
Machine Learning
The Art and Science of Algorithms that Make Sense of Data

Peter A. Flach

Intelligent Systems Laboratory, University of Bristol, United Kingdom

Edited by Tomasz Pawlak to match requirements of course of
Applications of Computational Intelligence Methods

at Poznan University of Technology, Faculty of Computing.

These slides accompany the above book published by Cambridge University Press in 2012, and
are made freely available for teaching purposes (the copyright remains with the author, however).

The material is divided in four difficulty levels A (basic) to D (advanced); this PDF includes all
material up to level B.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 2 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

Table of contents I

1 The ingredients of machine learning
Tasks: the problems that can be solved with machine learning

Looking for structure

Models: the output of machine learning
Geometric models
Probabilistic models
Logical models
Grouping and grading

Features: the workhorses of machine learning
Many uses of features
Feature construction and transformation

2 Binary classification and related tasks
Classification

Assessing classification performance
Visualising classification performance

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 3 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

Table of contents II

Scoring and ranking
Assessing and visualising ranking performance
Tuning rankers

Class probability estimation
Assessing class probability estimates

3 Beyond binary classification
Handling more than two classes

Multi-class classification
Multi-class scores and probabilities

Regression
Unsupervised and descriptive learning

Predictive and descriptive clustering
Other descriptive models

4 Tree models
Decision trees

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 4 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

Table of contents III

Ranking and probability estimation trees
Sensitivity to skewed class distributions

Tree learning as variance reduction
Regression trees
Clustering trees

5 Rule models
Learning ordered rule lists

Rule lists for ranking and probability estimation

Learning unordered rule sets
Rule sets for ranking and probability estimation

Descriptive rule learning
Rule learning for subgroup discovery
Association rule mining

6 Linear models
The least-squares method

Multivariate linear regression
cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 5 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

Table of contents IV

The perceptron: a heuristic learning algorithm for linear classifiers
Support vector machines

Soft margin SVM

Obtaining probabilities from linear classifiers

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 6 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

Assassinating spam e-mail

SpamAssassin is a widely used open-source spam filter. It calculates a score for
an incoming e-mail, based on a number of built-in rules or ‘tests’ in
SpamAssassin’s terminology, and adds a ‘junk’ flag and a summary report to the
e-mail’s headers if the score is 5 or more.

-0.1 RCVD_IN_MXRATE_WL RBL: MXRate recommends allowing
[123.45.6.789 listed in sub.mxrate.net]

0.6 HTML_IMAGE_RATIO_02 BODY: HTML has a low ratio of text to image area
1.2 TVD_FW_GRAPHIC_NAME_MID BODY: TVD_FW_GRAPHIC_NAME_MID
0.0 HTML_MESSAGE BODY: HTML included in message
0.6 HTML_FONx_FACE_BAD BODY: HTML font face is not a word
1.4 SARE_GIF_ATTACH FULL: Email has a inline gif
0.1 BOUNCE_MESSAGE MTA bounce message
0.1 ANY_BOUNCE_MESSAGE Message is some kind of bounce message
1.4 AWL AWL: From: address is in the auto white-list

From left to right you see the score attached to a particular test, the test
identifier, and a short description including a reference to the relevant part of the
e-mail. As you see, scores for individual tests can be negative (indicating
evidence suggesting the e-mail is ham rather than spam) as well as positive. The
overall score of 5.3 suggests the e-mail might be spam.
cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 7 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

Example 1, p.2 Linear classification

Suppose we have only two tests and four training e-mails, one of which is spam
(see Table 1).

t Both tests succeed for the spam e-mail;

t for one ham e-mail neither test succeeds,

t for another the first test succeeds and the second doesn’t,

t and for the third ham e-mail the first test fails and the second succeeds.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 8 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

Table 1, p.3 Spam filtering as a classification task

E-mail x1 x2 Spam? 4x1 +4x2

1 1 1 1 8
2 0 0 0 0
3 1 0 0 4
4 0 1 0 4

It is easy to see that assigning both tests a weight of 4 correctly ‘classifies’ these
four e-mails into spam and ham. In the mathematical notation introduced in
Background 1 we could describe this classifier as 4x1 +4x2 > 5 or
(4,4) · (x1, x2) > 5.

In fact, any weight between 2.5 and 5 will ensure that the threshold of 5 is only
exceeded when both tests succeed. We could even consider assigning different
weights to the tests – as long as each weight is less than 5 and their sum
exceeds 5 – although it is hard to see how this could be justified by the training
data.cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 9 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

Figure 1, p.5 Linear classification in two dimensions

+
+

+ +

+

+

++

–

–

–

–
–

–
–

x1

x0

x2

w

–

The straight line separates the positives from the negatives. It is defined by w ·xi = t ,

where w is a vector perpendicular to the decision boundary and pointing in the direction

of the positives, t is the decision threshold, and xi points to a point on the decision

boundary. In particular, x0 points in the same direction as w, from which it follows that

w ·x0 = ||w|| ||x0|| = t (||x|| denotes the length of the vector x).

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 10 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

Background 1, p.4 Homogeneous coordinates

It is sometimes convenient to simplify notation further by introducing an extra
constant ‘variable’ x0 = 1, the weight of which is fixed to w0 =−t .

The extended data point is then x◦ = (1, x1, . . . , xn) and the extended weight
vector is w◦ = (−t , w1, . . . , wn), leading to the decision rule w◦ ·x◦ > 0 and the
decision boundary w◦ ·x◦ = 0.

Thanks to these so-called homogeneous coordinates the decision boundary
passes through the origin of the extended coordinate system, at the expense of
needing an additional dimension.

t note that this doesn’t really affect the data, as all data points and the ‘real’
decision boundary live in the plane x0 = 1.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 11 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

Important point to remember

Machine learning is the systematic study of algorithms and systems that improve
their knowledge or performance with experience.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 12 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

Figure 2, p.5 Machine learning for spam filtering

SpamAssassin
tests Linear classifier

E-mails Data Spam?

weights

Learn weights
Training data

At the top we see how SpamAssassin approaches the spam e-mail classification task:

the text of each e-mail is converted into a data point by means of SpamAssassin’s

built-in tests, and a linear classifier is applied to obtain a ‘spam or ham’ decision. At the

bottom (in blue) we see the bit that is done by machine learning.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 13 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

Example 2, p.6 Overfitting

Imagine you are preparing for your Machine Learning 101 exam. Helpfully,
Professor Flach has made previous exam papers and their worked answers
available online. You begin by trying to answer the questions from previous
papers and comparing your answers with the model answers provided.

Unfortunately, you get carried away and spend all your time on memorising the
model answers to all past questions. Now, if the upcoming exam completely
consists of past questions, you are certain to do very well. But if the new exam
asks different questions about the same material, you would be ill-prepared and
get a much lower mark than with a more traditional preparation.

In this case, one could say that you were overfitting the past exam papers and
that the knowledge gained didn’t generalise to future exam questions.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 14 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

A Bayesian classifier I

Bayesian spam filters maintain a vocabulary of words and phrases – potential
spam or ham indicators – for which statistics are collected from a training set.

t For instance, suppose that the word ‘Viagra’ occurred in four spam e-mails
and in one ham e-mail. If we then encounter a new e-mail that contains the
word ‘Viagra’, we might reason that the odds that this e-mail is spam are
4:1, or the probability of it being spam is 0.80 and the probability of it being
ham is 0.20.

t The situation is slightly more subtle because we have to take into account
the prevalence of spam. Suppose that I receive on average one spam
e-mail for every six ham e-mails. This means that I would estimate the odds
of an unseen e-mail being spam as 1:6, i.e., non-negligible but not very high
either.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 15 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

A Bayesian classifier II

t If I then learn that the e-mail contains the word ‘Viagra’, which occurs four
times as often in spam as in ham, I need to combine these two odds. As we
shall see later, Bayes’ rule tells us that we should simply multiply them: 1:6
times 4:1 is 4:6, corresponding to a spam probability of 0.4.

In this way you are combining two independent pieces of evidence, one
concerning the prevalence of spam, and the other concerning the occurrence of
the word ‘Viagra’, pulling in opposite directions.

The nice thing about this ‘Bayesian’ classification scheme is that it can be
repeated if you have further evidence. For instance, suppose that the odds in
favour of spam associated with the phrase ‘blue pill’ is estimated at 3:1, and
suppose our e-mail contains both ‘Viagra’ and ‘blue pill’, then the combined odds
are 4:1 times 3:1 is 12:1, which is ample to outweigh the 1:6 odds associated
with the low prevalence of spam (total odds are 2:1, or a spam probability of
0.67, up from 0.40 without the ‘blue pill’).

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 16 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

A rule-based classifier

t if the e-mail contains the word ‘Viagra’ then estimate the odds of spam as
4:1;

t otherwise, if it contains the phrase ‘blue pill’ then estimate the odds of spam
as 3:1;

t otherwise, estimate the odds of spam as 1:6.

The first rule covers all e-mails containing the word ‘Viagra’, regardless of
whether they contain the phrase ‘blue pill’, so no overcounting occurs. The
second rule only covers e-mails containing the phrase ‘blue pill’ but not the word
‘Viagra’, by virtue of the ‘otherwise’ clause. The third rule covers all remaining
e-mails: those which neither contain neither ‘Viagra’ nor ‘blue pill’.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 17 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

Figure 3, p.11 How machine learning helps to solve a task

Learning problem

Features
Domain

objects

Data Output
Model

Learning
algorithm

Training data

Task

An overview of how machine learning is used to address a given task. A task (red box)

requires an appropriate mapping – a model – from data described by features to outputs.

Obtaining such a mapping from training data is what constitutes a learning problem (blue

box).

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 18 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

Important point to remember

Tasks are addressed by models, whereas learning problems are solved by
learning algorithms that produce models.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 19 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

Important point to remember

Machine learning is concerned with using the right features to build the right
models that achieve the right tasks.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 20 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning

What’s next?

1 The ingredients of machine learning
Tasks: the problems that can be solved with machine learning

Looking for structure

Models: the output of machine learning
Geometric models
Probabilistic models
Logical models
Grouping and grading

Features: the workhorses of machine learning
Many uses of features
Feature construction and transformation

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 21 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning

Important point to remember

Models lend the machine learning field diversity, but tasks and features give it
unity.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 22 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.1 Tasks: the problems that can be solved with machine learning

What’s next?

1 The ingredients of machine learning
Tasks: the problems that can be solved with machine learning

Looking for structure

Models: the output of machine learning
Geometric models
Probabilistic models
Logical models
Grouping and grading

Features: the workhorses of machine learning
Many uses of features
Feature construction and transformation

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 23 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.1 Tasks: the problems that can be solved with machine learning

Tasks for machine learning

The most common machine learning tasks are predictive, in the sense that they
concern predicting a target variable from features.

t Binary and multi-class classification: categorical target

t Regression: numerical target

t Clustering: hidden target

Descriptive tasks are concerned with exploiting underlying structure in the data.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 24 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.1 Tasks: the problems that can be solved with machine learning

Example 1.1, p.15 Measuring similarity

If our e-mails are described by word-occurrence features as in the text
classification example, the similarity of e-mails would be measured in terms of
the words they have in common. For instance, we could take the number of
common words in two e-mails and divide it by the number of words occurring in
either e-mail (this measure is called the Jaccard coefficient).

Suppose that one e-mail contains 42 (different) words and another contains 112
words, and the two e-mails have 23 words in common, then their similarity would
be 23

42+112−23 = 23
130 = 0.18. We can then cluster our e-mails into groups, such

that the average similarity of an e-mail to the other e-mails in its group is much
larger than the average similarity to e-mails from other groups.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 25 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.1 Tasks: the problems that can be solved with machine learning

Looking for structure

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 26 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.1 Tasks: the problems that can be solved with machine learning

Looking for structure I

Consider the following matrix: 

1 0 1 0
0 2 2 2
0 0 0 1
1 2 3 2
1 0 1 1
0 2 2 3


Imagine these represent ratings by six different people (in rows), on a scale of 0
to 3, of four different films – say The Shawshank Redemption, The Usual
Suspects, The Godfather, The Big Lebowski, (in columns, from left to right). The
Godfather seems to be the most popular of the four with an average rating of 1.5,
and The Shawshank Redemption is the least appreciated with an average rating
of 0.5. Can you see any structure in this matrix?

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 27 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.1 Tasks: the problems that can be solved with machine learning

Looking for structure II



1 0 1 0
0 2 2 2
0 0 0 1
1 2 3 2
1 0 1 1
0 2 2 3

 =



1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1

 ×
 1 0 0

0 2 0
0 0 1

 ×
 1 0 1 0

0 1 1 1
0 0 0 1



t The right-most matrix associates films (in columns) with genres (in rows):
The Shawshank Redemption and The Usual Suspects belong to two
different genres, say drama and crime, The Godfather belongs to both, and
The Big Lebowski is a crime film and also introduces a new genre (say
comedy).

t The tall, 6-by-3 matrix then expresses people’s preferences in terms of
genres.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 28 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.1 Tasks: the problems that can be solved with machine learning

Looking for structure III

t Finally, the middle matrix states that the crime genre is twice as important
as the other two genres in terms of determining people’s preferences.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 29 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.1 Tasks: the problems that can be solved with machine learning

Table 1.1, p.18 Machine learning settings

Predictive model Descriptive model

Supervised learning classification, regression subgroup discovery
Unsupervised learning predictive clustering descriptive clustering,

association rule discovery

The rows refer to whether the training data is labelled with a target variable, while the

columns indicate whether the models learned are used to predict a target variable or

rather describe the given data.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 30 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.2 Models: the output of machine learning

What’s next?

1 The ingredients of machine learning
Tasks: the problems that can be solved with machine learning

Looking for structure

Models: the output of machine learning
Geometric models
Probabilistic models
Logical models
Grouping and grading

Features: the workhorses of machine learning
Many uses of features
Feature construction and transformation

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 31 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.2 Models: the output of machine learning

Machine learning models

Machine learning models can be distinguished according to their main intuition:

t Geometric models use intuitions from geometry such as separating
(hyper-)planes, linear transformations and distance metrics.

t Probabilistic models view learning as a process of reducing uncertainty,
modelled by means of probability distributions.

t Logical models are defined in terms of easily interpretable logical
expressions.

Alternatively, they can be characterised by their modus operandi :

t Grouping models divide the instance space into segments; in each segment
a very simple (e.g., constant) model is learned.

t Grading models learning a single, global model over the instance space.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 32 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.2 Models: the output of machine learning

Geometric models

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 33 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.2 Models: the output of machine learning

Figure 1.1, p.22 Basic linear classifier

+
+

+ +

+
+

++

–
–

–
–
–

–
–

p

n

w=p–n
–

(p+n)/2

The basic linear classifier constructs a decision boundary by half-way intersecting the

line between the positive and negative centres of mass. It is described by the equation

w ·x = t , with w = p−n; the decision threshold can be found by noting that (p+n)/2 is

on the decision boundary, and hence t = (p−n) · (p+n)/2 = (||p||2 −||n||2)/2, where

||x|| denotes the length of vector x.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 34 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.2 Models: the output of machine learning

Figure 1.2, p.23 Support vector machine

+
+

+ +

+

+

++

–

–

–

–

–

–
–

–

w

The decision boundary learned by a support vector machine from the linearly separable

data from Figure 1. The decision boundary maximises the margin, which is indicated by

the dotted lines. The circled data points are the support vectors.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 35 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.2 Models: the output of machine learning

Probabilistic models

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 36 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.2 Models: the output of machine learning

Table 1.2, p.26 A simple probabilistic model

Viagra lottery P (Y = spam|Viagra, lottery) P (Y = ham|Viagra, lottery)

0 0 0.31 0.69
0 1 0.65 0.35
1 0 0.80 0.20
1 1 0.40 0.60

‘Viagra’ and ‘lottery’ are two Boolean features; Y is the class variable, with values ‘spam’

and ‘ham’. In each row the most likely class is indicated in bold.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 37 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.2 Models: the output of machine learning

Decision rule

Assuming that X and Y are the only variables we know and care about, the
posterior distribution P (Y |X) helps us to answer many questions of interest.

t For instance, to classify a new e-mail we determine whether the words
‘Viagra’ and ‘lottery’ occur in it, look up the corresponding probability
P (Y = spam|Viagra, lottery), and predict spam if this probability exceeds
0.5 and ham otherwise.

t Such a recipe to predict a value of Y on the basis of the values of X and
the posterior distribution P (Y |X) is called a decision rule.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 38 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.2 Models: the output of machine learning

Example 1.2, p.26 Missing values I

Suppose we skimmed an e-mail and noticed that it contains the word ‘lottery’ but
we haven’t looked closely enough to determine whether it uses the word ‘Viagra’.
This means that we don’t know whether to use the second or the fourth row in
Table 1.2 to make a prediction. This is a problem, as we would predict spam if the
e-mail contained the word ‘Viagra’ (second row) and ham if it didn’t (fourth row).
The solution is to average these two rows, using the probability of ‘Viagra’
occurring in any e-mail (spam or not):

P (Y |lottery) =P (Y |Viagra= 0, lottery)P (Viagra= 0)

+P (Y |Viagra= 1, lottery)P (Viagra= 1)

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 39 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.2 Models: the output of machine learning

Example 1.2, p.26 Missing values II

For instance, suppose for the sake of argument that one in ten e-mails contain
the word ‘Viagra’, then P (Viagra= 1) = 0.10 and P (Viagra= 0) = 0.90. Using
the above formula, we obtain
P (Y = spam|lottery= 1) = 0.65 ·0.90+0.40 ·0.10 = 0.625 and
P (Y = ham|lottery= 1) = 0.35 ·0.90+0.60 ·0.10 = 0.375. Because the
occurrence of ‘Viagra’ in any e-mail is relatively rare, the resulting distribution
deviates only a little from the second row in Table 1.2.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 40 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.2 Models: the output of machine learning

Likelihood ratio

As a matter of fact, statisticians work very often with different conditional
probabilities, given by the likelihood function P (X |Y).

t I like to think of these as thought experiments: if somebody were to send
me a spam e-mail, how likely would it be that it contains exactly the words
of the e-mail I’m looking at? And how likely if it were a ham e-mail instead?

t What really matters is not the magnitude of these likelihoods, but their ratio:
how much more likely is it to observe this combination of words in a spam
e-mail than it is in a non-spam e-mail.

t For instance, suppose that for a particular e-mail described by X we have
P (X |Y = spam) = 3.5 ·10−5 and P (X |Y = ham) = 7.4 ·10−6, then
observing X in a spam e-mail is nearly five times more likely than it is in a
ham e-mail.

t This suggests the following decision rule (maximum a posteriori, MAP):
predict spam if the likelihood ratio is larger than 1 and ham otherwise.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 41 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.2 Models: the output of machine learning

Important point to remember

Use likelihoods if you want to ignore the prior distribution or assume it uniform,
and posterior probabilities otherwise.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 42 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.2 Models: the output of machine learning

Example 1.3, p.28 Posterior odds

P (Y = spam|Viagra= 0, lottery= 0)

P (Y = ham|Viagra= 0, lottery= 0)
= 0.31

0.69
= 0.45

P (Y = spam|Viagra= 1, lottery= 1)

P (Y = ham|Viagra= 1, lottery= 1)
= 0.40

0.60
= 0.67

P (Y = spam|Viagra= 0, lottery= 1)

P (Y = ham|Viagra= 0, lottery= 1)
= 0.65

0.35
= 1.9

P (Y = spam|Viagra= 1, lottery= 0)

P (Y = ham|Viagra= 1, lottery= 0)
= 0.80

0.20
= 4.0

Using a MAP decision rule we predict ham in the top two cases and spam in the
bottom two. Given that the full posterior distribution is all there is to know about
the domain in a statistical sense, these predictions are the best we can do: they
are Bayes-optimal.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 43 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.2 Models: the output of machine learning

Table 1.3, p.29 Example marginal likelihoods

Y P (Viagra= 1|Y) P (Viagra= 0|Y)

spam 0.40 0.60
ham 0.12 0.88

Y P (lottery= 1|Y) P (lottery= 0|Y)

spam 0.21 0.79
ham 0.13 0.87

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 44 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.2 Models: the output of machine learning

