

Lean	Mobile	App	Development

	

	

	

	

	

	

	

	

	

	

Apply	Lean	startup	methodologies	to	develop	successful	iOS	and
Android	apps

	

	

	

	

	

	

	

	

	

	

Mike	van	Drongelen
Adam	Dennis
Richard	Garabedian
Alberto	Gonzalez
Aravind	Krishnaswamy

	

	

	

	

BIRMINGHAM	-	MUMBAI

Lean	Mobile	App	Development
Copyright	©	2017	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval
system,	or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written
permission	of	the	publisher,	except	in	the	case	of	brief	quotations	embedded	in
critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy
of	the	information	presented.	However,	the	information	contained	in	this	book	is
sold	without	warranty,	either	express	or	implied.	Neither	the	authors,	nor	Packt
Publishing,	and	its	dealers	and	distributors	will	be	held	liable	for	any	damages
caused	or	alleged	to	be	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of
the	companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of
capitals.	However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this
information.

	

First	published:	November	2017

	

Production	reference:	1241117

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham
B3	2PB,	UK.

ISBN	978-1-78646-704-1

	

www.packtpub.com

http://www.packtpub.com

Credits
Authors

Mike	van	Drongelen	Adam	Dennis

Richard	Garabedian	Alberto	Gonzalez	Aravind
Krishnaswamy

Copy	Editor

Laxmi	Subramanian

Reviewer	Thiyagarajan	Maruthavanan Project	Coordinator	Kinjal
Bari

Commissioning	Editor	Wilson	D'souza Proofreader	Safis	Editing

Acquisition	Editor	Rahul	Nair Indexer	Aishwarya
Gangawane

Content	Development	Editor	Trusha
Shriyan Graphics	Kirk	D'Penha

Technical	Editor	Sneha	Hanchate Production	Coordinator
Melywn	Dsa

About	the	Authors
Mike	van	Drongelen	works	as	a	mobile	solution	consultant	in	the	Netherlands.
He	develops	Android,	iOS,	and	.NET	solutions	for	various	customers	and	has
some	start-up	projects	of	his	own.	Creating	successful	software	using	less	code
is	what	he	is	aiming	for.	He	thinks	developing	software	is	fun,	but	waste	is	not.
Too	often,	the	business	guys	do	not	fully	understand	the	tech	guys	and	the	other
way	around.	This,	among	other	insights,	explains	why	he	is	interested	in	the	lean
start-up	methodology	and	why	he	thinks	it	is	important	to	apply	it	to	mobile
application	development	too.	When	he	is	not	developing	apps,	he	likes	to	go	on
trips	on	his	motorbike	or	with	his	2	CV.

	

Adam	Dennis	is	a	seasoned	unicorn	who	has	run	political	campaigns,	created
tech	training	centers	for	at-risk	youth,	and	founded	and	sold	a	successful	SaaS.
Adam,	as	VP	of	Product	Development,	now	runs	more	than	10	software	teams
for	Dominion	Dealer	Solutions,	an	enterprise	SaaS	serving	US	autodealers.
Adam	promotes	team	excellence,	fact-driven	decision-making,	and	failing	fast.
At	Dominion,	Adam	integrated	lean	/	agile	methods	and	coding	best	practices
into	all	his	teams.	Adam	lives	on	the	island	of	Antigua.	When	offline,	Adam
etches	glass	and	enjoys	life	with	his	wife	and	daughters.

	

Richard	Garabedian	has	spent	more	than	20	years	developing	software	for
businesses	ranging	from	defense	contractors	to	small	internet	start-ups.	He
currently	works	for	Dominion	Dealer	Solutions	as	the	Director	of	Development
for	mobile	and	two	desktop	applications.	Rich	loves	the	Java	programming
language	and	is	an	avid	Android	user.	He	also	pulls	his	own	espresso	shots	and,
according	to	his	wife,	spends	too	many	hours	video	gaming.	Outside	of	work,
Rich	is	either	competitive	cycling	or	chasing	after	his	three	amazing	daughters.

	

Alberto	Gonzalez	has	spent	his	career	providing	creative	leadership	and

delivering	premium	digital	design	for	a	wide	array	of	clients	that	span	from
small	businesses	/	agencies	to	some	of	the	largest	digital	media	companies
worldwide.	He	has	over	20	years	of	experience	leading	teams	in	award	winning
digital	product	design	and	marketing	efforts.	He	currently	serves	as	the	Director
of	User	Experience	for	Dominion	Dealer	Solutions,	an	enterprise	SaaS	serving
autodealers	and	OEMs	in	the	US.

Aravind	Krishnaswamy	is	an	entrepreneur	and	tech	executive.	He	lives	in
Bangalore,	India,	with	his	wife,	Monami,	and	his	dog.	He's	passionate	about	all
things	cloud,	mobile,	and	social.	He	cofounded	Levitum	and	is	fortunate	to	work
with	a	wonderful	set	of	friends.	In	the	past,	he	lived	and	worked	in	Silicon
Valley,	where	he	was	a	part	of	one	IPO	and	exit.	He	also	holds	a	patent	for	work
done	during	his	MS	research	at	Iowa	State	University.	In	his	spare	time,	he
enjoys	playing	tennis,	writing,	and	travelling	with	his	talented	wife	and	dog.	He's
also	a	frequent	public	speaker	at	a	number	of	product	and	tech	conferences.

www.PacktPub.com
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.co
m.	Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with
PDF	and	ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.Packt
Pub.comand	as	a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook
copy.	Get	in	touch	with	us	at	service@packtpub.com	for	more	details.	At	www.PacktPub.c
om,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up	for	a	range	of
free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books	and
eBooks.

https://www.packtpub.com/mapt

Get	the	most	in-demand	software	skills	with	Mapt.	Mapt	gives	you	full	access	to
all	Packt	books	and	video	courses,	as	well	as	industry-leading	tools	to	help	you
plan	your	personal	development	and	advance	your	career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Customer	Feedback
Thanks	for	purchasing	this	Packt	book.	At	Packt,	quality	is	at	the	heart	of	our
editorial	process.	To	help	us	improve,	please	leave	us	an	honest	review	on	this
book's	Amazon	page	at	https://www.amazon.com/dp/1786467046.	If	you'd	like	to	join	our
team	of	regular	reviewers,	you	can	email	us	at	customerreviews@packtpub.com.	We
award	our	regular	reviewers	with	free	eBooks	and	videos	in	exchange	for	their
valuable	feedback.	Help	us	be	relentless	in	improving	our	products!

	

https://www.amazon.com/dp/1786467046

Table	of	Contents

	

Preface
What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support
Downloading	the	example	code

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	 Yes,	There	Is	an	App	for	That
The	app	ecosystem

Not	every	app	has	a	flappy	ending

An	introduction	to	the	Lean	Startup	methodology

Getting	your	users	hooked	on	your	app

Summary

2.	 Lean	Startup	Primer
The	Business	Model	Canvas

Key	partners

Key	activities

Value	propositions

Customer	relationships

Customer	segments

Channels

Cost	structure

Revenue	stream

Example	BMC	-	mobile	marketplace	app
Summary	of	the	BMC

Lean	Canvas
One	metric	that	matters

Agile	development	and	customer	development

The	MVP

Summary

3.	 Challenges	in	Applying	Lean	to	Building	Mobile	Apps
Higher	design	bar

Apple's	App	Store	submission	cycles

Inability	to	dynamically	load	libraries

Cross-platform	releases

Getting	users	to	download	an	app
Maintaining	app	ratings

Summary

4.	 An	Agile	Workflow	in	a	Nutshell
An	Agile	workflow

Kanban

Scrum

Epic,	Stories,	and	Tasks
Scrum	team

The	daily	stand-up

Backlog	refinement

Definition	of	Ready

Sprint	planning

Definition	of	Done

Sprint	review,	planning,	and	retrospective

Tools	that	you	can	use

Summary

5.	 A	Pragmatic	Approach
Timeboxed	programming

Concierge	service

Is	it	crappy	or	perfect?

Release	early	and	often

How	do	you	get	started	with	nothing?
The	chicken	and	egg	problem

Fake	it	until	you	make	it

Become	an	expert

Grab	and	adapt

Offer	an	app	or	a	service	that	does	not	yet	exist

How	to	keep	things	well	structured
Design	patterns

Become	independent

Data	layer

Are	there	any	shortcuts?

Mash-up

Summary

6.	 MVP	is	Always	More	Minimal	Than	You	Think

What	is	MVP?
Benefits	of	MVP

How	to	define	your	MVP
Building	MVP

Bringing	components	together	to	form	an	MVP

Applying	MVP	to	enterprise

Fail	fast	–	validate	everything
Apply	agile	prototyping	-	eliminate	tech	debt

Lean	UX	cycles	–	the	Build-Measure-Learn	feedback	loop

Advantages	of	a	feedback-focused	development	model

Phases	of	the	Build-Measure-Learn	feedback	loop
Phase	I	-	Build

Phase	II	-	Measure

Phase	III	-	Learn

10	essential	UX	testing	methods

Iterate	and	evolve	-	from	viable	to	lovable
Five	tips	to	go	from	viable	to	lovable

Summary

7.	 Minimal	Viable	Product	Case	Studies
Fun	with	Charades	-	Initial	vision

The	big	ifs
Hypothesis	1

Hypothesis	2

Hypothesis	3

Hypothesis	4

Hypothesis	5

The	conundrum
What	we	did	well

What	we	could	have	done	better

Summary

8.	 Cloud	Solutions	for	App	Experiments
Do	you	need	to	create	a	backend	yourself?

Leverage	cloud	solutions	for	app	experiments

Things	to	consider

The	story	of	Parse
Strategic	considerations

What	services	are	available	as	MBaaS?

Technical	considerations

Canvapp	-	an	Android	MVP	app	using	Firebase

Sign	up	for	Firebase
Layout

Dependencies

Models

Firebase	dashboard

Summary

9.	 Native,	Hybrid,	or	Cross-Platform
Who	is	your	audience?

Measure	-	don't	guess	or	use	intuition

What	are	your	technical	requirements?
What	are	your	technical	capabilities?

Native	versus	hybrid	-	the	strengths	and	weaknesses
Native	apps

Hybrid	apps
Pros	and	cons	of	going	native

The	biggest	benefits	of	going	native

Pros	and	cons	of	going	hybrid

The	ugly	truth	-	a	little	hybrid	doesn't	hurt	when	you	have	clear	goals

Making	the	final	decision	-	factors	to	consider

Leveraging	cross-platform	development	tools
Adobe	PhoneGap

Xamarin

Appcelerator

How	to	choose	the	right	tool

Summary

10.	 There	Is	an	API	for	That!
Succeed	or	fail	fast

What	is	in	a	mash-up	solution?
Publishing	an	API

Lego	or	Duplo?

APIs	versus	SDKs
Dependency	management

Android

iOS

Available	APIs
An	iOS	app	proving	our	hypotheses,	MoviUber

Hypothesis

Validating	the	idea	through	customer	interviews

Let's	build	an	app

Movie	locations

Uber

IMDB

Displaying	locations	on	a	map

Uber	integration

Enriching	the	data

Look!	No	code.	Prove	your	hypotheses	with	IFTT
Recipes,	channels,	and	triggers

Summary

11.	 Onboarding	and	Registration
What	is	user	onboarding	all	about?

Why	does	it	matter?

Pirate	metrics	(AARRR)
Higher	conversion

How	to	lower	the	barrier?

Single	sign	on	using	a	social	network	like	Twitter	or	Facebook

Show	us	what	you	have	got
Phone	number	sign-up	-	a	great	alternative

Continuous	onboarding	-	complete	the	user	profile	later

Tell	a	story	-	an	example	onboarding	app
Onboarding	sign-up	when	needed

Implementation

Summary

12.	 Do	Things	That	Do	Not	Scale
What	we	mean	by	"things	that	do	not	scale"

Three	reasons	to	do	things	that	do	not	scale
Improved	testing	and	data	collection

Failure	that	can	be	controlled

Development	of	products	that	are	more	lovable

How	to	acquire	early	adopters	and	establish	a	small-scale	laboratory
Focusing	on	a	narrow	marketplace

Manually	recruiting	early	adopters

Perfecting	the	user	experience

How	to	transition	from	an	unscalable	MVP	to	scalable	code
Focusing	on	learning	with	wireframes	and	prototypes

Zeplin

InVision

UserTesting.com

Focusing	on	scaling	and	sustainability
Writing	perfect	code	versus	getting	the	job	done

Automation	and	optimization

How	to	handle	technical	debt

Summary

13.	 Play	Store	and	App	Store	Hacks
What	is	an	experiment?

A/B	testing	as	a	technique	for	experimentation

Why	perform	split	testing?

Store	listing	tests

App	testing
Why	do	you	care?

The	competition	is	intense

Experiments	work

Why	running	experiments	with	Google	Play	or	App	Store	is	hard
Obstacles	to	testing	with	store	listings

Different	app	listing	requirements

No	standard	way	to	measure	results

Limited	infrastructure	for	A/B	testing

Why	it	is	difficult	to	run	parallel	experiments
Hacks	to	workaround	the	challenges

Store	listing	hacks

How	do	users	find	apps	in	the	first	place?
Use	microtesting	to	collect	data

Running	app	tests

Summary

14.	 A/B	Testing	Your	App
Why	do	statistics	matter?

About	actionable	metrics
Acquisition

Engagement

Conversions	and	pirate	metrics

Get	to	know	your	audience

Split	testing	can	help	us	to	improve	our	apps
Keep	the	differences	between	variations	subtle

Tools	for	split	testing	and	getting	actionable	metrics

Using	Firebase	for	split	testing

Summary

15.	 Growing	Traction	and	Improving	Retention
Traction

Freemium	or	premium	only?

Improving	retention

Notifications
Local	notifications

Push	notifications

In-app	notifications

Services	for	push	notifications
Implementation

Setup

Handling	an	incoming	notification

Sending	a	notification

Summary

16.	 Scaling	Strategies

Make	it	scalable	but	do	not	scale	it	right	away
A	scalable	backend

Cloud-based	storage	and	processing

Seen	from	a	client	perspective

You	should	know	when	you	need	to	scale	up	or	to	scale	down

A	real	horror	story	about	an	app	backend	that	did	not	scale

Captain	hindsight	to	the	rescue!

To	scale	up	or	to	refactor?	That	is	the	question

Auto-scaling

Summary

17.	 Monetization	and	Pricing	Strategy
Monetization	strategies

Selling	or	upselling	your	app

Selling	a	product	or	service	in	the	real	world

Offering	your	app	for	free	and	selling	your	service

Advertisements

Monetizing	your	data

Pricing	strategy
Price	perception

Android	or	iOS	first?

In-app	purchase	product	types

In-app	billing

See	how	in-app	purchases	can	be	implemented
The	case	of	the	Empurror

Applying	a	pricing	strategy	to	your	store	listing

Summary

18.	 Continuous	Deployment
Continuous	Deployment	=	Continuous	Integration	and	Delivery

Continuous	Integration

Continuous	Delivery

Repository	and	Git	workflow

Automated	tests

An	example	of	a	continuous	workflow	for	an	Android	app

Building	variants

The	Gradle	way

productFlavors

sourceSets

buildTypes

signingConfigs

Using	TeamCity	as	build	agent

Automated	deploy	and	delivery

Self	hosted

HockeyApp	or	Fabric	beta

Fastlane,	alpha/beta	Play	Store,	and	iTunes	beta
DevOps

Summary

19.	 Building	an	Unfair	Advantage
Introduction	-	it's	not	just	about	your	app

Digging	your	moat	with	intangible	assets

Protecting	your	work	with	IP	laws
Why	you	should	care	-	Business-destroying	patent	trolls

How	IP	laws	can	protect	your	app	and	business

How	to	defend	your	intellectual	property

Going	on	the	legal	offensive

The	network	effect	and	platforms
The	network	effect

The	platform	effect

Making	use	of	vertical	markets
Why	target	vertical	markets?

How	successful	companies	exploit	vertical	control

Switching	costs

How	to	use	switching	costs	to	improve	user	retention

How	to	decrease	competitors'	switching	costs

Good	customer	support
The	right	perspective	on	customer	service

A	recipe	for	great	customer	service

How	successful	companies	use	customer	service	to	improve	profits

A	look	at	some	great	tools	to	help	with	customer	support

The	power	of	a	well-developed	brand	name

Reasons	to	brand	yourself

How	to	build	your	brand

Tools	to	monitor	your	brand	via	social	media	and	app	stores

Building	a	brand	on	a	budget

Branding	case	studies

Summary

20.	 The	Flyng	Case	Study
That	sounds	awesome,	but	what	is	Flyng?

The	team
Mitchell	Trulli

Daniel	Guthrie

Mike	van	Drongelen

The	other	contributors

The	MVP
A	distributed	team

Flyng's	USPs

Growing	a	user	base

The	business	model
Customer	segments

Value	propositions

Customer	relationships

Channels

Revenue	Streams

Key	resources

Key	activities

Partners

Cost	structure

Unfair	advantage

Getting	feedback
Unvalidated	assumptions

A	zombie	feature

Feedback	and	actionable	metrics

Split	testing

Vision

Technical	considerations
Parse	server	hosted	at	Back4App

Real-time	data

The	other	dependencies

Queries

Complex	operations

Push	notifications

Crash	reports

Releases

Summary

Appendix
Reading	list	and	references

Preface
The	lean	start-up	methodology	has	become	a	well-known	term	in	the	start-up
land.	There	are	many	books	covering	this	(and	related	methodologies)	such	as
The	Lean	Startup	(Eric	ries),	Running	Lean	(Ash	Maurya),	The	start-up	owner
manual	(Steve	Blank),	and	The	Four	steps	to	the	epiphany	(Steve	Blank).

The	lean	start-up	methodology	is,	among	other	things,	about	reducing	waste	by
gathering	feedback	earlier.	It	makes	no	sense	to	develop	a	brilliant	app	for	six
months	or	longer	only	to	find	out	later	that	nobody	is	interested	in	it.

Your	start-up,	or	even	an	existing	app,	needs	multiple	but	short	iterations	to	find
out	what	works	and	what	does	not.	That	raises	questions	such	as:	Does	your	app
actually	solve	a	problem	worth	solving	it?	And	how	does	the	lean	start-up
methodology	come	into	this?

All	the	books	are	currently	focused	on	business-oriented	members	of	your	start-
up	or	company.	However,	a	pragmatic	approach	for	the	technical-oriented
members	of	a	company,	with	a	mobile	first	strategy,	is	missing	in	particular.
Theory	is	cool	but	a	practical	approach	could	help	developers	to	move	faster.

This	book	tries	to	fill	that	gap.	It	explains	the	elements	of	the	Lean	Start	Up
methodology	and	elaborates	on	research	and	on	implementation.	In	particular,
the	focus	is	on	things	that	need	to	be	done	from	a	technical	point	of	view.	That
makes	this	book	a	down-to-earth	guide	on	how	to	apply	the	lean	start-up
methodology	to	real	Android	and	iOS	development.	As	such,	it	comes	without
any	mumbo-jumbo.	If	you	want	real	action	and	if	you	want	to	develop	an	app
that	people	need	and	really	want	to	use,	then	this	guide	is	for	you.

What	this	book	covers
Chapter	1,	Yes,	There	Is	an	App	for	That,	contains	some	important	questions	to	ask
yourself,	such	as:	Why	are	you	building	the	app	and	for	whom?	The	chapter
explains	how	Lean	startup	can	help.

Chapter	2,	Lean	Startup	Primer,	explains	the	business	model	canvas,	what
customer	development	is,	and	what	a	Minimum	Viable	Product	(MVP)	is.

Chapter	3,	Challenges	in	Applying	Lean	to	Building	Mobile	Apps,	elaborates	on	the
market	place	workflow	and	the	discoverability	of	your	app.

Chapter	4,	An	Agile	Workflow	in	a	Nutshell,	talks	about	time-boxed	programming,
trusting	on	third-party	solutions,	and	how	you	can	make	temporary	shorts.

Chapter	5,	A	Pragmatic	Approach,	explains	in	a	pragmatic	way	what	an	agile
workflow,	Kanban,	and	Scrum	is	and	how	you	can	implement	it	in	your
workflow.

Chapter	6,	MVP	is	Always	More	Minimal	Than	You	Think,	investigates	what
features	should	go	into	a	minimal	viable	product	and	how	these	features	can	help
to	prove	your	hypotheses.

Chapter	7,	Minimal	Viable	Product	Case	Studies,	contains	some	real-world
examples	of	MVP	implementations.

Chapter	8,	Cloud	Solutions	for	App	Experiments,	talks	about	your	strategy	for	the
backend	of	your	app.	What	third-party	services	are	available	and	do	you	need	a
backend	developer	at	all?

Chapter	9,	Native,	Hybrid,	or	Cross-Platform,	explains	which	platform	(Android	or
iOS)	to	start	with	and	what	the	possibilities	are	when	you	want	to	do	both	at
once.

Chapter	10,	There	Is	an	API	for	That!,	inspires	you	to	combine	existing	data	and
services.	It	comes	with	an	example	combining	movie	information,	maps	and

Uber	integration.	Finally,	we	will	see	how	you	can	build	an	MVP	and	prove
hypotheses	using	IFTT.

Chapter	11,	Onboarding	and	Registration,	talks	about	the	onboarding	and
conversion	of	your	users.	It	explains	how	you	can	lower	the	barrier	and	it	comes
with	an	Android	example	for	signing	up	with	Twitter	or	with	a	phone	number.

Chapter	12,	Do	Things	That	Do	Not	Scale,	instructs	you	to	focus	on	proving
hypotheses	instead	of	focusing	on	automation.	Try	to	find	out	what	is	working
and	what	is	not,	with	minimal	amount	of	effort.

Chapter	13,	Play	Store	and	App	Store	Hacks,	contains	a	first	introduction	to	split
testing	and	how	you	can	apply	it	to	the	Play	Store	or	App	Store.

Chapter	14,	A/B	Testing	Your	App,	tells	you	why	split	testing	your	app	is	important
and	how	you	can	set	up	an	A/B	test	for	your	app.	It	comes	with	an	example
using	Android	and	the	Firebase	options	Remote	Config	and	Analytics.

Chapter	15,	Growing	Traction	and	Improving	Retention,	informs	you	what	traction
and	retention	is,	why	it	matters	and	what	you	can	do	to	gain	more	traction.	It	also
discusses	the	importance	of	push	notifications	in	order	to	increase	retention
(returning	users).

Chapter	16,	Scaling	Strategies,	inspires	you	to	think	about	a	scaling	strategy.	It	may
sound	like	a	luxury	problem,	but	if	your	app	becomes	a	success	your	backend
has	to	scale	up.	Cloud	services	have	made	this	process	a	very	easy	one.	Do	not
scale	yet,	but	make	your	solution	scalable.

Chapter	17,	Monetization	and	Pricing	Strategy,	talks	about	the	many	monetization
options	for	your	app.	If,	for	example,	you	choose	for	in-app	purchases,	you	also
need	a	good	pricing	strategy.

Chapter	18,	Continuous	Deployment,	discusses	a	Git	workflow	and	CI/CD	tools,
such	as	TeamCity	and	Jenkins.	If	you	have	a	good	testing	strategy	these	tools	can
help	you	delivery	often	and	fast.

Chapter	19,	Building	an	Unfair	Advantage,	makes	you	think	on	how	to	build	a
'moat'	that	makes	your	business	defensible	from	new	upstarts.

Chapter	20,	The	Flyng	Case	Study,	talks	about	a	case	study	of	an	existing	social
media	app.

Appendix,	Reading	List	and	Web	References,	covers	a	list	of	a	must-read	books	and
websites	worth	visiting.

What	you	need	for	this	book
In	the	first	place,	this	book	is	to	inspire	technical-oriented	cofounders	of	start-
ups	and	existing	business	technical	leaders	seeking	to	integrate	lead	into	their
development	operations.	In	addition,	there	are	some	Android	and	iOS	code
samples	that	we	discuss	to	explain	some	of	the	concepts.	Although	the	concept	is
more	important	than	the	code,	you	can	try	the	sample	for	yourself.	Where
applicable,	you	can	find	a	link	to	the	Github	repository,	containing	the	code.

For	the	Android	examples,	you	need	to	have	Android	Studio	3	(or	above)	and
the	Android	SDKs	installed	on	your	computer.	Android	Studio	is	available	as	a
free	download	for	Windows,	OSX,	and	other	operating	systems.	The	Android
examples	are	written	in	Kotlin	and	Java.

The	samples	for	iOS	requires	xCode	9	or	above	(xCode	is	available	on	OSX
only	and	you	need	to	have	a	paid	Apple	developer's	account).	The	iOS	examples
are	written	in	Swift	4.

Some	examples	require	a	(free)	registration	at	Firebase,	Facebook,	Fabric,	or
other	services.

Who	this	book	is	for
In	particular,	the	audience	of	this	book	will	be	technical	cofounders,	developers,
or	CTO's	working	in	a	start-up	environment.	However,	if	you	are	a	CTO,
Development	Director,	or	developer	of	an	existing	software	company,	then	this
is	for	you	too.	Lean,	when	applied	well,	helps	start-ups	and	existing	copanies
equally.

	

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between
different	kinds	of	information.	Here	are	some	examples	of	these	styles	and	an
explanation	of	their	meaning.

All	Android	and	iOS	examples	and	descriptions	are	based	on	Android	Studio,
xCode	and	various	third	party	services,	running	on	a	OSX	machine.

Console	input	is	shown	as:

$	gem	install	cocoapods

	

A	block	of	code	is	set	as	follows:

func	refresh	(sender:	AnyObject!)	{

...

								let	cngQuery	=	client.queryDataset("wwmu-gmzc")

								cngQuery.orderAscending("title").get	{	res	in

												switch	res	{

												case	.Dataset	(let	data):

																self.data	=	data

...

								}

				}

Data	(XML,	JSON	or	otherwise)	is	shown	as:

<key>UberClientID</key>

				<string>your	uber	client	id</string>

				<key>UberCallbackURI</key>

				<string></string>

				<key>LSApplicationQueriesSchemes</key>

				<array>

								<string>uber</string>

				</array>

Where	you	need	to	apply	your	own	client	ID,	API	key	or	API	secret	it,	for
example,	reads	as:	your	client_id	within	the	code	or	the	data.

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the
screen,	for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:
"Clicking	the	Next	button	moves	you	to	the	next	screen."

Warnings	or	important	notes	appear	in	a	box	like	this.

Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think
about	this	book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us
as	it	helps	us	develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	feedback@packtpub.com,	and	mention	the
book's	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either
writing	or	contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things
to	help	you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
	

You	can	download	the	example	code	files	for	this	book	from	your	account	at	http:/
/www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit	http://www.pack
tpub.com/support	and	register	to	have	the	files	emailed	directly	to	you.	You	can
download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	email	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you're	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the
folder	using	the	latest	version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/PacktPublis
hing/Lean–Mobile–App–Development.	We	also	have	other	code	bundles	from	our	rich
catalog	of	books	and	videos	available	at	https://github.com/PacktPublishing/.	Check	them
out!

	

	

	

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Lean%E2%80%93Mobile%E2%80%93App%E2%80%93Development
https://github.com/PacktPublishing/

Downloading	the	color	images	of	this
book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the
screenshots/diagrams	used	in	this	book.	The	color	images	will	help	you	better
understand	the	changes	in	the	output.	You	can	download	this	file	from	http://www.p
acktpub.com/sites/default/files/downloads/LeanMobileAppDevelopment_ColorImages.pdf.

http://www.packtpub.com/sites/default/files/downloads/LeanMobileAppDevelopment_ColorImages.pdf

Errata
	

Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,
mistakes	do	happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake
in	the	text	or	the	code—we	would	be	grateful	if	you	could	report	this	to	us.	By
doing	so,	you	can	save	other	readers	from	frustration	and	help	us	improve
subsequent	versions	of	this	book.	If	you	find	any	errata,	please	report	them	by
visiting	http://www.packtpub.com/submit-errata,	selecting	your	book,	clicking	on	the
Errata	Submission	Form	link,	and	entering	the	details	of	your	errata.	Once	your
errata	are	verified,	your	submission	will	be	accepted	and	the	errata	will	be
uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the	Errata
section	of	that	title.

To	view	the	previously	submitted	errata,	go	to	https://www.packtpub.com/books/content/sup
port	and	enter	the	name	of	the	book	in	the	search	field.	The	required	information
will	appear	under	the	Errata	section.

	

	

	

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all
media.	At	Packt,	we	take	the	protection	of	our	copyright	and	licenses	very
seriously.	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
Internet,	please	provide	us	with	the	location	address	or	website	name
immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you
valuable	content.

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
questions@packtpub.com,	and	we	will	do	our	best	to	address	the	problem.

Yes,	There	Is	an	App	for	That
There	is	an	app	for	almost	everything	already,	or	so	it	seems.	Creating	a
profitable	app	is	not	easy,	but	if	you	develop	your	app	in	a	smart	way,	your
company	can	be	successful	too!

This	book	aims	to	help	you	build	a	profitable	business	around	your	mobile	app
using	the	the	Lean	Startup	methodology.	Unlike	many	other	books,	this	one	is
not	only	for	the	business-oriented	members	of	your	organization.	Instead,	it	is	a
very	practical	guide,	explaining	what	tools	and	techniques	can	be	used	to
develop	apps	the	Lean	way.	It	is	important	that	technical-oriented	people	also
become	enthusiastic	about	the	Lean	Startup	methodology,	which	is	the	reason
why	this	book	is	primarily	aimed	at	technical	co-owners	and	developers.	They
need	to	have	the	right	tools	in	order	to	apply	the	methodology	to	their	daily
mobile	app	development.	We	will	discuss	how	you	can	save	time	and	reduce
waste	by	using	a	number	of	techniques	and	tools.

On	the	other	hand,	the	book	will	be	of	interest	for	nontechnical	people	too.	It
would	be	ideal	if	they	could	obtain	a	better	understanding	of	the	underlying
technical	processes	involved	in	app	development.	We	need	the	business	folks	to
find	and	clearly	define	the	problems,	so	that	the	technical	folks	can	deliver	the
right	solutions	for	them.	Everyone	needs	to	collaborate	closely.	If	you	have	a
good	understanding	of	each	other's	perspectives,	you	can	achieve	much	better
results.

If	your	startup	is	missing	a	technical	cofounder,	then	now	is	the
time	to	find	one.	Do	not	outsource	the	development	(yet).	That	often
does	not	work	well	when	your	startup	is	at	an	early	stage.

In	this	chapter	of	the	book,	we	will	first	look	at	the	Lean	Startup	methodology,
and	learn	why	it	matters	to	all	members	of	your	startup	company.

This	chapter	is	about	the	following	topics:

The	app	ecosystem
An	introduction	to	the	Lean	Startup	methodology

Getting	your	users	hooked	on	your	app

The	app	ecosystem
We'll	first	dive	into	the	paradox	that	the	app	ecosystem	presents--the	prospect	of
fame	and	fortune,	but	the	obscurity	of	being	lost	amongst	the	millions.	We'll	also
cover	critical	questions	that	every	intrapreneur	or	entrepreneur	needs	to	think
about	before	they	venture	into	building	a	new	app.	The	same	principles	apply
also	for	new	ideas	for	an	existing	app.	The	first	things	you	should	ask	yourself
are:

Why	would	users	want	to	use	my	app?
For	what	purpose	or	when	would	they	actually	need	it?
Why	would	they	keep	coming	back	to	use	it?

Creating	a	profitable	app	is	hard,	but	not	impossible.	There	are	many	well-
known	examples.	One	of	them	is	Flappy	Bird.	In	May	2013,	an	obscure	solo	app
developer	living	in	Vietnam	named	Nguyen	Ha	Dong	released	a	game	in	the	iOS
App	Store.	The	initial	response	to	the	app	was	muted,	with	just	a	few	downloads.
Several	months	later	in	early	2014,	the	game	revived	with	a	surge	in	popularity,
and	became	the	most	downloaded	game	in	the	App	Store	at	that	time.

At	the	height	of	its	popularity	in	January	2014,	the	game	was	earning	$50,000	a
day,	from	in-app	advertisements	as	well	as	sales.	A	month	later	in	February
2014,	Dong	famously	pulled	the	game	from	the	stores.	This	led	to	a	short,
frenzied	period	when	phones	with	the	app	installed	were	being	sold	at	a
premium	online.

The	app	is	now	a	much-storied	example	of	a	rags-to-riches	overnight	success
story.	But	whether	by	serendipity	or	by	design,	Dong's	success	is	far	from
typical.	Few	solo	app	developers	have	succeeded	in	monetizing	their	apps.

For	every	intrapreneur	or	entrepreneur	with	shiny,	bright,	new	ideas,	the	odds	are
stacked	against	them.	When	Steve	Jobs	famously	quipped	There's	an	app	for
that,	he	really	did	mean	it.	There's	an	app	for	just	about	everything!	So,	why
does	your	bright	new	idea	matter?

Not	every	app	has	a	flappy	ending
If	you	build	it,	they	will	come.	Well,	that	obviously	is	not	true.	Just	publishing
your	app	in	the	App	Store	or	Play	Store	will	not	be	sufficient.	On	both	Google
Play	and	the	Apple	App	Store,	9	out	of	10	apps	that	are	published	by	developers
see	fewer	than	5,000	downloads,	ever.	There	are	so	many	apps	already	available.
How	will	people	ever	notice	your	app?

No	matter	how	good	your	app	is,	it	will	drown	in	an	ocean	of	apps	without	a
good	plan.	To	succeed,	you	first	need	to	ask	yourself	some	important	questions:

Who	needs	your	app?
How	will	people	find	out	about	your	app?
Why	would	someone	download	your	app?
Why	would	they	keep	coming	back	to	use	it?
How	would	others	hear	about	the	app?
What	stops	others	from	copying	your	app	once	it	is	successful?

Apps	that	make	it	to	the	top	of	the	charts	dwarf	apps	that	don't	by	a	large	order
of	magnitude.	There's	a	case	to	be	made	about	long-tail	characteristics	in	a
marketplace.	Amazon	is	known	for	having	said	that	they	make	more	money
selling	books	that	were	never	stocked	earlier	than	the	ones	that	are.	Their
marketplace	has	strong,	long-tail	characteristics,	with	several	niche	books
finding	an	audience.

However,	the	App	Store	dynamics	don't	work	well	in	favor	of	niche	segments.
The	discoverability	of	an	app	continues	to	be	a	challenge,	making	it	hard	for
publishers	to	succeed	in	niche	categories.	Apart	from	discoverability	itself,
there's	just	a	little	more	friction	involved	in	someone	having	to	download	an	app
over	just	visiting	a	mobile	website.

An	introduction	to	the	Lean	Startup
methodology
Today's	mobile	world	is	well	past	the	gold	rush	frenzy	of	the	late	2000s.	Google
Play	has	1.9	million	apps	with	over	50	billion	downloads.	Apple's	App	Store	has
1.4	million	apps	with	100	billion	downloads.	Most	app	categories	are	fairly
saturated,	and	there	are	free	apps	for	most	things.	The	design	of	the	marketplace
incentivizes	app	developers	to	drop	their	prices	in	order	to	hit	the	top	of	the
charts,	giving	them	wide	distribution.

Should	you	be	dissuaded	by	all	this?	Does	this	mean	that	the	chances	of	success
are	so	low,	and	the	field	so	daunting,	that	we	might	as	well	give	up?	Far	from	it!
As	time	has	shown,	there	are	always	new	opportunities.	Famously,	today's
leading	companies,	such	as	Google	and	Facebook,	emerged	from	the	dust	of	the
dot	com	bust	of	the	early	2000s.

But	instead	of	the	big	bang	approach	that	companies	took	to	building	products
earlier,	we	are	now	equipped	with	more	scientific	approaches	for	taking	new
ideas	to	market.	And	here's	where	the	Lean	Startup	methodology	outlined	by
Eric	Ries	has	radically	changed	how	several	start-ups	and	large	companies
develop	software.

Lean	start-up	principles	help	realize	your	vision	through	rapid	experimentation.
They	provide	an	approach	for	taking	a	bright	new	idea,	and	first	identifying	key
high-risk	assumptions	that	you	are	making.	These	are	assumptions	whose	failure
would	mean	that	your	idea	would	fail.	The	next	step	is	to	craft	small	market
experiments	to	test	these	assumptions	in	the	field.	A	successful	experiment
would	validate	an	assumption,	which	lets	you	move	on	to	your	next	assumption
and	craft	the	next	experiment.	Failure	of	an	experiment	would	invalidate	an
assumption,	which	means	that	your	idea	in	its	current	form	would	fail.

If	you	are	a	developer,	you	may	wonder	if	the	Lean	Startup	methodology	is	just	a
bunch	of	business	management	speak	reserved	for	stuffy	types	in	dark	suits.	That
would	be	an	unfortunate	misconception.	Eric	Ries	attempted	to	develop	an	easily

understood	management	principle	for	entrepreneurship,	which	was	otherwise
seen	as	a	mysterious	dark	art	form.

However,	Eric's	own	roots	are	closer	to	the	developer	community	than	to	the
busniess	community.	It	was	his	experiences	building	software	at	IMVU	that
inspired	his	Lean	Startup	ideas.	He	was	one	of	the	early	pioneers	in	endorsing
continuous	development	and	continuous	integration	in	the	software	development
process.	It	was	an	attempt	to	strip	out	all	the	wasteful	cycles	that	developers
spend	time	on,	and	help	them	focus	on	building	things	that	mattered	most	to
their	customers.

Experienced	developers	care	about	efficiency	and	writing	code	that	actually	has
an	impact.	Compared	to	other	industries,	the	software	industry	has	numerous
examples	where	millions	of	lines	of	code	are	discarded	because	they	go	into
building	features	no	one	wants.	That's	a	waste	of	endless	hours	of	developer
effort	that	could	be	better	used	building	useful	software.

The	Lean	Startup	approach	is	also	closely	associated	with	agile	software
development.	Agile	development	outlines	an	important	cycle	for	how	software	is
built.	This	cycle	is	typically	inward,	and	happens	within	a	software	development
team	between	managers,	developers,	and	testers.	Lean	Startup	adds	the	concept
of	customer	development.	Customer	development	is	an	outward	cycle	that
happens	between	the	software	development	team	and	the	customer.	The	cycle
involves	working	with	the	customer	by	running	interviews,	observing	customer
behavior,	testing	with	market	experiments,	and	collating	the	results.

If	you	are	a	developer	in	an	organization	with	a	top-down	culture,	where	suits
with	hand-waving	skills	and	mastery	with	PowerPoint	hold	sway,	Lean	Startup
can	help.	Decisions	in	many	organizations	still	happen	based	on	who	has	the	best
PowerPoint	presentation	and	the	power	of	key	lobbies	to	influence	decisions.
Few	things	can	hurt	ground-up	innovation	in	an	enterprise	more.

Lean	Startup	provides	developers	with	a	framework	to	influence	decisions	with
real	data	from	customer	experiments.	If	a	decision	needs	to	be	made,	push	others
at	the	table	to	either	bring	data	to	justify	it,	or	to	run	an	experiment	to	collect	it.
This	is	critical.

Agile	development	has	been	embraced	by	most	organizations	over	the	last

decade,	with	Scrum	and	extreme	programming	becoming	commonplace.	In	the
coming	years,	knowledge	of	Lean	Startup	will	be	a	valuable	asset	for	developers
looking	to	enhance	their	skills.

Lean	Startup	isn't	a	defined	hard	and	fast	process	set	in	stone.	It's	a	set	of
principles	to	help	chart	your	way	through	unknown	territory.	In	the	wild,	a
compass	and	a	map	are	tools	that	enable	hikers	to	navigate	and	avoid	dangerous
pitfalls	that	potentially	be	fatal.	Much	like	a	compass	and	a	map,	Lean	provides	a
framework	to	navigate	through	new	discoveries.	These	discoveries	enable	you	to
make	crucial	decisions	about	what	steps	to	take	next	and	in	which	direction.

A	Lean	approach	is	no	guarantee	of	a	next	Flappy	Bird.	But	think	about	it	this
way:	we're	still	in	an	age	where	taking	new	ideas	from	concept	to	market	is	still
serendipitous.	This	is	much	like	how	fire	was	discovered	and	how	the	wheel	was
invented,	likely	as	much	by	chance	and	gradual	evolution	than	deliberate
choices.	It	took	us	centuries	before	science	got	us	to	the	point	where	we
developed	systematic	ways	of	running	laboratory	experiments.	Despite	that,	it
took	legendary	inventor	Thomas	Alva	Edison	hundreds	of	failed	experiments
before	he	invented	the	light	bulb.

"Genius	is	99%	perspiration	and	1%	inspiration."
-	Edison

What	science	did	do,	though,	was	accelerate	the	process.	Serendipity	took
centuries.	The	last	century	has	seen	the	acceleration	of	new	discoveries	and
significant	scientific	advancements.	Experiments	still	fail,	and	research	projects
that	are	pursued	for	years	are	often	abandoned.	But	today,	the	chances	of	a
laboratory	scientist's	success	are	significantly	higher	than	that	of	a	caveman	in
the	wild.

Lean	Startup	has	changed	how	we	understand	customer	needs,	and	how	we	build
products	to	meet	those	needs.	Our	chances	of	success	are	so	much	higher	than
they	were	for	a	software	developer	even	just	a	decade	ago.	How	can	this
methodology	help	developers	do	things	using	the	right	tools	at	the	right	time?
The	answer	is	in	this	book.	It	is	aimed	at	technical	cofounders	and	other
developers	involved	with	a	startup	company.	It	can	help	you	learn	how	to	apply
the	Lean	Startup	methodology	to	mobile	app	development	specifically.	It	will
give	you	insights	on	how	to	balance	between	a	pragmatic	and	hands-on	approach

while	still	doing	things	the	right	way.

One	of	the	key	elements	is	early	validation.	Whether	you	are	a	solution	or
problem-oriented	person,	you	have	certain	assumptions.	These	assumptions	may
be	right,	but	most	likely	they	will	be	wrong.	The	only	way	to	find	the	answer	is
by	creating	an	app,	or	a	simulated	app,	that	you	can	build	very	quickly	and	that
you	can	use	to	gather	feedback.	Such	a	solution	is	known	as	the	Minimal	Viable
Product	(MVP).	An	MVP	contains	only	the	functionality	that	you	need	to	have
to	prove	your	hypotheses.	Everything	else	in	the	app	that	cannot	contribute	to
gathering	feedback	is	waste	and	should	not	be	there.

For	a	business	guy,	the	idea	of	an	MVP	may	sound	odd.	You	only	have	one
chance	for	a	first	impression,	right?	Also,	as	a	developer	you	do	not	want	to
write	a	bunch	of	code	only	to	throw	it	away	later.	So	what	exactly	should	be	in
an	MVP?	A	more	in-depth	explanation	of	an	MVP	will	follow	in	Chapter	5,	A
Pragmatic	Approach.

Getting	your	users	hooked	on	your
app
Not	only	do	9	out	of	10	apps	see	fewer	than	5,000	downloads,	also	9	out	of	10
apps	are	not	launched	more	than	once.	You	can	do	the	math.	Right	there,	you	can
see	that	the	chances	of	having	an	app	that's	regularly	used	by	more	than	5,000
people	dropped	to	0.01,	or	1	in	a	100.

There	are	a	number	of	reasons	why	this	happens.	Some	users	install	an	app	they
hear	about,	but	don't	like	it	and	may	choose	to	uninstall	it	right	away.	If	they've
liked	the	app,	they	may	keep	it.	While	this	may	sound	like	a	win,	it's	not	always
the	case.	Often,	users	just	forget	about	the	app	and	may	not	think	about
launching	it	again,	even	if	it	fulfils	a	need	that	they	have.

You	may	have	built	a	fabulous	app	that	helps	the	user	save	money	through
budgeting,	but	unless	the	user	remembers	to	launch	the	app	regularly	and	track
her	finances,	it	will	not	help	her.	In	Chapter	15,	Growing	Traction	and	Improving
Retention,	which	discusses	traction	and	retention,	we	will	see	some	practical
implementations	to	get	the	attention	of	the	user.	For	example,	sending	(relevant)
push	notifications	is	often	an	effective	method	to	draw	the	user's	attention	back
to	the	app.

Frequent	usage	creates	more	opportunities	to	encourage	people	to	invite	their
friends,	broadcast	content,	and	share	through	word	of	mouth.

Let's	take	one	step	back	and	focus	on	the	question,	How	will	people	find	out
about	the	app?	Unless	it	gets	featured	(by	Apple,	for	example),	or	unless	it	gets
discovered	by	accident	(as	happened	to	Flappy	Bird),	you	need	to	promote	it
actively.	You	can	consider	Google	ads,	flyers,	and	commercials.	That	can
become	pretty	expensive.	However,	if	you	can	let	it	grow	organically,	the	results
will	probably	be	way	better,	and	it	will	cost	you	less.	For	example,	people	might
hear	on	Twitter	and	other	social	media	platforms	how	great	your	app	is.	To	make
that	happen,	people	first	need	to	become	enthusiastic	and	regular	users	of	your
app	before	they	share	it	with	their	friends	or	business	colleagues.

Users	who	continuously	find	value	in	a	product	are	more	likely	to	tell	their
friends	about	it.

Some	products	capture	widespread	attention.	Nir	Eyal	describes	in	his	book
Hooked	what	makes	us	engage	with	certain	products	out	of	sheer	habit.	For
example,	Pokémon	Go!,	Facebook,	or	Instagram	are	all	very	addictive	apps.
People	hear	about	the	app,	download	it,	and	keep	using	it,	on	a	daily	basis	even.
Why	is	that?	It	seems	there	is	an	underlying	pattern	to	the	way	technology	hooks
us.	Nir	Eyal	provides	answers	to	this	and	other	questions	by	introducing	the
Hook	Model.	It	is	a	four-step	process	that	is	embedded	into	the	products	of	many
successful	companies	to	subtly	encourage	customer	behavior.

Hooked	users	become	brand	evangelists-megaphones	for	your	company.

Nir	Eyal's	classic	Hooked	Model	contains	four	steps:

Trigger
Action
Reward
Investment

In	a	nutshell,	this	is	what	you	see	in	this	model:	The	trigger	is	what	brings	the
user	to	a	product	to	take	an	action	that	results	in	a	reward	that's	followed	by
further	investment.

At	the	action	step,	the	user	will	be	asked	to	perform	a	simple	action	that	will
boost	the	user's	motivation.	This	phase	of	the	hook	draws	upon	the	art	and

science	of	usability	design,	to	ensure	that	the	user	acts	the	way	the	designer
intends.

Offering	variable	and	unpredicatable	rewards	are	important	tools	to	hook	users.
There	are	many	feedback	loops	already,	but	they	are	all	predictable.	Predictable
loops	do	not	create	any	desire.	We	should	surprise	the	user	and	create	a	desire	in
the	user.	Gamification	is	an	example	of	a	tool	to	accomplish	this.	We	can	reward
the	user	with	a	badge	or	other	digital	(or	non	digital)	incentive.

The	last	phase	of	the	hook	is	where	we	will	ask	the	user	to	do	something	in
return.	We	do	not	just	want	to	increase	the	odds	that	the	user	will	make	another
pass	through	the	hook.	Besides	encouraging	the	user	to	continue	(unlock	a	new
level	and	get	another	badge!),	we	can	ask	the	user	for	a	rating	of	the	app	in	the
App	Store	or	we	can	ask	the	user	to	share	content	of	the	app	on	social	media
(challenge	a	friend!).

If	we	apply	the	model	to	another	well-known	game,	Pokémon	Go!,	then	the
model	will	look	like	this:	The	user	gets	a	notification	and	a	pokemon	is	shown
on	the	screen	(Trigger).	The	user	is	bored	or	is	looking	for	fun	and	wants	to	play
(Action).	The	user	is	rewarded	with	a	(special)	Pokemon	(Variable	reward)	and
continues	to	play	or	is	asked	to	share	the	recent	achievement	(Investment).

You	can	apply	the	model	to	your	app	too.	What	can	or	will	be	the	addictive
features	of	your	app?	What	can	you	do	to	make	your	users	return	to	your	app
more	frequently?	Not	only	can	the	process	help	your	app	grow,	it	will	also
increase	the	(perceived)	value	of	your	company—an	investor	will	be	more
interested	in	the	number	of	monthly	active	users	(MAU)	than	in	the	number	of
users	alone.

To	accomplish	this,	you	need	to	build	an	app	that	people	really	want	to	use.	To
find	out	what	people	want,	you	can	ask	them	what	they	need.	That	sounds	easier
than	it	actually	is.	Make	sure	you	ask	the	right	questions,	and	avoid	getting	only
socially	desired	answers.	Also,	make	sure	you	listen	carefully	to	what	they	tell
you.	Bear	in	mind	that,	sometimes,	they	will	have	no	clue	what	they	want,	until
they	see	it.	Here's	an	example	of	a	survey.

When	we	started	to	interact	with	real	prospective	users,	one	of	the	questions	that
we	asked	them	were	as	follows:

"Do	you	like	the	app?"

Invariably,	the	answer	would	be	polite:

"Yeah,	it's	a	really	cool	idea."

"Wow,	this	karaoke	idea	is	neat."

Initially,	we	didn't	listen	hard	enough	to	comments	from	users:

"You	don't	have	the	songs	or	lessons	that	I	want."

"My	teacher's	songs	aren't	on	your	app."

"How	will	this	help	me	find	a	teacher?"

"Who	will	review	my	recording?"

If	we'd	only	listened	a	little	harder	and	asked	the	right	questions,	it	would	have
become	obvious	to	us,	sooner	rather	than	later,	that	we	were	looking	at	a
marketplace	that	connected	students	and	teachers,	with	the	app	as	a	tool	that
enabled	this.	We	eventually	went	down	this	route	and	built	a	platform	with
several	world-famous	musicians	and	teachers.	But	we	would	have	saved	time
and	resources	early	on	if	we'd	asked	the	right	questions	from	the	start.

Summary
	

In	this	chapter,	we	have	seen	that	it	is	important	that	users	become	aware	of	your
app.	It	would	be	even	better	if	they	get	hooked	to	it,	hence	the	introduction	to	the
Hook	Model	that	you	have	read	about.	Finally,	we	have	learned	how	the	Lean
Startup	methodology	can	help	to	make	better	apps.

In	the	following	chapters,	we	will	see	what	tools	and	methodologies	you	can	use
to	shorten	the	development	cycles,	and	how	to	reduce	waste.	In	the	next	chapter,
we	will	look	at	the	business	canvas	model,	where	we	can	outline	our
assumptions	for	each	element	of	our	business.	It	can	help	us	to	determine	our
business	ideas	without	the	need	to	write	a	100-page	business	plan	that	nobody	is
ever	going	to	read.	That	sounds	like	you	are	going	to	save	time	already.	How
cool	is	that?

	

	

	

Lean	Startup	Primer
	

If	you've	picked	up	this	book	without	extensive	familiarity	with	concepts	of	the
Lean	startup	methodology,	this	chapter	will	serve	as	a	quick	primer	to	get	you
started.	If	you	are	already	familiar	with	Lean	thinking,	then	this	chapter	may
serve	as	a	breezy	refresher.

Here,	we	will	cover	a	few	key	concepts	that	form	the	foundation	of	Lean
Startup;	namely,	we	will	go	over:

The	Business	Model	Canvas
The	Lean	Canvas
Agile	development
Customer	development
The	Minimal	Viable	Product	(MVP)

Knowing	these	concepts	will	be	important	for	grasping	and	applying	other
lessons	in	this	book,	and	we	would	encourage	you	to	take	the	time	to	understand
them	thoroughly.

	

	

	

The	Business	Model	Canvas
Every	new	intrapreneur	or	entrepreneur	with	an	idea	seeks	to	bring	his	creation
to	life	and	watch	it	grow	over	time.	Successful	growth	over	time	needs
sustainability,	a	key	factor	for	enduring	ideas.	The	most	common	way	of
communicating	a	sustainable	proposition	for	a	new	idea	is	the	business	plan.

A	business	plan	outlines	a	problem,	the	opportunity	it	presents,	an	approach	for
solving	it,	a	model	for	generating	revenues,	ways	for	managing	costs,	and	levers
for	growth	over	time.

There	are	two	stages	to	writing	a	business	plan.	The	first	stage	is	actually	writing
the	plan,	and	the	second	is	keeping	it	up	to	date	as	your	business	evolves.

Business	plans	are	often	written	for	pitch	or	fundraising	purposes,	then	promptly
forgotten	afterwards.	Investor	attention	would	tend	to	gravitate	around	targets
and	the	company's	performance	in	the	direction	of	these	targets,	without	paying
attention	to	core	aspects	of	the	business.	However,	a	business	plan	performs
many	functions	throughout	the	life	of	your	business.	It	should	be	treated	as	a
living	document,	and	it	should	be	maintained	and	updated	as	your	business
evolves.

In	2008,	Alexander	Osterwalder	proposed	a	new	format	called	the	Business
Model	Canvas	(BMC).	The	BMC	is	a	single-page	document	that	lets	you
represent	all	aspects	of	a	business	plan:

Let's	break	this	down	and	go	through	each	section	of	the	canvas.

Key	partners
	

Partners	are	other	individuals	or	businesses	that	work	with	you	as	your	business
grows.

When	filling	out	this	section,	consider	the	following	questions:

Who	are	our	key	partners?
Who	are	our	key	suppliers?
Which	key	resources	are	we	acquiring	from	our	partners?
Which	key	activities	do	our	partners	perform?

Partners	are	important	for	co-creation	and	leveraging	the	scale	and	reach	of
others.	For	instance,	a	social	discovery	app	may	choose	to	partner	with	an	e-
commerce	site	that	enables	users	to	purchase	products	recommended	by	others
in	their	social	network.

	

	

	

Key	activities
	

All	broad	activities	that	are	essential	for	the	business	should	be	listed	here.

Ask	yourself	the	following	questions:

What	key	activities	does	our	value	proposition	require?
What	key	activities	do	our	distribution	channels	require?
What	key	activities	do	our	customer	relationships	require?
What	key	activities	do	our	revenue	streams	require?

These	activities	may	include	the	ones	relevant	for	production	of	the	mobile	app,
such	as	working	with	app	stores,	OEMs,	and	device	manufacturers.	Include	other
activities	that	come	to	mind,	such	as	collaborating	with	app	reviewers	and
bloggers,	or	tracking	monetization	through	freemium,	in-app	purchases,	or
referral	models.

	

	

	

Value	propositions
	

It	is	important	to	clearly	identify	the	problem	your	app	solves,	how	customers
benefit,	and	which	specific	emotional	or	physical	needs	are	being	met.

Ask	yourself	the	following	questions:

What	value	do	we	deliver	to	the	customer?
Which	one	of	the	customers'	problems	are	we	looking	to	solve?
Which	bundles	of	products	and	services	are	we	offering	to	each	customer
segment?
Which	customer	needs	are	we	satisfying?

To	ensure	that	you	develop	a	customer-centric	product,	it	is	critical	to	identify	a
unique	value	proposition	for	your	venture.	As	we	will	see	in	following	chapters,
though,	your	initial	value	proposition--or	your	value	hypothesis,	as	Eric	Ries
puts	it--can	evolve	or	even	pivot	later	on,	once	you	begin	learning	from	your
experiments.

	

	

	

Customer	relationships
	

Understanding	the	nature	of	the	interaction	helps	map	out	the	customer's	journey
and	their	touchpoints	with	the	app,	so	it	is	useful	to	think	through	the	entire
experience.

Ask	yourself	the	following	questions:

What	type	of	relationship	does	each	of	our	customer	segments	expect	us	to
maintain	with	them?
Which	ones	have	we	established?
How	are	they	integrated	into	our	business	model?
How	costly	are	they?

Consider	that	the	nature	of	most	utilitarian	apps	involves	a	DIY	self-service
relationship.	An	app	like	Uber	or	Ola	involves	personal	assistance	through	the
taxi	driver.	Waze	enables	co-creation	and	a	community	aspect	to	the	relationship.
Knowing	how	users	use	your	app	will	help	you	create	an	app	that	is	more	usable
and	more	useful.

	

	

	

Customer	segments
	

It's	important	to	be	specific	about	for	whom	you	are	making	the	app.	You	will
need	to	answer	questions	such	as:

For	whom	are	we	creating	value?
How	much	do	we	know	about	them?
Who	are	our	most	important	customers?

Your	definition	of	the	target	audience	may	broaden	in	the	long	term.

For	instance,	an	Uber-like	app	may	be	looking	to	create	value	for	all	commuters
seeking	instant	transportation.	As	we	will	explore	in	later	chapters,	however,
being	highly	specific	makes	testing	and	growth	much	easier,	which	are	two
reasons	why	it	is	important	to	identify	your	most	important	customers.	In	Uber's
case,	these	might	be	young	working	professionals	(willingness	to	pay	a	premium
for	their	time)	in	the	financial	district	of	New	York	(a	city	that	already	has	a	lot
of	people	using	taxis).

	

	

	

Channels
	

The	importance	of	channels	is	often	under	appreciated.	It	is	through	channels
that	users	come	to	know	about	your	app,	understand	why	they	must	install	it,	and
develop	habits	that	remind	them	to	use	it	when	they	need	it.

When	filling	out	this	section,	ask	yourself	the	following	questions:

Through	which	channels	do	our	customer	segments	want	to	be	reached?
How	are	we	reaching	them	now?
How	are	our	channels	integrated?
Which	ones	work	best?
Which	ones	are	the	most	cost-effective?
How	are	we	integrating	them	with	customer	routines?

We'll	discuss	channels	in	further	detail	later	in	the	book,	but	these	questions	will
get	you	off	on	the	right	foot.

	

	

	

Cost	structure
	

The	cost	structure	refers	to	business	expenses,	such	as	salaries,	resources,	and
infrastructure.	Consider	the	following	questions:

What	are	the	most	important	costs	inherent	in	our	business	model?
Which	key	resources	are	the	most	expensive?
Which	key	activities	are	the	most	expensive?

For	software	companies,	the	primary	driver	of	costs	is	employee	salaries.	In
some	cases,	infrastructure	costs	can	be	high,	and	may	be	an	important	factor	to
consider.	If	your	product	involves	hardware,	like	an	IoT	device,	the	cost
structures	are	likely	to	be	significantly	more	complex.	Choosing	between	iOS,
Android,	and	other	mobile	platforms	may	be	a	factor	while	considering	costs	of
developers	as	well.

	

	

	

Revenue	stream
	

Viability	and	sustainability	are	fundamental	questions	for	every	business,	and
your	mobile	app	is	no	different.	Figuring	out	what	your	revenue	model	is	and
understanding	how	you	will	monetize	your	hard	work	is	often	a	tricky	piece	of
the	puzzle.

Ask	yourself	the	following	questions:

For	what	value	are	our	customers	really	willing	to	pay?
For	what	do	they	currently	pay?
How	are	they	currently	paying?
How	would	they	prefer	to	pay?
How	much	does	each	revenue	stream	contribute	to	overall	revenues?

Some	apps	have	succeeded	to	thrive	just	on	advertising.	Others	have	made	it	big
through	freemium	models	or	in-app	purchases.	And	finally,	there	are	asset	sales,
which	can	be	just	as	lucrative	as	other	monetization	methods.

	

	

	

Example	BMC	-	mobile	marketplace
app
Here	is	a	BMC	for	a	mobile	marketplace	app	that	connects	music	students	and
music	teachers:

This	graphic	is	just	one	example	of	how	you	can	use	the	BMC	to	develop	a
business	plan.	Many	more	are	available	online.

Summary	of	the	BMC
A	business	plan	is	an	excellent	way	to	clarify	your	ideas,	present	these	ideas	to
potential	investors	or	stakeholders,	and	establish	business	guidelines	to	help	you
on	your	journey.

However,	some	people	have	a	polarized	reaction	to	the	BMC.	They	either	love	it
and	find	it	to	be	a	vastly	simpler	version	of	a	business	plan,	or	they	hate	it	and
think	of	it	as	a	complex	theoretical	abstraction	that	makes	for	a	great	workshop
exercise,	but	not	a	practical	tool.

It	turns	out	that	there's	an	interesting	variant	of	the	BMC	that	most	people	take	to
with	greater	ease.	We	will	look	at	that	variant	next.

Lean	Canvas
In	2009,	Ash	Maurya	proposed	the	Lean	Canvas.	The	Lean	Canvas	was	inspired
by	the	BMC,	and	by	a	variant	by	Robert	Fitzpatrick	that	incorporated	worksheets
from	Steve	Blank's	The	Four	Steps	to	Epiphany.

"Most	startups	fail,	not	because	they	fail	to	build	what	they	set	out	to	build,	but
because	they	waste	time,	money,	and	effort	building	the	wrong	product."
-	Ash	Maurya

Ash	Maurya's	n	variant	is	tailored	for	entrepreneurs	and	intrapreneurs	testing	out
a	new	idea.	The	Lean	Canvas	helps	you	test	out	the	key	hypothesis	that	needs	to
be	validated	in	order	for	you	to	find	the	product/market	fit:	

One	metric	that	matters
Ben	Yoskovitz	and	Alistair	Croll	detailed	their	concept	of	One	Metric	That
Matters	(OMTM)	in	their	book	Lean	Analytics.

This	concept--focusing	on	one	important	metric	instead	of	a	multitude	of
metrics--is	designed	to	help	entrepreneurs	simplify	and	stay	focused.	According
to	the	authors,	this	means	that	at	any	given	time,	there's	one	metric	you	should
care	about	above	all	else.	Communicating	this	focus	to	your	employees,
investors,	and	even	the	media	will	really	help	you	concentrate	your	efforts.

This	is	a	powerful	metaphor	that	helps	provide	organizational	clarity	around
what	to	focus	on.	Now,	the	hard	part	often	is	deciding	which	metric	matters.
Fortunately,	their	book	covers	various	examples,	depending	on	criteria	such	as
the	stage	of	the	company	and	the	nature	of	the	business,	to	help	serve	as	a	guide
for	choosing	the	right	metric.

The	one	change	we've	made	to	the	preceding	diagram	is	to	switch	key	metrics	in
the	Lean	Canvas	with	OMTM:

Agile	development	and	customer
development
The	core	DNA	of	Lean	Startup	is	a	beautiful	helix.	The	two	loops	of	this	helix
focus	on	two	ideas	that	lie	at	the	heart	of	the	Lean	methodology--agile
development	and	customer	development.	Tied	together,	these	two	approaches
enable	developers	to	create	products	that	are	truly	user-driven.

The	outer	loop	of	the	helix	involves	working	with	the	market	to	discover
customer	needs	and	the	context	in	which	they	emerge,	and	to	test	whether
possible	solutions	meet	these	needs.	Originally	coined	by	Steve	Blank,	this	loop
is	known	as	customer	development.

The	inner	loop	involves	a	rapid	iterative	software	development	cycle	of
understanding	needs	identified	by	customer	development	and	developing
solutions	that	meet	these	needs:

Agile	development	has	matured	over	the	last	decade,	and	Scrum	and	XP	are
common	today	in	many	organizations.	Agile	radically	changed	organizations	that
were	used	to	building	software	in	large	monolith	waterfall	releases	by	moving
them	to	an	iterative	model.	This	enables	teams	to	work	more	closely	with
customers	to	build	software.

Where	waterfall	models	usually	expect	that	the	problem	definition	was	fixed,
Agile	practitioners	went	in	with	the	assumption	that	the	problem	definition	may
be	somewhat	fluid.	Note	that	in	both	cases,	the	solution	is	unknown.	The
engineering	team	works	a	close	loop	to	iterate	through	solution	definition,	with
the	understanding	that	the	problem	definition	may	evolve	along	the	way.

While	waterfall	and	Agile	both	assume	some	level	of	definition	of	the	problem,
customer	development	is	all	about	problem	discovery.	We	start	with	exploring	an
unknown	problem	through	customer	discovery,	an	open-ended	exercise	to	find
unmet	needs.	This	then	leads	to	a	rapid	cycle	of	working	early	and	often	with
customers	to	validate	their	needs	and	then	to	scale	the	model.

Applying	these	ideas	in	conjunction	with	one	another	will	allow	you	to	respond

to	customer	feedback,	adapt	more	quickly,	and	create	useful	products	that
customers	love.	Your	very	first	step	in	that	direction	will	be	an	experiment	that
tests	hypotheses	about	your	business	plan,	your	customers,	and	your	app	idea.

The	MVP
This	experiment	is	called	the	Minimum	Viable	Product	(MVP).	The	MVP	is	an
important	concept	that	is	a	departure	from	the	traditional	big	bang	approach	of
building	out	a	polished	product	and	then	taking	it	to	the	market.	It	represents	the
minimal	set	of	features	and	functionality	that	would	need	to	be	built	in	a	product
in	order	to	test	market	viability	and	maximize	validate	learning.

The	MVP	and	its	subsequent	iterations	are	initially	designed	to	test	two	things:
whether	customers	will	value	your	product,	and	how	easily	your	product	will
expand.

Of	course,	the	hard	part	often	is	deciding	how	minimal	you	need	to	be.	The
initial	tests	can	be	simple	landing	pages,	interactive	wireframes,	or	functional
prototypes.	The	key	is	to	create	an	MVP	that	tests	the	validity	of	the	hypotheses
you	created	in	your	BMC.

For	instance,	a	landing	page	that	promotes	a	nonexistent	product	is	an
inexpensive	way	to	dip	your	toe	in	the	water.	It	can	test	whether	your	target
audience	is	interested	in	the	solution	and	value	proposition	you	developed	in
your	BMC.	You	can	also	measure	word-of-mouth	referrals	on	a	prototype,	for
example,	to	see	how	scalable	your	solution	is.

When	asked	how	minimal	is	minimal,	Eric	Ries	once	responded,	More	minimal
than	you	think.	But	this	can	be	a	challenge	for	many	development	teams	who
care	about	putting	out	polished	work.	If	they	feel	that	the	product	is	incomplete,
they	will	hesitate	to	put	it	out	for	review	and	testing.

The	underlying	fear	is	the	fear	of	criticism	or	rejection,	and	is	a	natural	human
reaction.	The	important	thing	to	recognize	is	that	there	will	be	criticism	and
rejection,	and	that	is	just	part	of	the	journey.

Understanding	which	criticism	and	feedback	to	act	upon	matters	if	you	want	to
improve.	Invariably,	putting	a	minimal	version	of	your	product	out	in	the	market
may	lead	to	critical	feedback	about	areas	which	you	may	have	chosen	not	to	pay
attention	to.	This	is	where	a	balanced,	pragmatic	approach	is	important.	You	may

choose	to	disregard	feedback	in	these	areas,	since	it	was	a	deliberate	choice	that
you	made.

However,	the	MVP	was	released	for	a	reason:	to	gain	information	about	certain
questions	you	had,	and	to	see	if	you	are	on	the	right	track	towards	developing	a
product	your	customers	will	want	to,	and	be	able	to,	use.	It	is	important	to	focus
on	feedback	in	the	areas	you	care	about	to	surface	surprises	and	data	that	will
lead	to	the	next	round	of	tests.

As	we	will	see	in	the	future	chapters,	focusing	on	feedback	is	the	key	to
effectively	implementing	the	Build-Measure-Learn	cycle.	Each	new	iteration
will	provide	you	with	more	feedback,	which	can	then	be	used	to	test	and
improve	future	releases.

Summary
In	this	chapter,	we	went	through	a	quick	primer	on	the	key	elements	of	Lean
startup.	First,	we	learned	what	the	BMC	is,	how	it	is	developed,	and	what	its
benefits	are.	Then	we	looked	at	a	variation	of	the	BMC	in	the	form	the	Lean
Canvas	and	discussed	how	Agile	development	and	customer	development	work
together.

In	the	next	chapter,	we	will	look	at	some	of	the	challenges	faced	by	Lean	app
developers.

	

Challenges	in	Applying	Lean	to
Building	Mobile	Apps
	

In	the	last	chapter,	we	covered	a	few	core	principles	of	the	Lean	startup.	We
discussed	the	business	model	canvas,	agile	development,	customer	development,
and	the	MVP.

In	this	chapter,	we'll	delve	into	the	underlying	premise	behind	this	book	and
explore	some	of	the	biggest	challenges	you	will	face	as	a	Lean	app	developer.
While	there	are	a	number	of	books	about	Lean	in	general,	applying	Lean	to
building	mobile	apps	is	relatively	new	territory.	Next,	we	will	introduce	some	of
these	core	challenges,	many	of	which	will	be	revisited	in	detail	later	on	in	the
book:

The	higher	design	bar	that	app	developers	face	when	developing	mobile
apps	as	opposed	to	web	apps
App	Store	submission	cycles,	which	create	delays	between	your	completed
iterations	and	the	time	they	are	made	available	to	the	public
The	challenges	posed	by	developing	multiple	platforms
Difficulties	presented	to	early	testers,	and	how	that	makes	it	difficult	to
grow	an	early	user	base
App	ratings,	which	have	a	direct	impact	on	your	ability	to	grow	your	user
base	and	run	certain	types	of	experiments

Let's	dive	into	a	few	of	the	main	challenges	and	see	why	they	are	significant	for
a	developer	seeking	to	apply	experimentation.

	

	

	

Higher	design	bar
From	the	humdrum	of	the	mid-2000s	web	apps,	Apple	radically	changed	the
mobile	world	with	the	iPhone,	offering	well-designed	apps	of	their	own	and
curating	apps	that	were	accepted	into	the	App	Store.	Thanks	to	Apple's	higher
standards	for	design,	consumers	began	expecting	intuitive,	well-designed	apps.
That	influence	has	been	far	reaching,	prompting	Google	to	push	their	boundaries
and	develop	material	design,	a	design	language	that	has	become	the	distinctive
hallmark	of	Android	apps.

Compared	to	the	web	world	where	some	popular	apps	could	get	away	with
mediocre	design,	mobile	apps	face	a	higher	design	bar.

A	Lean	developer	is	trying	to	validate	an	initial	concept	with	a	simple
experiment.	However,	the	underlying	value	of	the	app	can	be	clouded	by	poor
design	and	experience,	resulting	in	false	negatives.

On	the	other	hand,	fear	of	false	negatives	can	lead	the	developer	down	the	path
of	adding	far	more	polish	than	necessary	in	order	to	test	out	their	hypothesis.

As	we	will	caution	later,	it	is	important	to	avoid	analysis	paralysis	and	early
onset	perfectionism.	The	goal	is	finding	a	sweet	spot	between	a	poorly-designed
prototype,	which	could	interfere	with	testing	and	data,	and	an	over-polished	app,
which	could	cost	you	time	and	money.

Apple's	App	Store	submission	cycles
Apple's	App	Store	review	process-which	is	more	strict	than	Google	Play's-can
cause	major	delays	between	the	time	an	app	iteration	is	ready	for	release	and	the
time	it	actually	goes	live.	This	lag	creates	headaches	that	makes	timing	difficult
and	extends	the	time	it	takes	to	learn	from	your	customers.

With	web	apps,	developers	have	the	luxury	of	being	able	to	push	an	experiment
over	coffee	at	breakfast	and	then	roll	that	back	by	the	time	they	get	into	work.	A
range	of	tools	that	power	continuous	integration	and	continuous	deployment
enable	significant	agility	in	the	web	arena.

However,	mobile	app	developers	have	often	waited	for	weeks,	and,	at	times,
months	in	order	to	see	their	apps	listed	in	the	App	Store.	Apple's	draconian
review	processes	have	left	developers	feeling	like	they	would	be	better	off
talking	to	a	wall.

During	the	early	days	of	the	App	Store,	companies	fell	over	each	other	trying	to
build	relationships	with	Apple	to	ensure	that	their	submissions	went	through
smoothly.	I	remember	app	submissions	that	took	months,	requiring	several	email
exchanges	between	our	team	and	the	category	leader	at	Apple:

Fortunately,	times	have	changed,	and	today	Apple	is	committed	to	prompt
reviews.

However,	when	in	doubt,	check	out	www.appreviewtimes.com	to	see	the	average	app
store	review	times	for	the	iOS	and	Mac	App	Stores.	At	the	time	of	writing	this
book,	the	review	times	were	in	days,	but	that	changes	quickly	around	holidays
and	important	Apple	announcements.

App	Store	submission	cycles	must	be	taken	into	account	by	Lean	developers,
who	focus	on	shortening	the	time	it	takes	to	complete	a	cycle	of	the	Build-
Measure-Learn	loop.	Progress	can	quickly	grind	to	a	halt	when	you	are	left
waiting	with	uncertainty	about	when	you	can	actually	start	testing	with	your
users.	The	unpredictable	nature	of	the	App	Store	makes	it	hard	to	run	an	agile
cycle	with	rhythm	and	velocity,	and	rapidly	run	through	a	closed	loop	with	your
customers.

http://www.appreviewtimes.com

Inability	to	dynamically	load	libraries
Native	app	development	tool	chains	only	permit	static	linking	of	libraries.	What
this	means	is	that	there	is	no	straightforward	way	to	dynamically	load	library
components	into	your	app,	the	way	that	a	web	developer	may	choose	to	pull
different	JavaScript	modules	over	the	web	on	the	fly.

In	the	case	of	iOS,	there	are	a	few	tricks	through	which	libraries	can	be	loaded.
The	default	iOS	Xcode	settings	don't	permit	you	to	create	a	dynamic	library,	but
that	can	be	worked	around	by	copying	over	the	MacOS	settings.	However,	while
this	can	be	tested	out	locally,	roadblocks	appear	during	code	signing,	and	the
kernel	kills	app	libraries	that	are	not	signed	by	Apple	with	the	same	certificate.
That	said,	since	the	app	review	process	bars	dynamic	loading,	it's	unlikely	to
make	it	through	their	checklist.

Workarounds	such	as	this-or	others	that	can	be	found	online-can	be	tried	and
tested	to	see	if	they	will	make	it	through	the	submission	process.	However,	in	the
event	that	they	don't	succeed,	it	may	pay	to	develop	a	static-loading	strategy	for
your	app:

In	case	of	Android,	there	are	similar	tricks	through	which	a	Dex	file	may	be
loaded,	extracted,	and	invoked.	This	is	because	the	Dalvik	VM	permits	some
levels	of	custom	class	loading	from	alternate	locations	such	as	local	storage	or	a
remote	network.	However,	this	is	not	suitable	for	all	apps	and	has	a	fair	bit	of
complexity	when	it	comes	to	properly	dealing	with	all	scenarios.

Whereas	a	web	developer	can	easily	flip	a	switch	and	change	the	components
rendering	on	his	dashboard,	the	app	developer	needs	to	perform	a	juggling	act.	If
he	would	rather	focus	on	the	core	problem	of	his	app,	he	would	need	to	push	a
new	app	build	to	the	marketplaces	and	then	wait	for	users	to	download	the	new
version.

In	real-world	terms,	this	could	translate	into	anything	from	weeks	to	months
before	an	experiment	starts	to	hit	the	target	user	base.	Though	such	delays	could
be	very	problematic,	in	the	later	chapters	we	will	discuss	workflows	and
techniques	that	can	help	you	workaround	technical	roadblocks	such	as	these.

Cross-platform	releases
If	you	are	launching	a	new	app,	having	to	choose	between	iOS	and	Android
quickly	becomes	an	early	decision	point.	If	you	are	bootstrapped,	you	will	likely
end	up	choosing	one	or	the	other.	While	hybrid	solutions	exist,	they	can	end	up
compromising	some	experiential	aspects.	We	will	cover	hybrid	versus	native
issues	in	Chapter	9,	Native,	Hybrid,	or	Cross-Platform.

Web	developers	about	a	decade	back	faced,	in	certain	ways,	similar	issues	with
the	browser	wars.	Building	for	IE,	Mozilla,	and	Opera	felt	like	three	completely
different	browsers	at	times.	Developers	launching	a	new	product	often	had	to
play	it	safe	and	focus	on	just	one	popular	primary	platform	to	start	with.

For	mobile	app	developers,	choosing	just	one	platform	to	start	with	works	for	a
number	of	utilitarian	apps.	However,	many	apps,	such	as	messenger	apps,
involve	interacting	with	others	in	your	community.	This	quickly	becomes
difficult	in	an	experimentation	context	since	it	requires	others	to	be	on	the	same
platform.	This	also	gets	slightly	tricky	while	recruiting	users	for	testing,	since
you	need	to	focus	on	users	who	are	on	the	same	platform	that	you	are	targeting.

Later	in	the	book,	we	will	explore	the	benefits	and	drawbacks	of	cross-platform
apps	versus	native	apps,	then	discuss	techniques	for	choosing	the	right	approach
for	your	initial	business.

Getting	users	to	download	an	app
As	a	web	developer,	getting	someone	to	check	out	your	app	is	as	simple	as
dropping	them	a	link	and	asking	them	to	let	you	know	what	they	think.	You
might	even	get	onto	a	Skype	call	with	them,	get	them	to	share	their	screen	with
you	as	they	go	through	the	app	and	observe	their	interactions.

A	significant	hurdle	for	mobile	apps,	on	the	other	hand,	is	getting	users	to	go	to
the	store	and	download	your	app.	You	can	send	them	the	link,	but	they	then	have
to	follow	it	to	the	relevant	store,	go	through	the	downloading	process,	and	then
access	the	app	to	test	it	out.	And	iOS	makes	the	process	even	harder	by	requiring
a	password	for	you	to	be	able	to	download	the	app.

Irrespective	of	how	you	recruit	users	for	your	experiments,	making	the	series	of
steps	as	seamless	as	possible	is	important.	In	Chapter	11,	Onboarding	and
Registration,	we	will	discuss	how	to	streamline	the	onboarding	and	testing
processes	in	order	to	reduce	such	friction,	using	services	such	as	TestFlight,
HockeyApp,	and	the	PlayStore's	Alpha/Beta	channels:	

These	tools	will	help	simplify	this	process,	but	it's	still	not	quite	as	smooth	if
your	target	audience	isn't	tech-savvy.	Targeting	early	adopters,	which	will	also

be	discussed	later	in	the	book,	is	one	way	to	help	you	find	users	whose	need	for
your	app	can	be	enough	to	push	them	past	the	onboarding	friction.

Maintaining	app	ratings
If	you've	already	got	a	significant	user	base	on	your	app,	you	are	likely	pressured
to	maintain	a	4+	rating	on	the	app	stores.	App	ratings	determine	the	likelihood
that	your	app	may	be	featured	prominently	in	listings	and	search	results,	which
has	a	natural	and	direct	correlation	to	your	ability	to	expand	your	user	base
organically.

For	instance,	at	a	company	like	Intuit,	despite	the	fact	that	there	are	a	number	of
experiments	that	run	during	tax	season,	the	pressure	to	keep	ratings	above	4.0-
download	rates	decreases	significantly	as	ratings	drop:	

Running	experiments,	which	are	necessary	to	evolve	your	app,	can	have
uncertain	impacts	on	the	ratings.

