config
variable	contains	the	connection	attributes,	such	as	username,	password,	server,	and	database.
This	is	passed	while	calling	the	sql	connect()	method.	The	Connect()	method	returns	a
then()promise,	through	which	we	can	initiate	the	SQL	query	request	using	the	sql.Request()
method.	If	the	request	is	successful,	we	will	get	the	result	set	in	the	recordset	object	that	will
be	returned	to	the	caller	through	its	callback	function.

Here	is	the	modified	version	of	HomeController.js	that	calls	the	DataService	getRecords()
method	and	passes	the	products	list	retrieved	as	a	model	to	the	index	view:

(function	(homeController)	{

				var	productService	=	require('../DataServices/ProductService');

				homeController.load	=	function	(expressApp)	{

								expressApp.get('/',	function	(req,	res)	{

												var	products	=	productService.getRecords(function	(products)	{

																console.dir(products);

																res.render("ejsviews/home/index",	{	appName:	"EJS	Application",	

message:	"EJS	MVC	Implementation",	data:	products	});

												});

								});

				};

})(module.exports);

The	following	is	the	index.js	file,	which	loops	through	the	list	of	products	and	displays	the
product	name	and	price:

<%	layout('../layout.ejs')	-%>

<h1><%=	appName	%></h1>

<p>	<%=	message	%></p>

<table>

<th>	

<td>	Product	Name	</td>

<td>	Description	</td>

<td>	Price	</td>

</th>

	<%	data.forEach(function(product)	{	%>

		<tr>	<td><%=	product.Name	%>	</td>	<td>	<%=	product.Description	%>	</td><td>	

<%=	product.Price	%>	</td></tr>

	<%	});	%>

</table>

Creating	a	record	in	the	Microsoft	SQL	server	database
To	create	a	record	in	the	database,	we	can	define	the	HTML	input	elements	wrapped	within	the
HTML	form	tag,	and	on	submission	of	the	form,	we	can	make	a	post	request	by	defining	a
post	method	in	our	HomeController.js	file.	When	the	form	is	submitted,	the	values	can	be
retrieved	using	the	request.body	object.	This	is	the	parser	that	parses	the	DOM	and	makes	a
list	of	elements	wrapped	under	the	form	tag.	We	can	access	it	like	req.body.txtName,	where
txtName	is	the	HTML	input	element	and	req	is	the	request	object.

Express	4.0	unbundled	the	body-parser	object	into	a	separate	package	and	can	be	downloaded
separately	using	the	npm	install	body-parser	–save	command	or	through	the	NPM
package	manager	window,	as	shown	in	the	following	screenshot:

In	your	main	ejsserver.js	file,	add	the	body-parser	using	the	require	object	and	pass	it	in
the	expressApp	object	by	calling	the	expressApp,use()	method:

var	bodyParser	=	require('body-parser');

expressApp.use(new	bodyParser());

Once	this	is	added,	we	can	modify	HomeController.js	and	define	a	POST	method	that	will	be
called	once	the	form	is	submitted:

				expressApp.post('/',	function	(req,	res)	{

												console.log(req.body.txtName);

											productService.saveProduct(req.body.txtName,	req.body.txtDescription,	

req.body.txtPrice,	function	(result)	{

																res.send("Record	saved	successfully");

												});

								});

The	preceding	method	calls	the	data	service	saveProduct()	method	and	passes	the	values
filled	by	the	user	as	parameters.	The	last	parameter	is	the	callback	function,	which	will	be
executed	if	the	record	saved	successfully.	Here	is	the	saveProduct	code	snippet	of	the
DataService.js	file:

data.saveProduct	=	function	(name,	description,	price,	callbackFn)	{

								

								//loaded	SQL	object

								var	sql	=	require('mssql');

								//database	configuration	attributes	to	connect

								var	config	=	{

												user:	'sa',

												password:	'123',

												server:	'ovais-pc',	//	You	can	use	'localhost\\instance'	to	connect	

to	named	instance	

												database:	'products'

								}

								

								//Connect	to	SQL	Server	returns	a	promise	and	on	successfull	connection	

executing	a	query	using	Request	object

								sql.connect(config).then(function	()	{

												new	sql.Request().query("INSERT	into	products	(Name,	Description,	

Price)	values('"+	name	+"',	'"+	description+"',"+	price+")",	function	(err,	

recordset)	{

																callbackFn(recordset);

												});

							});

											

				};

And	finally,	here	is	the	Index.ejs	view	that	contains	a	form	with	the	Name,	Description,	and
Price	fields:

<form	method="post">

<table>

<tr>

		<td>	Product	Name:	</td>

		<td>	<input	type='text'	name='txtName'		/>	</td>

</tr>

<tr>

		<td>	Description:	</td>

		<td><input	type='text'	name='txtDescription'		/></td>

</tr>

<tr>

		<td>	Price:	</td>

		<td><input	type='number'	name='txtPrice'	/></td>

		

</tr>

<tr>

<td>	 	</td>

<td><input	type="submit"	value="Save"	/>	</td>

</tr>

</table>

</form>

To	learn	more	about	the	mssql	node	package,	please	use	this	link:
https://www.npmjs.com/package/mssql.

https://www.npmjs.com/package/mssql

Summary
This	chapter	focused	on	the	basics	of	Node.js	and	how	to	use	them	in	developing	server-side
applications	using	JavaScript.	We	have	learned	about	two	view	engines,	EJS	and	Jade,	and
how	to	use	them.	We	have	also	learned	the	usage	of	controllers	and	services	to	implement	an
MVC	pattern.	And	finally,	we	finished	by	looking	at	examples	of	accessing	the	Microsoft	SQL
server	database	to	perform,	create,	and	retrieve	operations	on	a	database.	In	the	next	chapter,
we	will	focus	on	best	practices	for	using	JavaScript	in	large-scale	applications.

Chapter	9.	Using	JavaScript	for	Large-Scale
Projects
Large-scale	web	application	projects	comprise	of	several	modules.	With	continuous
improvements	and	advancements	in	the	development	of	various	JavaScript	frameworks,
developers	use	JavaScript	frequently	in	an	application's	presentation	or	frontend	layer,	and
server-side	operations	are	only	performed	when	required.	For	example,	when	saving	or
reading	the	data	from	server	or	doing	some	other	database	or	backend	operations,	an	HTTP
request	is	made	to	the	server	that	returns	the	plain	JSON	object	and	updates	the	DOM
elements.	With	these	developments	in	place,	most	of	the	application	frontend	code	resides	on
the	client	side.	However,	when	JavaScript	was	first	developed,	it	was	targeted	to	be	used	for
doing	some	basic	operations,	such	as	updating	the	DOM	elements	or	showing	confirm
dialogs	and	other	relative	operations.	The	JavaScript	code	mostly	exists	on	the	page	itself
within	the	<script>	scripting	tag.	However,	large-scale	applications	consist	of	many	lines	of
code	and	need	proper	attention	when	designing	and	architecting	the	frontend.	In	this	chapter,
we	will	discuss	a	few	concepts	and	best	practices	that	help	to	make	the	application	frontend
more	scalable	and	maintainable.

Think	before	proceeding
Large-scale	applications	consist	of	many	JavaScript	files	and	proper	structuring	of	these	files
brings	greater	visibility.	JavaScript	frameworks	such	as	AngularJS,	EmberJS,	and	others
already	provide	proper	structuring	and	guidelines	to	define	controllers,	factories,	and	other
objects,	as	well	as	provide	best	practices	of	using	them.	These	frameworks	are	very	popular
and	already	adhere	to	the	problem	of	higher	scalability	and	maintainability.	However,	there
are	certain	scenarios	where	we	want	to	strictly	rely	on	plain	JavaScript	files	and	may	develop
our	own	custom	framework	to	remedy	particular	requirements.	To	acknowledge	these,	there
are	certain	best	industry-wide	practices	being	used,	which	make	our	JavaScript-based
frontend	more	maintainable	and	scalable.

When	working	on	large	scale	applications,	we	need	to	think	ahead	of	what	the	scope	of	the
application	is	all	about.	We	need	to	think	how	easily	our	application	can	be	extended	and	how
quickly	the	incorporation	of	other	modules	or	functionality	can	be	achieved.	If	any	module
fails,	would	it	affect	the	behavior	of	the	application	or	crash	other	modules?	For	example,	if
we	are	using	any	third-party	JavaScript	library	that	modify	some	of	their	method's	signatures.
In	this	case,	if	any	third-party	library	is	used	frequently	everywhere	in	our	application,	we
have	to	modify	the	method	at	each	point,	and	it	may	be	a	cumbersome	process	to	not	only
change,	but	also	test.	On	the	other	hand,	if	some	Facade	or	wrapper	has	been	implemented,	it
would	only	require	us	to	change	at	one	place	instead	of	updating	it	everywhere.	Therefore,
designing	an	application	architecture	or	framework	is	a	thoughtful	process,	but	it	makes	the
application	more	robust	and	healthy.

Developing	highly	scalable	and	maintainable
applications
The	following	are	the	factors	that	we	should	consider	to	make	highly	scalable	and
maintainable	web	applications	that	rely	heavily	on	JavaScript.

Modularization
With	big	applications,	writing	everything	in	a	single	JavaScript	file	is	not	a	good	practice.
Nonetheless,	even	if	you	have	separate	JavaScript	files	for	different	modules	and	referencing
them	through	the	scripting	<script>	tag	bloats	the	global	namespace.	A	proper	structuring
should	be	done	to	keep	JavaScript	files	into	separate	module-wise	folders.	For	example,	an
ERP	application	consists	of	several	modules.	We	can	create	separate	folders	for	each	module
and	use	specific	JavaScript	files	to	provide	certain	functionality	for	specific	views	or	pages.
However,	the	common	files	can	reside	in	the	common	folder.

Here	is	the	sample	project	structuring	to	arrange	JavaScript	files	based	on	an	ERP	module.
Each	module	has	a	service	folder	that	contains	some	files	to	do	some	read	or	write
operations	on	the	server	side,	and	the	Views	folder	to	manipulate	DOM	elements	of	specific
views	once	the	data	is	loaded	or	any	control	event	is	invoked.	The	common	folder	may	contain
all	the	helper	utilities	and	functions	that	are	used	by	all	the	other	modules.	For	example,	to	log
messages	on	console,	or	make	an	HTTP	request	on	the	server	side,	functions	can	be	defined
in	the	common	JavaScript	files	and	they	can	be	used	by	the	services	or	view	JavaScript	files:

In	the	preceding	structure,	the	Services	folder	can	have	the	functions	related	to	perform
create,	retrieve,	update,	and	delete	(CRUD)	operations	on	the	database	by	calling	some
Web	API	or	web	services,	whereas	a	view	file	such	as	FIMain.js	contains	page-specific

function.

To	make	an	HTML	page	clean,	it	is	a	better	approach	to	keep	JavaScript	files	separate	from
the	HTML	page.	So	in	the	preceding	screenshot,	FIMain.js	contains	the	JavaScript	function
corresponding	to	the	main	page,	whereas	FIDashboard.js	contains	the	JavaScript	function
corresponding	to	the	dashboard	page,	and	so	on.

These	files	can	simply	be	added	through	the	<script>	scripting	tag,	but	in	JavaScript	world,
adding	JavaScript	files	directly	on	the	page	itself	is	not	good	practice.	Modules	can	be	defined
in	JavaScript	by	implementing	a	module	pattern.	However,	mostly	developers	prefer	using
RequireJS	API	to	define	modules	to	make	module	loading	simpler	and	provide	a	better
scoping	of	variables	and	functions	defined	in	this	module.	It	is	equivalent	to	the	CommonJS
system,	but	it	is	recommended	because	of	an	asynchronous	behavior.	It	loads	the	JavaScript
modules	in	an	asynchronous	way	and	make	the	page-load	cycle	faster.

Implementing	the	module	pattern

A	module	pattern	is	the	most	prevailing	design	pattern	used	for	creating	loose-coupled
architecture	and	keeping	the	pieces	of	JavaScript	code	independent	of	other	modules.

Modules	are	just	like	.NET	classes	that	can	have	private,	protected,	and	public	properties	and
methods	and	provide	control	to	the	developer	to	expose	only	those	methods	or	properties	that
are	needed	by	other	classes.

In	JavaScript,	a	module	pattern	can	be	implemented	using	immediately	invoked	function
expression	(IIFE)	that	executes	immediately	and	returns	a	closure.	Closure	actually	hides
private	variables	and	methods	and	returns	an	object	that	contains	only	those	methods	or
variables	that	are	public	and	are	accessible	by	other	modules.

Here	is	the	Logger	module	that	exposed	a	logMessage()	method,	which	calls	one	private
formatMessage()	method	to	append	date	and	returns	the	formatted	message	that	is	then	printed
out	on	a	browser's	Console	window:

<script>

		var	Logger=	(function	()	{

				//private	method

				var	formatMessage	=	function	(message)	{

						return	message	+	"	logged	at:	"	+	new	Date();

				}

				return	{

						//public	method

						logMessage:	function	(message)	{

								console.log(formatMessage(message));

						}

				};

		})();

		Logger.logMessage("hello	world");

</script>

In	the	preceding	code,	the	logMessage()	method	returns	an	object	that	is	invoked	through	a
Logger	namespace.

A	module	can	contain	multiple	methods	and	properties,	and	to	implement	this	scenario,	let's
modify	the	preceding	example	and	add	one	more	method	to	show	alert	message	and	a
property	to	access	the	logger	name	and	expose	them	through	an	object	literal	syntax.	Object
literal	is	another	representation	of	binding	methods	and	properties	as	name	value	pairs
separated	by	commas	and	offers	a	cleaner	representation.	Here	is	the	modified	code:

<script>	

		var	Logger=	(function	()	{

				//private	variable

				var	loggerName	=	"AppLogger";

				//private	method

				var	formatMessage	=	function	(message)	{

						return	message	+	"	logged	at:	"	+	new	Date();

				}

				//private	method

				var	logMessage=	function	(message){

						console.log(formatMessage(message));

				}

				//private	method

				var	showAlert	=	function(message){

						alert(formatMessage(message));

				}

				return	{

						//public	methods	and	variable

						logConsoleMessage:	logMessage,

						showAlertMessage:	showAlert,

						loggerName:	loggerName

				};

		})();

		Logger.logConsoleMessage("Hello	World");

		Logger.showAlertMessage("Hello	World");

		console.log(Logger.loggerName);

</script>

In	the	preceding	code,	logMessage()	and	showAlert()	will	be	accessible	through
logConsoleMessage()	and	showAlertMessage()	methods.

Modularizing	JavaScript	code	through	RequireJS

Modules	in	RequireJS	are	an	extension	of	the	module	pattern	with	the	benefit	of	not	needing
globals	to	refer	to	other	modules.	RequireJS	is	a	JavaScript	API	to	define	modules	and	load
them	asynchronously	when	they	are	required.	It	downloads	the	JavaScript	files
asynchronously	and	reduces	the	time	to	load	the	whole	page.