Example 1.4, p.30 Using marginal likelihoods

Using the marginal likelihoods from Table 1.3, we can approximate the likelihood
ratios (the previously calculated odds from the full posterior distribution are
shown in brackets):

P (Viagra= 0|Y = spam)

P (Viagra= 0|Y = ham)

P (lottery= 0|Y = spam)

P (lottery= 0|Y = ham)
= 0.60

0.88

0.79

0.87
= 0.62 (0.45)

P (Viagra= 0|Y = spam)

P (Viagra= 0|Y = ham)

P (lottery= 1|Y = spam)

P (lottery= 1|Y = ham)
= 0.60

0.88

0.21

0.13
= 1.1 (1.9)

P (Viagra= 1|Y = spam)

P (Viagra= 1|Y = ham)

P (lottery= 0|Y = spam)

P (lottery= 0|Y = ham)
= 0.40

0.12

0.79

0.87
= 3.0 (4.0)

P (Viagra= 1|Y = spam)

P (Viagra= 1|Y = ham)

P (lottery= 1|Y = spam)

P (lottery= 1|Y = ham)
= 0.40

0.12

0.21

0.13
= 5.4 (0.67)

We see that, using a maximum likelihood decision rule, our very simple model
arrives at the Bayes-optimal prediction in the first three cases, but not in the
fourth (‘Viagra’ and ‘lottery’ both present), where the marginal likelihoods are
actually very misleading.
cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 45 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.2 Models: the output of machine learning

Figure 1.3, p.31 The Scottish classifier

4

1

0

2

4

6

0 2 4 6

‘P
et
er
’

‘lottery’

Ham Spam

2

0

2

4

6

0 2 4 6

‘P
et
er
’

‘lottery’

Ham Spam

0

2

4

6

0 2 4 6

‘P
et
er
’

‘lottery’ 3

Ham Spam

(top) Visualisation of two marginal likelihoods as estimated from a small data set. The

colours indicate whether the likelihood points to spam or ham. (bottom) Combining the

two marginal likelihoods gives a pattern not unlike that of a Scottish tartan.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 46 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.2 Models: the output of machine learning

Logical models

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 47 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.2 Models: the output of machine learning

Figure 1.4, p.32 A feature tree

ʻViagraʼ

ʻlotteryʼ

=0

spam: 20
ham: 5

 =1

spam: 20
 ham: 40

=0

spam: 10
ham: 5

 =1

!Viagra"

!lo
tt
e
ry
"

0 1

0
1

spam: 20

ham: 5

spam: 20

 ham: 40

spam: 10

ham: 5

(left) A feature tree combining two Boolean features. Each internal node or split is

labelled with a feature, and each edge emanating from a split is labelled with a feature

value. Each leaf therefore corresponds to a unique combination of feature values. Also

indicated in each leaf is the class distribution derived from the training set. (right) A

feature tree partitions the instance space into rectangular regions, one for each leaf. We

can clearly see that the majority of ham lives in the lower left-hand corner.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 48 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.2 Models: the output of machine learning

Example 1.5, p.33 Labelling a feature tree

t The leaves of the tree in Figure 1.4 could be labelled, from left to right, as
ham – spam – spam, employing a simple decision rule called majority class.

t Alternatively, we could label them with the proportion of spam e-mail
occurring in each leaf: from left to right, 1/3, 2/3, and 4/5.

t Or, if our task was a regression task, we could label the leaves with
predicted real values or even linear functions of some other, real-valued
features.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 49 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.2 Models: the output of machine learning

Figure 1.5, p.33 A complete feature tree

ʻViagraʼ

ʻlotteryʼ

=0

ʻlotteryʼ

 =1

spam: 20
 ham: 40

=0

spam: 10
ham: 5

 =1

spam: 20
ham: 4

 =0

spam: 0
ham: 1

 =1

spam: 0

ham: 1

!Viagra"

!lo
tt

e
ry
"

0 1

0
1

spam: 20

ham: 4

spam: 20

 ham: 40

spam: 10

ham: 5

(left) A complete feature tree built from two Boolean features. (right) The corresponding

instance space partition is the finest partition that can be achieved with those two

features.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 50 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.2 Models: the output of machine learning

Formulation of rules from a tree

ʻViagraʼ

ʻlotteryʼ

=0

ʻlotteryʼ

 =1

spam: 20
 ham: 40

=0

spam: 10
ham: 5

 =1

spam: 20
ham: 4

 =0

spam: 0
ham: 1

 =1

For each path from the root to a leaf:

t Collect all comparisons from the itermediate nodes

t Join the comparisons using AND

t Use majority class from the leaf as decision

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 51 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.2 Models: the output of machine learning

Example 1.6, p.34 Overlapping rules

Consider the following rules:

·if lottery= 1 then Class=Y= spam·
·if Peter= 1 then Class=Y= ham·

As can be seen in Figure 1.6, these rules overlap for lottery= 1 ∧ Peter= 1, for
which they make contradictory predictions. Furthermore, they fail to make any
predictions for lottery= 0 ∧ Peter= 0.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 52 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.2 Models: the output of machine learning

Figure 1.6, p.35 Overlapping rules

!Peter"

!lo
tt
e
ry
"

0 1

0
1

The effect of overlapping rules in instance space. The two rules make contradictory

predictions in the top right-hand corner, and no prediction at all in the bottom left-hand

corner.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 53 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.2 Models: the output of machine learning

Grouping and grading

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 54 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.2 Models: the output of machine learning

Figure 1.7, p.37 Mapping machine learning models

−10 −5 0 5 10 15 20
−10

−8

−6

−4

−2

0

2

4

6

8

10

Trees

Rules

naive Bayes

kNN

Linear Classifier

Linear Regression

Logistic Regression

SVM

Kmeans

GMM

Associations

A ‘map’ of some of the models that will be considered in this book. Models that share

characteristics are plotted closer together: logical models to the right, geometric models

on the top left and probabilistic models on the bottom left. The horizontal dimension

roughly ranges from grading models on the left to grouping models on the right.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 55 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.2 Models: the output of machine learning

Figure 1.8, p.38 ML taxonomy

grading

logical

a bit

geometric

 a lot

supervised

yes

naive
Bayes

 not so
much

association
rules

no

trees &
rules

 yes

supervised

not
 com-

 pletely

grouping

yes

GMM

 no

SVM

 yes

linear
classifiers

 no

supervised

 some

K-means

 no

k-NN

 yes

A taxonomy describing machine learning methods in terms of the extent to which they

are grading or grouping models, logical, geometric or a combination, and supervised or

unsupervised. The colours indicate the type of model, from left to right: logical (red),

probabilistic (orange) and geometric (purple).

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 56 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.3 Features: the workhorses of machine learning

What’s next?

1 The ingredients of machine learning
Tasks: the problems that can be solved with machine learning

Looking for structure

Models: the output of machine learning
Geometric models
Probabilistic models
Logical models
Grouping and grading

Features: the workhorses of machine learning
Many uses of features
Feature construction and transformation

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 57 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.3 Features: the workhorses of machine learning

Example 1.7, p.39 The MLM data set

Suppose we have a number of learning models that we want to describe in terms
of a number of properties:

t the extent to which the models are geometric, probabilistic or logical;
t whether they are grouping or grading models;
t the extent to which they can handle discrete and/or real-valued features;
t whether they are used in supervised or unsupervised learning; and
t the extent to which they can handle multi-class problems.

The first two properties could be expressed by discrete features with three and
two values, respectively; or if the distinctions are more gradual, each aspect
could be rated on some numerical scale. A simple approach would be to
measure each property on an integer scale from 0 to 3, as in Table 1.4. This
table establishes a data set in which each row represents an instance and each
column a feature.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 58 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.3 Features: the workhorses of machine learning

Table 1.4, p.39 The MLM data set

Model geom stats logic group grad disc real sup unsup multi

Trees 1 0 3 3 0 3 2 3 2 3
Rules 0 0 3 3 1 3 2 3 0 2
naive Bayes 1 3 1 3 1 3 1 3 0 3
kNN 3 1 0 2 2 1 3 3 0 3
Linear Classifier 3 0 0 0 3 1 3 3 0 0
Linear Regression 3 1 0 0 3 0 3 3 0 1
Logistic Regression 3 2 0 0 3 1 3 3 0 0
SVM 2 2 0 0 3 2 3 3 0 0
Kmeans 3 2 0 1 2 1 3 0 3 1
GMM 1 3 0 0 3 1 3 0 3 1
Associations 0 0 3 3 0 3 1 0 3 1

The MLM data set describing properties of machine learning models.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 59 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.3 Features: the workhorses of machine learning

Many uses of features

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 60 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.3 Features: the workhorses of machine learning

Example 1.8, p.41 Many uses of features

Suppose we want to approximate y = cosπx on the interval −1 ≤ x ≤ 1. A linear
approximation is not much use here, since the best fit would be y = 0. However,
if we split the x-axis in two intervals −1 ≤ x < 0 and 0 ≤ x ≤ 1, we could find
reasonable linear approximations on each interval. We can achieve this by using
x both as a splitting feature and as a regression variable (Figure 1.9).

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 61 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.3 Features: the workhorses of machine learning

Figure 1.9, p.41 A small regression tree

x

ŷ = 2x+1

<0

ŷ = −2x+1

 ≥0 -1 0 1

-1

1

(left) A regression tree combining a one-split feature tree with linear regression models

in the leaves. Notice how x is used as both a splitting feature and a regression variable.

(right) The function y = cosπx on the interval −1 ≤ x ≤ 1, and the piecewise linear

approximation achieved by the regression tree.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 62 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.3 Features: the workhorses of machine learning

Feature construction and transformation

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 63 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.3 Features: the workhorses of machine learning

Figure 1.10, p.42 Class-sensitive discretisation

30 40 50 60 70 80 90 100 110 120 130
0

2

4

6

8

10

12

14

35 55 75 90 110 130
0

5

10

15

20

25

(left) Artificial data depicting a histogram of body weight measurements of people with

(blue) and without (red) diabetes, with eleven fixed intervals of 10 kilograms width each.

(right) By joining the first and second, third and fourth, fifth and sixth, and the eighth,

ninth and tenth intervals, we obtain a discretisation such that the proportion of diabetes

cases increases from left to right. This discretisation makes the feature more useful in

predicting diabetes.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 64 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.3 Features: the workhorses of machine learning

Example 1.9, p.43 The kernel trick

Let x1 = (x1, y1) and x2 = (x2, y2) be two data points, and consider the mapping
(x, y) 7→ (x2, y2,

p
2x y) to a three-dimensional feature space. The points in

feature space corresponding to x1 and x2 are x′1 = (x2
1 , y2

1 ,
p

2x1 y1) and
x′2 = (x2

2 , y2
2 ,
p

2x2 y2). The dot product of these two feature vectors is

x′1 ·x′2 = x2
1 x2

2 + y2
1 y2

2 +2x1 y1x2 y2 = (x1x2 + y1 y2)2 = (x1 ·x2)2

That is, by squaring the dot product in the original space we obtain the dot
product in the new space without actually constructing the feature vectors! A
function that calculates the dot product in feature space directly from the vectors
in the original space is called a kernel – here the kernel is κ(x1,x2) = (x1 ·x2)2.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 65 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

1. The ingredients of machine learning 1.3 Features: the workhorses of machine learning

Figure 1.11, p.43 Non-linearly separable data

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(left) A linear classifier would perform poorly on this data. (right) By transforming the

original (x, y) data into (x ′, y ′) = (x2, y2), the data becomes more ‘linear’, and a linear

decision boundary x ′+ y ′ = 3 separates the data fairly well. In the original space this

corresponds to a circle with radius
p

3 around the origin.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 66 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks

What’s next?

2 Binary classification and related tasks
Classification

Assessing classification performance
Visualising classification performance

Scoring and ranking
Assessing and visualising ranking performance
Tuning rankers

Class probability estimation
Assessing class probability estimates

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 67 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks

Symbols used in the following slides

Suppose the following symbols:

t X – set of all instances (the universe)

t L – set of all labels (the universe)

t C – set of all classes (the universe)

t Y – set of all outputs (the universe)

t Tr – training set of labelled instances (x, l (x)), where l : X →L

t Te – test set of labelled instances (x, l (x)), where l : X →L

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 68 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks

Table 2.1, p.52 Predictive machine learning scenarios

Task Label space Output space Learning problem

Classification L =C Y =C learn an approximation ĉ :
X → C to the true labelling
function c

Scoring and
ranking

L =C Y =R|C | learn a model that outputs a
score vector over classes

Probability
estimation

L =C Y = [0,1]|C | learn a model that out-
puts a probability vector over
classes

Regression L =R Y =R learn an approximation f̂ :
X → R to the true labelling
function f

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 69 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks 2.1 Classification

What’s next?

2 Binary classification and related tasks
Classification

Assessing classification performance
Visualising classification performance

Scoring and ranking
Assessing and visualising ranking performance
Tuning rankers

Class probability estimation
Assessing class probability estimates

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 70 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks 2.1 Classification

Classification

A classifier is a mapping ĉ : X →C , where C = {C1,C2, . . . ,Ck } is a finite and
usually small set of class labels. We will sometimes also use Ci to indicate the
set of examples of that class.

We use the ‘hat’ to indicate that ĉ(x) is an estimate of the true but unknown
function c(x). Examples for a classifier take the form (x,c(x)), where x ∈X is
an instance and c(x) is the true class of the instance (sometimes contaminated
by noise).

Learning a classifier involves constructing the function ĉ such that it matches c
as closely as possible (and not just on the training set, but ideally on the entire
instance space X).

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 71 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks 2.1 Classification

Figure 2.1, p.53 A decision tree

ʻViagraʼ

ʻlotteryʼ

=0

spam: 20
ham: 5

 =1

spam: 20
 ham: 40

=0

spam: 10
ham: 5

 =1

ʻViagraʼ

ʻlotteryʼ

=0

ĉ(x) = spam

 =1

ĉ(x) = ham

=0

ĉ(x) = spam

 =1

(left) A feature tree with training set class distribution in the leaves. (right) A decision

tree obtained using the majority class decision rule.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 72 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks 2.1 Classification

Assessing classification performance

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 73 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks 2.1 Classification

Table 2.2, p.54 Contingency table

Predicted ⊕ Predicted ª
Actual ⊕ 30 20 50
Actual ª 10 40 50

40 60 100

⊕ ª
⊕ 20 30 50
ª 20 30 50

40 60 100

(left) A two-class contingency table or confusion matrix depicting the performance of the

decision tree in Figure 2.1. Numbers on the descending diagonal indicate correct

predictions, while the ascending diagonal concerns prediction errors. (right) A

contingency table with the same marginals but independent rows and columns.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 74 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks 2.1 Classification

Statistics from contingency table

Let’s label numbers of a classifier’s predictions on a test set as in the table:

Predicted ⊕ Predicted ª
Actual ⊕ TP FN Pos
Actual ª FP TN Neg

0 0 0

Where abbreviations stand for:

t TP – true positives

t FP – false positives

t FN – false negatives

t TN – true negatives

t Pos – number of positive examples

t Neg – number of negative examples

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 75 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks 2.1 Classification

Table 2.3, p.57 Performance measures I

Measure Definition Equal to Estimates

number of positives Pos =∑
x∈Te I [c(x) =⊕]

number of negatives Neg =∑
x∈Te I [c(x) =ª] |Te|−Pos

number of true positives TP =∑
x∈Te I [ĉ(x) = c(x) =⊕]

number of true negatives TN =∑
x∈Te I [ĉ(x) = c(x) =ª]

number of false positives FP =∑
x∈Te I [ĉ(x) =⊕,c(x) =ª] Neg −TN

number of false negatives FN =∑
x∈Te I [ĉ(x) =ª,c(x) =⊕] Pos−TP

proportion of positives pos = 1
|Te|

∑
x∈Te I [c(x) =⊕] Pos/|Te| P (c(x) =⊕)

proportion of negatives neg = 1
|Te|

∑
x∈Te I [c(x) =ª] 1−pos P (c(x) =ª)

class ratio clr = pos/neg Pos/Neg

(*) accuracy acc = 1
|Te|

∑
x∈Te I [ĉ(x) = c(x)] P (ĉ(x) = c(x))

(*) error rate err = 1
|Te|

∑
x∈Te I [ĉ(x) 6= c(x)] 1−acc P (ĉ(x) 6= c(x))

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 76 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks 2.1 Classification

Table 2.3, p.57 Performance measures II

Measure Definition Equal to Estimates

true positive rate,
sensitivity, recall

tpr =
∑

x∈Te I [ĉ(x)=c(x)=⊕]∑
x∈Te I [c(x)=⊕] TP/Pos P (ĉ(x) =⊕|c(x) =⊕)

true negative rate,
specificity

tnr =
∑

x∈Te I [ĉ(x)=c(x)=ª]∑
x∈Te I [c(x)=ª] TN/Neg P (ĉ(x) =ª|c(x) =ª)

false positive rate,
false alarm rate

fpr =
∑

x∈Te I [ĉ(x)=⊕,c(x)=ª]∑
x∈Te I [c(x)=ª] FP/Neg = 1− tnr P (ĉ(x) =⊕|c(x) =ª)

false negative rate fnr =
∑

x∈Te I [ĉ(x)=ª,c(x)=⊕]∑
x∈Te I [c(x)=⊕] FN/Pos = 1− tpr P (ĉ(x) =ª|c(x) =⊕)

precision, confi-
dence

prec =
∑

x∈Te I [ĉ(x)=c(x)=⊕]∑
x∈Te I [ĉ(x)=⊕] TP/(TP+FP) P (c(x) =⊕|ĉ(x) =⊕)

Table: A summary of different quantities and evaluation measures for classifiers on a test
set Te. Symbols starting with a capital letter denote absolute frequencies (counts), while
lower-case symbols denote relative frequencies or ratios. All except those indicated with
(*) are defined only for binary classification.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 77 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks 2.1 Classification

Example 2.1, p.56 Accuracy as a weighted average

Suppose a classifier’s predictions on a test set are as in the following table:

Predicted ⊕ Predicted ª
Actual ⊕ 60 15 75
Actual ª 10 15 25

70 30 100

From this table, we see that the true positive rate is tpr = 60/75 = 0.80 and the
true negative rate is tnr = 15/25 = 0.60. The overall accuracy is
acc = (60+15)/100 = 0.75, which is no longer the average of true positive and
negative rates. However, taking into account the proportion of positives
pos = 0.75 and the proportion of negatives neg = 1−pos = 0.25, we see that

acc = pos · tpr+neg · tnr

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 78 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks 2.1 Classification

Visualising classification performance

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 79 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks 2.1 Classification

Degrees of freedom

The following contingency table:

Predicted ⊕ Predicted ª
Actual ⊕ TP FN Pos
Actual ª FP TN Neg

0 0 0

contains 9 values, however some of them depend on others: e.g., marginal sums
depend on rows and columns, respectively. Actually, we need only 4 values to
determine the rest of them. Thus, we say that this table has 4 degrees of
freedom. In general table having (k +1)2 entries has k2 degrees of freedom.

In the following, we assume that Pos, Neg , TP and FP are enough to
reconstruct whole table.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 80 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks 2.1 Classification

Figure 2.2, p.58 A coverage plot

Let there be classifiers C1, C2 and C3.

