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Preface
Node.js is considered by many as a game-changer—the biggest shift of the decade 
in web development. It is loved not just for its technical capabilities, but also for the 
change of paradigm that it introduced in web development.

First, Node.js applications are written in JavaScript, the language of the web, the  
only programming language supported natively by a majority of web browsers.  
This aspect only enables scenarios such as single-language application stacks and 
sharing of code between the server and the client. Node.js itself is contributing to  
the rise and evolution of the JavaScript language. People realize that using JavaScript 
on the server is not as bad as it is in the browser, and they will soon start to love it 
for its pragmatism and for its hybrid nature, half way between object-oriented and 
functional programming.

The second revolutionizing factor is its single-threaded, asynchronous architecture. 
Besides obvious advantages from a performance and scalability point of view,  
this characteristic changed the way developers approach concurrency and 
parallelism. Mutexes are replaced by queues, threads by callbacks and events,  
and synchronization by causality.

The last and most important aspect of Node.js lies in its ecosystem: the npm package 
manager, its constantly growing database of modules, its enthusiastic and helpful 
community, and most importantly, its very own culture based on simplicity, 
pragmatism, and extreme modularity.
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However, because of these peculiarities, Node.js development gives you a very 
different feel compared to the other server-side platforms, and any developer  
new to this paradigm will often feel unsure about how to tackle even the most 
common design and coding problem effectively. Common questions include:  
"How do I organize my code?", "What's the best way to design this?", "How can I 
make my application more modular?", "How do I handle a set of asynchronous calls 
effectively?", "How can I make sure that my application will not collapse while it 
grows?", or more simply "What's the right way of doing this?" Fortunately, Node.js 
has become a mature-enough platform and most of these questions can now be easily 
answered with a design pattern, a proven coding technique, or a recommended 
practice. The aim of this book is to guide you through this emerging world of 
patterns, techniques, and practices, showing you what the proven solutions to the 
common problems are and teaching you how to use them as the starting point to 
building the solution to your particular problem.

By reading this book, you will learn the following:

• The "Node way". How to use the right point of view when approaching 
a Node.js design problem. You will learn, for example, how different 
traditional design patterns look in Node.js, or how to design modules  
that do only one thing.

• A set of patterns to solve common Node.js design and coding problems.  
You will be presented with a "Swiss army knife" of patterns, ready-to-use in 
order to efficiently solve your everyday development and design problems.

• How to write modular and efficient Node.js applications. You will gain  
an understanding of the basic building blocks and principles of writing  
large and well-organized Node.js applications and you will be able to  
apply these principles to novel problems that don't fall within the scope  
of existing patterns.

Throughout the book, you will be presented with several real-life libraries and 
technologies, such as LevelDb, Redis, RabbitMQ, ZMQ, Express, and many others. 
They will be used to demonstrate a pattern or technique, and besides making 
the example more useful, these will also give you great exposure to the Node.js 
ecosystem and its set of solutions.

Whether you use or plan to use Node.js for your work, your side project, or for an 
open source project, recognizing and using well-known patterns and techniques will 
allow you to use a common language when sharing your code and design, and on 
top of that, it will help you get a better understanding about the future of Node.js 
and how to make your own contributions a part of it.
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What this book covers
Chapter 1, Node.js Design Fundamentals, serves as an introduction to the world  
of Node.js application design by showing the patterns at the core of the platform 
itself. It covers the reactor pattern, the callback pattern, the module pattern, and  
the observer pattern.

Chapter 2, Asynchronous Control Flow Patterns, introduces a set of patterns and 
techniques for efficiently handling asynchronous control flow in Node.js. This 
chapter teaches you how to mitigate the "callback hell" problem using plain 
JavaScript, the async library, Promises, and Generators.

Chapter 3, Coding with Streams, dives deeply into one of the most important patterns 
in Node.js: Streams. It shows you how to process data with transform streams and 
how to combine them into different layouts.

Chapter 4, Design Patterns, deals with a controversial topic: traditional design patterns 
in Node.js. It covers the most popular conventional design patterns and shows you 
how unconventional they might look in Node.js.

Chapter 5, Wiring Modules, analyzes the different solutions for linking the modules 
of an application together. In this chapter, you will learn design patterns such as 
Dependency Injection and Service locator.

Chapter 6, Recipes, takes a problem-solution approach to show you how some 
common coding and design challenges can be solved with ready-to-use solutions.

Chapter 7, Scalability and Architectural Patterns, teaches you the basic techniques and 
patterns for scaling a Node.js application.

Chapter 8, Messaging and Integration Patterns, presents the most important messaging 
patterns, teaching you how to build and integrate complex distributed systems using 
ZMQ and AMQP.

What you need for this book
To experiment with the code, you will need a working installation of Node.js version 
0.10 (or greater) and npm. Some examples will require Node.js 0.11 or greater. You 
will also need to be familiar with the command prompt, know how to install an npm 
package, and know how to run Node.js applications. You will also need a text editor to 
work with the code and a web browser.
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Who this book is for
This book is for developers who have already had initial contact with Node.js and 
now want to get the most out of it in terms of productivity, design quality, and 
scalability. You are only required to have some prior exposure to the technology 
through some basic examples, since this book will cover some basic concepts as well. 
Developers with intermediate experience in Node.js will also find the techniques 
presented in this book beneficial.

Some background in software design theory is also an advantage to understand 
some of the concepts presented.

This book assumes that you have a working knowledge of web application 
development, JavaScript, web services, databases, and data structures.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through  
the use of the include directive."

A block of code is set as follows:

var zmq  = require('zmq')
var sink = zmq.socket('pull');
sink.bindSync("tcp://*:5001");

sink.on('message', function(buffer) {
  console.log('Message from worker: ', buffer.toString());
});

When we wish to draw your attention to a particular part of a code block,  
the relevant lines or items are set in bold:

function produce() {
  [...]
  variationsStream(alphabet, maxLength)
    .on('data', function(combination) {
        [...]
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        var msg = {searchHash: searchHash, variations: batch};
        channel.sendToQueue('jobs_queue',
          new Buffer(JSON.stringify(msg)));
        [...]
      }
    })
   [...]
}

Any command-line input or output is written as follows:

node replier

node requestor

New terms and important words are shown in bold. Words that you see on the 
screen, in menus or dialog boxes for example, appear in the text like this: "To explain 
the problem, we will create a little web spider, a command-line application that 
takes in a web URL as the input and downloads its contents locally into a file."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.
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Customer support
Now that you are the proud owner of a Packt book, we have a number of things  
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and 
entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded to our website, or added to any list 
of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.



Node.js Design 
Fundamentals

Some principles and design patterns literally define the Node.js platform and its 
ecosystem; the most peculiar ones are probably its asynchronous nature and its 
programming style that makes heavy use of callbacks. However, there are other 
fundamental components that characterize the platform; for example, its module 
system, which allows multiple versions of the same dependency to coexist in an 
application, and the observer pattern, implemented by the EventEmitter class, 
which perfectly complements callbacks when dealing with asynchronous code.  
It's therefore important that we first dive into these fundamental principles and 
patterns, not only for writing correct code, but also to be able to take effective  
design decisions when it comes to solving bigger and more complex problems.

Another aspect that characterizes Node.js is its philosophy. Approaching Node.js  
is in fact way more than simply learning a new technology; it's also embracing a 
culture and a community. We will see how this greatly influences the way we  
design our applications and components, and the way they interact with those 
created by the community.

In this chapter, we will learn the following topics:

• The Node.js philosophy, the "Node way"
• The reactor pattern: the mechanism at the heart of the Node.js  

asynchronous architecture
• The Node.js callback pattern and its set of conventions
• The module system and its patterns: the fundamental mechanisms for 

organizing code in Node.js
• The observer pattern and its Node.js incarnation: the EventEmitter class
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The Node.js philosophy
Every platform has its own philosophy—a set of principles and guidelines that are 
generally accepted by the community, an ideology of doing things that influences 
the evolution of a platform, and how applications are developed and designed. 
Some of these principles arise from the technology itself, some of them are enabled 
by its ecosystem, some are just trends in the community, and others are evolutions 
of different ideologies. In Node.js, some of these principles come directly from its 
creator, Ryan Dahl, from all the people who contributed to the core, from charismatic 
figures in the community, and some of the principles are inherited from the 
JavaScript culture or are influenced by the Unix philosophy.

None of these rules are imposed and they should always be applied with common 
sense; however, they can prove to be tremendously useful when we are looking for a 
source of inspiration while designing our programs.

You can find an extensive list of software development philosophies 
in Wikipedia at http://en.wikipedia.org/wiki/List_of_
software_development_philosophies.

Small core
The Node.js core itself has its foundations built on a few principles; one of  
these is, having the smallest set of functionality, leaving the rest to the so-called 
userland (or userspace), the ecosystem of modules living outside the core. This 
principle has an enormous impact on the Node.js culture, as it gives freedom to the 
community to experiment and iterate fast on a broader set of solutions within the 
scope of the userland modules, instead of being imposed with one slowly evolving 
solution that is built into the more tightly controlled and stable core. Keeping the 
core set of functionality to the bare minimum then, not only becomes convenient 
in terms of maintainability, but also in terms of the positive cultural impact that it 
brings on the evolution of the entire ecosystem.

Small modules
Node.js uses the concept of module as a fundamental mean to structure the code of a 
program. It is the brick for creating applications and reusable libraries called packages 
(a package is also frequently referred to as just module; since, usually it has one 
single module as an entry point). In Node.js, one of the most evangelized principles 
is to design small modules, not only in terms of code size, but most importantly in 
terms of scope. 
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This principle has its roots in the Unix philosophy, particularly in two of its  
precepts, which are as follows:

• "Small is beautiful."
• "Make each program do one thing well."

Node.js brought these concepts to a whole new level. Along with the help of npm, 
the official package manager, Node.js helps solving the dependency hell problem 
by making sure that each installed package will have its own separate set of 
dependencies, thus enabling a program to depend on a lot of packages without 
incurring in conflicts. The Node way, in fact, involves extreme levels of reusability, 
whereby applications are composed of a high number of small, well-focused 
dependencies. While this can be considered unpractical or even totally unfeasible  
in other platforms, in Node.js this practice is encouraged. As a consequence, it is  
not rare to find npm packages containing less than 100 lines of code or exposing  
only one single function.

Besides the clear advantage in terms of reusability, a small module is also considered 
to be the following:

• Easier to understand and use
• Simpler to test and maintain
• Perfect to share with the browser

Having smaller and more focused modules empowers everyone to share or reuse 
even the smallest piece of code; it's the Don't Repeat Yourself (DRY) principle 
applied at a whole new level.

Small surface area
In addition to being small in size and scope, Node.js modules usually also have the 
characteristic of exposing only a minimal set of functionality. The main advantage 
here is an increased usability of the API, which means that the API becomes clearer 
to use and is less exposed to erroneous usage. Most of the time, in fact, the user of a 
component is interested only in a very limited and focused set of features, without 
the need to extend its functionality or tap into more advanced aspects.

In Node.js, a very common pattern for defining modules is to expose only one piece 
of functionality, such as a function or a constructor, while letting more advanced 
aspects or secondary features become properties of the exported function or 
constructor. This helps the user to identify what is important and what is secondary. 
It is not rare to find modules that expose only one function and nothing else, for the 
simple fact that it provides a single, unmistakably clear entry point.
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Another characteristic of many Node.js modules is the fact that they are created to 
be used rather than extended. Locking down the internals of a module by forbidding 
any possibility of an extension might sound inflexible, but it actually has the 
advantage of reducing the use cases, simplifying its implementation, facilitating its 
maintenance, and increasing its usability.

Simplicity and pragmatism
Have you ever heard of the Keep It Simple, Stupid (KISS) principle? Or the  
famous quote:

"Simplicity is the ultimate sophistication."

– Leonardo da Vinci

Richard P. Gabriel, a prominent computer scientist coined the term worse is better to 
describe the model, whereby less and simpler functionality is a good design choice 
for software. In his essay, The rise of worse is better, he says:

"The design must be simple, both in implementation and interface. It is more 
important for the implementation to be simple than the interface. Simplicity is  
the most important consideration in a design."

Designing a simple, as opposed to a perfect, feature-full software, is a good  
practice for several reasons: it takes less effort to implement, allows faster shipping 
with less resources, is easier to adapt, and is easier to maintain and understand.  
These factors foster the community contributions and allow the software itself to 
grow and improve.

In Node.js, this principle is also enabled by JavaScript, which is a very pragmatic 
language. It's not rare, in fact, to see simple functions, closures, and object literals 
replacing complex class hierarchies. Pure object-oriented designs often try to 
replicate the real world using the mathematical terms of a computer system without 
considering the imperfection and the complexity of the real world itself. The truth is 
that our software is always an approximation of the reality and we would probably 
have more success in trying to get something working sooner and with reasonable 
complexity, instead of trying to create a near-perfect software with a huge effort and 
tons of code to maintain.

Throughout this book, we will see this principle in action many times. For example, 
a considerable number of traditional design patterns, such as Singleton or Decorator 
can have a trivial, even if sometimes not foolproof implementation and we will see 
how an uncomplicated, practical approach most of the time is preferred to a pure, 
flawless design.
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The reactor pattern
In this section, we will analyze the reactor pattern, which is the heart of the Node.js 
asynchronous nature. We will go through the main concepts behind the pattern,  
such as the single-threaded architecture and the non-blocking I/O, and we will  
see how this creates the foundation for the entire Node.js platform.

I/O is slow
I/O is definitely the slowest among the fundamental operations of a computer. 
Accessing the RAM is in the order of nanoseconds (10e-9 seconds), while accessing 
data on the disk or the network is in the order of milliseconds (10e-3 seconds). For 
the bandwidth, it is the same story; RAM has a transfer rate consistently in the order 
of GB/s, while disk and network varies from MB/s to, optimistically, GB/s. I/O 
is usually not expensive in terms of CPU, but it adds a delay between the moment 
the request is sent and the moment the operation completes. On top of that, we also 
have to consider the human factor; often, the input of an application comes from a 
real person, for example, the click of a button or a message sent in a real-time chat 
application, so the speed and frequency of I/O don't depend only on technical 
aspects, and they can be many orders of magnitude slower than the disk or network.

Blocking I/O
In traditional blocking I/O programming, the function call corresponding to an  
I/O request will block the execution of the thread until the operation completes.  
This can go from a few milliseconds, in case of a disk access, to minutes or even 
more, in case the data is generated from user actions, such as pressing a key. The 
following pseudocode shows a typical blocking read performed against a socket:

//blocks the thread until the data is available
data = socket.read();
//data is available
print(data);

It is trivial to notice that a web server that is implemented using blocking I/O will 
not be able to handle multiple connections in the same thread; each I/O operation 
on a socket will block the processing of any other connection. For this reason, the 
traditional approach to handle concurrency in web servers is to kick off a thread  
or a process (or to reuse one taken from a pool) for each concurrent connection  
that needs to be handled. This way, when a thread blocks for an I/O operation  
it will not impact the availability of the other requests, because they are handled  
in separate threads. 
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The following image illustrates this scenario:
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The preceding image lays emphasis on the amount of time each thread is idle, 
waiting for new data to be received from the associated connection. Now, if we 
also consider that any type of I/O can possibly block a request, for example, while 
interacting with databases or with the filesystem, we soon realize how many times a 
thread has to block in order to wait for the result of an I/O operation. Unfortunately, 
a thread is not cheap in terms of system resources, it consumes memory and causes 
context switches, so having a long running thread for each connection and not using 
it for most of the time, is not the best compromise in terms of efficiency.

Non-blocking I/O
In addition to blocking I/O, most modern operating systems support another 
mechanism to access resources, called non-blocking I/O. In this operating mode,  
the system call always returns immediately without waiting for the data to be read  
or written. If no results are available at the moment of the call, the function will 
simply return a predefined constant, indicating that there is no data available to 
return at that moment.

For example, in Unix operating systems, the fcntl() function is used to  
manipulate an existing file descriptor to change its operating mode to non-blocking 
(with the O_NONBLOCK flag). Once the resource is in non-blocking mode, any read 
operation will fail with a return code, EAGAIN, in case the resource doesn't have any 
data ready to be read.
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The most basic pattern for accessing this kind of non-blocking I/O is to actively  
poll the resource within a loop until some actual data is returned; this is called  
busy-waiting. The following pseudocode shows you how it's possible to read  
from multiple resources using non-blocking I/O and a polling loop:

resources = [socketA, socketB, pipeA];
while(!resources.isEmpty()) {
  for(i = 0; i < resources.length; i++) {
    resource = resources[i];
    //try to read
    var data = resource.read();
    if(data === NO_DATA_AVAILABLE)
      //there is no data to read at the moment
      continue;
    if(data === RESOURCE_CLOSED)
      //the resource was closed, remove it from the list
      resources.remove(i);
    else
      //some data was received, process it
      consumeData(data);
  }
}

You can see that, with this simple technique, it is already possible to handle  
different resources in the same thread, but it's still not efficient. In fact, in the 
preceding example, the loop will consume precious CPU only for iterating over 
resources that are unavailable most of the time. Polling algorithms usually result  
in a huge amount of wasted CPU time.

Event demultiplexing
Busy-waiting is definitely not an ideal technique for processing non-blocking 
resources, but luckily, most modern operating systems provide a native mechanism 
to handle concurrent, non-blocking resources in an efficient way; this mechanism 
is called synchronous event demultiplexer or event notification interface. This 
component collects and queues I/O events that come from a set of watched 
resources, and block until new events are available to process. The following is the 
pseudocode of an algorithm that uses a generic synchronous event demultiplexer to 
read from two different resources:

socketA, pipeB;
watchedList.add(socketA, FOR_READ);        //[1]
watchedList.add(pipeB, FOR_READ);
while(events = demultiplexer.watch(watchedList)) {    //[2]
  //event loop
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  foreach(event in events) {          //[3]
    //This read will never block and will always return data
    data = event.resource.read();
    if(data === RESOURCE_CLOSED)
      //the resource was closed, remove it from the watched list
      demultiplexer.unwatch(event.resource);
    else
      //some actual data was received, process it
      consumeData(data);
  }
}

These are the important steps of the preceding pseudocode:

1. The resources are added to a data structure, associating each one of them 
with a specific operation, in our example a read.

2. The event notifier is set up with the group of resources to be watched.  
This call is synchronous and blocks until any of the watched resources is 
ready for a read. When this occurs, the event demultiplexer returns from  
the call and a new set of events is available to be processed.

3. Each event returned by the event demultiplexer is processed. At this point, 
the resource associated with each event is guaranteed to be ready to read 
and to not block during the operation. When all the events are processed, the 
flow will block again on the event demultiplexer until new events are again 
available to be processed. This is called the event loop.

It's interesting to see that with this pattern, we can now handle several I/O 
operations inside a single thread, without using a busy-waiting technique. The 
following image shows us how a web server would be able to handle multiple 
connections using a synchronous event demultiplexer and a single thread:

Server
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Connection A

Connection B

Connection C

Thread
handle data

from B

handle data

from A

handle data
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The previous image helps us understand how concurrency works in a single-threaded 
application using a synchronous event demultiplexer and non-blocking I/O. We can 
see that using only one thread does not impair our ability to run multiple I/O bound 
tasks concurrently. The tasks are spread over time, instead of being spread across 
multiple threads. This has the clear advantage of minimizing the total idle time of the 
thread, as clearly shown in the image. This is not the only reason for choosing this 
model. To have only a single thread, in fact, also has a beneficial impact on the way 
programmers approach concurrency in general. Throughout the book, we will see how 
the absence of in-process race conditions and multiple threads to synchronize, allows 
us to use much simpler concurrency strategies.

In the next chapter, we will have the opportunity to talk more about the concurrency 
model of Node.js.

The reactor pattern
We can now introduce the reactor pattern, which is a specialization of the algorithm 
presented in the previous section. The main idea behind it is to have a handler 
(which in Node.js is represented by a callback function) associated with each I/O 
operation, which will be invoked as soon as an event is produced and processed by 
the event loop. The structure of the reactor pattern is shown in the following image:
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This is what happens in an application using the reactor pattern:

1. The application generates a new I/O operation by submitting a request to 
the Event Demultiplexer. The application also specifies a handler, which will 
be invoked when the operation completes. Submitting a new request to the 
Event Demultiplexer is a non-blocking call and it immediately returns the 
control back to the application.

2. When a set of I/O operations completes, the Event Demultiplexer pushes the 
new events into the Event Queue.

3. At this point, the Event Loop iterates over the items of the Event Queue.
4. For each event, the associated handler is invoked.
5. The handler, which is part of the application code, will give back the 

control to the Event Loop when its execution completes (5a). However, 
new asynchronous operations might be requested during the execution 
of the handler (5b), causing new operations to be inserted in the Event 
Demultiplexer (1), before the control is given back to the Event Loop.

6. When all the items in the Event Queue are processed, the loop will block  
again on the Event Demultiplexer which will then trigger another cycle.

The asynchronous behavior is now clear: the application expresses the interest to 
access a resource at one point in time (without blocking) and provides a handler, 
which will then be invoked at another point in time when the operation completes.

A Node.js application will exit automatically when there are no more 
pending operations in the Event Demultiplexer, and no more events 
to be processed inside the Event Queue.

We can now define the pattern at the heart of Node.js.

Pattern (reactor): handles I/O by blocking until new events are 
available from a set of observed resources, and then reacting by 
dispatching each event to an associated handler.
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The non-blocking I/O engine of Node.js – libuv
Each operating system has its own interface for the Event Demultiplexer:  
epoll on Linux, kqueue on Mac OS X, and I/O Completion Port API (IOCP) on 
Windows. Besides that, each I/O operation can behave quite differently depending 
on the type of the resource, even within the same OS. For example, in Unix, regular 
filesystem files do not support non-blocking operations, so, in order to simulate a 
non-blocking behavior, it is necessary to use a separate thread outside the Event 
Loop. All these inconsistencies across and within the different operating systems 
required a higher-level abstraction to be built for the Event Demultiplexer. This is 
exactly why the Node.js core team created a C library called libuv, with the  
objective to make Node.js compatible with all the major platforms and normalize  
the non-blocking behavior of the different types of resource; libuv today represents 
the low-level I/O engine of Node.js.

Besides abstracting the underlying system calls, libuv also implements the reactor 
pattern, thus providing an API for creating event loops, managing the event queue, 
running asynchronous I/O operations, and queuing other types of tasks.

A great resource to learn more about libuv is the free  
online book created by Nikhil Marathe, which is available  
at http://nikhilm.github.io/uvbook/.

The recipe for Node.js
The reactor pattern and libuv are the basic building blocks of Node.js, but we need 
the following three other components to build the full platform:

• A set of bindings responsible for wrapping and exposing libuv and other 
low-level functionality to JavaScript.

• V8, the JavaScript engine originally developed by Google for the Chrome 
browser. This is one of the reasons why Node.js is so fast and efficient.  
V8 is acclaimed for its revolutionary design, its speed, and for its efficient 
memory management.

• A core JavaScript library (called node-core) that implements the high-level 
Node.js API.
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Finally, this is the recipe of Node.js, and the following image represents its  
final architecture:

Userland modules and applications

Core Javascript API (node-core)

Bindings

V8 libuv

Node.js

The callback pattern
Callbacks are the materialization of the handlers of the reactor pattern and they are 
literally one of those imprints that give Node.js its distinctive programming style. 
Callbacks are functions that are invoked to propagate the result of an operation 
and this is exactly what we need when dealing with asynchronous operations. 
They practically replace the use of the return instruction that, as we know, always 
executes synchronously. JavaScript is a great language to represent callbacks, 
because as we know, functions are first class objects and can be easily assigned to 
variables, passed as arguments, returned from another function invocation, or stored 
into data structures. Also, closures are an ideal construct for implementing callbacks. 
With closures, we can in fact reference the environment in which a function was 
created, practically, we can always maintain the context in which the asynchronous 
operation was requested, no matter when or where its callback is invoked.

If you need to refresh your knowledge about closures, you can refer to 
the article on the Mozilla Developer Network at https://developer.
mozilla.org/en-US/docs/Web/JavaScript/Guide/Closures.

In this section, we will analyze this particular style of programming made of 
callbacks instead of the return instructions.
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The continuation-passing style
In JavaScript, a callback is a function that is passed as an argument to another 
function and is invoked with the result when the operation completes. In functional 
programming, this way of propagating the result is called continuation-passing 
style, for brevity, CPS. It is a general concept, and it is not always associated with 
asynchronous operations. In fact, it simply indicates that a result is propagated by 
passing it to another function (the callback), instead of directly returning it to the caller.

Synchronous continuation-passing style
To clarify the concept, let's take a look at a simple synchronous function:

function add(a, b) {
  return a + b;
}

There is nothing special here; the result is passed back to the caller using the  
return instruction; this is also called direct style, and it represents the most 
common way of returning a result in synchronous programming. The equivalent 
continuation-passing style of the preceding function would be as follows:

function add(a, b, callback) {
  callback(a + b);
}

The add() function is a synchronous CPS function, which means that it will  
return a value only when the callback completes its execution. The following  
code demonstrates this statement:

console.log('before');
add(1, 2, function(result) {
  console.log('Result: ' + result);
});
console.log('after');

Since add() is synchronous, the previous code will trivially print the following:

before
Result: 3
after
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Asynchronous continuation-passing style
Now, let's consider the case where the add() function is asynchronous, which is  
as follows:

function addAsync(a, b, callback) {
  setTimeout(function() {
    callback(a + b);
  }, 100);
}

In the previous code, we simply use setTimeout() to simulate an asynchronous 
invocation of the callback. Now, let's try to use this function and see how the order  
of the operations changes:

console.log('before');
addAsync(1, 2, function(result) {
  console.log('Result: ' + result);
});
console.log('after');

The preceding code will print the following:

before
after
Result: 3

Since setTimeout() triggers an asynchronous operation, it will not wait anymore 
for the callback to be executed, but instead, it returns immediately giving the control 
back to addAsync(), and then back to its caller. This property in Node.js is crucial, 
as it allows the stack to unwind, and the control to be given back to the event loop as 
soon as an asynchronous request is sent, thus allowing a new event from the queue 
to be processed. 



Chapter 1

[ 21 ]

The following image shows how this works:
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When the asynchronous operation completes, the execution is then resumed  
starting from the callback provided to the asynchronous function that caused the 
unwinding. The execution will start from the Event Loop, so it will have a fresh stack. 
This is where JavaScript comes in really handy, in fact, thanks to closures it is trivial to 
maintain the context of the caller of the asynchronous function, even if the callback is 
invoked at a different point in time and from a different location.

A synchronous function blocks until it completes its operations. 
An asynchronous function returns immediately and the result is 
passed to a handler (in our case, a callback) at a later cycle of the 
event loop.
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Non continuation-passing style callbacks
There are several circumstances in which the presence of a callback argument might 
make you think that a function is asynchronous or is using a continuation-passing 
style; that's not always true, let's take, for example, the map() method of the  
Array object:

var result = [1, 5, 7].map(function(element) {
  return element – 1;
});

Clearly, the callback is just used to iterate over the elements of the array, and not to 
pass the result of the operation. In fact, the result is returned synchronously using a 
direct style. The intent of a callback is usually clearly stated in the documentation of 
the API.

Synchronous or asynchronous?
We have seen how the order of the instructions changes radically depending  
on the nature of a function - synchronous or asynchronous. This has strong 
repercussions on the flow of the entire application, both in correctness and efficiency. 
The following is an analysis of these two paradigms and their pitfalls. In general, 
what must be avoided, is creating inconsistency and confusion around the nature 
of an API, as doing so can lead to a set of problems which might be very hard to 
detect and reproduce. To drive our analysis, we will take as example the case of an 
inconsistently asynchronous function.

An unpredictable function
One of the most dangerous situations is to have an API that behaves synchronously 
under certain conditions and asynchronously under others. Let's take the following 
code as an example:

var fs = require('fs');
var cache = {};
function inconsistentRead(filename, callback) {
  if(cache[filename]) {
    //invoked synchronously
    callback(cache[filename]);  
  } else {
    //asynchronous function
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    fs.readFile(filename, 'utf8', function(err, data) {
      cache[filename] = data;
      callback(data);
    });
  }
}

The preceding function uses the cache variable to store the results of different  
file read operations. Please bear in mind that this is just an example, it does not  
have error management, and the caching logic itself is suboptimal. Besides this,  
the preceding function is dangerous because it behaves asynchronously until the 
cache is not set—which is until the fs.readFile() function returns its results—but  
it will also be synchronous for all the subsequent requests for a file already in the 
cache—triggering an immediate invocation of the callback.

Unleashing Zalgo
Now, let's see how the use of an unpredictable function, such as the one that we 
defined previously, can easily break an application. Consider the following code:

function createFileReader(filename) {
  var listeners = [];
  inconsistentRead(filename, function(value) {
    listeners.forEach(function(listener) {
      listener(value);
    });
  });

  return {
    onDataReady: function(listener) {
      listeners.push(listener);
    }
  };
}

When the preceding function is invoked, it creates a new object that acts as a notifier, 
allowing to set multiple listeners for a file read operation. All the listeners will be 
invoked at once when the read operation completes and the data is available. The 
preceding function uses our inconsistentRead() function to implement this 
functionality. Let's now try to use the createFileReader() function:

var reader1 = createFileReader('data.txt');  
reader1.onDataReady(function(data) {
  console.log('First call data: ' + data);
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  //...sometime later we try to read again from
  //the same file
  var reader2 = createFileReader('data.txt');
  reader2.onDataReady(function(data) {
    console.log('Second call data: ' + data);
  });
}); 

The preceding code will print the following output:

First call data: some data

As you can see, the callback of the second operation is never invoked. Let's see why:

• During the creation of reader1, our inconsistentRead() function behaves 
asynchronously, because there is no cached result available. Therefore, we 
have all the time to register our listener, as it will be invoked later in another 
cycle of the event loop, when the read operation completes.

• Then, reader2 is created in a cycle of the event loop in which the 
cache for the requested file already exists. In this case, the inner call to 
inconsistentRead() will be synchronous. So, its callback will be invoked 
immediately, which means that also all the listeners of reader2 will be 
invoked synchronously. However, we are registering the listeners after the 
creation of reader2, so they will never be invoked.

The callback behavior of our inconsistentRead() function is really unpredictable, 
as it depends on many factors, such as the frequency of its invocation, the filename 
passed as argument, and the amount of time taken to load the file.

The bug that we've just seen might be extremely complicated to identify and 
reproduce in a real application. Imagine to use a similar function in a web server, 
where there can be multiple concurrent requests; imagine seeing some of those 
requests hanging, without any apparent reason and without any error being logged. 
This definitely falls under the category of nasty defects.

Isaac Z. Schlueter, creator of npm and former Node.js project lead, in one of his blog 
posts compared the use of this type of unpredictable functions to unleashing Zalgo.  
If you're not familiar with Zalgo, you are invited to find out what it is.
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You can find the original Isaac Z. Schlueter's post at http://blog.izs.
me/post/59142742143/designing-apis-for-asynchrony.

Using synchronous APIs
The lesson to learn from the unleashing Zalgo example is that it is imperative for an 
API to clearly define its nature, either synchronous or asynchronous.

One suitable fix for our inconsistentRead() function, is to make it totally 
synchronous. This is possible because Node.js provides a set of synchronous 
direct style APIs for most of the basic I/O operations. For example, we can use the 
fs.readFileSync() function in place of its asynchronous counterpart. The code 
would now be as follows:

var fs = require('fs');
var cache = {};
function consistentReadSync(filename) {
  if(cache[filename]) {
    return cache[filename];  
  } else {
    cache[filename] = fs.readFileSync(filename, 'utf8');
    return cache[filename];
  }
}

We can see that the entire function was also converted to a direct style. There is no 
reason for the function to have a continuation-passing style if it is synchronous.  
In fact, we can state that it is always a good practice to implement a synchronous  
API using a direct style; this will eliminate any confusion around its nature and  
will also be more efficient from a performance perspective.

Pattern: prefer the direct style for purely synchronous functions.
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Please bear in mind that changing an API from CPS to a direct style, or from 
asynchronous to synchronous, or vice versa might also require a change to the  
style of all the code using it. For example, in our case, we will have to totally  
change the interface of our createFileReader() API and adapt it to work  
always synchronously.

Also, using a synchronous API instead of an asynchronous one has some caveats:

• A synchronous API might not be always available for the needed 
functionality.

• A synchronous API will block the event loop and put the concurrent requests 
on hold. It practically breaks the Node.js concurrency, slowing down the 
whole application. We will see later in the book what this really means for 
our applications.

In our consistentReadSync() function, the risk of blocking the event loop is 
partially mitigated, because the synchronous I/O API is invoked only once per each 
filename, while the cached value will be used for all the subsequent invocations. If 
we have a limited number of static files, then using consistentReadSync() won't 
have a big effect on our event loop. Things can change quickly if we have to read 
many files and only once. Using synchronous I/O in Node.js is strongly discouraged 
in many circumstances; however, in some situations, this might be the easiest and 
most efficient solution. Always evaluate your specific use case in order to choose the 
right alternative.

Use blocking API only when they don't affect the ability of the 
application to serve concurrent requests.

Deferred execution
Another alternative for fixing our inconsistentRead() function is to make it purely 
asynchronous. The trick here is to schedule the synchronous callback invocation 
to be executed "in the future" instead of being run immediately in the same event 
loop cycle. In Node.js, this is possible using process.nextTick(), which defers 
the execution of a function until the next pass of the event loop. Its functioning is 
very simple; it takes a callback as an argument and pushes it on the top of the event 
queue, in front of any pending I/O event, and returns immediately. The callback will 
then be invoked as soon as the event loop runs again.
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Let's apply this technique to fix our inconsistentRead() function as follows:

var fs = require('fs');
var cache = {};
function consistentReadAsync(filename, callback) {
  if(cache[filename]) {
    process.nextTick(function() {
      callback(cache[filename]);
    });
  } else {
    //asynchronous function
    fs.readFile(filename, 'utf8', function(err, data) {
      cache[filename] = data;
      callback(data);
    });
  }
}

Now, our function is guaranteed to invoke its callback asynchronously,  
under any circumstances.

Another API for deferring the execution of code is setImmediate(), which—despite 
the name—might actually be slower than process.nextTick(). While their purpose 
is very similar, their semantic is quite different. Callbacks deferred with process.
nextTick() run before any other I/O event is fired, while with setImmediate(), 
the execution is queued behind any I/O event that is already in the queue. Since 
process.nextTick() runs before any already scheduled I/O, it might cause I/O 
starvation under certain circumstances, for example, a recursive invocation; this 
can never happen with setImmediate(). We will learn to appreciate the difference 
between these two APIs when we analyze the use of deferred invocation for running 
synchronous CPU-bound tasks later in the book.

Pattern: we guarantee that a callback is invoked asynchronously by 
deferring its execution using process.nextTick().
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Node.js callback conventions
In Node.js, continuation-passing style APIs and callbacks follow a set of specific 
conventions. These conventions apply to the Node.js core API but they are also 
followed virtually by every userland module and application. So, it's very important 
that we understand them and make sure that we comply whenever we need to 
design an asynchronous API.

Callbacks come last
In Node.js, if a function accepts in input a callback, this has to be passed as the last 
argument. Let's take the following Node.js core API as an example:

fs.readFile(filename, [options], callback)

As you can see from the signature of the preceding function, the callback is always 
put in last position, even in the presence of optional arguments. The motivation 
for this convention is that the function call is more readable in case the callback is 
defined in place.

Error comes first
In CPS, errors are propagated as any other type of result, which means using the 
callback. In Node.js, any error produced by a CPS function is always passed as 
the first argument of the callback, and any actual result is passed starting from the 
second argument. If the operation succeeds without errors, the first argument  
will be null or undefined. The following code shows you how to define a callback 
complying with this convention:

fs.readFile('foo.txt', 'utf8', function(err, data) {
  if(err)
    handleError(err);
  else
    processData(data);
});

It is a good practice to always check for the presence of an error, as not doing so will 
make it harder for us to debug our code and discover the possible points of failures. 
Another important convention to take into account is that the error must always be 
of type Error. This means that simple strings or numbers should never be passed as 
error objects.
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Propagating errors
Propagating errors in synchronous, direct style functions is done with the  
well-known throw command, which causes the error to jump up in the call  
stack until it's caught.

In asynchronous CPS however, proper error propagation is done by simply passing 
the error to the next callback in the CPS chain. The typical pattern looks as follows:

var fs = require('fs');
function readJSON(filename, callback) {
  fs.readFile(filename, 'utf8', function(err, data) {
    var parsed;
    if(err)
      //propagate the error and exit the current function
      return callback(err);

    try {
      //parse the file contents
      parsed = JSON.parse(data);
    } catch(err) {
      //catch parsing errors
      return callback(err);
    }
    //no errors, propagate just the data
    callback(null, parsed);
  });
};

The detail to notice in the previous code is how the callback is invoked when we 
want to pass a valid result and when we want to propagate an error.

Uncaught exceptions
You might have seen from the readJSON() function defined previously that in  
order to avoid any exception to be thrown into the fs.readFile() callback, we 
put a try-catch block around JSON.parse(). Throwing inside an asynchronous 
callback, in fact, will cause the exception to jump up to the event loop and never be 
propagated to the next callback. 
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In Node.js, this is an unrecoverable state and the application will simply shut down 
printing the error to the stderr interface. To demonstrate this, let's try to remove the 
try-catch block from the readJSON() function defined previously:

var fs = require('fs');
function readJSONThrows(filename, callback) {
  fs.readFile(filename, 'utf8', function(err, data) {
    if(err)
      return callback(err);
    //no errors, propagate just the data
    callback(null, JSON.parse(data));
  });
};

Now, in the function we just defined, there is no way of catching an eventual 
exception coming from JSON.parse(). Let's try, for example, to parse an invalid 
JSON file with the following code:

readJSONThrows('nonJSON.txt', function(err) {
  console.log(err);
});

This would result in the application being abruptly terminated and the following 
exception being printed on the console:

SyntaxError: Unexpected token d

    at Object.parse (native)

    at [...]/06_uncaught_exceptions/uncaught.js:7:25

    at fs.js:266:14

    at Object.oncomplete (fs.js:107:15)

Now, if we look at the preceding stack trace, we will see that it starts somewhere 
from the fs.js module, practically from the point at which the native API has 
completed reading and returned its result back to the fs.readFile() function, via 
the event loop. This clearly shows us that the exception traveled from our callback 
into the stack that we saw, and then straight into the event loop, where it's finally 
caught and thrown in the console.
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This also means that wrapping the invocation of readJSONThrows() with a  
try-catch block will not work, because the stack in which the block operates  
is different from the one in which our callback is invoked. The following code  
shows the anti-pattern that we just described:

try {
  readJSONThrows('nonJSON.txt', function(err, result) {
    [...]
  });
} catch(err) {
  console.log('This will not catch the JSON parsing exception');
}

The preceding catch statement will never receive the JSON parsing exception,  
as it will travel back to the stack in which the exception was thrown, and we just  
saw that the stack ends up in the event loop and not with the function that triggers 
the asynchronous operation.

We already said that the application is aborted the moment an exception reaches  
the event loop; however, we still have a last chance to perform some cleanup  
or logging before the application terminates. In fact, when this happens, Node.js 
emits a special event called uncaughtException just before exiting the process.  
The following code shows a sample use case:

process.on('uncaughtException', function(err){
  console.error('This will catch at last the ' +
    'JSON parsing exception: ' + err.message);
  //without this, the application would continue
  process.exit(1);
});

It's important to understand that an uncaught exception leaves the application in a 
state that is not guaranteed to be consistent, which can lead to unforeseeable problems. 
For example, there might still have incomplete I/O requests running, or closures might 
have become inconsistent. That's why it is always advised, especially in production, to 
exit anyway from the application after an uncaught exception is received.
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The module system and its patterns
Modules are the bricks for structuring non-trivial applications, but also the main 
mechanism to enforce information hiding by keeping private all the functions and 
variables that are not explicitly marked to be exported. In this section, we will 
introduce the Node.js module system and its most common usage patterns.

The revealing module pattern
One of the major problems with JavaScript is the absence of namespacing.  
Programs run in the global scope polluting it with data that comes from both  
internal application code and dependencies. A popular technique to solve this 
problem is called revealing module pattern and it looks like the following:

var module = (function() {
  var privateFoo = function() {...};
  var privateVar = [];

  var export = {
    publicFoo: function() {...},
    publicBar: function() {...}
  }

  return export;
})();

This pattern leverages a self-invoking function to create a private scope, exporting 
only the parts that are meant to be public. In the preceding code, the module variable 
contains only the exported API, while the rest of the module content is practically 
inaccessible from outside. As we will see in a moment, the idea behind this pattern is 
used as a base for the Node.js module system.

Node.js modules explained
CommonJS is a group with the aim to standardize the JavaScript ecosystem, and one 
of their most popular proposals is called CommonJS modules. Node.js built its module 
system on top of this specification, with the addition of some custom extensions. To 
describe how it works, we can make an analogy with the revealing module pattern, 
where each module runs in a private scope, so that every variable that is defined 
locally does not pollute the global namespace.
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A homemade module loader
To explain how this works, let's build a similar system from scratch. The code that 
follows creates a function that mimics a subset of the functionality of the original 
require() function of Node.js.

Let's start by creating a function that loads the content of a module, wraps it into a 
private scope, and evaluates it:

function loadModule(filename, module, require) {
  var wrappedSrc =
    '(function(module, exports, require) {' +
      fs.readFileSync(filename, 'utf8') +
    '})(module, module.exports, require);';
  eval(wrappedSrc);
}

The source code of a module is essentially wrapped into a function, as it was for 
the revealing module pattern. The difference here is that we pass a list of variables 
to the module, in particular: module, exports, and require. Make a note of how 
the exports argument of the wrapping function is initialized with the contents of 
module.exports, as we will talk about this later.

Please bear in mind that this is only an example and you will rarely 
need to evaluate some source code in a real application. Features such 
as eval() or the functions of the vm module (http://nodejs.org/
api/vm.html) can be easily used in the wrong way or with the wrong 
input, thus opening a system to code injection attacks. They should 
always be used with extreme care or avoided altogether.

Let's now see what these variables contain by implementing our require() function:

var require = function(moduleName) {
  console.log('Require invoked for module: ' + moduleName);
  var id = require.resolve(moduleName);      //[1]
  if(require.cache[id]) {           //[2]
    return require.cache[id].exports;
  }
 
  //module metadata
  var module = {               //[3]
    exports: {},
    id: id
  };
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  //Update the cache
  require.cache[id] = module;           //[4]

  //load the module
  loadModule(id, module, require);         //[5]
  
  //return exported variables
  return module.exports;             //[6]
};
require.cache = {};
require.resolve = function(moduleName) {
  /* resolve a full module id from the moduleName */
}

The preceding function simulates the behavior of the original require() function 
of Node.js, which is used to load a module. Of course, this is just for educative 
purposes and it does not accurately or completely reflect the internal behavior of 
the real require() function, but it's great to understand the internals of the Node.js 
module system, how a module is defined, and loaded. What our homemade module 
system does is explained as follows:

1. A module name is accepted as input and the very first thing that we do is 
resolve the full path of the module, which we call id. This task is delegated  
to require.resolve(), which implements a specific resolving algorithm  
(we will talk about it later).

2. If the module was already loaded in the past, it should be available in the 
cache. In this case, we just return it immediately.

3. If the module was not yet loaded, we set up the environment for the first 
load. In particular, we create a module object that contains an exports 
property initialized with an empty object literal. This property will be used 
by the code of the module to export any public API.

4. The module object is cached.
5. The module source code is read from its file and the code is evaluated, as we 

have seen before. We provide to the module, the module object that we just 
created, and a reference to the require() function. The module exports its 
public API by manipulating or replacing the module.exports object.

6. Finally, the content of module.exports, which represents the public API of 
the module, is returned to the caller.

As we see, there is nothing magical behind the workings of the Node.js module 
system; the trick is all in the wrapper we create around a module's source code  
and the artificial environment in which we run it.
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Defining a module
By looking at how our homemade require() function works, we should now know 
how to define a module. The following code gives us an example:

//load another dependency
var dependency = require('./anotherModule');

//a private function
function log() {
  console.log('Well done ' + dependency.username);
}

//the API to be exported for public use
module.exports.run = function() {
  log();
};

The essential concept to remember is that everything inside a module is private 
unless it's assigned to the module.exports variable. The contents of this variable  
are then cached and returned when the module is loaded using require().

Defining globals
Even if all the variables and functions that are declared in a module are defined  
in its local scope, it is still possible to define a global variable. In fact, the module 
system exposes a special variable called global, which can be used for this  
purpose. Everything that is assigned to this variable will end up automatically  
in the global scope.

Please note that polluting the global scope is considered a bad practice 
and nullifies the advantage of having a module system. So, use it only 
if you really know what you are doing.

module.exports vs exports
For many developers who are not yet familiar with Node.js, a common source of 
confusion is the difference between using exports and module.exports to expose 
a public API. The code of our homemade require function should again clear 
any doubt. The variable exports is just a reference to the initial value of module.
exports; we have seen that such a value is essentially a simple object literal created 
before the module is loaded. 
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This means that we can only attach new properties to the object referenced by the 
exports variable, as shown in the following code:

exports.hello = function() {
 console.log('Hello');
}

Reassigning the exports variable doesn't have any effect, because it doesn't  
change the contents of module.exports, it will only reassign the variable itself.  
The following code is therefore wrong:

exports = function() {
 console.log('Hello');
}

If we want to export something other than an object literal, as for example a function, 
an instance, or even a string, we have to reassign module.exports as follows:

module.exports = function() {
 console.log('Hello');
}

require is synchronous
Another important detail that we should take into account is that our homemade 
require function is synchronous. In fact, it returns the module contents using a 
simple direct style, and no callback is required. This is true for the original Node.js 
require() function too. As a consequence, any assignment to module.export must  
be synchronous as well. For example, the following code is incorrect:

setTimeout(function() {
  module.exports = function() {...};
}, 100);

This property has important repercussions in the way we define modules, as it  
limits us to mostly using synchronous code during the definition of a module.  
This is actually one of the most important reasons why the core Node.js libraries 
offer synchronous APIs as an alternative to most of the asynchronous ones.
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If we need some asynchronous initialization steps for a module, we can always 
define and export an uninitialized module that is initialized asynchronously at  
a later time. The problem with this approach though, is that loading such a module 
using require does not guarantee that it's ready to be used. In Chapter 6, Recipes,  
we will analyze this problem in detail and we will present some patterns to solve  
this issue elegantly.

For the sake of curiosity, you might want to know that in its early days, 
Node.js used to have an asynchronous version of require(), but it 
was soon removed because it was overcomplicating a functionality that 
was actually meant to be used only at initialization time, and where 
asynchronous I/O brings more complexities than advantages.

The resolving algorithm
The term dependency hell, describes a situation whereby the dependencies of a 
software, in turn depend on a shared dependency, but require different incompatible 
versions. Node.js solves this problem elegantly by loading a different version of a 
module depending on where the module is loaded from. All the merits of this feature 
go to npm and also to the resolving algorithm used in the require function.

Let's now give a quick overview of this algorithm. As we saw, the resolve() function 
takes a module name (which we will call here, moduleName) as input and it returns 
the full path of the module. This path is then used to load its code and also to identify 
the module uniquely. The resolving algorithm can be divided into the following three 
major branches:

• File modules: If moduleName starts with "/" it's considered already an 
absolute path to the module and it's returned as it is. If it starts with "./", 
then moduleName is considered a relative path, which is calculated starting 
from the requiring module.

• Core modules: If moduleName is not prefixed with "/" or "./", the algorithm 
will first try to search within the core Node.js modules.

• Package modules: If no core module is found matching moduleName,  
then the search continues by looking for a matching module into the first 
node_modules directory that is found navigating up in the directory 
structure starting from the requiring module. The algorithm continues  
to search for a match by looking into the next node_modules directory  
up in the directory tree, until it reaches the root of the filesystem.
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For file and package modules, both the individual files and directories can match 
moduleName. In particular, the algorithm will try to match the following:

• <moduleName>.js

• <moduleName>/index.js

• The directory/file specified in the main property of <moduleName>/
package.json

The complete, formal documentation of the resolving algorithm can 
be found at http://nodejs.org/api/modules.html#modules_
all_together.

The node_modules directory is actually where npm installs the dependencies  
of each package. This means that, based on the algorithm we just described,  
each package can have its own private dependencies. For example, consider  
the following directory structure:

myApp

├── foo.js

└── node_modules

    ├── depA

    │   └── index.js

    ├── depB

    │   ├── bar.js

    │   └── node_modules

    │       └── depA

    │           └── index.js

    └── depC

        ├── foobar.js

        └── node_modules

            └── depA

                └── index.js
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In the preceding example, myApp, depB, and depC all depend on depA; however,  
they all have their own private version of the dependency! Following the rules of the 
resolving algorithm, using require('depA') will load a different file depending on 
the module that requires it, for example:

• Calling require('depA') from /myApp/foo.js will load /myApp/node_
modules/depA/index.js

• Calling require('depA') from /myApp/node_modules/depB/bar.js will 
load /myApp/node_modules/depB/node_modules/depA/index.js

• Calling require('depA') from /myApp/node_modules/depC/foobar.js 
will load /myApp/node_modules/depC/node_modules/depA/index.js

The resolving algorithm is the magic behind the robustness of the Node.js 
dependency management, and is what makes it possible to have hundreds or even 
thousands of packages in an application without having collisions or problems of 
version compatibility.

The resolving algorithm is applied transparently for us when we 
invoke require(); however, if needed, it can still be used directly 
by any module by simply invoking require.resolve().

The module cache
Each module is loaded and evaluated only the first time it is required, since any 
subsequent call of require() will simply return the cached version. This should result 
clear by looking at the code of our homemade require function. Caching is crucial 
for performances, but it also has some important functional implications:

• It makes it possible to have cycles within module dependencies
• It guarantees, to some extent, that always the same instance is returned  

when requiring the same module from within a given package

The module cache is exposed in the require.cache variable, so it is possible to 
directly access it if needed. A common use case is to invalidate any cached module 
by deleting the relative key in the require.cache variable, a practice very useful 
during testing but very dangerous if applied in normal circumstances.
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Cycles
Many consider circular dependencies as an intrinsic design issue, but it is something 
which might actually happen in a real project, so it's useful for us to know at least how 
this works in Node.js. If we look again at our homemade require() function, we 
immediately get a glimpse of how this might work and what are its caveats.

Suppose we have two modules defined as follows:

• Module a.js:
exports.loaded = false;
var b = require('./b');
module.exports = {
  bWasLoaded: b.loaded,
  loaded: true
};

• Module b.js:

exports.loaded = false;
var a = require('./a');
module.exports = {
  aWasLoaded: a.loaded,
  loaded: true
};

Now, let's try to load these from another module, main.js, as follows:

var a = require('./a');
var b = require('./b');
console.log(a);
console.log(b);

The preceding code will print the following output:

{ bWasLoaded: true, loaded: true }

{ aWasLoaded: false, loaded: true }

This result reveals the caveats of circular dependencies. While both the modules  
are completely initialized the moment they are required from the main module,  
the a.js module will be incomplete when it is loaded from b.js. In particular,  
its state will be the one that it reached the moment it required b.js. This behavior 
should ring another bell, which will be confirmed if we swap the order in which  
the two modules are required in main.js. 
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If you try it, you will see that this time it will be the module a.js that will receive an 
incomplete version of b.js. We understand now that this can become quite a fuzzy 
business if we lose control of which module is loaded first, which can happen quite 
easily if the project is big enough.

Module definition patterns
The module system, besides being a mechanism for loading dependencies, is also 
a tool for defining APIs. As for any other problem related to API design, the main 
factor to consider is the balance between private and public functionality. The aim 
is to maximize information hiding and API usability, while balancing these with other 
software qualities like extensibility and code reuse.

In this section, we will analyze some of the most popular patterns for defining 
modules in Node.js; each one has its own balance of information hiding, 
extensibility, and code reuse.

Named exports
The most basic method for exposing a public API is using named exports, which 
consists in assigning all the values we want to make public to properties of the object 
referenced by exports (or module.exports). In this way, the resulting exported 
object becomes a container or namespace for a set of related functionality.

The following code shows a module implementing this pattern:

//file logger.js
exports.info = function(message) {
  console.log('info: ' + message);
};

exports.verbose = function(message) {
  console.log('verbose: ' + message);
};

The exported functions are then available as properties of the loaded module,  
as shown in the following code:

//file main.js
var logger = require('./logger');
logger.info('This is an informational message');
logger.verbose('This is a verbose message');

Most of the Node.js core modules use this pattern.
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The CommonJS specification only allows the use of the exports 
variable to expose public members. Therefore, the named exports 
pattern is the only one that is really compatible with the CommonJS 
specification. The use of module.exports is an extension provided 
by Node.js to support a broader range of module definition patterns, 
as those we are going to see next.

Exporting a function
One of the most popular module definition patterns consists in reassigning the  
whole module.exports variable to a function. Its main strength it's the fact that 
it exposes only a single functionality, which provides a clear entry point for the 
module, and makes it simple to understand and use; it also honors the principle 
of small surface area very well. This way of defining modules is also known in the 
community as substack pattern, after one of its most prolific adopters, James Halliday 
(nickname substack). The following code is an example of this pattern:

//file logger.js

module.exports = function(message) {
  console.log('info: ' + message);
};

A possible extension of this pattern is using the exported function as namespace 
for other public APIs. This is a very powerful combination, because it still gives the 
module the clarity of a single entry point (the main exported function), but it also 
allows us to expose other functionalities that have secondary or more advanced 
use cases. The following code shows you how to extend the module we defined 
previously by using the exported function as a namespace:

module.exports.verbose = function(message) {
  console.log('verbose: ' + message);
};

The following code demonstrates how to use the module that we just defined:

//file main.js
var logger = require('./logger');
logger('This is an informational message');
logger.verbose('This is a verbose message');
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Even though exporting just a function might seem a limitation, in reality, it's a 
perfect way to put the emphasis on a single functionality—the most important for 
the module—while giving less visibility to secondary aspects, which are instead 
exposed as properties of the exported function itself.

Pattern (substack): expose the main functionality of a module by 
exporting only one function. Use the exported function as namespace 
to expose any auxiliary functionality.

Exporting a constructor
A module that exports a constructor is a specialization of a module that exports a 
function. The difference is that with this new pattern, we allow the user to create 
new instances using the constructor, but we also give them the ability to extend its 
prototype and forge new classes. The following is an example of this pattern:

//file logger.js
function Logger(name) {
  this.name = name;
};
Logger.prototype.log = function(message) {
  console.log('[' + this.name + '] ' + message);
};
Logger.prototype.info = function(message) {
  this.log('info: ' + message);
};
Logger.prototype.verbose = function(message) {
  this.log('verbose: ' + message);
};
module.exports = Logger;

And, we can use the preceding module as follows:

//file logger.js
var Logger = require('./logger');
var dbLogger = new Logger('DB');
dbLogger.info('This is an informational message');
var accessLogger = new Logger('ACCESS');
accessLogger.verbose('This is a verbose message');

Exporting a constructor still provides a single entry point for the module, but 
compared to the substack pattern, it exposes a lot more of the module internals; 
however on the other side it allows much more power when it comes to extending  
its functionality.
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A variation of this pattern consists in applying a guard against invocations that don't 
use the new instruction. This little trick allows us to use our module as a factory.  
The following code shows you how this works:

function Logger(name) {
  if(!(this instanceof Logger)) {
    return new Logger(name);
  }
  this.name = name;
};

The trick is simple; we check whether this exists and is an instance of Logger. If any 
of these conditions is false, it means that the Logger() function was invoked without 
using new, so we proceed with creating the new instance properly and returning it to 
the caller. This technique allows us to use the module also as a factory, as shown in 
the following code:

//file logger.js
var Logger = require('./logger');
var dbLogger = Logger('DB');
accessLogger.verbose('This is a verbose message');

Exporting an instance
We can leverage the caching mechanism of require() to easily define stateful 
instances—objects with a state created from a constructor or a factory, which can be 
shared across different modules. The following code shows an example of this pattern:

//file logger.js
function Logger(name) {
  this.count = 0;
  this.name = name;
};
Logger.prototype.log = function(message) {
  this.count++;
  console.log('[' + this.name + '] ' + message);
};
module.exports = new Logger('DEFAULT');

This newly defined module can then be used as follows:

//file main.js
var logger = require('./logger');
logger.log('This is an informational message');
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Because the module is cached, every module that requires the logger module  
will actually always retrieve the same instance of the object, thus sharing its state.  
This pattern is very much like creating a Singleton, however, it does not guarantee 
the uniqueness of the instance across the entire application, as it happens in the 
traditional Singleton pattern. When analyzing the resolving algorithm, we have seen 
in fact, that a module might be installed multiple times inside the dependency tree 
of an application. This results with multiple instances of the same logical module, all 
running in the context of the same Node.js application. In Chapter 5, Wiring Modules, 
we will analyze the consequences of exporting stateful instances and some of the 
patterns we can use as alternatives.

An extension to the pattern we just described, consists in exposing the constructor 
used to create the instance, in addition to the instance itself. This allows the user to 
create new instances of the same object, or even to extend it if necessary. To enable 
this, we just need to assign a new property to the instance, as shown in the following 
line of code:

module.exports.Logger = Logger;

Then, we can use the exported constructor to create other instances of the class,  
as follows:

var customLogger = new logger.Logger('CUSTOM');
customLogger.log('This is an informational message');

From a usability perspective, this is similar to using an exported function as 
namespace; the module exports the default instance of an object—the piece of 
functionality we might want to use most of the time—while more advanced  
features, such as the ability to create new instances or extend the object, are still 
made available through less exposed properties.

Modifying other modules or the global scope
A module can even export nothing. This can look a bit out of place, however, 
we should not forget that a module can modify the global scope and any object 
in it, including other modules in the cache. Please note that these are in general 
considered bad practices, but since this pattern can be useful and safe under some 
circumstances (for example, for testing) and is sometimes used in the wild, it is 
worth to know and understand it. So, we said a module can modify other modules 
or objects in the global scope. Well, this is called monkey patching, which generally 
refers to the practice of modifying the existing objects at runtime to change or extend 
their behavior or to apply temporary fixes.
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The following example shows you how we can add a new function to  
another module:

//file patcher.js

// ./logger is another module
require('./logger').customMessage = function() {
  console.log('This is a new functionality');
};

Using our new patcher module would be as easy as writing the following code:

//file main.js

require('./patcher');
var logger = require('./logger');
logger.customMessage();

In the preceding code, patcher must be required before using the logger module 
for the first time in order to allow the patch to be applied.

The techniques described here are all dangerous ones to apply. The main concern 
is that, to have a module that modifies the global namespace or other modules is an 
operation with side effects. In other words, it affects the state of entities outside their 
scope, which can have consequences that are not always predictable, especially when 
multiple modules interact with the same entities. Imagine to have two different 
modules trying to set the same global variable, or modifying the same property  
of the same module; the effects might be unpredictable (which module wins?),  
but most importantly it would have repercussions on  the entire application.

The observer pattern
Another important and fundamental pattern used in Node.js is the observer  
pattern. Together with reactor, callbacks, and modules, this is one of the pillars  
of the platform and an absolute prerequisite for using many node-core and  
userland modules.

Observer is an ideal solution for modeling the reactive nature of Node.js, and a 
perfect complement for callbacks. Let's give a formal definition as follows:

Pattern (observer): defines an object (called subject), which can notify a 
set of observers (or listeners), when a change in its state happens.
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The main difference from the callback pattern is that the subject can actually notify 
multiple observers, while a traditional continuation-passing style callback will 
usually propagate its result to only one listener, the callback.

The EventEmitter
In traditional object-oriented programming, the observer pattern requires interfaces, 
concrete classes, and a hierarchy; in Node.js, all becomes much simpler. The observer 
pattern is already built into the core and is available through the EventEmitter class. 
The EventEmitter class allows us to register one or more functions as listeners, 
which will be invoked when a particular event type is fired. The following image 
visually explains the concept:

Event B

Event A

EventEmitter

Listener

Listener

Listener

The EventEmitter is a prototype, and it is exported from the events core module. 
The following code shows how we can obtain a reference to it:

var EventEmitter = require('events').EventEmitter;
var eeInstance = new EventEmitter();

The essential methods of the EventEmitter are given as follows:

• on(event, listener): This method allows you to register a new listener  
(a function) for the given event type (a string)

• once(event, listener): This method registers a new listener, which is 
then removed after the event is emitted for the first time

• emit(event, [arg1], […]): This method produces a new event and 
provides additional arguments to be passed to the listeners

• removeListener(event, listener): This method removes a listener for 
the specified event type
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All the preceding methods will return the EventEmitter instance to allow chaining. 
The listener function has the signature, function([arg1], […]), so it simply 
accepts the arguments provided the moment the event is emitted. Inside the listener, 
this refers to the instance of the EventEmitter that produces the event.

We can already see that there is a big difference between a listener and a traditional 
Node.js callback; in particular, the first argument is not an error, but it can be any 
data passed to emit() at the moment of its invocation.

Create and use an EventEmitter
Let's see how we can use an EventEmitter in practice. The simplest way is to create 
a new instance and use it directly. The following code shows a function, which uses 
an EventEmitter to notify its subscribers in real time when a particular pattern is 
found in a list of files:

var EventEmitter = require('events').EventEmitter;
var fs = require('fs');

function findPattern(files, regex) {
  var emitter = new EventEmitter();
  files.forEach(function(file) {
    fs.readFile(file, 'utf8', function(err, content) {
      if(err)
        return emitter.emit('error', err);
      
      emitter.emit('fileread', file);
      var match = null;
      if(match = content.match(regex))
        match.forEach(function(elem) {
          emitter.emit('found', file, elem);
        });
    });
  });
  return emitter;
}

The EventEmitter created by the preceding function will produce the following 
three events:

• fileread: This event occurs when a file is read
• found: This event occurs when a match has been found
• error: This event occurs when an error has occurred during the reading  

of the file
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Let's see now how our findPattern() function can be used:

findPattern(
    ['fileA.txt', 'fileB.json'],
    /hello \w+/g
  )
  .on('fileread', function(file) {
    console.log(file + ' was read');
  })
  .on('found', function(file, match) {
    console.log('Matched "' + match + '" in file ' + file);
  })
  .on('error', function(err) {
    console.log('Error emitted: ' + err.message);
  });

In the preceding example, we registered a listener for each of the three event types 
produced by the EventEmitter which was created by our findPattern() function.

Propagating errors
The EventEmitter - as it happens for callbacks - cannot just throw exceptions  
when an error condition occurs, as they would be lost in the event loop if the  
event is emitted asynchronously. Instead, the convention is to emit a special event, 
called error, and to pass an Error object as an argument. That's exactly what we  
are doing in the findPattern() function that we defined earlier.

It is always a good practice to register a listener for the 
error event, as Node.js will treat it in a special way and will 
automatically throw an exception and exit from the program if 
no associated listener is found.

Make any object observable
Sometimes, creating a new observable object directly from the EventEmitter  
class is not enough, as this makes it impractical to provide functionality that  
goes beyond the mere production of new events. It is more common, in fact, to  
have the need to make a generic object observable; this is possible by extending  
the EventEmitter class.
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To demonstrate this pattern, let's try to implement the functionality of the 
findPattern() function in an object as follows:

var EventEmitter = require('events').EventEmitter;
var util = require('util');
var fs = require('fs');

function FindPattern(regex) {
  EventEmitter.call(this);
  this.regex = regex;
  this.files = [];
}
util.inherits(FindPattern, EventEmitter);

FindPattern.prototype.addFile = function(file) {
  this.files.push(file);
  return this;
};

FindPattern.prototype.find = function() {
  var self = this;
  self.files.forEach(function(file) {
    fs.readFile(file, 'utf8', function(err, content) {
      if(err)
        return self.emit('error', err);
      
      self.emit('fileread', file);
      var match = null;
      if(match = content.match(self.regex))
        match.forEach(function(elem) {
          self.emit('found', file, elem);
        });
    });
  });
  return this;
};
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The FindPattern prototype that we defined extends the EventEmitter using the 
inherits() function provided by the core module util. This way, it becomes a  
full-fledged observable class. The following is an example of its usage:

var findPatternObject = new FindPattern(/hello \w+/);
findPatternObject
  .addFile('fileA.txt')
  .addFile('fileB.json')
  .find()
  .on('found', function(file, match) {
    console.log('Matched "' + match + '" in file ' + file);
  })
  .on('error', function(err) {
    console.log('Error emitted ' + err.message);
  });

We can now see how the FindPattern object has a full set of methods, in addition to 
being observable by inheriting the functionality of the EventEmitter.

This is a pretty common pattern in the Node.js ecosystem, for example, the  
Server object of the core http module defines methods such as listen(), close(), 
setTimeout(), and internally it also inherits from the EventEmitter function,  
thus allowing it to produce events, such as request, when a new request is received,  
or connection, when a new connection is established, or closed, when the  
server is closed.

Other notable examples of objects extending the EventEmitter are Node.js streams. 
We will analyze streams in more detail in Chapter 3, Coding with Streams.

Synchronous and asynchronous events
As with callbacks, events can be emitted synchronously or asynchronously, and it is 
crucial that we never mix the two approaches in the same EventEmitter, but even 
more importantly, when emitting the same event type, to avoid to produce the same 
problems that we described in the Unleashing Zalgo section.
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The main difference between emitting synchronous or asynchronous events lies in 
the way listeners can be registered. When the events are emitted asynchronously, 
the user has all the time to register new listeners even after the EventEmitter is 
initialized, because the events are guaranteed not to be fired until the next cycle  
of the event loop. That's exactly what is happening in the findPattern() function. 
We defined this function previously and it represents a common approach that is 
used in most Node.js modules.

On the contrary, emitting events synchronously requires that all the listeners are 
registered before the EventEmitter function starts to emit any event. Let's look  
at an example:

function SyncEmit() {
  this.emit('ready');
}
util.inherits(SyncEmit, EventEmitter);

var syncEmit = new SyncEmit();
syncEmit.on('ready', function() {
  console.log('Object is ready to be used');
});

If the ready event was emitted asynchronously, then the previous code would 
work perfectly; however, the event is produced synchronously and the listener is 
registered after the event was already sent, so the result is that the listener is never 
invoked; the code will print nothing to the console.

Contrarily to callbacks, there are situations where using an EventEmitter in a 
synchronous fashion makes sense, given its different purpose. For this reason, 
it's very important to clearly highlight the behavior of our EventEmitter in its 
documentation to avoid confusion, and potentially a wrong usage.

EventEmitter vs Callbacks
A common dilemma when defining an asynchronous API is to check whether 
to use an EventEmitter or simply accept a callback. The general differentiating 
rule is semantic: callbacks should be used when a result must be returned in 
an asynchronous way; events should instead be used when there is a need to 
communicate that something has just happened. 
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But besides this simple principle, a lot of confusion is generated from the fact that the 
two paradigms are most of the time equivalent and allow you to achieve the same 
results. Consider the following code for an example:

function helloEvents() {
  var eventEmitter = new EventEmitter();
  setTimeout(function() {
    eventEmitter.emit('hello', 'world');
  }, 100);
  return eventEmitter;
}
function helloCallback(callback) {
  setTimeout(function() {
    callback('hello', 'world');
  }, 100);
}

The two functions helloEvents() and helloCallback() can be considered 
equivalent in terms of functionality; the first communicates the completion of the 
timeout using an event, the second uses a callback to notify the caller instead, 
passing the event type as an argument. But what really differentiates them is the 
readability, the semantic, and the amount of code that is required to be implemented 
or used. While we cannot give a deterministic set of rules to choose between one or 
the other style, we can certainly provide some hints to help take the decision.