Healthy	ratings	and	ongoing	experimentation	are	both	necessary	when	applying
the	Lean	approach	to	app	development.	However,	since	reduced	ratings

negatively	impact	user	acquisition,	you	will	need	to	find	a	way	to	minimize	such
impacts.	Finding	a	balance	between	potentially	disruptive	experimentation	and
good	ratings	is	an	ongoing	challenge,	especially	as	an	app	matures.

In	the	early	stages,	moving	fast	and	breaking	things	works	well.	However,	for	an
established	app	with	healthy	ratings	and	a	healthy	user	base,	it	can	be	difficult	to
rationalize	experiments	that	could	cut	ratings.	After	all,	lower	ratings	decreases
the	likelihood	that	your	app	will	be	featured	or	receive	an	editorial	listing,	both
of	which	can	massively	increase	exposure	and	downloads.

Justifying	experiments	to	other	team	leads	may	be	challenging,	but	it	can	also	be
necessary,	even	after	an	app	is	well	established.	After	all,	the	more	an	app
becomes	successful,	the	more	likely	it	is	to	gain	competition.	Later,	we	will
discuss	ways	to	run	split	tests	that	provide	useful	data	without	causing	too	much
disruption.

Summary
Applying	Lean	methods	to	mobile	app	development	is	not	easy.	There	are	certain
unique	challenges	that	get	in	the	way	of	running	a	tight	Build-Measure-Learn
loop	with	customers	and	maximizing	validated	learning.	In	this	chapter,	we
covered	some	of	the	biggest	challenges,	such	as	the	ones	presented	by	the
platforms,	the	App	Stores,	and	the	users	themselves.

In	the	next	chapter,	we	will	explore	why	you	should	take	a	pragmatic	approach
to	app	development,	how	to	be	pragmatic	and	structured	at	the	same	time,	and
we	will	look	at	a	few	real-world	tools	and	techniques	to	help	you	stay	focused
and	practical.

	

An	Agile	Workflow	in	a	Nutshell
In	this	chapter,	we	will	discuss	Agile	to	find	out	what	it	is	and	how	we	can
benefit	from	it.

Many	companies	have	moved	away	from	the	waterfall	methodology	when
developing	software.	They	have	switched	to	a	more	adaptive	methodology	such
as	agile,	and	for	a	reason.	The	waterfall	methodology	just	follows	the	original
plan	and	requirements	and	there	is	little	to	no	room	for	change.	It	is	obvious	that
such	an	approach	is	not	going	to	work	for	your	app.	Unless	you	have	a	crystal
ball,	and	you	are	right	from	the	beginning,	this	approach	most	likely	is	going	to
lead	to	a	lot	of	waste.

An	agile	workflow	accommodates	change	through	adaptive	planning,	promotes
faster	software	development	and	delivery,	and	is	rooted	in	a	continuous
improvement	methodology.	That	is	exactly	what	you	need	to	validate	your
assumptions,	and	it	is	what	you	need	to	pivot	when	necessary.

There	are	a	lot	of	implementations	of	agile	software	methodology.	They	all	focus
on	the	ability	to	adapt	and	to	deliver	releasable	software	as	quickly	as	possible.
Some	of	them	focus	on	managing	the	workflow	in	particular.	One	of	the	most
common	is	Agile	Scrum.	We	will	have	a	closer	look	in	this	methodology	to	see
how	well	it	works	with	Lean	software	development.

Specifically,	in	this	chapter,	we	will	learn	more	about	the	following	topics:

An	Agile	workflow
Lean	software	development,	Kanban,	and	Scrum
Epic,	stories,	and	tasks
The	Scrum	team	and	the	daily	standup
Backlog	refinement	and	the	definition	of	Ready
The	sprint	planning
The	definition	of	Done
The	sprint	review,	planning,	and	retrospective
Tools	that	you	can	use,	such	as	Trello	and	Jira

An	Agile	workflow
Using	an	Agile	workflow	helps	your	team	to	be	flexible	and	able	to	quickly
respond	to	changes.	It	also	means	that	your	team	is	self-organizing,	and	that
members	of	the	team	are	able	to	deliver	early	and	often.

Good	communication	is	fundamental	to	Agile	and	the	members	of	your	team
have	to	collaborate	well	with	the	product	owner,	stakeholders,	and	each	other.
The	users	of	your	app	need	to	also	be	involved,	right	from	the	beginning.	Their
feedback	is	vital,	and	is	critical	for	you	to	make	the	right	decisions	for	your	app
development.	Finally,	at	any	time,	you	should	be	able	to	deliver	a	working
version	of	the	software.	A	good	git	workflow	and	being	able	to	continuously
deliver	are	key	elements	here.	You	will	read	more	about	this	in	Chapter	19,
Building	an	Unfair	Advantage.

What	all	agile	methods	have	in	common	is	that	they	promote	the	ability	to
change,	continually	learn	as	you	go,	and	to	delivery	software	as	quickly	as
possible.

Some	agile	software	development	methodologies	are	as	follows:

Lean	software	development
Kanban
Scrum

There	are	many	more	approaches,	but	these	are	the	most	interesting	ones.	Of
course,	Lean	software	development	has	the	focus	of	this	book.	The	key	elements
for	this	methodology	are:

Delivering	as	early	as	possible
Making	decisions	as	late	as	possible
Gathering	early	feedback	through	Continuous	Delivery

We	will	learn	more	about	all	these	elements	in	the	next	chapters.	Unlike	the
other	methodologies,	Lean	is	more	focused	on	avoiding	waste.

But,	let's	start	with	the	basics	first.	Lean	software	development,	Kanban,	and
Scrum	have	a	lot	in	common.	In	this	chapter,	we	will	have	a	closer	look	at
Kanban	and	Scrum,	and	discuss	Lean	in	the	rest	of	the	book.

Kanban
Kanban	is	a	way	to	visualize	the	flow	and	the	current	state	of	each	action.	Every
participant	can	see	the	progress	from	start	to	finish.	Team	members	start	working
as	capacity	permits.	Unlike	Scrum,	there	is	no	need	for	forecasting	as	it	is	a
continuous	process.

Kanban	is	a	methodology	that	uses	visualization	with	a	Kanban	board.	The
method	originates	from	Lean	manufacturing	(inspired	by	Toyota),	but	it	is	often
used	for	software	development	as	well.	In	its	most	basic	shape,	it	contains	three
columns,	reflecting	the	state	of	each	item—To	do,	Doing,	and	Done.	Note	that	it
is	important	to	keep	the	amount	of	items	in	the	Doing	lane	to	a	minimum.	People
are,	in	fact,	not	really	good	in	multitasking,	although	they	think	they	are.
Switching	from	contexts	will	increase	waste	and	should	be	avoided.

All	you	need	to	create	a	Kanban	board	is	an	empty	wall	and	a	number	of	post-its,
but	you	can	also	use	a	software	service	such	as	Trello.	If	you	sign	up	at	www.trello.
com,	you	can	set	up	your	own	project	for	free	and	define	a	number	of	lanes.	In
this	example,	set	up	with	Trello,	it	is	clear	to	everyone	which	state	each	item	is
in.	You	can	define	additional	lanes	where	needed:	

In	Kanban,	the	flow	of	work	is	continuous,	but	in	Scrum,	work	is	divided	into
events	that	last	for	a	specific	amount	of	time.	Scrum	uses	Kanban	boards,	but
adds	a	forecasting	element	to	it.

https://trello.com/

Scrum
Scrum	is	a	way	of	software	development	management	that	is	designed	for	small
teams.	The	members	of	the	team	complete	a	number	of	actions	during	cycles	of
a	fixed	duration	called	sprints.	The	sprint	is	restricted	to	a	specific	duration.	The
duration	is	normally	between	one	week	and	one	month,	with	two	weeks	being
the	most	common.	The	fixed	length	of	a	sprint	is	important	because	it	allows	the
team	to	determine	their	velocity,	or	rate	of	speed	at	which	they	get	work	done,
after	a	couple	of	sprints.

At	the	beginning	of	a	sprint,	the	team	decides	which	tasks	can	be	accomplished
in	the	given	timeframe.	After	a	number	of	sprints,	it	is	easier	to	make	appropriate
estimations,	since	the	team	will	have	a	better	feel	for	the	work	they	do.	Knowing
the	velocity	of	a	team	will	make	it	easier	for	the	team	to	make	estimations	on	the
stories,	and	to	make	sure	the	team	can	truly	commit	to	all	stories	defined	for	a
given	sprint	(that	it	is	doable).

The	methodology	places	emphasis	on	a	workable	and	potentially	shippable
product	at	the	end	of	the	sprint.	This	means	that	the	software	has	not	only	been
developed,	but	also	that	it	has	been	tested	and	integrated.	It	should	be	possible	to
demonstrate	the	app,	to	perform	an	ad	hoc	distribution	to	beta	testers,	and	even
to	publish	the	app	or	the	update	in	the	Play	Store	or	App	Store.

Epic,	Stories,	and	Tasks
An	epic	is	a	large	amount	of	work	that	is	almost	always	delivered	over	a	number
of	sprints.	An	epic	often	is	a	high-level	description	of	functionality.	It	contains
no	specific	details.	Through	customer	feedback,	the	team	can	learn	what	is
needed	to	complete	the	epic.	An	example	of	an	epic	may	be:	As	a	user	of	the
app,	I	want	to	be	able	to	set	up	and	to	review	a	Business	Model	Canvas	in	an
app.

An	epic	is	a	high-level	description	of	the	feature	or	features.	Since	specific
details	are	missing,	the	team	needs	to	learn	more	about	the	epic,	and	often	this
will	generate	multiple	stories.	solve	the	problem	that	the	epic	defines,	can
become	a	story.

A	user	story	should	be	as	small	as	possible	while	it	is	still	delivering	business
value.	User	stories	are	often	written	from	the	perspective	of	the	users	of	the	app,
and	they	are	described	in	a	natural	language.	They	describe	a	particular	feature
in	only	few	sentences	that	outline	the	desired	outcome.	This	can	help	the	team	to
understand	the	objectives	and	the	context	of	a	specific	desired	feature.

A	story	may	have	one	or	more	tasks.	These	tasks	can	describe	in	a	very	specific
way	which	actions	need	to	be	taken	in	order	to	complete	a	story.	An	example	of
a	task	could	be	to	develop	an	edit	box	where	the	user	can	edit	text	or	add	a	Save
button	and	persist	the	edited	text.	It	is	also	important	to	specify	the	acceptance
criteria.	If	you	have	clearly	defined	what	the	result	of	the	implementation	of	a
story	or	task	should	be,	it	will	become	easier	for	your	testers	to	accept	(or	to
decline)	the	new	feature.

Scrum	team
For	the	Scrum	approach,	you	will	typically	find	three	main	roles,	although	some
organizations	do	define	others	in	addition	to	the	ones	listed	here:

Scrum	master
Product	owner
Development	team	(and	that	includes	the	testers)

Scrum	teams	have	one	product	owner.	He	or	she	is	responsible	to	ensure	that	the
team	delivers	business	value	that	is	required.	To	do	so,	the	product	owner	is	the
connection	between	the	stakeholders	and	the	(technical)	team.	The	product
owner	is	primarily	focused	on	the	business	side	(problem	definition).	The
product	owner	defines	the	user	stories	and	adds	them	to	the	backlog.

The	user	stories	describe	the	features	that	need	to	be	implemented.	You	can	think
of	a	backlog	as	a	to-do	list.	The	team	has	to	commit	to	these	items,	and	each
item	needs	some	refinement	to	make	clear	what	exactly	is	needed	to	implement	a
specific	feature.	It	is	the	team,	focused	on	finding	a	solution,	that	will	give	the
feedback	for	this.	The	backlog	also	needs	prioritization.	This	prioritization	is
often	based	on	how	important	specific	features	are	for	the	end	user	(the	value).

The	product	owner	demonstrates	the	app	to	stakeholders,	and	defines	the
milestones	and	releases	of	the	app.	He	or	she	also	informs	stakeholders	about	the
development	of	the	app,	and	plays	an	important	role	at	negotiation	of	funding,
scope,	and	priorities.	The	product	owner	needs	to	be	able	to	communicate
effectively.	He/she	needs	to	find	a	balance	between	the	stakeholders'	(and	end
users')	interests,	and	the	collaboration	with	the	members	of	the	team	to	make
sure	they	develop	the	right	solution	for	the	problems	that	stakeholders	find	or
define:

This	results	in	information	on	two	totally	different	levels.	Stakeholders	are	often
only	interested	in	obtaining	a	solution	for	the	problem.	However,	the
development	team	prefers	to	hear	feedback	with	as	much	detail	as	possible,	so
they	will	know	how	a	feature	should	be	implemented.

The	developers,	testers,	and	others	are	all	members	of	a	self-organizing	team.
They	will	care	for	all	tasks	related	to	delivering	or	updating	the	app.	Tasks	that
you	can	think	of	are:

Design
UX
Analysis
Technical	research	and	development
Code	review
Testing
Documentation

The	team	commits	to	a	sprint,	and	is	responsible	for	delivering	an	updated	and
working	app	at	the	end	of	each	sprint.	It	does	not	make	a	difference	whether	the
update	is	a	external	or	an	internal	one.	It	should	always	be	possible	to
demonstrate	the	new	features	to	the	stakeholders.

Another	role	is	that	of	the	Scrum	master.	The	Scrum	master	makes	sure	that	the
Scrum	framework	is	followed.	He	coaches	the	team	to	make	sure	that	the	team
delivers	all	the	features	for	a	sprint.	He	educates	the	team	and	the	stakeholders
about	the	Scrum	principles.	The	scrum	master	helps	the	team	to	remove	(or	to
avoid)	internal	or	external	impediments	that	might	impede	a	sprint's	success.

The	Scrum	master	also	maintains	the	backlog,	and	ensures	the	stories	are	clear
and	that	they	are	defined	in	a	nonambiguous	way.	It	is	important	that	the	team
understands	the	objectives	of	a	story	so	it	can	actually	make	progress.	Other
important	responsibilities	of	the	Scrum	master	are	helping	the	team	to	come	up
with	the	definition	of	Ready	(when	the	development	team	can	begin	work	on	a
story),	and	to	come	up	with	the	definition	of	done	(when	can	a	new	feature	be
rolled	out).	We	will	have	a	closer	look	at	these	definitions	later.

The	daily	stand-up
The	team	holds	a	stand-up	(also	known	as	Daily	Scrum)	on	each	day	of	a
sprint.	It	is	a	short	meeting	that	is	often	limited	to	15	minutes	(timeboxed).	It
happens	at	the	same	time	and	place	every	day,	even	when	some	team	members
are	missing.	Anyone	is	welcome	to	join,	although	only	team	members	should
contribute.

During	the	stand-up,	each	member	provides	an	answer	to	these	three	questions
related	to	the	context	of	the	sprint:

What	did	I	do	the	last	work	day?
What	do	I	plan	to	complete	today?
What	impediments	do	I	see	that	prevent	me	or	the	team	from	meeting	our
sprint	goal?

Since	the	meeting	is	timeboxed,	it	is	important	that	each	member	focuses	on
these	three	questions	alone	and	there	should	be	no	detailed	discussions.	The
Scrum	master	will	be	notified	about	any	impediment	mentioned	during	the
meeting.

Impediments	are	blockers,	risks,	dependencies	on	other	teams	or	partner
companies,	and	possible	or	expected	delays.	The	Scrum	master	is	responsible	for
removing	impediments,	or	finding	someone	who	is	willing	or	able	to	find	a
resolution.	A	Scrum	board	displaying	the	actual	impediments	can	be	useful	to
note	this,	as	finding	a	solution	is	something	that	needs	to	happen	outside	the
stand-up.

Backlog	refinement
Before	a	sprint	can	start,	the	sprint	backlog	needs	to	be	defined.	What	stories
need	to	go	into	the	sprint?	To	provide	an	answer	to	that,	the	team	needs	to	review
the	product	backlog.	The	product	backlog	contains	all	actions	(stories)	that	need
to	be	taken	to	complete	the	product	(the	app).	First,	they	need	to	be	refined
before	the	team	can	commit	to	them.

Each	story	needs	an	estimation	of	the	amount	of	work	involved.	This	estimation
is	usually	expressed	in	story	points,	not	hours.	The	story	points	relate	to	the
expected	complexity	and	amount	of	work.	Typically,	a	specific	and	clear	action
such	as	Edit	a	text	on	a	button	will	be	defined	as	one	story	point.	This	creates	an
anchor	for	defining	other	more	complex	stories.	All	estimated	stories	will	be
derived	from	it.

To	be	able	to	assign	story	points,	the	story	needs	to	be	clear	and	well	understood
by	the	team.	Planning	poker	is	often	used	to	let	the	team	members	make
estimates.	You	can	use	cards	for	the	estimates,	or	use	one	of	the	many	apps	that
are	available.

Here	is	an	example	of	such	an	app,	called	Scrum	Time.	You	can	find	it	on	the
Play	Store	or	App	Store.

As	a	user	of	the	app,	you	can	pick	a	card	with	a	number	that	you	will	show	to	the
rest	of	the	team.	If	the	estimated	points	differ	too	much	between	the	team
members,	then	they	need	to	discuss	why	they	think	the	implementation	and

testing	of	a	story	will	take	more	(or	less)	time.	Perhaps	a	member	of	the	team	has
knowledge	that	the	rest	do	not	have,	or	maybe	he	is	looking	at	the	story	in	a
different	way.	New	insights	can	contribute	to	a	better	estimation.

The	numbers	to	pick	from	are	typically	derived	from	the	Fibonacci	sequence.	In
mathematics,	the	Fibonacci	sequence	is	characterized	by	the	fact	that	every
number	after	the	first	two	is	the	sum	of	the	two	preceding	ones.	The	reason	why
these	numbers	are	used	here	is	that	the	larger	a	story	becomes	(having	more
story	points),	the	more	difficult	it	will	be	to	make	an	exact	estimation.	If	you
have	no	clue,	you	can	always	play	the	question	mark	card,	or	if	the	action	related
to	the	story	is	infinite	(think	of	delivering	support),	then	there	are	cards	for	that
as	well.	And	yes,	if	you	are	thirsty,	there	is	always	the	coffee/pause	card	that	you
can	play.

The	1,2,3,5,	and	8	cards	are	the	ones	that	are	played	most	often.	Stories	with
more	points	very	likely	need	to	be	split	up	into	multiple	smaller	stories	to	reduce
risk.

Definition	of	Ready
	

It	is	the	responsibility	of	the	product	owner	to	add	stories	to	the	backlog.	During
the	backlog	refinement,	the	team	has	to	provide	feedback	to	get	each	story	into
an	actionable	condition.	The	stories	at	the	top	of	the	backlog,	and	that	are
candidates	for	the	upcoming	sprint,	must	be	ready.	Having	a	clear	Definition	of
Ready	(DoR)	is	important	if	you	want	to	raise	the	productivity	of	your	team.

The	stories	need	to	be	immediately	actionable.	If	they	are	not,	how	could	one
implement	or	test	a	feature?	It	must	be	clear	what	the	objectives	are,	what	needs
to	be	done	to	make	it	happen,	and	what	amount	of	work	it	takes.	For	example,
the	backlog	may	be	filled	with	user	feedback	such	as,	"We	want	to	able	to	create
new	invoices	quicker."	This	statement	clearly	defines	a	problem,	but	if	we	want
to	work	on	it,	we	need	more	specific	information.	The	team	must	be	able	to
determine	what	needs	to	be	done.	If	we	could	state	that	adding	a	button	for
creating	new	invoices	to	the	main	screen	is	the	solution,	then	we	can	make	an
estimation	for	it	and	start	working	on	it.	A	story	that	is	ready	is	clear,	concise,
and	actionable.

	

	

	

Sprint	planning
	

The	team	selects	the	items	that	have	the	highest	priority	and	that	are	ready	for
work	to	start.	The	team	can	only	commit	to	stories	that	have	clear	objectives,	and
that	are	not	blocked	by	anything	else.	Also,	the	team	can	commit	only	to	a
limited	number	of	stories	during	a	sprint.	That	means	that	the	team	needs	to
know	how	much	work	will	be	involved	with	these	stories,	and	how	much	work
can	be	done	during	a	sprint.

To	determine	how	much	work	can	go	into	a	sprint,	we	need	to	know	the	team's
velocity,	which	is	a	number	that	expresses	the	total	effort	a	team	is	capable	of	in
a	sprint.	That	number	comes	from	evaluating	and	determining	the	average
amount	of	work	done	(sum	of	story	points)	in	previous	sprints.	Of	course,
seasonal	influences	(holidays)	and	other	things	that	could	determine	the	team's
capacity	need	to	be	taken	into	account.	No	extra	work	should	be	added	to	a
sprint	once	the	team	has	committed	to	start.

	

	

	

Definition	of	Done
	

The	Scrum	framework	determines	that	each	story	should	be	done	at	the	end	of
every	sprint.	In	an	ideal	world,	the	Definition	of	Done	(DoD)	means	that	each
story	has	been	developed,	tested,	and	approved,	and	that	your	app's	current	state
is	in	a	potentially	shippable	state.	We	still	need	to	define	exactly	what	that
means.	The	DoD	may	vary	from	one	Scrum	team	to	another,	but	must	be
consistent	within	one	team.	The	DoD	can	help	to	ensure	that	features	are
implemented	and	tested	and	that	their	addition	will	truly	contribute	to	a
shippable	app.

The	definition	could	also	contain	a	list	of	other	actions,	such	as	code	reviews,
running	unit	tests	and	UI	tests,	writing	documentation,	and	ad	hoc	or	public
distribution.	Each	action	should	add	a	verifiable	value	to	the	product.	This	helps
the	team	to	focus	on	which	features	matter	while	avoiding	activities	that	are
wasteful.

	

	

	

Sprint	review,	planning,	and
retrospective
There	are	a	couple	of	events	at	the	end	of	each	sprint:	the	sprint	review	and	the
sprint	retrospective.	There	is	also	the	sprint	planning	for	the	next	sprint.

At	the	review,	the	team	reviews	all	the	completed	work	and	demonstrates	it	to
the	stakeholders.	They	also	review	the	work	that	has	not	been	completed	yet.

For	the	upcoming	sprint,	there	is	the	sprint	planning	event.	During	this	event,	the
team	and	stakeholders	work	together	to	determine	which	features	can	be
delivered	in	the	sprint,	and	how	it	can	be	achieved.

The	retrospective	is	used	to	reflect	on	the	past	sprint	so	that	a	team	can	learn	and
improve	over	time.	In	general,	the	two	main	questions	asked	of	each	member
are:

What	went	well	during	the	sprint?
What	needs	to	be	improved	in	the	next	sprint?

The	Scrum	master	facilitates	the	event	and	helps	the	team	to	determine	what
actions	are	needed	in	order	to	improve	things.	For	the	retrospective,	you	can	use
a	tool	such	as	Jira,	but	often	using	post-its	works	much	better.

Anything	that	needs	improvement	will	be	prioritized,	and	actions	will	be	defined
for	the	top	three	issues.

By	now,	you	have	a	basic	understanding	on	what	the	Agile	workflow	and	Scrum
is	about.	To	learn	more	about	Scrum,	you	can	visit	https://www.scrum.org.

https://www.scrum.org

Tools	that	you	can	use
You	can	use	a	number	of	tools	to	support,	automate,	and	visualize	the	process.
Jira	and	Agilefant	are	well-known	web-based	solutions	that	can	help	you	define
epics,	stories,	estimates,	and	sprints.	Most	tools	also	have	an	option	to	add	(sub)
tasks	to	stories.	Although	a	story	should	be	the	smallest	amount	of	work
possible,	it	can	still	be	useful	to	divide	them	into	multiple	subtasks.

You	can	find	more	information	about	Jira	at	https://www.atlassian.com/software/jira.
Agilefant	can	be	found	at	https://www.agilefant.com.

The	following	is	an	example	of	Jira	displaying	a	Kanban	Board.	Jira	comes	with
good	support	for	Agile	and	Scrum	in	particular,	while	Agilefant	is	more	method
agnostic:

If	you	just	got	started,	you	might	not	need	all	these	tools	yet.	In	that	case,	a
whiteboard	and	a	number	of	post-its	are	sufficient	to	create	your	first	Kanban

https://www.atlassian.com/software/jira
https://www.agilefant.com

board.	This	board	comes	in	handy	when	all	members	of	your	team	work	in	the
same	space.	When	you	have	a	distributed	team,	Trello	is	a	good	choice.	It	is	not
as	advanced	as	Jira,	as	it	does	not	have	support	for	Scrum,	but	it	is	a	great	way	to
get	started	in	an	organized	way.

To	start	with	Trello,	sign	up	at	https://trello.com/,	create	a	new	team	and	project,	and
you	are	ready	to	start.	Just	as	is	the	case	with	Jira,	you	can	create	multiple	lanes
in	Trello,	each	reflecting	the	actual	state	of	a	card/item.	As	said	before,	you	can
start	with	a	To	do,	Doing,	and	a	Done	lane.	However,	you	soon	will	find	out	that
these	states	alone	are	not	going	to	be	sufficient.

If	you	configure	the	following	lanes,	you	will	have	a	decent	start	for	an	agile
workflow	in	Trello:

Backlog
Ready	(the	story	is	clear,	well	understood,	and	has	no	impediments)
In	development	(developing	and	testing)
Test
Done	(it	has	been	tested	and	approved)

It	may	look	like	the	following	example.	You	can	also	add	more	lanes	to	it,	such
as	code	review,	or	whatever	suits	your	organization	best:

All	stories	start	as	a	card	in	the	Backlog	lane.	Once	you	have	clearly	defined
what	the	objectives	are,	the	story	is	ready	for	development.	You	can	then	move
the	card	to	the	Ready	lane.	When	a	developer	picks	up	the	story,	he	will	move
the	card	to	the	Development	lane.	At	the	moment,	the	implementation	has	been
completed	and	the	unit	test(s)	for	the	story	succeed	the	card	will	be	moved	again,
for	example,	to	the	Test	lane	or,	optionally,	to	the	Code	review	lane	first:

https://trello.com/

If	a	manual	or	automated	UI	test	for	the	implemented	feature	succeeds,	then	the
story	can	be	considered	as	done,	which	correspond	to	the	final	lane.

This	is,	of	course,	just	a	simplified	process,	and	tools	such	as	Jira	offer	much
better	support	for	Agile	and	Scrum	workflows,	including	epics	and	estimations.
Nevertheless,	Trello	is	still	a	good	start	for	newbies.	Trello	comes	with	options
to	add	labels	and	to	define	an	expiration	date	and	time.	You	can	use	it	for
multiple	purposes,	even	to	set	epics	and	estimations,	as	shown	in	the	preceding
screenshot.	The	epics	appear	as	green	labels	and	the	estimated	story	points
appear	in	blue.

In	the	later	chapters,	you	will	read	about	other	tools	that	can	help	you	to	organize
an	agile	workflow.	Think	of	Confluence.	Just	like	Jira,	it	is	a	Jetbrains	web-
based	solution	that	allows	you	to	organize	all	of	your	documentation	and
discussions.

Summary
	

In	this	chapter,	we	saw	a	brief	introduction	to	Agile	and	Scrum	workflow	and
how	you	can	benefit	from	them.	We	now	know	how	you	can	use	Kanban	to
visualize	the	state	of	each	item	of	work,	and	what	some	possible
implementations	of	the	agile	workflow	are.	In	particular,	we	had	a	look	at
Scrum,	the	different	roles	that	exist,	and	what	planning	and	estimation	a	Scrum
environment	requires.

You	might	think	that	all	of	this	makes	sense,	but	it	will	be	difficult	to	implement
if	you	have	limited	resources	and	time.	What	can	we	do	to	keep	waste	to	a
minimum,	but	still	act	in	a	very	pragmatic	way?	You	will	read	all	about	that	in
the	next	chapter.

	

	

	

A	Pragmatic	Approach
You	have	made	some	awesome	moves	already!	You	know	what	you	are
passionate	about	and	perhaps	you	have	already	created	a	very	first	Minimum
Viable	Product	(MVP).	This	could	be	a	website,	a	survey,	or	maybe	even	a	very
simple	app.	It	does	not	really	matter	how	it	manifests	itself.	The	only	thing	that
is	important	here	is	that	it	is	something	that	could	prove	your	hypothesis	and	it	is
something	that	requires	only	minimal	effort.	Learn	from	the	feedback	that	you
get,	and	figure	out	if	your	earliest	assumptions	are	correct.	If	so,	it	is	time	for	the
next	step.

In	this	chapter,	we	will	see	how	to	move	on	and	how	to	deal	with	one	of	the
biggest	challenges	of	a	startup.	Time	and	timing	are	essential.	This	is	particularly
true	for	a	bootstrapped	startup.	We	will	look	at	how	to	get	things	done	when
nothing	is	there	yet	and	when	the	most	important	resources	(time	and	money)	are
very	limited.	What	you	need	is	the	right	mindset	and	a	very	pragmatic	approach.

You	do	not	need	a	huge	office	and	all	kinds	of	fancy	stuff.	Also,	you	do	not	need
many	rules,	but	most	of	the	time	things	do	not	happen	automatically.	Anyhow,
we	need	a	few	rules,	no	matter	how	cool	your	startup	may	be.	A	pragmatic
approach	is	a	nice	balance	between	total	chaos	and	bureaucracy.	You	will	keep	a
clear	focus	on	what	you	want	to	accomplish,	and	developing	new	features	is	not
going	to	take	you	longer	than	strictly	needed.	Such	an	approach	will	result	in
developing	exactly	the	required	functionality	during	a	particular	stage	of	your
app.

There	are	no	shortcuts	in	startup	land	when	searching	for	a	product-solution	or	a
product-market	fit,	but	as	a	developer	you	often	do	not	need	to	reinvent	the
wheel.	Readymade	solutions	are	widely	available	for	most	situations.	For
example,	in	Chapter	8,	Cloud	Solutions	for	App	Experiments,	we	will	investigate
which	parties	are	offering	a	Mobile	Backend	as	a	Service	(MBaaS),	and	in	Chap
ter	10,	There	Is	an	API	for	That!,	we	will	look	at	various	mash-up	ideas.	Such
solutions	are	real-time	savers	irrespective	of	whether	you	are	just	using	them	to
build	an	MVP	or	using	them	during	the	whole	lifetime	of	your	app.

Specifically,	we	will	cover	the	following	topics:

Learn	about	the	benefits	of	timeboxed	programming
See	what	options	are	available	to	get	started	with	nothing
Demonstrate	how	to	keep	things	well	structured
Investigate	whether	there	are	any	shortcuts

Timeboxed	programming
For	each	iteration,	you	need	to	decide	how	long	it	will	take	and	what	features
will	come	with	it.	As	you	have	seen	in	Chapter	4,	An	Agile	Workflow	in	a	Nutshell,
a	typical	sprint	takes	2	to	3	weeks.	Although	this	may	be	difficult	at	first,	you
will	learn	soon	enough	what	you	and	your	team	members	can	accomplish	during
such	a	sprint.	Sometimes	you	will	have	no	clue	how	long	the	development	of	a
feature	will	take.	In	that	case,	a	timeboxed	approach	can	help	you	as	well.
Before	you	start	working	on	that	feature,	you	allocate	a	particular	amount	of
time.	Afterwards,	you	can	determine	what	you	have	accomplished	and	you	can
decide	whether	the	feature	can	be	released	as	it	is.	Even	if	it	is	not	completely
functional,	as	long	as	it	contains	no	(severe)	bugs,	it	can	help	you	to	get	early
feedback.

Keep	things	simple	and	develop	only	the	features	that	you	actually	need	for	that
particular	iteration.	You	should	ask	yourself	what	it	is	that	you	want	to	prove	and
what	feedback	you	need	in	order	to	proceed.	Again,	it	is	important	to	realize	how
relevant	that	feedback	is	when	you	look	at	your	app's	current	phase.	For
example,	you	should	not	be	focusing	too	much	on	the	development	of	In-App
Purchase	functionality	if	the	base	functionality	of	your	app	has	not	been
completed	yet.

"You	Aren't	Gonna	Need	It",	also	known	as	the	YAGNI	acronym,	is	one	of	the
ideas	behind	Agile	development	and	extreme	programming	(XP),	but	it	does
apply	here	as	well.

The	goal	should	always	be	to	achieve	maximum	learning	with	the	least	amount
of	effort.	Also,	keep	it	simple	and	solve	one	problem	at	a	time	for	one	product
and	for	one	type	of	customer.	As	a	developer,	you	will	often	foresee	scenarios
that	need	to	be	supported,	the	so-called	unhappy	flows,	but	who	cares	about
them	if	the	happy	flow	is	not	ready	yet?

Consider	the	scenario	where	the	idea	of	timeboxing	involves	the	focus	more	on
the	time	spent	instead	of	the	tasks	done.	So,	instead	of	thinking	of	features	that
should	be	done	in	a	particular	amount	of	time,	think	of	a	particular	amount	of

time	and	what	features	you	can	implement	given	that	amount	of	time.	To
maximize	learning,	the	changes	that	come	with	each	new	release	of	your	app
should	be	as	small	as	possible	while	still	delivering	relevant	business	value.
Timeboxed	programming	is	essential	to	make	sure	resources	are	delivered	in	a
particular	amount	of	time.	Determine	deliverables	and	a	deadline	for	each
timeboxed	iteration.	Using	this	methodology,	your	productivity	will	be	improved
and	you	can	keep	the	promises	to	your	customers.

In	general,	get	to	know	your	(potential)	customers.	Learn	more	about	their
problem.	It	is	the	problem	your	app	needs	to	solve.	This	may	sound	like	a	job	for
your	more	business-oriented	cofounder,	but	a	better	understanding	of	this	also
makes	you	a	better	developer.	Ask	questions	and	find	out	what	the	common
problems	are	for	all	of	your	customers.

Concierge	service
It	is	important	to	realize	that	some	parts	of	the	solution	you	are	creating	are
essential,	but	may	not	necessarily	be	good	candidates	for	automating	processes
right	away.	These	parts	can	be	offered	manually	as	well.	Such	a	solution	is
known	as	a	Concierge	Service,	or	as	the	Concierge	Minimum	Viable	Product
(CMVP).	At	first	glance,	that	does	not	really	seem	to	make	much	sense	to	a
developer.	You	might	be	thinking	that	the	lean	startup	methodology	is	about
minimizing	waste,	and	wonder	why	we	should	do	things	manually?

The	truth	is	that	doing	things	manually	is	indeed	not	very	efficient,	but	that	is
fine	for	now.	It	is	a	short-term	solution	that	can	help	you	gain	new	insights	and
learn	how	to	solve	the	user's	or	customer's	problem.	Once	you	fully	understand
the	problem	and	know	what	the	solution	should	be,	it	is	time	for	automation.

What	would	happen	if	you	worked	on	an	awesome	feature	for	3	months	and
afterwards	learned	that	your	app	does	not	seem	to	know	your	user's	problem?	It
will	probably	be	a	huge	disappointment	for	all	stakeholders	and	you	will	wonder
why	this	happened.	You	should	always	ask	yourself	whether	you	have	all	the
required	information	to	solve	the	issue	and	whether	you	understand	your
customer's	needs.	If	that	is	not	the	case,	your	effort	may	lead	to	delivering	a
product	that	nobody	wants.	You	might	need	to	refactor	a	lot,	or	start	all	over
again.	Such	activity	would	be	a	waste	of	your	time	(and	if	you	are	having	bad
luck,	your	credibility).

Is	it	crappy	or	perfect?
	

The	fact	that	you	focus	on	the	features	that	are	most	important	is	because	they
contribute	to	the	hypotheses	that	you	want	to	prove.	However,	this	does	not
mean	that	your	product	has	to	be	crappy.	Using	a	timeboxed	approach	will	help
you	deliver	often	(daily	or	weekly)	and	on	time.

The	features	that	you	will	make	available	are	unlikely	to	be	perfect,	but	with
each	new	iteration	you	can	improve	them.	Of	course,	you	will	never	have	a
second	chance	for	a	first	impression,	but	aiming	for	perfection	is	not	going	to
help	you	prove	your	hypotheses.	Instead,	it	will	prevent	you	from	getting
feedback	early.	Still,	it	is	important	that	you	choose	your	first	users	carefully.
Early	adopters	are	very	different	from	mainstream	users,	having	different
expectations.	Managing	expectations	is	therefore	very	important	when	asking
early	adopters	to	test	your	solution.	Be	honest	about	the	phase	your	startup	is	in
and	tell	them	that	the	solution	has	been	built	to	maximize	learning	and	that	you
would	love	to	get	their	feedback.	It	may	sound	a	bit	harsh,	but	ultimate
perfection	does	not	exist	anyway.	The	opinion	of	your	early	adopters	is
important	and	your	opinion	does	not	really	matter.

	

	

	

Release	early	and	often
Releasing	early	and	often—for	example,	once	a	week	or	every	2	weeks—will
maximize	your	learning.	Timeboxed	programming	could	help	you	deliver	the
features	that	matter.

The	loop	shown	in	the	following	figure	is	known	as	the	Build-Measure-Learn
Feedback	cycle.	It	is	easy	to	get	feedback	if	you	know	your	early	adopters.	That
is	not	always	possible	if	you	are	developing	an	app.	There	are	great	tools
available	to	obtain	analytical	data.	In	Chapter	13,	Play	Store	and	App	Store	Hacks
we	will	learn	more	about	these	tools	and	how	to	gather	feedback	through

metrics:	

How	do	you	get	started	with	nothing?
A	blank	page,	a	basic	idea,	and	an	early	MVP.	That	is	how	it	starts,	and	it	is	not
exactly	nothing.	But	that	does	not	make	it	a	company,	or	an	app,	and	it	certainly
does	not	come	with	customers,	unless	you	have	a	really	convincing	MVP	or	a
great	production-solution	fit.

	

The	chicken	and	egg	problem
Depending	on	the	type	of	app	you	are	developing,	sooner	or	later	you	will	face
the	famous	chicken	and	egg	problem.	Simply	put,	an	app	that	depends	on	user-
generated	content	will	have	no	content	without	users,	but	also	no	users	without
content.	So,	where	do	you	start?

Any	marketplace-based	app	has	to	deal	with	this	challenge,	whether	it	is	an	app
for	dating,	job	finding,	or	bringing	companies	together.	But	it	does	apply	to	other
types	of	apps	as	well.	There	are	many	apps	available	in	the	App	Store.	They	all
are	doing	more	or	less	the	same	thing,	so	why	should	your	users	(and	later,	your
customers)	use	your	app	and	not	any	of	the	other	apps?	Sooner	or	later	you	need
to	find	an	answer	to	the	question,	"What	makes	your	app	better?"	Is	your	app
better	because	it	is	cheaper,	does	it	provide	better	services,	or	does	your	app
appear	to	be	more	convincing	simply	because	your	app	has	a	large	user	base?	In
short,	you	do	not	yet	have	a	platform	with	many	users	or	testimonials	because
you	just	got	started.	Oh,	yes,	you	do	have	a	chicken	and	egg	challenge!

Fake	it	until	you	make	it
To	solve	the	chicken	and	egg	challenge	and	to	get	your	app	started,	there	are
some	simple	solutions.	One	of	them	is:	Fake	it	until	you	make	it.	It	sounds	like
cheating,	or	at	least	it	sounds	like	something	that	is	bad,	while	in	fact	it	is	not.
It's	a	workaround	for	the	chicken	and	egg	problem.	No,	we	are	not	going	to	lie,
at	most	we	will	just	pretend.	If	you	are	developing	a	dating	app,	ask	all	your
relatives	and	friends	to	sign	up	with	a	nice	profile	photo.	You	can	use	this
approach	not	only	for	user	data,	but	for	all	types	of	content.	If	you	are	working
on	a	B2B	app,	you	could	purchase	some	company	data,	enrich	it,	and	present	as
if	it	is	your	own.	Refer	to	Chapter	10,	There	is	an	API	For	That!,	about	mash-ups	to
read	more	information	about	that	topic.	Another	option	that	would	work	well
(for	example,	think	of	an	app	displaying	job	information)	is	to	get	data	from
various	other	sources	and	start	as	an	app	offering	aggregated	data.	There	are
many	ways	to	get	started	and	they	all	are	aimed	at	growing	your	app	by
developing	content	and	your	user	base.

	

Become	an	expert
You	too	can	become	an	expert,	just	by	doing	it.	You	can	start	to	become	a	more
significant	player	for	some	niche.	Just	be	that	expert	while	learning	on	the	go.
For	example,	when	we	began	with	our	new	startup	built	around	a	concept	of
narrow	casting	combined	with	social	media,	we	really	had	no	clue	about	what
narrow	casting	was	other	than	the	television	screens	that	you	often	see	in	stores
or	at	train	stations.	By	writing	a	blog	about	the	topic	of	narrow	casting,	we	have
learned	a	lot	and	gradually	we	have	become	experts.	And,	even	more	important,
it	has	helped	us	to	shape	our	vision	on	the	problem	that	we	were	trying	to	solve.
In	our	case,	this	was	about	finding	an	answer	to	the	question,	how	we	could
make	narrow	casting	a	more	interactive	process?	Pretending	will	help	you	to	set
your	targets,	and	once	you	have	reached	them,	it	is	no	longer	fake,	but	real.	You
can	build	your	reputation	this	way.	How	cool	is	that?	Obviously,	you	have	to
keep	things	real.	Do	not	fake	things	if	you	never	can	fulfil	the	expectations	that
come	with	them,	but	do	it	to	buy	more	time,	to	get	the	job	done,	or	to	become	an
expert	along	the	way.	If	you	keep	it	real,	your	startup	will	become	what	you
envision.

	

Grab	and	adapt
Almost	all	startup	ideas	derive	from	existing	concepts.	A	little	enhancement,
different	pricing,	service,	UX,	or	particular	approach	can	be	the	Unique	Selling
Points	(USP)	that	will	lead	to	a	unique	product.	The	same	service,	but	promoted
with	a	different	marketing	approach,	can	result	in	a	totally	different	product.	It	is
a	trend	that	you	often	see.	For	example,	I	have	been	working	on	a	project	for	an
enabler	of	Mobile	Virtual	Network	Operators	(MVNO).	Their	customers	were
all	mobile	service	providers	who	did	not	own	the	infrastructure	themselves.	The
biggest	difference	between	all	the	virtual	providers	was	just	marketing	strategy.
Anyone	can	start	their	own	network	from	scratch	with	little	investment.	All	you
need	to	do	is	grab	and	adapt.	You	have	to	be	careful,	though.	You	need	to	be
aware	of	patents	and	copyright	issues,	but	there	are	many	(open	source)	projects
that	you	can	use	as	the	foundation	for	your	app,	or	just	for	a	first	MVP.

For	very	little	money,	you	can	also	buy	a	concept,	or	even	a	complete	app,	that
comes	close	to	your	startup	idea.	In	that	case,	all	you	need	to	do	is	to	enhance	it
and	see	if	you	can	make	a	difference.	To	start	something	new,	most	apps	just
need	a	little	twist.	For	example,	have	a	look	at	http://codecanyon.net.	You	will	find
some	great	starting	points	here.	There	are	apps	for	Android,	iOS,	web-based
apps,	and	many	more.	You	can	find	Flappy	Bird	clone	apps,	restaurant	apps,	and
everything	in	between.

Let's	say	your	startup	is	developing	a	travel	app.	You	can	search	for	these	kinds
of	apps	and	buy	one	of	them.	You	can	quickly	prove	your	hypothesis	just	by
making	some	modifications	to	the	app:

http://codecanyon.net

That	is	a	real	time-saver	and	it	is	worth	the	little	investment.	What	you	learn	will
help	you	define	what	the	app	should	do	and	what	it	should	look	like	at	the	early
stage.	Perhaps	later	you	still	want	to	develop	your	app	more	or	less	from	scratch.
However,	if	you	think	that	a	readymade	base	app	will	help	you	collect	useful
insights	quickly,	then	it	will	not	be	a	hard	decision	to	follow	this	approach.

Offer	an	app	or	a	service	that	does
not	yet	exist
How	can	you	offer	or	describe	your	app	when	it	does	not	yet	exist?	A
nonexisting	app	is	pretty	hard	to	demonstrate,	so	how	will	customers	be	made
aware	of	it,	and	how	will	they	know	why	they	should	get	the	app?	They
somehow	have	to	find	out	that	there	is	an	(concept)	app	that	solves	the	problems
they	are	experiencing.	Here,	the	funny	thing	is	that	your	app	itself	is	not	really
that	important.	Sorry,	your	app	alone	is	not	the	product.	It	is	just	a	vehicle	for
your	users	to	get	something	done.	Show	a	slideshow	or	a	video	that	explains
what	your	app	does	and	why	it	can	help	solve	their	problem.	This	can	be	just	as
convincing.	You	will	get	their	attention	and	if	you	are	doing	really	well,	you	will
get	their	pre-orders	right	away.

If	you	do	not	have	the	skills	to	create	a	great	video,	or	if	you	are	in	need	of	a
logo	or	any	other	design,	then	have	a	look	at	https://www.fiverr.com/.	They	have	many
freelance	designers	who	can	help	you.	Another	website	that	you	can	look	at	is	htt
ps://99designs.com/.

A	video	or	presentation	is	not	really	that	different	from	an	MVP,	right?	Well,	it	is
one,	although	in	this	example	we	are	testing	the	product-market	fit-related
hypotheses,	instead	of	the	product-solution	fit-related	hypotheses.	Every	startup
owner,	regardless	of	his	or	her	role,	has	to	do	sales	and	be	able	to	sell	stuff
before	it	even	exists.	That	is	not	lying	and	it	is	not	even	faking.	It	is	a	creative
way	of	promising	a	solution	for	known	problems.

However,	don't	ever	fake	testimonials	or	lie	about	the	number	of	customers	or
make	things	ten	times	bigger	than	they	are.	Keep	things	real.	Instead,	work	on	a
great	reputation,	become	an	expert,	create	a	very	convincing	website	and	include
a	feature	list,	even	when	it	has	not	been	completed	yet.	To	show	that	people	can
trust	your	company,	also	add	a	company	policy	link	with	terms	and	conditions.
Add	pricing	tables	to	your	website,	even	when	you	are	not	yet	ready	to	sell.	It	is
never	too	early	to	measure	(revenue)	traction.	In	Chapter	15,	Growing	Traction	and
Improving	Retention,	we	will	learn	how	we	can	measure	traction	and	in	Chapter	17,

https://www.fiverr.com/
https://99designs.com/

Monetization	and	Pricing	Strategy,	you	will	be	able	to	read	more	about	pricing
strategies.

How	to	keep	things	well	structured
If	you	start	learning	from	the	feedback	you	obtain	through	interviews	or	metrics,
it	is	very	likely	that	the	flow	or	structure	of	your	app	will	change.	As	business
requirements	change	often,	ad	hoc	changes	need	to	be	made.	This	requires	you
to	refactor	the	code	of	your	app.	That	is	something	that	most	developers	consider
to	be	important,	but	in	reality	it	can	be	easily	forgotten	or	it	is	never	done,
simply	because	there	is	not	enough	time	for	it.	Sometimes,	refactoring	is
considered	to	make	the	app	unstable.	However,	do	not	let	your	technical	debt
become	too	large.

Technical	debt	or	even	spaghetti	code	can	be	the	result	if	you	understand
underlying	process	insufficiently,	or	when	you	do	not	allocate	enough	time	for
development.	In	case	a	startup	company	has	only	business-oriented	skills,	it	may
have	outsourced	the	development	or	it	may	have	hired	some	third	party	to	do	the
job.	If	that	is	the	case,	there	is	little	to	no	insight	into	the	technical	structure	of	an
app.	I	strongly	recommend	you	to	do	most	of	the	development	yourself.	If	you
do	own	a	startup	with	no	technical	cofounder	on-board,	then	stop	reading	and
find	one	first!	There	are	many	meetups	and	websites	where	you	can	meet
somebody	(for	a	cofounder	or	another	role)	with	the	skills	that	you	are	looking
for.	Take	a	look	at	these	websites:	https://angel.co/	and	https://cofounderslab.com/.

It	is	important	to	keep	things,	and	your	code	in	particular,	well	structured.
Design	patterns	and	a	number	of	disciplines	could	help	you	to	achieve	building
apps	for	Android	and	for	iOS.	It	is	true	that	Android	Studio	is	offering	much
more	functionality	for	refactoring	purposes,	and	that	using	Xcode	refactoring
requires	some	extra	effort.	Nevertheless,	refactoring	is	equally	important	for
both	platforms.

https://angel.co/
https://cofounderslab.com/

Design	patterns
There	is	no	need	to	reinvent	the	wheel	and	there	is	no	need	for	us	to	repeat
ourselves.	This	is	exactly	what	the	Don't	Repeat	Yourself	(DRY)	software
development	principle	dictates.	A	design	pattern	is	a	solution	for	a	common
problem,	and	such	a	pattern	can	be	used	in	many	places	across	your	app.	It	is	the
methodology	that	we	can	trust,	which	will	help	us	to	speed	up	the	development
process.	Patterns	could	help	us	develop	high-quality	software	with	minimal
effort.	They	also	can	help	us	deal	with	the	separation	of	concerns.	Some	well-
known	patterns	are	the	Model	View	Controller	(MVC)	pattern,	the	somewhat
similar	Model	View	Presenter	(MVP),	and	the	Model-View-ViewModel
(MVVM)	approach.

There	are	some	great	books	about	design	patterns	and	it	is	beyond	the	scope	of
this	book	to	have	a	detailed	look	at	all	of	them,	but	the	MVC/MVP	is	of
particular	interest	because	it	is	used	the	most	for	mobile	development.	The	idea
behind	the	pattern	is	to	separate	the	UI	from	the	business	logic	and	data	from	the
logic.	When	you	have	a	closer	look	on	the	structure	of	most	Android	or	iOS	apps
in	Android	Studio	or	in	Xcode,	you	will	notice	some	parts	of	this	pattern	already.
A	controller	gets	data	from	another	layer.	This	layer	can	be	a	client	or	a
repository	class.	For	example,	it	will	get	its	data	from	an	API	or	from	a	local
source.	The	controller	communicates	the	obtained	data	through	a	model	(or	view
model)	to	the	user	interface:

Become	independent
	

Ideally,	it	should	not	matter	whether	your	app	is	getting	its	data	from	a	local
stub,	a	Mobile	Backend	as	a	Service	(MBaaS),	a	third	party	API,	or	your	own
API.	This	is	very	easy	to	accomplish.	You	just	need	to	realize	that	it	is	important
to	separate	the	different	concerns	and	that	implementing	contracts	matter.

Another	lesson	learned	is	that	you	cannot	always	trust	third	party	services.	You
must	have	heard	about	Parse.	It	used	to	be	of	the	most	promising	MBaaS	and	a
lot	of	app	developers	were	depending	on	it	to	store	their	app	data	in	the	cloud.
Recently,	they	announced	that	they	will	shut	down	their	business,	which
frustrated	a	lot	of	developers.	Fortunately,	Parse	has	created	an	open	source
version	of	Parse	Server.	Anyhow,	it	nicely	illustrates	what	I	am	trying	to	say
here.	Make	sure	you	do	not	go	out	of	business	even	if	one	of	your	key	partners
does.

	

	

	

Data	layer
Switching	from	one	service	provider	to	another	(key	partner)	is	easy	if	your	app
is	well	structured.	Use	a	separate	layer	for	accessing	data	and	define	contracts
for	the	communication	between	your	data	layers	and	your	controllers.	Contracts
are	known	as	an	interface	(for	Android)	or	as	a	protocol	(for	iOS).	They	contain
no	implementation	and	are	nothing	but	appointments	between	one	class	and
another.	They	define	what	methods	are	available,	what	parameters	are	required,
and	what	the	result	type	will	be.

For	example,	let's	say	we	are	getting	data	from	some	kind	of	source.	In	the
interface	IRepository,	we	will	define	the	names,	results,	and	parameters	for	all
methods	that	represent	some	operation.	To	be	more	precise,	let's	say	we	want	to
retrieve	company	news	that	we	have	stored	somewhere	in	the	cloud.	It	could	be
at	Parse	server	(at	Back4App	or	elsewhere),	Amazon,	Azure,	or	Firebase,	it	does
not	really	matter	where	and	how	exactly	we	will	get	this	data.	Since	it	is	an
interface,	we	do	not	have	to	care	about	the	actual	implementation	yet.

For	Android,	it	could	look	like	this:

public	interface	IRepository{	

	

				public	void	getNews(OnRepositoryResult	handler,	GetNewsRequest	request);	

For	IOS,	it	looks	like	this	(in	Swift	2.x):

protocol	RepositoryProtocol	{	

					

func	getNews(handler:	RepositoryResultDelegate,	request:	GetNewsRequest)	

The	data	layer	classes	that	implement	this	interface	or	protocol	will	perform	the
actual	job.	They	will	retrieve	the	data	from	a	remote	data	source.

For	example,	the	Android	implementation	begins	like	this:

public	class	RemoteRepository	implements	IRepository	{	

	

...	

				@Override	

				public	void	getNews(OnRepositoryResult	handler,	GetNewsRequest	request)	{	

								//	Get	data	asynchronously		and	return	the	result	

				}	

While	the	IOS	implementation	begins	like	this:

public	class	RemoteRepository:	RepositoryProtocol		{	

					

				...	

				func	getNews(handler:	RepositoryResultDelegate,	request:	GetNewsRequest){	

In	Chapter	8,	Cloud	Solutions	for	App	Experiments,	we	will	see	what	an
implementation	with	Firebase	will	look	like.

The	data	layer	could	also	obtain	the	data	from	locally	mocked	or
stubbed	data.	You	can	easily	switch	between	the	different	sources.
This	makes	it	a	great	solution	for	testing	purposes	too.

Are	there	any	shortcuts?
No	there	are	not!	Just	kidding.	There	are	some	services	and	methodologies	that
are	worthwhile	to	investigate.	They	could	save	you	a	lot	of	time	and	money.
Think	of	an	app	that	needs	to	communicate	with	a	backend	because	it	needs	to
support	chat	functionality,	or	to	support	the	sharing	of	texts,	pictures,	audio,	or
video	with	other	users.	Such	an	app	will	have	a	lot	of	requirements,	such	as:

Synchronizing	data	from	the	app	to	the	backend
Getting	data	from	the	backend	to	the	app
Data	storage
Data	streaming
Offline	support
Registration	and	login	through	email
Registration	and	login	with	Facebook	or	Twitter

You	probably	can	build	the	backend	that	supports	all	this	yourself,	but	that	is	a
lot	of	work	and	there	is	no	need	for	that.	There	are	many	services	available	that
will	take	care	of	all	(or	some)	of	the	earlier	mentioned	requirements:

In	Chapter	8,	Cloud	Solutions	for	App	Experiments,	we	will	have	a	closer	look	on
Parse	server.	Later,	we	will	also	have	a	look	at	Windows	Azure.

Mash-up
A	mash-up	can	be	seen	as	a	composite	app	that	is	combining	reusable	data,
presentation,	and	new	logic.	It	is	often	seen	as	web	solution,	but	this	approach
can	be	used	for	native	app	development	as	well.	Data	is	everywhere.	The
government	and	various	organizations	have	made	their	data	publicly	available
through	APIs.	Mash-up	solutions	do	not	need	to	worry	about	the	content	in
particular,	but	more	about	the	presentation.	They	may	occur	as	enterprise,	data-
oriented,	or	consumer	mash-ups.

The	app	may	gather	data	from	multiple	sources,	combine	and	enrich	them,	and
then	present	them	in	an	app.	An	example	of	that	could	be	as	simple	as	producing
infographics	from	the	provided	data.	Another	example	is	getting	photos	from
Flickr	and	presenting	them	on	a	Google	map.	There	are	plenty	of	other	and	more
sophisticated	solutions	that	you	can	think	of.	A	mash-up	can	be	a	great
contribution	to	the	development	of	an	MVP	or	a	Proof	of	Concept	(PoC).
Often,	when	it	turns	out	that	a	mash-up	is	a	profitable	solution,	it	mostly	has	the
function	of	aggregator.	An	example	is	a	website	comparing	insurance
companies.

Keep	in	mind	that	you	can	develop	a	mash-up	solution	relatively	fast,	but	the
monetization	of	it	could	be	more	difficult.	Again,	the	biggest	downside	of	a
mash-up	is	the	dependency	on	third	parties.	If	things	start	to	become	more
serious,	then	do	not	just	consume	their	data.	You	need	to	do	more	than	that.
Avoid	a	potential	shutdown	of	your	business	in	case	the	company,	that	is
delivering	the	data,	decides	to	discontinue	its	services.	You	can	reduce	that	risk
if	you	make	that	company	a	real	key	partner.	Although	there	still	is	a
dependency,	it	is	no	longer	a	problem	because	it	has	become	a	manageable	one.

Summary
	

In	this	chapter,	we	have	seen	a	few	things	that	you	could	do	to	get	started	and
keep	going.	We	had	a	look	at	the	chicken	and	egg	problem	and	how	to	deal	with
it.	We	also	had	a	look	at	patterns,	and	how	they	could	help	us	to	keep	things	well
structured.

Finally,	we	had	a	short	introduction	to	Mobile	Backend	as	a	Service	(MBaaS)
solutions	and	mash-ups.	In	Chapter	8,	Cloud	Solutions	for	App	Experiments,	and	Ch
apter	11,	Onboarding	and	Registration,	respectively	we	will	look	at	a	hands-on
implementation	for	both	of	them.	But	first,	we	will	figure	out	how	minimal	an
MVP	actually	should	be.

	

	

	

MVP	is	Always	More	Minimal	Than
You	Think
The	M	in	MVP	stands	for	Minimum,	not	Maximum.	If	your	idea	of	MVP
incorporates	every	potential	use	case,	every	potential	mix	of	audience,	all	facets
of	available	functionality,	and	creates	a	backlog	that	would	take	a	development
team	longer	than	90	days	to	complete,	you	don't	have	Minimum	Viable
Product.	On	the	contrary,	you	have	a	different	beast	altogether	that	all	too	many
times	bring	teams	to	their	knees	causing	unnecessary	rework,	lost	cycles,	lost
revenue,	and	all	the	other	dysfunctional	misery	that	comes	with	working	on	a
product	that	isn't	well	defined	and	validated	with	its	users.

In	written	context,	the	idea	of	defining	MVP	seems	simple;	the	challenges
surface	when	teams	try	to	outline	and	define	what	minimal	means	in	terms	of
their	initial	product	release.	"How	Minimal	is	Minimal?",	"Can	I	have	multiple
core	functions?",	"Are	all	my	use	cases	covered	and	accounted	for?",	and	"Can	I
have	more	than	12	buttons	on	a	screen?"	All	these	and	many	other	questions
make	it	difficult	to	know	whether	our	proposed	MVP	is	truly	minimal	and
viable.

This	guide	is	designed	to	act	as	a	benchmarking	tool,	and	will	help	ensure	that
you	have	successfully	defined	and	validated	an	MVP	that's	ready	for	market
release.

We're	going	to	cover	the	following	topics:

What	is	MVP?
How	to	define	your	MVP
Fail	fast/validate	everything
Iterate	and	evolve	your	MVP	-	from	viable	to	lovable

What	is	MVP?
A	Minimum	Viable	Product	(MVP)	is	defined	as:

"The	version	of	a	new	product	which	allows	a	team	to	collect	the	maximum
amount	of	validated	learning	about	customers	with	the	least	effort"
-	Eric	Ries

Applications	such	as	Instagram,	Snapchat,	and	Tinder	all	share	the	same	thing	in
common:	when	they	were	launched,	they	were	a	much	more	simplified	version
of	what	they	are	today.	The	same	can	be	said	about	smartphones	and	iPods.	At
the	time	of	their	inception,	they	did	one	thing	and	did	it	well.	Clearly,	these
products	have	matured	and	after	years	of	capital	investment	and	development,
have	become	apps	that	deliver	way	beyond	their	core	functionality.	What's
important	to	note	is	that	they	are	great	examples	of	products	that	were	released
to	market	with	a	minimal	feature	set,	targeted	at	solving	a	core	problem	for	an
initial	segment	of	users.

Benefits	of	MVP
	

Embracing	a	Lean	MVP	product	design	and	development	model	within	your
organization	helps	keep	costs	at	a	minimum	and	allows	you	to	test	and	validate
your	ideas	much	faster:

Keep	it	simple:	Focusing	on	core	functionality	that	delivers	immediate
value/utility	allows	you	to	get	your	product	into	the	market	faster,	rather
than	committing	to	endless	cycles	of	development	that	are	needed	to	deliver
a	full-blown	multifeature	product.
Save	money:	Reveal	the	market	validity	of	your	product	and	justify	a	case
for	further	investment	and	development.	Have	a	working	prototype	that
allows	you	to	pivot	or	persevere	with	minimal	costs	or	efforts.
Learn	and	evolve:	The	iterative	and	evolutionary	nature	of	the	MVP	model
is	meant	to	be	fast	and	nimble.	It	allows	you	to	mature	and	refine	your
product	over	time	in	short	sprints,	while	simultaneously	surfacing
invaluable	user	feedback	and	insights	that	help	inform	and	shape	your
future	iterations.

	

	

How	to	define	your	MVP
	

There	is	a	lot	of	controversy	surrounding	how	to	define	an	MVP,	as	it	relates	to
answering	the	question	of	"How	minimal	is	minimal?"	It's	a	very	subjective
concept,	and	every	product	has	its	own	set	of	nuances	and	requirements	that
make	it	a	little	different.	It's	not	an	all-or-nothing	proposition,	but	there	are
techniques	and	best	practices	that	can	be	applied	to	help	you	define	your	offering
as	a	MVP.	The	market	demands	may	require	more	than	one	core	piece	of
functionality	to	define	MVP.

In	this	section,	we	will	discuss	the	following	topics:

How	to	build	an	MVP
Bringing	components	together	to	form	an	MVP
Applying	MVP	to	enterprise

	

	

Building	MVP
In	the	following	first	illustration,	it's	clear	that	the	intended	MVP	was	to	build	a
vehicle	that	would	allow	its	users	to	commute	from	point	A	to	point	B,	not
necessarily	how	fast,	how	far,	or	committing	to	a	motorized	vehicle	versus	self-

powered,	and	so	on:	

Clearly,	in	the	second	illustration,	multiple	use-cases	and	conditions	were
considered,	and	as	a	result	this	model	won't	allow	for	quick	market	validation
and	runs	the	risk	of	increasing	costs	and	potentially	missing	the	mark	with	its
audience:

	

Bringing	components	together	to
form	an	MVP
In	the	first	illustration,	they	brought	together	several	components	to	create	a
skateboard.	They	needed	a	board,	some	wheels,	and	the	truck	mounts	to	connect
the	wheels	to	the	board.	All	these	things	together	made	up	the	MVP	for	a
commuter	vehicle.	Apply	this	metaphor	and	thought	process	to	the	MVP	that
you	are	defining.	For	example,	if	your	MVP	is	a	CRM	software,	at	the	most
basic	level,	it	will	need	to	provide	a	central	place	where	users	can	store	customer
and	prospect	contact	information,	share	it	with	colleagues,	and	track	sales
progress.	Multiple	components	or	features	will	be	combined	in	order	to	define
the	MVP.	Bringing	together	the	functionality	for	managing	customers	and	the
reporting	functionality	to	track	sales	leads	is	what	defines	the	MVP	for	our
example	CRM.	Both	of	these	components	are	mini	MVPs	in	and	of	themselves,
and	as	standalone	components	don't	define	the	MVP	for	a	competitive	CRM	in
the	market.	Don't	forget,	the	V	stands	for	Viable,	and	that	means	having	just
enough	features	to	start	selling.

	

Applying	MVP	to	enterprise
	

The	traditional	enterprise	approach	to	software	development	is	focused	around
delivering	the	perfect,	full-blown	and	feature-rich	product	before	it	is	released	to
customers.	Neither	of	this	is	minimal	or	viable,	as	it	relates	to	MVP	guidelines
and	best	practices.	Enterprise	teams	struggle	to	define	minimal	(just	the	right
amount	of	features	that	add	value	and	utility)	and	balance	it	against	viable	(do	I
have	enough	features	in	my	product	that	people	are	willing	to	pay	for?).

There	are	different	methods	that	can	be	applied	to	enterprise	products	that	help
redefine	MVP	in	that	space:

Data-driven	design:	Place	data	at	the	center	of	product	decisions.	It's	easier
than	ever	to	use	the	voice	of	customers,	usage	metrics,	and	existing
performance	reports	to	create	a	hierarchy	of	features	that	can	be	prioritized
and	paired	down	to	minimum	and	viable.
Know	your	market:	You	can't	build	everything	for	everyone.	Make	sure
you	have	a	clear	target	market	segment	and	start	there,	even	if	that	means
your	customer	is	an	enterprise	player.	Clearly	defining	who	it	is	you	are
building	your	product	for	will	help	you	define	a	barrier	of	entry	into	market
and	solidify	your	MVP.
Minimum	Sellable	Product	(MSP):	Once	you've	defined	your	MVP,	don't
forget	to	make	sure	it's	viable.	Test	it	with	your	target	market	to	ensure	that
it	has	the	minimal	amount	of	features	that	your	users	would	be	willing	to
pay	for.	And	avoid	the	common	mistake	of	relying	solely	on	the	product
manager's	intuition	and	internal	assumptions	to	predict	which	features	drive
products.	Validate!
Apply	incremental	UX:	Bring	the	concept	of	MVP	down	to	the	component
or	feature	level,	it's	not	an	all-or-nothing	proposition	anymore.	The	basic
idea	is	to	have	a	planned	progression	(leaving	room	for	improvements
through	testing)	of	a	feature	that	adds	functionality	at	each	stage.	This	will
allow	you	to	get	to	the	market	faster	(viability)	and	mature	your	product
over	time	through	validated	learning	that	saves	time	and	costs.

But	don't	think	that	everyone	will	understand	this	process	immediately,
especially	in	an	enterprise	where	your	colleagues	and	teams	are	spread	out
across	the	world.	It	requires	relentless	evangelism.	In	our	company,	Dominion
Dealer	Solutions,	we	have	offices	around	the	US	supported	by	offshore	teams	in
three	different	countries.	To	make	things	more	challenging,	many	of	the	teams
were	former	acquisitions	that	came	with	their	own	inherited	cultures	and	biases.
Getting	everyone	to	understand	and	embrace	the	concept	of	developing	MVPs
took	a	lot	of	evangelizing	by	key	people	to	develop	buy-in.	This	took	many
months,	but	once	the	idea	took	hold,	it	spread	like	wildfire.

	

	

	

Fail	fast	–	validate	everything
	

The	core	fundamentals	of	MVP	are	to	get	user	feedback,	do	user	testing,	and
validate	whether	users	are	willing	to	use	(and	pay	for)	the	product	you	are
launching	both	before	and	throughout	the	entire	product	life	cycle.
Unfortunately,	some	teams	get	caught	up	with	minimum/viable,	and	forget	about
validation	altogether.	Validated	learning	is	the	critical	component	that	defines
MVP,	confirms	market	demand,	and	shapes	future	iterations	and	investment	of
time,	revenue,	and	resources	into	your	product.	It	is	the	best	indicator	of	whether
or	not	you	should	pivot	and	abandon	a	project	before	losing	too	much	money
and	burning	out	resources,	or	persevere	and	keep	forging	ahead	in	the	market.
MVP	is	governed	by	a	"fail	fast	and	recover	quickly"	continuous	validation
model	that	ensures	that	teams	remain	hyperefficient	in	regards	to	time,	resources,
and	operational	capital.

Let's	look	at	the	three	things	that	help	us	do	a	good	job	at	failing	fast:

Apply	agile	prototyping	-	eliminate	tech	debt
Adopt	Lean	UX	cycles	-	the	Build-Measure-Learn	feedback	loop
Testing	methods	and	best	practices

	

	

Apply	agile	prototyping	-	eliminate
tech	debt
	

Prototypes	allow	you	to	explore	design	ideas,	test	assumptions,	and	gather
feedback	from	users	while	minimizing	technical	debt.	For	the	ones	who	might
not	know,	technical	debt	refers	to	future	work	that	builds	up	over	time	when	a
team	codes	quickly	to	get	a	product	or	prototype	to	market,	rather	than	code	well
to	create	the	best	possible	solution.

In	many	cases,	given	today's	technology,	you	can	create	high-def	prototypes	that
require	no	technical	debt	at	all.	Any	time	savings	that	might	be	potentially
gained	by	bypassing	prototyping	is	lost	many	times	over	in	development	if	your
MVP	interfaces	and	functions	need	to	be	redesigned	and	recreated	after	they
have	been	committed	to	code.

Here	are	some	of	the	advantages	and	benefits	that	are	gained	if	you	apply	agile
prototyping	to	your	product	design	and	development	process:

Ownership	and	collaboration:	Increase	team	consensus	and	ownership;
discover	potential	usability	issues	and	correct	them	in	prototype	before
programming	a	line	of	code	and	potentially	assuming	tech	debt.
Workflow	efficiency:	Reduce	and	eliminate	the	need	for	extensive	story
writing	and	requirement	documentation.	It's	much	different	when	everyone
can	click	and	engage	over	an	actual	experience	versus	imagining	and
interpreting	user	interactions	using	wireframes	or	mockups.
Validate	often:	Gather	real-time	feedback	from	users	and	rapidly	evolve
your	MVP	quickly,	sprint	by	sprint.

	

	

Lean	UX	cycles	–	the	Build-Measure-
Learn	feedback	loop
A	core	component	of	Lean	UX	is	the	Build-Measure-Learn	feedback	loop.	The
concept	is	originally	derived	from	the	book	entitled	"The	Lean	Startup",	by	Eric
Ries.	Its	goal	is	to	validate	uncertainties,	assumptions,	and	potential	risks	in
order	to	guide	future	MVP	iterations	and	product	direction.	The	loop	forms	a
cycle,	and	the	cycle	is	applied	to	a	sprint	in	agile	development.	This	approach
provides	a	methodology	that	quickly	and	effectively	proves	whether	a	product
vision	(MVP)	will	flounder	or	flourish:

	

Advantages	of	a	feedback-focused
development	model
Adopting	a	data-driven,	feedback-focused	development	model	allows
organizations	to	manage	development	costs	and	resources	much	more	efficiently.
Development	time	and	labor	can	immediately	be	reduced	by	creating	a	hi-fi
prototype	that	can	be	used	in	validation	cycles	to	inform	the	design	process.	It's	a
feast	or	famine	digital	marketplace	out	there—invalidated	business	assumptions
are	too	risky	and	costly	to	produce	in	today's	digital	marketplace.

	

Phases	of	the	Build-Measure-Learn
feedback	loop
There	are	three	phases	to	this	loop:	Build,	Measure,	and	Learn.

Phase	I	-	Build
	

The	first	step	is	figuring	out	the	problem	that	needs	to	be	solved	and	then
defining	and	developing	an	MVP	to	begin	the	process	of	learning	as	quickly	as
possible:

Ideate:	Develop	your	idea	or	concept.	Identify	what	the	problem	that	needs
solving	is	in	very	clear	terms.
Create	your	prototype:	Think	simple	and	small.	It's	best	to	build	the
smallest	possible	increment	that	quickly	brings	back	enough	validation	to
inform	next	steps.
Define	an	experiment/test	study	to	prove	your	hypothesis:	Create
question	sets,	consider	A/B	tests,	and	task	analysis.

	

	

Phase	II	-	Measure
	

The	next	step	is	to	gather	as	much	validated	learning	as	you	can	in	an	interactive
cycle,	and	shape	the	patterns	and	insights	derived	from	your	testing	to	drive
future	investments	and	iterations	of	your	MVP:

Initiate	your	test	study:	Conduct	interviews,	distribute	questionnaires,	and
validate	your	prototype.
Analyze:	Take	a	look	at	your	data	objectively.	What	surfaced?	Are	there
any	common	patterns	and	behaviors?
Organize:	Cluster	patterns	and	behaviors	that	overlap	together	start	shaping
and	surfacing	insights.
Compile:	Take	your	insights	and	translate	them	into	actionable	items	and
talking	points	that	will	help	inform	potential	revisions,	future	iterations,	and
releases.

	

	

Phase	III	-	Learn
	

This	is	where	a	decision	will	need	to	be	made	regarding	whether	to	persevere	or
pivot	with	your	MVP.	Persevere,	in	this	context,	means	forging	ahead	with	the
same	goals,	while	pivot	requires	at	the	very	least	altering,	and	even	potentially
completely	resetting	your	original	MVP	vision:

Establish	whether	your	MVP	actually	solves	a	problem	for	its	users.	Does
my	MVP	meet	the	needs	of	my	intended	target	user?
Establish	your	MVP	viability.	Does	my	MVP	provide	a	feature	set	that	my
users	are	willing	to	pay	for?

	

	

10	essential	UX	testing	methods
	

Validation	is	the	cornerstone	of	MVP	product	development.	It's	the	fuel	that
powers	the	MVP	Build-Measure-Learn	feedback	loop.	There	are	a	number	of
different	testing	methods	that	can	be	used	to	help	define	MVP	and	continuously
improve	UX	iteratively	by	applying	Build-Measure-Learn	cycles.

The	following	are	10	essential	UX	testing	methods	that	can	be	used	to	help
validate	your	MVP:

1.	 Survey:	The	most	cost-effective	way	to	find	out	who	your	users	are,	what
they	want,	what	they	do,	what	they	purchase,	where	they	shop,	and	what
they	own	is	to	survey	them.	You	can	find	survey	software	that	is	free,	so
there's	no	excuse.

2.	 Persona/market	segmentation:	Use	the	survey	data	and	identify
meaningful	patterns	and	behaviors	among	your	user	groups.	Surface	what
functions	certain	segments	demand	as	well	as	the	pain	points	they
experience.	Find	your	MVP	market	sweet	spot	within	your	market	segment.

3.	 Contextual	inquiry:	Sometimes	it's	difficult	for	users	to	communicate
exactly	what	they	want	or	what	they	are	trying	to	achieve.	It's	always	ideal
to	observe	users	in	their	environment	performing	the	tasks	and	functions
that	are	critical	to	their	role.	You	can	probe	and	survey	them	while	they	are
performing	their	tasks	to	discover	what	works	and	what	needs	improving.

4.	 SME/stakeholder	interviews:	There's	a	lot	of	information	that	can	be
tapped	internally	within	your	own	organization.	Interview	any	SMEs,
customer	support,	QA,	development,	marketing,	or	sales	personnel	to	find
out	what	needs	to	be	built,	for	whom,	and	why.

5.	 Task	analysis:	Measure	discoverability,	usability,	and	performance	by
observing	users	engaged	in	specific	tasks	and	workflows.

	

6.	 Moderated	in-person	testing:	This	is	ideal	for	mobile	device	testing,	or

when	it's	tough	to	put	prototypes	up	remotely,	test	users	in	a	lab,	conference
room,	or	even	a	coffee	shop	to	gather	invaluable	feedback	and	insight.

7.	 Moderated	remote	testing:	This	is	the	cheapest	form	of	user	testing
available.	Using	services	such	as	Zoom	meetings,	Google	Forms,	and
InVision	allow	you	to	record	and	moderate	user	tests	anywhere	on	the
internet.	Helps	expands	your	recruitment	base,	and	doesn't	limit	user	pools.

8.	 A/B	testing:	This	can	be	used	in	many	conditions,	remote,	moderated,	and
so	on.	Comparatively	test	layouts,	interface	controls,	buttons,	CTAs,	colors,
tasks,	performance...	the	sky's	the	limit.

9.	 Comparative	benchmark	study:	Comparatively	test	the	same	tasks	on
competitive	applications.	Use	core	metrics	such	as	completion	rates,	time
and	task	difficulty	as	a	basis	for	creating	benchmarks.	For	example,	is	the
checkout	process	at	Zappos	faster,	more	efficient,	and	easier	to	use	than	the
checkout	process	at	Amazon?

10.	 Multivariate	testing:	One-variable-at-a-time	testing	can	take	a	long	time,
and	you	will	quickly	burn	through	your	testers	a	lot	faster	than	expected.	If
you	need	to	test	often,	performing	multivariate	tests	will	allow	you	to	not
only	maximize	the	returns	you	get	from	your	testing	pool,	but	also	give	you
a	great	idea	of	how	your	experience	works	as	a	whole.	For	instance,
changing	the	color	of	a	button	will	glean	some	data,	but	nothing	compares
to	the	data	you	mine	when	you	change	the	location,	color,	and	label	of	the
button	and	test	all	the	variants	together.	You	can	do	multivariate	tests	on
both	live	and	prototype	environments.	Products	such	as	Optimizely	helps
you	organize	and	launch	multivariate	tests	in	live	environments	with	real
users.

	

	

Iterate	and	evolve	-	from	viable	to
lovable
Now	that	we	have	successfully	launched	our	initial	MVP	into	the	market,	and
gathered	some	validated	learning,	what's	next?	How	does	it	scale?	Is	it	just	more
of	the	same?	No,	absolutely	not.	This	whole	process	is	all	about	evolving	and
maturing	your	product,	your	users,	and	your	revenue.	The	goal	has	become
about	taking	your	product	from	viable	to	lovable,	introducing	Minimum
Loveable	Product	(MLP).

MLP	is	defined	as	the	version	of	the	product	that	brings	back	the	maximum
amount	of	love	from	its	users	with	the	least	amount	of	effort.	We	all	recognize
products	in	our	lives	that	we	love	and	can't	live	without:	cars,	smartphones
created	by	remarkable	brands	such	as	Apple,	Audi,	Samsung,	and	G-Star.	We
love	these	products	because	they	evoke	a	positive	emotional	connection	within
us.	In	simple	terms,	they	make	us	smile.

There	are	many	different	ways	of	making	a	positive	emotional	connection	with
your	users,	but	the	easiest	is	through	good	design.