Creating	modules	using	the	RequireJS	API

A	module	in	RequireJS	can	be	created	using	the	define()	method	and	loaded	using	the
require()	method.	RequireJS	provides	two	syntax	styles	to	define	modules	that	are	as
follows:

Defining	module	in	CommonJS	style:	Here	is	the	code	snippet	to	define	the	module	in
the	CommonJS	style:

define(function	(require,	exports,	module)	{

		//require	to	use	any	existing	module

		var	utility	=	require('utility');

		//exports	to	export	values

		exports.example	="Common	JS";

		//module	to	export	values	

		module.exports.name	=	"Large	scale	applications";

		module.exports.showMessage	=	function	(message)	{

				alert(utility.formatMessage(message));

		}

});

The	preceding	CommonJS	style	syntax	uses	the	define()	method	of	RequireJS	API	that
takes	a	function.	This	function	takes	three	parameters:	require,	exports,	and	module.	The
last	two	parameters,	exports	and	module,	are	optional.	However,	they	have	to	be	defined
in	the	same	sequence.	If	you	are	not	using	require,	and	only	wanted	to	export	some
functionality	using	the	exports	object,	the	require	parameter	needs	to	be	provided.	The
require	parameter	is	used	to	import	modules	that	were	exported	using	exports	or
module.exports	in	other	modules.	In	the	preceding	code,	we	have	added	the	dependency
of	the	utility	module	by	specifying	the	path	of	the	utility.js	file	in	calling	the
require	method.	When	adding	any	dependency,	we	just	need	to	specify	the	path	followed
with	the	filename	of	the	JavaScript	file	and	not	the	.js	file	extension.	The	file	is
automatically	picked	by	the	RequireJS	API.	Exporting	any	function	or	variable	that	we
need	to	be	used	by	other	modules	can	be	done	through	exports	or	module.exports
appropriately.
Defining	module	in	AMD	style:	Here	is	the	code	snippet	to	define	the	module	in	an
AMD-style	syntax:

define(['utility'],	function	(utility)	{

		return	{

				example:	"AMD",

				name:	"Large	scale	applications",

				showMessage:	function	()	{

						alert(utility.formatMessage(message));

				}

		}

});

The	AMD-style	syntax	takes	the	dependencies	array	as	the	first	parameter.	To	load	the
module	dependencies	in	an	AMD-style	syntax	you	have	to	define	them	in	an	array.	The
second	parameter	takes	the	function	parameter,	taking	the	module	name	that	maps	to	the
module	defined	in	the	dependencies	array	so	that	it	can	be	used	in	the	function	body.	To
export	the	variables	or	methods,	we	can	export	them	through	the	object	literal	syntax.

Bootstrapping	RequireJS

Let's	go	through	a	simple	example	to	understand	the	concepts	of	using	RequireJS	in	an
ASP.NET	application.	To	use	the	RequireJS	API	in	the	ASP.NET	Core	application,	you	have	to
download	and	place	the	Require.js	file	in	the	wwwroot/js	folder.	In	the	following	example,
we	will	write	a	logging	module	that	contains	a	few	methods	such	as	writing	to	console,
showing	an	alert,	and	writing	on	the	server.

Let's	create	the	Logging.js	file	in	the	wwwroot/js/common	folder	and	write	the	following	code:

define(function	()	{

		return	{

				showMessage:	function	(message)	{

						alert(message);

				},

				writeToConsole:	function	(message)	{

						console.log(message);

				},

				writeToServer:	function	(message)	{

						//write	to	server	by	doing	some	Ajax	request

						var	xhr	=	new	XMLHttpRequest();

						xhttp.open("POST",	"http://localhost:8081/Logging?message="+message,	true);

						xhttp.send();

				}

		}

});

The	following	is	the	code	for	the	Index.cshtml	page	that	displays	an	alert	message	when	the
page	is	loaded:

<script	src="~/js/require.js"></script>

<script>

		(function	()	{

				require(["js/common/logging"],	function(logging){

						logging.showMessage("demo");

				});

		})();

</script>

We	can	also	wrap	the	preceding	function	in	the	main.js	file	and	bootstrap	it	through	the

scripting	<script>	tag.	There	is	one	special	attribute	known	as	data-main,	which	is	used	by
RequireJS	as	the	entry	point	of	the	application.

The	following	is	the	code	for	main.js	that	resides	under	the	wwwroot/JS	folder.	As	main.js
resides	under	the	wwwroot/js	folder,	the	path	will	be	common/logging:

//Main.js

require(["common/logging"],	function(logging){

		logging.showMessage("demo");

});

Finally,	we	can	bootstrap	main.js	using	scripting	tag,	as	shown	in	the	following	code:

<script	data-main="~/js/main.js"	src="~/js/require.js"></script>

The	following	is	the	sample	project	structure	containing	the	Common	folder	to	have	common
JavaScript	files;	whereas,	FI	and	HR	folders	for	module-specific	JavaScript	files:

Suppose	we	want	to	modify	the	preceding	example	and	pass	the	message	from	an	input
control	on	a	button's	click	event.	This	can	be	done	by	developing	a	view	module	for	a
particular	page	and	injecting	the	logging	module	inside	it.

The	following	is	the	HTML	markup	containing	input	and	button	elements:

<div	id="myCarousel"	class="carousel	slide"	data-ride="carousel"	data-

interval="6000">

		<input	type="text"	id="txtMessage"	/>

		<button	id="btnSendMessage"	>Send	Message</button>

</div>

The	following	is	the	view.js	file	that	takes	the	logging	module	and	call	its	sendMessage()
method	by	reading	the	txtMessage	element	value:

define(['common/logging'],	function(logging)	{

		$('#btnSendMessage').on('click',	function(e)	{

				sendMessage();

				e.preventDefault();

		});

		function	sendMessage(){

				var	message=	document.getElementById('txtMessage').value;

				logging.showMessage(message);

		}

		return	{

				sendMessage:	sendMessage

		};

});

When	the	button	is	clicked,	an	alert	message	will	be	displayed.

Event-driven	messaging
In	the	preceding	section,	we	enabled	the	modularization	support	for	JavaScript	files	and
converted	them	into	modules.	In	large	applications,	we	cannot	just	rely	on	injecting	the
modules	in	other	modules,	we	may	need	some	flexibility	to	invoke	events	of	certain	modules
through	some	the	Pub/Sub	pattern.	We	have	already	seen	the	Pub/Sub	pattern	in	Chapter	7,
JavaScript	Design	Patterns,	which	maintains	a	centralized	list	to	register	events	that	point	to
some	callback	functions	and	are	invoked	through	a	publisher	object.	This	pattern	is	very
useful	when	enabling	event-driven	messaging	between	modules,	but	there	is	another	better
pattern	known	as	a	mediator	pattern,	which	is	a	superset	of	the	Pub/Sub	pattern.	The	mediator
pattern	is	better	as	it	allows	publishers	or	mediators	to	access	other	events/methods	of	the
subscribed	object	and	allows	the	mediator	to	decide	the	method	or	event	that	is	needed	to	be
called.

Implementing	mediator	pattern	for	communication	between	modules

Mediator	encapsulates	objects	in	a	centralized	list	and	uses	them	by	invoking	their	methods.
This	list	keeps	all	the	objects	(or	modules)	at	central	location,	thus	allowing	improved
communication	between	them.

Let's	go	through	a	practical	example	of	implementing	the	mediator	pattern.	The	mediator	acts
as	a	centralized	controlling	object	where	modules	can	subscribe	or	unsubscribe.	It	provides
abstract	methods	that	can	be	invoked	by	any	of	the	source	subscriber	module	to	communicate
with	the	target	subscriber	module.	The	mediator	holds	a	centralized	dictionary	object	to	hold
subscriber	objects	based	on	some	key,	or	mostly	name,	and	invokes	target	module	method
based	on	the	module	name	passed	by	the	subscriber.	In	the	following	example,	we	have
MediatorCore	(mediator),	EmployeeRepository	(subscriber),	and	HRModule	(subscriber)
objects.	We	will	use	the	RequireJS	API	to	convert	JavaScript	files	into	modules.

The	following	is	the	MediatorCore	JavaScript	file:

//MediatorCore.js

define(function	()	{

		return	{

				mediator:	function	()	{

						this.modules	=	[];

						//To	subscribe	module

						this.subscribe	=	function	(module)	{

								//Check	if	module	exist	or	initialize	array

								this.modules[module.moduleName]	=	this.modules[module.moduleName]	||	[];

								//Add	the	module	object	based	on	its	module	name

								this.modules[module.moduleName].push(module);

								module.mediator	=	this;

						},

						this.unsubscribe	=	function	(module)	{

								//Loop	through	the	array	and	remove	the	module

								if	(this.modules[module.moduleName])	{

										for	(i	=	0;	i	<	this.modules[module.moduleName].length;	i++)	{

												if	(this.modules[module.moduleName][i]	===	module)	{

														this.modules[module.moduleName].splice(i,	1);

														break;

												}

										}

								}

						},

						/*	To	call	the	getRecords	method	of	specific	module	based	on	module	name	

*/

						this.getRecords	=	function	(moduleName)	{

								if	(this.modules[moduleName])	{

										//get	the	module	based	on	module	name

										var	fromModule	=	this.modules[moduleName][0];

										return	fromModule.getRecords();

								}

						},

						/*	To	call	the	insertRecord	method	of	specific	module	based	on	module	name	

*/

						this.insertRecord	=	function	(record,	moduleName)	{

								if	(this.modules[moduleName])	{

										//get	the	module	based	on	module	name

										var	fromModule	=	this.modules[moduleName][0];

										fromModule.insertRecord(record);

								}

						},

						/*	To	call	the	deleteRecord	method	of	specific	module	based	on	module	name	

*/

						this.deleteRecord	=	function	(record,	moduleName)	{

								if	(this.modules[moduleName])	{

										//get	the	module	based	on	module	name

										var	fromModule	=	this.modules[moduleName][0];

										fromModule.deleteRecord(record);

								}

						},

						/*	To	call	the	updateRecord	method	of	specific	module	based	on	module	name	

*/

						this.updateRecord	=	function	(record,	moduleName)	{

								if	(this.modules[moduleName])	{

										//get	the	module	based	on	module	name

										var	fromModule	=	this.modules[moduleName][0];

										fromModule.updateRecord(record);

								}

						}

				}

		}

});

This	mediator	exposes	four	methods	to	perform	CRUD	operations.	This	example	showcases	a
simple	HR	module	that	uses	certain	repositories	to	do	certain	operations.	For	example,	the	HR
module	can	have	the	EmployeeRepository	module	to	save	record	in	employee-specific	tables,
DepartmentRepository	to	do	operations	specific	to	department,	and	so	on.

Here	is	the	code	snippet	for	EmployeeRepository	that	contains	the	concrete	implementation	of
the	abstract	methods	defined	in	the	mediator:

//EmployeeRepository.js

define(function	()	{

		return	{

				//Concrete	Implementation	of	Mediator	Interface

				EmployeeRepository:	function	(uniqueName)	{

						this.moduleName	=	uniqueName;

						//this	reference	will	be	used	just	in	case	to	call	some	other	module	

methods

						this.mediator	=	null;

						//Concrete	Implementation	of	getRecords	method

						this.getRecords	=	function	()	{

								//Call	some	service	to	get	records

								//Sample	text	to	return	data	when	getRecords	method	will	be	invoked

								return	"This	are	test	records";

						},

						//Concrete	Implementation	of	insertRecord	method

						this.insertRecord	=	function	(record)	{

								console.log("saving	record");

								//Call	some	service	to	save	record.

						},

						//Concrete	Implementation	of	deleteRecord	method

						this.deleteRecord	=	function	(record)	{

								console.log("deleting	record");

								//Call	some	service	to	delete	record

						}

						//Concrete	Implementation	of	updateRecord	method

						this.updateRecord	=	function	(record)	{

								console.log("updating	record");

								//Call	some	service	to	delete	record

						}

				}

		}

});

EmployeeRepository	takes	a	name	parameter	at	initialization	and	defines	the	mediator
variable	that	can	be	set	when	it	is	registered	at	mediator.	This	is	provided	in	case
EmployeeRepository	wants	to	call	some	other	module	or	repository	of	a	subscriber	module.
We	can	create	multiple	repositories,	for	example,	RecruitmentRepository	and

AppraisalRepository	for	HRModule	and	use	them	when	needed.

Here	is	the	code	for	HRModule	that	calls	EmployeeRepository	through	a	mediator:

//HRModule.js

define(function	()	{

		return	{

				HRModule:	function	(uniqueName)	{

						this.moduleName	=	uniqueName;

						this.mediator	=	null;

						this.repository	=	"EmployeeRepository";

						this.getRecords	=	function	()	{

								return	this.mediator.getRecords(this.repository);

						},

						this.insertRecord	=	function	(record)	{

								this.mediator.insertRecord(record,	this.repository);

						},

						this.deleteRecord	=	function	(record)	{

								this.mediator.deleteRecord(record,	this.repository);

						}

						this.updateRecord	=	function	(record)	{

								this.mediator.updateRecord(record,	this.repository);

						}

				}

		}

});

Now,	we	will	register	HRModule	and	EmployeeRepository	with	the	mediator	and	call	the
HRModule	methods	to	perform	CRUD	operations.

The	following	is	the	code	for	HRView.js	that	is	used	to	capture	the	button's	click	event	on	the
form	and	calls	the	getRecords()	method	when	the	button	is	clicked:

//HRView.js

define(['hr/mediatorcore','hr/employeerepository','hr/hrmodule'],	function	

(mediatorCore,	employeeRepository,	hrModule)	{

		$('#btnGetRecords').on('click',	function	(e)	{

				getRecords();

				e.preventDefault();

		});

		function	getRecords()	{

				var	mediator	=	new	mediatorCore.mediator();

				var	empModule	=	new	hrModule.HRModule("EmployeeModule");

				mediator.subscribe(empModule);

				var	empRepo	=	new	

employeeRepository.EmployeeRepository("EmployeeRepository");

				mediator.subscribe(empRepo);

				alert("Records:	"+	empModule.getRecords());

		}

		return	{

				getRecords:	getRecords

		};

});

The	following	is	the	main.js	file	that	is	used	to	bootstraps	the	HRView.js	file	through	the
RequireJS	API:

//main.js

require(["./hrview"],	function(hr){

});

Finally,	we	can	use	the	preceding	Main.js	module	on	the	Index.cshtml	page	in	ASP.NET,	as
follows:

//Index.cshtml

@{

		ViewData["Title"]	=	"Home	Page";

}

<script	data-main="js/main.js"		src="~/js/require.js"></script>

<div	id="myCarousel"	class="carousel	slide"	data-ride="carousel"	data-

interval="6000">

		<input	type="text"	id="txtMessage"	/>

		<button	id="btnGetRecords"	>Send	Message</button>

</div>

The	following	is	the	logical	diagram	that	shows	how	the	modules	communicate	with	each
other:

Encapsulating	complex	code
Another	core	principle	of	developing	highly	scalable	and	maintainable	application	is	to	use
wrappers	and	encapsulate	complex	code	into	a	simpler	interface.	This	can	be	achieved	by
implementing	a	Facade	pattern.

The	Facade	pattern	is	used	to	simplify	the	complex	code	by	exposing	a	method	and	hiding	all
the	complex	code	inside	the	Facade	object.	For	example,	there	are	many	ways	and	APIs
available	to	perform	Ajaxified	operations.	Ajax	requests	can	be	made	using	a	plain
XmlHttpRequest	object,	or	with	jQuery,	it	is	quite	easy	to	use	$.post()	and	$.get()	methods.
In	AngularJS,	it	can	be	achieved	using	its	own	http	object	to	invoke	services	and	so	on.	These
type	of	operations	can	be	encapsulated	and	benefited	in	scenarios	when	the	internal	API	is
modified,	or	when	you	decided	to	use	some	other	better	API;	modification	needs	to	be	done,
which	is	far	lesser	than	changing	it	at	all	the	places	where	it	has	been	used.	With	the	Facade
pattern,	you	can	only	modify	it	in	the	Facade	object	and	save	time	on	updating	it	everywhere
where	it	has	been	used.

Another	advantage	of	using	Facade	is	that	it	reduces	the	development	effort	by	encapsulating
a	bunch	of	code	to	a	simple	method	and	make	it	easy	for	the	consumer	to	use.	Facade	reduces
the	development	effort	by	minimizing	the	lines	of	code	required	to	call	a	certain	functionality.
To	learn	more	about	Facade,	refer	to	Chapter	7,	JavaScript	Design	Patterns.

Generating	documentation
Proper	documentation	increases	the	maintainability	of	your	application	and	makes	it	easier
for	developers	to	reference	it	when	needed	or	customizing	applications.	There	are	many
documentation	generators	available	in	the	market.	JSDoc	and	YUIDoc	are	very	popular
JavaScript	documentation	generators,	but	in	this	section,	we	will	use	JSDoc3	that	not	only
generates	documentation,	but	also	enables	intellisense	for	your	custom	JavaScript	modules	to
facilitate	during	development.