As a first observation, we can say that callbacks have some limitations when it comes 
to supporting different types of events. In fact, we can still differentiate between 
multiple events by passing the type as an argument of the callback, or by accepting 
several callbacks, one for each supported event. However, this cannot exactly be 
considered an elegant API. In this situation, an EventEmitter can give a better 
interface and leaner code.

Another case where the EventEmitter might be preferable is when the same event  
can occur multiple times, or not occur at all. A callback, in fact, is expected to be 
invoked exactly once, whether the operation is successful or not. The fact that we have 
a possibly repeating circumstance should let us think again about the semantic nature 
of the occurrence, which is more similar to an event that has to be communicated 
rather than a result; in this case an EventEmitter is the preferred choice.

Lastly, an API using callbacks can notify only that particular callback, while  
using an EventEmitter function it's possible for multiple listeners to receive  
the same notification.
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Combine callbacks and EventEmitter
There are also some circumstances where an EventEmitter can be used in 
conjunction with a callback. This pattern is extremely useful when we want to 
implement the principle of small surface area by exporting a traditional asynchronous 
function as the main functionality, while still providing richer features, and more 
control by returning an EventEmitter. One example of this pattern is offered by the 
node-glob module (https://npmjs.org/package/glob), a library that performs 
glob-style file searches. The main entry point of the module is the function it exports, 
which has the following signature:

glob(pattern, [options], callback)

The function takes pattern as the first argument, a set of options, and a callback 
function which is invoked with the list of all the files matching the provided pattern. 
At the same time, the function returns an EventEmitter that provides a more  
fine-grained report over the state of the process. For example, it is possible to be 
notified in real-time when a match occurs by listening to the match event, to obtain 
the list of all the matched files with the end event, or to know whether the process 
was manually aborted by listening to the abort event. The following code shows 
how this looks:

var glob = require('glob');
glob('data/*.txt', function(error, files) {
  console.log('All files found: ' + JSON.stringify(files));
}).on('match', function(match) {
  console.log('Match found: ' + match);
});

As we can see, the practice of exposing a simple, clean, and minimal entry point 
while still providing more advanced or less important features with secondary 
means is quite common in Node.js, and combining EventEmitter with traditional 
callbacks is one of the ways to achieve that.

Pattern: create a function that accepts a callback and returns an 
EventEmitter, thus providing a simple and clear entry point for 
the main functionality, while emitting more fine-grained events 
using the EventEmitter.
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Summary
In this chapter, we have seen how the Node.js platform is based on a few important 
principles that provide the foundation to build efficient and reusable code. The 
philosophy and the design choices behind the platform have, in fact, a strong 
influence on the structure and behavior of every application and module we create. 
Often, for a developer moving from another technology, these principles might 
seem unfamiliar and the usual instinctive reaction is to fight the change by trying 
to find more familiar patterns inside a world which in reality requires a real shift in 
the mindset. On one hand, the asynchronous nature of the reactor pattern requires 
a different programming style made of callbacks and things that happen at a later 
time, without worrying too much about threads and race conditions. On the other 
hand, the module pattern and its principles of simplicity and minimalism creates 
interesting new scenarios in terms of reusability, maintenance, and usability.

Finally, besides the obvious technical advantages of being fast, efficient, and based 
on JavaScript, Node.js is attracting so much interest because of the principles 
we have just discovered. For many, grasping the essence of this world feels like 
returning to the origins, to a more humane way of programming for both size  
and complexity and that's why developers end up falling in love with Node.js.

In the next chapter, we will focus our attention on the mechanisms to handle 
asynchronous code, we will see how callbacks can easily become our enemy, and 
we will learn how to fix that by using some simple principles, patterns, or even 
constructs that do not require a continuation-passing style programming.





Asynchronous Control  
Flow Patterns

Moving from a synchronous programming style to a platform such as Node.js, where 
continuation-passing style and asynchronous APIs are the norm, can be frustrating. 
Writing asynchronous code can be a different experience, especially when it comes 
to control flow. Simple problems such as iterating over a set of files, executing tasks 
in sequence, or waiting for a set of operations to complete, require the developer 
to take new approaches and techniques to avoid ending up writing inefficient and 
unreadable code. One common mistake is to fall into the trap of the callback hell 
problem and see the code growing horizontally rather than vertically, with a nesting 
that makes even simple routines hard to read and maintain.

In this chapter, we will see how it's actually possible to tame callbacks and write 
clean, manageable asynchronous code by using some discipline and with the 
aid of some patterns. We will see how control flow libraries, such as async, can 
significantly simplify our problems, and we will also discover that the continuation-
passing style is not the only way to implement asynchronous API. In fact, we will 
learn how Promises and ECMAScript 6 generators can be powerful and flexible 
alternatives. For each one of these paradigms, we will learn about patterns that will 
help us implement the most common control flows, and by the end of the chapter, 
we should be ready and confident to write clean and efficient asynchronous code.
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The difficulties of asynchronous 
programming
Losing control of asynchronous code in JavaScript is undoubtedly easy. Closures 
and in-place definition of anonymous functions allow a smooth programming 
experience that doesn't require the developer to jump to other points in the code 
base. This is perfectly in line with the KISS principle; it's simple, it keeps the code 
flowing, and we get it working in less time. Unfortunately, sacrificing qualities 
such as modularity, reusability, and maintainability will sooner or later lead to the 
uncontrolled proliferation of callback nesting, the growth in the size of functions, 
and will lead to poor code organization. Most of the time, creating closures is not 
functionally needed, so it's more a matter of discipline than a problem related to 
asynchronous programming. Recognizing that our code is becoming unwieldy—or 
even better, knowing in advance that it might become unwieldy—and then acting 
accordingly with the most adequate solution is what differentiates a novice from  
an expert.

Creating a simple web spider
To explain the problem, we will create a little web spider, a command-line 
application that takes in a web URL as input and downloads its contents  
locally into a file. In the code presented in this chapter, we are going to use a  
few npm dependencies:

• request: A library to streamline HTTP calls
• mkdirp: A small utility to create directories recursively

Also, we will often refer to a local module named ./utilities, which contains 
some helpers which we will be using in our application. We omit the contents of this 
file for brevity, but you can find the full implementation, along with a package.json 
containing the full list of dependencies, in the download pack for this book available 
at http://www.packtpub.com.

The core functionality of our application is contained inside a module named 
spider.js. Let's see how it looks. To start with, let's load all the dependencies  
that we are going to use:

var request = require('request');
var fs = require('fs');
var mkdirp = require('mkdirp');
var path = require('path');
var utilities = require('./utilities');
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Next, we create a new function named spider(), which takes in the URL  
to download and a callback function that will be invoked when the download 
process completes:

function spider(url, callback) {
  var filename = utilities.urlToFilename(url);
  fs.exists(filename, function(exists) {        //[1]
    if(!exists) {
      console.log("Downloading " + url);
      request(url, function(err, response, body) {      //[2]
        if(err) {
          callback(err);
        } else {
          mkdirp(path.dirname(filename), function(err) {    //[3]
            if(err) {
              callback(err);
            } else {
              fs.writeFile(filename, body, function(err) { //[4]
                if(err) {
                  callback(err);
                } else {
                  callback(null, filename, true);
                }
              });
            }
          });
        }
      });
    } else {
      callback(null, filename, false);
    }
  });
}

The preceding function executes the following tasks:

1. Checks if the URL was already downloaded by verifying that the 
corresponding file was not already created:
fs.exists(filecodename, function(exists) …

2. If the file is not found, the URL is downloaded using the following line  
of code:
request(url, function(err, response, body) …
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3. Then, we make sure whether the directory that will contain the file  
exists or not:
mkdirp(path.dirname(filename), function(err) …

4. Finally, we write the body of the HTTP response to the filesystem:

fs.writeFile(filename, body, function(err) …

To complete our web spider application, we just need to invoke the spider() 
function by providing a URL as an input (in our case, we read it from the  
command-line arguments):

spider(process.argv[2], function(err, filename, downloaded) {
  if(err) {
    console.log(err);
  } else if(downloaded){
    console.log('Completed the download of "'+ filename +'"');
  } else {
    console.log('"'+ filename +'" was already downloaded');
  }
});

Now, we are ready to try our web spider application, but first, make sure you  
have the utilities.js module and the package.json containing the full list  
of dependencies in your project directory. Then, install all the dependencies by 
running the following command:

npm install

Next, we can execute the spider module to download the contents of a web page, 
with a command like this:

node spider http://www.example.com

Our web spider application requires that we always include the 
protocol (for example, http://) in the URL we provide. Also, do 
not expect HTML links to be rewritten or resources such as images to 
be downloaded as this is just a simple example to demonstrate how 
asynchronous programming works.
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The callback hell
Looking at the spider() function we defined earlier, we can surely notice that even 
though the algorithm we implemented is really straightforward, the resulting code 
has several levels of indentation and is very hard to read. Implementing a similar 
function with direct style blocking API would be straightforward, and there would 
be very few chances to make it look so wrong. However, using asynchronous CPS is 
another story, and making bad use of closures can lead to an incredibly bad code.

The situation where the abundance of closures and in-place callback definitions 
transform the code into an unreadable and unmanageable blob is known as callback 
hell. It's one of the most well recognized and severe anti-patterns in Node.js and 
JavaScript in general. The typical structure of a code affected by this problem looks 
like the following:

asyncFoo(function(err) {
  asyncBar(function(err) {
    asyncFooBar(function(err) {
      [...]
    });
  });
});

We can see how code written in this way assumes the shape of a pyramid due to the 
deep nesting and that's why it is also colloquially known as the pyramid of doom.

The most evident problem with code such as the preceding one is the poor 
readability. Due to the nesting being too deep, it's almost impossible to keep  
track of where a function ends and where another one begins.

Another issue is caused by the overlapping of the variable names used in each scope. 
Often, we have to use similar or even identical names to describe the content of a 
variable. The best example is the error argument received by each callback. Some 
people often try to use variations of the same name to differentiate the object in each 
scope—for example, err, error, err1, err2, and so on; others prefer to just hide the 
variable defined in the scope by always using the same name; for example, err. Both 
the alternatives are far from perfect, and cause confusion and increase the probability 
of introducing defects.

Also, we have to keep in mind that closures come at a small price in terms of 
performances and memory consumption. In addition, they can create memory 
leaks that are not so easy to identify because we shouldn't forget that any context 
referenced by an active closure is retained from garbage collection.
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For a great introduction to how closures work in V8 you can refer to 
the blog post by Vyacheslav Egorov, a software engineer at Google 
working on V8, at http://mrale.ph/blog/2012/09/23/
grokking-v8-closures-for-fun.html.

If we look at our spider() function, we will notice that it clearly represents a 
callback hell situation and has all the problems we just described. That's exactly what  
we are going to fix with the patterns and techniques we will learn in this chapter.

Using plain JavaScript
Now that we have met our first example of callback hell, we know what we should 
definitely avoid; however, that's not the only concern when writing asynchronous 
code. In fact, there are several situations where controlling the flow of a set of 
asynchronous tasks requires the use of specific patterns and techniques, especially 
if we are using only plain JavaScript without the aid of any external library. For 
example, iterating over a collection by applying an asynchronous operation in 
sequence is not as easy as invoking forEach() over an array, but it actually  
requires a technique similar to a recursion.

In this section, we will learn not only about how to avoid the callback hell but also 
about how to implement some of the most common control flow patterns using only 
simple and plain JavaScript.

Callback discipline
When writing asynchronous code, the first rule to keep in mind is to not abuse 
closures when defining callbacks. It can be tempting to do so, because it does not 
require any additional thinking for problems such as modularization and reusability; 
however, we have seen how this can have more disadvantages than advantages. 
Most of the times, fixing the callback hell problem does not require any library,  
fancy technique, or change of paradigm but just some common sense.
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These are some basic principles that can help us keep the nesting level low and 
improve the organization of our code in general:

• You must exit as soon as possible. Use return, continue, or break, 
depending on the context, to immediately exit the current statement instead 
of writing (and nesting) complete if/else statements. This will help keep 
our code shallow.

• You need to create named functions for callbacks, keeping them out of 
closures and passing intermediate results as arguments. Naming our 
functions will also make them look better in stack traces.

• You need to modularize the code. Split the code into smaller, reusable 
functions whenever it's possible.

Applying the callback discipline
To demonstrate the power of the earlier mentioned principles, let's apply them to fix 
the callback hell problem in our web spider application.

For the first step, we can refactor our error-checking pattern by removing the else 
statement. This is made possible by returning from the function immediately after 
we receive an error. So, instead of having a code such as the following:

if(err) {
  callback(err);
} else {
  //code to execute when there are no errors
}

We can improve the organization of our code by writing the following one instead:

if(err) {
  return callback(err);
}
//code to execute when there are no errors

With this simple trick, we immediately have a reduction of the nesting level of our 
functions; it is easy and doesn't require any complex refactoring.
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A common mistake when executing the optimization we just described, is 
forgetting to terminate the function after the callback is invoked. For the 
error-handling scenario, the following code is a typical source of defects:

if(err) {

  callback(err);

}

//code to execute when there are no errors

We should never forget that the execution of our function will continue 
even after we invoke the callback. It is then important to insert a return 
instruction to block the execution of the rest of the function. Also note 
that it doesn't really matter what output is returned by the function; 
the real result (or error) is produced asynchronously and passed to 
the callback. The return value of the asynchronous function is usually 
ignored. This property allows us to write shortcuts such as the following:

return callback(...)

Instead of the slightly more verbose ones such as the following:
callback(...)

return;

As a second optimization for our spider() function, we can try to identify reusable 
pieces of code. For example, the functionality that writes a given string to a file can 
be easily factored out into a separate function as follows:

function saveFile(filename, contents, callback) {
  mkdirp(path.dirname(filename), function(err) {
    if(err) {
      return callback(err);
    }
    fs.writeFile(filename, contents, callback);
  });
}

Following the same principle, we can create a generic function named download() 
which takes a URL and a filename as input, and downloads the URL into the given 
file. Internally, we can use the saveFile() function we created earlier.

function download(url, filename, callback) {
  console.log('Downloading ' + url);
  request(url, function(err, response, body) {
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    if(err) {
      return callback(err);
    }
    saveFile(filename, body, function(err) {
      console.log('Downloaded and saved: ' + url);
      if(err) {
        return callback(err);
      }
      callback(null, body);
    });
  });  
}

For the last step, we modify the spider() function, which, thanks to our changes, 
will now look like the following:

function spider(url, callback) {
  var filename = utilities.urlToFilename(url);
  fs.exists(filename, function(exists) {
    if(exists) {
      return callback(null, filename, false);
    }
    download(url, filename, function(err) {
      if(err) {
        return callback(err);
      }
      callback(null, filename, true);
    })
  });
}

The functionality and the interface of the spider() function remain exactly the 
same; what changed is only the way the code was organized. By applying the basic 
principles that we discussed, we were able to drastically reduce the nesting of our 
code and at the same time increase its reusability and testability. In fact, we could 
think of exporting both saveFile() and download(), so that we can reuse them in 
other modules. This also allows us to test their functionality more easily.

The refactoring we carried out in this section clearly demonstrates that most of the 
time, all we need is just some discipline to make sure we do not abuse closures and 
anonymous functions. It works brilliantly, requires minimal effort, and just uses 
plain JavaScript.
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Sequential execution
We now begin our exploration of the asynchronous control flow patterns. We will 
start by analyzing the sequential execution flow.

Executing a set of tasks in sequence means running them one at a time, one after the 
other. The order of execution matters and must be preserved, because the result of a 
task in the list may affect the execution of the next. The following image illustrates 
this concept:

Start Task 1 Task 2 Task 3 End

There are different variations of this flow:

• Executing a set of known tasks in sequence, without chaining or  
propagating results

• Using the output of a task as the input for the next (also known as  
chain, pipeline, or waterfall)

• Iterating over a collection while running an asynchronous task on each 
element, one after the other

Sequential execution, despite being trivial when implemented using the direct style 
blocking API, is usually the main cause of the callback hell problem when using 
asynchronous CPS.

Executing a known set of tasks in sequence
We already met a sequential execution while implementing the spider() function 
in the previous section. By applying the simple rules that we studied, we were able 
to organize a set of known tasks in a sequential execution flow. Taking that code as a 
guideline, we can then generalize the solution with the following pattern:

function task1(callback) {
  asyncOperation(function() {
    task2(callback);
  });
}
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function task2(callback) {
  asyncOperation(function(result) {
    task3(callback);
  });
}

function task3(callback) {
  asyncOperation(function() {
    callback();
  });
}

task1(function() {
  //task1, task2, task3 completed
});

The preceding pattern shows how each task invokes the next upon the completion 
of a generic asynchronous operation. The pattern puts the emphasis on the 
modularization of tasks, showing how closures are not always necessary to handle 
asynchronous code.

Sequential iteration
The pattern we described earlier works perfectly if we know in advance what and 
how many tasks are to be executed. This allows us to hardcode the invocation of the 
next task in the sequence; but what happens if we want to execute an asynchronous 
operation for each item in a collection? In cases such as this, we cannot hardcode the 
task sequence anymore, instead, we have to build it dynamically.

Web spider version 2
To show an example of sequential iteration, let's introduce a new feature to the web 
spider application. We now want to download all the links contained in a web page 
recursively. To do that, we are going to extract all the links from the page and then 
trigger our web spider on each one of them recursively and in sequence.

The first step is modifying our spider() function so that it triggers a recursive 
download of all the links of a page by using a function named spiderLinks(), 
which we are going to create shortly.
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Also, instead of checking if the file already exists, we now try to read it, and start 
spidering its links; this way, we are able to resume interrupted downloads. As a final 
change, we make sure we propagate a new parameter, nesting, which helps us limit 
the recursion depth. The resultant code is as follows:

function spider(url, nesting, callback) {
  var filename = utilities.urlToFilename(url);
  fs.readFile(filename, 'utf8', function(err, body) {
    if(err) {
      if(err.code !== 'ENOENT') {
        return callback(err);
      }
      
      return download(url, filename, function(err, body) {
        if(err) {
          return callback(err);
        }
        spiderLinks(url, body, nesting, callback);
      });
    }
    
    spiderLinks(url, body, nesting, callback);
  });
}

Sequential crawling of links
Now we can create the core of this new version of our web spider application, the 
spiderLinks() function, which downloads all the links of an HTML page using a 
sequential asynchronous iteration algorithm. Pay attention to the way we are going 
to define that in the following code block:

function spiderLinks(currentUrl, body, nesting, callback) {
  if(nesting === 0) {
    return process.nextTick(callback);
  }
  var links = utilities.getPageLinks(currentUrl, body);  //[1]
  function iterate(index) {          //[2]
    if(index === links.length) {
      return callback();
    }
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    spider(links[index], nesting - 1, function(err) {  //[3]
      if(err) {
        return callback(err);
      }
      iterate(index + 1);
    });
  }
  iterate(0);              //[4]
}

The important steps to understand from this new function are as follows:

1. We obtain the list of all the links contained in the page using the  
utilities.getPageLinks() function. This function returns only  
the links pointing to an internal destination (same hostname)

2. We iterate over the links using a local function called iterate(), which  
takes the index of the next link to analyze. In this function, the first thing  
we do is checking if the index is equal to the length of the links array, in  
which case we immediately invoke the callback() function, as it means  
we processed all the items.

3. At this point, everything should be ready for processing the link. We invoke 
the spider() function by decreasing the nesting level and invoking the next 
step of the iteration when the operation completes.

4. As the last step in the spiderLinks() function, we bootstrap the iteration by 
invoking iterate(0).

The algorithm we just presented allows us to iterate over an array by executing an 
asynchronous operation in sequence, which in our case is the spider() function.

We can now try this new version of the spider application and watch it download 
all the links of a web page recursively, one after the other. To interrupt the process, 
which can take a while if there are many links, remember that we can always use  
Ctrl + C. If we then decide to resume it, we can do so by launching the spider 
application and providing the same URL we used for the first run.

Now that our web spider application might potentially trigger the 
download of an entire website, please consider using it carefully. 
For example, do not set a high nesting level or leave the spider 
running for more than a few seconds. It is not polite to overload a 
server with thousands of requests. In some circumstances this can 
also be considered illegal. Do it responsibly!
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The pattern
The code of the spiderLinks() function that we showed previously is a clear 
example of how it's possible to iterate over a collection while applying an 
asynchronous operation. We can also notice that it's a pattern that can be adapted to 
any other situation where we have the need to iterate asynchronously in sequence 
over the elements of a collection or in general over a list of tasks. This pattern can be 
generalized as follows:

function iterate(index) {
  if(index === tasks.length)  {
    return finish();
  }
  var task = tasks[index];
  task(function() {
    iterate(index + 1);
  });
}

function finish() {
  //iteration completed
}

iterate(0);

It's important to notice that these types of algorithms become really 
recursive if task() is a synchronous operation. In such a case, the 
stack will not unwind at every cycle and there might be a risk of 
hitting the maximum call stack size limit.

The pattern we just presented is very powerful as it can adapt to several situations; 
for example, we can map the values of an array or we can pass the results of an 
operation to the next one in the iteration to implement a reduce algorithm, we can 
quit the loop prematurely if a particular condition is met, or we can even iterate over 
an infinite number of elements.

We could also choose to generalize the solution even further by wrapping it into a 
function having a signature such as the following:

iterateSeries(collection, iteratorCallback, finalCallback)



Chapter 2

[ 71 ]

We leave this to you as an exercise.

Pattern (sequential iterator): execute a list of tasks in sequence 
by creating a function named iterator, which invokes the next 
available task in the collection and makes sure to invoke the next  
step of the iteration when the current task completes.

Parallel execution
There are some situations where the order of the execution of a set of asynchronous 
tasks is not important and all we want is just to be notified when all those running 
tasks are completed. Such situations are better handled using a parallel execution 
flow, as shown in the following diagram:

This may sound strange if we consider that Node.js is single threaded, but if we 
remember what we discussed in Chapter 1, Node.js Design Fundamentals, we realize 
that even though we have just one thread, we can still achieve concurrency, thanks 
to the nonblocking nature of Node.js. In fact, the word parallel is used improperly in 
this case, as it does not mean that the tasks run simultaneously, but rather that their 
execution is carried out by an underlying nonblocking API and interleaved by the 
event loop.

As we know, a task gives the control back to the event loop when it requests a  
new asynchronous operation allowing the event loop to execute another task.  
The proper word to use for this kind of flow is concurrency, but we will still use 
parallel for simplicity. 
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The following diagram shows how two asynchronous tasks can run in parallel in a 
Node.js program:

Event Loop

1

Main Task 1 Task 2

2

3

Call

Return

In the previous image, we have a Main function that executes two  
asynchronous tasks:

1. The Main function triggers the execution of Task 1 and Task 2. As these 
trigger an asynchronous operation, they immediately return the control  
back to the Main function, which then returns it to the event loop.

2. When the asynchronous operation of Task 1 is completed, the event 
loop gives control to it. When Task 1 completes its internal synchronous 
processing as well, it notifies the Main function.

3. When the asynchronous operation triggered by Task 2 is completed, the 
event loop invokes its callback, giving the control back to Task 2. At the 
end of Task 2, the Main function is again notified. At this point, the Main 
function knows that both Task 1 and Task 2 are complete, so it can continue 
its execution or return the results of the operations to another callback.
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In short, this means that in Node.js, we can execute in parallel only asynchronous 
operations, because their concurrency is handled internally by the nonblocking 
APIs. In Node.js, synchronous (blocking) operations cannot run concurrently unless 
their execution is interleaved with an asynchronous operation, or deferred with 
setTimeout() or setImmediate(). We will see this in more detail in Chapter 6, Recipes.

Web spider version 3
Our web spider application seems like a perfect candidate to apply the concept of 
parallel execution. So far, our application is executing the recursive download of the 
linked pages in a sequential fashion. We can easily improve the performance of this 
process by downloading all the linked pages in parallel.

To do that, we just need to modify the spiderLinks() function to make sure to 
spawn all the spider() tasks at once, and then invoke the final callback only when 
all of them have completed their execution. So let's modify our spiderLinks() 
function as follows:

function spiderLinks(currentUrl, body, nesting, callback) {
  if(nesting === 0) {
    return process.nextTick(callback);
  }
  var links = utilities.getPageLinks(currentUrl, body);
  if(links.length === 0) {
    return process.nextTick(callback);
  }
  
  var completed = 0, errored = false;
  
  function done(err) {
    if(err) {
      errored = true;
      return callback(err);
    }
    if(++completed === links.length && !errored) {
      return callback();
    }
  }
  
   links.forEach(function(link) {
    spider(link, nesting - 1, done);
  });
}
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Let's explain what we changed. As we mentioned earlier, the spider() tasks are 
now started all at once. This is possible by simply iterating over the links array  
and starting each task without waiting for the previous one to finish:

  links.forEach(function(link) {
    spider(link, nesting - 1, done);
  });

Then, the trick to make our application wait for all the tasks to complete is to provide 
the spider() function with a special callback, which we call done(). The done() 
function increases a counter when a spider task completes. When the number of 
completed downloads reaches the size of the links array, the final callback is invoked:

function done(err) {
  if(err) {
    errored = true;
    return callback(err);
  }
  if(++completed === links.length && !errored) {
    callback();
  }
}

With these changes in place, if we now try to run our spider against a web page, we 
will notice a huge improvement in the speed of the overall process, as every download 
is carried out in parallel without waiting for the previous link to be processed.

The pattern
Also, for the parallel execution flow, we can extract our nice little pattern, which we 
can adapt and reuse for different situations. We can represent a generic version of 
the pattern with the following code:

var tasks = [...];
var completed = 0;
tasks.forEach(function(task) {
  task(function() {
    if(++completed === tasks.length) {
      finish();
    }
  });
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});

function finish() {
  //all the tasks completed
}

With small modifications, we can adapt the pattern to accumulate the results  
of each task into a collection, to filter or map the elements of an array, or to  
invoke the finish() callback as soon as one or a given number of tasks complete 
(this last situation in particular is called competitive race).

Pattern (unlimited parallel execution): run a set of asynchronous 
tasks in parallel by spawning them all at once, and then wait for 
all of them to complete by counting the number of times their 
callbacks are invoked.

Fixing race conditions in the presence of 
concurrent tasks
Running a set of tasks in parallel can be a pain when using blocking I/O in 
combination with multiple threads. However, we have just seen that in Node.js this 
is a totally different story; running multiple asynchronous tasks in parallel is in fact 
straightforward and cheap in terms of resources. This is one of the most important 
strengths for Node.js, because it makes parallelization a common practice rather than 
a complex technique to use only when strictly necessary.

Another important characteristic of the concurrency model of Node.js is the way we 
deal with task synchronization and race conditions. In multithreaded programming, 
this is usually done using constructs such as locks, mutexes, semaphores, and 
monitors, and it can be one of the most complex aspects of parallelization which 
has considerable impact on performances as well. In Node.js, we usually don't 
need any fancy synchronization mechanism, as everything runs on a single thread! 
However, this doesn't mean that we can't have race conditions, on the contrary, they 
can be quite common. The root of the problem is the delay between the invocation 
of an asynchronous operation and the notification of its result. To make a concrete 
example, we can refer again to our web spider application, in particular, the last 
version we created, which actually contains a race condition (can you spot it?). 
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The problem we are talking about lies in the spider() function, where we check if a 
file already exists, before starting to download the corresponding URL:

function spider(url, nesting, callback) {
  var filename = utilities.urlToFilename(url);
  fs.readFile(filename, 'utf8', function(err, body) {
    if(err) {
      if(err.code !== 'ENOENT') {
        return callback(err);
      }
      
      return download(url, filename, function(err, body) {
 [...]

The problem is that, two spider tasks operating on the same URL might invoke 
fs.readFile() on the same file before one of the two tasks completes the download 
and creates a file, causing both tasks to start a download. This situation is shown in 
the following diagram:

spider(foo.com)    fs.readFile(foo.html) download(foo.com)

Download and save completes,
file was saved twice

Read completes,
file does not exists

Read completes,
file does not exists

Download and save completes,
now the files exists

download(foo.com) callback() callback()

Task 1

Task 2

spider(foo.com)    fs.readFile(foo.html)

The preceding diagram shows how Task 1 and Task 2 are interleaved in the single 
thread of Node.js and how an asynchronous operation can actually introduce a race 
condition. In our case, the two spider tasks end up downloading the same file.

How can we fix that? The answer is much simpler than we might think it to be. In 
fact, all we need is a variable to mutually exclude multiple spider() tasks running 
on the same URL. This can be achieved with some code such as the following:

var spidering = {};
function spider(url, nesting, callback) {
  if(spidering[url]) {
    return process.nextTick(callback);
  }
  spidering[url] = true;
  [...]
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The fix does not require many comments. We simply exit the function immediately 
if the flag for the given url is set in the spidering map; otherwise, we set the flag 
and continue with the download. For our case, we don't need to release the lock, as 
we are not interested in downloading a URL two times, even if the spider tasks are 
executed during two completely different points in time.

Race conditions can cause many problems, even if we are in a single-threaded 
environment. In some circumstances, they can lead to data corruption and are 
usually very hard to debug because of their ephemeral nature. So, it's always a good 
practice to double check for this type of situation when running tasks in parallel.

Limited parallel execution
Often, spawning parallel tasks without control can lead to an excessive load.  
Imagine having thousands of files to read, URLs to access, or database queries to run 
in parallel. A common problem in such situations is running out of resources, for 
example, by utilizing all the file descriptors available for an application when trying 
to open too many files at once. In a web application, it may also create a vulnerability 
that is exploitable with Denial of Service (DoS) attacks. In all such situations, it is a 
good idea to limit the number of tasks that can run at the same time. This way, we 
can add some predictability to the load of our server and also make sure that our 
application will not run out of resources. The following diagram describes a situation 
where we have five tasks that run in parallel with a concurrency limit of 2:

Start

Task 1

Task 2

End

Task 4

Task 3 Task 5

From the preceding figure, it should be clear how our algorithm will work:

1. Initially, we spawn as many tasks as we can without exceeding the 
concurrency limit.

2. Then, every time a task is completed, we spawn one or more tasks until we 
don't reach the limit again.
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Limiting the concurrency
We now present a pattern to execute a set of given tasks in parallel with  
limited concurrency:

var tasks = [...];
var concurrency = 2, running = 0, completed = 0, index = 0;
function next() {              //[1]
  while(running < concurrency && index < tasks.length) {
    task = tasks[index++];
    task(function() {            //[2]
      if(completed === tasks.length) {
        return finish();
      }
      completed++, running--;
      next();
    });
    running++;
  }
}
next();

function finish() {
  //all tasks finished
}

This algorithm can be considered a mix between a sequential execution and a parallel 
execution. In fact, we might notice similarities with both the patterns we presented 
earlier in the chapter:

1. We have an iterator function, which we called next(), and then an inner 
loop that spawns in parallel as many tasks as possible while staying within 
the concurrency limit.

2. The next important part is the callback we pass to each task, which checks if 
we completed all the tasks in the list. If there are still tasks to run, it invokes 
next() to spawn another bunch of tasks.

Pretty simple, isn't it?
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Globally limiting the concurrency
Our web spider application is perfect for applying what we learned about 
limiting the concurrency of a set of tasks. In fact, to avoid the situation in which 
we have thousands of links crawled at the same time, we can enforce a limit on 
the concurrency of this process by adding some predictability on the number of 
concurrent downloads.

Node.js versions before 0.11 are already limiting the number of 
concurrent HTTP connections per host to 5. This can, however, be 
changed to accommodate our needs. Find out more in the official docs 
at http://nodejs.org/docs/v0.10.0/api/http.html#http_
agent_maxsockets. Starting from Node.js 0.11, there is no default 
limit on the number of concurrent connections.

We could apply the pattern we just learned to our spiderLinks() function, but 
what we would obtain is only limiting the concurrency of a set of links found within 
one single page. If we chose, for example, a concurrency of 2, we would have at 
most two links downloaded in parallel for each page. However, as we can download 
multiple links at once, each page would then spawn another two downloads, causing 
the grand total of download operations to grow exponentially anyway.

Queues to the rescue
What we really want then, is to limit the global number of download operations  
we can have running in parallel. We could slightly modify the pattern showed 
before, but we prefer to leave this as an exercise for you, as we want to take this 
opportunity to introduce another mechanism, which makes use of queues,  
to limit the concurrency of multiple tasks. Let's see how this works.

We are now going to implement a simple class named TaskQueue, which will 
combine a queue with the algorithm we presented before. Let's create a new  
module named taskQueue.js, and let's start by defining its constructor:

function TaskQueue(concurrency) {
  this.concurrency = concurrency;
  this.running = 0;
  this.queue = [];
}

The constructor takes as input only the concurrency limit, but besides that,  
it initializes other instance variables that we are going to need later.
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Next, we implement the pushTask() method as follows:

TaskQueue.prototype.pushTask = function(task, callback) {
  this.queue.push(task);
  this.next();
}

The previous function simply adds a new task to the queue and then bootstraps the 
execution of the worker by invoking this.next().

Let's see how the next() method looks; its role is to spawn a set of tasks from the 
queue ensuring that it does not exceed the concurrency limit:

TaskQueue.prototype.next = function() {
  var self = this;
  while(self.running < self.concurrency && self.queue.length) {
    var task = self.queue.shift();
    task(function(err) {
      self.running--;
      self.next();
    });
    self.running++;
  }
}

We might notice that this method has some similarities with the pattern that limits 
the concurrency we presented earlier. It essentially starts as many tasks from the 
queue as possible, without exceeding the concurrency limit. When each task is 
complete, it updates the count of running tasks and then starts another round of 
tasks by invoking next() again. The interesting property of the TaskQueue class is 
that it allows us to dynamically add new items to the queue. The other advantage is 
that now we have a central entity responsible for the limitation of the concurrency  
of our tasks, which can be shared across all the instances of a function's execution.  
In our case, it's the spider() function, as we will see in a moment.

Web spider version 4
Now that we have our generic queue to execute tasks in a limited parallel flow, 
let's use it straightaway in our web spider application. Let's first load the new 
dependency and create a new instance of the TaskQueue class, by setting the 
concurrency limit to 2:

var TaskQueue = require('./taskQueue');
var downloadQueue = new TaskQueue(2);
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Next, we need to update the spiderLinks() function so that it can use the newly 
created downloadQueue:

function spiderLinks(currentUrl, body, nesting, callback) {
  if(nesting === 0) {
    return process.nextTick(callback);
  }
  
  var links = utilities.getPageLinks(currentUrl, body);
  if(links.length === 0) {
    return process.nextTick(callback);
  }
  
  var completed = 0, errored = false;
  links.forEach(function(link) {
    downloadQueue.pushTask(function(done) {
      spider(link, nesting - 1, function(err) {
        if(err) {
          errored = true;
          return callback(err);
        }
        if(++completed === links.length && !errored) {
          callback();
        }
        done();
      });
    });
  });
}

This new implementation of the function is extremely easy, and it's very similar to 
the algorithm for unlimited parallel execution, which we presented earlier in the 
chapter. This is because we are delegating the concurrency control to the TaskQueue 
object, and the only thing we have to do is to check when all our tasks are complete. 
The only interesting part in the preceding code is how we defined our tasks.

• We run the spider() function by providing a custom callback.
• In the callback, we check if all the tasks relative to this execution of the 

spiderLinks() function are completed. When this condition is true,  
we invoke the final callback of the spiderLinks() function.

• At the end of our task, we invoke the done() callback so that the queue  
can continue its execution.

After we have applied these small changes, we can now try to run the spider 
module again. This time, we should notice that no more than two downloads  
will be active at the same time.
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The async library
If we take a look for a moment at every control flow pattern we have analyzed  
so far, we can see that they could be used as a base to build reusable and more 
generic solutions. For example, we could wrap the unlimited parallel execution 
algorithm into a function which accepts a list of tasks, runs them in parallel, and  
invokes the given callback when all of them are complete. This way of wrapping 
control flow algorithms into reusable functions can lead to a more declarative and  
expressive way to define asynchronous control flows, and that's exactly what 
async (https://npmjs.org/package/async) does. The async library is a very 
popular solution, in Node.js and JavaScript in general, to deal with asynchronous 
code. It offers a set of functions that greatly simplify the execution of a set of tasks 
in different configurations and it also provides useful helpers for dealing with 
collections asynchronously. Even though there are several other libraries with a 
similar goal, async is a de facto standard in Node.js due to its popularity.

Let's try it straightaway to demonstrate its capabilities.

Sequential execution
The async library can help us immensely when implementing complex 
asynchronous control flows, but one difficulty with it is choosing the right helper 
for the problem at hand. For example, for the case of the sequential execution flow, 
there are around 20 different functions to choose from, including: eachSeries(), 
mapSeries(), filterSeries(), rejectSeries(), reduce(), reduceRight(), 
detectSeries(), concatSeries(), series(), whilst(), doWhilst(), until(), 
doUntil(), forever(), waterfall(), compose(), seq(), applyEachSeries(), 
iterator(), and timesSeries().

Choosing the right function is an important step in writing more compact and 
readable code, but this also requires some experience and practice. In our examples, 
we are going to cover only a few of these situations, but they will still provide a solid 
base to understand and efficiently use the rest of the library.

Now, to show in practice how async works, we are going to adapt our web spider 
application. Let's start directly with version 2, the one that downloads all the links 
recursively in sequence.

However, first let's make sure we install the async library into our current project:

npm install async

Then we need to load the new dependency from the spider.js module:

var async = require('async');
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Sequential execution of a known set of tasks
Let's modify the download() function first. As we have already seen, it executes the 
following three tasks in sequence:

1. Download the contents of a URL.
2. Create a new directory if it doesn't exist yet.
3. Save the contents of the URL into a file.

The ideal function to use with this flow is definitely async.series(), which has the 
following signature:

async.series(tasks, [callback])

It takes a list of tasks and a callback function that is invoked when all the tasks 
have been completed. Each task is just a function that accepts a callback function, 
which must be invoked when the task completes its execution:

function task(callback) {}

The nice thing about async is that it uses the same callback conventions of  
Node.js, and it automatically handles error propagation. So, if any of the tasks  
invoke its callback with an error, async will skip the remaining tasks in the list  
and jump directly to the final callback.

With this in mind, let's see how the download() function would change by  
using async:

function download(url, filename, callback) {
  console.log('Downloading ' + url);
  var body;
  
  async.series([
    function(callback) {            //[1]
      request(url, function(err, response, resBody) {
        if(err) {
          return callback(err);
        }
        body = resBody;
        callback();
      });
    },
    mkdirp.bind(null, path.dirname(filename)),    //[2]
    function(callback) {            //[3]
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      fs.writeFile(filename, body, callback);
    }
  ], function(err) {            //[4]
    console.log('Downloaded and saved: ' + url);
    if(err) {
      return callback(err);
    }
    callback(null, body);
  });
}

If we remember the callback hell version of this code, we will surely appreciate 
the way async allows us to organize our tasks. There is no need to nest callbacks 
anymore, as we just have to provide a flat list of tasks, usually one for each 
asynchronous operation, which async will then execute in sequence. This is  
how we define each task:

1. The first task involves the download of the URL. Also, we save the response 
body into a closure variable (body) so that it can be shared with the  
other tasks.

2. In the second task, we want to create the directory that will hold the 
downloaded page. We do this by performing a partial application of  
the mkdirp() function, binding the path of the directory to be created.  
This way, we can save a few lines of code and increase its readability.

3. At last, we write the contents of the downloaded URL to a file. In this case, 
we could not perform a partial application (as we did for the second task), 
because the variable, body, is only available after the first task in the series 
completes. However, we can still save some lines of code by exploiting the 
automatic error management of async by simply passing the callback of the 
task directly to the fs.writeFile() function.

4. After all the tasks are complete, the final callback of async.series() is 
invoked. In our case, we are simply doing some error management and  
then returning the body variable to callback of the download() function.

For this specific situation, a possible alternative to async.series() would be 
async.waterfall(), which still executes the tasks in sequence but in addition, it 
also provides the output of each task as input to the next. In our situation, we could 
use this feature to propagate the body variable until the end of our sequence. As an 
exercise, you can try to implement the same function using the waterfall flow and 
then take a look at the differences.
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Sequential iteration
We already saw from the previous paragraph how we can execute a set of known tasks 
in sequence; we used async.series() to do that. We could use the same functionality 
to implement the spiderLinks() function of our web spider version 2, however 
async offers a more appropriate helper for the specific situation in which we have 
to iterate over a collection; this helper is async.eachSeries(). Let's use it then to 
reimplement our spiderLinks() function (version 2, download in series) as follows:

function spiderLinks(currentUrl, body, nesting, callback) {
  if(nesting === 0) {
    return process.nextTick(callback);
  }

  var links = utilities.getPageLinks(currentUrl, body);
  if(links.length === 0) {
    return process.nextTick(callback);
  }
    
  async.eachSeries(links, function(link, callback) {
    spider(link, nesting - 1, callback);
  }, callback);
}

If we compare the preceding code, which uses async, with the code of the same 
function implemented with plain JavaScript patterns, we will notice the big 
advantage that async gives us in terms of code organization and readability.

Parallel execution
The async library doesn't lack functions to handle parallel flows, among them 
we can find each(), map(), filter(), reject(), detect(), some(), every(), 
concat(), parallel(), applyEach(), and times(). They follow the same logic  
of the functions we have already seen for the sequential execution, with the 
difference that the tasks provided are executed in parallel.

To demonstrate that, we can try to apply one of these functions to implement  
version 3 of our web spider application, the one performing the downloads  
using an unlimited parallel flow. 
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If we remember the code we used earlier to implement the sequential version of the 
spiderLinks() function, adapting it to make it work in parallel is a trivial task:

 function spiderLinks(currentUrl, body, nesting, callback) {
  [...]
  async.each(links, function(link, callback) {
    spider(link, nesting - 1, callback);
  }, callback);
}

The function is exactly the same one that we used for the sequential download, 
but this time we used async.each() instead of async.eachSeries(). This clearly 
demonstrates the power of abstracting the asynchronous flow with a library such 
as async. The code is not bound to a particular execution flow anymore; there is no 
code specifically written for that, most of it is just application logic.

Limited parallel execution
If you are wondering if async can also be used to limit the concurrency of parallel 
tasks, the answer is yes, it can! We have a few functions we can use for that, namely, 
eachLimit(), mapLimit(), parallelLimit(), queue(), and cargo().

Let's try to exploit one of them to implement version 4 of the web spider application, 
the one executing the download of the links in parallel with limited concurrency. 
Fortunately, async has async.queue(), which works in a similar way as the 
TaskQueue class we created earlier in the chapter. The async.queue() function 
creates a new queue, which uses a worker() function to execute a set of tasks with a 
specified concurrency limit:

var q = async.queue(worker, concurrency);

The worker() function receives, as input, the task to run and a callback function 
to invoke, when the task completes:

function worker(task, callback)

We should notice that task in this case can be anything, not just a function. In fact, 
it's the responsibility of the worker to handle a task in the most appropriate way. 
New tasks can be added to the queue by using q.push(task, callback). The 
callback associated to a task has to be invoked by the worker after the task has  
been processed.
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Now, let's modify our code again to implement a parallel globally limited execution 
flow, using async.queue(). First of all, we need to create a new queue:

var downloadQueue = async.queue(function(taskData, callback) {
  spider(taskData.link, taskData.nesting - 1, callback);
}, 2);

The code is really straightforward. We are just creating a new queue with a 
concurrency limit of 2, having a worker that simply invokes our spider()  
function with the data associated with a task. Next, we implement the 
spiderLinks() function:

function spiderLinks(currentUrl, body, nesting, callback) {
  if(nesting === 0) {
    return process.nextTick(callback);
  }
  var links = utilities.getPageLinks(currentUrl, body);
  if(links.length === 0) {
    return process.nextTick(callback);
  }
  var completed = 0, errored = false;
  links.forEach(function(link) {
    var taskData = {link: link, nesting: nesting};
    downloadQueue.push(taskData, function(err) {
      if(err) {
        errored = true;
        return callback(err);
      }
      if(++completed === links.length && !errored) {
        callback();
      }
    });
  });
}

The preceding code should look very familiar, as it's almost the same as the one we 
used to implement the same flow using the TaskQueue object. Also, in this case, the 
important part to analyze is where we push a new task into the queue. At that point, 
we ensure that we pass a callback that enables us to check if all the download tasks 
for the current page are completed, and eventually invoke the final callback.

Thanks to async.queue(), we could easily replicate the functionality of our 
TaskQueue object, again demonstrating that with async, we can really avoid writing 
asynchronous control flow patterns from scratch, reducing our efforts and saving 
precious lines of code.
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Promises
We already mentioned at the beginning of the chapter that CPS is not the only way to 
write asynchronous code. In fact, the JavaScript ecosystem provides alternatives to the 
traditional callback pattern. One of these in particular is receiving a lot of momentum, 
especially now that it is going to be part of the ECMAScript 6 specification (also known 
as ES6 or Harmony), the upcoming version of the JavaScript language. We are talking, 
of course, about promises, and in particular about those implementations that follow 
the Promises/A+ specification (https://promisesaplus.com).

There are other promises implementations that are not compliant to 
the Promises/A+ specification, and among those, the most popular 
is the one provided by JQuery. Most of the topics discussed in this 
section do not apply to those noncompliant implementations.

What is a promise?
In very simple terms, promises are an abstraction that allow an asynchronous 
function to return an object called a promise, which represents the eventual result 
of the operation. In the promises jargon, we say that a promise is pending when 
the asynchronous operation is not yet complete, it's fulfilled when the operation 
successfully completes, and rejected when the operation terminates with an error. 
Once a promise is either fulfilled or rejected, it's considered settled.

To receive the fulfillment value or the error (reason) associated with the rejection,  
we can use the then() method of the promise. The following is its signature:

promise.then([onFulfilled], [onRejected])

Where onFulfilled() is a function that will eventually receive the fulfillment value 
of the promise, and onRejected() is another function that will receive the reason of 
the rejection (if any). Both functions are optional.

To have an idea of how Promises can transform our code, let's consider the following:

asyncOperation(arg, function(err, result) {
  if(err) {
    //handle error
  }
  //do stuff with result
});
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Promises allow to transform this typical CPS code into a better structured and more 
elegant code, such as the following:

asyncOperation(arg)
  .then(function(result) {
    //do stuff with result
  }, function(err) {
    //handle error
  });

One crucial property of the then() method is that it synchronously returns another 
promise. If any of the onFulfilled() or onRejected() functions return a value x, 
the promise returned by the then() method will be as follows:

• Fulfill with x if x is a value
• Fulfill with the fulfillment value of x if x is a promise or a thenable
• Reject with the eventual rejection reason of x if x is a promise or a thenable

A thenable is a promise-like object with a then() method. This term 
is used to indicate a promise that is foreign to the particular promise 
implementation in use.

This feature allows us to build chains of promises, allowing easy aggregation and 
arrangement of asynchronous operations in several configurations. Also, if we 
don't specify an onFulfilled() or onRejected() handler, the fulfillment value 
or rejection reasons are automatically forwarded to the next promise in the chain. 
This allows us, for example, to automatically propagate errors across the whole 
chain until caught by an onRejected() handler. With a promise chain, sequential 
execution of tasks suddenly becomes a trivial operation:

asyncOperation(arg)
  .then(function(result1) {
    //returns another promise
    return asyncOperation(arg2);
  })
  .then(function(result2) {
    //returns a value
    return 'done';
  })
  .then(undefined, function(err) {
    //any error in the chain is caught here
  });
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The following diagram provides another perspective on how a promise chain works:

Promise A then() Promise B

onFulfilled() settled onRejected()

fulfill reject

Their return value eventually settles Promise B

then()

onFulfilled() settled onRejected()

fulfill reject

Their return value eventually settles Promise C

Promise C

Synchronously

Asynchronously

Another important property of promises is that the onFulfilled() and onRejected() 
functions are guaranteed to be invoked asynchronously, even if we resolve the promise 
synchronously with a value, as we did in the preceding example, where we returned 
the string done in the last then() function of the chain. This behavior shields our code 
against all those situations where we could unintentionally release Zalgo, making our 
asynchronous code more consistent and robust with no effort.

Now comes the best part. If an exception is thrown (using the throw statement) from 
the onFulfilled() or onRejected() handler, the promise returned by the then() 
method will automatically reject with the exception as the rejection reason. This is 
a tremendous advantage over CPS, as it means that with promises, exceptions will 
propagate automatically across the chain, and that the throw statement is not an 
enemy anymore.

For a detailed description of the Promises/A+ specification, you can 
refer to the official website http://promises-aplus.github.
io/promises-spec/.

Promises/A+ implementations
In Node.js, and in general in JavaScript, there are several libraries implementing the 
Promises/A+ specifications. The following are the most popular:

• Bluebird (https://npmjs.org/package/bluebird)
• Q (https://npmjs.org/package/q)
• RSVP (https://npmjs.org/package/rsvp)
• Vow (https://npmjs.org/package/vow)
• When.js (https://npmjs.org/package/when)
• ES6 Promises
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What really differentiates them is the additional set of features they provide on 
top of the Promises/A+ standard. The standard, in fact, defines only the behavior of 
the then() method and the promise resolution procedure, but it does not specify 
other functionalities, for example, how a promise is created from a callback-based 
asynchronous function.

In our examples, we will try to use the set of API implemented by the ES6 
promises, as they will be natively available in JavaScript without the support of any 
external library. Luckily, the preceding list of libraries are gradually adapting to 
support the ES6 API, so using any one of them should not force us into any strong 
implementation lock-in as far as we use only the feature set of the ES6 standard.

Please bear in mind that the ECMAScript 6 specification is still a draft 
at the time of writing. So there might be some differences from what 
will be the final standard. Also, consider that at the time of writing, the 
version of V8 used by Node.js still does not support promises natively. 
So, for our examples, we are going to use one of the preceding listed 
implementations, namely, Bluebird. Of course, we will use only the 
part of its API that is compatible with ES6 promises.

For reference, here is the list of the APIs currently provided by the ES6 promises:

• Constructor (new Promise(function(resolve, reject) {})):  
This creates a new promise that fulfills or rejects based on the behavior  
of the function passed as an argument. The arguments of the constructor  
are explained as follows:

 ° resolve(obj): This will resolve the promise with a fulfillment value, 
which will be obj if obj is a value. It will be the fulfillment value of 
obj if obj is a promise or a thenable.

 ° reject(err): This rejects the promise with the reason err. It is a 
convention to have err to be an instance of Error.

• Static methods of the Promise object:
 ° Promise.resolve(obj): This creates a new promise from a thenable 

or a value.
 ° Promise.reject(err): This creates a promise that rejects with err 

as the reason.
 ° Promise.all(array): This creates a promise that fulfills with an 

array of fulfillment values when every item in the array fulfills, and 
rejects with the first rejection reason if any item rejects. Each item in 
the array can be a promise, a generic thenable, or a value.
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• Methods of a Promise instance:

 ° promise.then(onFulfilled, onRejected): This is the essential 
method of a promise. Its behavior is compatible with the Promises/A+ 
standard we described before.

 ° promise.catch(onRejected): This is just a syntactic sugar for 
promise.then(undefined, onRejected).

It is worth mentioning that some promise implementations offer 
another mechanism to create new promises; this is called deferreds. 
We are not going to describe it here, because it's not part of the 
ES6 standard, but if you want to know more, you can read the 
documentation for Q (https://github.com/kriskowal/
q#using-deferreds) or When.js (https://github.com/
cujojs/when/wiki/Deferred).

Promisifying a Node.js style function
In Node.js, and in general in JavaScript, there are only a few libraries supporting 
promises out-of-the-box. Most of the time, in fact, we have to convert a typical 
callback-based function into one that returns a promise; this is also known as 
promisification.

Fortunately, the callback conventions used in Node.js allow us to create a reusable 
function that we can utilize to promisify any Node.js style API. We can do this easily 
by using the constructor of the Promise object. Let's then create a new function called 
promisify() and include it into the utilities.js module (so we can use it later in 
our web spider application):

var Promise = require('bluebird');

module.exports.promisify = function(callbackBasedApi) {
  return function promisified() {
    var args = [].slice.call(arguments);
    return new Promise(function(resolve, reject) {    //[1]
      args.push(function(err, result) {      //[2]
        if(err) {
          return reject(err);          //[3]
        }
        if(arguments.length <= 2) {        //[4]
          resolve(result);
        } else {
          resolve([].slice.call(arguments, 1));
        }
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      });
      callbackBasedApi.apply(null, args);      //[5]
    });
  }
};

The preceding function returns another function called promisified(),  
which represents the promisified version of the callbackBasedApi given in  
the input. This is how it works:

1. The promisified() function creates a new promise using the Promise 
constructor and immediately returns it back to the caller.

2. In the function passed to the Promise constructor, we make sure to pass to 
callbackBasedApi, a special callback. As we know that the callback always 
comes last, we simply append it to the argument list (args) provided to the 
promisified() function.

3. In the special callback, if we receive an error, we immediately reject  
the promise.

4. If no error is received, we resolve the promise with a value or an array  
of values, depending on how many results are passed to the callback.

5. At last, we simply invoke the callbackBasedApi with the list of  
arguments we have built.

Most of the promise implementations already provide, out-of-the-box, 
some sort of helper to convert a Node.js style API to one returning 
a promise. For example, Q has Q.denodeify() and Q.nbind(), 
Bluebird has Promise.promisify(), and When.js has node.lift().

Sequential execution
After a little bit of necessary theory, we are now ready to convert our web spider 
application to use promises. Let's start directly from version 2, the one downloading 
in sequence the links of a web page.

In the spider.js module, the very first step required is to load our promises 
implementation (we will use it later) and promisify the callback-based functions  
that we plan to use:

var Promise = require('bluebird');
var utilities = require('./utilities');

var request = utilities.promisify(require('request'));
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var mkdirp = utilities.promisify(require('mkdirp'));
var fs = require('fs');
var readFile = utilities.promisify(fs.readFile);
var writeFile = utilities.promisify(fs.writeFile);

Now, we can start converting the download() function:

function download(url, filename) {
  console.log('Downloading ' + url);
  var body;
  return request(url)
    .then(function(results) {
      body = results[1];
      return mkdirp(path.dirname(filename));
    })
    .then(function() {
      return writeFile(filename, body);
    })
    .then(function() {
      console.log('Downloaded and saved: ' + url);
      return body;
    });
}

We can see straightaway how elegant some sequential code implemented with 
promises is; we simply have an intuitive chain of then() functions. The final 
return value of the download() function is the promise returned by the last then() 
invocation in the chain. This makes sure that the caller receives a promise that fulfills 
with body only after all the operations (request, mkdirp, writeFile) have completed.

Next, it's the turn of the spider() function:

function spider(url, nesting) {
  var filename = utilities.urlToFilename(url);
  return readFile(filename, 'utf8')
    .then(
      function(body) {
        return spiderLinks(url, body, nesting);
      },
      function(err) {
        if(err.code !== 'ENOENT') {
          throw err;
        }
        
        return download(url, filename)
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          .then(function(body) {
            return spiderLinks(url, body, nesting);
          });
      }
    );
}

The important thing to notice here is that we also registered an onRejected() 
function for the promise returned by readFile(), to handle the case when a page 
was not already downloaded (file does not exist). Also, it's interesting to see how  
we were able to use throw to propagate the error from within the handler.

Now that we have converted our spider() function as well, we can modify its main 
invocation as follows:

spider(process.argv[2], 1)
  .then(function() {
    console.log('Download complete');
  })
  .catch(function(err) {
    console.log(err);
  });

Note how we used, for the first time, the syntactic sugar catch to handle any error 
situation originated from the spider() function. If we look again at all the code we 
have written so far in this section, we would be pleasantly surprised by the fact that 
we didn't include any error propagation logic like we would be forced to do by using 
callbacks. This is clearly an enormous advantage, as it greatly reduces the boilerplate 
in our code and the chances of missing any asynchronous error.

Now, the only missing bit to complete the version 2 of our web spider application is 
the spiderLinks() function, which we are going to see in a moment.

Sequential iteration
The web spider code so far was mainly an overview of what promises are and how 
they are used, demonstrating how simple and elegant it is to implement a sequential 
execution flow using promises. However, the code we considered so far involves 
only the execution of a known set of asynchronous operations. So, the missing piece 
that will complete our exploration of sequential execution flows is to see how we can 
implement an iteration using promises. Again, the spiderLinks() function of web 
spider version 2 is a perfect example to show that.
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Let's add the missing piece to the code we wrote so far:

function spiderLinks(currentUrl, body, nesting) {
  var promise = Promise.resolve();        //[1]
  if(nesting === 0) {
    return promise;
  }
  var links = utilities.getPageLinks(currentUrl, body);
  links.forEach(function(link) {        //[2]
    promise = promise.then(function() {
      return spider(link, nesting - 1);
    });
  });
  
  return promise;
}

To iterate asynchronously over all the links of a web page, we had to dynamically 
build a chain of promises:

1. First, we defined an "empty" promise, resolving to undefined. This promise 
is just used as a starting point to build our chain.

2. Then, in a loop, we update the promise variable with a new promise 
obtained by invoking then() on the previous promise in the chain.  
This is actually our asynchronous iteration pattern using promises.

This way, at the end of the loop, the promise variable will contain the promise of the 
last then() invocation in the loop, so it will resolve only when all the promises in the 
chain have been resolved.

With this, we completely converted our web spider version 2 to use promises.  
We should now be able to try it out again.

Sequential iteration – the pattern
To conclude this section on sequential execution, let's extract the pattern to iterate 
over a set of promises in sequence:

var tasks = [...]
var promise = Promise.resolve();
tasks.forEach(function(task) {
  promise = promise.then(function() {
    return task();
  });
});
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promise.then(function() {
  //All tasks completed
});

An alternative to using the forEach() loop is to use reduce(), allowing an even 
more compact code:

var tasks = [...]
var promise = tasks.reduce(function(prev, task) {
  return prev.then(function() {
    return task();
  });
}, Promise.resolve());

promise.then(function() {
  //All tasks completed
});

As always, with simple adaptations of this pattern, we could collect all the tasks' 
results in an array; we could implement a mapping algorithm, or build a filter,  
and so on.

Pattern (sequential iteration with promises): dynamically builds a 
chain of promises using a loop.

Parallel execution
Another execution flow that becomes trivial with promises is the parallel execution 
flow. In fact, all that we need to do is use the built-in Promise.all() helper that 
creates another promise, which fulfills only when all the promises received in an 
input are fulfilled. That's essentially a parallel execution because no order between 
the various promises' resolutions is enforced.

To demonstrate this, let's consider version 3 of our web spider application, the one 
downloading all the links of a page in parallel. Let's update the spiderLinks() 
function again to implement a parallel flow, using promises:

function spiderLinks(currentUrl, body, nesting) {
  if(nesting === 0) {
    return Promise.resolve();
  }
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  var links = utilities.getPageLinks(currentUrl, body);
  var promises = links.map(function(link) {
    return spider(link, nesting - 1);
  });
  
  return Promise.all(promises);
}

Trivially, the pattern consists in starting the spider() tasks all at once into the 
elements.map() loop, which also collects all their promises. This time, in the loop, 
we are not waiting for the previous download to complete before starting a new one, 
all the download tasks are started in the loop at once, one after the other. Afterwards, 
we leveraged the Promise.all()method, which returns a new promise that will 
be fulfilled when all the promises in the array are fulfilled. In other words, it fulfills 
when all the download tasks have completed; exactly what we wanted.

Limited parallel execution
Unfortunately, the ES6 Promise API does not provide a way to implement a limited 
parallel control flow natively, but we can always rely on what we learned about 
limiting the concurrency with plain JavaScript. In fact, the pattern we implemented 
inside the TaskQueue class can be easily adapted to support tasks that return a 
promise. This can be done trivially by modifying the next() method:

TaskQueue.prototype.next = function() {
  var self = this;
  while(self.running < self.concurrency && self.queue.length) {
    var task = self.queue.shift();
    task().then(function() {
      self.running--;
      self.next();
    });
    self.running++;
  }
}

So now, instead of handling the task with a callback, we simply invoke then() on 
the promise it returns. The rest of the code is practically identical to the old version 
of TaskQueue.
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Now, we can go back to the spider.js module, modifying it to support our  
new version of the TaskQueue class. First, we make sure to define a new instance  
of TaskQueue:

var TaskQueue = require('./taskQueue');
var downloadQueue = new TaskQueue(2);

Then, it's the turn of the spiderLinks() function again. The change here is also 
pretty straightforward:

function spiderLinks(currentUrl, body, nesting) {
  if(nesting === 0) {
    return Promise.resolve();
  }
  
  var links = utilities.getPageLinks(currentUrl, body);
  //we need the following because the Promise we create next
  //will never settle if there are no tasks to process
  if(links.length === 0) {
    return Promise.resolve();
  }
  
  return new Promise(function(resolve, reject) {    //[1]
    var completed = 0;
    links.forEach(function(link) {
      var task = function() {          //[2]
        return spider(link, nesting - 1)
          .then(function() {
            if(++completed === links.length) {
              resolve();
            }
          })
          .catch(reject);
      };
      downloadQueue.pushTask(task);
    });
  });
}
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There are a couple of things in the preceding code that merit our attention:

1. First, we needed to return a new promise created using the Promise 
constructor. As we will see, this enables us to resolve  the promise  
manually, when all of the tasks in the queue are completed.

2. Second, we should look at how we defined the task. What we did is attach 
an onFulfilled() callback to the promise returned by spider(), so we 
could count the number of download tasks completed. When the amount of 
completed downloads matches the number of links in the current page, we 
know that we are done processing, so we can invoke the resolve() function 
of the outer promise.

The Promises/A+ specification states that the onFulfilled() 
and onRejected() callbacks of the then() method have to 
be invoked only once and exclusively (only one or the other is 
invoked). A compliant promises implementation makes sure that 
even if we call resolve or reject multiple times, the promise is 
either fulfilled or rejected only once.

Version 4 of the web spider application using promises should now be ready to be 
tried out. We might notice once again how the download tasks now run in parallel, 
with a concurrency limit of 2.

Generators
The ES6 specification introduces another mechanism that, besides other things, can 
be used to simplify the asynchronous control flow of our Node.js applications. We 
are talking about generators, also known as semi-coroutines. They are a generalization 
of subroutines, where there can be different entry points. In a normal function, in 
fact, we can have only one entry point, which corresponds to the invocation of 
the function itself. A generator is similar to a function, but in addition, it can be 
suspended (using the yield statement) and then resumed at a later time. Generators 
are particularly useful when implementing iterators, and this should ring a 
bell, as we have already seen how iterators can be used to implement important 
asynchronous control flow patterns such as sequential and limited parallel execution.
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In Node.js, generators are available starting from Version 0.11, but at 
the moment of writing, this feature is still not enabled by default and 
it's necessary to invoke Node.js with the --harmony or --harmony-
generators flags to get generators working. To try the examples in 
this section, make sure you have the right version of Node.js installed 
(Version 0.11.0 and later), by running the following command:
node --version

The basics
Before we explore the use of generators for asynchronous control flow, it's important 
we learn some basic concepts. Let's start from the syntax; a generator function can be 
declared by appending the * (asterisk) operator after the function keyword:

function* makeGenerator() {
  //body
}

Inside the makeGenerator() function, we can pause the execution using the 
keyword yield and return to the caller the value passed to it:

function* makeGenerator() {
  yield 'Hello World';
  console.log('Re-entered');
}

In the preceding code, the generator yields a string, Hello World, by putting the 
execution of the function on pause. When the generator is resumed, the execution 
will start from console.log('Re-entered').

The makeGenerator() function is essentially a factory that, when invoked, returns a 
new generator object:

var gen = makeGenerator();

The most important method of the generator object is next(), which is used  
to start/resume the execution of the generator and returns an object in the  
following form:

{
  value: <yielded value>
  done: <true if the execution reached the end>
}

This object contains the value yielded by the generator (value) and a flag to indicate 
if the generator has completed its execution (done).
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A simple example
To demonstrate generators, let's create a new module. We can call it 
fruitGenerator.js and include the following code:

function* fruitGenerator() {
    yield 'apple';
    yield 'orange';
    return 'watermelon';
}

var newFruitGenerator = fruitGenerator();
console.log(newFruitGenerator.next());    //[1]
console.log(newFruitGenerator.next());    //[2]
console.log(newFruitGenerator.next());    //[3]

We can run the new module with the following command:

node --harmony-generators fruitGenerator

The preceding code should print the following output:

{ value: 'apple', done: false }

{ value: 'orange', done: false }

{ value: 'watermelon', done: true }

This is a short explanation of what happened in the preceding code:

1. The first time newFruitGenerator.next() was invoked, the generator 
started its execution until it reached the first yield command, which put  
the generator on pause and returned the value apple, to the caller.

2. At the second invocation of newFruitGenerator.next(), the generator 
resumed, starting from the second yield command, which in turn put on 
pause the execution again, while returning the value orange to the caller.

3. The last invocation of newFruitGenerator.next() caused the execution of 
the generator to resume from its last instruction, a return statement, which 
terminates the generator, returns the value, watermelon, and sets the done 
property to true in the result object.
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Generators as iterators
To better understand why generators are so useful for the implementation of iterators, 
let's build one. In a new module, which we will call iteratorGenerator.js,  
let's write the following code:

function* iteratorGenerator(arr) {
  for(var i = 0; i < arr.length; i++) {
    yield arr[i];
  };
}

var iterator = iteratorGenerator(['apple', 'orange', 'watermelon']);
var currentItem = iterator.next();
while(!currentItem.done) {
  console.log(currentItem.value);
  currentItem = iterator.next();
}

We can execute this code using the following command:

node --harmony-generators iteratorGenerator

The preceding simple program should print the list of the items in the array  
as follows:

apple

orange

watermelon

In this example, each time we call iterator.next(), we resume the for loop of  
the generator, which runs another cycle by yielding the next item in the array.  
This demonstrates how the state of the generator is maintained across invocations. 
When resumed, the loop and all the variables are exactly the same as when the 
execution was put on pause.

Passing values back to a generator
To conclude our exploration of the basic functionality of generators, we will now 
learn how to pass values back to a generator. This is actually very simple; what we 
need to do is just providing an argument to the next() method, and that value will 
be provided as the return value of the yield statement inside the generator. 
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To show this, let's create a new simple module:

function* twoWayGenerator() {
  var what = yield null;
  console.log('Hello ' + what);
}

var twoWay = twoWayGenerator();
twoWay.next();
twoWay.next('world');

When executed, the preceding code will print Hello world. This means that  
the following has happened:

1. When the first next() method is invoked, the generator reaches the first 
yield function and is then put on pause.

2. When next('world') is invoked, the generator resumes from the point 
where it was put on pause, which is on the yield instruction, but this time 
we have a value that is passed back to the generator. This value will then be 
set into the what variable. The generator then executes the console.log() 
instruction and terminates.

In a similar way, we can force a generator to throw an exception. This is made possible 
by using the throw method of the generator, as shown in the following example:

var twoWay = twoWayGenerator();
twoWay.next();
twoWay.throw(new Error());

Using this last code snippet, the twoWayGenerator() function will throw an 
exception the moment the yield function returns. This works exactly as if an 
exception was thrown from inside the generator, and this means that it can be  
caught and handled like any other exception using a try-catch block.