Five	tips	to	go	from	viable	to	lovable
	

Here	are	some	great	insights	to	help	guide	your	product	down	a	"Loveable"	user
experience	path:

Focus	on	value:	Most	often,	teams	are	laser-focused	on	what	they	are
building,	not	why.	Users	aren't	motivated	to	buy	the	what	(lawnmower);
they	buy	the	why	(I	need	to	cut	my	grass).	Build	stuff	that	matters.
Do	one	thing	really	well:	One	solid	function	or	feature	is	much	better	than
three	mediocre	ones.	Learn	from	success	stories	such	as	Dropbox	and
Instagram.	They	created	masses	of	followers	that	love	their	products	by
simply	focusing	on	doing	one	thing	really	well.
Validate	and	iterate	often:	Working	on	moving	targets	with	no	end	in	sight
equals	lost	vision,	lost	opportunity,	lost	motivation,	and	lost	revenue.
Validate	your	designs	against	short	cycles.	Timebox	your	MVP	to	90-day
increments	(12-week	cycles).	90	days	is	enough	time	to	deliver	on	your
vision,	but	not	long	enough	to	lose	sight	of	it.
Make	the	user	first:	Zoom	in	on	problems	that	are	real	pain	points	for	your
customer.	Have	you	validated	these	pain	points,	or	are	they	your	opinion?
Remember,	user-centered	product	design	is	an	exercise	in	other-
centeredness.	It's	about	your	audience's	response	to	your	products,	not
yours.
Talk	the	talk,	walk	the	walk:	Commit	to	the	objective	and	stay	disciplined
to	the	process.	If	design	is	important	to	you,	demonstrate	it	through	your
actions:	bring	design	in	early	to	collaborate	on	MVP	strategy/vision—start
wireframes	and	protos	early.	Don't	just	say	that	your	customer	is	important
to	you,	show	it	through	your	actions:	test	and	validate	your	MVP	ideas.

	

	

Summary
In	this	chapter,	we	looked	at	the	concept	of	MVP	and	why	it's	important.	We
covered	techniques	that	will	help	you	define	and	build	your	MVP.	We	outlined	a
Lean	Agile	UX	process	to	follow,	and	demonstrated	the	advantages	and	benefits
to	validating	your	MVP.	Lastly,	we	discussed	evolving	your	MVP	from	viable	to
lovable,	and	how	to	evoke	an	emotional	response	from	your	users.	Use	these
building	blocks	to	save	time	and	money,	and	begin	building	products	that	you
know	your	users	will	love	and	need.

In	the	next	chapter,	we	will	review	case	studies	that	illustrate	many	of	the	ideas
discussed	here.

USER	FIRST	+	GOOD	DESIGN	=	LOVABLE	PRODUCT

Minimal	Viable	Product	Case	Studies
In	this	final	chapter,	we	explore	different	strategies	for	the	construction	of	a
Minimal	Viable	Product	(MVP).

These	include	the	following:

Concierge
Landing	page
Fake-O-Backend
Competitor	apps
Analog
Dry-wallet
Letter	of	intent

The	preceding	strategies	provide	a	framework	for	running	quick	experiments	at
varying	levels	of	fidelity,	and	leveraging	the	learnings	to	answer	high-risk
assumptions	about	your	app's	business	model	canvas.

In	this	chapter,	we'll	dive	into	an	MVP	case	study	to	learn	more	about	how	they
are	applied	across	a	series	of	experiment	loops.

We'll	discuss	Fun	with	Charades,	an	app	that	my	team	and	I	built	to	help	people
around	the	world	play	charades	through	an	online	video	chat	room.	We'll	discuss
the	original	vision,	key	high-risk	assumptions	we	faced,	how	we	developed	a
hypothesis-led	approach	to	testing	them,	how	we	iterated	based	on	learnings,	and
our	final	conclusions.

Fun	with	Charades	-	Initial	vision
	

Here's	the	initial	vision,	target	audience,	and	problem	statement	that	we	started
with:

Vision:	To	create	a	fun	place	where	people	make	new	friends	online
Target:	Teens,	college	kids,	yuppies,	casual	gamers
Problem:	To	connect	people	online	through	dumb	charades

As	we	thought	about	this,	there	were	a	number	of	questions:

Do	people	care	at	all	about	charades?	Ellen's	charades	game	was	wildly
popular,	and	there	was	a	lot	of	buzz	around	Heads	Up	Charades!,	but	that
was	not	indicative	of	whether	people	would	want	to	play	online.
Would	charades	be	engaging	enough	that	people	would	want	to	play
regularly?
If	we	set	up	a	real-time	game	to	mimic	the	mechanics	of	the	game	we	are
used	to,	that	would	require	friends	being	present	at	the	same	time,	which
may	be	hard	to	schedule.
If	scheduling	was	hard,	would	people	be	comfortable	playing	with	strangers
in	game	rooms,	like	online	poker?
Wouldn't	people	freak	out	just	a	bit	about	using	video	online?	Are	there
communities	that	are	more	open	to	using	video	online?
If	we	built	an	async	game	with	mobile	apps	so	that	people	could	play	when
they	had	time,	that	might	work.	But	would	it	be	practical	for	people	to
respond	to	a	challenge	by	acting	while	simultaneously	holding	their
smartphones	in	front	of	them?
And	then,	there	was	the	question	of	whether	we	had	an	interest	and
competencies	in	gaming.

	

	

The	big	ifs
	

We	set	out	to	break	these	down	and	tackle	what	we	felt	were	the	biggest	doubts
on	our	list:

Are	people	interested	in	playing	charades	online?
Are	they	comfortable	using	video	online?
Do	they	like	the	concept	enough	to	invite	friends	or	join	a	public	game
room?
Do	they	enjoy	the	playing	experience	with	others	in	the	room?
Do	they	enjoy	this	enough	to	keep	coming	back?
Will	they	invite	other	people?

Next,	we	attempted	to	structure	experiments	around	the	major	leap-of-faith
assumptions	being	made,	in	order	to	seek	validation.

	

	

	

Hypothesis	1
	

Of	a	sampling	set	of	people	searching	for	charades	online,	at	least	25%	will	sign
up	to	check	out	the	game:

Audience:	Targets	the	people	looking	to	play	charades	online.
Acquisition:	Uses	Google	Ads.
Validation:	This	includes	the	percentage	of	sign-ups.
Execution:

Build	the	signup	page	in	a	day.
Identify	keywords	and	run	ads	for	a	week.
Track	signups.

Result:	We	ran	ads	targeting	users	who	searched	for	"charades	online",
"charades	games",	and	"charades	words",	and	over	25%	of	the	users	signed
up.
Learning:	There's	an	interest	in	playing	charades	online	among	those	who
search	for	it	on	Google:

	

	

	

Hypothesis	2
	

Of	the	users	in	the	target	demographic	who	are	shown	mockup	flows	of	the
game	concept,	at	least	70%	of	them	would	be	very	interested	in	the	game:

Audience:	Targets	the	young	adults	in	India.
Acquisition:	Uses	your	friends	network	for	recruitment.
Validation:	This	includes	the	%	of	people	who	are	very	interested	in	the
game.
Execution:

Build	rough	mock-ups	using	MockFlow	in	a	day.
Walk	people	through	the	mock-ups.
Collect	feedback.

Result:	Overall,	there	was	unanimous	interest	in	the	game	concept,	but	a
few	mentioned	that	they	may	be	uncomfortable	being	on	video	online.
Learning:	In	general,	charades	is	popular	in	India,	and	people	are
interested	in	trying	out	an	online	game:

	

	

	

Hypothesis	3
	

Of	the	signed-up	charades	users	invited	to	a	game	room,	at	least	25%	will	be
willing	to	join	a	public	room	and	use	video	online:

Audience:	This	includes	the	signed-up	users.
Acquisition:	N/A.
Validation:	Includes	the	%	of	users	who	used	online	video	in	a	public
room.
Execution:

Invite	users	to	the	public	room.
Provide	an	explanation	on	what	the	game	is	about.
Enable	the	user	to	turn	the	video	on	and	start	the	game.
Track	analytics.

Result:	80%	of	the	users	visited	the	page,	but	<	5%	turned	the	video	on.
Learning:	This	experiment	invalidated	our	false	hope	that	people	in	this	era
of	FaceTime	and	Hangouts	wouldn't	hesitate	to	use	video	online.	Therefore,
we	need	to	dig	deeper,	and	talk	to	users	to	understand	how	they	felt:

	

	

	

Hypothesis	4
	

Users	are	more	likely	to	be	comfortable	using	video	online	if	they	are	playing
with	their	friends,	and	80%	or	more	will	then	use	video	online:

Audience:	Targets	friends	of	friends	who	are	acquainted	with	each	other,
but	don't	know	each	other	well.
Acquisition:	Uses	your	friends	network	for	recruitment.
Validation:	This	includes	the	%	of	users	who	use	video	online.	%	of	users
who	like	the	game	idea	enough	that	they	would	be	disappointed	to	not	play.
Execution:

Invite	users	to	the	public	room.
Provide	an	explanation	as	to	what	the	game	is	about.
Enable	the	user	to	turn	the	video	on	and	start	the	game
Track	analytics.

Result:	100%	of	users	turned	the	video	on	and	were	excited	and	ready	to
engage	in	the	game,	and	they	felt	they	would	be	very	disappointed	if	they
were	unable	to	play.
Learning:	When	asked	if	they	would	play	with	people	they	didn't	know
online,	women	said	they	would	hesitate,	while	men	in	the	group
unanimously	said	they	would	be	willing	to	try:

	

	

	

Hypothesis	5
	

Users	from	online	communities	who	use	video	online	with	strangers	are	a	lot
more	likley	to	be	comfortable	playing	with	each	other,	and	at	least	25%	will	use
video	online:

Audience:	Targets	Chatroulette	and	Chatrandom	communities.
Acquisition:	Uses	Google	Ads.
Validation:	This	includes	the	%	of	users	who	turn	the	video	on.
Execution:

Run	Google	Ads	for	Chatroulette	and	Chatrandom,	offering	video-
based	charades	online,	and	an	opportunity	to	meet	new	people.
Invite	users	to	the	public	room.
Provide	an	explanation	on	what	the	game	is	about.
Enable	the	user	to	turn	the	video	on	and	start	the	game.
Track	analytics.
Add	a	Qualroo-style	prompt	to	find	out	why	they	don't	turn	the	video
on.

Result:	50%	of	the	users	visited	the	page,	but	<	10%	turned	the	video	on.
5%	answered	the	prompt	indicating	they	didn't	want	to	turn	the	video	on,
would	try	later,	or	weren't	sure	how	to	turn	it	on.
Learning:	Given	the	anonymity	of	these	communities,	it	was	hard	to	reach
out	directly	and	get	feedback,	and	the	sampling	size	of	the	responders	to	the
prompt	was	too	small	to	infer	enough.

	

	

The	conundrum
	

We	spoke	to	a	group	of	users	and	collated	feedback.	So,	at	this	point,	we	were
faced	with	this	conundrum	from	our	learnings:

There's	a	certain	level	of	interest	in	charades,	but	it's	mostly	seen	as	a
family	and	friends	game.
For	those	who	see	their	friends	and	family	often	enough,	playing	charades
online	wasn't	appealing.	(Playing	live	with	them	during	Thanksgiving	or
Christmas	was	still	appealing.)
The	average	user	isn't	comfortable	playing	with	random	strangers	online.
Even	communities	that	are	comfortable	dealing	with	nudity	online,	and
have	no	reservations,	didn't	find	the	idea	appealing
Improvements	in	the	visual	design	and	explanatory	information	offered	did
not	increase	conversions.
A	game	like	this	requires	a	fairly	engaged	community,	and	it	didn't	appear
that	charades	would	sustain	that	level	of	engagement.
There's	a	community	of	people	in	the	subcontinent	that	loves	dumb
charades,	but	the	version	that's	played	is	fairly	technical	and	geeky,	and
would	not	scale	out.

	

	

What	we	did	well
Captured	our	thought	process	and	assumptions,	laying	out	the	facts	for	us	to
succeed
Identified	small	batches	that	could	be	proven	(or	disproven)	with	minimum
cost,	rapidly	built,	and	iterated	through	the	batches
Stayed	honest	and	objective,	tracked	metrics	and	cohorts	well

What	we	could	have	done	better
	

Most	early	feedback	was	from	subcontinent	users,	since	reaching	out	to	an
international	audience	was	not	easy.	Consequently	feedback	was	not	fully
representative	of	the	target	audience.
We	built	more	than	we	should	have	before	we	understood	the	gaps	in	our
understanding	of	the	customer	and	their	behavior.
We	included	more	online	surveys	early	on	enough	to	have	better	insights.

	

	

Summary
We	still	believed	in	the	original	vision,	and	it's	possible	that	persevering	and
keeping	this	going	out	there	in	the	wild	may	have	yielded	something.	However,
we	were	invalidated	conclusively	and	decided	to	pivot	away	and	explore	other
ideas.	In	hindsight,	it	was	a	good	decision	and	likely	saved	us	from	the	clutches
of	the	sunken	cost	fallacy.

Many	people	have	strong	misgivings	about	wasting	resources	(loss	aversion).
The	example	we	saw	in	this	chapter	involved	a	non-refundable	sporting	event
ticket.	Many	people	would	feel	obliged	to	go	to	the	event	despite	not	really
wanting	to,	because	doing	otherwise	would	be	wasting	the	ticket	price;	they	feel
they've	passed	the	point	of	no	return.

This	is	sometimes	referred	to	as	the	sunk	cost	fallacy.	Economists	would	label
this	behavior	irrational:	it	is	inefficient	because	it	misallocates	resources	by
depending	on	information	that	is	irrelevant	to	the	decision	being	made.	(via
Wikipedia).

The	important	takeaways	from	this	case	study	are	as	follows:

The	rigor	and	discipline	needed	to	run	experiments
The	willingness	to	adapt	based	on	new	learnings	and	surprises
The	need	to	focus	on	the	vision	(although,	in	this	case,	our	team	did	not
stay	committed	to	it	long	term)
The	leverage	of	proxy	users	and	trade-offs	involved

In	the	next	chapter,	you	will	learn	more	about	using	Software	as	a	Service
(SaaS)	cloud-based	services	to	enable	you	to	rapidly	run	experiment	loops.

	

Cloud	Solutions	for	App	Experiments
While	an	MVP	could	be	something	as	minimal	as	a	landing	page,	announcing
your	app,	or	a	live	mock	up	version	of	your	app,	there	comes	a	time	that	your
app	should	be	a	little	more	than	that,	whether	it	is	to	prove	your	next	hypotheses
or	to	see	the	actual	thing	in	its	most	basic	shape	in	action.	It's	about	time	to
create	a	Proof	of	Concept	(PoC).

Standalone	apps	are	rare	these	days.	Most	apps	have	functionality	to	share
content	on	Twitter	or	Facebook,	have	leaderboards	(if	it	is	a	game),	let	the	user
post	pictures	or	video,	have	a	chat	or	otherwise	communicate	with	each	other,
and	so	on.	For	this	your	app	needs	to	have	a	backend.

You	can	of	course	create	your	own	API	or	use	the	API	of	the	many	solutions	that
do	exist	for	this	purpose,	the	so-called	Mobile	backend	as	a	Service	(MBaaS).
These	solutions	do	work	like	any	other	Software	as	a	Service	(SaaS)	but	are
specifically	intended	for	this	purpose.

In	this	chapter,	we	will	have	a	look	on	MBaaS	solutions	and	will	see	what	it
takes	to	build	an	Android	PoC	using	Firebase,	a	popular	cloud-based	backend.

Specifically,	in	the	chapter	we	will	cover	the	following	topics:

Find	out	if	we	need	to	create	a	backend	on	our	own
Leverage	cloud	solutions	for	app	experiments
Determine	what	services	are	available	as	MBaaS
Examine	an	Android	PoC	app	using	Firebase

Do	you	need	to	create	a	backend
yourself?
It	totally	depends	on	your	app's	needs,	but	for	most	apps	there	is	no	reason	at	all
to	create	a	backend	yourself,	at	least	not	for	your	Minimum	Viable	Product
(MVP).	There	are	plenty	of	readymade	backend	solutions	available.

Most	solutions	support	push	notifications,	data	storage,	social	sign	up	and	login
(sign	up	or	login	using	your	Facebook	or	Twitter	credentials	for	example)	and
data	synchronization	functionality,	including	offline	support	for	your	app.

If	you	have	to	program	all	these	things	for	yourself,	it	could	take	up	a	lot	of	time
and	it	will	probably	take	even	more	time	to	make	it	error	free.

Almost	all	solutions	come	as	freemium	service	and	most	of	the	time	the	free
options	are	good	enough	to	build	your	MVP.	Some	of	them,	such	as	Firebase,
come	with	real-time	support,	making	it	a	great	base	for	a	chat	app.	Later,	we	will
build	a	PoC	with	Firebase,	but	first	let's	see	what	solutions	are	currently
available.

What	a	MBaaS	can	do	for	you	is	illustrated	here.	Most	solutions	offer	a	web-
based	Content	Management	System	(CMS),	an	Application	Programming
Interface	(API)	and	a	Software	Development	Kit	(SDK).	Such	a	solution	will
take	care	of	storing	both	remote	and	local	data.	In	addition,	it	has	support	for	the
synchronization	of	data	(it	sends	local	persisting	data	to	a	remote	location	and
vice	versa)	and	for	distributing	push	notifications:

To	be	more	precise,	an	API	is	a	way	for	apps	to	communicate	with	the	data
stored	at	the	remote	server	(cloud	solution).	Data	can	often	be	retrieved	through
a	Representational	State	Transfer	(REST)	interface	over	http(s).	The	SDK	is	a
piece	of	software	that	you	can	add	to	your	own	app.	It	will	make	the	usage	of	the
API	more	convenient.	Often	the	API	will	take	care	of	things	such	as	obtaining
data	and	data	synchronization.	The	integration	of	the	service	will	be	simplified
by	using	the	API,	but	you	can	still	use	the	REST	interface,	for	example,	to	show
the	same	data	on	the	website.

Leverage	cloud	solutions	for	app
experiments
MBaaS	solutions	are	great	for	getting	things	going	real	quickly.	Most	solutions
come	with	features	that	almost	any	app	has	in	common,	such	as	registration,
login,	retrieving,	saving,	and	sharing	data.	Another	big	advantage	of	using	an
MBaaS	is	its	scalability.	Right	now	we	are	aiming	for	the	development	of	an
MVP	and	technical	scaling	issues	are	luxury	problems.	However,	it	is	good	to
know	upfront	that	these	problems	are	easier	to	resolve	using	these	kinds	of	third-
party	solutions.	Your	app	has	scalability	but	does	not	yet	need	to	scale.	If	it
needs	to	be	scaled	up,	then	you	just	switch	to	a	bigger	plan	(from	a	technical
perspective).	You	will	read	more	about	scaling	strategies	in	Chapter	15,	Growing
Traction	and	Improving	Retention.

	

Things	to	consider
	

There	are	some	other	things	to	look	at,	such	as	pricing.	You	can	start	with	a	free
plan,	but	if	you	need	to	scale	up	your	solution,	it	is	important	to	know	how	fast
the	price	will	increase.	Is	the	service	still	reasonably	priced	if	you	need	to	deal
with	high	volumes.	When	that	happens	money	may	no	longer	be	a	big	issue	as
your	business	already	has	grown	significantly.	It	could	also	be	that	your	strategy
is	to	use	the	service	only	for	a	first	MVP.	It	is	all	fine	as	long	as	you	have	a
strategy	and	you	keep	these	things	in	mind.

Another	thing	to	think	about	is	the	fact	that	your	user	data	resides	on	the	server
of	a	third	party	such	as	Facebook	or	Google.	You	should	ask	yourself	if	you
should	trust	third	parties	to	build	a	solution.	Of	course	a	lot	depends	on	the
nature	of	the	solution.	Anyhow	there	are	things	that	you	would	like	to	know	for
sure	such	as	"Is	your	data	safe	and	what	is	going	to	happen	if	the	service
provider	decides	to	discontinue	its	services?"	Parse	server	and	Firebase	have
some	impressive	names	in	their	testimonials,	so	we	can	probably	assume	that	in
most	cases	your	data	is	safe	indeed.

	

	

	

The	story	of	Parse
The	second	one	is	more	relevant	than	you	might	think.	A	while	ago	Parse
announced	they	were	going	to	discontinue	their	services.	That	announcement
made	a	lot	of	(independent)	developers	pretty	angry.	These	developers	were
totally	dependent	on	Parse	services.	The	discontinuation	of	Parse	made	them
fearful	because	they	thought	they	had	no	other	choice	but	to	end	their	business.
Developers	had	high	expectations	from	the	services,	also	because	Parse	had	been
acquired	by	Facebook.	It	seemed	to	be	very	solid.	Apparently,	that	acquisition
perhaps	also	led	to	that	same	announcement.	For	Facebook,	the	team	was
probably	more	interesting	than	the	service	itself.

Fortunately,	this	fairy	tale	has	a	happy	end.	Parse	came	with	a	nice	migration
plan,	which	nowadays	is	known	as	the	open	source	solution	Parse	server.	You
can	host	it	yourself	but	if	you	do	not	want	to	do	that	then	there	is	no	problem
either.	A	lot	of	other	parties	jumped	right	on	it	and	started	to	offer	Parse	server
hosting.	The	server	itself	does	not	come	with	all	the	features	that	were	available
in	Parse	but	parties	such	as	Back4App	did	a	great	job	adding	them	all	back	in.

In	short,	this	story	proves	that	you	should	not	completely	depend	on	services	like
these.	Partners	are	important	but	when	they	become	irreplaceable	the	future	of
your	startup	could	possibly	be	uncertain.	And	while	this	story	is	about	Parse,	the
same	thing	could	happen	to	Firebase,	for	example.	That	is	not	very	likely	but
Google	has	shut	down	some	services	before,	so	it	also	is	not	completely
impossible.

Strategic	considerations
	

If	you	need	to	make	a	decision	whether	to	use	a	cloud-based	service	or	not	and	if
you	need	to	make	a	choice	from	the	various	available	services,	then	there	are
some	strategic	considerations	that	could	be	important.	Using	such	a	service
comes	with	both	advantages	and	disadvantages.	A	number	of	them	are	listed
next.

The	following	are	the	advantages:

The	service	shortens	the	development	time
Out	of	the	box	the	service	often	comes	with	support	for	registration	and
login
Most	services	can	easily	be	scaled	up	or	down,	depending	on	the	amount	of
traffic	that	you	are	expecting
Almost	all	services	support	push	notifications	and	media	storage

The	following	are	the	disadvantages:

A	ready-to-use	service	is	often	more	expensive.	Pricing	could	be	an	issue.
The	privacy	of	your	(user)	data	could	be	an	issue.	You	have	to	trust	that	the
company,	that	is	offering	the	service,	is	taking	the	right	precautions	to
ensure	the	security.
There	is	always	the	risk	that	the	service	will	be	discontinued.
There	is	a	lock-in	risk.	It	could	be	difficult	to	migrate	to	another	service
when	all	your	data	is	residing	with	a	particular	provider.

	

	

What	services	are	available	as
MBaaS?
	

There	are	a	couple	of	services	available	that	could	act	as	a	backend	for	your	app.
Given	the	strategic	considerations	from	the	previous	paragraph	and	the	specific
needs	of	your	app,	one	service	might	be	more	suitable	than	another.

Some	offer	real-time	data,	making	it	perfect	for	a	chat	application.	Others	are
more	about	persisting	data	or	come	with	building	blocks,	such	as	QuickBlox,
allowing	you	to	create	your	app	even	faster.	Some	are	pretty	dedicated	solutions,
pretty	easy	and	fast	to	use	but	not	very	flexible.	Others	are	very	flexible	but
come	with	a	steeper	learning	curve:

Most	solutions	store	data	in	a	document-related	database,	such	as	MongoDB.	If
you	need	to	have	a	relational	type	of	database	for	your	app,	then	choosing	Azure
with	SQL	Server	will	probably	be	the	best	thing	to	do.	Choose	the	service	that
matches	most	closely	with	your	app	needs	and	your	current	development	skills:

Back4App:	The	service	offers	hosted	parse	servers.	The	service	has	support
for	push	notifications,	data,	and	file	storage	and	it	supports	Cloud	code.
Cloud	code	is	code,	often	queries,	that	run	on	the	Parse	server.	You	can	use
the	common	Android	and	iOS	Parse	SDKs	to	communicate	with	the	server.
SashiDo:	Just	like	Back4App,	this	is	a	service	that	offers	a	hosted	parse
server	plus	a	couple	of	extra	things.
Firebase:	It	is	a	scalable	real-time	backend	for	web,	Android,	and	iOS.	It	is
perfect	for	chat	and	collaboration	tools,	but	is	also	suitable	for	other	needs.
Storing	media	such	as	images	or	video	is	a	bit	more	complicated	when

compared	with	Parse	server	or	Azure,	for	example.
BaasBox:	This	is	an	open	source	backend	for	your	mobile	app.	It	has	SDKs
for	iOS,	Android,	and	JavaScript.
QuickBlox:	This	service	provides	building	blocks	for	a	backend
infrastructure.	It	offers	data	storage,	push	notifications,	text	and	video	chat,
and	many	other	features.	It	allows	developers	to	create	apps	quickly,	but	is	a
bit	pricy.	For	this	reason,	it	is	most	suitable	for	a	PoC	and	less	for	a	real
app.
Azure:	Microsoft	Azure	comes	with	support	for	push	notifications	and
other	mobile	services.	It	has	become	one	of	Microsoft's	core	businesses,	so
you	can	see	Azure	as	one	of	the	most	trustworthy	MBaaS	solutions.	The
platform	will	stay	for	sure.	It	is	also	true	that,	compared	to	other	MBaaS,
the	Azure	services	can	sometimes	be	a	little	bit	confusing.	It	is	less
dedicated	to	MBaaS	alone.	It	can	simply	do	way	too	many	things	and	it	can
make	the	service	a	bit	overwhelming	if	you	just	got	started.	It	is	very
flexible	and	because	of	this	it	has	a	relatively	steep	learning	curve.	For	your
app	needs,	you	can	use	table	and	blob	storage	(for	images,	documents,	and
so	on),	use	the	mobile	services,	the	API	services,	or	you	can	create	your
own	API	using	.NET	or	another	language.	There	are	Azure	client	SDKs	for
Android,	iOS,	and	Windows.
Backendless:	Backendless	provides	an	instant	mobile	Backend	as	a	Service
and	overall	application	development	Platform.
remoteStorage:	remoteStorage	offers	an	open	protocol	for	per-user	storage.
Use	a	storage	account	with	a	provider	you	trust,	or	set	up	your	own	storage
server.
CloudBoost.io:	This	is	a	complete	database	service	that	comes	with	data
storage,	search,	real-time	and	other	stuff.
PubNub:	PubNub	is	a	real-time	network	that	enables	software	developers	to
rapidly	build	and	scale	real-time	apps	by	providing	the	cloud	infrastructure,
connections,	and	key	building.
Parse	server:	The	Parse	server	is	an	open	source	solution	that	you	can
download	and	host	by	yourself.	You	could	also,	for	example,	host	it	on
Heroku	or	on	Azure.	The	server	uses	a	MongoDB	database	and	utilizes
Amazon	S3	storage	to	store	files,	such	as	images,	audio	or	video.	The	Parse
SDKs	for	Android	and	iOS	include	all	kinds	of	handy	stuff,	such	as	caching
data	and	uploading	data	or	files	in	the	background.

https://remotestorage.io/
https://www.pubnub.com/

	

	

Technical	considerations
	

Besides	strategic	considerations,	there	are	also	a	couple	of	technical	aspects	to
consider.	Before	you	choose	a	particular	service,	you	should	ask	yourself	the
following	questions:

Does	your	app	require	real-time	support?
Does	your	app	handle	a	lot	of	media	(images,	video,	and	audio)?
How	trustworthy	should	the	service	provider	be?
How	good	are	your	current	skills	that	are	required	to	use	the	chosen
service?
How	much	flexibility	do	you	need	and	how	much	time	do	you	have
available?

In	the	next	paragraph,	we	will	examine	an	Android	MVP	that	is	using	Firebase.

	

	

	

Canvapp	-	an	Android	MVP	app
using	Firebase
Let's	build	an	Android	MVP	app	using	Firebase.	For	this	particular	case,	we	will
have	an	app	that	allows	you	to	create	and	share	your	business	model	canvas,	just
by	using	your	phone.	Anyone	can	view	or	edit	each	other's	canvases	so	you	can
gather	feedback	easily.	If	you	do	not	remember	what	the	business	model	canvas
looks	like,	you	can	have	a	look	at	Chapter	2,	Lean	Startup	Primer	again.

We	will	be	using	a	wireframing	tool,	such	as	SwordSoft	Layout	as	shown	in	the
following	example	.	Let's	say	that	the	app	should	look	more	or	less	like	this:

The	first	view	displays	a	list	of	business	model	canvases	and	it	has	a	sliding
menu.	The	second	view	is	the	one	that	the	user	will	see	when	he	is	creating	a
new	canvas	or	when	he	chooses	a	canvas	from	the	list.	It	displays	a	number	of
pages,	each	containing	a	title,	description,	and	some	hint.	Users	can	swipe	back
and	forward.	It	is	a	very	basic	app.	It	has	only	three	views,	but	that	will	be
sufficient	to	demonstrate	how	to	use	Firebase	as	a	backend	and	we	can	use	it	to
prove	that	this	app	concept	does	make	sense.

For	the	sake	of	simplicity,	we	will	just	say,	for	this	example,	that	you	have
already	validated	your	earliest	hypotheses.	The	hypotheses	for	this	solution	are:

Startup	entrepreneurs	want	to	share	their	canvases	to	get	feedback	from
other	entrepreneurs.

Startup	entrepreneurs	want	to	share	their	canvases	using	a	smartphone	or
tablet.	This	will	allow	us	to	focus	on	the	technical	implementation	of	the
app.

You	can	find	the	source	for	this	project	at:	https://github.com/mikerworks/packt-lean-saas-can
vapp.

https://github.com/mikerworks/packt-lean-saas-canvapp

Sign	up	for	Firebase
If	you	want	to	see	things	in	action,	you	will	have	to	go	to	www.firebase.com	and	sign
up.	Once	you	have	done	that,	you	can	create	your	first	app.	The	only	thing	that
matters	is	the	endpoint	that	Firebase	will	create.	You	need	this	endpoint	to
configure	your	app.	In	the	following	example,	the	endpoint	is	torrid-head-

3108.firebaseIO.com:	

First,	download	the	Android	Firebase	example	from	GitHub	(https://github.com/miker
works/packt-lean-saas-canvapp),	so	we	can	go	through	it	and	see	what	it	is	all	about.	If
you	prefer,	and	if	you	have	some	time	left,	you	can	also	build	this	app	from
scratch,	of	course.	For	now,	you	can	download	the	readymade	app,	examine	it,

and	modify	it	as	needed:	

http://www.firebase.com
https://github.com/mikerworks/packt-lean-saas-canvapp

Open	the	app	in	Android	Studio	or	another	IDE	if	you	prefer.	One	of	the	things
that	you	need	to	modify	is	the	Firebase	endpoint	in	the	application.	Collapse	the
data	package	node	within	the	app	and	open	the	FirebaseRepository	class.	Within	the
FirebaseRepository	class,	locate	the	constructor	and	adapt	the	firebase	reference	so
that	it	matches	yours:	public	class	FirebaseRepository	implements
IRemoteRepository	{
private	Firebase	reference;
private	Context	context;
public	FirebaseRepository(Context	context){
Firebase.setAndroidContext(context);
this.context	=	context;
reference	=	new	Firebase("https://<your	endpoint	here>/canvapp/");	}

When	you	run	the	app	and	have	added	a	couple	of	canvases	it	looks	more	or	less
like	this.	Yeah,	it	already	contains	some	cool	ideas:

When	you	run	the	app	and	have	added	a	couple	of	canvases	it	looks	more	or	less
like	this.	Yeah,	it	already	contains	some	cool	ideas.	The	app	will	display	a	list	of
canvas	models	residing	in	Firebase.	The	title	and	description	for	each	model	will
be	shown.	Anyone	can	view	or	edit	it	by	clicking	on	a	model.	This	will	display
the	edit	view,	which	will	contain	a	swipeable	collection	of	canvas	elements.	A
new	canvas	can	be	created	through	the	options	in	the	menu.

For	this	app,	we	have	created	a	new	project	in	Android	Studio	and	we	chose	the
Navigation	Drawer	to	be	our	first	activity.	This	will	give	us	a	nice	template	with
a	readymade	menu.	It	is	here	that	the	List	and	New	canvas	options	are	going	to
appear.

Layout
	

There	are	a	few	layout	resources	in	the	project	(res/layout)	that	we	will	describe.
These	layouts	are	as	follows:

The	list	layout:	This	displays	a	list	of	canvases
The	pager	layout:	This	shows	a	swipeable	series	of	elements.
The	element	layout:	This	layout	will	display	a	title,	description,	some
hints,	and	edit	box	for	each	element	of	the	Business	Model	Canvas.
The	row	layout:	This	renders	each	row	in	the	list	of	canvases.

The	layout	files	are	small	and	contain	just	some	boilerplate	code.	It	is	nothing
fancy	but	we	need	it	anyway	to	create	the	Android	Firebase	PoC.	You	can
examine	them	if	you	want,	but	for	now	let's	proceed	with	the	parts	of	the	code
that	are	most	relevant.

	

	

	

Dependencies
	

To	examine	the	list	of	dependencies	for	the	app,	open	the	build.gradle	file	within
the	app	folder.	Among	other	things,	you	will	find	the	dependencies	for	Firebase
and	JSON	deserialization	here,	as	listed	next:	dependencies	{

compile	fileTree(dir:	'libs',	include:	['*.jar'])	testCompile
'junit:junit:4.12'

compile	'com.android.support:appcompat-v7:23.3.0'

compile	'com.android.support:design:23.3.0'

compile	'com.android.support:cardview-v7:23.1.1'

compile	'com.android.support:recyclerview-v7:23.3.0'

compile	'com.squareup.retrofit:converter-gson:2.0.0-beta2'

compile	'com.firebase:firebase-client-android:2.5.2+'

}

Within	the	res	folder	raw,	you	will	find	the	canvas.json	file.	The	JSON	data	in	this
file	will	be	parsed	using	Gson.	It	will	act	as	a	template	for	each	new	canvas.	All
the	user	needs	to	do	is	to	provide	a	value	for	each	element.

The	JSON	object	in	the	file	looks	like	this.	It	will	be	processed	by	the
LocalRepository	class:	{

"ELEMENTS":	[

...

{

"ID":	"PROPOSITIONS",

"TITLE":	"VALUE	PROPOSITIONS",	"DESCRIPTION":	"what
value	do	you	deliver	to	the	customer?	Which	of	your	customer's
problems	are	you	helping	to	resolve?	What	bundles	of	services	are
you	offering?	Which	needs	do	you	satisfy?",	"HINT":	"Enter	your
proposition	here.	What	are	the	characteristics	of	it?	What	does	it	make
unique?	Is	it	price?	Cost	or	risk	reduction?	A	better	design	or
performance?	Is	it	more	convenient?	Why?..."

},

{

"ID":	"SEGMENTS",

"TITLE":	"CUSTOMER	SEGMENTS",

"DESCRIPTION":	"For	who	are	you	creating	value?\nWho	are	you
most	important	customers?",	"HINT":	"Describe	your	customer
segments	here.	Be	as	specific	as	possible.	A	niche	market	is	much
better	as	aiming	for	'everybody'.	If	it	is	a	platform	what	customers	do
you	want	to	bring	together.	Who	are	your	most	important
customers?..."
},	{

"ID":	"CHANNELS",

"TITLE":	"CHANNELS",

"DESCRIPTION":	"Through	which	channels	do	your	customer

segments	want	to	be	reached?	How	are	you	reaching	them	now?	How
are	your	channels	integrated?\nWhich	ones	work	best?",	"HINT":
"Describe	your	channels.	How	do	you	raise	awareness?	How	can	you
help	your	customers	to	evaluate	the	value	proposition?	How	can	they
purchase	your	services	and	how	are	they	delivered?..."

}

This	template	implements	a	particular	type	of	Business	Model
Canvas.	There	are	some	variants	as	well.	Ash	Maurya,	for	example,
uses	a	different	and,	in	my	opinion,	more	suitable	canvas.	He	calls
it	the	Lean	Canvas	and	it	has	been	described	in	Chapter	2,	Lean
Startup	Primer.

Feel	free	to	modify	the	template	or	to	create	a	totally	different
application,	derived	from	this	one,	for	example,	for	some	kind	of
survey.

	

	

	

Models
	

A	canvas	typically	has	a	collection	of	Canvas	elements,	each	representing	a
section	of	the	Business	Model	Canvas.	For	the	sake	of	simplicity,	these	classes
contain	only	the	most	basic	information.

The	most	important	models	used	in	the	app	are	the	Canvas	and	the	CanvasElement
models.	Both	the	Canvas	and	CanvasElement	classes	implement	the	Parcelable
interface.	This	will	make	it	easier	to	pass	(complex)	objects	to	each	fragment:
public	class	Canvas	implements	Parcelable	{

private	String	id;

public	List<CanvasElement>	ELEMENTS;	public	Canvas(){

ELEMENTS	=	new	ArrayList<>();

}

public	void	setId(String	value){

this.id=	value;

}

public	String	getId(){

return	this.id;

}

...

The	CanvasElement	class	and	the	JSON	object	found	in	the	template
file	have	similar	fields.	Each	element	of	the	canvas	has	an	ID,	title,
description,	and	text	for	the	placeholder.	The	user	input	will	fill	the
value	field:	public	class	CanvasElement	implements	Parcelable	{

public	String	ID;

public	String	TITLE;

public	String	DESCRIPTION;

public	String	VALUE;

public	String	HINT;

	

@Override

public	int	describeContents()	{

return	0;

}

@Override

	

public	void	writeToParcel(Parcel	dest,	int	flags)	{

dest.writeString(this.ID);

dest.writeString(this.TITLE);

dest.writeString(this.DESCRIPTION);

dest.writeString(this.VALUE);

dest.writeString(this.HINT);

}

...

protected	CanvasElement(Parcel	in)	{

this.ID	=	in.readString();

this.TITLE	=	in.readString();

this.DESCRIPTION	=	in.readString();

this.VALUE	=	in.readString();

this.HINT	=	in.readString();

}

	

public	static	final	Parcelable.Creator<CanvasElement>
CREATOR	=	new	Parcelable.Creator<CanvasElement>()	{

@Override

public	CanvasElement	createFromParcel(Parcel	source)	{

return	new	CanvasElement(source);	}

@Override

public	CanvasElement[]	newArray(int	size)	{

return	new	CanvasElement[size];

}

};

}

The	local	repository	reads	the	raw	JSON	file,	which	contains	the	template.	It	will	convert
the	data	to	a	CanvasElementsModel	class,	which,	in	turn,	is	nothing	but	a	wrapper	around
canvas	elements:	public	class	LocalRepository	{

...

public	static	CanvasElementsModel	getElements(Context	context){

Reader	reader	=
getStreamReaderForRawAsset(context,R.raw.canvas);	return	new
Gson().fromJson(reader,	CanvasElementsModel.class);	}

private	static	InputStreamReader
getStreamReaderForRawAsset(Context	context,	int	resId){

InputStream	stream	=
context.getResources().openRawResource(resId);	return	new
InputStreamReader(stream);	}

}

Now	it	is	time	for	some	Firebase	stuff.	The	IRemoteRepository	interface	has	been	added	to	the
app.	This	will	avoid	a	vendor	lock	in.	If	you	ever	want	to	use	another	MBaaS	or	your	own
API,	then	all	you	need	to	do	is	change	the	implementation	for	the	three	methods	found	as
follows:	public	interface	IRemoteRepository	{

Canvas	createCanvas();

void	loadCanvasModels(OnRepositoryResult	handler);	void
saveCanvasModel(Canvas	model);

}

The	FirebaseRepository	class	is	the	Firebase-specific	implementation	for	the	IRemoteRepository
interface.	The	following	code	snippet	shows	you	what	is	needed	to	store	and	to	retrieve
canvases.	Let's	have	a	look	at	the	constructor	first.	Here,	the	reference	to	a	Firebase
endpoint	is	defined.	You	can	modify	the	reference	value	to	match	the	endpoint	of	your	own
Firebase	app:	public	class	FirebaseRepository	implements	IRemoteRepository	{

private	Firebase	reference;

private	Context	context;

public	FirebaseRepository(Context	context){

Firebase.setAndroidContext(context);

this.context	=	context;

reference	=	new	Firebase("https://torrid-heat-
3108.firebaseio.com/canvapp/");	}

In	the	createCanvas	method,	a	new	Canvas	object	will	be	created.	It	will	be	prefilled	with	the
information	we	get	from	the	template	file	through	the	LocalRepository	class.	We	change	the
reference	to	a	child	node	canvas	and	a	canvas	node	is	being	added	as	a	child	node	of	that
node.	The	push	method	obtains	a	unique	identifier	for	the	canvas.	We	will	store	that	ID,
created	by	Firebase,	with	the	Canvas	object.	Finally,	this	method	returns	the	new	Canvas
object:	@Override

public	Canvas	createCanvas()	{

Firebase	ref	=	reference.child("canvases");	Canvas	canvas	=	new
Canvas()

CanvasElementsModel	model=
LocalRepository.getElements(context);	canvas.ELEMENTS=
model.ELEMENTS;

Firebase	postRef	=	ref.push();

postRef.setValue(canvas);

canvas.setId(postRef.getKey());

return	canvas;

}

One	of	the	cool	things	about	Firebase	is	that	developers	do	not	need	to	worry	too	much
about	being	online	or	offline.	In	case	the	device	is	offline,	this	method	will	succeed
anyway.	Firebase	will	take	care	of	persisting	the	new	Canvas	object	locally.	Once	there	is
an	internet	connection	available	again,	Firebase	will	take	care	of	synchronizing	the	data
between	your	app	and	the	remote	repository.

Here	is	an	example	of	what	the	app	looks	like	when	you	start	to	create	a	new	canvas:	

The	saveCanvasModel	method	implementation	is	even	smaller.	It	will	update	the
Firebase	data	in	case	the	user	has	made	some	changes.	All	you	need	to	do	is	to
call	the	setValue	method	with	a	given	Canvas	object.	The	method	retrieves	a
reference	to	the	canvas	data	node.	The	unique	ID	we	obtained	earlier	in	the
createCanvas	method	will	be	used	to	find	the	right	node.	Finally,	we	only	need	to
call	the	setValue	method	to	send	the	data	to	Firebase:	@Override

public	void	saveCanvasModel(Canvas	model)	{

Firebase	ref	=	reference.child("canvases").child(model.getId());
ref.setValue(model);

}

In	the	loadCanvasModels	method,	we	will	retrieve	all	the	stored	canvases	and	we	will
add	a	listener	to	the	canvases	node.	Every	time	data	is	inserted	or	when	existing
data	changes,	the	onDataChange	event	will	be	fired.	A	snapshot	will	be	provided
with	each	event.	It	contains	the	(JSON)	data	for	all	child	nodes	under	the
canvas's	node.

Each	child	node	of	the	obtained	snapshot	will	be	deserialized	to	a	Canvas	object.
The	CanvasList	fragment	will	be	notified	so	that	it	can	display	or	update	the	list:

@Override

public	void	loadCanvasModels(final	OnRepositoryResult	handler)	{

Firebase	ref	=	reference.child("canvases");
ref.addValueEventListener(new	ValueEventListener()	{

@Override

public	void	onDataChange(DataSnapshot	snapshot)	{

CanvasListModel	model	=	new	CanvasListModel();	for
(DataSnapshot	canvasSnapshot:	snapshot.getChildren())	{

Canvas	canvas	=	canvasSnapshot.getValue(Canvas.class);
canvas.setId(canvasSnapshot.getKey());	model.canvases.add(canvas);
}

handler.onResult(model);

}

@Override

public	void	onCancelled(FirebaseError	firebaseError)	{

System.out.println("The	read	failed:	"	+	firebaseError.getMessage());
}

});

}

}

The	MainActivity	class	is	derived	from	the	one	that	comes	with	the	Navigation

Drawer	template.	It	has	been	slightly	modified,	so	it	can	display	the	various
fragments.	It	will	also	handle	the	clicks	on	any	of	the	menu	items.	The	onList
method	is	triggered	if	the	app	starts	for	the	first	time	or	if	the	user	chooses	the
list	option	from	the	menu.	The	onEdit	method	is	triggered	if	the	user	chooses	the
new	canvas	option	from	the	menu.

The	onEdit	method	will	also	be	called	if	the	users	click	on	any	of	the	listed
Business	Model	Canvases,	as	displayed	in	the	CanvasList	fragment.	In	the	onEdit
method,	the	canvas	parameter	will	be	passed.	The	getRepository	method	returns	a
class	that	implements	the	IRemoteRepository	interface,	which	in	our	example	is	the
FireBaseRepository	class.	If	you	want	to	switch	from	Firebase	to	Parse	or	another
MBaaS,	then	all	you	need	to	do	is	return	another	repository	here:	public	void
onList(){

CanvasListFragment	fragment	=	CanvasListFragment.newInstance();
showFragment(fragment);

}

public	void	onEdit(Canvas	canvas){

CanvasEditFragment	fragment	=
CanvasEditFragment.newInstance(canvas);	showFragment(fragment);
}

public	void	onEdit(){

Canvas	canvas	=	getRepository().createCanvas();	onEdit(canvas);

}

private	void	showFragment(Fragment	fragment){

FragmentTransaction	ft	=	getFragmentManager().beginTransaction();
ft.replace(R.id.main_layout_container,	fragment,
fragment.getClass().toString());	ft.commit();

}

...

public	IRemoteRepository	getRepository(){

return	new	FirebaseRepository(this);

}

...

The	app	uses	three	fragments.	There	is	one	to	display	a	list	of	canvases,	another
one	to	act	as	a	container	for	a	series	of	swipeable	canvas	elements,	and	there	is
one	for	the	canvas	elements	themselves.

The	CanvasListFragment	has	a	loadData	method,	which	calls	the	loadCanvasModels
method	from	the	repository:	public	class	CanvasListFragment	extends	Fragment
implements	OnCardViewClicked,	OnRepositoryResult{

private	RecyclerView	recyclerView;

private	CanvasListAdapter	adapter;

private	CanvasListModel	viewModel;

	

...

@Override

public	View	onCreateView(LayoutInflater	inflater,	ViewGroup
container,	Bundle	savedInstanceState)	{

final	View	view	=	inflater.inflate(R.layout.fragment_canvas_list,

container,	false);	recyclerView	=
(RecyclerView)view.findViewById(R.id.canvas_recycle_view);
loadData();

return	view;

}

	

private	void	loadData(){

recyclerView.setLayoutManager(new
LinearLayoutManager(getActivity()));
recyclerView.setItemAnimator(new	DefaultItemAnimator());
((MainActivity)getActivity()).getRepository().loadCanvasModels(this);
}

	

@Override

public	void	onCardClicked(View	view,	int	position)	{

((MainActivity)getActivity()).onEdit(viewModel.canvases.get(position));
}

When	the	results	are	retrieved	they	will	be	handled	in	the	onResult	method,	which
will	take	the	result	and	display	list	canvases:	@Override

public	void	onResult(CanvasListModel	result)	{

viewModel	=	result;

adapter	=	new	CanvasListAdapter(viewModel,

R.layout.adapter_canvas_list,	getActivity());
adapter.setOnCardViewClicked(this);

recyclerView.setAdapter(adapter);

}

}

The	CanvasPagerFragment	is	a	container	fragment.	It	can	hold	a	number	of	canvas
element	fragments,	each	representing	a	particular	element	of	the	canvas.	Users
can	swipe	backward	and	forward:	public	class	CanvasPagerFragment	extends
Fragment
implements	OnRepositoryResult,	View.OnClickListener	{

	

private	static	final	String	ARG_CANVAS	=	"ARG_CANVAS";
private	Canvas	canvas;

private	ViewPager	pager;

private	CanvasElementPageAdapter	pagerAdapter;

public	static	CanvasPagerFragment	newInstance(Canvas	canvas)	{

CanvasPagerFragment	fragment	=	new	CanvasPagerFragment();
Bundle	bundle	=	new	Bundle();

bundle.putParcelable(ARG_CANVAS,	canvas);
fragment.setArguments(bundle);

return	fragment;

}

	

@Override

public	void	onCreate(Bundle	savedInstanceState)	{

super.onCreate(savedInstanceState);

canvas	=	getArguments().getParcelable(ARG_CANVAS);	}

	

@Override

public	View	onCreateView(LayoutInflater	inflater,	ViewGroup
container,	Bundle	savedInstanceState)	{

final	View	view	=	inflater.inflate(R.layout.fragment_canvas_edit,
container,	false);	pager	=	(ViewPager)
view.findViewById(R.id.canvas_edit_pager);
view.findViewById(R.id.canvas_edit_save).setOnClickListener(this);
loadData();

return	view;

}

In	the	loadData	method,	we	will	create	the	pagerAdapter	based	on	the	provided	Canvas
object:	The	setOffscreenPageLimit	method	is	set	to	11	here	(each	canvas	contains	11
elements,	so	we	need	11	instances	of	the	CanvasElementFragment	class)	to	make	sure
we	can	access	all	element	fragments.	This	is	done	for	demonstration	purposes
only	and	it	should	be	avoided	in	a	real-world	app.	It	may	cause	memory	issues:
private	void	loadData(){

MainActivity	ma	=	(MainActivity)getActivity();	pagerAdapter	=	new
CanvasElementPageAdapter(

ma.getSupportFragmentManager(),getActivity(),canvas);
pager.setOffscreenPageLimit(11);

pager.setAdapter(pagerAdapter);

}

	

@Override

public	void	onClick(View	v)	{

onSaveData();

}

If	the	user	clicks	on	the	Save	button,	the	onSaveData	method	will	be	triggered.
There	we	call	the	saveCanvasModel	method	from	the	repository	and	pass	the	updated
canvas	object.	Finally,	we	will	navigate	back	to	the	list	of	canvases:	private	void
onSaveData(){

Canvas	canvas	=	pagerAdapter.getCanvas();	MainActivity	activity	=
(MainActivity)getActivity();
activity.getRepository().saveCanvasModel(canvas);	activity.onList();

}

...

}

}

The	CanvasElementFragment	represents	an	element	of	the	Business	Model	Canvas.

This,	for	example,	could	be	the	card	where	a	user	can	enter	ideas	about	the	value
proposition:	public	class	CanvasElementFragment	extends	Fragment	{

private	static	final	String	ARG_ELEMENT	=	"ARG_ELEMENT";
public	static	CanvasElementFragment	newInstance(CanvasElement
element)	{

CanvasElementFragment	fragment	=	new	CanvasElementFragment();
Bundle	bundle	=	new	Bundle();
bundle.putParcelable(ARG_ELEMENT,	element);
fragment.setArguments(bundle);

return	fragment;

}

private	CanvasElement	element;

	

public	CanvasElement	getElement(){

if	(getView()	!=	null)	{

EditText	editValue	=	(EditText)
getView().findViewById(R.id.element_value);	element.VALUE	=
editValue.getText().toString();	}

return	element;

}

@Override

public	void	onCreate(Bundle	savedInstanceState)	{

super.onCreate(savedInstanceState);

element	=	getArguments().getParcelable(ARG_ELEMENT);	}

In	the	OnCreateView	method,	we	will	bind	the	element	object	to	the	view:
@Override

public	View	onCreateView(LayoutInflater	inflater,	ViewGroup
container,	Bundle	savedInstanceState)	{

final	View	view	=	inflater.inflate(R.layout.fragment_canvas_element,
container,	false);
((TextView)view.findViewById(R.id.element_text_title)).setText(element.TITLE);
((TextView)view.findViewById(R.id.element_text_description)).setText(element.DESCRIPTION);
((TextView)
view.findViewById(R.id.element_value)).setHint(element.HINT);
if	(element.VALUE	!=	null){

EditText	editValue	=	(EditText)
view.findViewById(R.id.element_value);
editValue.setText(element.VALUE);	}

return	view;

}

}

	

	

Firebase	dashboard
If	you	have	been	playing	with	the	app	a	little,	have	added	some	canvases	and
then	gone	to	the	Firebase	dashboard,	you	will	see	all	the	canvases	that	you	have
just	created	appear	here.	All	updates	appear	here	instantly	(of	course,	only	if	the
device	you	are	testing	the	app	on	is	online).

This	also	makes	Firebase	very	suitable	for	chat	applications.	It	works	the	other
way	around	as	well.	If	you	add	a	new	canvas	node	here,	it	will	appear	instantly
in	the	app.	Just	give	it	a	try,	add	some	nodes,	play	a	bit	and	adapt	the	app	a	bit	to
test	other	Firebase	functionality	as	well.

This	is	what	the	dashboard	may	look	like.

To	clarify	this	example,	the	title,	description	and	hint	fields,	that
already	persist	locally,	are	stored	here	as	well.	It	makes	sense	to
avoid	data	redundancy	as	much	as	possible	and	to	store	only	the	ID
and	VALUE	properties	of	each	element:	

With	only	a	little	bit	of	code,	you	can	persist	your	data	in	the	cloud	with
Firebase.	You	do	not	need	to	worry	about	scalability	issues,	being	online	or
offline	and	many	other	cases.	Firebase	has	many	more	options	such	as	user
management	(sign	up,	login),	security,	limitation,	and	paging	options.

Summary
	

In	this	chapter,	we	have	seen	what	services	we	can	choose	from	if	we	do	not
want	to	create	the	backend	for	the	app	ourselves.	We	learned	what	could	be
important	for	making	the	right	strategic	and	technical	choices	and	also	saw	an
example	app,	which	is	using	Firebase	as	a	mobile	backend.	You	can	use	the	app
to	learn	from	or	you	can	enhance	it	and	use	it	as	a	starter	project	for	your	own
app	idea.

The	app	that	we	examined	is	for	Android	only.	What	if	you	want	to	have	this	app
built	for	iOS?	Should	you	create	it	again,	but	this	time	using	Swift	and	Xcode?
Are	there	other	options	to	develop	an	app	just	one	time	but	for	multiple	(mobile)
platforms?	You	can	check	out	the	next	chapter	to	learn	more	about	this.

	

	

	

Native,	Hybrid,	or	Cross-Platform
	

Most	developers	are	well	aware	of	the	fact	that	when	it	comes	to	market	share,
bigger	isn't	necessarily	better.	That	is,	Android's	larger	market	size	doesn't	make
it	the	better	choice	for	app	development.	Likewise,	iOS's	greater	developer
payouts	in	and	of	themselves	shouldn't	turn	you	into	a	convert.	So,	what	should
you	focus	on	when	choosing	your	platform?

In	this	chapter,	we'll	take	a	pragmatic	approach	to	answering	this	question.	In
short,	we	will	explore	the	following:

The	real-world	factors	that	could	have	a	large	influence	on	your	platform
choice,	such	as	your	audience's	needs,	your	technical	needs,	and	your
technical	capabilities
The	strengths	and	weaknesses	of	native	apps	and	hybrid	apps,	and	the	pros
and	cons	of	each
Cross-platform	development	tools	that	could	allow	you	to	develop	on	both
platforms	simultaneously

Let's	start	by	looking	at	the	most	fundamental	questions	first.

	

	

	

Who	is	your	audience?

Your	target	audience	may	prefer	one	platform	over	the	other	or	they	may	be
spread	evenly	across	both.	Knowing	as	much	as	possible	about	your	audience
will	help	you	determine	many	things	about	your	app,	including	whether	to	go
native	or	hybrid.	When	performing	research,	look	beyond	pre-existing	concepts
and	stereotypes.

For	instance,	most	of	us	are	probably	already	aware	of	the	superficial	differences
between	iOS	users	and	Android	users.	That	is,	iOS	users	are	more	affluent,
better	educated,	and	younger,	while	Android	users	are	the	opposite.

A	number	of	studies	also	suggest	that,	despite	Android's	market	penetration,	iOS
users	are	more	willing	to	dish	out	money	for	apps.	Apple	reported	that	$20	billion
was	paid	out	to	developers	in	2016	(refer	to	https://www.apple.com/newsroom/2017/01/app-s
tore-shatters-records-on-new-years-day.html),	and	App	Annie	reported	that	although	the
Google	Play	Store	has	twice	as	many	downloads	as	the	App	Store,	iOS	apps	turn
out	twice	as	much	profit	(refer	to	https://www.google.com/url?q=http://bgr.com/2016/07/20/ios-
vs-android-developers-profits-app-store-google-play/&sa=D&ust=1501582800060000&usg=AFQjCNFJYS
1AAoGra88ceEN2y6y87UdA7g).

Should	these	numbers	make	the	decision	for	you?	Maybe	so,	if	your	revenue
model	depends	on	earning	money	from	your	app.	If	not,	then	you	need	to	focus
on	what	matters	to	your	audience.	When	exploring	your	potential	audience,
always	look	beneath	the	surface	of	such	widespread	reports.	They	are	often	too
abstract	to	offer	any	real	insight.	Instead,	do	in-depth	research	using	competitive

https://www.apple.com/newsroom/2017/01/app-store-shatters-records-on-new-years-day.html
https://www.apple.com/newsroom/2017/01/app-store-shatters-records-on-new-years-day.html
https://www.google.com/url?q=http://bgr.com/2016/07/20/ios-vs-android-developers-profits-app-store-google-play/&sa=D&ust=1501582800060000&usg=AFQjCNFJYS1AAoGra88ceEN2y6y87UdA7g

intelligence	tools,	such	as	App	Annie	or	Flurry,	and	work	with	market
researchers	to	collect	your	own	data.

Measure	-	don't	guess	or	use	intuition
The	numbers	for	a	given	market	segment	may	not	reflect	the	industry	average,	so
you	should	drill	well	below	the	"Apple	users	are	more	affluent"	stereotype	and
find	out	specifically	about	your	industry	and	your	existing	user	base.	You	should
use	any	and	all	analytics	available	to	learn	about	your	audience's	platform
preferences.

For	instance,	collect	and	analyze	the	following:

Analytics	services,	such	as	Google	Analytics	for	Mobile	(https://www.google.com
/analytics/analytics/#?modal_active=none),	Yahoo's	Flurry	Pulse	(https://developer.yahoo.co
m/flurry-pulse/),	Localytics	(https://www.localytics.com),	and	Adobe	(https://www.adobe.c
om/marketing-cloud/web-analytics/mobile-web-apps-analytics.html)
App	store	analytics
Mobile	website	consumption
Desktop	website	consumption

After	evaluating	these	numbers,	as	well	as	any	other	available	data	you	have	on
your	audience,	you	can	determine	whether	or	not	they	have	a	bias	toward	any
one	platform.

Most	people	tend	to	fall	into	either	the	iOS	camp	or	the	Android	camp,	which
then	determines	the	devices	they	purchase,	which	app	stores	they	use,	and	so	on.

https://www.google.com/analytics/analytics/#?modal_active=none
https://developer.yahoo.com/flurry-pulse/
https://www.localytics.com
https://www.adobe.com/marketing-cloud/web-analytics/mobile-web-apps-analytics.html

What	are	your	technical
requirements?

Not	every	app	is	an	island.	In	some	cases,	apps	are	required	to	integrate	with
other	platform-specific	services	or	apps.	In	such	cases,	you	are	presented	with
firm	restrictions	that	could	limit	your	development	options.	At	a	minimum,	it
will	help	you	get	your	development	priorities	straight.

As	we'll	see	next,	cross-platform	toolkits	exist	that	allow	you	to	release	across
multiple	platforms.	Though	these	tools	open	up	certain	courses	of	action,	they
restrict	others	and	may	hinder	compatibility	with	other	native	apps.	Depending
on	your	technical	requirements	and	integration	needs,	this	particular	problem
could	trump	all	other	issues	completely.

What	are	your	technical	capabilities?
	

Sometimes,	it's	not	critical	to	choose	one	operating	system	over	the	other.	When
your	team's	strengths	lie	in	one	platform,	be	practical	and	choose	based	on	what
you	can	do.	After	all,	developing	on	an	unfamiliar	platform	has	risks,	including:

Increased	time	to	market
Higher	technical	costs
Higher	risks	of	rework	through	bugs	or	other	errors

The	impact	of	these	problems	can	delay	valid	data	collection	and	learning.

Developing	on	a	platform	that	you	already	know	has	corresponding	benefits:

Lower	technical	costs
Lower	risks	of	mistakes
Decreased	time	to	market
Decreased	learning	cycle	time.

There	are	always	exceptions	to	the	rule,	however.	For	example,	if	you	have	an
energetic	team	with	a	track	record	of	success,	and	they	want	to	learn	a	specific
platform,	it	may	be	wise	to	let	them	run	with	it.	This	is	a	judgment	call.	Only
consider	this	if	you	have	a	team	of	veterans	who	know	how	to	build	according	to
best	practices.

	

	

	

Native	versus	hybrid	-	the	strengths
and	weaknesses

Now	that	we	have	covered	the	baseline	requirements	in	terms	of	your	audience,
your	technical	requirements,	and	your	technical	capabilities,	it's	time	to	see	how
native	and	hybrid	compare.	Though	most	developers	will	be	familiar	with	the
basic	differences	between	the	two,	it's	important	to	examine	the	strengths	and
weaknesses	of	each.	After	that,	we	will	be	one	step	closer	to	determining	the
approach	that	best	meets	your	needs.	First,	here	is	a	brief	overview:

	

Native	apps
	

Native	apps	are	developed	specifically	for	one	platform.	In	the	mobile	world,
this	usually	means	iOS	or	Android.	The	big	selling	point	for	native	is	that
platform-specific	apps	make	API	calls	directly	to	the	OS,	giving	developers	and
designers	much	more	flexibility	and	control	over	the	user	experience.

Going	native	gives	you	a	full	range	of	device	features,	but	you	have	to	pay	the
price.	Native	apps	are	more	costly	to	create	and	require	in-depth	expertise...
especially	if	you	have	to	do	native	development	on	two	different	platforms.

	

	

	

Hybrid	apps
	

Hybrid	apps	are	part	native	and	part	web.	HTML,	CSS,	and	JavaScript	are	used
to	define	the	web	portion	of	the	app,	which	is	executed	via	the	device's	rendering
engine,	usually	Webkit.	Mostly,	these	parts	of	the	app	are	restricted	to	UI
elements.

The	advantage	of	hybrid	apps	over	mobile	web	apps	is	that	a	hybrid	app	is	still
able	to	make	native	API	calls.	Hybrid	apps	fall	on	a	spectrum	between	strictly
web	apps	and	native	apps.	They	can	be	nothing	more	than	web	apps	delivered	in
a	native	wrapper.	Or	they	can	also	include	native	code	in	order	to	take	advantage
of	OS-specific	functions.

	

	

	

Pros	and	cons	of	going	native
Purists	maintain	the	"all	native	all	the	time"	philosophy,	though	this	attitude	has
softened	in	recent	years.	All	businesses	have	limited	resources,	however,	so	it's
impossible	to	ignore	some	of	the	downsides	to	going	native:

Native	apps	are	more	costly	to	build	and	maintain
They	take	longer	to	create,	which	can	be	a	problem	if	you	need	to	launch
soon
Their	development	requires	more	expertise,	which,	again,	can	be	more
costly	and	time-consuming
If	you	or	your	team	doesn't	have	the	requisite	experience,	you	will	have	to
get	it

Another	potential	concern	for	going	native	is	the	possibility	that	an	idea
developed	for	one	platform	could	be	copied	to	the	other.	The	threat	of	someone
attempting	to	steal	your	ideas	is	always	a	risk,	but	bear	in	mind	that	novel	ideas
will	always	be	copied.	In	Chapter	19,	Building	an	Unfair	Advantage	we	will	look	at
ways	to	protect	your	IP	from	such	possibilities.

Despite	the	downsides	and	potential	risks,	there	are	definite	upsides	to	creating
native	apps:

Native	apps	are	platform	and	OS	specific,	so	you	will	be	able	to	directly
take	advantage	of	different	levels	of	APIs,	from	the	GUI	toolkit	to	the
filesystem
Finer	control	over	the	app	and	its	interface	to	the	device	gives	you	a	better
handle	over	app	details	that	can	impact	the	user	experience,	such	as	loading
time	or	other	subtle	UI	elements
Integration	with	certain	platform-specific	apps	or	services	is	only	possible
when	you	build	a	native	app

These	considerations	in	and	of	themselves	should	demonstrate	that	the	choice
between	native	and	hybrid	is	not	always	so	clear	cut.

Sometimes,	you	really	have	no	choice	and	there	is	nothing	to	debate	about.	If

integration	requirements	force	you	to	develop	a	platform-specific	solution,	for
instance,	the	question	will	never	arise.	When	you	can	afford	to	debate,	however,
it's	important	to	take	a	user-centric	approach	to	the	issue,	which	is	where	native
apps	really	shine.

The	biggest	benefits	of	going	native
	

Native	apps	offer	finer	control	over	the	user	experience.	When	viewing	apps
through	the	lens	of	Lean,	it's	vital	to	put	the	user	experience	front	and	center.
Since	smartphones	have	become	ubiquitous,	consumers	have	been	demanding
more	and	more	of	their	mobile	apps.	Today,	that	experience	often	drives	an	app's
success	or	failure.	Since	the	early	2010s,	study	after	study	has	shown	that
customers	will	quickly	drop	apps	or	sites	that	underperform:

In	late	2012,	Equation	Research	surveyed	over	3,000	mobile	device	users.
84%	said	that	mobile	app	performance	was	at	least	somewhat	important,
and	more	than	50%	felt	that	mobile	apps	should	load	in	2	seconds	or	less.
According	to	a	frequently	cited	pair	of	surveys	performed	by	Gomez.com
and	Akamai	in	2011,	a	1-second	delay	in	page	loading	time	can	cause	a	7%
decrease	in	sales.	They	also	found	that	40%	abandon	a	web	page	that	loads
in	3	seconds	or	more.
In	July	2016,	building	on	the	results	of	the	preceding	pair	of	surveys,	Think
with	Google	assessed	metrics	from	a	large	number	of	real-world	e-
commerce	sites	to	create	machine	learning	models	that	can	analyze	sites
and	predict	conversion	rates	and	bounce	rates.	The	results	were
unsurprising:	page	complexity	decreased	conversion	rates,	and	slow	load
times	increased	bounce	rates.

Performance	is	only	one	factor	that	contributes	to	the	overall	user	experience.	It's
possible	to	develop	apps	with	attractive	user	interfaces,	but	the	biggest	complaint
about	cross-platform	apps	is	that	they	don't	have	a	truly	native	look	and	feel.
However,	hybrid	apps	have	their	own	set	of	advantages	that	make	them	worth
exploring.

	

	

	

Pros	and	cons	of	going	hybrid
	

Hybrid	apps	fall	on	a	spectrum	between	pure	web	app	and	pure	native	app,	and
bring	advantages	from	each	domain.	As	with	native	apps,	there	is	no	right	or
wrong--it's	just	a	matter	of	determining	which	is	appropriate	for	your	situation.
Hybrid	apps	may	not	have	the	same	performance	or	graphics	potential	as	native,
but	they	offer	benefits	of	a	different	sort:

Write	once,	run	anywhere.	Cross-platform	tools	(which	we'll	cover	next),
translate	code,	such	as	JavaScript	or	C#,	into	native	language	for	multiple
platforms.	Even	a	simple	native	shell	wrapped	around	some	web	code	will
allow	you	to	list	your	app	in	both	stores	and	gain	access	to	both	audiences.
Since	you	can	develop	a	portion	of	the	app	as	a	single	codebase,	your
overhead	is	much	lower.
Shorter	development	time	not	only	results	in	lower	development	costs,	it
also	means	your	app	can	be	released	more	quickly.
Hybrid	apps,	because	they	have	a	native	component,	can	be	listed	in	app
stores,	so	you'll	get	the	same	exposure	you	would	from	developing	a	native
app.

With	all	these	upsides,	it's	easy	to	see	why	many	developers	are	taking	a	softer
approach	to	hybrid,	but	apps	created	with	cross-platform	development	tools	do
have	their	own	set	of	drawbacks:

Since	you	won't	have	as	much	control	over	performance,	hybrid	apps	can
perform	poorly,	which	can	impact	the	user	experience	and	user	satisfaction.
Certain	interface	elements	are	difficult	or	impossible	to	reproduce	with	a
cross-platform	development	tool.
Apps	have	a	particular	look	and	feel	on	each	platform,	and	unless	you	take
great	care	to	mimic	that,	users	will	sense	the	difference.
As	mentioned,	integration	with	other	native	apps	or	services	can	be
difficult,	or	impossible.
And,	finally,	as	app	complexity	increases,	it	is	likely	that	even	a	hybrid

developer	will	need	to	have	some	degree	of	native-specific	capabilities	to
effectively	troubleshoot	certain	native	issues	when	they	arise.

All	things	considered,	there	are	a	few	practical	realities	that	convince	some
developers	to	choose	hybrid.

	

	

	

The	ugly	truth	-	a	little	hybrid	doesn't
hurt	when	you	have	clear	goals
Purists	may	not	like	this	section,	but	the	bottom	line	is	that	we're	here	to	build
great	apps	on	whatever	budget	and	timeframe	we	have.	Though	nativists	may
evangelize	one	platform	or	other,	or	both,	that	strategy	doesn't	cut	it	when	you
have	deadlines	and	limited	funds.

When	it	comes	to	creating	an	MVP,	your	most	important	constraint	is	the
minimum,	both	in	terms	of	viability	and	lovability.	You	need	to	meet	a	certain
threshold	in	order	to	validate	your	hypothesis,	win	over	your	users,	and	learn
from	your	experiences.

You	can't	do	that	if	an	impractical	native	or	nothing	mindset	flushes	your	budget
down	the	drain.	This	type	of	thinking	actually	opposes	the	Lean	methodology.
Perfectionism	and	purism	can	stall	an	app	before	launch,	rack	up	costs,	and	even
bomb	it	completely,	all	in	the	time	it	would	take	to	put	an	MVP	onto	the	market
and	start	learning.

If	you	can	get	your	app	to	market	sooner	by	going	hybrid,	then	you	should.
Downstream	technical	debt	(which	comes	from	converting	your	hybrid	to	pure
native)	is	fine,	as	long	as	the	debt	is	paid	off	before	it	burdens	the	app	with
problems.

If	you	want	to	build	the	best	app	you	possibly	can	in	the	shortest	amount	of	time
possible,	then	you	need	to	consider	all	possibilities,	including	hybrid.	It	is	worth
noting	that	hybrid	apps	can	and	do	become	successful.	Twitter,	EverNote,	and
TripCase	are	all	well-known	examples,	demonstrating	that	hybrid	can	be	a
completely	viable	approach	even	in	the	long	run.

Making	the	final	decision	-	factors	to
consider
	

Earlier,	you	came	up	with	answers	to	baseline	questions	about	your	audience,
your	technical	needs,	and	your	technical	capabilities.	Then,	we	examined	the
benefits,	drawbacks,	and	capabilities	of	both	native	apps	and	hybrid	apps.	We
also	busted	the	native	or	nothing	myth,	demonstrating	that	hybrid	can	offer	some
very	real	advantages.	Now,	it's	time	to	answer	specific,	practical	questions	that
will	help	you	decide	which	choice	is	right	for	you:

Technical	needs	of	app	impact:	Are	native	features	critical	to	your	app?	If
not,	take	a	close	look	at	the	benefits	you	would	gain	from	a	hybrid
approach,	such	as	decreased	time-to-market,	savings,	and	access	to	multiple
platforms.
Speed-to-market	requirements:	Do	you	need	to	make	it	to	the	market	in
under	6	months?	If	so,	then	a	native	app	may	be	out	of	the	question.
Usability	and	functionality:	How	much	does	customer	experience	of	the
app	count?	Usability	enthusiasts	and	designers	may	disagree,	but,	again,
practicality	trumps	ideology.	Native	certainly	gives	you	an	edge	in	what	can
be	done,	but	if	you	can	achieve	80%	of	the	effort	for	20%	of	the	cost,	keep
your	mind	open.
Resource	capabilities	and	budget:	This	budget	should	include
development	as	well	as	long-term	maintenance	and	technical	debt.	Do	you
have	the	resources	to	do	the	work,	and	can	you	afford	both	iOS	and
Android	developers?
Long-term	goals:	Weigh	your	current	needs	and	resources	against	your
long-term	goals.	Will	you	need	to	go	native	in	the	future	and	rebuild	your
codebase	from	scratch?	Map	out	possible	courses	of	action	and	consider
how	these	long-term	and	short-term	overheads	will	impact	your	business
goals.

Practical	decision-making	should	win	out	every	time.	Stick	with	the	facts	of

what	you	need	to	do	without	forgetting	what	you	actually	can	do.	It's	critical	to
not	fixate	on	how	an	app	is	developed.	Instead,	focus	on	what	matters--or	what
would	matter--to	shareholders,	namely,	marketplace	advantages	such	as	market
share,	market	opportunity,	disruption	potential,	and	IP.	Concentrate	on	building
great	apps	and	following	best	practices	for	usability,	design,	performance,	and
security.

	

	

	

Leveraging	cross-platform
development	tools

There	are	a	variety	of	cross-platform	development	tools	on	the	market.	In	this
section,	we	will	quickly	scan	a	few	of	the	most	common,	and	discuss	their
strengths	and	weaknesses.

Adobe	PhoneGap
	

Adobe	PhoneGap	is	an	open	source	distribution	of	Apache	Cordova.	It	is	not	a
framework	for	app	development,	but	serves	to	package	and	release	apps	that
have	been	built	in	web	technologies	such	as	HTML	5,	CSS,	and	JavaScript.	It	is
part	of	the	Adobe	Creative	Cloud	and	offers	similar	benefits	to	other	hybrid
options:

Write	a	core	codebase	in	client-side	web	languages,	and	release	it	natively
on	some	of	the	most	popular	platforms
Developers	with	no	native	experience	can	turn	a	web	app	into	a	native	app
There	is	a	wide	selection	of	additional	tools	that	make	it	easy	to	preview,
build,	and	download	test	apps

PhoneGap's	weaknesses	are	also	in	line	with	other	cross-platform	tools:

Its	performance	is	not	on	par	with	native	apps.
The	graphics	capabilities	are	wanting,	and	it	doesn't	deliver	a	native	look	or
feel.
As	mentioned,	PhoneGap	is	not	a	framework.	Bear	in	mind	that	PhoneGap
does	not	translate	code	into	a	native	language,	it	just	wraps	up	your	app	in	a
native	package.

	

	

Xamarin
Xamarin	is	specifically	designed	for	building	C#	apps	on	Android,	iOS,
Windows,	and	Mac.	The	company	was	acquired	by	Microsoft	in	early	2016	and
leverages	their	existing	services	to	make	it	one	of	the	most	competitive	cross-
development	tools.	Since	a	large	portion	of	your	app	will	be	built	from	a
common	codebase,	you	will	definitely	save	time	and	money.	However,	some
code,	such	as	UI	and	platform-specific	features,	will	need	to	be	written	natively,
so	do	not	expect	to	quadruple	your	efficiency.

Apps	can	be	developed	in	Visual	Studio,	Xamarin	Studio	(its	own	IDE),	and
Visual	Studio	for	Mac.	According	to	Microsoft,	Xamarin	completely	supports
Android	and	iOS	SDKs--as	well	as	third	party	controls	or	tools	that	are
developed	for	native	SDKs--and	the	platform	will	continue	to	stay	current	with
new	OS	releases.

At	the	time	of	this	writing,	there	is	a	free	option	for	students,	OSS,	and
independent	developers,	with	pricier	options	available	for	professionals	and
enterprise	clients.

Appcelerator
	

Appcelerator	allows	you	to	build	an	app	in	JavaScript	and	run	it	natively	on	any
device.	Its	toolbox	includes	the	following:

A	visual	app	designer
A	framework	for	building	APIs
Mobile	analytics

As	with	the	other	tools	mentioned	here,	it	offers	direct	access	to	native	APIs,	but
apps	are	still	stuck	with	certain	limitations	in	terms	of	performance	and	graphics.
Though	Appcelerator	is	reasonably	priced,	some	developers	don't	feel	that	the
bugs	make	it	worth	the	effort.

	

	

	

How	to	choose	the	right	tool
	

If	you	decide	to	try	a	tool	similar	to	one	of	these,	the	first	step	is	research.	The
best	place	to	start	is	with	the	needs	and	priorities	you	have	outlined	in	this
chapter.	Compare	your	needs	and	capabilities	against	the	strengths	and
weaknesses	of	the	tools	available	in	the	marketplace.	Since	the	digital	ecosystem
changes	so	rapidly,	don't	be	surprised	if	there	are	differences	in	price	and	quality.

These	are	just	a	few	of	the	most	popular	cross-platform	development	tools	on	the
market	in	early	2017.	Here	are	a	few	others	to	explore:

Ionic:	This	is	an	open	source	HTML5	app	framework
Sencha	Ext	JS:	This	is	designed	to	build	data-intensive	HTML5	apps
Mobile	Angular:	This	is	a	mobile	UI	framework	that	uses	Angular	JS	and
Bootstrap
Progress	Telerik	platform:	This	is	a	development	platform	for	iOS,
Android,	and	Windows	phones
Unity:	This	is	a	cross-platform	game	engine	that	includes	mobile,	but
extends	well	beyond
Libgdx:	This	is	an	open	source	platform	for	cross-platform	game
development

For	more	information	about	any	of	these	tools,	start	with	the	documentation	on
their	websites.	GitHub	contains	code	repositories	for	many	of	the	tools	listed
here.	Extensive	tutorials,	courses,	and	walkthroughs	for	the	more	popular	tools,
such	as	PhoneGap	and	Xamarin,	can	be	found	on	online	education	sites,	such	as
Pluralsight,	Udemy,	and	Lynda.com.

	

	

	

Summary
	

In	this	chapter,	we've	looked	at	the	debate	over	hybrid	and	native	from	a
pragmatic	perspective.	We've	outlined	the	most	vital	questions	you	need	to	ask	in
order	to	determine	the	best	approach	for	you	and	your	customers.	Finally,	we've
glanced	at	a	few	of	the	most	popular	cross-platform	tools	on	the	market,	which
should	point	you	in	the	right	direction	if	you	decide	to	use	hybrid	app
development	to	jumpstart	your	testing.

In	the	upcoming	chapters,	we'll	explore	a	few	ways	to	speed	up	your
experiments,	including	mash-ups,	onboarding	tactics,	and	app	store	hacks.

	

	

	

There	Is	an	API	for	That!
	

In	this	chapter,	we	will	see	what	we	can	do	to	prove	our	hypotheses	by	building
a	mash-up.	It	takes	more	effort	than	just	a	simple	landing	page	but	it	takes	less
time	than	developing	a	full	application.	By	combining	apps	or	other	resources,
you	can	put	a	solution	together	for	the	problem	that	you	are	trying	to	solve	with
a	minimum	amount	of	effort.	This	is	an	interesting	approach	for	at	least	a	proof
of	concept.	Once	you	have	learned	the	lessons	you	wanted	to	learn	you	could
always	set	up	a	more	robust	solution.	On	the	other	hand	your	strategy	for	your
app	can	be	just	that-	combining	resources	and	launch	it	as	your	product	or
service	itself.	This	applies	in	particular	to	apps	that	offer	aggregated	information.
Alternatively,	you	can	think	of	apps	that	require	heavy	integration	with	social
networks,	such	as	Facebook,	Twitter,	or	YouTube.	Social	referring	is	always
easier	than	building	a	user	base	completely	by	yourself,	so	integrating	a	social
component	into	your	app	is	always	a	smart	thing	to	do,	but	it	is	particularly
interesting	if	you	create	a	mash-up	solution	with	it.