JSDoc	is	an	API	similar	to	JavaDoc	and	PHPDoc.	Comments	can	be	added	directly	to	the
JavaScript	code.	It	also	provides	a	JSDoc	tool	through	which	the	documentation	website	can
be	created.

Installing	JSDoc3	in	ASP.NET	Core

JSDoc3	can	be	added	as	a	Node	package	and	we	can	use	it	with	the	Gulp	task	runner	to
generate	documents.	To	add	JSDoc3	to	your	ASP.NET	Core	project,	you	can	start	by	adding
an	entry	to	the	package.json	file	used	by	Node.	This	entry	has	to	be	done	in	the	development
dependencies:

The	first	development	dependency	defined	in	the	previous	screenshot	is	Gulp	which	is
required	to	create	tasks,	and	gulp-jsdoc3	is	the	actual	documentation	generator	that	generates
the	HTML	website	when	you	run	that	task.

The	task	can	be	defined	as	follows:

///	<binding	Clean='clean'	/>

"use	strict";

var	gulp	=	require("gulp"),

jsdoc	=	require("gulp-jsdoc3");

var	paths	=	{

		webroot:	"./wwwroot/"

};

paths.appJs	=	paths.webroot	+	"app/**/*.js";

gulp.task("generatedoc",	function	(cb)	{

		gulp.src(['Readme.md',	paths.appJs],	{	read:	false	})

		.pipe(jsdoc(cb));

});

In	the	preceding	code	snippet,	we	have	one	task	named	generatedoc,	in	which	we	are	reading
the	files	placed	at	wwwroot/app/**/*.js	and	generating	documentation.	The	jsdoc	object
takes	the	configuration	defaults	to	generate	documentation.	To	pass	the	default	configuration
attributes,	we	can	just	specify	the	cb	parameter	injected	in	the	function	level	by	Gulp.	When
you	run	this	generatedoc	task	from	the	task	runner	in	Visual	Studio,	it	will	add	a	docs	folder
at	the	root	path	of	your	web	application	project.	As	in	ASP.NET	Core,	we	already	know	that
all	static	content	should	reside	in	the	wwwroot	folder,	and	to	access	it	from	browser,	simply
drag	and	drop	this	folder	in	the	wwwroot	folder	and	access	it	by	running	your	website.

Adding	comments

To	generate	documentation,	we	need	to	annotate	our	code	with	comments.	The	more	the
comments	are	provided,	the	better	the	documentation	will	be	generated.	Comments	can	be
added	through	/**	as	the	starting	tag	and	*/	as	the	ending	tag:

/**	This	method	is	used	to	send	HTTP	Get	Request	**/

function	GetData(path)	{

		$.get(path,	function	(data)	{

				return	data;

		})

}

If	the	function	is	a	constructor,	you	can	specify	@constructor	in	the	comments	to	give	more
meaning	to	the	readers:

/**	This	method	is	used	to	send	HTTP	Get	Request

			@constructor

*/

function	GetData(path)	{

		$.get(path,	function	(data)	{

				return	data;

		})

}

A	function	takes	parameters	as	well,	and	this	can	be	indicated	by	using	@param	in	your
comments.	Here	is	the	same	function	that	takes	the	actual	path	of	some	service	as	a	parameter
to	retrieve	records:

/**	This	method	is	used	to	send	HTTP	Get	Request	

		@constructor

		@param	path	–	Specify	URI	of	the	resource	that	returns	data

*/

function	GetData(path)	{

		$.get(path,	function	(data)	{

				return	data;

		})

}

When	you	run	your	application,	it	will	show	the	documentation	as	follows:

We	have	seen	how	easy	it	is	with	JSDoc3	to	generate	documentation.	This	not	only	helps	to
understand	the	code,	but	also	helps	the	developer	during	development	by	providing
intellisense.	To	learn	more	about	JSDoc3,	refer	to	http://usejsdoc.org/.

http://usejsdoc.org/

Deployment	optimization
Large-scale	application	consists	of	large	number	of	JavaScript	files.	When	the	page	is
downloaded,	it	is	parsed	and	it	downloads	all	the	JavaScript	files	defined	with	the	<script>
tag.	Once	the	JavaScript	files	are	downloaded,	they	are	parsed	and	executed.	So,	it	depends	on
the	number	of	JavaScript	files	you	have	referenced	on	the	page,	followed	by	the	lines	of	code
each	JavaScript	file	contains.	To	optimize	the	page-loading	cycle,	it	is	recommended	to
compress	them	through	a	minification	process.	This	makes	the	JavaScript	file	smaller	in	size
and	the	page-loading	cycle	becomes	faster.

In	ASP.NET,	we	can	compress	the	JavaScript	files	using	Grunt	and	Gulp	modules.	These	are
Node	modules	and	are	highly	integrated	with	ASP.NET	Core.	In	ASP.NET	Core,	we	can	add
these	modules	by	adding	a	Node	package	reference	in	the	package.json	file,	and	each	module
has	its	separate	configuration	file	known	as	GulpFile.js	or	GruntFile.js.

In	this	example,	we	will	use	the	Gulp	module	to	minify	and	compress	our	JavaScript	files.	In
ASP.NET	Core,	we	can	enable	Gulp	by	adding	the	Gulp	module	to	the	package.json	file:

The	preceding	code	snippet	uses	gulp,	gulp-concat,	gulp-cssmin,	and	gulp-uglify.	The
following	is	the	description	of	each	module:

Module Description

Gulp This	is	used	to	define	tasks	that	can	be	run	through	task	runners

gulp-concat This	is	used	to	concatenate	JavaScript	files	into	a	single	file

gulp-cssmin This	is	used	to	compress	CSS	files

gulp-uglify This	is	used	to	compress	JavaScript	files

The	following	is	the	sample	gulpfile.js	that	can	be	used	to	compress	JavaScript	and	CSS
files:

///	<binding	Clean='clean'	/>

"use	strict";

//Adding	references	of	gulp	modules

var	gulp	=	require("gulp"),

rimraf	=	require("rimraf"),

concat	=	require("gulp-concat"),

cssmin	=	require("gulp-cssmin"),

uglify	=	require("gulp-uglify");

//define	root	path	where	all	JavaScript	and	CSS	files	reside

var	paths	=	{

		webroot:	"./wwwroot/"

};

/*	Path	where	all	the	non-minified	JavaScript	file	resides.	JS	is	the	folder	and

**	is	used	to	handle	for	sub	folders	*/

paths.js	=	paths.webroot	+	"js/**/*.js";

/*	Path	where	all	the	minified	JavaScript	file	resides.	JS	is	the	folder	and	**	

is	used	to	handle	for	sub	folders	*/

paths.minJs	=	paths.webroot	+	"js/**/*.min.js";

/*	Path	where	all	the	non-minified	CSS	file	resides.	Css	is	the	main	folder	and	

**	is	used	to	handle	for	sub	folder	*/

paths.css	=	paths.webroot	+	"css/**/*.css";

/*	Path	where	all	the	minified	CSS	file	resides.	Css	is	the	main	folder	and	**	

is	used	to	handle	for	sub	folder	*/

paths.minCss	=	paths.webroot	+	"css/**/*.min.css";

/*	New	JavaScript	file	site.min.js	that	contains	all	the	compressed	and	merged	

JavaScript	files*/

paths.concatJsDest	=	paths.webroot	+	"js/site.min.js";

/*	New	CSS	file	site.min.css	that	will	contain	all	the	compressed	and	merged	CSS	

files	*/

paths.concatCssDest	=	paths.webroot	+	"css/site.min.css";

//to	delete	site.min.js	file

gulp.task("clean:js",	function	(cb)	{

		rimraf(paths.concatJsDest,	cb);

});

//to	delete	site.min.css	file

gulp.task("clean:css",	function	(cb)	{

		rimraf(paths.concatCssDest,	cb);

});

/*	To	merge,	compress	and	place	the	JavaScript	files	into	one	single	file	

site.min.js	*/

gulp.task("min:js",	function	()	{

		return	gulp.src([paths.js,	"!"	+	paths.minJs],	{	base:	"."	})

		.pipe(concat(paths.concatJsDest))

		.pipe(uglify())

		.pipe(gulp.dest("."));

});

/*	to	merge,	compress	and	place	the	CSS	files	into	one	single	file	site.min.css	

*/

gulp.task("min:css",	function	()	{

		return	gulp.src([paths.css,	"!"	+	paths.minCss])

		.pipe(concat(paths.concatCssDest))

		.pipe(cssmin())

		.pipe(gulp.dest("."));

});

In	the	preceding	code	snippet,	there	are	four	tasks	and	the	following	is	their	description:

clean:js:	This	removes	the	site.min.js	file
clean:css:	This	removes	the	site.min.css	file
min:js:	This	merges	all	the	files	specified	in	paths.js	and	paths.minJs,	minifies	them
using	uglify(),	and	finally	creates	the	site.main.js	file
min:css:	This	merges	all	the	files	specified	in	paths.css	and	paths.minCss,	minifies
them	using	cssmin(),	and	finally	creates	the	site.main.css	file

In	Visual	Studio	2015,	you	can	run	these	tasks	using	Task	Runner	Explorer,	and	also	bind
them	with	the	build	events:

The	following	are	the	options	that	you	can	have	to	associate	them	with	specific	build	events:

The	preceding	screenshot	shows	the	steps	to	bind	the	clean:js	task	with	a	Clean	build	event.
So,	whenever	your	clean	your	project,	it	will	run	clean:js	and	remove	the	site.min.js	file.

Summary
In	this	chapter,	we	discussed	a	few	concepts	of	structuring	JavaScript-based	projects	and
splitting	them	into	modules	to	increase	the	scalability	and	maintainability.	We	also	saw	how
effectively	we	can	use	the	mediator	pattern	to	provide	communication	between	modules.
Documentation	also	plays	an	important	role	and	increases	the	maintainability,	and	we	used
JSDoc3,	which	is	one	of	the	most	popular	JavaScript	documentation	APIs	and	helped
developers	to	reference	and	understand	the	functions	of	JavaScript	during	development.
Lastly,	we	discussed	how	to	optimize	the	load	time	of	your	application	by	compressing	and
merging	your	JavaScript	files	into	one	minified	JavaScript	file	to	increase	the	performance.
In	the	next	chapter,	we	will	discuss	testing	and	debugging	JavaScript	applications	and	the	tools
that	are	available	to	troubleshoot	efficiently.

Chapter	10.	Testing	and	Debugging	JavaScript
In	every	software	life	cycle,	testing	and	debugging	play	an	important	role.	Thorough	testing
makes	software	flawless	and	good	debugging	techniques	makes	it	easy	to	not	only
troubleshoot	problems,	but	also	helps	to	identify	and	fix	any	problems	by	reaching	out	to	the
exact	point.

Testing	is	the	core	essence	of	creating	any	robust	application.	However,	there	are	different
practices	and	frameworks	used	by	the	application	to	serve	particular	objective,	and	the
architecture	varies	as	per	the	nature	of	the	application.	Therefore,	sometimes	it	becomes
difficult	for	a	developer	to	test	client-side	code,	for	example,	if	an	application	contains	some
JavaScript	code	on	a	page	itself,	such	as	inline	event	handlers,	make	it	tightly	coupled	with	the
page.	On	the	other	hand,	even	when	modularizing	the	JavaScript	code	into	different	modules
bring	some	test	suite	limitations	and	become	harder	to	execute	the	testing	process	of	an
application.

Debugging	is	the	process	of	finding	and	fixing	errors	in	an	application.	It	is	one	of	the	most
important	and	core	skillset	in	software	development.	If	developers	have	a	solid	grasp	on	the
debugging	tools	and	know	the	ins	and	outs	of	debugging,	they	can	quickly	identify	the	root
cause	and	start	fixing	the	errors.	Debugging	is	a	basic	process	in	any	software	development
life	cycle.	Whether	application	is	a	complex	one	or	a	simple	one,	to	trace	and	rectify	errors
debugging	plays	an	important	role.	It	helps	the	developer	to	break	the	program	execution
through	breakpoints	and	identify	the	program	flow	by	stepping	into	the	chain	of	program
execution.	Moreover,	there	is	other	useful	information	almost	all	debugging	tools	provide,
such	as	watching	the	current	state	of	the	variables	or	objects	being	used	within	the	program
and	watching	them	on	every	stage	of	the	debugging	life	cycle.

Testing	the	JavaScript	code
Normally,	web	applications	go	through	different	types	of	testing,	such	as	user	interface	(UI)
testing,	which	checks	the	functionality	of	the	UI	by	making	certain	inputs	to	the	form	and
verifies	the	behavior	of	an	application.	This	type	of	testing	is	mostly	done	manually	or
through	automated	testing	tools.	The	other	type	of	testing	is	load	testing,	which	is	used
mostly	to	check	the	performance	of	an	application	and	by	putting	up	some	load	on	the
application.	In	simple	terms,	it	can	be	an	example	of	signing	in	to	an	application	with	many
number	of	users	or	doing	some	operations	through	automated	routines	to	test	how	the
application	behaves.	There	are	a	few	more	testing	types,	but	the	most	essential	type	of	testing
that	ensures	the	functionality	of	the	application	and	certifies	whether	the	application	complies
with	the	requirements	is	unit	testing.	In	this	section,	we	will	discuss	about	unit	testing
JavaScript	code	using	Jasmine	(a	popular	JavaScript	unit	test	framework)	and	use	it	with
Karma	and	Grunt	to	execute	test	cases	in	an	ASP.NET	application	using	Visual	Studio	2015
IDE.

Unit	testing
Unit	testing	is	a	method	to	test	individual	units	of	modules	together	with	associated	data	and
procedures	to	verify	the	application's	functionality	compliance	to	the	requirements.	Unit
testing	is	done	by	developers,	and	it	allows	developers	to	test	each	use	case	of	the	application
to	guarantee	that	it	meets	the	requirement	and	works	as	expected.

The	basic	advantage	of	unit	testing	is	that	it	separates	each	part	of	the	application	into	a
smaller	unit	and	helps	developers	to	focus	and	identify	the	bug	initially	during	the
development	cycle.	Unit	testing	is	the	first	testing	any	application	endures	and	allow	testers
and	developers	to	release	the	application	for	user	acceptance	testing	(UAT).

Writing	unit	tests

To	test	JavaScript	code,	there	are	many	testing	suites	available.	The	most	popular	ones	are
Jasmine,	Mocha,	and	QUnit.	In	this	chapter,	we	will	use	Jasmine	with	Karma	and	Grunt.

Jasmine

Jasmine	is	a	behavior-driven	development	framework	for	testing	JavaScript	code.	This
provides	certain	functions	such	as	it(),	describe(),	expect(),	and	so	on	to	write	test	scripts
for	the	JavaScript	code.	The	basic	advantage	of	this	framework	is	that	it	is	very	easy	to
understand	and	helps	to	write	the	test	JavaScript	code	with	very	simple	lines	of	code.

For	example,	consider	the	following	JavaScript	code	that	sums	up	two	numbers	passed	as
parameters:

(function	()	{

		var	addTwoNumbers	=	function	(x,	y)	{

				return	x+y;

		};

})();

The	test	case	for	the	preceding	function	will	look	similar	to	the	following:

describe('Calculator',	function	()	{

		it('Results	will	be	20	for	10	+	10',	function	()	{

				expect(addTwoNumbers(10,10)).toBe(20);

		});

});

Karma

Karma	is	a	test	runner	for	JavaScript	that	can	be	integrated	with	other	testing	frameworks
such	as	Jasmine,	Mocha,	and	so	on.	It	executes	test	cases	defined	through	Jasmine	or	other	test
frameworks	by	providing	a	mock	test	environment	and	load	browsers	that	executes	the	test
JavaScript	code	according	to	the	configuration.	The	Karma	configuration	file	is	known	as
Karma.config.js.	Once	the	tests	are	executed,	the	results	are	displayed	in	the	console	window.