Asynchronous control flow with generators
You must be wondering how generators can help us with handling asynchronous 
operations. We immediately demonstrate that by creating a function that allows us 
to use asynchronous functions inside a generator and then resuming the execution of 
the generator when the asynchronous operation completes. We will call this function 
asyncFlow():

function asyncFlow(generatorFunction) {
  function callback(err) {
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    if(err) {
      return generator.throw(err);
    }
    var results = [].slice.call(arguments, 1);
    generator.next(results.length > 1 ? results : results[0]);
  };
  var generator = generatorFunction(callback);
  generator.next();
}

The preceding function takes a generator as an input, instantiates it, and then 
immediately starts its execution:

var generator = generatorFunction(callback);
generator.next();

The generatorFunction() receives as input a special callback function that 
invokes generator.throw() if an error is received; otherwise, it resumes  
the execution of the generator by passing back the results received in the  
callback function:

if(err) {
  return generator.throw(err);
}
var results = [].slice.call(arguments, 1);
generator.next(results.length > 1 ? results : results[0]);

To demonstrate the power of this simple function, let's create a new module  
called clone.js, which (stupidly) creates a clone of itself. Paste the asyncFlow() 
function we just created, followed by the core of the program:

var fs = require('fs');
var path = require('path');

asyncFlow(function* (callback) {
  var fileName = path.basename(__filename);
  var myself = yield fs.readFile(fileName, 'utf8', callback);
  yield fs.writeFile('clone_of_' + fileName, myself, callback);
  console.log('Clone created');
});
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Remarkably, with the help of the asyncFlow() function, we were able to write 
asynchronous code using a linear approach, as we were using blocking functions! 
The magic behind this result should be clear by now. The callback passed to 
each asynchronous function will in turn resume the generator as soon as the 
asynchronous operation is complete. Nothing complicated, but the outcome  
is surely impressive.

There are two other variations of this technique, one involving the use of promises 
and the other using thunks.

A thunk used in generator-based control flow is just a function that 
partially applies all the arguments of the original function except 
its callback. The return value is another function that accepts only 
the callback as an argument. For example, the thunkified version of 
fs.readFile() would be as follows:

function readFileThunk(filename, options) {

  return function(callback) {

    fs.readFile(filename, options, callback);

  }

}

Both thunks and promises allow us to create generators that do not need a callback 
to be passed as an argument; for example, a version of asyncFlow() using thunks 
might be the following:

function asyncFlowWithThunks(generatorFunction) {
  function callback(err) {
    if(err) {
      return generator.throw(err);
    }
    var results = [].slice.call(arguments, 1);
    var thunk = generator.next(results.length > 1 ? results : 
results[0]).value;
    thunk && thunk(callback);
  };
  var generator = generatorFunction();
  var thunk = generator.next().value;
  thunk && thunk(callback);
}



Chapter 2

[ 107 ]

The trick is to read the return value of generator.next(), which contains the thunk. 
The next step is to invoke the thunk itself, by injecting our special callback. Simple! 
This allows us to write the following code:

asyncFlowWithThunks(function* () {
  var myself = yield readFileThunk(__filename, 'utf8');
  yield writeFileThunk("clone of clone.js", myself);
  console.log("Clone created");
});

Similarly, we could implement a version of asyncFlow() that accepts a promise as 
yieldable. We leave this as an exercise as its implementation requires only a minimal 
change in the asyncFlowWithThunks() function. We may also implement an 
asyncFlow() function that accepts both promises and thunks as yieldables,  
using the same principles.

Generator-based control flow using co
As you may guess, the Node.js ecosystem already provides some solutions  
to handle asynchronous control flows using generators. For example, suspend 
(https://npmjs.org/package/suspend) is one of the oldest and supports promises, 
thunks, Node.js-style callbacks, as well as raw callbacks. Also, most of the promises 
libraries we analyzed earlier in the chapter provide helpers to use promises  
with generators.

All these solutions are based on the same principles we demonstrated with the 
asyncFlow() function; so, we may want to reuse one of these instead of writing  
one ourselves.

For the examples in this section, we chose to use co (https://npmjs.org/package/
co), which is currently receiving a lot of momentum. A flexible solution, co supports 
several types of yieldables, some of which are:

• Thunks
• Promises
• Arrays (parallel execution)
• Objects (parallel execution)
• Generators (delegation)
• Generator functions (delegation)
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co also has its own ecosystem of packages including the following:

• Web frameworks, the most popular being koa (https://npmjs.org/
package/koa)

• Libraries implementing specific control flow patterns
• Libraries wrapping popular APIs to support co

We will use co to reimplement our web spider application using generators.

While, to convert Node.js style functions to thunks, we are going to use a little library 
called thunkify (https://npmjs.org/package/thunkify).

Sequential execution
Let's start our practical exploration of generators and co by modifying version 2 
of the web spider application. The very first thing we want to do is to load our 
dependencies and generate a thunkified version of the functions we are going  
to use. These will go at the top of the spider.js module:

var thunkify = require('thunkify');
var co = require('co');

var request = thunkify(require('request'));
var fs = require('fs');
var mkdirp = thunkify(require('mkdirp'));
var readFile = thunkify(fs.readFile);
var writeFile = thunkify(fs.writeFile);
var nextTick = thunkify(process.nextTick);

Looking at the preceding code, we can surely notice some similarities with the code 
we used earlier in the chapter to promisify some APIs. In this regard, it is interesting 
to point out that if we decided to use the promisified version of our functions instead 
of their thunkified alternative, the code that will now follow would remain exactly 
the same, thanks to the fact that co supports both thunks and promises as yieldable 
objects. In fact, if we want, we could even use both thunks and promises in the same 
application, even in the same generator. This is a tremendous advantage in terms of 
flexibility, as it allows us to use generator-based control flow with whatever solution 
we already have at our disposal.

Okay, now let's start transforming the download() function into a generator:

function* download(url, filename) {
  console.log('Downloading ' + url);
  var results = yield request(url);
  var body = results[1];
  yield mkdirp(path.dirname(filename));
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  yield writeFile(filename, body);
  console.log('Downloaded and saved:' + url);
  return body;
}

By using generators and co, our download() function suddenly becomes trivial. All 
we had to do is just convert it into a generator function and use yield wherever we 
had an asynchronous function (as thunk) to invoke.

Next, it's the turn of the spider() function:

function* spider(url, nesting) {
  var filename = utilities.urlToFilename(url);
  var body;
  try {
    body = yield readFile(filename, 'utf8');
  } catch(err) {
    if(err.code !== 'ENOENT') {
      throw err;
    }
    body = yield download(url, filename);
  }
  yield spiderLinks(url, body, nesting);
}

The interesting detail to notice from this last fragment of code is how we were 
able to use a try-catch block to handle exceptions. Also, we can now use throw 
to propagate errors! Another remarkable line is where we yield the download() 
function, which is not a thunk nor a promisified function, but just another generator. 
This is possible, thanks to co, which also supports other generators as yieldables.

At last, we can also convert spiderLinks(), where we implemented an iteration  
to download the links of a web page in sequence. With generators, this becomes 
trivial as well:

function* spiderLinks(currentUrl, body, nesting) {
  if(nesting === 0) {
    return yield nextTick();
  }
  
  var links = utilities.getPageLinks(currentUrl, body);
  for(var i = 0; i < links.length; i++) {
    yield spider(links[i], nesting - 1);
  };
}
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There is really little to explain from the previous code, there is no pattern to show  
for the sequential iteration; generators and co are doing all the dirty work for us,  
so we were able to write the asynchronous iteration as if we were using blocking, 
direct style APIs.

Now comes the most important part, the entry point of our program:

co(function* () {
  try {
    yield spider(process.argv[2], 1);
    console.log('Download complete');
  } catch(err) {
    console.log(err);
  };
})();

This is the only place where we have to invoke co(...) to wrap a generator.  
In fact, once we do that, co will automatically wrap any generator we pass to  
a yield statement, and this will happen recursively, so the rest of the program  
is totally agnostic to the fact we are using co, even though it's under the hood.

It is important to notice that the co() function returns a 
thunk, so we have to invoke it to start the spider task.

Now it should be possible to run our generator-based web spider application.  
Just remember to use the --harmony or --harmony-generators flag in the 
command line:

node --harmony-generators spider <URL>

Parallel execution
The bad news about generators is that they are great for writing sequential 
algorithms, but they can't be used to parallelize the execution of a set of tasks, 
at least not using just yield and generators. In fact, the pattern to use for these 
circumstances is to simply rely on a callback-based or promise-based function,  
which in turn can easily be yielded and used with generators.

Fortunately, for the specific case of the unlimited parallel execution, co already 
allows us to obtain it natively by simply yielding an array of promises, thunks, 
generators, or generator functions. 
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With this in mind, version 3 of our web spider application can be implemented 
simply by rewriting the spiderLinks() function as follows:

function* spiderLinks(currentUrl, body, nesting) {
  if(nesting === 0) {
    return nextTick();
  }
  
  var links = utilities.getPageLinks(currentUrl, body);
  var tasks = links.map(function(link) {
    return spider(link, nesting - 1);
  });
  yield tasks;
}

What we did was just collect all the download tasks, which are essentially 
generators, and then yield on the resulting array. All these tasks will be executed 
by co in parallel and then the execution of our generator (spiderLinks) will be 
resumed when all the tasks finish running.

If you think we cheated by exploiting the feature of co that allows us to yield on 
an array, we can demonstrate how the same parallel flow can be achieved using a 
callback-based solution similar to what we have already used earlier in the chapter. 
Let's use this technique to rewrite the spiderLinks() once again:

function spiderLinks(currentUrl, body, nesting) {
  if(nesting === 0) {
    return nextTick();
  }
  
  //returns a thunk
  return function(callback) {
    var completed = 0, errored = false;
    var links = utilities.getPageLinks(currentUrl, body);
    if(links.length === 0) {
      return process.nextTick(callback);
    }
    
    function done(err, result) {
      if(err && !errored) {
        errored = true;
        callback(err);
      }
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      if(++completed === links.length && !errored) {
        callback();
      }
    }
    
    for(var i = 0; i < links.length; i++) {
      co(spider(links[i], nesting - 1))(done);
    };
  }
}

To run the spider() function in parallel, which is a generator, we had to convert it 
into a thunk and then execute it. This was possible by wrapping it with the co(...) 
function, which essentially creates a thunk out of a generator. This way, we were 
able to invoke it in parallel and set the done() function as callback. Usually, all the 
libraries for generator-based control flow have a similar feature, so you can always 
transform a generator into a callback-based function if needed.

To start multiple download tasks in parallel, we just reused the callback-based 
pattern for parallel execution, which we defined earlier in the chapter. We should 
also notice that we transformed the spiderLinks() function to a thunk (it's not even 
a generator anymore.) This enabled us to have a callback function to invoke when 
all the parallel tasks are completed.

Pattern (generator-to-thunk): converts a generator to a thunk in 
order to be able to run it in parallel or utilize it for taking advantage 
of other callback- or promises-based control flow algorithms.

Limited parallel execution
Now that we know how to move in case of nonsequential execution flows, it should 
be easy to plan the implementation of version 4 of our web spider application, the 
one imposing a limit on the number of concurrent download tasks. We have several 
options we can use to do that, some of them are as follows:

• Use the callback-based version of the TaskQueue class we implemented 
previously in the chapter. We would need to just thunkify its functions and 
any generator we want to use as a task.

• Use the promises-based version of the TaskQueue class, and just make sure 
that each generator we want to use as a task is converted into a function 
returning a promise.



Chapter 2

[ 113 ]

• Use async, and thunkify any helper we plan to use, in addition to converting 
any generator to a callback-based function that can be used by the library.

• Use a library from the co ecosystem, specifically designed for this type of 
flow, such as, co-limiter (https://npmjs.org/package/co-limiter).

• Implement a custom algorithm based on the producer-consumer pattern, the 
same that co-limiter uses internally.

For educational purposes, we are going to choose the last option, so we can dive into 
a pattern that is often associated with coroutines (but also threads and processes).

Producer-consumer pattern
The goal is to leverage a queue to feed a fixed number of workers, as many as the 
concurrency level we want to set. To implement this algorithm, we are going to take 
as starting point the TaskQueue class we defined earlier in the chapter. Let's start 
gradually; the first thing we want to do is define the constructor:

function TaskQueue(concurrency) {
  this.concurrency = concurrency;
  this.running = 0;
  this.taskQueue = [];
  this.consumerQueue = [];
  this.spawnWorkers(concurrency);
}

Notice the invocation of this.spawnWorkers() as this is the method in charge of 
starting the workers. The next step is, of course, to define our workers; let's see how 
they look:

TaskQueue.prototype.spawnWorkers = function(concurrency) {
  var self = this;
  for(var i = 0; i < concurrency; i++) {
    co(function* () {
      while(true) {
        var task = yield self.nextTask();
        yield task;
      }
    })();
  }
}
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Our workers are very simple; they are just generators wrapped around co() and 
executed immediately, so that each one can run in parallel. Internally, each worker 
is running an infinite loop that blocks (yield) waiting for a new task to be available 
in the queue (yield self.nextTask()), and when this happens, it yields the task 
(which is any valid yieldable) waiting for its completion. You may be wondering, 
how can we actually wait for the next task to be queued? The answer is in the 
nextTask() method that we are now going to define:

TaskQueue.prototype.nextTask = function() {
  var self = this;
  return function(callback) {          //[1]
    if(self.taskQueue.length !== 0) {
      callback(null, self.taskQueue.shift());    //[2]
    } else {
      self.consumerQueue.push(callback);      //[3]
    }
  }
}

Let's see what happens in this method, which is the core of the pattern:

1. The method returns a thunk, which is a valid yieldable for co.
2. The callback of the returned thunk is invoked by providing the next task  

in the taskQueue (if there is any available). This will immediately unblock  
a worker, providing the next task to yield on.

3. If there are no tasks in the queue, the callback itself is pushed into the 
consumerQueue. By doing this, we are practically putting a worker  
in idle mode. The callbacks in the consumerQueue function will be  
invoked as soon as we have a new task to process, which will resume  
the corresponding worker.

Now, to know how the idle workers in the consumerQueue function are resumed,  
we need to define the pushTask() method:

TaskQueue.prototype.pushTask = function(task) {
  if(this.consumerQueue.length !== 0) {
    this.consumerQueue.shift()(null, task);
  } else {
    this.taskQueue.push(task);
  }
}
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Trivially, the method invokes the first callback in the consumerQueue function  
if available, which in turn will unblock a worker. If no callback is available,  
it means that all the workers are busy, so we simply add a new item in the 
taskQueue function.

In the TaskQueue class we just defined, the workers have the role of consumers, 
while whoever uses pushTask() can be considered a producer. This pattern shows 
us how a generator can look very similar to a thread (or a process). In fact, the 
producer-consumer interaction is probably the most common problem presented 
when studying inter-process communication techniques, but as we already 
mentioned, it is also a common use case for coroutines.

Limiting the download tasks concurrency
Now that we have implemented our limited parallel algorithm using generators 
and the producer-consumer pattern, we can apply it to limit the concurrency of 
the download tasks of our web spider application (version 4). First, let's load and 
initialize a TaskQueue object:

var TaskQueue = require('./taskQueue')
var downloadQueue = new TaskQueue(2);

Next, we modify the spiderLinks() function. Its body is almost identical to the one 
we just used to implement the unlimited parallel execution flow, so we will only 
show the changed parts here:

function spiderLinks(currentUrl, body, nesting) {
  [...]
  return function(callback) {
    [...]
    function done(err, result) {
      [...]
    }
    links.forEach(function(link) {
      downloadQueue.pushTask(function *() {
        yield spider(link, nesting - 1);
        done();
      });
    });
  }
}
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In each of the tasks, we invoke the done() function just after a download completes, 
so we can count how many links were downloaded and then notify the callback of 
the thunk when all are complete.

As an exercise, you can try to implement version 4 of the web spider application, 
using the other four methods we presented at the beginning of this section.

Comparison
At this point of the chapter, we should have a better understanding of what options 
we have to tame the asynchronous nature of Node.js. Each one of the solutions 
presented has its own pros and cons. Let's summarize them in the following table:

Solutions Pros Cons
Plain JavaScript • Does not require any 

additional library or 
technology

• Offers the best 
performances

• Provides the best level  
of compatibility with  
third-party libraries

• Allows the creation of ad 
hoc and more advanced 
algorithms

• Might require extra code 
and relatively complex 
algorithms

Async • Simplifies the most common 
control flow patterns

• Is still a callback-based 
solution

• Good performances

• Introduces an external 
dependency

• Might still not be enough 
for advanced flows
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Solutions Pros Cons
Promises • Greatly simplify the most 

common control flow 
patterns

• Robust error handling
• Part of the ES6 specification
• Guarantee deferred 

invocation of onFulfilled 
and onRejected

• Might require an 
external dependency

• Require to promisify 
callback-based APIs

• Only a few third-
party libraries support 
promises natively

• Introduce a small 
performance hit

Generators • Make nonblocking API look 
like blocking

• Simplify error handling
• Part of ES6 specification

• Require a 
complementary control 
flow library

• Still require callbacks or 
promises to implement 
nonsequential flows

• Not yet available by 
default on Node.js

• Require to thunkify or 
promisify nongenerator-
based APIs

It is worth mentioning that we chose to present in this chapter only 
the most popular solutions to handle asynchronous control flow, 
or the ones receiving a lot of momentum, but it's good to know that 
there are a few more options you might want to look at, for example, 
Fibers (https://npmjs.org/package/fibers) and Streamline 
(https://npmjs.org/package/streamline).
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Summary
At the beginning of this chapter, we said that Node.js programming can be tough 
because of its asynchronous nature, especially for people used to developing on 
other platforms. However, throughout this chapter we showed how asynchronous 
APIs can be bent to our will, starting with plain JavaScript, which provided us 
the foundation for the analysis of more sophisticated techniques. We then saw 
that the tools at our disposal are indeed variegated and provide good solutions to 
most of our problems, in addition to offering a programming style for every taste; 
for example, we may choose async to simplify the most common flows, or totally 
change paradigm by using promises with their fluent chaining and robust error 
management, or if we want to get fancy, we can always leverage generators and  
feel like we are programming with blocking APIs.

This chapter should not only have taught you how to choose between one or the 
other solutions but also how to use them together, even in the same project.

This chapter, at last, should have given us that confidence needed for efficiently 
reading and writing asynchronous code and should have brought us a step closer  
to mastering Node.js programming.

In the next chapter, we will introduce streams, the swiss army knife of Node.js.  
We will see how they can be used not only to efficiently handle I/O, but also as  
a tool for transforming data and objects.



Coding with Streams
Streams are one of the most important components and patterns of Node.js.  
There is a motto in the community that says Stream all the things! and this alone 
should be enough to describe the role of streams in Node.js. Dominic Tarr, a top 
contributor to the Node.js community, defines streams as node's best and most 
misunderstood idea. There are different reasons that make Node.js streams so 
attractive; again, it's not just related to technical properties, such as performance or 
efficiency, but it's something more about their elegance and the way they fit perfectly 
into the Node.js philosophy.

In this chapter, you will learn about the following topics:

• Why streams are so important in Node.js
• Using and creating streams
• Streams as a programming paradigm: leveraging their power in many 

different contexts and not just for I/O
• Piping patterns and connecting streams together in different configurations

Discovering the importance of streams
In an event-based platform such as Node.js, the most efficient way to handle I/O is 
in real time, consuming the input as soon as it is available and sending the output as 
soon as it is produced by the application.

In this section, we are going to give an initial introduction to Node.js streams and 
their strengths. Please bear in mind that this is only an overview, as a more detailed 
analysis on how to use and compose streams will follow later in the chapter.
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Buffering vs Streaming
Almost all the asynchronous APIs that we've seen so far in the book work using  
the buffer mode. For an input operation, the buffer mode causes all the data coming 
from a resource to be collected into a buffer; it is then passed to a callback as soon  
as the entire resource is read. The following diagram shows a visual example  
of this paradigm:

In the preceding figure, we can see that, at the time t1, some data was received 
from the resource and saved into the buffer. At the time t2, another data chunk is 
received—the final one—that completes the read operation and causes the entire 
buffer to be sent to the consumer.
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On the other side, streams allow you to process the data as soon as it arrives from the 
resource. This is shown in the following diagram:

This time, the diagram shows you how each new chunk of data is received from the 
resource and is immediately provided to the consumer, who now has the chance to 
process it straightaway without waiting for all the data to be collected in the buffer.

But what are the differences between the two approaches? We can summarize them 
in two major categories:

• Spatial efficiency
• Time efficiency

However, Node.js streams have another important advantage: composability.  
Let's now see what impact these properties have in the way we design and write  
our applications.
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Spatial efficiency
First of all, streams allow us to do things that would not be possible, by buffering 
data and processing it all at once. For example, consider the case in which we have 
to read a very big file, let's say, in the order of hundreds of megabytes or even 
gigabytes. Clearly, using an API that returns a big buffer when the file is completely 
read, is not a good idea. Imagine reading a few of these big files concurrently; our 
application will easily run out of memory. Besides that, buffers in V8 cannot be 
bigger than 0x3FFFFFFF bytes (a little bit less than 1 GB). So, we might hit a wall way 
before running out of physical memory.

Gzipping using a buffered API
To make a concrete example, let's consider a simple Command-line Interface  
(CLI) application that compresses a file using the Gzip format. Using a buffered  
API, such an application will look like the following in Node.js (error handling is 
omitted for brevity):

var fs = require('fs');
var zlib = require('zlib');

var file = process.argv[2];

fs.readFile(file, function(err, buffer) {
  zlib.gzip(buffer, function(err, buffer) {
    fs.writeFile(file + '.gz', buffer, function(err) {
      console.log('File successfully compressed');
    });
  });
});

Now, we can try to put the preceding code in a file named gzip.js and then run it 
with the following command:

node gzip <path to file>

If we choose a file that is big enough, let's say a little bit bigger than 1 GB, we will 
receive a nice error message saying that the file that we are trying to read is bigger 
than the maximum allowed buffer size, such as the following:

RangeError: File size is greater than possible Buffer: 0x3FFFFFFF bytes

That's exactly what we expected, and it's a symptom that we are using the  
wrong approach.
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Gzipping using streams
The simplest way we have to fix our gzip application and make it work with big files 
is to use a streaming API. Let's see how this can be achieved; let's replace the contents 
of the module we just created with the following code:

var fs = require('fs');
var zlib = require('zlib');
var file = process.argv[2];

fs.createReadStream(file)
  .pipe(zlib.createGzip())
  .pipe(fs.createWriteStream(file + '.gz'))
  .on('finish', function() {
    console.log('File successfully compressed');
  });

Is that it? You may ask. Yes, as we said, streams are amazing also because of their 
interface and composability, thus allowing clean, elegant, and concise code. We 
will see this in a while in more detail, but for now the important thing to realize is 
that the program will run smoothly against files of any size, ideally with constant 
memory utilization. Try it yourself (but consider that compressing a big file might 
take a while).

Time efficiency
Let's now consider the case of an application that compresses a file and uploads it to 
a remote HTTP server, which in turn decompresses and saves it on the filesystem. If 
our client was implemented using a buffered API, the upload would start only when 
the entire file has been read and compressed. On the other hand, the decompression 
will start on the server only when all the data has been received. A better solution to 
achieve the same result involves the use of streams. On the client machine, streams 
allows you to compress and send the data chunks as soon as they are read from 
the filesystem, whereas, on the server, it allows you to decompress every chunk as 
soon as it is received from the remote peer. Let's demonstrate this by building the 
application that we mentioned earlier, starting from the server side.

Let's create a module named gzipReceive.js containing the following code:

var http = require('http');
var fs = require('fs');
var zlib = require('zlib');
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var server = http.createServer(function (req, res) {
  var filename = req.headers.filename;
  console.log('File request received: ' + filename);
  req
    .pipe(zlib.createGunzip())
    .pipe(fs.createWriteStream(filename))
    .on('finish', function() {
      res.writeHead(201, {'Content-Type': 'text/plain'});
      res.end('That\'s it\n');
      console.log('File saved: ' + filename);
    });
});

server.listen(3000, function () {
  console.log('Listening');
});

The server receives the data chunks from the network, decompresses them,  
and saves them as soon as they are received, thanks to Node.js streams.

The client side of our application will go into a module named gzipSend.js  
and it looks like the following:

var fs = require('fs');
var zlib = require('zlib');
var http = require('http');
var path = require('path');
var file = process.argv[2];
var server = process.argv[3];

var options = {
  hostname: server,
  port: 3000,
  path: '/',
  method: 'PUT', 
  headers: {
    filename: path.basename(file),
    'Content-Type': 'application/octet-stream' ,
    'Content-Encoding': 'gzip'
  }
};
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var req = http.request(options, function(res) {
  console.log('Server response: ' + res.statusCode);
});

fs.createReadStream(file)
  .pipe(zlib.createGzip())
  .pipe(req)
  .on('finish', function() {
    console.log('File successfully sent');
  });

In the preceding code, we are again using streams to read the data from the file,  
then compress and send each chunk as soon as it is read from the filesystem.

Now, to try out the application, let's first start the server using the  
following command:

node gzipReceive

Then, we can launch the client by specifying the file to send and the address  
of the server (for example localhost):

node gzipSend <path to file> localhost

If we choose a file big enough, we will see more easily how the data flows from the 
client to the server, but why exactly is this paradigm where we have flowing data 
more efficient compared to using a buffered API? The following diagram should  
give us a hint:

read compress send receive decompress write

read compress send receive decompress write

decompressread compress send receive write

On the client

On the server

Buffered

Processing

Streaming

Time
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When a file is processed it goes through a set of sequential stages:

1. [Client] Read from the filesystem.
2. [Client] Compress the data.
3. [Client] Send it to the server.
4. [Server] Receive from the client.
5. [Server] Decompress the data.
6. [Server] Write the data to disk.

To complete the processing, we have to go through each stage like in an assembly 
line, in sequence, until the end. In the preceding figure, we can see that, using a 
buffered API, the process is entirely sequential. To compress the data, we first have 
to wait for the entire file to be read, then, to send the data, we have to wait for the 
entire file to be both read and compressed, and so on. When instead we are using 
streams, the assembly line is kicked off as soon as we receive the first chunk of data, 
without waiting for the entire file to be read. But more amazingly, when the next 
chunk of data is available, there is no need to wait for the previous set of tasks to be 
completed; instead, another assembly line is launched in parallel. This works perfectly 
because each task that we execute is asynchronous, so it can be parallelized by Node.
js; the only constraint is that the order in which the chunks arrive in each stage must 
be preserved (and Node.js streams take care of this for us).

As we can see from the previous figure, the result of using streams is that the entire 
process takes less time, because we waste no time in waiting for all the data to be 
read and processed all at once.

Composability
The code we have seen so far has already given us an overview of how streams can 
be composed, thanks to the pipe() method, which allows us to connect the different 
processing units, each being responsible for one single functionality in perfect Node.
js style. This is possible because streams have a uniform interface, and they can 
understand each other in terms of API. The only prerequisite is that the next stream 
in the pipeline has to support the data type produced by the previous stream, which 
can be either binary, text, or even objects, as we will see later in the chapter.

To take a look at another demonstration of the power of this property, we can  
try to add an encryption layer to the gzipReceive/gzipSend application that  
we built previously. 
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To do this, we only need to update the client by adding another stream to the 
pipeline; to be precise, the stream returned by crypto.createChipher().  
The resulting code should be as follows:

var crypto = require('crypto');
[...]
fs.createReadStream(file)
  .pipe(zlib.createGzip())
  .pipe(crypto.createCipher('aes192', 'a_shared_secret'))
  .pipe(req)
  .on('finish', function() {
    console.log('File succesfully sent');
  });

In a similar way, we can update the server so that the data is decrypted before  
being decompressed:

var crypto = require('crypto');
[...]
var server = http.createServer(function (req, res) {
  [...]
  req
    .pipe(crypto.createDecipher('aes192', 'a_shared_secret'))
    .pipe(zlib.createGunzip())
    .pipe(fs.createWriteStream(filename))
    .on('finish', function() {
      [...]
    });
});

With very little effort (just a few lines of code), we added an encryption layer to 
our application; we simply had to reuse an already available transform stream by 
including it in the pipeline that we already had. In a similar way, we can add and 
combine other streams, as if we were playing with Lego bricks.

Clearly, the main advantage of this approach is reusability, but as we can see from 
the code we presented so far, streams also enable cleaner and more modular code. 
For these reasons, streams are often used not just to deal with pure I/O, but also  
as a means to simplify and modularize the code.
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Getting started with streams
In the previous section, we learned why streams are so powerful, but also that 
they are everywhere in Node.js, starting from its core modules. For example, we 
have seen that the fs module has createReadStream() for reading from a file and 
createWriteStream() for writing to a file, the http request and response objects 
are essentially streams, and the zlib module allows us to compress and decompress 
data using a streaming interface.

Now that we know why streams are so important, let's take a step back and start to 
explore them in more detail.

Anatomy of streams
Every stream in Node.js is an implementation of one of the four base abstract classes 
available in the stream core module:

• stream.Readable

• stream.Writable

• stream.Duplex

• stream.Transform

Each stream class is also an instance of EventEmitter. Streams, in fact, can produce 
several types of events, such as end, when a Readable stream has finished reading, 
or error, when something goes wrong.

Please note that, for brevity, in the examples presented in this 
chapter, we will often omit proper error management. However, in 
production applications it is always advised to register an error 
event listener for all your streams.

One of the reasons why streams are so flexible is the fact that they can handle not 
only binary data, but practically, almost any JavaScript value; in fact they can 
support two operating modes:

• Binary mode: This mode is where data is streamed in the form of chunks,  
such as buffers or strings

• Object mode: This mode is where the streaming data is treated as a sequence 
of discreet objects (allowing to use almost any JavaScript value)
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These two operating modes allow us to use streams not only for I/O, but also as a 
tool to elegantly compose processing units in a functional fashion, as we will see later 
in the chapter.

In this chapter, we will discuss mainly the Node.js stream interface also 
known as Version 2, which was introduced in Node.js 0.10. For further 
details about the differences with the old interface, please refer to the 
official Node.js blog at http://blog.nodejs.org/2012/12/20/
streams2/.

Readable streams
A readable stream represents a source of data; in Node.js, it's implemented using the 
Readable abstract class that is available in the stream module.

Reading from a stream
There are two ways to receive the data from a Readable stream: non-flowing and 
flowing. Let's analyze these modes in more detail.

The non-flowing mode
The default pattern for reading from a Readable stream consists of attaching a 
listener for the readable event that signals the availability of new data to read. 
Then, in a loop, we read all the data until the internal buffer is emptied. This can be 
done using the read() method, which synchronously reads from the internal buffer 
and returns a Buffer or String object representing the chunk of data. The read() 
method has the following signature:

readable.read([size])

Using this approach, the data is explicitly pulled from the stream on demand.

To show how this works, let's create a new module named readStdin.js, which 
implements a simple program that reads from the standard input (a Readable 
stream) and echoes everything back to the standard output:

process.stdin
  .on('readable', function() {
    var chunk;
    console.log('New data available');
    while((chunk = process.stdin.read()) !== null) {
      console.log(
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        'Chunk read: (' + chunk.length + ') "' +
        chunk.toString() + '"'
      );
    }
  })
  .on('end', function() {
    process.stdout.write('End of stream');
  });

The read() method is a synchronous operation that pulls a data chunk from  
the internal buffers of the Readable stream. The returned chunk is, by default,  
a Buffer object if the stream is working in binary mode.

In a Readable stream working in binary mode, we can read strings 
instead of buffers by calling setEncoding(encoding) on the 
stream, and provide a valid encoding format (for example, utf8).

The data is read exclusively from within the readable listener, which is invoked 
as soon as new data is available. The read() method returns null when there is 
no more data available in the internal buffers; in such a case, we have to wait for 
another readable event to be fired - telling us that we can read again - or wait for 
the end event that signals the end of the stream. When a stream is working in binary 
mode, we can also specify that we are interested in reading a specific amount of 
data by passing a size value to the read() method. This is particularly useful when 
implementing network protocols or when parsing specific data formats.

Now, we are ready to run the readStdin module and experiment with it.  
Let's type some characters in the console and then press Enter to see the data echoed 
back into the standard output. To terminate the stream and hence generate a graceful 
end event, we need to insert an EOF (End-Of-File) character (using Ctrl + Z on 
Windows or Ctrl + D on Linux).

We can also try to connect our program with other processes; this is possible using the 
pipe operator (|), which redirects the standard output of a program to the standard 
input of another. For example, we can run a command such as the following:

cat <path to a file> | node readStdin

This is an amazing demonstration of how the streaming paradigm is a universal 
interface, which enables our programs to communicate, regardless of the language 
they are written in.
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The flowing mode
Another way to read from a stream is by attaching a listener to the data event;  
this will switch the stream into using the flowing mode where the data is not  
pulled using read(), but instead it's pushed to the data listener as soon as it arrives. 
For example, the readStdin application that we created earlier will look like this 
using the flowing mode:

process.stdin
  .on('data', function(chunk) {
    console.log('New data available');
    console.log(
      'Chunk read: (' + chunk.length + ')" ' +
      chunk.toString() + '"'
    );
  })
  .on('end', function() {
    process.stdout.write('End of stream');
  });

The flowing mode is an inheritance of the old version of the stream interface  
(also known as Streams1), and offers less flexibility to control the flow of data. 
With the introduction of the Streams2 interface, the flowing mode is not the 
default working mode; to enable it, it's necessary to attach a listener to the data 
event or explicitly invoke the resume() method. To temporarily stop the stream 
from emitting data events, we can then invoke the pause() method, causing any 
incoming data to be cached in the internal buffer.

Calling pause() does not cause the stream to switch back to the 
non-flowing mode.

Implementing Readable streams
Now that we know how to read from a stream, the next step is to learn how to 
implement a new Readable stream. To do this, it's necessary to create a new class by 
inheriting the prototype of stream.Readable. The concrete stream must provide an 
implementation of the _read() method, which has the following signature:

readable._read(size)

The internals of the Readable class will call the _read() method, which in turn will 
start to fill the internal buffer using push():

readable.push(chunk)
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Please note that read() is a method called by the stream consumers, 
while _read() is a method to be implemented by a stream subclass and 
should never be called directly. The underscore usually indicates that 
the method is not public and should not be called directly.

To demonstrate how to implement the new Readable streams, we can try to 
implement a stream that generates random strings. Let's create a new module  
called randomStream.js that will contain the code of our string generator.  
At the top of the file, we will load our dependencies:

var stream = require('stream');
var util = require('util');
var chance = require('chance').Chance();

Nothing special here, except that we are loading a npm module called chance 
(https://npmjs.org/package/chance), which is a library for generating all  
sorts of random values, from numbers to strings to entire sentences.

The next step is to create a new class called RandomStream and that specifies  
stream.Readable as its parent:

function RandomStream(options) {
  stream.Readable.call(this, options);
}
util.inherits(RandomStream, stream.Readable);

In the preceding code, we call the constructor of the parent class to initialize its 
internal state, and forward the options argument received as input. The possible 
parameters passed through the options object include:

• The encoding argument that is used to convert Buffers to Strings  
(defaults to null)

• A flag to enable the object mode (objectMode defaults to false)
• The upper limit of the data stored in the internal buffer after which no more 

reading from the source should be done (highWaterMark defaults to 16 KB)

Okay, now that we have our new RandomStream constructor ready, we can proceed 
with implementing the _read() method:

RandomStream.prototype._read = function(size) {
  var chunk = chance.string();         //[1]
  console.log('Pushing chunk of size:' + chunk.length);
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  this.push(chunk, 'utf8');           //[2]
  if(chance.bool({likelihood: 5})) {       //[3]
    this.push(null);
  }
}
module.exports = RandomStream;

The preceding method is explained as follows:

1. The method generates a random string using chance.
2. It pushes the string into the internal reading buffer. Note that, since we are 

pushing a String, we also specify the encoding, utf8 (this is not necessary  
if the chunk is simply a binary Buffer).

3. It terminates the stream randomly, with a likelihood of 5 percent, by pushing 
null into the internal buffer to indicate an EOF situation or, in other words, 
the end of the stream.

We can also see that the size argument given in input to the _read() function is 
ignored, as it is an advisory parameter. We can simply just push all the available 
data, but if there are multiple pushes inside the same invocation, then we should 
check whether push() returns false, as this would mean that the internal buffer  
has reached the highWaterMark limit and we should stop adding more data to it.

That's it for RandomStream; we are not ready to use it. Let's create a new module 
named generateRandom.js in which we instantiate a new RandomStream object  
and pull some data from it:

var RandomStream = require('./randomStream');
var randomStream = new RandomStream();
randomStream.on('readable', function() {
  var chunk;
  while((chunk = randomStream.read()) !== null) {
    console.log("Chunk received: " + chunk.toString());
  }
});

Now, everything is ready for us to try our new custom stream. Simply execute  
the generateRandom module as usual and watch a random set of strings flowing  
on the screen.
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Writable streams
A writable stream represents a data destination; in Node.js, it's implemented using 
the Writable abstract class, which is available in the stream module.

Writing to a stream
Pushing some data down a writable stream is a straightforward business; all we  
need to do is to use the write() method, which has the following signature:

writable.write(chunk, [encoding], [callback])

The encoding argument is optional and can be specified if chunk is String  
(defaults to utf8, ignored if chunk is Buffer); the callback function instead is  
called when the chunk is flushed into the underlying resource and is optional as well.

To signal that no more data will be written to the stream, we have to use the  
end() method:

writable.end([chunk], [encoding], [callback])

We can provide a final chunk of data through the end() method; in this case  
the callback function is equivalent to registering a listener to the finish event, 
which is fired when all the data written in the stream has been flushed into the 
underlying resource.

Now, let's show how this works by creating a small HTTP server that outputs a 
random sequence of strings:

var chance = require('chance').Chance();
require('http').createServer(function (req, res) {
  res.writeHead(200, {'Content-Type': 'text/plain'});   //[1]
  while(chance.bool({likelihood: 95})) {       //[2]
    res.write(chance.string() + '\n');         //[3]
  }
  res.end('\nThe end...\n');           //[4]
  res.on('finish', function() {            //[5]
    console.log('All data was sent');
  });
}).listen(8080, function () {
  console.log('Listening');
});
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The HTTP server that we created writes into the res object, which is an instance  
of http.ServerResponse and also a Writable stream. What happens is explained  
as follows:

1. We first write the head of the HTTP response. Note that writeHead() is not 
a part of the Writable interface; in fact, it's an auxiliary method exposed by 
the http.ServerResponse class.

2. We start a loop that terminates with a likelihood of five percent (we instruct 
chance.bool() to return true for 95 percent of the time).

3. Inside the loop, we write a random string into the stream.
4. Once we are out of the loop, we call end() on the stream, indicating that no 

more data will be written. Also, we provide a final string to be written into 
the stream before ending it.

5. Finally, we register a listener for the finish event, which will be fired when 
all the data has been flushed into the underlying socket.

We can call this small module, entropyServer.js, and then execute it. To test the 
server, we can open a browser at the address http://localhost:8080, or use curl 
from the terminal as follows:

curl localhost:8080

At this point, the server should start sending random strings to the HTTP client that 
you chose (please bear in mind that some browsers might buffer the data, and the 
streaming behavior might not be apparent).

An interesting curiosity is the fact that http.ServerResponse 
is actually an instance of the old Stream class (http://nodejs.
org/docs/v0.8.0/api/stream.html). It's important to state, 
though, that this does not affect our example, as the interface and 
behavior on the writable side remain almost the same in the newer 
stream.Writable class.

Back-pressure
Similar to a liquid flowing in a real piping system, Node.js streams can also suffer 
from bottlenecks, where data is written faster than the stream can consume it.  
The mechanism to cope with this problem consists of buffering the incoming data; 
however, if the stream doesn't give any feedback to the writer, we might incur a 
situation where more and more data is accumulated into the internal buffer, leading 
to undesired levels of memory usage. 
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To prevent this from happening, writable.write() will return false when 
the internal buffer exceeds the highWaterMark limit. The Writable streams have 
a highWaterMark property, which is the limit of the internal buffer size beyond 
which the write() method starts returning false, indicating that the application 
should now stop writing. When the buffer is emptied, the drain event is emitted, 
communicating that it's safe to start writing again.  
This mechanism is called back-pressure.

The mechanism described in this section is similarly applicable to 
Readable streams. In fact, back-pressure exists in the Readable 
streams too, and it's triggered when the push() method, which is 
invoked inside _read(), returns false. However, it's a problem 
specific to stream implementers, so we will deal with it less frequently.

We can quickly demonstrate how to take into account the back-pressure of a 
Writable stream, by modifying the entropyServer that we created before:

var chance = require('chance').Chance();

require('http').createServer(function (req, res) {
  res.writeHead(200, {'Content-Type': 'text/plain'});
  
  function generateMore() {             //[1]
    while(chance.bool({likelihood: 95})) {       
      var shouldContinue = res.write(
        chance.string({length: (16 * 1024) – 1})     //[2]
      );
      if(!shouldContinue) {             //[3]
        console.log('Backpressure');
        return res.once('drain', generateMore);
      }
    }
    res.end('\nThe end...\n', function() {
      console.log('All data was sent');
    });
  }
  
  generateMore();
}).listen(8080, function () {
  console.log('Listening');
});
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The most important steps of the  previous code can be summarized as follows:

1. We wrapped the main logic into a function called generateMore().
2. To increase the chances of receiving some back-pressure, we increased the 

size of the data chunk to 16 KB - 1 Byte, which is very close to the default 
highWaterMark limit.

3. After writing a chunk of data, we check the return value of res.write(); 
if we receive false, it means that the internal buffer is full and we should 
stop sending more data. In this case, we exit from the function, and register 
another cycle of writes for when the drain event is emitted.

If we now try to run the server again, and then generate a client request with curl, 
there is a good probability that there will be some back-pressure, as the server 
produces data at a very high rate, faster than the underlying socket can handle.

Implementing Writable streams
We can implement a new Writable stream by inheriting the prototype of stream.
Writable and providing an implementation for the _write() method. Let's try to  
do it immediately while discussing the details along the way.

Let's build a Writable stream that receives objects in the following format:

{
  path: <path to a file>
  content: <string or buffer>
}

For each one of these objects, our stream has to save the content part into a file created 
at the given path. We can immediately see that the input of our stream are objects, and 
not strings or buffers; this means that our stream has to work in object mode.

Let's call the module toFileStream.js and, as the first step, let's load all the 
dependencies that we are going to use:

var stream = require('stream');
var fs = require('fs');
var util = require('util');
var path = require('path');
var mkdirp = require('mkdirp');
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Next, we have to create the constructor of our new stream, which inherits the 
prototype from stream.Writable:

function ToFileStream() {
  stream.Writable.call(this, {objectMode: true});
};
util.inherits(ToFileStream, stream.Writable);

Again, we had to invoke the parent constructor to initialize its internal state; we also 
provide an options object that specifies that the stream works in an object mode 
(objectMode: true). Other options accepted by stream.Writable are as follows:

• highWaterMark (the default is 16 KB): This controls the back-pressure limit.
• decodeStrings (defaults to true): This enables the automatic decoding of 

strings into binary buffers before passing them to the _write() method.  
This option is ignored in the object mode.

Finally, we need to provide an implementation for the _write() method:

ToFileStream.prototype._write = function(chunk, encoding, callback) {
  var self = this;
  mkdirp(path.dirname(chunk.path), function(err) {
    if(err) {
      return callback(err);
    }
    fs.writeFile(chunk.path, chunk.content, callback);
  });
}
module.exports = ToFileStream;

This is a good time to analyze the signature of the _write() method. As you can see, 
the method accepts a data chunk, an encoding (which makes sense only if we are in 
the binary mode and the stream option decodeStrings is set to false). Also, the 
method accepts a callback function, which needs to be invoked when the operation 
completes; it's not necessary to pass the result of the operation but, if needed, we can 
still pass an error that will cause the stream to emit an error event.
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Now, to try the stream that we just built, we can create a new module, called for 
example, writeToFile.js, and perform some write operations against the stream:

var ToFileStream = require('./toFileStream');
var tfs = new ToFileStream();
tfs.write({path: "file1.txt", content: "Hello"});
tfs.write({path: "file2.txt", content: "Node.js"});
tfs.write({path: "file3.txt", content: "Streams"});
tfs.end(function() {
  console.log("All files created");
});

With this, we created and used our first custom Writable stream. Run the new 
module as usual to check its output.

Duplex streams
A Duplex stream is a stream that is both Readable and Writable. It is useful when 
we want to describe an entity that is both a data source and a data destination, as 
for example, network sockets. Duplex streams inherit the methods of both stream.
Readable and stream.Writable, so this is nothing new to us. This means that we 
can read() or write() data, or listen for both the readable and drain events.

To create a custom Duplex stream, we have to provide an implementation for both 
_read() and _write(); the options object passed to the Duplex() constructor is 
internally forwarded to both the Readable and Writable constructors. The options are 
the same as those we already discussed in the previous sections, with the addition of 
a new one called allowHalfOpen (defaults to true) that if set to false will cause both 
the parts (Readable and Writable) of the stream to end if only one of them does.

To have a Duplex stream working in the object mode on one side 
and binary mode on the other, we need to manually set the following 
properties from within the stream constructor:

this._writableState.objectMode

this._readableState.objectMode
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Transform streams
The Transform streams are a special kind of Duplex stream that are specifically 
designed to handle data transformations.

In a simple Duplex stream, there is no immediate relationship between the data read 
from the stream and the data written into it (at least, the stream is agnostic to such a 
relationship). Think about a TCP socket, which just sends and receives data to and 
from the remote peer; the socket is not aware of any relationship between the input 
and output. The following diagram illustrates the data flow in a Duplex stream:

On the other side, Transform streams apply some kind of transformation to 
each chunk of data that they receive from their Writable side and then make the 
transformed data available on their Readable side. The following diagram shows 
how the data flows in a Transform stream:

From the outside, the interface of a Transform stream is exactly like that of a Duplex 
stream. However, when we want to build a new Duplex stream we have to provide 
the _read() and _write() methods while, for implementing a new Transform 
stream, we have to fill in another pair of methods: _transform() and _flush().

Let's show how to create a new Transform stream with an example.
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Implementing Transform streams
Let's implement a Transform stream that replaces all the occurrences of a given 
string. To do this, we have to create a new module named replaceStream.js. 
As always, we will start building the module from its dependencies, creating the 
constructor and extending its prototype with the parent stream class:

var stream = require('stream');
var util = require('util');

function ReplaceStream(searchString, replaceString) {
  stream.Transform.call(this, {decodeStrings: false});
  this.searchString = searchString;
  this.replaceString = replaceString;
  this.tailPiece = '';
}
util.inherits(ReplaceStream, stream.Transform);

We assume that the stream will handle only text, so we initialize the parent 
constructor by setting the decodeStrings options to false; this allows us  
to receive strings instead of buffers inside the _transform() method.

Now, let's implement the _transform() method itself:

ReplaceStream.prototype._transform = function(chunk, encoding,
    callback) {
  var pieces = (this.tailPiece + chunk)         //[1]
    .split(this.searchString);
  var lastPiece = pieces[pieces.length - 1];
  var tailPieceLen = this.searchString.length - 1;
 
  this.tailPiece = lastPiece.slice(-tailPieceLen);     //[2]
  pieces[pieces.length - 1] = lastPiece.slice(0, -tailPieceLen);
  
  this.push(pieces.join(this.replaceString));       //[3]
  callback();
}

The _transform() method has practically the same signature as that of the 
_write() method of the Writable stream but, instead of writing data into an 
underlying resource, it pushes it into the internal buffer using this.push(), exactly 
as we would do in the _read() method of a Readable stream. This confirms how the 
two sides of a Transform stream are actually connected.
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The _trasform() method of ReplaceStream implements the core of our  
algorithm. To search and replace a string in a buffer is an easy task; however,  
it's a totally different story when the data is streaming and possible matches  
might be distributed across multiple chunks. The procedure followed by the  
code can be explained as follows:

1. Our algorithm splits the chunk using the searchString function  
as a separator.

2. Then, it takes the last item of the array generated by the operation  
and extracts the last searchString.length - 1 characters. The result  
is saved into the tailPiece variable and it will be prepended to the next 
chunk of data.

3. Finally, all the pieces resulting from split() are joined together using 
replaceString as a separator and pushed into the internal buffer.

When the stream ends, we might still have a last tailPiece variable not pushed 
into the internal buffer. That's exactly what the _flush() method is for; it is invoked 
just before the stream is ended and this is where we have one final chance to finalize 
the stream or push any remaining data before completely ending the stream. Let's 
implement it to complete our ReplaceStream class:

ReplaceStream.prototype._flush = function(callback) {
  this.push(this.tailPiece);
  callback();
}
module.exports = ReplaceStream;

The _flush() method takes in only a callback that we have to make sure to invoke 
when all the operations are complete, causing the stream to be terminated. With this, 
we completed our ReplaceStream class.

Now, it's time to try the new stream. We can create another module called 
replaceStreamTest.js that writes some data and then reads the transformed result:

var ReplaceStream = require('./replaceStream');

var rs = new ReplaceStream('World', 'Node.js');
rs.on('data', function(chunk) {
  console.log(chunk);
});

rs.write('Hello W');
rs.write('orld!');
rs.end();
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To make life a little bit harder for our stream, we spread the search term (which is 
World) across two different chunks; then using the flowing mode we read from the 
same stream, logging each transformed chunk. Running the preceding program 
should produce the following output:

Hel

lo Node.js

!

There is a fifth type of stream that is worth mentioning: 
stream.PassThrough. Unlike the other stream classes that we 
presented, PassThrough is not abstract and can be instantiated 
straightaway without the need to implement any method. It is, in 
fact, a Transform stream that outputs every data chunk without 
applying any transformation.

Connecting streams using pipes
The concept of Unix pipes was invented by Douglas Mcllroy; this enabled the  
output of a program to be connected to the input of the next. Take a look at the 
following command:

echo Hello World! | sed s/World/Node.js/g

In the preceding command, echo will write Hello World! to its standard output, 
which is then redirected to the standard input of the sed command (thanks to the 
pipe | operator); then sed replaces any occurrence of World with Node.js and  
prints the result to its standard output (which, this time, is the console).

In a similar way, Node.js streams can be connected together using the pipe() 
method of the Readable stream, which has the following interface:

readable.pipe(writable, [options])

Very intuitively, the pipe() method takes the data that is emitted from the readable 
stream and pumps it into the provided writable stream. Also, the writable stream 
is ended automatically when the readable stream emits an end event (unless, we 
specify {end: false} as options). The pipe() method returns the writable stream 
passed as an argument allowing us to create chained invocations if such a stream is 
also Readable (as for example a Duplex or Transform stream).
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Piping two streams together will create a suction which allows the data to flow 
automatically to the writable stream, so there is no need to call read() or write(); 
but most importantly there is no need to control the back-pressure anymore, because 
it's automatically taken care of.

To make a quick example (there will be tons of them coming), we can create a new 
module called replace.js which takes a text stream from the standard input, applies 
the replace transformation, and then pushes the data back to the standard output:

var ReplaceStream = require('./replaceStream');
process.stdin
  .pipe(new ReplaceStream(process.argv[2], process.argv[3]))
  .pipe(process.stdout);

The preceding program pipes the data that comes from the standard input into  
a ReplaceStream and then back to the standard output. Now, to try this small 
application, we can leverage a Unix pipe to redirect some data into its standard 
input, as shown in the following example:

echo Hello World! | node replace World Node.js

This should produce the following output:

Hello Node.js

This simple example demonstrates that streams (and in particular text streams) is 
an universal interface, and pipes are the way to compose and interconnect almost 
magically all these interfaces.

The error events are not propagated automatically through the 
pipeline. Take for example this code fragment:

stream1

  .pipe(stream2)

  .on('error', function() {});

In the preceding pipeline, we will catch only the errors coming from 
stream2, which is the stream that we attached the listener to. This means 
that, if we want to catch any error generated from stream1, we have to 
attach another error listener directly to it. We will later see a pattern that 
mitigates this inconvenience (combining streams). Also, we should notice 
that if the destination stream emits an error it gets automatically unpiped 
from the source stream, causing the pipeline to break.
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Useful packages for working with streams
We now present some npm packages that might be very useful when working  
with streams.

readable-stream
We already mentioned how the streams interface changed considerably between the 
0.8 and 0.10 branches of Node.js. Traditionally, the interface supported until Node.js 
0.8 is called Streams1, while the newer interface supported by Node.js 0.10 is called 
Streams2. The core team did a great job in maintaining backward-compatibility, so 
that applications implemented using the Streams1 interface will continue to work 
with the 0.10 branch; however, the vice versa is not true, so using Streams2 against 
Node.js 0.8 will not work. Also, the upcoming 0.12 release will probably be  
shipped with a new version of the stream interface, Streams3, and so on until  
the interface stabilizes.

The streams interface, as of version 0.10, is still marked as unstable on 
the official documentation (http://nodejs.org/docs/v0.10.0/
api/stream.html).

Thankfully, we have an option to shield our code from these changes; it's called 
readable-stream (https://npmjs.org/package/readable-stream), a npm 
package that mirrors the Streams2 and Streams3 implementations of the Node.js 
core. In particular, using the 1.0 branch of readable-stream we can have the Streams2 
interface available even if we run our code against Node.js 0.8. If instead we choose 
the 1.1 branch (probably 1.2 when Node.js 0.12 will be released) we get the Streams3 
interface regardless of the version of the Node.js platform used.

The readable-stream package is a drop-in replacement for the core stream module 
(depending on the version), so using it is as simple as requiring readable-stream 
instead of stream:

var stream = require('readable-stream');
var Readable = stream.Readable;
var Writable = stream.Writable;
var Duplex = stream.Duplex;
var Transform = stream.Transform;

Protecting our libraries and applications from the changes of the still unstable 
streams interface can greatly reduce the defects that originate from platform 
incompatibilities.
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For a detailed rationale on the use of readable-stream  
you can refer to this excellent article written by Rod Vagg:  
http://www.nearform.com/nodecrunch/dont-use-
nodes-core-stream-module/

through and from
The way we created custom streams so far does not exactly follow the Node way; 
in fact, inheriting from a base stream class violates the small surface area principle 
and requires some boilerplate code. This does not mean that streams were badly 
designed; in fact, we should not forget that since they are a part of the Node.js core 
they must be as flexible as possible in order to enable userland modules to extend 
them for a broad range of purposes.

However, most of the time we don't need all the power and extensibility that 
prototypal inheritance can give, but usually what we want is just a quick and an 
expressive way to define new streams. The Node.js community, of course, created 
a solution also for this. A perfect example is through2 (https://npmjs.org/
package/through2), a small library which simplifies the creation of Transform 
streams. With through2, we can create a new Transform stream by invoking a 
simple function:

var transform = through2([options], [_transform], [_flush])

In a similar way, from2 (https://npmjs.org/package/from2) allows us to easily 
and succinctly create Readable streams with code such as the following:

var readable = from2([options], _read)

The advantages of using these little libraries will be immediately clear as soon as we 
start showing their usage in the rest of the chapter.

The packages through (https://npmjs.org/package/through) 
and from (https://npmjs.org/package/from) are the  
original libraries built on top of Streams1.
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Asynchronous control flow with streams
Going through the examples that we presented so far, it should be clear that streams 
can be useful not only to handle I/O, but also as an elegant programming pattern 
that can be used to process any kind of data. But the advantages do not end at the 
simple appearance; streams can also be leveraged to turn asynchronous control flow 
into flow control, as we will see in this section.

Sequential execution
By default, streams will handle data in a sequence, for example, a _transform() 
function of a Transform stream will never be invoked again with the next chunk 
of data, until the previous invocation completes by executing callback(). This is 
an important property of streams, crucial for processing each chunk in the right 
order, but it can also be exploited to turn streams into an elegant alternative to the 
traditional control flow patterns.

Some code is always better than too much explanation, so let's work on an example 
to demonstrate how we can use streams to execute asynchronous tasks in a sequence. 
Let's create a function that concatenates a set of files received as input, making sure 
to honor the order in which they are provided. Let's create a new module called 
concatFiles.js and let's define its contents starting from its dependencies:

var fromArray = require('from2-array');
var through = require('through2');
var fs = require('fs');

We will be using through2 to simplify the creation of Transform streams and 
from2-array in order to create a readable stream from an array of objects.

Next, we can define the concatFiles() function: 

function concatFiles(destination, files, callback) {
  var destStream = fs.createWriteStream(destination);
  
  fromArray.obj(files)             //[1]
    .pipe(through.obj(function(file, enc, done) {   //[2]
      var src = fs.createReadStream(file);
      src.pipe(destStream, {end: false});
      src.on('end', function() {         //[3]
        done();
      });
    }))
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    .on('finish', function() {         //[4]
      destStream.end();
      callback();
    });
}
module.exports = concatFiles;

The preceding function implements a sequential iteration over the files array  
by transforming it into a stream. The procedure followed by the function is  
explained as follows:

1. First, we use from2-array to create a Readable stream from the files array.
2. Next, we create a through (Transform) stream to handle each file in the 

sequence. For each file, we create a Readable stream and we pipe it into 
destStream, which represents the output file. We make sure not to close 
destStream after the source file finishes reading, by specifying {end: 
false} into the pipe() options.

3. When all the contents of the source file have been piped into destStream,  
we invoke done(), which triggers the processing of the next file.

4. When all the files have been processed, the finish event is fired; we 
can finally end destStream and invoke the callback() function of 
concatFiles(), which signals the completion of the whole operation.

We can now try to use the little module we just created. Let's do that in a new file, 
called concat.js:

var concatFiles = require('./concatFiles');
concatFiles(process.argv[2], process.argv.slice(3), function() {
  console.log('Files concatenated succesfully');
});

We can now run the preceding program by passing the destination file as the first 
command line argument followed by a list of files to concatenate, for example:

node concat allTogether.txt file1.txt file2.txt

This should create a new file called allTogether.txt containing, in order, the 
contents of file1.txt and file2.txt.

With the concatFiles() function, we were able to obtain an asynchronous 
sequential iteration using only streams. As we saw in Chapter 2, Asynchronous  
Control Flow Patterns, this would have required the use of an iterator, if implemented 
with pure JavaScript, or an external library such as async. We have now provided 
another option for achieving the same result, which as we see is also very compact 
and elegant.
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Pattern: Use a stream, or combination of streams, to easily iterate 
over a set of asynchronous tasks in sequence.

Unordered parallel execution
We just saw that streams process each data chunk in a sequence, but sometimes  
this can be a bottleneck as we would not make the most of the Node.js concurrency. 
If we have to execute a slow asynchronous operation for every data chunk, it can  
be advantageous to parallelize the execution and speed up the overall process.  
Of course, this pattern can only be applied if there is no relationship between each 
chunk of data, which might happen frequently for object streams, but very rarely  
for binary streams.

Caution: parallel streams cannot be used when the order in which 
the data is processed is important.

To parallelize the execution of a Transform stream, we can apply the same patterns 
that we learned in Chapter 2, Asynchronous Control Flow Patterns, but with some 
adaptations to get them working with streams. Let's see how this works.

Implementing an unordered parallel stream
Let's demonstrate this immediately with an example; let's create a module called 
parallelStream.js and define a generic Transform stream that executes a given 
transform function in parallel. Let's start to define its constructor:

var stream = require('stream');
var util = require('util');

function ParallelStream(userTransform) {
  stream.Transform.call(this, {objectMode: true});
  this.userTransform = userTransform;
  this.running = 0;
  this.terminateCallback = null;
}
util.inherits(ParallelStream, stream.Transform);

The constructor accepts a userTransform() function, which is then saved as an 
instance variable; we also invoke the parent constructor and for convenience we 
enable the object mode by default.
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Next, it is the turn of the _transform() method:

ParallelStream.prototype._transform =
  function(chunk, enc, done) {
    this.running++;
    this.userTransform(chunk, enc, this._onComplete.bind(this));
    done();
  }

In the _transform() method, we execute the userTransform() function, then 
we increment the count of running tasks; finally, we notify that the current 
transformation step is complete by invoking done(). The trick for triggering the 
processing of another item in parallel is exactly this; we are not waiting for the 
userTransform() function to complete before invoking done(), instead we do it 
immediately. On the other hand, we provide a special callback to userTransform(), 
which is the this._onComplete() method (we are going to define it in a moment); 
this allows us to get notified when the userTransform() completes.

Next, it is the turn of the _flush() method:

ParallelStream.prototype._flush = function(done) {
  if(this.running > 0) {
    this.terminateCallback = done;
  } else {
    done();
  }
}

The _flush() method is invoked just before the stream terminates, so if there 
are still tasks running we can put on hold the release of the finish event by not 
invoking the done() callback immediately; instead, we assign it to the this.
terminateCallback variable. To understand how the stream is then properly 
terminated, we have to look into the _onComplete() method:

ParallelStream.prototype._onComplete = function(err) {
  this.running--;
  if(err) {
    return this.emit('error', err);
  }
  if(this.running === 0) {
    this.terminateCallback && this.terminateCallback();
  }
}
module.exports = ParallelStream;
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The _onComplete() method is invoked every time an asynchronous task completes. 
It checks whether there are any more tasks running and, if there are none, it invokes 
the this.terminateCallback() function, which will cause the stream to end, 
releasing the finish event which was put on hold in the _flush() method.

The ParallelStream class, we just built allows us to easily create a Transform 
stream which executes its tasks in parallel, but there is a caveat: it does not preserve 
the order of the items as they are received. In fact, asynchronous operations can 
complete and push data at any time, regardless of when they are started. We 
immediately understand that this property does not play well with binary streams 
where the order of data usually matters, but it can surely be useful with some types 
of object streams.

Implementing a URL status monitoring application
Now, let's apply our ParallelStream to a concrete example. Let's imagine that we 
wanted to build a simple service to monitor the status of a big list of URLs. Let's 
imagine all these URLs are contained in a single file and are newline separated.

Streams can offer a very efficient and elegant solution to this problem, especially if 
we use our ParallelStream to parallelize the checking of the URLs.

Let's build this simple application immediately in a new module called  
checkUrls.js:

var fs = require('fs');
var split = require('split');
var request = require('request');
var ParallelStream = require('./parallelStream');

fs.createReadStream(process.argv[2])         //[1]
  .pipe(split())               //[2]
  .pipe(new ParallelStream(function(url, enc, done) {     //[3]
    if(!url) return done();
    var self = this;
    request.head(url, function(err, response) {
      self.push(url + ' is ' + (err ? 'down' : 'up') + '\n');
      done();
    });
  }))
  .pipe(fs.createWriteStream('results.txt'))       //[4]
  .on('finish', function() {
    console.log('All urls were checked');
  });



Coding with Streams

[ 152 ]

As we can see, with streams our code looks very elegant and straightforward;  
let's see how it works:

1. First, we create a Readable stream from the file given as input.
2. We pipe the contents of the input file through split (https://npmjs.org/

package/split), a Transform stream that ensures outputting each line on a 
different chunk.

3. Then, it's the time to use our ParallelStream to check the URL. We do this 
by sending a HEAD request and waiting for a response. When the callback is 
invoked, we push the result of the operation down the stream.

4. Finally, all the results are piped into a file, results.txt.

Now, we can run the checkUrls module with a command such as this:

node checkUrls urlList.txt

Where the file urlList.txt contains a list of URLs, for example:

http://www.example.com
http://www.example.com/link1
http://thiswillbedownforsure.com

When the command finishes running, we will see that a file results.txt was 
created. This contains the results of the operation, for example:

http://thiswillbedownforsure.com is down
http://www.example.com/link1 is up
http://www.example.com is up

There is a good probability that the order in which the results are written is different 
from the order in which the URLs were specified in the input file. This is clear 
evidence that our stream executes its tasks in parallel, and it does not enforce any 
order between the various data chunks in the stream.

For the sake of curiosity, we might want to try replacing 
ParallelStream with a normal through2 stream, and compare the 
behavior and performances of the two (you might want to do this as an 
exercise). We will see that using through2 is way more slower, because 
each URL would be checked in a sequence, but also that the order of the 
results in the file results.txt would be preserved.
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Unordered limited parallel execution
If we try to run the checkUrls application against a file that contains thousands 
or millions of URLs, we will surely run into trouble. Our application will create an 
uncontrolled number of connections all at once, sending a considerable amount of 
data in parallel and potentially undermining the stability of the application and the 
availability of the entire system. As we already know, the solution to keep the load 
and resource usage under control is to limit the concurrency of the parallel tasks.

Let's see how this works with streams by creating a limitedParallelStream.
js module, which is an adaptation of parallelStream.js that we created in the 
previous section.

Let's see how it looks like, starting from its constructor (we will highlight the 
changed parts):

function LimitedParallelStream(concurrency, userTransform) {
  stream.Transform.call(this, {objectMode: true});
  this.userTransform = userTransform;
  this.running = 0;
  this.terminateCallback = null;
  this.continueCallback = null;
  this.concurrency = concurrency;
}

We need a concurrency limit to be taken as the input and this time we are going to 
save two callbacks, one for any pending _transform method (continueCallback) 
and another one for the callback of the _flush method (terminateCallback).

Next is the _transform() method:

LimitedParallelStream.prototype._transform =
  function(chunk, enc, done) {
    this.running++;
    this.userTransform(chunk, enc, this._onComplete.bind(this));
    if(this.running < this.concurrency) {
      done();
    } else {
      this.continueCallback = done;
    }
  }
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This time in the _transform() method, we have to check whether we have any free 
execution slots before we invoke done() and trigger the processing of the next item. 
If we have already reached the maximum number of concurrent running streams, we 
can simply save the done() callback into the continueCallback variable, so that it 
can be invoked as soon as a task finishes.

The _flush() method remains exactly the same as in the ParallelStream class,  
so let's move directly to implementing the _onComplete() method:

LimitedParallelStream.prototype._onComplete =
  function(err, chunk) {
    this.running--;
    if(err) {
      return this.emit('error', err);
    }
    var tmpCallback = this.continueCallback;
    this.continueCallback = null;
    tmpCallback && tmpCallback();
    if(this.running === 0) {
      this.terminateCallback && this.terminateCallback();
    }
  }

Every time a task completes we invoke any saved continueCallback()that will 
cause the stream to unblock, triggering the processing of the next item.

That's it for the limitedParallelStream module; we can now use it in the 
checkUrls module in place of parallelStream and have the concurrency of our 
tasks limited to the value that we set.

Ordered parallel execution
The parallel streams that we created previously might shuffle the order of the 
emitted data, but there are situations where this is not acceptable; sometimes, in fact, 
it is necessary to have each chunk emitted in the same order in which it was received. 
But not all the hopes are lost, we can still run the transform function in parallel; all 
we have to do is to sort the data emitted by each task so that it follows the same order 
in which the data was received.

This technique involves the use of a buffer to reorder the chunks while they 
are emitted by each running task. For brevity, we are not going to provide an 
implementation of such a stream, as it's quite verbose for the scope of this book; what 
we are going to do instead is reuse one of the available packages on npm built for this 
specific purpose, for example, through2-parallel (https://npmjs.org/package/
through2-parallel).
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We can quickly check the behavior of an ordered parallel execution by modifying 
our existing checkUrls module. Let's say that we want our results to be written in 
the same order as the URLs in the input file, while executing our checks in parallel. 
We can do this using through2-parallel:

[...]
var throughParallel = require('through2-parallel');

fs.createReadStream(process.argv[2])
  .pipe(split())
  .pipe(throughParallel.obj({concurrency: 2},
    function(url, enc, done) {
      [...]
    })
  )
  .pipe(fs.createWriteStream('results.txt'))
  .on('finish', function() {
    console.log('All urls were checked');
  });

As we see, the interface of through2-parallel is very similar to that of through2; 
the only difference is that we can also specify a concurrency limit for the transform 
function that we provide. If we try to run this new version of checkUrls, we will 
now see that the results.txt file lists the results in the same order as the URLs 
appear in the input file.

It is important to see that, even though the order of the output is the 
same as the input, the asynchronous tasks still run in parallel and can 
possibly complete in any order.

With this, we conclude our analysis of the asynchronous control flow with streams; 
next we are going to focus on some piping patterns.