Negatives

P
os
iti
ve
s

0
TP
2

TP
1

P
os

0 FP1 FP2 Neg

C1

C2

Negatives

P
o
s
it
iv
e
s

0
T
P
3

P
o
s

0 FP3 Neg

C3

(left) A coverage plot depicting the two contingency tables in Table 2.2. The plot is

square because the class distribution is uniform. From the plot we immediately see that

C1 is better than C2. (right) Coverage plot for Example 2.1, with a class ratio clr = 3.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 81 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks 2.1 Classification

Figure 2.3, p.59 An ROC plot

Negatives

P
os
iti
ve
s

0
TP
2

TP
1

TP
3

P
os

0 FP1 FP2-3 Neg

C1

C2

C3

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0
tp
r2

tp
r1

tp
r3

1

0 fpr1 fpr2-3 1

C1

C2

C3

(left) C1 and C3 dominate C2, but neither dominates the other. The diagonal line
having slope of 1 indicates that all classifiers on this line achieve equal accuracy.
(right) Receiver Operating Characteristic (ROC) plot: a merger of the two coverage plots

in Figure 2.2, employing normalisation to deal with the different class distributions. The
diagonal line having slope of 1 indicates that all classifiers on this line have the
same average recall (average of positive and negative recalls).
cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 82 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks 2.1 Classification

Figure 2.4, p.61 Comparing coverage and ROC plots

Negatives

P
os
iti
ve
s

0
TP
1
TP
2-
3

P
os

0 FP1 FP2 FP3 Neg

C1

C2 C3

Negatives

P
os
iti
ve
s

0
tp
r1

tp
r2
-3

P
os

0 fpr1 fpr2 fpr3 Neg

C1

C2 C3

(left) In a coverage plot, accuracy isometrics have a slope of 1, and average recall

isometrics are parallel to the ascending diagonal. (right) In the corresponding ROC plot,

average recall isometrics have a slope of 1; the accuracy isometric here has a slope of 3,

corresponding to the ratio of negatives to positives in the data set.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 83 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks 2.2 Scoring and ranking

What’s next?

2 Binary classification and related tasks
Classification

Assessing classification performance
Visualising classification performance

Scoring and ranking
Assessing and visualising ranking performance
Tuning rankers

Class probability estimation
Assessing class probability estimates

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 84 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks 2.2 Scoring and ranking

Scoring classifier

A scoring classifier is a mapping ŝ : X →Rk , i.e., a mapping from the instance
space to a k-vector of real numbers.
The boldface notation indicates that a scoring classifier outputs a vector
ŝ(x) = (ŝ1(x), . . . , ŝk (x)) rather than a single number; ŝi (x) is the score assigned
to class Ci for instance x.
This score indicates how likely it is that class label Ci applies.

If we only have two classes, it usually suffices to consider the score for only one
of the classes; in that case, we use ŝ(x) to denote the score of the positive class
for instance x.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 85 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks 2.2 Scoring and ranking

Figure 2.5, p.62 A scoring tree

ʻViagraʼ

ʻlotteryʼ

=0

spam: 20
ham: 5

 =1

spam: 20
 ham: 40

=0

spam: 10
ham: 5

 =1

ʻViagraʼ

ʻlotteryʼ

=0

ŝ(x) = +2

 =1

ŝ(x) = −1

=0

ŝ(x) = +1

 =1

(left) A feature tree with training set class distribution in the leaves. (right) A scoring tree

using the logarithm of the class ratio as scores; spam is taken as the positive class.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 86 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks 2.2 Scoring and ranking

Margins and loss functions

If we take the true class c(x) as +1 for positive examples and −1 for negative
examples, then the quantity z(x) = c(x)ŝ(x) is positive for correct predictions and
negative for incorrect predictions: this quantity is called the margin assigned by
the scoring classifier to the example.

We would like to reward large positive margins, and penalise large negative
values. This is achieved by means of a so-called loss function L :R 7→ [0,∞)
which maps each example’s margin z(x) to an associated loss L(z(x)).

We will assume that L(0) = 1, which is the loss incurred by having an example on
the decision boundary. We furthermore have L(z) ≥ 1 for z < 0, and usually also
0 ≤ L(z) < 1 for z > 0 (Figure 2.6).

The average loss over a test set Te is 1
|Te|

∑
x∈Te L(z(x)).

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 87 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks 2.2 Scoring and ranking

Figure 2.6, p.63 Loss functions

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

2

4

6

8

10

L(z)

z

From bottom-left (i) 0–1 loss L01(z) = 1 if z ≤ 0, and L01(z) = 0 if z > 0;
(ii) hinge loss Lh(z) = (1− z) if z ≤ 1, and Lh(z) = 0 if z > 1;
(iii) logistic loss Llog(z) = log2(1+exp(−z));
(iv) exponential loss Lexp(z) = exp(−z);

(v) squared loss Lsq(z) = (1− z)2 (this can be set to 0 for z > 1, just like hinge loss).

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 88 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks 2.2 Scoring and ranking

Assessing and visualising ranking performance

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 89 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks 2.2 Scoring and ranking

Example 2.2, p.64 Ranking example

t The scoring tree in Figure 2.5 produces the following ranking:
[20+,5−][10+,5−][20+,40−]. Here, 20+ denotes a sequence of 20
positive examples, and instances in square brackets [. . .] are tied.

t By selecting a split point in the ranking we can turn the ranking into a
classification. In this case there are four possibilities:

(A) setting the split point before the first segment, and thus assigning all
segments to the negative class;

(B) assigning the first segment to the positive class, and the other two to
the negative class;

(C) assigning the first two segments to the positive class; and
(D) assigning all segments to the positive class.

t In terms of actual scores, this corresponds to (A) choosing any score larger
than 2 as the threshold; (B) choosing a threshold between 1 and 2; (C)
setting the threshold between −1 and 1; and (D) setting it lower than −1.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 90 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks 2.2 Scoring and ranking

Example 2.3, p.65 Ranking accuracy

The ranking error rate is defined as

rank-err =
∑

x∈Te⊕,x ′∈Teª I [ŝ(x) < ŝ(x ′)]+ 1
2 I [ŝ(x) = ŝ(x ′)]

Pos ·Neg

t The 5 negatives in the right leaf are scored higher than the 10 positives in
the middle leaf and the 20 positives in the left leaf, resulting in
50+100 = 150 ranking errors.

t The 5 negatives in the middle leaf are scored higher than the 20 positives in
the left leaf, giving a further 100 ranking errors.

t In addition, the left leaf makes 800 half ranking errors (because 20 positives
and 40 negatives get the same score), the middle leaf 50 and the right leaf
100.

t In total we have 725 ranking errors out of a possible 50 ·50 = 2500,
corresponding to a ranking error rate of 29% or a ranking accuracy of 71%.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 91 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks 2.2 Scoring and ranking

Figure 2.7, p.66 Coverage curve

Negatives sorted on decreasing score

P
os

iti
ve

s
so

rte
d

on
 d

ec
re

as
in

g
sc

or
e

0
P
os

0 Neg

Negatives

P
os
iti
ve
s

0
TP
1

TP
2

P
os

0 FP1 FP2 Neg

A

B

C

D

(left) Each cell in the grid denotes a unique pair of one positive and one negative

example: the green cells indicate pairs that are correctly ranked by the classifier, the red

cells represent ranking errors, and the orange cells are half-errors due to ties. (right)
The coverage curve of a tree-based scoring classifier has one line segment for each leaf

of the tree, and one (FP,TP) pair for each possible threshold on the score.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 92 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks 2.2 Scoring and ranking

Important point to remember

ROC curve is obtained from the coverage curve by normalizing the axes to
range [0,1].
The area under the ROC curve is the ranking accuracy.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 93 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks 2.2 Scoring and ranking

Example 2.4, p.67 Class imbalance

t Suppose we feed the scoring tree in Figure 2.5 an extended test set, with
an additional batch of 50 negatives.

t The added negatives happen to be identical to the original ones, so the net
effect is that the number of negatives in each leaf doubles.

t As a result the coverage curve changes (because the class ratio changes),
but the ROC curve stays the same (Figure 2.8).

t Note that the ranking accuracy stays the same as well: while the classifier
makes twice as many ranking errors, there are also twice as many
positive–negative pairs, so the ranking error rate doesn’t change.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 94 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks 2.2 Scoring and ranking

Figure 2.8, p.67 Class imbalance

Negatives

P
os
iti
ve
s

0
TP
1

TP
2

P
os

0 FP1 FP2 Neg

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0
tp
r1

tp
r2

1

0 fpr1 fpr2 1

(left) A coverage curve obtained from a test set with class ratio clr = 1/2. (right) The

corresponding (axis-normalised) ROC curve is the same as the one corresponding to the

coverage curve in Figure 2.7 (right). The ranking accuracy is the Area Under the ROC

Curve (AUC).

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 95 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks 2.2 Scoring and ranking

Rankings from grading classifiers

Figure 2.9 (left) shows a linear classifier (the decision boundary is denoted B)
applied to a small data set of five positive and five negative examples, achieving
an accuracy of 0.80.

We can derive a score from this linear classifier by taking the distance of an
example from the decision boundary; if the example is on the negative side we
take the negative distance. This means that the examples are ranked in the
following order: p1 – p2 – p3 – n1 – p4 – n2 – n3 – p5 – n4 – n5.

This ranking incurs four ranking errors: n1 before p4, and n1, n2 and n3 before
p5. Figure 2.9 (right) visualises these four ranking errors in the top-left corner.
The AUC of this ranking is 21/25 = 0.84.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 96 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks 2.2 Scoring and ranking

Figure 2.9, p.68 Rankings from grading classifiers

+ –

+

+

+

–

–
+

–

w

–

p1p2

p3

p4

p5

n1

n2

n3

n4

n5
C

B

A

Negatives

P
os
iti
ve
s

p1
p2

p3
p4

p5

n1 n2 n3 n4 n5

(left) A linear classifier induces a ranking by taking the signed distance to the decision

boundary as the score. This ranking only depends on the orientation of the decision

boundary: the three lines result in exactly the same ranking. (right) The grid of correctly

ranked positive–negative pairs (in green) and ranking errors (in red).

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 97 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks 2.2 Scoring and ranking

Tuning rankers

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 98 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks 2.2 Scoring and ranking

Example 2.5, p.70 Tuning your spam filter I

You have carefully trained your Bayesian spam filter, and all that remains is
setting the decision threshold. You select a set of six spam and four ham e-mails
and collect the scores assigned by the spam filter. Sorted on decreasing score
these are 0.89 (spam), 0.80 (spam), 0.74 (ham), 0.71 (spam), 0.63 (spam), 0.49
(ham), 0.42 (spam), 0.32 (spam), 0.24 (ham), and 0.13 (ham).

If the class ratio of 6 spam against 4 ham is representative, you can select the
optimal point on the ROC curve using an isometric with slope 4/6. As can be
seen in Figure 2.11, this leads to putting the decision boundary between the
sixth spam e-mail and the third ham e-mail, and we can take the average of their
scores as the decision threshold (0.28).

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 99 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks 2.2 Scoring and ranking

Example 2.5, p.70 Tuning your spam filter II

An alternative way of finding the optimal point is to iterate over all possible split
points – from before the top ranked e-mail to after the bottom one – and calculate
the number of correctly classified examples at each split: 4 – 5 – 6 – 5 – 6 – 7 – 6
– 7 – 8 – 7 – 6. The maximum is achieved at the same split point, yielding an
accuracy of 0.80.

A useful trick to find out which accuracy an isometric in an ROC plot represents
is to intersect the isometric with the descending diagonal. Since accuracy is a
weighted average of the true positive and true negative rates, and since these
are the same in a point on the descending diagonal, we can read off the
corresponding accuracy value on the y-axis.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 100 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks 2.2 Scoring and ranking

Figure 2.11, p.71 Finding the optimal point

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.25 0.50 0.75 1.00

0.
17

0.
33

0.
50

0.
67

0.
83

1.
00

Selecting the optimal point on an ROC curve. The top dotted line is the accuracy

isometric, with a slope of 2/3. The lower isometric doubles the value (or prevalence) of

negatives, and allows a choice of thresholds. By intersecting the isometrics with the

descending diagonal we can read off the achieved accuracy on the y-axis.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 101 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks 2.3 Class probability estimation

What’s next?

2 Binary classification and related tasks
Classification

Assessing classification performance
Visualising classification performance

Scoring and ranking
Assessing and visualising ranking performance
Tuning rankers

Class probability estimation
Assessing class probability estimates

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 102 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks 2.3 Class probability estimation

Class probability estimation

A class probability estimator – or probability estimator in short – is a scoring
classifier that outputs probability vectors over classes, i.e., a mapping
p̂ : X → [0,1]k . We write p̂(x) = (

p̂1(x), . . . , p̂k (x)
)
, where p̂i (x) is the

probability assigned to class Ci for instance x, and
∑k

i=1 p̂i (x) = 1.

If we have only two classes, the probability associated with one class is 1 minus
the probability of the other class; in that case, we use p̂(x) to denote the
estimated probability of the positive class for instance x.

As with scoring classifiers, we usually do not have direct access to the true
probabilities pi (x).

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 103 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks 2.3 Class probability estimation

Figure 2.12, p.73 Probability estimation tree

ʻViagraʼ

ʻlotteryʼ

=0

p̂(x)=0.80

 =1

p̂(x)=0.33

=0

p̂(x)=0.67

 =1

A probability estimation tree derived from the feature tree in Figure 1.4.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 104 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks 2.3 Class probability estimation

Assessing class probability estimates

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 105 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks 2.3 Class probability estimation

Mean squared probability error

We can define the squared error (SE) of the predicted probability vector
p̂(x) = (

p̂1(x), . . . , p̂k (x)
)

as

SE(x) = 1

2

k∑
i=1

(p̂i (x)− I [c(x) =Ci])2

and the mean squared error (MSE) as the average squared error over all
instances in the test set:

MSE(Te) = 1

|Te|
∑

x∈Te
SE(x)

The factor 1/2 in Equation 2.6 ensures that the squared error per example is
normalised between 0 and 1: the worst possible situation is that a wrong class is
predicted with probability 1, which means two ‘bits’ are wrong.
For two classes this reduces to a single term (p̂(x)− I [c(x) =⊕])2 only referring
to the positive class.
cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 106 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks 2.3 Class probability estimation

Example 2.6, p.74 Squared error

Suppose one model predicts (0.70,0.10,0.20) for a particular example x in a
three-class task, while another appears much more certain by predicting
(0.99,0,0.01).

t If the first class is the actual class, the second prediction is clearly better
than the first: the SE of the first prediction is
((0.70−1)2 + (0.10−0)2 + (0.20−0)2)/2 = 0.07, while for the second
prediction it is ((0.99−1)2 + (0−0)2 + (0.01−0)2)/2 = 0.0001. The first
model gets punished more because, although mostly right, it isn’t quite sure
of it.

t However, if the third class is the actual class, the situation is reversed: now
the SE of the first prediction is
((0.70−0)2 + (0.10−0)2 + (0.20−1)2)/2 = 0.57, and of the second
((0.99−0)2 + (0−0)2 + (0.01−1)2)/2 = 0.98. The second model gets
punished more for not just being wrong, but being presumptuous.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 107 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks 2.3 Class probability estimation

Which probabilities achieve lowest MSE?

Returning to the probability estimation tree in Figure 2.12, we calculate the
squared error per leaf as follows (left to right):

SE1 = 20(0.33−1)2 +40(0.33−0)2 = 13.33

SE2 = 10(0.67−1)2 +5(0.67−0)2 = 3.33

SE3 = 20(0.80−1)2 +5(0.80−0)2 = 4.00

which leads to a mean squared error of MSE = 1
100 (SE1 +SE2 +SE3) = 0.21.

Changing the predicted probabilities in the left-most leaf to 0.40 for spam and
0.60 for ham, or 0.20 for spam and 0.80 for ham, results in a higher squared
error:

SE′
1 = 20(0.40−1)2 +40(0.40−0)2 = 13.6

SE′′
1 = 20(0.20−1)2 +40(0.20−0)2 = 14.4

Predicting probabilities obtained from the class distributions in each leaf is
optimal in the sense of lowest MSE.
cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 108 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks 2.3 Class probability estimation

Why predicting empirical probabilities is optimal

The reason for this becomes obvious if we rewrite the expression for two-class
squared error of a leaf as follows, using the notation n⊕ and nª for the numbers
of positive and negative examples in the leaf:

n⊕(p̂ −1)2 +nªp̂2 = (n⊕+nª)p̂2 −2n⊕p̂ +n⊕ = (n⊕+nª)
[
p̂2 −2ṗ p̂ + ṗ

]
= (n⊕+nª)

[
(p̂ − ṗ)2 + ṗ(1− ṗ)

]
where ṗ = n⊕/(n⊕+nª) is the relative frequency of the positive class among
the examples covered by the leaf, also called the empirical probability. As the
term ṗ(1− ṗ) does not depend on the predicted probability p̂, we see
immediately that we achieve lowest squared error in the leaf if we assign p̂ = ṗ.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 109 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

2. Binary classification and related tasks 2.3 Class probability estimation

Smoothing empirical probabilities

It is almost always a good idea to smooth these relative frequencies. The most
common way to do this is by means of the Laplace correction:

ṗi (S) = ni +1

|S|+k

In effect, we are adding uniformly distributed pseudo-counts to each of the k
alternatives, reflecting our prior belief that the empirical probabilities will turn out
uniform.
We can also apply non-uniform smoothing by setting

ṗi (S) = ni +m ·πi

|S|+m

This smoothing technique, known as the m-estimate, allows the choice of the
number of pseudo-counts m as well as the prior probabilities πi . The Laplace
correction is a special case of the m-estimate with m = k and πi = 1/k.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 110 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

3. Beyond binary classification

What’s next?

3 Beyond binary classification
Handling more than two classes

Multi-class classification
Multi-class scores and probabilities

Regression
Unsupervised and descriptive learning

Predictive and descriptive clustering
Other descriptive models

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 111 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

3. Beyond binary classification 3.1 Handling more than two classes

What’s next?

3 Beyond binary classification
Handling more than two classes

Multi-class classification
Multi-class scores and probabilities

Regression
Unsupervised and descriptive learning

Predictive and descriptive clustering
Other descriptive models

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 112 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

3. Beyond binary classification 3.1 Handling more than two classes

Multi-class classification

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 113 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

3. Beyond binary classification 3.1 Handling more than two classes

Example 3.1, p.82 Performance of multi-class classifiers I

Consider the following three-class confusion matrix (plus marginals):

Predicted

15 2 3 20
Actual 7 15 8 30

2 3 45 50
24 20 56 100

t The accuracy of this classifier is (15+15+45)/100 = 0.75.

t We can calculate per-class precision and recall: for the first class this is
15/24 = 0.63 and 15/20 = 0.75 respectively, for the second class
15/20 = 0.75 and 15/30 = 0.50, and for the third class 45/56 = 0.80 and
45/50 = 0.90.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 114 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

3. Beyond binary classification 3.1 Handling more than two classes

Example 3.1, p.82 Performance of multi-class classifiers II

t We could average these numbers to obtain single precision and recall
numbers for the whole classifier, or we could take a weighted average
taking the proportion of each class into account. For instance, the weighted
average precision is 0.20 ·0.63+0.30 ·0.75+0.50 ·0.80 = 0.75.

t Another possibility is to perform a more detailed analysis by looking at
precision and recall numbers for each pair of classes: for instance, when
distinguishing the first class from the third precision is 15/17 = 0.88 and
recall is 15/18 = 0.83, while distinguishing the third class from the first
these numbers are 45/48 = 0.94 and 45/47 = 0.96 (can you explain why
these numbers are much higher in the latter direction?).