Grunt

Grunt	is	equivalent	to	Gulp.	It	is	used	to	execute	tasks	such	as	minification	of	CSS	file	or
JavaScript	files,	concatenation	and	merging	of	multiple	JavaScript	file,	and	so	on.	Grunt	has
hundreds	of	plugins	that	can	be	used	to	automate	specific	tasks.	Unlike	the	previous	chapters,
where	we	used	Gulp,	we	will	use	Grunt	and	see	what	it	provides	with	Karma	(test	runner)	and
Jasmine	(testing	suite).	Grunt	and	Gulp	are	both	renowned	task	runners	for	development.	The
reason	for	using	Grunt	here	is	to	get	an	understanding	of	another	task	runner	of	JavaScript
that	is	equally	renowned	and	supported	by	Visual	Studio	2015	and	discuss	the	packages	that	it
provides	to	perform	testing	using	Karma	and	Jasmine.

Developing	unit	test	using	Jasmine,	Karma,	and	Grunt

In	this	section,	we	will	develop	a	simple	unit	test	to	show	how	unit	testing	can	be	done	in	an
ASP.NET	Core	application	using	Jasmine,	Karma,	and	Grunt	frameworks.	To	start	with,
create	an	ASP.NET	Core	application	from	Visual	Studio	2015.

Adding	packages

Open	the	package.json	file	in	your	ASP.NET	Core	application	and	add	packages	such	as
grunt,	grunt-karma,	karma,	karma-phantomjs-launcher,	karma-jasmine,	karma-spec-
reporter,	and	karma-cli,	as	shown	in	the	following:

The	following	table	shows	the	description	of	each	package:

Package	Name Description

grunt This	configures	and	runs	tasks

grunt-karma This	is	the	Grunt	plugin	for	the	Karma	test	runner

karma This	is	the	test	runner	for	JavaScript

karma-phantomjs-launcher This	is	the	Karma	plugin	to	launch	the	PhantomJS	browser

karma-jasmine This	is	the	Karma	plugin	for	the	Jasmine	test	suite

karma-spec-reporter This	is	the	Karma	plugin	to	report	test	results	to	the	console

karma-cli This	is	the	Karma	command-line	interface

Adding	the	Grunt	file

Add	Gruntfile.js	in	your	ASP.NET	application	to	define	Grunt	tasks.	Gruntfile.js	is	the
main	file	where	all	the	tasks	are	configured.	Configured	tasks	can	be	seen	in	Visual	Studio
from	the	Task	Runner	Explorer	window.
Adding	Karma	specifications

The	Gruntfile.js	file	provides	the	main	initConfig()	method	that	is	called	when	the	Grunt
is	loaded.	This	is	the	starting	point	where	we	define	the	Karma	specifications.

The	following	is	the	Karma	specifications	defined	within	the	initConfig()	method:

grunt.initConfig({

		karma:	{

				unit:	{

						options:	{

								frameworks:	['jasmine'],

								singleRun:	true,

								browsers:	['PhantomJS'],

								files:	[

										'./wwwroot/js/**/*.js',

										'./wwwroot/tests/**/*.test.js'

]

						}

				}

		}

});

In	the	preceding	script,	we	first	started	by	specifying	the	target	platform	for	Karma.	Inside
karma,	we	will	specify	the	unit	that	is	used	to	run	unit	tests.	Inside	unit,	we	can	define	certain
configuration	attributes	such	as	frameworks,	singleRun,	browsers,	and	files:

frameworks:	This	is	an	array	of	test	frameworks	that	we	want	to	use.	In	this	exercise,	we

used	Jasmine.	However,	other	frameworks	such	as	Mocha	and	QUnit	can	also	be	used.

Tip

Please	note	that	when	using	any	framework	in	Karma,	an	additional	plugin/library	of	that
framework	has	to	be	separately	installed	using	Node	Package	Manager	(NPM).

singleRun:	If	this	is	set	to	true,	Karma	start	capturing	the	configured	browser(s)	and
executes	tests	on	them.	Once	the	tests	are	completed,	it	exits	smoothly.
browsers:	This	is	an	array	to	define	multiple	browsers	in	a	comma-separated	value.	We
have	used	PhantomJS	in	our	example,	which	is	a	headless	browser	and	runs	the	test	in
background.	Karma	supports	other	browsers	such	as	Chrome,	Firefox,	IE,	and	Safari,
and	these	can	be	configured	through	this	property.
files:	This	contains	all	the	test	files,	source	files,	and	dependencies.	For	example,	if	we
are	using	jQuery	in	our	test	scripts,	or	original	source	code,	we	can	add	the	path	to	this
library	as	well.	In	the	preceding	configuration,	we	used	wildcard	characters	to	load	all
the	source	files	defined	under	the	js	folder,	and	tests	files	under	the	tests	folder	with	a
test.js	suffix.

There	are	many	more	attributes	that	can	be	used	in	the	Karma	configuration	and	it	can	be
referred	here:

http://karma-runner.github.io/0.13/config/configuration-file.html
Load	npm	task

To	load	the	Karma	test	runner	tool,	we	need	to	specify	it	in	Gruntfile.js	after	the	Karma
configuration,	as	shown	in	the	following:

grunt.loadNpmTasks('grunt-karma');

Register	task

Finally,	we	will	add	the	Grunt	task	to	register	tasks.	The	first	parameter	is	the	task	name,
which	will	be	available	in	the	Task	Runner	Explorer	in	Visual	Studio,	and	the	second
parameter	takes	an	array	to	execute	multiple	tasks:

grunt.registerTask('test',	['karma']);

Source	JavaScript	file

In	this	example,	we	have	a	product.js	file	that	contains	a	saveProduct()	method,	which	will
be	invoked	on	the	Save	button's	click	event.

Add	this	file	to	the	wwwroot/js	folder	path:

window.product	=	window.product	||	{};

(function	()	{

		var	saveProduct	=	function	()	{

				var	prodCode	=	document.getElementById('txtProdCode').value;

http://karma-runner.github.io/0.13/config/configuration-file.html

				var	prodUnitPrice	=	document.getElementById('txtProdUnitPrice').value;

				var	prodExpiry	=	document.getElementById('txtProdExpiry').value;

				var	prodQuantity	=	document.getElementById('txtProdQuantity').value;

				var	totalPrice	=	prodUnitPrice	*	prodQuantity;

				document.getElementById('totalAmount').innerHTML	=	totalPrice;

		};

		window.product.init	=	function	()	{

				document.getElementById('save').addEventListener('click',	saveProduct);

		};

})();

In	the	preceding	code	snippet,	we	have	a	saveProduct()	method	that	reads	the	HTML
elements	and	calculates	the	total	price	based	on	the	quantity	and	unit	price	entered.	On	the
page	initialization,	we	will	register	the	Save	button's	click	event	handler	that	calls	the
saveProduct()	method	and	calculate	the	total	price.

Tip

It	is	a	recommended	approach	to	keep	your	JavaScript	code	separate	from	your	HTML
markup.

Adding	unit	test	script	file

Here,	we	will	add	another	JavaScript	file	under	the	wwwroot/tests	folder	and	named	it
product.test.js.	When	writing	tests,	you	can	add	the	*.test.js	suffix	to	make	it	uniquely
identified,	and	separates	it	from	the	source	JavaScript	files.

Here	is	the	code	for	product.test.js:

describe('Product',	function	()	{

		//	inject	the	HTML	fixture	for	the	tests

		beforeEach(function	()	{

				var	fixture	=	'<div	id="fixture">'+

						'<input	id="txtProdCode"	type="text">'	+

						'<input	id="txtProdExpiry"	type="text">'	+

						'<input	id="txtProdUnitPrice"	type="text">'	+

						'<input	id="txtProdQuantity"	type="text">'	+

						'<input	id="save"	type="button"	value="Save">'	+

						'Total	Amount:	</div>';

				document.body.insertAdjacentHTML(

						'afterbegin',

						fixture);

		});

		//	remove	the	html	fixture	from	the	DOM

		afterEach(function	()	{

				document.body.removeChild(document.getElementById('fixture'));

		});

		//	call	the	init	function	of	calculator	to	register	DOM	elements

		beforeEach(function	()	{

				window.product.init();

		});

		it('Expected	result	should	be	0	if	the	Unit	price	is	not	valid',	function	()	

{

				document.getElementById('txtProdUnitPrice').value	=	'a';

				document.getElementById('txtProdQuantity').value	=	2;

				document.getElementById('save').click();

				expect(document.getElementById('totalAmount').innerHTML).toBe('0');

		});

		it('Expected	result	should	be	0	if	the	Product	Quantity	is	not	valid',	

function	()	{

				document.getElementById('txtProdUnitPrice').value	=	30;

				document.getElementById('txtProdQuantity').value	=	'zero';

				document.getElementById('save').click();

				expect(document.getElementById('totalAmount').innerHTML).toBe('0');

		});

});

The	Jasmine	framework	provides	certain	keywords	to	define	specific	blocks	that	run	on
specific	conditions,	which	are	as	follows:

describe():	This	is	a	global	Jasmine	function	that	contains	two	parameters:	a	string	and
a	function.	The	string	is	the	name	of	the	functionality	that	is	going	to	be	tested.	The
function	contains	the	code	that	actually	implements	the	Jasmine	suite	and	contains	logic
of	unit	tests.
it():	Here,	specs	are	defined	by	calling	the	global	Jasmine	function	it().	This	also
takes	the	string	and	function,	where	it	contains	the	actual	unit	test	name	and	the	function
block	contains	the	actual	logic	of	the	code	to	be	executed	followed	with	the	expected
results.
expect():	The	expected	results	can	be	specified	by	using	the	expect()	function	that	takes
some	value	defined	within	the	it()	function.	This	is	also	chained	with	a	matcher
function,	such	as	toBe()	or	not.toBe(),	to	match	or	unmatch	the	expected	value.

In	.NET,	it	is	equivalent	to	the	Arrange,	Act,	and	Assert	pattern.	Here,	Arrange	is	used	to
initialize	objects	and	set	values	of	the	data	that	is	passed	to	the	method	under	test.	The	Act
pattern	actually	invokes	the	method	under	test,	and	Assert	verifies	that	the	method	under	test
behaves	as	expected.

Running	test	task

Running	these	tasks	is	straightforward,	it	can	simply	be	run	through	the	Task	Runner
Explorer	window	in	Visual	Studio	2015.	Here	is	the	screenshot	of	the	Task	Runner	Explorer
window	that	shows	the	tasks	defined	in	Gruntfile.js:

When	we	run	the	test	task,	it	will	show	something	similar	to	the	following	output:

In	our	product.test.js	test	script,	we	have	two	tasks.	One	is	to	check	whether	passing	the
string	values	to	one	of	the	two	elements	such	as	txtProdUnitPrice	and	txtProdQuantity	will
return	0.	As	our	product.js	file	does	not	handle	this	condition,	it	will	give	an	error.

To	fix	this,	we	will	modify	our	product.js	and	add	these	two	lines	to	handle	this	logic	to
check	whether	the	value	is	a	number	or	not:

prodUnitPrice	=	isNaN(prodUnitPrice)	?	0	:	prodUnitPrice;

prodQuantity	=	isNaN(prodQuantity)	?	0	:	prodQuantity;

Now,	when	we	run	our	test	again,	we	will	get	the	following	output:

In	the	preceding	example,	we	defined	the	HTML	markup	within	the	beforeEach()	function	in
the	product.test.js	file.	With	simple	applications,	this	may	not	be	a	cumbersome	process	to
redefine	the	HTML	markup	as	fixtures	and	use	them	to	execute	tests.	However,	most	web
applications	are	using	some	client-side	frameworks	such	as	Knockout,	AngularJS,	and	so	on,
that	separates	the	binding	of	controls	specified	in	an	HTML	view	to	a	ViewModel,	and	this
ViewModel	is	responsible	to	read	or	write	control	values.

In	the	following	example,	we	will	use	the	Knockout	JavaScript	library	that	implements	an
Model-View-ViewModel	pattern	and	see	how	unit	tests	can	be	written	in	this	way.

Implementing	Model-View-ViewModel	using	Knockout	and	Run	test

Model-View-ViewModel	(MVVM)	is	a	design	pattern	for	building	user	interfaces.	It	is
divided	into	three	parts,	as	show	in	the	following	diagram:

These	three	parts	are	described	as	follows:

Model:	This	contains	the	backend	logic	to	invoke	backend	services	and	save	or	retireve
data	by	communicating	with	the	persistant	storage.
ViewModel:	This	contains	the	view-specific	operations	and	data.	It	represents	the	model
of	the	view	to	which	the	view	elements	binds	to.	For	example,	a	form	that	contains	some
HTML	elements	will	have	a	ViewModel,	which	is	an	object	containing	some	properties
to	bind	these	controls	with	the	data.

View:	This	is	the	user	interface	to	which	the	user	interacts.	It	displays	information	from
the	ViewModel,	raises	events	at	the	ViewModel,	and	updates	it	when	the	ViewModel
changes.

Let's	implement	the	MVVM	pattern	using	the	Knockout	JavaScript	library	using	the
following	steps.

Adding	the	Knockout	package

To	start	with,	let's	add	Knockout.js	in	your	ASP.NET	Core	application	through	bower.json.	It
can	be	added	by	making	an	entry	in	the	dependencies	section	of	the	bower.json	file,	and
Visual	Studio	automatically	downloads	the	package	and	places	it	in	the
wwwroot/lib/knockout	folder.

The	following	statement	can	be	added	in	the	bower.json	file:

"knockout":	"3.4.0",

Adding	ProductViewModel

ProductViewModel	contains	properties	such	as	the	product	code,	unit	price,	quantity,	expiry,
and	total	amount.	Here	is	the	code	snippet	of	ProductViewModel.js:

var	ProductViewModel	=	function	()	{

		this.prodCode	=	ko.observable('');

		this.prodUnitPrice	=	ko.observable(0);

		this.prodQuantity	=	ko.observable(0);

		this.prodExpiry	=	ko.observable('');

		this.prodTotalAmount	=0;

		ko.applyBindings(this);

		this.saveProduct=function(){

				var	unitPrice	=	this.prodUnitPrice();

				var	quantity	=	this.prodQuantity();

				var	total	=	unitPrice	*	quantity;

				this.prodTotalAmount	=	total;

				//call	some	service	to	save	product

		}

};

In	the	preceding	code	snippet,	we	have	a	ProductViewModel	class	that	contains	a	few
properties,	each	property	is	assigned	to	ko.observable().

ko	is	basically	the	Knockout	object	that	provides	a	complimentary	way	of	linking	an	object
model	to	the	View,	where	ko.observable()	is	a	Knockout	function	that	makes	the	Model
properties	observable	and	sync	with	the	View	data.	This	means	that	when	the	ViewModel
property's	value	changes,	View	is	updated;	and	when	the	control	value	is	modified,	the

ViewModel	property	is	updated.

Values	are	also	pre-populated	as	shown	in	the	following	code	snippet.	Passing	0	in	the
following	statement	will	set	the	control	value	0	when	the	control	binding	is	done:

this.prodUnitPrice	=	ko.observable(0)

ko.applyBindings()	actually	activates	Knockout	to	perform	the	binding	of	the	Model
properties	with	the	View	elements.

Add	the	Product	view

Knockout	provides	a	very	decent	way	of	binding	ViewModel	properties	to	the	control
elements.	Binding	consist	of	two	items,	name	and	value,	separated	by	a	colon.	To	bind	the
ViewModel	with	the	input	elements,	we	can	use	the	data-bind	attribute	and	specify	the	value
name	followed	with	:	and	ViewModel's	property	name.	Each	control	has	a	specific	set	of
properties	and	it	can	be	used	to	bind	elements	accordingly.