Piping patterns
As in real-life plumbing, Node.js streams also can be piped together following 
different patterns; we can, in fact, merge the flow of two different streams into one, 
split the flow of one stream into two or more pipes, or redirect the flow based on 
a condition. In this section, we are going to explore the most important plumbing 
techniques that can be applied to Node.js streams.
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Combining streams
In this chapter, we stressed a lot on the fact that streams provide a simple 
infrastructure to modularize and reuse our code, but there is one last piece missing 
in this puzzle: what if we want to modularize and reuse an entire pipeline? What if 
we want to combine multiple streams so that they look like one from the outside? 
The following figure shows what this means:

From the preceding diagram, we should already get a hint of how this works:

• When we write into the combined stream, we are actually writing into the 
first stream of the pipeline

• When we read from the combined stream, we are actually reading from the 
last stream of the pipeline

A combined stream is usually a Duplex stream, which is built by connecting the first 
stream to its Writable side and the last stream to its Readable side.

To create a Duplex stream out of two different streams, one 
Writable and one Readable, we can use an npm module such  
as duplexer2 (https://npmjs.org/package/duplexer2).

But that's not enough; in fact, another important characteristic of a combined stream is 
that it has to capture all the errors that are emitted from any stream inside the pipeline. 
As we already mentioned, any error event is not automatically propagated down the 
pipeline; so, if we want to have proper error management (and we should), we will 
have to explicitly attach an error listener to each stream. However, if the combined 
stream is really a black box, this means that we don't have access to any of the streams 
in the middle of the pipeline; so it's crucial for the combined stream to also act as an 
aggregator for all the errors coming from any stream in the pipeline.
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To recap, a combined stream has two major advantages:

• We can redistribute it as a black box, by hiding its internal pipeline
• We have simplified error management as we don't have to attach an error 

listener to each stream in the pipeline, but just to the combined stream itself

Combining streams is a pretty generic and common practice, so if we don't have  
any particular need we might just want to reuse an existing solution such as 
multipipe (https://www.npmjs.org/package/multipipe) or combine-stream 
(https://www.npmjs.org/package/combine-stream), just to name a few.

Implementing a combined stream
To make a simple example, let's consider the case of the following two  
transform streams:

• One that both compresses and encrypts the data.
• One that both decompresses and decrypts the data.

Using a library such as multipipe, we can easily build these streams by  
combining some of the streams that we already have available from the core  
libraries (file 'combinedStreams.js'):

var zlib = require('zlib');
var crypto = require('crypto');
var combine = require('multipipe');
var fs = require('fs');

module.exports.compressAndEncrypt = function (password) {
  return combine(
    zlib.createGzip(),
    crypto.createCipher('aes192', password)
  );
}

module.exports.decryptAndDecompress = function (password) {
  return combine(
    crypto.createDecipher('aes192', password),
    zlib.createGunzip()
  );
}
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We can now use these combined streams, as if they were black boxes, for example,  
to create a small application that archives a file, by compressing and encrypting it. 
Let's do that in a new module named archive.js:

var fs = require('fs');
var compressAndEncryptStream =
    require('./combinedStreams').compressAndEncrypt;

fs.createReadStream(process.argv[3])
  .pipe(compressAndEncryptStream(process.argv[2]))
  .pipe(fs.createWriteStream(process.argv[3] + ".gz.enc"));

We can further improve the preceding code by building a combined stream out of 
the pipeline that we created, this time not to obtain a reusable black box but only to 
take advantage of its aggregated error management. In fact, as we already mentioned 
many times, writing something such as the following will only catch the errors that 
are emitted by the last stream:

fs.createReadStream(process.argv[3])
  .pipe(compressAndEncryptStream(process.argv[2]))
  .pipe(fs.createWriteStream(process.argv[3] + ".gz.enc"))
  .on('error', function(err) {
    //Only errors from the last stream
    console.log(err);
  });

However, by combining all the streams together we can fix the problem elegantly. 
Let's then rewrite the 'archive.js' file as follows:

var combine = require('multipipe');
var fs = require('fs');
var compressAndEncryptStream =
    require('./combinedStreams').compressAndEncrypt;
    
combine(
  fs.createReadStream(process.argv[3]),
  compressAndEncryptStream(process.argv[2]),
  fs.createWriteStream(process.argv[3] + ".gz.aes")
).on('error', function(err) {
  //this error may come from any stream in the pipeline
  console.log(err);
});

As we can see, we can now attach an error listener directly to the combined stream 
and it will receive any error event that is emitted by any of its internal streams.
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Now, to run the archive module, simply specify a password and a file in the 
command line arguments:

node archive mypassword /path/to/a/file.txt

With this example, we have clearly demonstrated how important it is to combine 
streams; from one aspect, it allows us to create reusable compositions of streams  
and from another it simplifies the error management of a pipeline.

Forking streams
We can perform a fork of a stream by piping a single Readable stream into multiple 
Writable streams. This is useful when we want to send the same data to different 
destinations, for example, two different sockets or two different files. It can also be 
used when we want to perform different transformations on the same data, or when 
we want to split the data based on some criteria. The following figure gives us a 
graphical representation of this pattern:

Forking a stream in Node.js is a trivial matter; let's see why by working on  
an example.

Implementing a multiple checksum generator
Let's create a small utility that outputs both the sha1 and md5 hashes of a given file. 
Let's call this new module generateHashes.js and let's start by initializing our 
checksum streams:

var fs = require('fs');
var crypto = require('crypto');

var sha1Stream = crypto.createHash('sha1');
sha1Stream.setEncoding('base64');

var md5Stream = crypto.createHash('md5');
md5Stream.setEncoding('base64');
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Nothing special so far; the next part of the module is actually where we will  
create a Readable stream from a file and fork it to two different streams in order  
to obtain two other files, one containing the sha1 hash and the other containing the 
md5 checksum:

var inputFile = process.argv[2];
var inputStream = fs.createReadStream(inputFile);

inputStream
  .pipe(sha1Stream)
  .pipe(fs.createWriteStream(inputFile + '.sha1'));
  
inputStream
  .pipe(md5Stream)
  .pipe(fs.createWriteStream(inputFile + '.md5'));

Very simple, right? The inputStream variable is piped into sha1Stream on one  
side and md5Stream on the other. There are a couple of things to note, though,  
that happen behind the scenes:

• Both md5Stream and sha1Stream will be ended automatically when 
inputStream ends, unless we specify {end: false} as an option when 
invoking pipe()

• The two forks of the stream will receive the same data chunks, so we must 
be very careful when performing side-effect operations on the data, as that 
would affect every stream that we are forking to

• Back-pressure will work out-of-the-box; the flow coming from inputStream 
will go as fast as the slowest branch of the fork!

Merging streams
Merging is the opposite operation to forking and consists of piping a set of Readable 
streams into a single Writable stream, as shown in the following figure:
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Merging multiple streams into one is in general a simple operation; however, we 
have to pay attention to the way we handle the end event, as piping using the auto end 
option will cause the destination stream to be ended as soon as one of the sources ends. 
This can often lead to an error situation, as the other active sources will still continue to 
write to an already terminated stream. The solution to this problem is to use the option 
{end: false} when piping multiple sources to a single destination and then invoke 
end() on the destination only when all the sources have completed reading.

Creating a tarball from multiple directories
To make a simple example, let's implement a small program that creates a tarball 
from the contents of two different directories. For this purpose, we are going to 
introduce two new npm packages:

• tar (https://npmjs.org/package/tar): a streaming library to  
create tarballs

• fstream (https://npmjs.org/package/fstream): a library to create  
object streams from filesystem files

Our new module is going to be called mergeTar.js; let's define its contents starting 
from some initialization steps:

var tar = require('tar');
var fstream = require('fstream');
var path = require('path');

var destination = path.resolve(process.argv[2]);
var sourceA = path.resolve(process.argv[3]);
var sourceB = path.resolve(process.argv[4]);

In the preceding code, we are just loading all the dependencies and initializing 
the variables that contain the name of the destination file and the two source 
directories (sourceA and sourceB).

Next, we will create the tar stream and pipe it into its destination:

var pack = tar.Pack();
pack.pipe(fstream.Writer(destination));

Now it's time to initialize the source streams:

var endCount = 0;
function onEnd() {
  if(++endCount === 2) {
    pack.end();
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  }
}

var sourceStreamA =
  fstream.Reader({type: "Directory", path: sourceA})
  .on('end', onEnd);
  
var sourceStreamB =
  fstream.Reader({type: "Directory", path: sourceB})
  .on('end', onEnd);

In the preceding code, we created the streams that read from both the two source 
directories (sourceStreamA and sourceStreamB); then for each source stream we 
attach an end listener, which will terminate the pack stream only when both the 
directories are read completely.

Finally, it is time to perform the real merge:

sourceStreamA.pipe(pack, {end: false});
sourceStreamB.pipe(pack, {end: false});

We pipe both the sources into the pack stream and take care to disable the auto 
ending of the destination stream by providing the option {end: false} to the two 
pipe() invocations.

With this, we completed our simple tar utility. We can try this utility by  
providing the destination file as the first command line argument, followed  
by the two source directories:

node mergeTar dest.tar /path/to/sourceA /path/to/sourceB

To conclude this section, it's worth mentioning that, on npm, we can find a few 
modules that can simplify the merging of streams, for example:

• merge-stream (https://npmjs.org/package/merge-stream)
• multistream-merge (https://npmjs.org/package/multistream-merge)

As for the last comment on the stream merge pattern, it's worth reminding that the 
data piped into the destination stream is randomly intermingled; this is a property 
that can be acceptable in some types of object streams (as we saw in the last example) 
but it is often an undesired effect when dealing with binary streams.
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However, there is one variation of the pattern that allows us to merge streams 
in order; it consists of consuming the source streams one after the other, when 
the previous one ends, the next one starts emitting chunks (it is like concatenating 
the output of all the sources). As always, on npm we can find some packages that 
also deal with this situation, one of them is multistream (https://npmjs.org/
package/multistream).

Multiplexing and demultiplexing
There is a particular variation of the merge stream pattern in which we don't really 
want to just join multiple streams together but, instead, to use a shared channel to 
deliver the data of a set of streams. This is a conceptually different operation because 
the source streams remain logically separated inside the shared channel, which 
allows us to split the stream again once the data reaches the other end of the shared 
channel. The following figure clarifies the situation:

The operation of combining multiple streams together (in this case also known as 
channels) to allow transmission over a single stream is called multiplexing, while 
the opposite operation, namely reconstructing the original streams from the data 
received from a shared stream, is called demultiplexing. The devices that perform these 
operations are called multiplexer (or mux) and demultiplexer (or demux) respectively. 
This is a widely studied area in Computer Science and Telecommunications in general, 
as it is one of the foundations of almost any type of communication media such as 
telephony, radio, TV, and of course the Internet itself. For the scope of this book, we 
will not go too far with the explanations, as this is a vast topic.

What we want to demonstrate in this section, instead, is how it's possible to use a 
shared Node.js stream in order to convey multiple logically separated streams that 
are then split again at the other end of the shared stream.
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Building a remote logger
Let's use an example to drive our discussion. We want to have a small program 
that starts a child process and redirects both its standard output and standard error 
to a remote server, which in turn saves the two streams into two separate files. 
So, in this case the shared medium is a TCP connection, while the two channels to 
be multiplexed are the stdout and stderr of a child process. We will leverage a 
technique called packet switching, the same technique that is used by protocols 
such as IP, TCP or UDP and that consists of wrapping the data into packets allowing 
us to specify various meta information, useful for mutiplexing, routing, controlling 
the flow, checking for corrupted data, and so on. The protocol that we are going to 
implement for our example is very minimalist, in fact, we will simply wrap our data 
into packets having the following structure:

As shown in the preceding figure, the packet contains the actual data, but also  
a header (Channel ID + Data length), which will make it possible to differentiate  
the data of each stream and enable the demultiplexer to route the packet to the  
right channel.

Client side – Multiplexing
Let's start to build our application from the client side. With a lot of creativity,  
we will call the module client.js; this represents the part of the application  
that is responsible for starting a child process and multiplexing its streams.

So, let's start by defining the module. First, we need some dependencies:

var child_process = require('child_process');
var net = require('net');
var path = require('path');

 Then, let's implement a function that performs the multiplexing of a list of sources:

function multiplexChannels(sources, destination) {
  var totalChannels = sources.length;
  for(var i = 0; i < sources.length; i++) {
    sources[i]
      .on('readable', function(i) {          //[1]
        var chunk;
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        while((chunk = this.read()) !== null) {
          var outBuff = new Buffer(1 + 4 + chunk.length);  //[2]
          outBuff.writeUInt8(i, 0);       
          outBuff.writeUInt32BE(chunk.length, 1);
          chunk.copy(outBuff, 5);
          console.log('Sending packet to channel: ' + i);
          destination.write(outBuff);          //[3]
        }
      }.bind(sources[i], i))
      .on('end', function() {            //[4]
        if(--totalChannels === 0) {
          destination.end();
        }
      });
  }
}

The mutiplexChannels() function takes in as input the source streams to be 
multiplexed and the destination channel, and then it performs the following steps:

1. For each source stream, it registers a listener for the readable event where 
we read the data from the stream using the non-flowing mode.

2. When a chunk is read, we wrap it into a packet that contains in order: 1 byte 
(UInt8) for the channel ID, 4 bytes (UInt32BE) for the packet size, and then 
the actual data.

3. When the packet is ready, we write it into the destination stream.
4. Finally, we register a listener for the end event so that we can terminate the 

destination stream when all the source streams are ended.

Our protocol is to be able to multiplex up to 8 different source 
streams because we only have 1 byte to identify the channel.

Now the last part of our client becomes very easy:

var socket = net.connect(3000, function() {        //[1]
  var child = child_process.fork(           //[2]
    process.argv[2],
    process.argv.slice(3) ,
    {silent: true}
  );
  multiplexChannels([child.stdout, child.stderr], socket);  //[3]
});
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In this last code fragment, we perform the following operations::

1. We create a new TCP client connection to the address localhost:3000.
2. We start the child process by using the first command-line argument as the 

path, while we provide the rest of the process.argv array as arguments for 
the child process. We specify the option {silent: true}, so that the child 
process does not inherit stdout and stderr of the parent.

3. Finally, we take stdout and stderr of the child process and we multiplex 
them into socket using the mutiplexChannels() function.

Server side – demultiplexing
Now we can take care of creating the server side of the application (server.js), 
where we demultiplex the streams from the remote connection and pipe them into 
two different files. Let's start by creating a function called demultiplexChannel():

function demultiplexChannel(source, destinations) {
  var currentChannel = null;
  var currentLength = null;
  
  source
    .on('readable', function() {           //[1]
      var chunk;
      if(currentChannel === null) {          //[2]
        chunk = this.read(1);
        currentChannel = chunk && chunk.readUInt8(0);
      }
      
      if(currentLength === null) {          //[3]
        chunk = this.read(4);
        currentLength = chunk && chunk.readUInt32BE(0);
        if(currentLength === null) {
          return;
        }
      }
      
      chunk = this.read(currentLength);        //[4]
      if(chunk === null) {
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        return;
      }
      console.log('Received packet from: ' + currentChannel);
      destinations[currentChannel].write(chunk);      //[5]
      currentChannel = null;
      currentLength = null;
    })
    
    .on('end', function() {            //[6]
      destinations.forEach(function(destination) {
        destination.end();
      });
      console.log('Source channel closed');
    });
}

The preceding code might look complicated but it is not; thanks to the pull nature of 
Node.js Readable streams, we can easily implement the demultiplexing of our little 
protocol as follows:

1. We start reading from the stream using the non-flowing mode.
2. First, if we have not read the channel ID yet, we try to read 1 byte from the 

stream and then transform it into a number.
3. The next step is to read the length of the data. We need 4 bytes for that, so 

it's possible (even if unlikely) that we don't have enough data in the internal 
buffer, which will cause the this.read() invocation to return null. In such a 
case, we simply interrupt the parsing and retry at the next readable event.

4. When we finally can also read the data size, we know how much data to pull 
from the internal buffer, so we try to read it all.

5. When we read all the data, we can write it to the right destination channel, 
making sure that we reset the currentChannel and currentLength 
variables (these will be used to parse the next packet).

6. Lastly, we make sure to end all the destination channels when the source 
channel ends.
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Now that we can demultiplex the source stream, let's put our new function at work:

net.createServer(function(socket) {
  var stdoutStream = fs.createWriteStream('stdout.log');
  var stderrStream = fs.createWriteStream('stderr.log');
  
  demultiplexChannel(socket, [stdoutStream, stderrStream]);
}).listen(3000, function() {
  console.log('Server started');
});

In the preceding code, we first start a TCP server on the port 3000, then for each 
connection that we receive, we will create two Writable streams pointing to two 
different files, one for the standard output and another for the standard error; these 
are our destination channels. Finally, we use demultiplexChannel() to demultiplex 
the socket stream into stdoutStream  
and stderrStream.

Running the mux/demux application
Now, we are ready to try our new mux/demux application, but first let's  
create a small Node.js program to produce some sample output; let's call it 
generateData.js:

console.log("out1");
console.log("out2");
console.error("err1");
console.log("out3");
console.error("err2");

Okay, now we are ready to try our remote logging application. First, let's start  
the server:

node server

Then the client, by providing the file that we want to start as child process:

node client generateData.js

The client will run almost immediately, but at the end of the process the  
standard input and standard output of the generateData application have  
traveled through one single TCP connection and then, on the server, have been 
demultiplexed into two separate files.
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Please make a note that, as we are using child_process.fork() 
(http://nodejs.org/api/child_process.html#child_
process_child_process_fork_modulepath_args_options), 
our client will be able to launch only other Node.js modules.

Multiplexing and demultiplexing object streams
The example that we have just shown demonstrated how to multiplex and 
demultiplex a binary/text stream, but it's worth mentioning that the same rules 
apply also to object streams. The greatest difference is that, using objects, we 
already have a way to transmit the data using atomic messages (the objects), so 
multiplexing would be as easy as setting a property channelID into each object, 
while demultiplexing would simply involve reading the channelID property and 
routing each object towards the right destination stream.

Another pattern involving only demultiplexing consists in routing the data coming 
from a source depending on some condition. With this pattern, we can implement 
complex flows, such as the one shown in the following diagram:

The demultiplexer used in the system described by the preceding diagram, takes 
a stream of objects representing animals and distributes each of them to the right 
destination stream based on the class of the animal: reptiles, amphibians, and mammals.

Using the same principle, we can also implement an if-else statement for streams; 
for some inspiration, take a look at the ternary-stream package (https://npmjs.
org/package/ternary-stream) that allows us to do exactly that.
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Summary
In this chapter, we have shed some light on Node.js streams and their use case, but 
at the same time this should have thrown open a door to a programming paradigm 
with virtually unlimited possibilities. We learned why streams are so acclaimed 
by the Node.js community and we mastered their basic functionality, enabling us 
to discover more and navigate comfortably in this new world. We analyzed some 
advanced patterns and started to understand how to connect streams together in 
different configurations, grasping the importance of interoperability which is what  
makes streams so versatile and powerful.

If we can't do something with one stream, we probably can do it by connecting  
other streams together, and this works great with the one thing per module philosophy. 
At this point, it should be clear that streams are not just a good to know feature  
of Node.js; they are, instead, an essential part of this, a crucial pattern to handle 
binary data, strings, and objects. It's not by chance that an entire chapter was 
dedicated to them.

In the next chapter, we will focus on the traditional object-oriented design patterns. 
But don't be fooled; even though JavaScript is an object-oriented language, in Node.js 
the functional or hybrid approach is often preferred. Get rid of every prejudice before 
reading the next chapter.



Design Patterns
A design pattern is a reusable solution to a recurring problem; the term is really  
broad in its definition and can span multiple domains of application. However,  
the term is often associated with a well-known set of object-oriented patterns  
that were popularized in the 90's by the book, Design Patterns: Elements of Reusable 
Object-Oriented Software, Pearson Education by the almost legendary Gang of Four 
(GoF): Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. We will 
often refer to these specific set of patterns as traditional design patterns, or GoF  
design patterns.

Applying this set of object-oriented design patterns in JavaScript is not as linear and 
formal as it would happen in a class-based object-oriented language. As we know, 
JavaScript is multi-paradigm, object-oriented, and prototype-based, and has dynamic 
typing; it treats functions as first class citizens, and allows functional programming 
styles. These characteristics make JavaScript a very versatile language, which gives 
tremendous power to the developer, but at the same time, it causes a fragmentation 
of programming styles, conventions, techniques, and ultimately the patterns of its 
ecosystem. There are so many ways to achieve the same result using JavaScript that 
everybody has their own opinion on what the best way is to approach a problem. 
A clear demonstration of this phenomenon is the abundance of frameworks and 
opinionated libraries in the JavaScript ecosystem; probably, no other language 
has ever seen so many, especially now that Node.js has given new astonishing 
possibilities to JavaScript and has created so many new scenarios.

In this context, the traditional design patterns too are affected by the nature of 
JavaScript. There are so many ways in which they can be implemented so that their 
traditional, strongly object-oriented implementation is not a pattern anymore, and 
in some cases, not even possible because JavaScript, as we know, doesn't have real 
classes or abstract interfaces. What doesn't change though, is the original idea at  
the base of each pattern, the problem it solves, and the concepts at the heart of  
the solution.
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In this chapter, we will see how some of the most important GoF design patterns 
apply to Node.js and its philosophy, thus rediscovering their importance from 
another perspective.

The design patterns explored in this chapter are as follows:

• Factory
• Proxy
• Decorator
• Adapter
• Strategy
• State
• Template
• Middleware
• Command

This chapter assumes that the reader has some notion of how 
inheritance works in JavaScript. Please also be advised that throughout 
this chapter we will often use generic and more intuitive diagrams to 
describe a pattern in place of standard UML, since many patterns can 
have an implementation based not only on classes, but also on objects 
and even functions.

Factory
We begin our journey starting from what probably is the most simple and common 
design pattern in Node.js: Factory.

A generic interface for creating objects
We already stressed the fact that, in JavaScript, the functional paradigm is often 
preferred to a purely object-oriented design, for its simplicity, usability, and small 
surface area. This is especially true when creating new object instances. In fact, 
invoking a factory, instead of directly creating a new object from a prototype using 
the new operator or Object.create(), is so much more convenient and flexible 
under several aspects.
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First and foremost, a factory allows us to separate the object creation from its 
implementation; essentially, a factory wraps the creation of a new instance, giving 
us more flexibility and control in the way we do it. Inside the factory, we can create 
a new instance leveraging closures, using a prototype and the new operator, using 
Object.create(), or even returning a different instance based on a particular 
condition. The consumer of the factory is totally agnostic about how the creation of 
the instance is carried out. The truth is that, by using new, we are binding our code 
to one specific way of creating an object, while in JavaScript we can have much more 
flexibility, almost for free. As a quick example, let's consider a simple factory that 
creates an Image object:

function createImage(name) {
  return new Image(name);
}
var image = createImage('photo.jpeg');

The createImage() factory might look totally unnecessary, why not instantiate the 
Image class by using the new operator directly? Something like the following line  
of code:

var image = new Image(name);

As we already mentioned, using new binds our code to one particular type of object; 
in the preceding case, to objects of type, Image. A factory instead, gives us much 
more flexibility; imagine that we want to refactor the Image class, splitting it into 
smaller classes, one for each image format that we support. If we exposed a factory 
as the only means to create new images, we can simply rewrite it as follows, without 
breaking any of the existing code:

function createImage(name) {
  if(name.match(/\.jpeg$/)) {
    return new JpegImage(name);
  } else if(name.match(/\.gif$/)) {
    return new GifImage(name);
  } else if(name.match(/\.png$/)) {
    return new PngImage(name);
  } else {
    throw new Exception('Unsupported format');
  }
}
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Our factory also allows us to not expose the constructors of the objects it creates,  
and prevents them from being extended or modified (remember the principle of 
small surface area?). In Node.js, this can be achieved by exporting only the factory, 
while keeping each constructor private.

A mechanism to enforce encapsulation
A factory can also be used as an encapsulation mechanism, thanks to closures.

Encapsulation refers to the technique of controlling the access to 
some internal details of an object by preventing the external code 
from manipulating them directly. The interaction with the object 
happens only through its public interface, isolating the external code 
from the changes in the implementation details of the object. This 
practice is also referred to as information hiding. Encapsulation is also 
a fundamental principle of object-oriented design, together with 
inheritance, polymorphism, and abstraction.

As we know, in JavaScript, we don't have access level modifiers (for example, we can't 
declare a private variable), so the only way to enforce encapsulation is through 
function scopes and closures. A factory makes it straightforward to enforce private 
variables, consider the following code for example:

function createPerson(name) {
  var privateProperties = {};
  
  var person = {
    setName: function(name) {
      if(!name) throw new Error('A person must have a name');
      privateProperties.name = name;
    },
    getName: function() {
      return privateProperties.name;
    }
  };

  person.setName(name);
  return person;
}
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In the preceding code, we leverage closures to create two objects: a person 
object which represents the public interface returned by the factory and a group 
of privateProperties that are inaccessible from the outside, and that can be 
manipulated only through the interface provided by the person object. For example, 
in the preceding code, we make sure that a person's name is never empty, this would 
not be possible to enforce if name was just a property of the person object.

Factories are only one of the techniques that we have for creating private 
members; in fact, other possible approaches are as follows:

• Defining private variables in a constructor (as recommended by 
Douglas Crockford: http://javascript.crockford.com/
private.html)

• Using conventions, for example, prefixing the name of a property 
with an underscore "_" or the dollar sign "$" (this however,  
does not technically prevent a member from being accessed  
from the outside)

• Using ES6 WeakMaps (http://fitzgeraldnick.com/
weblog/53/)

Building a simple code profiler
Now, let's work on a complete example using a factory. Let's build a simple code 
profiler, an object with the following properties:

• A start() method that triggers the start of a profiling session
• An end() method to terminate the session and log its execution time  

to the console

Let's start by creating a file named profiler.js, which will have the  
following content:

function Profiler(label) {
  this.label = label;
  this.lastTime = null;
}

Profiler.prototype.start = function() {
  this.lastTime = process.hrtime();
}

Profiler.prototype.end = function() {
  var diff = process.hrtime(this.lastTime);
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  console.log('Timer "' + this.label + '" took '
    + diff[0] + ' seconds and '
    + diff[1] + ' nanoseconds.');
}

There is nothing fancy in the preceding class; we simply use the default high 
resolution timer to save the current time when start() is invoked, and then 
calculate the elapsed time when end() is executed, printing the result to the console.

Now, if we are going to use such a profiler in a real-world application to calculate 
the execution time of the different routines, we can easily imagine the huge amount 
of logging we will generate to the standard output, especially in a production 
environment. What we might want to do instead is redirect the profiling information 
to another source, for example, a database, or alternatively, disabling the profiler 
altogether if the application is running in production mode. It's clear that if we were 
to instantiate a Profiler object directly by using the new operator, we would need 
some extra logic in the client code or in the Profiler object itself in order to switch 
between the different logics. We can instead use a factory to abstract the creation 
of the Profiler object, so that, depending on whether the application runs in 
production or development mode, we can return a fully working Profiler object, or 
alternatively, a mock object with the same interface, but with empty methods. Let's do 
this then, in the profiler.js module instead of exporting the Profiler constructor, 
we will export only a function, our factory. The following is its code:

module.exports = function(label) {
  if(process.env.NODE_ENV === 'development') {
    return new Profiler(label);        //[1]
  } else if(process.env.NODE_ENV === 'production') {
    return {             //[2]
      start: function() {},
      end: function() {}
    }
  } else {
    throw new Error('Must set NODE_ENV');
  }
}

The factory that we created abstracts the creation of a profiler object from  
its implementation:

• If the application is running in development mode, we return a new,  
fully functional Profiler object

• If instead the application is running in production mode, we return a mock 
object where the start() and stop() methods are empty functions
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The nice feature to highlight is that, thanks to the JavaScript dynamic typing,  
we were able to return an object instantiated with the new operator in one  
circumstance and a simple object literal in the other (this is also known as duck 
typing http://en.wikipedia.org/wiki/Duck_typing). Our factory is doing its 
job perfectly; we can really create objects in any way that we like inside the factory 
function, and we can execute additional initialization steps or return a different type of 
object based on particular conditions, and all of this while isolating the consumer of the 
object from all these details. We can easily understand the power of this simple pattern.

Now, we can play with our profiler; this is a possible use case for the factory that we 
just created earlier:

var profiler = require('./profiler');

function getRandomArray(len) {
  var p = profiler('Generating a ' + len + ' items long array');
  p.start();
  var arr = [];
  for(var i = 0; i < len; i++) {
    arr.push(Math.random());
  }
  p.end();
}

getRandomArray(1e6);
console.log('Done');

The p variable contains the instance of our Profiler object, but we don't know  
how it's created and what its implementation is at this point in the code.

If we include the preceding code in a file named profilerTest.js, we can  
easily test these assumptions. To try the program with profiling enabled,  
run the following command:

export NODE_ENV=development; node profilerTest

The preceding command enables the real profiler and prints the profiling  
information to the console. If we want to try the mock profiler instead,  
we can run the following command:

export NODE_ENV=production; node profilerTest

The example that we just presented is just a simple application of the factory function 
pattern, but it clearly shows the advantages of separating an object's creation from  
its implementation.
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In the wild
As we said, factories are very popular in Node.js. Many packages offer only a factory 
for creating new instances, some examples are the following:

• Dnode (https://npmjs.org/package/dnode): This is an RPC system 
for Node.js. If we look into its source code, we will see that its logic is 
implemented into a class named D; however, this is never exposed to the 
outside as the only exported interface is a factory, which allows us to  
create new instances of the class. You can take a look at its source code at 
https://github.com/substack/dnode/blob/34d1c9aa9696f13bdf8fb99d
9d039367ad873f90/index.js#L7-9.

• Restify (https://npmjs.org/package/restify): This is a framework to 
build REST API that allows us to create new instances of a server using the 
restify.createServer()factory, which internally creates a new instance 
of the Server class (which is not exported). You can take a look at its source 
code at https://github.com/mcavage/node-restify/blob/5f31e2334b3
8361ac7ac1a5e5d852b7206ef7d94/lib/index.js#L91-116.

Other modules expose both a class and a factory, but document the factory as the 
main method—or the most convenient way—to create new instances; some of the 
examples are as follows:

• http-proxy (https://npmjs.org/package/http-proxy): This is a 
programmable proxying library, where new instances are created with 
httpProxy.createProxyServer(options).

• The core Node.js HTTP server: This is where new instances are mostly 
created using http.createServer(), even though this is essentially a 
shortcut for new http.Server().

• bunyan (https://npmjs.org/package/bunyan): This is a popular  
logging library; in its readme file the contributors propose a factory,  
bunyan.createLogger(), as the main method to create new instances,  
even though this would be equivalent to running new bunyan().

Some other modules provide a factory to wrap the creation of other components. 
Popular examples are through2 and from2 (we saw them in Chapter 3, Coding with 
Streams), which allow us to simplify the creation of new streams using a factory 
approach, freeing the developer from explicitly using inheritance and the new operator.
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Proxy
A proxy is an object that controls the access to another object called subject.  
The proxy and the subject have an identical interface and this allows us to 
transparently swap one for the other; in fact, the alternative name for this  
pattern is surrogate. A proxy intercepts all or some of the operations that are  
meant to be executed on the subject, augmenting or complementing their  
behavior. The following figure shows the diagrammatic representation:

The preceding figure shows us how the Proxy and the Subject have the same 
interface and how this is totally transparent to the client, who can use one or the 
other interchangeably. The Proxy forwards each operation to the subject, enhancing 
its behavior with additional preprocessing or post-processing.

It's important to observe that we are not talking about proxying 
between classes; the Proxy pattern involves wrapping actual 
instances of the subject, thus preserving its state.

A proxy is useful in several circumstances, for example, consider the following ones:

• Data validation: The proxy validates the input before forwarding it  
to the subject

• Security: The proxy verifies that the client is authorized to perform the 
operation and it passes the request to the subject only if the outcome of  
the check is positive

• Caching: The proxy keeps an internal cache so that the operations are 
executed on the subject only if the data is not yet present in the cache

• Lazy initialization: If the creation of the subject is expensive, the proxy  
can delay it to when it's really necessary

• Logging: The proxy intercepts the method invocations and the relative 
parameters, recoding them as they happen

• Remote objects: A proxy can take an object that is located remotely,  
and make it appear local

Of course, there are many more applications for the Proxy pattern, but these should 
give us an idea of the extent of its purpose.
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Techniques for implementing proxies
When proxying an object, we can decide to intercept all its methods or only part  
of them, while delegating the rest of them directly to the subject. There are several 
ways in which this can be achieved; let's analyze some of them.

Object composition
Composition is the technique whereby an object is combined with another object for 
the purpose of extending or using its functionality. In the specific case of the Proxy 
pattern, a new object with the same interface as the subject is created, and a reference 
to the subject is stored internally in the proxy in the form of an instance variable 
or a closure variable. The subject can be injected from the client at creation time or 
created by the proxy itself.

The following is one example of this technique using a pseudo class and a factory:

function createProxy(subject) {
  var proto = Object.getPrototypeOf(subject);
   
  function Proxy(subject) {
    this.subject = subject;
  }
  Proxy.prototype = Object.create(proto);
  
  //proxied method
  Proxy.prototype.hello = function() {
    return this.subject.hello() + ' world!';
  }
  
  //delegated method
  Proxy.prototype.goodbye = function() {
    return this.subject.goodbye
      .apply(this.subject, arguments);
  }
  
  return new Proxy(subject);
}

To implement a proxy using composition, we have to intercept the methods that we 
are interested in manipulating (such as hello()), while simply delegating the rest of 
them to the subject (as we did with goodbye()).

The preceding code also shows the particular case where the subject has a prototype 
and we want to maintain the correct prototype chain, so that, executing proxy 
instanceof Subject will return true; we used pseudo-classical inheritance to 
achieve this. 
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This is just an extra step, required only if we are interested in maintaining the 
prototype chain, which can be useful in order to improve the compatibility of  
the proxy with code initially meant to work with the subject.

However, as JavaScript has dynamic typing, most of the time we can avoid  
using inheritance and use more immediate approaches. For example, an alternative 
implementation of the proxy presented in the preceding code, might just use an 
object literal and a factory:

function createProxy(subject) {
  return {
    //proxied method
    hello: function() {
      return subject.hello() + ' world!';
    },
  
    //delegated method
    goodbye: function() {
      return subject.goodbye.apply(subject, arguments);
    }
  };
}

If we want to create a proxy that delegates most of its methods, it 
would be convenient to generate these automatically using a library, 
such as delegates (https://npmjs.org/package/delegates).

Object augmentation
Object augmentation (or monkey patching) is probably the most pragmatic way 
of proxying individual methods of an object and consists of modifying the subject 
directly by replacing a method with its proxied implementation; consider the 
following example:

function createProxy(subject) {
  var helloOrig = subject.hello;
  subject.hello = function() {
    return helloOrig.call(this) + ' world!';
  }
  

  return subject;
}

This technique is definitely the most convenient one when we need to proxy only one 
or a few methods, but it has the drawback of modifying the subject object directly.
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A comparison of the different techniques
Composition can be considered the safest way of creating a proxy, because it leaves 
the subject untouched without mutating its original behavior. Its only drawback is 
that we have to manually delegate all the methods, even if we want to proxy only 
one of them. If needed, we might also have to delegate the access to the properties  
of the subject.

The object properties can be delegated using Object.
defineProperty(). Find out more at https://developer.
mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global_Objects/Object/defineProperty.

Object augmentation, on the other hand, modifies the subject, which might not 
always be what we want, but it does not present the various inconveniences related 
to delegation. For this reason, object augmentation is definitely the most pragmatic 
way to implement proxies in JavaScript, and it's the preferred technique  
in all those circumstances where modifying the subject is not a big concern.

However, there is at least one situation where composition is almost necessary;  
this is when we want to control the initialization of the subject as for example,  
to create it only when needed (lazy initialization).

It is worth pointing out that by using a factory function 
(createProxy() in our examples), we can shield our code 
from the technique used to generate the proxy.

Creating a logging Writable stream
To see the proxy pattern in a real example, we will now build an object that acts as a 
proxy to a Writable stream, by intercepting all the calls to the write() method and 
logging a message every time this happens. We will use an object composition  
to implement our proxy; this is how the loggingWritable.js file looks:

function createLoggingWritable(writableOrig) {
  var proto = Object.getPrototypeOf(writableOrig);
  
  function LoggingWritable(subject) {
    this.writableOrig = writableOrig;
  }
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  LoggingWritable.prototype = Object.create(proto);
  
  LoggingWritable.prototype.write =
    function(chunk, encoding, callback) {
      if(!callback && typeof encoding === 'function') {
        callback = encoding;
        encoding = undefined;
      }
      console.log('Writing ', chunk);
      return this.writableOrig.write(chunk, encoding, function() {
        console.log('Finished writing ', chunk);
        callback && callback();
      });
    };
  
  LoggingWritable.prototype.on = function() {
    return this.writableOrig.on
      .apply(this.writableOrig, arguments);
  };
  
  LoggingWritable.prototype.end = function() {
    return this.writableOrig.end
      .apply(this.writableOrig, arguments);
  }
  
  return new LoggingWritable(this.writableOrig);
}

In the preceding code, we created a factory that returns a proxied version of the 
writable object passed as an argument. We provide an override for the write() 
method that logs a message to the standard output every time it is invoked and 
every time the asynchronous operation completes. This is also a good example  
to demonstrate the particular case of creating proxies of asynchronous functions, 
which makes necessary to proxy the callback as well; this is an important detail to  
be considered in a platform like Node.js. The remaining methods, on() and end(), 
are simply delegated to the original writable stream (to keep the code  
leaner we are not considering the other methods of the Writable interface).

We can now include a few more lines of code into the logginWritable.js module 
to test the proxy that we just created:

var fs = require('fs');
var writable = fs.createWriteStream('test.txt');
var writableProxy = createProxy(writable);
writableProxy.write('First chunk');
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writableProxy.write('Second chunk');
writable.write('This is not logged');
writableProxy.end();

The proxy did not change the original interface of the stream or its external behavior, 
but if we run the preceding code, we will now see that every chunk that is written 
into the stream is transparently logged to the console.

Proxy in the ecosystem – function hooks  
and AOP
In its numerous forms, Proxy is a quite popular pattern in Node.js and in the 
ecosystem. In fact, we can find several libraries that allow us to simplify the creation 
of proxies, most of the time leveraging object augmentation as an implementation 
approach. In the community, this pattern can be also referred to as function hooking 
or sometimes also as Aspect Oriented Programming (AOP), which is actually 
a common area of application for proxies. As it happens in AOP, these libraries 
usually allow the developer to set pre or post execution hooks for a specific method 
(or a set of methods) that allow us to execute some custom code before and after the 
execution of the advised method respectively.

Sometimes proxies are also called middleware, because, as it happens in  
the middleware pattern (which we will see later in the chapter), they allow  
us to preprocess and post-process the input/output of a function. Sometimes,  
they also allow to register multiple hooks for the same method using a  
middleware-like pipeline.

There are several libraries on npm that allow us to implement function hooks with 
little effort. Among them there are hooks (https://npmjs.org/package/hooks), 
hooker (https://npmjs.org/package/hooker), and meld (https://npmjs.org/
package/meld).

In the wild
Mongoose (http://mongoosejs.com) is a popular Object-Document  
Mapping (ODM) library for MongoDB. Internally, it uses the hooks package 
(https://npmjs.org/package/hooks) to provide pre and post execution hooks  
for the init, validate, save, and remove methods of its Document objects.  
Find out more on the official documentation at http://mongoosejs.com/docs/
middleware.html.
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Decorator
Decorator is a structural pattern that consists of dynamically augmenting the 
behavior of an existing object. It's different from classical inheritance, because the 
behavior is not added to all the objects of the same class but only to the instances  
that are explicitly decorated.

Implementation-wise, it is very similar to the Proxy pattern, but instead of enhancing 
or modifying the behavior of the existing interface of an object, it augments it with 
new functionalities, as described in the following figure:

In the previous figure, the Decorator object is extending the Component object by 
adding the methodC() operation. The existing methods are usually delegated to the 
decorated object, without further processing. Of course, if necessary we can easily 
combine the Proxy pattern, so that also the calls to the existing methods can be 
intercepted and manipulated.

Techniques for implementing decorators
Although Proxy and Decorator are conceptually two different patterns, with 
different intents, they practically share the same implementation strategies.  
Let's revise them.

Composition
Using composition, the decorated component is wrapped around a new object  
that usually inherits from it. The Decorator in this case simply needs to define  
the new methods while delegating the existing ones to the original component:

function decorate(component) {
  var proto = Object.getPrototypeOf(component);

  function Decorator(component) {
    this.component = component;
  }
  Decorator.prototype = Object.create(proto);
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  //new method
  Decorator.prototype.greetings = function() {
    //...
  };
  
  //delegated method
  Decorator.prototype.hello = function() {
    this.component.hello.apply(this.component, arguments);
  };
  
  return new Decorator(component);
}

Object augmentation
Object decoration can also be achieved by simply attaching new methods directly  
to the decorated object, as follows:

function decorate(component) {
  //new method
  component.greetings = function() {
    //...
  };
  return component;
}

The same caveats discussed during the analysis of the Proxy pattern are also valid 
for Decorator. Let's now practice the pattern with a working example!

Decorating a LevelUP database
Before we start coding with the next example, let's spend a few words to introduce 
LevelUP, the module that we are now going to work with.

Introducing LevelUP and LevelDB
LevelUP (https://npmjs.org/package/levelup) is a Node.js wrapper around 
Google's LevelDB, a key-value store originally built to implement IndexedDB in the 
Chrome browser, but it's much more than that. LevelDB has been defined by Dominic 
Tarr as the "Node.js of databases", because of its minimalism and extensibility. Like 
Node.js, LevelDB provides blazing fast performances and only the most basic set of 
features, allowing developers to build any kind of database on top of it.



Chapter 4

[ 187 ]

The Node.js community, and in this case Rod Vagg, did not miss the chance to bring 
the power of this database into Node.js by creating LevelUP. Born as a wrapper for 
LevelDB, it then evolved to support several kinds of backends, from in-memory 
stores, to other NoSQL databases such as Riak and Redis, to web storage engines 
such as IndexedDB and localStorage, allowing to use the same API on both the  
server and the client, opening up some really interesting scenarios.

Today, there is a full-fledged ecosystem around LevelUp made of plugins and 
modules that extend the tiny core to implement features such as replication, 
secondary indexes, live updates, query engines, and more. Also, complete databases 
were built on top of LevelUP, including CouchDB clones such as PouchDB 
(https://npmjs.org/package/pouchdb) and CouchUP (https://npmjs.org/
package/couchup), and even a graph database, levelgraph (https://npmjs.org/
package/levelgraph) that can work both on Node.js and the browser!

Find out more about the LevelUP ecosystem at  
https://github.com/rvagg/node-levelup/wiki/Modules.

Implementing a LevelUP plugin
In the next example, we are going to show how we can create a simple plugin for 
LevelUp using the Decorator pattern, and in particular, the object augmentation 
technique, which is the simplest but nonetheless the most pragmatic and effective 
way to decorate objects with additional capabilities.

For convenience, we are going to use the level package 
(http://npmjs.org/package/level) that bundles both 
levelup and the default adapter called leveldown, which 
uses LevelDB as the backend.

What we want to build is a plugin for LevelUP that allows to receive notifications 
every time an object with a certain pattern is saved into the database. For example, 
if we subscribe to a pattern such as {a: 1}, we want to receive a notification when 
objects such as {a: 1, b: 3} or {a: 1, c: 'x'} are saved into the database.
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Let's start to build our small plugin by creating a new module called 
levelSubscribe.js. We will then insert the following code:

module.exports = function levelSubscribe(db) {

  db.subscribe = function(pattern, listener) {       //[1]
    db.on('put', function(key, val) {         //[2]
      var match = Object.keys(pattern).every(function(k) { //[3]
        return pattern[k] === val[k];
      });
      if(match) {
        listener(key, val);            //[4]
      }
    });
  };

  return db;
}

That's it for our plugin, and it's extremely simple. Let's see what happens in the 
preceding code briefly:

1. We decorated the db object with a new method named subscribe().  
We simply attached the method directly to the provided db instance  
(object augmentation).

2. We listen for any put operation performed on the database.
3. We performed a very simple pattern-matching algorithm, which verified  

that all the properties in the provided pattern are also available on the data 
being inserted.

4. If we have a match, we notify the listener.

Let's now create some code—in a new file named levelSubscribeTest.js—to try  
out our new plugin:

var level = require('level');           //[1]
var db = level(__dirname + '/db', {valueEncoding: 'json'});

var levelSubscribe = require('./levelSubscribe');     //[2]
db = levelSubscribe(db);

db.subscribe({doctype: 'tweet', language: 'en'},     //[3]
  function(k, val){
    console.log(val);
  });
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                  //[4]
db.put('1', {doctype: 'tweet', text: 'Hi', language: 'en'});
db.put('2', {doctype: 'company', name: 'ACME Co.'});

This is what we did in the preceding code:

1. First, we initialize our LevelUP database, choosing the directory where the 
files will be stored and the default encoding for the values.

2. Then, we attach our plugin, which decorates the original db object.
3. At this point, we are ready to use the new feature provided by our plugin, 

the subscribe() method, where we specify that we are interested in all  
the objects with doctype: 'tweet' and language: 'en'.

4. Finally, we save some values in the database, so that we can see our plugin  
in action:
db.put('1', {doctype: 'tweet', text: 'Hi', language: 'en'});
db.put('2', {doctype: 'company', name: 'ACME Co.'});

This example shows a real application of the decorator pattern in its most simple 
implementation: object augmentation. It might look like a trivial pattern but it has 
undoubted power if used appropriately.

For simplicity, our plugin will work only in combination with the 
put operations, but it can be easily expanded to work even with 
the batch operations (https://github.com/rvagg/node-
levelup#batch).

In the wild
For more examples of how Decorator is used in the real world, we might want to 
inspect the code of some more LevelUp plugins:

• level-inverted-index (https://github.com/dominictarr/level-
inverted-index): This is a plugin that adds inverted indexes to a LevelUP 
database, allowing to perform simple text searches across the values  
stored in the database

• level-plus (https://github.com/eugeneware/levelplus): This is a 
plugin that adds atomic updates to a LevelUP database
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Adapter
The Adapter pattern allows us to access the functionality of an object using  
a different interface. As the name suggests, it adapts an object so that it can be  
used by components expecting a different interface. The following diagram  
clarifies the situation:

The preceding diagram shows how the Adapter is essentially a wrapper for the 
Adaptee, exposing a different interface. The diagram also highlight the fact that 
the operations of the Adapter can also be a composition of one or more method 
invocations on the Adaptee. From an implementation perspective, the most  
common technique is composition where the methods of the Adapter provides  
a bridge to the methods of the Adaptee. This pattern is pretty straightforward  
so let's work immediately on an example.

Using LevelUP through the filesystem API
We are now going to build an adapter around the LevelUP API, transforming it  
into an interface that is compatible with the core fs module. In particular, we will 
make sure that every call to readFile() and writeFile() will translate into calls  
to db.get() and db.put(); this way we will be able to use a LevelUP database  
as a storage backend for simple filesystem operations.

Let's start by creating a new module named fsAdapter.js. We will begin by  
loading the dependencies and exporting the createFsAdapter() factory that  
we are going to use to build the adapter:

var path = require('path');

module.exports = function createFsAdapter(db) {
  var fs = {};
  //...continues with the next code fragments

Next, we will implement the readFile() function inside the factory and ensure that 
its interface is compatible with the one of the original function from the fs module:

fs.readFile = function(filename, options, callback) {
  if(typeof options === 'function') {
    callback = options;
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    options = {};
  } else if(typeof options === 'string') {
    options = {encoding: options};
  }
  
  db.get(path.resolve(filename), {         //[1]
      valueEncoding: options.encoding
    },
    function(err, value) {
      if(err) {
        if(err.type === 'NotFoundError') {       //[2]
          err = new Error('ENOENT, open \'' + filename +'\'');
          err.code = 'ENOENT';
          err.errno = 34;
          err.path = filename;
        }
        return callback && callback(err);
      }
      callback && callback(null, value);       //[3]
    }
  );
};

In the preceding code, we had to do some extra work to make sure that the behavior 
of our new function is as close as possible to the original fs.readFile() function. 
The steps performed by the function are described as follows:

1. To retrieve a file from the db class, we invoke db.get() using filename as 
a key, by making sure to always use its full path (using path.resolve()). 
We set the value of valueEncoding used by the database to be equal to any 
eventual encoding option received as an input.

2. If the key is not found in the database, we create an error with ENOENT as error 
code, which is the code used by the original fs module to indicate a missing 
file. Any other type of error is forwarded to callback (for the scope of this 
example, we are adapting only the most common error condition).

3. If the key-value pair is retrieved successfully from the database, we will 
return the value to the caller using the callback.

As we see, the function that we created is quite rough; it does not want to be a 
perfect replacement for the fs.readFile() function but it definitely does its job  
in the most common situations.

To complete our small adapter, let's now see how to implement the writeFile() 
function:

fs.writeFile = function(filename, contents, options, callback) {
  if(typeof options === 'function') {
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    callback = options;
    options = {};
  } else if(typeof options === 'string') {
    options = {encoding: options};
  }
  
  db.put(path.resolve(filename), contents, {
    valueEncoding: options.encoding
  }, callback);
}

Also, in this case, we don't have a perfect wrapper, we will ignore some options such 
as file permissions (options.mode), and we will forward any error that we receive 
from the database as it is.

Finally, we only have to return the fs object and close the factory function using  
the following lines of code:

  return fs;
}

Our new adapter is now ready; if we now write a small test module, we can try  
to use it:

var fs = require('fs');

fs.writeFile('file.txt', 'Hello!', function() {
  fs.readFile('file.txt', {encoding: 'utf8'}, function(err, res) {
    console.log(res);
  });
});

//try to read a missing file
fs.readFile('missing.txt', {encoding: 'utf8'}, function(err, res){
  console.log(err);
});

The preceding code uses the original fs API to perform a few read and write 
operations on the filesystem and should print something like the following  
to the console:

{ [Error: ENOENT, open 'missing.txt'] errno: 34, code: 'ENOENT', path: 
'missing.txt' }

Hello!
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Now, we can try to replace the fs module with our adapter, as follows:

var levelup = require('level');
var fsAdapter = require('./fsAdapter');
var db = levelup('./fsDB', {valueEncoding: 'binary'});
var fs = fsAdapter(db);

Running again our program should produce the same output, except the fact that 
none of the file that we specified is read or written using the filesystem; instead, 
any operation performed using our adapter will be converted into an operation 
performed on a LevelUP database.

The adapter that we just created might look silly; what's the purpose of using 
a database in place of the real filesystem? However, we should remember that 
LevelUP itself has adapters that enable the database to also run in the browser;  
one of these adapters is level.js (https://npmjs.org/package/level-js).  
Now, our adapter should make perfect sense; we can think of using it to share with 
the browser code, which relies on the fs module! For example, the web spider that 
we created in Chapter 2, Asynchronous Control Flow Patterns, uses the fs API to store 
the web pages downloaded during its operations; our adapter will allow it to run in 
the browser, by applying only minor modifications! We soon realize that Adapter is 
an extremely important pattern also when it comes to sharing code with the browser,  
as we will see in more detail in Chapter 6, Recipes.

In the wild
There are plenty of real-world examples of the Adapter pattern: we list some of the 
most notable examples here for you to explore and analyze:

• We already know that LevelUP is able to run with different storage 
backends, from the default LevelDB to IndexedDB in the browser. This 
is made possible by the various adapters that are created to replicate the 
internal (private) LevelUP API. Take a look at some of them to see how 
they are implemented: https://github.com/rvagg/node-levelup/wiki/
Modules#storage-back-ends.

• jugglingdb is a multi-database ORM and of course, multiple adapters are 
used to make it compatible with different databases. Take a look at some 
of them at https://github.com/1602/jugglingdb/tree/master/lib/
adapters.

• The perfect complement to the example that we created is level-
filesystem (https://www.npmjs.org/package/level-filesystem), 
which is the proper implementation of the fs API on top of LevelUP.
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Strategy
The Strategy pattern enables an object, called the Context, to support variations in 
its logic by extracting the variable parts into separate, interchangeable objects called 
Strategies. The context implements the common logic of a family of algorithms, while 
a strategy implements the mutable parts, allowing the context to adapt its behavior 
depending on different factors such as an input value, a system configuration, or 
user preferences. The strategies are usually part of a family of solutions and all of 
them implement the same interface, which is the one that is expected by the context. 
The following figure shows the situation we just described:

The preceding figure shows how the context object can plug different strategies into  
its structure, as they were replaceable parts of a piece of machinery. Imagine a car, its 
tires can be considered its strategy to adapt to the different road conditions. We can fit 
the winter tires to go on snowy roads thanks to their studs, while we can decide to fit 
high- performance tires to go mainly on motorways for a long trip. On the one hand, 
we don't want to change the entire car for this to be possible, and on the other, we 
don't want a car with eight wheels so that it can go on every possible road.

We quickly understand how powerful this pattern is; not only it helps with 
separating the concerns within an algorithm but it also enables it to have a  
better flexibility and adapt to different variations of the same problem.

The Strategy pattern is particularly useful in all those situations where supporting 
variations of an algorithm requires complex conditional logic (lots of if-else or 
switch statements) or mixing together different algorithms of the same family. 
Imagine an object called Order that represents an online order of an e-commerce 
website. The object has a method called pay() that, as it says, finalizes the order  
and transfers the funds from the user to the online store. 
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To support different payment systems, we have a couple of options as follows:

• Use an if/else statement in the pay() method to complete the operation 
based on the chosen payment option

• Delegate the logic of the payment to a strategy object that implements the 
logic for the specific payment gateway selected by the user

In the first solution, our Order object cannot support other payment methods unless 
its code is modified. Also, this can become quite complex when the number of 
payment options grows. Instead, using the Strategy pattern enables the Order object 
to support a virtually unlimited number of payment methods and keeps its scope 
limited to only managing the details of the user, the purchased items, and relative 
price, while delegating the job of completing the payment to another object.

Let's now demonstrate this pattern with a simple, realistic example.

Multi-format configuration objects
Let's consider an object called Config that holds a set of configuration parameters 
used by an application, such as the database URL, the listening port of the server, 
and so on. The Config object should be able to provide a simple interface to access 
these parameters but also a way to import and export the configuration using a 
persistent storage, such as a file. We want to be able to support different formats  
to store the configuration, as for example, JSON, INI, or YAML.

By applying what we learned about the Strategy pattern, we can immediately 
identify the variable part of the config object, which is the functionality that allows 
us to serialize and deserialize the configuration. This is going to be our strategy.

Let's create a new module called config.js and let's define the generic part of our 
configuration manager:

var fs = require('fs');
var objectPath = require('object-path');

function Config(strategy) {
  this.data = {};
  this.strategy = strategy;
}
 
Config.prototype.get = function(path) {
  return objectPath.get(this.data, path);
}
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Config.prototype.set = function(path, value) {
  return objectPath.set(this.data, path, value);
}

In the preceding code, we encapsulate the configuration data into an instance 
variable and then we provide the set() and get() methods that allow us to access 
the configuration properties using a dotted path notation (for example, property.
subProperty) by leveraging a npm library called object-path (https://npmjs.
org/package/object-path). In the constructor, we also take in a strategy as input, 
which represents an algorithm for parsing and serializing the data.

Let's now see how we are going to use strategy, by writing the remaining part of 
the Config class:

Config.prototype.read = function(file) {
  console.log('Deserializing from ' + file);
  this.data = this.strategy.deserialize(fs.readFileSync(file, 'utf-
8'));
}

Config.prototype.save = function(file) {
  console.log('Serializing to ' + file);
  fs.writeFileSync(file, this.strategy.serialize(this.data));
}
module.exports = Config;

In the previous code, when reading the configuration from a file, we delegate the 
deserialization task to the strategy; then, when we want to save the configuration 
into a file, we use strategy to serialize the configuration. This simple design allows 
the Config object to support different file formats when loading and saving its data.

To demonstrate this, let's create a couple of strategies into a file called  
strategies.js. Let's start with a strategy for parsing and serializing JSON data:

module.exports.json = {
  deserialize: function(data) {
    return JSON.parse(data);
  },
  serialize: function(data) {
    return JSON.stringify(data, null, '  ');
  }
}

Nothing really complicated! Our strategy simply implements the agreed interface, so 
that it can be used by the Config object.
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Similarly, the next strategy we are going to create allows us to support the INI  
file format:

var ini = require('ini'); //-> https://npmjs.org/package/ini
module.exports.ini = {
  deserialize: function(data) {
    return ini.parse(data);
  },
  serialize: function(data) {
    return ini.stringify(data);
  }
}

Now, to show you how everything comes together, let's create a file named 
configTest.js and let's try to load and save a sample configuration using  
different formats:

var Config = require('./config');
var strategies = require('./strategies');

var jsonConfig = new Config(strategies.json);
jsonConfig.read('samples/conf.json');
jsonConfig.set('book.nodejs', 'design patterns');
jsonConfig.save('samples/conf_mod.json');

var iniConfig = new Config(strategies.ini);
iniConfig.read('samples/conf.ini');
iniConfig.set('book.nodejs', 'design patterns');
iniConfig.save('samples/conf_mod.ini');

Our test module reveals the properties of the Strategy pattern. We defined only one 
Config class, which implements the common parts of our configuration manager, 
while changing the strategy used for serializing and deserializing allowed us to 
create different Config instances supporting different file formats.

The preceding example shows only one of the possible alternatives that we had for 
selecting the strategy. Other valid approaches might have been the following:

• Creating two different strategy families: one for the deserialization  
and the other for the serialization. This would have allowed reading  
from a format and saving into another.

• Dynamically selecting the strategy depending on the extension of  
the file provided; the Config object could have maintained a map 
extension->strategy and used it to select the right algorithm for  
the given extension.
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As we can see, there are several options for selecting the strategy to use and  
the right one only depends on our requirements and the trade-off in terms of 
features/simplicity we want to obtain.

Also, the implementation of the pattern itself can vary a lot, for example, in its 
simplest form, the context and the strategy can both be simple functions:

function context(strategy) {...}

Even though the preceding situation might seem insignificant, it should not be 
underestimated in a programming language, such as JavaScript, where functions  
are first-class citizens and used as much as full-fledged objects.

Between all these variations though, what does not change is the idea behind the 
pattern, as always the implementation can slightly change but the core concepts  
that drive the pattern are always the same.

In the wild
Passport.js (http://passportjs.org) is an authentication framework for  
Node.js which allows to add support for different authentication schemes into a  
web server. With Passport, we can provide a Login with Facebook or Login with 
Twitter functionality to our web application with minimal effort. Passport uses  
the Strategy pattern to separate the common logic required during an authentication 
process from the parts that can change, namely the actual authentication step.  
For example, we might want to use OAuth in order to obtain an accessToken 
to access a Facebook or Twitter profile, or simply use a local database to verify 
a username/password pair. For Passport, these are all different strategies for 
completing the authentication process, and as we can imagine, this allows the library 
to support a virtually unlimited number of authentication services. Take a look at 
the number of different authentication providers supported at http://passportjs.
org/guide/providers, to get an idea of what the Strategy pattern can do.

State
State is a variation of the Strategy pattern where the strategy changes depending 
on the state of the context. We have seen in the previous section how a strategy can 
be selected based on different variables such as user preferences, a configuration 
parameter, the input provided and once this selection is done, the strategy stays 
unchanged for the rest of the lifespan of the context.
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In the State pattern instead, the strategy (also called State in this circumstance) 
is dynamic and can change during the lifetime of the context, thus allowing its 
behavior to adapt depending on its internal state, as shown in the following figure:

Imagine that we have a hotel booking system and an object called Reservation that 
models a room reservation. This is a classical situation where we have to adapt the 
behavior of an object based on its state. Consider the following series of events:

1. When the reservation is initially created, the user can confirm (using 
confirm()) the reservation; of course, they cannot cancel (using cancel()) 
it, because it's still not confirmed. They can however delete (using delete()) 
it if they change their mind before buying.

2. Once the reservation is confirmed, using the confirm() function again  
does not make any sense; however, now it should be possible to cancel  
the reservation but not to delete it any longer, because it has to be kept for  
the record.

3. On the day before the reservation date, it should not be possible to cancel the 
reservation; it's too late for that.

Now, imagine that we have to implement the reservation system that we described 
in one monolithic object; we can already picture all the if-else or switch statements 
that we would have to write to enable/disable each action depending on the state of 
the reservation.
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The State pattern instead is perfect in this situation: there will be three strategies and 
all implementing the three methods described (confirm(), cancel(), delete()) 
and each one implementing only one behavior, the one corresponding to the 
modeled state. By using this pattern, it should be very easy for the Reservation 
object to switch from one behavior to another; this will simply require the activation 
of a different strategy on each state change.

The state transition can be initiated and controlled by the context object, by the client 
code, or by the State objects themselves. This last option usually provides the best 
results in terms of flexibility and decoupling as the context does not have to know 
about all the possible states and how to transition between them.

Implementing a basic fail-safe socket
Let's now work on a concrete example so that we can apply what we learned 
about the State pattern. Let's build a client TCP socket that does not fail when the 
connection with the server is lost; instead, we want to queue all the data sent during 
the time in which the server is offline and then try to send it again as soon as the 
connection is re-established. We want to leverage this socket in the context of a 
simple monitoring system, where a set of machines send some statistics about their 
resource utilization at regular intervals; if the server that collects these resources  
goes down, our socket will continue to queue the data locally until the server  
comes back online.

Let's start by creating a new module called failsafeSocket.js that represents our 
context object:

var OfflineState = require('./offlineState');
var OnlineState = require('./onlineState');

function FailsafeSocket(options) {         //[1]
  this.options = options;
  this.queue = [];
  this.currentState = null;
  this.socket = null;
  this.states = {
    offline: new OfflineState(this),
    online: new OnlineState(this)
  }
  this.changeState('offline');
}

FailsafeSocket.prototype.changeState = function(state) { //[2]
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  console.log('Activating state: ' + state);
  this.currentState = this.states[state];
  this.currentState.activate();
}

FailsafeSocket.prototype.send = function(data) {     //[3]
  this.currentState.send(data);
}

module.exports = function(options) {
  return new FailsafeSocket(options);
};

The FailsafeSocket pseudo class is made of three main elements:

1. The constructor initializes various data structures, including the queue that 
will contain any data sent while the socket is offline. Also, it creates a set of 
two states, one for implementing the behavior of the socket while it's offline 
and another one when the socket is online.

2. The changeState() method is responsible for transitioning from one state 
to another. It simply updates the currentState instance variable and calls 
activate() on the target state.

3. The send() method is the functionality of the socket, this is where we want 
to have a different behavior based on the offline/online state. As we can see, 
this is done by delegating the operation to the currently active state.

Let's now see how the two states look like, starting from the offlineState.js 
module:

var jot = require('json-over-tcp');         //[1]

function OfflineState(failsafeSocket) {
  this.failsafeSocket = failsafeSocket;
}
module.exports = OfflineState;

OfflineState.prototype.send = function(data) {     //[2]
  this.failsafeSocket.queue.push(data);
}

OfflineState.prototype.activate = function() {     //[3]
  var self = this;
  function retry() {
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    setTimeout(function() {
      self.activate();
    }, 500);
  }
  
  self.failsafeSocket.socket = jot.connect(
    self.failsafeSocket.options,
    function() {
      self.failsafeSocket.socket.removeListener('error', retry);
      self.failsafeSocket.changeState('online');
    }
  );
  self.failsafeSocket.socket.once('error', retry);
}

The module that we created is responsible for managing the behavior of the socket 
while it's offline; this is how it works:

1. Instead of using a raw TCP socket, we will use a little library called  
json-over-tcp (https://npmjs.org/package/json-over-tcp),  
which will allow us to easily send JSON objects over a TCP connection.

2. The send() method is only responsible for queuing any data it receives;  
we are assuming that we are offline, so that's all we need to do.

3. The activate() method tries to establish a connection with the server using 
json-over-tcp. If the operation fails, it tries again after 500 milliseconds.  
It continues trying until a valid connection is established, in which case  
the state of failsafeSocket is transitioned to online.

Next, let's implement the onlineState.js module, and then, let's implement the 
onlineState strategy as follows:

function OnlineState(failsafeSocket) {
  this.failsafeSocket = failsafeSocket;
}
module.exports = OnlineState;

OnlineState.prototype.send = function(data) {     //[1]
  this.failsafeSocket.socket.write(data);
};

OnlineState.prototype.activate = function() {     //[2]
  var self = this;
  self.failsafeSocket.queue.forEach(function(data) {
    self.failsafeSocket.socket.write(data);
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  });
  self.failsafeSocket.queue = [];
  
  self.failsafeSocket.socket.once('error', function() {
    self.failsafeSocket.changeState('offline');
  });
}

The OnlineState strategy is very simple and is explained as follows:

1. The send() method writes the data directly into the socket, as we assume  
we are online.

2. The activate() method flushes any data that was queued while the socket 
was offline and it also starts listening for any error event; we will take 
this as a symptom that the socket went offline (for simplicity). When this 
happens, we transition to the offline state.

That's it for our failsafeSocket; now we are ready to build a sample client and a 
server to try it out. Let's put the server code in a module named server.js:

var jot = require('json-over-tcp');
var server = jot.createServer(5000);
server.on('connection', function(socket) {
  socket.on('data', function(data){
    console.log('Client data', data);
  });
});
server.listen(5000, function() {console.log('Started')});

Then the client side code, which is what we are really interested in, goes  
into client.js:

var createFailsafeSocket = require('./failsafeSocket');

var failsafeSocket = createFailsafeSocket({port: 5000});
setInterval(function() {
  //send current memory usage
  failsafeSocket.send(process.memoryUsage());
}, 1000);

Our server simply prints any JSON message it receives to the console, while our 
clients are sending a measurement of their memory utilization every second, 
leveraging a FailsafeSocket object.
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To try the small system that we built, we should run both the client and the server, 
then we can test the features of failsafeSocket by stopping and then restarting 
the server. We should see that the state of the client changes between online and 
offline, and that any memory measurement collected while the server is offline is 
queued and then resent as soon as the server goes back online.

This sample should be a clear demonstration of how the State pattern can help 
increase the modularity and readability of a component that has to adapt its  
behavior depending on its state.

The FailsafeSocket class that we built in this section is only for 
demonstrating the State pattern and doesn't want to be a complete and 
100 percent-reliable solution to handle connectivity issues within TCP 
sockets. For example, we are not verifying that all the data written into 
the socket stream is received by the server, which would require some 
more code not strictly related to the pattern that we wanted to describe.

Template
The next pattern that we are going to analyze is called Template and it also has a 
lot in common with the Strategy pattern. Template consists of defining an abstract 
pseudo class that represents the skeleton of an algorithm where some of its steps are 
left undefined. Subclasses can then fill the gaps in the algorithm by implementing  
the missing steps, called template methods. The intent of this pattern is making it 
possible to define a family of classes that are all variations of a similar algorithm.  
The following UML diagram shows the structure that we just described:
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The three concrete classes shown in the previous diagram, extend Template 
and provide an implementation for templateMethod(), which is abstract or pure 
virtual, to use the C++ terminology; in JavaScript this means that the method is left 
undefined or is assigned to a function that always throws an exception, indicating 
the fact that the method has to be implemented. The Template pattern can be 
considered more classically object-oriented than the other patterns we have seen  
so far, because inheritance is a core part of its implementation.

The purpose of Template and Strategy is very similar, but the main difference 
between the two lies in their structure and implementation. Both allow us to change 
some parts of an algorithm while reusing the common parts; however, while Strategy 
allows us to do it dynamically and possibly at runtime, with Template, the complete 
algorithm is determined the moment the concrete class is defined. Under these 
assumptions, the Template pattern might be more suitable in those circumstances 
where we want to create prepackaged variations of an algorithm. As always, the 
choice between one pattern and the other is up to the developer who has to consider 
the various pros and cons for each use case.