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 115 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

3. Beyond binary classification 3.1 Handling more than two classes

Construction of multi-class classifiers

Suppose we want to build k-class classifier, but have ability to train only
two-class ones. We have two alternative schemes to do so:

t One-versus-rest – we train k binary classifiers separately for each class Ci

from C1, ...,Ck , where Ci is treated as ⊕, and all remaining classes as ª
t One-versus-one – we train at least k(k−1)

2 classifiers for each pair of
classess Ci and C j treating them as ⊕ and ª, respectively. Different
one-versus-one schemes can be described by means of output code
matrix:  +1 +1 0

−1 0 +1
0 −1 −1


where each column describes a binary classification task, using the class in
the row with +1 entry as ⊕ and the class in the row with −1 entry as ª.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 116 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

3. Beyond binary classification 3.1 Handling more than two classes

Example 3.2, p.85 One-versus-one voting I

A one-versus-one code matrix for k = 4 classes is as follows:
+1 +1 +1 0 0 0
−1 0 0 +1 +1 0

0 −1 0 −1 0 +1
0 0 −1 0 −1 −1


Suppose our six pairwise classifiers predict w =+1 −1 +1 −1 +1 +1. We can
interpret this as votes for C1 – C3 – C1 – C3 – C2 – C3; i.e., three votes for C3,
two votes for C1 and one vote for C2. More generally, the i -th classifier’s vote for
the j -th class can be expressed as (1+wi c j i)/2, where c j i is the entry in the
j -th row and i -th column of the code matrix.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 117 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

3. Beyond binary classification 3.1 Handling more than two classes

Example 3.2, p.85 One-versus-one voting II

However, this overcounts the 0 entries in the code matrix; since every class
participates in k −1 pairwise binary tasks, and there are l = k(k −1)/2 tasks, the
number of zeros in every row is
k(k −1)/2− (k −1) = (k −1)(k −2)/2 = l (k −2)/k (3 in our case). For each zero
we need to subtract half a vote, so the number of votes for C j is

v j =
(

l∑
i=1

1+wi c j i

2

)
− l

k −2

2k
=

(
l∑

i=1

wi c j i −1

2

)
+ l − l

k −2

2k

=−d j + l
2k −k +2

2k
= (k −1)(k +2)

4
−d j

where d j =∑
i (1−wi c j i)/2 is a bit-wise distance measure.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 118 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

3. Beyond binary classification 3.1 Handling more than two classes

Example 3.2, p.85 One-versus-one voting III

In other words, the distance and number of votes for each class sum to a
constant depending only on the number of classes; with three classes this is 4.5.
This can be checked by noting that

t the distance between w and the first code word is 2.5 (two votes for C1);

t with the second code word, 3.5 (one vote for C2);

t with the third code word, 1.5 (three votes for C3);

t and 4.5 with the fourth code word (no votes).

So voting and distance-based decoding are equivalent in this case.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 119 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

3. Beyond binary classification 3.1 Handling more than two classes

Example 3.3, p.86 Loss-based decoding

Continuing the previous example, suppose the scores of the six pairwise
classifiers are (+5,−0.5,+4,−0.5,+4,+0.5). This leads to the following margins,
in matrix form: 

+5 −0.5 +4 0 0 0
−5 0 0 −0.5 +4 0

0 +0.5 0 +0.5 0 +0.5
0 0 −4 0 −4 −0.5


Using 0–1 loss we ignore the magnitude of the margins and thus predict C3 as in
the voting-based scheme of Example 3.2. Using exponential loss
L(z) = exp(−z), we obtain the distances (4.67,153.08,4.82,113.85).
Loss-based decoding would therefore (just) favour C1, by virtue of its strong wins
against C2 and C4; in contrast, all three wins of C3 are with small margin.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 120 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

3. Beyond binary classification 3.1 Handling more than two classes

Multi-class scores and probabilities

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 121 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

3. Beyond binary classification 3.1 Handling more than two classes

Example 3.4, p.87 Coverage counts as scores I

Suppose we have three classes and three binary classifiers which either predict
positive or negative (there is no reject option).
The first classifier classifies 8 examples of the first class as positive, no examples
of the second class, and 2 examples of the third class. For the second classifier
these counts are 2, 17 and 1, and for the third they are 4, 2 and 8.
Suppose a test instance is predicted as positive by the first and third classifiers.
We can add the coverage counts of these two classifiers to obtain a score vector
of (12,2,10). Likewise, if all three classifiers ‘fire’ for a particular test instance
(i.e., predict positive), the score vector is (14,19,11).

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 122 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

3. Beyond binary classification 3.1 Handling more than two classes

Example 3.4, p.87 Coverage counts as scores II

We can describe this scheme conveniently using matrix notation:

(
1 0 1
1 1 1

) 8 0 2
2 17 1
4 2 8

=
(

12 2 10
14 19 11

)

The middle matrix contains the class counts (one row for each classifier). The
left 2-by-3 matrix contains, for each example, a row indicating which classifiers
fire for that example. The right-hand side then gives the combined counts for
each example.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 123 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

3. Beyond binary classification 3.1 Handling more than two classes

Example 3.5, p.88 Multi-class AUC I

Assume we have a multi-class scoring classifier that produces a k-vector of
scores ŝ(x) = (ŝ1(x), . . . , ŝk (x)) for each test instance x.

t By restricting attention to ŝi (x) we obtain a scoring classifier for class Ci

against the other classes, and we can calculate the one-versus-rest AUC
for Ci in the normal way.

t By way of example, suppose we have three classes, and the
one-versus-rest AUCs come out as 1 for the first class, 0.8 for the second
class and 0.6 for the third class. Thus, for instance, all instances of class 1
receive a higher first entry in their score vectors than any of the instances of
the other two classes.

t The average of these three AUCs is 0.8, which reflects the fact that, if we
uniformly choose an index i , and we select an instance x uniformly among
class Ci and another instance x ′ uniformly among all instances not from Ci ,
then the expectation that ŝi (x) > ŝi (x ′) is 0.8.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 124 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

3. Beyond binary classification 3.1 Handling more than two classes

Example 3.5, p.88 Multi-class AUC II

t Suppose now C1 has 10 instances, C2 has 20 and C3 70.

t The weighted average of the one-versus-rest AUCs is then 0.68: that is, if
we uniformly choose x without reference to the class, and then choose x ′

uniformly from among all instances not of the same class as x ′, the
expectation that ŝi (x) > ŝi (x ′) is 0.68.

t This is lower than before, because it is now more likely that a random x
comes from class C3, whose scores do a worse ranking job.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 125 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

3. Beyond binary classification 3.1 Handling more than two classes

One-versus-one AUC

We can obtain similar averages from one-versus-one AUCs.

t For instance, we can define AUCi j as the AUC obtained using scores ŝi to
rank instances from classes Ci and C j . Notice that ŝ j may rank these
instances differently, and so AUC j i 6= AUCi j .

t Taking an unweighted average over all i 6= j estimates the probability that,
for uniformly chosen classes i and j 6= i , and uniformly chosen x ∈Ci and
x ′ ∈C j , we have ŝi (x) > ŝi (x ′).

t The weighted version of this estimates the probability that the instances are
correctly ranked if we don’t pre-select the class.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 126 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

3. Beyond binary classification 3.1 Handling more than two classes

Example 3.7, p.90 Multi-class probabilities I

In Example 3.4 we can divide the class counts by the total number of positive
predictions. This results in the following class distributions: (0.80,0,0.20) for the
first classifier, (0.10,0.85,0.05) for the second classifier, and (0.29,0.14,0.57) for
the third. The probability distribution associated with the combination of the first
and third classifiers is

10

24
(0.80,0,0.20)+ 14

24
(0.29,0.14,0.57) = (0.50,0.08,0.42)

which is the same distribution as obtained by normalising the combined counts
(12,2,10). Similarly, the distribution associated with all three classifiers is

10

44
(0.80,0,0.20)+ 20

44
(0.10,0.85,0.05)+ 14

44
(0.29,0.14,0.57) = (0.32,0.43,0.25)

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 127 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

3. Beyond binary classification 3.1 Handling more than two classes

Example 3.7, p.90 Multi-class probabilities II

Matrix notation describes this very succinctly as

(
10/24 0 14/24
10/44 20/44 14/44

) 0.80 0.00 0.20
0.10 0.85 0.05
0.29 0.14 0.57

=
(

0.50 0.08 0.42
0.32 0.43 0.25

)

The middle matrix is a row-normalised version of the middle matrix in Equation
3.1. Row normalisation works by dividing each entry by the sum of the entries in
the row in which it occurs. As a result the entries in each row sum to one, which
means that each row can be interpreted as a probability distribution. The left
matrix combines two pieces of information: (i) which classifiers fire for each
example (for instance, the second classifier doesn’t fire for the first example); and
(ii) the coverage of each classifier. The right-hand side then gives the class
distribution for each example. Notice that the product of row-normalised matrices
again gives a row-normalised matrix.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 128 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

3. Beyond binary classification 3.2 Regression

What’s next?

3 Beyond binary classification
Handling more than two classes

Multi-class classification
Multi-class scores and probabilities

Regression
Unsupervised and descriptive learning

Predictive and descriptive clustering
Other descriptive models

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 129 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

3. Beyond binary classification 3.2 Regression

Real-valued targets

A function estimator, also called a regressor, is a mapping f̂ : X →R. The
regression learning problem is to learn a function estimator from examples
(xi , f (xi)).

Note that we switched from a relatively low-resolution target variable to one with
infinite resolution. Trying to match this precision in the function estimator will
almost certainly lead to overfitting – besides, it is highly likely that some part of
the target values in the examples is due to fluctuations that the model is unable
to capture.

It is therefore entirely reasonable to assume that the examples are noisy, and
that the estimator is only intended to capture the general trend or shape of the
function.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 130 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

3. Beyond binary classification 3.2 Regression

Example 3.8, p.92 Line fitting example

Consider the following set of five points:

x y
1.0 1.2
2.5 2.0
4.1 3.7
6.1 4.6
7.9 7.0

We want to estimate y by means of a polynomial in x. Figure 3.2 (left) shows the
result for degrees of 1 to 5 using tlinear regression, which will be explained in
Chapter 7. The top two degrees fit the given points exactly (in general, any set of
n points can be fitted by a polynomial of degree no more than n −1), but they
differ considerably at the extreme ends: e.g., the polynomial of degree 4 leads to
a decreasing trend from x = 0 to x = 1, which is not really justified by the data.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 131 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

3. Beyond binary classification 3.2 Regression

Figure 3.2, p.92 Fitting polynomials to data

0 1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

(left) Polynomials of different degree fitted to a set of five points. From bottom to top in

the top right-hand corner: degree 1 (straight line), degree 2 (parabola), degree 3, degree

4 (which is the lowest degree able to fit the points exactly), degree 5. (right) A piecewise

constant function learned by a grouping model; the dotted reference line is the linear

function from the left figure.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 132 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

3. Beyond binary classification 3.2 Regression

Overfitting again

An n-degree polynomial has n +1 parameters: e.g., a straight line y = a · x +b
has two parameters, and the polynomial of degree 4 that fits the five points
exactly has five parameters.

A piecewise constant model with n segments has 2n−1 parameters: n y-values
and n −1 x-values where the ‘jumps’ occur.

So the models that are able to fit the points exactly are the models with more
parameters.

A rule of thumb is that, to avoid overfitting, the number of parameters estimated
from the data must be considerably less than the number of data points.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 133 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

3. Beyond binary classification 3.3 Unsupervised and descriptive learning

What’s next?

3 Beyond binary classification
Handling more than two classes

Multi-class classification
Multi-class scores and probabilities

Regression
Unsupervised and descriptive learning

Predictive and descriptive clustering
Other descriptive models

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 134 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

3. Beyond binary classification 3.3 Unsupervised and descriptive learning

Table 3.1, p.95 Unsupervised and descriptive learning

Predictive model Descriptive model

Supervised learning classification, regression subgroup discovery
Unsupervised learning predictive clustering descriptive clustering,

association rule discov-
ery

The learning settings indicated in bold are introduced in the remainder of this chapter.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 135 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

3. Beyond binary classification 3.3 Unsupervised and descriptive learning

Figure 3.4, p.96 Descriptive learning

Task

Descriptive

model
Features

Domain

objects

Discovery
algorithm

Data

Learning problem

In descriptive learning the task and learning problem coincide: we do not have a

separate training set, and the task is to produce a descriptive model of the data.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 136 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

3. Beyond binary classification 3.3 Unsupervised and descriptive learning

Predictive and descriptive clustering

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 137 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

3. Beyond binary classification 3.3 Unsupervised and descriptive learning

Predictive and descriptive clustering

One way to understand clustering is as learning a new labelling function from
unlabelled data. So we could define a ‘clusterer’ in the same way as a classifier,
namely as a mapping q̂ : X →C , where C = {C1,C2, . . . ,Ck } is a set of new
labels. This corresponds to a predictive view of clustering, as the domain of the
mapping is the entire instance space, and hence it generalises to unseen
instances.

A descriptive clustering model learned from given data D ⊆X would be a
mapping q̂ : D →C whose domain is D rather than X . In either case the labels
have no intrinsic meaning, other than to express whether two instances belong to
the same cluster. So an alternative way to define a clusterer is as an equivalence
relation q̂ ⊆X ×X or q̂ ⊆ D ×D or, equivalently, as a partition of X or D .

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 138 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

3. Beyond binary classification 3.3 Unsupervised and descriptive learning

Distance-based clustering I

Most distance-based clustering methods depend on the possibility of defining a
‘centre of mass’ or exemplar for an arbitrary set of instances, such that the
exemplar minimises some distance-related quantity over all instances in the set,
called its scatter. A good clustering is then one where the scatter summed over
each cluster – the within-cluster scatter – is much smaller than the scatter of the
entire data set.

This analysis suggests a definition of the clustering problem as finding a partition
D = D1] . . .]DK that minimises the within-cluster scatter. However, there are a
few issues with this definition:

t the problem as stated has a trivial solution: set K = |D| so that each
‘cluster’ contains a single instance from D and thus has zero scatter;

t if we fix the number of clusters K in advance, the problem cannot be solved
efficiently for large data sets (it is NP-hard).

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 139 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

3. Beyond binary classification 3.3 Unsupervised and descriptive learning

Distance-based clustering II

The first problem is the clustering equivalent of overfitting the training data. It
could be dealt with by penalising large K . Most approaches, however, assume
that an educated guess of K can be made. This leaves the second problem,
which is that finding a globally optimal solution is intractable for larger problems.
This is a well-known situation in computer science and can be dealt with in two
ways:

t by applying a heuristic approach, which finds a ‘good enough’ solution
rather than the best possible one;

t by relaxing the problem into a ‘soft’ clustering problem, by allowing
instances a degree of membership in more than one cluster.

Notice that a soft clustering generalises the notion of a partition, in the same way
that a probability estimator generalises a classifier.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 140 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

3. Beyond binary classification 3.3 Unsupervised and descriptive learning

Figure 3.5, p.98 Predictive clustering

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

(left) An example of a predictive clustering. The coloured dots were sampled from three

bivariate Gaussians centred at (1,1), (1,2) and (2,1). The crosses and solid lines are

the cluster exemplars and cluster boundaries found by 3-means. (right) A soft

clustering of the same data found by matrix decomposition.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 141 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

3. Beyond binary classification 3.3 Unsupervised and descriptive learning

Example 3.9, p.98 Representing clusterings

The predictive cluster exemplars in Figure 3.5 (left) can be given as a c-by-2
matrix:  0.92 0.93

0.98 2.02
2.03 1.04


The following n-by-c matrices represent descriptive clusterings of given data
points: 

1 0 0
0 1 0
1 0 0
0 0 1

· · · · · · · · ·




0.40 0.30 0.30
0.40 0.51 0.09
0.44 0.29 0.27
0.35 0.08 0.57
· · · · · · · · ·



cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 142 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

3. Beyond binary classification 3.3 Unsupervised and descriptive learning

Example 3.10, p.99 Evaluating clusterings

Suppose we have five test instances that we think should be clustered as
{e1,e2}, {e3,e4,e5}. So out of the 5 ·4 = 20 possible pairs, 4 are considered
‘must-link’ pairs and the other 16 as ‘must-not-link’ pairs. The clustering to be
evaluated clusters these as {e1,e2,e3}, {e4,e5} – so two of the must-link pairs
are indeed clustered together (e1–e2, e4–e5), the other two are not (e3–e4,
e3–e5), and so on.
We can tabulate this as follows:

Are together Are not together

Should be together 2 2 4
Should not be together 2 14 16

4 16 20

We can now treat this as a two-by-two contingency table, and evaluate it
accordingly. For instance, we can take the proportion of pairs on the ‘good’
diagonal, which is 16/20 = 0.8. In classification we would call this accuracy, but
in the clustering context this is known as the Rand index.
cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 143 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

3. Beyond binary classification 3.3 Unsupervised and descriptive learning

Other descriptive models

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 144 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

3. Beyond binary classification 3.3 Unsupervised and descriptive learning

Example 3.11, p.100 Subgroup discovery

Imagine you want to market the new version of a successful product. You have a
database of people who have been sent information about the previous version,
containing all kinds of demographic, economic and social information about
those people, as well as whether or not they purchased the product.

t If you were to build a classifier or ranker to find the most likely customers for
your product, it is unlikely to outperform the majority class classifier
(typically, relatively few people will have bought the product).

t However, what you are really interested in is finding reasonably sized
subsets of people with a proportion of customers that is significantly higher
than in the overall population. You can then target those people in your
marketing campaign, ignoring the rest of your database.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 145 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

3. Beyond binary classification 3.3 Unsupervised and descriptive learning

Example 3.12, p.101 Association rule discovery

Associations are things that usually occur together. For example, in market
basket analysis we are interested in items frequently bought together. An
example of an association rule is ·if beer then crisps·, stating that customers
who buy beer tend to also buy crisps.

t In a motorway service station most clients will buy petrol. This means that
there will be many frequent item sets involving petrol, such as
{newspaper,petrol}.

t This might suggest the construction of an association rule
·if newspaper then petrol· – however, this is predictable given that {petrol}
is already a frequent item set (and clearly at least as frequent as
{newspaper,petrol}).

t Of more interest would be the converse rule ·if petrol then newspaper·
which expresses that a considerable proportion of the people buying petrol
also buy a newspaper.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 146 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models

What’s next?

4 Tree models
Decision trees
Ranking and probability estimation trees

Sensitivity to skewed class distributions

Tree learning as variance reduction
Regression trees
Clustering trees

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 147 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models

Tree model

t A tree model is a hierarchical structure of conditions, where leafs contain
tree outcome.

t They represent recusive divide-and-conquer strategies.

t Tree models are among the most popular models in machine learning,
because they are easy to understand and interpret:

t E.g., Kinect uses them to detect character pose.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 148 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models

Decision tree example

Suppose you come across a number of sea animals that you suspect belong to
the same species. You observe their length in metres, whether they have gills,
whether they have a prominent beak, and whether they have few or many teeth.
Let the following be dolphins (positive class):

p1: Length= 3 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many
p2: Length= 4 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many
p3: Length= 3 ∧ Gills= no ∧ Beak= yes ∧ Teeth= few
p4: Length= 5 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many
p5: Length= 5 ∧ Gills= no ∧ Beak= yes ∧ Teeth= few

and the following be not dolphins (negative class):

n1: Length= 5 ∧ Gills= yes ∧ Beak= yes ∧ Teeth=many
n2: Length= 4 ∧ Gills= yes ∧ Beak= yes ∧ Teeth=many
n3: Length= 5 ∧ Gills= yes ∧ Beak= no ∧ Teeth=many
n4: Length= 4 ∧ Gills= yes ∧ Beak= no ∧ Teeth=many
n5: Length= 4 ∧ Gills= no ∧ Beak= yes ∧ Teeth= few

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 149 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models

Figure 5.1, p.130 Decision tree example

A decision tree learned on this data separates the positives and negatives
perfectly.

ĉ(x) = ⊕

Gills

Length

=no

ĉ(x) = ⊖

 =yes

Teeth

ĉ(x) = ⊖

=few

ĉ(x) = ⊕

=many

=3 =4

ĉ(x) = ⊕

 =5

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 150 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models

Feature tree

Tree models are not limited to classification and can be employed to solve almost
all machine learning tasks, including ranking, probability estimation, regression
and clustering. A common structure to all those models is feature tree.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 151 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models

Definition 5.1, p.132 Feature tree

A feature tree is a tree such that each internal node (the nodes that are not
leaves) is labelled with a feature, and each edge emanating from an internal
node is labelled with a literal.

The set of literals at a node is called a split.

Each leaf of the tree represents a logical expression, which is the conjunction of
literals encountered on the path from the root of the tree to the leaf. The
extension of that conjunction (the set of instances covered by it) is called the
instance space segment associated with the leaf.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 152 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models

Algorithm 5.1, p.132 Growing a feature tree

Algorithm GrowTree(D,F) – grow a feature tree from training data.

Input : data D ; set of features F .
Output : feature tree T with labelled leaves.