For	example,	the	span	element	can	bind	to	the	view	model	property	using	the	text	name	as
shown	in	the	following:

Product	code	is:	

Here	is	the	modified	version	of	the	Product	view:

<body>

		<div>

				<label>	Product	Code:	</label>

				<input	type="text"	data-bind="value:	prodCode"	/>

		</div>

		<div>

				<label>	Product	Unit	Price:	</label>

				<input	type="text"	data-bind="value:	prodUnitPrice"	/>

		</div>

		<div>

				<label>	Product	Expiry:	</label>

				<input	type="text"	data-bind="value:	prodExpiry"	/>

		</div>

		<div>

				<label>	Product	Quantity:	</label>

				<input	type="text"	data-bind="value:	prodQuantity"	/>

		</div>

		<div>

				<input	id="btnSaveProduct"	type="button"	value="Save	Product"	/>

		</div>

		<script	src="lib/knockout/dist/knockout.js"></script>

		<script	src="Js/ProductViewModel.js"></script>

		<script>

				(function	()	{

						var	prod	=	new	ProductViewModel();

						document.getElementById("btnSaveProduct").onclick	=	function	()	{	

prod.saveProduct();	};

				})();

		</script>

</body>

This	is	all	what	we	need	to	configure	Knockout	in	the	Product	view.	When	the
btnSaveProduct	button	is	clicked,	it	will	calculate	the	total	amount	and	call	the	product
service	to	save	the	record.

Modifying	test	configuration

Here	is	the	modified	version	of	Gruntfile.js	created	earlier.	We	added	the
ProductViewModel.js	and	the	Knockout	dependency	in	the	files	array:

/*

This	file	in	the	main	entry	point	for	defining	grunt	tasks	and	using	grunt	

plugins.

*/

module.exports	=	function	(grunt)	{

		grunt.initConfig({

				karma:	{

						unit:	{

								options:	{

										frameworks:	['jasmine'],

										singleRun:	true,

										browsers:	['PhantomJS'],

										files:	[

												'./wwwroot/lib/knockout/dist/knockout.js',

												'./wwwroot/js/ProductViewModel.js',

												'./wwwroot/test/**/product.test.js'

]

								}

						}

				}

		});

		grunt.loadNpmTasks('grunt-karma');

		grunt.registerTask('test',	['karma']);

};

Modifying	the	product-testing	script

As	we	are	not	dependent	on	the	HTML	view	directly,	we	can	test	our	unit	test	cases	through	the
Product	view	model.	Here	is	the	modified	version	of	product.test.js	that	does	not	have	any
of	the	fixtures	defined:

describe('Product',	function	()	{

		it('Expected	Total	Amount	should	be	600',	function	()	{

				var	product	=	new	ProductViewModel();

				product.prodQuantity(3);

				product.prodUnitPrice(200);

				product.saveProduct();

				expect(product.prodTotalAmount).toBe(600);

		});

});

The	following	output	will	be	generated	when	the	test	is	run:

Debugging	JavaScript
JavaScript	runs	on	client	browsers,	and	almost	all	browsers,	such	as	Internet	Explorer,
Microsoft	Edge,	Chrome,	and	Firefox,	provide	the	integrated	JavaScript	debugger	and
Developer	Tools	window.	With	Visual	Studio,	we	can	also	debug	the	JavaScript	code	by
setting	Internet	Explorer	as	the	default	browser.	Chrome	is	not	supported	out	of	the	box,	but
with	certain	steps,	its	can	be	achieved.

Debugging	options	in	Visual	Studio	2015
Visual	Studio	provides	certain	decent	features	to	debug	JavaScript	and	troubleshoot	errors.
JavaScript	debugging	in	Visual	Studio	only	works	with	Internet	Explorer.	Debugging	can	be
started	by	starting	the	application	in	a	debug	mode	and	then	placing	some	breakpoints	in	the
JavaScript	code.	When	the	breakpoint	is	hit,	we	can	use	all	sorts	of	debugging	options	in
Visual	Studio	that	we	already	know	of	and	used	in	debugging	the	C#	and	VB.NET	code.
Options	such	as	Step	into	(F11),	Step	over	(F10),	Step	out	(Shift	+	F11),	conditional
breakpoints,	and	watches,	all	work	with	the	JavaScript	code.

Debugging	from	Visual	Studio	with	Internet	Explorer

The	default	browser	in	Visual	Studio	for	a	particular	web	application	project	can	be	set	from
the	Web	Browser	(Internet	Explorer)	|	Internet	Explorer	option,	as	shown	in	the	following
screenshot:

Debugging	from	Visual	Studio	with	Google	Chrome
Visual	Studio	2015	does	not	provide	out-of-the-box	support	to	debug	JavaScript	applications,
except	with	Internet	Explorer.	Alternatively,	with	Node.js,	debugging	works	perfectly	fine	in
Visual	Studio,	and	as	technically,	both	Node.js	and	Google	Chrome	are	based	on	the	V8
engine,	there	is	no	drawback.

To	start	debugging	with	Chrome	in	Visual	Studio,	we	have	to	run	the	Google	chrome.exe	file
with	a	remote-debugger	argument.	The	following	command	runs	Google	Chrome	with
remote	debugging,	and	from	Visual	Studio,	it	can	be	attached	by	pointing	to	the	same	Chrome
instance:

chrome.exe	–	remote-debugging-port=9222

9222	is	the	default	port	where	Visual	Studio	connects	on	attaching	to	its	process.

From	the	Visual	Studio,	you	can	attach	the	process	by	hitting	Ctrl	+	Alt	+	P,	or	by	going	to
Debug	|	Attach	to	Process	in	menu	bar	and	selecting	the	Chrome	instance.

Developer	Tools
Almost	all	the	browsers	support	built-in	developer	tools	that	helps	to	debug	and	troubleshoot
JavaScript	errors.	These	tools	are	commonly	known	as	F12	tools	and	opens	up	the	Developer
Tools	window	by	hitting	the	F12	key.

Debugging	options	in	Microsoft	Edge

Microsoft	Edge	is	one	of	the	most	lightweight	web	browser	with	the	layout	engine	built
around	web	standards.	It	contains	some	new	features	such	as	Cortana,	annotation	tools,	and
reading	mode	that	gives	it	an	edge	over	other	browsers.

The	Developer	Tools	window	in	Microsoft	Edge	look	similar	to	the	following	image:

The	first	pane	in	the	top	left-hand	corner	is	the	Script	pane	that	shows	the	content	of	the
JavaScript	containing	the	page.

The	second	pane	in	the	the	top	right-hand	corner	is	a	Watches	pane	where	the	variable	values
are	displayed.

The	third	pane	in	the	the	bottom	left-hand	corner	is	the	console	window	where	messages	are
displayed,	all	the	messages	logged	using	console.log();	calls	are	printed	on	the	console
window.	Microsoft	Edge	provides	errors,	warnings,	and	messages	in	three	different	tabs	that

give	a	glimpse	at	the	errors,	warnings,	and	messages,	and	it	also	helps	the	developer	to
directly	jump	into	the	exact	code	snippet	by	clicking	on	the	error	line	link.

The	fourth	pane	is	the	Call	stack	and	Breakpoints.	Call	stack	shows	the	chain	of	function
calls	that	are	executed	and	it	is	helpful	to	understand	the	code-execution	flow.	For	example,	if
an	A()	method	calls	a	B()	method,	and	the	B()	method	calls	a	C()	method,	it	shows	the
complete	flow	of	execution	from	the	A()	method	to	the	C()	method.

The	Breakpoints	tab	shows	the	list	of	all	the	breakpoints	being	used	in	the	script,	and	the
users	can	manage	these	breakpoints	by	enabling	or	disabling	and	deleting	or	adding	new
events:

Debugging	can	only	start	if	the	F12	Developers	Tools	window	is	opened	and	this	can	be
opened	through	the	…	|	F12	Developer	Tools	window	option	from	menu	bar	or	by	hitting	the
F12	key.	Once	the	window	is	opened,	you	can	set	breakpoints	on	the	JavaScript	code	and	take
specific	actions	on	the	page.

The	following	table	shows	some	important	options	available	in	the	debugger	toolbar:

Icon Option Shortcut
Key Description

Continue F5	or	F8 This	releases	the	break	mode	and	continues	till	the	next
breakpoint.

Break Ctrl	+
Shift	+	B This	breaks	on	the	next	statement.

Step	Into F11 This	steps	into	the	function	being	called	or	the	next	statement.

Step	Over F10 This	steps	over	the	function	being	called	or	the	next	statement.

Step	Out Shift	+
F11

This	steps	out	of	the	current	function	and	into	the	calling
function.

Break	on
new	worker

Ctrl	+
Shift	+	W This	breaks	on	the	creation	of	a	new	web	worker.

Exception
Control

Ctrl	+
Shift	+	E

This	can	be	used	to	break	on	all	exceptions	or	unhandled
exceptions.	By	default,	it	is	set	to	ignore	exceptions.

Disconnect
Debugger

	 This	disconnects	the	debugger	and	no	breakpoints	run.

Debug	just
my	code Ctrl	+	J This	ignores	the	third-party	libraries	from	debugging.

Pretty	print Ctrl	+
Shift	+	P

This	searches	the	minified	version	of	the	JavaScript	block	and
makes	it	readible.

Word	wrap Alt	+	W This	wraps	the	sentence	to	adjust	it	as	per	the	content	pane	size.

Microsoft	Edge	provides	the	following	five	types	of	breakpoints:

Standard
Conditional
Tracepoints
XHR
Events

Standard	breakpoints

These	breakpoints	can	be	set	by	simply	selecting	the	statement	from	the	script	code:

Conditional	breakpoints

These	type	of	breakpoints	are	hit	when	specific	conditions	are	met	or	when	the	value	of	the
variable	reaches	a	specific	state.	For	example,	we	can	use	this	with	a	statement	inside	a	loop
and	break	the	execution	when	the	counter	reaches	a	value	of	10.

It	can	be	set	by	clicking	on	the	existing	breakpoint	and	selecting	Condition...	from	the
context	menu:

This	option	opens	up	the	Conditional	breakpoint	window	and	the	condition	can	be	set	as
shown	in	the	following	screenshot:

Once	the	condition	is	set,	the	icon	changes	to	

Tracepoints

Tracepoints	are	used	to	write	the	message	on	the	console	when	it	passed	through	the	statement
where	the	tracepoint	is	configured.	It	can	be	set	by	clicking	on	the	Insert	tracepoint	option
from	the	context	menu	shown	in	the	gutter	by	right-clicking:

Once	the	tracepoint	is	set,	the	icon	changes,	as	follows:

When	the	statement	is	executed,	it	will	print	the	message	on	a	console	window	as	shown	in	the
following	screenshot:

Event

Microsoft	Edge	provides	the	option	of	registering	event	tracepoints	and	breakpoints	from	the
Breakpoints	pane.	An	event	could	be	a	mouse	event,	keyboard	event,	or	timer	event.	This
feature	is	heavily	used	in	large	or	complex	web	applications	where	the	exact	location	of

specifying	the	breakpoint	is	not	known.	It	is	also	more	useful	in	cases	where	the	event
handlers	are	specified	at	multiple	places.	For	example,	if	a	page	contains	five	button	controls,
and	we	need	to	break	the	execution	whenever	any	button	raises	the	click	event,	we	can	simply
specify	the	mouse-click	event	through	the	breakpoint	event;	and	whenever	any	button	event	is
raised,	the	breakpoint	will	be	executed	and	will	focus	on	the	statement.

Add	event	tracepoint

A	user	can	add	event	tracepoints	with	the	help	of	the	following	option:

The	following	window	shows	the	registration	of	an	event	tracepoint	when	the	mouse	is
clicked:

Add	event	breakpoints

User	can	add	event	breakpoints	with	the	help	of	the	following	option:

The	following	window	shows	the	registration	of	an	event	breakpoint	when	the	mouse	is
clicked:

XHR

Just	like	events,	XHR	events	can	also	be	registered	from	the	Breakpoint	pane	of	browser.
These	events	are	invoked	when	any	of	the	Ajax	request	is	being	made	from	the	JavaScript
code.	A	user	can	register	the	XHR	event	from	the	icon	shown	in	the	following	screenshot:

Once	we	click	on	this	event,	it	will	be	added	in	the	Breakpoints	window,	as	shown	in	the
following	screenshot:

Debugging	TypeScript
In	Chapter	5,	Developing	an	ASP.NET	Application	Using	Angular	2	and	Web	API,	we	already
discussed	TypeScript	and	how	it	transpiles	into	the	JavaScript	code	that	eventually	runs	on	the
browser.	The	developers	write	code	in	TypeScript,	but	on	the	browser,	a	generated	JavaScript
file	is	run.	When	the	TypeScript	file	is	transpiled	to	a	JavaScript	file,	a	mapping	file	is
generated	with	a	*.map.js	extension.	This	file	contains	the	information	about	the	actual
TypeScript	file	and	the	generated	JavaScript	file.	Not	only	this,	but	the	generated	JavaScript
file	also	contains	one	entry	about	the	mapping	file	that	actually	tells	the	browsers	to	load	the
corresponding	source	TypeScript	file	by	reading	the	mapping	file.

Here	is	the	entry	that	every	generated	JavaScript	file	contains	when	it	is	transpiled	from
TypeScript:

//#	

sourceMappingURL=http://localhost:12144/todosapp/apps/createTodo.component.js.map

This	can	be	configured	from	the	TSConfig.json	file	through	the	sourceMap	property.	If	the
sourceMap	property	is	true,	it	generates	the	mapping	file	and	makes	an	entry	in	the	generated
JavaScript	file.	Also,	when	working	in	an	ASP.NET	Core	application,	all	the	static	files	have
to	be	in	the	wwwroot	folder.	So,	to	debug	the	typescripts,	all	the	corresponding	typescript	(.ts)
files	have	to	be	moved	to	any	folder	under	the	wwwroot	folder	so	that	it	can	be	accessible	from
the	browser.

Here	is	the	debugger	window,	showing	the	list	of	TypeScript	files	on	the	left-hand	side	and	the
icon	in	the	upper-right	corner	to	toggle	between	the	source	file	and	compiled	JavaScript
version:

Debugger	keyword	supported	by	all	browsers
We	can	also	explicitly	force	to	break	the	control	at	some	point	through	the	debugger
keyword.	If	the	breakpoint	is	not	set,	but	the	debugger	keyword	is	specified,	the	debugging
will	be	enabled	and	break	the	execution.	It	can	be	set	from	code	as	shown	in	the	following
screenshot:

Summary
In	this	chapter,	we	discussed	how	JavaScript	applications	can	be	tested	and	debugged.	For
testing	JavaScript	applications,	we	discussed	the	Jasmine	testing	suite	that	can	be	easily
plugged	in	with	Karma,	which	is	a	test	runner	and	can	be	used	with	Grunt	to	be	executed	from
Visual	Studio	Task	Runner	Explorer	window.	We	also	discussed	the	basics	of	the	MVVM
pattern	and	how	to	implement	it	using	the	Knockout	JavaScript	library.	We	then	modified	the
test	case	to	work	with	the	View	model.	For	debugging,	we	discussed	some	tips	and	techniques
of	debugging	JavaScript	with	Visual	Studio	and	what	Microsoft	Edge	offers	through	the
Developer	Tools	window	to	make	debugging	easy.	In	the	end,	we	also	learned	about	the	basic
topics	such	as	how	Microsoft	Edge	enables	debugging	for	TypeScript	files	and	what
configurations	are	required	to	achieve	it.