A configuration manager template
To have a better idea of the differences between Strategy and Template, let's now 
re-implement the Config object that we defined in the section about the Strategy 
pattern, but this time using Template. Like in the previous version of the Config 
object, we want to have the ability to load and save a set of configuration properties 
using different file formats.

Let's start by defining the template class; we will call it ConfigTemplate:

var fs = require('fs');
var objectPath = require('object-path');

function ConfigTemplate() {}

ConfigTemplate.prototype.read = function(file) {
  console.log('Deserializing from ' + file);
  this.data = this._deserialize(fs.readFileSync(file, 'utf-8'));
}

ConfigTemplate.prototype.save = function(file) {
  console.log('Serializing to ' + file);
  fs.writeFileSync(file, this._serialize(this.data));
}
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ConfigTemplate.prototype.get = function(path) {
  return objectPath.get(this.data, path);
}

ConfigTemplate.prototype.set = function(path, value) {
  return objectPath.set(this.data, path, value);
}

ConfigTemplate.prototype._serialize = function() {
  throw new Error('_serialize() must be implemented');
}

ConfigTemplate.prototype._deserialize = function() {
  throw new Error('_deserialize() must be implemented');
}

module.exports = ConfigTemplate;

The new ConfigTemplate class defines two template methods: _deserialize() 
and _serialize(), that are needed to carry out the loading and saving of the 
configuration. The underscore at the beginning of their names indicates that they 
are for internal use only, an easy way to flag protected methods. Since, in JavaScript, 
we cannot declare a method as abstract, we simply define them as stubs, throwing 
an exception if they are invoked (in other words, if they are not overridden by a 
concrete subclass).

Let's now create a concrete class using our template, for example, one that allows us 
to load and save the configuration using the JSON format:

var util = require('util');
var ConfigTemplate = require('./configTemplate');

function JsonConfig() {}
util.inherits(JsonConfig, ConfigTemplate);

JsonConfig.prototype._deserialize = function(data) {
    return JSON.parse(data);
};

JsonConfig.prototype._serialize = function(data) {
  return JSON.stringify(data, null, '  ');
}

module.exports = JsonConfig;
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The JsonConfig class inherits from our template, the ConfigTemplate class,  
and provides a concrete implementation for the _deserialize() and  
_serialize() methods.

The JsonConfig class can now be used as a standalone configuration object, without 
the need to specify a strategy for serialization and deserialization, as it is baked in the 
class itself:

var JsonConfig = require('./jsonConfig');

var jsonConfig = new JsonConfig();
jsonConfig.read('samples/conf.json');
jsonConfig.set('nodejs', 'design patterns');
jsonConfig.save('samples/conf_mod.json');

With minimal effort, the Template pattern allowed us to obtain a new, fully  
working configuration manager by reusing the logic and the interface inherited  
from the parent template class and providing only the implementation of a few 
abstract methods.

In the wild
This pattern should not sound entirely new to us. We already encountered it in 
Chapter 3, Coding with Streams, when we were extending the different stream classes 
to implement our custom streams. In that context, the template methods were the 
_write(), _read(), _transform(), or _flush() methods, depending on the stream 
class that we wanted to implement. To create a new custom stream, we needed to 
inherit from a specific abstract stream class, providing an implementation for the 
template methods.

Middleware
One of the most distinctive patterns in Node.js is definitely middleware. 
Unfortunately it's also one of the most confusing for the inexperienced, especially 
for developers coming from the enterprise programming world. The reason for the 
disorientation is probably connected with the meaning of the term middleware, which 
in the enterprise architecture's jargon represents the various software suites that 
help to abstract lower level mechanisms such as OS APIs, network communications, 
memory management, and so on, allowing the developer to focus only on the 
business case of the application. In this context, the term middleware recalls topics 
such as CORBA, Enterprise Service Bus, Spring, JBoss, but in its more generic 
meaning it can also define any kind of software layer that acts like a glue between 
lower level services and the application (literally the software in the middle).
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Middleware in Express
Express (http://expressjs.com) popularized the term middleware in the  
Node.js world, binding it to a very specific design pattern. In express, in fact,  
a middleware represents a set of services, typically functions, that are organized  
in a pipeline and are responsible for processing incoming HTTP requests and  
relative responses. An express middleware has the following signature:

function(req, res, next) { ... }

Where req is the incoming HTTP request, res is the response, and next is the 
callback to be invoked when the current middleware has completed its tasks  
and that in turn triggers the next middleware in the pipeline.

Examples of the tasks carried out by an express middleware are as the following:

• Parsing the body of the request
• Compressing/decompressing requests and responses
• Producing access logs
• Managing sessions
• Providing Cross-site Request Forgery (CSRF) protection

If we think about it, these are all tasks that are not strictly related to the main 
functionality of an application, rather, they are accessories, components providing 
support to the rest of the application and allowing the actual request handlers to focus 
only on their main business logic. Essentially, those tasks are software in the middle.

Middleware as a pattern
The technique used to implement middleware in express is not new; in fact, it can be 
considered the Node.js incarnation of the Intercepting Filter pattern and the Chain of 
Responsibility pattern. In more generic terms, it also represents a processing pipeline, 
which reminds us about streams. Today, in Node.js, the word middleware is used well 
beyond the boundaries of the express framework, and indicates a particular pattern 
whereby a set of processing units, filters, and handlers, under the form of functions are 
connected to form an asynchronous sequence in order to perform preprocessing and 
postprocessing of any kind of data. The main advantage of this pattern is flexibility; in 
fact, this pattern allows us to obtain a plugin infrastructure with incredibly little effort, 
providing an unobtrusive way for extending a system with new filters and handlers.
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If you want to know more about the Intercepting Filter pattern, the 
following article is a good starting point: http://www.oracle.
com/technetwork/java/interceptingfilter-142169.html. 
A nice overview of the Chain of Responsibility pattern is available 
at this URL http://java.dzone.com/articles/design-
patterns-uncovered-chain-of-responsibility.

The following diagram shows the components of the middleware pattern:

The essential component of the pattern is the Middleware Manager, which is 
responsible for organizing and executing the middleware functions. The most 
important implementation details of the pattern are as follows:

• New middleware can be registered by invoking the use() function  
(the name of this function is a common convention in many implementations 
of this pattern, but we can choose any name). Usually, new middleware can 
only be appended at the end of the pipeline, but this is not a strict rule.

• When new data to process is received, the registered middleware is invoked 
in an asynchronous sequential execution flow. Each unit in the pipeline 
receives in input the result of the execution of the previous unit.

• Each middleware can decide to stop further processing of the data by simply 
not invoking its callback or by passing an error to the callback. An error 
situation usually triggers the execution of another sequence of middleware 
that is specifically dedicated to handling errors.

There is no strict rule on how the data is processed and propagated in the pipeline. 
The strategies include:

• Augmenting the data with additional properties or functions
• Replacing the data with the result of some kind of processing
• Maintaining the immutability of the data and always returning fresh copies  

as result of the processing
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The right approach that we need to take depends on the way the Middleware 
Manager is implemented and on the type of processing carried out by the 
middleware itself.

Creating a middleware framework for ØMQ
Let's now demonstrate the pattern by building a middleware framework around 
the ØMQ (http://zeromq.org) messaging library. ØMQ (also known as ZMQ, or 
ZeroMQ) provides a simple interface for exchanging atomic messages across the 
network using a variety of protocols; it shines for its performances, and its basic 
set of abstractions are specifically built to facilitate the implementation of custom 
messaging architectures. For this reason, ØMQ is often chosen to build complex 
distributed systems.

In Chapter 8, Messaging and Integration Patterns, we will have the 
chance to analyze the features of ØMQ in more detail.

The interface of ØMQ is pretty low-level, it only allows us to use strings and binary 
buffers for messages, so any encoding or custom formatting of data has to be 
implemented by the users of the library.

In the next example, we are going to build a middleware infrastructure to abstract 
the preprocessing and postprocessing of the data passing through a ØMQ socket, so 
that we can transparently work with JSON objects but also seamlessly compress the 
messages traveling over the wire.

Before continuing with the example, please make sure to install 
the ØMQ native libraries following the instructions at this URL: 
http://zeromq.org/intro:get-the-software. Any version 
in the 4.0 branch should be enough for working on this example.

The Middleware Manager
The first step to build a middleware infrastructure around ØMQ is to create a 
component that is responsible for executing the middleware pipeline when a new 
message is received or sent. For the purpose, let's create a new module called 
zmqMiddlewareManager.js and let's start defining it:

function ZmqMiddlewareManager(socket) {
  this.socket = socket;
  this.inboundMiddleware = [];           //[1]
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  this.outboundMiddleware = [];
  var self = this;
  socket.on('message', function(message) {       //[2]
    self.executeMiddleware(self.inboundMiddleware, {
      data: message
    });
  });
}
module.exports = ZmqMiddlewareManager;

This first code fragment defines a new constructor for our new component.  
It accepts a ØMQ socket as an argument and:

1. Creates two empty lists that will contain our middleware functions, one for 
the inbound messages and another one for the outbound messages.

2. Immediately, it starts listening for the new messages coming from the socket 
by attaching a new listener to the 'message' event. In the listener, we 
process the inbound message by executing the inboundMiddleware pipeline.

The next method of the ZmqMiddlewareManager prototype is responsible for 
executing the middleware when a new message is sent through the socket:

ZmqMiddlewareManager.prototype.send = function(data) {
  var self = this;
  var message = {
    data: data
  };
  
  self.executeMiddleware(self.outboundMiddleware, message,
    function() {
      self.socket.send(message.data);
    }
  );
}

This time the message is processed using the filters in the outboundMiddleware list 
and then passed to socket.send() for the actual network transmission.

Now, we need a small method to append new middleware functions to our 
pipelines; we already mentioned that such a method is conventionally called use():

ZmqMiddlewareManager.prototype.use = function(middleware) {
  if(middleware.inbound) {
    this.inboundMiddleware.push(middleware.inbound);
  }
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  if(middleware.outbound) {
    this.outboundMiddleware.unshift(middleware.outbound);
  }
}

Each middleware comes in pairs; in our implementation it's an object that contains 
two properties, inbound and outbound, that contain the middleware functions to be 
added to the respective list.

It's important to observe here that the inbound middleware is pushed to the end 
of the inboundMiddleware list, while the outbound middleware is inserted at 
the beginning of the outboundMiddleware list. This is because complementary 
inbound/outbound middleware functions usually need to be executed in an inverted 
order. For example, if we want to decompress and then deserialize an inbound 
message using JSON, it means that for the outbound, we should instead first serialize 
and then compress.

It's important to understand that this convention for organizing 
the middleware in pairs is not strictly part of the general pattern, 
but only an implementation detail of our specific example.

Now, it's time to define the core of our component, the function that is responsible  
for executing the middleware:

ZmqMiddlewareManager.prototype.executeMiddleware =
  function(middleware, arg, finish) {
    var self = this;
    (function iterator(index) {
      if(index === middleware.length) {
        return finish && finish();
      }
      middleware[index].call(self, arg, function(err) {
        if(err) {
          console.log('There was an error: ' + err.message);
        }
        iterator(++index);
      });
    })(0);
  }
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The preceding code should look very familiar; in fact, it is a simple  
implementation of the asynchronous sequential iteration pattern that we  
learned in Chapter 2, Asynchronous Control Flow Patterns. Each function in the 
middleware array received in input is executed one after the other, and the same  
arg object is provided as an argument to each middleware function; this is the trick 
that makes it possible to propagate the data from one middleware to the next. At the 
end of the iteration, the finish() callback is invoked.

Please note that for brevity we are not supporting an error middleware 
pipeline. Normally, when a middleware function propagates an error, 
another set of middleware specifically dedicated to handling errors is 
executed. This can be easily implemented using the same technique that 
we are demonstrating here.

A middleware to support JSON messages
Now that we have implemented our Middleware Manager, we can create a pair 
of middleware functions to demonstrate how to process inbound and outbound 
messages. As we said, one of the goals of our middleware infrastructure is having  
a filter that serializes and deserializes JSON messages, so let's create a new 
middleware to take care of this. In a new module called 'middleware.js'  
let's include the following code:

module.exports.json = function() {
  return {
    inbound: function(message, next) {
      message.data = JSON.parse(message.data.toString());
      next();
    },
    outbound:
      function(message, next) {
      message.data = new Buffer(JSON.stringify(message.data));
      next();
    }
  }
}

The json middleware that we just created is very simple:

• The inbound middleware deserializes the message received as an input and 
assigns the result back to the data property of message, so that it can be 
further processed along the pipeline

• The outbound middleware serializes any data found into message.data
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Please note how the middleware supported by our framework is quite different from 
the one used in express; this is totally normal and a perfect demonstration of how 
we can adapt this pattern to fit our specific need.

Using the ØMQ middleware framework
We are now ready to use the middleware infrastructure that we just created. To do 
that, we are going to build a very simple application, with a client sending a ping to a 
server at regular intervals and the server echoing back the message received.

From an implementation perspective, we are going to rely on a request/reply 
messaging pattern using the req/rep socket pair provided by ØMQ (http://zguide.
zeromq.org/page:all#Ask-and-Ye-Shall-Receive). We will then wrap the sockets 
with our zmqMiddlewareManager to get all the advantages from the middleware 
infrastructure that we built, including the middleware for serializing/deserializing 
JSON messages.

The server
Let's start by creating the server side (server.js). In the first part of the module  
we initialize our components:

var zmq = require('zmq');
var ZmqMiddlewareManager = require('./zmqMiddlewareManager');
var middleware = require('./middleware');
var reply = zmq.socket('rep');
reply.bind('tcp://127.0.0.1:5000');

In the preceding code, we loaded the required dependencies and bind a ØMQ 'rep' 
(reply) socket to a local port. Next, we initialize our middleware:

var zmqm = new ZmqMiddlewareManager(reply);
zmqm.use(middleware.zlib());
zmqm.use(middleware.json());

We created a new ZmqMiddlewareManager object and then added two middlewares, 
one for compressing/decompressing the messages and another one for parsing/
serializing JSON messages.

For brevity, we did not show the implementation of the zlib 
middleware, but you can find it in the sample code that is 
distributed with the book.
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Now we are ready to handle a request coming from the client, we will do this by 
simply adding another middleware, this time using it as a request handler:

zmqm.use({
  inbound: function(message, next) {
    console.log('Received: ', message.data);
    if(message.data.action === 'ping') {
      this.send({action: 'pong', echo: message.data.echo});
    }
    next();
  }
});

Since this last middleware is defined after the zlib and json middlewares, we 
can transparently use the decompressed and deserialized message that is available 
in the message.data variable. On the other hand, any data passed to send() will 
be processed by the outbound middleware, which in our case will serialize then 
compress the data.

The client
On the client side of our little application, 'client.js', we will first have to initiate 
a new ØMQ 'req' (request) socket connected to the port 5000, the one  
used by our server:

var zmq = require('zmq');
var ZmqMiddlewareManager = require('./zmqMiddlewareManager');
var middleware = require('./middleware');

var request = zmq.socket('req');
request.connect('tcp://127.0.0.1:5000');

Then, we need to set up our middleware framework in the same way that we did for 
the server:

var zmqm = new ZmqMiddlewareManager(request);
zmqm.use(middleware.zlib());
zmqm.use(middleware.json());

Next, we create an inbound middleware to handle the responses coming from  
the server:

zmqm.use({
  inbound: function(message, next) {
    console.log('Echoed back: ', message.data);
    next();
  }
});
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In the preceding code, we simply intercept any inbound response and print it  
to the console.

Finally, we set up a timer to send some ping requests at regular intervals, always 
using the zmqMiddlewareManager to get all the advantages of our middleware:

setInterval(function() {
  zmqm.send({action: 'ping', echo: Date.now()});
}, 1000);

We can now try our application by first starting the server:

node server

We can then start the client with the following command:

node client

At this point, we should see the client sending messages and the server echoing  
them back.

Our middleware framework did its job; it allowed us to decompress/compress and 
deserialize/serialize our messages transparently, leaving the handlers free to focus 
on their business logic!

Command
Another design pattern with huge importance in Node.js is Command. In its most 
generic definition, we can consider a command as any object that encapsulates all the 
information necessary to perform an action at a later time. So, instead of invoking 
a method or a function directly, we create an object representing the intention to 
perform such an invocation; it will then be the responsibility of another component 
to materialize the intent, transforming it into an actual action. Traditionally, this 
pattern is built around four major components, as shown in the following figure:
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The typical organization of the Command pattern can be described as follows:

• Command: This is the object encapsulating the information necessary  
to invoke a method or function.

• Client: This creates the Command and provides it to the Invoker.
• Invoker: This is responsible for executing the Command on the Target.
• Target (or Receiver): This is the subject of the invocation. It can be a lone 

function or the method of an object.

As we will see, these four components can vary a lot depending on the way we want 
to implement the pattern; this should not sound new at this point.

Using the Command pattern, instead of directly executing an operation, has several 
advantages and applications:

• A command can be scheduled for execution at a later time.
• A command can be easily serialized and sent over the network. This simple 

property allows us to distribute jobs across remote machines, transmit 
commands from the browser to the server, create RPC systems, and so on.

• Commands make it easy to keep a history of all the operations executed  
on a system.

• Commands are an important part of some algorithms for data synchronization 
and conflict resolution.

• A command scheduled for execution can be cancelled if it's not yet executed. 
It can also be  reverted (undone), bringing the state of the application to the 
point before the command was executed.

• Several commands can be grouped together. This can be used to create atomic 
transactions or to implement a mechanism whereby all the operations in the 
group are executed at once.

• Different kinds of transformations can be performed on a set of commands 
such as duplicate removal, joining and splitting, or applying more complex 
algorithms such as Operational Transformation (OT), which is the base  
for most of today's real-time collaborative software such as collaborative  
text editing.

A great explanation of how Operational Transformation works can be 
found at www.codecommit.com/blog/java/understanding-
and-applying-operational-transformation.
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The preceding list clearly shows us how important this pattern is, especially in  
a platform like Node.js, where networking and asynchronous execution are  
essential players.

A flexible pattern
As we already mentioned, the command pattern in JavaScript can be implemented in 
many different ways; we are now going to demonstrate only a few of them just to 
give an idea of its scope.

The task pattern
We can start off with the most basic and trivial implementation: the task pattern.  
The easiest way in JavaScript to create an object representing an invocation is,  
of course, creating a closure:

function createTask(target, args) {
  return function() {
       target.apply(null, args);
  }
}

This should not look new at all; we have used this pattern already so many times 
along the book, and in particular, in Chapter 2, Asynchronous Control Flow Patterns. 
This technique allowed us to use a separate component to control and schedule the 
execution of our tasks, which is essentially equivalent to the invoker of the Command 
pattern. For example, do you remember how we were defining tasks to pass to 
the async library? Or even better, do you remember how we were using thunks in 
combination with generators? The callback pattern itself can be considered a very 
simple version of the Command pattern.

A more complex command
Let's now work on an example of a more complex command; this time we want to 
support undo and serialization. Let's start with the target of our commands, a little 
object that is responsible for sending status updates to a service like Twitter.  
We use a mock of such a service for simplicity:

var statusUpdateService = {
  statusUpdates: {},
  sendUpdate: function(status) {
    console.log('Status sent: ' + status);
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    var id = Math.floor(Math.random() * 1000000);
    statusUpdateService.statusUpdates[id] = status;
    return id;
  },

  destroyUpdate: function(id) {
    console.log('Status removed: ' + id);
    delete statusUpdateService.statusUpdates[id];
  }
}

Now, let's create a command to represent the posting of a new status update:

function createSendStatusCmd(service, status) {
  var postId = null;
  var command = function() {
    postId = service.sendUpdate(status);
  };

  command.undo = function() {
    if(postId) {
      service.destroyUpdate(postId);
      postId = null;
    }
  };

  command.serialize = function() {
    return {type: 'status', action: 'post', status: status};
  }

  return command;
}

The preceding function is a factory that produces new sendStatus commands.  
Each command implements the following three functionalities:

1. The command itself is a function that when invoked will trigger the action;  
in other words, it implements the task pattern that we have seen before.  
The command when executed will send a new status update using the 
methods of the target service.

2. An undo() function, attached to the main task, that reverts the effects of the 
operations. In our case, we are simply invoking  
the destroyUpdate() method on the target service.

3. A serialize() function that builds a JSON object that contains all the 
necessary information to reconstruct the same command object.
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After this, we can build an Invoker; we can start by implementing its constructor and 
its run() method:

function Invoker() {
  this.history = [];
}

Invoker.prototype.run = function(cmd) {
  this.history.push(cmd);
  cmd();
  console.log('Command executed', cmd.serialize());
};

The run() method that we defined earlier is the basic functionality of our Invoker; 
it is responsible for saving the command into the history instance variable and then 
triggering the execution of the command itself. Next, we can add a new method that 
delays the execution of a command:

Invoker.prototype.delay = function(cmd, delay) {
  var self = this;
  setTimeout(function() {
    self.run(cmd);
  }, delay)
}

Then, we can implement an undo() method that reverts the last command:

Invoker.prototype.undo = function() {
  var cmd = this.history.pop();
  cmd.undo();
  console.log('Command undone', cmd.serialize());
}

Finally, we also want to be able to run a command on a remote server, by serializing 
and then transferring it over the network using a web service:

Invoker.prototype.runRemotely = function(cmd) {
  var self = this;
  request.post('http://localhost:3000/cmd',
      {json: cmd.serialize()}, function(err) {
    console.log('Command executed remotely', cmd.serialize());
  });
}
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Now that we have the Command, the Invoker, and the Target, the only component 
missing is the Client. Let's start from instantiating the Invoker:

var invoker = new Invoker();

Then, we can create a command using the following line of code:

var command = createSendStatusCmd(statusUpdateService, 'HI!');

We now have a command representing the posting of a status message; we can then 
decide to dispatch it immediately:

invoker.run(command);

Oops, we made a mistake; let's revert to the state of our timeline, as it was before 
sending the last message:

invoker.undo();

We can also decide to schedule the message to be sent in a hour from now:

invoker.delay(command, 1000 * 60 * 60);

Alternatively, we can distribute the load of the application by migrating the task to 
another machine:

invoker.runRemotely(command);

The little example that we have just created shows how wrapping an operation in a 
command can open a world of possibilities, and that's just the tip of the iceberg.

As the last remarks, it is worth noticing that a full-fledged Command pattern has be 
used only when really needed. We saw, in fact, how much additional code we had to 
write to simply invoke a method of statusUpdateService; if all that we need is only 
an invocation, then a complex command would be overkill. If however, we need to 
schedule the execution of a task or run an asynchronous operation, then the simpler 
task pattern offers the best compromise. If instead, we need more advanced features 
such as undo support, transformations, conflict resolution, or one of the other fancy 
use cases that we described previously, using a more complex representation for the 
command is almost necessary.
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Summary
In this chapter, we learned how some of the traditional GoF design patterns can be 
applied to JavaScript and, in particular, to the Node.js philosophy. Some of them 
were transformed, some were simplified, other renamed or adapted as part of their 
assimilation by the language, the platform, and the community. We emphasized how 
simple patterns such as Factory can greatly improve the flexibility of our code and 
how with Proxy, Decorator, and Adapter we can manipulate, extend, and adapt the 
interface of existing objects. Strategy, State, and Template, instead, have shown us how 
to split a bigger algorithm into its static and variable parts, allowing us to improve 
the code reuse and extensibility of our components. By learning the Middleware 
pattern, we are now able to process our data using a simple, extensible, and elegant 
paradigm. Finally, the Command pattern provided us with a simple abstraction to 
make any operation more flexible and powerful.

We also acquired other evidence of how JavaScript is about getting things done 
and building software by composing different reusable objects or functions instead 
of extending many little classes or interfaces. Also, for developers coming from 
other Object-Oriented languages, it might have looked weird to see how different 
some design patterns become when implemented in JavaScript; some might feel 
lost knowing that there might be not just one but rather many different ways for 
implementing a design pattern.

JavaScript is a pragmatic language, we said; it allows us to get things done quickly; 
however, without any kind of structure or guideline, we are asking for trouble. 
That's where this book and, in particular, this chapter comes useful. They try to teach 
the right balance between creativity and rigor, by showing that there are patterns 
that can be reused to improve our code but also that their implementation is not 
the most important detail, as it can vary a lot or even overlap with other patterns; 
what really matters is instead the blueprint, the guideline, the idea at the base of the 
pattern. This is the real reusable piece of information that we can exploit to design 
better Node.js applications with both fun and method.

In the next chapter, we will analyze some more design patterns by focusing on one 
of the most opinionated aspects of programming: how to organize and connect 
modules together.



Wiring Modules
The Node.js module system brilliantly fills an old gap in the JavaScript language: the 
lack of a native way of organizing code into different self-contained units. One of its 
biggest advantages is the ability to link these modules together using the require() 
function (as we have seen in Chapter 1, Node.js Design Fundamentals), a simple yet 
powerful approach. However, many developers new to Node.js might find this 
confusing; one of the most asked questions is in fact: what's the best way to pass an 
instance of component X into module Y?

Sometimes, this confusion results in a desperate quest for the Singleton pattern in 
the hope of finding a more familiar way to link our modules together. On the other 
side, some might overuse the Dependency Injection pattern, leveraging it to handle 
any type of dependency (even stateless) without a particular reason. It should not 
be surprising that the art of module wiring is one of the most controversial and 
opinionated topics in Node.js. There are many schools of thought influencing this 
area, but none of them can be considered to possess the undisputed truth. Every 
approach, in fact, has its pros and cons and they often end up mixed together in the 
same application, adapted, customized, or used in disguise under other names.

In this chapter, we're going to analyze the various approaches for wiring modules 
and highlight their strengths and weaknesses, so that we can rationally choose and 
mix them together depending on the balance between simplicity, reusability, and 
extensibility that we want to obtain. In particular, we're going to present the most 
important patterns related to this topic, which are as follows:

• Hardcoded dependency
• Dependency injection
• Service locator
• Dependency injection containers
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We will then explore a closely related problem, namely, how to wire plugins.  
This can be considered a specialization of module wiring and it mostly presents the 
same traits, but the context of its application is slightly different and presents its own 
challenges, especially when a plugin is distributed as a separate Node.js package.  
We will learn the main techniques to create a plugin-capable architecture and we will 
then focus on how to integrate these plugins into the flow of the main application.

At the end of this chapter, the obscure art of Node.js module wiring should not be a 
mystery to us anymore.

Modules and dependencies
Every modern application is the result of the aggregation of several components and, 
as the application grows, the way we connect these components becomes a win or 
lose factor. It's not only a problem related to technical aspects such as extensibility, 
but it's also a concern with the way we perceive the system. A tangled dependency 
graph is a liability and it adds to the technical debt of the project; in such a situation, 
any change in the code aimed to either modify or extend its functionality can result 
in a tremendous effort.

In the worst case, the components are so tightly connected together that it becomes 
impossible to add or change anything without refactoring or even completely 
rewriting entire parts of the application. This, of course, does not mean that we have 
to over-engineer our design starting from the very first module, but surely finding  
a good balance from the very beginning can make a huge difference.

Node.js provides a great tool for organizing and wiring the components of an 
application together: it's the CommonJS module system. However, the module 
system alone is not a guarantee for success; if on one side, it adds a convenient level 
of indirection between the client module and the dependency, then on the other, 
it might introduce a tighter coupling if not used properly. In this section, we will 
discuss some fundamental aspects of dependency wiring in Node.js.

The most common dependency in Node.js
In software architecture, we can consider any entity, state, or data format, which 
influences the behavior or structure of a component, as a dependency. For example, 
a component might use the services offered by another component, rely on a 
particular global state of the system, or implement a specific communication  
protocol in order to exchange information with other components, and so on.  
The concept of dependency is very broad and sometimes hard to evaluate.
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In Node.js, though, we can immediately identify one essential type of dependency, 
which is the most common and easy to identify; of course, we are talking about 
the dependency between modules. Modules are the fundamental mechanism at 
our disposal to organize and structure our code; it's unreasonable to build a large 
application without relying on the module system at all. If used properly to group 
the various elements of an application, it can bring a lot of advantages. In fact, the 
properties of a module can be summed up as follows:

• A module is more readable and understandable because (ideally) it's  
more focused

• Being represented as a separate file, a module is easier to identify
• A module can be more easily reused across different applications

A module represents the perfect level of granularity for performing information 
hiding and gives an effective mechanism to expose only the public interface of a 
component (using module.exports).

However, simply spreading the functionality of an application or a library across 
different modules is not enough for a successful design; it has to be done right. One of 
the fallacies is ending up in a situation where the relationship between our modules 
becomes so strong we create a unique monolithic entity, where removing or replacing 
a module would reverberate across most of the architecture. We are immediately able 
to recognize that the way we organize our code into modules and the way we connect 
them together, play a strategic role. And as with any problem in software design, it's a 
matter of finding the right balance between different measures.

Cohesion and Coupling
The two most important properties to balance when building modules are cohesion 
and coupling. They can be applied to any type of a component or subsystem in 
software architecture, so we can use them as guidelines when building Node.js 
modules as well. These two properties can be defined as follows:

• Cohesion: This is a measure of the correlation between the functionalities 
of a component. For example, a module that does only one thing, where all 
its parts contribute to that one single task has a high cohesion. A module that 
contains functions to save any type of object into a database—saveProduct(), 
saveInvoice(), saveUser(), and so on—has a low cohesion.
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• Coupling: This measures how much a component is dependent on the other 
components of a system. For example, a module is tightly coupled to another 
module when it directly reads or modifies the data of the other module. Also, 
two modules that interact via a global or shared state are tightly coupled. 
On the other side, two modules that communicate only via the passing of 
parameters are loosely coupled.

The desirable scenario is to have a high cohesion and a loose coupling, which usually 
results in more understandable, reusable, and extensible modules.

Stateful modules
In JavaScript, everything is an object. We don't have abstract concepts such as pure 
interfaces or classes; its dynamic typing already provides a natural mechanism 
to decouple the interface (or policy) from the implementation (or detail). That's 
one of the reasons why some of the design patterns that we have seen in Chapter 
4, Design Patterns, looked so different and simplified compared to their traditional 
implementation.

In JavaScript, we have minimal problems in separating interfaces from 
implementations; however, by simply using the Node.js module system, we are 
already introducing a hardcoded relationship with one particular implementation. 
Under normal conditions, there is nothing wrong with this, but if we use require() 
to load a module that exports a stateful instance, such as a db handle, an HTTP  
server instance, the instance of a service, or in general any object which is not 
stateless, we are actually referencing something very similar to a Singleton,  
thus inheriting its pros and cons, with the addition of some caveats.

The Singleton pattern in Node.js
A lot of people new to Node.js get confused about how to implement the Singleton 
pattern correctly, most of the time with the simple intent of sharing an instance 
across the various modules of an application. But, the answer in Node.js is easier 
than what we might think; simply exporting an instance using module.exports is 
already enough to obtain something very similar to the Singleton pattern. Consider, 
for example, the following line of code:

//'db.js' module
module.exports = new Database('my-app-db');
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By simply exporting a new instance of our database, we can already assume that 
within the current package (which can easily be the entire code of our application), 
we are going to have only one instance of the db module. This is possible because, 
as we know, Node.js will cache the module after the first invocation of require(), 
making sure to not execute it again at any subsequent invocation, returning instead 
the cached instance. For example, we can easily obtain a shared instance of the db 
module that we defined earlier, with the following line of code:

var db = require('./db');

But there is a caveat; the module is cached using its full path as lookup key, therefore 
it is guaranteed to be a Singleton only within the current package. We saw in Chapter 
1, Node.js Design Fundamentals, that each package might have its own set of private 
dependencies inside its node_modules directory, which might result in multiple 
instances of the same package and therefore of the same module, with the result that 
our Singleton might not be single anymore. Consider, for example, the case where the 
db module is wrapped into a package named mydb. The following lines of code will 
be in its package.json file:

{
  "name": "mydb",
  "main": "db.js"
}

Now consider the following package dependency tree:

app/
`-- node_modules
    |-- packageA
    |  `-- node_modules
    |      `-- mydb
    `-- packageB
        `-- node_modules
            `-- mydb

Both packageA and packageB have a dependency on the mydb package; in turn, the 
app package, which is our main application, depends on packageA and packageB. 
The scenario we just described, will break the assumption about the uniqueness of 
the database instance; in fact, both packageA and packageB will load the database 
instance using a command such as the following:

var db = require('mydb');
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However, packageA and packageB will actually load two different instances of our 
pretending singleton, because the mydb module will resolve to a different directory 
depending on the package it is required from.

At this point, we can easily say that the Singleton pattern, as described in the 
literature, does not exist in Node.js unless we don't use a real global variable to  
store it, something such as the following:

global.db = new Database('my-app-db');

This would guarantee that the instance will be only one and shared across the entire 
application, and not just the same package. However, this is a practice to avoid at 
all costs; most of the time, we don't really need a pure Singleton, and anyway, as we 
will see later, there are other patterns that we can use to share an instance across the 
different packages.

Throughout this book, for simplicity, we will use the term Singleton 
to describe a stateful object exported by a module, even if this 
doesn't represent a real singleton in the strict definition of the term. 
We can surely say though, that it shares the same practical intent 
with the original pattern: to easily share a state across different 
components.

Patterns for wiring modules
Now that we have discussed some basic theory around dependencies and coupling, 
we are ready to dive into some more practical concepts. In this section, in fact, we are 
going to present the main module wiring patterns. Our focus will be mainly pointed 
towards the wiring of stateful instances, which are, without any doubts, the most 
important type of dependencies in an application.

Hardcoded dependency
We start our analysis by looking at the most conventional relationship between two 
modules, which is the hardcoded dependency. In Node.js, this is obtained when a 
client module explicitly loads another module using require(). As we will see in 
this section, this way of establishing module dependencies is simple and effective, 
but we have to pay additional attention to hardcoding dependencies with stateful 
instances, as this would limit the reusability of our modules.
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Building an authentication server using hardcoded 
dependencies
Let's start our analysis by looking at the structure represented by the following figure:

The preceding figure shows a typical example of layered architecture; it describes 
the structure of a simple authentication system. AuthController accepts the input 
from the client, extracts the login information from the request, and performs some 
preliminary validation. It then relies on AuthService to check whether the provided 
credentials match with the information stored in the database; this is done by 
executing some specific queries using a DB handle as a means to communicate with 
the database. The way these three components are connected together will determine 
their level of reusability, testability, and maintainability.

The most natural way to wire these components together is requiring the DB module 
from AuthService and then requiring AuthService from AuthController. This is 
the hardcoded dependency that we are talking about.

Let's demonstrate this in practice by actually implementing the system that we  
just described. Let's then design a simple authentication server, which exposes  
the following two HTTP APIs:

• POST '/login': This receives a JSON object that contains a username  
and password pair to authenticate. On success, it returns a JSON Web  
Token (JWT), which can be used in subsequent requests to verify the  
identity of the user.

JSON Web Token is a format for representing and sharing claims 
between parties. Its popularity is growing with the explosion 
of Single Page Applications and Cross-origin resource 
sharing (CORS), as a more flexible alternative to cookie-based 
authentication. To know more about JWT, you can refer to its 
specification (currently in draft) at http://self-issued.
info/docs/draft-ietf-oauth-json-web-token.html.

• GET '/checkToken': This reads a token from a GET query parameter and 
verifies its validity.
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For this example, we are going to use several technologies; some of them are not new 
to us. In particular, we are going to use express (https://npmjs.org/package/
express) to implement the Web API, and levelup (https://npmjs.org/package/
levelup) to store the user's data.

The db module
Let's start by building our application from the bottom up; the very first thing we 
need is a module that exposes a levelUp database instance. Let's do this by creating 
a new file named lib/db.js and including the following content:

var level = require('level');
var sublevel = require('level-sublevel');

module.exports = sublevel(
  level('example-db', {valueEncoding: 'json'})
);

The preceding module simply creates a connection to a LevelDB database stored 
in the ./example-db directory, then it decorates the instance using the sublevel 
plugin (https://npmjs.org/package/level-sublevel), which adds the support to 
create and query separate sections of the database (it can be compared to a SQL table 
or MongoDB collection). The object exported by the module is the database handle 
itself, which is a stateful instance, therefore, we are creating a singleton.

The authService module
Now that we have the db singleton, we can use it to implement the lib/authService.
js module, which is the component responsible for checking a user's credentials 
against the information in the database. The code is as follows (only the relevant  
parts are shown):

[...]
var db = require('./db');
var users = db.sublevel('users');

var tokenSecret = 'SHHH!';

exports.login = function(username, password, callback) {
  users.get(username, function(err, user) {
    [...]
  });
};

exports.checkToken = function(token, callback) {
  [...]
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  users.get(userData.username, function(err, user) {
    [...]
  });
};

The authService module implements the login() service, which is responsible  
for checking a username/password pair against the information in the database,  
and the checkToken() service, which takes in a token and verifies its validity.

The preceding code also shows the first example of a hardcoded dependency with 
a stateful module. We are talking about the db module, which we load by simply 
requiring it. The resulting db variable contains an already initialized database handle 
that we can use straightaway to perform our queries.

At this point, we can see that all the code that we created for the authService module 
does not really necessitate one particular instance of the db module—any instance will 
simply work. However, we hardcoded the dependency to one particular db instance, 
and this means that we will be unable to reuse authService in combination with 
another database instance without touching its code.

The authController module
Continuing to go up in the layers of the application, we are now going to see what 
the lib/authController.js module looks like. This module is responsible for 
handling the HTTP requests and it's essentially a collection of the express routes; 
the module's code is the following:

var authService = require('./authService');

exports.login = function (req, res, next) {
  authService.login(req.body.username, req.body.password,
    function(err, result) {
      [...]
    }
  );
};

exports.checkToken = function (req, res, next) {
  authService.checkToken(req.query.token,
    function(err, result) {
      [...]
    }
  );
};
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The authController module implements two express routes: one for performing 
the login and returning the corresponding authentication token (login()), and 
another for checking the validity of the token (checkToken()). Both the routes 
delegate most of their logic to authService, so their only job is to deal with the  
HTTP request and response.

We can see that, in this case too, we are hardcoding the dependency with a stateful 
module, authService. Yes, the authService module is stateful by transitivity, 
because it depends directly on the db module. With this, we should start to 
understand how a hardcoded dependency can easily propagate across the structure 
of the entire application: the authController module depends on the authService 
module, which in turn depends on the db module; transitively, this means that the 
authService module itself is indirectly linked to one particular db instance.

The app module
Finally, we can put all the pieces together by implementing the entry point of the 
application. Following the convention, we will place this logic in a module named 
app.js sitting in the root of our project, as follows:

var express = require('express');
var bodyParser = require('body-parser');
var errorHandler = require('errorhandler');
var http = require('http');

var authController = require('./lib/authController');

var app = module.exports = express();
app.use(bodyParser.json());

app.post('/login', authController.login);
app.get('/checkToken', authController.checkToken);
app.use(errorHandler());
http.createServer(app).listen(3000, function () {
  console.log('Express server started');
});

As we can see, our app module is really basic; it contains a simple express server, 
which registers some middleware and the two routes exported by authController. 
Of course, the most important line of code for us is where we require 
authController to create a hardcoded dependency with its stateful instance.
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Running the authentication server
Before we can try the authentication server that we just implemented, we advise you 
to populate the database with some sample data using the populate_db.js script, 
which is provided in the code samples. After doing this, we can fire up the server  
by running the following command:

node app

We can then try to invoke the two web services that we created; we can use a REST 
client to do this or alternatively the good old curl command. For example, to execute 
a login, we can run the following command:

curl -X POST -d '{"username": "alice", "password":"secret"}' http://
localhost:3000/login -H "Content-Type: application/json"

The preceding command should return a token that we can use to test the  
/checkLogin web service (just replace <TOKEN> in the following command):

curl -X GET -H "Accept: application/json" http://localhost:3000/
checkToken?token=<TOKEN HERE>

The preceding command should return a string such as the following, which 
confirms that our server is working as expected:

{"ok":"true","user":{"username":"alice"}}

Pros and cons of hardcoded dependencies
The sample we just implemented, demonstrated the conventional way of wiring 
modules in Node.js, leveraging the full power of its module system to manage the 
dependencies between the various components of the application. We exported 
stateful instances from our modules, letting Node.js manage their life cycle, and 
then we required them directly from other parts of the application. The result is 
an immediately intuitive organization, easy to understand and debug, where each 
module initializes and wires itself without any external intervention.

On the other side, however, hardcoding the dependency on a stateful instance limits 
the possibility of wiring the module against other instances, which makes it less 
reusable and harder to unit test. For example, reusing authService in combination 
with another database instance would be close to impossible, as its dependency is 
hardcoded with one particular instance. Similarly, testing authService in isolation can 
be a difficult task, because we cannot easily mock the database used by the module.
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As a last consideration, it's important to see that most of the disadvantages of using 
hardcoded dependencies are associated with stateful instances. This means that if we 
use require() to load a stateless module, for example, a factory, constructor, or a set 
of stateless functions, we don't incur the same kind of problems. We will still have a 
tight coupling with a specific implementation, but in Node.js, this usually does not 
impact the reusability of a component, as it does not introduce a coupling with a 
particular state.

Dependency injection
The dependency injection (DI) pattern is probably one of the most misunderstood 
concepts in software design. Many associate the term with frameworks and 
dependency injection containers such as Spring (for Java and C#) or Pimple 
(for PHP), but in reality it is a much simpler concept. The main idea behind the 
dependency injection pattern is the dependencies of a component being provided  
as input by an external entity.

Such an entity can be a client component or a global container, which centralizes the 
wiring of all the modules of the system. The main advantage of this approach is an 
improved decoupling, especially for modules depending on stateful instances. Using 
DI, each dependency, instead of being hardcoded into the module, is received from 
the outside. This means that the module can be configured to use any dependency and 
therefore can be reused in different contexts.

To demonstrate this pattern in practice, we are now going to refactor the authentication 
server that we built in the previous section, using dependency injection to wire  
its modules.

Refactoring the authentication server to use 
dependency injection
Refactoring our modules to use dependency injection involves the use of a very 
simple recipe: instead of hardcoding the dependency to a stateful instance, we  
will instead create a factory, which takes a set of dependencies as arguments.

Let's start immediately with this refactoring; let's work on the lib/db.js module 
given as follows:

var level = require('level');
var sublevel = require('level-sublevel');

module.exports = function(dbName) {
  return sublevel(
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    level(dbName, {valueEncoding: 'json'})
  );
};

The first step in our refactoring process is to transform the db module into a factory. 
The result is that we can now use it to create as many database instances as we want; 
this means that the entire module is now reusable and stateless.

Let's move on and implement the new version of the lib/authService.js module:

var jwt = require('jwt-simple');
var bcrypt = require('bcrypt');

module.exports = function(db, tokenSecret) {
  var users = db.sublevel('users');
  var authService = {};
  
  authService.login = function(username, password, callback) {
    //...same as in the previous version
  };

  authService.checkToken = function(token, callback) {
    //...same as in the previous version
  };
  
  return authService;
};

Also, the authService module is now stateless; it doesn't export any particular 
instance anymore, just a simple factory. The most important detail though is that we 
made the db dependency injectable as an argument of the factory function, removing 
what previously was a hardcoded dependency. This simple change enables us to 
create a new authService module by wiring it to any database instance.

We can refactor the lib/authController.js module in a similar way as follows:

module.exports = function(authService) {
  var authController = {};
  
  authController.login = function (req, res, next) {
    //...same as in the previous version
  };

  authController.checkToken = function (req, res, next) {
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    //...same as in the previous version
  };
  
  return authController;
};

The authController module does not have any hardcoded dependency at all, not 
even stateless! The only dependency, the authService module, is provided as input 
to the factory at the moment of its invocation.

Okay, now it's time to see where all these modules are actually created and wired 
together; the answer lies in the app.js module, which represents the topmost layer 
in our application; its code is the following:

[...]
var dbFactory = require('./lib/db');         //[1]
var authServiceFactory = require('./lib/authService');
var authControllerFactory = require('./lib/authController');

var db = dbFactory('example-db');         //[2]
var authService = authServiceFactory(db, 'SHHH!');
var authController = authControllerFactory(authService);

app.post('/login', authController.login);       //[3]
app.get('/checkToken', authController.checkToken);
[...]

The previous code can be summed up as follows:

1. Firstly, we load the factories of our services; at this point, they are still 
stateless objects.

2. Next, we instantiate each service by providing the dependencies it requires. 
This is the phase where all the modules are created and wired.

3. Finally, we register the routes of the authController module with the 
express server as we would normally do.

Our authentication server is now wired using dependency injection and ready  
to be used again.
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The different types of dependency injection
The example we just presented demonstrated only one type of dependency  
injection (factory injection), but there are a couple more worth mentioning:

• Constructor injection: In this type of DI, the dependencies are passed to  
a constructor at the moment of its creation; one possible example can be  
the following:
var service = new Service(dependencyA, dependencyB);

• Property injection: In this type of DI, the dependencies are attached to an 
object after its creation, as demonstrated by the following code:
var service = new Service();  //works also with a factory
service.dependencyA = anInstanceOfDependencyA;

Property injection implies that an object is created in an inconsistent state, because 
it's not wired to its dependencies, so it's the least robust, but sometimes it might be 
useful when there are cycles between the dependencies. For example, if we have two 
components, A and B, both using factory or constructor injection and both depending 
on each other, we cannot instantiate either of them because both would require the 
other to exist in order to be created. Let's consider a simple example, as follows:

function Afactory(b) {
  return {
    foo: function() {
      b.say();
    },
    what: function() {
      return 'Hello!';
    }
  }
}

function Bfactory(a) {
  return {
    a: a,
    say: function() {
      console.log('I say: ' + a.what);
    }
  }
}
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The dependency deadlock between the two preceding factories can be resolved only 
using property injection, for example, by first creating an incomplete instance of B, 
which then can be used to create A. Finally, we will inject A into B by setting the 
relative property as follows:

var b = Bfactory(null);
var a = Afactory(b);
a.b = b;

In some rare circumstances, a cycle in the dependency graph is 
not easily avoidable; however, it is important to remember that 
often it is a symptom of bad design.

Pros and cons of dependency injection
In the authentication server example, using dependency injection we were able to 
decouple our modules from a particular dependency instance. The result is that we 
can now reuse each module with minimal effort and without any change in their 
code. Testing a module that uses the dependency injection pattern is also greatly 
simplified; we can easily provide mocked dependencies and test our modules in 
isolation from the state of the rest of the system.

Another important aspect to be highlighted from the example we presented earlier 
is that we shifted the dependency wiring responsibility from the bottom to the top of 
our architecture. The idea is that high-level components are by nature less reusable 
than low-level components, and that's because the more we go up in the layers of an 
application the more a component becomes specific.

Starting from this assumption we can then understand that the conventional way to 
see an application architecture, where high-level components own their lower-level 
dependencies, can be inverted, so that the lower-level components depend only on 
an interface (in JavaScript, it's just the interface that we expect from a dependency), 
while the ownership of defining the implementation of a dependency is given to the 
higher-level components. In our authentication server, in fact, all the dependencies 
are instantiated and wired in the topmost component, the app module, which is also 
the less reusable and so is the most expendable in terms of coupling.

All these advantages in terms of decoupling and reusability, though, come with a 
price to pay. In general, the inability to resolve a dependency at coding time makes 
it more difficult to understand the relationship between the various components 
of a system. Also, if we look at the way we instantiated all the dependencies in the 
app module, we can see that we had to follow a specific order; we practically had 
to manually build the dependency graph of the entire application. This can become 
unmanageable when the number of modules to wire becomes high.
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A viable solution to this problem is to split the dependency ownership between 
multiple components, instead of having it centralized all in one place. This can 
reduce the complexity involved in managing the dependencies exponentially, as 
each component would be responsible only for its particular dependency subgraph. 
Of course, we can also choose to use dependency injection only locally, just when 
necessary, instead of building the entire application on top of it.

We will see later in the chapter that, another possible solution to simplify the wiring 
of modules in complex architectures is to use a dependency injection container, a 
component exclusively responsible for instantiating and wiring all the dependencies 
of an application.

Using dependency injection surely increases the complexity and verbosity of our 
modules, but as we saw earlier, there are many good reasons for doing this. It is up 
to us to choose the right approach, depending on the balance between simplicity and 
reusability that we want to obtain.

Dependency injection is often mentioned in combination with the 
Dependency Inversion principle and Inversion of Control; however, 
they all are different concepts (even though correlated).

Service locator
In the previous section, we learned how dependency injection can literally transform 
the way we wire our dependencies, obtaining reusable and decoupled modules. 
Another pattern with a very similar intent is Service Locator. Its core principle is to 
have a central registry in order to manage the components of the system and to act 
as a mediator whenever a module needs to load a dependency. The idea is to ask 
the service locator for the dependency, instead of hardcoding it, as shown in the 
following image:
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It is important to understand that by using a service locator we are introducing a 
dependency on it, so the way we wire it to our modules determines their level of 
coupling and therefore their reusability. In Node.js, we can identify three types of 
service locators, depending on the way they are wired to the various components  
of the system:

• Hardcoded dependency on service locator
• Injected service locator
• Global service locator

The first is definitely the one offering the least advantages in terms of decoupling, as 
it consists of directly referencing the instance of the service locator using require(). 
In Node.js, this can be considered an anti-pattern because it introduces a tight 
coupling with the component supposedly meant to provide a better decoupling. 
In this context, a service locator clearly does not provide any value in terms of 
reusability, but it only adds another level of indirection and complexity.

On the other side, an injected service locator is referenced by a component through 
dependency injection. This can be considered a more convenient way for injecting  
an entire set of dependencies at once, instead of providing them one by one, but as 
we will see, its advantages do not end here.

The third way of referencing a service locator is directly from the global scope.  
This has the same disadvantages as that of the hardcoded service locator, but since 
it is global, it is a real singleton and therefore it can be easily used as a pattern for 
sharing instances between packages. We will see how this works later in the chapter, 
but for now we can certainly say that there are very few reasons for using a global 
service locator.

The Node.js module system already implements a variation of the 
service locator pattern, with require() representing the global 
instance of the service locator itself.

All the considerations discussed here will be more clear once we start using the 
service locator pattern in a real example. Let's then refactor the authentication  
server again to apply what we learned.
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Refactoring the authentication server to use a 
service locator
We are now going to convert the authentication server to use an injected service 
locator. To do this, the first step is to implement the service locator itself; we will  
use a new module, 'lib/serviceLocator.js':

module.exports = function() {
  var dependencies = {};
  var factories = {};
  var serviceLocator = {};

  serviceLocator.factory = function(name, factory) {   //[1]
    factories[name] = factory;
  };
  
  serviceLocator.register = function(name, instance) {   //[2]
    dependencies[name] = instance;
  };
  
  serviceLocator.get = function(name) {       //[3]
    if(!dependencies[name]) {
      var factory = factories[name];
      dependencies[name] = factory && factory(serviceLocator);
      if(!dependencies[name]) {
        throw new Error('Cannot find module: ' + name);
      }
    }
    return dependencies[name];
  };
  
  return serviceLocator;
};

Our serviceLocator module is a factory returning an object with three methods:

• factory() is used to associate a component name against a factory.
• register() is used to associate a component name directly with an instance.
• get() retrieves a component by its name. If an instance is already available, 

it simply returns it; otherwise, it tries to invoke the registered factory to 
obtain a new instance. It is very important to observe that the module 
factories are invoked by injecting the current instance of the service locator 
(serviceLocator). This is the core mechanism of the pattern that allows the 
dependency graph for our system to be built automatically and on-demand. 
We will see how this works in a moment.
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A simple pattern, closely resembling a service locator, is to use an object 
as a namespace for a set of dependencies:

var dependencies = {};
var db = require('./lib/db');
var authService = require('./lib/authService');

dependencies.db = db();
dependencies.authService = authService(dependencies);

Let's now convert the 'lib/db.js' module straightaway to demonstrate how our 
serviceLocator works:

var level = require('level');
var sublevel = require('level-sublevel');

module.exports = function(serviceLocator) {
  var dbName = serviceLocator.get('dbName');

  return sublevel(
    level(dbName, {valueEncoding: 'json'})
  );
}

The db module uses the service locator received in input to retrieve the name of the 
database to instantiate. This is an interesting point to highlight; a service locator can 
be used not only to return component instances but also to provide configuration 
parameters that define the behavior of the entire dependency graph that we want  
to create.

The next step is to convert the 'lib/authService.js' module:

[...]
module.exports = function(serviceLocator) {
  var db = serviceLocator.get('db');
  var tokenSecret = serviceLocator.get('tokenSecret');
  
  var users = db.sublevel('users');
  var authService = {};
  
  authService.login = function(username, password, callback) {
    //...same as in the previous version
  }
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  authService.checkToken = function(token, callback) {
    //...same as in the previous version
  }
  
  return authService;
};

Also, the authService module is a factory that takes the service locator as the  
input. The two dependencies of the module, the db handle and tokenSecret  
(which is another configuration parameter) are retrieved using the get() method  
of the service locator.

In a similar way, we can convert the 'lib/authController.js' module:

module.exports = function(serviceLocator) {
  var authService = serviceLocator.get('authService');
  var authController = {};
  
  authController.login = function (req, res, next) {
    //...same as in the previous version
  };

  authController.checkToken = function (req, res, next) {
    //...same as in the previous version
  };
  
  return authController;
}

Now we are ready to see how the service locator is instantiated and configured.  
This happens of course, in the 'app.js' module:

[...]
var svcLoc = require('./lib/serviceLocator')();     //[1]

svcLoc.register('dbName', 'example-db');       //[2]
svcLoc.register('tokenSecret', 'SHHH!');
svcLoc.factory('db', require('./lib/db'));
svcLoc.factory('authService', require('./lib/authService'));
svcLoc.factory('authController', require('./lib/authController'));

var authController = svcLoc.get('authController');   //[3]

app.post('/login', authController.login);
app.all('/checkToken', authController.checkToken);
[...]
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This is how the wiring works using our new service locator:

1. We instantiate a new service locator by invoking its factory.
2. We register the configuration parameters and module factories against the 

service locator. At this point, all our dependencies are not instantiated yet; 
we just registered their factories.

3. We load authController from the service locator; this is the entry point that 
triggers the instantiation of the entire dependency graph of our application. 
When we ask for the instance of the authController component, the service 
locator invokes the associated factory by injecting an instance of itself, then 
the authController factory will try to load the authService module, which 
in turn instantiates the db module.

It's interesting to see the lazy nature of the service locator; each instance is created 
only when needed. But there is another important implication; we can see, in fact, 
that every dependency is automatically wired without the need to manually do it 
in advance. The advantage is that we don't have to know in advance what the right 
order for instantiating and wiring the modules is, it all happens automatically and  
on-demand. This is much more convenient compared to the simple dependency 
injection pattern.

Another common pattern is to use an express server instance as 
a simple service locator. This can be achieved using expressApp.
set(name, instance) to register a service and expressApp.
get(name) to then retrieve it. The convenient part of this pattern is that 
the server instance, which acts as a service locator, is already injected into 
each middleware and is accessible through the request.app property. 
You can find an example of this pattern in the samples distributed with 
the book.

Pros and cons of a service locator
Service locator and dependency injection have a lot in common; both shift the 
dependency ownership to an entity external to the component. But the way we 
wire the service locator determines the flexibility of our entire architecture. It is 
not by chance that we chose an injected service locator to implement our example, 
as opposed to a hardcoded or global service locator. These last two variations almost 
nullify the advantages of this pattern. In fact, the result would be that, instead of 
coupling a component directly to its dependencies using require(), we would 
be coupling it to one particular instance of the service locator. It's also true that 
a hardcoded service locator will still give more flexibility in configuring what 
component to associate with a particular name, but this does still not give any  
big advantage in terms of reusability.
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Also, like dependency injection, using a service locator makes it harder to identify 
the relationship between the components, as they are resolved at runtime. But in 
addition it also makes it more difficult to know exactly what dependency a particular 
component is going to require. With dependency injection this is expressed in a 
much clearer way, by declaring the dependencies in the factory or constructor 
arguments. With a service locator, this is much less clear and would require a 
code inspection or an explicit statement in the documentation explaining what 
dependencies a particular component will try to load.

As a final note, it is important to know that often a service locator is incorrectly 
mistaken for a dependency injection container because it shares the same role of 
service registry with it; however, there is a big difference between the two. With a 
service locator, each component loads its dependencies explicitly from the service 
locator itself, when using a DI container instead, the component has no knowledge  
of the container.

The difference between these two approaches is noticeable for two reasons:

• Reusability: A component relying on a service locator is less reusable 
because it requires that a service locator is available in the system.

• Readability: As we have already said, a service locator obfuscates the 
dependency requirements of a component.

In terms of reusability, we can say that the service locator pattern sits in between 
hardcoded dependencies and DI. In terms of convenience and simplicity, it is 
definitely better than manual dependency injection, as we don't have to manually 
take care of building the entire dependency graph.

Under these assumptions, a DI container definitely offers the best compromise in 
terms of reusability of the components and convenience. We are going to better 
analyze this pattern in the next section.

Dependency injection container
The step to transform a service locator into a Dependency Injection container is not 
big, but as we already mentioned, it makes a huge difference in terms of decoupling. 
With this pattern, in fact, each module doesn't have to depend on the service locator 
anymore, but it can simply express its need in terms of dependencies and the DI 
container will do the rest seamlessly. As we will see, the big leap forward of this 
mechanism is that every module can be reused even without the container.
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Declaring a set of dependencies to a DI container
A DI container is essentially a service locator with the addition of one feature:  
it identifies the dependency requirements of a module before instantiating it.  
For this to be possible, a module has to declare its dependencies in some way,  
and as we will see, we have multiple options for doing this.

The first and probably the most popular technique consists of injecting a set of 
dependencies based on the arguments' names used in a factory or constructor.  
Let's take, for example, the authService module:

module.exports = function(db, tokenSecret) {
  //...
}

As we defined it, the preceding module will be instantiated by our DI container 
using the dependencies with names db and tokenSecret, a very simple and intuitive 
mechanism. However, to be able to read the names of the arguments of a function, 
it's necessary to use a little trick. In JavaScript, we have the possibility to serialize a 
function, obtaining at runtime its source code; this is as easy as invoking toString() 
on the function reference. Then, with some regular expressions,  
obtaining the arguments list is certainly not black magic.

This technique of injecting a set of dependencies using the names 
of the arguments of a function was popularized by AngularJS 
(http://angularjs.org), a client-side JavaScript framework 
developed by Google and entirely built on top of a DI container.

The biggest problem of this approach is that it doesn't play well with minification, 
a practice used extensively in client-side JavaScript, which consists of applying 
particular code transformations to reduce to the minimum the size of the source 
code. Many minificators apply a technique known as name mangling, which essentially 
renames any local variable to reduce its length, usually to a single character. The 
bad news is that function arguments are local variables and are usually affected by 
this process, causing the mechanism that we described for declaring dependencies 
to fall apart. Even though minification is not really necessary in server-side code, it's 
important to consider that often Node.js modules are shared with the browser, and 
this is an important factor to consider in our analysis.
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Luckily, a DI container might use other techniques to know which dependencies to 
inject. These techniques are given as follows:

• We can use a special property attached to the factory function, for example,  
an array explicitly listing all the dependencies to inject:
module.exports = function(a, b) {};
module.exports._inject = ['db', 'another/dependency'];

• We can specify a module as an array of dependency names followed by  
the factory function:
module.exports = ['db', 'another/depencency',
                 function(a, b) {}];

• We can use a comment annotation that is appended to each argument of  
a function (however, this also doesn't play well with minification):
module.exports = function(a /*db*/,
                          b /*another/depencency*/) {};

All these techniques are quite opinionated, so for our example, we are going to use 
the most simple and popular, which is to obtain the dependency names using the 
arguments of a function.

Refactoring the authentication server to use  
a DI container
To demonstrate how a DI container is much less invasive than a service locator,  
we are now going to refactor again our authentication server, and to do so we 
are going to use as starting point the version in which we were using the plain 
dependency injection pattern. In fact, what we are going to do is just leave untouched 
all the components of the application except for the app.js module, which is going 
to be the module responsible for initializing the container.

But first, we need to implement our DI container. Let's do that by creating a new 
module called diContainer.js under the lib/ directory. This is its initial part:

var argsList = require('args-list');

module.exports = function() {
  var dependencies = {};
  var factories = {};
  var diContainer = {};
  
  diContainer.factory = function(name, factory) {
    factories[name] = factory;
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  };
  
  diContainer.register = function(name, dep) {
    dependencies[name] = dep;
  };

  diContainer.get = function(name) {
    if(!dependencies[name]) {
      var factory = factories[name];
      dependencies[name] = factory &&
          diContainer.inject(factory);
      if(!dependencies[name]) {
        throw new Error('Cannot find module: ' + name);
      }
    }
    return dependencies[name];
  };
  //...to be continued

The first part of the diContainer module is functionally identical to the service 
locator we have seen previously. The only notable differences are:

• We require a new npm module called args-list (https://npmjs.org/
package/args-list), which we will use to extract the names of the 
arguments of a function.

• This time, instead of directly invoking the module factory, we rely on another 
method of the diContainer module called inject(), which will resolve the 
dependencies of a module, and use them to invoke the factory.

Let's see how the diContainer.inject() method looks like:

  diContainer.inject = function(factory) {
    var args = argsList(factory)
      .map(function(dependency) {
        return diContainer.get(dependency);
      });
    return factory.apply(null, args);
  };

}; //end of module.exports = function() {
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The preceding method is what makes the DI container different from a service 
locator. Its logic is very straightforward:

1. We extract the arguments list from the factory function we receive as the 
input, using the args-list library.

2. We then map each argument name to the correspondent dependency 
instance retrieved using the get() method.

3. At the end, all we have to do is just invoke the factory by providing the 
dependency list that we just generated.

That's really it for our diContainer. As we saw it's not that much different from 
a service locator, but the simple step of instantiating a module by injecting its 
dependencies makes a dramatic difference (as compared to injecting the entire 
service locator).

To complete the refactoring of the authentication server, we also need to tweak the 
'app.js' module:

[...]
var diContainer = require('./lib/diContainer')();

diContainer.register('dbName', 'example-db');
diContainer.register('tokenSecret', 'SHHH!');
diContainer.factory('db', require('./lib/db'));
diContainer.factory('authService', require('./lib/authService'));
diContainer.factory('authController', require('./lib/
authController'));

var authController = diContainer.get('authController');

app.post('/login', authController.login);
app.get('/checkToken', authController.checkToken);
[...]

As we can see, the code of the app module is identical to the one that we used 
to initialize the service locator in the previous section. We can also notice that 
to bootstrap the DI container, and therefore trigger the loading of the entire 
dependency graph, we still have to use it as a service locator by invoking 
diContainer.get('authController'). From that point on, every module 
registered with the DI container will be instantiated and wired automatically.
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Pros and cons of a Dependency Injection container
A DI container assumes that our modules use the dependency injection pattern and 
therefore it inherits most of its pros and cons. In particular, we have an improved 
decoupling and testability but on the other side more complexity because our 
dependencies are resolved at runtime. A DI container also shares many properties 
with the service locator pattern, but it has on its side the fact that it doesn't force 
the modules to depend on any extra service except its actual dependencies. This is 
a huge advantage because it allows each module to be used even without the DI 
container, using a simple manual injection.

That's essentially what we demonstrated in this section: we took the version of the 
authentication server where we used the plain dependency injection pattern and 
then, without modifying any of its components (except for the app module), we  
were able to automatize the injection of every dependency.

On npm, you can find a lot of DI containers to reuse or take inspiration 
from at https://www.npmjs.org/search?q=dependency%20
injection.

Wiring plugins
The dream architecture of a software engineer is the one having a small, minimal 
core, extensible as needed through the use of plugins. Unfortunately, this is not 
always easy to obtain, since most of the time it has a cost in terms of time, resources, 
and complexity. Nonetheless, it's always desirable to support some kind of external 
extensibility, even if limited to just some parts of the system. In this section, we are 
going to plunge into this fascinating world and focus on a dualistic problem:

• Exposing the services of an application to a plugin
• Integrating a plugin into the flow of the parent application

Plugins as packages
Often in Node.js, the plugins of an application are installed as packages into the  
node_modules directory of a project. There are two advantages for doing this.  
Firstly, we can leverage the power of npm to distribute the plugin and manage  
its dependencies. And secondly, a package can have its own private dependency 
graph, which reduces the chances of having conflicts and incompatibilities between 
dependencies, as opposed to letting the plugin use the dependencies of the  
parent project.
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The following directory structure gives an example of an application with two 
plugins distributed as packages:

application
'-- node_modules
    |-- pluginA
    '-- pluginB

In the Node.js world this is a very common practice, some popular examples are 
express (http://expressjs.com) with its middleware, gulp (http://gulpjs.com), 
grunt (http://gruntjs.com), nodebb (http://nodebb.org), and docpad  
(http://docpad.org).

However, the benefits of using packages are not only limited to external plugins.  
In fact, one popular pattern is to build entire applications by wrapping their 
components into packages, as if they were internal plugins. So, instead of organizing the 
modules in the main package of the application, we can create a separate package for 
each big chunk of functionality and install it into the node_modules directory.

A package can be private and not necessarily available on the 
public npm registry. We can always set the 'private' flag into the 
'package.json' to prevent accidental publication to npm. Then, we 
can commit the packages into a version control system such as git or 
leverage a private npm server to share them with the rest of the team.

Why follow this pattern? First of all convenience: people often find it impractical 
or too verbose to reference the local modules of a package using the relative path 
notation. Let's, for example, consider the following directory structure:

application
|-- componentA
|   '-- subdir
|       '-- moduleA
'-- componentB
    '-- moduleB

If we want to reference moduleB from moduleA, we have to write something like this:

require('../../componentB/moduleB');
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Instead, we can leverage the properties of the resolving algorithm of require() 
(as we have studied it in Chapter 1, Node.js Design Fundamentals) and put the entire 
componentB directory into a package. By installing it into the node_modules 
directory, we can then write something such as the following (from anywhere  
in the main package of the application):

require('componentB/module');

The second reason for splitting a project into packages is of course reusability. A 
package can have its own private dependencies and it forces the developer to think in 
terms of what to expose to the main application and what instead to keep private, with 
beneficial effects on the decoupling and information hiding of the entire application.

Pattern: use packages as a means to organize your application, 
not just for distributing code in combination with npm.

The use cases we have just described make use of  a package not just as a stateless,  
reusable library (like most of the packages on npm), but more as an integral part of a 
particular application, providing services, extending its functionality or modifying 
its behavior. The main difference is that these types of packages are integrated inside 
an application rather than just used.

For simplicity, we will use the term plugin to describe any 
package meant to integrate with a particular application.

As we will see, the common problem that we are going to face when deciding to 
support this type of architecture is exposing parts of the main application to plugins. 
In fact, we cannot think of only stateless plugins—this is of course, the aim for a 
perfect extensibility—but sometimes the plugin has to use some of the services of the 
parent application in order to carry out its tasks. This aspect might depend a lot on 
the technique used to wire modules in the parent application.

Extension points
There are literally infinite ways to make an application extensible. For example, some 
of the design patterns we studied in Chapter 4, Design Patterns are meant exactly for 
this: using Proxy or Decorator we are able to change or augment the functionality 
of a service; with Strategy we can swap parts of an algorithm; with Middleware we 
can insert processing units in an existing pipeline. Also, Streams can provide great 
extensibility thanks to their composable nature.
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On the other hand, EventEmitters allow us to decouple our components using  
events and the publish/subscribe pattern. Another important technique is to 
explicitly define in the application some points where new functionalities can be 
attached or the existing ones modified; these points in an application are commonly 
known as hooks. To summarize, the most important ingredient to support plugins is 
a set of extension points.