1 if Homogeneous(D) then return Label(D);
2 S ←BestSplit(D,F) ; // e.g., BestSplit-Class (Algorithm 5.2)
3 split D into subsets Di according to the literals in S;
4 for each i do
5 if Di 6= ; then Ti ←GrowTree(Di ,F) ;
6 else Ti is a leaf labelled with Label(D);
7 end
8 return a tree whose root is labelled with S and whose children are Ti

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 153 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models

Growing a feature tree

Algorithm 5.1 gives the generic learning procedure common to most tree
learners. It assumes that the following three functions are defined:

Homogeneous(D) returns true if the instances in D are homogeneous enough
to be labelled with a single label, and false otherwise;

Label(D) returns the most appropriate label for a set of instances D ;

BestSplit(D,F) returns the best set of literals to be put at the root of the tree.

These functions depend on the task at hand: for instance, for classification tasks
a set of instances is homogeneous if they are (mostly) of a single class, and the
most appropriate label would be the majority class. For clustering tasks a set of
instances is homogenous if they are close together, and the most appropriate
label would be some exemplar such as the mean.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 154 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models 4.1 Decision trees

What’s next?

4 Tree models
Decision trees
Ranking and probability estimation trees

Sensitivity to skewed class distributions

Tree learning as variance reduction
Regression trees
Clustering trees

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 155 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models 4.1 Decision trees

Decision tree

How to define BestSplit(D,F) for classification?

Assume that we have binary features and two classes only. Let D⊕ denote set of
instances from positive class and Dª from negative class, D = D⊕∪Dª.

Let split D into D1 and D2 using an attribute. The best situation is where
D⊕

1 = D⊕ and Dª
1 =; or D⊕

1 =; and Dª
1 = Dª. In this cases the child node is

said to be pure.

This, however, is unlikely in practice, thus we have to measure impurity of
children nodes somehow.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 156 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models 4.1 Decision trees

Requirements for impurity measure

t Impurity should depend on relative magnitude of n⊕ and nª, thus can be
defined in terms of probability of positive class: ṗ = n⊕/(n⊕+nª).

t Impurity should not change if we swap positive and negative class, i.e., if we
replace ṗ with 1− ṗ.

t Impurity should be 0 if ṗ = 0 or ṗ = 1, and reach maximum at ṗ = 0.5.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 157 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models 4.1 Decision trees

Impurity measures

t Minority class mi n(ṗ,1− ṗ) – proportion of misclassified examples if
labeling leaf using majority class

t Gini index 2ṗ(1− ṗ) – expected error if labeling examples in leaf randomly
with prorability ṗfor positive class and 1− ṗ for negative class

t Entropy −ṗ log2 ṗ − (1− ṗ) log2(1− ṗ) – expected amount of information in
bits required to classify an example in leaf

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 158 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models 4.1 Decision trees

Figure 5.2, p.134 Measuring impurity I

Indicating the impurity of a single leaf D j as Imp(D j), the impurity of a set of
mutually exclusive leaves {D1, . . . ,Dl } is defined as a weighted average

Imp({D1, . . . ,Dl }) =
l∑

j=1

|D j |
|D| Imp(D j)

where D = D1 ∪ . . .∪Dl .
For a binary split there is a nice geometric construction to find Imp({D1,D2}):

t We first find the impurity values Imp(D1) and Imp(D2) of the two children
on the impurity curve (here the Gini index).

t We then connect these two values by a straight line, as any weighted
average of the two must be on that line.

t Since the empirical probability of the parent is also a weighted average of
the empirical probabilities of the children, with the same weights (i.e.,
ṗ = |D1|

|D| ṗ1 + |D2|
|D| ṗ2),ṗ gives us the correct interpolation point.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 159 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models 4.1 Decision trees

Figure 5.2, p.134 Measuring impurity II

0 0.5 1

0.5

Imp(ṗ)

ṗ
0

0.48
Gini index

ṗṗ1 ṗ2

(left) Impurity functions plotted against the empirical probability of the positive class.

From the bottom: the relative size of the minority class, min(ṗ,1− ṗ); the Gini index,

2ṗ(1− ṗ); entropy, −ṗ log2 ṗ − (1− ṗ) log2(1− ṗ) (divided by 2 so that it reaches its

maximum in the same point as the others); and the (rescaled) square root of the Gini

index,
√

ṗ(1− ṗ) – notice that this last function describes a semi-circle. (right)
Geometric construction to determine the impurity of a split (Teeth= [many, few]): ṗ is

the empirical probability of the parent, and ṗ1 and ṗ2 are the empirical probabilities of

the children.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 160 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models 4.1 Decision trees

Example 5.1, p.135 Calculating impurity I

Consider again the data in water animals. We want to find the best feature to put
at the root of the decision tree. The four features available result in the following
splits:

Length= [3,4,5] [2+,0−][1+,3−][2+,2−]
Gills= [yes,no] [0+,4−][5+,1−]
Beak= [yes,no] [5+,3−][0+,2−]
Teeth= [many, few] [3+,4−][2+,1−]

Let’s calculate the impurity of the first split. We have three segments: the first
one is pure and so has entropy 0;
the second one has entropy
−(1/4) log2(1/4)− (3/4) log2(3/4) = 0.5+0.31 = 0.81;
the third one has entropy 1.
The total entropy is then the weighted average of these, which is
2/10 ·0+4/10 ·0.81+4/10 ·1 = 0.72.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 161 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models 4.1 Decision trees

Example 5.1, p.135 Calculating impurity II

Similar calculations for the other three features give the following entropies:

Gills 4/10 ·0+6/10 · (−(5/6) log2(5/6)− (1/6) log2(1/6)
)= 0.39;

Beak 8/10 · (−(5/8) log2(5/8)− (3/8) log2(3/8)
)+2/10 ·0 = 0.76;

Teeth 7/10 · (−(3/7) log2(3/7)− (4/7) log2(4/7)
)

+3/10·(−(2/3) log2(2/3)− (1/3) log2(1/3)
)= 0.97.

We thus clearly see that ‘Gills’ is an excellent feature to split on; ‘Teeth’ is poor;
and the other two are somewhere in between.
The calculations for the Gini index are as follows (notice that these are on a scale
from 0 to 0.5):

Length 2/10 ·2 · (2/2 ·0/2)+4/10 ·2 · (1/4 ·3/4)+4/10 ·2 · (2/4 ·2/4) = 0.35;
Gills 4/10 ·0+6/10 ·2 · (5/6 ·1/6) = 0.17;
Beak 8/10 ·2 · (5/8 ·3/8)+2/10 ·0 = 0.38;
Teeth 7/10 ·2 · (3/7 ·4/7)+3/10 ·2 · (2/3 ·1/3) = 0.48.

As expected, the two impurity measures are in close agreement. See Figure 5.2
(right) for a geometric illustration of the last calculation concerning ‘Teeth’.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 162 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models 4.1 Decision trees

Algorithm 5.2, p.137 Finding the best split for a decision tree

Algorithm BestSplit-Class(D,F) – find the best split for a decision tree.

Input : data D ; set of features F .
Output : feature f to split on.

1 Imin ←1;
2 for each f ∈ F do
3 split D into subsets D1, . . . ,Dl according to the values v j of f ;
4 if Imp({D1, . . . ,Dl }) < Imin then
5 Imin ←Imp({D1, . . . ,Dl });
6 fbest ← f ;
7 end
8 end
9 return fbest

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 163 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models 4.1 Decision trees

Figure 5.3, p.137 Decision tree for dolphins

D: [2+, 0−]

A: Gills

B: Length

=no

C: [0+, 4−]

 =yes

E: Teeth

G: [0+, 1−]

=few

H: [1+, 0−]

=many

=3 =4

F: [2+, 0−]

 =5

Negatives
P
os
iti
ve
s

p1
,p
3

p4
-5

p1

n5 n1-4

AB

C

D

E

F

G

H

(left) Decision tree learned from the data on water animals. (right) Each internal and

leaf node of the tree corresponds to a line segment in coverage space: vertical

segments for pure positive nodes, horizontal segments for pure negative nodes, and

diagonal segments for impure nodes.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 164 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models 4.2 Ranking and probability estimation trees

What’s next?

4 Tree models
Decision trees
Ranking and probability estimation trees

Sensitivity to skewed class distributions

Tree learning as variance reduction
Regression trees
Clustering trees

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 165 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models 4.2 Ranking and probability estimation trees

Important point to remember

Decision trees divide the instance space into segments, by learning ordering on
those segments the decision trees can be turned into rankers.

Thanks to access to class distribution in each leaf the optimal orderdering for the
training data can be obtained from empirical probabilities ṗ (of positive class).

The ranking obtained from the empirical probabilities in the leaves of a decision
tree yields a convex ROC curve on the training data.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 166 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models 4.2 Ranking and probability estimation trees

Example 5.2, p.139 Growing a tree

Consider the tree in Figure 5.4 (left). Each node is labelled with the numbers of
positive and negative examples covered by it: so, for instance, the root of the tree
is labelled with the overall class distribution (50 positives and 100 negatives),
resulting in the trivial ranking [50+,100−]. The corresponding one-segment
coverage curve is the ascending diagonal (Figure 5.4 (right)).

t Adding split (1) refines this ranking into [30+,35−][20+,65−], resulting in a
two-segment curve.

t Adding splits (2) and (3) again breaks up the segment corresponding to the
parent into two segments corresponding to the children.

t However, the ranking produced by the full tree –
[15+,3−][29+,10−][5+,62−][1+,25−] – is different from the left-to-right
ordering of its leaves, hence we need to reorder the segments of the
coverage curve, leading to the top-most, solid curve. This reordering always
leads to a convex coverage curve

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 167 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models 4.2 Ranking and probability estimation trees

Figure 5.4, p.140 Growing a tree

[50+, 100−]

[30+, 35−]

 (1)

[20+, 65−]

[29+, 10−]

 (2)

[1+, 25−] [15+, 3−]

 (3)

[5+, 62−]
Negatives

P
os
iti
ve
s

0
50

0 100

(1)(2)

(3)

(left) Abstract representation of a tree with numbers of positive and negative examples

covered in each node. Binary splits are added to the tree in the order indicated. (right)
Adding a split to the tree will add new segments to the coverage curve as indicated by

the arrows. After a split is added the segments may need reordering, and so only the

solid lines represent actual coverage curves.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 168 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models 4.2 Ranking and probability estimation trees

Figure 5.5, p.141 Labelling a tree

Negatives

P
os
iti
ve
s

0
50

0 100

−−−−

+−−−

−+−−

−−+−

−−−+

++−−

+−+−

+−−+

−++−

−+−+

−−++

+++−

++−+

+−++

−+++

++++

Graphical depiction of all possible labellings and all possible rankings that can be

obtained with the four-leaf decision tree in Figure 5.4. There are 24 = 16 possible leaf

labellings; e.g., ‘+−+−’ denotes labelling the first and third leaf from the left as + and

the second and fourth leaf as −. There are 4! = 24 possible blue-violet-red-orange paths

through these points which start in −−−− and switch each leaf to + in some order;

these represent all possible four-segment coverage curves or rankings.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 169 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models 4.2 Ranking and probability estimation trees

Choosing a labelling based on costs

Assume the training set class ratio clr = 50/100 is representative. We have a
choice of five labellings, depending on the expected cost ratio c = cFN/cFP of
misclassifying a positive in proportion to the cost of misclassifying a negative:

+−+− would be the labelling of choice if c = 1, or more generally if
10/29 < c < 62/5;

+−++ would be chosen if 62/5 < c < 25/1;
++++ would be chosen if 25/1 < c; i.e., we would always predict positive if

false negatives are more than 25 times as costly as false positives,
because then even predicting positive in the second leaf would reduce
cost;

−−+− would be chosen if 3/15 < c < 10/29;
−−−− would be chosen if c < 3/15; i.e., we would always predict negative if

false positives are more than 5 times as costly as false negatives,
because then even predicting negative in the third leaf would reduce
cost.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 170 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models 4.2 Ranking and probability estimation trees

Figure 5.6, p.143 Pruning a tree

[50+, 100−]

[30+, 35−] [20+, 65−]

[29+, 10−] [1+, 25−] [15+, 3−] [5+, 62−]
Negatives

P
os
iti
ve
s

0
50

0 100

(left) To achieve the labelling +−++ we don’t need the right-most split, which can

therefore be pruned away. (right) Pruning doesn’t affect the chosen operating point, but

it does decrease the ranking performance of the tree.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 171 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models 4.2 Ranking and probability estimation trees

Prunning a tree

t Prunning must not improve classification accuracy on training set

t However may improve generalization accuracy on test set

t A popular algorithm for pruning decision trees is reduced-error pruning that
employs a separate prunning set of labelled data not seen during training.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 172 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models 4.2 Ranking and probability estimation trees

Algorithm 5.3, p.144 Reduced-error pruning

Algorithm PruneTree(T,D) – reduced-error pruning of a decision tree.

Input : decision tree T ; labelled data D .
Output : pruned tree T ′.

1 for every internal node N of T , starting from the bottom do
2 TN ←subtree of T rooted at N ;
3 DN ← {x ∈ D|x is covered by N };
4 if accuracy of TN over DN is worse than majority class in DN then
5 replace TN in T by a leaf labelled with the majority class in DN ;
6 end
7 end
8 return pruned version of T

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 173 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models 4.2 Ranking and probability estimation trees

Sensitivity to skewed class distributions

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 174 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models 4.2 Ranking and probability estimation trees

Example 5.3, p.144 Skew sensitivity of splitting criteria I

Suppose you have 10 positives and 10 negatives, and you need to choose
between the two splits [8+,2−][2+,8−] and [10+,6−][0+,4−].

t You duly calculate the weighted average entropy of both splits and conclude
that the first split is the better one.

t Just to be sure, you also calculate the average Gini index, and again the
first split wins.

t You then remember somebody telling you that the square root of the Gini
index was a better impurity measure, so you decide to check that one out
as well. Lo and behold, it favours the second split...! What to do?

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 175 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models 4.2 Ranking and probability estimation trees

Example 5.3, p.144 Skew sensitivity of splitting criteria II

You then remember that mistakes on the positives are about ten times as costly
as mistakes on the negatives.

t You’re not quite sure how to work out the maths, and so you decide to
simply have ten copies of every positive: the splits are now
[80+,2−][20+,8−] and [100+,6−][0+,4−].

t You recalculate the three splitting criteria and now all three favour the
second split.

t Even though you’re slightly bemused by all this, you settle for the second
split since all three splitting criteria are now unanimous in their
recommendation.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 176 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models 4.2 Ranking and probability estimation trees

Why splitting point changed for Gini index and entropy?

The Gini index of the parent is 2 n⊕
n

nª
n , and the weighted Gini index of one of the

children is n1
n 2

n⊕
1

n1

nª
1

n1
. So the weighted impurity of the child in proportion to the

parent’s impurity is
n⊕

1 nª
1 /n1

n⊕nª/n ; let’s call this relative impurity.
The same calculations for

p
Gini give

t impurity of the parent:

√
n⊕

n

nª

n
;

t weighted impurity of the child:
n1

n

√
n⊕

1

n1

nª
1

n1
;

t relative impurity:

√
n⊕

1 nª
1

n⊕nª .

This last ratio doesn’t change if we multiply all numbers involving positives with a
factor c. That is, a splitting criterion using

p
Gini as impurity measure is

insensitive to changes in class distribution – unlike Gini index and entropy.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 177 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models 4.2 Ranking and probability estimation trees

Figure 5.7, p.146 Skew sensitivity of splitting criteria

Negatives

P
os
iti
ve
s

Negatives

P
os
iti
ve
s

(left) ROC isometrics for entropy in blue, Gini index in violet and
p

Gini in red through

the splits [8+,2−][2+,8−] (solid lines) and [10+,6−][0+,4−] (dotted lines). Only
p

Gini

prefers the second split. (right) The same isometrics after inflating the positives with a

factor 10. All splitting criteria now favour the second split; the
p

Gini isometrics are the

only ones that haven’t moved.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 178 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models 4.2 Ranking and probability estimation trees

Important point to remember

Entropy and Gini index are sensitive to fluctuations in the class distribution,p
Gini isn’t.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 179 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models 4.2 Ranking and probability estimation trees

Peter’s recipe for decision tree learning

t First and foremost, I would concentrate on getting good ranking behaviour,
because from a good ranker I can get good classification and probability
estimation, but not necessarily the other way round.

t I would therefore try to use an impurity measure that is
distribution-insensitive, such as

p
Gini; if that isn’t available and I can’t hack

the code, I would resort to oversampling the minority class to achieve a
balanced class distribution.

t I would disable pruning and smooth the probability estimates by means of
the Laplace correction (or the m-estimate).

t Once I know the deployment operation conditions, I would use these to
select the best operating point on the ROC curve (i.e., a threshold on the
predicted probabilities, or a labelling of the tree).

t (optional) Finally, I would prune away any subtree whose leaves all have the
same label.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 180 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models 4.3 Tree learning as variance reduction

What’s next?

4 Tree models
Decision trees
Ranking and probability estimation trees

Sensitivity to skewed class distributions

Tree learning as variance reduction
Regression trees
Clustering trees

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 181 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models 4.3 Tree learning as variance reduction

We will now consider how to adapt decision trees to regression and clustering
tasks.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 182 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models 4.3 Tree learning as variance reduction

Regression trees

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 183 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models 4.3 Tree learning as variance reduction

Tree learning as variance reduction

t The variance of a Boolean (i.e., Bernoulli) variable with success probability
ṗ is ṗ(1− ṗ), which is half the Gini index. So we could interpret the goal of
tree learning as minimising the class variance (or standard deviation, in
case of

p
Gini) in the leaves.

t In regression problems we can define the variance in the usual way:

Var(Y) = 1

|Y |
∑

y∈Y
(y − y)2

If a split partitions the set of target values Y into mutually exclusive sets
{Y1, . . . ,Yl }, the weighted average variance is then

Var({Y1, . . . ,Yl }) =
l∑

j=1

|Y j |
|Y | Var(Y j) = . . . = 1

|Y |
∑

y∈Y
y2 −

l∑
j=1

|Y j |
|Y | y2

j

The first term is constant for a given set Y and so we want to maximise the
weighted average of squared means in the children.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 184 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models 4.3 Tree learning as variance reduction

Example 5.4, p.150 Learning a regression tree I

Imagine you are a collector of vintage Hammond tonewheel organs. You have
been monitoring an online auction site, from which you collected some data
about interesting transactions:

Model Condition Leslie Price

1. B3 excellent no 4513
2. T202 fair yes 625
3. A100 good no 1051
4. T202 good no 270
5. M102 good yes 870
6. A100 excellent no 1770
7. T202 fair no 99
8. A100 good yes 1900
9. E112 fair no 77

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 185 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models 4.3 Tree learning as variance reduction

Example 5.4, p.150 Learning a regression tree II

From this data, you want to construct a regression tree that will help you
determine a reasonable price for your next purchase.
There are three features, hence three possible splits:

Model= [A100,B3,E112,M102,T202]
[1051,1770,1900][4513][77][870][99,270,625]

Condition= [excellent,good, fair]
[1770,4513][270,870,1051,1900][77,99,625]

Leslie= [yes,no] [625,870,1900][77,99,270,1051,1770,4513]

The means of the first split are 1574, 4513, 77, 870 and 331, and the weighted
average of squared means is 3.21 ·106.
The means of the second split are 3142, 1023 and 267, with weighted average of
squared means 2.68 ·106;
for the third split the means are 1132 and 1297, with weighted average of
squared means 1.55 ·106.
We therefore branch on Model at the top level. This gives us three
single-instance leaves, as well as three A100s and three T202s.
cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 186 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models 4.3 Tree learning as variance reduction

Example 5.4, p.150 Learning a regression tree III

For the A100s we obtain the following splits:

Condition= [excellent,good, fair] [1770][1051,1900][]
Leslie= [yes,no] [1900][1051,1770]

Without going through the calculations we can see that the second split results in
less variance (to handle the empty child, it is customary to set its variance equal
to that of the parent). For the T202s the splits are as follows:

Condition= [excellent,good, fair] [][270][99,625]
Leslie= [yes,no] [625][99,270]

Again we see that splitting on Leslie gives tighter clusters of values. The learned
regression tree is depicted in Figure 5.8.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 187 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models 4.3 Tree learning as variance reduction

Figure 5.8, p.150 A regression tree

Model

Leslie

=A100

f̂(x)=4513

=B3

f̂(x)=77

 =E122

f̂(x)=870

 =M102

Leslie

=T202

f̂(x)=1900

=yes

f̂(x)=1411

 =no

f̂(x)=625

 =yes

f̂(x)=185

 =no

A regression tree learned from the data in Example 5.4.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 188 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models 4.3 Tree learning as variance reduction

Clustering trees

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 189 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models 4.3 Tree learning as variance reduction

Dissimilarity measure

Let Dis: X ×X →R be an abstract function that measures dissimularity of any
two instances x, x ′ ∈X , such that the higher Dis(x, x ′) is, the less similar x and
x ′ are. The cluster dissimilarity of a set of instances D is:

Dis(D) = 1

|D|2
∑

x∈D

∑
x ′∈D

Dis(x, x ′)

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 190 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models 4.3 Tree learning as variance reduction

Example 5.5, p.152 Learning a clustering tree I

Assessing the nine transactions on the online auction site from Example 5.4,
using some additional features such as reserve price and number of bids, you
come up with the following dissimilarity matrix:

0 11 6 13 10 3 13 3 12
11 0 1 1 1 3 0 4 0

6 1 0 2 1 1 2 2 1
13 1 2 0 0 4 0 4 0
10 1 1 0 0 3 0 2 0
3 3 1 4 3 0 4 1 3

13 0 2 0 0 4 0 4 0
3 4 2 4 2 1 4 0 4

12 0 1 0 0 3 0 4 0

This shows, for instance, that the first transaction is very different from the other
eight. The average pairwise dissimilarity over all nine transactions is 2.94.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 191 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models 4.3 Tree learning as variance reduction

Example 5.5, p.152 Learning a clustering tree II

Using the same features from Example 5.4, the three possible splits are (now
with transaction number rather than price):

Model= [A100,B3,E112,M102,T202] [3,6,8][1][9][5][2,4,7]
Condition= [excellent,good, fair] [1,6][3,4,5,8][2,7,9]
Leslie= [yes,no] [2,5,8][1,3,4,6,7,9]

The cluster dissimilarity among transactions 3, 6 and 8 is
1
32 (0+1+2+1+0+1+2+1+0) = 0.89; and among transactions 2, 4 and 7 it is
1
32 (0+1+0+1+0+0+0+0+0) = 0.22. The other three children of the first split
contain only a single element and so have zero cluster dissimilarity. The
weighted average cluster dissimilarity of the split is then
3/9 ·0.89+1/9 ·0+1/9 ·0+1/9 ·0+3/9 ·0.22 = 0.37. For the second split,
similar calculations result in a split dissimilarity of
2/9 ·1.5+4/9 ·1.19+3/9 ·0 = 0.86, and the third split yields
3/9 ·1.56+6/9 ·3.56 = 2.89. The Model feature thus captures most of the given
dissimilarities, while the Leslie feature is virtually unrelated.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 192 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models 4.3 Tree learning as variance reduction

Example 5.6, p.154 Clustering with Euclidean distance I

We extend our Hammond organ data with two new numerical features, one
indicating the reserve price and the other the number of bids made in the auction.

Model Condition Leslie Price Reserve Bids

B3 excellent no 45 30 22
T202 fair yes 6 0 9
A100 good no 11 8 13
T202 good no 3 0 1
M102 good yes 9 5 2
A100 excellent no 18 15 15
T202 fair no 1 0 3
A100 good yes 19 19 1
E112 fair no 1 0 5

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 193 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models 4.3 Tree learning as variance reduction

Example 5.6, p.154 Clustering with Euclidean distance II

t The means of the three numerical features are (13.3,8.6,7.9) and their
variances are (158,101.8,48.8). The average squared Euclidean distance
to the mean is then the sum of these variances, which is 308.6.

t For the A100 cluster these vectors are (16,14,9.7) and (12.7,20.7,38.2),
with average squared distance to the mean 71.6; for the T202 cluster they
are (3.3,0,4.3) and (4.2,0,11.6), with average squared distance 15.8.

t Using this split we can construct a clustering tree whose leaves are labelled
with the mean vectors (Figure 5.9).

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 194 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

4. Tree models 4.3 Tree learning as variance reduction

Figure 5.9, p.154 A clustering tree

Model

(16, 14, 9.7)

=A100

(45, 30, 22)

=B3

(1, 0, 5)

 =E122

(9, 5, 2)

 =M102

(3.3, 0, 4.3)

 =T202

A clustering tree learned from the data in Example 5.6 using Euclidean distance on the

numerical features.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 195 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models

What’s next?

5 Rule models
Learning ordered rule lists

Rule lists for ranking and probability estimation

Learning unordered rule sets
Rule sets for ranking and probability estimation

Descriptive rule learning
Rule learning for subgroup discovery
Association rule mining

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 196 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.1 Learning ordered rule lists

What’s next?

5 Rule models
Learning ordered rule lists

Rule lists for ranking and probability estimation

Learning unordered rule sets
Rule sets for ranking and probability estimation

Descriptive rule learning
Rule learning for subgroup discovery
Association rule mining

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 197 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.1 Learning ordered rule lists

Example 6.1, p.159 Learning a rule list I

Consider again our small dolphins data set with positive examples
p1: Length= 3 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many
p2: Length= 4 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many
p3: Length= 3 ∧ Gills= no ∧ Beak= yes ∧ Teeth= few
p4: Length= 5 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many
p5: Length= 5 ∧ Gills= no ∧ Beak= yes ∧ Teeth= few

and negatives
n1: Length= 5 ∧ Gills= yes ∧ Beak= yes ∧ Teeth=many
n2: Length= 4 ∧ Gills= yes ∧ Beak= yes ∧ Teeth=many
n3: Length= 5 ∧ Gills= yes ∧ Beak= no ∧ Teeth=many
n4: Length= 4 ∧ Gills= yes ∧ Beak= no ∧ Teeth=many
n5: Length= 4 ∧ Gills= no ∧ Beak= yes ∧ Teeth= few

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 198 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.1 Learning ordered rule lists

Example 6.1, p.159 Learning a rule list II

t The nine possible literals are shown with their coverage counts in Figure 6.2
(left).

t Three of these are pure; in the impurity isometrics plot in Figure 6.2 (right)
they end up on the x-axis and y-axis.

t One of the literals covers two positives and two negatives, and therefore
has the same impurity as the overall data set; this literal ends up on the
ascending diagonal in the coverage plot.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 199 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.1 Learning ordered rule lists

Figure 6.2, p.160 Searching for literals

true
[5+, 5-]

Length=3
[2+, 0-]

Length=4
[1+, 3-]

Length=5
[2+, 2-]

Gills=yes
[0+, 4-]

Gills=no
[5+, 1-]

Beak=yes
[5+, 3-]

Beak=no
[0+, 2-]

Teeth=many
[3+, 4-]

Teeth=few
[2+, 1-]

Negatives

P
os
iti
ve
s

(left) All literals with their coverage counts on the data in Example 6.1. The ones in

green (red) are pure for the positive (negative) class. (right) The nine literals plotted as

points in coverage space, with their impurity values indicated by impurity isometrics

(away from the ascending diagonal is better). Impurity values are colour-coded: towards

green if ṗ > 1/2, towards red if ṗ < 1/2, and orange if ṗ = 1/2 (on a 45 degree

isometric). The violet arrow indicates the selected literal, which excludes all five positives

and one negative.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 200 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.1 Learning ordered rule lists

Figure 6.1, p.158 Equivalence of search heuristics

Negatives

P
os
iti
ve
s

0
P
os

0 Neg

ROC isometrics for entropy (rescaled to have a maximum value of 1/2), Gini index and

minority class. The grey dotted symmetry line is defined by ṗ = 1/2: each isometric has

two parts, one above the symmetry line (where impurity decreases with increasing

empirical probability ṗ) and its mirror image below the symmetry line (where impurity is

proportional to ṗ).
cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 201 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.1 Learning ordered rule lists

Figure 6.3, p.161 Constructing the second rule

true
[5+, 1-]

Length=3
[2+, 0-]

Length=4
[1+, 1-]

Length=5
[2+, 0-]

Gills=no
[5+, 1-]

Beak=yes
[5+, 1-]

Teeth=many
[3+, 0-]

Teeth=few
[2+, 1-]

Negatives

P
os
iti
ve
s

(left) Revised coverage counts after removing the four negative examples covered by the

first rule found (literals not covering any examples are omitted). (right) We are now

operating in the right-most ‘slice’ of Figure 6.2.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 202 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.1 Learning ordered rule lists

Figure 6.4, p.162 Constructing the third rule

true
[2+, 1-]

Length=3
[1+, 0-]

Length=4
[0+, 1-]

Length=5
[1+, 0-]

Gills=no
[2+, 1-]

Beak=yes
[2+, 1-]

Teeth=few
[2+, 1-]

Negatives

P
os
iti
ve
s

(left) The third rule covers the one remaining negative example, so that the remaining

positives can be swept up by a default rule. (right) This will collapse the coverage space.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 203 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.1 Learning ordered rule lists

Algorithm 6.1, p.163 Learning an ordered list of rules

Algorithm LearnRuleList(D) – learn an ordered list of rules.

Input : labelled training data D .
Output : rule list R.

1 R ←;;
2 while D 6= ; do
3 r ←LearnRule(D) ; // LearnRule: see Algorithm 6.2
4 append r to the end of R;
5 D ←D \ {x ∈ D|x is covered by r };
6 end
7 return R

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 204 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.1 Learning ordered rule lists

Algorithm 6.2, p.164 Learning a single rule

Algorithm LearnRule(D) – learn a single rule.

Input : labelled training data D .
Output : rule r .

1 b ←true;
2 L ←set of available literals;
3 while not Homogeneous(D) do
4 l ←BestLiteral(D,L) ; // e.g., highest purity; see text
5 b ←b ∧ l ;
6 D ← {x ∈ D|x is covered by b};
7 L ← L \ {l ′ ∈ L|l ′ uses same feature as l };
8 end
9 C ←Label(D) ; // e.g., majority class

10 r ←·if b then Class=C ·;
11 return r

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 205 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.1 Learning ordered rule lists

Figure 6.5, p.164 Rule list as a tree

B: [0+, 4-]

D: [3+, 0-]

F: [0+, 1-]

A: Gills

 =yes

C: Teeth

 ≠yes

 =many

E: Length

 ≠many

 =4

G: [2+, 0-]

 ≠4

Negatives

P
os
iti
ve
s

A

B

C

D

E

F

G

D

G

F B

(left) A right-branching feature tree corresponding to a list of single-literal rules. (right)
The construction of this feature tree depicted in coverage space. The leaves of the tree

are either purely positive (in green) or purely negative (in red). Reordering these leaves

on their empirical probability results in the blue coverage curve. As the rule list separates

the classes this is a perfect coverage curve.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 206 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.1 Learning ordered rule lists

Rule lists for ranking and probability estimation

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 207 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.1 Learning ordered rule lists

Important point to remember

Rule lists inherit the property of decision trees that their training set coverage
curve is always convex.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 208 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.1 Learning ordered rule lists

Example 6.2, p.165 Rule lists as rankers I

Consider the following two concepts:

(A) Length= 4 p2 n2,n4–5
(B) Beak= yes p1–5 n1–2,n5

Indicated on the right is each concept’s coverage over the whole training set.
Using these concepts as rule bodies, we can construct the rule list AB:

·if Length= 4 then Class=ª· [1+,3−]
·else if Beak= yes then Class=⊕· [4+,1−]
·else Class=ª· [0+,1−]

The coverage curve of this rule list is given in Figure 6.6.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 209 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.1 Learning ordered rule lists

Example 6.2, p.165 Rule lists as rankers II

t The first segment of the curve corresponds to all instances which are
covered by B but not by A, which is why we use the set-theoretical notation
B\A.

t Notice that while this segment corresponds to the second rule in the rule
list, it comes first in the coverage curve because it has the highest
proportion of positives.

t The second coverage segment corresponds to rule A, and the third
coverage segment denoted ‘-’ corresponds to the default rule.

t This segment comes last, not because it represents the last rule, but
because it happens to cover no positives.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 210 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.1 Learning ordered rule lists

Example 6.2, p.165 Rule lists as rankers III

We can also construct a rule list in the opposite order, BA:

·if Beak= yes then Class=⊕· [5+,3−]
·else if Length= 4 then Class=ª· [0+,1−]
·else Class=ª· [0+,1−]

The coverage curve of this rule list is also depicted in Figure 6.6. This time, the
first segment corresponds to the first segment in the rule list (B), and the second
and third segment are tied between rule A (after the instances covered by B are
taken away: A\B) and the default rule.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 211 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.1 Learning ordered rule lists

Figure 6.6, p.166 Rule lists as rankers

Negatives

P
os
iti
ve
s

B\A

A

-

B

A\B, -

Coverage curves of two rule lists consisting of the rules from Example 6.2, in different

order (AB in blue and BA in violet). B\A corresponds to the coverage of rule B once

the coverage of rule A is taken away, and ‘-’ denotes the default rule. The dotted

segment in red connecting the two curves corresponds to the overlap of the two rules

A∧B, which is not accessible by either rule list.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 212 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.1 Learning ordered rule lists

Important point to remember

Rule lists are similar to decision trees in that the empirical probabilities
associated with each rule yield convex ROC and coverage curves on the training
data.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 213 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.2 Learning unordered rule sets

What’s next?

5 Rule models
Learning ordered rule lists

Rule lists for ranking and probability estimation

Learning unordered rule sets
Rule sets for ranking and probability estimation

Descriptive rule learning
Rule learning for subgroup discovery
Association rule mining

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 214 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.2 Learning unordered rule sets

Example 6.3, p.167 Learning a rule set for class ⊕
Figure 6.7 shows that the first rule learned for the positive class is

·if Length= 3 then Class=⊕·

The two examples covered by this rule are removed, and a new rule is learned.
We now encounter a new situation, as none of the candidates is pure (Figure
6.8). We thus start a second-level search, from which the following pure rule
emerges:

·if Gills= no ∧ Length= 5 then Class=⊕·
To cover the remaining positive, we again need a rule with two conditions (Figure
6.9):

·if Gills= no ∧ Teeth=many then Class=⊕·
Notice that, even though these rules are overlapping, their overlap only covers
positive examples (since each of them is pure) and so there is no need to
organise them in an if-then-else list.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 215 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.2 Learning unordered rule sets

Figure 6.7, p.168 Learning a rule set

true
[5+, 5-]

Length=3
[2+, 0-]

Length=4
[1+, 3-]

Length=5
[2+, 2-]

Gills=yes
[0+, 4-]

Gills=no
[5+, 1-]

Beak=yes
[5+, 3-]

Beak=no
[0+, 2-]

Teeth=many
[3+, 4-]

Teeth=few
[2+, 1-]

Negatives

P
os
iti
ve
s

(left) The first rule is learned for the positive class. (right) Precision isometrics look

identical to impurity isometrics (Figure 6.2); however, the difference is that precision is

lowest on the x-axis and highest on the y-axis, while purity is lowest on the ascending

diagonal and highest on both the x-axis and the y-axis.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 216 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.2 Learning unordered rule sets

Figure 6.8, p.169 Learning the second rule

true
[3+, 5-]

Length=4
[1+, 3-]

Length=5
[2+, 2-]

Gills=yes
[0+, 4-]

Gills=no
[3+, 1-]

Beak=yes
[3+, 3-]

Beak=no
[0+, 2-]

Teeth=many
[2+, 4-]

Teeth=few
[1+, 1-]

Gills=no & Length=4
[1+, 1-]

Gills=no & Length=5
[2+, 0-]

Gills=no & Beak=yes
[3+, 1-]

Gills=no & Teeth=many
[2+, 0-]

Gills=no & Teeth=few
[1+, 1-]

Negatives

P
os
iti
ve
s

(left) The second rule needs two literals: we use maximum precision to select both.

(right) The coverage space is smaller because the two positives covered by the first rule

are removed. The blue box on the left indicates an even smaller coverage space in which

the search for the second literal is carried out, after the condition Gills= no filters out

four negatives. Inside the blue box precision isometrics overlap with those in the outer

box (this is not necessarily the case with search heuristics other than precision).

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 217 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.2 Learning unordered rule sets

Figure 6.9, p.170 Learning the third rule

true
[1+, 5-]

Length=4
[1+, 3-]

Length=5
[0+, 2-]

Gills=yes
[0+, 4-]

Gills=no
[1+, 1-]

Beak=yes
[1+, 3-]

Beak=no
[0+, 2-]

Teeth=many
[1+, 4-]

Teeth=few
[0+, 1-]

Length=4 & Gills=no
[1+, 1-]

Gills=no & Beak=yes
[1+, 1-]

Gills=no & Teeth=many
[1+, 0-]

Gills=no & Teeth=few
[0+, 1-] Negatives

P
os
iti
ve
s

(left) The third and final rule again needs two literals. (right) The first literal excludes

four negatives, the second excludes the one remaining negative.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 218 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.2 Learning unordered rule sets

Algorithm 6.3, p.171 Learning an unordered set of rules

Algorithm LearnRuleSet(D) – learn an unordered set of rules.

Input : labelled training data D .
Output : rule set R.

1 R ←;;
2 for every class Ci do
3 Di ←D ;
4 while Di contains examples of class Ci do
5 r ←LearnRuleForClass(Di ,Ci) ; // LearnRuleForClass: see Algorithm

6.4
6 R ←R ∪ {r };
7 Di ←Di \ {x ∈Ci |x is covered by r } ; // remove only positives

8 end
9 end

10 return R

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 219 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.2 Learning unordered rule sets

Algorithm 6.4, p.171 Learning a single rule for a given class

Algorithm LearnRuleForClass(D,Ci) – learn a single rule for a given class.

Input : labelled training data D ; class Ci .
Output : rule r .

1 b ←true;
2 L ←set of available literals ; // can be initialised by seed example
3 while not Homogeneous(D) do
4 l ←BestLiteral(D,L,Ci) ; // e.g. maximising precision on class Ci

5 b ←b ∧ l ;
6 D ← {x ∈ D|x is covered by b};
7 L ← L \ {l ′ ∈ L|l ′ uses same feature as l };
8 end
9 r ←·if b then Class=Ci ·;

10 return r

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 220 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.2 Learning unordered rule sets

The need for probability smoothing

One issue with using precision as search heuristic is that it tends to focus a bit
too much on finding pure rules, thereby occasionally missing near-pure rules that
can be specialised into a more general pure rule.

t Consider Figure 6.10 (left): precision favours the rule
·if Length= 3 then Class=⊕·, even though the near-pure literal Gills= no
leads to the pure rule ·if Gills= no ∧ Teeth=many then Class=⊕·.

t A convenient way to deal with this ‘myopia’ of precision is the Laplace
correction, which ensures that [5+,1−] is ‘corrected’ to [6+,2−] and thus
considered to be of the same quality as [2+,0−] aka [3+,1−] (Figure 6.10
(right)).

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 221 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.2 Learning unordered rule sets

Figure 6.10, p.172 Using the Laplace correction

true
[5+, 5-]

Length=3
[2+, 0-]

Length=4
[1+, 3-]

Length=5
[2+, 2-]

Gills=yes
[0+, 4-]

Gills=no
[5+, 1-]

Beak=yes
[5+, 3-]

Beak=no
[0+, 2-]

Teeth=many
[3+, 4-]

Teeth=few
[2+, 1-]

Gills=no & Length=3
[2+, 0-]

Gills=no & Length=4
[1+, 1-]

Gills=no & Length=5
[2+, 0-]

Gills=no & Beak=yes
[5+, 1-]

Gills=no & Teeth=many
[3+, 0-]

Gills=no & Teeth=few
[2+, 1-]

Negatives

P
os
iti
ve
s

(left) Using Laplace-corrected precision allows learning a better rule in the first iteration.