Index
A

abstract	factory	pattern
about	/	Abstract	factory	pattern

Abstract	Syntax	Tree	(AST)	/	Compilation	architecture	of	TypeScript
access	control	keys

Access-Control-Allow-Origin	/	Calling	WCF	services	from	JavaScript
Access-Control-Allow-Headers	/	Calling	WCF	services	from	JavaScript
Access-Control-Allow-Method	/	Calling	WCF	services	from	JavaScript
Access-Control-Max-Age	/	Calling	WCF	services	from	JavaScript

adapter	pattern
about	/	Adapter	pattern

AJAX	events
about	/	Ajax	events

Ajax	events
local	events	/	Local	events
global	events	/	Global	events

AJAX	properties
accepts	/	Ajax	properties
async	/	Ajax	properties
cache	/	Ajax	properties
contents	/	Ajax	properties
contentType	/	Ajax	properties
crossDomain	/	Ajax	properties
data	/	Ajax	properties
dataType	/	Ajax	properties

AJAX	request
options,	URL	/	Pre-filtering	Ajax	requests
default	values,	setting	/	Setting	default	values	for	all	future	Ajax	requests

Ajax	request
XHR	object,	using	/	Ajax	requests	using	the	classic	XHR	object
creating,	jQuery	used	/	Making	an	Ajax	request	using	jQuery

AJAX	request,	objects
options	/	Pre-filtering	Ajax	requests
originalOptions	/	Pre-filtering	Ajax	requests
jqXHR	/	Pre-filtering	Ajax	requests

Angular	2
about	/	Introduction	to	Angular	2
architecture	/	Angular	2	architecture
component	life	cycle	events	/	Events	of	component	life	cycle
modules	/	Modules
components	/	Components

dependency	injection	/	Dependency	injection	in	Angular
routing	/	Routing	in	Angular

Application	Programming	Interfaces	(APIs)	/	Web	applications	with	Node.js
arithmetic	operators

about	/	Arithmetic	operators
array

about	/	Array	in	JavaScript
ASP.NET	application

WinJS	library,	adding	/	Adding	the	WinJS	library	in	the	ASP.NET	application
WinJS,	using	/	Using	WinJS	in	the	ASP.NET	application

ASP.NET	Core
to-do	application,	developing	/	Developing	a	to-do	application	in	ASP.NET	Core
JSDoc3,	installing	/	Installing	JSDoc3	in	ASP.NET	Core

ASP.NET	core	application
creating	/	Creating	the	ASP.NET	core	application

assignment	operators
about	/	Assignment	operators

Asynchronous	JavaScript	and	XML	(Ajax)
about	/	Introducing	Ajax
working	/	How	Ajax	works
properties	/	Ajax	properties
AJAX	request,	pre-filtering	/	Pre-filtering	Ajax	requests
data	loading,	through	get	functions	/	Loading	data	through	the	get	functions	in
jQuery
post	function,	used	for	data	posting	/	Posting	data	to	server	using	the	post	function

B
behavioral	patterns

about	/	Behavioral	pattern
chain	of	responsibility	/	Chain	of	responsibility	pattern
observer	/	Observer	pattern
pub/sub	/	Pub/sub	pattern
promises	/	Promises

bitwise	operators
about	/	Bitwise	operators
bitwise	AND	/	Bitwise	AND
bitwise	OR	/	Bitwise	OR
bitwise	NOT	/	Bitwise	NOT
bitwise	XOR	/	Bitwise	XOR

bitwise	shift	operators
about	/	Bitwise	shift	operators
bitwise	left	shift	/	Bitwise	left	shift
bitwise	right	shift	/	Bitwise	right	shift

blank	Node.js	applications
creating	/	Creating	blank	Node.js	applications

BODMAS	rule	/	Grouping	operator
bridge	pattern

about	/	Bridge	pattern
browser	objects

about	/	Browser	Object	Models	in	JavaScript
window	/	Window
document	/	Document
navigator	/	Navigator
screen	/	Screen
history	/	History
location	/	Location

built-in	display	methods,	JavaScript
about	/	Built-in	display	methods	in	JavaScript
messages,	displaying	/	Displaying	messages
window.alert()	/	Alert	box
window.confirm()	/	Confirm	box
document.write()	method,	for	writing	on	page	/	Writing	on	a	page
console.log()	method,	for	writing	into	browser's	console	window	/	Writing	into	the
browser's	console	window

C
CDN	library	/	CDN
chain	of	responsibility	pattern

about	/	Chain	of	responsibility	pattern
Common	Language	Runtime	(CLR)	/	Comparing	runtimes
comparison	operators

about	/	Comparison	operators
strict	equal	operator	/	Strict	equal	operator
strict	not	equal	operator	/	Strict	not	equal	operator

complex	types
about	/	Data	types

component	life	cycle	events,	Angular	2
ngOnInit()	/	Events	of	component	life	cycle
ngOnDestroy()	/	Events	of	component	life	cycle
ngDoCheck()	/	Events	of	component	life	cycle
ngOnChanges(changes)	/	Events	of	component	life	cycle
ngAfterContentInit()	/	Events	of	component	life	cycle
ngAfterContentChecked()	/	Events	of	component	life	cycle
ngAfterViewInit()	/	Events	of	component	life	cycle
ngAfterViewChecked()	/	Events	of	component	life	cycle

conditional	breakpoints
about	/	Conditional	breakpoints

configuration	attributes,	unit	tests
frameworks	/	Adding	Karma	specifications
singleRun	/	Adding	Karma	specifications
browsers	/	Adding	Karma	specifications
files	/	Adding	Karma	specifications

contains	selector
about	/	The	contains	selector	in	jQuery

content	delivery	network	(CDN)
using	/	Using	a	content	delivery	network,	The	use	of	CDN
about	/	Using	a	content	delivery	network

core	benefits,	TypeScript
about	/	Advantages	of	TypeScript
superset	of	JavaScript	/	Superset	of	JavaScript
classes	and	modules,	support	for	/	Support	for	classes	and	modules
static	type	checking	/	Static	type	checking
ECMAScript	6	feature	support	/	ECMAScript	6	feature	support
optional	typing	/	Optional	typing
types,	declaring	/	Declaring	types	in	TypeScript

core	elements,	TypeScript
about	/	Core	elements	of	TypeScript
variable	declaration	/	Declaring	variables

types	/	Types
interfaces	/	Classes	and	interfaces
classes	/	Classes	and	interfaces
interfaces,	defining	/	Defining	interfaces
classes	and	interfaces,	deriving	/	Deriving	classes	and	interfaces
generic	classes	/	Generic	classes
functions	/	Functions
generic	functions	/	Generic	functions
iterators	/	Iterators
modules	/	Modules	and	namespaces
namespaces	/	Modules	and	namespaces

core	fundamentals,	of	JavaScript
about	/	Core	fundamentals	of	JavaScript
JavaScript,	adding	to	HTML	page	/	Adding	JavaScript	to	an	HTML	page
statements	/	Statements	in	JavaScript
literals	/	Literals	and	variables
variables	/	Literals	and	variables
data	types	/	Data	types
JavaScript	Object	Notation	(JSON)	/	What	is	JSON?

core	properties,	Angular2	components
about	/	Core	properties	of	Angular	2	components
templates	/	Templates	and	selectors
selectors	/	Templates	and	selectors
inputs	/	Inputs	and	outputs
outputs	/	Inputs	and	outputs
inputs,	using	/	Using	inputs
outputs,	using	/	Using	outputs
directives	/	Directives
providers	/	Providers

CORS
about	/	CORS
policy,	specifying	at	services	level	/	Specifying	the	CORS	policy	at	services	level
enabling,	at	Configure	method	/	Enable	CORS	at	the	Configure	method

Create,	Read,	Update	and	Delete	(CRUD)	operations	/	Creating	a	TodoServiceApp
project
creational	patterns

about	/	Creational	patterns
singleton	/	Singleton	design	pattern
factory	/	Factory	pattern
abstract	factory	/	Abstract	factory	pattern
prototype	/	Prototype	pattern

cross-origin	requests
about	/	Cross-origin	requests
JavaScript	Object	Notation	Padding	(JSON-P)	/	JSON-P

CORS	/	CORS
CRUD	(create,	retrieve,	update,	and	delete)	operations

about	/	Modularization

D
data

posting,	post	function	used	/	Posting	data	to	server	using	the	post	function
databinding

about	/	Databinding
one	time	databinding	/	One	time	databinding
one	way	databinding	/	One	way	databinding
two	way	databinding	/	Two	way	databinding
working	model	/	A	databinding	working	model

data	loading
through	get	functions,	in	jQuery	/	Loading	data	through	the	get	functions	in	jQuery

data	types
about	/	Data	types
primitive	types	/	Data	types
complex	types	/	Data	types
conversions	/	Conversions	in	data	types

debugger	keyword
about	/	Debugger	keyword	supported	by	all	browsers

debugging
JavaScript	/	Debugging	JavaScript
in	Visual	Studio	2015	/	Debugging	options	in	Visual	Studio	2015
from	Visual	Studio,	with	Internet	Explorer	/	Debugging	from	Visual	Studio	with
Internet	Explorer
from	Visual	Studio,	with	Google	Chrome	/	Debugging	from	Visual	Studio	with
Google	Chrome
with	Developers	Tools	/	Developer	Tools
in	Microsoft	Edge	/	Debugging	options	in	Microsoft	Edge
with	TypeScript	/	Debugging	TypeScript

decorator	pattern
about	/	Decorator	pattern

delete	operator
about	/	The	delete	operator

dependencies,	TodoWebApp	project
about	/	Dependencies
angular2	/	Dependencies
systemjs	/	Dependencies
reflect-metadata	/	Dependencies
rxjs	/	Dependencies
zone.js	/	Dependencies
development	dependencies	/	Development	dependencies,	Configuring	TypeScript
Gulp,	configuring	/	Configuring	Gulp

dependency	injection,	in	Angular
about	/	Dependency	injection	in	Angular

Developers	Tools
about	/	Developer	Tools
debugging	options,	in	Microsoft	Edge	/	Debugging	options	in	Microsoft	Edge

directives
about	/	Directives
components	/	Directives
structural	directive	/	Directives,	Structural	directives
attribute	directive	/	Directives,	Attribute	directive
simple	Hello	World	directive,	creating	/	Creating	a	simple	Hello	World	directive

documentation
generating	/	Generating	documentation
JSDoc3,	installing	in	ASP.NET	Core	/	Installing	JSDoc3	in	ASP.NET	Core

document	object
about	/	Document

Document	Object	Model	(DOM)
about	/	Importance	of	JavaScript

document	object	model	(DOM)	/	Using	WinJS	in	the	ASP.NET	application
document	ready	event

about	/	The	document	ready	event
DOM	elements

selecting,	ID	used	/	Selecting	the	DOM	elements	using	the	ID
selecting,	TagName	used	/	Selecting	the	DOM	elements	using	TagName
selecting,	by	attribute	value	/	Selecting	by	the	attribute	value
manipulating	/	Manipulating	DOM
properties,	modifying	/	Modifying	an	element's	properties
URL,	for	methods	/	Modifying	an	element's	properties
get	method	/	Modifying	an	element's	properties
set	method	/	Modifying	an	element's	properties
creating	/	Creating	new	elements
attributes,	removing	/	Removing	elements	and	attributes
removing	/	Removing	elements	and	attributes

DOM	elements,	methods
append()	/	Creating	new	elements
appendTo()	/	Creating	new	elements
before()	/	Creating	new	elements
after()	/	Creating	new	elements
insertAfter()	/	Creating	new	elements
insertBefore()	/	Creating	new	elements
prepend()	/	Creating	new	elements
detach()	/	Removing	elements	and	attributes
remove()	/	Removing	elements	and	attributes
removeAttr()	/	Removing	elements	and	attributes
removeClass()	/	Removing	elements	and	attributes
removeProp()	/	Removing	elements	and	attributes

DOM	elements,	methods
empty()	/	Removing	elements	and	attributes

E
EJS	view	engine

about	/	EJS	view	engine
elements,	of	JavaScript

about	/	Elements	of	JavaScript
constants	/	Constants	in	JavaScript
comments	/	Comments
case	sensitivity	/	Case	sensitivity
character	set	/	Character	set

entity-relationship	model	(ERD)
about	/	Inheritance

environment
setting	up	/	Setting	up	your	environment

event,	Microsoft	Edge
event	tracepoint,	adding	/	Add	event	tracepoint
event	breakpoints,	adding	/	Add	event	breakpoints

event-driven	messaging
about	/	Event-driven	messaging
mediator	pattern,	implementing	/	Implementing	mediator	pattern	for
communication	between	modules
complex	code,	encapsulating	/	Encapsulating	complex	code

events
about	/	Events	in	JavaScript
handling,	in	jQuery	/	Event	handling	in	jQuery
registering,	in	jQuery	/	Registering	events	in	jQuery
click()	/	Registering	events	in	jQuery
dblclick()	/	Registering	events	in	jQuery
mousedown()	/	Registering	events	in	jQuery
mouseup()	/	Registering	events	in	jQuery
mouseenter()	/	Registering	events	in	jQuery
mouseleave()	/	Registering	events	in	jQuery
keydown()	/	Registering	events	in	jQuery
keyup()	/	Registering	events	in	jQuery
focus()	/	Registering	events	in	jQuery
blur()	/	Registering	events	in	jQuery
change()	/	Registering	events	in	jQuery
URL	/	Registering	events	in	jQuery
binding,	on	and	off	used	/	Binding	events	using	on	and	off
hover	events,	using	/	Using	the	hover	events

/	Events	in	WinJS
exception	handling,	OOP

about	/	Exception	handling
Error	/	Error

RangeError	/	RangeError
ReferenceError	/	ReferenceError
TypeError	/	TypeError
URIError	/	URIError

Express	framework	for	web	applications,	in	Node.js
using	/	Using	the	Express	framework	for	web	applications	in	Node.js
simple	Node.js,	extending	/	Extend	simple	Node.js	to	use	Express
Express	view	engines	/	Express	view	engines

expressions
about	/	Expressions
this	keyword	/	The	this	keyword
sequence,	of	code	execution	/	Sequence	of	code	execution	in	JavaScript
this	keyword,	using	on	calling	method	/	Using	the	this	keyword	on	a	calling	method
function	statement	/	The	function	statement	and	expression
function	expression	/	The	function	statement	and	expression
class	statement	/	Class	statement	and	expression
class	expression	/	Class	statement	and	expression
grouping	operator	/	Grouping	operator
new	keyword	/	new
super	keyword	/	super

Express	view	engines
about	/	Express	view	engines
EJS	view	engine	/	EJS	view	engine
Jade	view	engine	/	Jade	view	engine
routing,	in	Express	application	/	Routing	in	the	Express	application

F
factory	pattern

about	/	Factory	pattern
façade	pattern

about	/	Facade	pattern
function	arguments

about	/	Function	arguments

G
get	functions

used,	for	data	loading	/	Loading	data	through	the	get	functions	in	jQuery
jQuery.get(),	using	/	Using	jQuery.get()
jQuery.getJSON(),	using	/	Using	jQuery.getJSON()
jQuery.getScript(),	using	/	Using	jQuery.getScript()

global	events,	AJAX
ajaxStart	/	Global	events
ajaxSend	/	Global	events
ajaxSuccess	/	Global	events
ajaxError	/	Global	events
ajaxComplete	/	Global	events

Google	Chrome
used,	for	debugging	from	Visual	Studio	/	Debugging	from	Visual	Studio	with
Google	Chrome

Grunt
used,	for	writing	unit	tests	/	Grunt

Grunt	file
adding	/	Adding	the	Grunt	file
Karma	specifications,	adding	/	Adding	Karma	specifications
npm	task,	loading	/	Load	npm	task
task,	registering	/	Register	task

Gulp	module
Gulp	/	Deployment	optimization
gulp-concat	/	Deployment	optimization
gulp-cssmin	/	Deployment	optimization
gulp-uglify	/	Deployment	optimization