But also the way we wire our components plays a decisive role because it can  
affect the way we expose the services of the application to the plugin. In this section, 
we are mainly going to focus on this aspect.

Plugin-controlled vs Application-controlled 
extension
Before we go ahead and present some examples, it is important to understand the 
background of the technique we are going to use. There are mainly two approaches 
for extending the components of an application:

• Explicit extension
• Extension through Inversion of Control (IoC)

In the first case, we have a more specific component (the one providing the new 
functionality) explicitly extending the infrastructure, while in the second case, it is 
the infrastructure to control the extension by loading, installing, or executing the new 
specific component. In this second scenario, the flow of control is inverted, as shown in 
the following image:
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Inversion of Control is a very broad principle that can be applied not only to the 
problem of application extensibility. In fact, in more general terms it can be said 
that by implementing some form of IoC, instead of the custom code controlling the 
infrastructure, the infrastructure controls the custom code. With IoC, the various 
components of an application trade off their power of controlling the flow in 
exchange for an improved level of decoupling. This is also known as the Hollywood 
principle or "don't call us, we'll call you".

For example, a dependency injection container is a demonstration of the Inversion 
of Control principle applied to the specific case of dependency management. The 
observer pattern is another example of IoC applied to state management. Template, 
Strategy, State, and Middleware are also more localized manifestations of the same 
principle. The browser implements the IoC principle when dispatching UI events 
to the JavaScript code (it's not the JavaScript code actively polling the browser for 
events). And guess what, Node.js itself follows the IoC principle when controlling 
the execution of the various callbacks for us.

To know more about the Inversion of Control principle, we advise you 
to study the topic directly from the words of its master, Martin Fowler at 
http://martinfowler.com/bliki/InversionOfControl.html.

Applying this concept to the specific case of plugins we can then identify two forms 
of extension:

• Plugin-controlled extension
• Application-controlled extension (IoC)

In the first case, it is the plugin that taps into the components of the application to 
extend them as needed, while in the second case, the control is in the hands of  
the application, which integrates the plugin into one of its extension points.

To make a quick example, let's consider a plugin that extends the express  
application with a new route. By using a plugin-controlled extension this would  
look like the following:

//in the application:
var app = express();
require('thePlugin')(app);

//in the plugin:
module.exports = function plugin(app) {
  app.get('/newRoute', function(req, res) {...})
};
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If instead, we want to use an application-controlled extension (IoC), the same 
preceding example would look like the following:

//in the application:
var app = express();
var plugin = require('thePlugin')();
app[plugin.method](plugin.route, plugin.handler);

//in the plugin:
module.exports = function plugin() {
  return {
    method: 'get',
    route: '/newRoute',
    handler: function(req, res) {...}
  }
}

In the last code fragment, we saw how the plugin is only a passive player in the 
extension process; the control is in the hands of the application, which implements 
the framework to receive the plugin.

Based on the preceding example, we can immediately identify a few important 
differences between the two approaches:

• Plugin-controlled extension is more powerful and flexible, as often we have 
access to the internals of the application and we can move freely as if the 
plugin was actually a part of the application itself. However, this sometimes 
can be more a liability than an advantage. In fact, any change in the 
application would more easily have repercussions on the plugins, requiring 
constant updates as the main application evolves.

• Application-controlled extension requires a plugin infrastructure in the main 
application. With a plugin-controlled extension, the only requirement is that 
the components of the application are extensible in some way.

• With a plugin-controlled extension, it becomes essential to share the internal 
services of the application with the plugin (in the preceding small example, 
the service to share was the app instance), otherwise we would not be able 
to extend them. With an application-controlled extension, it might still be 
necessary to access some of the services of the application, not to extend but 
rather to use them. For example, we might want to query the db instance  
in our plugin, or leverage the logger of the main application, just to name  
a few scenarios.
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This last point should let us think about the importance of exposing the services of 
an application to the plugin and that's what we are mainly interested in exploring. 
The best way of doing this is to show a practical example of a plugin-controlled 
extension, which requires a small effort in terms of infrastructure and we can 
emphasize more on the problem of sharing the application's state with the plugins.

Implementing a logout plugin
Let's now start to work on a small plugin for our authentication server. With the 
way we originally created the application, it is not possible to explicitly invalidate a 
token, it simply becomes invalid when it expires. Now, we want to add support for 
this feature, namely logout, and we want to do that by not modifying the code of the  
main application but rather delegating the task to an external plugin.

To support this new feature, we need to save each token in the database after  
it is created and then check for its existence every time we want to validate it.  
To invalidate a token, we simply need to remove it from the database.

To do this, we are going to use a plugin-controlled extension to proxy the calls to 
authService.login() and authService.checkToken(). We then need to decorate 
the authService with a new method called logout(). After doing this, we also want 
to register a new route against the main express server to expose a new endpoint 
('/logout'), which we can use to invalidate a token using an HTTP request.

We are going to implement the plugin we just described in four different variations:

• Using hardcoded dependencies
• Using dependency injection
• Using a service locator
• Using a dependency injection container

Using hardcoded dependencies
The first variation of the plugin we are now going to implement covers the case 
in which our application mainly uses hardcoded dependencies for wiring its stateful 
modules. In this context, if our plugin lives in a package under the node_modules 
directory, to use the services of the main application we have to gain access to the 
parent package. We can do this in two ways:

• Using require() and navigating to the application's root using relative or 
absolute paths.
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• Using require() by impersonating a module in the parent  
application—usually the module instantiating the plugin. This will allow us 
to easily gain access to all the services of the application by using require(), 
as if it was invoked by the parent application and not from the plugin.

The first technique is less robust as it assumes that the package is aware of the 
position of the main application. The module impersonation pattern instead,  
can be used regardless of where the package is required from, and for this reason  
this is the technique that we are going to use to implement the next demo.

To build our plugin, we first need to create a new package under the node_modules 
directory, named authsrv-plugin-logout. Before we start coding, we need to 
create a minimal package.json to describe the package, filling in only the essential 
parameters (the complete path to the file is: node_modules/authsrv-plugin-
logout/package.json):

{
  "name": "authsrv-plugin-logout",
  "version": "0.0.0"
}

Now, we are ready to create the main module of our plugin, we will use the file 
'index.js' as it is the default module that Node.js will try to load when requiring 
the package (if no 'main' property is defined in the 'package.json'). As always, 
the initial lines of the module are dedicated to loading the dependencies; pay 
attention on how we are going to require them (file 'node_modules/authsrv-
plugin-logout/index.js'):

var parentRequire = module.parent.require;

var authService = parentRequire('./lib/authService');
var db = parentRequire('./lib/db');
var app = parentRequire('./app');

var tokensDb = db.sublevel('tokens');

The first line of code is what makes the difference. We obtain a reference to the 
require() function of the parent module, which is the one that loads the plugin.  
In our case the parent is going to be the app module in the main application, and  
this means that every time we use parentRequire() we are loading a module  
as if we were doing it from 'app.js'.

The next step is creating a proxy for the authService.login() method.  
After studying this pattern in Chapter 4, Design Patterns, we should already  
know how it works:

var oldLogin = authService.login;           //[1]
authService.login = function(username, password, callback) {
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  oldLogin(username, password, function(err, token) {   //[2]
    if(err) return callback(err);          //[3]
    
    tokensDb.put(token, {username: username}, function() {
      callback(null, token);
    });
  });
}

In the preceding code, the steps performed are explained as follows:

1. We first save a reference to the old login() method and then we override it 
with our proxied version.

2. In the proxy function, we invoke the original login() method by providing 
a custom callback so that we can intercept the original return value.

3. If the original login() returns an error, we simply forward it to the callback, 
otherwise we save the token into the database.

Similarly, we need to intercept the calls to checkToken() so that we can add our 
custom logic:

var oldCheckToken = authService.checkToken;

authService.checkToken = function(token, callback) {
  tokensDb.get(token, function(err, res) {
    if(err) return callback(err);

    oldCheckToken(token, callback);
  });
}

This time, we first want to check whether the token exists in the database before 
giving the control to the original checkToken() method. If the token is not found, 
the get() operation returns an error; this means that our token was invalidated  
and so we immediately return the error back to the callback.

To finalize the extension of the authService, we now need to decorate it with a new 
method, which we will use to invalidate a token:

authService.logout = function(token, callback) {
  tokensDb.del(token, callback);
}

The logout() method is very simple: we just delete the token from the database.
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Finally, we can attach a new route to the express server to expose the new 
functionality through a web service:

app.get('/logout', function (req, res, next) {
  authService.logout(req.query.token, function() {
    res.status(200).send({ok: true});
  });
});

Now, our plugin is ready to be attached to the main application, so to do this we just 
need to go back to the main directory of the application and edit the 'app.js' module:

[...]
var app = module.exports = express();
app.use(bodyParser.json());

require('authsrv-plugin-logout');

app.post('/login', authController.login);
app.all('/checkToken', authController.checkToken);
[...]

As we can see, to attach the plugin we only need to require it. As soon as this 
happens—during the startup of the application—the flow of control is given to  
the plugin, which in turn will extend the authService and the app modules,  
as we saw earlier.

Now our authentication server also supports the invalidation of the token.  
We did that in a reusable way, the core of the application remained almost 
untouched, and we were able to easily apply the Proxy and Decorator patterns  
to extend its functionalities.

We can now try to start the application again:

node app

Then, we can verify that the new /logout web service actually exists and works  
as expected. Using curl we can now try to obtain a new token using /login:

curl -X POST -d '{"username": "alice", "password":"secret"}' http://
localhost:3000/login -H "Content-Type: application/json"

Then, we can check whether the token is valid using /checkToken:

curl -X GET -H "Accept: application/json" http://localhost:3000/
checkToken?token=<TOKEN HERE>
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Then, we can pass the token to the /logout endpoint to invalidate it; with curl this 
can be done with a command such as this:

curl -X GET -H "Accept: application/json" http://localhost:3000/
logout?token=<TOKEN HERE>

Now, if we try to check again the validity of the token we should get a negative 
response, confirming that our plugin is working perfectly.

Even with a small plugin like the one we just implemented the advantages  
of supporting plugin-based extensibility are clear. We also learned how to gain 
access to the services of the main application from another package using the  
module impersonation.

The module impersonation pattern is used by quite a few NodeBB 
plugins; you might want to check a couple of them in order to have an 
idea of how this is used in a real application. These are the links to some 
notable examples:

• nodebb-plugin-poll: https://github.
com/Schamper/nodebb-plugin-poll/blob/
b4a46561aff279e19c23b7c635fda5037c534b84/lib/
nodebb.js

• nodebb-plugin-mentions: https://github.com/
julianlam/nodebb-plugin-mentions/blob/9638118fa7e
06a05ceb24eb521427440abd0dd8a/library.js#L4-13

Module impersonation is, of course, a form of hardcoded dependency and shares 
with it strengths and weaknesses. From one side, it allows us to access any service 
of the main application with little effort and minimal infrastructural requirements, 
but from the other, it creates a tight coupling, not only with a particular instance of 
a service but also with its location, which more easily exposes the plugin to changes 
and refactorings in the main application.

Exposing services using a service locator
Similar to module impersonation, the service locator is also a good choice if we want to 
expose all the components of an application to its plugins, but on top of that, it has 
a major advantage, because a plugin can use the service locator to expose its own 
services to the application or even to other plugins.
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Let's now refactor our logout plugin again to use a service locator. We'll refactor  
the main module of the plugin in the node_modules/authsrv-plugin-logout/
index.js file:

module.exports = function(serviceLocator) {
  var authService = serviceLocator.get('authService');
  var db = serviceLocator.get('db');
  var app = serviceLocator.get('app');

  var tokensDb = db.sublevel('tokens');

  var oldLogin = authService.login;
  authService.login = function(username, password, callback) {
    //...same as in the previous version
  }

  var oldCheckToken = authService.checkToken;
  authService.checkToken = function(token, callback) {
    //...same as in the previous version
  }

  authService.logout = function(token, callback) {
    //...same as in the previous version
  }

  app.get('/logout', function (req, res, next) {
    //...same as in the previous version
  });
};

Now that our plugin receives the service locator of the parent application as the 
input, it can access any of its services as needed. This means that the application  
does not have to know in advance what the plugin is going to need in terms  
of dependencies; this is surely a major advantage when implementing a  
plugin-controlled extension.

The next step is to execute the plugin from the main application, and to do that,  
we have to modify the app.js module. We will use the version of the authentication 
server already based on the service locator pattern. The required changes are given 
in the following block of code:

[...]
var svcLoc = require('./lib/serviceLocator')();
svcLoc.register(...);
[...]
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svcLoc.register('app', app);
var plugin = require('authsrv-plugin-logout');
plugin(svcLoc);

[...]

The changes are highlighted in the preceding code; those changes enabled us to:

• Register the app module itself in the service locator, as the plugin might  
want to have access to it

• Require the plugin
• Invoke the plugin's main function by providing the service locator  

as an argument

As we already said, the main strength of the service locator is that it provides a 
simple way to expose all the services of an application to its plugins, but it can also 
be used as a mechanism for sharing services from the plugin back into the parent 
application or even other plugins. This last consideration is probably the main 
strength of the service locator pattern in the context of plugin-based extensibility.

Exposing services using dependency injection
Using dependency injection to propagate services to a plugin is as easy as using it 
in the application itself. This pattern becomes almost a requirement if it's already 
the main method for wiring dependencies in the parent application, but nothing 
prevents us from using it when the prevalent form of dependency management is 
hardcoded dependencies or a service locator. DI is also an ideal choice when we 
want to support an application-controlled extension, because it provides better 
control over what is shared with the plugin.

To test these assumptions, let's immediately try to refactor the logout plugin to use 
dependency injection. The changes required are minimal, so let's start from the main 
module of the plugin ('node_modules/authsrv-plugin-logout/index.js'):

module.exports = function(app, authService, db) {
  var tokensDb = db.sublevel('tokens');

  var oldLogin = authService.login;
  authService.login = function(username, password, callback) {
    //...same as in the previous version
  }

  var oldCheckToken = authService.checkToken;
  authService.checkToken = function(token, callback) {
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    //...same as in the previous version
  }

  authService.logout = function(token, callback) {
    //...same as in the previous version
  }

  app.get('/logout', function (req, res, next) {
    //...same as in the previous version
  });
};

All we did is wrap the plugin's code into a factory that receives the services of the 
parent application as the input; the rest of it remains unchanged.

To complete our refactoring, we also need to change the way we attach the plugin 
from the parent application; let's then change that one line where we require the 
plugin in the app.js module:

[...]
var plugin = require('authsrv-plugin-logout');
plugin(app, authService, authController, db);
[...]

We intentionally didn't show how these dependencies were obtained. In fact,  
it doesn't really make any difference, any method will equally work; we might use 
hardcoded dependencies or obtain the instances from factories or from a service 
locator, it doesn't really matter. This proves that dependency injection is a flexible 
pattern when wiring plugins that can be used regardless of the way we wire the 
services in the parent application.

But the differences are much more profound. Dependency injection is definitely the 
cleanest way of providing a set of services to a plugin, but most importantly, it offers 
the best level of control over what's exposed to it, resulting in better information 
hiding and better protection against too aggressive extensions. However, this can be 
also considered a drawback, because the main application can't always know what 
services the plugin is going to need, so we end up either injecting every service, 
which is impractical, or only a subset of them, for example, only the essential core 
services of the parent application. For this reason, dependency injection is not the 
ideal choice if we mainly want to support plugin-controlled extensibility; however, 
the use of a DI container can easily solve these issues.
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Grunt (http://gruntjs.com), a task runner for Node.js, uses 
dependency injection to provide each plugin with an instance of the core 
grunt service. Each plugin can then extend it by attaching new tasks, 
using it to retrieve the configuration parameters, or running other tasks.  
A grunt plugin looks like the following:

module.exports = function(grunt) {

  grunt.registerMultiTask('taskName', 'description',
    function(...) {...}
  );
};

Exposing services using a dependency  
injection container
Taking the previous example as a starting point , we can use a DI container in 
combination with our plugin by applying a small change to the app module,  
as shown in the following code:

[...]
var diContainer = require('./lib/diContainer')();
diContainer.register(...);
[...]
//initialize the plugin
diContainer.inject(require('authsrv-plugin-logout'));
[...]

After registering the factories or the instances of our application, all we have  
to do is instantiate the plugin, which is done by injecting its dependencies using  
the DI container. This way, each plugin can require its own set of dependencies  
without the parent application needing to know. All the wiring is again carried  
out automatically by the DI container.

Using a DI container also means that each plugin can potentially access any service 
of the application, reducing the information hiding and the control over what can 
be used or extended. A possible solution to this problem is to create a separate DI 
container registering only the services that we want to expose to plugins; this way 
we can control what each plugin can see of the main application. This demonstrates 
that a DI container can also be a very good choice in terms of encapsulation and 
information hiding.

This concludes our last refactoring of the logout plugin and the authentication server.
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Summary
The topic of dependency wiring is certainly one of the most opinionated in software 
engineering, but in this chapter, we tried to keep the analysis as factual as possible 
to give an objective overview of the most important wiring patterns. We cleared 
some of the most common doubts around Singletons and instances in Node.js, and 
we learned how to connect modules using hardcoded dependencies, dependency 
injection, and service locators. We practiced each technique using the authentication 
server as a playground, allowing us to identify the pros and cons of each approach.

In the second part of the chapter, we learned how an application can support 
plugins, but most importantly, how we can wire those plugins into the main 
application. We applied the same techniques presented in the first part of the 
chapter, but analyzed them from another perspective. We discovered how  
important it can be for a plugin to have access to the right services of the main 
application, and how much this can impact its capabilities.

By the end of this chapter, we should feel comfortable in choosing the best 
approach for the level of decoupling, reusability, and simplicity we want to obtain 
in our application. We can also consider using more than one pattern in the same 
application. For example, we can use hardcoded dependencies as the main technique 
and then use a service locator when it comes to linking plugins; there are really no 
limits to what we can do, now that we know the best use case for each approach.

So far in this book, we have focused our analysis on highly generic and customizable 
patterns, but from the next chapter onward, we will shift our attention to solving 
more specific technical problems. What comes next is, in fact, a collection of recipes, 
which can be used to solve specific issues related to CPU-bound tasks, asynchronous 
caching, and sharing code with the browser.





Recipes
Almost all the design patterns we've seen so far can be considered generic and 
applicable to many different areas of an application. There is, however, a set of 
patterns that are more specific and focused on solving well-defined problems; we can 
call these patterns recipes. As in real-life cooking, we have a set of well-defined steps 
to follow that will lead us to an expected outcome. Of course, this doesn't mean that 
we can't use some creativity to customize the recipes to match the taste of our guests, 
but the outline of the procedure is usually the one that matters. In this chapter, 
we are going to provide some popular recipes to solve some specific problems we 
encounter in our everyday Node.js development. These recipes include:

• Requiring modules that are initialized asynchronously
• Batching and caching asynchronous operations to get a performance boost in 

busy applications, using only a minimal development effort
• Running synchronous CPU-bound operations that can block the event loop 

and cripple the ability of Node.js to handle concurrent requests
• Sharing code with the browser, the Holy Grail of Node.js development

Requiring asynchronously initialized 
modules
In Chapter 1, Node.js Design Fundamentals, when we discussed the fundamental 
properties of the Node.js module system, we mentioned the fact that require() 
works synchronously and that module.exports cannot be set asynchronously.

This is one of the main reasons for the existence of synchronous API in the 
core modules and many npm packages, they are provided more as a convenient 
alternative, to be used primarily for initialization tasks rather than a substitute for 
asynchronous API.
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Unfortunately, this is not always possible; a synchronous API might not always be 
available, especially for components using the network during their initialization 
phase, for example, to perform handshake protocols or to retrieve configuration 
parameters. This is the case for many database drivers and clients for middleware 
systems such as message queues.

Canonical solutions
Let's take an example: a module called db, which connects to a remote database. 
The db module will be able to accept requests only after the connection and the 
handshake with the server have been completed. In this scenario, we usually  
have two options:

• Making sure that the module is initialized before starting to use it, otherwise 
wait for its initialization. This process has to be done every time we want to 
invoke an operation on the asynchronous module:

var db = require('aDb'); //The async module

module.exports = function findAll(type, callback) {
  if(db.connected) {  //is it initialized?
    runFind();
  } else {
    db.once('connected', runFind);
  }
  function runFind() {
    db.findAll(type, callback);
  });
};

• Use Dependency Injection instead of directly requiring the asynchronous 
module. By doing this, we can delay the initialization of some modules until 
their asynchronous dependencies are fully initialized. This technique shifts 
the complexity of managing the module initialization to another component, 
usually the parent module. In the following example, this component is  
app.js:

//in the module app.js
var db = require('aDb'); //The async module
var findAllFactory = require('./findAll');
db.on('connected', function() {
   var findAll = findAllFactory(db);
});
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//in the module findAll.js
module.exports = function(db) {
  //db is guaranteed to be initialized
  return function findAll(type, callback) {
    db.findAll(type, callback);
  }
}

We can immediately see that the first option can become highly undesirable, 
considering the amount of boilerplate code involved.

Also, the second option, which uses Dependency Injection, sometimes is undesirable, 
as we have seen in Chapter 5, Wiring Modules. In big projects, it can quickly become 
over-complicated, especially if done manually and with asynchronously initialized 
modules. These problems would be mitigated if we were using a DI container 
designed to support asynchronously initialized modules.

As we will see though, there is a third alternative that allows us to easily isolate the 
module from the initialization state of its dependencies.

Preinitialization queues
A simple pattern to decouple a module from the initialization state of a dependency 
involves the use of queues and the Command pattern. The idea is to save all the 
operations received by a module while it's not yet initialized and then execute them 
as soon as all the initialization steps have been completed.

Implementing a module that initializes 
asynchronously
To demonstrate this simple but effective technique, let's build a small test 
application, nothing fancy, just something to verify our assumptions. Let's start  
by creating an asynchronously initialized module called asyncModule.js:

var asyncModule = module.exports;

asyncModule.initialized = false;

asyncModule.initialize = function(callback) {
  setTimeout(function() {
    asyncModule.initialized = true;
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    callback();
  }, 10000);
}

asyncModule.tellMeSomething = function(callback) {
  process.nextTick(function() {
    if(!asyncModule.initialized) {
      return callback(
        new Error('I don\'t have anything to say right now')
      );
    }
    callback(null, 'Current time is: ' + new Date());
  });
}

In the preceding code, asyncModule tries to demonstrate how an asynchronously 
initialized module works. It exposes an initialize() method, which after a delay 
of 10 seconds, sets the initialized variable to true and notifies its callback  
(10 seconds is a lot for a real application, but for us it's great to highlight any  
race condition). The other method, tellMeSomething(), returns the current time, 
but if the module is not yet initialized, it generates an error.

The next step is to create another module depending on the service we just  
created. Let's consider a simple HTTP request handler implemented in a file  
called routes.js:

var asyncModule = require('./asyncModule');

module.exports.say = function(req, res) {
  asyncModule.tellMeSomething(function(err, something) {
    if(err) {
      res.writeHead(500);
      return res.end('Error:' + err.message);
    }
    res.writeHead(200);
    res.end('I say: ' + something);
  });
}

The handler invokes the tellMeSomething() method of asyncModule, then it writes 
the result into an HTTP response. As we can see, we are not performing any check on 
the initialization state of asyncModule, and as we can imagine, this will likely lead  
to problems.
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Now, let's create a very basic HTTP server using nothing but the core http module 
(the app.js file):

var http = require('http');
var routes = require('./routes');
var asyncModule = require('./asyncModule');

asyncModule.initialize(function() {
  console.log('Async module initialized');
});

http.createServer(function(req, res) {
  if (req.method === 'GET' && req.url === '/say') {
    return routes.say(req, res);
  }
  res.writeHead(404);
  res.end('Not found');
}).listen(8000, function() {console.log('Started')});

The preceding small module is the entry point of our application, and all it does is 
trigger the initialization of asyncModule and create an HTTP server that makes use 
of the request handler we created previously (routes.say()).

We can now try to fire up our server by executing the app.js module as usual.  
After the server is started, we can try to hit the URL, http://localhost:8000/say, 
with a browser and see what comes back from our asyncModule.

As expected, if we send the request just after the server is started, the result will be 
an error as follows:

Error:I don't have anything to say right now

This means that asyncModule is not yet initialized, but we still tried to use it. 
Depending on the implementation details of the asynchronously initialized module, 
we could have received a graceful error, lost important information, or even crashed 
the entire application. In general, the situation we just described has to always 
be avoided. Most of the time, a few failing requests might not be a concern or the 
initialization might be so fast that, in practice, it would never happen; however, 
for high load applications and cloud servers designed to autoscale, both of these 
assumptions might quickly get obliterated.
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Wrapping the module with preinitialization queues
To add robustness to our server, we are now going to refactor it by applying the 
pattern we described at the beginning of the section. We will queue any operation 
invoked on asyncModule during the time it's not yet initialized and then flush the 
queue as soon we are ready to process them. This looks like a great application for 
the State pattern! We will need two states, one that queues all the operations while 
the module is not yet initialized, and another that simply delegates each method to 
the original asyncModule module, when the initialization is complete.

Often, we don't have the chance to modify the code of the asynchronous module; 
so, to add our queuing layer, we will need to create a proxy around the original 
asyncModule module.

Let's start to work on the code; let's create a new file named asyncModuleWrapper.
js and let's start building it piece by piece. The first thing that we need to do is to 
create the object that delegates the operations to the active state:

var asyncModule = require('./asyncModule');

var asyncModuleWrapper = module.exports;

asyncModuleWrapper.initialized = false;
asyncModuleWrapper.initialize = function() {
  activeState.initialize.apply(activeState, arguments);
};

asyncModuleWrapper.tellMeSomething = function() {
  activeState.tellMeSomething.apply(activeState, arguments);
};

In the preceding code, asyncModuleWrapper simply delegates each of its methods to 
the currently active state. Let's then see what the two states look like, starting from 
notInitializedState:

var pending = [];
var notInitializedState = {

  initialize: function(callback) {
    asyncModule.initialize(function() {
      asyncModuleWrapper.initalized = true;
      activeState = initializedState;        //[1]
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      pending.forEach(function(req) {        //[2]
        asyncModule[req.method].apply(null, req.args);
      });
      pending = [];

      callback();              //[3]
    });
  },

  tellMeSomething: function(callback) {
    return pending.push({
      method: 'tellMeSomething',
      args: arguments
    });
  }
};

When the initialize() method is invoked, we trigger the initialization of the 
original asyncModule module, providing a callback proxy. This allows our wrapper 
to know when the original module is initialized and consequently triggers the 
following operations:

1. Updates the activeState variable with the next state object in our  
flow—initializedState.

2. Executes all the commands that were previously stored in the  
pending queue.

3. Invokes the original callback.

As the module at this point is not yet initialized, the tellMeSomething() method 
of this state simply creates a new Command object and adds it to the queue of the 
pending operations.

At this point, the pattern should already be clear: when the original asyncModule 
module is not yet initialized, our wrapper will simply queue all the received 
requests. Then, when we are notified that the initialization is complete, we execute 
all the queued operations and then switch the internal state to initializedState. 
Let's then see what this last piece of the wrapper looks like:

var initializedState = asyncModule;

Without (probably) any surprise, the initializedState object is simply a reference 
to the original asyncModule! In fact, when the initialization is complete, we can 
safely route any request directly to the original module, nothing more is required.
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At last, we have to set the initial active state, which of course will be 
notInitializedState:

var activeState = notInitializedState;

We can now try to launch our test server again, but first, let's not forget to replace the 
references to the original asyncModule module with our new asyncModuleWrapper 
object; this has to be done in the app.js and routes.js modules.

After doing this, if we try to send a request to the server again, we will see that 
during the time, the asyncModule module is not yet initialized; the requests will not 
fail; instead, they will hang until the initialization is completed and will only then be 
actually executed. We can surely affirm that this is a much more robust behavior.

Pattern: If a module is initialized asynchronously, queue every 
operation until the module is fully initialized.

Now, our server can start accepting requests immediately after it's started and it 
guarantees that none of these requests will ever fail because of the initialization 
state of its modules. We were able to obtain this result without using Dependency 
Injection or requiring verbose and error-prone checks to verify the state of the 
asynchronous module.

In the wild
The pattern we just presented is used by many database drivers and ORM libraries. 
The most notable is Mongoose (http://mongoosejs.com), which is an ORM for 
MongoDB. With Mongoose, it's not necessary to wait for the database connection  
to open in order to be able to send queries, because each operation is queued and 
then executed later when the connection with the database is fully established.  
This clearly boosts the usability of its API.

Take a look at the code of Mongoose to see how every method in the 
native driver is proxied to add the preinitialization queue (it also 
demonstrates an alternative way of implementing this pattern). You 
can find the code fragment responsible for implementing the pattern at 
https://github.com/LearnBoost/mongoose/blob/21f16c6
2e2f3230fe616745a40f22b4385a11b11/lib/drivers/node-
mongodb-native/collection.js#L103-138.
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Asynchronous batching and caching
In high-load applications, caching plays a critical role and is used almost everywhere 
in the web, from static resources such as web pages, images, and stylesheets, to pure 
data such as the result of database queries. In this section, we are going to learn how 
caching applies to asynchronous operations and how a high request throughput can 
be turned to our advantage.

Implementing a server with no caching or 
batching
Before we start diving into this new challenge, let's implement a small demo server 
that we will use as a reference to measure the impact of the various techniques we 
are going to implement.

Let's consider a web server that manages the sales of an e-commerce company, 
in particular, we want to query our server for the sum of all the transactions of a 
particular type of merchandise. For this purpose, we are going to use LevelUP again 
for its simplicity and flexibility. The data model that we are going to use is a simple 
list of transactions stored in the sales sublevel (a section of the database), which is 
organized in the following format:

transactionId à {amount, item}

The key is represented by transactionId and the value is a JSON object  
that contains the amount of the sale (amount) and the item type.

The data to process is really basic, so let's implement the API immediately  
in a file named totalSales.js, which will be as follows:

var level = require('level');
var sublevel = require('level-sublevel');
var db = sublevel(level('example-db', {valueEncoding: 'json'}));
var salesDb = db.sublevel('sales');
 

module.exports = function totalSales(item, callback) {
  var sum = 0;
  salesDb.createValueStream()           //[1]
    .on('data', function(data) {
      if(!item || data.item === item) {       //[2]
        sum += data.amount;
      }
    })
    .on('end', function() {
      callback(null, sum);           //[3]
    });
}
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The core of the module is the totalSales function, which is also the only exported 
API, this is how it works:

1. We create a stream from the salesDb sublevel that contains the sales 
transactions. The stream pulls all the entries from the database.

2. The data event receives each sale transaction as it is returned from the 
database stream. We add the amount value of the current entry to the total 
sum value, but only if the item type is equal to the one provided in the input 
(or if no input is provided at all, allowing us to calculate the sum of all the 
transactions, regardless of the item type).

3. At last, when the end event is received, we invoke the callback() method 
by providing the final sum as result.

The simple query that we built is definitely not the best in terms of performances. 
Ideally, in a real-world application, we would have used an index to query the 
transactions by the item type, or even better, an incremental map/reduce to calculate 
the sum in real time; however, for our example, a slow query is actually better as it 
will highlight the advantages of the patterns we are going to analyze.

To finalize the total sales application, we only need to expose the totalSales API 
from an HTTP server; so, the next step is to build one (the app.js file):

var http = require('http');
var url = require('url');
var totalSales = require('./totalSales');

http.createServer(function(req, res) {
  var query = url.parse(req.url, true).query;
  totalSales(query.item, function(err, sum) {
    res.writeHead(200);
    res.end('Total sales for item ' +
      query.item + ' is ' + sum);
  });
}).listen(8000, function() {console.log('Started')});

The server we created is very minimalistic; we only need it to expose the  
totalSales API.

Before we start the server for the first time, we need to populate the database with 
some sample data; we can do this with the populate_db.js script that we can find 
in the code samples dedicated to this section. The script will create 100 K random 
sales transactions in the database.
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Okay! Now, everything is ready in order to start the server; as usual we can do this 
by executing the following command:

node app

To query the server, simply navigate with a browser to the following URL:

http://localhost:8000?item=book

However, to have a better idea of the performance of our server, we will need more 
than one request; so, we will use a small script named loadTest.js which sends 
requests at an interval of 200 ms. The script can be found in the code samples of the 
book and it's already configured to connect to the URL of the server, so, to run it,  
just execute the following command:

node loadTest

We will see that the 20 requests will take a while to complete, take note of the total 
execution time of the test, because we are now going to apply our optimizations and 
measure how much time we can save.

Asynchronous request batching
When dealing with asynchronous operations, the most basic level of caching can 
be achieved by batching together a set of invocations to the same API. The idea is 
very simple: if we are invoking an asynchronous function while there is still another 
one pending, we can attach the callback to the already running operation, instead of 
creating a brand new request. Take a look at the following figure:

Client A Client B AsyncOperation AsyncOperation
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The previous image shows two clients (they can be two different objects, or two 
different web requests) invoking the same asynchronous operation with exactly the 
same input. Of course, the natural way to picture this situation is with the two clients 
starting two separate operations that will complete in two different moments,  
as shown by the preceding image. Now, consider the next scenario, depicted  
in the following figure:

Client A Client B AsyncOperation

Queue

Queue

This second image shows us how the two requests—which invoke the same API with 
the same input—can be batched, or in other words appended to the same running 
operation. By doing this, when the operation completes, both the clients will be 
notified. This represents a simple, yet extremely powerful, way to optimize the load 
of an application while not having to deal with more complex caching mechanisms, 
which usually require an adequate memory management and invalidation strategy.

Batching requests in the total sales web server
Let's now add a batching layer on top of our totalSales API. The pattern we are 
going to use is very simple: if there is already another identical request pending  
when the API is invoked, we will add the callback to a queue. When the asynchronous 
operation completes, all the callbacks in its queue are invoked at once.

Now, let's see how this pattern translates in code. Let's create a new module named 
totalSalesBatch.js. Here, we're going to implement a batching layer on top of the 
original totalSales API:

var totalSales = require('./totalSales');

var queues = {};
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module.exports = function totalSalesBatch(item, callback) {
  if(queues[item]) {             //[1]
    console.log('Batching operation');
    return queues[item].push(callback);
  }
  
  queues[item] = [callback];          //[2]
  totalSales(item, function(err, res) {
    var queue = queues[item];           //[3]
    queues[item] = null;
    queue.forEach(function(cb) {
      cb(err, res);
    });
  });
}

The totalSalesBatch() function is a proxy for the original totalSales() API,  
and it works as follows:

1. If a queue already exists for the item type provided as the input, it means 
that a request for that particular item is already running. In this case, all we 
have to do is simply append the callback to the existing queue and return 
from the invocation immediately. Nothing else is required.

2. If no queue is defined for the item, it means that we have to create a new 
request. To do this, we create a new queue for that particular item and we 
initialize it with the current callback function. Next, we invoke the original 
totalSales() API.

3. When the original totalSales() request completes, we iterate over all the 
callbacks that were added in the queue for that specific item and invoke 
them one by one with the result of the operation.

The behavior of the totalSalesBatch() function is identical to that of the original 
totalSales() API, with the difference that, now, multiple calls to the API using the 
same input are batched, thus saving time and resources.

Curious to know what is the performance improvement compared to the raw, 
non-batched version of the totalSales() API? Let's then replace the totalSales 
module used by the HTTP server with the one we just created (the app.js file):

//var totalSales = require('./totalSales');
var totalSales = require('./totalSalesBatch');

http.createServer(function(req, res) {
[...]
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If we now try to start the server again and run the load test against it, the first thing 
we will see is that the requests are returned in batches. This is the effect of the pattern 
we just implemented and it's a great practical demonstration of how it works.

Besides that, we should also observe a considerable reduction in the total time 
for executing the test; it should be at least four times faster than the original test 
performed against the plain totalSales() API!

This is a stunning result, confirming the huge performance boost we can  
obtain by just applying a simple batching layer, without all the complexity  
of managing a full-fledged cache, and more importantly, without worrying  
about invalidation strategies.

The request-batching pattern reaches its best potential in high-load  
applications and with slow APIs, because it's exactly in these 
circumstances that we can batch together a high number of requests.

Asynchronous request caching
One of the problems with the request-batching pattern is that the faster the API, the 
fewer batched requests we get. One can argue that if an API is already fast, there is no 
point in trying to optimize it; however, it still represents a factor in the resource load 
of an application that, when summed up, can still have a substantial impact. Also, 
sometimes we can safely assume that the result of an API invocation will not change 
so often; therefore, a simple request batching will not provide the best performances. 
In all these circumstances, the best candidate to reduce the load of an application and 
increase its responsiveness is definitely a more aggressive caching pattern.

The idea is simple: as soon as a request completes, we store its result in the cache, 
which can be a variable, an entry in the database, or in a specialized caching server. 
Hence, the next time the API is invoked, the result can be retrieved immediately 
from the cache, instead of spawning another request.

The idea of caching should not be new to an experienced developer, but what makes 
this pattern different in asynchronous programming is that it should be combined 
with the request batching, to be optimal. The reason is because multiple requests 
might run concurrently while the cache is not set, and when those requests complete, 
the cache will be set multiple times.
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Based on these assumptions, the final structure of the asynchronous request-caching 
pattern is shown in the following figure:

The preceding figure shows us the two phases of an optimal asynchronous  
caching algorithm:

• The first phase is totally identical to the batching pattern. Any request 
received while the cache is not set will be batched together. When the  
request completes, the cache is set, once.

• When the cache is finally set, any subsequent request will be served  
directly from it.

Another crucial detail to consider is the unleashing Zalgo anti-pattern (we have 
seen it in action in Chapter 1, Node.js Design Fundamentals). As we are dealing 
with asynchronous APIs, we must be sure to always return the cached value 
asynchronously, even if accessing the cache involves only a synchronous operation.

Caching requests in the total sales web server
To demonstrate and measure the advantages of the asynchronous caching  
pattern, let's now apply what we've learned to the totalSales() API. As in the 
request-batching example, we have to create a proxy for the original API with the 
sole purpose of adding a caching layer.
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Let's then create a new module named totalSalesCache.js that contains the 
following code:

var totalSales = require('./totalSales');

var queues = {};
var cache = {};
module.exports = function totalSalesBatch(item, callback) {
  var cached = cache[item];           //[1]
  if(cached) {
    console.log('Cache hit');
    return process.nextTick(callback.bind(null, null, cached));
  }
  
  if(queues[item]) {
    console.log('Batching operation');
    return queues[item].push(callback);
  }
  
  queues[item] = [callback];
  totalSales(item, function(err, res) {
    if(!err) {               //[2]
      cache[item] = res;
      setTimeout(function() {
        delete cache[item];
      }, 30 * 1000); //30 seconds expiry
    }
    
    var queue = queues[item];
    queues[item] = null;
    queue.forEach(function(cb) {
      cb(err, res);
    });
  });
}
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We should straightaway see that the preceding code is in many parts identical to 
what we used for the asynchronous batching. In fact, the only differences are the 
following ones:

1. The first thing that we need to do when the API is invoked is to check 
whether the cache is set and if that's the case, we will immediately return 
the cached value using callback(), making sure to defer it with process.
nextTick().

2. The execution continues in batching mode, but this time, when the  
original API successfully completes, we save the result into the cache.  
We also set a timeout to invalidate the cache after 30 seconds. A simple  
but effective technique!

Now, we are ready to try the totalSales wrapper we just created; to do that,  
we only need to update the app.js module as follows:

//var totalSales = require('./totalSales');
//var totalSales = require('./totalSalesBatch');
var totalSales = require('./totalSalesCache');

http.createServer(function(req, res) {
[...]

Now, the server can be started again and profiled using the loadTest.js script 
as we did in the previous examples. With the default test parameters, we should 
see a 10-percent reduction in the execution time as compared to simple batching. 
Of course, this is highly dependent on a lot of factors; for example, the number of 
requests received, and the delay between one request and the other. The advantages 
of using caching over batching will be much more substantial when the amount of 
requests is higher and spans a longer period of time.

Memoization is the practice of caching the result of a function 
invocation. In npm, you can find many packages to implement 
asynchronous memoization with little effort; one of the most complete 
packages is memoizee (https://npmjs.org/package/memoizee).
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Notes about implementing caching mechanisms
We must remember that in real-life applications, we might want to use more 
advanced invalidation techniques and storage mechanisms. This might be  
necessary for the following reasons:

• A large amount of cached values might easily consume a lot of memory.  
In this case, a Least Recently Used (LRU) algorithm can be applied to 
maintain constant memory utilization.

• When the application is distributed across multiple processes, using a  
simple variable for the cache might result in different results to be returned 
by each server instance. If that's undesired for the particular application  
we are implementing, the solution is to use a shared store for the cache. 
Popular solutions are Redis (http://redis.io) and Memcached  
(http://memcached.org).

• A manual cache invalidation, as opposed to a timed expiry, can enable a 
longer-living cache and at the same time provide more up-to-date data,  
but, of course, it would be a lot more complex to manage.

Batching and caching with Promises
In Chapter 2, Asynchronous Control Flow Patterns, we saw how Promises can greatly 
simplify our asynchronous code, but they offer an even more interesting application 
when dealing with batching and caching. If we recall what we said about Promises, 
there are two properties that can be exploited to our advantage in this circumstance:

• Multiple then() listeners can be attached to the same promise.
• The then()listener is guaranteed to be invoked at most once and it works 

even if it's attached after the promise is already resolved. Moreover, then() 
is guaranteed to be invoked asynchronously, always.

In short, the first property is exactly what we need for batching requests, while the 
second means that a promise is already a cache for the resolved value and offers a 
natural mechanism for returning a cached value in a consistent asynchronous way. 
In other words, this means that batching and caching are extremely simple and 
concise with Promises.

To demonstrate this, we can try to create a wrapper for the totalSales() API, using 
Promises, and see what it takes to add a batching and caching layer. Let's see then 
how this looks like. Let's create a new module named totalSalesPromises.js:

var totalSales = require('./totalSales');
var Promise = require('bluebird');         //[1]
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totalSales = Promise.promisify(totalSales);

var cache = {};
module.exports = function totalSalesPromises(item) {
  if(cache[item]) {             //[2]
    return cache[item];
  }
  
  cache[item] = totalSales(item)        //[3]
    .then(function(res) {             //[4]
      setTimeout(function() {
        delete cache[item];
      }, 30 * 1000); //30 seconds expiry
      return res;
    })
    .catch(function(err) {           //[5]
      delete cache[item];
      throw err;
    });

  return cache[item];            //[6]
}

The first thing that strikes us is the simplicity and elegance of the solution  
we implemented in the preceding code. Promises are indeed a great tool, but  
for this particular application they offer a huge, out-of-the-box advantage.  
This is what happens in the preceding code:

1. First, we require our Promise implementation (bluebird) and then apply 
a promisification to the original totalSales() function. After doing this, 
totalSales() will return a Promise instead of accepting a callback.

2. When the totalSalesPromises() wrapper is invoked, we check whether 
a cached Promise already exists for the given item type. If we already have 
such a Promise, we return it back to the caller.

3. If we don't have a Promise in the cache for the given item type, we proceed 
to create one by invoking the original (promisified) totalSales() API.

4. When the Promise resolves, we set up a time to clear the cache after 30 
seconds and we return res to propagate the result of the operation to any 
other then() listener attached to the Promise.

5. If the Promise rejects with an error, we immediately reset the cache and 
throw the error again to propagate it to the promise chain, so any other 
listener attached to the same Promise will receive the error as well.

6. At last, we return the cached promise we just created.
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Very simple and intuitive, and more importantly, we were able to achieve both 
batching and caching.

If we now want to try the totalSalesPromise() function, we will have to slightly 
adapt the app.js module as well, because now, the API is using Promises instead 
of callbacks. Let's do it by creating a modified version of the app module named 
appPromises.js:

var http = require('http');
var url = require('url');
var totalSales = require('./totalSalesPromises');

http.createServer(function(req, res) {
  var query = url.parse(req.url, true).query;
  totalSales(query.item).then(function(sum) {
    res.writeHead(200);
    res.end('Total sales for item ' +
      query.item + ' is ' + sum);
  });
}).listen(8000, function() {console.log('Started')});

Its implementation is almost identical to the original app module with the difference 
that now we use the Promise-based version of the batching/caching wrapper; 
therefore, the way we invoke it is also slightly different.

That's it! We are now ready to try this new version of the server by running the 
following command:

node appPromises

Using the loadTest script, we can verify that the new implementation is working  
as expected. The execution time should be the same as when we tested the server 
using the totalSalesCache() API.

Running CPU-bound tasks
The totalSales() API, even though expensive in terms of resources, was not 
affecting the ability of the server to accept concurrent requests. What we learned 
in Chapter 1, Node.js Design Fundamentals, about the event loop should provide an 
explanation for this behavior: invoking an asynchronous operation causes the stack 
to unwind back to the event loop, leaving it free to handle other requests. 
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However, what happens when we run a long, synchronous task that never gives 
back the control to the event loop? This kind of task is also known as CPU-bound, 
because its main characteristic is that it is heavy on CPU utilization rather than being 
heavy on I/O operations.

Let's work immediately on an example to see how these types of tasks behave  
in Node.js.

Solving the subset sum problem
Let's now choose a computationally expensive problem to use as a base for our 
experiment. A good candidate is the subset sum problem that consists of deciding 
whether a set (or multiset) of integers contains a non-empty subset that has a sum 
equal to zero. For example, if we had as input the set [1, 2, -4, 5, -3], the subsets 
satisfying the problem are [1, 2, -3] and [2, -4, 5, -3].

The most simple algorithm is the one that checks every possible combination of 
subsets of any size, and it has a computational cost of O(2n), or in other words, it 
grows exponentially with the size of the input. This means that a set of 20 integers 
would require up to 1,048,576 combinations to be checked, not bad for testing 
our assumptions. Of course, the solution might be found a lot sooner than that; 
so, to make things harder, we are going to consider the following variation of the 
subset sum problem: given a set of integers, we want to calculate all the possible 
combinations whose sum is equal to a given arbitrary integer.

Let's then work to build such an algorithm, let's create a new module called 
'subsetSum.js'; we will start by creating a class called SubsetSum:

var inherits = require('util').inherits;
var EventEmitter = require('events').EventEmitter;

function SubsetSum(sum, set) {
  EventEmitter.call(this);
  this.sum = sum;
  this.set = set;
  this.totalSubsets = 0;
}
inherits(SubsetSum, EventEmitter);
module.exports = SubsetSum;

The SubsetSum class is inheriting from the EventEmitter, this allows us to  
produce an event every time we find a new subset matching the sum received  
as input. As we will see, this will give us a lot of flexibility.
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Next, let's see how we can generate all the possible combinations of subsets:

SubsetSum.prototype._combine = function(set, subset) {
  for(var i = 0; i < set.length; i++) {
    var newSubset = subset.concat(set[i]);
    this._combine(set.slice(i + 1), newSubset);
    this._processSubset(newSubset);
  }
}

We will not go into too much detail about the algorithm, but there are two important 
things to notice:

• The _combine() method is completely synchronous; it recursively generates 
every possible subset without ever giving back the control to the event loop. 
If we think about it, this is perfectly normal for an algorithm not requiring 
any I/O.

• Every time a new combination is generated, we provide it to the  
_processSubset() method for further processing.

The _processSubset() method is responsible for verifying that the sum of the 
elements of the given subset is equal to the number we are looking for:

SubsetSum.prototype._processSubset = function(subset) {
  console.log('Subset', ++this.totalSubsets, subset);
  var res = subset.reduce(function(prev, item) {
    return prev + item;
  }, 0);
  if(res == this.sum) {
    this.emit('match', subset);
  }
}

Trivially, the _processSubset() method applies a reduce operation to the subset 
in order to calculate the sum of its elements. Then, it emits an event of type 'match' 
when the resulting sum is equal to the one we are interested in finding (this.sum).

Finally, the start() method puts all the preceding pieces together:

SubsetSum.prototype.start = function() {
  this._combine(this.set, []);
  this.emit('end');
}
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The preceding method triggers the generation of all the combinations by invoking  
_combine(), and lastly, emits an 'end' event signaling that all the combinations 
were checked and any possible match already emitted. This is possible because  
_combine() is synchronous; therefore, the 'end' event will be emitted as soon  
as the function returns, which means that all the combinations were calculated.

Next, we have to expose over the network the algorithm we just created, as always 
we can use a simple HTTP server for the task. In particular, we want to create an 
endpoint in the format, '/subsetSum?data=<Array>&sum=<Integer>' that invokes 
the SubsetSum algorithm with the given array of integers and sum to match.

Let's then implement this simple server in a module named app.js:

var http = require('http');
var SubsetSum = require('./subsetSum');

http.createServer(function(req, res) {
  var url = require('url').parse(req.url, true);
  if(url.pathname === '/subsetSum') {
    var data = JSON.parse(url.query.data);
    res.writeHead(200);
    var subsetSum = new SubsetSum(url.query.sum, data);
    subsetSum.on('match', function(match) {
      res.write('Match: ' + JSON.stringify(match) + '\n');
    });
    subsetSum.on('end', function() {
      res.end();
    });
    subsetSum.start();
  } else {
    res.writeHead(200);
    res.end('I\m alive!\n');
  }
}).listen(8000, function() {console.log('Started')});

Thanks to the fact that the SubsetSum object returns its results using events, we can 
stream the matching subsets as soon as they are generated by the algorithm, in real 
time. Another detail to mention is that our server responds with the text I'm Alive! 
every time we hit a URL different from /subsetSum. We will use this for checking 
the responsiveness of our server, as we will see in a moment.

We are now ready to try our subset sum algorithm, curious to know how our server 
will handle it? Let's then fire it up:

node app
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As soon as the server starts, we are ready to send our first request, let's try then 
with a set of 17 random numbers, which will result in the generation of 131,071 
combinations, a nice amount to keep our server busy for a while:

curl -G http://localhost:8000/subsetSum --data-urlencode "data=[116, 
119,101,101,-116,109,101,-105,-102,117,-115,-97,119,-116,-104,-105,115]" 
--data-urlencode "sum=0"

We will start to see the results streaming live from the server, but if we try the 
following command in another terminal while the first request is still running,  
we will spot a huge problem:

curl -G http://localhost:8000

We will immediately see that this last request hangs until the SubsetSum algorithm 
of the first request has finished; the server is unresponsive! This was kind of what we 
expected, the Node.js event loop runs in a single thread, and if this thread is blocked 
by a long synchronous computation, it will be unable to execute even one more cycle 
in order to respond with a simple I'm alive!.

We quickly understand that this behavior does not work for any kind of application 
meant to serve multiple requests. But don't despair, in Node.js, we can tackle this type 
of situation in several ways, let's analyze the two most important ones.

Interleaving with setImmediate
Usually, a CPU-bound algorithm is built upon a set of steps, it can be a set of 
recursive invocations, a loop or any variation/combination of those. So, a simple 
solution to our problem would be to give back the control to the event loop after 
each one of these steps completes (or after a certain number of them). This way, any 
pending I/O can still be processed by the event loop in those intervals where the 
long-running algorithm yields the CPU. A simple way to achieve this is to schedule 
the next step of the algorithm to run after any pending I/O requests. This sounds like 
the perfect use case for the setImmediate() function (we already introduced this 
API in Chapter 1, Node.js Design Fundamentals).

Pattern: Interleave the execution of a long-running synchronous 
task with setImmediate().
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Interleaving the steps of the subset sum algorithm
Let's now see how this pattern applies to the subset sum algorithm. All we have to 
do is slightly modify the subsetSum.js module. For convenience, we are going to 
create a new module called subsetSumDefer.js, taking the code of the original 
subsetSum class as a starting point.

The first change we are going to make is to add a new method called _
combineInterleaved(), which is the core of the pattern we are implementing:

SubsetSumDefer.prototype._combineInterleaved = function(set, subset) {
  this.runningCombine++;
  setImmediate(function() {
    this._combine(set, subset);
    if(--this.runningCombine === 0) {
      this.emit('end');
    }
  }.bind(this));
}

As we can see, all we had to do is defer the invocation of the original (synchronous) 
_combine() method with setImmediate(). However, now it becomes more difficult 
to know when the function has finished generating all the combinations, because 
the algorithm is not synchronous anymore. To fix this, we have to keep track of all 
the running instances of the _combine() method using a pattern very similar to the 
asynchronous parallel execution we have seen in Chapter 2, Asynchronous Control Flow 
Patterns. When all the instances of the _combine() method are finished running, we 
can then emit the end event notifying any listener that the process has completed.

To finalize the refactoring of the SubsetSum algorithm, we need a couple of more 
tweaks. First, we need to replace the recursive step in the _combine() method with 
its deferred counterpart:

SubsetSumDefer.prototype._combine = function(set, subset) {
  for(var i = 0; i < set.length; i++) {
    var newSubset = subset.concat(set[i]);
    this._combineInterleaved(set.slice(i + 1), newSubset);
    this._processSubset(newSubset);
  }
}

With the preceding change, we make sure that each step of the algorithm will be 
queued in the event loop using setImmediate() and therefore executed after any 
pending I/O request, instead of running synchronously.
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The other small tweak is in the start() method:

SubsetSumDefer.prototype.start = function() {
  this.runningCombine = 0;
  this._combineInterleaved(this.set, []);
}

In the preceding code, we initialize the number of running instances of the  
_combine() method to 0. We also replaced the call to _combine() with a call to  
_combineInterleaved() and removed the emission of the 'end' event, because 
now this is handled asynchronously in _combineInterleaved().

With this last change, our subset sum algorithm should now be able to run its  
CPU-bound code in steps interleaved by intervals where the event loop can run  
and process any other pending request.

The last missing bit is updating the app.js module so that it can use the new  
version of the SubsetSum API, this is actually a trivial change:

var http = require('http');
//var SubsetSum = require('./subsetSum');
var SubsetSum = require('./subsetSumDefer');

http.createServer(function(req, res) {
[...]

We are now ready to try this new version of the subset sum server. Let's start the  
app module by using the following command:

node app

Then, try to send a request again to calculate all the subsets matching a given sum:

curl -G http://localhost:8000/subsetSum --data-urlencode "data=[116, 
119,101,101,-116,109,101,-105,-102,117,-115,-97,119,-116,-104,-105,115]" 
--data-urlencode "sum=0"

While the request is running, we might now want to see whether the server is 
responsive:

curl -G http://localhost:8000

Cool! The second request now should return immediately, even while a SubsetSum 
task is running, confirming that our pattern is working great.
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Considerations on the interleaving pattern
As we saw, running a CPU-bound task while preserving the responsiveness of an 
application is not that complicated, it just requires the use of setImmediate() to 
schedule the next step of an algorithm after any pending I/O. However, this is not 
the best pattern in terms of efficiency; in fact, deferring a task introduces a small 
overhead that, multiplied by all the steps that an algorithm has to run, can have a 
significant impact. This is usually the last thing we want when running a CPU-bound 
task, especially if we have to return the result directly to the user, which should 
happen in a reasonable amount of time. A possible solution to mitigate the problem 
would be using setImmediate() only after a certain number of steps—instead of 
using it at every single step—but still this would not solve the root of the problem.

Bear in mind that this does not mean that the pattern we have just seen should be 
avoided at all costs, in fact, if we look at the bigger picture, a synchronous task 
does not necessarily have to be extremely long and complex to create troubles. In a 
busy server, even a task that blocks the event loop for 200 milliseconds can create 
undesirable delays. In those situations, where the task is executed sporadically or 
in the background and does not have to run for too long, using setImmediate() 
to interleave its execution is probably the simplest and most effective way to avoid 
blocking the event loop.

process.nextTick() cannot be used to interleave a long-running 
task. As we saw in Chapter 1, Node.js Design Fundamentals, nextTick() 
schedules an operation before any pending I/O, and this can eventually 
cause I/O starvation in case of repeated calls. You can verify that by 
yourself by replacing setImmediate() with process.nextTick() 
in the previous sample. You might also want to know that this behavior 
was introduced with Node.js 0.10, in fact, with Node.js 0.8, process.
nextTick() can still be used as an interleaving mechanism. Take a look 
at this GitHub issue to know more about the history and motivations of 
this change at https://github.com/joyent/node/issues/3335

Using multiple processes
Deferring the steps of an algorithm is not the only option we have for running  
CPU-bound tasks; another pattern for preventing the event loop from blocking is 
using child processes. We already know that Node.js gives its best when running 
I/O intensive applications such as web servers, which allows us to optimize resource 
utilization, thanks to its asynchronous architecture. 
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So, the best way we have to maintain the responsiveness of an application is to  
not run expensive CPU-bound tasks in the context of the main application and  
use instead separate processes. This has three main advantages:

• The synchronous task can run at full speed, without the need to interleave 
the steps of its execution

• Working with processes in Node.js is simple, probably easier than modifying 
an algorithm to use setImmediate(), and allows us to easily use multiple 
processors without the need to scale the main application itself

• If we really need maximum performances, the external process might be 
created in lower-level languages, such as the good old C (always use the  
best tool for the job!)

Node.js has an ample tool belt of APIs for interacting with external processes, we 
can find all we need in the child_process module. Moreover, when the external 
process is just another Node.js program, connecting it to the main application is 
extremely easy and we don't even feel like we are running something external to 
the local application. The magic happens thanks to the child_process.fork() 
function, which creates a new child Node.js process and also automatically creates 
a communication channel with it, allowing us to exchange information using an 
interface very similar to an EventEmitter. Let's see how this works by refactoring 
our subset sum server again.

Delegating the subset sum task to other processes
The goal for the refactoring of the SubsetSum task is to create a separate child process 
responsible for handling the synchronous processing, leaving the event loop of the 
server free to handle requests coming from the network. This is the recipe we are 
going to follow to make this possible:

1. We will create a new module named processPool.js that will allow us 
to create a pool of running processes. Starting a new process is expensive 
and requires time, so keeping them constantly running and ready to handle 
requests allows us to save time and CPU. Also, the pool will help us limit 
the number of processes running at the same time to avoid exposing the 
application to Denial of Service (DoS) attacks.
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2. Next, we will create a module called 'subsetSumFork.js' responsible 
for abstracting a SubsetSum task running in a child process. Its role will be 
communicating with the child process and exposing the results of the task as 
if they were coming from the current application.

3. At last, we need a worker (our child process), a new Node.js program with 
the only goal of running the SubsetSum algorithm and forwarding its results 
to the parent process.

Implementing a process pool
Let's start by building the processPool.js module piece by piece:

var fork = require('child_process').fork;

function ProcessPool(file, poolMax) {
  this.file = file;
  this.poolMax = poolMax;
  this.pool = [];
  this.active = [];
  this.waiting = [];
}
module.exports = ProcessPool;

In the first part of the module, we import the child_process.fork() function  
that we will use to create new processes. Then, we define the ProcessPool 
constructor that accepts a file representing the Node.js program to run and  
the maximum number of running instances in the pool (poolMax). We then  
define three instance variables:

• pool is the set of running processes ready to be used
• active contains the list of the processes currently being used
• waiting contains a queue of callbacks for all those requests that could  

not be fulfilled immediately because of the lack of an available process

The next piece of the ProcessPool class is the acquire() method, which is 
responsible for returning a process ready to be used:

ProcessPool.prototype.acquire = function(callback) {
  var worker;
  if(this.pool.length > 0) {           //[1]
    worker = this.pool.pop();
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    this.active.push(worker);
    return process.nextTick(callback.bind(null, null, worker));
  }

  if(this.active.length >= this.poolMax) {       //[2]
    return this.waiting.push(callback);
  }

  worker = fork(this.file);           //[3]
  this.active.push(worker);
  process.nextTick(callback.bind(null, null, worker));
}

Its logic is very simple and is explained as follows:

1. If we have a process in pool ready to be used, we simply move it to the 
active list and then return it by invoking callback (in a deferred fashion, 
remember Zalgo?).

2. If there are no available processes in pool and we already have reached 
the maximum number of running processes, we have to wait for one to be 
available. We achieve this by queuing the current callback in the waiting list.

3. If we haven't yet reached the maximum number of running processes, we 
will create a new one using child_process.fork(), add it to the active 
list, and then return it to the caller using the callback.

The last method of the ProcessPool class is release(), whose purpose is to put a 
process back in the pool:

ProcessPool.prototype.release = function(worker) {
  if(this.waiting.length > 0) {           //[1]
    var waitingCallback = this.waiting.shift();
    waitingCallback(null, worker);
  }

  this.active = this.active.filter(function(w) {     //[2]
    return worker !== w;
  });
  this.pool.push(worker);
}
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The preceding code is also very simple and its explanation is as follows:

1. If there is a request in the waiting list, we simply reassign the worker being 
released by passing it to the callback at the head of the waiting queue.

2. Otherwise, we remove the worker from the active list and put it back  
into pool.

As we can see, the processes are never stopped but just reassigned, allowing us  
to save time by not restarting them at each request. However, it's important to 
observe that this might not always be the best choice and this greatly depends on  
the requirements of our application. Possible tweaks for reducing long-term memory 
usage and adding robustness to our process pool are:

• Terminate idle processes to free memory after a certain time of inactivity
• Add a mechanism to kill non-responsive processes, or restart those that have 

simply crashed

But in this example, we will keep the implementation of our process pool simple, as 
the details we might want to add are really endless.

Communicating with a child process
Now that our ProcessPool class is ready, we can use it to implement  
the SubsetSumFork wrapper whose role is to communicate with the worker  
and expose the results it produces. As we said, starting a process with  
child_process.fork() also gives us a simple message-based communication 
channel, so let's see how this works by implementing the subsetSumFork.js module:

var inherits = require('util').inherits;
var EventEmitter = require('events').EventEmitter;
var ProcessPool = require('./processPool');

var workers = new ProcessPool(__dirname + '/subsetSumWorker.js', 2);

function SubsetSumFork(sum, set) {
  EventEmitter.call(this);
  this.sum = sum;
  this.set = set;
}
inherits(SubsetSumFork, EventEmitter);
module.exports = SubsetSumFork;
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SubsetSumFork.prototype.start = function() {
  workers.acquire(function(worker) {         //[1]
    worker.send({sum: this.sum, set: this.set});

    var onMessage = function(msg) {
      if(msg.event === 'end') {         //[3]
        worker.removeListener('message', onMessage);
        workers.release(worker);
      }
      
      this.emit(msg.event, msg.data);       //[4]
    }.bind(this);

    worker.on('message', onMessage);        //[2]
  }.bind(this));
}

The first thing to notice is that we initialized a ProcessPool object using as target  
a file named subsetSumWorker.js, which represents our child worker. We also set 
to two the maximum capacity of the pool.

Another point worth mentioning is that we tried to maintain the same public 
API of the original SubsetSum class. In fact, SubsetSumFork is an EventEmitter 
whose constructor accepts a sum and a set, while the start() method triggers the 
execution of the algorithm, which runs on a separate process this time. This is what 
happens when the start() method is invoked:

1. We try to acquire a new child process from the pool. When this happens, 
we immediately use the worker handle to send the child process a message 
with the input of the job to run. The send() API is provided automatically 
by Node.js to all processes that start with child_process.fork(), this is 
essentially the communication channel that we were talking about.

2. We then start listening for any message returned from the worker process, 
using the on() method to attach a new listener (this is also a part of the 
communication channel provided by all processes that start with child_
process.fork()).

3. In the listener, we first check whether we received an end event, which 
means that the SubsetSum task has finished, in which case we remove the 
onMessage listener and release the worker, putting it back into the pool.

4. The worker produces messages in the format {event, data} allowing us to 
seamlessly re-emit any event produced by the child process.
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That's it for the SubsetSumFork wrapper; let's now implement the worker application.

It is good to know that the send() method available on a child 
process instance can also be used to propagate a socket handle from 
the main application to a child process (look at the documentation 
http://nodejs.org/api/child_process.html#child_
process_child_send_message_sendhandle). This is actually 
the technique used by the cluster module to distribute the load of 
an HTTP server across multiple processes (as of Node.js 0.10). We will 
see this in more detail in the next chapter.

Communicating with the parent process
Let's now create the subsetSumWorker.js module, our worker application,  
the entire content of this module will run in a separate process:

var SubsetSum = require('./subsetSum');

process.on('message', function(msg) {        //[1]
  var subsetSum = new SubsetSum(msg.sum, msg.set);

  subsetSum.on('match', function(data) {      //[2]
    process.send({event: 'match', data: data});
  });

  subsetSum.on('end', function(data) {
    process.send({event: 'end', data: data});
  });

  subsetSum.start();
});

We can immediately see that we are reusing the original (and synchronous) 
SubsetSum as it is. Now that we are in a separate process, we don't have to worry to 
block the event loop anymore, all the HTTP requests will continue to be handled by 
the event loop of the main application, without disruptions.
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When the worker is started as a child process, this is what happens:

1. It immediately starts listening for messages coming from the parent  
process. This can be easily done with the process.on() function  
(also, a part of the communication API provided when the process starts 
using child_process.fork()). The only message we expect from the parent 
process is the one providing the input to a new SubsetSum task. As soon as 
such a message is received, we create a new instance of a SubsetSum class 
and register the listeners for the match and end events. Lastly, we start the 
computation with subsetSum.start().

2. Every time an event is received from the running algorithm, we wrap it in 
an object with the format, {event, data}, and send it to the parent process. 
These messages are then handled in the subsetSumFork.js module, as we 
have seen in the previous section.

As we can see, we just had to wrap the algorithm we already built, without 
modifying its internals. This clearly shows that any portion of an application can  
be easily put in an external process by simply using the pattern we have just seen.

When the child process is not a Node.js program, the simple 
communication channel we just described is not available. In these 
situations, we can still establish an interface with the child process 
by implementing our own protocol on top of the standard input and 
standard output streams, which are exposed to the parent process.
To find out more about all the capabilities of the child_process API, 
you can refer to the official Node.js documentation at http://nodejs.
org/api/child_process.html.

Considerations on the multiprocess pattern
As always, to try this new version of the subsetSum algorithm, we simply have to 
replace the module used by the HTTP server (file app.js):

var http = require('http');
//var SubsetSum = require('./subsetSum');
//var SubsetSum = require('./subsetSumDefer');
var SubsetSum = require('./subsetSumFork');
[...]
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We can now start the server again and try to send a sample request:

curl -G http://localhost:8000/subsetSum --data-urlencode 
"data=[116,119,101,101,-116,109,101,-105,-102,117,-115,-97,119,-116,-
104,-105,115]" --data-urlencode "sum=0"

Similar to the interleaving pattern we have seen before, also with this new version of 
the subsetSum module the event loop is not blocked while running the CPU-bound 
task. This can be confirmed by sending another concurrent request as follows:

curl -G http://localhost:8000

The preceding command line should immediately return a string as follows:

I'm alive!

More interestingly, we can also try to start two subsetSum tasks concurrently, we 
can see that they will use the full power of two different processors in order to run 
(if our system has more than one processor, of course). Instead, if we try to run three 
subsetSum tasks concurrently, the result should be that the last one to start will 
hang. This is not because the event loop of the main process is blocked, but because 
we set a concurrency limit of two processes for the subsetSum task, which means 
that the third request will be handled as soon as at least one of the two processes in 
the pool becomes available again.

As we saw, the multiprocess pattern is definitely more powerful and flexible than the 
interleaving pattern; however, it's still not scalable, as the amount of resources offered 
by a single machine is still a hard limit. The answer in this case is to distribute the load 
across multiple machines, but this is another story and falls under the category of 
distributed architectural patterns, which we will explore in the next chapters.