You	can	combine	various	apps	and	services	but	there	is	also	something	else	that
could	result	in	very	interesting	mash-up	solutions.	Data	is	available	about	almost
everything	and	much	of	this	data	has	been	made	publicly	available	through
various	API's.	You	can	use	that	data,	combine	it	with	other	data	and	visualize	the
outcome	in	a	different	way.	For	example,	you	can	display	the	results	on	a	Google
map,	instead	of	showing	it	in	a	list.	The	most	popular	mash-ups	do	exactly	that.
They	visualize	existing	data	in	a	different	way.

In	this	chapter,	we	will	cover	the	following	topics:

Investigate	how	mash-ups	can	help	us	to	prove	hypotheses
Have	a	look	at	some	popular	mash-ups
Investigate	what	APIs	and	mobile	SDKs	are	available
Prove	our	hypotheses	by	building	a	mobile	mash-up	solution
Prove	our	hypotheses	using	an	IFTT	recipe

	

	

Succeed	or	fail	fast
A	mash-up	allows	you	to	succeed	or	to	fail	fast.	If	you	fail	you	can	rephrase	your
hypotheses	at	an	early	stage.	Using	the	feedback	you	get	you	can	build	a	better
app	and	find	out	what	it	takes	to	build	an	app	that	people	actually	want.

It	is	also	true	that,	by	using	APIs	or	SDKs	of	third	parties	you	can	rely	on	much
larger	platforms	than	yours	and	since	it	is	proven	technology	it	is	less	error
prone.	For	example,	if	you	want	to	integrate	payments	other	than	In	App
purchases	you	will	of	course	use	the	existing	solution	of	a	payment	provider.

You	can	take	advantage	of	social	networks,	by	providing	a	single	sign	on	for
your	app.	You	could,	for	example,	provide	a	way	for	the	user	to	sign	up	or	to
login	with	his	Facebook	or	login	account.	It	lowers	the	registration	barrier,
resulting	in	higher	sign	up	conversions.	Not	only	does	the	user	have	to	take
fewer	actions	to	get	on	board	but	you	also	have	access	to	additional	data	such	as
a	name	and	profile	photo.	Right	after	the	sign	up	this	results	in	a	more
personalized	experience	of	the	app.	We	will	elaborate	on	this	in	Chapter	11,
Onboarding	and	Registration,	about	the	process	of	on	boarding	new	users.

What	is	in	a	mash-up	solution?
For	now,	let's	have	a	closer	look	a	mash-ups.	What	exactly	are	mash-ups	and
how	does	the	phenomenon	materialize?	In	general,	mash-ups	consume	specific
data	from	one	or	more	sources,	have	an	alternative	presentation,	and/or	provide
additional	logic

A	mash-up	is	typically	a	combination	of	consuming	reusable	data,	specific
complex	functionality,	presentation,	and	some	new	logic.	It	does	not	necessarily
need	to	have	all	of	these	elements.	A	mash-up	could	be	a	solution	that	gathers
and	combines	data	from	multiple	sources.	Through	APIs	anyone	can	consume
various	types	of	datasets.	The	added	value	of	your	app	could	just	be	the	result	of
the	fact	that	you	aggregate	data.	For	example,	think	of	an	app	that	displays	all
the	available	jobs	for	which	otherwise	you	would	have	to	visit	over	10	different
websites.	Data	mining	and	various	other	techniques	can	help	you	to	further
enrich	data.

Mash-ups	can	also	utilize	APIs	to	perform	complex	functionality	(data
processing	and	payment	handling)	or	they	can	be	used	to	outsource	various	tasks
in	the	nondigital	world.	This	could	be	tasks	such	as	3D	printing	on	demand,
delivery	of	goods	or	the	execution	of	small	tasks	performed	by	humans.
Amazon's	Mechanical	Turk	API	is	a	good	example	of	this.	Through	this	API,
you	can	dispatch	small	tasks	to	other	people.	You	can	think	of	writing	reviews,
validating	or	reviewing	user	input,	or	performing	research.	There	are	a	huge
amount	of	SaaS	solutions	available	and	most	of	them	come	with	an	application-
programming	interface	(API).	All	this	API	can	be	tied	together	to	create
something	new.	They	allow	developers	to	test	their	hypotheses	even	faster.

Publishing	an	API
On	the	other	hand,	you	can	also	offer	an	API	yourself	if	you	have	got	some
(enriched)	data	to	share.	If	that	is	data	that	others	can	utilize	to	build	something
new,	you	might	want	to	think	of	an	API	as	a	service	that	you	can	charge	some
money	for.	If	your	API	is	providing	some	real	value,	then	you	can	probably
make	a	profitable	business	out	of	it.	It	could	have	an	interesting,	recurring
revenue	model.

Since	it	may	be	hard	to	monetize	your	app	the	traditional	way,	it
might	be	an	interesting	idea	to	think	of	publishing	an	API	related	to
your	app	or	your	app	eco	system.	Many	companies,	such	as
SalesForce	or	Expedia,	already	get	most	of	their	revenues	from	API
subscriptions,	so	this	is	an	interesting	path	to	explore.

	

Lego	or	Duplo?
If	you	compare	mash-up	solutions	with	those	that	are	created	from	scratch,	it
will	be	like	comparing	Duplo	with	Lego.	If	you	use	third-party	solutions,	then
the	development	of	your	app	will	be	faster,	smarter,	and	probably	cheaper.	Small
and	reusable	microservices	can	easily	be	assembled	into	a	larger	and	more
complex	app.	Obviously,	playing	with	Lego	is	more	fun,	but	you	can	build	a
tower	much	faster	using	Duplo.

Instead	of	diving	deeply	into	all	kinds	of	technical	challenges,	you	can	focus	on
what	matters	the	most.	The	implementation	of	the	functionality	that	will	result	in
the	unique	value	proposition	(UVP)	for	your	solution.

There	are	many	different	types	of	mash-ups.	Think	of	consumer	mash-ups,
business	mash-ups,	data	mash-ups,	and	logical	mash-ups.	Do	you	need	specific
data?	Do	you	want	to	offer	flights	or	holidays?	Do	you	need	a	payment	solution?
Alternatively,	do	you	need	to	send	bulk	SMS,	dim	the	lights,	or	want	to
outsource	tasks?	Guess	what?	There	is	an	API	for	that!

APIs	versus	SDKs
APIs	are	interfaces,	often	made	available	as	a	REST	service.	A	Software
Development	Kit	(SDK)	is	meant	specially	for	implementing	the	API	on	a
particular	platform,	such	as	iOS	or	Android.	It	will	make	the	integration	process
more	smooth.	We	have	already	seen	an	example	of	this	in	Chapter	4,	An	Agile
Workflow	In	A	Nutshell,	where	we	looked	at	an	Android	app	using	Firebase.	In
that	example,	you	might	have	noticed	a	Gradle	dependency	for	Firebase.	It	is	a
reference	to	the	Android	SDK,	which	will	take	care	of	the	communication	with
the	Firebase	API.	The	API	itself	allows	you	to	perform	all	operations,	but	the
SDK	will	save	you	a	lot	of	time.

	

Dependency	management
The	nature	of	APIs	and	SDKs	is	that	they	will	be	updated	often.	For	this	reason,
a	smart	dependency	management	plan	is	important.	You	do	not	want	to	update
the	modules	or	update	the	entire	code	everywhere	in	your	app	each	time	a	new
version	of	the	SDK	has	been	released.

	

Android
	

For	Android,	you	should	use	external	Gradle	dependencies,	rather	than	adding
library	modules	to	your	project.	If	you	are	using	Android	Studio,	then	you	can
start	using	Gradle	right	away.	You	will	find	the	listing	of	dependencies	for	your
app	in	the	build.gradle	file	within	the	app	folder	of	your	project.	The	dependency
section	would	look	like	this:	dependencies	{

...

compile	'com.android.support:recyclerview-v7:23.1.1'

compile	'com.android.support:cardview-v7:23.1.1'

compile	'com.squareup.retrofit:retrofit:2.0.0-beta3'

compile	'com.squareup.picasso:picasso:2.5.2'

compile	'com.squareup.retrofit:converter-gson:2.0.0-beta2'

compile	'com.squareup.okhttp:okhttp:2.4.0'

compile	'net.hockeyapp.android:HockeySDK:3.6.2'

}

As	you	can	see	in	this	example,	RetroFit,	HockeyApp,	and	a	couple	of	other
dependencies	are	defined	here.	You	might	be	familiar	with	them	already.	Retrofit
and	the	Gson	converter,	for	example,	are	solutions	for	consuming	data	over
HTTP	and	deserializing	the	result	into	an	object.	While	dependencies	could	also
refer	to	local	libraries,	it	is	strongly	recommended	to	use	dependencies	as
illustrated	earlier.	For	more	information	on	Gradle,	check	the	website	at	http://gradl

http://gradle.org

e.org.

	

	

	

iOS
For	iOS	(and	many	other	languages	and	IDEs),	you	could	use	Gradle	as	well.
This	is	particularly	interesting	and	valuable	if	you	work	on	both	the	Android	and
iOS	platforms	and	if	you	wish	to	use	the	same	tools	for	building	your	apps	using
build	servers	such	as	TeamCity	or	Jenkins.	More	on	this	in	Chapter	18,	Continuous
Integration,	Delivery	and	Deployment,	about	Continuous	Delivery.

Another	well-known	solution,	but	available	to	iOS	development	only,	is
CocoaPods.	It	is	a	dependency	manager	for	iOS	projects	(Objective	C	or	Swift).
It	manages	third-party	libraries	by	creating	a	workspace	that,	besides	your	own
projects	will	contain	a	CocoaPods	project,	where	our	dependencies	will	reside.

The	pod	file	contains	the	list	of	dependencies	and	it	looks	like	this:

platform	:ios,	'8.0'	

use_frameworks!	

target	'example-project'	do	

				pod	'ZXingObjC',	'~>3.0'	

				pod	'JSONJoy-Swift',	'~>	1.0.0'	

				pod	'SwiftHTTP',	'~>	1.0.0'	

end	

As	you	can	see	in	this	example,	the	pod	file	is,	among	other	pods,	referring	to	the
Zxing	library.	It	is	a	perfect	solution	for	creating	and	for	scanning	bar	code
images.	Installing	and	configuring	cocoapods	is	pretty	easy.	You	just	type	gem
install	cocoapods	in	your	terminal	app	to	do	so.	The	next	thing	to	do	is	to	define
the	pod	file	that	will	contain	the	references	that	your	project	will	use.	You	need	to
do	a	pod	install	to	actually	get	the	dependency	libraries.	Running	this	command
in	your	terminal	app	will	add	all	the	dependencies	as	listed	in	the	pod	file.	We
will	have	a	closer	look	at	this	process	in	the	paragraph	where	we	build	our	MVP:

$	gem	install	cocoapods

$	pod	install	

Also	worth	mentioning	here	is	Carthage.	It	is	an	alternative
solution	to	CocoaPods	and	it	is	the	first	dependency	manager	to
work	with	Swift	explicitly.	CocoaPods	is	built	with	Ruby,	where	as
Carthage	is	built	with	Swift.	Carthage	seems	to	be	a	bit	more
flexible	but	also	more	complex	to	use.

For	more	information	on	CocoaPods,	you	can	look	at	https://cocoapods.org.	If	you
would	like	to	know	more	about	Carthage	and	the	differences	between
CocoaPods	and	Carthage,	you	can	check	out	https://github.com/Carthage/Carthage.

https://cocoapods.org
https://github.com/Carthage/Carthage

Available	APIs
Data	about	many	different	topics	and	from	various	sources	can	be	gathered
through	(open)	APIs.	You	will	find	them	on	the	websites	of	many	companies
delivering	SaaS	or	you	can	check	them	out	on	one	of	the	sites	that	offers
aggregated	lists	of	almost	all	available	APIs.

On	https://www.programmableweb.com/	or	http://mashable.com/,	you	will	find	many	APIs	that
you	can	use	for	inspiration.	You	will	also	find	many	mash-up	solutions	there.
You	can	find	many	APIs	that	you	can	use	for	your	app.	Most	of	them	are	not
explicitly	intended	for	mobile	apps	but	as	long	as	the	data	can	be	consumed	as
JSON	or	as	XML	then	that	does	not	really	have	to	be	an	issue.	On	the	website,
you	can	search	for	particular	categories,	particular	data	types,	or	just	browse
through	the	latest	additions.	As	you	can	see,	following	the	weather	is	always	an
interesting	kind	of	data	source	and	there	are	many	apps	using	this	data.	One
example	is	the	app	InstaWeather	(See	http://instaweather.me/).	In	a	later	paragraph,	we
will	see	how	we	can	use	these	APIs	for	our	MVP:

https://www.programmableweb.com/
http://mashable.com/
http://instaweather.me/

The	other	places	to	look	for	APIs	and	examples	of	mash-ups	are:

http://www.mashable.com
https://www.data.gov
http://www.opendatanetwork.com
https://data.sfgov.org
http://data.worldbank.org/developers
https://dev.socrata.com
http://developer.nytimes.com

If	you	know	of	a	data	source	for	which	no	API	is	available,	then	you	can	think	of
an	alternative	such	as	(site)	scraping.	It	is	an	approach	that	many	sites,	offering
aggregated	content	(jobs,	real	estate,	and	insurance),	use.	Site	scraping	can	be
tricky	though.	It	could	be	very	error	prone,	but	sometimes	it	is	the	only	way	to
get	things	done	quickly	or	to	obtain	specific	data.	In	particular	for	your	first
experiments	(MVP)	it	is	an	interesting	method	to	use.

http://www.mashable.com
https://www.data.gov
http://www.opendatanetwork.com
https://data.sfgov.org
http://data.worldbank.org/developers
https://dev.socrata.com
http://developer.nytimes.com

An	iOS	app	proving	our	hypotheses,
MoviUber
So	far	for	the	theory.	It	is	time	to	build	our	MVP.	This	MVP	combines	data	from
various	sources	to	demonstrate	how	you	can	create	a	valuable	app	real	quickly.
In	this	section,	we	will	build	an	app	for	iOS	that	can	be	used	to	explore	locations
of	well-known	movies.	It	will	demonstrate	the	concept	of	using	APIs	and	SDKs
to	prove	our	hypotheses.

	

Hypothesis
	

We	cannot	get	started	without	defining	our	hypothesis	first.	All	people	like
movies.	Some	people	like	them	more	than	others.	Let's	assume	that	movie	freaks
love	to	travel	to	cities	such	as	San	Francisco	to	explore	the	city	and	visit	the
locations	where	well-known	movies	have	been	filmed.	Many	locations	cannot
easily	be	reached	by	public	transport.	To	get	there,	they	will	have	to	use	Uber.

So	this	app	is	about	traveling	in	San	Francisco	and	visiting	movie	hotspots	using
Uber.	It	consumes	data,	provides	a	new	representation	of	the	corresponding	data
(maybe	on	a	map	even),	and	connects	a	real-life	service,	such	as	Uber,	to	it.
Maybe	we	can	even	enrich	the	data	a	little	by	looking	up	the	movie	title	from	the
Internet	Movie	DataBase	(IMDB).	Let's	call	this	app	MoviUber.	For	this	app,
we	will	not	elaborate	too	much	about	the	business	model.	We	just	want	to	figure
out	if	we	can	connect	the	dots	here.	Would	it	not	be	cool	if	we	can	make	this
work?	What	do	we	need	to	do	to	make	that	happen?

	

	

	

Validating	the	idea	through	customer
interviews
We	need	to	know	first	if	it	makes	sense	creating	this	mash-up.	And	maybe	you
want	to	give	your	own	twist	to	the	concept	first	and	then,	as	an	exercise,	try	to
validate	the	idea.	See	if	you	can	find	someone,	who	loves	movies	and	who	is
already	using	Uber.

Tell	him	or	her	about	the	concept	and	ask	what	he	or	she	thinks	about	it.	Ask
open	questions	only.	If	you	ask	a	friend,	"Do	you	think	this	will	be	a	fantastic
idea?",	you	will	probably	get	a	positive	answer	anyway.	While	this	is	nice	to
hear,	it	will	not	help	you	to	get	the	idea	validated.

Anyway,	if	he	or	she	is	very	enthusiastic	about	the	concept,	then	perhaps	some
new	ideas	or	features	will	come	up	or	maybe	you	get	some	great	insights	why
this	whole	app	idea	is	actually	a	very	bad	plan.	You	never	know.

Since	this	chapter	is	specifically	about	creating	a	mash-up	solution,	we	will
assume	the	idea	has	been	validated	thoroughly.	It	is	a	brilliant	plan	and	we	have
gathered	positive	feedback	through	customer	interviews.	Let's	build	an	app.

Let's	build	an	app
	

To	get	started,	let's	define	the	ingredients	for	our	MVP.	Here	it	is:

Movie	locations	(duh),	shown	as	a	list	to	browse	through	all	movies	and
locations.
An	Uber	button,	to	call	a	driver	to	get	us	there.
The	IMDB	is	an	optional	ingredient	but	it	would	be	nice	to	have.	We	can
use	this	to	display	some	additional	information	about	a	particular	movie.
A	map	will	be	a	great	feature	that	can	be	used	for	planning	if	the	user	wants
to	go	from	one	site	to	another.

	

	

Movie	locations
	

Using	the	San	Francisco	data	API,	powered	by	Socrata,	we	can	get	movie
locations	in	San	Francisco.	To	get	an	impression,	you	can	browse	through	the
dataset	you	will	find	at	this	location:	https://data.sfgov.org/Culture-and-Recreation/Film-Locati
ons-in-San-Francisco/yitu-d5am.	You	want	to	go	where	Sharon	Stone	went?	You	can
look	it	up	in	this	dataset.

But	instead	of	downloading	the	dataset	here,	it	would	be	more	convenient	to
have	access	to	the	data	through	an	API.	That	is	something	that	can	be	found
here:	https://dev.socrata.com/foundry/data.sfgov.org/wwmu-gmzc.	After	doing	some	research,	it
turns	out	that	there	is	even	an	SDK.	That	is	even	better.	Soda-Swift	is	a	native
Swift	library	that	can	access	Socrata	open	data	servers.	You	will	find	it	on
GitHub	at:	https://github.com/socrata/soda-swift.

	

	

	

https://data.sfgov.org/Culture-and-Recreation/Film-Locations-in-San-Francisco/yitu-d5am
https://dev.socrata.com/foundry/data.sfgov.org/wwmu-gmzc
https://github.com/socrata/soda-swift

Uber
Uber	offers	an	API	and	SDKs	for	various	platforms,	including	an	iOS	Swift
library,	available	on	GitHub.	Check	it	out	at	https://github.com/uber/rides-ios-sdk	.	The
API	is	described	at	https://developer.uber.com/docs/tutorials-rides-api.

https://github.com/uber/rides-ios-sdk
https://developer.uber.com/docs/tutorials-rides-api

IMDB
It	seems	there	is	no	IMDb	API	yet,	but	there	is	the	OMDb	API.	This	API	is	a
free	web	service	for	obtaining	movie	information.	You	can	find	it	at	http://www.omd
bapi.com.

Finally,	for	the	map	we	will	be	using	Apple	maps.	All	you	need	for	that	is	the
MapKit	framework.	Awesome.	What	do	we	need	to	do	next?

For	this,	we	will	download	the	SDK.	Also,	we	will	download	the	Socrata	sample
app	from	https://github.com/socrata/soda-swift.	We	will	use	the	sample	app	for	our	MVP.
We	will	modify	a	few	things	such	as	the	data	token	and	dataset.	To	obtain	a
token,	you	need	a	developer's	account	at	Socrata	first.	You	can	register	for	free	at
https://dev.socrata.com.	Next	you	need	to	create	an	app	on	their	website.	Open	the
Socrata-Swift	project	in	Xcode	and	from	the	SODASample	project	open	the
QueryViewController.	Modify	the	domain	and	token	for	the	client:

let	client	=	SODAClient(domain:	"data.sfgov.org",	token:	"<your	token>")	

In	the	refesh	method,	you	need	to	modify	the	dataset	for	the	query	and	change	the
order	field	to	title:

func	refresh	(sender:	AnyObject!)	{	

...									

								let	cngQuery	=	client.queryDataset("wwmu-gmzc")									

								cngQuery.orderAscending("title").get	{	res	in	

												switch	res	{	

												case	.Dataset	(let	data):	

																self.data	=	data	

...	

								}	

				}	

In	the	cellForRowAtIndexPath	function,	change	the	fields	of	the	item	to	title	and
locations	as	shown	in	the	following	code:

override	func	tableView(tableView:	UITableView,	cellForRowAtIndexPath	indexPath:	

NSIndexPath)	->			

				UITableViewCell	{	

	

								let	c	=	tableView.dequeueReusableCellWithIdentifier(cellId)	as	

UITableViewCell!	

									

								let	item	=	data[indexPath.row]	

http://www.omdbapi.com
https://github.com/socrata/soda-swift
https://dev.socrata.com/foundry/data.sfgov.org/wwmu-gmzc

								let	name	=	item["title"]!	as!	String									

								c.textLabel?.text	=	name	

	

								if	(item["locations"]	!=	nil){	

												let	street	=	item["locations"]!	as!	String	

												c.detailTextLabel?.text	=	street	

								}		

								return	c	

				}	

Now,	when	you	run	the	app,	it	will	display	a	nice	list	of	movies	and	locations	on
the	first	tab.	To	display	them	as	well	on	the	map	on	the	second	tab,	we	need	to
do	a	little	extra:

Displaying	locations	on	a	map
	

To	display	the	locations	on	the	map	as	pin	points,	we	need	values	for	longitude
and	latitude,	but	unfortunately	we	have	only	a	(vague)	address	description.	We
need	to	convert	the	address	to	an	actual	location.	To	do	so,	you	need	to	open	the
MapViewController	and	find	the	updateWithData	function	that	we	will	modify	by
using	the	CLGeocoder.	This	class	is	very	smart	at	converting	addresses	to	actual
locations	with	longitude	and	latitude	values.

For	each	location,	we	will	determine	what	the	longitude	and	latitude	values	are
for	a	particular	address.	Once	we	have	found	one	of	these	or	placemarks	for	a
given	location,	we	will	create	a	pin	point	for	it	and	add	to	the	map.	Finally,	we
will	navigate	the	user	to	San	Francisco	on	the	map,	so	we	can	actually	see	the
pinpoints.

The	code	will	look	like	this:	func	updateWithData(data:	[[String:	AnyObject]]!,
animated:	Bool)	{

self.data	=	data

if	(!isViewLoaded())	{

return

}

	

if	mapView.annotations.count	>	0	{

let	ex	=	mapView.annotations	mapView.removeAnnotations(ex)	}

	

var	anns	:	[MKAnnotation]	=	[]

for	item	in	data	{

var	location	=	item["locations"]	as?	String	if	(location	!=	nil){

location	=	location!	+	"	San	Fransisco,	CA"

print(location)

let	geocoder:CLGeocoder	=	CLGeocoder();
geocoder.geocodeAddressString(location!)	{	(placemarks:
[CLPlacemark]?,	error:	NSError?)	->	Void	in

print(placemarks?.count)	if	placemarks?.count	>	0	{

let	topResult:CLPlacemark	=	placemarks![0];	let	placemark:
MKPlacemark	=	MKPlacemark(placemark:	topResult);

	

let	a	=	MKPointAnnotation()	a.coordinate	=	placemark.coordinate;
a.title	=	item["title"]	as!	NSString	as	String	a.title	=	a.title!	+	"	"	+
(item["locations"]	as!

NSString	as	String)	anns.append(a);

	

if	(error	==	nil	&&	a.coordinate.latitude	!=	0	&&
a.coordinate.longitude	!=	0){

self.mapView.addAnnotation(a);	}

	

}

}

let	w	=	1.0

let	r	=	MKCoordinateRegionMakeWithDistance(

CLLocationCoordinate2D(latitude:	37.79666680533*w,	longitude:
-122.39826411049*w),	40000,	40000)	self.mapView.setRegion(r,
animated:	false)	}

}

This	is	what	the	map	will	look	like:	

	

	

	

Uber	integration
We	have	a	map	with	pin	points	now.	We	can	start	with	the	integration	of	Uber
functionality.	We	will	keep	it	simple	by	just	displaying	an	Uber	ride	request
button	in	our	app.

Create	a	new	app	at	https://developer.uber.com.	Log	in	or	sign	up	for	Uber	first,	if	you
have	not	done	so	yet:

Give	a	name	and	a	description	for	your	app	and	save	the	changes.	It	will	reveal	a
client	ID	that	you	need	for	implementing	Uber	functionality	in	your	app.	You
can	find	the	Uber	Swift	SDK	on	GitHub	at	https://github.com/uber/rides-ios-sdk,	but	you
can	also	use	CocoaPods	to	include	it	with	your	app,	which	is	the	recommended
way	of	integrating	the	Uber	functionality	with	your	app.

If	you	have	not	done	this	before,	install	CocoaPods	first:

$	gem	install	cocoapods

In	the	console	app,	go	to	the	folder	where	the	Soda	Swift	project	is.	To	create	a
new	pod	file	type	the	following:

$	pod	init		

https://developer.uber.com
https://github.com/uber/rides-ios-sdk

Open	the	pod	file	that	has	been	created	and	modified	for	you,	so	it	will	load	the
UberRides	project	for	us	into	the	workspace:

use_frameworks!

				target	'SODAKit'	do

				end

				target	'SODATests'	do

				end

				target	'SODASample'	do

							pod	'UberRides'

				end

		

Next,	install	the	dependency	using	this	command:

$	pod	install

Modify	the	info.plist	content	by	right-clicking	on	the	file	and	choosing	Open	as,
Source	code.	Add	these	key-value	pairs	to	the	dictionary	and	add	your	Uber
client	ID,	which	you	can	find	on	the	Uber	developers	site:

<key>UberClientID</key>	

				<string>your	uber	client	id</string>	

				<key>UberCallbackURI</key>	

				<string></string>	

				<key>LSApplicationQueriesSchemes</key>	

				<array>	

								<string>uber</string>	

				</array>	

Modify	the	AppDelegate	file	in	such	a	way	that	it	will	use	the	sandbox	mode	of
Uber	for	testing.	It	probably	will	be	somewhat	inconvenient	to	be	picked	up	at
your	location	each	time	you	test	the	app.	Import	UberRides	and	enable	the	sandbox
mode	in	the	didFinishLaunchWithOptions	function:

import	UIKit	

import	UberRides	

	

@UIApplicationMain	

class	AppDelegate:	UIResponder,	UIApplicationDelegate	{	

	

		var	window:	UIWindow?		

	

		func	application(application:	UIApplication,				

			didFinishLaunchingWithOptions	launchOptions:	[NSObject:		

				AnyObject]?)	->	Bool	{	

																	

					//	If	true,	all	requests	will	hit	the	sandbox					

					Configuration.setSandboxEnabled(true)									

					return	true	

			}	

In	QueryViewController,	add	new	imports	for	MapKit	and	UberRides,	just	below	the

import	of	UIKit:

import	MapKit	

import	UberRides	

import	CoreLocation	

We	need	to	modify	the	didSelectRowAtIndexPath	function	a	bit.	If	the	user	clicks	on
any	of	the	rows,	a	button	will	be	shown	that	can	be	clicked	to	initiate	a	ride.
Both	the	code	and	the	UI	require	some	beautification,	but	that	is	beyond	the
scope	of	the	MVP.	For	that	purpose,	the	selected	item's	longitude	and	latitude
value	will	be	retrieved,	this	time	to	tell	Uber	where	the	user	wants	to	go	to	(the
drop-off	location).	We	do	not	specify	a	pick	up	location.	By	default,	the	Uber
SDK	will	use	the	user's	current	location.	That	may	not	always	be	sufficiently
accurate,	but	for	an	MVP	it	is	just	fine.

The	Uber	Rides	SDK	checks	the	value	of	locationServicesEnabled()	in
CLLocationManager,	which	must	be	true	to	be	able	to	retrieve	the	user's
current	location:

override	func	tableView(tableView:	UITableView!,				

		didSelectRowAtIndexPath	indexPath:	NSIndexPath!)	{	

							

		let	item	=	data[indexPath.row]	

		var	location	=	item["locations"]		as?	String;	

		if	(location	!=	nil){	

	

						location		=	location!	+	"	San	Fransisco,	CA"	

						let	geocoder:CLGeocoder	=	CLGeocoder();	

	

						geocoder.geocodeAddressString(location!)	{	(placemarks:					

							[CLPlacemark]?,	error:	NSError?)	->	Void	in	

	

								if	placemarks?.count	>	0	{	

	

										let	topResult:CLPlacemark	=	placemarks![0];	

										let	placemark:	MKPlacemark	=	MKPlacemark(placemark:	

											topResult);	

																					

										if	(error	==	nil	&&	placemark.coordinate.latitude	!=	0	&&		

											placemark.coordinate.longitude	!=	0){	

																									

													let	behavior	=	RideRequestViewRequestingBehavior(

														presentingViewController:	self)	

	

													let	dropOffLocationlocation	=	CLLocation(

														latitude:	placemark.coordinate.latitude,		

														longitude:	placemark.coordinate.longitude)	

	

													let	parameters	=	RideParametersBuilder().		

															setDropoffLocation(dropOffLocationlocation).build()	

	

													let	button	=	RideRequestButton(rideParameters:		

															parameters,	requestingBehavior:	behavior)	

	

													self.view.addSubview(button)	

											}	

								}	

					}									

}	

In	the	end,	the	method	shown	adds	an	Uber	button	to	the	view.	This	is	including
the	knowledge	of	where	the	user	currently	is	and	where	he	wants	to	go.	This
allows	the	user	to	click	on	a	button	in	the	app	to	order	a	ride	and	it	contains	all
the	knowledge	Uber	needs	to	know.

Enriching	the	data
Finally,	as	an	optional	exercise	and	if	you	want	to	enrich	the	movie	location	data,
you	can	get	some	extra	movie	info	and	an	image	of	the	movie	from	the	OMDb
API.	Since	we	know	the	title	of	the	movie,	we	can	perform	a	query	on	the	API.
The	response,	nicely	formatted	as	JSON,	teaches	us	something	about	the	plot,
actors	and	it	even	gives	us	the	URL	to	an	IMDB	image.	We	can	show	this	in	the
app	to	inform	the	user	what	the	movie	is	all	about.

To	obtain	an	API	key	go	to	http://www.omdbapi.com	and	click	on	the	API	key	link.
You	can	get	one	for	free	if	you	register	with	your	email	address.	You	will	receive
an	email	with	your	own	API-key	and	an	activation	link.	After	activation	you	can
add	your	API	key	in	the	request.:	http://www.omdbapi.com/?t=Basic+instinct&y=&plot=short&r
=json&apikey=<api	key>.

The	response	for	this	query	looks	like	this:

"Title":"Basic	Instinct","Year":"1992","Rated":"R","Released":"20	Mar	

1992","Runtime":"127	min","Genre":"Drama,	Mystery,	Thriller","Director":"Paul	

Verhoeven","Writer":"Joe	Eszterhas","Actors":"Michael	Douglas,	Sharon	Stone,	George	

Dzundza,	Jeanne	Tripplehorn","Plot":"A	violent,	suspended	police	detective	

investigates	a	brutal	murder,	in	which	a	seductive	woman	could	be	

involved.","Language":"English","Country":"France,	USA","Awards":"Nominated	for	2	

Oscars.	Another	5	wins	&	18	nominations.","Poster":"http://ia.media-

imdb.com/images/M/MV5BMTcxMjY2NzcyMV5BMl5BanBnXkFtZTYwMjAxNTQ5._V1_SX300.jpg","Metascore":"41","imdbRating":"6.9","imdbVotes":"131,796","

		

By	bundling	data	from	multiple	datasets,	by	displaying	them	in	an	alternative
way	(in	a	list	and	on	a	map	on	a	mobile	device),	and	by	adding	Uber
functionality	making	traveling	from	one	spot	to	another	more	convenient,	we
have	created	a	really	cool	mash-up	iOS	app.	To	see	where	this	could	be	going	to,
including	the	OMDb	data	integration,	you	can	download	and	examine	the	full
app	code	from	Packt.

We	had	to	do	some	coding	to	build	this	MVP.	You	might	wonder	if	there	is	no
way	to	get	things	proved	without	coding.	And	there	is.	We	are	not	talking	about
user	interviews	or	the	analyzing	metrics	here.	We	can	also	use	If	This	Then
That	(IFTT)	to	build	an	MVP.	It	allows	us	to	automate	simple	but	often
interesting	tasks.

http://www.omdbapi.com
http://www.omdbapi.com/?t=Basic+instinct&y=&plot=short&r=json&apikey=%3Capi%20key%3E

Look!	No	code.	Prove	your
hypotheses	with	IFTT
Services	such	as	IFTT	add	a	logical	component	to	the	possibilities	of	APIs.	If
something	happens	for	a	particular	data	feed	(channel),	then	something	else
needs	to	be	done.	It	works	well	for	Internet	of	Things	(IoT)	related	concepts	in
particular,	but	you	can	connect	almost	any	service	that	you	like.	You	can	check	it
out	for	yourself	at	http://iftt.com/?reqp=1&reqr=.

Using	IFTT	requires	little	to	no	coding,	making	it	the	perfect	environment	to
automate	small	tasks	(the	so-called	recipes).	It	could	also	help	you	to	validate
your	hypotheses,	before	you	actually	build	the	thing.	Let's	try	this.	If	you	have
not	signed	up	for	IFTT	yet,	then	do	so	before	you	continue.	We	want	to	prove
our	hypotheses,	which	for	the	sake	of	simplicity	narrows	down	to	the	following:

Users	want	to	be	reminded	to	put	a	towel	in	their	bag.	That	is
particularly	important	on	#towel	day	(May	25)	but	also	when	they
go	to	the	airport,	where	UFOs	can	easily	land.	Just	wave	to	the
UFOs	using	your	towel,	if	you	want	them	to	pick	you	up.

Eh,	what	did	you	just	read?	If	you	think	this	is	a	lame	example,	or	if	it	does	not
make	sense	to	you,	I	suggest	you	read	the	Hitchhikers	Guide	to	Galaxy	first.	You
can	also	check	it	out	on	http://www.towelday.org.	Anyway,	let's	examine	what	IFTT	is
about	and	how	we	can	use	it	to	prove	this	hypothesis:

http://iftt.com/?reqp=1&reqr=
http://www.towelday.org

Recipes,	channels,	and	triggers
Creating	a	new	recipe	is	simple.	For	our	MVP,	the	user	location	will	be	the
trigger.	In	this	example,	we	will	be	using	the	IFTT	Android	app.

We	choose	the	Android	location	as	the	channel	and	we	choose	You	enter	an	area
as	the	trigger:

Next,	you	need	to	define	the	particular	location,	which	is	the	nearest	airport.	In
my	case,	it	is	Rotterdam	Airport:	

Whenever	the	user	enters	this	area,	we	want	to	be	notified.	Let's	use	Twitter	as
the	channel	to	send	a	message	about	the	event.	We	will	get	a	direct	message
from	Twitter	whenever	this	event	happens:	

And	we	are	done.	It	technically	works	for	yourself	or	for	others,	if	you	share	the
recipe.	It	is	that	easy	to	set	something	up	that	could	help	to	prove	your
hypotheses.	If	you	have	completed	the	validation	process,	you	can	always	build

a	real	app	that	can	perform	the	same	task.

There	are	many	other	recipes	that	you	can	think	of.	For	example,	if	you	have	a
smart	thermostat,	you	can	lower	the	temperature,	since	you	are	at	the	airport
anyway.	Alternatively,	you	can	have	a	look	at	this	recipe;	for	example,	"Send	an
email	when	you	land"	at	https://ifttt.com/recipes/134835-send-an-email-when-you-land.
Without	any	extra	effort,	your	relatives	will	know	that	you	are	safe.

Summary
In	this	chapter,	we	saw	how	APIs	and	mash-ups	can	help	us	to	prove	our
hypotheses.	With	a	minimal	amount	of	effort,	we	can	create	an	MVP.	Before	we
could	use	only	APIs	for	consuming	and	combining	data,	but	nowadays	we	can
also	use	them	to	outsource	tasks.	You	can	think	of	image	recognition,	3D
printing,	delivery	or	a	task	performed	by	humans.

We	saw	what	mash-up	solutions	are	and	what	types	of	mash-up	exist.	We	created
an	iOS	MVP	app	that	demonstrates	the	idea	of	combining	multiple	API's.

Finally,	we	looked	at	the	services	provided	by	IFTT,	which,	depending	on	your
needs,	is	probably	the	fastest	way	to	prove	your	hypothesis	first	and	then	build
the	actual	app	later.	There	are	plenty	of	recipes	available	at	IFTT	that	you	could
use,	or	you	can	create	your	own.	We	also	discussed	the	benefits	from	integrating
the	APIs	and	SDKs	from	social	networks,	such	as	Facebook	and	Twitter.

In	the	upcoming	chapter,	we	will	have	a	closer	look	at	the	integration	of	social
networks	and	how	this	affects	the	on	boarding	process	in	particular.	You	will
read	more	about	this	in	the	next	chapter	about	the	on	boarding	and	registration
process.

Onboarding	and	Registration
In	this	chapter,	we	will	focus	on	the	onboarding	and	registration	part	of	your	app.
It	starts	with	the	people	that	have	downloaded	the	app	from	the	Play	Store	or
App	Store.	That	is	an	important	conversion	already.	Now	they	need	to	be
converted	into	regular	users	of	the	app.	That	is	not	as	easy	as	it	sounds.	Studies
show	that	on	average	20%	of	apps	are	used	only	once.	There	are	many
competing	apps	in	Google	Play	Store	or	the	App	Store.	A	perfect	onboarding
strategy	for	your	app	is	therefore	a	must	have	and	it	could	heavily	contribute	to	a
good	conversion.	The	first	impression	your	users	get	of	your	app	should	be	a
good	one.	To	make	the	conversion	as	smooth	as	possible,	it	is	important	to	show
what	is	in	it	for	them.	You	should	ask	yourself	why	they	should	have	to	continue
to	use	the	app.	From	the	very	start,	you	have	to	help	them	to	understand	the
added	value	of	your	app.

There	are	many	reasons	why	we	want	a	user	to	sign-up.	One	of	them	is	that	a
known	user	is	more	valuable	than	an	anonymous	one,	but	registration	may	be	a
barrier.	This	is	the	case,	in	particular,	when	users	need	to	sign-up	right	away	on
one	of	the	first	screens	of	the	app	they	see.	Since	they	have	no	clue	yet	what	the
app	is	all	about,	you	could	already	lose	a	part	of	your	audience	there.	The	more
you	ask,	the	more	difficult	the	process	will	be.	This	is	something	you	can	avoid
by	using	various	techniques.	In	this	chapter,	we	will	see	how	to	lower	the	barrier
for	the	onboarding	process	and	how	a	social	sign-in	process	can	contribute	to	it.
Another	thing	we	will	look	at	is	sign-up	and	verification	through	SMS.

To	demonstrate	this	and	other	functionalities,	we	will	create	an	app	that	uses	the
SDKs	of	Fabric	and	Firebase.	We	also	will	learn	what	we	could	do	to	improve
app	awareness	and	how	a	continuous	onboarding	flow	could	help	you	to	get	the
best	of	both	worlds.	Such	a	flow	will	lower	the	barrier	and	it	also	will	result	in	a
rich	user	profile,	as	we	will	see	later	in	this	chapter.

In	short,	in	this	chapter,	we	will	cover	the	following	topics:

See	what	user	onboarding	is	all	about	and	how	we	can	improve	conversions
by	lowering	the	barrier

Learn	about	social	sign-in	using	Facebook	or	Twitter
See	what	the	alternatives	are,	such	as	phone	number	sign-up,	similar	to
what	WhatsApp	is	doing
Find	out	how	we	can	get	the	best	of	both	worlds	(a	low	barrier	and	rich
data)	using	continuous	onboarding
Investigate	an	app	that	demonstrates	onboarding,	including	late	onboarding
Learn	how	sharing	and	friend	finding	can	help	to	improve	app	awareness
and	help	in	the	onboarding	process

What	is	user	onboarding	all	about?
Onboarding	begins	where	a	potential	user,	who	has	just	downloaded	your	app,
starts	your	app	for	the	first	time.	You	will	have	to	convince	that	user	and	make
sure	that	he	instantly	will	notice	the	app's	benefits.	You	want	to	convert	your
potential	user	into	an	engaged	and	active	user,	and	this	process	starts	with	the
first	view	that	your	app	displays.	To	accomplish	this,	the	first	impression	of	your
app	should	be	interesting	from	a	visual	perspective	and	it	should	explain	why	the
user	should	use	this	app.	One	of	the	ways	of	doing	this	is	to	create	an
introduction	view	with	one	or	multiple	slides.	Remember	that	on	a	mobile	device
there	is	limited	space,	so	you	need	to	keep	it	short	and	simple.	It	should	clearly
explain	the	why	and	the	what	of	the	app.	How	things	exactly	work	is	something
for	later.

Show	your	users	the	benefits	(the	why)	of	your	app	before	talking
about	its	features	(the	what).

Show	a	maximum	of	three	or	four	benefits.	For	example,	they	could	explain	how
the	user	can	integrate	the	app	into	his	life	and	what	values	are	provided	by	the
app.	Present	one	benefit	at	a	time	using	a	page	slider	or	other	technique.	Be	clear
in	your	communication	and	try	not	to	confuse	the	user.	Use	a	consistent	style,
vocabulary,	and	approach	to	explain	concepts.	At	a	first	view,	the	onboarding
flow	may	look	pretty	obvious,	but	it	apparently	is	not.	Many	apps,	even	the	well-
known	ones,	require	you	to	sign-up	on	the	first	page	with	little	to	no	explanation
what	the	app	is	about.	That	may	work	well	for	the	Facebook	app	with	which
almost	everybody	is	familiar.	It	probably	is	not	going	to	work	for	your	app.

A	typical	flow	goes	like	this:	After	the	user	has	downloaded	an	app,	he	sees	what
it	is	about	in	a	short	introduction	and	then	he	is	required	to	sign-up.	At	that	time,
it	is	often	not	clear	why	one	should	enter	his	username,	type	in	a	password,
confirm	it,	and	enter	a	couple	of	required	fields.	In	this	phase,	a	number	of
potential	users	will	be	lost:

Why	does	it	matter?
	

A	great	introduction	story	should	point	out	what	the	core	values	of	your	app	are
and	what	is	in	it	for	the	user.	Onboarding	matters	because	it	has	everything	to	do
with	successful	conversion.	With	every	step	you	will	lose	customers,	which	is
something	that	cannot	completely	be	avoided,	but	the	number	of	losses	can	be
limited	if	you	have	a	great	onboarding	flow	for	your	app.	As	an	example,	let's
consider	a	scenario	in	which	each	day	a	100	users	download	your	app,	of	which
60	sign-up	and	the	other	40	decide	to	do	this	later	or	maybe	never.	Of	these	60
users,	only	30	are	still	using	the	app	the	next	month.	Of	these	30	users,	only	15
invite	a	friend,	share	the	content	of	the	app,	or	make	an	in-app	purchase.	That	is
still	a	very	optimistic	story.

At	this	last	point,	we	could	consider	to	see	the	user	as	a	customer,	as	he	brings	us
revenue	in	some	way	(money	or	awareness).	However,	in	the	conversion	from
potential	user	to	customer,	we	have	lost	85	people.	There	must	be	some	way	to
increase	the	conversion.	To	do	so,	we	have	to	make	some	smart	moves	and	we
need	to	gather	feedback	on	the	process.

Onboarding	is	about	the	conversion,	which	is	summarized	as	follows:

From	someone	that	becomes	aware	of	the	app	in	the	App	Store	or	Google
Play	Store	to	a	potential	user	by	downloading	the	app
From	a	potential	user	that	has	downloaded	the	app	to	an	actual	user	by
signing	up
From	a	user	that	has	signed	up	to	a	user	that	is	regularly	using	the	app
From	a	regular	user	to	an	ambassador	that	is	promoting	the	app	by	sharing
it	or	by	inviting	a	friend	to	it

	

	

Pirate	metrics	(AARRR)
We	can	make	improvements	only	if	we	have	insight	into	the	optimization
process.	If	we	want	to	learn	from	the	process,	we	need	to	measure	it.	The
conversion	is	something	that	we	are	going	to	measure	in	another	chapter.	There
we	will	take	a	closer	look	at	actionable	metrics	that	we	can	apply	to	mobile	app
development.

These	so-called	pirate	metrics	(AARRR,	apparently	that	is	what	pirates	say)
perfectly	describe	why	the	onboarding	flow	is	so	important	and	what	each	phase
represents	in	the	conversion	funnel.	In	short	it	goes	like	this:

A	for	Acquisition	or	Awareness,	so	they	find	your	app	in	the	store	and
download	it.
A	for	Activation,	when	users	sign-up.
R	for	Retention,	meaning	that	a	user	is	using	the	app	on	a	regular	basis.
How	many	of	the	users	that	have	downloaded	the	app	are	still	doing	so	1
week,	1	month,	or	1	year	later?
R	for	Revenue,	as	people	make	in-app	purchases	or	other	ways	of
monetization	that	we	will	review	in	another	chapter.
R	for	Referral,	where	users	inform	other	users	about	your	app	by	sharing
content	or	by	inviting	friends.	Can	your	app	go	viral	via	word	of	mouth	or
sharing?

Actionable	metrics	could	help	you	to	identify	the	friction	points	in	the
onboarding	process.	You	will	read	more	about	this	in	Chapter	13,	Play	Store	and
App	Store	Hacks	(Split	testing)	and	Chapter	15,	Growing	Traction	and	Improving
Retention.

Higher	conversion
In	general	mobile	apps	do	not	focus	very	much	on	the	onboarding	flow.	At	least,
that	is	the	impression	you	could	get	if	you	review	many	of	the	apps	in	the	App
Store.	You	can	make	a	difference	for	your	app.	If	your	onboarding	story	is	more
appealing	and	if	the	barrier	for	signing	up	is	lower,	your	conversion	from
acquisition	to	activation	will	be	better.	If,	in	addition,	you	show	your	user	how
the	app	works	and	he	becomes	confident	in	the	way	things	work,	then	you	will
increase	your	users	retention	rate.	He	will	keep	using	your	app	on	a	frequent
basis.

To	get	a	head	start,	we	need	to	think	of	a	way	to	lower	the	barrier	for	the	user.
There	are	multiple	known	onboarding	patterns	that	you	can	choose	from	and
there	is	no	reason	why	you	cannot	combine	them.	Some	of	these	patterns	are	as
follows:

Introduction
Tutorial	(or	tour)
Joy	ride
Social	sign-up
Continuous	onboarding

The	introduction	approach	shows	a	couple	of	slides	and	often	requires	the	user
to	sign-up,	but	some	apps	choose	to	show	the	content	of	the	app	right	away.	A
tutorial	or	tour	shows	the	real	app,	pointing	out	some	example	cases.

A	joy	ride	approach	is	a	little	bit	different	as	it	lets	the	user	use	the	app	right
away	and	highlights	features,	from	time	to	time,	that	are	new	to	the	user.	It	is	a
great	way	of	showing	what	the	app	is	all	about.	But	be	careful.	If	your	app	is
complex,	this	option	may	prove	to	be	a	little	bit	overwhelming	for	the	user.

A	social	sign-up	allows	the	user	to	perform	a	quick	sign-up	using	his	Twitter	or
Facebook	account,	for	example.	This	may	be	required	in	order	for	the	user	to	be
able	to	continue	using	the	app,	but	it	will	lower	the	barrier	if	you	first	show	what
the	app	is	about	and	only	ask	to	sign-up	when	needed	to	proceed.

Finally	there	is	a	continuous	onboarding	concept,	which	can	be	very	powerful
because	it	comes	with	benefits	such	as	lowering	the	barrier	and	obtaining	rich
user	profiles,	by	encouraging	the	user	at	a	later	stage	to	complete	his	profile.

How	to	lower	the	barrier?
Probably	the	best	onboarding	flow	does	not	require	a	sign-up	or	login	at	all.	Is	it
really	needed	to	do	so	before	your	app	can	be	used?	On	the	other	hand,	it	is	also
true	that	a	known	user	is	more	valuable	than	an	anonymous	one.	Known	users
can	be	converted	into	customers,	which	will	result	in	a	profitable	app.	An
unknown	user	is	nothing	but	a	visitor.	We	have	not	much	data	available	about
such	visitor	and	conversion	probably	will	be	tough:	

To	lower	the	barrier,	you	better	make	the	sign-up	process	as	smooth	as	possible.
I	have	seen	apps	that	require	the	user	to	fill	in	multiple	fields	on	multiple	pages
at	the	registration	process.	That	is	not	a	fun	thing	to	do	on	a	mobile	device	and
we	can	be	sure	the	conversion	loss	will	be	huge.	A	typical	old	school	onboarding
and	registration	flow	goes	like	this:	

We	can	do	better	than	that.	So	create	a	great	and	exciting	introduction	story	and
make	sure	the	user	can	immediately	see	the	app	core	values.	A	very	clear	call	to
action	(think	of	a	highlighted	button	with	an	explanation	text)	and	a	simplified
sign-up	form	can	help	you	with	this.	Describe	the	benefits	that	the	user	will	have
once	signed	up,	or	use	gamification	elements	such	as	digital	incentives	to
persuade	the	user.

A	social	sign-in	option	is	a	great	solution	to	increase	conversion	and	still	get	to
know	the	user.	It	requires	fewer	steps,	so	the	user	is	more	likely	to	sign-up	if	the
only	thing	he	needs	to	do	is	to	click	on	a	Twitter	or	Facebook	sign-up	button.

To	see	some	onboarding	case	studies,	you	should	check	http://www.user
onboard.com.	It	has	many	onboarding	flows	of	various	well-known
apps,	including	comments	and	suggestions	for	improvement.	You
can	find	onboarding	flows	for	WhatsApp,	Yo,	Twitter,	Foursquare,
Snapchat,	and	many	other	apps	here.

http://www.useronboard.com

You	probably	also	want	to	visit	http://uxarchive.com	to	see	more
examples.

http://uxarchive.com

Single	sign	on	using	a	social	network
like	Twitter	or	Facebook
A	social	sign-up	has	multiple	benefits,	not	just	for	the	user	but	also	for
developers.	Avoid	a	lengthy	registration	process	with	many	fields.	The	likeliness
that	the	user	will	sign-up	increases	and,	with	the	appropriate	permissions,	you
instantly	access	a	range	of	information	on	that	user,	for	example,	an	avatar	and	a
name	of	the	user,	which	is	great	for	personalization	options.

Offering	a	social	login	could	be	responsible	for	50%	more	sign-ups	compared	to
a	form-based	sign-up.	Other	information	could	be	available	as	well,	such	as	a
contact	list	that	you	can	use	to	invite	friends	to	the	app	later.	Depending	on	the
nature	of	your	app,	you	can	allow	your	user	to	sign	in	with	Twitter,	Facebook,
Pinterest,	LinkedIn,	or	any	other	trusted	social	network.	It	may	also	depend	on
the	nature	of	your	user	if	your	app	is	offering	access	to	a	platform	(multi-sided
market).	For	example,	for	an	e-learning	solution,	there	is	a	LinkedIn	sign-up
feature	for	teachers	and	professionals,	but	a	Facebook	sign-up	flow	for	students:

The	benefits	of	using	a	social	login	are	as	follows:

Faster	registration,	thus	higher	conversion	rates
Instantly	validated	email	addresses
Increased	chances	that	the	obtained	data	is	real
Personalization,	resulting	in	more	loyal	followers
High	engagement
Less	support	(such	as	a	reset	password	service)	needed
Increased	number	of	repeated	users
Increased	chance	for	referrals	because	of	invites	and	sharing

There	is	no	one	solution	that	fits	all.	You	need	to	decide	which	social	networks

you	will	support,	and	perhaps	you	choose	to	support	multiple	ones.	This	is	of
particular	interest	if	you	have	international	ambitions	for	your	app.	Facebook	or
LinkedIn	sign-up	features	make	perfect	sense	in	the	US	and	in	large	parts	of
Europe,	but	in	other	parts	of	the	world	(China	or	Russia	for	example)	these
networks	may	be	less	popular	(or	not	accessible	at	all)	and	you	may	want	to	offer
an	alternative	onboarding	option	for	these	particular	regions.	This	could	be
another	social	network	or	you	can	provide	a	fall-back	mechanism.	You	can	still
offer	an	onboarding	flow	in	your	app,	based	on	forms.	You	can	use	that	for	the
cases	in	which	the	user	cannot	or	does	not	want	to	use	a	social	sign-up.	It	is	up	to
you	if	you	decide	to	support	it.	You	gain	a	little	extra	audience	with	it,	but	at	a
cost	(development	and	conversion).	For	this	reason,	there	are	apps	that	choose
only	to	support	one	or	multiple	social	sign-up	options.

Show	us	what	you	have	got
An	alternative	approach	is	instantly	showing	the	content	of	the	app	(if	the	nature
of	the	app	allows	you	to	do	so)	and	only	asking	for	a	social	sign-up	when
needed.

This	way	no	or	little	introduction	is	needed.	Just	as	is	the	case	with	many	e-
commerce	solutions	(think	of	web	shops),	signing	up	is	requested	only	when	it
matters.	In	the	case	of	a	web	shop,	this	is	required	for	check	out.	For	a	mobile
app,	it	may	be	applicable,	for	example,	when	the	user	no	longer	just	consumes
but	also	wants	to	contribute	to	a	stream.	You	can	think	of	a	news	app	that	allows
users	to	comment	about	the	messages	that	appear:

This	lowers	the	barrier	even	more;	however,	the	downside	can	be	that	a	large
number	of	users	will	never	sign-up	and	for	that	reason	will	be	less	valuable	to
you.	For	example,	anonymous	users	are	not	likely	to	share	a	lot	on	social	media
from	your	app	and	inviting	their	friends	is	impossible	since	we	do	not	know	who
they	are.

Phone	number	sign-up	-	a	great
alternative
WhatsApp	and	a	couple	of	other	apps	are	using	the	phone	number	of	the	device
to	identify	a	user	for	the	registration.	This	is	done	through	an	SMS	verification
code.	The	user	enters	his	phone	number	and	receives	an	SMS	with	a	verification
code,	which	he	needs	to	type	into	the	app.	This	will	ensure	that	the	phone
number	is	correct.	There	are	even	some	implementations	that	intercept	the
receiving	of	the	SMS	verification	code	and	then	fill	in	the	code	automatically.
This	will	take	away	another	step	from	the	onboarding	flow:

You	have	to	make	it	clear	to	the	user	that	his	phone	number	is	used	for
verification	purposes	only	and	that	it	will	not	be	publicly	available	in	the	app.
Using	a	phone	number	will	also	lead	to	more	valuable	contributions	of	the	user.
The	reason	for	this	is	simple.	He	is	aware	that	his	phone	number	is	attached	to
all	the	actions	he	performs	in	the	app.	There	are	services	that	will	take	away
most	of	the	hassle	that	comes	with	the	implementation.	In	our	sample	app,	which
we	will	discuss	later	in	this	chapter,	Fabric	and	Firebase	will	be	used	because	it
is	the	easiest	solution	to	implement	and	because	it	is	free	to	use.

Continuous	onboarding	-	complete
the	user	profile	later
Obtaining	the	most	minimal	information	from	your	user	to	get	him	on	board	is	a
smart	way	to	keep	the	barrier	low.	Later	you	can	encourage	your	user	to	add
more	details	to	his	profile	or	by	the	user	make	particular	choices	from	which
your	app	can	learn.	The	concept	of	continuous	onboarding	is	exactly	about	that.
The	profile	of	the	user	will	be	enriched	by	the	actions	that	the	user	will	take.
This	will	allow	the	app	to	offer	a	better	and	customized	app	experience	that	will
become	more	dedicated	over	time.

LinkedIn	is	the	perfect	example,	as	everybody	will	recognize	the	reminders	that
LinkedIn	displays.	It	asks	you	to	complete	your	profile,	to	endorse	connections
(enriching	the	profiles	of	others),	or	to	connect	to	people.	You	will	often	be
reminded	about	that	but	it	never	will	be	mandatory	to	do	these	things.

The	incentive	here	is	not	even	that	strong,	but	it	works	well.	Who	does	not	want
have	an	All-Star	profile?	You	can	use	this	idea	for	your	mobile	app,	as	we	will
soon	see	in	the	sample	app:

Tell	a	story	-	an	example	onboarding
app
To	demonstrate	the	various	ideas	related	to	onboarding,	we	will	create	an
Android	app	that	is	using	Fabric	for	Twitter	authentication	and	Firebase	SDK	for
phone	authentication.	You	can	use	Firebase	as	well	for	Twitter	authentication,
but	the	one	that	Fabric	is	offering	is	more	convenient	to	use.

We	will	name	this	app,	Tell	a	Story.	Using	this	app,	users	can	write	a	story
together.	Anyone	can	read	the	stories	that	people	create,	but,	if	the	user	wants	to
contribute	to	the	story,	he	needs	to	sign-up	using	Twitter	or	his	phone	number.
Let's	start	simple	with	a	couple	of	wire	frames	that	will	explain	the	exact	flow	of
the	app:

The	user	lands	on	the	introduction	view	when	he	opens	the	app	for	the	first	time.
This	view	contains	a	clear	explanation	of	why	he	should	want	to	use	the	app	and
what	it	is	about.	There	are	two	very	clear	call	to	actions	shown.	One	of	them	is
the	Sign	up	with	phone	number	button,	the	other	one	is	the	Sign	up	with	Twitter

button.

After	the	sign-up,	a	list	of	existing	team	stories	is	shown.	The	user	can	browse
through	the	list,	and,	if	he	clicks	on	any	of	the	stories,	the	full	story	will	be
revealed	in	a	detailed	view.	The	user	can	also	decide	to	start	a	story	by	himself.
Here	is	another	clear	call	to	action,	visualized	as	the	Start	a	story	button.

The	detail	view	shows	all	lines	for	the	story,	including	the	names	of	the	authors.
The	user	can	now	read	the	full	story	or	he	can	contribute	to	it	by	clicking	on	the
Contribute	to	story	button.	Doing	so	will	lead	him	to	the	Contribute	to...	view,
where	he	can	enter	a	new	line	of	code.	If	the	user	chooses	to	start	a	new	story	by
clicking	on	the	Start	a	story	button	he	will	see	the	same	view.	In	this	case,	the
user	will	also	be	asked	for	a	story	title.	Clicking	on	the	Add	new	line	to	story
button	will	add	the	new	line	to	the	story	or	will	create	a	new	story:

Onboarding	sign-up	when	needed
We	will	also	need	to	add	a	late	onboarding	option	to	the	app.	For	this	purpose,
we	will	add	a	Skip	for	now	button	to	the	Introduction	view.	In	Chapter	13,	Play
Store	and	App	Store	Hacks,	about	split	testing,	we	will	see	how	we	can	learn
what	approach	will	work	best.	We	need	to	know	which	implementation	will	lead
to	the	highest	conversion.	Based	on	this	feedback,	we	can	remove	the	Skip	for
now	button,	the	sign-up	buttons	on	the	introduction	view,	or	make	the	decision
to	keep	all	the	three	options	in	the	introduction	view.

Note	that,	although	this	button	is	highlighted	next	to	demonstrate	the	late
onboarding	flow,	this	button	should	not	be	the	primary	call	to	action	and
therefore	should	not	be	marked	as	such.	We	want	to	lower	the	barrier,	but	we	still
want	to	encourage	the	user	to	sign-up	early:

If	the	user	chooses	to	click	on	the	Skip	for	now	button	as	he	apparently	is	not
quite	convinced	about	the	benefits	of	the	app	yet,	he	will	see	the	story	list	right
away.	Only	if	he	wants	to	start	a	new	story,	or	if	he	wants	to	contribute	to	an
existing	one,	he	will	be	asked	to	sign-up	via	either	Twitter	or	phone/SMS.	For
our	app,	we	want	to	support	both	types	of	flow.	Let's	start	with	the

implementation	of	what	we	just	saw.

Implementation
You	can	find	the	sample	project	for	this	chapter	here:	https://github.com/mikerworks/pack
t-lean-onboarding.

The	code	sample	has	been	updated,	so	it	will	use	the	latest	and
greatest	(at	the	time	of	writing).	Digits,	the	Fabric	phone
authentication	service,	has	been	replaced	by	the	Firebase	phone
authentication	service.	The	code	sample	is	now	using	this	service
and,	while	I	was	busy	anyway,	I	have	converted	the	Android	Java
example	to	Kotlin.

You	can	have	a	look	at	the	app	first,	or	if	you	want	to	configure	it	for	your	own
use	you	need	to	configure	Fabric	and	Firebase	first.

Visit	https://fabric.io	and	create	an	account.	Once	you	have	done	that	and	have
confirmed	it,	you	can	proceed.	Enter	a	team	name	(for	example	packt-demo)	and
choose	a	platform	(Android).	After	that,	a	new	page	in	the	wizard	will	show	a
number	of	options.	Pick	the	Twitter	option	first.	The	first	piece	of	information
tells	you	how	to	configure	your	Android	project.	Use	the	wizard	(or	do	it
manually)	to	create	the	first	app	in	the	Fabric	environment	and	name	it	onboarding.
You	need	to	do	this	to	obtain	keys	and	IDs	that	allow	you	to	use	the	Fabric	SDK
in	your	own	app.

Next,	we	need	to	do	a	few	things	for	the	phone	number	authentication.	The	Digit
service	of	the	Fabric	is	doing	exactly	that	but	it	has	been	replaced	by	FireBase
phone	authentication.	So	you	need	to	set	up	a	few	things	at	Firebase	as	well.	Go
to	https://console.firebase.google.com	and	create	a	new	project,	or	if	you	have	not	signed
up	for	Firebase	yet,	you	need	to	do	so	first.

Follow	the	setup	instructions	at	Firebase.	In	the	authentication	section,	you	can
select	which	sign-up	methods	you	wish	to	use	for	your	application.	If	you	click
on	the	phone	sign-up	option	and	enable	it,	you	can	continue	with	the	sample	app.

Let's	have	a	walk	through	the	app.	On	the	fly,	you	can	modify	the	API	key	and
the	secret	to	match	your	own	setup.	Once	opened	in	Android	Studio,	you	should

https://github.com/mikerworks/packt-lean-onboarding
https://fabric.io
https://console.firebase.google.com

expand	the	app	folder.	Locate	the	build.gradle	file	in	this	folder	and	open	it.

You	will	see	that	the	file	contains	a	couple	of	dependencies	on	Fabric	and
Firebase.	We	will	use	that	later	so	we	can	login	with	Twitter	or	Firebase	phone
authentication.	In	addition,	we	can	share	stories	on	Twitter	using	the	TweetComposer
class.	Note	that	you	may	need	to	update	the	version	numbers	to	the	latest
versions.	They	appear	as	suffixes	of	the	definitions	of	the	various	package
names:

...	

apply	plugin:	'io.fabric'	

	

repositories	{	

			maven	{	url	'https://maven.fabric.io/public'	}	

			maven	{	

							url	'https://maven.google.com'	

			}	

			mavenCentral()	

}	

	

dependencies	{	

		...	

			compile('com.twitter.sdk.android:twitter:1.13.3@aar')	{	

							transitive	=	true;	

			}	

	

			compile('com.twitter.sdk.android:tweet-composer:1.0.3@aar')	{	

							transitive	=	true;	

			}	

	

			...	

			implementation	'com.google.firebase:firebase-auth:11.4.2'	

			implementation	'com.google.firebase:firebase-database:10.2.4'	

}	

	

apply	plugin:	'com.google.gms.google-services'	

Now,	open	the	AndroidManifest.xml	file	in	the	app/src/main/	folder.	The	metadata
section	contains	the	value	for	ApiKey.	Modify	it	so	it	will	have	the	value	that
corresponds	with	your	own	configuration	at	Fabric.io:

<meta-data	

				android:name="io.fabric.ApiKey"	

				android:value="fill	in	your	api	key"	/>	

The	layout	associated	with	the	onboarding	activity	displays	a	short	introduction
that	explains	to	the	user	why	they	should	want	to	use	the	app	and	how	easy	it	is
to	get	started.	Both	the	phone	number	and	the	Twitter	sign	up	button	are	clear
calls	to	actions	here:

There	is	one	additional	button,	which	has	been	intentionally	made	smaller	and
less	colorful.	It	is	here	to	allow	the	user	to	skip	the	sign-up	process	for	the	time
being,	in	case	he	wants	to	only	see	what	the	app	is	about.

Open	the	strings.xml	value	and	update	twitter_key	and	twitter_secret.	Replace	them
with	your	own	values.	You	will	find	them	on	the	Fabric	website:

<resources>	

			<string	name="twitter_key">fill	with	your	own	Twitter	key</string>	

			<string	name="twitter_secret">fill	your	own	Twitter	secret</string>	

Open	the	OnboardingActivity	class.	In	the	onCreate	method,	the	initFabric	method	is
called.	This	is	where	Fabric	is	initialized	for	Twitter	authentication	and	sharing:

private	fun	initFabric(){	

			val	authConfig	=	TwitterAuthConfig(getString(R.string.twitter_key),	

getString(R.string.twitter_secret))	

			Fabric.with(this,	Twitter(authConfig))	

			Fabric.with(this,	TwitterCore(authConfig),	TweetComposer())	

}	

The	click	listener	for	the	Skip	button	makes	the	app	jump	to	the	list	immediately.
If	clicked	on,	the	Twitter	login	button	will	display	a	Twitter	dialog	asking	for
permission.	If	this	permission	is	given,	the	success	method	of	the	callback	will
be	triggered.	We	will	then	store	the	TwitterSession	object	and	show	the	list	of
stories	to	the	user	by	calling	the	onShowList	method:

For	the	sake	of	simplicity,	AuthenticationHelper	is	not	persisting	the
sessions	other	than	during	the	lifetime	of	the	application.	In	a
production	app,	it	would	be	more	convenient	to	persist	them	as

long	as	they	are	valid.

You	can	find	the	implementation	of	what	we	just	saw	in	the	setupTwitterLoginButton
and	the	signinWithTwitterAuthCredential	methods	as	follows:

private	fun	setupTwitterLoginButton(){	

		twitter_login_button.setCallback(object	:	Callback<TwitterSession>()	{	

							override	fun	success(result:	Result<TwitterSession>)	{	

											mTwitterSession	=	result.data	

											Log.i(javaClass.simpleName,	"Twitter	login	@"	+	result.data.getUserName()	+	

")")	

											val	credential	=	TwitterAuthProvider.getCredential(

																			result.data.getAuthToken().token,	

																			result.data.getAuthToken().secret)	

											signinWithTwitterAuthCredential(credential)	

							}	

	

							override	fun	failure(exception:	TwitterException)	{	

											Log.d(javaClass.simpleName,	"Login	with	Twitter	failure",	exception)	

							}	

			})	

}	

The	signInWithPhoneAuthCredential	method	registers	the	user	with	his	Twitter	name
as	a	Firebase	user.	We	will	use	this	phone	number	later	to	identify	the
contributions	of	the	user.

private	fun	signinWithTwitterAuthCredential	(credential:	AuthCredential){	

			mAuth.signInWithCredential(credential)	

							.addOnCompleteListener(this,	OnCompleteListener<AuthResult>	{	

											if	(it.isSuccessful)	{	

															AuthenticationHelper.user	=	it.result.user	

															Log.i(javaClass.simpleName,	

																	"User	logged	in	or	registered	with	twitter	name	

${AuthenticationHelper.user?.displayName}")	

															continueFlow()	

											}	else	{	

															if	(it.exception	is	FirebaseAuthInvalidCredentialsException)	{	

																			onboarding_code_feedback_text.text	=	"Invalid	code."	

															}	

											}	

							})	

}	

To	sign-up	with	a	phone	number,	we	need	to	tell	Firebase	to	send	a	code	by	SMS
to	the	user.	We	will	do	that	in	the	sendPhone	method:

private	fun	sendPhone(){	

			val	number	=	onboarding_phone.text.toString()	

				PhoneAuthProvider.getInstance().verifyPhoneNumber(

											number,	60,	TimeUnit.SECONDS,		this,	getCallback());	

}	

The	callback	implemention	is	in	the	getCallback	method.	The	onCodeSent	is	the	most

interesting	event.	If	the	code	has	been	sent,	we	will	store	the	returned
verification	ID.	We	will	need	it	later	to	authenticate	the	user	with	the	code:

private	fun	getCallback():	PhoneAuthProvider.OnVerificationStateChangedCallbacks	{	

			val	callbacks	=	object	:	PhoneAuthProvider.OnVerificationStateChangedCallbacks()	{	

					...	

							override	fun	onCodeSent(verificationId:	String?,	token:	

PhoneAuthProvider.ForceResendingToken?)	{	

											mVerificationId	=	verificationId;	

											mResendToken	=	token;	

											...	

							}	

			}	

			return	callbacks	

}	

After	sending	the	code	to	the	user,	he	has	to	enter	the	code	to	ensure	the
provided	phone	number	is	indeed	his	phone	number.	This	is	done	in	the	sendCode
method:

private	fun	sendCode(){	

			val	verification	=	mVerificationId	

			if	(verification	!=	null)	{	

							val	code	=	onboarding_code.text.toString()	

							val	credential	=	PhoneAuthProvider.getCredential(verification,	code)	

							signInWithPhoneAuthCredential(credential)	

			}	

}	

The	signInWithPhoneAuthCredential	method	registers	the	user	with	his	phone	number
as	a	Firebase	user.	We	will	use	this	phone	number	later	to	identify	the
contributions	of	the	user:

private	fun	signInWithPhoneAuthCredential(credential:	PhoneAuthCredential)	{	

			mAuth.signInWithCredential(credential)	

							.addOnCompleteListener(this,	OnCompleteListener<AuthResult>	{	

											if	(it.isSuccessful)	{	

															AuthenticationHelper.user	=	it.result.user	

															Log.i(javaClass.simpleName,	

																		"User	logged	in	or	registered	with	phone	no	

${AuthenticationHelper.user?.phoneNumber}")	

															continueFlow()	

Here	is	an	example	of	both	the	users.	The	first	one	is	registered	using	Twitter,
while	the	other	one	has	used	his	phone	number	to	sign-up:

Now,	open	MainActivity.	In	the	onCreate	method,	you	will	see	that	one	of	the	first
things	that	we	do	is	call	the	onList	method.	The	onList	method	creates	a	new
StoriesFragment,	and	by	calling	the	showFragment	method	a	list	of	stories	will	be
shown	by	default:

fun	onList()	{	

			val	fragment	=	StoriesFragment.newInstance()	

			showFragment(fragment)	

}	

	

fun	onCreateStory()	{	

			val	newStory	=	Story()	

			newStory.lastUpdate	=	"today"	

			val	fragment	=	StoryContributeFragment.newInstance(newStory)	

			showFragment(fragment)	

}	

	

fun	onContribute(story:	Story)	{	

			val	fragment	=	StoryContributeFragment.newInstance(story)	

			showFragment(fragment)	

}	

	

fun	onReadStory(story:	Story)	{	

			val	fragment	=	StoryDetailFragment.newInstance(story)	

			showFragment(fragment)	

}	

	

fun	onLateOnboarding(story:	Story)	{	

			val	intent	=	Intent(this,	OnboardingActivity::class.java)	

			intent.putExtra(OnboardingActivity.ARG_LATE,	true)	

			intent.putExtra(OnboardingActivity.ARG_STORY,	story)	

			startActivityForResult(intent,	REQUEST_LATE_ONBOARDING)	

}	

	

private	fun	showFragment(fragment:	Fragment)	{	

			val	ft	=	fragmentManager.beginTransaction()	

			ft.replace(R.id.main_fragment_container,	fragment,	fragment.javaClass.toString())	

			ft.commit()	

}	

The	MainActivity	is	also	responsible	for	showing	other	fragments,	such	as	the
StoryDetailFragment,	which	shows	you	the	full	story	and	the	StoryContributeFragment.	It
also	contains	a	call	to	the	OnboardingActivity	for	late	onboarding	purposes.	This
will	allow	the	user	to	sign-up	if	they	have	skipped	the	onboarding	previously,	but

want	to	contribute	to	the	app	later.	By	adding	content	to	a	story	or	by	creating	a
new	story,	they	will	be	asked	to	sign-up	once	again:

val	repository:	Repository	get()	=	Repository(this)	

The	getRepository	method	just	returns	a	new	instance	of	the	Repository	class	that	we
are	going	to	investigate	next.

You	will	find	the	Repository	class	with	the	data	package.	As	you	can	see,	the
getDummyContent	method	creates	a	list	of	dummy	stories.

The	repository	class	has	already	been	prepared	to	be	used	with
Firebase,	but,	since	we	do	want	to	demonstrate	the	onboarding
concept,	the	data	is	only	persisting	during	the	lifetime	of	the	app.	If
you	have	read	Chapter	9,	Native,	Hybrid,	or	Cross	Platform,	it	will	be
pretty	easy	to	set	up	Firebase	and	modify	this	class	in	order	to	be
able	to	store	stories	in	the	cloud	as	well.

The	class	looks	like	this:

class	Repository(private	val	context:	Context)	{	

	

			fun	getStories(handler:	OnRepositoryResult)	{	

							val	content	=	getDummyContent()	

							handler.onResult(content)	

			}	

	

			fun	updateContributions(story:	Story)	{	

							if	(story.id	==	null)	{	

											addStory(story)	

							}	

	

							dummyContentList.forEach	{	

											if	(it.id.equals(story.id,	ignoreCase	=	true)){	

															it.contributions		=	story.contributions	

											}	

							}	

			}	

	

			fun	addStory(story:	Story)	{	

							if	(story.id	==	null)	{	

											story.id	=	UUID.randomUUID().toString()	

							}	

							dummyContentList.add(story)	

			}	

	

			companion	object	{	

							private	var	dummyContentList	=	mutableListOf<Story>()	

							private	fun	getDummyContent():	List<Story>	{	

	

											if	(dummyContentList.isEmpty())	{	

															val	dummy	=	mutableListOf<Story>()	

															val	s1	=	Story("A	first	story",	"MikeR",	"Today")	

															s1.id	=	"1"	

															s1.contributions.add(Contribution("Once	upon	a	time",	"MikeR"))	

															s1.contributions.add(Contribution("a	giant	rabbit	did	exist",	"Pete"))	

															s1.contributions.add(Contribution("in	a	galaxy	far	far	away",	

"Floris"))	

	

															val	s2	=	Story("A	second	story",	"MikeR",	"Yesterday")	

													...	

															dummy.add(s1)	

		...	

															dummyContentList	=	dummy	

											}	

											return	dummyContentList	

							}	

			}	

}	

The	getStories	method	returns	all	stories	and	the	data	asynchronously.	The
updateContributions	method	adds	a	new	contribution	to	an	existing	story,	or	creates
a	new	story	with	a	first	contribution	if	the	story	does	not	yet	exist	by	calling	the
addStory	method.	The	addStory	method	eventually	creates	a	unique	ID	for	the	story
and	adds	the	story	to	the	list.

In	the	models	package,	you	will	find	the	Story	and	Contribution	class.	A	Story	has	a
title	and	multiple	contributions,	and	each	contribution	has	an	author	and	some
content.	The	Parcelable	implementation	makes	it	more	convenient	to	pass	data
from	one	fragment	(or	activity)	to	another,	as	we	will	see	later:

class	Story	:	Parcelable	{	

			var	id:	String?	=	null	

			var	title:	String?	=	null	

			var	initiator:	String?	=	null	

			var	lastUpdate:	String?	=	null	

			var	contributions	=	mutableListOf<Contribution>()	

...		

			fun	getFullStory(includeAuthors:	Boolean):	String	{	...		}				

	

val	summary:	String	

							get()	{	

											val	builder	=	StringBuilder()	

											if	(contributions	!=	null)	{	

															var	start	=	contributions.size	-	3	

															if	(start	<=	0)	{	start	=	0	}	

															for	(build	in	start..contributions.size	-	1)	{	

																			builder.append(contributions[build].paragraph.toString()	+	"\n")	

															}	

															return	builder.toString()	

											}	else	{	

															return	"This	story	has	not	started	yet!"	

											}	

							}	

			...	

The	getSummary	and	the	getFullStory	methods	make	a	Story	object	just	a	little	bit

smarter	and	it	returns	the	last	three	lines	or	the	full	story,	as	text,	respectively.

The	Contribution	class	implements	the	Parcelable	interface	as	well	for	the	same
reasons	as	for	the	Story	class.	Each	Contribution	instance	has	an	author	and	a
paragraph	member.

The	first	thing	a	user	will	see,	right	after	the	onboarding	view	on	see	what	the
app	is	all	about.	For	a	more	complex	app	it	could	be	helpful	to	highlight	specific
features	the	first	time	the	app	is	used.	By	showing	them	during	the	onboarding
flow	we	can	encourage	the	user	to	sign	up	for	the	app.	For	this	app,	things	are
pretty	obvious:

Everybody	likes	stories,	so	the	first	action	probably	will	be	that	the	user	clicks
on	a	story	of	which	the	summary	looks	appealing.	(Again	this	is	a	hypothesis
that	needs	to	be	proven.)	If	the	user	clicks	on	the	floating	action	button	(the	one
with	the	plus	sign	on	it),	he	will	create	a	new	story:

class	StoriesFragment	:	Fragment(),	OnCardViewClicked,	OnRepositoryResult	{	

			private	var	recyclerView:	RecyclerView?	=	null	

			private	var	adapter:	StoryAdapter?	=	null	

			private	var	viewModel	=	mutableListOf<Story>()	

...	