H
history	object

about	/	History
methods	/	Methods

hover	events
using	/	Using	the	hover	events

I
ID

used,	for	selecting	DOM	elements	/	Selecting	the	DOM	elements	using	the	ID
IIFE	(immediately	invoked	function	expression)

about	/	Implementing	the	module	pattern
indexOf()	method

about	/	Array	in	JavaScript
inheritance

about	/	Inheritance
constructors,	chaining	in	JavaScript	/	Chaining	constructors	in	JavaScript
Object.create()	used	/	Inheritance	using	Object.create()
defining,	class	used	/	Defining	inheritance	using	class

input	elements
selecting	/	Selecting	input	elements

Integrated	Development	Environment	(IDE)	/	Using	Node.js	with	Visual	Studio	2015
Intermediate	Language	(IL)	code	/	Comparing	runtimes
Internet	Explorer

used,	for	debugging	from	Visual	Studio	/	Debugging	from	Visual	Studio	with
Internet	Explorer

J
Jade	language

URL	/	Jade	view	engine
Jade	view	engine

about	/	Jade	view	engine
Jasmine

used,	for	writing	unit	tests	/	Jasmine
describe()	function	/	Adding	unit	test	script	file
it()	function	/	Adding	unit	test	script	file
expect()	function	/	Adding	unit	test	script	file

JavaScript
importance	/	Importance	of	JavaScript
about	/	What	is	JavaScript?
runtimes,	comparing	/	Comparing	runtimes
programming	/	Programming	in	JavaScript
WCF	services,	calling	/	Calling	WCF	services	from	JavaScript
debugging	/	Debugging	JavaScript

JavaScript	code
modularizing,	through	RequireJS	/	Modularizing	JavaScript	code	through
RequireJS
testing	/	Testing	the	JavaScript	code

JavaScript	design	patterns
creational	/	Creational	patterns
structural	/	Structural	patterns
behavioral	/	Behavioral	pattern

JavaScript	Object	Notation	Padding	(JSON-P)
about	/	JSON-P
using	/	Using	JSON-P

JavaScript	property	descriptors
about	/	JavaScript	property	descriptors
writable	/	JavaScript	property	descriptors
enumerable	/	JavaScript	property	descriptors
configurable	/	JavaScript	property	descriptors
displaying	/	Display	property	descriptors
managing	/	Managing	property	descriptors
getters	and	setters,	using	/	Using	getters	and	setters

JavaScript	typed	arrays
about	/	JavaScript	typed	arrays
architecture	/	Typed	array	architecture
array	buffer	/	The	array	buffer
buffer,	creating	/	Creating	a	buffer

jQuery
URL	/	Getting	started	with	jQuery

about	/	Getting	started	with	jQuery
content	delivery	network	(CDN),	using	/	Using	a	content	delivery	network
document	ready	event	/	The	document	ready	event
selectors	/	The	jQuery	selectors
events,	handling	/	Event	handling	in	jQuery
events,	registering	/	Registering	events	in	jQuery
used,	for	creating	Ajax	request	/	Making	an	Ajax	request	using	jQuery
.ajax()	/	jQuery.ajax()
data	loading,	through	get	functions	/	Loading	data	through	the	get	functions	in
jQuery

jQuery.get()	function
using	/	Using	jQuery.get()

jQuery.getJSON()	function
using	/	Using	jQuery.getJSON()

jQuery.getScript()	function
using	/	Using	jQuery.getScript()

jQuery	selectors
about	/	The	jQuery	selectors
DOM	elements,	selecting	ID	used	/	Selecting	the	DOM	elements	using	the	ID
DOM	elements,	selecting	TagName	used	/	Selecting	the	DOM	elements	using
TagName
nodes,	selecting	by	class	name	/	Selecting	nodes	by	the	class	name
DOM	elements,	selecting	by	attribute	value	/	Selecting	by	the	attribute	value
input	elements,	selecting	/	Selecting	input	elements
elements,	selecting	/	Selecting	all	the	elements
first	child	elements,	selecting	/	Selecting	the	first	and	last	child	elements
last	child	elements,	selecting	/	Selecting	the	first	and	last	child	elements
contains	selector	/	The	contains	selector	in	jQuery
odd	rows	selector,	selecting	/	Selecting	the	even	and	odd	rows	selectors
even	rows	selector,	selecting	/	Selecting	the	even	and	odd	rows	selectors

JSDoc3
installing,	in	ASP.NET	Core	/	Installing	JSDoc3	in	ASP.NET	Core
comments,	adding	/	Adding	comments
URL	/	Adding	comments

JSON
about	/	What	is	JSON?
simple	objects	/	Simple	objects	in	JSON
arrays,	declaring	/	Declaring	arrays	in	JSON
data,	nesting	/	Nesting	data	in	JSON

just-in-time	(JIT)	compilation	/	Comparing	runtimes

K
Karma

used,	for	writing	unit	tests	/	Karma
URL,	for	configuration	file	/	Adding	Karma	specifications

Knockout
used,	for	implementing	Model-View-ViewModel	(MVVM)	/	Implementing	Model-
View-ViewModel	using	Knockout	and	Run	test
package,	adding	/	Adding	the	Knockout	package
ProductViewModel,	adding	/	Adding	ProductViewModel
Product	view,	adding	/	Add	the	Product	view
test	configuration,	modifying	/	Modifying	test	configuration
product-testing	script,	modifying	/	Modifying	the	product-testing	script

L
large	scale	application

designing	/	Think	before	proceeding
lastIndexOf()	method

about	/	Array	in	JavaScript
let

used,	for	declaring	/	Declaring	let
conditions	/	Conditions	where	let	is	efficient	to	use
functions	in	loops	/	Functions	in	loops

load	testing
about	/	Testing	the	JavaScript	code

local	events,	AJAX
beforeSend	/	Local	events
success	/	Local	events
error	/	Local	events
complete	/	Local	events

location	object
about	/	Location
properties	/	Properties
methods	/	Methods

logical	operators
about	/	Logical	operators
Logical	AND	/	Logical	AND
Logical	OR	/	Logical	OR
Logical	NOT	/	Logical	NOT

M
main	to-do	page,	TodoWebApp	project

creating	/	Creating	the	main	to-do	page
custom	to-do	tag	helper,	creating	/	Creating	a	custom	to-do	tag	helper
-do	MVC	controller,	adding	/	Adding	a	to-do	MVC	controller
views,	generating	for	TodoController	action	methods	/	Generating	views	for	the
TodoController	action	methods
Create	Todo	component,	developing	/	Developing	the	Create	Todo	component

mediator	pattern
implementing,	for	communication	between	modules	/	Implementing	mediator
pattern	for	communication	between	modules

messages,	displaying
alert	box	/	Alert	box
confirm	box	/	Confirm	box
prompt	box	/	Prompt	box

methods,	OOP
about	/	Methods
defining,	object	literal	notation	used	/	Defining	methods	through	object	literal
notation	approach
defining,	constructor	function	used	/	Defining	objects	using	the	constructor	function
approach
extending	/	Extending	properties	and	methods

Microsoft	Edge
debugging	options	/	Debugging	options	in	Microsoft	Edge
standard	breakpoints	/	Standard	breakpoints
conditional	breakpoints	/	Conditional	breakpoints
tracepoints	/	Tracepoints
event	/	Event
XHR	/	XHR

Microsoft	SQL	server,	accessing	in	Node.js
about	/	Accessing	the	Microsoft	SQL	server	in	Node.js
record,	reading	/	Reading	a	record	from	the	Microsoft	SQL	server	database
record,	creating	/	Creating	a	record	in	the	Microsoft	SQL	server	database

Middleware
about	/	Middleware

miscellaneous	operators
conditional	operators	/	Conditional	operators
spread	operator	/	Spread	operator

mixin	/	Mixin
Model-View-ViewModel	(MVVM)

implementing,	Knockout	used	/	Implementing	Model-View-ViewModel	using
Knockout	and	Run	test

modularization

about	/	Modularization
module	pattern,	implementing	/	Implementing	the	module	pattern
JavaScript	code,	modularizing	through	RequireJS	/	Modularizing	JavaScript	code
through	RequireJS

modules
creating,	RequireJS	API	used	/	Creating	modules	using	the	RequireJS	API
defining,	in	CommonJS	style	/	Creating	modules	using	the	RequireJS	API
defining,	in	AMD	style	/	Creating	modules	using	the	RequireJS	API

mssql	node	package
reference	/	Creating	a	record	in	the	Microsoft	SQL	server	database

MVC,	with	Express	framework
about	/	MVC	with	the	Express	framework
MVC	pattern	/	MVC	pattern
controller,	creating	/	Creating	a	controller
data	services,	creating	/	Creating	data	services

N
namespace	/	Namespaces	in	WinJS
navigator	object

about	/	Navigator
properties	/	Properties

Node.js
about	/	Introduction	to	Node.js
versus	.NET	/	Comparison	of	Node.js	with	.NET
Node	Package	Manager	(NPM)	/	NPM
installing	/	Installing	Node.js
URL	/	Installing	Node.js
using,	with	Visual	Studio	2015	/	Using	Node.js	with	Visual	Studio	2015
for	simple	console	application	/	Simple	console	application	using	Node.js
blank	Node.js	applications,	creating	/	Creating	blank	Node.js	applications
Express	framework,	using	for	web	applications	/	Using	the	Express	framework	for
web	applications	in	Node.js
Microsoft	SQL	server,	accessing	/	Accessing	the	Microsoft	SQL	server	in	Node.js

Node.js	web	server
request,	processing	by	/	Request	processing	by	the	Node.js	web	server

node	package	manager	(npm)
about	/	Adding	Karma	specifications

Node	Package	Manager	(NPM)	/	Adding	the	WinJS	library	in	the	ASP.NET	application
nodes

selecting,	by	class	name	/	Selecting	nodes	by	the	class	name
NPM	/	NPM
NuGet	/	NuGet

O
object

about	/	Data	types
object-oriented	programming	(OOP)

about	/	Object-oriented	programming	in	JavaScript
objects,	creating	/	Creating	objects
private	and	public	members	/	Private	and	public	members
inheritance	/	Inheritance
encapsulation	/	Encapsulation
abstraction	/	Abstraction
new.target	property	/	new.target
namespace	/	Namespace
exception	handling	/	Exception	handling
closures	/	Closures
closures,	practical	use	/	Practical	use
JavaScript	typed	arrays	/	JavaScript	typed	arrays
maps	/	Maps,	sets,	weak	maps,	and	weak	sets
maps	and	weak	maps	/	Maps	and	weak	maps
sets	and	weak	sets	/	Sets	and	weak	sets
strict	mode	/	The	strict	mode

Object.create()
used,	for	inheritance	/	Inheritance	using	Object.create()
predefined	properties	/	Predefined	properties	of	Object.create()

objects,	OOP
creating	/	Creating	objects
defining,	object	literal	notation	used	/	Defining	objects	using	object	literal	notation
defining,	constructor	pattern	used	/	Defining	objects	using	a	constructor	pattern
class	keyword,	using	/	Using	the	class	keyword

observer	pattern
about	/	Observer	pattern

one	time	databinding	/	One	time	databinding
one	way	databinding	/	One	way	databinding
open	authentication	(OAuth)	/	Maps	and	weak	maps
operators

about	/	Operators
assignment	operators	/	Assignment	operators
arithmetic	operators	/	Arithmetic	operators
unary	operators	/	Unary	operators
comparison	operators	/	Comparison	operators
logical	operators	/	Logical	operators
bitwise	operators	/	Bitwise	operators
bitwise	shift	operators	/	Bitwise	shift	operators
typeof	operator	/	The	typeof	operator

void	operator	/	The	void	operator
delete	operator	/	The	delete	operator
miscellaneous	operators	/	Miscellaneous	operators

P
pop()	method

about	/	Array	in	JavaScript
post	function

used,	for	data	posting	/	Posting	data	to	server	using	the	post	function
primitive	types

Boolean	/	Data	types
null	/	Data	types
undefined	/	Data	types
number	/	Data	types
string	/	Data	types

programming,	in	JavaScript
about	/	Programming	in	JavaScript
core	fundamentals	/	Core	fundamentals	of	JavaScript
elements	/	Elements	of	JavaScript
expressions	/	Expressions
operators	/	Operators
built-in	display	methods	/	Built-in	display	methods	in	JavaScript
Browser	Object	Models	/	Browser	Object	Models	in	JavaScript

promises
about	/	Promises,	Promises
operations	/	Other	operations	of	promises
chaining	/	Chaining	promises	and	handling	errors
errors,	handling	/	Chaining	promises	and	handling	errors
cancelling	/	Canceling	promises
joining	/	Joining	promises
checking	/	Checking	promise
non-promise,	wrapping	into	promise	/	Wrapping	non-promise	into	promise

properties,	OOP
about	/	Properties
defining,	object	literal	notation	used	/	Defining	properties	using	object	literal
notation
defining,	constructor	pattern	used	/	Defining	properties	using	a	constructor	pattern
defining,	setters/getters	used	/	Defining	properties	using	setters/getters	in
ECMAScript	6
JavaScript	property	descriptors	/	JavaScript	property	descriptors
extending	/	Extending	properties	and	methods

prototype	pattern
about	/	Prototype	pattern

pub/sub	pattern
about	/	Pub/sub	pattern

push()	method
about	/	Array	in	JavaScript

R
RequireJS

JavaScript	code,	modularizing	/	Modularizing	JavaScript	code	through	RequireJS
API,	used	for	creating	modules	/	Creating	modules	using	the	RequireJS	API
bootstrapping	/	Bootstrapping	RequireJS

reverse()	method
about	/	Array	in	JavaScript

routing,	in	Angular
about	/	Routing	in	Angular

S
scalable	and	maintainable	applications

developing	/	Developing	highly	scalable	and	maintainable	applications
modularization	/	Modularization
event-driven	messaging	/	Event-driven	messaging
documentation,	generating	/	Generating	documentation
deployment	optimization	/	Deployment	optimization

screen	object
about	/	Screen
properties	/	Properties

shift()	method
about	/	Array	in	JavaScript

simple	console	application
Node.js	used	/	Simple	console	application	using	Node.js

singleton	design	pattern
about	/	Singleton	design	pattern

splice()	method
about	/	Array	in	JavaScript

standard	breakpoints
about	/	Standard	breakpoints

structural	patterns
about	/	Structural	patterns
adapter	/	Adapter	pattern
decorator	/	Decorator	pattern
façade	/	Facade	pattern
bridge	/	Bridge	pattern

T
TagName

used,	for	selecting	DOM	elements	/	Selecting	the	DOM	elements	using	TagName
testing

unit	testing	/	Unit	testing
to-do	application,	developing	in	ASP.NET	Core

about	/	Developing	a	to-do	application	in	ASP.NET	Core
Common	project,	creating	/	Creating	a	Common	project
TodoServiceApp	project,	creating	/	Creating	a	TodoServiceApp	project
TodoWebApp	project,	creating	/	Creating	a	TodoWebApp	project

TodoServiceApp	project
creating	/	Creating	a	TodoServiceApp	project
MVC,	enabling	/	Enabling	MVC	in	a	Web	API	project
Entity	Framework,	installing	/	Installing	Entity	Framework
AppSettings,	adding	for	storing	connection	string	/	Adding	AppSettings	to	store	a
connection	string
AppSettings,	configuring	in	Startup	class	/	Configuring	AppSettings	in	the	Startup
class
data	access,	adding	in	Web	API	/	Adding	data	access	in	Web	API
CORS,	enabling	in	ASP.NET	Web	API	/	Enabling	CORS	in	the	ASP.NET	Web	API
database	migration,	running	/	Running	database	migration
controller,	creating	/	Creating	a	controller