It is worth mentioning that threads can be a possible alternative to 
processes when running CPU-bound tasks. Currently, there are a 
few npm packages that expose an API for working with threads to 
userland modules; one of the most popular is webworker-threads 
(https://npmjs.org/package/webworker-threads). 
However, even if threads are more lightweight, full-fledged processes 
can offer more flexibility and a better level of isolation in the case of 
problems such as freezing or crashing.
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Sharing code with the browser
One of the main selling point of Node.js is the fact that it's based on JavaScript and 
runs on V8, an engine that actually powers one of the most popular browsers: Chrome. 
We might think that that's enough to conclude that sharing code between Node.js and 
the browser is an easy task; however as we will see, this is not always true. Unless 
we want to share only some small, self-contained and generic fragments of code, 
developing for both the client and the server requires a non-negligible level of effort 
in making sure that the same code can run properly in two environments that are 
intrinsically different. For example, in Node.js we don't have the DOM or long-living 
views, while in the browser we surely don't have the filesystem or the ability to start 
new processes. Most of the effort required when developing for both the platforms is 
making sure to reduce those differences to the minimum. This can be done with the 
help of abstractions and patterns that enable the application to switch, dynamically or 
at build time, between the browser-compatible code and the Node.js code.

Luckily, with the rising interest in this new mind-blowing possibility, many libraries 
and frameworks in the ecosystem have started to support both environments. This 
evolution is also backed by a growing number of tools supporting this new kind of 
workflow, which over the years have been refined and perfected. This means that if 
we are using an npm package on Node.js, there is a good probability that it will work 
seamlessly on the browser as well. However, this is often not enough to guarantee 
that our application can run without problems on both the browser and Node.js. As 
we will see, a careful design is always needed when developing cross-platform code.

In this section, we are going to explore the fundamental problems we might 
encounter when writing code for both Node.js and the browser and we are going  
to propose some tools and patterns that can help us in tackling this new and  
exciting challenge.

Sharing modules
The first wall we hit when we want to share some code between the browser and 
the server is the mismatch between the module system used by Node.js and the 
heterogeneous landscape of the module systems used in the browser. Another 
problem is that in the browser we don't have a require() function or the filesystem 
from which we can resolve modules. So if we want to write large portions of code 
that can work on both the platforms and we want to continue to use the CommonJS 
module system, we need to take an extra step, we need a tool to help us in bundling 
all the dependencies together at build time and abstracting the require() 
mechanism on the browser.
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Universal Module Definition
In Node.js, we know perfectly well that the CommonJS modules are the default 
mechanism for establishing dependencies between components. The situation in 
browser-space is unfortunately way more fragmented:

• We might have an environment with no module system at all, which  
means that globals are the main mechanism to access other modules

• We might have an environment based on an Asynchronous  
Module Definition (AMD) loader, as for example, RequireJS  
(http://requirejs.org)

• We might have an environment abstracting the CommonJS module system

Luckily, there is a set of patterns called Universal Module Definition (UMD) that 
can help us abstract our code from the module system used in the environment.

Creating an UMD module
UMD is not quite standardized yet, so there might be many variations that depend 
on the needs of the component and the module systems it has to support. However, 
there is one form that probably is the most popular and allows us to support the 
most common module systems, which are AMD, CommonJS, and browser globals.

Let's see a simple example of how it looks like. In a new project, let's create a new 
module called 'umdModule.js':

(function(root, factory) {           //[1]
  if(typeof define === 'function' && define.amd) {   //[2]
    define(['mustache'], factory);
  } else if(typeof module === 'object' &&       //[3]
      typeof module.exports === 'object') {
    var mustache = require('mustache');
    module.exports = factory(mustache);
  } else {                 //[4]
    root.UmdModule = factory(root.Mustache);
  }
}(this, function(mustache) {           //[5]
  var template = '<h1>Hello <i>{{name}}</i></h1>';
  mustache.parse(template);
  
  return {
    sayHello:function(toWhom) {
      return mustache.render(template, {name: toWhom});
    }
  };
}));
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The preceding example defines a simple module with one external dependency: 
Mustache (http://mustache.github.io), which is a simple template engine.  
The final product of the preceding UMD module is an object with one method  
called sayHello() that will render a mustache template and return it to the caller. 
The goal of UMD is integrating the module with other module systems available  
on the environment. This is how it works:

1. All the code is wrapped in an anonymous self-executing function, very 
similar to the Revealing Module pattern we have seen in Chapter 1, Node.js 
Design Fundamentals. The function accepts a root that is the global namespace 
object available on the system (for example, window on the browser). This is 
needed mainly for registering the dependency as a global variable, as we will 
see in a moment. The second argument is the factory() of the module, a 
function returning an instance of the module and accepting its dependencies 
as input (Dependency Injection).

2. The first thing we do is check whether AMD is available on the system. We 
do this by verifying the existence of the define function and its amd flag. If 
found, it means that we have an AMD loader on the system, so we proceed 
with registering our module using define and requiring the dependency 
mustache to be injected into factory().

3. We then check whether we are in a Node.js-flavored CommonJS environment 
by checking the existence of the module and module.exports objects. If 
that's the case, we load the dependencies of the module using require() and 
we provide them to the factory(). The return value of the factory is then 
assigned to module.exports.

4. Lastly, if we have neither AMD nor CommonJS, we proceed with assigning 
the module to a global variable, using the root object, which in a browser 
environment will usually be the window object. Also, you can see how the 
dependency, Mustache, is expected to be in the global scope as well.

5. As a final step, the wrapper function is self-invoked, providing the this 
object as root (in the browser, it will be the window object) and providing our 
module factory as a second argument. You can see how the factory accepts its 
dependencies as arguments.

In the code distributed with the book, you can find a set of examples 
showing how the UMD module we just created can be used in 
combination with an AMD loader, a CommonJS system, or simply 
with none of the above (using globals).
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Considerations on the UMD pattern
The UMD pattern is an effective and simple technique used for creating a module 
compatible with the most popular module systems out there. However, we have seen 
that it requires a lot of boilerplate, which can be difficult to test in each environment 
and is inevitably error-prone. This means that manually writing the UMD boilerplate 
can make sense for wrapping a single module and not as a practice to use for every 
module we create in our projects. It is simply unfeasible and impractical. In these 
situations, it would be better to leave the task to some tool that can help us automate 
the process, one of those tools is Browserify, which we will see in a moment.

Also, we should mention that AMD, CommonJS and browser globals are not the 
only module systems out there. The pattern we have presented will cover most of 
the use cases, but it requires adaptations to support any other module system. For 
example, the upcoming ES6 module specification will be something that we might 
want to support as soon as it gets standardized.

You can find a broad list of formalized UMD patterns at 
https://github.com/umdjs/umd.

Introducing Browserify
When writing a Node.js application, the last thing we want to do is to manually  
add support for a module system different from the one offered, by default,  
by the platform. The ideal situation would be continuing to write our modules  
as we have always done, using require() and module.exports, and then use a  
tool to transform our code into a bundle that can easily run in the browser. Luckily, 
this is a problem that has already been solved by many projects, among which 
Browserify (http://browserify.org) is the most popular and broadly supported.

Browserify allows us to write modules using the Node.js module conventions 
and then, thanks to a compilation step, it creates a bundle (a single JavaScript file) 
that contains all the dependencies our modules need for working, including an 
abstraction of the require() function. This bundle can then be easily included into 
a web page and executed inside a browser. Browserify recursively scans our sources 
looking for references of the require() function, resolving, and then including the 
referenced modules into the bundle.
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Browserify is not the only tool we have for creating browser  
bundles from Node.js modules. Other popular alternatives are  
Webmake (https://npmjs.org/package/webmake) and Webpack 
(https://npmjs.org/package/webpack). Also, require.js allows 
us to create modules for both the client and Node.js but it uses AMD in 
place of CommonJS (http://requirejs.org/docs/node.html).

Exploring the magic of Browserify
To quickly demonstrate how this magic works, let's see how the umdModule we 
created in the previous section looks like if we use Browserify. First, we need to 
install Browserify itself, we can do it with a simple command:

npm install browserify -g

The -g option will tell npm to install Browserify globally, so that we can access it 
using a simple command from the console, as we will see in a moment.

Next, let's create a fresh project and let's try to build a module equivalent to the 
umdModule we created before. This is how it looks like if we had to implement  
it in Node.js (file sayHello.js):

var mustache = require('mustache');
var template = '<h1>Hello <i>{{name}}</i></h1>';
mustache.parse(template);
module.exports.sayHello = function(toWhom) {
  return mustache.render(template, {name: toWhom});
};

Definitely simpler than applying a UMD pattern, isn't it? Now, let's create a file 
called main.js that is the entry point of our browser code:

window.addEventListener('load', function() {
  var sayHello = require('./sayHello').sayHello;
  var hello = sayHello('World!');
  var body = document.getElementsByTagName("body")[0];
  body.innerHTML = hello;
});

In the preceding code, we require the sayHello module in exactly the same way  
as we would do in Node.js, so no more annoyances for managing dependencies  
or configuring paths, a simple require() does the job.
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Next, let's make sure to have mustache installed in the project:

npm install mustache

Now, comes the magical step. In a terminal, let's run the following command:

browserify main.js -o bundle.js

The previous command will compile the main module and bundle all the required 
dependencies into a single file called bundle.js, which is now ready to be used in 
the browser!

To quickly test this assumption, let's create an HTML page called magic.html that 
contains the following code:

<html>
  <head>
    <title>Browserify magic</title>
    <script src="bundle.js"></script>
  </head>
  <body>
  </body>
</html>

This is enough for running our code in the browser. Try to open the page and see it 
with your eyes. Boom!

During development, we surely don't want to manually run 
browserify at every change we make to our sources. What we want 
instead is an automatic mechanism to regenerate the bundle when our 
sources change. To do that, we can use watchify (https://npmjs.
org/package/watchify), a companion tool that we can install by 
running the following command:
npm install watchify -g

Watchify can be used in the exact same way as browserify, the 
two tools  have a similar purpose and command line options. The 
difference between the two is that watchify, after compiling the 
bundle for the first time, will continue to watch the sources of the 
projects for any change and will then rebuild the bundle automatically 
by processing only the changed files for maximum speed.
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The advantages of using Browserify
The magic of Browserify doesn't stop here. This is a (incomplete) list of features that 
make sharing code with the browser a simple and seamless experience:

• Browserify automatically provides a version of the core Node.js modules  
that are compatible with the browser. This means that we can use streams, 
HTTP clients, Buffers, EventEmitter, and many more in the browser!

Note that the fs module is among those not supported.

• If we have a module that is incompatible with the browser, we can 
exclude it from the build (--exclude option), replace it with an empty 
object (--ignore option), or replace it with another module providing an 
alternative and browser-compatible implementation (by using the 'browser' 
section in the package.json). This is a crucial feature and we will have the 
chance to use it in the example we are going to see in a while.

• Browserify can generate an UMD bundle that is compatible with other 
module loaders (--standalone option).

• Browserify allows us to perform additional processing of the source files 
using third-party transforms. There is a transform for almost everything  
one might need, from CoffeeScript compilation, to support for loading  
AMD, Bower (http://bower.io), and Component (http://component.
github.io) packages using require(), from minification to the compilation  
and bundling of other assets such as templates and stylesheets.

You can find a list of all the available transforms on the project's wiki 
page at https://github.com/substack/node-browserify/
wiki/list-of-transforms.

• We can easily invoke Browserify from task managers such as Gulp 
(https://npmjs.org/package/gulp-browserify) and Grunt  
(https://npmjs.org/package/grunt-browserify).

The power and flexibility of Browserify are so captivating that many developers 
started to use it even to manage only client-side code, in place of more popular 
module systems such as AMD. This is also made possible by the fact that many 
client-side libraries are starting to support CommonJS and npm by default, opening 
new and interesting scenarios. For example, we can install JQuery as follows:

npm install jquery
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And then load it into our code with a simple line of code:

var $ = require('jquery');

You will be surprised at how many client-side libraries already support CommonJS 
and Browserify. 

A great resource for knowing more about Browserify and its 
capabilities is its official handbook that you can find on GitHub at 
https://github.com/substack/browserify-handbook.

Fundamentals of cross-platform development
When developing for different platforms, the most common problem we have 
to face is sharing the common parts of a component, while providing different 
implementations for the details that are platform-specific. We will now explore  
some of the principles and the patterns to use when facing this challenge.

Runtime code branching
The most simple and intuitive technique for providing different implementations 
based on the host platform is to dynamically branch our code. This requires that 
we have a mechanism to recognize at runtime the host platform and then switch 
dynamically the implementation with an if-else statement. If we are using 
Browserify, this is as simple as checking the variable process.browser, which is 
automatically set to true by Browserify when bundling our modules:

if(process.browser) {
  //client side code
} else {
  //Node.js code
}

Some more generic approaches involve checking globals that are available only 
on Node.js or only in the browser. For example, we can check the existence of the 
window global:

if(window && window.document) {
  //client side code
} else {
  //Node.js code
}
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Using a runtime branching for switching between Node.js and browser 
implementation is definitely the most intuitive and simple pattern we can  
use for the purpose; however it has some inconveniences:

• The code for both the platforms is included in the same module and  
therefore also in the final bundle, increasing its size with unreachable code.

• If used too extensively, it can considerably reduce the readability of the  
code, as business logic would be mixed with logic meant only to add  
cross-platform compatibility.

• Using dynamic branching to load a different module depending on the 
platform will result in all the modules to be added to the final bundle 
regardless of their target platform. For example, if we consider the next 
code fragment, both clientModule and serverModule will be included in a 
bundle generated with Browserify, unless we don't explicitly exclude one of 
them from the build:

if(window && window.document) {
  require('clientModule');
} else {
  require('serverModule');
}

This last inconvenience is due to the fact that bundlers have no way of knowing 
the value of a runtime variable at build-time (unless the variable is a constant), 
so they include any module regardless of whether it's required from reachable or 
unreachable code.

A consequence of this last property is that modules required 
dynamically using variables are not included in the bundle.  
For example, from the following code, no module will be bundled:

moduleList.forEach(function(module) {

  require(module);

});

Build-time code branching
Most of the time, we already know at build-time what code has to be included in the 
client bundle and what shouldn't. This means that we can take this decision upfront 
and instruct the bundler to replace the implementation of a module at build-time. 
This often results in a leaner bundle, as we are excluding unnecessary modules, and 
a more readable code because we don't have all the if-else statements required by 
a runtime branching. 
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In Browserify, this module swapping mechanism can be easily configured in a special 
section of the package.json. For example, consider the following three modules:

//moduleA.js
var showAlert = require('./alert');

//alert.js
module.exports = console.error;

//clientAlert.js
module.exports = alert;

In Node.js, moduleA is using the default implementation of the alert module,  
which will log a message to the console, in the browser though we want a proper 
alert pop up to show. To do that, we can instruct Browserify to swap at build time, 
the implementation of the alert.js module with clientAlert.js. All we need  
to do is to add a section such as the following into the package.json of a project:

"browser": {
  "./alert.js": "./clientAlert.js"
}

This will result in every reference to the alert.js module being replaced with  
a reference to the clientAlert.js module. The first module will not even be 
included in the bundle.

We realize how build-time branching is much more elegant and powerful than 
runtime branching. On one side, it allows us to create modules that are focused  
on only one platform, and on the other, it provides a simple mechanism to exclude 
Node.js-only modules from the final bundle.

Design patterns for cross-platform development
Now that we know how to switch between Node.js and browser code, the remaining 
piece of the puzzle is how to integrate this within our design and how we can create 
our components in such a way that some of their parts are interchangeable. These 
challenges should not sound new to us at all, in fact, all throughout the book we 
have seen, analyzed, and used patterns to achieve this very purpose. 
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Let's remind some of them and describe how they apply to cross-platform 
development:

• Strategy and Template: These two are probably the most useful patterns 
when sharing code with the browser. Their intent is, in fact, to define the 
common steps of an algorithm, allowing some of its parts to be replaced, 
which is exactly what we need! In cross-platform development, these 
patterns allow us to share the platform-agnostic part of our components, 
while allowing their platform-specific parts to be changed using a different 
strategy or template method (which can be changed using runtime or 
compile-time branching).

• Adapter: This pattern is probably the most useful when we need to swap 
an entire component. In Chapter 4, Design Patterns, we have already seen an 
example of how an entire module, incompatible with the browser, can be 
replaced with an adapter built on top of a browser-compatible interface.  
Do you remember the LevelUP adapter for the fs interface?

• Proxy: When code meant to run in the server runs in the browser, we 
often expect things that live on the server to be available in the browser 
as well. This is where the remote Proxy pattern comes into place. Imagine 
if we wanted to access the filesystem of the server from the browser, we 
could think of creating an fs object on the client that proxies every call to 
the fs module living on the server, using Ajax or WebSockets as a way of 
exchanging commands and return values.

• Observer: The observer pattern provides a natural abstraction  
between the component that emits the event and those that receive it.  
In cross-platform development, this means that we can replace the emitter  
with its browser-specific implementation without affecting the listeners  
and vice versa.

• Dependency Injection and Service locator: Both DI and service locator  
can be useful to replace the implementation of a module at the moment  
of its injection.

As we can see, the arsenal of patterns at our disposal is quite powerful, but the  
most powerful weapon is still the ability of the developer to choose the best 
approach and adapt it to the specific problem at hand. In the next section, we are 
going to put what we learned into action, leveraging some of the concepts and 
patterns we have seen so far.
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Sharing business logic and data validation 
using Backbone Models
As a perfect conclusion for this section and chapter, we are now going to work on an 
application more complex than usual to demonstrate how to perform code sharing 
between Node.js and the browser. We will take as example a personal contact 
manager application with very basic functionalities.

In particular, we are only interested in some basic CRUD operations such as listing, 
creating, and removing contacts. But the main feature of our application, the one 
that we are really interested in exploring, is the sharing of the models between the 
server and the client. This is actually one of the most sought after capabilities when 
developing an application that has to validate and process data both on the client and 
on the server, which is what most of the modern applications actually need to do.

To give you an idea, this is how our application should look like once it's completed:
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The plan is to use a familiar stack on the server with express and levelup, Backbone 
Views (http://backbonejs.org) on the client, and a set of Backbone Models shared 
between Node.js and the browser, to implement persistence and validation. Browserify 
is our choice for bundling the modules for the browser. If you don't know Backbone, 
don't worry, the concepts we are going to demonstrate here are generic enough and 
can be understood also without any knowledge of this framework.

The project we are going to explore now is pretty large to be described 
and written in full on these pages. Please be advised that only the 
relevant parts will be shown here. For the full code, please refer to the 
samples distributed with the book.

Implementing the shared models
Let's start from the focal center of our application, the Backbone models we 
 want to share with the browser. In our application, we have two models:  
Contact, a Backbone Model, and Contacts, a Backbone Collection. Let's see  
how the Contact module looks like (the models/Contact.js file):

var Backbone = require('backbone');
var validator = require('validator');

module.exports = Backbone.Model.extend({
  defaults: {
    name: '',
    email: '',
    phone: ''
  },
  validate: function(attrs, options) {
    var errors = [];
    if(!validator.isLength(attrs.name, 2)) {
      errors.push('Must specify a name');
    }
    if(attrs.email && !validator.isEmail(attrs.email)) {
      errors.push('Not a valid email');
    }
    if(attrs.phone && !validator.isNumeric(attrs.phone)) {
      errors.push('Not a valid phone');
    }
    if(!attrs.phone && !attrs.email) {
      errors.push('Must specify at least one contact information');
    }
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    return errors.length ? errors : undefined;
  },
  collectionName: 'contacts',
  url: function() {
    if (this.isNew()) return this.collectionName;
    return this.collectionName + '/' + this.id;
  },
  sync: require('./modelSync')
});

Most of the preceding code is shared between the browser and the server, namely, 
the logic for setting the default attributes values and their validation. Both the 
defaults() and validate() methods are part of the Backbone framework and are 
overridden to provide the custom logic for our model. We also added an extra field 
to the object, called collectionName, that will be used by the server for persisting 
the model in the right sublevel (we will see this later) and by the client in order to 
calculate the URL of the REST API endpoint (the url field).

Now, comes the best part: when a Backbone model is saved, deleted, or fetched 
(using save(), remove(), and fetch() respectively), Backbone internally delegates 
the task to the sync() method of the model. Sounds familiar? This is actually a 
Template pattern and it's perfect for us to perform a build-time branching of our 
code. That's in fact where the models must have a different behavior based on the 
target environment:

• On the server, when save() is invoked, we want to persist a model in the 
database; similarly, with fetch(), we want to retrieve the model's data from 
the database, and with remove(), we want to delete it

• On the client instead, we want each one of save(), fetch(), and remove() 
to trigger an AJAX call to the server, which in turn executes the required 
operation and returns the result back to the client

Implementing the platform-specific code
In the code fragment given earlier, the sync attribute is a function loaded from the 
modelSync module, which represents our server-side implementation of the method. 
This is how it looks like (the models/modelSync.js file):

var db = require('../db');
var Backbone = require('backbone');
var uuid = require('node-uuid');

var self = module.exports = function(method, model, options) {
  switch(method) {
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    case 'create':
      return self.saveModel(model, options);
    [...]
  }
};

self.saveModel = function(model, options) {
  var collection = db.sublevel(model.collectionName);
  var results = [];
  if(!model.id) model.set('id', uuid.v4());

  collection.put(model.id, model.toJSON(), function(err) {
    if(err) return options.error();
    options.success(model.toJSON());
  });
}
[...]

When the internals of the Backbone Model invoke the sync() method, three 
parameters are provided, as follows:

• The method parameter representing the action being performed (which can 
be one of the following: 'create', 'read', 'update' or 'delete')

• The model parameter, which is the object of the operation
• A set of options that contains, among other things, a success callback  

to be invoked when the operation completes and an error callback to  
invoke if it fails

In the preceding code, we are showing what happens when we receive a 'create' 
request. As we can see, the saveModel() function is invoked, which saves the model 
into the database.

The sync() implementation we have just seen, is meant to be executed only on the 
server, where we want to persist the data. Ideally, it could also work on the browser, 
because LevelUP has adapters for IndexedDB and LocalStorage, but that's not what 
we want in this example.

What we want instead is to persist the data on the server, and to do this we have 
to invoke a web service when an operation is performed on the model. This 
means that the modelSync module is not good for us to use on the browser, so we 
need a different implementation. Luckily, Backbone already provides a default 
implementation for the sync() method that does exactly what we need. So that's 
what we are going to use on the client-side implementation of the modelSync 
module (file: models/clientSync.js):

module.exports = require('backbone').sync;
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That's it, the next step is to instruct Browserify to use the module we just created in 
place of modelSync when creating the client-side bundle. As we have seen, this can 
be done in the package.json file:

[...]  
"browser": {
  "./models/modelSync.js": "./models/clientSync.js"
  [...]
}

The preceding few lines create a build-time branching telling Browserify to  
replace any reference to the module "./models/modelSync.js" with a reference  
to "./models/clientSync.js". The module modelSync will not be included  
in the final bundle.

Using the isomorphic models
At this point, the Contact module should be isomorphic, which means that it can 
run transparently both on the client and on Node.js. To show how this looks like, 
let's see how the model is used in the server routes (file routes.js):

var Contact = require('./models/Contact');
[...]
module.exports.createContact = function(req, res, next) {
  var contact = new Contact(req.body);
  contact.once('invalid', function(model, errors) {
    res.status(400).json({error: errors});
  });
  contact.save({}, {success: function(contact) {
    res.status(200).json(contact);
  }});
}
[...]

The createContact() handler builds a new contact (Contact) from the JSON 
data received in the body of the request (a POST to the '/contacts' URL). Then, 
we attach to the model a listener for the invalid event, which triggers when its 
attributes do not pass the validation tests we have defined. Finally, contact.save() 
will persist the data in the database.

As we will see, this is exactly what we do in the browser-side of the application 
as well. This happens in the Backbone View responsible for handling the data 
submitted in a form (file client/ContactsView.js):

var Backbone = require('backbone');
var Contact = require('../models/Contact');
var $ = require('jquery');
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[...]

module.exports = Backbone.View.extend({
  [...]
  createContact: function(evt) {
    evt.preventDefault();
    var contactJson = {
      name: $('#newContactForm input[name=name]').val(),
      email: $('#newContactForm input[name=email]').val(),
      phone: $('#newContactForm input[name=phone]').val()
    };
    var contact = new Contact(contactJson);      //[1]
    $('.error-container', this.$el).empty();
    contact.once('invalid', this.invalid, this);    //[2]
    contact.save({}, {success: function() {      //[3]
      this.contacts.add(contact);
    }.bind(this)});
  }
  [...]
});

As we can see, when the createContact() function is invoked (after the "new contact" 
form is submitted), we issue the exact same commands we used on the server:

1. We create a new Contact model from the form data.
2. We register a listener for the invalid event so that we can immediately 

display a message to the user if the data does not pass the validation.
3. Finally, we save the model, which this time will result in an HTTP POST 

request to the /contacts URL.

As we wanted to demonstrate, our Contact model is isomorphic and enables us to 
share its business logic and validation between the browser and the server!

Running the application
To run the full sample distributed with the book, don't forget to install all the 
modules with:

npm install
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Then, run Browserify on the main module of the client-side application to generate 
the bundle used on the browser:

browserify client/main.js -o www/bundle.js

Then finally, fire up the server with:

node app

Now, we can open our browser at the following URL to access the application 
http://localhost:8080.

We can now verify that the validation is actually performed identically on the 
browser as it is on the server. To check this on the browser, we can simply try 
to create a contact with a phone number that contains letters, which will fail the 
validation. Then, to test the server-side validation, we can try to invoke the REST  
API directly with curl:

curl -X POST http://localhost:8000/contacts –data '{"name":"John","phone 
":"wrong"}' --header "Content-Type:application/json"

The preceding command should return an error indicating that the data we are 
trying to save is invalid.

This concludes our exploration of the fundamental principles for sharing code between 
Node.js and the browser. As we have seen, the challenges are many and the effort 
to design isomorphic code can be substantial. In this context, it's worth mentioning 
that one big challenge related to this area is shared rendering, which is the ability to 
render a view on the server as well as dynamically on the client. This requires a much 
more complex design effort that easily affects the entire architecture of the application 
on both the server and the browser. Many frameworks tried to solve this ultimate 
challenge, which usually is the most complex in the area of cross-platform JavaScript 
development. Among those projects, we can find Derby (http://derbyjs.com), 
Meteor (https://www.meteor.com), React (http://facebook.github.io/react), 
and then Rendr (https://github.com/rendrjs/rendr) and Ezel (http://ezeljs.
com), which are based on Backbone, similar to what we did in our example.
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Summary
This chapter added some great new weapons to our tool belt, and as we can notice, 
our journey is getting more focused on specific problems and we have started to 
delve deeply into more advanced solutions. Often, we reused some of the patterns 
we have analyzed in the previous chapters: State, Command, and Proxy to provide 
an effective abstraction for asynchronously initialized modules, asynchronous 
control flow patterns to add batching and caching to our APIs, deferred execution 
and events to help us run CPU-bound tasks, and finally a mix of various design 
patterns to enable our modules to run seamlessly in both Node.js and the browser.

This chapter gave us not only a set of recipes to reuse and customize for our needs, 
but also some great demonstrations of how the mastering of a few principles and 
patterns can help us tackle the most complex problems in Node.js development.

The next two chapters represent the peak of our journey. After studying the  
various tactics, we are now ready to move to the strategies, and explore the  
patterns for scaling and distributing our Node.js applications.



Scalability and  
Architectural Patterns

In its early days, Node.js was mainly a non-blocking web server; its original name 
was in fact web.js. Its creator, Ryan Dahl, soon realized the potential of the platform 
and started extending it with tools to enable the creation of any type of server-side 
application on top of the duo JavaScript/non-blocking paradigm. The characteristics 
of Node.js were perfect for the implementation of distributed systems, made of 
nodes orchestrating their operations through the network. Node.js was born to be 
distributed. Unlike other web platforms, the word scalability enters the vocabulary 
of a Node.js developer very early in the life of an application, mainly because of its 
single-threaded nature, incapable of exploiting all the resources of a machine, but 
often there are more profound reasons. As we will see in this chapter, scaling an 
application does not only mean increasing its capacity, enabling it to handle more 
requests faster; it's also a crucial path to achieving high availability and tolerance 
to errors. Amazingly, it can also be a way to split the complexity of an application 
into more manageable pieces. Scalability is a concept with multiple faces, six to be 
precise, as many as the faces of a cube—the scale cube.

In this chapter, we will learn the following topics:

• What the scale cube is
• How to scale by running multiple instances of the same application
• How to leverage a load balancer when scaling an application
• What a Service Registry is and how it can be used
• How to design a Microservice architecture out of a Monolithic application
• How to integrate a large number of services through the use of some simple 

architectural patterns
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An introduction to application scaling
Before we dive into some practical patterns and examples, it is worth saying a few 
words about the reasons for scaling an application and how it can be achieved.

Scaling Node.js applications
We already know that most of the tasks of a typical Node.js application run in the 
context of a single thread. In Chapter 1, Node.js Design Fundamentals, we learned 
that this is not really a limitation but rather an advantage, because it allows the 
application to optimize the usage of the resources necessary to handle concurrent 
requests, thanks to the non-blocking I/O paradigm. A single thread fully exploited 
by non-blocking I/O works wonderfully for applications handling a moderate 
number of requests per second, usually a few hundred per second (this greatly 
depends on the application). Assuming we are using commodity hardware, the 
capacity that a single thread can support is limited no matter how powerful a server 
can be, therefore, if we want to use Node.js for high-load applications, the only way 
is to scale it across multiple processes and machines.

However, workload is not the only reason to scale a Node.js application; in fact, with 
the same techniques, we can obtain other desirable properties such as availability 
and tolerance to failures. Scalability is also a concept applicable to the size and the 
complexity of an application; in fact, building architectures that can grow big is 
another important factor when designing software. JavaScript is a tool to be used 
with caution, the lack of type checking and its many gotchas can be an obstacle to the 
growth of an application, but with discipline and an accurate design, we can turn 
this into an advantage. With JavaScript, we are often pushed to keep the application 
simple and split it into manageable pieces, making it easier to scale and distribute.

The three dimensions of scalability
When talking about scalability, the first fundamental principle to understand is 
load distribution, the science of splitting the load of an application across several 
processes and machines. There are many ways to achieve this, and the book The Art 
of Scalability by Martin L. Abbott and Michael T. Fisher, proposes an ingenious model 
to represent them, called the scale cube. This model describes scalability in terms of 
the following three dimensions:

• X Axis: Cloning
• Y Axis: Decomposing by service/functionality
• Z Axis: Splitting by data partition
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These three dimensions can be represented as a cube, as shown in the  
following figure:

The bottom-left corner of the cube represents the applications having all their 
functionalities and services in a single codebase (monolithic applications) and 
running on a single instance. This is a common situation for applications handling 
small workloads or at the early stages of development.

The most intuitive evolution of a monolithic, unscaled application is moving 
right along the X axis, which is simple, most of the time inexpensive (in terms of 
development cost), and highly effective. The principle behind this technique is 
elementary—that is, cloning the same application n times and letting each instance 
handle 1/nth of the workload.

Scaling along the Y axis means decomposing the application based on its 
functionalities, services, or use cases. In this instance, decomposing means creating 
different, standalone applications, each with its own codebase, sometimes with 
its own dedicated database, or even with a separate UI. For example, a common 
situation is separating the part of an application responsible for the administration 
from the public-facing product. Another example is extracting the services 
responsible for the user authentication, creating a dedicated authentication server. 
The criteria to split an application by its functionalities depend mostly on its 
business requirements, the use cases, the data, and many other factors, as we will 
see later in this chapter. Interestingly, this is the scaling dimension with the biggest 
repercussions, not only on the architecture of an application, but also on the way it 
is managed from a development perspective. As we will see, microservices is a term 
that at the moment is most commonly associated with a fine-grained Y axis scaling.
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The last scaling dimension is the Z axis, where the application is split in such a 
way that each instance is responsible for only a portion of the whole data. This 
is a technique mainly used in databases and also takes the name of horizontal 
partitioning or sharding. In this setup, there are multiple instances of the same 
application, each of them operating on a partition of the data, which is determined 
using different criteria. For example, we could partition the users of an application 
based on their country (list partitioning), or based on the starting letter of their 
surname (range partitioning), or by letting a hash function decide the partition each 
user belongs to (hash partitioning). Each partition can then be assigned to a particular 
instance of our application. The use of data partitions requires each operation to 
be preceded by a lookup step to determine which instance of the application is 
responsible for a given datum. As we said, data partitioning is usually applied and 
handled at database level because its main purpose is overcoming the problems 
related to handling large monolithic datasets (limited disk space, memory, and 
network capacity). Applying it at the application level is worth considering only for 
complex, distributed architectures or for very particular use cases as, for example, 
when building applications relying on custom solutions for data persistence, when 
using databases not supporting partitioning, or when building applications at 
Google scale. Considering its complexity, scaling an application along the Z axis 
should be taken in consideration only after the X and Y axes of the scale cube have 
been fully exploited.

In the next sections, we will focus on the two most common and effective  
techniques to scale Node.js applications, namely, cloning and decomposing by 
functionality/service.

Cloning and load balancing
Traditional, multithreaded web servers are usually scaled only when the resources 
assigned to a machine cannot be upgraded any more or when doing so would involve 
a higher cost than simply launching another machine. By using multiple threads, 
traditional web servers can take advantage of all the processing power of a server, 
using all the available processors and memory. However, a single Node.js process is 
unable to do that, being single-threaded and having a memory limit of 1GB (on 64-bit 
machines, which can be increased to a maximum of 1.7GB). This means that Node.js 
applications are usually scaled much sooner compared to traditional web servers, even 
in the context of a single machine, to be able to take advantage of all its resources.

In Node.js, vertical scaling (adding more resources to a single machine) 
and horizontal scaling (adding more machines to the infrastructure) are 
almost equivalent concepts; both in fact involve similar techniques to 
leverage all the available processing power.



Chapter 7

[ 325 ]

Don't be fooled into thinking about this as a disadvantage. On the contrary, being 
almost forced to scale has beneficial effects on other attributes of an application, in 
particular availability and fault-tolerance. In fact, scaling a Node.js application by 
cloning is relatively simple and it's often implemented even if there is no need to 
harvest more resources, just for the purpose of having a redundant, fail-tolerant setup.

This also pushes the developer to take into account scalability from the early 
stages of an application, making sure the application does not rely on any resource 
that cannot be shared across multiple processes or machines. In fact, an absolute 
prerequisite to scaling an application is that each instance does not have to store 
common information on resources that cannot be shared, usually hardware, such as 
memory or disk. For example, in a web server, storing the session data in memory 
or on disk is a practice that does not work well with scaling; instead, using a 
shared database will assure that each instance will have access to the same session 
information, wherever it is deployed.

Let's now introduce the most basic mechanism for scaling Node.js applications:  
the cluster module.

The cluster module
In Node.js, the simplest pattern to distribute the load of an application across 
different instances running on a single machine is by using the cluster module, 
which is part of the core libraries. The cluster module simplifies the forking of new 
instances of the same application and automatically distributes incoming connections 
across them, as shown in the following figure:

Incoming
requests

Server machine

Worker
process

Worker
process

Worker
process

Master
process
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The master process is responsible for spawning a number of processes (workers), 
each representing an instance of the application we want to scale. Each incoming 
connection is then distributed across the cloned workers, spreading the load  
across them.

Notes on the behavior of the cluster module
In Node.js 0.8 and 0.10, the cluster module shares the same server socket across 
the workers and leaves to the operating system the job of load-balancing incoming 
connections across the available workers. However, there is a problem with this 
approach; in fact, the algorithms used by the operating system to distribute the load 
across the workers are not meant to load-balance network requests, but rather to 
schedule the execution of processes. As a result, the distribution is not always uniform 
across all the instances; often, a fraction of workers receive most of the load. This type 
of behavior can make sense for the operating system scheduler because it focuses on 
minimizing the context switches between different processes. The short story is that 
the cluster module does not work at its full potential in Node.js <= 0.10.

However, the situation changes starting from version 0.11.2, where an explicit  
round robin load-balancing algorithm is included inside the master process,  
which makes sure the requests are evenly distributed across all the workers. The new 
load-balancing algorithm is enabled by default on all platforms except Windows, 
and it can be globally  modified by setting the variable cluster.schedulingPolicy, 
using the constants  cluster.SCHED_RR (round robin) or cluster.SCHED_NONE 
(handled by the operating system).

The round robin algorithm distributes the load evenly across the 
available servers on a rotational basis. The first request is forwarded 
to the first server, the second to the next server in the list, and so on. 
When the end of the list is reached, the iteration starts again from the 
beginning. This is one of the simplest and most used load-balancing 
algorithms; however, it's not the only one. More sophisticated 
algorithms allow assigning priorities, selecting the least loaded  
server or the one with the fastest response time.

You can find more details about the evolution of the cluster module 
in these two Node.js issues:

• https://github.com/joyent/node/issues/3241

• https://github.com/joyent/node/issues/4435
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Building a simple HTTP server
Let's now start working on an example. Let's build a small HTTP server, cloned and 
load-balanced using the cluster module. First of all, we need an application to 
scale; for this example we don't need too much, just a very basic HTTP server.

Let's create a file called app.js containing the following code:

var http = require('http');
var pid = process.pid;

http.createServer(function(req, res) {
  for(var i = 1e7; i > 0; i--) {}
  console.log('Handling request from ' + pid);
  res.end('Hello from ' + pid + '\n');
}).listen(8080, function() {
  console.log('Started ' + pid);
});

The HTTP server we just built responds to any request by sending back a message 
containing its PID; this will be useful to identify which instance of the application 
is handling the request. Also, to simulate some actual CPU work, we perform an 
empty loop 10 million times; without this, the server load would be almost nothing 
considering the small scale of the tests we are going to run for this example.

The app module we want to scale can be anything and 
can also be implemented using a web framework, for 
example, express.

We can now check if all works as expected by running the application as usual and 
sending a request to http://localhost:8080 using either a browser or curl.

We can also try to measure the requests per second that the server is able to handle 
using only one process, for this purpose, we can use a network benchmarking tool 
such as siege (http://www.joedog.org/siege-home) or Apache ab (http://
httpd.apache.org/docs/2.4/programs/ab.html):

siege -c200 -t10S http://localhost:8080

With ab, the command line would be very similar:

ab -c200 -t10 http://localhost:8080/
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The preceding commands will load the server with 200 concurrent connections for  
10 seconds. As a reference, the result for a system with four processors is in the order 
of 90 transactions per second, with an average CPU utilization of only 20 percent.

Please remember that the load tests we will perform in this 
chapter are intentionally simple and minimal and are provided 
only for reference and learning purposes. Their results cannot 
provide a 100 percent accurate evaluation of the performance of 
the various techniques we are analyzing.

Scaling with the cluster module
Let's now try to scale our application using the cluster module. Let's create a new 
module called clusteredApp.js:

var cluster = require('cluster');
var os = require('os');

if(cluster.isMaster) {
  var cpus = os.cpus().length;
  //start as many children as the number of CPUs
  for (var i = 0; i < cpus; i++) {      //[1]
    cluster.fork();
  }
} else {
  require('./app');           //[2]
}

As we can see, using the cluster module requires very little effort. Let's analyze 
what is happening:

1. When we launch clusteredApp from the command line, we are actually 
executing the master process. The cluster.isMaster variable is set to true 
and the only work we are required to do is forking the current process using 
cluster.fork(). In the preceding example, we are starting as many workers 
as the number of CPUs in the system to take advantage of all the available 
processing power.

2. When cluster.fork() is executed from the master process, the current 
main module (clusteredApp) is run again, but this time in worker mode 
(cluster.isWorker is set to true, while cluster.isMaster is false). When 
the application runs as a worker, it can start doing some actual work. In our 
example, we load the app module, which actually starts a new HTTP server.
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It's important to remember that each worker is a different 
Node.js process with its own event loop, memory space, 
and loaded modules.

It's interesting to notice that the usage of the cluster module is based on a recurring 
pattern, which makes it very easy to run multiple instances of an application:

if(cluster.isMaster) {
  // fork()
} else {
  //do work
}

Under the hood, the cluster module uses the child_process.
fork() API (we already met this API in Chapter 6, Recipes), therefore, 
we also have a communication channel available between the master 
and the workers. The instances of the workers can be accessed from the 
variable, cluster.workers, so broadcasting a message to all of them 
would be as easy as running the following lines of code:

Object.keys(cluster.workers).forEach(function(id) {

  cluster.workers[id].send('Hello from the master');

});

Now, let's try to run our HTTP server in cluster mode. We can do that by starting the 
clusteredApp module as usual:

node clusteredApp

If our machine has more than one processor, we should see a number of workers 
being started by the master process, one after the other. For example, in a system 
with four processors, the terminal should look like this:

Started 14107

Started 14099

Started 14102

Started 14101

If we now try to hit our server again using the URL http://localhost:8080,  
we should notice that each request will return a message with a different PID,  
which means that these requests have been handled by different workers,  
confirming that the load is being distributed among them.
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Now we can try to load test our server again:

siege -c200 -t10S http://localhost:8080

This way, we should be able to discover the performance increase obtained by scaling 
our application across multiple processes. As a reference, by using Node.js 0.10 in  
a Linux system with four processors, the performance increase should be around  
3x (270 trans/sec versus 90 trans/sec) with an average CPU load of 90 percent.

Resiliency and availability with the cluster module
As we already mentioned, scaling an application also brings other advantages, in 
particular, the ability to maintain a certain level of service even in the presence of 
malfunctions or crashes. This property is also known as resiliency and it contributes 
towards the availability of a system.

By starting multiple instances of the same application, we are creating a redundant 
system, which means that if one instance goes down for whatever reason, we still 
have other instances ready to serve requests. This pattern is pretty straightforward to 
implement using the cluster module. Let's see how it works!

Let's take the code from the previous section as the starting point. In particular,  
let's modify the app.js module so that it crashes after a random interval of time:

// [...]
// At the end of app.js
setTimeout(function() {
  throw new Error('Ooops');
}, Math.ceil(Math.random() * 3) * 1000);

With this change in place, our server exits with an error after a random number of 
seconds between 1 and 3. In a real-life situation, this would cause our application 
to stop working, and of course, serve requests, unless we use some external tool 
to monitor its status and restart it automatically. However, if we only have one 
instance, there may be a non-negligible delay between restarts caused by the startup 
time of the application. This means that during those restarts, the application is not 
available. Having multiple instances instead will make sure we always have a backup 
system to serve an incoming request even when one of the workers fails.

With the cluster module, all we have to do is spawn a new worker as soon 
as we detect that one is terminated with an error code. Let's then modify the 
'clusteredApp.js' module to take this into account:

if(cluster.isMaster) {
  // [...]

  cluster.on('exit', function(worker, code) {
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    if(code != 0 && !worker.suicide) {
      console.log('Worker crashed. Starting a new worker');
      cluster.fork();
    }
  });
} else {
  require('./app');
}

In the preceding code, as soon as the master process receives an 'exit' event, we 
check whether the process is terminated intentionally or as the result of an error; we 
do this by checking the status code and the flag worker.suicide, which indicates 
whether the worker was terminated explicitly by the master. If we confirm that the 
process was terminated because of an error, we start a new worker. It's interesting 
to notice that while the crashed worker restarts, the other workers can still serve 
requests, thus not affecting the availability of the application.

To test this assumption, we can try to stress our server again using siege. When  
the stress test completes, we notice that among the various metrics produced by 
siege, there is also an indicator that measures the availability of the application.  
The expected result would be something similar to this:

Transactions:           3027 hits

Availability:           99.31 %

[...]

Failed transactions:         21

Please bear in mind that this result can vary a lot; it greatly depends on the number 
of running instances and how many times they crash during the test, but it should 
give a good indicator of how our solution works. The preceding numbers tell us 
that despite our application is constantly crashing, we only had 21 failed requests 
over 3,027 hits. In the example scenario we built, most of the failing requests will be 
caused by the interruption of already established connections during a crash. In fact, 
when this happens, siege will print an error like the following:

[error] socket: read error Connection reset by peer sock.c:479: 
Connection reset by peer

Unfortunately, there is very little we can do to prevent these types of failures, 
especially when the application terminates because of a crash. Nonetheless, our 
solution proves to be working and its availability is not bad at all for an application 
that crashes so often!
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Zero-downtime restart
A Node.js application might need to be restarted also when its code needs to be 
updated. So also in this scenario, having multiple instances can help maintain the 
availability of our application.

When we have to intentionally restart an application to update it, there is a small 
window in which the application restarts and is unable to serve requests. This can 
be acceptable if we are updating our personal blog, but it's not even an option for 
a professional application with an SLA (Service Level Agreement) or one that is 
updated very often as part of a continuous delivery process. The solution is to 
implement a zero-downtime restart where the code of an application is updated 
without affecting its availability.

With the cluster module, this is again a pretty easy task, the pattern consists in 
restarting the workers one at a time. This way, the remaining workers can continue  
to operate and maintain the services of the application available.

Let's then add this new feature to our clustered server; all we have to do is add some 
new code to be executed by the master process (the clusteredApp.js file):

if(cluster.isMaster) {
  // [...]
  
  process.on('SIGUSR2', function() {         //[1]
    console.log('Restarting workers');
    var workers = Object.keys(cluster.workers);

    function restartWorker(i) {         //[2]
      if(i >= workers.length) return;
      var worker = cluster.workers[workers[i]];
      console.log('Stopping worker: ' + worker.process.pid);
      worker.disconnect();           //[3]

      worker.on('exit', function() {
        if(!worker.suicide) return;
        var newWorker = cluster.fork();      //[4]
        newWorker.on('listening', function() {
          restartWorker(i + 1);         //[5]
        });
      });
    }
    restartWorker(0);
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  });
} else {
  require('./app');
}

This is how the preceding block of code works:

1. The restarting of the workers is triggered on receiving the SIGUSR2 signal.
2. We define an iterator function called restartWorker(). This implements  

an asynchronous sequential iteration pattern over the items of the  
cluster.workers object.

3. The first task of the restartWorker() function is stopping a worker 
gracefully by invoking worker.disconnect().

4. When the terminated process exits, we can spawn a new worker.
5. Only when the new worker is ready and listening for new connections we 

can proceed with restarting the next worker by invoking the next step of  
the iteration.

As our program makes use of UNIX signals, it will not work 
properly on Windows systems. Signals are the simplest mechanism 
to implement our solution. However, this isn't the only one; in fact, 
other approaches include listening for a command coming from a 
socket, a pipe, or the standard input.

Now we can test our zero-downtime restart by running the clusteredApp module 
and then sending a SIGUSR2 signal. However, first we need to obtain the PID of the 
master process; the following command can be useful to identify it from the list of all 
the running processes:

ps af

The master process should be the parent of a set of node processes. Once we have the 
PID we are looking for, we can send the signal to it:

kill -SIGUSR2 <PID>

Now the output of the clusteredApp application should display something like this:

Restarting workers

Stopping worker: 19389

Started 19407

Stopping worker: 19390

Started 19409
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We can try again to use siege to verify that we don't have any considerable impact 
on the availability of our application during the restart of the workers.

pm2 (https://github.com/Unitech/pm2) is a small 
utility, based on cluster, which offers load balancing, process 
monitoring, zero-downtime restarts, and other goodies.

Dealing with stateful communications
The cluster module does not work well with stateful communications where the 
state maintained by the application is not shared between the various instances. This 
is because different requests belonging to the same stateful session may potentially be 
handled by a different instance of the application. This is not a problem limited only to 
the cluster module, but in general it applies to any kind of stateless, load balancing 
algorithm. Consider, for example, the situation described by the following figure:

John

Authenticate Load
balancer

authenticated:[‘john’]

authenticated:[]

Instance A

Instance B

John

Request Load
balancer

authenticated:[‘john’]

authenticated:[]

Instance A

Instance B

The user john initially sends a request to our application to authenticate himself, 
but the result of the operation is registered locally (for example, in memory), so only 
the instance of the application that receives the authentication request (Instance 
A) knows that John is successfully authenticated. When John sends a new request, 
the load balancer might forward it to a different instance of the application, which 
actually doesn't possess the authentication details of john, hence refusing to perform 
the operation. The application we just described cannot be scaled as it is, but luckily, 
there are two easy solutions we can apply to solve the problem.
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Sharing the state across multiple instances
The first option we have to scale an application using stateful communications is 
sharing the state across all the instances. This can be easily achieved with a shared data 
store, as, for example, a database such as PostgreSQL (http://www.postgresql.org), 
MongoDB (http://www.mongodb.org), or CouchDB (http://couchdb.apache.org), 
or even better, we can use an in-memory store such as Redis (http://redis.io) or 
Memcached (http://memcached.org).

The following diagram outlines this simple and effective solution:

John

Authenticate Load
balancer

authenticated:[‘john’]

Instance A

Instance B

John

Request Load
balancer

authenticated:[‘john’]

Instance A

Instance B

The only drawback of using a shared store for the communication state is that it's 
not always possible, for example, we might be using an existing library that keeps 
the communication state in memory; anyway, if we have an existing application, 
applying this solution requires a change in the code of the application (if it's not 
already supported). As we will see next, there is a less invasive solution.
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Sticky load balancing
The other alternative we have to support stateful communications is having the 
load balancer routing all the requests associated with a session always to the same 
instance of the application. This technique is also called sticky load balancing.  
The following figure illustrates a simplified scenario involving this technique:

As we can see from the preceding figure, when the load balancer receives a request 
associated to a new session, it creates a mapping with one particular instance selected 
by the load-balancing algorithm. The next time the load balancer receives a request 
from that same session, it bypasses the load-balancing algorithm, selecting the 
application instance that was previously associated to the session. The particular 
technique we just described involves the inspection of the session ID associated with 
the requests (usually included in a cookie by the application or the load balancer itself).
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A simpler alternative to associate a stateful connection to a single server is by using 
the IP address of the client performing the request. Usually, the IP is provided to a 
hash function that generates an ID representing the application instance designated to 
receive the request. This technique has the advantage of not requiring the association 
to be remembered by the load balancer. However it doesn't work well with devices 
changing the IP frequently, as, for example, when roaming on different networks.

Sticky load balancing is not supported by default by the cluster 
module; however, it can be added with an npm library called sticky-
session (https://www.npmjs.org/package/sticky-session).

One big problem with sticky load balancing is the fact that it nullifies most of the 
advantages of having a redundant system, where all the instances of the application 
are the same, and where an instance can eventually replace another one that stopped 
working. For these reasons, the recommendation is to always try to avoid sticky load 
balancing, preferring to build applications that maintain any session state in a shared 
store or that don't require stateful communications at all (for example, by including 
the state in the request itself).

For a real example of a library requiring a sticky load balancing, 
we can mention Socket.io (http://socket.io/blog/
introducing-socket-io-1-0/#scalability).

Scaling with a reverse proxy
The cluster module is not the only option we have to scale a Node.js web 
application. In fact, more traditional techniques are often preferred because they  
offer more control and power in highly available production environments.

The alternative to using cluster is to start multiple standalone instances of the 
same application running on different ports or machines, and then use a reverse 
proxy (or gateway) to provide access to those instances, distributing the traffic across 
them. In this configuration, we don't have any master process distributing requests 
to a set of workers, but a set of distinct processes running on the same machine 
(using different ports) or scattered across different machines inside a network. 
To provide a single access point to our application, we can then use a reverse 
proxy, a special device or service placed between the clients and the instances of 
our application, which takes any request and forwards it to a destination server, 
returning the result to the client as if it was itself the origin. In this scenario, the 
reverse proxy is also used as a load balancer, distributing the requests among the 
instances of the application.
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For a clear explanation of the differences between a reverse proxy and a 
forward proxy, you can refer to the Apache HTTP server documentation 
at http://httpd.apache.org/docs/2.4/mod/mod_proxy.
html#forwardreverse.

The next figure shows a typical multiprocess, multimachine configuration with a 
reverse proxy acting as a load balancer on the front:

Application
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Application
instance

Server #2

Application
instance

Application
instance

Server #3

Application
instance

Application
instance

Server #4

Server #1

Load
balancer

For a Node.js application, there are many reasons to choose this approach in place of 
the cluster module:

• A reverse proxy can distribute the load across several machines, not just 
several processes

• The most popular reverse proxies on the market support sticky  
load balancing

• A reverse proxy can route a request to any available server, regardless of its 
programming language or platform
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• We can choose more powerful load-balancing algorithms
• Many reverse proxies also offer other services such as URL rewrites, caching, 

SSL termination point, or even the functionality of full-fledged web servers 
that can be used, for example, to serve static files

That said, the cluster module could also be easily combined with a reverse proxy if 
necessary; for example, using cluster to scale vertically inside a single machine and 
then using the reverse proxy to scale horizontally across different nodes.

Pattern: use a reverse proxy to balance the load of an 
application across multiple instances running on different 
ports or machines.

We have many options to implement a load balancer using a reverse proxy;  
popular solutions are:

• Nginx (http://nginx.org): This is a web server, reverse proxy, and load 
balancer, built upon the non-blocking I/O model.

• HAProxy (http://www.haproxy.org): This is a fast load balancer for  
TCP/HTTP traffic.

• Node.js-based proxies: There are many solutions for the implementation 
of reverse proxies and load balancers directly in Node.js. This might have 
advantages and disadvantages, as we will see later.

• Cloud-based proxies: In the era of Cloud Computing, it's not rare to utilize 
a load balancer as-a-service. This can be convenient because it requires 
minimal maintenance, it's usually highly scalable, and sometimes, it can 
support dynamic configurations to enable on-demand scalability.

In the next few sections of this chapter, we will analyze a sample configuration using 
Nginx and later on, we will also work on building our very own load balancer using 
nothing but Node.js!

Load balancing with Nginx
To give an idea of how a dedicated reverse proxies work, we will now build a  
scalable architecture based on Nginx (http://nginx.org); but first we need to 
install it. We can do that by following the instructions at http://nginx.org/en/
docs/install.html.
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On a latest Ubuntu system, you can quickly install Nginx with 
the command:
sudo apt-get install nginx

On Mac OS X, you can use brew (http://brew.sh):
brew install nginx

As we are not going to use cluster to start multiple instances of our server,  
we need to slightly modify the code of our application so that we can specify  
the listening port using a command line argument. This will allow us to launch  
multiple instances on different ports. Let's then consider again the main module  
of our example application (app.js):

var http = require('http');
var pid = process.pid;

http.createServer(function(req, res) {
  for(var i = 1e7; i > 0; i--) {}
  console.log('Handling request from ' + pid);
  res.end('Hello from ' + pid + '\n');
}).listen(process.env.PORT || process.argv[2] || 8080, function() {
  console.log('Started ' + pid);
});

The tiny change is highlighted in the preceding code.

Another important feature we lack by not using cluster is the automatic restart  
in case of a crash. Luckily this is easy to fix by using a dedicated supervisor, which  
is an external process monitoring our application and restarting it if necessary. 
Possible choices are:

• Node.js-based supervisors such as forever (https://npmjs.org/package/
forever) or pm2 (https://npmjs.org/package/pm2)

• OS-based monitors such as Upstart (http://upstart.ubuntu.com) or 
Systemd (http://freedesktop.org/wiki/Software/systemd)

• More advanced monitoring solutions such as Monit (http://mmonit.com/
monit)

For this example, we are going to use forever, which is the simplest and  
most immediate for us to use. We can install it globally by running the  
following command:

npm install forever -g
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The next step is to start the four instances of our application, all on different ports 
and supervised by forever:

forever start app.js 8081

forever start app.js 8082

forever start app.js 8083

forever start app.js 8084

We can check the list of the started processes using the command:

forever list

Now it's time to configure the Nginx server as a load balancer.

First, we need to identify the location of the nginx.conf file that can be found in one 
of the following locations, depending on your system /usr/local/nginx/conf, /
etc/nginx, or /usr/local/etc/nginx.

Next, let's open the nginx.conf file and apply the following configuration, which is 
the very minimum required to get a working load balancer:

http {
  # [...]
  upstream nodejs_design_patterns_app {
    server 127.0.0.1:8081;
    server 127.0.0.1:8082;
    server 127.0.0.1:8083;
    server 127.0.0.1:8084;
  }
  # [...]
  server {
      listen 80;

      location / {
        proxy_pass http://nodejs_design_patterns_app;
      }
  }
  # [...]
}
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The configuration needs very little explanation. In the upstream nodejs_design_
patterns_app section, we are defining a list of the backend servers used to handle 
the network requests, and then, in the server section, we specify the proxy_pass 
directive, which essentially tells Nginx to forward any request to the server group 
we defined before (nodejs_design_patterns_app). That's it, now we only need to 
reload the Nginx configuration with the command:

nginx -s reload

Our system should now be up-and-running, ready to accept requests and balance 
the traffic across the four instances of our Node.js application. Simply point your 
browser to the address http://localhost to see how the traffic is balanced by  
our Nginx server.

Using a Service Registry
One important advantage of modern cloud-based infrastructures is the ability to 
dynamically adjust the capacity of an application based on the current or predicted 
traffic; this is also known as dynamic scaling. If implemented properly, this practice 
can reduce the cost of the IT infrastructure enormously while still maintaining the 
application highly available and responsive.

The idea is simple; if our application is experiencing a performance degradation 
caused by a peak in the traffic, we automatically spawn new servers to cope with 
the increased load. We could also decide to shut down some servers during certain 
hours, as, for example, at night, when we know that the traffic will be less, and 
restarting them again in the morning. This mechanism requires the load balancer  
to always be up-to-date with the current network topology, knowing at any time  
which server is up.
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A common pattern to solve this problem is to use a central repository called Service 
Registry, which keeps track of the running servers and the services they provide. 
The next figure shows a multiservice architecture with a load balancer on the front, 
dynamically configured using a Service Registry:

The preceding architecture assumes the presence of two services, API and WebApp. 
The load balancer distributes the requests arriving on the /api endpoint to all the 
servers implementing the API service, while the rest of the requests are spread across 
the servers implementing the WebApp service. The load balancer obtains the list of 
servers using the service registry.

For this to work in complete automation, each application instance has to register 
itself to the service registry the moment it comes up online and unregister itself  
when it stops. This way, the load balancer can always have an up-to-date view  
of the servers and the services available in the network.
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Pattern (service registry): use a central repository to store an always 
up-to-date view of the servers and the services available in a system.

This pattern can be applied not only to load balancing, but also more generally as a 
way to decouple a service type from the servers providing it. We can look at it as a 
Service Locator design pattern applied to network services.

Implementing a dynamic load balancer with http-
proxy and seaport
To support a dynamic network infrastructure, we can use a reverse proxy such 
as Nginx or HAProxy; all we need to do is update their configuration using an 
automated service and then force the load balancer to pick the changes. For Nginx, 
this can be done using the following command line:

nginx -s reload

The same result can be achieved with a cloud-based solution, but we have a third 
and more familiar alternative that makes use of our favorite platform.

We all know that Node.js is a great tool to build any sort of network application;  
as we said, this is exactly one of its main design goals. So, why not build a load 
balancer using nothing but Node.js? This would give us much more freedom and 
power, and would allow us to implement any sort of pattern or algorithm straight 
into our custom-built load balancer, including the one we are now going to explore, 
dynamic load balancing using a Service Registry.

For this example, we want to replicate the multiservice architecture we saw in  
the figure of the previous section, and to do that, we are going to mainly use two  
npm packages:

• http-proxy (https://npmjs.org/package/http-proxy): This is a library 
to simplify the creation of proxies and load balancers in Node.js

• seaport (https://npmjs.org/package/seaport): This is a minimalist 
Service Registry written in Node.js
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Let's start by implementing our services. They are simple HTTP servers as the ones 
we have used so far to test cluster and Nginx, but this time we want each server to 
register itself into the Service Registry the moment it starts.

Let's see how this looks (file app.js):

var http = require('http');
var pid = process.pid;
var seaport = require('seaport').connect('localhost', 9090);
var serviceType = process.argv[2];
var port = seaport.register(serviceType);

http.createServer(function(req, res) {
  for(var i = 1e7; i > 0; i--) {}
  console.log('Handling request from ' + pid);
  res.end(serviceType + ' response from ' + pid + '\n');
}).listen(port, function() {
  console.log('Started ' + pid);
});

In the preceding code, there are three lines of code that deserve our attention:

1. First, we initialize the seaport client and connect it to the registry server, 
listening on port 9090.

2. Next, we read from the command line a serviceType, so we can  
start a server by choosing the service it provides. This is only for our 
convenience, to allow us to simulate a multiservice setup without 
implementing multiple servers.

3. Finally, we register the service using seaport.register(). This also returns 
a port number that we use to bind the HTTP server.

The registry will automatically unregister the service when it loses the connection 
to the HTTP server. This means that we don't need to manually do it; the server will 
simply disappear from the registry as soon as it stops.
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Now it's time to implement the load balancer. Let's do that by creating a new  
module called 'loadBalancer.js'. First, we need to define a routing table to  
map URL paths to services:

var routing = [{
    path: '/api',
    service: 'api-service',
    index: 0
  },{
    path: '/',
    service: 'webapp-service',
    index: 0
  }];

Each item in the routing array contains the service used to handle the requests 
arriving on the mapped path. The index property will be used to round robin the 
requests of a given service.

Let's see how this works by implementing the second part of loadbalancer.js:

var httpProxy = require('http-proxy');
var seaport = require('seaport').connect('localhost', 9090); //[1]

var proxy = httpProxy.createProxyServer({});
require('http').createServer(function(req, res) {
  var route;
  routing.some(function(entry) {         //[2]
    route = entry;
    //Starts with the route path?
    return req.url.indexOf(route.path) === 0;
  });
  
  var servers = seaport.query(route.service);     //[3]
  if(!servers.length) {
    res.writeHead(502);
    return res.end('Bad gateway');
  }

  route.index = (route.index + 1) % servers.length;   //[4]
  proxy.web(req, res, {target: servers[route.index]});
}).listen(8080, function() {console.log('Started');});
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This is how we implemented our Node.js-based load balancer:

1. First, we need to connect to the seaport server so that we can have access 
to the registry. Next, we instantiate an http-proxy object and start a normal 
web server.

2. In the request handler of the server, the first thing we do is match the URL 
against our routing table. The result will be a descriptor containing the 
service name.

3. We obtain from seaport the list of servers implementing the required 
service. If this list is empty, we return an error to the client. For maximum 
speed, seaport caches the registry locally, and keeps it up-to-date by 
synchronizing it with the main registry server. That's why seaport.query() 
is a synchronous call.

4. At last, we can route the request to its destination. We update route.index 
to point to the next server in the list, following a round robin approach. We 
then use the index to select a server from the list, passing it to proxy.web() 
along with the request (req) and the response (res) objects. This will simply 
forward the request to the server we chose.

It is now clear how simple it is to implement a load balancer using only Node.js and 
how much flexibility we can have by doing so. Now we should be ready to give it a 
go, but first, let's install the seaport server by running the following command:

npm install seaport -g

This allows us to start the seaport service registry with this simple command line:

seaport listen 9090

Now we are ready to start the load balancer:

node loadBalancer

Now if we try to access some of the services exposed by the load balancer, we will 
notice that it returns an HTTP 502 error, because we didn't start any server yet.  
Try it yourself:

curl localhost:8080/api

The preceding command should return the following output:

Bad Gateway
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The situation will change if we spawn some instances of our services, for example, 
two api-service and one webapp-service:

forever start app.js api-service

forever start app.js api-service

forever start app.js webapp-service

Now the load balancer should automatically see the new servers and start 
distributing requests across them. Let's try again with the following command:

curl localhost:8080/api

The preceding command should now return this:

api-service response from 6972

By running it again, we should now receive a message from another server,  
confirming that the requests are being distributed evenly among the different servers:

api-service response from 6979

The advantages of this pattern are immediate. We can now scale our infrastructure 
dynamically, on-demand, or based on a schedule, and our load balancer will 
automatically adjust with the new configuration without any extra effort!

Peer-to-peer load balancing
Using a reverse proxy is almost a necessity when we want to expose a complex 
internal network architecture to a public network such as the Internet. It helps hide 
the complexity, providing a single access point that external applications can easily 
use and rely on. However, if we need to scale a service that is for internal use only, 
we can have much more flexibility and control.

Let's imagine having a Service A which relies on a Service B to implement its 
functionality. Service B is scaled across multiple machines and it's available only in 
the internal network. What we have learned so far is that Service A will connect to 
Service B using a reverse proxy, which will distribute the traffic to all the servers 
implementing Service B.

However, there is an alternative. We can remove the reverse proxy from the picture 
and distribute the requests directly from the client (Service A), which now becomes 
directly responsible for load balancing its connections across the various instances 
of Service B. This is possible only if Server A knows the details about the servers 
exposing Service B, and in an internal network, this is usually known information. 
With this approach we are essentially implementing peer-to-peer load balancing.
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The following diagram compares the two alternatives we just described:

Centralized load balancing

Service A
(Client)

Load
Balancer

Service B Service B Service B

Peer-to-peer load balancing

Service A
(Client)

Service B Service B Service B

This is an extremely simple and effective pattern that enables truly distributed 
communications without bottlenecks or single points of failure. Besides that,  
it also does the following:

• Reduces the infrastructure complexity by removing a network node
• Allows faster communications, because messages will travel through one  

fewer node
• Scales better, because performances are not limited by what the load  

balancer can handle

On the other side, by removing the reverse proxy, we are actually exposing the 
complexity of its underlying infrastructure. Also, each client has to be smarter by 
implementing a load-balancing algorithm and possibly, also a way to keep its 
knowledge of the infrastructure up-to-date.

Peer-to-peer load balancing is a pattern used extensively in the 
ØMQ (http://zeromq.org) library.
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Implementing an HTTP client that can balance 
requests across multiple servers
We already know how to implement a load balancer using only Node.js and 
distribute incoming requests across the available servers, so implementing the  
same mechanism on the client side should not be that different. All we have to  
do in fact is wrap the client API and augment it with a load-balancing mechanism. 
Take a look at the following module (balancedRequest.js):

var http = require('http');
var servers = [
  {host: 'localhost', port: '8081'},
  {host: 'localhost', port: '8082'}
];
var i = 0;

module.exports = function(options, callback) {
  i = (i + 1) % servers.length;
  options.hostname = servers[i].host;
  options.port = servers[i].port;

  return http.request(options, callback);
};

The preceding code is very simple and needs little explanation. We wrapped the 
original http.request API so that it overrides hostname and port of the request 
with those selected from the list of available servers using a round robin algorithm.

The new wrapped API can then be used seamlessly (client.js):

var request = require('./balancedRequest');
for(var i = 10; i >= 0; i--) {
  request({method: 'GET', path: '/'}, function(res) {
    var str = '';
    res.on('data', function (chunk) {
      str += chunk;
    }).on('end', function () {
      console.log(str);
    });
  }).end();
}
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To try the preceding code, we have to start two instances of the sample  
server provided:

node app 8081

node app 8082

Followed by the client application we just built:

node client

We should notice how each request is sent to a different server, confirming that  
we are now able to balance the load without a dedicated reverse proxy!

An improvement to the wrapper we created before would be to 
integrate a Service Registry directly into the client and obtain the 
server list dynamically. You can find an example of this technique 
in the code distributed with the book.

Decomposing complex applications
So far in the chapter, we have mainly focused our analysis on the X axis of the scale 
cube. We saw how it represents the easiest and most immediate way to distribute 
the load of an application, also improving its availability. In the following section, 
we are now going to focus on the Y axis of the scale cube, where applications are 
scaled by decomposing them by functionality and service. As we will learn, this 
technique allows to scale not only the capacity of an application, but also, and most 
importantly, its complexity.