If	you	take	a	look	inside	StoriesFragment,	you	will	see	that	a	RecyclerView	widget	and
a	StoryAdapter	will	be	used	to	display	the	data	shown	here.	In	the	onCreateView
method,	the	loadData	method	will	be	called,	which	in	turn	calls	the	getStories

method	of	the	Repository	class,	passing	the	fragment	itself	as	the	handler	of	the
results:

override	fun	onResult(result:	List<Story>)	{	

			viewModel	=	result.toMutableList()	

			adapter	=	StoryAdapter(viewModel)	

			adapter?.setOnCardViewClicked(this)	

			recyclerView?.adapter	=	adapter	

}	

When	the	results	come	in,	an	instance	of	the	StoryAdapter	class	will	be	created	and
attached	to	the	RecyclerView	instance.	The	StoryAdapter	binds	the	data	for	each	story
to	a	row	in	the	list:

override	fun	onCardClicked(view:	View,	position:	Int)	{	

			(activity	as	MainActivity).onReadStory(viewModel[position])	

}	

If	the	user	clicks	on	any	of	the	rows	the	OnCardViewClick	event	will	be	triggered,
which	will	call	the	onReadStory	method	from	MainActivity,	passing	the	selected	story
as	the	parameter.	This	will	bring	us	to	the	StoryDetailFragment	implementation.

This	fragment	displays	the	full	story	to	the	user,	including	the	name	of	the
contributors.	Here,	the	user	can	contribute	to	the	story	by	clicking	on	the
CONTRIBUTE	(as	shown	in	the	example	image):

class	StoryDetailFragment	:	Fragment()	{	

			private	var	mStory:	Story?	=	null	

			override	fun	onCreate(savedInstanceState:	Bundle?)	{	

							super.onCreate(savedInstanceState)	

							mStory	=	getArguments().getParcelable(ARG_STORY)	

			}	

In	the	onCreate	method,	the	selected	story	will	receive	through	the	bundle.	It	is
here	where	the	Parcelable	implementation	comes	in	handy.	In	the	onCreateView
method,	the	content	of	the	story	will	be	set	as	text	for	textView	using	the
getFullStory	method	of	the	story	object:

In	the	onClick	method,	you	will	find	the	handling	for	the	various	button	clicks,
such	as	the	CONTRIBUTE	button.	This	will	call	the	onContribute	method,	which
in	turn	calls	the	onContribute	method	of	the	MainActivity,	including	the	currently
selected	story.	It	will	result	in	displaying	the	layout	associated	with	the
StoryContributeFragment	class.

In	the	onShare	method	of	the	StoryDetailFragment,	you	will	find	the	lines	that	are
needed	to	compose	and	share	a	tweet:

private	fun	onShare()	{	

			val	builder	=	TweetComposer.Builder(getActivity())	

											.text(String.format(getString(R.string.sharing_text),	mStory?.title))	

			builder.show()	

}	

The	StoryContributeFragment	allows	the	users	to	contribute	to	a	story	or	to	start	a
new	story.	At	that	moment,	the	user	changes	from	a	passive	to	an	active	user.
Also,	the	user	will	be	converted	to	a	known	user	as	he	is	required	to	sign-up,
which	he	may	not	have	done	yet.	The	fragment	obtains	the	selected	story	as	a
bundle	parameter.	It	may	be	an	empty	one,	in	case	the	user	hit	the	plus	button,	as
he	wants	to	create	a	new	story.	If	it	is	an	existing	story,	a	summary	of	the	story
(the	last	three	contributions)	will	be	shown.

If	the	user	clicks	on	the	Contribute	button,	the	onContribute	method	will	be	called.
Here	a	new	Contribution	object	will	be	made	and,	optionally,	a	new	story	object

will	be	made.	The	contribution	will	be	added	to	the	story	and	we	will	ask	the
AuthenticationHelper	class	whether	the	current	user	is	already	authenticated	or	not.
If	the	user	is	authenticated,	either	by	a	Twitter	sign-up	or	by	a	Firebase	phone
sign-up,	we	can	proceed	by	filling	in	the	contributor's	name	(Twitter	name	or
phone	number).	Also,	we	call	the	updateContributions	method	of	the	Repository	class,
which	will	take	care	of	storing	stories:

If	the	user	is	not	yet	authenticated,	we	will	call	the	onLateOnboarding	method	of	the
MainActivity	instead.	Here	we	will	also	pass	the	story	(and	with	that	the
contributions)	as	a	parameter:

fun	onLateOnboarding(story:	Story)	{	

			val	intent	=	Intent(this,	OnboardingActivity::class.java)	

			intent.putExtra(OnboardingActivity.ARG_LATE,	true)	

			intent.putExtra(OnboardingActivity.ARG_STORY,	story)	

			startActivityForResult(intent,	REQUEST_LATE_ONBOARDING)	

}	

The	OnboardingActivity	will	also	handle	the	onboarding	on	the	fly.	Better	late	than
never	is	the	idea	here.	If	you	want	to	contribute	to	a	story,	or	want	to	create	a
story	yourself,	you	have	to	sign-up	first.	Now,	the	activity	will	display	a	message
that	indicates	this,	and	again	it	gives	the	user	the	choice	to	sign-up	using	his
Twitter	account	or	using	his	phone	number:

private	fun	continueFlow(){	

			if	(mIsLateOnboarding){	

							val	returnIntent	=	Intent()	

							returnIntent.putExtra(OnboardingActivity.ARG_STORY,	mStory)	

							setResult(Activity.RESULT_OK,	returnIntent)	

							this.finish()	

...	

If	the	late	onboarding	succeeds,	the	result	will	be	returned	to	MainActivity,
which	will	take	care	of	adding	the	contribution	to	the	story:

override	fun	onActivityResult(requestCode:	Int,	resultCode:	Int,	data:	Intent)	{	

			if	(requestCode	==	REQUEST_LATE_ONBOARDING)	{	

							if	(resultCode	==	Activity.RESULT_OK)	{	

											val	story	=	data.getParcelableExtra<Story>(OnboardingActivity.ARG_STORY)	

											val	lastContribution	=	story.contributions.last()	

											lastContribution.contributor	=	AuthenticationHelper.userName	

											repository.updateContributions(story)	

											onList()	

							}	

			}	

}	

After	that	the	list	of	stories	is	shown	again	by	calling	the	onList	method	of	the
MainActivity	class.	This	time	the	list	will	include	the	contribution,	or	the	story	of
the	user	that	is	no	longer	an	unknown	one.	Signed	up	at	last!

So	far,	for	the	app,	we	have	seen	some	cool	implementations	for	signing	up	and
late	onboarding.	If	you	like	the	concept,	then	feel	free	to	do	some	further
experimentation	with	the	app.	Think,	for	example,	of	two	other	great	features	for
the	app	that	we	could	add:	An	invite	a	friend	option	(to	write	the	story	with	you)
and	a	share	option	(to	share	the	cool	story	on	Twitter	or	another	social	media
network).	This	will	increase	the	awareness	of	your	app.	That	will	help	you	to
grow	the	user	base	of	your	app.	We	will	see	more	about	this	in	Chapter	14,	A/B
Testing	Your	App,	which	is	about	traction	and	retention:

Growth	hacking	is,	among	other	things,	a	continuous	process	that	results	in
existing	users	inviting	friends	to	join	them	and	use	the	app	as	well.	The	reason
that	people	start	downloading	your	app	is	because	they	have	become	aware	of	it.
You	will	see	higher	conversion	numbers	when	implementing	a	friend	referral
flow.

Growth	hacking:

Growth	hacking	(basically	a	modern	word	for	marketing)	is	a	topic

that	deserves	some	books	on	its	own.	You	should	consider	building
a	growth	engine	before	starting	to	build	your	app.	Build	an
audience	for	the	problem	that	you	are	going	to	solve	with	your	app.
It	is	a	great	way	to	test	your	app	idea	and	to	create	awareness.	The
simplest	way	to	do	so	is	to	create	a	regular	blog	about	the	topic.

The	perfect	conversion	goes	like	this:	Once	the	user	has	signed	up	and	started	a
story	or	contributed	to	one	(activation),	and	then	decides	to	continue	doing	so
(retention),	he	will	become	an	ambassador	of	your	app	and	he	will	start	sharing
stories	or	he	will	invite	friends	so	they	can	write	stories	together	(referrals).

Referrals	are	important,	as	word	of	mouth	is	one	of	the	most	effective	types	of
marketing.	More	than	70%	of	potential	app	users	download	apps	based	on
recommendations	of	friends,	colleagues,	or	family.	With	that	in	mind,	the	goal
should	be	to	enable	the	app	users	to	drive	more	awareness,	which	is	exactly	what
the	Team	Stories	app	tries	to	do.	Referrals	are	often	the	only	way	to	promote	an
app.	This	is	because	of	the	fact	that	the	cost	of	user	acquisition	(advertisements)
for	most	mobile	apps	otherwise	would	be	higher	than	the	revenues.

Due	to	their	nature,	particular	apps,	such	as	social,	or	messaging	ones,	and	of
course	game	apps	as	well,	are	very	suitable	for	inviting	friends.	Often	they
would	not	make	much	sense	if	collaboration	in	some	way	would	not	be	possible.
For	a	lot	of	other	apps	the	reason	for	sharing	or	inviting	might	be	less	obvious.
However,	if	you	provide	incentives,	as,	for	example,	Dropbox	is	doing	by
providing	additional	space	for	each	new	reference,	you	can	still	benefit	from
referrals.

Summary
	

In	this	chapter,	we	have	seen	that	there	are	various	ways	for	onboarding	a	user
and	to	encourage	a	user	to	sign-up.	We	have	seen	that	is	important	to	keep	the
barrier	as	low	as	possible,	and	that	you	need	to	make	it	very	clear	from	the
beginning	what	the	benefits	of	your	app	are	and	why	the	user	wants	to	use	it.
Alternatively,	just	to	quote	Simon	Sinek,	"Start	with	why".

We	have	seen	that	the	implementation	for	social	sign-up	using	the	Firebase	or
the	Fabric	SDK	is	fairly	easy	to	implement	and	we	have	learned	how	we	can
offer	multiple	options	to	our	users,	including	the	option	to	initially	skip
registration.	Although	it	lowers	the	barrier,	the	latter	is	not	necessarily	a	good
thing.	An	anonymous	user	has	less	value	than	a	known	one.	Also,	a	known	user
is	easier	to	convert	into	a	paying	one	(customer).	You	need	to	find	out	what
works	best	for	your	app.	Maybe	you	just	want	to	grow	a	large	user	base	to	begin
with.	In	the	next	chapter,	we	will	see	how	important	it	is	to	have	a	scalable
solution.

	

	

	

Do	Things	That	Do	Not	Scale
Your	very	first	goal,	once	you	have	an	MVP,	is	to	push	that	experiment	through
its	first	iteration	cycle	in	order	to	test	your	hypothesis.	At	this	stage,	the	primary
purpose	is	validated	learning.	Only	after	you	have	proved	your	hypothesis
should	you	consider	scaling	and	optimization.

In	the	Lean	model,	improvement	happens	over	time	as	a	result	of	user	feedback.
When	you	make	that	feedback	loop	the	centerpiece	of	your	initial	experiments,	a
nontraditional	set	of	business	practices	begins	to	emerge.

Look	at	the	following	points:

How	to	acquire	early	adopters	and	establish	a	small-scale	laboratory	and
why	doing	so	can	drastically	improve	your	learning
How	to	maximize	learning	with	some	of	the	most	popular	wireframing	and
prototyping	tools
How	to	balance	the	need	for	quality	against	speed-to-market	requirements,
budget	requirements,	or	other	limitations
The	best	way	to	develop	a	technical	debt	management	plan,	which	is	vital
for	any	app	that	does	begin	to	scale

Before	covering	these	topics,	however,	let's	look	at	why	you	should	do	things
that	do	not	scale.

What	we	mean	by	"things	that	do	not
scale"
Your	goal	at	this	stage	is	to	conduct	an	experiment,	maximize	learning,	and
minimize	the	time	it	takes	to	complete	one	turn	of	the	build-measure-learn	cycle.
With	the	feedback	loop	as	your	bull's	eye,	you	will	find	yourself	engaging	in
activities	that	may	seem	superficially	illogical,	but	which	greatly	accelerate	your
learning.

For	instance,	it	probably	seems	extraordinarily	inefficient	for	CEOs	or	founders
to	interact	directly	with	customers.	If	a	startup	wants	to	shorten	the	feedback
loop	and	understand	its	customers'	needs	on	a	deeper	level,	though,	the	purpose
of	this	tactic	becomes	clearer.

Similarly,	it	may	seem	wasteful	to	hand	users	an	interactive	wireframe	or	to
present	a	prototype	made	up	of	coding	shortcuts	and	workarounds.	When	viewed
as	a	stage	in	an	MVP	test,	however,	such	an	approach	makes	more	sense.

The	tools	and	techniques	we	explore	next	may	not	scale,	but	they	will	greatly
accelerate	early	learning	and	prevent	technical	errors	from	overwhelming	you	as
your	MVP	evolves.

Three	reasons	to	do	things	that	do	not
scale
Doing	things	that	do	not	scale	within	a	narrow	market	has	significant	benefits
when	it	comes	to	experimentation,	learning,	and	product	development.	Here	are
three	of	the	biggest	reasons	to	adopt	a	user-centric	focus	instead	of	a	traditional
production-oriented	approach.

Improved	testing	and	data	collection
	

As	we	will	see,	the	following	are	the	direct	interactions	with	early	adopters,
which	will	provide	information	that	is	much	more	valuable	than	downstream
data	collection.	Additionally,	this	feedback	will	help	you	implement	appropriate
changes,	features,	and	redesigns.	The	sooner	you	receive	necessary	feedback,	the
more	money	you	will	save.

Tapping	into	your	customers'	minds	early	on	will	help	prevent	costly	errors.	For
instance,	take	a	look	at	the	following	points:

Up-front	data	helps	you	develop	the	features	that	customers	actually	need
instead	of	the	ones	you	think	they	need
User	testing,	especially	with	some	of	the	tools	and	methods	mentioned	as
follows,	will	help	you	create	a	design	that	your	customers	like
Early	interactions	with	your	MVP	will	also	make	you	aware	of	usability
issues	sooner	rather	than	later

Your	first	users	will	help	you	find	the	features,	designs,	and	usability	workflows
that	matter	most,	so	you	can	focus	on	what's	important	before	you	start	scaling.

	

	

	

Failure	that	can	be	controlled
	

Not	every	experiment	will	succeed.	If	your	idea	is	going	to	fail,	then	it	is	better
to	fail	early	and	fail	fast,	for	several	reasons:

A	low-budget	experiment	that	fails	inside	a	contained	environment	will
have	a	smaller	fallout	than	a	full-featured	product	that	fails	in	a	large
market
The	sooner	you	discover	a	mistake	or	disprove	a	hypothesis,	the	sooner	you
can	cut	your	losses
Failing	early	with	a	small	audience	will	limit	or	eliminate	any	impact	on
you	or	your	company's	reputation

When	the	Lean	methodology	is	correctly	applied,	failure	becomes	a	mechanism
for	learning	and	adaptation,	giving	you	the	opportunity	to	pivot	or	start	over.

	

	

	

Development	of	products	that	are
more	lovable
As	mentioned	previously,	an	MVP	lets	you	create	a	product	that	is	targeted,
relevant,	and	useful.	Functionality,	however,	is	only	half	of	the	equation.	People
should	use	your	products	not	just	because	they	need	to,	but	because	they	want	to.

Lovable	products	have	significant	advantages	over	products	that	are	merely
usable:

People	who	enjoy	using	a	product	will	use	it	more	often	for	longer	periods
of	time
A	tribe	of	passionate	users	are	more	likely	to	talk	about	your	products
Customers	who	love	your	product	will	stay	more	loyal

A	lean,	learn-first	approach	should	seek	to	understand	not	only	what	your
customers	want,	but	how	they	use	apps.	When	you	prioritize	the	user	experience
from	the	very	start,	you	can	create	products	that	work	with	your	users,	their
chosen	platforms,	and	their	lives.

Since	early	adopters	are	those	who	feel	the	strongest	need	for	your	product,	they
will	also	be	your	most	valuable	asset	when	it	comes	to	improving	the	user
experience.

How	to	acquire	early	adopters	and
establish	a	small-scale	laboratory
When	you	conduct	your	first	tests	in	a	real-world	laboratory,	your	strategies
should	aim	to	accelerate	the	build-measure-learn	cycle.	As	mentioned,	since	the
focus	is	on	learning,	not	production,	much	of	this	early	work	will	be	impractical
on	a	larger	scale.

The	exact	nature	of	the	unscalable	work	will	vary	from	situation	to	situation.
However,	the	following	three	strategies	will	help	you	accelerate	the	feedback
loop:

Working	within	a	narrow	marketplace	facilitates	expansion	and	provides	a
miniature	laboratory	within	which	to	work
Manual	recruitment	of—and	interaction	with—your	users	will	give	you
immediate,	detailed	information	about	your	audience	and	your	ideas
At	this	early	stage,	perfecting	the	user	experience	with	early	adopters	is
often	more	effective,	more	efficient,	and	more	economical	than	doing	it
later	in	the	process

Unscalable	work	could	mean	performing	tasks	manually,	doing	work	outside
your	comfort	zone,	or	working	outside	your	area	of	expertise.	User	acquisition
and	customer	service,	for	instance,	may	be	arduous	or	tedious	to	a	coder.

However,	given	the	overwhelming	benefits	that	these	strategies	offer	the	lean
developer,	their	importance	cannot	be	emphasized	strongly	enough.	The
following	three	strategies	will	help	you	establish	a	testing	ground	for	your	MVP,
shorten	the	build-measure-learn	cycle,	and	push	your	experiment	closer	toward
scalability.

Focusing	on	a	narrow	marketplace
	

In	the	beginning,	it	is	very	useful	to	confine	an	experiment	to	a	narrow
marketplace,	such	as	a	specific	geographic	area	or	a	small	group.	There	are
several	reasons	for	this,	which	are	as	follows:

Expansion	and	saturation	within	a	targeted	marketplace	is	much	easier	than
within	a	large	one.
A	narrow	market	is	a	good	way	to	achieve	a	critical	mass	of	users	that	will
take	you	from	a	tribe	of	early	adopters	to	a	majority	of	users.	Once	you
achieve	saturation	in	one	demographic,	geographic	area,	or	marketplace,
you	can	use	that	position	as	leverage	to	scale	even	further.
Data	collection	and	testing	is	easier,	cheaper,	and	more	useful.

Think	of	a	small	market	as	a	laboratory	for	the	experiment.	When	proving	your
first	hypotheses,	it	is	often	better	to	learn	about	your	customers	in	a	confined
environment.	Doing	so	on	a	large	scale	is	usually	unaffordable	and	wasteful.

	

	

	

Manually	recruiting	early	adopters
Paul	Graham,	cofounder	of	the	renowned	startup	incubator	Y	Combinator,
probably	coined	the	phrase,	"Do	things	that	don't	scale."

In	a	much-cited	essay	bearing	the	same	name,	he	said,	"The	most	common
unscalable	thing	founders	have	to	do	at	the	start	is	to	recruit	users	manually."
While	cumbersome	and	slow,	Graham	says	that	nearly	all	startups	must	do	this.
To	make	his	point,	he	relates	the	story	of	how	the	payment	processing	company
stripe	got	started.	The	founders	approached	new	users	in	person	and	used	their
laptops	to	create	new	stripe	accounts	right	there	on	the	spot.

Though	certainly	not	scalable,	manual	recruitment	may	be	necessary	to	acquire
users.	After	you	have	gathered	a	group	of	early	adopters,	you	can	begin	learning
from	them	and	evolving	your	product.

Another	significant	reason	to	manually	acquire	users	is	genchi	genbutsu,	a	core
principle	of	the	Toyota	Production	System.	Jeffrey	Liker	wrote	about	this
concept	in	his	book,	The	Toyota	Way,	which	represents	two	decades	of	study	of
Toyota.	He	said,	"You	cannot	be	sure	you	really	understand	any	part	of	any
business	problem	unless	you	go	and	see	for	yourself	firsthand."

This	is	why	the	first	users	and	the	firsthand	data	you	collect	at	this	stage	are
worth	their	weight	in	gold.	Firsthand	interaction	will	tell	you	how	your	users
perceive	your	idea,	whether	they	see	it	as	useful,	and	whether	you	will	want	to
pay	money	for	it.

Perfecting	the	user	experience
Steve	Jobs	once	said,	"You've	gotta	start	with	the	customer	experience	and	work
backwards	to	the	technology."

A	similar	sentiment	was	echoed	by	Airbnb's	founders,	who	said,	"We	start	with
the	perfect	experience	and	then	work	backward."	It	is	worth	noting	that	the	user
experience	does	not	limit	itself	to	a	user's	interactions	with	a	product—it	also
includes	the	user's	experience	with	the	company	and	the	company's	services.

Since	users	sit	at	the	center	of	the	lean	mindset,	it	is	vital	to	also	place	them	at
the	center	of	product	designs.	Perfecting	the	user	experience	during	the
experimental	phase	accomplishes	several	goals:

When	you	make	their	experience	as	good	as	possible	from	the	very	outset,
they	will	be	more	willing	to	offer	feedback	and	forgive	any	inevitable
usability	issues
The	emotions	a	product	evokes	are	just	as	important	as	how	functional	it	is
—improving	the	emotional	experience	has	as	much	an	impact	as	improving
features	or	usability
Happier	users	are	more	likely	to	become	loyal	followers	and	recommend
your	products	to	others

To	get	the	most	out	of	your	users'	participation—from	collecting	data	to	building
a	tribe	of	advocates—you	must	do	more	than	just	monitor	and	respond	to
feedback.	It	is	necessary	to	offer	over-the-top	concierge	treatment.	In	other
words,	treat	your	first	users	like	royalty.

In	the	early	years	of	my	old	company,	I	used	to	call	customers	directly	to	see	if
they	were	happy	with	the	product	and	their	services.	I	had	very	little	time	in	my
schedule,	but	getting	direct	feedback	from	the	ones	who	used	my	software	told
me	where	I	was	making	mistakes	and	helped	keep	the	customers	satisfied	and
engaged.

Airbnb's	founders	also	became	famous	for	their	hands-on	involvement.	When
their	product's	growth	in	New	York	suffered	due	to	low-quality	listings,	the

founders	flew	to	New	York	to	personally	help	users	fix	the	problem.

Chebbia	said,	"We	went	door	to	door	with	cameras	taking	pictures	of	all	these
apartments	to	put	them	online.	I	lived	in	their	living	rooms.	And	home	by	home,
block	by	block,	communities	started	growing.	And	people	would	visit	New	York
and	bring	the	idea	back	with	them	to	their	city."

This	example	illustrates	not	only	how	far	your	products	must	go	in	order	to
please	your	users,	but	also	how	much	you	can	learn	from	engaging	with	them
directly.

How	to	transition	from	an	unscalable
MVP	to	scalable	code
On	the	one	hand,	you	have	the	setting	for	your	experiment,	which	includes	your
users,	the	marketplace,	and	real-world	conditions.	On	the	other	hand,	you	have
the	MVP	itself.	Although	its	earliest	iterations	are	just	an	experiment,	it	is	also
an	actual	product.	From	the	beginning,	it	is	necessary	to	plan	for	potential
growth.

In	this	section,	we	will	discuss	tools	and	techniques	that	will	help	you	test
economically	and	scale	sustainably,	without	being	overwhelmed	by	the	ever-
present	danger	of	technical	debt:

Focusing	on	learning	with	wireframes
and	prototypes
As	discussed	earlier	in	Chapter	5,	A	Pragmatic	Approach,	wireframes	and
prototyping	do	not	directly	scale	as	actual	software	code,	but	they	help	avoid	a
lot	of	downstream	problems	by	giving	you	something	you	can	present	to	your
users.	It	is	also	possible	to	gather	preliminary	feedback	at	these	early	stages	by
collecting	data	on	how	your	users	react	to	your	product.	As	you	move	forward
with	design	options,	you	can	incorporate	this	data	to	determine	when	and	how	to
add	or	modify	design	functionality.

Wireframe	sketches	and	prototypical	designs	are	ideal	low-cost	options	for	early
design	stages.	These	can	come,	for	instance,	in	the	form	of	hand-drawn	sketches,
photoshop	files,	or	HTML	mockups.	There	are	also	paid	tools	that	bridge	the	gap
between	these	design	files	and	actual	interactive	prototypes.

Additionally,	there	are	a	number	of	design	tools	on	the	market	that	specifically
assist	teams	with	collaborative	design,	development,	and	user	testing.	These	are
three	of	the	most	popular	and	useful,	although	there	are	others.	My	team	has
used	all	three	for	quite	some	time	and	found	them	to	be	very	useful.	Employing
these	tools	has	saved	us	a	lot	of	time,	money,	and	customer	goodwill	by	ensuring
that	we	learned	through	prototyping	rather	than	customer	complaints.

Zeplin
Zeplin	is	aimed	at	bridging	the	gap	between	designers	and	developers.

Designers	can	import	files	from	photoshop	or	sketch,	and	Zeplin	can	be	used	to
generate	design	specs,	such	as	font	details	and	color	palettes.	It	can	export	sized
image	files,	CSS	files,	and	color	files	for	major	platforms.	It	integrates	with
Slack	and	is	very	simple	to	use.

I	have	found	that	Zeplin	is	extremely	useful	in	avoiding	past	pitfalls,	where	you
hand	off	designs	for	developers	to	cut	up	and	apply	with	the	application.	Often
these	hand-offs	can	be	messy,	in	that	the	tested	designs	end	up	compromised	in
the	process—either	consciously	or	unconsciously—by	the	developers.	Zeplin
hands	off	all	the	files	ready	for	use,	which	saves	a	great	deal	of	time	and
heartache.

Zeplin	is	free	to	try	out	and	pricing	can	be	fairly	reasonable,	depending	on	your
budget,	so	it	is	worth	a	look	if	you	want	to	ensure	that	your	tested	designs	are
followed	to	the	pixel.

InVision
	

InVision	is	a	must-try	toolbox	for	designing	and	testing	in	low	or	high	fidelity.	It
allows	product	teams	to	collaborate,	co-create,	and	communicate	in	real-time
with	each	other	and	with	users.	This	software	suite	is	ideal	for	early-stage	UI
design	and	experimentation,	since	you	can	create	interactive	designs,	present
them	to	test	users	or	stakeholders,	and	collect	qualitative	data	immediately.

InVision	also	continues	to	add	more	tools	and	features	on	a	regular	basis,	further
shortening	the	gap	between	the	drawing	board	and	the	prototype.	Craft,	for
instance,	allows	you	to	turn	sketch	or	photoshop	designs	into	interactive
prototypes	that	can	be	tested	directly	on	your	phone.	The	Inspect	tool	operates
like	Zeplin	by	pulling	coding	specs—such	as	font	information	and	color	palette
information—from	design	files.

	

	

	

UserTesting.com
	

UserTesting.com	offers	a	range	of	testing	solutions	for	apps	and	websites.	Video
recording,	audio	recording,	and	analytics	are	available	for	websites,	published
apps,	and	unpublished	apps.	Data	is	turned	around	quickly,	so	you	can	respond
quickly.

One	perk	of	UserTesting.com's	tools	are	that	they	offer	video	and	audio
recording	via	the	users'	devices.	These	allow	you	to	present	hard	data	and	real
human	reactions	to	stakeholders	and	other	team	members.	In	some	cases,	when
it's	necessary	to	make	a	case	for	one	design	versus	another,	then	this	feature	can
be	invaluable	by	giving	you	executable	feedback	from	test	subjects.

	

	

	

Focusing	on	scaling	and	sustainability
	

At	this	point	in	the	chapter,	you	understand	how	and	why	it	is	important	to
acquire	early	adopters,	operate	inside	a	narrow	marketplace,	and	present	them
with	interactive	designs	and	prototypes.	However,	as	your	experiments	progress,
it	will	become	necessary	to	transition	from	unscalable	prototypes	into	scalable
code.	As	your	MVP	evolves,	you	will	be	required	to	make	a	number	of	technical
decisions.	These	include	the	following:

When	to	take	coding	shortcuts
When	to	automate	and	optimize
How	to	handle	technical	debt

From	the	very	beginning	of	your	experiments,	these	issues	should	have	their
place	on	the	table.	Understanding	such	technical	considerations	will	help	you
deal	with	them	as	they	arise,	so	they	do	not	become	too	costly	or	overwhelming.

	

	

	

Writing	perfect	code	versus	getting
the	job	done
At	every	stage,	you	must	make	choices	that	balance	practical	needs,	such	as
budgets	and	release	dates,	against	coding	efficiency	and	stability.

We	have	seen	how	the	founders	of	two	extremely	successful	companies
prioritize	the	customer	experience	and	doing	whatever	it	takes	to	push	their
product	into	the	marketplace.	This	means,	fortunately	or	unfortunately,	that	you
cannot	be	a	perfectionist	when	it	comes	to	coding.	When	creating	your	MVP	and
working	within	tight	constraints,	you	must	put	learning	first	and	set	aside	any
attachments	to	ideal	code.

To	use	a	phrase	that	I	love,	"Don't	make	perfect	the	enemy	of	good."

Perfecting	an	experiment	should	be	an	ongoing	process	achieved	through
customer-guided	iterations.	If	you	perfect	designs,	code,	or	features	that	haven't
been	validated,	you	run	the	risk	of	improving	something	that	will	be	rejected	by
your	users.	To	avoid	burning	money,	focus	on	delivering	iterations	to	market	as
quickly	as	possible	so	you	can	learn	from	the	real	world.

Automation	and	optimization
When	speed	to	market	is	critical,	testing	and	quick	delivery	take	precedence
within	reason.

At	a	certain	stage	in	the	development	lifecycle,	you	will	need	to	transition	from
unscalable	processes	to	scalable	ones.	Although	such	manual,	quick-and-dirty
business	practices	are	more	economical	and	even	necessary	in	small
marketplaces,	they	are	unsustainable	as	you	improve	and	grow	over	time.

Automation—whether	in	code,	deployments,	or	monitoring—is	the	foundation
of	stable,	secure,	and	performant	apps.	It	can	be	delayed	at	the	start	of	your
project,	so	you	can	learn	and	adapt	quickly,	but	it	must	be	applied	over	time	so
as	to	minimize	technical	debt	and	avoid	delivering	pain	to	your	users	via	a	buggy
and	unreliable	app.

How	to	handle	technical	debt
Technical	debt,	or	the	extra	work	that	you	accrue	when	taking	coding	shortcuts,
is	like	financial	debt.	A	little	bit	can	sometimes	be	necessary	but	too	much	can
kill	you.

As	mentioned,	if	you	are	a	perfectionist,	your	product	will	risk	going	over
budget	or	being	delayed	indefinitely.	However,	quick-and-dirty	programming
will	need	to	be	fixed	at	some	point.	While	perfectionism	can	overwhelm	you	in
the	short	run,	technical	debt	can	overwhelm	you	in	the	long	run.

There	are	different	ways	of	viewing	technical	debt.	You	can	view	it	as	long-term
versus	short-term,	prudent	versus	reckless,	or	intentional	versus	unintentional.
Practically	speaking,	technical	debt,	like	financial	debt,	is	sometimes	necessary
to	achieve	a	certain	goal.	However,	in	the	same	way	that	both	types	of	debt	can
be	useful,	they	can	also	get	out	of	control.

The	best	way	to	manage	technical	debt	is	by	intentionally	and	iteratively
eliminating	it	from	the	backlog	as	you	proceed	through	the	lifecycle	of	your
product.	Notice	a	pattern	here	around	iterative	practices?	It	is	simple;	good	agile
practices	can	help	prevent	technical	debt	from	burying	you.

Here	are	a	few	tips	for	dealing	with	technical	debt:

Create	a	technical	debt	management	plan:	A	properly	executed	plan	is
the	first	step	towards	tackling	technical	debt.	It	should	be	engaged	with
consistently	as	part	of	your	sprint	cycles	and	should	prioritize	debt	based	on
how	much	it	affects	your	customers—from	the	most	impactful	to	the	least
impactful.
Log	your	debt:	A	backlog	will	help	you	track	when,	where,	and	why
certain	decisions	were	made.	Your	log	should	include	estimates	for	how
long	shortcuts	will	take	to	fix,	while	remembering	that	every	loan	you	take
out	accrues	interest	over	time.
Quantify	the	debt	financially:	Coding	time	translates	into	billable	hours.
Therefore,	it	should	be	clear	that	technical	debt	translates	directly	into
financial	costs.	Viewing	technical	debt	through	a	financial	lens	will	help

your	teams	and	your	company	understand	the	impacts	of	development
decision-making	so	that	priorities	can	be	set	accordingly.
Execute	your	plan:	A	technical	debt	management	plan	will	not	help	if	no
one	is	accountable.	Establish	documented	guidelines,	responsible	personnel,
a	repayment	schedule,	and	ensure	that	your	debt	management	plan	is
executed	on	a	regular	basis.

A	solid	technical	debt	management	plan	can	help	you	prevent	unnecessary
technical	debt.	In	cases	where	debt	is	unavoidable,	a	strategically	executed	plan
will	help	you	control	that	debt	so	that	it	doesn't	control	you.

Summary
Doing	things	that	do	not	scale	is	about	prioritizing	learning	and	speed	to	market
by	shortening	the	build-measure-learn	cycle.

Most	of	the	time,	doing	things	that	do	not	scale	is	the	only	way	to	get	things
done.	During	the	experimentation	phase,	the	work	involved	may	put	you	in
unfamiliar	territory	and	it	may	seem,	superficially,	to	go	against	industry	best
practices.	However,	these	early	efforts	quite	often	spell	the	difference	between
success	and	failure.

When	you	are	fanatically	committed	to	growing,	you	can	collect	data	on	your
market,	quickly	pivot,	and	deliver	an	MVP	that	will	help	you	learn,	iterate,	and
improve	over	time.

In	the	next	chapter,	we'll	take	a	look	at	how	we	can	learn	even	more	about	our
MVP	via	Play	Store	and	App	Store	hacks.

Play	Store	and	App	Store	Hacks
In	order	to	continually	learn	from	your	MVP,	you	must	be	continually	running
tests,	collecting	data,	and	evolving	your	app.	However,	one	barrier	to	validated
learning	comes	in	the	form	of	the	App	Stores	themselves.

As	we	will	see	next,	the	two	platforms	have	different	limitations	and
requirements	that	impact	every	aspect	and	stage	of	an	app's	release.	Store	listing
requirements,	app	approval	delays,	analytics,	and	beta	deployment	options,	for
instance,	all	differ	between	the	two	platforms.

However,	there	are	ways	to	workaround	these	challenges.	In	this	chapter,	we	will
explore	the	following:

What	split	testing	is	and	why	it	is	a	crucial	tool	for	every	app	developer
How	to	run	split	tests	in	both	store	listings	and	in	apps
How	to	overcome	limitations	and	obstacles	that	are	inevitable	when
performing	real-world	split	testing
Essential	split	testing	techniques,	as	well	as	examples	of	how	to	run	split
tests	in	the	App	Store	and	in	Google	Play

Before	covering	these	topics,	let's	briefly	elaborate	on	what	experiments	are:	

What	is	an	experiment?
	

As	in	science,	a	business	experiment	posits	a	hypothesis,	and	then	runs	a	test	or
tests	to	validate	or	invalidate	that	idea.	In	the	lean	methodology,	MVPs	are
experiments	that	test	fundamental	hypotheses	about	value	and	growth—that	is,
whether	your	idea	solves	a	problem	and	whether	your	product	can	grow
sustainably.

Though	the	MVP	is	an	experiment	itself,	there	are	many	other	experiments	that
you	can	run	within	that	context.	In	this	chapter,	we	will	cover	the	obstacles	to
testing	inside	the	App	Stores,	workarounds	that	allow	you	to	split	test	inside
your	app	and	inside	the	App	Stores,	and,	finally,	we	will	look	at	how	you	can
apply	these	skills	with	a	pair	of	practical	examples.

	

	

	

A/B	testing	as	a	technique	for
experimentation
	

Split	tests	can	be	viewed	as	experiments,	like	any	other	experiment,	which
begins	with	a	hypothesis.	These	tests	are	much	smaller	in	scale	when	compared
to	large-scale	hypotheses,	such	as	the	value	hypothesis	upon	which	the	entire
MVP	is	built.	However,	the	underlying	principle	is	the	same.

For	those	who	do	not	know,	a	split	test	serves	alternate	versions	of	a	web	page	or
app,	for	instance,	to	a	group	of	users	in	order	to	determine	which	version
converts	the	highest.	In	a	two-way	split	test,	called	an	A/B	test,	you	might	test
two	separate	landing	page	headlines	in	order	to	test	their	impact	on	conversion
rates.

You	can	also	test	the	following:

Copywriting,	such	as	headlines	or	calls-to-action
Design	elements,	such	as	colors	or	button	shapes
App	Store	listing	elements,	such	as	screenshots	or	descriptions

	

	

Why	perform	split	testing?
	

This	will	be	covered	in	more	detail	as	follows,	but	there	are	a	number	of	benefits
to	split	testing.	Here	are	some	of	the	biggest	benefits:

Split	testing	allows	you	to	better	understand	your	users
Conversion	rates	can	be	improved,	that	is,	it's	a	bread-and-butter
optimization	method
You	can	improve	the	user	experience	and	usability
Important	metrics,	such	as	user	retention	and	time-in-app,	can	be	more
deeply	understood	and	improved

There	are	two	types	of	app	experiments	that	we	will	cover	in	this	chapter:	store
listing	tests	and	app	tests.

	

	

	

Store	listing	tests
	

App	Store	rankings,	such	as	search	engine	rankings,	have	an	enormous	impact
on	how	many	people	find	and	try	your	app.	If	you	can	improve	your	store
listing's	ranking	and	its	conversion	rate,	then	you	stand	to	reap	significant
benefits	as	follows:

Improved	organic	discovery	and	more	users
Increased	download	rates
Decreased	cost	of	user	acquisition

Improving	your	App	Store	ranking,	or	App	Store	Optimization	(ASO),	has
been	called	the	new	SEO,	as	a	testament	to	its	importance.	Keeping	in	line	with
other	search	engines	across	the	internet,	App	Store	search	algorithms	rank	based
on	a	variety	of	predictable	factors,	such	as	keyword	relevance	and	user	reviews.

The	app	marketplaces	have	never	published	best	practices	that	can	guide
developers	on	how	they	can	improve	their	App	Store	rankings.	However,
widespread	unofficial	ASO	improvement	techniques	focus	on	a	few	important
areas:

Download	rates	and	uninstall	rates
The	quality	of	the	reviews	from	users
Relevancy	of	the	keywords	in	the	headline	and	description
Usefulness	of	the	listing	copy,	the	icon,	screenshots,	and	so	on

Listing	tests	are	split	tests	that	are	designed	to	help	you	improve	all	of	these
areas,	either	directly	or	indirectly.	Every	time	you	split	test	elements,	you	will
measure	the	result	that	you	are	trying	to	impact.	An	A/B	test,	for	example,	could
compare	two	versions	of	a	description,	then	use	install	rates	to	measure	the
results	of	that	test.	A	test	that	compares	review	solicitation	mechanisms	could
examine	the	impact	on	positive	reviews.

	

	

	

App	testing
	

Split	testing	the	app	itself	is	another	crucial	tool	in	your	experimentation
toolbox.	While	App	Store	listing	tests	will	help	you	improve	conversion	rates,
app	testing	helps	you	learn	about	your	users,	improve	your	product,	and	increase
engagement	rates.

When	testing	the	app,	you	will	perform	split	tests	designed	to	improve	the	app
experience,	usability,	and	engagement.	App	tests	can	be	performed	on	any
number	of	app-related	variables,	including	the	following:

Screen	design
User	flow
Images
Buttons

Appropriate	metrics	that	can	help	you	judge	your	testing	efforts	include
engagement	metrics,	such	as	time	in	app	and	retention	rates	or	conversion	rates
for	specific	targets.	A	change	designed	to	improve	the	conversion	rates	for
advertising,	for	instance,	should	measure	ad	conversion	rates.	As	with	App	Store
listing	tests,	you	should	focus	on	metrics	that	measure	the	result	you	are	trying	to
impact	with	any	given	test.

	

	

	

Why	do	you	care?
App	testing	is	not	just	icing	on	the	cake,	since	such	experiments	can	make	or
break	an	app.	Testing	has	become	a	critical	facet	of	the	lean	developer's	modus
operandi,	so	it	pays	to	understand	what	makes	testing	so	valuable.

The	competition	is	intense
Apps	need	a	way	to	stand	out	in	a	saturated,	competitive	marketplace.	According
to	Statista,	Google	Play	grew	from	1	million	apps	in	July	2013	to	2.8	million	in
March,	2017.	Between	June	2013	and	January	2017,	the	App	Store	count	grew
from	900,000	to	2.2	million.

This	ocean	of	apps	poses	two	concerns—not	only	do	developers	need	to	stay
visible	in	the	ocean	of	apps,	they	need	to	engage	their	users'	attention	and	keep
it.

Although	people	spend	dozens	of	hours	per	month	using	apps,	they	are	quick	to
abandon	apps	that	bore	them.	According	to	2016	data	from	Localytics,	which
was	widely	publicized	on	major	tech	blogs,	nearly	one	in	four	users	will	abandon
an	app	after	only	one	use.	A	number	of	causes	can	lie	behind	app	abandonment
rates,	from	users'	busy	schedules	to	usability	issues.

Though	not	all	of	these	causes	can	be	influenced,	there	is	one	reason	that
developers	use	experimentation	to	stay	competitive.

Experiments	work
As	with	engagement	metrics,	conversion	rates	are	impacted	by	a	number	of
factors,	including:

Traffic	source:	The	exact	number	changes	depending	on	where	you	get
your	information,	but	studies	usually	show	that	between	40-50%	or	more
users	find	apps	by	searching	in	the	App	Store.	Think	with	Google	reports
that	one	in	four	users	find	their	apps	through	a	search.
The	app	listing	itself:	As	mentioned,	every	element	of	an	App	Store	listing
can	impact	conversion	rates,	from	the	icon	to	the	description	to	the
screenshots.
The	industry:	Not	all	industries	have	the	same	average	conversion	rates.
Music	apps,	according	to	data	published	by	splitmetrics,	have	the	highest
App	Store	conversion	rates,	while	games	have	the	lowest.
App	pricing:	Free	apps	are	governed	by	different	averages	than	paid	apps.
In	general,	free	apps	have	higher	download	rates,	but	they	also	have	higher
abandonment	rates.

The	best	way	to	impact	any	of	these	factors	is	by	performing	experiments.	Split
testing	can	improve	App	Store	conversion	rates	by	20%	or	more.

Decreased	conversion	rates,	in	turn,	decrease	the	cost	of	user	acquisition,	while
in-app	split	tests	help	you	improve	engagement	metrics,	which	often	has	a	direct
impact	on	your	revenue	model.

Although	the	app	marketplaces	pose	their	own	difficulties,	these	are	not
insurmountable.	Next,	we	will	look	at	some	of	these	obstacles	and	how	to
overcome	them	so	you	can	make	the	most	of	your	tests.

Why	running	experiments	with
Google	Play	or	App	Store	is	hard
Once	your	MVP	becomes	listed	on	the	App	Stores,	it	becomes	harder	to	split
test.	Your	app	becomes	bound	by	the	rules	of	each	App	Store.	Then,	when	you
want	to	update,	you	must	wait	for	the	App	Store's	approval.	Additionally,	certain
limitations	inhibit	your	ability	to	run	tests	or	collect	accurate	data.

	

Obstacles	to	testing	with	store	listings
	

Each	of	the	two	major	platforms	behaves	differently	and	each	has	its	own	set	of
listing	requirements.	Generally,	Google	Play	is	easier	for	testing,	since	re-listing
takes	less	time,	the	requirements	are	less	strict,	and	it	offers	simple	split	testing
options	for	the	store	listing.	However,	the	App	Store's	significant	audience—and
that	audience's	purchasing	power—is	reason	enough	to	code	for	iOS.

Here	are	a	few	of	the	major	platform	differences	that	make	testing	all	the	more
difficult.

	

	

	

Different	app	listing	requirements
	

When	listing	your	app,	you	must	learn	to	operate	in	two	separate	ecosystems.
Not	only	do	you	have	to	code	each	app	differently,	you	need	to	learn	the	ropes
for	maximizing	visibility	in	each	marketplace.

Here	are	three	examples	and	different	requirements	for	each	App	Store	as	of	the
writing	of	this	book:

App	titles:	On	Google	Play,	titles	are	limited	to	50	characters,	while	on	the
App	Store	they	are	limited	to	30.
App	descriptions:	Apple	does	not	have	a	short	description.	But	it	does
have	a	"Subtitle".	Subtitle	is	limited	to	30	characters.	If	the	differences
between	the	two	platforms	with	description	feels	too	complicted,	we	swap
this	item	for	Promotional	text.	Apple's	promotional	text	is	limited	to	170
characters.	Google	terms	this	field	"Release	notes"	and	it	is	lmited	to	500
characters.
App	categories:	The	App	Store	allows	you	to	choose	a	primary	and
secondary	category,	but	special	cases	allow	you	to	add	more	categories,
thus	increasing	potential	visibility.	Google	Play,	on	the	other	hand,	only
allows	one	mutual	category	for	both	apps	and	games.	Google	allows	for	an
application	type	along	with	the	category.

These	are	just	a	few	of	the	differences	that	you	must	take	into	account	when
running	App	Store	optimization	tests.	The	other	differences	between	the	two
stores	include	the	following:

The	number	of	screenshots	allowed
The	length	of	promo	videos	allowed
Whether	social	media	actions	are	allowed
Whether	promo	graphics	are	allowed

	

	

No	standard	way	to	measure	results
	

Each	store	offers	separate	metrics	with	which	to	measure	the	results	of	your
experiments:

Apple:	You	can	view	sales	and	trends	through	iTunes	Connect,	which	gives
you	access	to	data	and	reports	on	downloads	and	sales.	App	Analytics	is	an
analytics	package	that	tracks	many	standard	metrics,	such	as	engagement,
monetization,	and	marketing.
Google:	From	the	Google	Developer	console,	you	can	track	user
acquisition	with	the	option	to	narrow	your	focus	on	specific	acquisition
channels,	locations,	and	time	periods.	Google	Analytics	for	mobile	or
Firebase	Analytics,	similar	to	Apple's	analytics	package,	allows	you	to	track
monetization,	engagement,	and	marketing	efforts.

Since	these	precise	numbers	differ,	you	will	not	be	able	to	measure	results	in
parallel,	even	if	these	experiments	are	conducted	simultaneously.	It	is	worth
mentioning	that	Apple	and	Google	are	both	continually	improving	their	tools	to
make	testing	easier,	so	some	specific	features	may	have	changed	by	the	time	of
publication.

	

	

	

Limited	infrastructure	for	A/B	testing
	

Once	your	app	is	listed,	you	have	limited	options	when	it	comes	to	split	testing
in	the	store	itself.	Apple,	in	general,	has	a	reputation	for	enforcing	stricter
standards	across	its	App	Store,	from	screenshots	to	keywords	to	bugs.	Therefore,
it	is	not	surprising	that	they	offer	no	support	for	split	testing.

Google	Play	allows	you	to	split	test	store	listings.	With	this	program,	you	can
create	two	types	of	experiments:

Global:	Global	tests	allow	you	to	test	graphics,	screenshots,	the	promo
video,	and	the	icon.	These	tests	only	affect	your	app's	default	language,	so
the	ones	using	other	languages	will	still	be	shown	their	default	localized
versions.
Localized:	When	you	perform	a	localized	test,	you	can	test	all	of	the
preceding	variables,	plus	descriptions	in	as	many	as	five	languages.

These	experiments	are	created	and	run	from	the	Google	Developer	console,
where	you	can	choose	targeting	information,	attributes,	variants,	and	more.

	

	

	

Why	it	is	difficult	to	run	parallel
experiments
	

It	may	be	clear	by	now	why	running	experiments	side	by	side	is	no	easy	task:

Different	store	listing	requirements	means	that	each	listing	must	be	different
Different	coding	requirements	makes	parallel	app	creation	difficult
Different	A/B	testing	capabilities	in	each	App	Store	means	you	cannot	run
the	same	listing	tests	simultaneously
Different	metrics	means	you	will	be	measuring	slightly	different	results
Different	turnaround	times	for	each	store	means	your	updates	will	have
different	timelines

Another	challenge	is	that	since	testing	conditions	fluctuate	with	time,	it	is
difficult	to	maintain	strong	controls	and	reliable	results	when	testing	serially.	For
instance,	user	behavior	and	market	temperament	could	vary	enough	between	two
time	periods	to	alter	the	results	of	two	otherwise	identical	tests.	Though	effective
testing	clearly	has	its	share	of	roadblocks,	there	are	ways	to	overcome	these
challenges,	as	we	will	see	next.

	

	

	

Hacks	to	workaround	the	challenges
Though	none	of	the	following	methods	are	ideal,	they	will	allow	you	to	learn
from	your	customers,	validate	your	hypotheses,	and	create	continual
improvements	to	your	MVP.	Each	of	the	upcoming	sections	will	cover	some
essential	techniques	for	working	around	the	platform	limitations	that	have	been
discussed	so	far.

	

Store	listing	hacks
As	mentioned,	Google	Play	allows	you	to	split	test	core	elements	of	the	listing
itself,	while	Apple	does	not.	If,	however,	you	want	to	expand	your	testing
options	and	perform	more	complex	multivariate	testing,	you	will	need	to	explore
other	options.

How	do	users	find	apps	in	the	first
place?
	

Knowing	where	users	come	from	and	how	they	discover	your	apps	can	be	very
useful,	both	for	testing	and	for	your	business.	Not	only	can	you	learn	about	how
various	traffic	sources	compare	in	terms	of	quantity	and	quality,	you	can	also
perform	tests	outside	the	App	Store,	which	can	then	offer	more	information
about	your	customers.

Before	examining	the	experiments	themselves,	it	pays	to	briefly	examine	the
major	discovery	portals	and	traffic	sources:

App	Store	search:	As	mentioned	previously,	think	with	Google	research
discovered	that	at	least	40%	of	users	find	new	apps	by	searching	within	the
App	store	itself,	making	it	one	of	your	most	important	traffic	sources.	For
this	reason,	App	Store	indexing	and	optimization	should	be	top	priorities.
Traditional	search:	The	same	study	also	reported	that	27%	of	users
discovered	apps	through	search	engines,	making	search	another	critical
traffic	source.
App	packs:	App	packs	are	grids	that	appear	above,	within,	or	below
standard	Google	search	results	when	the	search	engine	determines	that	a
person	is	searching	for	an	app.	The	apps	that	appear	in	App	packs	are
chosen	by	the	search	engine,	not	the	App	Store	rankings.	However,	since
the	search	algorithms	rely	on	many	of	the	same	factors,	the	results	are
strongly	correlated.
Deep	linking:	Deep	linking,	or	URIs	that	open	up	apps,	can	be	triggered
from	a	variety	of	places,	including	search	ads	and	other	digital	ads.	In	the
event	that	an	app	is	not	installed,	users	will	be	directed	to	install	the	app,
which	can	then	complete	the	action	initiated	by	the	original	link.

As	mentioned,	Google	will	allow	you	to	perform	in-store	listing	tests.	Since
certain	traffic	sources,	such	as	in-store	searches	and	app	packs,	send	users

directly	to	these	listings,	Android	developers	should	certainly	take	advantage	of
this	option.

	

	

	

Use	microtesting	to	collect	data
Although	you	cannot	test	listings	in	Apple's	App	Store—and	although	there	are
limitations	to	tests	you	can	run	inside	Google	Play—you	can	still	use	external
landing	pages	to	test	essential	content	such	as	screenshots,	headlines,	icons,	and
descriptions.

To	perform	this	technique,	which	has	been	called	microtesting	by	some,	you
simply	experiment	with	a	landing	page	that	mimics	the	App	Store	listing	itself.
Create	a	test	that	mirrors	the	appearance	of	the	App	Store	as	closely	as	possible
and	when	users	click	on	the	install	button,	direct	them	to	the	actual	store	listing.

After	the	testing	period	has	finished,	use	the	highest-converting	landing	page	to
recreate	your	App	Store	listing.

To	track	and	analyze	results,	you	should	utilize	a	split	testing	platform.	Some	are
free	and	some	are	paid,	but	given	the	benefits	they	provide,	paid	platforms	can
be	well	worth	the	investment.	A	few	of	the	most	popular	include	the	following:

Google	Analytics:	This	is	an	essential	testing	solution	that	is	included	as
part	of	Google	Analytics,	making	it	easy	to	use	and	work	into	any	existing
GA	workflow
Optimizely:	This	is	one	of	the	world's	most	popular	split	testing	options,
offering	features	that	extend	far	beyond	a	straight	landing	page	test
Unbounce:	This	is	another	extremely	popular	landing	page	platform,	with
an	easy-to-use	landing	page	builder
Kissmetrics:	This	is	one	of	the	world's	most	robust	split	testing	and
analytics	platforms;	Kissmetrics	is	ideal	for	deep	customer	research

A	little	research	will	help	you	determine	which	price	point	meets	your	budget
and	which	features	meet	your	needs.	For	the	teams	that	plan	to	engage	in
expansive	tracking,	such	as	marketing	tests	and	app	tests,	it	is	worth	looking	at
platforms	that	are	more	in-depth.	Kissmetrics,	for	example,	offers	analytics	for
both	apps	and	websites,	so	you	can	manage,	view,	and	review	more	of	your
analytics	from	a	single	place.

Running	app	tests
In	the	same	way	that	you	can	use	split	testing	to	experiment	with	multiple
versions	of	web	page	elements,	you	can	run	tests	that	collect	data	on	in-app
elements,	including	design	elements	and	workflow	changes.	This	approach	is	the
practical	application	of	the	build-measure-learn	cycle	you	measure	data,	learn
from	it,	and	build	new	iterations.

When	working	with	preproduction	versions,	you	can	run	tests	in	parallel.	Testing
two	versions	of	the	app	simultaneously	doubles	the	amount	of	information	you
can	collect.

The	following	are	the	ways	in	which	you	can	run	parallel	tests	on	both
platforms:

Google	Alpha	Deployments:	Before	releasing	your	app	to	production,	you
can	perform	open	and	closed	alpha	and	beta	tests	with	users	who	have
Google	Accounts	or	G	Suite	accounts.	Since	you	can	only	run	one	open	and
one	closed	at	the	same	time,	Google	recommends	testing	a	closed	alpha
alongside	an	open	beta.
Apple	TestFlight:	This	operates	similarly	to	Google	Alpha	Deployments,
allowing	you	to	create	open	or	closed	beta	tests.	You	can	segment	multiple
builds	among	up	to	2,000	open	beta	testers,	which	gives	you	plenty	of	room
to	receive	feedback	on	different	versions	of	your	app.
Third	party	applications:	There	are	a	number	of	services	that	help
streamline	beta	deployment	and	distribution.	Install,	DeployGate,	and
Fabric,	which	was	acquired	by	Google	in	early	2017,	are	platforms	that
make	this	stage	of	prototyping	easier	and	more	efficient.

With	the	right	approach	to	deployment,	and	a	creative	approach	to	split	testing
your	listing,	it	is	possible	to	hack	your	way	past	some	of	the	obstacles	posed	by
the	two	app	marketplaces.	Next,	we	will	apply	some	of	the	skills	and	tools	we
have	examined	so	far	by	looking	at	example	experiments	in	the	App	Store	and	in
Google	Play.

Summary
An	experimental,	scientific	approach	is	the	foundation	of	the	Lean	method.

Experimentation	and	split	testing	are	fundamental	tools	in	every	developer's
toolkit,	but	running	tests	in	the	marketplace	can	be	tricky	and	messy.	The
techniques	covered	in	this	chapter	can	help	you	circumvent	real-world
limitations	and	obstacles,	improve	learning,	and	accelerate	growth.	The
examples	provided	can	give	you	ideas	on	how	to	run	your	own	experiments	in
either	the	App	Store	or	in	Google	Play.

With	the	right	tools,	the	right	techniques,	and	a	creative	approach	to	testing,	you
can	continue	to	learn	and	experiment,	even	after	you	have	launched	your	product
in	an	app	marketplace.

Now	it	is	time	to	look	at	how	we	can	use	split	tests	to	find	out	what	works	best
in	our	apps	as	we	seek	to	create	apps	that	our	customers	will	love.

A/B	Testing	Your	App
	

All	successful	app	developers	learn	from	the	feedback	they	get	from	their	users.
They	investigate	it	and	determine	if	they	need	to	improve,	to	remove,	or	to	add
features	in	order	to	better	support	of	the	user's	workflow.	In	this	chapter,	we	will
investigate	what	tools	we	can	use	to	get	feedback	from	our	users	if	we	cannot
ask	them	in	person.	Multiple	iterations	of	testing	and	optimizing	are	required	to
build	an	app	that	solves	your	customer's	problem.	Split	testing	(or	A/B	testing)	is
an	ongoing	process	that	can	help	you	find	the	workflow,	which	will	lead	to	the
highest	conversions.	Using	split	testing,	you	can,	for	example,	find	the	best
registration	flow	for	your	app.	In	Chapter	10,	There	is	an	API	For	That!,	we	have
seen	some	good	suggestions	of	what	you	can	do	to	improve	the	onboarding
process.	Now	you	can	also	run	some	experiments	and	measure	what	works	best
for	your	app.	It	can	also	give	you	feedback	about	other	topics,	such	as	user
retainment,	engagement,	or	in-app	purchases.	We	will	see	why	obtaining
statistics	matters	and	what	we	could	learn	from	them.

Pragmatic	as	we	are,	we	will	investigate	what	tools	we	can	use	for	this	purpose.
We	will	have	a	quick	look	on	how	Firebase,	remote	config	and	analytics,	could
work	for	us.	Split	testing	is	a	methodology	that	you	can	use	any	time,	even	when
your	app	is	already	in	the	store.	Finally,	we	will	see	what	we	can	do	for	split
testing	our	App	or	Play	Store	listing.

Specifically,	in	this	chapter,	we	will	cover	the	following	topics:

See	why	statistics	matter
Learn	what	actionable	metrics	are
Check	out	what	split	testing	is	and	how	it	can	help	us	to	improve	our	apps
Investigate	what	tools	we	can	use	for	testing
Figure	out	how	to	use	Firebase	Remote	Config	and	Firebase	Analytics

	

	

Why	do	statistics	matter?
Without	statistics,	you	will	have	little	to	no	feedback.	You	will	be	blind	to	all
insights	you	could	otherwise	have	obtained	from	your	users	and	their	behavior.
Do	not	release	your	app	without	any	implementation	required	for	obtaining
analytical	data:

In	general,	statistics	could	inform	us	about	the	following:

User	acquisition	performance
User	behavior	and	conversion
User	demographics
User	behavior	by	segment	or	cohort
Financial	insights

So,	the	right	statistics	tell	us	something	about	app	usage.	It	gives	an	answer	to
questions	such	as:	How	well	is	the	app	doing	and	what	exactly	does	"doing	well"
mean?	Is	this	about	the	number	of	downloads?	The	number	of	active	users?	The
number	of	daily	new	users?	It	is	important	not	just	to	have	statistics,	but	to	have
actionable	metrics.	It	is	easy	to	gather	a	lot	of	data.	It	is	more	difficult	to
determine	what	numbers	really	matter.	Do	not	get	drowned	in	numbers.
Determine	what	your	business	objectives	are	so	you	know	what	to	measure.	It	is
important	to	have	concrete	numbers	so	you	can	instantly	act	upon	them	by	doing
the	right	things.

About	actionable	metrics
	

In	Chapter	10,	There	is	an	API	For	That!,	we	already	had	a	preview	on	the	concept
of	conversions	and	metrics.	Gathering	statistics	about	your	mobile	app	usage
matters,	as	it	often	is	the	only	way	to	get	feedback	from	your	users.	If	we	want	to
learn	something	about	this	feedback,	it	is	important	to	realize	that	the	quality	of
the	statics	you	obtain	is	more	important	than	the	quantity.	While	it	may	be
tempting	to	gather	as	much	data	as	possible,	the	opposite	is	actually	true.	Focus
on	what	really	matters.	Actionable	metrics	is	what	we	want.	Ash	Maurya	writes
about	this	in	his	books	Running	Lean	and	Scaling	Lean.	He	claims	user	growth
is	more	important	than	your	total	user	base,	and	he	certainly	has	a	point	there.

Acquisition	and	engagement	are	important	metric	categories.	Acquisition
numbers	tell	you	something	about	your	app's	downloads,	the	number	of	new
users,	and	the	number	of	active	users.	Engagement	is	about	how	often	your	users
are	opening	your	app	(and	keep	using	it),	retention,	and	churn	rates	(the	users
that	have	abandoned	your	app).	It	is	interesting	to	learn	how	many	of	the	users
that	have	downloaded	your	app	will	stick	with	your	app?	And	will	they	still	be
using	your	app	after	1	week	or	1	month?	The	other	important	metrics	are
customer	lifetime	value	and	key	funnel	behavior,	but	let's	start	with	acquisition
and	engagement	first.

	

	

	

Acquisition
Before	users	will	download	your	app,	they	need	to	be	aware	of	its	existence.	You
need	to	promote	it	on	social	media,	on	your	website,	or	in	some	other	way.	How
else	would	one	know	that	it	exists	and	that	your	app	is	really	awesome?	Getting
new	users	every	day	is	important,	as	your	number	of	active	users	will	drop
otherwise.	No	matter	how	cool	your	app	is,	it	will	not	work	for	some	people.
That	does	not	have	to	be	an	issue.	As	long	as	the	numbers	for	acquisition	is
higher	than	the	churn	rate,	your	app	will	grow.

	

Engagement
User	engagement	metrics	are	all	about	your	app's	stickiness.	People	spend	more
and	more	time	on	mobile	devices,	which	of	course	is	a	good	thing	for	your	app.
But	people	also	have	little	more	than	the	attention	span	of	a	goldfish	so	average
churn	rates	(app	users	that	no	longer	use	your	app)	are	often	higher	for	mobile
apps.

You	might	wonder	how	much	time	a	user	spends	on	the	app	during	a	session	or
during	a	certain	period.	A	session	is	any	kind	of	interaction	until	the	attention	of
the	user	gets	interrupted	by	something	else,	such	as	an	incoming	phone	call.	To
improve	your	app's	retention	rate,	you	should	often	remind	users	about	the	app
or	you	should	provide	them	with	a	good	reason	to	visit	the	app	on	a	regular
basis.	Email	and	push	notifications	can	be	used	to	get	the	user's	attention	again,
thus	maintaining	app	awareness.

The	retention	rate	is	about	the	number	of	users	that	remain	active	after	a	certain
period	of	time,	let's	say,	after	2	months	or	more.	The	churn	rate	is	about	the	users
that	no	longer	use	your	app	after	the	same	period	of	time.	To	grow,	the	retention
rate	needs	to	be	higher	than	the	churn	rate.	To	do	so,	your	app	constantly	needs
to	deliver	value	by	providing	relevant	content,	incentives,	and	new	or	improved
features.	In	short,	you	continuously	need	to	give	your	users	reason	to	come	back
to	your	app.

Daily	or	weekly	active	users	are	the	most	valuable	ones	as	they	will	be	the
easiest	ones	to	convert	later.	The	higher	the	engagement	rate,	the	more	valuable
the	app	is	to	your	users.	They	could	become	an	ambassador	of	your	app	by
making	referrals,	or	contribute	to	your	app's	monetization	by	clicking	on
advertisements	or	by	making	in-app	purchases	(revenue).

Conversions	and	pirate	metrics
Pirate	metrics,	as	we	have	seen	in	Chapter	10,	There	is	an	API	For	That!,	are	about
the	conversion	of	your	app	users.	Here	the	conversion	steps	are	shown	from
acquisition	to	revenue:

For	our	app,	in	particular,	it	comes	down	to	these	steps:	Awareness,	Visit	and
search	store,	Download	app,	Open	app,	Activation	(Register),	and	finally
Retention.	To	keep	things	simple,	for	now,	the	ad	income	or	in-app	purchase
(revenue)	is	not	displayed	here:

With	each	step,	you	lose	a	number	of	users.	That	is	a	completely	normal
phenomenon,	but	you	need	to	make	sure	that	you	will	not	lose	too	many	of	them
on	the	way.	Let's	say	1,000	people	learn	about	the	existence	of	your	app	by
reading	about	it	on	a	website	or	on	Twitter.	800	of	them	click	on	the	link	to	view
the	app	in	the	store.

They	see	the	app's	icon,	some	screenshots,	a	description,	and	some	feedback
from	other	users.	About	300	users	think,	"Hmm,	this	is	not	for	me".	So,	only	500
users	will	download	the	app.	100	of	them	forget	about	it	while	downloading	(on

their	way	home,	something	else	is	asking	for	their	attention:	A	call?	A	whatsapp
message?).	Eventually,	400	users	will	open	the	app.	They	see	an	onboarding
story	with	a	clear	call	to	action.	The	app	asks	them	to	register	using	Facebook	or
Twitter.	Probably	200	of	them	will	do	this.	The	remainder	of	the	users	have	the
intention	to	do	this	later	(but	they	probably	will	forget	about	it).	200	users	start
exploring	the	app	and,	if	they	are	not	often	reminded	about	the	app,	and	if	the
app	does	not	give	them	sufficient	reasons	to	return	to	it,	they	will	forget	about	it
within	a	couple	of	days.	After	1	week	only	50	users	are	still	using	the	app,	and
after	1	month	only	25	of	them	are	still	active.

Is	this	a	negative	scenario?	Not	at	all.	It	is	a	very	realistic	one	for	a	lot	of	apps.	If
you	want	to	make	a	difference	between	a	failing	and	a	successful	app,	then	you
need	to	think	of	this.	Also,	we	did	not	even	discuss	the	monetization	part	yet.	In	
Chapter	17,	Monetization	and	Pricing	Strategy,	we	will	have	a	look	at	that	part
specifically.

Fortunately,	we	have	tools	to	improve	the	conversion	rate.	It	is	important	to	learn
what	the	exact	conversion	percentages	are.	If,	of	all	the	users	that	have
downloaded	the	app,	only	a	small	percentage	sign	up,	then	you	will	know	you
have	work	to	do.	There	probably	is	something	in	your	onboarding	process	that	is
preventing	people	from	signing	up.	In	that	particular	case,	you	need	to	find	out	if
the	on-boarding	barrier	is	too	high	and	what	you	can	do	to	change	this.	Another
example	is	the	conversion	number	for	in-app	purchases.	It	also	is	an	interesting
pattern	if	you	notice	that	they	visit	that	part	of	your	app	where	they	can	make
such	a	purchase	without	ever	converting	to	customers	(actually	buying
something).	There	is	something	that	needs	to	be	changed	there.	Perhaps	the
added	value	for	the	products	are	unclear	or	maybe	the	pricing	level	is	just	too
high.

Get	to	know	your	audience
But	what	is	it	that	you	need	to	change?	If	you	have	a	small	number	of	beta	users,
you	can	just	text	them	to	ask.	There	are	also	tools	available	to	include	some	sort
of	survey,	but	most	people	consider	them	as	annoying.	It	might	help	if	you	offer
them	specific	incentives	(a	free	purchase,	for	example).	They	could	be	digital
incentives,	such	as	the	well-known	badges	(gamification)	or	real-life	incentives.
If	you	are	interested	in	the	latter,	checkout	Kiip	at	http://www.kiip.me/developers	for
some	examples.	They	have	a	great	SDK	that	you	can	add	to	your	app.	For
example,	it	enables	you	to	offer	a	free	cup	of	coffee	to	your	user	if	he	has	fully
completed	his	profile.

If	you	want	to	know	who	your	app	users	are,	you	need	to	have	additional
information	about	them,	such	as	their	locations	and	what	they	expect	from	your
app.	It	is	also	interesting	to	know	something	about	their	age,	gender,	the	types	of
devices	they	use,	and	at	what	moments	or	in	what	situations	they	use	your	app.
Knowing	your	audience	well	is	vital	in	order	to	be	able	to	create	an	app	that	fully
meets	the	user's	expectations.	And,	in	the	end,	it	also	leads	to	better	monetization
of	your	app.	In	fact,	this	is	why	Facebook	ads	have	way	better	conversions	than
Google	ads.	Facebook	knows	much	more	about	their	audience	and	about	each
individual,	so	advertisements	can	be	targeted	more	specifically,	thus	making	the
ad	Click	Through	Rate	(CTR)	higher.	We	will	learn	more	about	this	in	Chapter
14,	Growing	Traction	and	Improving	Retention,	about	traction	and	retention.
First,	let's	see	what	we	need	to	do	to	learn	more	about	our	app's	audience:	

http://www.kiip.me/developers

Split	testing	can	help	us	to	improve
our	apps
A/B	testing,	also	known	as	split	testing,	in	its	most	basic	form	comes	down	to
two	different	implementations	shown	at	random	to	different	kinds	of	people.	A
small	number,	say	5%,	are	shown	the	new	feature,	A,	which	could	be	something
like	a	new	feature	or	a	new	view,	and	another	5%	will	see	feature	B.	The
remainder	of	the	users	will	not	see	the	new	feature	yet.	The	feature	that	will
prove	to	be	most	popular	(by	conversion	or	otherwise,	depending	on	the
objectives)	will	be	fully	implemented	and	offered	to	the	complete	audience	of
your	app.

In	case	you	want	to	find	out	what	works	best	for	signing	up	users,	you	can	set	up
a	split	test	like	this:

So	50%	of	your	test	audience	sees	variation	A,	showing	a	button	that	says	Sign
up,	which	will	lead	26%	of	the	visiting	users	to	sign	up.	The	other	74%	might
think	"Hmm,	this	is	not	for	me",	or	decide	to	sign-up	later:	something	they
probably	will	forget	about.	What	happens	with	the	other	50%	of	the	test
audience?	They	will	see	variation	B.	It	displays	a	Get	started!	button.	If	we	look
at	this	variant,	we	see	that	63%	of	the	audience	decides	to	sign	up:	

In	theory,	this	proves	that	variation	B	is	the	one	that	should	be	implemented	as	it
leads	to	the	highest	conversions.	The	reality	is	somewhat	different.	If	we	have
little	to	no	knowledge	of	our	audience	the	preceding	conclusion	may	be	true,	but
if	we	do	know	a	little	more	about	our	audience	we	might	not	accept	the	results
on	face	value	and	might	consider	other	questions.	Is	the	audience	that	sees
variation	A	comparable	to	the	audience	that	sees	variation	B?	There	may	be
specific	customer	segments	that	specifically	prefer	one	feature	above	another.

We	will	never	find	out	if	we	will	just	do	random	tests.	As	stated	earlier,	we	can
increase	our	success	on	our	app	monetization	only	if	we	know	what	our	audience
is	and	what	they	want.	Step	1	is	getting	to	know	our	audience	(by	gathering	user
data)	and	step	2	is	to	take	this	knowledge	into	account	when	doing	A/B	tests.
What	if	we	could	choose	our	target	audience	and	see	what	works	best	for	them?
There	are	tools	available	that	could	help	us	to	do	a	little	bit	more	sophisticated
split	testing.	We	will	look	at	them	in	the	next	section.

Keep	the	differences	between
variations	subtle
The	difference	between	A	and	B	in	our	example	is	very	subtle,	and	that	is	for	a
reason.	If	the	difference	between	the	two	variations	is	too	big,	you	will	not	know

what	it	is	that	you	are	testing:	

The	preceding	is	a	brilliant	example	of	what	not	to	do.	If	your	onboarding	split
test	shows	that	variant	A	leads	to	a	61%	conversion	and	variant	B	leads	to	a	66%
conversion	rate,	then	what	does	the	outcome	prove?	Not	only	is	the	difference	in
conversion	percentages	not	very	convincing,	it	also	is	not	clear	what	has	led	to	a
slightly	better	conversion.	Was	it	the	background	color	that	did	the	trick?	Or	the
text	(call	to	action)?	Or	maybe	was	it	the	color	of	the	Sign	up	button?	We	will
never	know.	This	test	has	too	many	parameters.

Think	of	what	the	objective	of	the	test	is.	What	is	your	hypothesis	and	how	can
you	prove	it	using	a	split	test?	Test	one	element	at	a	time,	so	you	know	what
change	was	responsible	for	the	improved	conversion.	Run	multiple	split	tests,	as
a	single	test	will	typically	not	provide	sufficient	information	to	fully	understand
what	works	best.	Remember,	it	is	not	important	what	you	think	that	your	users
will	do.	It	is	important	what	your	users	do.	And	you	better	find	out	as	early	as
possible.

The	other	things	that	you	should	take	into	account	are	events	that	may	influence
your	tests.	Running	a	test	around	holidays	or	particular	events	may	have	a
different	outcome.	Also,	conversion	rates	may	be	different	on	different	days	of
the	week.	For	these	reasons,	always	make	sure	you	are	running	tests	for	at	least	a
couple	of	weeks.

Tools	for	split	testing	and	getting
actionable	metrics
From	a	technical	perspective,	it	is	pretty	easy	to	do	web	split-testing
experiments.	Mobile-optimizing	experiments,	on	the	other	hand,	are	more
difficult	to	accomplish.	The	Play	Store	or	the	App	Store	are	the	most	important
reasons	for	this.	A	web	browser	always	is	connected,	but	apps	live	on	a	device
which	is	not	always	connected.

Although	mobile-app	split	testing	is	not	as	mature	yet	as	for	website	A/B	testing,
there	are	many	tools	available	that	can	help	you	test	your	users.	Once	you	have
decided	what	metrics	you	want	to	measure,	you	can	pick	the	tool	that	is	most
convenient	for	that	purpose:

Among	others,	you	can	use	some	of	the	following	tools:

Firebase:	This	comes	with	many	options,	such	as	remote	configurations
and	analytics.	Firebase	is	a	good	candidate	for	split	testing	your	app	if	you
combine	these	two	features.	Remote	configurations	allow	to	make	instant
updates	to	the	appearance	of	your	app.	Perhaps	you	are	using	Firebase
already	for	data	storage,	real-time	data	sharing	or	for	onboarding	purposes.
Taplytics:	This	is	a	split-testing	tool	that	you	can	use	to	make	changes	that
do	not	require	an	update	in	the	Play	Store	or	App	Store.	Without	even
changing	code,	you	can	have	multiple	fast-test	iterations,	which	makes	it
one	of	the	most	suitable	solutions	for	mobile	split-testing	purposes.
Fabric:	The	Fabric	SDK	comes	with	many	handy	tools,	about	onboarding.
It	is	a	platform	that	makes	it	easy	to	install	and	maintain	SDKs,	including,

for	example,	Optimizely.	In	addition	to	a	Fabric	account,	you	also	need	to
set	up	an	Optimizely	account.	Optimizely	can	help	to	easily	integrate	split
testing	into	apps.	It	is	a	well-known	testing	tool	and	is	available	for	both
iOS	and	Android.	Just	as	is	the	case	with	Firebase	and	Taplytics,	there	are
no	App	Store	or	Play	Store	updates	required	to	run	A/B	tests.

The	other	interesting	tools	are	SplitForce,	Flurry	Analytics,	Amazing	A/B
testing,	Arise,	Switchboard,	Leanplum,	and	Apptimize.	They	all	support	both
iOS	and	Android.	Customer	segments	are	supported	by	most	of	them.	This
functionality	allows	you	to	run	tests	for	a	particular	type	of	audience.	Depending
on	your	objectives,	you	need	to	pick	the	tools	that	suit	your	needs	best.	As	an
example,	we	will	take	a	look	at	Firebase	remote	config	and	Firebase	analytics
specifically	to	see	how	this	works.

Using	Firebase	for	split	testing
You	can	use	Firebase	for	split	testing	your	Android	or	iOS	app.	Tutorials	on	how
to	set	things	up	for	Firebase	and	remote	configurations	specifically	can	be	found
at	https://firebase.google.com/docs/remote-config/.

For	this	example,	we	will	be	looking	at	an	Android	implementation.	Download
the	sample	project	from	https://github.com/mikerworks/packt-lean-firebase-split-testing.	The
Android	Kotlin	app	that	you	will	find	there	is	to	demonstrate	how	you	can	run
split	tests	for	the	onboarding	flow	of	an	app.	It	uses	Firebase	remote
configurations	and	Firebase	analytics.

The	project	has	been	setup	using	the	Firebase	option	of	the	Tools	menu	of
Android	Studio.	The	Firebase	assistant	can	help	you	to	configure	your	project
for	Analytics	and	Remote	Config:

For	the	sample	project,	it	has	been	set	up	already.	In	the	build.gradle	file	within
the	app	folder,	you	will	find	these	dependencies	for	Firebase:

dependencies	{

	...

https://firebase.google.com/docs/remote-config/
https://github.com/mikerworks/packt-lean-firebase-split-testing

			implementation	"org.jetbrains.kotlin:kotlin-stdlib-jre7:$kotlin_version"

			implementation	'com.android.support:appcompat-v7:25.4.0'

			implementation	'com.android.support.constraint:constraint-layout:1.0.2'

			implementation	'com.google.firebase:firebase-config:11.6.0'

}

apply	plugin:	'com.google.gms.google-services'

The	google-services.json	file	in	the	project	should	be	replaced	by	your	own	file.
You	can	download	it	from	Firebase	as	soon	as	you	have	configured	your	app.
(Choose	settings	in	the	project	overview.)	You	can	use	the	Firebase	assistant	to
do	so	or	you	can	go	to	the	developers	console	of	Firebase	at	https://console.firebase.goo
gle.com:

If	you	do	not	have	a	Firebase	account	yet,	you	need	to	create	one	first.	In	the
console,	you	can	add	and	configure	your	project:

In	the	project	overview,	you	can	go	to	the	Grow	section	and	choose	the	Remote
config	option.	If	you	choose	the	A/B	testing	on	the	right,	you	can	determine
what	variants	you	want	to	split	test:

https://console.firebase.google.com

Let’s	say	the	example	project	is	an	app	that	has	already	been	published.	And	let’s
say	we	want	to	test	a	new	onboarding	experience.	By	clicking	on	the	Create
experiment	button,	we	can	test	what	works	best.	We	want	to	figure	out	how
which	variant	leads	to	the	highest	conversion	for	sign-ups.

There	are	two	variants:	Variant	A	and	Variant	B.	The	Control	group	will	see	the
app	as	is;	they	will	not	see	any	variations:

You	can	define	one	or	more	parameters	for	the	experiment.	Each	variant	has	its
own	values	for	these	parameters.	Things	that	we	could	test	are	for	example:	the
background	color	of	the	Sign	up	button	(Blue	or	green),	the	sign	up	text	or	the
background	image	(strawberries	or	oranges).	As	you	can	see,	you	can	set	up
multiple	parameters,	but	it	is	best	practice	to	limit	them	to	two	or	three.

You	can	define	a	user	segment	for	your	split	test.	In	this	example,	we	will	just
target	5%	of	the	user	base	to	keep	it	simple.	More	sophisticated	segmentation
options	are	also	available.	For	example,	you	can	target	a	specific	country	or
users	in	the	age	group	of	18	to	36.	You	can	create	very	specific	segments	if	you
have	obtained	a	lot	of	information	about	your	users.