TodoWebApp	project
creating	/	Creating	a	TodoWebApp	project
Angular	2,	configuring	/	Configuring	Angular	2	in	the	TodoWebApp	project
dependencies	/	Dependencies
Angular	components,	adding	/	Adding	Angular	components
-do	service	component,	adding	/	Adding	the	to-do	service	component
to-do	view	component,	adding	/	Adding	a	to-do	view	component
main	to-do	page,	creating	/	Creating	the	main	to-do	page

toString()	method
about	/	Array	in	JavaScript

tracepoints
about	/	Tracepoints

two	way	databinding	/	Two	way	databinding
typeof	operator

about	/	The	typeof	operator
values	/	The	typeof	operator

TypeScript
about	/	TypeScript
compilation	architecture	/	Compilation	architecture	of	TypeScript
benefits	/	Advantages	of	TypeScript
core	elements	/	Core	elements	of	TypeScript

reference	/	Modules	and	namespaces
debugging	/	Debugging	TypeScript

U
unary	operators

about	/	Unary	operators
decrement	/	Unary	operators
increment	/	Unary	operators
logical	complement	operator	/	Unary	operators

unit	testing
about	/	Unit	testing

unit	tests
writing	/	Writing	unit	tests
writing,	with	Jasmine	/	Jasmine
writing,	with	Karma	/	Karma
writing,	with	Grunt	/	Grunt
developing	/	Developing	unit	test	using	Jasmine,	Karma,	and	Grunt
packages,	adding	/	Adding	packages
Grunt	file,	adding	/	Adding	the	Grunt	file
source	JavaScript	file,	using	/	Source	JavaScript	file
script	file,	adding	/	Adding	unit	test	script	file
test	task,	executing	/	Running	test	task
Model-View-ViewModel	(MVVM),	implementing	/	Implementing	Model-View-
ViewModel	using	Knockout	and	Run	test
executing	/	Implementing	Model-View-ViewModel	using	Knockout	and	Run	test

Universal	App	Platform	(UAP)	/	Usage	of	WinJS
Universal	Windows	Platform	(UWP)	/	Usage	of	WinJS
unshift()	method

about	/	Array	in	JavaScript
user	acceptance	testing	(UAT)

about	/	Unit	testing
user	interface	(UI)	/	Importance	of	JavaScript,	Introduction	to	WinJS
user	interface	(UI)	testing	/	Testing	the	JavaScript	code

V
variables

about	/	Variables	–	scope	and	hoisting
hoisting	/	Variables	–	scope	and	hoisting
let,	for	declaring	/	Declaring	let

variables	scope	/	Variables	–	scope	and	hoisting
Visual	Studio

existing	Windows	app	template	/	Existing	Windows	app	template	in	Visual	Studio
debugging	from,	with	Internet	Explorer	/	Debugging	from	Visual	Studio	with
Internet	Explorer
debugging,	with	Google	Chrome	/	Debugging	from	Visual	Studio	with	Google
Chrome

Visual	Studio	2015
debugging	options	/	Debugging	options	in	Visual	Studio	2015

Visual	Studio	2015	community	edition
URL	/	Setting	up	your	environment

Visual	Studio	2015	IDE
new	editing	experience,	of	JavaScript	/	New	editing	experience	of	JavaScript	in
Visual	Studio	2015	IDE
improvements	/	New	editing	experience	of	JavaScript	in	Visual	Studio	2015	IDE

void	operator
about	/	The	void	operator

W
WCF	services

calling,	from	JavaScript	/	Calling	WCF	services	from	JavaScript
window	object

about	/	Window
Windows	runtime	features

using	/	Using	Windows	runtime	features
hosted	apps	/	Hosted	apps	and	accessing	the	camera
camera,	accessing	/	Hosted	apps	and	accessing	the	camera
ASP.NET	core	application,	creating	/	Creating	the	ASP.NET	core	application
ASP.NET	application	converting	into	windows	application,	Hosted	app	concept	used
/	Converting	an	ASP.NET	application	into	Windows	application	using	the	Hosted
app	concept

WinJS
about	/	Introduction	to	WinJS
uses	/	Usage	of	WinJS
starting	/	Getting	started	with	WinJS
using,	in	ASP.NET	application	/	Using	WinJS	in	the	ASP.NET	application
existing	Windows	app	template,	in	Visual	Studio	/	Existing	Windows	app	template	in
Visual	Studio
controls,	adding	/	Adding	WinJS	controls
controls,	properties	setting	/	Setting	properties	of	WinJS	controls

WinJS,	core	fundamentals
exploring	/	Exploring	WinJS	core	fundamentals
classes	/	Classes	and	namespaces
namespaces	/	Classes	and	namespaces,	Namespaces	in	WinJS
classes,	defining	in	WinJS	/	Defining	classes	in	WinJS
classes,	deriving	in	WinJS	/	Deriving	classes	in	WinJS
mixin	/	Mixin
events	/	Events	in	WinJS
Databinding	/	Databinding

WinJS,	features
about	/	WinJS	features
JavaScript	coding	and	language	patterns	/	JavaScript	coding	and	language	patterns
stylesheets	/	Stylesheets
Windows	runtime	access	/	Windows	runtime	access
security	/	Security
App	model	/	App	model
Databinding	/	Databinding
controls	/	Controls
utilities	/	Utilities

WinJS	library,	adding	in	ASP.NET	application
about	/	Adding	the	WinJS	library	in	the	ASP.NET	application

CDN	library	/	CDN
NPM	/	NPM
NuGet	/	NuGet

X
XHR

about	/	XHR
XHR	object

used,	for	AJAX	request	/	Ajax	requests	using	the	classic	XHR	object
methods	/	XHR	methods
events	/	XHR	events
properties	/	XHR	properties

XHR	object,	headers
Cookie	/	XHR	methods
Host	/	XHR	methods
Connection	/	XHR	methods
Accept	/	XHR	methods
Accept-charset	/	XHR	methods
Accept-encoding	/	XHR	methods
Accept-language	/	XHR	methods
User-Agent	/	XHR	methods
Referer	/	XHR	methods

XHR	object,	methods
request,	sending	/	XHR	methods
void	send()	/	XHR	methods
void	send	(DOMString?	Data)	/	XHR	methods
void	send(Document	data)	/	XHR	methods
void	send(Blob	data)	/	XHR	methods
void	send(FormData	data)	/	XHR	methods
request,	aborting	/	XHR	methods
request	headers,	setting	/	XHR	methods
response	headers,	obtaining	/	XHR	methods

XHR	object,	properties
request	state,	obtaining	/	XHR	properties
response	state,	obtaining	/	XHR	properties
response	status,	obtaining	/	XHR	properties

XMLHttpRequest	(XHR)
about	/	How	Ajax	works

	JavaScript for .NET Developers
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	eBooks, discount offers, and more
	Why subscribe?
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. JavaScript for Modern Web Applications
	Importance of JavaScript
	What is JavaScript?
	Comparing runtimes
	Setting up your environment
	New editing experience of JavaScript in Visual Studio 2015 IDE
	Programming in JavaScript
	Core fundamentals of JavaScript
	Adding JavaScript to an HTML page
	Statements in JavaScript
	Literals and variables
	Data types
	Array in JavaScript
	What is JSON?
	Simple objects in JSON
	Declaring arrays in JSON
	Nesting data in JSON
	Conversions in data types
	Elements of JavaScript
	Constants in JavaScript
	Comments
	Case sensitivity
	Character set
	Expressions
	The this keyword
	Sequence of code execution in JavaScript
	Using the this keyword on a calling method
	The function statement and expression
	Class statement and expression
	Grouping operator
	new
	super
	Operators
	Assignment operators
	Arithmetic operators
	Unary operators
	Comparison operators
	Strict equal operator
	Strict not equal operator
	Logical operators
	Logical AND
	Logical OR
	Logical NOT
	Bitwise operators
	Bitwise AND
	Bitwise OR
	Bitwise NOT
	Bitwise XOR
	Bitwise shift operators
	Bitwise left shift
	Bitwise right shift
	The typeof operator
	The void operator
	The delete operator
	Miscellaneous operators
	Conditional operators
	Spread operator
	Built-in display methods in JavaScript
	Displaying messages
	Alert box
	Confirm box
	Prompt box
	Writing on a page
	Writing into the browser's console window
	Browser Object Models in JavaScript
	Window
	Document
	Navigator
	Properties
	Screen
	Properties
	History
	Methods
	Location
	Properties
	Methods
	Summary
	2. Advanced JavaScript Concepts
	Variables – scope and hoisting
	Declaring let
	Conditions where let is efficient to use
	Functions in loops
	Events in JavaScript
	Function arguments
	Object-oriented programming in JavaScript
	Creating objects
	Defining objects using object literal notation
	Defining objects using a constructor pattern
	Using the class keyword
	Properties
	Defining properties using object literal notation
	Defining properties using a constructor pattern
	Defining properties using setters/getters in ECMAScript 6
	JavaScript property descriptors
	Display property descriptors
	Managing property descriptors
	Using getters and setters
	Methods
	Defining methods through object literal notation approach
	Defining objects using the constructor function approach
	Extending properties and methods
	Private and public members
	Inheritance
	Chaining constructors in JavaScript
	Inheritance using Object.create()
	Predefined properties of Object.create()
	Defining inheritance using class
	Encapsulation
	Abstraction
	new.target
	Namespace
	Exception handling
	Error
	RangeError
	ReferenceError
	SyntaxError
	TypeError
	URIError
	Closures
	Practical use
	JavaScript typed arrays
	Typed array architecture
	The array buffer
	Creating a buffer
	Maps, sets, weak maps, and weak sets
	Maps and weak maps
	Sets and weak sets
	The strict mode
	Summary
	3. Using jQuery in ASP.NET
	Getting started with jQuery
	Using a content delivery network
	The use of CDN
	The document ready event
	The jQuery selectors
	Selecting the DOM elements using the ID
	Selecting the DOM elements using TagName
	Selecting nodes by the class name
	Selecting by the attribute value
	Selecting input elements
	Selecting all the elements
	Selecting the first and last child elements
	The contains selector in jQuery
	Selecting the even and odd rows selectors
	Manipulating DOM
	Modifying an element's properties
	Creating new elements
	Removing elements and attributes
	Event handling in jQuery
	Registering events in jQuery
	Binding events using on and off
	Using the hover events
	Summary
	4. Ajax Techniques
	Introducing Ajax
	How Ajax works
	Ajax requests using the classic XHR object
	XHR methods
	XHR events
	XHR properties
	Making an Ajax request using jQuery
	jQuery.ajax()
	Ajax properties
	Pre-filtering Ajax requests
	Setting default values for all future Ajax requests
	Loading data through the get functions in jQuery
	Using jQuery.get()
	Using jQuery.getJSON()
	Using jQuery.getScript()
	Posting data to server using the post function
	Ajax events
	Local events
	Global events
	Cross-origin requests
	JSON-P
	Using JSON-P
	CORS
	Specifying the CORS policy at services level
	Enable CORS at the Configure method
	Calling WCF services from JavaScript
	Summary
	5. Developing an ASP.NET Application Using Angular 2 and Web API
	TypeScript
	Compilation architecture of TypeScript
	Advantages of TypeScript
	Superset of JavaScript
	Support for classes and modules
	Static type checking
	ECMAScript 6 feature support
	Optional typing
	Declaring types in TypeScript
	Core elements of TypeScript
	Declaring variables
	Types
	Classes and interfaces
	Defining interfaces
	Deriving classes and interfaces
	Generic classes
	Functions
	Generic functions
	Iterators
	Modules and namespaces
	Introduction to Angular 2
	Angular 2 architecture
	Events of component life cycle
	Modules
	Components
	Core properties of Angular 2 components
	Templates and selectors
	Inputs and outputs
	Using inputs
	Using outputs
	Directives
	Creating a simple Hello World directive
	Structural directives
	Attribute directive
	Providers
	Dependency injection in Angular
	Routing in Angular
	Developing a to-do application in ASP.NET Core
	Creating a Common project
	Creating a TodoServiceApp project
	Enabling MVC in a Web API project
	Installing Entity Framework
	Adding AppSettings to store a connection string
	Configuring AppSettings in the Startup class
	Adding data access in Web API
	Enabling CORS in the ASP.NET Web API
	Running database migration
	Creating a controller
	Creating a TodoWebApp project
	Configuring Angular 2 in the TodoWebApp project
	Dependencies
	Development dependencies
	Configuring TypeScript
	Configuring Gulp
	Adding Angular components
	Adding the to-do service component
	Adding a to-do view component
	Creating the main to-do page
	Creating a custom to-do tag helper
	Adding a to-do MVC controller
	Generating views for the TodoController action methods
	Developing the Create Todo component
	Summary
	6. Exploring the WinJS Library
	Introduction to WinJS
	WinJS features
	JavaScript coding and language patterns
	Stylesheets
	Windows runtime access
	Security
	App model
	Databinding
	Controls
	Utilities
	Usage of WinJS
	Adding the WinJS library in the ASP.NET application
	CDN
	NPM
	NuGet
	Getting started with WinJS
	Using WinJS in the ASP.NET application
	Existing Windows app template in Visual Studio
	Exploring WinJS core fundamentals
	Classes and namespaces
	Defining classes in WinJS
	Deriving classes in WinJS
	Namespaces in WinJS
	Mixin
	Events in WinJS
	Databinding
	One time databinding
	One way databinding
	Two way databinding
	A databinding working model
	Promises
	Other operations of promises
	Chaining promises and handling errors
	Canceling promises
	Joining promises
	Checking promise
	Wrapping non-promise into promise
	Exploring WinJS controls and styles
	Adding WinJS controls
	Setting properties of WinJS controls
	Using Windows runtime features
	Hosted apps and accessing the camera
	Creating the ASP.NET core application
	Converting an ASP.NET application into Windows application using the Hosted app concept
	Summary
	7. JavaScript Design Patterns
	Creational patterns
	Singleton design pattern
	Factory pattern
	Abstract factory pattern
	Prototype pattern
	Structural patterns
	Adapter pattern
	Decorator pattern
	Facade pattern
	Bridge pattern
	Behavioral pattern
	Chain of responsibility pattern
	Observer pattern
	Pub/sub pattern
	Promises
	Summary
	8. Node.js for ASP.NET Developers
	Introduction to Node.js
	Request processing by the Node.js web server
	Comparison of Node.js with .NET
	NPM
	Installing Node.js
	Using Node.js with Visual Studio 2015
	Simple console application using Node.js
	Web applications with Node.js
	Creating blank Node.js applications
	Using the Express framework for web applications in Node.js
	Extend simple Node.js to use Express
	Express view engines
	EJS view engine
	Jade view engine
	Routing in the Express application
	Middleware
	MVC with the Express framework
	MVC pattern
	Creating a controller
	Creating data services
	Accessing the Microsoft SQL server in Node.js
	Reading a record from the Microsoft SQL server database
	Creating a record in the Microsoft SQL server database
	Summary
	9. Using JavaScript for Large-Scale Projects
	Think before proceeding
	Developing highly scalable and maintainable applications
	Modularization
	Implementing the module pattern
	Modularizing JavaScript code through RequireJS
	Creating modules using the RequireJS API
	Bootstrapping RequireJS
	Event-driven messaging
	Implementing mediator pattern for communication between modules
	Encapsulating complex code
	Generating documentation
	Installing JSDoc3 in ASP.NET Core
	Adding comments
	Deployment optimization
	Summary
	10. Testing and Debugging JavaScript
	Testing the JavaScript code
	Unit testing
	Writing unit tests
	Jasmine
	Karma
	Grunt
	Developing unit test using Jasmine, Karma, and Grunt
	Adding packages
	Adding the Grunt file
	Adding Karma specifications
	Load npm task
	Register task
	Source JavaScript file
	Adding unit test script file
	Running test task
	Implementing Model-View-ViewModel using Knockout and Run test
	Adding the Knockout package
	Adding ProductViewModel
	Add the Product view
	Modifying test configuration
	Modifying the product-testing script
	Debugging JavaScript
	Debugging options in Visual Studio 2015
	Debugging from Visual Studio with Internet Explorer
	Debugging from Visual Studio with Google Chrome
	Developer Tools
	Debugging options in Microsoft Edge
	Standard breakpoints
	Conditional breakpoints
	Tracepoints
	Event
	Add event tracepoint
	Add event breakpoints
	XHR
	Debugging TypeScript
	Debugger keyword supported by all browsers
	Summary
	Index