(right) Laplace correction adds one positive and one negative pseudo-count, which

means that the isometrics now rotate around (−1,−1) in coverage space, resulting in a

preference for more general rules.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 222 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.2 Learning unordered rule sets

Rule sets for ranking and probability estimation

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 223 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.2 Learning unordered rule sets

Example 6.4, p.173 Rule sets as rankers I

Consider the following rule set (the first two rules were also used in Example 6.2):

(A) ·if Length= 4 then Class=ª· [1+,3−]
(B) ·if Beak= yes then Class=⊕· [5+,3−]
(C) ·if Length= 5 then Class=ª· [2+,2−]

t The figures on the right indicate coverage of each rule over the whole
training set. For instances covered by single rules we can use these
coverage counts to calculate probability estimates: e.g., an instance
covered only by rule A would receive probability p̂(A) = 1/4 = 0.25, and
similarly p̂(B) = 5/8 = 0.63 and p̂(C) = 2/4 = 0.50.

t Clearly A and C are mutually exclusive, so the only overlaps we need to
take into account are AB and BC.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 224 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.2 Learning unordered rule sets

Example 6.4, p.173 Rule sets as rankers II

t A simple trick that is often applied is to average the coverage of the rules
involved: for example, the coverage of AB is estimated as [3+,3−] yielding
p̂(AB) = 3/6 = 0.50. Similarly, p̂(BC) = 3.5/6 = 0.58.

t The corresponding ranking is thus B – BC – [AB, C] – A, resulting in the
orange training set coverage curve in Figure 6.11.

Let us now compare this rule set with the following rule list ABC:

·if Length= 4 then Class=ª· [1+,3−]
·else if Beak= yes then Class=⊕· [4+,1−]
·else if Length= 5 then Class=ª· [0+,1−]

The coverage curve of this rule list is indicated in Figure 6.11 as the blue line. We
see that the rule set outperforms the rule list, by virtue of being able to distinguish
between examples covered by B only and those covered by both B and C.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 225 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.2 Learning unordered rule sets

Figure 6.11, p.174 Rule set vs rule list

Negatives

P
os
iti
ve
s

B\A

A

C\B\A

B

BC

AB, C
A

Coverage curves of the rule set in Example 6.4 (in orange) and the rule list ABC (in

blue). The rule set partitions the instance space in smaller segments, which in this case

lead to better ranking performance.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 226 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.3 Descriptive rule learning

What’s next?

5 Rule models
Learning ordered rule lists

Rule lists for ranking and probability estimation

Learning unordered rule sets
Rule sets for ranking and probability estimation

Descriptive rule learning
Rule learning for subgroup discovery
Association rule mining

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 227 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.3 Descriptive rule learning

Rule learning for subgroup discovery

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 228 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.3 Descriptive rule learning

Subgroup discovery

Subgroups are subsets of the instance space – or alternatively, mappings
ĝ : X → {true, false} – that are learned from a set of labelled examples
(xi , l (xi)), where l : X →C is the true labelling function.

t A good subgroup is one whose class distribution is significantly different
from the overall population. This is by definition true for pure subgroups, but
these are not the only interesting ones.

t For instance, one could argue that the complement of a subgroup is as
interesting as the subgroup itself: in our dolphin example, the concept
Gills= yes, which covers four negatives and no positives, could be
considered as interesting as its complement Gills= no, which covers one
negative and all positives.

t This means that we need to move away from impurity-based evaluation
measures.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 229 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.3 Descriptive rule learning

Figure 6.15, p.179 Evaluating subgroups

Negatives

P
os
iti
ve
s

Negatives

P
os
iti
ve
s

(left) Subgroups and their isometrics according to Laplace-corrected precision. The

solid, outermost isometrics indicate the best subgroups. (right) The ranking changes if

we order the subgroups on average recall. For example, [5+,1−] is now better than

[3+,0−] and as good as [0+,4−].

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 230 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.3 Descriptive rule learning

Example 6.6, p.180 Evaluating subgroups

Table 6.1 ranks ten subgroups in the dolphin example in terms of
Laplace-corrected precision and average recall.

t One difference is that Gills= no ∧ Teeth=many with coverage [3+,0−] is
better than Gills= no with coverage [5+,1−] in terms of Laplace-corrected
precision, but worse in terms of average recall, as the latter ranks it equally
with its complement Gills= yes.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 231 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.3 Descriptive rule learning

Table 6.1, p.179 Evaluating subgroups

Subgroup Coverage precL Rank avg-rec Rank

Gills= yes [0+,4−] 0.17 1 0.10 1–2
Gills= no ∧ Teeth=many [3+,0−] 0.80 2 0.80 3
Gills= no [5+,1−] 0.75 3–9 0.90 1–2
Beak= no [0+,2−] 0.25 3–9 0.30 4–11
Gills= yes ∧ Beak= yes [0+,2−] 0.25 3–9 0.30 4–11
Length= 3 [2+,0−] 0.75 3–9 0.70 4–11
Length= 4 ∧ Gills= yes [0+,2−] 0.25 3–9 0.30 4–11
Length= 5 ∧ Gills= no [2+,0−] 0.75 3–9 0.70 4–11
Length= 5 ∧ Gills= yes [0+,2−] 0.25 3–9 0.30 4–11
Length= 4 [1+,3−] 0.33 10 0.30 4–11
Beak= yes [5+,3−] 0.60 11 0.70 4–11

Using Laplace-corrected precision we can evaluate the quality of a subgroup as

|precL −pos|. Alternatively, we can use average recall to define the quality of a subgroup

as |avg-rec−0.5|.
cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 232 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.3 Descriptive rule learning

Association rule mining

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 233 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.3 Descriptive rule learning

Items and transactions

Transaction Items

1 nappies
2 beer, crisps
3 apples, nappies
4 beer, crisps, nappies
5 apples
6 apples, beer, crisps, nappies
7 apples, crisps
8 crisps

Each transaction in this table involves a set of items; conversely, for each item we
can list the transactions in which it was involved: transactions 1, 3, 4 and 6 for
nappies, transactions 3, 5, 6 and 7 for apples, and so on. We can also do this for
sets of items: e.g., beer and crisps were bought together in transactions 2, 4 and
6; we say that item set {beer,crisps} covers transaction set {2,4,6}.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 234 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.3 Descriptive rule learning

Figure 6.17, p.183 An item set lattice

{Nappies, Beer, Crisps, Apples}

{Beer, Crisps}

{Nappies, Beer, Crisps} {Beer, Crisps, Apples}

{Nappies, Apples}

{Nappies, Crisps, Apples} {Nappies, Beer, Apples}

{Crisps, Apples}

{Nappies}

{Nappies, Crisps} {Nappies, Beer}

{Apples}

{Beer, Apples}

{}

{Beer}{Crisps}

Item sets in dotted ovals cover a single transaction; in dashed ovals, two transactions; in

triangles, three transactions; and in polygons with n sides, n transactions. The maximal

item sets with support 3 or more are indicated in green.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 235 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.3 Descriptive rule learning

Algorithm 6.6, p.184 Maximal item sets

Algorithm FrequentItems(D, f0) – find all maximal item sets exceeding a given support thresh-
old.

Input : data D ⊆X ; support threshold f0.
Output : set of maximal frequent item sets M .

1 M ←;;
2 initialise priority queue Q to contain the empty item set;
3 while Q is not empty do
4 I ← next item set deleted from front of Q;
5 max ← true ; // flag to indicate whether I is maximal
6 for each possible extension I ′ of I do
7 if Supp(I ′) ≥ f0 then
8 max ← false ; // frequent extension found, so I is not maximal
9 add I ′ to back of Q;

10 end
11 end
12 if max = true then M ← M ∪ {I };
13 end
14 return M

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 236 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.3 Descriptive rule learning

Association rules I

Frequent item sets can be used to build association rules, which are rules of the
form ·if B then H · where both body B and head H are item sets that frequently
appear in transactions together.

t Pick any edge in Figure 6.17, say the edge between {beer} and
{nappies,beer}. We know that the support of the former is 3 and of the
latter, 2: that is, three transactions involve beer and two of those involve
nappies as well. We say that the confidence of the association rule
·if beer then nappies· is 2/3.

t Likewise, the edge between {nappies} and {nappies,beer} demonstrates
that the confidence of the rule ·if nappies then beer· is 2/4.

t There are also rules with confidence 1, such as ·if beer then crisps·; and
rules with empty bodies, such as ·if true then crisps·, which has confidence
5/8 (i.e., five out of eight transactions involve crisps).

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 237 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.3 Descriptive rule learning

Association rules II

But we only want to construct association rules that involve frequent items.

t The rule ·if beer ∧ apples then crisps· has confidence 1, but there is only
one transaction involving all three and so this rule is not strongly supported
by the data.

t So we first use Algorithm 6.6 to mine for frequent item sets; we then select
bodies B and heads H from each frequent set m, discarding rules whose
confidence is below a given confidence threshold.

t Notice that we are free to discard some of the items in the maximal frequent
sets (i.e., H ∪B may be a proper subset of m), because any subset of a
frequent item set is frequent as well.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 238 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.3 Descriptive rule learning

Algorithm 6.7, p.185 Association rule mining

Algorithm AssociationRules(D, f0,c0) – find all association rules exceeding given
support and confidence thresholds.

Input : data D ⊆X ; support threshold f0; confidence threshold c0.
Output : set of association rules R.

1 R ←;;
2 M ← FrequentItems(D, f0) ; // FrequentItems: see Algorithm 6.6
3 for each m ∈ M do
4 for each H ⊆ m and B ⊆ m such that H ∩B =; do
5 if Supp(B ∪H)/Supp(B) ≥ c0 then R ← R ∪ {·if B then H ·};
6 end
7 end
8 return R

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 239 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.3 Descriptive rule learning

Association rule example

A run of the algorithm with support threshold 3 and confidence threshold 0.6
gives the following association rules:

·if beer then crisps· support 3, confidence 3/3
·if crisps then beer· support 3, confidence 3/5
·if true then crisps· support 5, confidence 5/8

Association rule mining often includes a post-processing stage in which
superfluous rules are filtered out, e.g., special cases which don’t have higher
confidence than the general case.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 240 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.3 Descriptive rule learning

Post-processing

One quantity that is often used in post-processing is lift, defined as

Lift(·if B then H ·) = n ·Supp(B ∪H)

Supp(B) ·Supp(H)

where n is the number of transactions.

t For example, for the the first two association rules above we would have lifts
of 8·3

3·5 = 1.6, as Lift(·if B then H ·) = Lift(·if H then B ·).
t For the third rule we have Lift(·if true then crisps·) = 8·5

8·5 = 1. This holds for
any rule with B =;, as

Lift(·if ; then H ·) = n ·Supp(;∪H)

Supp(;) ·Supp(H)
= n ·Supp(H)

n ·Supp(H)
= 1

More generally, a lift of 1 means that Supp(B ∪H) is entirely determined by the
marginal frequencies Supp(B) and Supp(H) and is not the result of any
meaningful interaction between B and H . Only association rules with lift larger
than 1 are of interest.
cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 241 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

5. Rule models 5.3 Descriptive rule learning

Figure 6.19, p.187 Item sets and dolphins

Length=3 & Gills=no & Beak=yes & Teeth=manyLength=4 & Gills=no & Beak=yes & Teeth=many Length=3 & Gills=no & Beak=yes & Teeth=fewLength=5 & Gills=no & Beak=yes & Teeth=many Length=5 & Gills=no & Beak=yes & Teeth=few

Gills=no & Beak=yes & Teeth=manyLength=3 & Beak=yes & Teeth=many Length=3 & Gills=no & Teeth=many Length=3 & Gills=no & Beak=yes

Beak=yes & Teeth=many

Length=4 & Beak=yes & Teeth=many Length=5 & Beak=yes & Teeth=many

Gills=no & Teeth=many

Length=4 & Gills=no & Teeth=many Length=5 & Gills=no & Teeth=many

Gills=no & Beak=yes

Length=4 & Gills=no & Beak=yes Gills=no & Beak=yes & Teeth=fewLength=5 & Gills=no & Beak=yes

Teeth=many

Length=3 & Teeth=manyLength=4 & Teeth=many Length=5 & Teeth=many

Beak=yes

Length=3 & Beak=yesLength=4 & Beak=yes Beak=yes & Teeth=fewLength=5 & Beak=yes

true

Gills=noLength=3Length=4 Teeth=fewLength=5

Length=3 & Gills=noLength=4 & Gills=no Gills=no & Teeth=fewLength=5 & Gills=no

Length=3 & Beak=yes & Teeth=few

Length=3 & Teeth=few

Length=3 & Gills=no & Teeth=few Length=5 & Beak=yes & Teeth=few Length=5 & Gills=no & Teeth=few

Length=5 & Teeth=few

The item set lattice corresponding to the positive examples of the dolphin example in

Example 4.4. Each ‘item’ is a literal Feature=Value; each feature can occur at most

once in an item set. The resulting structure is exactly the same as what was called the

hypothesis space in Chapter 4.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 242 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models

What’s next?

6 Linear models
The least-squares method

Multivariate linear regression

The perceptron: a heuristic learning algorithm for linear classifiers
Support vector machines

Soft margin SVM

Obtaining probabilities from linear classifiers

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 243 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.1 The least-squares method

What’s next?

6 Linear models
The least-squares method

Multivariate linear regression

The perceptron: a heuristic learning algorithm for linear classifiers
Support vector machines

Soft margin SVM

Obtaining probabilities from linear classifiers

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 244 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.1 The least-squares method

Example 7.1, p.197 Univariate linear regression

Suppose we want to investigate the relationship between people’s height and
weight. We collect n height and weight measurements (hi , wi),1 ≤ i ≤ n.

Univariate linear regression assumes a linear equation w = a +bh, with
parameters a and b chosen such that the sum of squared residuals∑n

i=1(wi − (a +bhi))2 is minimised.

In order to find the parameters we take partial derivatives of this expression, set
the partial derivatives to 0 and solve for a and b:

∂

∂a

n∑
i=1

(wi − (a +bhi))2 =−2
n∑

i=1
(wi − (a +bhi)) = 0 ⇒ â = w − b̂h

∂

∂b

n∑
i=1

(wi − (a +bhi))2 =−2
n∑

i=1
(wi − (a +bhi))hi = 0 ⇒ b̂ =

∑n
i=1(hi −h)(wi −w)∑n

i=1(hi −h)2

So the solution found by linear regression is w = â + b̂h = w + b̂(h −h); see
Figure 7.1 for an example.
cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 245 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.1 The least-squares method

Figure 7.1, p.197 Univariate linear regression

140 150 160 170 180 190 200
40

45

50

55

60

65

70

75

80

85

90

The red solid line indicates the result of applying linear regression to 10 measurements

of body weight (on the y-axis, in kilograms) against body height (on the x-axis, in

centimetres). The orange dotted lines indicate the average height h = 181 and the

average weight w = 74.5; the regression coefficient b̂ = 0.78. The measurements were

simulated by adding normally distributed noise with mean 0 and variance 5 to the true

model indicated by the blue dashed line (b = 0.83).

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 246 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.1 The least-squares method

Linear regression: intuitions I

For a feature x and a target variable y , the regression coefficient is the
covariance between x and y in proportion to the variance of x:

b̂ = σx y

σxx

(Here I use σxx as an alternative notation for σ2
x).

This can be understood by noting that the covariance is measured in units of x
times units of y (e.g., metres times kilograms in Example 7.1) and the variance in
units of x squared (e.g., metres squared), so their quotient is measured in units
of y per unit of x (e.g., kilograms per metre).

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 247 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.1 The least-squares method

Linear regression: intuitions II

The intercept â is such that the regression line goes through (x, y).

Adding a constant to all x-values (a translation) will affect only the intercept but
not the regression coefficient (since it is defined in terms of deviations from the
mean, which are unaffected by a translation).

So we could zero-centre the x-values by subtracting x, in which case the
intercept is equal to y .

We could even subtract y from all y-values to achieve a zero intercept, without
changing the problem in an essential way.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 248 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.1 The least-squares method

Linear regression: intuitions III

Suppose we replace xi with x ′
i = xi /σxx and likewise x with x ′ = x/σxx , then

we have that b̂ = 1
n

∑n
i=1(x ′

i −x ′)(yi − y) =σx ′y .

In other words, if we normalise x by dividing all its values by x ’s variance, we can
take the covariance between the normalised feature and the target variable as
regression coefficient.

This demonstrates that univariate linear regression can be understood as
consisting of two steps:

t normalisation of the feature by dividing its values by the feature’s variance;

t calculating the covariance of the target variable and the normalised feature.

We will see below how these two steps change when dealing with more than one
feature.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 249 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.1 The least-squares method

Linear regression: intuitions IV

Another important point to note is that the sum of the residuals of the
least-squares solution is zero:

n∑
i=1

(yi − (â + b̂xi)) = n(y − â − b̂x) = 0

The result follows because â = y − b̂x, as derived in Example 7.1.

While this property is intuitively appealing, it is worth keeping in mind that it also
makes linear regression susceptible to outliers: points that are far removed from
the regression line, often because of measurement errors.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 250 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.1 The least-squares method

Example 7.2, p.199 The effect of outliers

Suppose that, as the result of a transcription error, one of the weight values in
Figure 7.1 is increased by 10 kg. Figure 7.2 shows that this has a considerable
effect on the least-squares regression line.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 251 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.1 The least-squares method

Figure 7.2, p.199 The effect of outliers

140 150 160 170 180 190 200
40

45

50

55

60

65

70

75

80

85

90

One of the blue points got moved up 10 units to the green point, changing the red

regression line to the green line.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 252 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.1 The least-squares method

Multivariate linear regression

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 253 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.1 The least-squares method

Multivariate linear regression I

First, we need the covariances between every feature and the target variable:

(XTy) j =
n∑

i=1
xi j yi =

n∑
i=1

(xi j −µ j)(yi − y)+nµ j y = n(σ j y +µ j y)

Assuming for the moment that every feature is zero-centred, we have µ j = 0 and
thus XTy is an n-vector holding all the required covariances (times n).

We can normalise the features by means of a d -by-d scaling matrix: a diagonal
matrix with diagonal entries 1/nσ j j . If S is a diagonal matrix with diagonal
entries nσ j j , we can get the required scaling matrix by simply inverting S.

So our first stab at a solution for the multivariate regression problem is

ŵ = S−1XTy

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 254 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.1 The least-squares method

Multivariate linear regression II

The general case requires a more elaborate matrix instead of S:

ŵ = (XTX)−1XTy

Let us try to understand the term (XTX)−1 a bit better.

t Assuming the features are uncorrelated, the covariance matrix Σ is
diagonal with entries σ j j .

t Assuming the features are zero-centred, XTX = nΣ is also diagonal with
entries nσ j j .

t In other words, assuming zero-centred and uncorrelated features, (XTX)−1

reduces to our scaling matrix S−1.

In the general case we cannot make any assumptions about the features, and
(XTX)−1 acts as a transformation that decorrelates, centres and normalises the
features.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 255 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.1 The least-squares method

Example 7.3, p.202 Bivariate linear regression I

First, we derive the basic expressions.

XTX =
(

x11 · · · xn1

x12 · · · xn2

) x11 x12
...