The	app	can	read	any	of	these	values	that	you	define	here.	The	default	ones	can
be	found	in	the	project	in	the	remote_config_defaults.xml	file	(in	the	res/xml	folder).
We	need	them	to	let	the	app	function	properly	in	case	the	remote	config	values
cannot	be	retrieved	(because	there	is	no	internet	connection,	for	example).

In	the	MainActivity	app,	you	can	see	how	it	is	done.	The	Firebase	remote
configuration	and	analytics	are	initialized	here.	The	developer's	mode	is	enabled
for	the	debug	variant.	This	will	ensure	that	there	is	no	caching	of	data,	which
allows	us	to	test	the	variants	first.

We	are	also	telling	the	firebaseRemoteConfig	instance	that	it	should	use	the	variables
for	the	remote_config_defaults.xml	file	as	a	fall-back	option:

	

val	firebaseRemoteConfig	=	FirebaseRemoteConfig.getInstance()

var	firebaseAnalytics:	FirebaseAnalytics?	=	null

override	fun	onCreate(savedInstanceState:	Bundle?)	{

	...

			val	configSettings	=	FirebaseRemoteConfigSettings.Builder()

											.setDeveloperModeEnabled(BuildConfig.DEBUG)

											.build()

			firebaseAnalytics	=	FirebaseAnalytics.getInstance(this)

			firebaseRemoteConfig.setConfigSettings(configSettings)

			firebaseRemoteConfig.setDefaults(R.xml.remote_config_defaults)

			val	token	=	FirebaseInstanceId.getInstance().getToken()

			Log.i(javaClass.simpleName,	"token	=	${token}")

			val	cacheExpiration	=	1L

			Log.i(javaClass.simpleName,"fetch")

firebaseRemoteConfig.fetch(cacheExpiration).addOnCompleteListener(this)

}

Finally,	we	are	logging	the	device	token.	Later,	we	need	this	token	to	test	a
specific	variant	on	our	test	device.	At	the	end	of	this	code	snippet,	we	fetch	the
data	and	listen	for	the	results.

If	all	the	parameters	and	values	have	been	retrieved,	we	tell	the
firebaseRemoteConfig	object	to	apply	these	values.	The	call	to	the
applyRemoteConfiguration	method	ensures	that	the	UI	will	be	updated:

	

override	fun	onComplete(task:	Task<Void>)	{

			if	(task.isSuccessful){

							Log.i(javaClass.simpleName,	"complete	success")

							firebaseRemoteConfig.activateFetched()

			}

			else{

							Log.i(javaClass.simpleName,	"complete	no	success")

			}

			applyRemoteConfiguration()

}

Here,	we	set	all	the	colors	and	texts	that	are	applicable	to	the	current	variant:

private	fun	applyRemoteConfiguration(){

			val	variant	=	firebaseRemoteConfig.getString("experiment_variant")

			Log.i(javaClass.simpleName,	"experiment	=	${variant}")

			firebaseAnalytics?.setUserProperty("Experiment",	variant)

			val	onboardingColor	=	firebaseRemoteConfig.getString("onboarding_color")

			Log.i(javaClass.simpleName,	"onboarding	color=	${onboardingColor}")

			if	(onboardingColor=="blue")	{

findViewById(R.id.sign_up_button).setBackgroundColor(Color.parseColor("#0000ff"))

			}

			else{

							

findViewById(R.id.sign_up_button).setBackgroundColor(Color.parseColor("#00ff00"))

			}

			val	onboardingText	=	firebaseRemoteConfig.getString("onboarding_text")

			Log.i(javaClass.simpleName,	"onboarding	text=	${onboardingText}")

			(findViewById(R.id.sign_up_text)	as	TextView).text	=	onboardingText

			val	onboardingBackground	=	firebaseRemoteConfig.getString("onboarding_background")

			Log.i(javaClass.simpleName,	"onboarding	bg=	${onboardingBackground}")

			if	(onboardingBackground=="strawberry")	{

							(findViewById(R.id.image).setBackgroundResource(R.drawable.strawberry))

			}

			else{

							(findViewById(R.id.image).setBackgroundResource(R.drawable.oranges))

			}

}

This	will	result	in	displaying	variant	A	or	variant	B	for	the	onboarding	flow.
Since	we	want	to	measure	the	differences	in	conversion	between	these	two
variants,	we	set	a	user	property	for	the	fireBaseAnalytics	object,	and	if	the	user
clicks	on	the	sign	up	button,	we	log	the	event	like	this:

private	fun	onSignup(){

			logEvent("signUp")

			Log.i(javaClass.simpleName,	"sign	up	button	clicked")

}

private	fun	logEvent(eventName:	String){

			firebaseAnalytics?.logEvent(eventName,	Bundle())

}

With	this	approach,	we	can	measure	the	number	of	clicks	on	the	sign	up	button
and	we	can	see	the	results	in	the	Firebase	analytics	dashboard	console	for	each
variant.
First,	we	need	to	test	both	variants.	If	you	run	the	app	for	the	first	time	and
everything	goes	well,	you	will	find	something	like	this	in	the	log	output	(filter
on:	token):

11-10	11:22:09.856	27547-27547/com.packt.splittestdemo	I/MainActivity:	token	=	cG-

QulinNq0:APA91bH2lOQThh57qNseb3PDoBRDy-mPXvE_vezn1nNFBiDrWd0a…

Copy	the	token	value	and	go	back	to	the	Firebase	console.	There	you	can	set	up
a	test	device.	Paste	the	token	at	the	field	Instance	ID	token	and	choose	Variant	A
or	Variant	B:

If	you	choose	Variant	A	and	run	the	app	now,	it	will	look	like	the	screenshot

shown	on	the	left.	It	has	a	background	filled	with	strawberries	and	it	has	a	blue
SIGN	UP	button.	However,	if	you	choose	Variant	B	at	the	Firebase	console	and
run	the	app	again,	it	will	suddenly	show	oranges	in	the	background	and	it	has	a
green	SIGN	UP	button.	Variant	B	is	shown	on	the	right:

Will	this	onboarding	screen	with	the	blue	Call	to	Action	button	and	a
background	of	strawberries	be	the	winner?	Or	will	we	see	the	highest	conversion
(sign	up)	for	the	onboarding	view	that	uses	a	green	button	and	a	background	of
oranges?	Only	time	will	tell	what	the	outcome	will	be.
If	we	run	this	split	test	live	for	a	couple	of	weeks,	we	will	know	which	of	the
two	results	provide	the	highest	conversion.	The	winning	variant	will	be	the	one
that	we	are	going	to	roll	out	for	all	users.
This	was	just	a	brief	example.	There	are	many	other	options	available	to	be
discovered	that	are	not	covered	in	this	chapter,	as	it	is	just	an	introduction	to	split
testing.	However,	you	have	an	idea	of	the	possibilities	now.
To	learn	more	about	Firebase	split	testing	specifically,	have	a	look	at:
https://developer.android.com/distribute/best-practices/develop/in-app-a-b-testing.html	or	https://techcrunc
h.com/2017/10/31/google-firebase-gets-predictions-crashlytics-integration-and-a-new-ab-testing-service/
or	https://firebase.google.com/docs/remote-config/use-config-ios.

https://developer.android.com/distribute/best-practices/develop/in-app-a-b-testing.html
https://techcrunch.com/2017/10/31/google-firebase-gets-predictions-crashlytics-integration-and-a-new-ab-testing-service/
https://firebase.google.com/docs/remote-config/use-config-ios

Summary
	

In	this	chapter,	we	have	seen	why	statistics	matter	and	which	statistics	matter.
We	have	learned	about	split	testing	and	what	the	do’s	and	don’ts	are.	We	have
some	idea	of	what	tools	are	available	for	it	and	what	we	need	to	do	to	set	up	a
split	test	of	our	own	apps.	We	learned	something	about	metrics	and	about	the
importance	of	acquisition	and	retention.

In	the	next	chapter,	we	will	learn	more	about	retention	and	how	we	can	further
improve	it.	We	are	going	to	improve	traction	and	examine	some	practical
approaches	to	accomplish	that	for	our	app.	Let's	get	started.

	

	

	

Growing	Traction	and	Improving
Retention
	

In	this	chapter,	you	will	learn	about	traction,	the	proof	that	somebody	wants	to
use	your	product	and,	in	most	cases,	is	willing	to	pay	for	it,	resulting	in	a
profitable	business	in	the	end.	Now	that	we	have	obtained	some	actionable
metrics,	as	we	have	learned	in	the	previous	chapter,	we	will	see	how	to	grow
traction.	Without	sufficient	retention	(returning	users	to	your	app)	or	too	much
churn	(users	abandoning	your	app),	the	moment	of	truth	will	be	gone	quickly
and	we	will	lose	traction.	Let's	investigate	how	we	can	increase	the	retention
rate.	Also,	we	will	see	what	we	can	do	the	keep	the	churn	rate	low.

Specifically,	in	this	chapter	we	will	cover	the	following	topics:

Learning	about	the	definition	of	traction
Finding	out	how	we	can	grow	traction	and	when	"growth	hacking"	comes
into	play
Seeing	how	we	can	improve	retention
Learning	how	to	stay	in	touch	with	your	app	users
Seeing	what	it	takes	to	implement	a	notification	mechanism	to	remind	users

	

	

Traction
So,	what	is	traction?	Basically,	it	is	about	upcoming	patterns	that	indicate	a
scaling	and	repeatable	business.	Traction	is	an	evidence	of	a	sufficiently	large
market	demand	and	more	specifically	about	adoption	and	engagement.	If	you	do
well,	traction	is	the	confirmation	of	the	hypotheses	that	you	have	about	your
product	or	service.	Traction	is	about	making	actual	progress	and	it	is	important
in	each	phase	of	your	app.	It	is	about	the	first	few	early	adopters	that	sign	up
when	you	just	got	started,	and	eventually	it	also	is	about	the	users	that	make	(in-
app)	purchases.	How	well	is	your	app	doing	converting	people	into	users	and
users	into	customers?

Even	emerging	app	clones	(or	copycats)	are	a	sign	of	traction.	It	proves,	along
with	your	grown	user	base,	that	the	problem	that	your	app	is	solving	really
matters	and	that	the	problem	is	worth	solving.

Things	as	profitability	(revenues),	the	number	of	registered	and	active	users
(retention),	engagement,	traffic,	and	even	partnerships	are	all	things	that	you	can
use	to	measure	traction.	Be	aware	that	isolated	information	is	no	real	proof	for
traction.	For	example,	you	can	run	some	campaigns	to	grow	your	user	base	but	if
the	Customer	Acquisition	Cost	(CAC)	is	higher	than	the	Average	Revenue
Per	User	(ARPU)	then	it	makes	no	sense	to	look	only	at	the	revenue	to
determine	traction.	You	need	to	make	sure	that	the	Lifetime	Customer	Value
(LTV)	will	be	higher	than	the	cost	of	onboarding	new	users.	You	need	to	lower
the	cost	or	you	need	to	increase	the	LTV.	To	do	the	latter	you	can,	for	example,
consider	offering	subscriptions.	Other	than	one-time	in-app	purchases,	it	will
lead	to	recurring	revenue.

Working	on	the	scalability	of	your	apps,	business	will	help	to	get	and	improve
traction.	However,	to	understand	how	this	will	work	for	your	app,	you	will	often
need	to	do	stuff	that	does	not	(yet)	scale,	as	we	have	seen	in	Chapter	11,
Onboarding	and	Registration.	You	first	have	to	learn	what	works	and	what	does
not.	The	"concierge	service"	has	been	mentioned	earlier	and	it	is	something	that
definitely	does	not	scale.	However,	it	could	help	you	obtain	a	lot	of	useful
insights.	Other	things	that	you	can	do	include	cold	canvassing	and	networking	in

general.	Since	these	strategies	are	things	that	business-oriented	people	love	to
do,	but	most	developers	will	hate,	we	will	examine	what	else	there	is	that	we	can
do	to	grow	traction.

There	are	a	couple	of	things	that	you	can	do	to	improve	awareness	for	your	app
and	to	find	your	early	adopters.	If	people	see	your	app	listed	on	any	of	the
following	sites	mentioned	and	decide	to	download	your	app,	then	you	will	see
the	first	signs	of	traction.

In	addition	to	writing	posts	about	your	app	on	Facebook,	LinkedIn,	and	Twitter,
here	are	some	places	to	get	started:

Product	hunt:	https://www.producthunt.com
Betali.st:	http://Betali.st
Start-up	list:	http://startupli.st
Reddit	startups:	https://www.reddit.com/r/startups

These	are	the	places	where	your	(potential)	early	adopters	are,	people	who	are
curious	to	learn	about	new	apps	and	services.	Since	they	love	giving	feedback
about	new	products,	these	are	exactly	the	people	what	you	are	looking	for.

Of	course,	you	should	have	a	blog	about	your	app	(if	not,	start	one	right	now),
way	before	the	first	(beta)	version	of	your	app	is	launched.	It	is	important	to
build	an	audience	first	before	putting	any	effort	into	developing	an	app.	Make
sure	that	you	have	a	clear	call	to	action	for	the	readers	of	your	blog.	Make	it	as
convenient	as	possible	to	sign	up	for	your	email	newsletter	and	send	those
newsletters	on	a	regular	basis	to	your	subscribers.	Once	your	app	is	out,	continue
your	blogging	and	do	some	experiments	(split	testing	for	your	email)	to	see	what
leads	to	the	best	conversion	(from	reading	to	opening	your	app,	landing	page	and
downloading,	and	using	your	app).

https://www.producthunt.com
http://Betali.st
http://startupli.st
https://www.reddit.com/r/startups

Freemium	or	premium	only?
Some	say	that	the	only	relevant	traction	is	price	traction.	If	your	app	is
completely	free	the	demand	for	your	app	can	be	infinite.	However,	that	alone	is
not	really	important	if	there	is	no	revenue.	Asking	money	for	your	app	right
from	the	beginning	is	the	ultimate	way	to	measure	traction.	The	earlier	you
generate	revenue,	the	faster	you	validate	the	app	concept.	If	you	think	this
approach	won't	work,	think	again	and	have	a	look	at	the	various	crowdfunding
sites	on	the	net.	Of	course,	you	need	to	have	an	awesome	story	about	your	app.
You	need	to	tell	them	what	is	so	great	about	your	app,	but	you	already	have	a
great	story,	right?

No	business	will	survive	without	any	income.	In	fact,	a	free	app	does	not	exist.
The	money	has	to	come	from	somewhere.	Offering	in-app	purchases	is	one	way
to	monetize	your	app,	but	only	a	small	amount	of	users	(2%	or	less)	will	really
do	so.	The	other	98%	will	continue	to	use	your	app	without	ever	paying	for	it.
The	freemium	models	work	because	hosting	is	inexpensive	and	because	you	can
scale	your	app	without	too	much	effort.	However,	you	still	need	to	pay	attention
to	the	full	100%	of	the	user	group.	You	have	to	respond	to	their	reviews	and	you
have	to	keep	posting	on	social	media.	That	can	be	very	time-consuming.	The
income	from	2%	of	your	users	should	cover	the	cost	for	that.

It	can	be	difficult	to	decide	what	features	should	come	with	the	paid	variant	of
the	app.	You	need	to	have	a	clear	understanding	of	how	valuable	each	part	of
your	app	is	for	your	users.	Also,	you	can	decide	to	offer	a	premium	app	only.	If
you	charge	directly	from	the	start	for	your	app,	you	will	raise	the	barrier,	but
your	sales	numbers	will	be	a	real	proof	of	traction.	In	Chapter	17,	Monetization	and
Pricing	Strategy,	about	monetization,	we	will	have	a	closer	look	at	price
strategies.

There	are,	of	course,	others	ways	to	monetize	your	app.	You	can	think	of
showing	advertisements.	Also,	you	can	also	think	of	a	solution	that	utilizes	the
web	and	mobile	channels.	Do	not	think	of	your	app	as	the	product	any	longer,
but	think	of	your	app	as	a	channel	for	your	service.	So,	you	offer	your	app	for
free,	but,	on	the	web	you	ask	your	users	for	money	for	subscribing	to	your

service.	That	approach	works	very	well	for	business-oriented	solutions	in
particular.	The	revenues	will	be	higher,	probably	because	the	perceived	value	of
an	app	alone	is	likely	to	be	lower.	It	is	just	a	matter	of	perception	but	perception
is	important	when	it	comes	to	marketing.	It	may	also	have	to	do	with	the	fact
that,	often,	people	are	less	willing	to	pay	for	an	app	running	on	a	smaller	device.
This	is	a	bit	silly	but	nevertheless,	it	is	true.	Perhaps	we	can	focus	on	developing
apps	for	large	TVs	only?	I	am	just	kidding	of	course.

From	the	perspective	of	a	developer,	it	makes	no	sense	at	all.	Developers	know
that	it	takes	the	same	amount	of	work	and	that	the	size	of	a	device	does	not
matter	here.	Anyway,	the	perceived	value	and	the	channels	you	use	do	matter.
They	will	have	an	impact	on	the	amount	of	traction	and	how	it	will	be
determined.

Without	clear	objectives,	you	cannot	measure	traction	or	any	other	kind	of
success.	The	more	abstract	your	goals	are,	the	more	difficult	it	will	be	to
perceive	the	outcome	clearly.	To	make	the	outcome	measurable	(actionable
metrics),	you	need	to	define	clear	goals.	Clear	goals	come	with	numbers,	such	as
how	many	new	signups	(1,000?)	do	we	want	to	have	in	a	particular	amount	of
time	(1	month?),	or	how	many	emails	do	we	have	to	send	to	grow	the	conversion
of	our	users	by	25%?

Improving	retention
Mobile	app	retention	and	engagement	are	metrics	that	can	be	an	indication	of
your	app's	success.	High	app	retention	and	engagement	ratios	often	are	a	reason
for	your	app's	success.	Retention	says	something	about	how	often	your	users
relaunch	your	app	within	a	particular	amount	of	time.	Engagement	is	an
indicator	of	activity.	It	says	something	about	what	they	are	doing	while	using
your	app,	and	how	long	and	how	often	they	are	doing	this	within	a	particular
session.	Probably,	the	most	important	one	of	these	two	is	retention.	If	you
understand	what	makes	your	app	sticky	for	your	users,	then	you	will	be	able	to
improve	the	retention	rate.

You	should	always	wonder:	what's	in	it	for	them?	And	you	should	give	your
users	some	good	reasons	to	come	back	to	the	app	regularly.	Social	apps	have	the
best	retention	rates.	People	come	back	because	they	want	to	be	kept	up	to	date
on	the	regular	stream	of	information.	This	is	known	as	the	fear	of	missing	out
(FoMo).	It	is	a	skill	that	Facebook	has	mastered	completely.	Unfortunately,
unlike	Facebook,	most	apps	are	not	used	on	a	daily	basis.

Churn	is	a	phenomenon	that	is	more	or	less	the	opposite	of	retention.	There	will
always	be	churn,	but	you	can	try	to	keep	it	as	low	as	possible.	Today,	numbers
show	that	if	an	app	is	not	started	once	a	week	there	is	a	chance	that	60%	of
people	will	forget	about	it.	You	need	to	keep	your	app	relevant.	You	have	to
regularly	offer	fresh	content	and	new	features.	It	is	needless	to	say	that	you	have
to	inform	the	user	about	these	updates.	You	can	send	them	push	notifications	for
example.	That	is	a	very	common	approach	to	catch	the	attention	of	users	and
send	them	back	to	your	app!

An	onboarding	experience	with	a	low	barrier,	offering	fresh	and	relevant	content
and	features,	personalization	(social	sign	up	strategies	could	help	here),
incentification,	and	sending	push	notifications	are	all	features	that	can	greatly
contribute	to	better	retention	and	engagement	values.

Incentification	is	closely	related	to	gamification.	Both	come	with	rewards	if	the
user	has	come	to	a	particular	achievement	in	your	app.	While	gamification	is

more	about	digital	incentives,	such	as	badges	(as	available	at	Foursquare	and
Stack	Overflow,	for	example),	incentification	is	about	real-world,	non-digital
rewards,	such	as	a	free	cup	of	coffee	at	the	nearest	coffee	shop.	If	you	want	to
learn	more	about	the	concept	of	incentification,	you	can	check	out	http://kiip.me.

There	are	many	ways	to	improve	retention,	resulting	in	better	traction.	For	now,
we	will	just	examine	how	to	stay	in	touch	with	our	users	by	enabling	push
notifications.	You	need	to	give	people	a	reason	to	keep	coming	back	and	you
often	need	to	remind	people	of	the	existence	of	your	app.	If	you	do	not	want
your	app	to	be	forgotten,	abandoned,	and	eventually	deleted,	you	should	kindly
remind	them	of	the	app.

There	are	many	ways	to	improve	retention,	resulting	in	better	traction.	For	now,
we	will	just	examine	how	to	stay	in	touch	with	our	users,	by	enabling	push
notifications.	You	need	to	give	people	a	reason	to	keep	coming	back	and	you
often	need	to	remind	people	of	the	existence	of	your	app.	If	you	do	not	want
your	app	to	be	forgotten,	abandoned	and	eventually	deleted,	you	should	kindly
remind	them	of	the	app.

Please	do	not	spam	your	users.	Do	not	send	too	many	messages	and	try,	through
segmentation,	to	send	relevant	information	only.	If	your	user	stays	away	for	too
long	and	if	you	have	something	interesting	to	share	with	them	you	can	send	them
a	friendly	reminder.	It	is	an	excellent	candidate	for	a	concierge	service	if	you
want	to	learn	what	type	of	reminders	work	best.	Find	out	what	type	of	messages
works	best	and	see	what	customer	segments	will	show	the	best	conversions.
Once	you	have	learned	that	then	you	can	do	the	automation	later.	If	you	already
have	a	large	user	base	you	can	also	perform	an	A/B	test	to	see	what	works	best.
There	are	many	services	available	that	can	help	you	with	both	the	segmenting	of
your	customers	and	running	split	tests.

Also,	think	about	the	frequency	of	your	reminders.	Is	one	week	of	abstinence	a
good	time	to	send	out	a	reminder?	Or	is	two	weeks	better?	It	is	important	to	tell
a	story	and	to	build	an	experience.	Stating	what	is	in	it	for	them	should	come
with	a	clear	call	to	action,	such	as	"Check	out	our	new	feature	X"	or	"Look	at
what	your	friend	Y	has	posted".

Push	notifications	can	help	to	increase	retention	rates.	Numbers	show	that,	on
average,	users	who	have	opted-in	to	receive	push	notifications	results	in	25%

http://kiip.me

higher	retention	rates.	That	seems	to	make	sense.	By	the	way,	push	notifications
for	iOS	apps	are	always	opt-in.	Only	if	users	state	that	they	do	want	to	receive
push	notifications,	they	will	receive	them.	Android	has	an	opt-out	mechanism.
Users	install	an	app	and	they	will	receive	push	notifications	unless	they	choose
to	opt-out.

Notifications
There	are	three	ways	of	communicating	with	your	app	users	using	notification
messages	and	badges:

Local	notifications
Push	notifications
In-app	notifications

Local	notifications
Local	notifications	are	like	services,	running	on	the	user's	device.	The	app	does
not	need	to	be	active	to	receive	a	local	notification	related	to	your	app.	They	also
do	not	need	internet	access	or	a	server.	Instead,	they	are	scheduled	for	a
particular	date	and	time,	like	an	alarm.	They	are	initialized	by	your	app.

What	you	can	do	is	schedule	a	local	notification	to	remind	the	user	about	the	app
but	cancel	it	as	soon	as	the	user	launches	your	app.	It	is	a	great	instrument	to
remind	your	user	about	your	app's	existence:

You	can	use	local	notifications	to	increase	your	app's	retention	rate.	You	can
schedule	a	notification	when	your	app	is	closed	or	loses	focus	but	cancel	them
when	your	app	becomes	active	again.	If	you	set	the	fire	date	to	one	or	two	weeks
from	now	and	users	forget	about	your	app,	they	will	receive	a	friendly	reminder.
If,	however,	they	use	the	app	within	this	particular	time	frame,	then	the
notification	will	be	canceled	and	the	user	will	not	be	bothered	with	any	reminder
notifications.

Push	notifications
Push	notifications	involve	a	server	(and	with	that	an	internet	connection)	that
initiates	the	action.	Such	notifications	are	a	great	instrument	for	promotional
actions,	and	can	inform	the	user	about	the	availability	of	new	content	and	new
features	in	the	app.	Further,	it	depends	on	the	nature	of	the	app	to	decide	what
notifications	will	be	relevant.	For	a	dating	app,	it	would	be	nice	to	be	notified
about	a	new	app.	In	this	case,	displaying	a	badge	on	the	icon	of	the	app
indicating	the	number	of	new	matches	and	messages	also	would	be	very	helpful.
For	a	news	app,	it	would	be	great	to	receive	a	notification	each	time	a	new	and
important	message	comes	in.	You	can	create	user	segments	based	on	interest	or
based	on	their	geographical	location,	for	example,	to	notify	your	user	only	about
local	news	events.

	

In-app	notifications
Finally,	you	can	use	in-app	notifications	to	indicate	that	there	are	new	events.
You	can	display	a	badge	at	those	places,	where	it	is	relevant.	This	could	be	a	tab
or	a	menu	item.	You	can	also	use	app	notifications	to	stimulate	particular
behavior	while	your	app	is	being	used.	Think,	for	example,	of	a	reminder
notification	such	as	"Rate	this	app	5	stars!"	Some	methods	can	be	quite	clever,
like	a	dialog	that	is	only	shown	if	the	user	has	used	the	app	five	times
(engagement)	and	the	app	has	not	crashed.

Only	then	will	the	dialog	ask	for	a	5-star	rating!	It	is	important	to	provide
convenience	and	lower	the	barrier	to	rate	the	app	for	your	users	that	are
enthusiastic	about	your	app.	For	users	who	might	be	less	happy	with	your	app,
you	can	keep	the	barrier	as	is.	This	will	help	you	get	better	App/Play	Store
ratings.

There	are	components	that	do	exactly	this.	One	of	them	is	iRate	for	iOS.	With
only	a	few	lines	of	code,	you	can	implement	a	'Rate	us'	or	'Give	us	5	stars'	popup
in	your	app.	You	can	configure	when	and	under	what	conditions	it	will	be
shown:

For	each	type	of	notification,	it	is	important	to	not	be	annoying.	Do	not	ask	too
much	from	the	user	too	often.	You	should	only	notify	a	user	if	there	is	something
relevant	to	mention.	A	push	notification	for	no	particular	reason,	just	to	let	the
user	come	back	to	the	app	may	convert	well	once.	However,	if	this	happens	too
often,	it	will	become	annoying	and	your	users	might	uninstall	the	app	instead.

Services	for	push	notifications
To	distribute	your	push	notifications	to	your	Android	and	iOS	devices,	you	need
to	have	a	push	notification	server	that	will	distribute	messages	to	the	correct
devices.	Although	you	can	build	this	yourself,	it	is	more	convenient	to	use	one	of
the	ready-made	solutions	that	are	available	for	this	purpose.	The	benefits	of
existing	solutions,	besides	a	big-time	saver,	will	be	their	scalability,	multi-
platform	support,	and	segmentation	options,	making	it	easier	to	determine	which
message	goes	to	what	user.

Some	examples	of	such	solutions	are	Urban	Airship,	Azure	Push	Notification
Hub,	Amazon	Push,	Hosted	Parse	Servers	solutions,	as	found	at	back4app.com
for	example,	and	Firebase	push	notification	services.	They	all	have	different
pricing	plans	and	they	support	different	OSs.

As	an	example,	here	is	a	schematic	view	of	Azure	Push	notification	hubs.	It	can
deliver	push	notifications	to	iOS	and	Android	(And	Windows	Phone	if	you	still

really	want	to	do	so):	

If	you	want	to	deliver	push	notifications	to	operating	systems	other	than	Android
or	iOS,	or	if	you	want	to	deliver	push	notifications	outside	the	western	world,	it
is	good	to	carefully	examine	the	different	options.	Let's	say	you	want	to	deliver
your	app	to	the	Chinese	market	as	well.	In	that	case,	it	is	good	to	know	that
Amazon	supports	Baidu	Push	notifications,	since	this	is	not	supported	by	all
services.	Amazon	has	a	single	hub	for	sending	notifications	to	any	device	no
matter	if	it	is	running	on	Amazon,	iOS,	Baidu,	Android	or	Windows.

Push	notifications	for	Android	are	delivered	through	the	Google	Cloud

Messaging	(GCM)	protocol.	Apple	uses	Apple	Push	Notification	Service
(APNS)	for	iOS.	Configuring	push	notifications	for	iOS	is	a	little	bit	more
complicated	as	it	requires	some	hassle	with	certificates.	However,	if	you	are	an
iOS	developer	using	certificates	and	distribution	profiles,	then	you	will	not	be
scared	of	it.

Back4App	is	a	party	that	is	offering	Parse	server	hosting	including	support	for
push	notifications	(Android	and	iOS).	You	can	easily	target	all	users	or	specific
users	(segments):	

As	you	can	see,	most	services	offer	support	for	Android	and	iOS	and	a	couple	of
other	platforms.	Scalability,	supported	platforms,	pricing	plans,	and	ease	of
integration	are	all	things	to	consider	when	choosing	a	push	notification	service
provider:

Amazon
Apple

(APNS)
Baidu Google	(GCM) Microsoft

Amazon Supported Supported Supported Supported Supported

Azure Supported Supported Not	sure Supported Supported

Firebase Supported Supported ?

Urban	Airship Supported Supported Supported Supported

Parse	Server Supported Supported

Implementation
	

The	approach	for	both	platforms	is	more	or	less	the	same.	If	the	user	launches
the	app,	the	device	and	app	will	be	registered	for	receiving	push	notifications.	It
will	result	in	a	token	(or	an	optional	registration	ID	for	Android)	that	you	can
use	later	to	send	a	notification	to	this	particular	device	and	for	this	particular
app.	The	main	difference	between	Android	and	iOS	is	that	iOS	uses	an	opt-in
strategy	for	receiving	notifications,	while	Android	uses	an	opt-out	strategy.

An	iPhone	user	will	see	a	question	pop	up	which	asks	if	he	wants	to	allow	the
app	to	receive	push	notifications	(opt-in).	This	is	something	the	OS	does	for	us
when	we	register	as	shown	as	follows:	For	Android,	we	will	just	register	the
device	and	the	app	and	we	will	receive	push	notifications,	which	the	user	won't
notice	until	he	receives	his	first	notification.	On	Android,	you	can	turn	receiving
push	notifications	off	(opt	out)	using	the	Settings	app.

So,	here	is	an	Android	Java	example	of	such	registrations	in	your	App	class.	The
GCM_PROJECT_NUMBER	refers	to	the	project	number	in	the	Google	developer	console,
but	we	will	come	to	that	later:	private	GoogleCloudMessaging	gcm;	...

String	regid	=
gcm.register(FlavorConstants.PushConfiguration.GoogleConfiguration.

GCM_PROJECT_NUMBER);

Log.i(getClass().toString(),	"Obtained	RegId	from	GCM	:	"	+	regid);

Additionally,	here	is	how	it	is	done	for	iOS	(Swift	3.x,	iOS	10)	in	the	AppDelegate
class.	For	iOS,	you	also	need	to	configure	a	couple	of	things	in	the	developer's
portal,	which	we	will	see	later:	func	registerForPushNotifications(){

print	("PN	-	register	for	PN")	let	center	=
UNUserNotificationCenter.current()	center.delegate	=	self

center.requestAuthorization(options:[.badge,	.alert,	.sound])	{
(granted,	error)	in	if	error	==	nil	{

print	("PN	-	No	error")	}

else{

print	("PN	-	Error	")

}

if	(!granted){

print	("PN	-	Not	granted")	}

else{

print	("PN	-	granted")	}

	

guard	granted	else	{	return	}

self.getNotificationSettings()	}

}

	

func	getNotificationSettings()	{

UNUserNotificationCenter.current().getNotificationSettings	{
(settings)	in	print("Notification	settings:	\(settings)")	guard
settings.authorizationStatus	==	.authorized	else	{	return	}

UIApplication.shared.registerForRemoteNotifications()	}

}

	

func	application(_	application:	UIApplication,
didRegisterForRemoteNotificationsWithDeviceToken	deviceToken:
Data)	{

let	installation	=	PFInstallation.current()
installation?.setDeviceTokenFrom(deviceToken)
installation?.saveInBackground()
PFPush.subscribeToChannel(inBackground:	"global")	{	(result,	error)
in	print("PN	-	subscribed	to	global")	}

}

	

	

Setup
To	set	up	GCM	for	your	Android	app,	you	have	to	go	to	your	Google	Developer
Console,	which	you	can	find	at	https://console.developers.google.com/.

There	you	can	configure	your	app	and	obtain	a	server	key.

To	set	up	Apple	push	notifications	(APNS),	you	need	to	go	the	Apple
Developer's	portal	and	find	your	app	at	the	identifiers/app	ID's	section	(assuming
that	you	have	already	created	an	app	id	for	your	app):	

Click	on	the	Edit	button	and	scroll	down	to	the	Push	Notifications	section.	Click
on	the	Download	button	to	download	the	certificate	or	click	on	the	Create
Certificate	button	depending	on	your	needs.

Follow	the	instructions.	Use	the	keychain	app	to	create	a	CSR	file	(certificate
signing	request).	Doing	this	from	the	building	machine	is	preferable.

https://console.developers.google.com/

Upload	the	request	file	(CSR)	to	the	Apple	Developer's	portal:

Download	the	certificate	(that	will	contain	both	the	private	and	public	part)	and
double-click	to	install.	In	the	keychain	app,	find	the	APNS	certificate	and	choose
Export	from	the	Context	menu.

Provide	a	password	for	the	file	and	save	it.	You	now	have	a	file	with	a	P12
extension	that	you	can	later	upload	to	your	notification	service,	for	example,	to
Azure	Push	Notification	hubs.

The	following	example	shows	the	section	in	Notification	hubs,	where	you	can
upload	this	certificate	file	in	sandbox	mode	(development	only).	This	approach
is	more	or	less	the	same	for	other	services.	They	all	require	you	to	upload	this

file	to	make	the	magic	happen:	

The	following	is	an	example	of	all	the	push	services	you	can	configure	here:

After	deciding	which	notification	service	to	use,	find	some	good	references
(books	or	tutorials	on	the	subject)	as,	in	particular,	iOS	push	notification
configuration	can	be	a	bit	tricky.

Handling	an	incoming	notification
	

If	a	notification	comes	in,	it	will	be	shown	in	the	Messenger	section,	something
that	the	OS	will	provide	for	us.	In	addition,	we	can	define	what	to	do	with	it.	In
Android,	we	can	implement	a	PushHandler	class	that	consumes	the	notification	and
defines	specific	actions	for	it	using	the	NotificationCompat	builder.	Here	is	an
Android	Java	example:	public	class	PushHandler	extends	NotificationsHandler	{

	

Context	ctx;

	

@Override

public	void	onReceive(Context	context,	Bundle	bundle)	{

ctx	=	context;

String	nhMessage	=	bundle.getString("message");	Parcelable
parselableObject	=	bundle.getParcelable("parcel");
consumeNotification(nhMessage,parselableObject);	}

	

private	void	consumeNotification(String	msg,	Parcelable
parselableObject)	{

	

Log.i(this.getClass().toString(),	"Consume	notification");

Log.i(this.getClass().toString(),	"Notification	msg	=	"+msg);

if	(parselableObject	!=	null)	{
Log.i(this.getClass().toString(),	"Consume	has	parcel");	}

	

displayNotificationMessage(ctx,	"Message",	msg,msg);	}

	

public	static	void	displayNotificationMessage(Context	context,	String
title,	String	contentText,	String	tickerText){

displayNotificationMessage(context,title,contentText,tickerText,null);
}

	

public	static	void	displayNotificationMessage(Context	context,	String
title,	String	contentText,	String	tickerText,	Parcelable
parcelableObject){

	

...

NotificationCompat.Builder	builder	=	new
NotificationCompat.Builder(context);	Uri	soundUri	=
RingtoneManager.getDefaultUri(RingtoneManager.TYPE_NOTIFICATION);

Bundle	extras	=	new	Bundle();

extras.putParcelable("parcel",	parcelableObject);

Notification	notification	=	builder.setContentTitle(title)
.setContentText(contentText)	.setTicker(tickerText)

.setSmallIcon(R.mipmap.appicon)	.setContentIntent(pendingIntent)

.setPriority(Notification.PRIORITY_HIGH)	.setSound(soundUri)

.setVibrate(new	long[]{0,	500})	.setExtras(extras)

.build();

	

NotificationManager	notificationManager	=	(NotificationManager)
context.getSystemService(Context.NOTIFICATION_SERVICE);
notificationManager.notify(0,	notification);	}

For	iOS,	you	can	do	the	same	thing.	This	is	the	event	handling	in	the	AppDelegate
class,	and	it	is	a	Swift	4/3.x,	iOS	11	example	(for	previous	versions	of	iOS,	it
works	in	a	different	way),	and	it	uses	the	Parse	Server	to	get	the	push
notifications	delivered.

Here,	we	can	determine	as	well	what	should	happen	when	a	push	notification
arrives	(to	some	extent).	The	completion	handler	determines	if	a	notification	or
badge	is	shown	and	if	a	sound	will	be	played:	func	application(_	application:
UIApplication,	didFailToRegisterForRemoteNotificationsWithError	error:	Error)
{

print("Failed	to	register:	\(error)")	}

	

func	userNotificationCenter(_	center:	UNUserNotificationCenter,
willPresent	notification:	UNNotification,	withCompletionHandler
completionHandler:	@escaping	(UNNotificationPresentationOptions)
->	Void)	{

	

print	("PN	-	willPresent")

let	userInfo	=	notification.request.content.userInfo	as	NSDictionary
let	body	=	notification.request.content.body	for	(key,	value)	in
userInfo	{

print("userInfo:	\(key)	->	value	=	\(value)")	}

if	...	{

print	("PN	-	completion	handler	silent")	completionHandler([])

}

else{

print	("PN	-	completion	handler	alert	badge	sound")
completionHandler([.alert,.badge,	.sound])	}

}

...

}

	

func	userNotificationCenter(_	center:	UNUserNotificationCenter,
didReceive	response:	UNNotificationResponse,
withCompletionHandler	completionHandler:	@escaping	()	->	Void)	{

print	("PN	-	Did	receive")

...

completionHandler()

}

	

	

Sending	a	notification
To	send	a	notification,	you	can	use	the	web	interface	of	the	service	or	you	can
use	the	features	that	the	service	provides	if	you	want	to	send	a	message
programmatically.

The	following	is	a	cloud	code	example	for	the	Parse	Server	(Back4App).	It	sends
a	message	to	all	devices	that	are	listening	to	a	particular	channel.	You	can	send	a
push	notification	to	all	users	or	you	can	set	up	channels	for	customer
segmentation.	You	can	set	the	number	of	the	badge	on	the	icon	(iOS	only),	the
title,	and	the	message:	Parse.Push.send({	channels:	"channel	or	channels",	data:
{	title:	"title",	sound:	'default',	badge:	2,	alert:	"message",	extraParam:
"something"	}	},	{	success:	function	()	{	response.success("ok");	},	error:
function	(error)	{	response.success("nok:	"	+	error);	},	useMasterKey:	true	});	//
push	send

No	matter	which	service	you	are	using,	the	basic	payload	is	always	the	same.
Also,	note	that	you	can	send	custom	parameters	with	it:

data:	{	title:	"title",	sound:	'default',		badge:	2,	alert:	"message",	extraParam:	

"something"	}		

So	far,	for	a	high-level	perspective	on	push	notifications,	you	now	have	an	idea
what	it	takes	to	implement	it.	To	continue	on	this	subject,	examine	the	tutorials
that	Google	and	Apple	provide	about	it.

Summary
	

In	this	chapter,	you	learned	what	the	definition	of	traction	is	and	why	it	is
important.	We	have	seen	that	engagement	and	retention	are	important	elements
too.	We	have	seen	that	there	are	different	types	of	notifications	and	what	the
benefits	are	of	each	type.	You	can	remind	your	user	about	specific	events	in	your
app.	This	will	increase	the	retention	rate.	Notifications	can	also	help	you	to
improve	the	awareness	for	your	app,	for	example,	by	asking	for	a	user	rating	for
your	app.	Finally,	we	have	seen	what	notification	services	exist	to	deliver	push
notifications	and	what	it	takes	to	actually	implement	a	push	notification
mechanism	for	your	Android	and	iOS	apps.

In	the	next	chapter,	we	will	investigate	scalability.	In	the	beginning,	you	often	do
things	that	do	not	scale,	but	once	you	have	established	sufficient	amount	of
traction,	it	is	time	to	think	about	a	scalability	strategy.	This	is	particularly
important	when	your	app	uses	a	backend.

	

	

	

Scaling	Strategies
	

In	this	chapter,	you	will	learn	what	determines	your	app's	scalability	and	what
you	need	to	do	for	it	to	scale	well.	You	will	also	learn	when	scaling	will	become
important	and	what	elements	will	influence	your	scaling	strategy.	When	you	just
get	started,	the	scale	is	not	important	at	all.	In	fact,	we	did	tell	you	earlier	to	do
things	that	do	not	scale.	So,	what	made	us	change	our	mind?	Nothing	really.	It	is
still	important	to	prove	your	hypotheses	and,	until	that	is	done,	it	would	be	a
waste	of	time	to	make	your	app	scale.	However,	what	is	important	is	that	you
should	think	about	the	scalability	of	your	app	and	what	your	strategy	will	be	in
case	your	app	becomes	very	popular	and	starts	to	grow	quickly.	Now,	it	is
perfectly	fine	that	your	app	backend	can	handle	only	one	hundred	simultaneous
connections.	But	your	app	backend	also	needs	to	be	capable	of	handling
thousands	of	simultaneous	requests,	if	not	more.	Not	being	able	to	scale	things
quickly	leads	to	downtime,	which	leads	to	sad	users,	which	in	turn	leads	to	a
large	churn	percentage.	People	walk	away	and,	instead	of	steady	growth,	your
short	moment	of	fame	will	be	gone.	This	would	be	even	a	bigger	waste.	So,	we
need	a	plan	and	this	chapter	will	help	you	to	define	this	plan.

Specifically,	in	the	chapter,	we	will	cover	the	following	topics:

Learn	why	it	is	important	to	make	your	app	able	to	scale
Determine	when	and	how	to	scale	your	app	and	how	analytics	can	help
Find	out	what	you	need	to	do	to	have	a	scalable	backend

	

	

Make	it	scalable	but	do	not	scale	it
right	away
In	the	real	world,	the	definition	of	scalability	may	vary	from	culture	to	culture,
but	for	your	app	it	is	important	that	it	is	responsive	and	functional	in	the	most
common	circumstances.

If	you	foresee	any	issues	at	a	given	moment	in	time,	it	is	time	to	scale	up;	but	the
key	element	here	is	that	being	able	to	scale	up	quickly	is	more	important.	Make
sure	that	you	can	do	the	right	things	when	there	is	momentum!

So,	you	made	an	app	and	it	has	been	shown	on	a	site	such	as	Product	Hunt	or
Betalist.	You	have	some	enthusiastic	early	adopters	for	an	audience.	As	an	early-
stage	startup	company,	you	should	not	care	too	much	about	how	well	your	app
scales,	but	you	should	have	an	idea	on	how	to	make	it	scale	if	your	audience
suddenly	becomes	larger	than	expected.

Scalability	is	not	just	about	the	backend	solution	for	your	app.	It	is	also	about	to
what	extent	it	is	possible	to	automate	the	services	for	your	app	and	how	easy	it
will	be	to	serve	any	amount	of	app	users.	Only	when	your	app	services	can	be
near	100%	automated,	will	you	have	a	really	scalable	solution.	Anything	that
requires	your	personal,	or	other	people's	attention,	prevents	your	app	from	being
fully	scalable.	The	more	support	your	app	requires,	the	less	scalable	it	will	be.

The	scalability	of	your	app	could	also	be	limited	by	the	nature	of	your	app	and
its	targeted	audience.	A	game	app:	Flappy	Bird,	for	example,	can	by	definition
be	very	scalable.	It	has	no	backend	and	the	game	is	distributed	by	the	App	Store
or	Play	Store.	For	things	such	as	leaderboards,	you	can	use	the	Google	or	Apple
services.	You	can	trust	that	these	services	are	scalable.	A	social	app	will	be
harder	to	scale	because	it	requires	that	you	have	a	(complex)	backend	solution.
Although	it	is	distributed	via	the	stores,	your	users	need	to	be	able	to	download
and	upload	streams	of	data	that	not	just	involve	text,	but	also	images	and	video.
Your	server	should	be	capable	of	handling	that	load.

All	of	it	needs	to	be	stored	somewhere	and	it	needs	to	be	delivered	quickly.	Also,

moderation,	although	it	can	be	automated	to	a	large	extent,	becomes	more
important	when	user-generated	content	comes	in.	Moderation	requires	manual
intervention	that	will	have	an	effect	on	the	scalability	of	the	app.	Other	apps,
such	as	Uber,	come	with	other	(non-technical)	challenges.	They	need	to	deal
with	all	kinds	of	regulations	that	also	require	manual	interaction.	Anything	that
requires	manual	interaction	can	threaten	the	scalability	of	your	solution.	Once
your	hypotheses	are	proven	and	your	app	starts	to	grow,	it	is	important	to
automate	as	many	components	of	your	app	as	possible.

If	you	need	more	staff,	you	can	hire	more	people,	of	course.	However,
automation	is	better.	In	this	chapter,	we	will	focus	in	particular	on	the	technical
scalability	of	an	app.	When	the	distribution	of	the	app	itself	is	taken	care	of	by
the	Play	Store	or	App	Store,	there	is	no	need	to	have	a	strategy.	The	stores	can
distribute	these	apps	as	often	as	you	want	without	the	need	to	worry	about
scaling.	Well,	this	is	why	they	charge	30%	(for	paid	apps),	right?	Discussing	the
scalability	of	your	app	is	relevant	if	your	app	will	use	some	kind	of	backend.	For
example,	you	might	use	a	backend	to	share	stories,	images,	videos,	or	whatever.

Let's	say	that	you	have	created	a	first	MVP	for	your	app.	The	MVP	itself	is	not
an	app	yet.	It	is	just	there	for	validation.	Imagine	that	through	a	website	or	email,
you	obtain	user	input	that	requires	some	kind	of	processing.	As	we	have	seen	in
previous	chapters,	it	is	perfectly	fine	to	have	a	concierge	service.	You	will	be
doing	the	process	partly	or	completely	manually.	True,	that	does	not	scale,	but
why	would	you	automate	the	process	if	you	do	not	know	yet	if	it	is	going	to
work	out?

If	your	MVP	does	work	as	expected,	it	will	result	in	a	few	happy	customers.	You
have	proven	your	hypotheses	and	you	can	start	to	automate	the	process.	You
actually	built	an	app	and	created	the	backend	for	it.	You	stored	all	data	(texts,
images,	and	video)	on	a	single	server.	If	this	went	well,	there	will	be	more	happy
customers.	And	then,	your	app	gets	featured	in	the	App	Store	or	a	very
influential	early	adopter	writes	a	blog	about	your	app	and	it	goes	Boom!
Suddenly	a	lot	of	people	start	using	your	app	and	smoke	is	coming	out	of	your
server(s).	You	quickly	need	to	come	up	with	a	solution	before	things	start	to
slow	down	or	before	they	stop	working.	You	need	to	prevent	people	from
becoming	disappointed	or	your	momentum	will	be	gone.	You	can	add	a	couple
of	extra	servers	and	think	of	some	smart	load-balancing	solution,	but,	on	the
other	hand,	you	could	save	yourself	a	lot	of	trouble	if	you	start	to	utilize	cloud

services,	running	on,	for	example,	Amazon	or	Azure	from	the	beginning.

If	you	think	it	won't	go	that	fast,	then	consider	this:	If	you	do	not
expect	your	app	to	go	Boom!	then	why	bother	building	it	in	the	first
place?	Even	pet	projects	can	suddenly	become	very	popular!

A	scalable	backend
	

Depending	on	your	particular	situation,	a	mobile	backend	solution	may	have	to
deal	with	these	situations:

Database	and	load	balancing	the	database	tier
Web	server	and	load	balancing
Reducing	the	amount	of	data	that	goes	'over	the	line'	(low	bandwidth
support)
Storage	of	media	(images,	video,	and	audio)
Content	delivery	(video	streaming)

Cloud	storage	space	is	pretty	affordable	nowadays	and,	with	most	solutions,	you
just	need	to	click	a	few	buttons	to	scale	up	(and	spend	a	little	bit	more	money).
So,	why	not	use	cloud	services	right	from	the	start?	If	you	have	the	skills	and	the
time,	you	can	build	your	own	solution	and	run	it	on	the	(scalable)	cloud	using	an
Infrastructure-as-a-Service	(IaaS)	solution	such	as	AWS	or	Azure.	If	you	do	not
have	the	skills	or	time,	you	can	also	choose	to	use	a	Mobile	Backend	as	a
Service	(MBaaS).	The	latter	will	be	less	flexible	and	it	will	be	more	costly,	but
no	matter	which	one	you	choose,	both	services	will	be	scalable	without	too	much
effort	on	your	side.

	

	

	

Cloud-based	storage	and	processing
Run	your	app	backend	solution	and	store	your	data	in	the	cloud,	for	example	at:

Amazon	(Amazon	Web	Services	and	Amazon	Storage	Service,	S3	for
example)
Google	(App	Engine,	Cloud	Storage,	Cloud	Datastore,	and	Cloud	SQL)
Azure	(Virtual	server,	databases,	storage,	and	content	delivery)
Heroku

Most	of	these	solutions	offer	at	least	these	components:

Virtual	servers
Databases
Storage	of	media	(images	and	video)
Content	delivery	(video)

Things	that	will	have	an	influence	on	what	service	to	use	are	pricing,	specific
needs,	database	support,	database	type	(NoSQL	versus	SQL),	and	the
programming	language	that	is	most	convenient	for	you	or	your	team.	Also,	the
ease	of	use	and	the	pricing	for	push	notification	services	are	important	to
evaluate.	The	programming	languages	that	you	can	use	vary	from	cloud	solution
to	cloud	solution.	Google	App	Engine	is	a	better	choice	for	Java	developers,	and
.NET	believers	better	deploy	their	solution	in	the	Azure	Cloud.

Most	cloud	solutions	offer	multiple	programming	environments.	If	you	want	to
do	Java	on	Heroku,	or	Node.js	on	AWS	or	Azure,	then	you	can	do	so.	All
solutions	support	Java,	PHP,	Python,	and	Ruby	programming	languages.	Azure
and	Amazon	both	support	.NET	but	Azure	will	probably	be	the	preferred	choice
here.	Go	is	supported	by	all	of	them,	except	Amazon:

If	you	prefer	to	go	for	a	ready-made	backend	solution,	such	as	Firebase	and
Parse	server,	please	check	out	Chapter	8,	Cloud	Solutions	for	App	Experiments.	An
MBaaS	is	convenient	and	to	a	particular	extent	just	as	scalable,	but	convenience
comes	with	a	price.	You	start	with	a	freemium	plan,	but	when	you	need	to	scale
up	to	a	premium	plan,	it	is	often	more	expensive	than	developing	your	own
cloud	solution.	Another	pitfall	can	be	that	it	could	lead	to	a	vendor	lock-in	more
than	would	be	the	case	otherwise.	However,	if	you	need	an	extra	database	or	an
extra	server	for	storage	or	to	process	data,	it	is	easy	to	scale	things	up,	but	the
same	applies	to	IaaS.

Seen	from	a	client	perspective
Let's	look	at	an	example.	From	the	perspective	of	a	client	(here,	an	Android	app)
the	architectural	picture	could	look	as	shown	in	the	following	figure.	From	some
endpoint,	the	API	is	being	consumed.	This	will	result	in	receiving	data	that	will
be	handled	by	the	Retrofit	client	(HTTP	client	for	Android)	in	this	example.	It
consumes	data	in	the	JavaScript	Object	Notation	(JSON)	format	and
eventually	changes	this	data	into	objects	using	a	JSON	converter,	such	as	Gson
library,	a	library	capable	of	doing	object	mapping	on	JSON	data.	Often	an	SDK
is	available	from	the	party	offering	the	service,	which	will	make	it	faster	and
easier	to	consume	data	from	the	endpoint	or	to	send	data	to	it.	The	Parser	Server
SDKs,	for	example,	will	take	care	of	object	mapping	and	data	synchronization
from	and	to	the	Parse	server.	As	you	can	see	here,	it	does	not	really	matter	to
your	Android	or	iOS	app	what	the	structure	of	the	backend	will	look	like	and
where	it	is	hosted.	For	the	client	side,	all	that	matters	is	the	interface,	which,	in
this	example,	is	a	REST	API	delivering	JSON	data	on	request:

Things	are	not	always	as	ideal	as	in	this	preceding	image.	If	you	are	developing
an	app	that	is	getting	its	data	from	an	endpoint	that	originally	was	intended	to
use	with	a	website	or	another	non-mobile	solution,	you	might	need	to	create	a
middleware	solution	first.	Mobile	scalability	also	means	that	you	need	to	deal
with	low	bandwidth	circumstances.	It	is	important	to	limit	the	amount	of	data	in
a	single	transaction	as	much	as	possible.	Anything	that	is	not	instantly	needed	to
be	displayed	in	your	app	should	not	be	in	there.	Your	app	should	download
thumbnails	instead	of	downloading	images	or	videos;	it	should	have	a	paging

mechanism	(Load	More	options)	and	the	data	should	be	optimized	for	use	on	a
device	that	may	have	a	low	bandwidth	connection.

The	following	picture	nicely	demonstrates	the	difference	between	a	non-
optimized	and	an	optimized	situation	for	mobile	usage:

Instead	of	loading	the	whole	dataset	in	JSON	with	large	and	descriptive	names,
you	should	load	the	smallest	amount	of	data	possible	and	persist	it	on	the	device
for	caching	purposes.	Even	with	low-bandwidth	conditions,	and	even	if	you	do
not	have	an	internet	connection,	your	app	will	remain	responsive	and	usable.	For
further	optimization,	your	app	should	retrieve	thumbnails	first.	It	makes	no	sense
to	download	hi-res	images	if	your	user	only	sees	a	small	picture	of	it.	Also,	your
(middleware)	solution	should	allow	your	app	to	retrieve	the	app	in	chunks.	Have
a	look	at	the	Facebook	app	for	example.	It	only	loads	a	part	of	the	stream,	and
when	you	scroll	down	(some	apps	have	a	Load	More	button	for	this	at	the
bottom	of	the	list),	it	loads	another	section	of	the	data.	If	you	are	building	things
from	scratch	and	you	go	for	a	mobile-first	strategy,	then	this	paging	mechanism
is	something	you	need	right	away.	If	the	current	API	is	intended	for	non-mobile
use,	you	should	consider	creating	a	middleware	solution	first	to	optimize	the
data	stream.

A	well	scalable	app	comes	with	an	improved	user	experience	and	better
reliability,	and	will	be	easier	to	leverage	particular	events.	Think	of	holidays	or
particular	happenings	that,	depending	on	the	type	of	app,	could	all	heavily
influence	the	amount	of	traffic	involved	with	your	app.	A	scalable	app	backend
should	be	easy	to	scale	up,	allowing	you	to	deliver	what	is	needed	during	peak
hours/day.	It	should	also	allow	you	to	scale	down	at	other	moments	to	avoid
wasting	resources	when	they	are	not	utilized.

You	should	know	when	you	need	to
scale	up	or	to	scale	down
If	you	are	using	analytics	the	right	way,	you	will	know	when	to	up	or	to
downscale	your	solution.	Seasonality	and	also	the	nature	of	your	app	can	help	to
make	some	forecasts	here.	At	what	time	of	the	day	or	during	what	specific
events	will	your	app	be	used	the	most,	or	when	will	your	users	be	using	the	app
less?	For	example,	if	your	app	is	an	alarm	clock,	people	will	use	it	less	during
the	holiday	season.	Also,	if	your	app	is	related	to	the	Olympic	Games	you	can
expect	a	peak	usage	during	that	event.	During	holidays,	people	often	spend	more
money	in	the	App	Store,	resulting	in	additional	downloads	and	app	usage.
Finally,	campaigns,	certainly	when	you	are	offering	your	app	at	a	lower	price,
will	have	a	heavy	impact	on	your	app's	usage	rates.	Other	events	are	much
harder	to	predict.	What	if	your	app	gets	featured	and	grows	150%	a	day?	You
better	be	prepared	for	it.

The	number	of	users	says	something	about	the	number	of	simultaneous	users.
That	last	number	is	what	is	really	important	for	scaling	your	app	backend.	You
can	have	ten	million	users	that	are	using	your	app	regularly	or	you	can	have	ten
million	users	that	are	using	your	app	every	day.	One	is	quite	different	from	the
other.	Metrics	can	tell	you	something	about	the	average	time	spent	in	the	app	in	a
particular	time	frame.	If	you	have	an	international	app,	it	is	important	to	segment
this	by	time	zone.	Your	users	may	use	your	app	all	day	long	but	(maybe)	not
while	they	are	sleeping.

Anyhow,	it	is	important	to	realize	that	it	is	okay	if	your	app	does	not	scale	yet	or
if	it	only	supports	a	small	number	of	(concurrent)	users	as	long	as	it	can	be
scaled	up	relatively	easily.	Do	not	scale	because	your	app	needs	to	be	scalable.
You	need	to	be	prepared	to	do	the	right	things	when	necessary,	but	also	do	not
put	too	much	effort	in	it.	Perfectionism	has	killed	many	great	projects.	Do	not	let
that	happen	to	you.

A	real	horror	story	about	an	app
backend	that	did	not	scale
Low	bandwidth	can	create	a	poor	user	experience	even	with	caching	and	keeping
data	consumption	to	a	minimum,	but	some	things	are	outside	your	control.	On
the	other	hand,	a	totally	overloaded	backend	is	something	that	you	have	control
over	to	a	certain	level.	Your	users	judge	the	total	app	experience.	This	is	why	the
whole	architecture	matters.

Here	is	an	example	to	illustrate	this	point.	A	while	ago,	I	was	working	on	an
Android	SecondScreen	app	for	a	well-known	international	TV	show.	A	Non
Disclosure	Agreement	(NDA)	prevents	me	to	tell	you	which	one,	but	it	does	not
really	matter	to	the	story.	Anyhow,	the	show	was	broadcasted	on	television.	The
people	watching	the	show	at	home	were	able	to	give	their	votes	for	the	various
candidates	that	appeared	on	the	show.	Due	to	this,	it	was	easy	to	predict	that
there	would	be	a	lot	of	traffic	at	the	time	the	show	was	broadcasted.	So,	when
asking	the	third	party	that	was	developing	the	backend	of	the	app	about	the
scalability	of	their	solution,	they	told	me	that	they	could	guarantee	that	at	least
100K	users	could	use	the	use	the	app	while	watching	the	show.	I	was	naïve	not
to	ask	them	if	they	did	some	proper	load	testing	at	their	end.	I	just	assumed	that
they	were	a	professional	company.	Unfortunately,	they	turned	out	to	be	not	so
professional.

When	the	show's	new	season	started	and	people	began	to	use	the	app	for	the	first
time,	something	went	horribly	wrong	during	the	first	broadcast.	The	first	30
minutes	went	fine	and	about	40K	users	were	using	the	app	actively	by	voting.
Then,	the	app	stopped	working	in	most	cases	and	it	became	very	hard	to	vote.
The	reason	for	this	was	that	the	backend	could	not	handle	the	large	traffic	load.
Although	it	was	not	the	frontend	(the	app)	to	blame	instead	of	the	backend,	from
the	user's	perspective	it	was	the	app	that	sucked.	The	poor	performance
generated	a	lot	of	negative	reviews.	Even	though	the	next	broadcast	went	well,	it
was	hard	to	recover	from	the	bad	reviews.	The	damage	was	done.

Captain	hindsight	to	the	rescue!
Here	is	the	retrospective	on	this	issue.	If	we	had	a	proper	load	test	that	proved
what	was	promised,	then	the	situation	perhaps	could	have	been	avoided.	Also,	if
we	would	have	been	able	to	upscale	quickly,	we	could	have	avoided	a	lot	of
trouble.

Predicting	the	future	is	pretty	hard	unless	you	have	a	crystal	ball	that	actually
works.	As	far	as	I	know,	there	are	none.	So	instead,	always	make	sure	that	you
can	respond	quickly	to	new	situations.

You	need	to	be	prepared	for	situations	that	you	can,	more	or	less,	foresee.	Go
figure	it	out	for	yourself	and	do	some	heavy	load	tests.	Break	things	before	your
users	do	it	for	you.	If	you	notice	any	trouble,	then	you	need	to	find	the
bottlenecks	and	see	what	the	best	fixes	are	for	them.

To	scale	up	or	to	refactor?	That	is	the
question
	

Just	realize	that	upscaling	is	not	always	the	correct	answer.	If	your	architecture	is
bad	you	can	add	another	database	or	another	server,	but	that	would	just	be	a
short-term	patch	and	you	would	be	wasting	hardware	resources	(and	money).	If
a	better	architecture	without	upscaling	results	in	a	better	performance,	then	that
is	what	you	should	preferably	do.	In	addition,	you	still	need	to	make	sure	that
you	can	scale	up	quickly.

It	is	a	common	practice	to	keep	the	app	as	thin	as	possible	(although	there	are
some	exceptions).	Let	your	servers	do	all	the	heavy	work	instead	of	a	small
device	that	otherwise	could	lead	to	battery	drain	and	heavy	CPU	usage.	From
this	perspective,	scalability	often	applies	to	the	backend	alone.

As	your	app	user	base	grows	from	10	users	to	a	population	of	100,	to	10K,
100K,	or	1	million,	scalability	becomes	more	and	more	important.	The	best
practices	here	are	as	follows:

Keep	the	app	as	thin	as	possible
Keep	it	simple	and	do	not	scale	yet,	but	make	it	scalable
Use	cloud	storage	and	deployment
Consider	building	the	interface	(API)	first
It	is	important	to	obtain	great	insights	through	analytics
Follow	the	market,	plan	your	campaigns	carefully
Keep	data	traffic	as	low	as	possible	and	don't	transfer	data	that	will	not	be
utilized
Use	autoscale	options	where	possible

Things	that	influence	the	scalability	of	your	solutions	involve	the	following:

Database

Storage
Average	size	of	traffic
Regions	of	your	server	and	where	(most	of)	your	users	reside
The	choice	between	using	an	MBaaS,	hosting	your	solution	yourself,	and
cloud-based	solutions	such	as	App	Engine,	Azure,	or	Amazon

	

	

Auto-scaling
If	you	choose	to	use	Azure	as	a	backend	for	your	mobile	app,	you	can	use
Azure's	mobile	services.	It	offers	most	infrastructure	for	you,	including
processing,	storage,	and	scaling	options.	You	can	pick	a	pricing	tier,	such	as	free,
one	of	the	basic,	or	one	of	the	premium	plans.	An	example	from	the	Microsoft
document	that	shows	how	scaling	works	in	Azure	is	provided	in	the	following
picture.	The	picture	is	taken	from	the	classic	environment	and	it	looks	a	bit
different	in	the	'new'	portal;	however,	the	way	it	is	presented	here	is	clearer:

Most	Azure	services,	including	the	previously	mentioned	one,	come	with
autoscaling.	The	solution	will	automatically	scale	up	or	down	depending	on
traffic	or	by	following	schedules.	Think,	for	example,	of	a	day	and	night
schedule,	a	weekend	versus	weekdays	schedule,	or	a	schedule	for	a	specific
period	when	you	are	running	a	campaign.	It	depends	on	how	your	app	is	used	as
to	what	will	work	best	for	you.	If	you	have	no	clue,	you	can	learn	what	the	best
approach	will	be	by	keeping	an	eye	on	statistics.

On	Amazon,	you	have	more	or	less	the	same	options	for	autoscaling	and	AWS
Mobile	Services	can	help	you	to	build	apps	faster.	It	comes	with	support	for	push
notifications,	user	analytics,	data	storage,	and	synchronization	options.	It	can
automatically	increase	the	number	of	instances	during	peak	hours	(or	days)	and
decrease	them	when	less	capacity	is	needed,	thus	saving	you	money	by	reducing
costs:

Amazon	Cloud	Watch	enables	auto-scaling,	which	is	a	monitoring	service	for
AWS	Cloud	resources	and	applications.	You	can	read	more	about	it	at	https://aws.a
mazon.com/autoscaling/.

There	are	some	very	good	books	available	on	the	topic	that	provide	you	with
more	in-depth	knowledge	of	any	of	the	IaaS	here.	I	suggest	that	you	check	them
out	later.	In	this	chapter,	we	just	had	a	look	at	what	your	options	are	and	how	it
affects	your	strategy.

Another	interesting	read	is:	http://highscalability.com/blog/2016/1/11/a-beginners-guide-to-scaling
-to-11-million-users-on-amazons.html.

Scaling	an	MBaaS,	such	as	Firebase,	basically	comes	down	to	picking	another
price	plan.	Unlike	Azure,	Amazon,	and	App	Engine,	it	does	not	come	with
autoscale	options	and	in	general,	it	is	less	suitable	to	support	a	very	large	number

https://aws.amazon.com/autoscaling/
http://highscalability.com/blog/2016/1/11/a-beginners-guide-to-scaling-to-11-million-users-on-amazons.html

of	users.	This,	however,	should	not	prevent	you	from	using	Firebase,	for
example,	as	it	is	a	great	solution	to	get	started	and	more	importantly,	it	allows
you	to	validate	quickly.	Additionally,	if	you	want	to	migrate	from	MBaaS	to	IaaS
later,	you	can	use	the	time	that	you	have	saved	earlier.

Summary
In	this	chapter,	you	have	learned	about	a	scaling	strategy	for	your	app	and	how
this	strategy	applies	in	particular	to	your	app	backend.	A	good	architecture	and
the	ability	to	scale,	not	the	scale	itself,	are	key	elements	here.

By	definition,	storing	data	and	processing	services	in	the	cloud	is	often	very
scalable	but,	depending	on	what	you	choose,	could	also	be	very	costly.	If	you
want	to	use	data	from	an	API	that	originally	was	not	intended	to	be	consumed	on
a	mobile	device,	you	might	need	to	create	a	middleware	solution	first.	This	way
you	can	ensure	that	your	app	works	well	even	with	low-bandwidth	conditions.
Minimizing	the	amount	of	data	and	paging	it	can	help	improve	your	app's
performance.

Cloud	services	offer	convenience	but	at	a	price.	This	should	not	be	an	issue	as
soon	as	your	app	becomes	profitable.	There	are	many	ways	for	monetization	and
we	are	going	to	look	at	that	in	the	next	chapter.	Do	you	need	to	create	a	premium
app	or	will	in-app	purchases	lead	to	more	revenue?	Let's	find	out!

Monetization	and	Pricing	Strategy
	

In	this	chapter,	we	will	look	at	how	we	can	make	revenue	from	our	app.	It	is
obviously	one	of	the	most	important	parts	of	the	business	model	canvas,	and	also
the	most	exciting	one.	It	is	not	easy	to	get	money	for	a	mobile	app.	People	are
often	less	willing	to	spend	money	on	a	mobile	device	and	apps,	though	games
can	be	an	exception	to	this	tendency.	Fortunately,	there	are	plenty	of	other
possibilities	to	build	a	profitable	app	business,	and	we	will	see	what	approaches
there	are	to	accomplish	this.

We	will	look	at	multiple	ways	of	monetizing	your	app.	Also,	we	will	examine
what	a	smart	pricing	strategy	will	be	if	you	want	to	sell	your	app,	or	if	you	want
to	sell	a	product	within	your	app	(also	known	as	in-app	purchases).

Summarized,	in	this	chapter,	we	will	cover	the	following	topics:

Looking	at	what	monetization	strategies	you	could	apply	to	your	app
Learning	about	pricing	strategy
Finding	out	how	to	apply	a	pricing	strategy	to	your	listing	in	the	App	Store
or	Play	Store
Looking	at	how	in-app	purchases	will	be	implemented

	

	

Monetization	strategies
	

There	are	some	strategies	that	you	can	use	to	make	money.	You	can	sell	your
app,	display	advertisements,	use	in-app	subscriptions,	or	sell	user	data	to	third
parties.	They	all	can	be	a	bit	tricky	to	accomplish,	but	making	revenue	is	always
a	challenge,	and	you	will	need	to	figure	out	what	works	best	for	your	app.	Do
not	be	(too)	greedy.	People	are	used	to	a	world	in	which	everything	seems	to	be
free.	In	particular,	if	you	plan	to	sell	user	data,	you	need	to	have	a	good	plan.

Some	strategies	for	app	monetization	are	as	follows:

Sell	your	app	in	the	App	Store	or	Play	Store
Provide	a	light	and	free	version	of	your	app	and	sell	your	premium	app
Show	advertisements	in	your	app
Provide	an	in-app	purchase	product	to	remove	ads
Build	a	free	app	and	provide	premium	features	on	the	web
Sell	a	product	or	service	in	the	real	world
Monetize	your	(user)	data
Use	your	app	to	create	value	by	promoting	one	of	your	other	products	or
services

	

	

Selling	or	upselling	your	app
Sell	your	app	in	the	App	Store	or	Play	Store.	This	is	the	most	obvious	way	of
monetizating	your	app.	This	works	well	only	if	people	are	very	much	aware	of
your	app's	existence	and	great	reputation,	or	if	the	provided	added	value	of	your
app	is	very	clear.	In	the	early	days	of	the	App	Store,	this	problem	was	solved	by
publishing	two	apps:	a	light,	free	version	and	a	chargeable	premium	version.
Today,	it	has	become	more	common	to	apply	the	freemium	model	by	using	in-
app	purchases	(Apple's	term).	Google	uses	the	term	"In-app	Billing"	for	Android
devices.	The	idea	is	the	same,	though.	Users	download	the	app	for	free,	but	they
need	to	pay	to	unlock	specific	premium	content	or	functionality.	Because	of	their
addictive	nature,	this	model	works	very	well	for	games,	although	it	can	be
applied	to	more	serious	apps	as	well.	It	is	a	great	way	to	both	promote	your	app
and	to	upsell	premium	features.

Once	users	are	hooked	onto	your	app	and	decide	they	want	to	continue	to	use	the
app,	they	can	make	a	purchase	to	benefit	from	its	premium	features.	You	have	to
keep	in	mind	that	only	a	small	number	of	your	users	will	be	converted	into
paying	customers.	On	an	average,	the	conversion	from	a	freemium	to	a	premium
user	is	1%	to	5%	at	the	most.	This	should	not	be	a	problem.	The	expenses	for
some	apps	are	often	near	zero	(games),	but	it	matters	for	apps	with	a	backend
that	needs	to	be	hosted,	and	for	apps	that	require	storage	of	large	files	(videos).
Think,	for	example,	of	a	social	app	where	every	user	can	upload	or	stream	a
video.

In	general,	the	cost	for	cloud	storage	is	not	expensive	at	all,	but	a	lot	of	users
will	obviously	require	a	lot	of	storage	space.	In	short,	if	1%	to	5%	of	your	users
can	cover	the	expense	made	for	100%	of	your	(premium	and	freemium)	users,
you	are	safe:

Selling	a	product	or	service	in	the	real
world
Selling	your	app	in	a	store	is	convenient,	as	the	whole	payment	process	will	be
handled	for	you	by	Apple	or	Google.	However,	it	is	a	pretty	expensive	process.
They	will	charge	you	30%	for	it.	So,	if	you	sell	your	app	for	a	dollar,	you	will
get	70	cents,	right?	It	is	actually	even	worse.	Depending	on	the	country,	the
value	added	tax	(VAT)	and	income	tax	will	make	your	actual	revenue	even	less.
So,	at	a	21%	rate	for	VAT	and	30%	for	income	tax,	it	will	look	more	like	this:

Unless	you	move	to	a	city	such	as	Dubai,	for	example,	paying	taxes	is	not
something	that	can	be	completely	avoided,	but	what	you	can	do	is	avoid	the	30%
store	fee.	That	(probably)	will	only	work	if	you	are	not	selling	anything	digital
(content,	features,	game	levels,	or	inventory).	You	need	to	sell	a	physical	product
or	a	service	in	real	life.

For	example,	think	of	a	parking	app.	The	app	takes	away	the	hassle	of	getting	a
parking	ticket	and	coming	back	before	the	time	expires,	and	so	on.	In	exchange
for	this	service,	you	will	pay	an	additional	fee	(25	euro	cents	here	in	the
Netherlands;	Parkmobile	app,	2016)	each	time	you	park	using	the	app.	All
payments	are	arranged	by	credit	card,	and	Apple	or	Google	have	nothing	to	do
with	it.

Offering	your	app	for	free	and	selling
your	service
If	you	consider	your	app	to	be	only	one	of	the	many	channels	that	your	service	is
utilizing,	then	it	would	be	a	good	idea	to	offer	your	app	for	free	and	charge	for
your	service;	for	example,	on	your	website.	This	will	have	two	benefits.	Firstly,
it	will	influence	the	user's	price	perception	in	a	positive	way	(as	he	or	she	will
spend	money	on	a	website	instead	of	on	the	app).	Secondly,	you	do	not	need	to
pay	30%	to	Apple	or	Google.	This,	of	course,	means	you	need	to	handle	the
payment	yourself,	or	find	a	payment	service	provider	(PSP)	to	do	this	for	you.
However,	it	certainly	will	increase	your	revenue,	which	is,	of	course,	a	good
thing.

If	your	app	is	an	app	that	is	using	a	backend	and	is	suitable	for	use	with	SaaS,
such	as	CMS,	you	can	offer	the	premium	features	of	your	app	on	the	website
(larger	screen,	more	bandwidth).	Let	them	use	your	app	for	free,	but	charge	for
access	to	the	website:

Advertisements
Displaying	advertisements	is	the	most	well-known	way	of	app	monetization.
Advertisements	are	annoying	to	users,	but	they	are	necessary	to	get	revenue
when	your	app	is	free.	Making	money	from	in-app	advertisements	only	makes
sense	if	your	user	base	is	large	enough.	The	story	goes	that	it	was	Flappy	Bird's
only	way	to	create	revenue,	and	apparently	that	went	very	well.	The	developer
made	50K	a	day	from	it.	It	is	a	business	model	that	is	often	combined	with	in-
app	purchases.	Users	can	remove	the	advertisement	by	paying	a	small	fee.	This
can	be	a	one-time	fee,	or	a	subscription	for	a	month	or	year.

Ok,	so	you	want	to	add	some	advertisements	to	your	app.	For	both	iOS	and
Android,	you	can	choose	from	a	number	of	mobile	advertising	networks,	each
offering	an	SDK	for	the	platform	you	are	using.	The	network	will	serve	the
advertisements.	All	you	need	to	do	is	to	add	the	SDK	and	a	few	lines	of	code.

A	network	may	offer	multiple	advertisement	formats	and	campaign	types.	The
most	common	ones	are	listed	here:

Mobile	ad	formats:

Banner	(appears	at	the	bottom	or	top	of	the	screen)
Interstitial	(full	screen)
Native	(integrates	smoothly	with	the	content	of	your	app)

Campaign	types:

Cost	per	action/acquisition	(CPA):	The	advertiser	pays	for	a	particular
action	(contact,	sign-up,	submit)
Cost	per	click	(CPC):	The	advertiser	pays	for	each	click	on	an
advertisement
Cost	per	impression	(CPI):	The	advertiser	pays	for	each	impression
Cost	per	mille	(CPM):	The	advertiser	pays	for	each	1000	(estimated)
impressions:

Some	popular	mobile	ad	networks	are	as	follows:

AdMob	(acquired	by	Google)
Inmobi
TapJoy
Flurry
Kiip
MoPub
RevPub
Smaato

And	there	are	many	others!	Be	careful	when	and	how	you	display
advertisements	in	your	app.	Interstitials	(using	native	Facebook	ads,	for
example),	covering	almost	the	whole	screen,	are	the	most	annoying	ones	to	the
user.	For	your	user,	the	best	way	to	display	advertisements	will	be	via	banners
shown	at	the	bottom	of	the	screen.	However,	that	is	not	necessarily	the	best	spot
for	you.	Maybe	the	conversion	for	full-screen	advertisements	will	be	much
better.	It	depends	on	the	nature	of	your	app,	and	it	also	could	vary	from	Android
to	iOS.	Perhaps,	you	can	run	a	split	test	to	find	out	what	works	best	for	your
situation.

If	you	want	to	provide	an	option	to	remove	the	advertisements,	you	should
consider	putting	a	button	with	a	clear	call	to	action	near	the	advertisement.	What
about	a	Remove	ads	button	just	above	your	bottom	ad	banner?	That	way,	you
create	an	income	through	advertisements	and	an	income	from	people	willing	to
get	rid	of	them	by	paying,	let's	say,	$0.99:

Monetizing	your	data
If	you	have	a	large	number	of	users,	you	can	think	of	a	way	to	sell	data	to	third
parties	as	a	way	of	making	money	from	your	app.	You	have	to	be	careful	with
this	strategy,	as	your	users	are	probably	not	going	to	like	this	option.	Always
make	sure	that	the	data	that	you	are	selling	is	anonymous,	and	again	try	not	be
too	greedy.	Don't	sell	user	data	to	send	your	users	spam	messages	later.

If	you	have	a	large	user	base	where	each	user	has	a	rich	profile,	then	you	can
create	segments	from	those	profiles.	In	Chapter	11,	Onboarding	and	Registration,
we	have	reviewed	the	process	of	continuous	onboarding.	Building	a	large	user
base	combined	with	rich	user	profiles	increases	the	value	of	your	company	and
your	app,	even	if	you	are	not	selling	data	to	third	parties	immediately;	it	gives
you	the	option	to	sell	it	later.	The	more	you	know	about	your	users,	the	more
valuable	they	will	be.	For	example,	you	can	create	a	dataset	of	middle-aged
housewives	who	frequently	travel	on	particular	days	within	a	certain	area,	or	you
can	create	a	dataset	of	young	people	who	love	to	listen	to	metal	music.	All
segmentations	you	can	think	of	can	be	of	interest,	as	long	as	they	result	in	a
dataset	that	is	large	enough.

If	you	are	going	for	a	buyout	strategy,	a	large	number	of	users	might	be	more
important	than	the	app's	profitability.	Also,	if	your	app	helps	to	promote	or	to
sell	another	product	or	service,	digitally	or	physically,	it	is	providing	value.	The
revenue	will	come	from	selling	a	product	and	service.	Your	app,	again,	will	be
just	a	channel	that	is	supporting	your	sales	strategy.

Pricing	strategy
Let's	assume	that	you	want	to	sell	your	app,	or	that	you	want	to	add	in-app
purchases.	What	will	your	strategy	look	like?	When	are	you	going	to	charge
money?	Right	from	the	start,	enabling	the	user	to	download	the	app	in	the	first
place?	Or	will	you	offer	a	trial	period,	allowing	the	user	to	evaluate	your	app
first?	Or	will	it	be	an	app	with	premium	features	that	can	be	unlocked	with	an	in-
app	purchase?	The	answers	to	these	questions	will	depend	on	the	nature	of	your
app,	the	region	of	your	users,	and	the	nature	of	the	device	operating	system.

	

Price	perception
Price	perception	is	an	important	element	here.	Everybody	knows	about	the
psychological	effect	of	the	99	cents	approach.	We	know	that	$0.99	is	just	one
cent	away	from	$1.00.	Still,	it	looks	cheaper.	Apps	and	games	also	apply	some
interesting	tricks	based	on	the	pricing	psychology.	One	of	them	is	the	effect	of
price	points;	given	three	products,	including	a	cheap	product	offering	minimal
value	and	a	ridiculously	high-priced	product	makes	the	product	in	the	middle
look	like	the	best	deal,	even	when	its	price	is	higher	than	the	amount	the	user
originally	intended	to	spend.	We	will	see	a	sample	of	this	later.

For	games,	interesting	items	to	sell	are	additional	lives,	coins,	or	levels.	The
following	is	an	example	of	the	products	available	for	the	8-ball	pool	game	app,
taking	the	price	points	theory	to	the	maximum	and	do	you	want	a	stack,	pile,
wallet,	stash,	heap,	or	a	vault	of	coins:

For	games	selling	coins,	this	strategy	works	pretty	well.	At	the	start	of	the	game,
when	the	player	is	still	discovering	things	and	not	addicted	to	it	yet	(Remember
Candy	Crush?),	there	are	plenty	of	coins	or	credits	to	spend.	Often,	the	player
can	unlock/gain	new	credits	in	the	game;	but	often,	the	bottom	of	the	virtual
treasury	is	seen	too	early.	If	that	is	the	case	then,	for	the	impatient	players,	there
are	virtual	coins	to	the	rescue.	Typically,	only	1%	to	3%	of	the	players	will
actually	make	a	purchase.	That	is	still	enough	to	make	a	game	very	profitable.

For	apps	that	are	not	games,	it	is	more	important	to	think	about	which	features
should	be	premium	versus	freemium.	You	need	to	determine	what	features,	in
the	perception	of	your	user,	provide	additional	value.	If	it	is	anything	other	than
removing	ads,	then	which	premium	features	should	your	app	offer,	and	which
features	still	need	to	be	available	for	free?	You	can	run	some	experiments	to	find
the	answer	to	this	question:	What	are	your	users	willing	to	pay	for	as	premium
features?

Although	not	specific	for	mobile	apps,	there	is	an	interesting	e-book	to	read
about	pricing,	titled	Don't	Just	Roll	the	Dice.	To	understand	product	pricing,	this
book	helps	you	to	understand	some	(but	not	too	much)	economics.	You	can	find
an	example	and	the	free	PDF	download	available	at	download.red-gate.com/ebooks/DJRT
D_eBook.pdf.	Alternatively,	you	can	do	a	search	for	it	on	Google.

You	can	also	look	at	this	SlideShare:

http://www.slideshare.net/omohout/lean-pricing-startups

http://download.red-gate.com/ebooks/DJRTD_eBook.pdf
http://www.slideshare.net/omohout/lean-pricing-startups

Android	or	iOS	first?
As	a	start-up	company,	you	need	to	decide	on	which	platform	you	are	going	to
develop	first.	If	it	is	important	to	reach	an	audience	as	large	as	possible,	then
Android	would	probably	be	your	first	pick,	unless	you	know	that	the	percentage
of	iOS	users	amongst	your	targeted	audience	is	higher.	However,	if	monetization
by	selling	your	app	or	selling	in-app	products	is	the	most	important	thing	to	you,
then	iOS	probably	would	be	a	better	first	pick.	The	reason	for	this	is	that	iOS
users	are	more	willing	to	spend	money	on	apps	than	Android	users.	On	the	other
hand,	displaying	advertisements	seems	to	work	better	for	the	latter.	The	click-
through	rates	(CTR)	are,	on	average,	better	for	the	Android	platform.

	

In-app	purchase	product	types
For	iOS,	there	are	four	types	of	in-app	purchase	products.	The	iOS	in-app
purchase	product	types	are:

Consumable
Non-consumable
Non-renewing	subscription
Auto-renewing	subscription:

Consumable	products	are	consumed	in	the	process;	for	example,	an	extra	life	in
a	game.	Non-consumable	products	can	be	bought	once,	and	unlock	features
permanently.	A	subscription	unlocks	features	or	a	functionality	for	a	particular
amount	of	time;	for	example,	to	access	particular	(premium)	content.	There	are
also	two	types	of	subscriptions	available:	a	non-renewing	subscription,	and	an
auto-renewing	subscription.

You	can	set	up	products	of	each	type	in	iTunes	Connect.	For	each	product,	you

can	choose	a	product	ID,	a	reference	name	(for	internal	reference),	a	display
name,	a	description	name,	and	a	price	tier.	You	can	also	sell	your	app	or	products
at	certain	price	points.	The	first	tier	refers	to	a	price	of	$0.99;	for	example,	it
looks	like	shown	later.	These	are	the	products	of	the	Empurror	app,	the	sample
that	we	are	going	to	have	a	closer	look	at	later	on	in	this	chapter.

For	more	information,	see	https://developer.apple.com/in-app-purchase/.

https://developer.apple.com/in-app-purchase/

In-app	billing
In-app	billing	products	for	Android	can	also	be	a	consumable,	non-consumable,
or	a	subscription	type.	From	a	high-level	perspective,	there	are	no	large
differences.

You	can	implement	In-app	billing	only	in	applications	that	you	publish	through
Google	Play.	You	can	specify	two	product	types	for	your	In-app	billing
application:	managed	in-app	products,	and	subscriptions.	Google	Play	handles
and	tracks	ownership	for	in-app	products	and	subscriptions	for	your	application
on	a	per-user	basis.

If	you	are	using	the	In-app	Billing	API,	you	can	also	consume	managed	items
within	your	application.	You	would	typically	implement	consumption	for	items
that	can	be	purchased	multiple	times,	such	as	in-game	currency,	fuel,	or	magic
spells.	Once	purchased,	a	managed	item	cannot	be	purchased	again	until	you
consume	the	item.

A	subscription	is	a	product	type	offered	in	In-app	Billing	that	lets	you	sell
content,	services,	or	features	to	users	from	inside	your	app,	with	recurring
monthly	or	annual	billing.	You	can	sell	subscriptions	to	almost	any	type	of
digital	content,	from	any	type	of	app	or	game.

To	initiate	a	purchase,	your	application	sends	a	billing	request	for	a	specific	in-
app	product.	Google	Play	then	handles	all	of	the	checkout	details	for	the
transaction,	including	requesting	and	validating	the	form	of	payment	and
processing	the	financial	transaction.

When	the	checkout	process	is	complete,	Google	Play	sends	your	application	the
purchase	details,	such	as	the	order	number,	the	order	date	and	time,	and	the	price
paid.	At	no	point	does	your	application	have	to	handle	any	financial	transactions;
that	role	belongs	to	Google	Play.

For	more	information,	see	https://developer.android.com/google/play/	billing/billing_overview.htm
l.

https://developer.android.com/google/play/billing/index.html

See	how	in-app	purchases	can	be
implemented
Since	in-app	purchases	(iOS)	often	show	higher	conversions	than	those	for	in-
app	billing	(Android),	we	will	have	a	look	at	in-app	purchases,	in	particular,
using	the	case	of	the	Empurror	app.

The	case	of	the	Empurror
	

The	Empurror	is	a	little	SpriteKit	game	for	iOS	that	I	have	worked	on
previously.	It	is	a	very	simple	game	about	a	cat	(the	Empurror)	and	many	kittens,
jumping	off	a	roof.	In	this	game,	our	hero	(the	player)	needs	to	catch	them	all	in

order	to	succeed:	

The	game	comes	with	three	in-app	purchases,	all	donations,	not	adding	any
special	features	to	the	game,	other	than	a	view	of	the	Empurror	saying	thank
you.	Oh	yeah,	and	you	can	rub	his	belly	to	make	him	purr.

Anyway,	the	in-app	purchase	view	looks	as	follows.	The	game	offers	three
products:	a	generous	donation	(cat	food),	a	massive	donation	(a	nice-looking
fish),	and	an	amazing	donation	(a	huge	turkey).	We	have	added	these	three	types
of	donations	to	do	some	experimenting	on	pricing.

The	first	focus	is	on	the	middle	one,	the	massive	donation.	We	tried	to	make	it
look	like	the	best	deal.	Give	that	cat	a	fish	if	you	like	the	game!	The	amazing
donation	just	seems,	well,	a	little	bit	too	amazing	and	is	obviously	overpriced.
Paying	99	cents	only?	Your	name	is	not	Scrooge,	is	it?	Well	then,	go	for	the
"Massive	donation".

This	is	basically	what	we	were	trying	to	do	here.	Of	course,	this	pricing	strategy

works	best	with	real	digital	incentives,	but	you	get	the	picture:	

If	we	had	developed	an	app	that	offered	in-app	purchases,	then	our	products	for
removal	could	follow	the	same	strategy:	a	fair	deal	in	the	middle,	a	minor	one	on
the	left,	and	an	expensive	one	on	the	right,	just	to	make	the	middle	one	look
great:

Remove	ads	for	1	week	for	$	0.99
Remove	ads	for	1	month	for	$	1.99
Remove	ads	for	1	year	for	$19.99

If	you	use	the	app	for	at	least	a	year,	the	best	savings	will	be	the	third	one.
However,	when	the	options	are	presented	as	we	have	done	it,	most	people	will	be
encouraged	to	choose	the	middle	option.	This	works	for	most	apps,	but	there	is
no	reason	for	not	getting	feedback	on	this	strategy.	Measure	and	figure	out	what
product	leads	to	the	best	conversion.	There	are	analytical	tools	that	will	help	you
do	this.	See	Chapter	13,	Play	Store	and	App	Store	Hacks,	and	Chapter	14,	A/B	Testing
Your	App,	for	more	information.

Now,	have	a	look	at	the	code	to	see	what	needs	to	be	done	to	implement	this
payment	model.	The	following	code	is	for	iOS	in	Objective-C,	but	it	is	not	hard
to	convert	it	to	Swift	(4)	if	you	want	to.	Also,	for	Android,	things	work	a	little	bit
different,	but	the	main	idea	remains	the	same	for	all	cases.

You	will	define	a	number	of	products	for	your	app	at	iTunes	Connect	(or	Google
Developer	Console)	that	you	need	to	download	when	the	user	navigates	to	your
in-app	purchase	view.	Notice	the	import	of	StoreKit	and	the
SKProductsRequestDelegate	here:	@interface	PurchaseViewController	:
UIViewController	<SKProductsRequestDelegate,
SKPaymentTransactionObserver>	...

#import	"PurchaseViewController.h"

#import	<StoreKit/StoreKit.h>	...

	

/*

4	In-App	Purchases

*/

#define	kProductTipGenerous	@"EMP_TIP_JAR_GENEROUS"

#define	kProductTipMassive	@"EMP_TIP_JAR_MASSIVE"

#define	kProductTipAmazing	@"EMP_TIP_JAR_AMAZING"

@implementation	PurchaseViewController	...

When	the	view	appears,	we	add	an	event	to	measure	conversion	(we	use	Flurry
here),	and	load	the	products	from	the	store,	that	is,	if	we	are	allowed	to	do	so:
@synthesize	scene;

-	(void)viewDidLoad	{

[super	viewDidLoad];

	

[Flurry	logEvent:analyticsPurchaseViewShown];	...

[self	loadProductsFromStore];

}

	

-(void)loadProductsFromStore{

if([SKPaymentQueue	canMakePayments]){

NSLog(@"User	can	make	payments");	SKProductsRequest
*productsRequest	=	[[SKProductsRequest	alloc]
initWithProductIdentifiers:[NSSet	setWithObjects:
kProductColorfulWorld,

kProductTipGenerous,

kProductTipMassive,

ProductTipAmazing,	nil]];

	

productsRequest.delegate	=	self;	[productsRequest	start];

}

else	{

NSLog(@"User	cannot	make	payments,	perhaps	due	to	parental
controls");	}

}

Once	we	have	received	a	response,	we	can	show	them	to	the	user,	or,	as	is	the
case	here,	enable	the	corresponding	buttons	allowing	the	user	to	make	a
purchase.	For	each	product,	a	product	identifier,	a	name,	and	a	price	will	be
returned:	-	(void)productsRequest:(SKProductsRequest	*)request
didReceiveResponse:(SKProductsResponse	*)response{

if	(self.view	==	nil){

return;

}

	

SKProduct	*validProduct	=	nil;

int	count	=	(int)[response.products	count];	products	=
response.products;

if(count	>	0){

validProduct	=	[response.products	objectAtIndex:0];
NSLog(@"Products	Available!");	...

for	(SKProduct*	product	in	products){

[self	enableProductPurchaseOption:product];	}

}

else	if(!validProduct){

NSLog(@"No	products	available");	}

}

	

-(void)enableProductPurchaseOption:(SKProduct*)product{

	

if	([product.productIdentifier

isEqualToString:kProductTipGenerous]){

[nameGenerous	setEnabled:YES];	[priceGenerous	setEnabled:YES];
[nameGenerous	setTitle:	@"Generous	donation"

forState:UIControlStateNormal];	[priceGenerous	setTitle:
product.price.stringValue	forState:(UIControlStateNormal)];	}

...

if	([product.productIdentifier	isEqualToString:kProductTipAmazing])
{

[nameAmazing	setEnabled:YES];	[priceAmazing	setEnabled:YES];
[nameAmazing	setTitle:	@"Amazing	donation"

forState:UIControlStateNormal];	[priceAmazing	setTitle:
product.price.stringValue	forState:(UIControlStateNormal)];	}

}

If	the	user	clicks	on	an	any	of	the	buttons	(massive	donation!),	the	purchase
transaction	will	be	started.	There	are	a	couple	of	transaction	states	for	which	a
callback	will	be	generated.

If	the	payment	succeeded	(SKPaymentTransactionStatePurchased),	we	need	to	let	the
app	know	to	act	upon	it	by	calling	the	EnablePurchaseProduct	method.	If	the	payment
failed	(SKPaymentTransactionStateFailed),	or	if	another	event	occurred,	we	can	act

upon	that	as	well	if	needed:	-(void)purchase:(SKProduct	*)product{

	

if	(products==nil	||	products.count==0){

return;

}

SKPayment	*payment	=	[SKPayment	paymentWithProduct:product];
[[SKPaymentQueue	defaultQueue]	addTransactionObserver:self];
[[SKPaymentQueue	defaultQueue]	addPayment:payment];	}

	

-	(void)paymentQueue:(SKPaymentQueue	*)queue
updatedTransactions:(NSArray	*)transactions{

	

for(SKPaymentTransaction	*transaction	in	transactions){

	

switch(transaction.transactionState){

case	SKPaymentTransactionStatePurchasing:	NSLog(@"Transaction
state	->	Purchasing");	//called	when	the	user	is	in	the	process	of
purchasing.

break;

	

case	SKPaymentTransactionStatePurchased:	//this	is	called	when	the
user	has	successfully	purchased	the	package

[self	enablePurchaseProduct:	transaction.payment.productIdentifier];

[[SKPaymentQueue	defaultQueue]

finishTransaction:transaction];	NSLog(@"Transaction	state	->
Purchased");	break;

	

case	SKPaymentTransactionStateRestored:	NSLog(@"Transaction
state	->	Restored");	[self	enablePurchaseProduct:
transaction.payment.productIdentifier];	[[SKPaymentQueue
defaultQueue]

finishTransaction:transaction];	break;

	

case	SKPaymentTransactionStateFailed:	if(transaction.error.code	==

SKErrorPaymentCancelled){

NSLog(@"Transaction	state	->	Cancelled");	}

[[SKPaymentQueue	defaultQueue]

finishTransaction:transaction];	break;

default:

break;

}

}

}

If	a	user	has	made	a	purchase	previously	that	is	non-consumable	or	otherwise
still	valid	(think	of	a	subscription),	then	a	restore	option	needs	to	be	made
available.	Think	of	a	user	who	gets	a	new	device,	or	who	has	reinstalled	the	app.
According	to	Apple	guidelines	(Google	has	something	similar),	the	app	needs	to
be	able	to	restore	the	previous	purchase,	and	it	will	probably	not	accept	your	app
if	it	does	not	have	such	an	option.

The	app	calls	the	restore	method	(because	the	user	clicks	on	a	restore	button,	or
something	like	that),	which	triggers	the	restoreCompletedTransactions	method:	-
(void)restore{

[[SKPaymentQueue	defaultQueue]	restoreCompletedTransactions];	}

This	is	where	the	SKPaymentTransactionStateRestored	state	comes	from.	The	app
should	act	upon	this	just	as	is	the	case	when	a	purchase	succeeds.	In	addition	to
this,	you	can	provide	some	extra	feedback	to	the	user	about	the	fact	that
premium	features,	or	other	purchases,	have	been	restored.

Finally,	the	transaction	is	finished	and	the
paymentQueueRestoreCompletedTransactionsFinished	method	is	triggered.	This	method	is
probably	even	more	suitable	to	respond	to	a	restored	or	a	succeeded	state:	-
(void)	paymentQueueRestoreCompletedTransactionsFinished:
(SKPaymentQueue	*)queue	{

NSLog(@"received	restored	transactions:	%lu",	(unsigned
long)queue.transactions.count);

for(SKPaymentTransaction	*transaction	in	queue.transactions){

if(transaction.transactionState	==

SKPaymentTransactionStateRestored){

//called	when	the	user	successfully	restores	a	purchase
NSLog(@"Transaction	state	->	Restored");	[self
enablePurchaseProduct:	transaction.payment.productIdentifier];
[[SKPaymentQueue	defaultQueue]

finishTransaction:transaction];	break;

}

...

}

}

	

	

Applying	a	pricing	strategy	to	your
store	listing
Although	in-app	purchases	on	average	have	higher	conversion	rates,	you	can
also	charge	for	your	app	right	away.	If	you	sell	your	app	in	the	App	Store,	then
the	most	important	question	is	what	price	tier	to	pick	for	it.	You	can	try	to	figure
out	what	is	being	charged	for	similar	apps	in	the	App	Store.	Check	App	Annie,
for	example,	to	see	how	other	apps	are	doing.	Use	your	browser	to	visit	https://ww
w.appannie.com/apps/ios/top	to	learn	more.	Charging	for	an	app	upfront	works	well
only	for	those	apps	that	a	lot	of	people	are	aware	of,	when	it	has	a	good
reputation,	and	when	it	is	totally	clear	what	the	app	is	offering.	Often,	there	are
comparable	apps	offered	for	free	by	competitors,	so	the	added	value	that	your
app	offers	must	be	obvious	to	the	user.

If	your	app	is	related	to	a	well-known	brand,	or	when	you	are	operating	in	a
niche	market,	then	charging	before	the	user	can	download	the	app	could	work	as
well.	Otherwise,	you	should	seriously	consider	the	freemium	model	and	make
money	from	in-app	purchases	instead.

Here	is	an	example	of	the	top	paid	iOS	apps	as	shown	at	App	Annie	(US	market,
Q3,	2016).	It	is	no	surprise	that	there	are	a	lot	of	Minecraft	clone	apps	in	the
store.	A	million	copies	of	Minecraft	Pocket	edition	have	been	sold	for	almost	$7
each!

https://www.appannie.com/apps/ios/top

Of	course,	the	best	way	to	find	the	right	price	point	for	your	app	is	to	run	some
tests.	Start	with	a	high	price	for	your	app,	and	lower	it	later	if	needed:

If	you	want	to	test	if	a	lower	price	point	increases	the	number	of	purchases,	and
if	you	want	to	test	at	what	price	point	the	revenue	from	your	app	is	optimal,	you
should	consider	offering	a	special	discount	for	a	limited	period.	If	you	have
found	that	price	point,	you	may	apply	it	to	your	app	permanently.	The	number	of
sales	is	not	the	most	important	factor	here.	Instead,	find	the	price	point	that
results	in	the	largest	revenue.	For	example,	let's	say	that	if	you	charge	$3.99	for
your	app,	you	can	sell	10	copies	a	month.	If	you	lower	the	price	by	one	dollar	to
$2.99,	you	can	sell	three	times	as	much.	What	happens	if	you	sell	your	app	at	the
minimum	price	of	$0.99?	Wow,	you	sell	60	copies	instead	of	10:

But	when	you	do	the	math	to	find	out	what	your	revenue	is,	you	will	find	that	the
price	point	of	$2.99	is	the	one	that	you	should	pick:

10	x	$3.99	=	$39.90

30	x	$2.99	=	$87.70

60	x	$0.99	=	$59.40

Summary
In	this	chapter,	we	have	seen	multiple	ways	of	monetizing	your	app.	A	large
number	of	users	is	nice	to	have,	but	a	large	number	of	customers	is	more
welcome.	After	all,	you	have	a	business	to	run,	right?

We	have	seen	the	differences	between	selling	your	app	and	the	freemium	model,
where	you	offer	your	app	for	free	and	where	you	make	money	from	selling
premium	features.	If	you	do	this,	your	app	will	become	more	valuable	to	the	user
after	a	certain	amount	of	time.	Because	of	this,	a	small	percentage	of	users	will
convert	to	paying	customers.	Your	app	probably	will	be	more	profitable	with	the
in-app-purchases	strategy.

We	had	a	look	at	pricing	strategies,	and	we	saw	a	sample	of	how	to	implement
in-app	purchases	in	an	iOS	app.	You	need	to	test	which	strategy	will	work	best
for	your	app.	You	can	run	some	A/B	tests,	and	you	will	have	to	listen	to	the
feedback	you	get	from	your	users.	You	need	to	find	out	what	the	premium
elements	of	your	app	are,	according	to	your	users.	You	can	have	a	look	at	the
reviews	for	your	app	and,	if	needed,	reply	to	the	comments	they	give.

When	you	have	a	look	at	the	reviews	in	the	App	Store	(or	Play	Store)	then,	in
particular,	the	negative	reviews	are	interesting.	Do	not	be	offended	with	what
people	write	about	your	app.	Apparently,	they	thought	it	was	worthwhile	to	give
you	this	feedback.	If	you	respond,	not	just	as	a	comment	to	their	review,	but	also
by	releasing	a	new	version	that	solves	the	issue	that	they	are	experiencing,	you
can	turn	an	angry	user	into	a	happy	one!

You	will	have	to	make	the	feedback	loop	smaller	by	releasing	early	and	often.
What	you	need	is	a	Continuous	Delivery	strategy,	and	that	is	exactly	what	you
will	read	about	in	the	next	chapter!

Continuous	Deployment
In	this	chapter,	we	will	see	how	we	can	organize	a	workflow	in	which	we
automate	the	process	of	testing	and	delivering	your	app.	You	can	do	this	for	both
the	ad	hoc	and	the	public	releases	of	your	app.	To	make	the	build-measure-
feedback	loop	really	work	for	you,	you	need	to	release	early	and	often.

You	can	install	Jenkins	or	TeamCity	on	a	build	server	or	another	dedicated
machine	to	make	a	new	build	of	your	app	each	time	a	new	feature	becomes
available.	Basically	it	comes	down	to	that,	but	there	are	many	interesting
strategies	to	consider.	For	example,	what	is	your	branching	strategy	(Git
workflow)?	Do	you	want	to	run	unit	or	UI-tests	on	the	build	server?	How	can
you	support	variants	(Android)	or	targets	(iOS)	for	your	app?	Let's	find	out	in
this	chapter.

We	will	have	a	look	at	various	tools	that	can	help	us	with	the	ad	hoc	distribution
of	the	app.	Some	of	them	can	also	help	you	with	the	deployment	of	your	app	to
the	Play	Store	or	to	the	App	Store.

Specifically,	in	this	chapter	we	will	cover	the	following	topics:

Learning	the	benefits	of	an	automated	workflow
Seeing	what	Continuous	Integration,	Continuous	Delivery,	and	Continuous
Deployment	are	about
Figuring	out	how	a	good	branching	strategy	can	help	you	to	get	things	done
Learning	about	TeamCity	and	Jenkins
Having	a	look	at	build	variants	or	build	targets	to	support	different	versions
of	an	app
Examining	how	Gradle	can	help	us	create	different	build	flavors	and	types
Seeing	how	we	can	distribute	the	app	using	Fastlane,	Fabric,	or
HockeyApp

Continuous	Deployment	=
Continuous	Integration	and	Delivery
Why	are	Continuous	Integration	and	Continuous	Delivery	important	in	the	first
place?	There	are	number	of	answers	to	this	question.	One	of	them	is	that	you
need	feedback	as	early	as	possible.	Since	you	also	want	to	ensure	a	certain
quality	level,	there	may	be	some	friction	here.	Distributing	and	testing	your	app
will	take	a	large	amount	of	time,	however,	you	also	need	to	release	early	and
often.

A	build	server	can	help	you	to	accomplish	this	goal,	because	a	build	server	can,
among	other	things,	verify	if	your	code	compiles	and	if	your	tests	still	succeed.
In	addition,	it	can	distribute	the	app	to	beta	testers	or	to	the	App	or	Play	Store.
At	a	specific	time,	or	each	time	a	new	feature	has	been	implemented,	the	build
server	will	be	triggered	to	perform	these	and	other	tasks.

Having	a	smart-branch	strategy	is	required	if	you	want	to	set	up	a	Continuous
Deployment	environment.	It	can	also	save	you	a	lot	of	trouble.	Here	is	an
example	of	such	an	environment:	

Continuous	Integration
Typically,	this	event	will	be	triggered	when	changes	have	been	committed	and
pushed	to	a	repository.	The	build	server	obtains	the	source	from	a	specific
repository	and	branch.	It	tries	to	build	the	code	and	it	performs	automated
quality	checks	using	SonarQube,	for	example,	(QA).

SonarQube	is	a	great	tool	to	measure	code	quality.	It	is	an	automated	solution	so
it	cannot	fully	replace	code	reviews,	however,	it	is	capable	of	finding	issues	that
may	be	or	may	not	become	an	issue	for	the	quality	or	performance	of	your	app.

SonarQube	will	take	care	of:

Architecture	and	design
Coding	rules
Duplications
Unit	tests
Code	complexity
Finding	potential	bugs

You	can	define	custom	rules	or	use	the	default	ones	that	exist	for	more	than	20
programming	languages,	including	Java	(soon	Kotlin	will	be	also	be	fully
supported),	that	you	are	probably	using	for	your	Android	app.	It	can	also	check
Objective-C	code	and	Swift.	You	can	find	SonarQube	here:	http://www.sonarqube.org.
If	the	QA	check	succeeds,	then	the	build	server	can	also	run	the	unit	tests	and
even	UI-tests.

You	can	configure	the	build	server	to	make	a	daily	build	at	a	specific	time	or	to
start	each	time	a	new	pull	request	is	made.	The	best	practice	is	to	create	a	daily
build	from	the	development	branch	or	each	time	you	want	to	have	an	ad	hoc
release	for	your	testers.	For	each	new	pull	request,	you	can	create	a	new	build
(with	each	new	commit)	for	the	specific	feature	branch.	You	will	find	more
about	branching	strategies	in	the	'Repository	and	Git	workflow'	paragraph	later.

The	purpose	of	Continuous	Integration	is	to	review	code	and	to	test	code	as	often
as	possible	by	running	automated	tests	(unit	and	UI	tests).	The	idea	is	that	if

http://www.sonarqube.org

anything	during	this	flow	fails,	you	will	be	notified	as	early	as	possible.	This
enables	you	to	make	changes	before	your	app	is	distributed.	The	app	is
distributed	only	if	all	steps	succeed.	If	the	build	breaks,	members	of	your	team
(often	developers)	will	be	notified	through	email,	Slack,	or	any	other
communication	channel	that	you	use.

Continuous	Delivery
	

In	this	workflow,	the	built	and	tested	code	is	made	available	as	an	ad	hoc
distribution	to	testers	(or	beta	users).	They	can	review	the	app	and	apply	some
manual	tests	to	it.	They	can	perform	some	functionality	tests	in	particular,	as	a
lot	of	tests,	but	not	everything	can	be	automated.

The	build	server	can	distribute	an	ad	hoc	version	of	your	app	by	using	Fabric,
HockeyApp,	The	alpha/beta	Play	Store,	or	iTunes	Beta	(previously	known	as
TestFlight).	The	deployment	of	your	app	needs	to	be	as	smooth	as	possible.	A
tool	such	as	Fastlane	can	help	you	distribute	an	ad	hoc	version	and	can	also	you
help	you	to	publish	your	app	in	the	Play	Store	or	App	Store.

	

	

	

Repository	and	Git	workflow
The	build	server	needs	to	retrieve	the	code	from	a	repository.	It	is	always	a	smart
idea	to	use	a	repository,	even	when	you	work	alone.	Two	well-known	Git-based
repositories	are	GitHub	and	Bitbucket	(also	known	as	Stash).	Both	come	with	a
free	and	a	paid	plan.	GitHub	offers	private	repositories	only	in	the	paid	plan	(see	
https://github.com).	A	private	repository	is	accessible	for	your	team	members	only.	A
public	repository	is	available	to	anyone.	Bitbucket	offers	private	repositories	in
the	free	plan,	so	let's	create	a	Bitbucket	account	at	https://bitbucket.org.

A	common	Git	workflow	is	shown	as	follows.	For	the	development	of	each	new
feature,	a	feature	branch	will	be	created.	Once	completed,	and	code	reviewed	via
a	pull	request,	the	feature	branch	can	be	merged	into	the	development	branch.

Using	a	smart	branching	strategy,	at	least	two	important	things	can	be
accomplished:

Only	versions	of	the	app	that	are	fully	tested	and	are	accepted	can	be
released
Hotfixes	can	be	applied	quickly,	without	disturbing	the	continuous
integration	workflow

This	makes	sense	even	when	you	are	the	only	developer:

On	the	dev	(or	on	the	feature)	branch,	unit	and	UI	tests	can	be	run.	If	all	tests	are
successful,	the	dev	branch	can	be	merged	into	the	master	branch	and	made	ready
for	release.	If,	however,	something	seems	to	be	broken	while	the	app	is	live,	you
can	use	feature	branching	on	the	master	branch	to	apply	a	hotfix,	without

https://github.com
https://bitbucket.org

disturbing	the	development	of	new	features.

This,	of	course,	is	just	a	simplified	example,	and	you	may	want	to	do	things
differently	depending	on	your	needs.	To	learn	more	about	the	Git	workflow,
check	the	website	at	https://www.atlassian.com/git/tutorials/comparing-workflows	or	https://git-scm
.com/book/en/v2/Git-Branching-Branching-Workflows.

https://www.atlassian.com/git/tutorials/comparing-workflows
https://git-scm.com/book/en/v2/Git-Branching-Branching-Workflows

Automated	tests
The	build	server	can	run	the	unit	tests	and	even	UI	tests	for	your	app.	For	UI
tests,	think	of	tools	such	as	Espresso	(Android)	or	Xcode	UI	testing	(iOS).	If	you
are	looking	for	tools	that	support	both	platforms	you	can	check	out	Appium,	for
example,	(available	for	Android	and	iOS).

When	it	comes	to	testing,	there	are	different	approaches	to	consider.	One	of	these
approaches	is	Test-driven	Development	(TDD).	If	the	functionality	and	all	the
requirements	are	known,	we	can	define	our	tests	before	developing	our	app.	Of
course,	all	tests	will	fail	initially,	but	that	is	actually	a	good	thing	because	it	will
set	an	outline	of	what	needs	to	be	done	and	create	focus	to	get	things	right.
During	the	implementation	of	the	features,	your	tests	are	going	to	succeed.

Espresso	is	suitable	for	writing	concise	and	reliable	Android	UI	tests.	A	test
typically	contains	clicks,	text	input,	and	checks.	To	learn	more	about	Espresso	or
Appium,	see	https://google.github.io/android-testing-support-library/docs/espresso/	and	http://appium.
io.

Unit	tests	are	often	run	for	the	feature	branch,	while	integration	and	UI	tests	are
often	run	for	the	development	branch.	After	you	pass	all	of	your	tests,	your	app
can	be	deployed	and	released	to	an	audience	of	beta	or	end	users.

https://google.github.io/android-testing-support-library/docs/espresso/
http://appium.io

An	example	of	a	continuous	workflow
for	an	Android	app
A	picture	of	the	ad	hoc	distribution	of	an	Android	app	could	look	as	follows.	For
Continuous	Integration,	in	the	picture	shown	next,	TeamCity	is	used	to	retrieve
the	app	source	code	from	a	repository,	created	at	Bitbucket:

In	the	preceding	diagram,	we	used	TeamCity	to	instruct	Gradle	to	build	and
sign	the	app	and	create	a	Sonar	report	to	measure	the	quality	of	the	code.	Also,
we	ran	unit	tests	and	ran	UI	tests	(using	Espresso).	Once	configured,	TeamCity
will	take	care	of	all	these	steps.	If	they	all	succeed,	then	another	step	will	upload
the	signed	app	(APK	file)	to	HockeyApp,	which,	in	turn,	notifies	users	about	a
new	version	being	available.	If	you	prefer	you	can	also	use	Jenkins	as	a	build
server,	or	use	Fabric	Beta	instead	of	HockeyApp.	We	will	discuss	the	highlights
of	CI/CD	only.	There	are	some	interesting	books	available	for	both	build	servers.
Have	a	look	at	https://www.packtpub.com/	for	more	information.

https://www.packtpub.com/application-development/continuous-integration-delivery-and-deployment

Building	variants
It	is	not	unlikely	that	you	will	need	to	deliver	more	than	one	version	of	your	app.
In	fact,	it	could	be	a	smart	thing	to	deliver	your	app	under	multiple	names,	each
with	a	different	look	and	feel.	It	is	great	for	targeting	more	than	one	audience.
Another	example	is	that	of	delivering	a	light	and	paid	(or	free	and	pro)	version
of	an	app.	Although	a	flavor	often	is	used	to	customize	the	look	and	feel,	there	is
no	reason	why	you	could	not	use	it	for	enabling	or	disabling	features.

In	addition	to	a	particular	flavor,	you	might	need	to	create	build	types	with
different	configurations.	Think	of	an	app	that	is	communicating	against	a
backend.	You	probably	want	to	test	your	app	with	a	different	endpoint	than	the
one	you	use	for	your	app	in	production.	This	allows	you	to	safely	test	your	app
without	the	need	to	worry	that	it	will	mess	up	your	production	data:

The	build	flavor	term	is	reserved	for	customization,	where	the	build	type	is	for
configuration	purposes.	The	combination	of	a	flavor	and	build	type	is	called	a
build	variant;	well,	at	least	it	is	like	that	for	Android	and	Android	Studio.	If	you
have	a	light	and	full	version	of	your	app	and	you	need	to	have	at	least	one
configuration	to	use	as	a	test	endpoint	and	one	for	production,	then	there	will	be
four	variants	in	total,	for	example	like	this:

As	we	will	see	later,	it	is	not	difficult	to	accomplish	this	using	Gradle.	We	can
use	multiple	Gradle	tasks	to	build	each	variant.

Can	we	do	the	same	for	our	iOS	app?	Yes,	we	can,	but	in	a	slightly	different
way.	Xcode	allows	you	to	define	multiple	schemes,	define	a	build	target,	which
you	can	compare	with	a	build	flavor	for	Android	and	a	build	configuration,
which	indeed,	has	the	same	purpose	as	the	build	variant:

In	Xcode,	you	will	have	four	different	schemes	(two	targets	x	two	build
configurations):

If	we	use	a	build	server,	we	can	use	the	Xcode	command-line	tools	to	determine
which	scheme	we	want	to	use	for	which	build.

The	Gradle	way
For	Android,	we	can	use	Gradle	to:

Determine	which	resources	to	use	and	for	which	build	flavor
Determine	which	configuration	parameters	to	use	for	each	build	type
Build	the	app	for	each	variant
Sign	the	app

Download	or	clone	the	sample	project	from	https://github.com/mikerworks/packt-lean-mobil
e-app-development.

Or,	more	specifically	check	out	https://github.com/mikerworks/packt-lean-android-build-
variants.

When	we	look	at	the	build.gradle	file	(inside	the	app	folder)	of	the	sample	Android
app,	it	has	a	couple	of	sections	that	define	how	to	deal	with	different	product
flavors.	Although	it	is	sufficient	to	just	define	the	flavors	and	keep	the	debug	and
release	build	types	for	your	project,	the	sections	in	the	example	project	might
prove	useful	to	examine.

The	sample	project	has	a	blue	and	green	version,	with	a	test	and	a	production
endpoint.	Each	configuration	has	a	different	application	ID	and	config	fields.

https://github.com/mikerworks/packt-lean-mobile-app-development
https://github.com/mikerworks/packt-lean-android-build-variants

productFlavors
	

In	the	productFlavors	section,	you	can	find	the	different	flavors:

productFlavors	{

					flavorBlueTest	{

									applicationId	=	"com.coolapp.flavorblue.test"

									buildConfigField	"String",	"api_endpoint	",	

"\"https://testapi.coolapp.com/\""

					}

					flavorBlueProd{

									applicationId	=	"com.coolapp.flavorblue"

									buildConfigField	"String",	"	api_endpoint	",	"\"https:/api.coolapp.com	/\""

					}

					flavorGreenTest{

									applicationId	=	"com.coolapp.flavorgreen.test"

									buildConfigField	"String",	"	api_endpoint	",	"\"test.api.coolapp.com	/\""

					}

					flavorGreenProd{

									applicationId	=	"com.coolapp.flavorgreen"

									buildConfigField	"String",	"	api_endpoint	",	"\"api.coolapp.com	/\""

					}

	}

	

	

sourceSets
In	the	productFlavors	section,	you	can	see	which	sources	and	resources	each	flavor
refers	to:

sourceSets	{

					flavorBlueTest	{

									java.srcDirs	=	['src/blue/java']

									res.srcDirs	=	['src/blue	/res']

					}

					flavorBlueProd{

									java.srcDirs	=	['src/blue/java']

									res.srcDirs	=	['src/blue/res']

					}

					flavorGreenTest{

									java.srcDirs	=	['src/green/java']

									res.srcDirs	=	['src/green/res']

					}

					flavorGreenProd	{

									java.srcDirs	=	['src/green/java']

									res.srcDirs	=	['src/green/res']

					}

	}	

The	java.srcDirs	and	res.srcDirs	objects	determine	which	folder	is	being	referred	to
for	a	particular	flavor	(or	flavors).

In	this	project,	resources	such	as	text	(values.xml)	and	colors	(colors.xml)	are
defined	under	the	/src/main/res	folder:

As	you	can	see,	there	are,	besides	the	main	folder,	two	other	folders:	blue	and	green.
Under	the	blue/res	and	green/res	folders,	you	will	find	the	files	and	values	that

override	the	default	resources.

For	example,	the	main	folder	has	this	content	for	the	color.xml	file:

<?xml	version="1.0"	encoding="utf-8"?>

	<resources>

					<color	name="colorPrimary">#3F51B5</color>

					<color	name="colorPrimaryDark">#303F9F</color>

					<color	name="colorAccent">#FF4081</color>

					<color	name="colorBackground">#888888</color>

	</resources>	

For	example,	you	can	see	that,	for	the	green	flavor,	the	same	resource	file	exists
but	this	time	with	a	different	value	for	colorBackground	(a	nice	green	one):

<?xml	version="1.0"	encoding="utf-8"?>

	<resources>

					<color	name="colorPrimary">#3F51B5</color>

					<color	name="colorPrimaryDark">#303F9F</color>

					<color	name="colorAccent">#FF4081</color>

					<color	name="colorBackground">#00dd22</color>

	</resources>	

The	same	applies	to	the	values.xml	resource	file,	containing	the	texts	for	the	app.

buildTypes
	

In	the	productFlavors	section,	you	can	see	the	mapping	between	the	signing
configuration	for	the	release	of	a	particular	flavor	and	the	entry	in	the
signingConfigs	section,	which	we	examine	after	the	buildTypes	section:

buildTypes	{

					release	{

									productFlavors.flavorBlueTest.signingConfig	signingConfigs.flavorBlueTest

									productFlavors.flavorBlueProd.signingConfig	signingConfigs.flavorBlueProd

									productFlavors.flavorGreenTest.signingConfig	signingConfigs.flavorGreenTest

									productFlavors.flavorGreenProd.signingConfig	signingConfigs.flavorGreenProd

					}

					debug	{

									testCoverageEnabled	=	true

					}

	}	

	

	

signingConfigs
In	the	productFlavors	section,	you	see	that	we	can	use	different	signing	using	a
different	key	store	for	each	flavor:

signingConfigs	{

					flavorBlueTest{

									storeFile	file('../app/signing/coolapp_flavorBlue.jks')

									storePassword	'secretFlavorBlue'

									keyAlias	'secretFlavorBlue'

									keyPassword	'secretFlavorBlue'

					}

					flavorBlueProd	{

									storeFile	file('../app/signing/coolapp_flavorBlue.jks')

									storePassword	'secretFlavorBlue'

									keyAlias	'secretFlavorBlue'

									keyPassword	'secretFlavorBlue'

					}

					flavorGreenTest{

									storeFile	file('../app/signing/coolapp_flavorGreen.jks')

									storePassword	'secretFlavorGreen'

									keyAlias	'secretFlavorGreen'

									keyPassword	'secretFlavorGreen'

					}

					flavorGreenProd	{

									storeFile	file('../app/signing/coolapp_flavorGreen.jks')

									storePassword	'secretFlavorGreen'

									keyAlias	'secretFlavorGreen'

									keyPassword	'secretFlavorGreen'

					}

	}	

For	the	sake	of	simplicity,	you	will	see	all	properties,	such	as
storeFile,	storePassword,	keyAlias,	and	keyPassword	here,	which	all	refer
to	the	equally	named	properties	of	the	key	store.	It	is	a	good
practice	to	put	these	values	in	a	separate	signing	file.

In	Android	Studio,	it	will	look	like	this	if	you	open	the	Build	Variants	panel:

Now,	all	you	need	to	do	is	tell	Gradle	to	build	a	particular	variant,	like	this:

./gradlew	assemblectFlavorGreenTestRelease	

./gradlew	assemblectFlavorGreenProdRelease	

./gradlew	assemblectFlavorBlueTestRelease	

./gradlew	assemblectFlavorBlueProdRelease	

Open	a	Terminal	window	to	build	each	variant	locally.	Next,	we	will	look	at
TeamCity	and	see	how	we	can	use	it	to	build	all	variants	automatically.

Using	TeamCity	as	build	agent
A	build	server,	such	as	TeamCity	or	Jenkins,	can	be	used	to	automate	these
processes.	We	will	use	TeamCity	in	our	examples	and	you	can	download	it	for
free	at	https://www.jetbrains.com/teamcity/download/.	If	you	prefer	Jenkins,	you	can	get	it
at	https://jenkins.io.

Download,	install,	and	configure	TeamCity	on	a	server	or,	if	just	for	testing
purposes,	on	your	development	machine.	After	installing	TeamCity,	you	can	start
the	build	server.	On	OS	X,	open	a	Terminal	window,	locate	the	bin	folder	of	the
teamcity	folder	(for	example,	/Users/mike/Dev/teamcity/bin),	and	type	the	following
command:

m010:bin	mike$	sh	runall.sh	start	

Start	a	browser	and	point	it	to	http://localhost:8111.	Wait	until	the	setup	of
TeamCity	has	completed	and	then	create	a	new	project,	shown	as	follows:

Now	that	we	know	how	to	use	Gradle	to	build	different	variants,	the	picture
shown	next	cannot	be	too	challenging.	We	have	a	light	and	a	full	version.	We
want	to	have	two	built	for	each	version:	one	that	is	consuming	the	data	from	the
test	endpoint	and	another	one	that	is	obtaining	data	from	a	production	endpoint.
This	will	result	in	four	APK	files	in	total:

https://www.jetbrains.com/teamcity/download/
https://jenkins.io
http://localhost:8111

Now	we	will	create	some	build	steps	to	create	four	APK	files	using	Gradle,	just
like	we	did	locally.	First,	we	need	to	tell	where	TeamCity	should	get	the
repository	from	for	this	particular	project.	For	this	project	we	will	use	the	same
repository	and	branch	for	all	flavors,	but	for	more	complex	projects	this	may	be
different	for	flavors	and	it	should	be	different	for	build	types.	This	is	because	it
makes	sense	to	run	your	ad	hoc	tests	on	a	development	branch	and	to	run	your
final	tests	on	a	production	branch.

Define	VCS	Root	for	your	project	and	choose	Git	as	the	type	of	VCS.	Give	it	a
name	and	choose	the	following	URL	as	Fetch	URL:	https://github.com/mikerworks/packt-
lean-android-build-variants.git.

You	do	not	need	to	enter	credentials	here	(Anonymous	for
Authentication	method)	as	this	Bitbucket	repository	has	public
access.

Now	you	are	ready	to	create	your	first	build	step.	Choose	Command	Line	for
Runner	type,	so	you	can	enter	the	same	thing	for	the	build	script	content	as	you
did	on	your	local	machine:

https://github.com/mikerworks/packt-lean-android-build-variants.git

For	the	Custom	script	field,	enter./gradlew	assembleFlavorGreenTestRelease.

You	can	define	additional	build	steps	in	TeamCity,	for	example,	to	run	unit	tests,
UI	tests,	SonarCube	QA	check,	and	basically	anything	else	that	you	can
automate	from	a	command	line.

Automated	deploy	and	delivery
Your	app	needs	to	be	distributed	once	it	is	built,	signed,	and	tested.	There	are
multiple	ways	to	do	this:

Self-hosted	website
HockeyApp	or	Fabric	beta
Play	Store	alpha/beta	or	iTunes	beta/TestFlight

Self	hosted
You	can	upload	the	signed	APK	and	make	it	available	on	your	own	website.	For
Android,	it	will	be	sufficient	just	to	host	the	APK	(although	you	need	to	do	some
additional	configuration	for	IIS).	For	iOS,	you	can	distribute	your	IPA	file	using
an	Over	the	Air	(OTA)	manifest.	If	you	choose	this	option,	you	still	need	to
register	UDIDs	and	create	a	corresponding	ad	hoc	provision	profile.

From	a	high-level	perspective,	this	approach	looks	like	this:

You	also	have	to	notify	your	users	about	a	new	version	being	available	on	your
website.

HockeyApp	or	Fabric	beta
There	are	many	SaaS	solutions	available	to	distribute	and	to	notify	your	users	of
new	ad	hoc	releases.	One	of	them	is	HockeyApp.	You	can	use	a	(cURL)	script	to
upload	your	signed	APK	or	IPA	file	to	HockeyApp.	HockeyApp	can	also	notify
your	users	of	the	new	build,	and	each	version	can	contain	release	notes,	for
example,	by	adding	a	build	step	running	this	command:

curl	-F	"status=2"	-F	"notify=0"	-F	"ipa=@//TeamCity/buildAgent/work/<work	

folder>/app/build/outputs/apk/app-release.apk"	-H	"X-HockeyAppToken:<your	hockey	app	

token>"	https://rink.hockeyapp.net/api/2/apps/<app	id>/app_versions/upload		

Using	HockeyApp,	the	landscape	will	look	like	this:

HockeyApp	is	a	paid	service,	and	it	diminishes	the	provisioning	profile	hassle
for	the	distribution	of	your	iOS	app.	Fabric	Beta	is	another	service	that	you	can
use	for	ad	hoc	distributions.	Fabric	beta	is	a	freemium	service	and	it	works	pretty
much	in	the	same	way.

Fastlane,	alpha/beta	Play	Store,	and
iTunes	beta
If	you	use	fastlane	in	combination	with	beta	Play	Store	or	iTunes	beta/Testflight
distribution,	then	you	probably	can	save	yourself	some	time	and	headaches.

Fastlane	is	a	tool	for	delivering	your	app	to	a	test	or	production	environment.
Because	it	is	using	iTunes	beta	for	ad	hoc	distribution	of	your	iOS	app,	it	no
longer	requires	you	to	obtain	the	UDIDs	of	your	test	users	up	front.	The
downside	of	this	approach	is	that	initially,	although	it	is	an	ad	hoc	beta
distribution,	your	app	needs	to	be	(pre-)approved	by	Apple,	thus	taking	a	little
bit	more	time,	before	a	test	version	becomes	available	for	your	test	users.

It	changes	the	high-level	picture	to	this	one:

The	roadmap	for	fastlane	looks	like	this.	It	will	take	care	of	each	part	of	your
distribution	flow.	It	was	originally	developed	for	iOS	app	distribution.

>

Fastlane	comes	with	various	other	interesting	features	that	will	enlighten	your
build	automation	life,	such	as:

Creating	(localized)	screenshots	and	uploading	them
Sending	updated	metadata	to	the	App	Store
Generating	and	renewing	push	notification	in	profiles
Running	tests

Fastlane	is	also	available	for	Android.	It	probably	is	the	easiest	way	to	automate
building	and	releasing	your	apps.	You	can	find	fastlane	at	https://fastlane.tools.

It	will	take	some	time	(and	some	pain)	to	correctly	set	up	CI/CD	but	it	is	worth
the	investment!

https://fastlane.tools

DevOps
Often	you	are	not	just	the	developer,	but	also	the	operator.	A	DevOps	culture
probably	is	most	commonly	found	at	start-up	companies;	however,	more	and
more	established	companies	are	adopting	its	philosophy.	DevOps	establishes	a
culture	and	environment	where	building,	testing,	and	releasing	your	app	will
happen	fast,	often,	and	more	reliably,	which	is	exactly	what	we	want.	Basically,
the	idea	is	that	the	whole	process	will	become	the	responsibility	of	the	team,
from	development	to	operation	(configuration,	monitoring,	and	moderation).	If
something	in	production	is	broken,	you	create	a	hotfix,	test	it,	and	re-release	it.

The	Continuous	Integration	part	of	CI/CD	is	about	the	dev	part	(of	DevOps)	in
particular.	The	delivery	part	is	more	about	the	Ops	part.	Together,	these	two
cycles	can	correspond	to	the	build-measure-feedback	loop	(from	a	higher
perspective):

Continuous	Delivery	and	DevOps	are	often	used	together.	They	have	common
goals,	such	as	delivering	small	and	quick	changes	with	focused	value	to	the	end
customer.	Some	of	the	differences	between	CD	and	DevOps	are	that	the	latter
also	focuses	on	the	organization	change	to	support	great	collaboration	between
the	many	functions	involved.	It	requires	good	collaboration	and	communication
skills	from	each	of	the	team	members.	As	your	organization	and	your	team(s)
start	to	grow,	this	will	become	increasingly	important.

CI/CD	and	DevOps	make	split	testing	and	gathering	feedback	more	easy	to	do.
This	approach	will	contribute	significantly	to	the	adoption	of	the	lean	start-up
methodology	(seen	from	a	technical	perspective).	It	will	result	in	better	quality,

higher	customer	satisfaction,	and	more	(and	earlier!)	releases.

Summary
We	have	seen	what	CI	and	CD	are,	along	with	their	benefits	for	you.	Public	or	ad
hoc	distribution	can	be	initiated	by	the	build	server.	You	can	use	a	build	server,
such	as	TeamCity	or	Jenkins	to	build	and	test	your	app.

Ad	hoc	releases	can	be	distributed	using	HockeyApp,	Fabric	Beta,	or	the	beta
programs	of	the	Play	Store	or	App	Store.	Fastlane	can	help	you	with	these	and
other	tasks.	By	now,	you	probably	have	learned	a	lot	already.

CI	and	CD	are	important	if	you	want	to	improve	and	maintain	the	quality	of	your
code	and	if	you	want	to	optimize	your	workflow.	It	allows	you	to	gather
feedback	since	you	are	able	to	release	early	and	often.	CI/CD	and	a	DevOps
culture	can	help	you	with	the	optimization	of	the	build-measure-feedback	loop.

In	the	next	chapter	we	will	learn	why	building	an	unfair	advantage	is	important
if	you	want	to	succeed	and	if	you	want	to	survive	as	a	company.

Building	an	Unfair	Advantage
	

It	is	not	enough	to	just	build	a	great	app	that	your	customers	love.	This	is
important,	no	doubt,	but	if	you	want	to	build	a	strategy	that	will	succeed	over
time,	you	need	to	employ	a	range	of	tactics	that	will	help	you	build	and	secure	a
market	position	and	limit	options	for	your	competitors.	In	this	chapter,	we	will
look	at	the	various	techniques	a	savvy	entrepreneur	can	use	to	build	a	moat
around	their	business,	thus	minimizing	the	effects	of	an	attack	by	a	competitor.

In	particular,	we	will	look	at	the	following	topics:

Intangible	assets	such	as	intellectual	property	(IP)	laws	and	legal
protections
The	benefits	of	the	network	effect	and	the	platform	effect
Control	over	a	vertical	market	or	key	relationships	in	a	vertical	market
Switching	costs	and	pricing	strategies
The	benefits	of	good	customer	service	and	customer	support
The	power	of	a	well-developed	brand	name

	

	

Introduction	-	it's	not	just	about	your
app
Will	your	company	be	profitable	in	ten	years?	An	enduring	competitive
advantage	can	keep	your	company	profitable	against	the	inevitable	onslaught	of
competitors,	imitators,	and	spinoffs.	Establishing	such	a	competitive	advantage,
or	a	"moat"	around	your	business,	is	vital	to	ensuring	long-term	profitability	and
stability.

Competitors	can	come	from	all	directions,	so	in	order	to	protect	your	business,
your	product,	and	your	ideas,	you	will	need	to	employ	a	variety	of	tactics	to
defend	your	fortress	against	would-be	attackers.

Developing	an	idea,	testing	it	with	early	adopters,	and	refining	it	are	the	first
important	steps	toward	enduring	success.	A	customer-centric,	innovative
solution	to	a	problem	is	the	cornerstone	to	a	successful	business.	However,	after
you	have	tested	and	proven	your	hypothesis,	you	need	to	grow	that	seed	of	an
idea	in	the	real-world	marketplace,	which	can	be	brutally	competitive.

Early	on,	after	your	MVP	has	proven	real-world	viability,	you	will	need	to
expand	and	perform	a	"land	grab"	with	customers	that	need	your	solution.	The
more	your	business	grows,	the	more	competitors	take	notice;	after	all,
marketplace	visibility	helps	your	business	expand	but	it	is	also	a	magnet	for
competition.	Once	your	business	has	taken	its	marketplace	position	and	marked
off	its	territory,	you	need	to	begin	defending	this	territory.

A	competitive	advantage	is	your	best	means	for	long-term	defense.	Next,	we	will
look	at	the	most	effective	strategies	when	it	comes	to	building	that	competitive
advantage,	so	you	can	keep	all	of	the	profits	that	you	work	so	hard	to	create.

Digging	your	moat	with	intangible
assets
Intangible	assets	typically	refer	to	legal	protections	in	the	form	of	IP	laws,
patents,	and	trademarks.	These	are	essential	defense	mechanisms	for	any	product
that	has	proven	value	in	the	marketplace.	Good	implementations	will	be	stolen
unless	they	are	protected,	so	it	is	vital	to	look	at	your	legal	options	as	soon	as
possible.

	

Protecting	your	work	with	IP	laws
Understanding	how	intellectual	property	laws	work	will	help	you	to	understand
how	best	to	protect	your	own	work.	A	fringe	benefit	to	understanding	these	laws
is	that	you	will	also	understand	how	to	avoid	stepping	over	an	intellectual
property	line	without	knowing	it:

Why	you	should	care	-	Business-
destroying	patent	trolls
A	discussion	about	IP	laws	may	seem	far	removed	from	the	topic	of	lean
development,	especially	for	developers	who	are	still	in	the	early	stages	of	MVP
creation.	However,	the	business	world	is	brutal,	especially	when	large	sums	of
money	are	involved.

In	the	tech	industry,	patent	demands	and	lawsuits	are	a	commonplace,	and	it	is
no	secret	that	they	are	frequently	used	as	weapons	against	promising	startups.

A	2013	paper	by	University	of	California	Law	Professor	Robin	Feldman
presented	data	that	proves	why	no	startup	should	enter	the	marketplace	without
intellectual	property	armor.	According	to	her	survey	of	200	venture	capitalists:

One	out	of	three	startups	have	received	patent	demands
70%	of	VC-backed	startups	have	received	patent	demands
100%	of	venture	capitalists	said	that	"if	a	company	had	an	existing	patent
demand	against	it,	it	could	potentially	be	a	major	deterrent	in	deciding
whether	to	invest"

Her	survey	also	found	that	the	majority	of	patent	demands	came	not	from
product	owners	or	creators,	but	from	entities	whose	main	function	is	the
licensing	or	litigation	of	patents.	This	fact	strongly	suggests	that	patent	litigation
is	being	backed	by	competitive	groups	behind	the	scenes.	Clearly,	IP	lawsuits
and	patent	demands	are	a	standard	weapon	in	the	world	of	business	warfare.

To	protect	yourself	against	such	attacks,	it	pays	to	plan	ahead.

Patenting	and	trademarking	both	take	research,	time,	and	money.	It	is	easy	to
make	excuses	and	put	these	necessities	to	the	side,	but	the	longer	you	do,	the
greater	the	risks.	Next,	we	will	offer	a	brief	overview	of	IP	laws,	so	you	can
make	space	in	your	long-term	business	plan	for	legal	strategizing.

How	IP	laws	can	protect	your	app
and	business
	

Intellectual	property	laws	do	not	actually	protect	an	idea,	they	only	protect	an
implementation	of	that	idea.	Here	are	examples	of	how	the	major	IP	laws	work:

Patents	protect	novel,	"non-obvious,"	unique	processes.	They	only	cover
the	implementation	of	a	physical	object	or	physical	designs	that	emanate
from	that	idea,	not	the	idea	itself.	Software	programs	or	specific
implementations	of	a	technology,	such	as	a	novel	app	feature,	can	be
protected	but	the	general	concept	cannot.
Copyright	laws	protect	against	the	expression	of	a	creative	idea,	usually	in	a
media	form;	Books,	videos,	music,	and	source	code	are	examples	of	works
that	can	be	copyrighted.	Copyrightable	works	are	copyrighted	as	soon	as
they	are	created.
Trademarks	protect	the	representation	of	a	good	or	service,	such	as	a
company	name,	an	OS	startup	tone,	or	a	logo.
Trade	secrets,	such	as	source	code	or	the	formula	for	Coca-Cola,	remain
protected	indefinitely.	These	secrets	cannot	be	knowingly	infringed	upon,
but	they	can	be	stolen.

Though	these	intellectual	property	laws	are	the	most	well-known	and	common
defenses	against	infringement	and	theft,	they	are	not	the	only	ways	to	secure
your	position.

	

	

	

How	to	defend	your	intellectual
property
The	most	essential	step	for	protecting	your	app	is	the	securing	of	patents.	UI
elements,	unique	and	novel	app	features,	and	software	programs	themselves	can
all	be	patented.	Trademarks	can	be	used	to	protect	specific	design	elements,	the
design	layout	as	a	whole,	as	well	as	the	name	and	expression	of	your	app	and
your	company.

In	the	event	of	a	patent	demand,	every	company	must	decide	for	itself	how	to
proceed.	After	all,	every	legal	battle	would	come	with	its	own	risks,	benefits,
and	drawbacks.	The	preceding	study	by	Dr.	Feldman	found	that	for	the	majority
of	her	survey's	participants,	patent	demands	cost	over	$50,000	to	prepare	and
defend	against.	Every	situation	is	unique,	and	each	company	should	make	its
own	decision	in	the	event	they	are	served	a	patent	demand.

The	flipside	of	not	having	a	patent	at	all,	of	course,	is	that	another	company
would	be	free	to	copy,	steal,	and	patent	your	technology	for	themselves.	The
very	first	step,	therefore,	is	to	ensure	that	you	are	protecting	your	intellectual
property	every	step	of	the	way.

Next,	we	will	examine	another	side	of	the	legal	arena:	how	to	use	the	law	as	a
weapon	instead	of	a	defense.

Going	on	the	legal	offensive
Though	this	may	be	an	unpleasant	discussion	for	some,	it	is	important	to
reiterate	that	the	business	world	is	a	different	ballgame	from	app
experimentation	and	development.	Although	a	lean	approach	will	help	you
develop	relevant	products	that	customers	need	and	want,	you	must	arm	yourself
for	fierce	competition	as	you	make	your	way	into	the	marketplace.	Legal	tactics,
however,	are	one	method	to	isolating,	securing,	and	monopolizing	certain	sectors
of	your	market.

Peter	Thiel,	billionaire	founder	of	PayPal,	argues	that	"when	you	start	a	company
you	always	want	to	aim	for	monopoly	and	you	want	to	always	avoid
competition."	The	more	money	you	waste	engaging	and	out-competing	your
rivals,	the	less	money	you	can	spend	on	innovation	and	growth.

While	we	are	not	advocating	stealing	intellectual	property,	patent	trolling,	or
bullying	smaller	companies	out	of	existence,	you	can	certainly	develop	legal
mechanisms	that	bar	competitors	from	your	territory	and	free	up	company
resources	for	other	things.

Here	are	a	few	examples	of	how	companies	have	used	legal	blockades	to	widen
their	economic	moats:

A	mortgage	broker	training	company,	for	whom	I	created	software	years
ago,	promoted	state	laws	that	required	broker	certification	in	each	state,	the
very	service	his	company	offered.	This	was	a	smart	strategy	that	yielded
very	positive	results.
As	mentioned	previously,	in	the	"shark	tank"	world	of	business,	it	is
technically	legal	to	appropriate	certain	design	elements	or	features	that
remain	unprotected	by	patents	or	trademarks.
Amazon,	a	monopoly	that	has	decisively	shaken	up	the	retail	industry	in	the
United	States	and	beyond,	has	a	history	of	using	legal	offensive	maneuvers.
Like	many	tech	companies,	it	has	used	patents	to	maintain	its	competitive
advantage	and	it	has	used	legal	loopholes	to	avoid	collecting	sales	taxes	in
many	states	(and	thus	increase	its	price	advantage	over	other	businesses).

On	the	legal	front,	every	move	you	can	make	will	help	you	keep	your
competitors	away	from	your	castle.	The	law	is	very	effective	for	both	offense
and	defense,	but	it	is	only	one	tool	among	many.	Next,	we	will	look	at	more
user-focused	business	strategies	that	will	further	entrench	your	market	position,
stifle	competition,	and	maximize	control	over	your	market.

The	network	effect	and	platforms
The	network	effect	occurs	when	the	value	of	a	product	or	service	increases	as	the
number	of	users	increase:

The	first	type	of	network	effect	occurs	when	the	users	themselves	add	value	to
the	product	or	service.	The	user-generated	content	that	powers	Facebook,
forums,	and	search	engines,	for	instance,	adds	value	to	these	services,	effectively
transforming	users	into	assets.

The	Platform	Effect,	which	is	considered	by	some	to	be	another	type	of	network
effect,	refers	to	the	amplification	of	value	that	occurs	when	a	company	is	able	to
offer	a	platform	-	an	array	of	services	-	rather	than	just	a	single	product.	As	more
business	partners	add	services	to	the	platform,	the	value	increases.

Both	of	these	effects	are	eminently	visible	in	today's	technology	industry.

The	network	effect
	

To	illustrate	the	first	type	of	network	effect,	we	will	look	at	the	world's	largest
social	app	and	the	world's	largest	online	retail	company,	Facebook	and	Amazon.
Both	starkly	illustrate	how	users	contribute	to,	and	amplify,	the	value	of	a
product	or	service.

Examine	how	the	network	effect	plays	out	with	both	of	these	companies:

The	more	people	that	use	Facebook,	for	instance,	the	more	momentum	and
value	it	accrues,	since	it	can	be	used	to	connect	with	more	and	more	people.
A	byproduct	of	this	effect	is	that	the	value	of	competing	social	networks	is
diminished,	making	it	more	difficult	to	switch	to	a	competitor.	This	effect,
known	as	a	switching	cost,	is	examined	in	more	detail	further.
In	Amazon's	case,	the	more	sellers	it	acquires	on	its	marketplace,	the	bigger
its	inventory,	the	more	competitive	its	pricing,	the	more	it	becomes	known
as	the	go-to	online	retail	store,	and	the	more	entrenched	its	market	position
becomes.
For	both	companies,	word-of-mouth	marketing	becomes	more	powerful	as
the	network	effect	grows,	consequently	decreasing	the	cost	of	user
acquisition.
The	more	people	that	use	either	service,	the	more	that	either	service's	brand
image	and	reputation	is	boosted.

These	are	only	two	businesses	in	a	sea	of	companies	that	benefit	from	the
Network	Effect.	Whether	designing	mobile	apps	or	social	networks,	it	pays	to
think	about	how	you	can	turn	your	users	into	assets	so	that	they	can	enhance	the
value	of	your	end	product.

	

	

	

The	platform	effect
	

As	mentioned,	the	platform	effect,	another	type	of	network	effect,	also	occurs	as
more	business	partners	augment	the	original	service	with	their	own
complementary	products	or	services.	WordPress	and	Windows	offer	excellent
examples	of	how	you	can	leverage	this	effect	to	expand	the	moats	around	your
app's	castle.

Both	of	these	companies,	while	offering	very	different	core	products,	illustrate
this	effect	into	action:

Windows,	due	to	its	decades-old	market	dominance,	has	nearly	locked
down	its	position	as	the	de	facto	operating	system	for	PCs.	In	doing	so,	it
has	aligned	itself	with	an	army	of	PC	manufacturers,	software	developers,
and	associated	industries	that	vastly	enhance	Windows'	original	services	by
supplying	their	own	complementary	products	and	services.
WordPress,	similarly,	functions	as	a	platform	of	its	own.	This	open-source
content	management	system,	officially	the	world's	most	popular,	has	been
built	for	expandability.	It	easily	allows	developers	to	create	plugins,	themes,
and	modifications.	Due	in	part	to	this	platform	effect,	WordPress
functionality	has	grown	by	leaps	and	bounds,	further	amplifying	its	growth
and	making	it	nearly	impossible	for	other	content	management	systems	to
infringe	upon	their	territory.
In	the	automotive	industry,	where	I	work,	software	companies	that	provide
a	platform	that	seamlessly	unifies	a	range	of	products	put	standalone
startups	in	a	tough	position	to	succeed.

There	are	countless	other	examples	of	the	platform	effect	in	action.	From
operating	systems,	to	web	browsers,	to	financial	software,	the	list	of	software
that	benefit	from	the	platform	effect	goes	on	and	on.	Some	products,	such	as
Windows	or	Android,	are	primarily	platform	products.	Others,	such	as
WordPress	or	QuickBooks,	offer	a	core	service	that	is	made	much	more	robust
by	complementary	products.	If	your	product	can	benefit	from	a	network	of	users,

or	if	it	can	be	leveraged	as	a	platform,	you	should	make	that	a	core	part	of	your
product	design	and	market	development	plan.

	

	

	

Making	use	of	vertical	markets
In	business,	a	vertical	market,	or	a	"vertical",	is	a	specialized	niche	market	that
serves	a	narrow	industry	or	customer	base.	A	software	company	that	develops
mobile	point-of-sale	software	specifically	for	restaurants	would	be	operating
within	a	vertical	market.	An	app	that	serves	as	a	social	network	for	amateur
photographers	in	New	York	would	be	another	example.

Horizontal	markets,	unlike	vertical	markets,	are	generalized	markets	that	sell
their	products	to	a	wide	range	of	customers.	Technically	speaking,	all	businesses
operate	both	horizontally	and	vertically,	though	to	varying	degrees.	The	chief
advantage	of	a	horizontal	market	is	that	it	offers	a	much	larger	user	base	than	a
vertical	market.	On	the	other	hand,	horizontal	marketplaces	are	much	more
competitive	and	are	extraordinarily	difficult	to	penetrate.

As	we	will	see,	making	use	of	vertical	markets	can	give	you	a	major	competitive
edge,	aid	horizontal	expansion,	and	provide	you	with	a	secure	economic
foothold.

Why	target	vertical	markets?
	

Access	to	and	control	of	a	vertical	can	mean	the	difference	between	rapid	growth
and	a	snail's	pace.	Though	verticals	have	their	weaknesses,	such	as	a	limited
customer	base	and	financial	conditions	that	fluctuate	with	the	health	of	that
particular	industry,	they	offer	significant	advantages:

Vertical	markets	give	you	a	channel	where	you	can	sell	your	product	and
build	relationships	with	customers	in	a	focused	way
Though	some	vertical	markets	are	saturated	with	competition,	others	are
not,	which	will	make	it	easier	for	you	to	take	a	dominant	market	position
Controlling	a	vertical,	in	essence,	allows	you	to	create	a	monopoly	within
that	market,	which	guarantees	income,	customers,	and	economic
relationships
Due	to	the	specificity	of	the	user	base	and	the	industry,	many	aspects	of
business	become	much	easier	and	more	cost-effective,	from	marketing	to
user	testing	to	user	acquisition

Though	you	should	gain	access	to	and	control	a	vertical,	this	is	not	to	say	that
you	should	operate	exclusively	within	that	vertical.	As	we	saw	in	Chapter	11,
Onboarding	and	Registration,	monopolizing	a	narrow	market	is	an	ideal	first
step	towards	horizontal	expansion.

	

	

	

How	successful	companies	exploit
vertical	control
	

Although	complete	control	over	a	vertical	is	no	easy	feat,	the	exclusion	of
competition	from	your	territory	allows	you	to,	in	some	respects,	dictate	the	terms
for	your	marketplace.	The	following	are	examples	of	how	companies	have
expanded	and	exploited	via	such	vertical	control:

Apple's	control	of	its	value	chain	demonstrates	a	nearly	complete	example
of	vertical	control,	or	vertical	integration.	It	designs	and	develops	its	own
desktop	and	mobile	hardware,	the	operating	system	that	runs	on	that
hardware,	as	well	as	a	wide	range	of	apps	and	software	products	that
operate	within	this	environment.
One	Stanford	study	found	that	vertical	integration	in	the	healthcare	field,	in
the	form	of	contractual	obligations	between	hospitals	and	physician
practices,	often	resulted	in	higher	healthcare	costs	and	hospital	spending	-
in	other	words,	increased	profits	for	healthcare	professionals.
In	the	automotive	industry,	suppliers	that	grew	quickly	usually	did	so
through	OEM	relationships.	OEM	endorsements	or	promotions	translated
into	rapid	market	growth	and	a	more	secure	market	position.
My	previous	company	grew	rapidly	when	it	secured	a	relationship	with	an
ad	group	that	gave	it	access	to	many	auto	dealers.	The	boost	was
immediate,	resulting	in	a	rapid	surge	in	business.

The	ultimate	form	of	vertical	control	comes	in	the	form	of	vertical	integration,
where	a	company	is	able	to	control	its	own	supply	chain.	For	the	vast	majority	of
companies	this	is	impossible,	but	the	more	access	you	have	to	a	vertical	market,
the	easier	it	is	to	reap	economic	benefits.

	

	

	

Switching	costs
	

Switching	costs	refer	to	the	costs	that	arise	for	a	customer	when	they	switch	to	a
competitor's	product	or	service.	Steep	switching	costs	can	prevent	users	from
leaving.	Depending	on	the	situation,	these	costs	can	come	in	a	variety	of	forms.
Here	are	examples	of	the	types	of	switching	costs	that	would	impact	a	company
considering	new	enterprise-grade	software	packages:

Direct	costs:	Costs	associated	with	researching,	evaluating,	and	negotiating
the	prices	of	these	new	software	packages
Relationship	costs:	Disruption	or	dissatisfaction	among	team	members
who	are	used	to	the	old	product
Product-related	costs:	Purchase	price	and	training	costs,	as	well	as
financial	costs	associated	with	decoupling	oneself	from	the	original	product

These	are	just	a	few	examples	of	the	costs	associated	with	a	B2B	product	switch,
but	they	tend	to	be	the	most	common	that	you	find.

Maintaining	high	switching	costs	for	acquired	customers,	and	lowering	inbound
switching	costs	for	new	customers,	is	an	integral	part	of	any	product	strategy.
Although	switching	costs	can	be	so	high	that	customers	are	effectively	trapped
onboard,	we	will	see	next	how	this	strategy	can	backfire.

	

	

	

How	to	use	switching	costs	to	improve
user	retention
	

In	order	to	raise	switching	costs	for	your	own	product,	look	at	the	preceding	list.
Consider	the	ways	in	which	you	can	deliberately	increase	these	costs	for	existing
customers	to	deter	abandonment,	while	lowering	competitors'	switching	costs	to
incentivize	adoption	of	your	product.	Here	are	real-world	examples	of	switching
costs	that	you	can	use	to	brainstorm	ideas	for	your	own	product	or	service:

Large-enterprise	software	packages,	such	as	InfusionSoft,	QuickBooks,	or
Salesforce,	involve	high	switching	costs	across	the	board.	They	require
significant	research	and	evaluation;	they	have	steep	learning	curves	and
training	costs,	and	can	cause	significant	disruption	to	employees	who	are
used	to	doing	things	a	different	way.
Cellular	phone	contracts	are	excellent	examples	of	how	companies	decrease
competitors'	switching	costs	while	increasing	their	own.	Once	locked	into	a
contract,	contract	cancellation	fees	make	it	financially	difficult	for
customers	to	leave.	To	incentivize	signups,	however,	many	contracts	offer
significantly	discounted	mobile	phones	to	new	customers.
Social	apps	and	most	other	modern	apps	have	reduced	the	barrier	to	entry
significantly	-	they	are	easy	to	use,	free,	and	allow	immediate	social
interaction.	The	network	effect,	however,	makes	relationship	switching
costs	so	high	that	it	can	be	nearly	impossible	to	make	the	change.	The	loss
of	connection	with	friends	or	family,	for	instance,	makes	it	difficult	for
many	users	to	leave	Facebook.

These	are	just	a	few	examples	of	how	switching	costs	are	used	by	large
businesses	to	keep	users	on	board.	For	more	ideas,	examine	any	successful
technology	company	in	your	market	or	a	similar	market	and	think	about	ways
that	the	company	keeps	switching	costs	high	for	its	existing	user	base,	and	then
apply	that	same	thinking	to	how	you	position	your	product	in	the	market.

As	mentioned,	decreasing	the	cost	of	customers	from	switching	from	a
competitor	is	one	way	to	lower	the	barrier	to	entry	for	your	product	or	service.
Next,	we	will	look	at	how	you	can	use	this	strategy	to	accelerate	the	growth	of
your	user	base	and	erode	your	competitors'	territory.

	

	

	

How	to	decrease	competitors'
switching	costs
	

To	make	it	easier	for	people	to	defect	from	your	competitors,	find	ways	to
neutralize	or	reduce	competitors'	switching	costs.	Building	upon	the	previous
examples,	we	will	look	at	a	few	ways	that	the	aforementioned	companies	reduce
switching	costs	for	competitors'	customers:

QuickBooks	employs	many	standard	techniques	to	make	signups	easier	and
cheaper.	To	ease	the	stress	and	perceived	costs	associated	with	using	a	new
product,	QuickBooks	naturally	offers	a	free	trial.	To	reduce	the	learning
curve,	it	offers	user-friendly	videos	as	well	as	in-app	tutorials	and	guides.
Also,	it	makes	judicious	use	of	the	platform	effect;	the	plethora	of	plugins
and	third-party	integrations	make	it	easier	for	users	to	get	up	and	running
with	services	that	customers	may	already	subscribe	to.
Though	the	previously	mentioned	cellular	contract	cancellation	fees	kept
many	customers	from	switching	to	other	providers,	the	2-year	contracts,	the
early	termination	fees,	and	the	up-front	investments	made	customers	feel
trapped.	Underdog	carriers	took	advantage	of	this	sentiment	by	removing
onboarding	and	offboarding	barriers	alike;	customers	could	use	their	own
phones	instead	of	purchasing	new	ones,	they	were	not	required	to	sign
contracts,	and	they	could	leave	whenever	they	liked.
Most	social	apps	decrease	competitors'	switching	costs	using	many	of	the
same	tactics	that	you	can	employ	in	your	own	app	via	the	Lean
methodology.	Namely,	successful	social	apps	are	very	relevant,	usable,
well-designed,	and	high-performing.	All	of	these	factors	contribute	to	a
successful	first	experience	of	an	app,	which,	as	many	developers	know,	can
mean	the	difference	between	a	new	user	and	an	uninstall.

Switching	costs,	as	well	as	any	other	business	strategies	covered	in	this	section:
should	be	built	around	a	product	that	users	need	and	want.	If	the	business
becomes	imbalanced	and	pours	its	energy	into	the	business	battleground	at	the

expense	of	the	product	and	customer,	then	the	product	itself	risks	becoming
weak	thus	losing	market	share.	This	brings	us	to	another	lean-oriented	strategy
that	will	help	you	stay	focused	on	your	customers	as	well	as	the	business	arena.

	

	

	

Good	customer	support
	

Good	customer	support	is	often	forgotten	by	many	new	businesses.	This	is
foolish,	since	when	your	customers	believe	that	you	care	about	their	success,
then	they	are	less	likely	to	leave	you.

Successful	companies	have	long	believed	that	customer	service	and	customer
satisfaction	have	a	direct	impact	on	customer	loyalty	and	profits.	A	number	of
statistics	back	up	the	idea	that	customer	service	is	vital	to	every	business,	both
large	and	small:

News	of	bad	customer	service	reaches	twice	as	many	people	as	news	of
good	customer	service
It	is	at	least	six	times	more	expensive	to	gain	a	new	customer	than	to	keep
an	existing	one
70%	of	buying	experiences	are	based	on	how	the	customer	feels	they	are
being	treated
Gallup	found	that	customers	care	more	about	the	quality	and	thoroughness
of	customer	service	than	the	speed	of	that	service

Startups	have	a	lot	on	their	plates,	so	it	is	understandable	that	customer	service
would	take	a	backseat	to	other	issues.	However,	providing	good	customer
service	is	not	a	cliché	and	should	not	become	a	hollow	mantra.	When	you
consider	the	direct	impact	that	customer	service	has	on	your	bottom	line,	it	is
worth	considering	ways	that	you	can	improve	customer	service	from	the	very
start.