...
xn1 xn2

= n

(
σ11 +x1

2 σ12 +x1 x2

σ12 +x1 x2 σ22 +x2
2

)

(XTX)−1 = 1

nD

(
σ22 +x2

2 −σ12 −x1 x2

−σ12 −x1 x2 σ11 +x1
2

)

D = (σ11 +x1
2)(σ22 +x2

2)− (σ12 +x1 x2)2

XTy =
(

x11 · · · xn1

x12 · · · xn2

) y1
...

yn

= n

(
σ1y +x1 y
σ2y +x2 y

)

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 256 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.1 The least-squares method

Example 7.3, p.202 Bivariate linear regression II

We now consider two special cases. The first is that X is in homogeneous
coordinates, i.e., we are really dealing with a univariate problem. In that case we
have xi 1 = 1 for 1 ≤ i ≤ n; x1 = 1; and σ11 =σ12 =σ1y = 0. We then obtain (we
write x instead of x2, σxx instead of σ22 and σx y instead of σ2y):

(XTX)−1 = 1

nσxx

(
σxx +x2 −x

−x 1

)

XTy = n

(
y

σx y +x y

)

ŵ = (XTX)−1XTy = 1

σxx

(
σxx y −σx y x

σx y

)
This is the same result as obtained in Example 7.1.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 257 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.1 The least-squares method

Example 7.3, p.202 Bivariate linear regression III

The second special case we consider is where we assume x1, x2 and y to be
zero-centred, which means that the intercept is zero and w contains the two
regression coefficients. In this case we obtain

(XTX)−1 = 1

n(σ11σ22 −σ2
12)

(
σ22 −σ12

−σ12 σ11

)

XTy = n

(
σ1y

σ2y

)

ŵ = (XTX)−1XTy = 1

(σ11σ22 −σ2
12)

(
σ22σ1y −σ12σ2y

σ11σ2y −σ12σ1y

)
The last expression shows, e.g., that the regression coefficient for x1 may be
non-zero even if x1 doesn’t correlate with the target variable (σ1y = 0), on
account of the correlation between x1 and x2 (σ12 6= 0).

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 258 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.1 The least-squares method

Important point to remember

Assuming uncorrelated features effectively decomposes a multivariate
regression problem into d univariate problems.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 259 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.1 The least-squares method

Figure 7.3, p.204 Feature correlation

(left) Regression functions learned by linear regression. The true function is y = x1 +x2

(red plane). The red points are noisy samples of this function; the black points show

them projected onto the (x1, x2)-plane. The green plane indicates the function learned

by linear regression; the blue plane is the result of decomposing the problem into two

univariate regression problems (blue points). Both are good approximations of the true

function. (right) The same function, but now x1 and x2 are highly (negatively) correlated.

The samples now give much less information about the true function: indeed, from the

univariate decomposition it appears that the function is constant.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 260 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.1 The least-squares method

Important point to remember

A general way of constructing a linear classifier with decision boundary w ·x = t
is by constructing w as M−1(n⊕µ⊕−nªµª), with different possible choices of
M, n⊕ and nª.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 261 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.2 The perceptron: a heuristic learning algorithm for linear classifiers

What’s next?

6 Linear models
The least-squares method

Multivariate linear regression

The perceptron: a heuristic learning algorithm for linear classifiers
Support vector machines

Soft margin SVM

Obtaining probabilities from linear classifiers

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 262 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.2 The perceptron: a heuristic learning algorithm for linear classifiers

The perceptron

A linear classifier that will achieve perfect separation on linearly separable data is
the perceptron, originally proposed as a simple neural network. The perceptron
iterates over the training set, updating the weight vector every time it encounters
an incorrectly classified example.
t For example, let xi be a misclassified positive example, then we have

yi =+1 and w ·xi < t . We therefore want to find w′ such that w′ ·xi > w ·xi ,
which moves the decision boundary towards and hopefully past xi .

t This can be achieved by calculating the new weight vector as w′ = w+ηxi ,
where 0 < η≤ 1 is the learning rate (often set to 1). We then have
w′ ·xi = w ·xi +ηxi ·xi > w ·xi as required.

t Similarly, if x j is a misclassified negative example, then we have y j =−1
and w ·x j > t . In this case we calculate the new weight vector as
w′ = w−ηx j , and thus w′ ·x j = w ·x j −ηx j ·x j < w ·x j .

t The two cases can be combined in a single update rule:

w′ = w+ηyi xi

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 263 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.2 The perceptron: a heuristic learning algorithm for linear classifiers

Algorithm 7.1, p.208 Perceptron

Algorithm Perceptron(D,η) – train a perceptron for linear classification.

Input : labelled training data D in homogeneous coordinates; learning rate η.
Output : weight vector w defining classifier ŷ = sign(w ·x).

1 w ←0 ; // Other initialisations of the weight vector are possible
2 converged←false;
3 while converged = false do
4 converged←true;
5 for i = 1 to |D| do
6 if yi w ·xi ≤ 0 // i.e., ŷi 6= yi

7 then
8 w←w+ηyi xi ;
9 converged←false; // We changed w so haven’t converged yet

10 end
11 end
12 end

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 264 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.2 The perceptron: a heuristic learning algorithm for linear classifiers

Figure 7.5, p.209 Varying the learning rate

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

(left) A perceptron trained with a small learning rate (η= 0.2). The circled examples are

the ones that trigger the weight update. (middle) Increasing the learning rate to η= 0.5

leads in this case to a rapid convergence. (right) Increasing the learning rate further to

η= 1 may lead to too aggressive weight updating, which harms convergence. The

starting point in all three cases was the basic linear classifier.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 265 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.2 The perceptron: a heuristic learning algorithm for linear classifiers

Linear classifiers in dual form

Every time an example xi is misclassified, we add yi xi to the weight vector.

t After training has completed, each example has been misclassified zero or
more times. Denoting this number as αi for example xi , the weight vector
can be expressed as

w =
n∑

i=1
αi yi xi

t In the dual, instance-based view of linear classification we are learning
instance weights αi rather than feature weights w j . An instance x is
classified as

ŷ = sign

(
n∑

i=1
αi yi xi ·x

)
t During training, the only information needed about the training data is all

pairwise dot products: the n-by-n matrix G = XXT containing these dot
products is called the Gram matrix.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 266 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.2 The perceptron: a heuristic learning algorithm for linear classifiers

Algorithm 7.2, p.209 Perceptron training in dual form

Algorithm DualPerceptron(D) – perceptron training in dual form.

Input : labelled training data D in homogeneous coordinates.
Output : coefficients αi defining weight vector w =∑|D|

i=1αi yi xi .
1 αi ← 0 for 1 ≤ i ≤ |D|;
2 converged←false;
3 while converged = false do
4 converged←true;
5 for i = 1 to |D| do
6 if yi

∑|D|
j=1α j y j xi ·x j ≤ 0 then

7 αi ←αi +1;
8 converged←false;
9 end

10 end
11 end

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 267 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.2 The perceptron: a heuristic learning algorithm for linear classifiers

Figure 7.6, p.210 Comparing linear classifiers

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Three differently trained linear classifiers on a data set of 100 positives (top-right) and 50

negatives (bottom-left): the basic linear classifier in red, the least-squares classifier in

orange and the perceptron in green. Notice that the perceptron perfectly separates the

training data, but its heuristic approach may lead to overfitting in certain situations.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 268 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.2 The perceptron: a heuristic learning algorithm for linear classifiers

Algorithm 7.3, p.211 Training a perceptron for regression

Algorithm PerceptronRegression(D,T) – train a perceptron for regression.

Input : labelled training data D in homogeneous coordinates;
maximum number of training epochs T .

Output : weight vector w defining function approximator ŷ = w ·x.
1 w ←0; t ←0;
2 while t < T do
3 for i = 1 to |D| do
4 w←w+ (yi − ŷi)2xi ;
5 end
6 t ← t +1;
7 end

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 269 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.3 Support vector machines

What’s next?

6 Linear models
The least-squares method

Multivariate linear regression

The perceptron: a heuristic learning algorithm for linear classifiers
Support vector machines

Soft margin SVM

Obtaining probabilities from linear classifiers

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 270 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.3 Support vector machines

Figure 7.7, p.212 Support vector machine

+
+

+ +

+
+

++

–
–

–
–

–
–

–
–

w

w.x = t + m

w.x = t

w.x = t – m

t
||w||

t + m
||w||

t – m
||w||

2m
||w||

The geometry of a support vector classifier. The circled data points are the support

vectors, which are the training examples nearest to the decision boundary. The support

vector machine finds the decision boundary that maximises the margin m/||w||.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 271 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.3 Support vector machines

Maximising the margin

Since we are free to rescale t , ||w|| and m, it is customary to choose m = 1.
Maximising the margin then corresponds to minimising ||w|| or, more
conveniently, 1

2 ||w||2, provided of course that none of the training points fall
inside the margin.

This leads to a quadratic, constrained optimisation problem:

w∗, t∗ = argmin
w,t

1

2
||w||2 subject to yi (w ·xi − t) ≥ 1,1 ≤ i ≤ n

Using the method of Lagrange multipliers, the dual form of this problem can be
derived (see Background 7.3).

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 272 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.3 Support vector machines

SVM in dual form

The dual optimisation problem for support vector machines is to maximise the
dual Lagrangian under positivity constraints and one equality constraint:

α∗
1 , . . . ,α∗

n =argmax
α1,...,αn

−1

2

n∑
i=1

n∑
j=1

αiα j yi y j xi ·x j +
n∑

i=1
αi

subject to αi ≥ 0,1 ≤ i ≤ n and
n∑

i=1
αi yi = 0

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 273 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.3 Support vector machines

Figure 7.8, p.215 Two maximum-margin classifiers

+

–

3

12

w

–

+

+

–

3

4

12

w

–

(left) A maximum-margin classifier built from three examples, with w = (0,−1/2) and

margin 2. The circled examples are the support vectors: they receive non-zero Lagrange

multipliers and define the decision boundary. (right) By adding a second positive the

decision boundary is rotated to w = (3/5,−4/5) and the margin decreases to 1.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 274 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.3 Support vector machines

Example 7.5, p.215 Two maximum-margin classifiers I

X =
 1 2

−1 2
−1 −2

 y =
 −1

−1
+1

 X′ =
 −1 −2

1 −2
−1 −2


The matrix X′ on the right incorporates the class labels; i.e., the rows are yi xi .
The Gram matrix is (without and with class labels):

XXT =
 5 3 −5

3 5 −3
−5 −3 5

 X′X′T =
 5 3 5

3 5 3
5 3 5


The dual optimisation problem is thus

argmax
α1 ,α2 ,α3

− 1

2

(
5α2

1 +3α1α2 +5α1α3 +3α2α1 +5α2
2 +3α2α3 +5α3α1 +3α3α2 +5α2

3

)
+α1 +α2 +α3

= argmax
α1 ,α2 ,α3

− 1

2

(
5α2

1 +6α1α2 +10α1α3 +5α2
2 +6α2α3 +5α2

3

)
+α1 +α2 +α3

subject to α1 ≥ 0,α2 ≥ 0,α3 ≥ 0 and −α1 −α2 +α3 = 0.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 275 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.3 Support vector machines

Example 7.5, p.215 Two maximum-margin classifiers II

t Using the equality constraint we can eliminate one of the variables, say α3,
and simplify the objective function to

argmax
α1,α2,α3

−1

2

(
20α2

1 +32α1α2 +16α2
2

)+2α1 +2α2

t Setting partial derivatives to 0 we obtain −20α1 −16α2 +2 = 0 and
−16α1 −16α2 +2 = 0 (notice that, because the objective function is
quadratic, these equations are guaranteed to be linear).

t We therefore obtain the solution α1 = 0 and α2 =α3 = 1/8. We then have

w = 1/8(x3 −x2) =
(

0
−1/2

)
, resulting in a margin of 1/||w|| = 2.

t Finally, t can be obtained from any support vector, say x2, since
y2(w ·x2 − t) = 1; this gives −1 · (−1− t) = 1, hence t = 0.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 276 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.3 Support vector machines

Example 7.5, p.215 Two maximum-margin classifiers III

We now add an additional positive at (3,1). This gives the following data
matrices:

X′ =


−1 −2

1 −2
−1 −2

3 1

 X′X′T =


5 3 5 −5
3 5 3 1
5 3 5 −5

−5 1 −5 10


t It can be verified by similar calculations to those above that the margin

decreases to 1 and the decision boundary rotates to w =
(

3/5
−4/5

)
.

t The Lagrange multipliers now are α1 = 1/2, α2 = 0, α3 = 1/10 and
α4 = 2/5. Thus, only x3 is a support vector in both the original and the
extended data set.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 277 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.3 Support vector machines

Soft margin SVM

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 278 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.3 Support vector machines

Allowing margin errors I

The idea is to introduce slack variables ξi , one for each example, which allow
some of them to be inside the margin or even at the wrong side of the decision
boundary.

w∗, t∗,ξ∗i =argmin
w,t ,ξi

1

2
||w||2+C

n∑
i=1

ξi

subject to yi (w ·xi − t) ≥ 1−ξi and ξi ≥ 0,1 ≤ i ≤ n

t C is a user-defined parameter trading off margin maximisation against slack
variable minimisation: a high value of C means that margin errors incur a
high penalty, while a low value permits more margin errors (possibly
including misclassifications) in order to achieve a large margin.

t If we allow more margin errors we need fewer support vectors, hence C
controls to some extent the ‘complexity’ of the SVM and hence is often
referred to as the complexity parameter.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 279 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.3 Support vector machines

Allowing margin errors II

The Lagrange function is then as follows:

Λ(w, t ,ξi ,αi ,βi) = 1

2
||w||2+C

n∑
i=1

ξi −
n∑

i=1
αi (yi (w ·xi − t)− (1−ξi))−

n∑
i=1

βi ξi

= Λ(w, t ,αi)+
n∑

i=1
(C −αi −βi)ξi

t For an optimal solution every partial derivative with respect to ξi should be
0, from which it follows that the added term vanishes from the dual problem.

t Furthermore, since both αi and βi are positive, this means that αi cannot
be larger than C :

α∗
1 , . . . ,α∗

n =argmax
α1,...,αn

−1

2

n∑
i=1

n∑
j=1

αiα j yi y j xi ·x j +
n∑

i=1
αi

subject to 0 ≤αi≤C and
n∑

i=1
αi yi = 0

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 280 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.3 Support vector machines

Three cases for the training instances

What is the significance of the upper bound C on the αi multipliers?

t Since C −αi −βi = 0 for all i , αi =C implies βi = 0. The βi multipliers
come from the ξi ≥ 0 constraint, and a multiplier of 0 means that the lower
bound is not reached, i.e., ξi > 0 (analogous to the fact that α j = 0 means
that x j is not a support vector and hence w ·x j − t > 1).

t In other words, a solution to the soft margin optimisation problem in dual
form divides the training examples into three cases:

αi = 0 these are outside or on the margin;
0 <αi <C these are the support vectors on the margin;
αi =C these are on or inside the margin.

t Notice that we still have w =∑n
i=1αi yi xi , and so both second and third

case examples participate in spanning the decision boundary.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 281 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.3 Support vector machines

Figure 7.9, p.218 Soft margins

+

+

–

3

4

12

w

–

+

+

–

3

4

12

w

–

(left) The soft margin classifier learned with C = 5/16, at which point x2 is about to

become a support vector. (right) The soft margin classifier learned with C = 1/10: all

examples contribute equally to the weight vector. The asterisks denote the class means,

and the decision boundary is parallel to the one learned by the basic linear classifier.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 282 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.3 Support vector machines

Example 7.6, p.218 Soft margins I

t Recall that the Lagrange multipliers for the classifier in Figure 7.8 (right) are
α1 = 1/2, α2 = 0, α3 = 1/10 and α4 = 2/5. So α1 is the largest multiplier,
and as long as C >α1 = 1/2 no margin errors are tolerated.

t For C = 1/2 we have α1 =C , and hence for C < 1/2 we have that x1

becomes a margin error and the optimal classifier is a soft margin classifier.

t The upper margin reaches x2 for C = 5/16 (Figure 7.9 (left)), at which point

we have w =
(

3/8
−1/2

)
, t = 3/8 and the margin has increased to 1.6.

Furthermore, we have ξ1 = 6/8,α1 =C = 5/16,α2 = 0,α3 = 1/16 and
α4 = 1/4.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 283 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.3 Support vector machines

Example 7.6, p.218 Soft margins II

t If we now decrease C further, the decision boundary starts to rotate
clockwise, so that x4 becomes a margin error as well, and only x2 and x3

are support vectors. The boundary rotates until C = 1/10, at which point we

have w =
(

1/5
−1/2

)
, t = 1/5 and the margin has increased to 1.86.

Furthermore, we have ξ1 = 4/10 and ξ4 = 7/10, and all multipliers have
become equal to C (Figure 7.9 (right)).

t Finally, when C decreases further the decision boundary stays where it is,
but the norm of the weight vector gradually decreases and all points
become margin errors.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 284 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.3 Support vector machines

Important point to remember

A minimal-complexity soft margin classifier summarises the classes by their
class means in a way very similar to the basic linear classifier.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 285 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.4 Obtaining probabilities from linear classifiers

What’s next?

6 Linear models
The least-squares method

Multivariate linear regression

The perceptron: a heuristic learning algorithm for linear classifiers
Support vector machines

Soft margin SVM

Obtaining probabilities from linear classifiers

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 286 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.4 Obtaining probabilities from linear classifiers

Figure 7.10, p.220 Scores from a linear classifier

+
+

+ +

+

+

++

–

–

–

–
–

–
–

w

–

d+ = w!!+–t

w!x1–t > 0

d– = w!!––t

–
!–

!+

+
d = 0

d < 0

d > 0

We can think of a linear classifier as a projection onto the direction given by w, here

assumed to be a unit vector. w ·x− t gives the signed distance from the decision

boundary on the projection line. Also indicated are the class means µ⊕ and µª, and the

corresponding mean distances d⊕ and dª.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 287 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.4 Obtaining probabilities from linear classifiers

Logistic calibration

In order to obtain probability estimates from a linear classifier outputting distance
scores d , we convert d into a probability by means of the mapping

d 7→ exp(d)

exp(d)+1

or, equivalently,

d 7→ 1

1+exp(−d)

This S-shaped or sigmoid function is called the logistic function; it finds
applications in a wide range of areas (Figure 7.11).

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 288 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.4 Obtaining probabilities from linear classifiers

Figure 7.11, p.222 The logistic function

-8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 11 12

0.25

0.5

0.75

1

d

p̂(+|d)

The fat red line indicates the standard logistic function p̂(d) = 1
1+exp(−d) ; this function

can be used to obtain probability estimates if the two classes are equally prevalent and

the class means are equidistant from the decision boundary and one unit of variance

apart. The steeper and flatter red lines show how the function changes if the class

means are 2 and 1/2 units of variance apart, respectively. The three blue lines show how

these curves change if d0 = 1, which means that the positives are on average further

away from the decision boundary.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 289 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.4 Obtaining probabilities from linear classifiers

Example 7.7, p.222 Logistic calibration of a linear classifier

Logistic calibration has a particularly simple form for the basic linear classifier,
which has w =µ⊕−µª. It follows that

d
⊕−d

ª = w · (µ⊕−µª)

||w|| = ||µ⊕−µª||2
||µ⊕−µª|| = ||µ⊕−µª||

and hence γ= ||µ⊕−µª||/σ2. Furthermore, d0 = 0 as (µ⊕+µª)/2 is already
on the decision boundary. So in this case logistic calibration does not move the
decision boundary, and only adjusts the steepness of the sigmoid according to
the separation of the classes. Figure 7.12 illustrates this for some data sampled
from two normal distributions with the same diagonal covariance matrix.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 290 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

6. Linear models 6.4 Obtaining probabilities from linear classifiers

Figure 7.12, p.223 Logistic calibration of a linear classifier

The surface shows the sigmoidal probability estimates resulting from logistic calibration

of the basic linear classifier on random data satisfying the assumptions of logistic

calibration.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data 291 / 291

http://www.cs.bris.ac.uk/~flach/mlbook/

	ingredients
	The ingredients of machine learning
	Tasks: the problems that can be solved with machine learning
	Models: the output of machine learning
	Features: the workhorses of machine learning

	tasks1
	Binary classification and related tasks
	Classification
	Scoring and ranking
	Class probability estimation

	tasks2
	Beyond binary classification
	Handling more than two classes
	Regression
	Unsupervised and descriptive learning

	trees
	Tree models
	Decision trees
	Ranking and probability estimation trees
	Tree learning as variance reduction

	rules
	Rule models
	Learning ordered rule lists
	Learning unordered rule sets
	Descriptive rule learning

	linear
	Linear models
	The least-squares method
	The perceptron: a heuristic learning algorithm for linear classifiers
	Support vector machines
	Obtaining probabilities from linear classifiers