	

	

	

The	right	perspective	on	customer
service
It	is	widely	acknowledged	that	customers'	treatment	affects	their	perception	of	a
product,	a	company,	and	a	brand,	which	impacts	loyalty.	This	recognition	has
given	rise	to	the	idea	of	the	"customer	experience,"	which	can	be	designed	and
improved	upon.	What	makes	a	perfect	customer	experience,	however,	is	up	for
some	debate.

The	shift	in	focus	toward	customer	satisfaction,	for	many	businesses,	has
resulted	in	efforts	to	treat	customers	like	royalty	or	to	delight	them.	This
pandering	approach	is	problematic	for	several	reasons-it	is	based	on	the
statistically-backed	notion	that	customer	satisfaction	matters,	but	the	solution,
"delighting"	customers,	has	no	scientific	grounding.

Instead	of	pandering	to	them,	stick	with	the	lean	methodology	and	listen	to	them.

Customers,	whether	they	are	app	users	or	retail	shoppers,	want	their	problem
solved.	According	to	research	published	in	the	Harvard	Business	Review,	over-
the-top	"delightful"	customer	service	"doesn't	build	loyalty,"	while	"reducing
their	effort-the	work	they	must	do	to	get	their	problem	solved-does."	Act	on	this
knowledge,	they	say,	and	you	will	improve	customer	service,	cut	customer
service	costs,	and	reduce	customer	attrition.

A	recipe	for	great	customer	service
	

In	the	early	stages	of	your	company,	you	may	not	be	rolling	in	funds.
Fortunately,	technology	allows	many	young	startups	to	achieve	80%	of	the
results	for	only	20%	of	the	effort.	Here	are	a	few	ways	that	you	can	maximize
your	customer	service	efforts	without	wasting	money:

Demonstrate	your	availability	and	attentiveness	by	responding	publicly	on
social	media	and	on	reviews.	If	one	person	makes	a	comment,	rest	assured
that	others	feel	the	same	way.	After	all,	research	has	shown	that	for	one
person	who	speaks	out,	there	are	many	more	who	stay	silent.
Create	an	online	knowledge	base	so	customers	can	find	answers	quickly
and	easily,	without	needing	to	contact	you	directly.	This	will	save	time	for
both	you	and	your	users.
Solve	problems	before	customers	notice	that	anything	is	wrong.	Understand
analytics	and	listen	to	customers	so	that	you	can	discover	budding	pain
points,	solve	them,	and	fix	them	as	needed.
Stay	customer-focused	throughout	the	cycle.	Rather	than	pandering,	be
attentive,	solve	problems,	and	listen	to	them	throughout.

Always	remember	that	app	users	are	customers,	not	variables	or	children	who
should	be	"delighted."	Good	customer	service	will	have	a	ripple	effect	on	the	rest
of	your	business.	Even	though	you	may	not	be	able	to	measure	every	aspect	of
that	effect,	it	can	mitigate	negative	experiences	and	significantly	improve	the
overall	user	experience	of	your	brand.

	

	

	

How	successful	companies	use
customer	service	to	improve	profits
	

Top-level	customer	service	has	helped	many	companies	receive	the	benefits
mentioned	above,	including	increased	customer	loyalty,	decreased	attrition,	and
increased	lifetime	values.	Here	are	a	few	examples	of	companies	that	have
expanded	their	economic	moats	via	the	customer	service	route:

Amazon's	central	principle	is	the	customer	experience,	and	it	has	built	its
entire	business	around	listening	to	customers.	According	to	founder	and
CEO	Jeff	Bezos,	"If	you	make	a	customer	unhappy	in	the	physical	world,
they	might	tell	six	friends,	but	online,	they	can	each	tell	6,000."	Every
aspect	of	Amazon's	business	model,	from	their	return	policy	to	their
customer	support	staff	to	their	product	recommendation	engine,	is	geared
towards	one	goal:	making	customers	happy.
Apple's	customer	service	training	manual,	which	was	leaked	in	2012,	puts
the	customer	experience	first.	Instead	of	a	sales-first	approach,	the	Genius
Training	Student	Workbook	is,	according	to	Gizmodo,	"an	exhaustive
manual	for	understanding	customers	and	making	them	happy,"	because	"a
happy	customer	is	a	customer	who	will	buy	things."	The	thoroughness	of
this	approach	makes	it	clear	that	no	aspect	of	the	customer	experience
should	be	left	to	chance.
My	old	company	sold	a	CMS	software	solution	to	auto	dealers	that	had	a
range	of	add-ons	to	improve	dealer	customer	outreach,	acquisition,	and
management.	We	had	two	goals:

Create	easy	to	use	affordable	apps
Always	seek	to	make	the	customers	happy

The	result	of	this	was	a	company	that	grew	well	within	its	market	(without
extensive	financing)	and	an	extremely	low	attrition	rate.	We	never	waited	for	a
customer	to	call;	we	always	reached	out	offering	ways	that	they	could	maximize

the	use	of	our	products	so	that	they	could	make	more	money.	We	weren't	Apple
or	Amazon,	but	we	practiced	the	same	principles.

Customer	satisfaction	is	an	emotion,	so	it	is	more	difficult	to	measure	than
harder	metrics	such	as	conversion	rates.	It	is	also	more	difficult	to	measure	the
business	impact	of	the	customer	experience,	customer	loyalty,	and	other
customer	relationship	metrics.	However,	based	on	available	research,	as	well	as
the	behavior	and	customer	service	track	records	of	some	of	the	world's	most
successful	companies,	it	is	clear	that	stellar	customer	service	can	help	you	stick
out	in	the	minds	of	your	customers.	The	last	strategy	we	will	cover	in	this
chapter,	developing	a	strong	brand,	will	help	you	stick	out	in	the	minds	of	your
customers	as	well	as	in	the	marketplace	as	a	whole.	But	first	we	will	take	a	quick
look	at	some	tools	that	will	help	you	with	customer	support.

	

	

	

A	look	at	some	great	tools	to	help
with	customer	support
There	are	dozens	of	customer	service	tools	in	the	market	at	the	time	of	this
writing.	Many	of	them	include	free	trials	and	free	features.	Here	are	just	a	few:

Zendesk	(https://zendesk.com):	This	is	a	robust	customer	support	platform	that
offers	certain	free	features
Freshdesk	(https://freshdesk.com):	This	also	offers	a	free	version	that	may
suffice	for	startups	and	small	firms
Salesforce	desk	(https://desk.com):	This	is	a	part	of	the	Salesforce	suite,
making	it	a	good	choice	for	companies	that	use	Salesforce
Zoho	desk	(https://www.zoho.com/desk/):	A	member	of	the	Zoho	suite	of	products
would	be	a	good	choice	for	businesses	that	use	Zoho
Conversocial	(https://www.conversocial.com/):	This	focuses	on	social	and	mobile
app	support

A	vast	majority	of	these	tools	offer	free	trials	and	even	free	plans	that	naturally
have	limited	functionality.	Most	of	these	tools	integrate	a	knowledge	base	with
ticket-based	support,	real-time	chat,	and	call	center	software.

When	evaluating	the	various	options,	look	for	features	that	would	be	pertinent	to
your	organization.	For	instance:

Do	you	intend	to	integrate	live	chat	support	within	your	app?
Would	it	be	beneficial	to	integrate	customer	support	with	third-party	tools,
such	as	Zapier?
Are	you	already	using	an	existing	suite,	such	as	Salesforce,	Freshworks,	or
Zoho?
What	type	of	widgets	and	embeddables	are	offered	by	each	platform?

The	answers	to	these	questions	will	help	you	sift	through	the	mountain	of
customer	support	options	on	the	market,	narrowing	down	your	testing	time.

Finally,	do	not	forget	to	explore	chat	tools	if	you	want	to	stay	close	to	and	get

https://zendesk.com
https://freshdesk.com
https://desk.com
https://www.zoho.com/desk/
https://www.conversocial.com/

immediate	feedback	from	your	customers.	Today,	it	is	very	easy	to	install
widgets	in	your	app	that	integrate	with	customer	support	software.	Live	chat
support	could	become	burdensome,	depending	on	the	size	of	your	operation,
though	that	can	certainly	decrease	the	gap	between	you	and	your	customers.
Such	real-time	interaction	can	improve	customer	satisfaction	and	enhance	your
understanding	of	their	needs.	Again,	like	the	dedicated	customer	support	tools
listed	previously,	you	have	many	options.	Here	are	just	a	few	award	winning
options:

ZenDesk	Chat	(https://www.zopim.com/):	Formerly	known	as	Zopim,	the	app
was	recently	acquired	by	ZenDesk	into	their	suite	of	products.	They	offer	a
14	day	free	trial
LiveHelpNow	(http://www.livehelpnow.net/):	This	option	offers	a	free	30	day	trial
with	video,	customization,	mobile	version,	and	analytics
WebsiteAlive	(https://www.websitealive.com/):	This	option	offers	a	free	version
for	one	user	and	has	backup	operators	to	answer	for	you	in	off	hours

https://www.zopim.com/
http://www.livehelpnow.net/
https://www.websitealive.com/

The	power	of	a	well-developed	brand
name
According	to	Nielsen,	for	customers	in	North	and	South	America,	brand
recognition	was	the	second-most	important	reason	customers	purchased	a
product.	Additional	research	by	Nielsen	shows	that	brand	recognition	influences
purchase	decisions	in	both	developed	and	developing	markets,	with	the	majority
of	people	preferring	to	buy	new	products	from	brands	with	which	they	are
familiar.

A	brand	name	keeps	you	"top	of	mind"	for	your	customers	and	prospects,
making	it	harder	for	new	competitors	to	get	noticed.	The	right	brand	name	can
create	positive	feelings	about	your	product	and	a	level	of	loyalty	that	makes	it
hard	for	startups,	upstarts,	or	existing	companies	to	compete.

Building	that	brand	name	may	take	time	and	effort,	but	it	is	possible	with	a
concerted	effort	and	a	strategic	marketing	plan.

Reasons	to	brand	yourself
	

Since	customers	statistically	make	more	purchases	from	recognized	names	than
unrecognized	names,	it	is	clear	that	a	brand	is	important.	While	this	intangible
asset	may	seem	vague	and	even	more	difficult	to	measure	than	customer	service,
it	is	vital	to	any	business	that	wants	to	stand	out	from	its	competition.	Here	are	a
few	of	the	most	important	aims	that	a	brand	name	can	achieve:

Recognition:	When	customers	recognize	your	brand,	they	immediately
connect	that	brand	to	everything	associated	with	your	brand.
Promise:	Your	brand	name	conveys	your	promise	to	your	customers.	It
evokes	your	value	proposition	or	your	unique	selling	proposition	and	tells
customers	what	they	can	expect	when	they	purchase	your	products	or
services.
Trust:	The	more	powerful	a	brand	name,	the	more	trusted	that	name
becomes.	Trust	is	one	reason	that	customers	buy	from	brands	they
recognize:	past	experiences	and	reputation	work	together	to	evoke	that	trust
in	customers.
Status:	Brand	also	conveys	status,	as	is	particularly	evident	in	the	clothing
industry.	When	a	customer	is	associated	with	a	well-known	brand,	they	are
also	associated	with	that	brand's	status	and	image.
Loyalty:	Over	time,	brand	inspires	loyalty	in	customers	that	helps	to
accomplish	the	same	aims	as	other	strategies	mentioned	in	this	chapter:	you
establish	secure	market	territory	with	a	loyal	tribe	of	users,	successfully
keeping	competitors	out.

Brand	equity,	or	the	financial	value	of	your	brand,	may	be	even	more	difficult	to
measure	than	the	ROI	on	customer	service	improvements.	However,	its	power
remains	unquestioned	and	it	is	an	essential	tool	in	your	arsenal	if	you	wish	to
build	an	economic	moat	around	your	castle.

	

	

	

How	to	build	your	brand
	

Branding	is	a	deep	topic	and	beyond	the	scope	of	this	book.	If	your	budget
permits,	consider	hiring	specialists	to	help	you	develop	your	brand	more	fully.
However,	when	you	cover	these	essentials,	you	can	begin	to	build	the	foundation
of	a	good	brand:

A	good	name:	The	best	names	are	carefully	designed	to	evoke	certain
emotional	associations.	The	automaker	Jaguar,	for	instance,	intentionally
evokes	the	animal	of	the	same	name.	Choose	a	name	that	projects	the
emotions	and	identity	of	what	you	want	to	convey	to	your	customers.
Visual	identity:	Your	logo,	your	color	scheme,	and	visual	designs	across
your	presence	should	remain	consistent	with	your	brand	identity	and	with
each	other.	Keep	the	same	scheme	across,	for	instance,	your	website,	your
apps,	and	your	marketing	materials.
Messaging:	Behind	every	brand	lies	a	story.	That	story	integrates	with	the
other	elements	of	your	brand	and	manifests	in	your	business
communications,	from	marketing	to	customer	service.

Begin	by	extrapolating	from	the	business	canvas	model	that	you	created	in
Chapter	2,	Lean	Startup	Primer,	using	information	about	your	company's
mission	and	your	target	audience.	Find	out	what	impressions	you	want	to	convey
to	your	audience	and	the	world,	then	work	with	creatives	to	develop	the	building
blocks	previously	mentioned.

	

	

	

Tools	to	monitor	your	brand	via
social	media	and	app	stores
	

Brand	monitoring	and	social	media	monitoring	tools	have	been	on	the	rise	for	a
while	now,	and	they	come	in	every	shape	and	size.	Some	are	free,	while
enterprise-grade	tools	can	cost	as	much	as	an	employee.	Here	are	a	few
examples:

Hootsuite	(https://hootsuite.com):	This	is	a	popular	social	media	management
platform	that	also	monitors	brand	conversations
Mention	(https://mention.com):	This	will	track	keywords	or	sets	of	keywords	on
social	media	and	the	web	to	help	you	track	when	and	where	your	brand	is
mentioned
Buzzsumo	(https://buzzsumo.com):	This	allows	you	to	create	alerts	for
keywords,	authors,	domains,	and	backlinks
SocialOomph	(https://socialoomph.com):	This	is	another	social	media
management	tool	that	includes	monitoring	functions

These	are	just	a	few	of	the	more	common	options	at	the	time	of	this	writing,
though	more	can	be	expected	in	the	coming	years.	Startups	on	a	budget	can
consider	integrating	free	services,	such	as	the	preceding	tools,	with	automation
services	such	as	Zapier	and	IFTTT.

	

	

	

https://hootsuite.com
https://mention.com
https://buzzsumo.com
https://socialoomph.com

Building	a	brand	on	a	budget
Startups	on	a	budget	can	easily	take	advantage	of	today's	rapidly	globalizing
freelance	marketplace	to	help	with	any	service	imaginable,	from	market
research,	to	virtual	office	support,	to	graphic	design,	to	copywriting.

Google	can	give	you	more	options,	but	here	are	a	few	to	get	you	started:

Fiverr:	Fiverr	(https://fiverr.com)	is	a	freelance	marketplace	that	offers	services
in	$5	units,	and	most	services	are	well	under	$100	each
Upwork:	Upwork	(https://upwork.com)	allows	you	to	post	projects	and	budgets,
then	receive	bids	from	freelancers
Freelancer:	Freelancer	(https://freelancer.com)	operates	like	Upwork	and	you
can	create	project	specs	and	budgets,	post	that	project,	then	work	with
freelancers	closely	throughout	the	project
Craigslist:	Finally,	Craigslist	(https://craigslist.org),	the	world's	most	popular
classified	advertising	site,	allows	you	to	advertise	directly	and	recruit	your
own	independent	contractors

Low-cost	options	such	as	these	will	require	investment	on	your	part,	but	they	can
be	very	helpful	for	bootstrapped	startups.

The	best	way	to	review	a	freelancer	is	to	first	do	some	research	on	the	task	you
need	done	so	that	you	can	identify	best	practices	for	the	activity.	Then,	when	you
do	the	interview,	you	can	ask	them	questions	about	the	best	practices	to	see	how
they	respond.	If	they	have	no	clue,	then	steer	clear.

The	next	thing	is	to	do	a	pilot	and	then	review	carefully	for	quality,	timeliness,
attention	to	detail,	and	so	on.	If	you	like	what	you	see	then	try	something	bigger.
If	not...run.

I	have	employed	a	lot	of	freelancers.	Those	simple	rules	have	saved	me	serious
money.	Of	course,	I	had	to	lose	some	money	first	to	learn	my	lesson.

Approach	branding	in	the	same	way	that	you	approach	your	MVP:	build,
measure,	learn.	You	can	always	evolve	and	pivot	as	necessary,	once	you	have	the

https://fiverr.com
https://upwork.com
https://freelancer.com
https://craigslist.org

resources	to	do	so.

Branding	case	studies
	

The	right	brand	image	can	distinguish	you	from	your	competitors,	inspire	trust,
and	keep	you	at	the	top	of	your	customers'	minds.	Some	brands	are	done	well
and	others	are	not.	Fashion	brands,	for	instance,	tend	to	be	very	brand-centric,
while	technology	companies	fall	all	over	the	map.	Here	are	a	few	instructive
examples	of	how	technology	brands	play	out	in	the	real	world:

Apple:	Apple	has	a	thoroughly	developed	brand	identity	that	stretches	from
its	logo	and	name	to	its	product	designs	to	the	staff	training	manual
mentioned	previously.	Its	branding	strategy	is	praised	universally	as	being
extraordinarily	well	done.	Some	experts	even	believe	that	Apple's
marketing	and	branding	have	been	the	key	to	its	success,	not	its	products.
Regardless,	Apple's	brand	recognition	is	undeniable	and	resonates	across
every	aspect	of	the	customer	experience,	so	it	pays	to	examine	how	the
aforementioned	branding	essentials	are	present	across	the	Apple	empire.
Microsoft:	Although	massively	successful	companies	make	excellent
objects	of	study,	they	do	not	always	do	everything	right.	Microsoft's	brand
lacks	and	is	reminiscent	of	earlier	decades,	when	brand	names	were	more
functional	than	fashionable.	Think	of	General	Motors,	International
Business	Machines	(IBM),	or	American	Telephone	and	Telegraph	Company
(AT&T).	Design	expert	Don	Norman	says	of	Microsoft,	"If	you	make	a
product	that	everybody	loves	you	end	up	with	a	bland	product	that
everybody	will	accept	but	nobody	truly	loves."	The	same	can	be	said	of
branding.
Starbucks:	Starbucks'	meteoric	rise	to	become	one	of	the	world's	biggest
coffee	cafe	chains	has	been	attributed	to	its	mission,	offering	"the	richest
possible	sensory	experience."	Their	brand	is	visible	throughout	their	stores,
from	the	layout	to	the	logo,	and	has	become	indelibly	etched	in	the	minds
of	coffee	drinkers	around	the	world.

Technology	companies	may	not	do	branding	as	well	as	clothing	companies	or
brand-oriented	luxury	companies,	but	we	can	still	learn	from	their	examples.

Apple,	in	particular,	demonstrates	many	successful	branding	techniques	that	are
found	in	other	modern,	fashionable	brands,	as	opposed	to	"old-fashioned"
appearing	brands	such	as	Microsoft,	Hewlett-Packard,	or	IBM.

Finally,	let's	remember	that	you	must	start	with	vision	for	your	brand,	your
product,	and	your	user.	Ask	yourself	a	few	important	questions	about	your
brand:

How	important	is	quality?
How	important	is	the	user	experience?
How	do	you	want	people	to	feel	about	your	product?
What	type	of	relationship	do	you	want	to	have	with	your	customers?

Once	you	have	a	vision	and	a	direction	for	your	brand,	you	can	position	yourself
in	the	marketplace	and	begin	to	promote	that	brand.	Marketing	is	a	vast	field	and
beyond	the	scope	of	this	book,	so	it	is	advisable	to	connect	with	marketers
within	your	network,	read	basic	marketing	books,	or	take	a	course	on	digital
marketing.

	

	

	

Summary
In	order	for	your	app	to	stay	competitive,	especially	when	you	expand	into	larger
marketplaces,	it	is	clear	that	it	can't	just	be	a	"great	app."	Your	business	requires
a	thorough,	well-planned	strategy	in	order	to	expand	and	protect	its	position	in
the	market.

If	you	want	to	create	an	app	that	lasts,	you	must	consider	how	each	of	the	tactics
listed	previously	can	be	used	to	build	an	unfair	advantage.	Identify	the	tactics
that	you	can	apply	and	exploit	them	in	full,	as	early	as	possible	in	the	lifecycle	of
your	product.	Here	is	a	brief	summary	of	the	tactics	and	strategies	covered	in
this	chapter:

Intangible	assets:	Legal	protection	can	be	used	defensively	or	offensively.
In	the	cutthroat	world	of	business,	you	must	be	prepared	for	any
eventuality,	especially	if	your	MVP	proves	successful	and	your	product
begins	to	build	momentum.
The	network	and	platform	effects:	Connected	users	and	business	partners
are	not	just	customers,	they	are	assets	that	add	value	to	your	software	as	it
grows.	Use	this	to	your	advantage	and	leverage	that	value	to	aid	expansion
and	protect	your	territory.
Make	use	of	vertical	markets:	Access	to,	or,	better	yet,	control	over,	a
vertical	market	allows	you	to	establish	a	competition-free	zone	to	transact
business.	Establish	and	maintain	relationships	in	a	vertical	so	that	you	can
have	free	reign	in	a	specific	industry	or	marketplace.
Switching	cost	strategies:	Switching	costs	can	inhibit	new	users	from
leaving	a	company,	so	do	your	best	to	lower	competitors'	switching	costs
while	raising	your	own.	Doing	so	will	improve	user	retention	and	make	it
easier	for	customers	to	enter	your	territory.
Good	customer	support:	Customers	take	front	and	center	in	the	lean
methodology,	so	they	should	also	take	front	and	center	in	your	business
strategy.	Good	customer	support	will	lower	attrition,	boost	your	reputation,
and	decrease	acquisition	costs.
The	power	of	branding:	A	strong	brand	equates	to	a	strong	image.	It
stands	for	something	that	customers	can	relate	to	and	identify	with,	and	it

helps	companies	differentiate	themselves	from	their	competitors.
Developing	an	effective	branding	strategy	will	keep	you	at	the	top	of	your
customers	minds,	establish	trust,	and	foster	feelings	of	loyalty.

Although	these	strategies	stray	outside	the	scope	of	the	lean	methodology,	the
rationale	for	including	them	should	be	clear:	in	order	to	be	successful,	a	business
must	be	pragmatic.	Businesses	must	adopt	practical	business	strategies	that	will
help	their	products	survive	real-world	market	conditions.	Competition	is
inevitable,	which	is	why	you	must	do	all	you	can	to	build	an	unfair	advantage
and	stack	the	deck	in	your	favor.

	

The	Flyng	Case	Study
Flyng	is	an	iOS	app	and	it	is	about	dating	but	in	a	(slightly)	different	way.	Let's
have	a	look	to	see	what	the	business	and	technical	challenges	for	Flyng	are.	So
far,	this	book	has	been	full	of	a	lot	of	theory.	By	now	you	know	what	the	Lean
start-up	methodology	is	and,	more	specifically,	how	you	can	apply	the
methodology	to	mobile	application	development.

We	have	seen	many	samples	for	iOS,	Android,	and	web	apps,	and	we	have
learned	what	we	need	to	do	to	learn	from	our	users	at	an	early	stage	and	how	to
gather	feedback	quickly,	all	without	too	much	(technical)	effort.

Various	providers	offering	their	services	have	helped	us	with	that.	Think	of	a
mobile	backend	as	a	service	(MBaaS),	such	as	Back4App	and	QuickBlox,
onboarding	instruments,	such	as	social	sign	on	and	phone	number	sign	on
(digits),	and	analytics	services.

The	Lean	start-up	methodology	is	neither	a	religion	nor	an	end	unto	itself.	No
way!	It	is	just	a	good	tool	for	creating	apps	that	will	matter	and	last.	Do	not
waste	your	most	precious	resource	(time!).	Instead,	use	Lean	methods	to	get
feedback	as	early	as	possible.	See	if	you	can	prove	your	hypothesis	as	early	as
possible.	If	you	were	right,	proceed.	If	your	hypothesis	was	proven	wrong	then
learn	and	adapt.	It	is	best	to	fail	early	and	build	a	solution	(a	different	feature,	a
better	feature,	or	another	app)	that	adds	real	value	and	that	people	actually	want
to	use.

Earlier	in	the	book,	I	promised	you	some	real-world	examples,	and	here	is	one.	It
is	the	case	of	Flyng,	a	new	social	app	on	which	I	am	working	together	with	my
teammates.	Later	I	will	introduce	them	to	you.

In	this	chapter,	we	will	cover	the	following	topics:

Investigate	what	problem	Flyng	solves
Describe	how	the	Flyng	MVP	was	built
See	what	our	Flyng	hypotheses	are
Review	how	the	user	feedback	was	measured

Discuss	how	the	Flyng	user	base	is	built	(the	chicken	and	the	egg)

The	Flyng	case	study	summarizes	most	of	what	you	have	read	in	this	book	and
covers	what	we	did	well	and	we	did	wrong.	With	that,	this	case	study	also	has
become	a	retrospective	session	for	the	team	itself.

While	building	our	Flyng	MVP,	we	have	already	accomplished	some	great
things.	And,	not	surprisingly,	we	also	learned	that	there	are	a	couple	of	things	we
need	to	improve.	We	have	been	using	the	lean	start-up	methodology	since	we
started	the	project,	but	despite	that	there	are	some	things	that	we	could	have
done	better.

As	you	will	read	later	in	the	chapter,	one	particular	feature	that	we	included	was
based	on	an	assumption	that	we	did	not	validate	early	enough.	That	particular
feature	is	hardly	used,	but	at	least	we	discovered	the	problem	early	before	we
made	many	releases	of	the	app.	Other	than	that,	Flyng	is	already	a	success	and
its	user	base	is	growing	every	day.

That	sounds	awesome,	but	what	is
Flyng?
Flyng	is	an	app	that	allows	you	to	connect	with	students	across	your	personal
interests.	Unlike	Tinder,	it	is	not	just	about	dating.	You	can	explore	categories
such	as	adventure,	hookup,	relationship,	or	party.	In	addition	to	other	search
criteria,	it	allows	you	to	specify	exactly	what	you	like	while	browsing.	It	is	this
feature	that	attracts	Flyng	users	the	most:	

The	app	also	comes	with	other	interesting	features,	such	as	the	safety	timer	(but
that	is	just	an	assumption)	and,	in	the	future,	some	interesting	games.

The	team
The	most	important	ingredient	for	any	successful	app	is	the	team.	It	is	the	critical
ingredient	of	a	successful	start-up	and	is	something	in	which	almost	any	VC	is
interested.	Flyng,	of	course,	has	an	awesome	team.	The	Flyng	team	members
are:	Daniel	Guthrie,	Mitchell	Trulli,	and,	not	entirely	coincidently,	me	(Mike).

	

Mitchell	Trulli
Mitchell	Trulli	takes	care	of	influencer	marketing	and	branding,	strategic
partnerships,	financing,	and	pitching.	He	has	an	MBA	in	finance	(from
Quinnipiac	University)	and	dreams	of	working	in	the	VC	world	after	launching	a
successful	start-up.	He	enjoys	traveling	and	trading	as	well	as	spending	his
summers	in	Cape	Cod.

	

Daniel	Guthrie
	

Daniel	is	in	charge	of	monitoring	the	growth	and	analytics,	social	media	strategy,
branding,	and	running	the	ambassador	program.

Danny	and	Mitchell	are	extremely	passionate	about	start-ups	and	working	on
projects	in	the	tech	space.	In	addition,	they	are	also	extremely	interested	in	the
college	market	and	learning	and	adapting	marketing	strategies	to	it.

	

	

	

Mike	van	Drongelen
Mike	is	the	developer	for	the	app	and	its	backend.	For	now,	the	app	is	only
available	on	iOS,	but	the	Android	app	will	be	coming	shortly.	He	is	also
interested	in	UX	and	everything	else	that	matters	to	an	app.	Mike	is	a	start-up
addict	too,	but	since	you	are	reading	this	book	I	guess	you	already	know	that
rather	well.

	

The	other	contributors
	

The	team	is	larger	than	the	core	team.	There	are	many	other	contributors	and
ambassadors!	Take,	for	example,	Kevin	Dalvi.	He	helped	the	Flyng	team	with
the	UX	and	some	great	graphic	designs.

We	would	also	like	to	thank	all	of	our	beta	testers	and,	last	but	certainly	not
least,	the	users	of	Flyng.	They	have	made	Flyng	evolve	to	what	it	currently	is.
Without	the	effort	of	all	these	people,	Flyng	just	would	not	exist.

	

	

	

The	MVP
After	Mitchell	told	me	about	his	idea,	I	became	quite	enthusiastic	and	we
quickly	decided	to	create	our	first	MVP.	Looking	at	my	own	personal
motivation,	I	can	tell	you	that	I	always	wanted	to	create	a	Tinder-style	app	and,
since	this	solution	was	aiming	at	colleges,	I	was	particularly	interested	in	the
concept.

Let	me	explain	that	last	part	a	bit.	My	other	start-up	adventure,	Teamspot,	is	an
e-learning	solution.	It	is	a	platform	that	lets	companies	meet	students	on	all	kinds
of	school	levels	and	vice	versa.	It	facilitates	the	whole	organization	around	the
setup	and	monitoring	of	internships.

I	have	always	had	a	vision	that	learning	should	be	fun	and	that	it	is	so	much
more	than	just	knowing	and	analyzing	facts.	It	should	also	be	about	socializing,
collaboration,	and	all	kinds	of	other	aspects	that	create	a	great	experience.	If	you
take	away	the	fun,	then	the	learning	aspect	will	stop	too.	And	if	you	are	part	of	a
start-up,	you	should	always	learn	and	have	fun,	at	least	once	a	day	(maybe	even
twice).

That	is	why	I	am	interested	in	Flyng.	In	addition,	I	thought	it	was	a	great
opportunity	to	build	an	app	the	Lean	way,	so	I	could	use	it	as	a	case	study	for
this	book.	This	is	why	you	are	reading	about	it	now.

A	distributed	team
While	Mitchell	and	Daniel	are	in	the	US,	I	am	in	the	Netherlands.	That	is	not
necessarily	an	issue.	There	are	some	great	collaboration	tools	available	and	the
fact	that	we	are	in	different	time	zones	just	requires	a	little	more	planning.	My
co-author,	Adam	Dennis,	is	in	another	time	zone	as	well.	And	that	works	great
too.

Mitchell	says	this	about	our	distributed	team:

"Our	team	utilizes	Slack	to	communicate	daily;	in	addition	we	expect	a	weekly
or	bi-weekly	Skype	call.	Working	internationally	has	been	made	quite	easy	with
the	technology	at	our	disposal;	in	addition	Mike	has	been	quite	flexible	with	our
hours."

Besides	Slack,	you	can	also	use	BaseCamp	for	your	team	communication.	Both
solutions	work	great	for	both	distributed	and	local	teams.

Flyng's	USPs
You	might	wonder:	"Why	another	social/dating	app?	What	makes	Flyng	so
different?"

When	I	asked	Mitchell,	he	told	me:

"Tinder	was	previously	hailed	as	the	most	profitable	app	of	Q2	2017.	We	see	the
online	dating	market	as	still	being	extremely	young	and	it	is	only	growing."

To	capitalize	on	the	unique	properties	of	Tinder	(their	swipeable	profiles),	and
combine	that	with	our	unique	spin	on	categories,	we	are	able	to	innovate	the
space	and	attract	users	to	our	application	and	away	from	the	standard	Tinder	or
Bumble.

I	believe	that	the	ability	to	monitor	the	matches,	and	what	categories	they	were
matched	with,	is	the	most	important	part	of	our	app.	Our	users	will	be
particularly	picky	and	will	expect	the	entire	app	to	revolve	around	these
categories.

I	also	asked	him	why	Flyng	targets	colleges	in	particular.	Mitchell	replied	with:

"Many	people	do	not	understand	why	we	target	the	college	market	as	it	has	been
hailed	as	one	of	the	most	difficult	spaces	to	enter.	We	believe	that	our	unique
perspective	on	dating	apps	will	allow	us	to	stand	out.	In	addition,	our	past
projects	have	focused	on	the	college	market	and	we	have	learned	extensively
about	how	to	promote	and	market	to	them."

The	theory	goes	that	every	business	has	a	(marketing)	problem	and	a	(technical)
solution	component.	I	asked	Mitchell	what	the	problems	are	that	Flyng	wants	to
solve?

Flyng	solves	the	problem	of	people	not	being	able	to	meet	exactly	who	they
want	in	their	local	area.	Flyng	allows	them	to	meet	people	who	are	partying,
younger	or	older,	or	in	the	same	social	organizations	as	them.	This	will	greatly
increase	the	amount	of	time	spent	off	the	phone	and	interacting	in	person.	Our

goal	is	to	create	personal	bonds	between	people.

Other	social	apps,	such	as	Facebook	and	Snapchat,	fail	to	have	an	effective
discovery	platform;	they	are	where	you	communicate	with	people	after	meeting
in	person.	Tinder	and	Flyng	allow	you	to	meet	people	online	so	that	you	can
interact	with	them	offline.

In	the	future,	we	plan	to	add	the	ability	to	like	photos,	temporary	categories,
location-based	categories,	and	other	features	that	will	increase	the	user
engagement	and	retention.

The	big	milestone	we	are	currently	trying	to	reach	is	40K	Monthly	Active	Users
(MAU).	Once	we	are	at	this	point,	Kevin	will	lead	a	trip	with	Mitchell	and
Daniel	and	pitch	to	VCs	in	our	network	in	the	greater	Silicon	Valley	area.

Growing	a	user	base
40K	monthly	active	users	does	not	sound	too	complicated	to	accomplish.	But
like	every	start-up	company,	Flyng	started	with	0	users.	So	how	did	we	get	our
user	base	to	grow?

Mitchell	outlines	what	we	did	quite	well:	We	initially	started	with	marketing
before	launching.	We	wanted	to	create	a	motion	behind	Flyng	where	people	were
actually	waiting	and	excited	to	download	the	app	prior	to	its	launch.

This	created	our	initial	boost	of	200-500	users	on	the	first	day	to	provide	a	base
for	our	in-depth	marketing	strategies.	Currently,	we	use	social	media	and	social
influencers	to	grow	Flyng's	user	base.	Through	growth	hacking	tactics	and
partnering	with	like-minded	organizations,	we	are	able	to	increase	downloads
and	retain	users.

Our	biggest	challenge	is	growing	a	user	base	in	a	specific	area.	Our	social
growth	strategies	are	scattered	and	don't	hyperfocus	downloads	in	a	specific
geographical	location	like	people	want.

Dating	and	matching	apps	are	always	struggling	to	find	a	good	balance	between
male	and	female.	Most	ideally	it	is	balanced	50/50	but	with	many	start-ups	you
see	that	early	adopters	are	often	male	for	some	reason.	It	seems	important	for
Flyng	to	do	this	well	too.

Mitchell	says:	We	are	under	the	assumption	that	boys	will	chase	girls.	To
capitalize	on	this	we	are	marketing	mainly	to	females,	displaying	that	our
categories	will	allow	them	to	filter	out	the	men	they	do	not	want	to	be	linked
with,	something	which	no	other	apps	allow.

The	business	model
	

An	impressive	user	base	is	probably	very	convincing,	but	if	we	want	Flyng	to
become	a	sustainable	business,	we	better	think	about	the	business	model	too.

A	blank	business	model	canvas	is	staring	at	us.	What	will	the	business	model
canvas	of	Flyng	look	like?	Let's	do	a	short	iteration	through	all	elements	of	the
canvas.

	

	

	

Customer	segments
	

Our	users	are	college	students.	For	now	we	are	focusing	on	the	Boston	area.
Later,	we	will	scale	up	to	the	US	and	then,	eventually,	scale	up	to	the	world.

Our	users	are	not	necessarily	our	customers.	If	we	know	the	sources	of	our
revenue	streams,	then	our	customers	could	also	be	advertisers	since	they	bring
the	money	with	them.	On	the	other	hand,	the	users	add	value	to	the	app	by
spending	a	lot	of	time	with	it,	something	the	advertisers	love.	Hmm,	tricky.	For
now,	let's	add	them	both	to	the	canvas.

	

	

	

Value	propositions
What	value	does	Flyng	add?	In	short,	it	provides	category	and	story-driven
people	matching	aimed	at	one	particular	vertical	(colleges).	The	focus	on	this	is
important.	Because	we	are	dedicated	to	this	particular	vertical,	we	are	in	a
position	to	actually	create	value.	We	know	what	needs	our	users	have	by	aiming
at	this	particular	niche.	I	am	sure	you	agree	that	this	is	a	good	strategy,	assuming
you	know	the	history	of	Facebook.	Rather	than	focusing	on	everyone,	they
began	with	the	focus	on	university	students.	Your	app	may	be	in	a	total	different
space,	but	starting	with	a	relatively	small	audience	or	solving	a	niche	problem	is
always	a	good	way	to	start.

	

Customer	relationships
An	online	product,	an	app	or	a	website	for	that	matter,	makes	the	relationship
with	your	customers	more	anonymous.	Still,	there	are	ways	to	have	a
relationship	with	them,	such	as	by	providing	feedback	on	Twitter,	Instagram,	and
to	App	Store	comments.	It	is	important	to	let	your	users	know	that	they	are
heard.

We	also	look	at	statistical	information	at	Fabric	Answers,	Crashlytics,	and	the
insights	that	iTunesConnect	gives	us.

It	is	too	early	to	look	at	particular	customer	segments,	but	when	we	scale	up	it
will	certainly	make	sense	to	do	so.	Users	in	the	U.S.	and,	for	example,	Asia,
might	express	different	behaviors	and/or	have	different	needs.

Channels
Our	(sales)	channels	are,	as	mentioned	previously,	social	media	and	the	App
Store.	In	addition,	we	use	push	notification	messages	to	notify	users	about	app
improvements	and	so	on.	If	our	user	base	is	large	enough,	I	expect	that	we	will
target	specific	segments	to	promote	specific	features.

Revenue	Streams
From	where	does	the	revenue	come?	A	buyout	would	be	great,	of	course,	but
let's	be	realistic	for	now.	So,	where	will	we	get	our	money?	I	think	premium
features	are	a	good	idea,	but	another	option,	according	to	Mitchell,	could	be:
Advertisements	within	a	category,	such	as	an	ad	for	a	beer	company	placed	in
the	party	category	or	endorsed	category.	For	example,	the	party	category	could
be	sponsored	by	a	beer	company.	Other	categories	could	have	sponsors	as	well.

In	the	app	business,	it	is	not	difficult	to	reach	the	break-even	level.	As	we	will
see	later,	our	costs	will	be	low.	It	is	a	totally	different	question	as	to	whether
Flyng	will	become	a	sustainable	business.	We	will	see	what	the	future	brings	us.
It	is	not	our	primary	target	yet.	Growing	the	user	base	is	the	most	important
thing	we	need	to	do	right	now.

We	have	seen	this	in	Chapter	17,	Monetization	and	Pricing	Strategy.

Key	resources
Our	key	resources,	without	doubt,	are	the	App	Store	and	the	services	we	are
using,	such	as	Back4App	to	host	the	Parse	Server.	Our	most	precious	resources
are	human:	our	team,	and	our	users.

Key	activities
The	key	activity	of	Flyng	basically	comes	down	to	matching	people	based	on
mutual	interests	and	creating	a	perfect	online	experience.

By	delivering	that	experience,	Flyng	is	adding	value.	The	app	entertains	users
and	brings	people	together,	in	real	life,	to	enjoy	the	things	they	like	to	do	most,
whether	it	is	dating,	having	the	same	hobby,	or	enjoying	the	same	interests	in
sports.

Flyng	is	service	oriented,	so	we	are	heavily	investing	in	the	relationship	with	our
customers.	We	want	them	to	know	that	they	are	heard	and	we	care	about	their
experience	and	the	feedback	they	give.	We	use	statistics	to	measure	important
KPIs,	such	as	onboarding	conversion,	retention,	and	churning.

Partners
Flyng	needs	to	have	partners	just	like	any	other	business.	If	we	want	the	app	to
get	noticed,	we	need	the	help	of	others.	Social	influencers	(such	as	a	Twitter	user
with	many	followers)	are	our	partners.	Apple	and	the	App	Store	is	one.	Our
future	advertisers,	and/or	the	organizations	that	will	purchase	ads	or	sponsor
categories,	are	also	our	partners.

That	brings	us	to	the	question,	"Who	are	our	ambassadors	or	who	could	be	our
ambassadors?"

This	was	Mitchell's	answer:	It	is	tough	to	have	brand	ambassadors	for	a	social
app	that	is	dating	based.	One	idea	would	be	to	have	a	code	for	each	city,	similar
to	Flyng.us/boston,	and	split	the	pay-out	among	the	local	influencers.	Another
would	be	to	create	a	custom	code	for	each.

Cost	structure
What	are	the	costs	that	are	involved	with	our	app?	Hosting	(Back4App)	and
marketing	are	the	only	expenditures	if	we	do	not	take	the	time	that	we	have
spend	working	on	Flyng	into	account.

The	more	interaction	there	is	on	the	platform,	the	more	calls	per	second	will	be
made	against	the	backend.	The	party	that	is	hosting	the	Parse	Server,	which	is
Back4App	in	our	case,	offers	a	number	of	plans.	Each	plan	comes	with	a
maximum	number	of	monthly	requests	and	a	maximum	number	of	requests	per
second.	So,	the	more	users	the	app	has	and,	more	importantly,	the	more
concurrent	users	the	app	has,	the	more	we	need	to	pay	for	hosting:	

Our	marketing	costs	depend	on	the	platform	and	the	frequency	of	our
advertising.	By	carefully	measuring	our	conversions,	we	can	understand	the
correlation	between	our	spending	and	the	number	of	new	users	we	secure.

When	we	started	running	campaigns,	we	noticed	a	large	effect	on	the	number	of
new	users.	We	also	learned	that	the	effect	lasted	for	only	a	short	period	of	time.
The	preceding	graph	nicely	illustrates	this.

Unfair	advantage
This	element	appears	in	the	sample	business	model	canvas,	but	it	is	included
with	some	variants.	It	is	probably	the	toughest	part	of	BMC.	I	asked	Mitchell:
What	is	Flyngs	unfair	advantage?	In	other	words:	What	prevents	another	app
builder	from	copying	and	rolling	out	the	Flyng	concept	too?

Mitchell	replied	saying:	Since	the	space	is	already	crowded	with	a	mix	of	both
major	market	players	(Tinder	and	Bumble)	and	an	ample	amount	of	small
players,	the	most	important	thing	for	Flyng	is	our	relationship	and	connection
with	our	community/consumers	in	the	space.	Our	unfair	advantage	will	be	our
brand	perception	of	leading	to	better	connections	and	dates,	as	endorsed	by	our
users	and	ourselves.

Awesome!	We	have	now	gathered	all	the	information	that	we	need.	If	we	fill	in
Flyng's	BMC,	it	will	look	like	this:

And,	since	space	is	limited	in	a	book,	here	is	the	right	part	of	the	canvas:

Getting	feedback
So,	we	need	evidence	for	our	business	model.	What	tools	do	we	use	to	measure
traction,	retention,	and	other	feedback?	Feedback	allows	us	to	improve	the	app's
features	and	prove	whether	our	assumptions	were	right	or	wrong.

The	feedback	for	our	very	first	MVP	came	from	direct	interaction	with	our	users.

If	the	number	of	users	grows	rapidly,	we	need	to	have	some	other	tools	to	get
proper	feedback.

We	gather	our	feedback	from	the	following	sources:

iTunesConnect	analytical	data
App	store	reviews
Fabric	answers,	analytical	data
Fabric	crashlytics,	to	measure,	well,	crashes
Back4App	data	and	statistics
Feedback	from	our	beta	users

The	information	that	came	with	this	feedback	has	taught	us	a	lot	about	what
features	are	being	used	the	most.	Most	importantly,	we	noticed	that	the	category-
based	browsing	technology	was	something	that	was	most	appreciated	by	our
users.

Unvalidated	assumptions
When	we	started	to	build	Flyng,	we	had	a	few	hypotheses	that	our	MVP	proved
were	right.	What	assumptions	did	we	have	that	were	totally	wrong?

Mitchell	said:	Through	our	MVP	launch,	we	were	able	to	see	that	almost	no
users	utilized	our	safety	feature,	SAM.	Sadly	this	will	prompt	us	to	remove	it	in
the	future	and	perhaps	spin	it	off	into	its	own	project.

A	zombie	feature
SAM	is	very	easy	to	use,	or,	well,	that	is	what	we	thought.	Decide	for	yourself!

Say	you	met	someone	new	on	Flyng.	Just	to	be	safe,	before	you	go	out	on	your
date,	you	use	SAM	to	select	1	to	3	contacts	from	your	contact	book	to	alert	if
something	goes	wrong.	You	start	the	timer	and	every	45	minutes	you	need	to
check	in	just	to	let	Flyng	know	that	you	are	still	OK.	You	just	tap	the	(local)
notification	when	it	appears	on	your	phone.	If	you	do	not	respond	or	do	not
respond	in	time,	your	contacts	will	be	notified	through	SMS.

Only	a	few	people	are	really	using	the	SAM	feature.	Apparently	there	are	no
creepy	people	at	colleges	(that	is	another	assumption).	Anyhow,	we	think	this	is
a	great	concept,	but	if	no	one	uses	it	then	our	users	probably	don't	need	it	or	at
least	they	don't	need	it	within	Flyng.

The	only	zombie	here	is	a	great	idea	that	risks	becoming	a	member	of	the	living
dead:

Indeed,	the	feedback	and	statistics	taught	us	that	it	is	hardly	used.	We	still	need
to	research	whether	people	do	not	think	the	option	is	useful,	cannot	find	it,	or
think	that	it	is	too	difficult	for	the	assumed	problem.	This	all	needs	further
investigation.

For	now,	we	can	state	that	the	hypothesis	that	people	want	to	have	a	guardian
when	going	on	a	date	seems	to	be	wrong.	Just	like	Mitchell	said,	it	probably
needs	to	be	removed	and	evolved	to	its	own	app.	Of	course,	this	idea	assumes

that	the	problem	that	this	feature	seeks	to	solve	actually	exists	in	a	context	other
than	Flyng.

And	if	not?	Well,	in	that	case	this	is	a	typical	example	of	waste	that	could	have
been	avoided	by	early	validation.	So,	what	could	an	even	earlier	MVP	look	like?
Perhaps	what	we	should	have	done	is	try	to	understand	what	problems	girls	(and
boys?)	currently	face	when	going	out	a	date	using	an	online	or	real-world	survey.

Feedback	and	actionable	metrics
The	monitoring	tools	that	we	are	using	give	us	valuable	analytical	insights	into
our	app.	The	challenge	with	these	insights	is	how	to	convert	them	into	actionable
metrics.

Having	some	numbers	is	great,	but	how	can	you	interpret	them	so	that	they
become	actionable	metrics?	And	which	KPIs	really	matter?	Traction	is	a	word
that	is	often	used,	but	how	do	you	measure	it?	If	you	think	traction	is	a	number
that	defines	to	what	extent	people	are	actually	using	your	app,	then	the	number
of	users	is	a	useful	number.	Or	is	it	the	number	of	active	users?	What	is	the
definition	of	active	user?	Or,	is	the	number	of	new	users	the	important	number
here?

To	answer	these	questions,	you	must	make	things	measurable	and	be	precise.
You	need	to	have	clear	goals.

Let's	say	that	by	the	end	of	the	year	we	want	to	have	100K	new	users.	That	is	a
clear	target	and,	as	long	as	it	is	a	somewhat	realistic	target,	it	is	a	good	one.	In
the	end,	real	traction	is	proved	by	actual	revenue,	but	in	the	case	of	Flyng,	that	is
something	for	later.

Using	the	same	tools	we	can	also	measure	the	retention	rate.	How	many	users
are	still	using	the	app	after	1	week,	after	1	month,	or	after	1	year?

If	the	retention	rate	is	low,	what	do	we	need	to	do	to	make	the	users	stay	with	the
app?	I	asked	Mitchell	if	we	could	say	that	the	currently	available	analytics	are
actionable	metrics.	I	also	wondered	if	we	needed	additional	resources	or	tools
for	measuring	our	users.

Mitchell	says:	"The	current	analytics	we	have	are	a	good	representation	of	the
early	market	validation	we	have	proved.	Our	marketing	efforts	have	been
inconsistent;	the	maximum	number	of	days	in	a	row	that	we	have	had	an	ad
spend	has	been	only	7	days	so	far.

We	often	monitor	the	feedback	we	get	from	social	media,	direct	messages,
comments	on	posts,	and	other	user	interactions	to	let	us	know	whether	our	users'
apps	are	crashing,	what	features	they	would	like	to	see,	and	so	on.

The	most	interesting	feedback	we	have	gotten	was	from	users	who	have	actually
used	the	application	and	met	with	the	people	with	whom	they	interacted.	They
told	us	that	the	categories	allowed	them	to	plan	and	interact	differently.	For
example,	the	ones	that	met	in	the	party	category	were	able	to	link	up	at	a	party."

It	is	interesting	to	hear	that	our	best	feedback	comes	from	direct	interaction	with
our	users.	It	should	not	be	a	real	surprise,	but	it	is	important	to	know	that	direct
feedback	is	a	better	resource	than	analytics	alone:	

Split	testing
What	features	of	Flyng	could	be	perfect	candidates	for	split	testing	purposes?

Mitchell	says:	Testing	different	types	of	categories	would	be	ideal	for	split
testing	purposes.	For	example,	to	test	the	acceptance	and	interaction	caused	from
the	creation	of	a	summer-related	Beach	Day	category,	we	could	create	it	in
coastal	locations	that	we	deem	strategic	to	our	research	testing.

Yes,	I	think	it	is	worthwhile	to	run	a	few	A/B	experiments,	not	just	for	the	app
but	for	the	App	Store	listing	as	well.	Since	App	Store	Optimization	(ASO)
techniques	have	recently	become	available,	including	App	Store	split	testing,	I
would	love	to	try	them	out	to	see	how	they	work	and	if	they	can	help	us	improve
our	app.

Vision
You	cannot	have	targets	without	a	vision,	so	I	wonder	how	ambitious	the	team	is
about	Flyng.	I	asked	Mitchell	this:	What	do	you	think	the	future	of	Flyng	will
look	like	in,	let's	say,	1	year	from	now	and	in	3	years	from	now?	Will	Flyng	be	a
sustainable	business?	Will	it	make	some	serious	money?	Will	it	have	investors?
Does	it	contribute	in	any	other	way	business,	wise	or	just	for	the	society?

The	dynamics	of	Flyng	make	it	a	great	product	to	monetize.	Category	cards	can
be	sponsored	in	multiple	ways.	First,	an	original	category	can	be	endorsed	by	a
company.	For	example,	the	student	athlete	category	could	be	sponsored	by	http://w
ww.thetailgateseason.com,	a	company	in	our	network.	A	company	that	appears	toward
the	top	of	the	page	would	cost	a	premium,	while	lower	ones	would	have	the	best
value.

There	could	also	be	limited	sponsored	categories.	These	could	be	interactive	to
further	embrace	the	value	of	learning	about	other	profiles	through	their	category
line-up.	For	example,	say	Marvel	is	looking	to	advertise	a	new	Avengers	movie.
We	could	run	a	sponsored,	limited-duration	category	that	acts	like	a	poll.	Users
would	pick	their	favorite	superhero	and	could	connect	with	similar	fans.	These
ads	would	not	be	seen	as	intrusive	and	would	add	to	the	user	experience	if
implemented	with	time	and	care.

Another	benefit	of	having	categories	in	our	social	meet-up	app	is	using	them	to
discriminate	where	to	place	ads.	With	traditional	apps	in	our	space,	there	is	only
one	giant	category.	If	Bud	Light	only	wanted	to	advertise	to	people	interested	in
and	actively	partying,	these	apps	would	not	be	able	to	cater	to	Bud	Light.	With
Flyng's	party	category,	we	can	present	the	ad	to	users	who	would	be	interested	in
their	product.	The	ad	would	be	relevant,	which	would	make	the	user	and	Bud
Light	happy.

http://www.thetailgateseason.com

Technical	considerations
Since	this	book	is	most	of	all	a	practical	approach	to	the	Lean	start-up
methodology,	we	will	have	a	look	at	the	highlights	of	the	Flyng	technology	as
well.	We	cannot	reveal	too	much,	but	just	enough	to	give	you	an	idea.

The	app	has	been	built	for	the	iOS	platform,	but	there	are	plans	for	an	Android
version	too.	The	main	reason	for	having	an	iOS-first	strategy	is	because	of	the
primary	audience,	colleges	in	the	Boston	area.	If	we	had	started	the	roll	out	in
Europe,	we	probably	would	have	had	an	Android	first	strategy	instead.

The	app	is	built	with	Swift	3.0	and	will	be	migrated	to	Swift	4	in	the	future.	It
consumes	data	from	a	Parse	Server,	residing	at	Back4App.	In	addition,	it	uses
QuickBlox	for	chat	technology.	The	code	has	been	structured	in	such	a	way	that
switching	between	one	mBaaS	and	another	is	relatively	easy.

Our	technology	stack	includes	the	following:

Xcode
Swift	4.0
Back4App,	Parse	server,	PLQ,	and	Cloud	code
Amazon
QuickBlox
Twillio
APNs,	badges,	messages	for	matches,	and	messages

Parse	server	hosted	at	Back4App
We	have	had	to	deal	with	some	limitations	using	a	Parse	Server	as	a	backend
solution,	but,	on	the	other	hand,	it	has	also	allowed	us	to	develop	the	app	rather
quickly.	This	way	we	can	focus	on	the	frontend	(the	app)	in	particular.

Here	is	an	example	of	a	filter	for	the	collection	of	matches,	residing	at
Back4App:	

The	app	has	been	set	up	so	that	it	will	be	easy	to	switch	to	another	Parse	Server
or	even	to	a	custom-made	backend	API	quickly.

Real-time	data
In	addition	to	profile	and	media	data,	we	also	have	a	need	for	real-time	data	for
the	app's	chat	functionality.

We	used	to	use	parse	live	queries	for	the	chat	technology,	but	we	found	that
QuickBlox	was	a	more	trustable	service	for	these	kinds	of	things.	It	was	a	bit
tough	to	figure	how	to	do	the	authentication	for	a	single	user	for	two	different
backend	solutions,	but	in	the	end	it	was	not	really	so	hard	to	accomplish.

This	is	a	sample	of	the	QuickBlox	dashboard.	The	service	supports	many	other
features,	but	we	are	just	using	it	for	chat	functionality:	

The	other	dependencies
We	use	Twillio	for	sending	text	messages	for	the	SAM	feature.	For	onboarding,
or	the	login/registration	in	particular,	we	ask	the	user	to	sign	up	with	his/her
Facebook	account.

The	onboarding	for	Flyng	is	tough	if	you	do	not	have	a	Facebook	account.	You
cannot	continue	until	you	login	with	a	Facebook	account.	According	to	what	we
discussed	in	Chapter	11,	Onboarding	and	Registration,	this	means	that	we	have	a
bit	of	a	high	barrier	to	overcome	for	onboarding.

Without	knowing	anything	about	the	app,	you	need	to	sign-up,	and	if	you	do	not
have	a	Facebook	account	you	go	no	further.	While	I	do	not	want	to	recommend
this	strategy	for	all	apps,	it	works	great	for	a	dating	app	like	Flyng.	For	apps	like
these,	it	is	important	to	avoid	fake	users	and	to	avoid	incomplete	data.	The	data
obtained	from	Facebook	helps	us	to	personalize	the	app,	by	showing	your	name
and	avatar,	right	after	the	sign-up.

We	might	need	to	offer	other	social	sign-on	options	as	well.	Since	the	app	is
aiming	at	young	people,	we	probably	have	to	provide	ways	to	sign	up	with	a
Twitter,	Snapchat,	or	Instagram	account	too.

It	is	also	interesting	to	know	that	something	else	we	did	to	avoid	fake	profiles	is
to	use	facial	recognition	technology.	Using	the	iOS	SDK,	it	is	pretty	easy	to
verify	if	one	or	multiple	faces	appear	on	an	uploaded	picture.	When	tested,	we
found	out	that	it	also	differentiates	a	face	from	cartoons,	animal	pictures,	and
drawings.	At	the	minimum,	it	prevents	us	from	having	profile	avatars	that	show
non	relevant	images,	such	as	wallpapers,	sunsets	or	even	worse.

As	you	can	see.	we	are	using	CocoaPods	to	add	a	few	third-party	dependencies,
such	as	the	Parse	and	QuickBlox	SDK.	As	you	can	see,	I	am	also	using
Facebook	and	Crashlytics	as	a	reference:	target	'flyng'	do	use_frameworks!	pod
'Fabric'	pod	'Crashlytics'	pod	'Cartography'	pod	'Parse'	pod
'ParseFacebookUtilsV4'	pod	'ParseLiveQuery'	pod
'JSQMessagesViewController'	pod	'QuickBlox'

Queries
The	data	consumption	relies	on	a	few	direct	queries,	but	for	the	more	complex
requirements,	cloud	code	solutions	have	been	used.	These	cloud	code	solutions
are	JavaScript	based	and	are	closely	related	to	the	REST	API	functionality	that	is
available	with	Parse	Server.

For	the	sake	of	simplicity	it	is	hosted	at	Back4App,	but	there	is	little	that	will
prevent	us	hosting	one	or	multiple	Parse	Servers	in	the	future.	Of	course,	in	that
case	we	need	to	handle	push	notifications,	balancing	and	scaling,	and	other
things	too,	but	you	get	the	picture.	It	allows	us	to	be	scalable	if	we	need	to	scale
right	away.

When	you	look	at	the	app's	Swift	code,	you	will	notice	that	there	are	a	number	of
methods	defined	for	the	client.	They	are	available	as	protocol,	which	allows	us
to	switch	to	another	backend	solution	without	too	much	effort.

Just	to	give	you	an	idea,	some	of	the	available	methods	are	shown	here:	import
UIKit	protocol	RepositoryProtocol	{	func	authenticate	(handler:
RepositoryResultDelegate,	request:	AuthenticateRequest)	...	func	getProfile
(handler:	RepositoryResultDelegate,	request:	GetMyProfileRequest)	func
getCategories	(handler:	RepositoryResultDelegate,	request:
GetCategoriesRequest)	func	getCandidates	(handler:	RepositoryResultDelegate,
request:	GetCandidatesRequest)	func	getMatchList
(handler:RepositoryResultDelegate	,	request:	GetMatchListRequest)	func
pushMessage	(handler:	RepositoryResultDelegate,	request:	PushRequest)	...	}

Complex	operations
	

At	first	sight,	it	seems	to	be	easy	to	figure	out	if	there	is	a	match	between	two
people.	But	for	an	app,	this	is	a	complex	operation.	Imagine	that	you	like	a
particular	profile.	First,	we	need	to	add	that	fact	to	your	browsing	history
because	you	do	not	want	to	see	profiles	that	you	have	already	seen.	We	also	will
keep	track	of	the	people	that	you	like.	Later,	when	they	like	you	too,	this	will
result	in	a	match.	We	want	to	create	as	many	matches	for	our	users	as	possible,
so	we	need	to	make	sure	that	you	see	the	profiles	of	the	people	that	did	like	you,
first.

If	you	like	someone,	we	need	to	run	a	query	that	informs	us	whether	the	person
that	you	have	just	liked	has	also	liked	you	previously.	If	so,	a	match	entry	will	be
added	and	we	need	to	inform	both	you	and	your	matching	partner.	Let's	send	a
push	notification	to	tell	your	partner	and	return	the	match	that	we	have	just
created	to	inform	you.	Great,	something	new	has	happened.	The	badge,
appearing	on	the	app's	icon	(on	the	match	tab),	needs	to	be	incremented.
However,	before	we	do	this,	we	need	to	figure	out	how	many	new	matches	(and
messages)	there	are,	for	both	you	and	your	partner.	To	make	a	long	story	short,
this	operation	is	a	perfect	candidate	for	a	cloud-code-based	solution.

The	function,	residing	on	the	Parse	Server,	will	do	the	heavy	work	for	us.	That
makes	sense,	as	the	server	has	much	more	power,	and	this	way	we	will	also
avoid	sending	too	much	data	from	the	device	to	the	server	and	vice	versa.	This	is
how	we	can	keep	things	scalable.

From	an	app	perspective,	it	is	just	a	matter	of	providing	the	right	data	and
consuming	the	result	produced	by	the	cloud	function	operated	on	the	server.	As
an	example,	here	is	how	the	cloud	function	is	called:

func	getCandidates	(handler:	RepositoryResultDelegate,	request:	GetCandidatesRequest){		

		let	params	=			

		[

												"myId":	request.profileId,	

												"fromAge":	myProfile.CriteriaAgeFrom,	

												"toAge"	:	myProfile.CriteriaAgeTo,	

												"gender"	:	myProfile.CriteriaGender,	

												"maxDistance"	:	myProfile.CriteriaMaxDistance,	

												"category":	request.categoryId,	

												"skip":	request.skip,	

												"limit"	:	request.limit	

]	

					PFCloud.callFunctionInBackground("getCandidates",	withParameters:				

		params	as	[NSObject	:	AnyObject],	block:	{	(object,	error)	in	

				...	

	

	

Push	notifications
	

In	Chapter	15,	Growing	Traction	and	Improving	Retention,	you	will	find	more
information	about	the	implementation	needed	to	show	push	notifications.	For
this	case	study,	it	is	interesting	to	know	that	services	such	as	Back4App	(there
are	also	Sashido	and	a	couple	of	other	ones)	do	not	just	allow	you	to	host	the
Parse	Server	but	also	deal	with	the	hassle	of	setting	up	push	notifications	for	an
app.

For	our	app,	we	use	remote	push	notifications	to	show	messages	and	to	update
the	badge	icon.	We	notify	the	user	each	time	there	is	a	new	match	or	a	new
message.	If	this	happens	enough,	the	retention	rate	will	grow	just	by	itself.	In
addition,	we	also	use	local	(scheduled)	notifications	for	the	SAM	safety	feature.

	

	

	

Crash	reports
We	test	each	release	candidate	before	we	ship	it,	but	a	crash	can	always	happen
in	the	wild	despite	all	our	testing.	If	so,	then	Crashlytics	comes	to	the	rescue.	It
is	easy	to	implement	and	it	gives	you	a	lot	of	insight	(including	a	stack	trace)	on
crashes:

func	application(application:	UIApplication,											

					didFinishLaunchingWithOptions	launchOptions:	[NSObject:	AnyObject]?)	->	Bool	{										

								...									

								Fabric.with([Answers.self,	Crashlytics.self])	

In	the	following	example,	you	can	see	how	the	number	of	crashes	freely	dropped
to	an	unacceptable	level.	We	localized	the	problem	and	released	a	new	version.
This	resulted	in	the	number	of	crash-free	users	to	go	up,	nearly	99%	or	even
higher.	It	is	nearly	impossible	to	satisfy	everyone.	The	nature	of	your	app	and	the
OS	it	is	running	on	can	have	a	huge	impact.	For	iOS,	there	are	only	a	limited
number	of	different	devices	and	a	high	percentage	of	crash-free	users	certainly
should	be	possible.	Also,	most	devices	will	be	using	the	latest	version	of	iOS.

Note	that	this	may	be	different	for	Android	apps.	You	can	expect	that	the
percentage	of	crash-free	users	is	lower	for	your	Android	app.	This	is	because	of
the	many	different	devices,	flavors,	and	OS	versions.	There	are	devices	with
one/two/no	cameras,	for	example.	There	are	Android	versions	with	Samsung	or
Huawei	flavors,	each	doing	things	slightly	differently.	And	it	is	not	uncommon
that	you	need	to	support	Android	version	4	to	version	8.	It	is	nearly	impossible
to	test	each	variant.	You	have	no	other	option	than	to	focus	on	the	top	10	popular
devices	and	to	hope	it	will	work	well	on	others	as	well:

We	also	use	Fabric	to	measure	how	the	app	is	used,	for	example	to	measure	how
many	people	signed	up	within	a	period	of	time:

AnalyticsUtil.logEvent(AnalyticsUtil.eventSignupFacebook)	

	

static	func	logEvent(event:	String){	

			...	

			Answers.logCustomEventWithName(event,	customAttributes:	nil)	

}	

Releases
We	did	a	couple	of	releases	and	many	users	gave	the	app	5	stars.	Of	course,	we
did	get	a	few	negative	reviews	as	well.	It	is	these	users	that	we	are	most
interested	in.	When	you	think	about	it,	the	negative	reviewers	are	valuable
because	when	they	encountered	a	problem,	they	cared	enough	about	the	app	to
alert	us	about	the	problem.	The	challenge	here	is	to	turn	this	angry/unsatisfied
customer	into	an	ambassador.	We	can	always	try	to	start	that	conversion	by
making	sure	we	listen	to	the	user	and	solve	the	issue	he/she	is	experiencing.	Is
there	really	a	bug	in	the	app?	Is	there	something	unexplained	or	unclear	in	the
app?	Let's	contact	the	user	to	have	a	conversation	to	find	out!

	

Summary
In	this	chapter,	we	provided	an	extensive	case	study	that	illustrated	much	of	what
is	discussed	in	the	book.	We	learned	about	the	Flyng	app,	covering	the	things
that	we	did	well	and	did	not	do	well.	We	have	seen	what	the	earliest	assumptions
were	and	how	we	gather	feedback.	It	is	important	to	prove	your	hypotheses	as
early	as	possible.	It	is	important	to	properly	validate	them.	If	not,	then	it	could
result	in	a	waste	of	time.	That	is	what	we	saw	happen	with	the	SAM	feature.
Maybe	it	just	needs	a	small	pivot	to	make	it	a	success,	which	will	require	some
new	experiments.	These	are	all	the	things	that	perhaps	could	be	applied	to	your
app	as	well.

As	of	today,	Flyng	is	still	evolving.	The	adventure	is	ongoing	and	we	continue	to
build,	measure,	and	get	feedback	every	day.	Sometimes	that	is	tough;	but	given
the	good	spirit	of	the	team,	we	will	continue	to	move	forward.	I	have	no	idea
where	this	adventure	is	going,	but	I	am	sure	about	one	thing.	No	matter	whether
it	succeeds	or	fails,	we	are	learning	a	lot,	thanks	to	a	whole	pile	of	feedback,
dedication,	and,	well	maybe,	a	little	bit	of	luck.

You	can	do	that	too!	Stay	focused.	Do	not	procrastinate	too	often.	Learn	every
day.	Fail	early.	Sustain.	Now,	it	is	up	to	you!	Good	luck!

Appendix

Reading	list	and	references
Azure	IoT	Development	Cookbook	by	Yatish	Patil

Business	model	generation	by	Alexander	Osterwalder	en	Yves	Pigneur

Crossing	the	chasm	by	Geoffrey	a	Moore

Customer	development	by	Steve	Blank

Continuous	Delivery	with	Docker	and	Jenkins	by	Rafał	Leszko

Continuous	Integration,	Delivery,	and	Deployment	by	Sander	Rossel

Do	not	just	roll	the	dice	by	Neil	Davidson

Design	patterns	by	Ralph	Johnson

Hooked	–	How	to	Build	Habit-Forming	Products	by	Nir	Eyal

Implementing	Azure	Solutions	by	Florian	Klaffenbach,	Jan-Henrik
Damaschke,	and	Oliver	Michalski

Jenkins	2.x	Continuous	Integration	Cookbook	-	Third	Edition	by	Mitesh
Soni	and	Alan	Mark	Berg

Lean	Startup	by	Eric	Ries

Lean	UX	by	Jeff	Gothelf	and	Josh	Seiden

Lean	Analytics	by	Alistair	Croll	and	Benjamin	Yoskovitz

Lean	UX:	Applying	Lean	Principles	to	Improve	User	Experience	by	Jeff
Gothelf	with	Josh	Seiden	(and	Eric	Reis,	Series	Editor)

Learning	DevOps:	Continuously	Deliver	Better	Software	by	Joakim	Verona,
Michael	Duffy,	and	Paul	Swartout

Learning	Microsoft	Azure	Storage	by	Mohamed	Waly

Overcoming	the	Five	Dysfunctions	of	a	Team	by	Patrick	Lencioni

Running	Lean	by	Ash	Maurya

Robust	Cloud	Integration	with	Azure	by	Mahindra	Morar,	Abhishek	Kumar,
Martin	Abbott,	Gyanendra	Kumar	Gautam,	James	Corbould,	and	Ashish
Bhambhani

Rework	by	David	Heinemeier	Hansson

Scaling	Lean	by	Ash	Maurya

Start	with	Why	by	Simon	Sinek

The	startup	owner	manual	by	Steve	Blank	and	Bob	Dorf

The	Lean	entrepreneur	by	Brant	Cooper	and	Patrick	Vlaskovits

Traction	by	Justin	Mares	and	Gabriel	Weinberg

The	Phoenix	Project	by	Gene	Kim,	Kevin	Behr,	and	George	Spafford

The	Goal:	A	Process	of	Ongoing	Improvement	by	Eliyahu	M.	Goldratt

The	Five	Dysfunctions	of	a	Team	by	Patrick	Lencioni

The	Elements	of	User	Experience	by	Jesse	James	Garrett

The	Four	Steps	to	the	Epiphany	by	Steve	Blank

UX:	Rocket	Surgery	Made	Easy	by	Steve	Krug

UX:	Don't	Make	Me	Think	by	Steve	Krug

UX:	Simple	and	Usable	by	Giles	Colborne

Value	proposition	design	by	Alex	Osterwalder,	Yves	Pigneur,	and	others

	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions

	Yes, There Is an App for That
	The app ecosystem
	Not every app has a flappy ending

	An introduction to the Lean Startup methodology
	Getting your users hooked on your app
	Summary

	Lean Startup Primer
	The Business Model Canvas
	Key partners
	Key activities
	Value propositions
	Customer relationships
	Customer segments
	Channels
	Cost structure
	Revenue stream

	Example BMC - mobile marketplace app
	Summary of the BMC

	Lean Canvas
	One metric that matters

	Agile development and customer development
	The MVP
	Summary

	Challenges in Applying Lean to Building Mobile Apps
	Higher design bar
	Apple's App Store submission cycles
	Inability to dynamically load libraries
	Cross-platform releases
	Getting users to download an app
	Maintaining app ratings

	Summary

	An Agile Workflow in a Nutshell
	An Agile workflow
	Kanban
	Scrum

	Epic, Stories, and Tasks
	Scrum team
	The daily stand-up
	Backlog refinement
	Definition of Ready
	Sprint planning
	Definition of Done
	Sprint review, planning, and retrospective

	Tools that you can use
	Summary

	A Pragmatic Approach
	Timeboxed programming
	Concierge service
	Is it crappy or perfect?
	Release early and often

	How do you get started with nothing?
	The chicken and egg problem
	Fake it until you make it
	Become an expert
	Grab and adapt
	Offer an app or a service that does not yet exist

	How to keep things well structured
	Design patterns
	Become independent
	Data layer

	Are there any shortcuts?
	Mash-up
	Summary

	MVP is Always More Minimal Than You Think
	What is MVP?
	Benefits of MVP

	How to define your MVP
	Building MVP
	Bringing components together to form an MVP
	Applying MVP to enterprise

	Fail fast – validate everything
	Apply agile prototyping - eliminate tech debt
	Lean UX cycles – the Build-Measure-Learn feedback loop
	Advantages of a feedback-focused development model
	Phases of the Build-Measure-Learn feedback loop
	Phase I - Build
	Phase II - Measure
	Phase III - Learn

	10 essential UX testing methods
	Iterate and evolve - from viable to lovable
	Five tips to go from viable to lovable

	Summary

	Minimal Viable Product Case Studies
	Fun with Charades - Initial vision
	The big ifs
	Hypothesis 1
	Hypothesis 2
	Hypothesis 3
	Hypothesis 4
	Hypothesis 5

	The conundrum
	What we did well
	What we could have done better

	Summary

	Cloud Solutions for App Experiments
	Do you need to create a backend yourself?
	Leverage cloud solutions for app experiments
	Things to consider

	The story of Parse
	Strategic considerations
	What services are available as MBaaS?
	Technical considerations

	Canvapp - an Android MVP app using Firebase
	Sign up for Firebase
	Layout
	Dependencies
	Models

	Firebase dashboard
	Summary

	Native, Hybrid, or Cross-Platform
	Who is your audience?
	Measure - don't guess or use intuition

	What are your technical requirements?
	What are your technical capabilities?

	Native versus hybrid - the strengths and weaknesses
	Native apps
	Hybrid apps
	Pros and cons of going native
	The biggest benefits of going native
	Pros and cons of going hybrid

	The ugly truth - a little hybrid doesn't hurt when you have clear goals
	Making the final decision - factors to consider
	Leveraging cross-platform development tools
	Adobe PhoneGap
	Xamarin
	Appcelerator

	How to choose the right tool
	Summary

	There Is an API for That!
	Succeed or fail fast
	What is in a mash-up solution?
	Publishing an API

	Lego or Duplo?
	APIs versus SDKs
	Dependency management
	Android
	iOS

	Available APIs
	An iOS app proving our hypotheses, MoviUber
	Hypothesis
	Validating the idea through customer interviews
	Let's build an app
	Movie locations
	Uber
	IMDB
	Displaying locations on a map
	Uber integration
	Enriching the data

	Look! No code. Prove your hypotheses with IFTT
	Recipes, channels, and triggers

	Summary

	Onboarding and Registration
	What is user onboarding all about?
	Why does it matter?

	Pirate metrics (AARRR)
	Higher conversion
	How to lower the barrier?

	Single sign on using a social network like Twitter or Facebook

	Show us what you have got
	Phone number sign-up - a great alternative

	Continuous onboarding - complete the user profile later
	Tell a story - an example onboarding app
	Onboarding sign-up when needed

	Implementation
	Summary

	Do Things That Do Not Scale
	What we mean by "things that do not scale"
	Three reasons to do things that do not scale
	Improved testing and data collection
	Failure that can be controlled
	Development of products that are more lovable

	How to acquire early adopters and establish a small-scale laboratory
	Focusing on a narrow marketplace
	Manually recruiting early adopters
	Perfecting the user experience

	How to transition from an unscalable MVP to scalable code
	Focusing on learning with wireframes and prototypes
	Zeplin
	InVision
	UserTesting.com
	Focusing on scaling and sustainability
	Writing perfect code versus getting the job done
	Automation and optimization
	How to handle technical debt

	Summary

	Play Store and App Store Hacks
	What is an experiment?
	A/B testing as a technique for experimentation
	Why perform split testing?
	Store listing tests
	App testing
	Why do you care?
	The competition is intense

	Experiments work
	Why running experiments with Google Play or App Store is hard
	Obstacles to testing with store listings

	Different app listing requirements
	No standard way to measure results
	Limited infrastructure for A/B testing
	Why it is difficult to run parallel experiments
	Hacks to workaround the challenges
	Store listing hacks

	How do users find apps in the first place?
	Use microtesting to collect data
	Running app tests

	Summary

	A/B Testing Your App
	Why do statistics matter?
	About actionable metrics
	Acquisition
	Engagement

	Conversions and pirate metrics
	Get to know your audience
	Split testing can help us to improve our apps
	Keep the differences between variations subtle
	Tools for split testing and getting actionable metrics
	Using Firebase for split testing

	Summary

	Growing Traction and Improving Retention
	Traction
	Freemium or premium only?
	Improving retention

	Notifications
	Local notifications
	Push notifications
	In-app notifications
	Services for push notifications
	Implementation
	Setup

	Handling an incoming notification
	Sending a notification
	Summary

	Scaling Strategies
	Make it scalable but do not scale it right away
	A scalable backend
	Cloud-based storage and processing
	Seen from a client perspective
	You should know when you need to scale up or to scale down
	A real horror story about an app backend that did not scale
	Captain hindsight to the rescue!
	To scale up or to refactor? That is the question

	Auto-scaling
	Summary

	Monetization and Pricing Strategy
	Monetization strategies
	Selling or upselling your app
	Selling a product or service in the real world
	Offering your app for free and selling your service
	Advertisements
	Monetizing your data

	Pricing strategy
	Price perception
	Android or iOS first?
	In-app purchase product types
	In-app billing

	See how in-app purchases can be implemented
	The case of the Empurror

	Applying a pricing strategy to your store listing
	Summary

	Continuous Deployment
	Continuous Deployment = Continuous Integration and Delivery
	Continuous Integration
	Continuous Delivery

	Repository and Git workflow
	Automated tests
	An example of a continuous workflow for an Android app
	Building variants
	The Gradle way
	productFlavors
	sourceSets
	buildTypes
	signingConfigs
	Using TeamCity as build agent
	Automated deploy and delivery
	Self hosted
	HockeyApp or Fabric beta
	Fastlane, alpha/beta Play Store, and iTunes beta
	DevOps

	Summary

	Building an Unfair Advantage
	Introduction - it's not just about your app
	Digging your moat with intangible assets

	Protecting your work with IP laws
	Why you should care - Business-destroying patent trolls
	How IP laws can protect your app and business
	How to defend your intellectual property
	Going on the legal offensive

	The network effect and platforms
	The network effect
	The platform effect

	Making use of vertical markets
	Why target vertical markets?
	How successful companies exploit vertical control
	Switching costs

	How to use switching costs to improve user retention
	How to decrease competitors' switching costs

	Good customer support
	The right perspective on customer service
	A recipe for great customer service
	How successful companies use customer service to improve profits
	A look at some great tools to help with customer support
	The power of a well-developed brand name
	Reasons to brand yourself
	How to build your brand
	Tools to monitor your brand via social media and app stores
	Building a brand on a budget
	Branding case studies

	Summary

	The Flyng Case Study
	That sounds awesome, but what is Flyng?
	The team
	Mitchell Trulli
	Daniel Guthrie
	Mike van Drongelen
	The other contributors

	The MVP
	A distributed team
	Flyng's USPs
	Growing a user base
	The business model
	Customer segments
	Value propositions
	Customer relationships
	Channels
	Revenue Streams
	Key resources
	Key activities
	Partners
	Cost structure
	Unfair advantage

	Getting feedback
	Unvalidated assumptions
	A zombie feature
	Feedback and actionable metrics
	Split testing

	Vision
	Technical considerations
	Parse server hosted at Back4App
	Real-time data
	The other dependencies
	Queries
	Complex operations
	Push notifications
	Crash reports
	Releases

	Summary

	Appendix
	Reading list and references