Monolithic architecture
The term monolithic might make us think of a system without modularity, where all 
the services of an application are interconnected together and almost indistinguishable. 
However, this is not always the case. Often, monolithic systems have a highly modular 
architecture and a good decoupling between their internal components.
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A perfect example is the Linux Operating System kernel, which is part of a category 
called monolithic kernels (in perfect opposition with its ecosystem and the Unix 
philosophy). Linux has thousands of services and modules that we can load and 
unload dynamically even while the system is running. However, they all run in kernel 
mode, which means that a failure in any of them might bring the entire OS down 
(have you ever seen a kernel panic?). This approach is opposed to the microkernel 
architecture, where only the core services of the operating system run in kernel mode, 
while the rest is running in user mode, usually each one with its own process. The 
main advantage of this approach is that a problem in any of these services would more 
likely cause it to crash in isolation instead of affecting the stability of the entire system.

The Torvalds-Tanenbaum debate on kernel design is probably one of the 
most famous flame wars in the history of computer science, where one of 
the main points of dispute was exactly monolithic versus microkernel 
design. You can find a web version of the discussion (it originally 
appeared on Usenet) at https://groups.google.com/d/msg/
comp.os.minix/wlhw16QWltI/P8isWhZ8PJ8J.

It's remarkable how these design principles, more than 30 years old, can still be 
applied today and in totally different environments. Modern monolithic applications 
are comparable to monolithic kernels; if any of their components fail, the entire 
system is affected, which translated in to Node.js terms means that all the services 
are part of the same codebase and run in a single process (when not cloned).

To make an example of a monolithic architecture, let's take a look at the  
following figure:

E-commerce application

Store front-end
Admin

front-end

Datastore

Checkout Search
Authentication

and
Users

Products Cart
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The preceding figure shows the architecture of a typical e-commerce application.  
Its structure is modular; we have two different frontends, one for the main store  
and another for the administration interface. Internally, we have a clear separation  
of the services implemented by the application, each one responsible for a specific 
portion of its business logic: Products, Cart, Checkout, Search, and Authentication 
and Users. However, the preceding architecture is monolithic, every module, in fact, 
is part of the same codebase and runs as part of a single application. A failure in any 
of its components, for example, an uncaught exception, can potentially tear down the 
entire online store.

Another problem with this type of architecture is the interconnection between its 
modules; the fact that they all live inside the same application makes it very easy 
for a developer to build interactions and coupling between modules. For example, 
consider the use case when a product is being purchased; the Checkout module  
has to update the availability of the Product object, and if those two modules are 
in the same application, it's too easy for a developer to just obtain a reference to 
a Product object and update its availability directly. Maintaining a low coupling 
between internal modules is very hard in monolithic application, partly because  
the boundaries between them are not always clear or properly enforced.

A high coupling is often one of the main obstacles to the growth of an application 
and prevents its scalability in terms of complexity. In fact, an intricate dependency 
graph means that every part of the system is a liability; it has to be maintained for 
the entire life of the product, and any change should be carefully evaluated because 
every component is like a wooden block in a Jenga tower, moving or removing one 
of them can cause the entire tower to collapse. This often results in the building of 
conventions and development processes to cope with the increasing complexity of 
the project.

The Microservice architecture
Now we are going to reveal the most important pattern in Node.js to write big 
applications: avoid writing big applications. This seems like a trivial statement,  
but it's an incredibly effective strategy to scale both the complexity and the capacity 
of a software system. So what's the alternative to writing big applications? The 
answer is in the Y axis of the scale cube, decomposition and splitting by service and 
functionality. The idea is to break down an application into its essential components, 
creating separate, independent applications. It is practically the opposite of the 
monolithic architecture. This fits perfectly with the Unix philosophy, and the  
Node.js principles we discussed in the beginning of the book, in particular  
"make each program do one thing well".
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The Microservice architecture is probably today the reference pattern for this type of 
approach, where a set of self-sufficient services replaces big monolithic applications. 
The prefix micro means that the services should be as small as possible, but always 
within reasonable limits. Don't be misled by thinking that creating an architecture 
with a hundred different applications exposing only one web service is necessarily 
a good choice. In reality, there is no strict rule on how small or big a service should 
be, it's not the size that matters in the design of a Microservice architecture; instead, 
it's a combination of different factors, mainly loose coupling, high cohesion, and 
integration complexity.

An example of the Microservice architecture
Let's now see how the monolithic e-commerce application would look like, using a 
Microservice architecture:

DatastoreDatastoreDatastore Datastore Datastore

Products service Cart service Checkout service Search service
Auth and Users

service

Checkout Search
Authentication

and
Users

Products Cart

Store front-end application

Store front-end

Admin front-end application

Admin front-end

As we can see from the previous figure, each fundamental component of the 
e-commerce application is now a self-sustaining and independent entity, living in its 
own context, with its own database. In practice, they are all independent applications 
exposing a set of related services (high cohesion).
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The data ownership of a service is an important characteristic of the Microservice 
architecture. This is why the database also has to be split to maintain the proper level 
of isolation and independence. If a unique shared database is used, it would become 
much easier for the services to work together; however, this would also introduce a 
coupling between the services (based on data), nullifying some of the advantages of 
having different applications.

The dashed line connecting all the nodes tells us that, in some way, they have to 
communicate and exchange information for the entire system to be fully functional. 
As the services do not share the same database, there is more communication 
involved to maintain the consistency of the whole system. For example, the 
Checkout application needs to know some information about Products, such as 
the price and restrictions on shipping, and at the same time, it needs to update the 
data stored in the Products service, for example, the product availability when the 
checkout is complete. In the preceding figure, we tried to keep the way the nodes 
communicate abstract. Surely, the most popular strategy is using web services,  
but as we will see later, this is not the only option.

Pattern (microservice architecture): split a complex application by 
creating several small, self-contained services.

Pros and cons of microservices
In this section we are going to highlight some of the advantages and disadvantages 
of implementing the Microservice architecture. As we will see, this approach 
promises to bring a radical change in the way we develop our applications, 
revolutionizing the way we see scalability and complexity, but on the other side,  
it introduces new nontrivial challenges as well.

Martin Fowler wrote a great article about microservices that 
you can find at http://martinfowler.com/articles/
microservices.html.
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Every service is expendable
The main technical advantage of having each service living in its own application 
context is that crashes, bugs, and breaking changes do not propagate to the entire 
system. The goal is to build truly independent services that are smaller, easier to 
change, or even rebuild from scratch. If, for example, the Checkout service of our 
e-commerce application suddenly crashes because of a serious bug, the rest of the 
system would continue to work as normal. Some functionality may be affected, for 
example, the ability to purchase a product, but the rest of the system would  
continue to work.

Also, imagine if we suddenly realized that the database or the programming 
language we used to implement a component was not a good design decision.  
In a monolithic application, there would be very little we could do to change things 
without affecting the entire system; instead, in a Microservice architecture, we could 
more easily re-implement the entire service from scratch, using a different database 
or platform, and the rest of the system would not even notice it.

Reusability across platforms and languages
Splitting a big monolithic application into many small services allows us to  
create independent units that can be re-used much more easily. Elasticsearch 
(http://www.elasticsearch.org) is a great example of a re-usable search  
service, also the authentication server we built in Chapter 5, Wiring Modules,  
is another example of a service that can be easily re-used in any application, 
regardless of the programming language it's built in.

The main advantage is that the level of information hiding is usually much higher 
compared to monolithic applications. This is possible because the interactions 
usually happen through a remote interface such as a web service or a message 
broker, which makes it much easier to hide the implementation details and shield  
the client from changes in the way the service is implemented or deployed. For 
example, if all we have to do is invoke a web service, we are shielded from the  
way the infrastructure behind is scaled, from what programming language it  
uses, from what database it uses to store its data, and so on.

A way to scale the application
Going back to the scale cube, it's clear that microservices are equivalent to scaling 
an application along the Y axis, so it's already a means for the distribution of the 
load across multiple machines. Also, we should not forget that we can combine 
microservices with the other two dimensions of the cube to scale the application  
even further. For example, each service could be cloned to handle more traffic, 
and the interesting aspect is that they can be scaled independently, allowing better 
resource management.
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The challenges of microservices
At this point, it would look like microservices are the solution to all our problems; 
however, this is far from being true. In fact, having more nodes to manage introduces 
a higher complexity in terms of integration, deployment, and code sharing; it fixes 
some of the pains of traditional architectures but it also opens many new questions. 
How do we make the services interact? How can we deploy, scale, and monitor such 
a high number of applications? How can we share and reuse code between services? 
Fortunately, cloud services and modern DevOps methodologies can provide some 
answers to those questions, and also, Node.js can help a lot. Its module system  
is a perfect companion to share code between different projects. Node.js was  
made to be a node in a distributed system such as those implemented using the 
Microservice architecture.

Although microservices can be built using any framework (or 
even just the core Node.js modules), there are a few solutions 
specialized for this purpose, among the most notable we have 
Seneca (https://npmjs.org/package/seneca). A useful 
tool to manage the deployment of microservices is nscale 
(https://github.com/nearform/nscale).

Integration patterns in a Microservice 
architecture
One of the toughest challenges of microservices is connecting all the nodes together to 
make them collaborate. For example, the Cart service of our e-commerce application 
would make little sense without some Products to add, and the Checkout service 
would be useless without a list of products to buy (a cart). As we already mentioned, 
there are also other factors that necessitate an interaction between the various services. 
For example, the Search service has to know which Products are available and  
must also ensure to keep its information up-to-date. The same can be said about  
the Checkout service that has to update the information about Product availability 
when a purchase is completed.

When designing an integration strategy, it's also important to consider the coupling that 
it's going to introduce between the services in the system. We should not forget that 
designing a distributed architecture involves the same practices and principles that we 
use locally when designing a module or subsystem, therefore, we also need to take into 
consideration properties such as the reusability and extensibility of the service.
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The API proxy
The first pattern we are going to show makes use of an API proxy, a server that proxies 
the communications between a client and a set of remote API. In the Microservice 
architecture, its main purpose is to provide a single access point for multiple API 
endpoints, but it can also offer load balancing, caching, authentication, and traffic 
limiting, all features that prove out to be very useful to implement a solid API solution.

This pattern should not be new to us; we already saw it in action when we built the 
custom load balancer with http-proxy and seaport. For that example, our load 
balancer was exposing only two services, and then, thanks to a Service Registry, 
it was able to map a URL path to a service and hence to a list of servers. An API 
proxy works in the same way; it is essentially a reverse proxy and often also a load 
balancer, specifically configured to handle API requests. The next figure shows how 
we can apply such a solution to our e-commerce application:

From the preceding figure, it should be clear how an API proxy can hide the 
complexity of its underlying infrastructure. This is really handy in a Microservice 
infrastructure, as the number of nodes may be high, especially if each service is 
scaled across multiple machines. The integration achieved by an API Proxy is 
therefore only structural; there is no semantic mechanism. It simply provides a 
familiar monolithic view of a complex Microservice infrastructure. This is opposed 
to the next pattern we are going to learn, where the integration is semantic instead.
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API orchestration
The pattern we are going to describe next is probably the most natural and explicit 
way to integrate and compose a set of services, and it's called API orchestration. 
Daniel Jacobson, VP of engineering for the Netflix API, in one of his blog posts 
(http://thenextweb.com/dd/2013/12/17/future-api-design-orchestration-
layer), defines API Orchestration as follows:

An API Orchestration Layer (OL) is an abstraction layer that takes  
generically-modeled data elements and/or features and prepares them in  
a more specific way for a targeted developer or application.

The generically modeled elements and/or features fit the description of a service in a 
Microservice architecture perfectly. The idea is to create an abstraction to connect 
those bits and pieces to implement new services specific to the application.

Let's make an example using the e-commerce application. Refer to the  
following figure:
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The preceding figure shows how the Store front-end application uses an 
Orchestration layer to build more complex and specific features by composing 
and orchestrating existing services. The described scenario takes as example 
a hypothetical completeCheckout() service that is invoked the moment a 
customer clicks the Pay button at the end of the checkout. The figure shows how 
completeCheckout() is a composite operation made of three different steps:

1. First, we complete the transaction by invoking checkoutService/pay.
2. Then, when the payment is successfully processed, we need to tell the cart 

service that the items were purchased and they can be removed from the cart. 
We do that by invoking cartService/delete.

3. Also, when the payment is complete, we need to update the availability 
of the products that were just purchased. This is done through 
productsService/update.

As we can see, we took three operations from three different services and we  
built a new API that coordinates the services to maintain the entire system in a 
consistent state.

Another common operation performed by the API Orchestration Layer is data 
aggregation, in other words, combining data from different services into a single 
response. Imagine if we wanted to list all the products contained in a cart. In this 
case, the Orchestration would need to retrieve the list of product IDs from the Cart 
service and then retrieve the complete information about the products from the 
Products service. The ways by which we can combine and coordinate services  
are really infinite, but the important pattern to remember is the role of the 
Orchestration layer, which acts as an abstraction between a number of services  
and a specific application.

The Orchestration layer is a great candidate for a further functional splitting. It is in 
fact very common to have it implemented as a dedicated, independent service, in 
which case it takes the name of API Orchestrator. This practice is perfectly in line 
with the Microservice philosophy. 
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The next figure shows this further improvement of our architecture:

Creating a standalone Orchestrator, as shown in the previous figure, can help 
in decoupling the client application (in our case, the Store front-end) from the 
complexity of the Microservice infrastructure. This reminds us about the API 
Proxy; however, there is a crucial difference; an Orchestrator performs a semantic 
integration of the various services—it's not just a naïve proxy—and it often exposes  
an API that is different from the one exposed by the underlying services.

Integration with a message broker
The Orchestrator pattern gave us a mechanism to integrate the various services in an 
explicit way. This has both advantages and disadvantages. It is easy to design, easy to 
debug, and easy to scale, but unfortunately, it has to have a complete knowledge of the 
underlying architecture and how each service works. If we were talking about objects 
instead of architectural nodes, the Orchestrator would be an anti-pattern called God 
Object, which defines an object that knows and does too much, which usually results 
in high coupling, low cohesion, but most importantly, high complexity.



Scalability and Architectural Patterns

[ 362 ]

The pattern we are now going to show tries to distribute across the services the 
responsibility of synchronizing the information of the entire system. However, the 
last thing we want to do is create direct relationships between services, which would 
result in high coupling and a further increase in the complexity of the system, due to 
the increasing number of interconnections between nodes. The goal is to have each 
service maintain its isolation; they should be able to work even without the rest of 
the services in the system or in combination with new services and nodes.

The solution is to use a message broker, a system capable of decoupling the  
sender from the receiver of a message, allowing to implement a centralized  
publish/subscribe pattern, in practice an observer pattern for distributed systems  
(we will talk more about this pattern later in the book). The following diagram  
shows an example of how this applies to the e-commerce application:

Products service

Products

Cart service

Cart

Checkout service

Checkout

Store front-end application

Store front-end

(1)checkoutService/pay

Message broker

(2){
event: ‘purchased’,
cartId: ‘---’,
products: [---]
}

(3){
event: ‘purchased’,
---
}

(4){
event: ‘purchased’,
---
}
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As we can see, the client of the Checkout service, which is the front-end application, 
does not need to carry out any explicit integration with the other services. All it has 
to do is invoke checkoutService/pay to complete the checkout and take the money 
from the customer; all the integration work happens in the background:

1. The Store front-end invokes the checkoutService/pay operation on the 
Checkout service.

2. When the operation completes, the Checkout service generates an event, 
attaching the details of the operation, that is, the cartId and the list of 
products that were just purchased. The event is published into the message 
broker. At this point, the Checkout service does not know who is going to 
receive the message.

3. The Cart service is subscribed to the broker, so it's going to receive the 
purchased event that was just published by the Checkout service. The  
Cart service reacts by removing from its database the cart identified with  
the ID contained in the message.

4. The Products service was subscribed to the message broker as well,  
so it receives the same purchased event. It then updates its database based 
on this new information, adjusting the availability of the products included 
in the message.

The whole process happens without any explicit intervention from external entities 
such as an Orchestrator. The responsibility for spreading the knowledge and keeping 
information in sync is distributed across the services themselves. There is no God 
service that has to know how to move the gears of the entire system, each service is 
in charge of its own part of the integration.

The message broker is a fundamental element to decouple the services and reduce 
the complexity of their interaction. It might also offer other interesting features such 
as persistent message queues and guaranteed ordering of the messages. We will talk 
more about this in the next chapter.
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Summary
In this chapter, we learned how to design Node.js architectures that scale both  
in capacity and complexity. We saw how scaling an application is not only about 
handling more traffic or reducing the response time, but it's also a practice to apply 
when we want better availability and tolerance to failures. We saw how these 
properties often are on the same wavelength and we understood that scaling early  
is not a bad practice, especially in Node.js, which allows us to do it easily and with 
few resources.

The scale cube taught us that applications can be scaled across three dimensions.  
We dived into the two most important of them, the X and Y axes, allowing us 
to discover two essential architectural patterns, namely, load balancing and 
microservices. We should know by now how to start multiple instances of the same 
Node.js application, how to distribute the traffic across them, and how to exploit 
this setup for other purposes such as fail tolerance and zero-downtime restarts. We 
also analyzed how to handle the problem of dynamic and autoscaled infrastructures, 
we saw that a Service Registry can come really useful in those situations. However, 
cloning and load balancing cover only one dimension of the scale cube, so we moved 
our analysis to another dimension, studying in more detail what it means to split an 
application by its constituent services, by building a Microservice architecture. We 
saw how microservices enable a complete revolution in how a project is developed 
and managed, providing a natural way to distribute the load of an application 
and split its complexity. However, we learned that this also means shifting the 
complexity from how to build a big monolithic application to how to integrate a set of 
services. This last aspect is where we focused the last part of our analysis, showing 
some of the architectural solutions to integrate a set of independent services.

In the next chapter, we will have the chance to analyze in more detail the messaging 
patterns we discussed in this chapter in addition to more advanced integration 
techniques, useful when implementing complex distributed architectures.



Messaging and  
Integration Patterns

If scalability is about splitting, systems integration is about rejoining. In the previous 
chapter, we learned how to distribute an application, fragmenting it across several 
machines. In order for it to work properly, all those pieces have to communicate in 
some way, and hence, they have to be integrated.

There are two main techniques to integrate a distributed application: one is to use 
a shared store as a central coordinator and keeper of all the information, the other 
one is to use messages to disseminate data, events, and commands across the nodes 
of the system. This last option is what really makes the difference when scaling 
distributed systems, and it's also what makes this topic so fascinating and  
sometimes complex.

Messages are used in every layer of a software system. We exchange messages to 
communicate on the Internet, we can use messages to send information to other 
processes using pipes, we can use messages within an application as an alternative to 
direct function invocation (Command pattern), and also device drivers use messages 
to communicate with the hardware. Any discrete and structured data that is used as 
a way to exchange information between components and systems can be seen as a 
message. However, when dealing with distributed architectures, the term messaging 
system is used to describe a specific class of solutions, patterns, and architectures 
that are meant to facilitate the exchange of information over the network.
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As we will see, there are several traits that characterize these types of systems. 
We might choose to use a broker versus a peer-to-peer structure, we might use a 
request/reply or one-way communication, or we might use queues to deliver our 
messages more reliably; the scope of the topic is really broad. The book, Enterprise 
Integration Patterns, by Gregor Hohpe and Bobby Woolf, gives you an idea about the 
vastness of the topic. It is considered the Bible of messaging and integration patterns 
that has more than 700 pages describing 65 different integration patterns. This 
chapter explores the most important of those well-known patterns, considering them 
from the perspective of Node.js and its ecosystem.

To sum up, in this chapter, we will learn about the following topics:

• The fundamentals of a messaging system
• The publish/subscribe pattern
• Pipelines and task distribution patterns
• Request/reply patterns

Fundamentals of a messaging system
When talking about messages and messaging systems, there are four fundamental 
elements to take in consideration, these are as follows:

• The direction of the communication, which can be one-way only or a 
request/reply exchange

• The purpose of the message, which also determines its content
• The timing of the message, which can be sent and received immediately or at a 

later time (asynchronously)
• The delivery of the message, which can happen directly or via a broker

In the sections that will follow, we are going to formalize these aspects in order to 
provide a base for our later discussions.
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One-way and request/reply patterns
The most fundamental aspect in a messaging system is the direction of the 
communication, which often also determines its semantics.

The most simple communication pattern is when the message is pushed,  
one-way from a source to a destination, this is a trivial situation, and it doesn't  
need many explanations.

Initiator

push

A typical example of one-way communication is the e-mail, or a web server that 
sends a message to a connected browser using WebSockets, or a system that 
distributes tasks to a set of workers.

The request/reply pattern is, however, far more popular than the one-way only 
communication, a typical example is the invocation of a web service. The following 
figure shows this simple and well-known scenario:

Initiator

(1) Request

(2) Reply

The request/reply pattern might seem a trivial pattern to implement; however, we 
will see that it becomes more complicated when the communication is asynchronous 
or involves multiple nodes. Take a look at the example in the following figure:

(1) Request (2) Request

(3) Reply
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With the setup shown in the preceding diagram, we can appreciate the complexity 
of some request/reply patterns. If we consider the direction of the communication 
between any two nodes, we can surely say that it is one-way. However, from a 
global point of view, the initiator sends a request and in turn receives an associated 
response, even if from a different node. In these situations, what really differentiates 
a request/reply pattern from a bare one-way loop is the relationship between the 
request and the reply, which is kept in the initiator. The reply is usually handled in 
the same context of the request.

Message types
A message is essentially a means to connect different software components and 
there are different reasons for doing so: it might be because we want to obtain some 
information held by another system or a component, to execute operations remotely, 
or to notify some peers that something has just happened. The message content will 
also vary depending on the reason of the communication. In general, we can identify 
three types of messages, depending on their purpose:

• Command Message
• Event Message
• Document Message

The Command Message is already familiar to us; it's essentially a serialized 
Command Object as we described it in Chapter 4, Design Patterns. The purpose of this 
type of message is to trigger the execution of an action or a task on the receiver. For 
this to be possible, our message has to contain the essential information to run the 
task, which is usually the name of the operation and a list of arguments to provide 
when it's executed. The Command Message can be used to implement Remote 
Procedure Call (RPC) systems, distributed computations, or more simply used to 
request some data. RESTful HTTP calls are simple examples of commands; each 
HTTP verb has a specific meaning and is associated with a precise operation: GET, to 
retrieve the resource; POST, to create a new one; PUT, to update it; and DELETE, to 
destroy it.

An Event Message is used to notify another component that something has occurred. 
It usually contains the type of the event and sometimes also some details such as 
the context, the subject or actor involved. In web development, we are using an 
Event message in the browser when using long-polling or WebSockets to receive 
notifications from the server that something has just happened, as for example, 
changes in the data or in general, the state of the system. The use of events is a very 
important integration mechanism in distributed applications, as it enables us to keep 
all the nodes of the system on the same page.
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The Document Message is primarily meant to transfer data between components and 
machines. The main characteristic that differentiates a Document from a Command 
(which might also contain data) is that the message does not contain any information 
that tells the receiver what to do with the data. On the other side, the main difference 
from an Event message is mainly the absence of an association with a particular 
occurrence, with something that happened. Often, the replies to the Command 
messages are Document messages, as they usually contain only the data that was 
requested or the result of an operation.

Asynchronous messaging and queues
As Node.js developers, we should already know the advantages of executing 
asynchronous operations. For messaging and communications, it's the same story.

We can compare a synchronous communication to a phone call: the two peers 
must be connected to the same channel at the same time and they should exchange 
messages in real time. Normally, if we want to call someone else, we either need 
another phone or close the ongoing communication in order to start a new one.

An asynchronous communication is similar to an SMS, it doesn't require the recipient 
to be connected to the network the moment we send it, we might receive a response 
immediately or after an unknown delay, or we might not receive a response at all. 
We might send multiple SMS to multiple recipients one after the other, and receive 
their responses (if any) in any order. In short, we have a better parallelism with the 
use of fewer resources.

Another important advantage of asynchronous communications is that the messages 
can be stored and then delivered as soon as possible or at a later time. This might be 
useful when the receiver is too busy to handle new messages or when we want to 
guarantee the delivery. In messaging systems, this is made possible using a message 
queue, a component that mediates the communication between the sender and the 
receiver, storing any message before it gets delivered to its destination, as shown in 
the following figure:

Message queueSender Receiver
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If for any reason the receiver crashes, disconnects from the network, or experiences a 
slowdown, the messages are accumulated in the queue and dispatched as soon as the 
receiver comes online and is fully working. The queue can be located in the sender, 
or split between the sender and receiver, or living in a dedicated external system 
acting as a middleware for the communication.

Peer-to-peer or broker-based messaging
Messages can be delivered directly to the receiver, in a peer-to-peer fashion or 
through a centralized intermediary system called Message Broker. The main role of 
the broker is to decouple the receiver of the message from the sender. The following 
figure shows the architectural difference between the two approaches:

Peer-to-peer Message Broker

Message

Broker

In a peer-to-peer architecture, every node is directly responsible for the delivery of 
the message to the receiver. This implies that the nodes have to know the address 
and port of the receiver and they have to agree on a protocol and message format. 
The broker eliminates these complexities from the equation: each node can be totally 
independent and can communicate with an undefined number of peers without 
directly knowing their details. A broker can also act as a bridge between the different 
communication protocols, for example, the popular RabbitMQ broker (http://www.
rabbitmq.com) supports Advanced Message Queuing Protocol (AMQP), Message 
Queue Telemetry Transport (MQTT), and Simple/Streaming Text Orientated 
Messaging Protocol (STOMP), enabling multiple applications supporting different 
messaging protocols to interact.
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MQTT (http://mqtt.org) is a lightweight messaging protocol, 
specifically designed for machine-to-machine communications 
(Internet of Things). AMQP (http://www.amqp.org) is a more 
complex protocol, which is designed to be an open source alternative 
to proprietary messaging middlewares. STOMP (http://stomp.
github.io) is a lightweight text-based protocol, which comes from  
the HTTP school of design. All three are Application layer protocols,  
and based on TCP/IP.

Besides the decoupling and the interoperability, a broker can offer more advanced 
features such as persistent queues, routing, message transformations, and monitoring, 
without mentioning the broad range of messaging patterns that many brokers 
support out of the box. Of course, nothing can stop us from implementing all these 
features using a peer-to-peer architecture, but unfortunately there is much more effort 
involved. Nonetheless, there might be different reasons to avoid a broker:

• Removing a single point of failure
• A broker has to be scaled, while in a peer-to-peer architecture we only need 

to scale the single nodes
• Exchanging messages without intermediaries can greatly reduce the latency 

of the transmission

If we want to implement a peer-to-peer messaging system, we can also have much 
more flexibility and power, because we are not bound to any particular technology, 
protocol, or architecture. The popularity of ØMQ (http://zeromq.org), which is 
a low-level library for building messaging systems, is a great demonstration of the 
flexibility that we can have by building custom peer-to-peer or hybrid architectures.
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Publish/subscribe pattern
Publish/subscribe (often abbreviated Pub/Sub) is probably the best known  
one-way messaging pattern. We should already be familiar with it, as it's nothing 
more than a distributed observer pattern. As in the case of observer, we have a set of 
subscribers registering their interest in receiving a specific category of messages. On 
the other side, the publisher produces messages that are distributed across all  
the relevant subscribers. The following figure shows the two main variations of the 
pub/sub pattern, the first peer-to-peer, the second using a broker to mediate  
the communication:

Subscriber

Subscriber

Subscriber

Publisher

Subscriber

Subscriber

Subscriber

BrokerPublisher

Peer-to-peer Pub/Sub Pub/Sub with a broker

What makes pub/sub so special is the fact that the publisher doesn't know who the 
recipients of the messages are in advance. As we said, it's the subscriber which has 
to register its interest to receive a particular message, allowing the publisher to work 
with an unknown number of receivers. In other words, the two sides of the pub/sub 
pattern are loosely coupled, which makes this an ideal pattern to integrate the nodes of 
an evolving distributed system.

The presence of a broker further improves the decoupling between the nodes of the 
system because the subscribers interact only with the broker, not knowing which 
node is the publisher of a message. As we will see later, a broker can also provide 
a message queuing system, allowing a reliable delivery even in the presence of 
connectivity problems between the nodes.

Now, let's work on an example to demonstrate this pattern.
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Building a minimalist real-time chat 
application
To show a real example of how the pub/sub pattern can help us integrate a 
distributed architecture, we are now going to build a very basic real-time chat 
application using pure WebSockets. Then, we will try to scale it by running  
multiple instances and using a messaging system to put them in communication.

Implementing the server side
Now, let's take one step at a time. Let's first build our chat application; to do this, 
we will rely on the ws package (https://npmjs.org/package/ws), which is a 
pure WebSocket implementation for Node.js. As we know, implementing real-time 
applications in Node.js is pretty simple, and our code will confirm this assumption. 
Let's then create the server side of our chat; its content is as follows (in the app.js file):

var WebSocketServer = require('ws').Server;

//static file server
var server = require('http').createServer(       //[1]
  require('ecstatic')({root: __dirname + '/www'})
);

var wss = new WebSocketServer({server: server});     //[2]
wss.on('connection', function(ws) {
  console.log('Client connected');
  ws.on('message', function(msg) {         //[3]
    console.log('Message: ' + msg);
    broadcast(msg);
  });
});

function broadcast(msg) {           //[4]
  wss.clients.forEach(function(client) {
    client.send(msg);
  });
}

server.listen(process.argv[2] || 8080);
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That's it! That's all we need to implement our chat application on the server. This is 
the way it works:

1. We first create an HTTP server and attach a middleware called ecstatic 
(https://npmjs.org/package/ecstatic) to serve static files. This is needed 
to serve the client-side resources of our application (JavaScript and CSS).

2. We create a new instance of the WebSocket server and we attach it to our 
existing HTTP server. We then start listening for incoming WebSocket 
connections, by attaching an event listener for the connection event.

3. Each time a new client connects to our server, we start listening for  
incoming messages. When a new message arrives, we broadcast it to  
all the connected clients.

4. The broadcast() function is a simple iteration over all the connected clients, 
where the send() function is invoked on each one of them.

This is the magic of Node.js! Of course, the server that we implemented is very 
minimal and basic, but as we will see, it does its job.

Implementing the client side
Next, it's time to implement the client side of our chat; this is also a very small 
and simple fragment of code, essentially a minimal HTML page with some basic 
JavaScript code. Let's create this page in a file named www/index.html as follows:

<html>
  <head>
    <script>
      var ws = new WebSocket('ws://' + window.document. 
        location.host);
      ws.onmessage = function(message) {
        var msgDiv = document.createElement('div');
        msgDiv.innerHTML = message.data;
        document.getElementById('messages').appendChild(msgDiv);
      };
      
      function sendMessage() {
        var message = document.getElementById('msgBox').value;



Chapter 8

[ 375 ]

        ws.send(message);
      }
    </script>
  </head>
  <body>
    Messages:
    <div id='messages'></div>
    <input type='text' placeholder='Send a message' id='msgBox'>
    <input type='button' onclick='sendMessage()' value='Send'>
  </body>
</html>

The HTML page we created doesn't really need many comments; it is just a piece of 
straightforward web development. We use the native WebSocket object to initialize 
a connection to our Node.js server, and then start listening for messages from the 
server displaying them in new div elements as they arrive. For sending messages, 
instead, we use a simple textbox and a button.

When stopping or restarting the chat server, the WebSocket connection 
is closed and it will not reconnect automatically (as it would using 
high-level libraries such as Socket.io). This means that it is 
necessary to refresh the browser after a server restart, to re-establish 
the connection (or implement a reconnection mechanism, which we 
will not cover here).

Running and scaling the chat application
We can try running our application immediately, just launch the server with a 
command such as the following:

node app 8080

To run this demo, you will need a recent browser, which supports 
native WebSockets. Here is a list of compatible browsers: http://
caniuse.com/#feat=websockets
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Pointing a browser to http://localhost:8080 should present an interface similar 
to the following:

What we want to show now, is what happens when we try to scale our application  
by launching multiple instances. Let's try to do this, let's start another server on 
another port:

node app 8081

The desired outcome of scaling our chat application should be that the two clients 
connecting to the two different servers should be able to exchange chat messages. 
Unfortunately, this is not what happens with our current implementation, we can  
try that by opening another browser tab to http://localhost:8081.

When sending a chat message on one instance, we broadcast a message locally, 
distributing it to only the clients connected to that particular server. In practice,  
the two servers don't talk to each other. We need to integrate them.

In a real application, we will use a load balancer to distribute the 
load across our instances, but for this demo we will not use one. This 
allows us to access each server in a deterministic way to verify how it 
interacts with the other instances.
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Using Redis as a message broker
We start our analysis of the most important pub/sub implementations by 
introducing Redis (http://redis.io), which is a very fast and flexible key-value 
store, also defined by many as a data structure server. Redis is more a database than 
a message broker, however among its many features there is a pair of commands 
specifically designed to implement a centralized publish/subscribe pattern.  
Of course, this implementation is very simple and basic, compared to more  
advanced message-oriented middleware, but this is one of the main reasons for its 
popularity. Often, in fact, Redis is already available in an existing infrastructure, for 
example, as a caching server or session store; its speed and flexibility make it a very 
popular choice for sharing data in a distributed system. So, as soon as the need for a 
publish/subscribe broker arises in a project, the most simple and immediate choice 
is to reuse Redis itself, avoiding to install and maintain a dedicated message broker. 
Let's work on an example to demonstrate its simplicity and power.

This example requires a working installation of Redis, 
listening on its default port. You can find more details  
at http://redis.io/topics/quickstart.

Our plan of action is to integrate our chat servers using Redis as a message broker. 
Each instance publishes any message received from its clients to the broker, and at 
the same time it subscribes for any message coming from other server instances. As 
we can see, each server in our architecture is both a subscriber and a publisher. The 
following figure shows a representation of the architecture that we want to obtain:

Redis

Chat Server

Chat Server

Chat Server

1

4

4
3

2

4
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By looking at the preceding figure, we can sum up the journey of a message  
as follows:

1. The message is typed into the textbox of the web page and sent to the 
connected instance of our chat server.

2. The message is then published to the broker.
3. The broker dispatches the message to all the subscribers, which in our 

architecture are all the instances of the chat server.
4. In each instance, the message is distributed to all the connected clients.

Redis allows publishing and subscribing to channels, which are 
identified by a string, for example, chat.nodejs. It also allows us  
to use glob-style patterns to define subscriptions that can potentially 
match multiple channels, for example, chat.*.

Let's see in practice how this works. Let's modify the server code by adding the 
publish/subscribe logic:

var WebSocketServer = require('ws').Server;
var redis = require("redis");           //[1]
var redisSub = redis.createClient();
var redisPub = redis.createClient();

//static file server
var server = require('http').createServer(
  require('ecstatic')({root: __dirname + '/www'})
);

var wss = new WebSocketServer({server: server});
wss.on('connection', function(ws) {
  console.log('Client connected');
  ws.on('message', function(msg) {
    console.log('Message: ' + msg);
    redisPub.publish('chat_messages', msg);     //[2]
  });
});

redisSub.subscribe('chat_messages');        //[3]
redisSub.on('message', function(channel, msg) {
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  wss.clients.forEach(function(client) {
    client.send(msg);
  });
});

server.listen(process.argv[2] || 8080);

The changes that we made to our original chat server are highlighted in the 
preceding code; this is how it works:

1. To connect our Node.js application to the Redis server, we use the redis 
package (https://npmjs.org/package/redis), which is a complete client 
that supports all the available Redis commands. Next, we instantiate two 
different connections, one used to subscribe to a channel, the other to publish 
messages. This is necessary in Redis, because once a connection is put in 
subscriber mode only commands related to the subscription can be used.  
This means that we need a second connection for publishing messages.

2. When a new message is received from a connected client, we publish a 
message in the chat_messages channel. We don't directly broadcast the 
message to our clients because our server is subscribed to the same channel 
(as we will see in a moment), so it will come back to us through Redis.  
For the scope of this example, this is a simple and effective mechanism.

3. As we said, our server also has to subscribe to the chat_messages channel, 
so we register a listener to receive all the messages published into that 
channel (either by the current server or any other chat server). When a 
message is received, we simply broadcast it to all the clients connected  
to the current WebSocket server.

These few changes are enough to integrate all the chat servers that we might decide 
to start. To prove this, we can try starting multiple instances of our application:

node app 8080

node app 8081

node app 8082

We can then connect multiple browsers' tabs to each instance and verify that the 
messages we send to one server are successfully received by all the other clients 
connected to different servers. Congratulations! We just integrated a distributed  
real-time application using the publish/subscribe pattern.
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Peer-to-peer publish/subscribe with ØMQ
The presence of a broker can considerably simplify the architecture of a messaging 
system; however, there are circumstances where it is not an optimal solution, as  
for example, when latency is critical, when scaling complex distributed systems,  
or when the presence of a single point of failure is not an option.

Introducing ØMQ
If our project falls in the category of possible candidates for a peer-to-peer message 
exchange, the best solution to evaluate is certainly ØMQ (http://zeromq.org, also 
known as zmq, ZeroMQ, or 0MQ); we already mentioned this library earlier in the 
book. ØMQ is a networking library that provides the basic tools to build a large 
variety of messaging patterns. It is low level, extremely fast, and has a minimalistic 
API but it offers all the basic building blocks of a messaging system such as atomic 
messages, load balancing, queues, and many more. It supports many types of 
transports such as in-process channels (inproc://), inter-process communication 
(ipc://), multicast using the PGM protocol (pgm:// or epgm://), and of course,  
the classic TCP (tcp://).

Among the features of ØMQ, we can also find tools to implement a publish/subscribe 
pattern, exactly what we need for our example. So, what we are going to do now is, 
remove the broker (Redis) from the architecture of our chat application and let the 
various nodes communicate in a peer-to-peer fashion leveraging the publish/subscribe 
sockets of ØMQ.

A ØMQ socket can be considered a network socket on steroids, 
which provides additional abstractions to help implement the 
most common messaging patterns. For example, we can find 
sockets designed to implement publish/subscribe, request/reply, 
or one-way communications.

Designing a peer-to-peer architecture for the  
chat server
When we remove the broker from our architecture, each instance of the chat 
application has to directly connect to the other available instances in order to receive 
the messages they publish. In ØMQ, we have two types of sockets specifically 
designed for this purpose: PUB and SUB. The typical pattern is to bind a PUB socket to 
a port that will start listening for subscriptions coming from the other SUB sockets.
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A subscription can have a filter that specifies what messages will be delivered to the 
SUB sockets. The filter is a simple binary buffer (so it can also be a string), which will 
be matched against the beginning of the message (which is also a binary buffer). 
When a message is sent through the PUB socket it is broadcast to all the connected 
SUB sockets, but only after their subscription filters are applied. The filters will be 
applied to the publisher side only if a connected protocol is used, as for example, TCP.

The following figure shows us the pattern applied to our distributed chat server 
architecture (with only two instances, for simplicity):

Message

Subscription

Chat Server Chat Server

PUB SUB PUB SUB

1 3

2

The preceding figure shows us the flow of information when we have two instances 
of the chat application, but the same concept can be applied for N instances. The 
architecture tells us that each node must be aware of the other nodes in the system, 
to be able to establish all the necessary connections. It also shows us how the 
subscriptions go from a SUB socket to a PUB socket, while messages travel in the 
opposite direction.

To run the example in this section, you need to install the native 
ØMQ binaries on your system. You can find more information at 
http://zeromq.org/intro:get-the-software. Note: this 
example was tested against the 4.0 branch of ØMQ.
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Using the ØMQ PUB/SUB sockets
Let's see how this works in practice by modifying our chat server (we will show you 
only the changed parts):

[...]
var args = require('minimist')(process.argv.slice(2));   //[1]
var zmq = require('zmq');

var pubSocket = zmq.socket('pub');         //[2]
pubSocket.bind('tcp://127.0.0.1:' + args['pub']);

var subSocket = zmq.socket('sub');         //[3]
var subPorts = [].concat(args['sub']);
subPorts.forEach(function(p) {
  console.log('Subscribing to ' + p);
  subSocket.connect('tcp://127.0.0.1:' + p);
});
subSocket.subscribe('chat');

[...]
  ws.on('message', function(msg) {         //[4]
    console.log('Message: ' + msg);
    broadcast(msg);
    pubSocket.send('chat ' + msg);
  });
[...]

subSocket.on('message', function(msg) {       //[5]
  console.log('From other server: ' + msg);
  broadcast(msg.toString().split(' ')[1]);
});

[...]
server.listen(args['http'] || 8080);

The preceding code clearly shows that the logic of our application became slightly 
more complicated, however it's still straightforward considering that we are 
implementing a distributed and peer-to-peer publish/subscribe pattern. Let's see 
how all the pieces come together:

1. We require the zmq package (https://npmjs.org/package/zmq), which  
is essentially the Node.js binding for the ØMQ native library. We also  
require minimist (https://npmjs.org/package/minimist), which is a 
command-line argument parser; we need this to be able to easily accept 
named arguments.

2. We immediately create our PUB socket and bind it to the port provided in the 
--pub command-line argument.
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3. We create the SUB socket and we connect it to the PUB sockets of the other 
instances of our application. The ports of the target PUB sockets are provided 
in the --sub command-line arguments (there might be more than one). 
We then create the actual subscription, by providing chat as a filter, which 
means that we will receive only the messages beginning with chat.

4. When a new message is received by our WebSocket, we broadcast it to all the 
connected clients but we also publish it through our PUB socket. We use chat 
as a prefix followed by a space, so the message will be published to all the 
subscriptions using chat as a filter.

5. We start listening for messages that arrive at our SUB socket, we do some 
simple parsing of the message to remove the chat prefix, and then we 
broadcast it to all the clients connected to the current WebSocket server.

We have now built a simple distributed system, integrated using a peer-to-peer 
publish/subscribe pattern!

Let's fire it up, let's start three instances of our application by making sure to connect 
their PUB and SUB sockets properly:

node app --http 8080 --pub 5000 --sub 5001 --sub 5002

node app --http 8081 --pub 5001 --sub 5000 --sub 5002

node app --http 8082 --pub 5002 --sub 5000 --sub 5001

The first command will start an instance with an HTTP server listening on the port 
8080, while binding a PUB socket on port 5000 and connecting the SUB socket to 
the ports 5001 and 5002, which is where the PUB sockets of the other two instances 
should be listening at. The other two commands work in a similar way.

Now, the first thing we can see, is that ØMQ will not complain if a port 
corresponding to a PUB socket is not available. For example, at the time of the first 
command, there is nobody listening on the ports 5001 and 5002, however ØMQ 
is not throwing any error. This is because ØMQ has a reconnection mechanism 
that will automatically try to establish a connection to these ports at regular time 
intervals. This feature also comes particularly handy if any node goes down or 
is restarted. The same forgiving logic applies to the PUB socket: if there are no 
subscriptions, it will simply drop all the messages, but it will continue working.

At this point, we can try to navigate with a browser to any of the server instances that 
we started and verify that the messages are properly broadcast to all the chat servers.
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In the previous example, we assumed a static architecture, where the 
number of instances and their addresses are known in advance. We can 
introduce a Service Registry, as explained in the previous chapter, to 
connect our instances dynamically. It is also important to point out that 
ØMQ can be used to implement a broker using the same primitives we 
demonstrated here.

Durable subscribers
An important abstraction in a messaging system is the message queue (MQ).  
With a message queue, the sender and the receiver(s) of the message don't necessarily 
need to be active and connected at the same time to establish a communication, 
because the queuing system takes care of storing the messages until the destination  
is able to receive them. This behavior is opposed to the set and forget paradigm,  
where a subscriber can receive messages only during the time it is connected to  
the messaging system.

A subscriber that is able to always reliably receive all the messages, even those sent 
when it's not listening for them, is called a durable subscriber.

The MQTT protocol defines a level of Quality of Service (QoS) for the 
messages exchanged between the sender and receiver. These levels are 
also very useful to describe the reliability of any other messaging system 
(not only MQTT). These are as follows:

• QoS0, at most once: Also known as set and forget, the message is 
not persisted, and the delivery is not acknowledged. This means 
that the message can be lost in cases of crashes or disconnections 
of the receiver.

• QoS1, at least once: The message is guaranteed to be received at 
least once, but duplicates might occur if, for example, the receiver 
crashes before notifying the sender. This implies that the message 
has to be persisted in the eventuality it has to be sent again.

• QoS2, exactly once: This is the most reliable QoS, it guarantees 
that the message is received once and only once. This comes at 
the expense of a slower and more data intensive mechanism for 
acknowledging the delivery of messages.

Find out more in the MQTT specifications at http://public.dhe.
ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.
html#qos-flows.
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As we said, to allow durable subscribers, our system has to use a message queue 
to accumulate the messages while the subscriber is disconnected. The queue can be 
stored in memory or persisted on disk to allow the recovery of its messages even if 
the broker restarts or crashes. The following figure shows a graphical representation 
of a durable subscriber backed by a message queue:

Subscriber comes back
online, the queue

is drained

Normal operations Publisher Subsciber

Subscriber not
available, messages

accumulate in the queue
Publisher Subsciber

Publisher Subsciber

The durable subscriber is probably the most important pattern enabled by a message 
queue, but it's certainly not the only one, as we will see later in the chapter.

The Redis publish/subscribe commands implement a set and forget 
mechanism (QoS0). However, Redis can still be used to implement a 
durable subscriber using a combination of other commands (without 
relying directly on its publish/subscribe implementation). You can find a 
description of this technique in the following blog posts:

• http://davidmarquis.wordpress.com/2013/01/03/
reliable-delivery-message-queues-with-redis

• http://www.ericjperry.com/redis-message-queue

ØMQ defines some patterns to support durable subscribers as well,  
but it's mostly up to us to implement this mechanism.
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Introducing AMQP
A message queue is normally used in all those situations where no message can 
be lost, which includes mission-critical applications such as banking or financial 
systems. This usually means that the typical enterprise-grade message queue 
is a very complex piece of software, which utilizes bulletproof protocols and 
persistent storage to guarantee the delivery of the message even in the presence 
of malfunctions. For this reason, enterprise messaging middleware have been for 
many years a prerogative of giants such as Oracle and IBM, each one of them usually 
implementing its own proprietary protocol resulting in a strong customer lock-in. 
Fortunately, it's been a few years now that messaging systems have entered the 
mainstream, thanks to the growth of open protocols such as AMQP, STOMP, and 
MQTT. To understand how a message queuing system works, we are now going to 
give an overview of AMQP; this is fundamental to understand how to use a typical 
API based on this protocol.

AMQP (Advanced Message Queuing Protocol) is an open standard protocol 
supported by many message queuing systems. Besides defining a common 
communication protocol, it also provides a model for describing routing, filtering, 
queuing, reliability, and security. In AMQP, there are three essential components:

• Queue: The data structure responsible for storing the messages consumed by 
the clients. The messages from a queue are pushed (or pulled) to one or more 
consumers—essentially our applications. If multiple consumers are attached 
to the same queue, the messages are load balanced across them. A queue can 
be one of the following:

 ° Durable: This means that the queue is automatically recreated if the 
broker restarts. A durable queue does not imply that its contents 
are preserved as well; in fact, only messages that are marked as 
persistent are saved to the disk and restored in case of a restart.

 ° Exclusive: This means that the queue is bound to only one  
particular subscriber connection. When the connection is closed,  
the queue is destroyed.

 ° Auto-delete: This will cause the queue to be deleted when the last 
subscriber disconnects.
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• Exchange: This is where a message is published. An Exchange routes the 
messages to one or more queues depending on the algorithm it implements:

 ° Direct exchange: It routes the messages by matching an entire 
routing key (for example, chat.msg).

 ° Topic exchange: It distributes the messages using a glob-like pattern 
matched against the routing key (for example, chat.# matches all the 
routing keys starting with chat).

 ° Fanout exchange: It broadcasts a message to all the connected 
queues, ignoring any routing key provided.

• Binding: This is the link between exchanges and queues. It also defines  
the routing key or the pattern used to filter the messages that arrive from  
the exchange.

These components are managed by a broker, which exposes an API for creating and 
manipulating them. When connecting to a broker, a client creates a channel—an 
abstraction of a connection—which is responsible for maintaining the state of the 
communication with the broker.

In AMQP, the durable subscriber pattern can be obtained by 
creating any type of queue that is not exclusive or auto-delete.

The following figure shows us all these components put together:
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The AMQP model is way more complex than the messaging systems we have used 
so far (Redis and ØMQ); however, it offers a set of features and a reliability that 
would be very hard to obtain using only primitive publish/subscribe mechanisms.

You can find a detailed introduction to the AMQP model on 
the RabbitMQ website: https://www.rabbitmq.com/
tutorials/amqp-concepts.html.

Durable subscribers with AMQP and RabbitMQ
Let's now practice what we learned about durable subscribers and AMQP and work 
on a small example. A typical scenario where it's important to not lose any message 
is when we want to keep the different services of a Microservice architecture in sync; 
we already described this integration pattern in the previous chapter. If we want to 
use a broker to keep all our services on the same page, it's important that we don't lose 
any information, otherwise we might end up in an inconsistent state.

Designing a history service for the chat application
Let's now extend our small chat application using a Microservice approach. Let's add 
a history service that persists our chat messages inside a database, so that when a 
client connects, we can query the service and retrieve the entire chat history. We are 
going to integrate the history service with the chat server using the RabbitMQ broker 
(https://www.rabbitmq.com) and AMQP.

The next figure shows our planned architecture:

'chat_srv_8080'
RabbitMQ broker

Fanout Exchange
(‘chat’)

'chat_srv_8081'

'chat_history'

Chat server
(on

port 8080)

Chat server
(on

port 8081)

History
Service

Publish
messages

from clients
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As described in the preceding architecture, we are going to use a single fanout 
exchange; we don't need any particular routing, so our scenario does not require any 
exchange more complex than that. Next, we will create one queue for each instance 
of the chat server; these queues are exclusive, we are not interested in receiving any 
missed message when a chat server is offline, that's the job of our history service, 
which eventually can also implement more complicated queries against the stored 
messages. In practice, this means that our chat servers are not durable subscribers, 
and their queues will be destroyed as soon as the connection is closed.

On the contrary, the history service cannot afford to lose any message; otherwise, 
it would not fulfill its very purpose. The queue we are going to create for it has 
to be durable, so that any message that is published while the history service is 
disconnected will be kept in the queue and delivered when it comes back online.

We are going to use the familiar LevelUP as storage engine for the history service, 
while we will use the amqplib package (https://npmjs.org/package/amqplib)  
to connect to RabbitMQ using the AMQP protocol.

The following example requires a working RabbitMQ server, listening 
on its default port. For more information, please refer to its official 
installation guide at http://www.rabbitmq.com/download.html.

Implementing a reliable history service using AMQP
Let's now implement our history service! We are going to create a standalone 
application (a typical Microservice), which is implemented in the module 
historySvc.js. The module is made up of two parts: an HTTP server to  
expose the chat history to clients, and an AMQP consumer which is responsible  
for capturing the chat messages and storing them in a local database.

Let's see how this looks like in the code that follows:

var level = require('level');
var timestamp = require('monotonic-timestamp');
var JSONStream = require('JSONStream');
var db = level('./msgHistory');
var amqp = require('amqplib');

//HTTP server for querying the chat history
require('http').createServer(function(req, res) {
  res.writeHead(200);
  db.createValueStream()
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    .pipe(JSONStream.stringify())
    .pipe(res);
}).listen(8090);

var channel, queue;
amqp
  .connect('amqp://localhost')           //[1]
  .then(function(conn) {
    return conn.createChannel();
  })
  .then(function(ch) {
    channel = ch;
    return channel.assertExchange('chat', 'fanout');   //[2]
  })
  .then(function() {
    return channel.assertQueue('chat_history');     //[3]
  })
  .then(function(q) {
    queue = q.queue;
    return channel.bindQueue(queue, 'chat');     //[4]
  })
  .then(function() {
    return channel.consume(queue, function(msg) {     //[5]
      var content = msg.content.toString();
      console.log('Saving message: ' + content);
      db.put(timestamp(), content, function(err) {
        if(!err) channel.ack(msg);
      });
    });
  })
  .catch(function(err) {
    console.log(err);
  });

We can immediately see that AMQP requires a little bit of setup, which is necessary 
to create and connect all the components of the model. It's also interesting to observe 
that amqplib supports Promises by default, so we leveraged them heavily to 
streamline the asynchronous steps of the application. Let's see in detail how it works:

1. We first establish a connection with the AMQP broker, which is RabbitMQ in 
our case. Then, we create a channel—which is similar to a session—that will 
maintain the state of our communications.
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2. Next, we set up our exchange, named chat. As we already mentioned, it is a 
fanout exchange. The assertExchange() command will make sure that the 
exchange exists on the broker, otherwise it will create it.

3. We also create our queue, called chat_history. By default, the queue is 
durable—not exclusive and not auto-delete—so we don't need to pass 
any extra options to support durable subscribers.

4. Next, we bind the queue to the exchange we previously created. Here, we 
don't need any other particular option, for example, a routing key or pattern, 
as the exchange is of the type, fanout, so it doesn't perform any filtering.

5. Finally, we can begin to listen for messages coming from the queue we just 
created. We save every message that we receive in a LevelDB database using 
a monotonic timestamp as key (https://npmjs.org/package/monotonic-
timestamp), to keep the messages sorted by date. It's also interesting to see 
that we are acknowledging every message using channel.ack(msg), and 
only after the message is successfully saved into the database. If the ACK 
(acknowledgment) is not received by the broker, the message is kept in the 
queue for being processed again. This is another great feature of AMQP 
for bringing the reliability of our service to a whole new level. If we are not 
interested in sending explicit acknowledgments, we can pass the option 
{noAck: true} to the channel.consume() API.

Integrating the chat application with AMQP
To integrate the chat servers using AMQP, we have to use a setup very similar to 
the one we implemented in the history service, so we are not going to repeat it here 
in full. However, it's still interesting to see how the queue is created and how a new 
message is published into the exchange. The relevant parts of the new app.js file,  
are the following:

[...]
  .then(function() {
    return channel.assertQueue('chat_srv_'+httpPort, {exclusive: 
true});
  })
[...]
  ws.on('message', function(msg) {
    console.log('Message: ' + msg);
    channel.publish('chat', '', new Buffer(msg));
  });
[...]
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As we mentioned, our chat server does not need to be a durable subscriber, a set 
and forget paradigm is enough. So when we create our queue, we pass the option 
{exclusive: true} indicating that the queue is scoped to the current connection 
and therefore it will be destroyed as soon as the chat server shuts down.

Publishing a new message is also very easy, we simply have to specify the target 
exchange (chat) and a routing key, which in our case is empty ('') because we are 
using a fanout exchange.

We can now run our improved chat architecture, to do that let's start two chat 
servers and the history service:

node app 8080

node app 8081

node historySvc

It is now interesting to see how our system, and in particular the history service, 
behaves in case of downtime. If we stop the history server and continue to send 
messages using the web UI of the chat application, we will see that when the history 
server is restarted, it will immediately receive all the messages it missed. This is a 
perfect demonstration of how the durable subscriber pattern works!

It is nice to see how the Microservice approach allows our system to 
survive even without one of its components—the history service. There 
would be a temporary reduction of functionality (no chat history 
available) but people would still be able to exchange chat messages in 
real time. Awesome!

Pipelines and task distribution patterns
In Chapter 6, Recipes, we learned how to delegate costly tasks to multiple local 
processes, but even though this was an effective approach, it cannot be scaled 
beyond the boundaries of a single machine. In this section, we are going to see 
how it's possible to use a similar pattern in a distributed architecture, using remote 
workers, located anywhere in a network.

The idea is to have a messaging pattern that allows us to spread tasks across multiple 
machines. These tasks might be individual chunks of work or pieces of a bigger task 
split using a divide and conquer technique.
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If we look at the logical architecture represented in the following figure, we should 
be able to recognize a familiar pattern:

Producer

Consumer

Consumer

Consumer

task1

task2

task3

As we can see from the preceding diagram, the publish/subscribe pattern is not 
suitable for this type of application, as we absolutely don't want a task to be received 
by multiple workers. What we need instead, is a message distribution pattern similar 
to a load balancer, that dispatches each message to a different consumer (also called 
worker, in this case). In the messaging systems terminology, this pattern is known as 
competing consumers, fan-out distribution, or ventilator.

One important difference with the HTTP load balancers we have seen in the previous 
chapter, is that, here, the consumers have a more active role. In fact, as we will see 
later, most of the time it's not the producer that connects to the consumers, but they 
are the consumers themselves that connect to the task producer or the task queue in 
order to receive new jobs. This is a great advantage in a scalable system as it allows 
us to seamlessly increase the number of workers without modifying the producer or 
adopting a service registry.
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Also, in a generic messaging system, we don't necessarily have a request/reply 
communication between the producer and workers. Instead, most of the time, the 
preferred approach is to use a one-way asynchronous communication, which enables 
a better parallelism and scalability. In such an architecture, messages can potentially 
travel always in one direction, creating pipelines, as shown in the following figure:

Distribution(fan-out) Aggregation (fan-in)

Pipelines allow us to build very complex processing architectures without the 
burden of a synchronous request/reply communication, often resulting in lower 
latency and higher throughput. In the preceding figure, we can see how messages 
can be distributed across a set of workers (fan-out), forwarded to other processing 
units, and then aggregated into a single node (fan-in), usually called sink.

In this section, we are going to focus on the building blocks of these kinds of 
architectures, by analyzing the two most important variations: peer-to-peer  
and broker-based.

The combination of a pipeline with a task distribution 
pattern is also called parallel pipeline.

The ØMQ fan-out/fan-in pattern
We have already discovered some of the capabilities of ØMQ for building peer-to-
peer distributed architectures. In the previous section, we used PUB and SUB sockets 
to disseminate a single message to multiple consumers; now we are going to see how 
it's possible to build parallel pipelines using another pair of sockets called PUSH  
and PULL.
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PUSH/PULL sockets
Intuitively, we can say that the PUSH sockets are made for sending messages,  
while the PULL sockets are meant for receiving. It might seem a trivial combination; 
however, they have some nice characteristics that make them perfect for building 
one-way communication systems:

• Both can work in connect mode or bind mode. In other words, we can build a 
PUSH socket and bind it to a local port listening for the incoming connections 
from a PULL socket, or vice versa, a PULL socket might listen for connections 
from a PUSH socket. The messages always travel in the same direction, from 
PUSH to PULL, it's only the initiator of the connection that can be different. 
The bind mode is the best solution for durable nodes, as for example, the task 
producer and the sink, while the connect mode is perfect for transient nodes, 
as for example, the task workers. This allows the number of transient nodes 
to vary arbitrarily without affecting the more durable nodes.

• If there are multiple PULL sockets connected to a single PUSH socket, the 
messages are evenly distributed across all the PULL sockets, in practice, they 
are load balanced (peer-to-peer load balancing!). On the other hand, a PULL 
socket that receives messages from multiple PUSH sockets will process the 
messages using a fair queuing system, which means that they are consumed 
evenly from all the sources—a round-robin applied to inbound messages.

• The messages sent over a PUSH socket that doesn't have any connected PULL 
socket, do not get lost; they are instead queued up on the producer until  
a node comes online and starts pulling the messages.

We are now starting to understand how ØMQ is different from traditional Web 
services and why it's a perfect tool for building any kind of messaging system.

Building a distributed hashsum cracker with ØMQ
Now, it's time to build a sample application to see in action the properties of the 
PUSH/PULL sockets we just described.

A simple and fascinating application to work with would be a hashsum cracker, 
a system that uses a brute force technique to try to match a given hashsum 
(MD5, SHA1, and so on) to every possible variation of characters of a given 
alphabet. This is an embarrassingly parallel workload (http://en.wikipedia.
org/wiki/Embarrassingly_parallel), which is perfect for building an example 
demonstrating the power of parallel pipelines.
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For our application, we want to implement a typical parallel pipeline with a node 
to create and distribute tasks across multiple workers, plus a node to collect all 
the results. The system we just described can be implemented in ØMQ using the 
following architecture:

Variations
Generatior
(ventilator)

PUSH
Result

Collector
(sink)

PUSH

PULL PUSHWorker

PULL PUSHWorker

Message

Connect

In our architecture, we have a ventilator generating all the possible variations of 
characters in a given alphabet and distributing them to a set of workers, which in 
turn calculate the hashsum of every given variation and try to match it against  
the hashsum given as the input. If a match is found, the result is sent to a results 
collector node (sink).

The durable nodes of our architecture are the ventilator and the sink, while the 
transient nodes are the workers. This means that each worker connects its PULL socket 
to the ventilator and its PUSH socket to the sink, this way we can start and stop how 
many workers we want without changing any parameter in the ventilator or the sink.

Implementing the ventilator
Now, let's start to implement our system by creating a new module for the ventilator, 
in a file named ventilator.js:

var zmq = require('zmq');
var variationsStream = require('variations-stream');
var alphabet = 'abcdefghijklmnopqrstuvwxyz';
var batchSize = 10000;
var maxLength = process.argv[2];
var searchHash = process.argv[3];

var ventilator = zmq.socket('push');         //[1]
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ventilator.bindSync("tcp://*:5000");

var batch = [];
variationsStream(alphabet, maxLength)
  .on('data', function(combination) {
    batch.push(combination);
    if(batch.length === batchSize) {         //[2]
      var msg = {searchHash: searchHash, variations: batch};
      ventilator.send(JSON.stringify(msg));       
      batch = [];
    }
  })
  .on('end', function() {
    //send remaining combinations
    var msg = {searchHash: searchHash, variations: batch};
    ventilator.send(JSON.stringify(msg));
  });

To avoid generating too many variations, our generator uses only the lowercase 
letters of the English alphabet and sets a limit on the size of the words generated. 
This limit is provided in input as a command line argument (maxLength) together 
with the hashsum to match (searchHash). We use a library called variations-
stream (https://npmjs.org/package/variations-stream) to generate all the 
variations using a streaming interface.

But the part that we are most interested in analyzing, is how we distribute the tasks 
across the workers:

1. We first create a PUSH socket and we bind it to the local port 5000, this is 
where the PULL socket of the workers will connect to receive their tasks.

2. We group the generated variations in batches of 10,000 items each and then 
we craft a message that contains the hash to match and the batch of words to 
check. This is essentially the task object that the workers will receive. When 
we invoke send() over the ventilator socket, the message will be passed to 
the next available worker, following a round-robin distribution.
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Implementing the worker
Now, it's time to implement the worker (worker.js):

var zmq = require('zmq');
var crypto = require('crypto');
var fromVentilator = zmq.socket('pull');
var toSink = zmq.socket('push');

fromVentilator.connect('tcp://localhost:5000');
toSink.connect('tcp://localhost:5001');

fromVentilator.on('message', function(buffer) {
  var msg = JSON.parse(buffer);
  var variations = msg.variations;
  variations.forEach(function(word) {
    console.log('Processing: ' + word);
    var shasum = crypto.createHash('sha1');
    shasum.update(word);
    var digest = shasum.digest('hex');
    if(digest === msg.searchHash) {
      console.log('Found! => ' + word);
      toSink.send('Found! ' + digest + ' => ' + word);
    }
  });
});

As we said, our worker represents a transient node in our architecture, therefore 
its sockets should connect to a remote node instead of listening for the incoming 
connections. That's exactly what we do in our worker, we create two sockets:

• A PULL socket that connects to the ventilator, for receiving the tasks.
• A PUSH socket that connects to the sink, for propagating the results.

Besides this, the job done by our worker is very simple: for each message received we 
iterate over the batch of words it contains, then for each word we calculate the SHA1 
checksum and we try to match it against the searchHash passed with the message. 
When a match is found, the result is forwarded to the sink.



Chapter 8

[ 399 ]

Implementing the sink
For our example, the sink is a very basic result collector, which simply prints the 
messages received by the workers to the console. The contents of the file sink.js  
are as follows:

var zmq  = require('zmq')
var sink = zmq.socket('pull');
sink.bindSync("tcp://*:5001");

sink.on('message', function(buffer) {
  console.log('Message from worker: ', buffer.toString());
});

It's interesting to see that the sink (as the ventilator) is also a durable node of our 
architecture and therefore we bind its PULL socket instead of connecting it explicitly 
to the PUSH socket of the workers.

Running the application
We are now ready to launch our application, let's start a couple of workers and  
the sink:

node worker

node worker

node sink

Then, it's time to start the ventilator, specifying the maximum length of the words to 
generate and the SHA1 checksum that we want to match. The following is a sample 
list of arguments:

node ventilator 4 f8e966d1e207d02c44511a58dccff2f5429e9a3b

When the preceding command is run, the ventilator will start generating all the 
possible words that have a length of at most four characters, distributing them to the 
set of workers we started, along with the checksum we provided. The results of the 
computation, if any, will appear in the terminal of the sink application.

Pipelines and competing consumers in AMQP
In the previous section, we saw how a parallel pipeline can be implemented in a 
peer-to-peer context. Now we are going to explore this pattern when applied to a 
fully-fledged message broker, such as RabbitMQ.
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Point-to-point communications and competing 
consumers
In a peer-to-peer configuration, a pipeline is a very straightforward concept to 
picture in mind. With a message broker in the middle though, the relationship 
between the various nodes of the system are a little bit harder to understand; the 
broker itself acts as an intermediary for our communications and often, we don't 
really know who is on the other side listening for messages. For example, when 
we send a message using AMQP, we don't deliver it directly to its destination, but 
instead to an exchange and then to a queue. Finally, it will be for the broker to decide 
where to route the message, based on the rules defined in the exchange, the bindings, 
and the destination queues.

If we want to implement a pipeline and a task distribution pattern using a system 
like AMQP, we have to make sure that each message is received by only one 
consumer, but this is impossible to guarantee if an exchange can potentially be 
bound to more than one queue. The solution then, is to send a message directly  
to the destination queue, bypassing the exchange altogether, this way we can make 
sure that only one queue will receive the message. This communication pattern is 
called point-to-point.

Once we are able to send a set of messages directly to a single queue, we are already 
half-way to implementing our task distribution pattern. In fact, the next step comes 
naturally: when multiple consumers are listening on the same queue, the messages  
will be distributed evenly across them, implementing a fan-out distribution.  
In the context of message brokers, this is better known as the Competing  
Consumers pattern.

Implementing the hashsum cracker using AMQP
We just learned that exchanges are the point in a broker where a message is multicast 
to a set of consumers, while queues are the place where messages are load balanced. 
With this knowledge in mind, let's now implement our brute force hashsum cracker 
on top of an AMQP broker (as for example, RabbitMQ). The following figure gives 
an overview of the system we want to obtain:
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As we discussed, to distribute a set of tasks across multiple workers we need to use 
a single queue. In the preceding figure, we called this the jobs queue. On the other 
side of the jobs queue, we have a set of workers, which are competing consumers, in 
other words, each one will pull a different message from the queue. The result is that 
multiple tasks will execute in parallel on different workers.

Any result generated by the workers is published into another queue, which we 
called results queue, and then consumed by the results collector; this is actually 
equivalent to a sink, or fan-in distribution. In the entire architecture, we don't make 
use of any exchange, we only send messages directly to their destination queue, 
implementing a point-to-point communication.

Implementing the producer
Let's see how to implement such a system, starting from the producer (the variations 
generator). Its code is identical to the sample we have seen in the previous section 
except for the parts concerning the message exchange. The producer.js file will 
look as follows:

var amqp = require('amqplib');
[...]

var connection, channel;
amqp
  .connect('amqp://localhost')
  .then(function(conn) {
    connection = conn;
    return conn.createChannel();
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  })
  .then(function(ch) {
    channel = ch;
    produce();
  })
  .catch(function(err) {
    console.log(err);
  });

function produce() {
  [...]
  variationsStream(alphabet, maxLength)
    .on('data', function(combination) {
        [...]
        var msg = {searchHash: searchHash, variations: batch};
        channel.sendToQueue('jobs_queue',
          new Buffer(JSON.stringify(msg)));
        [...]
      }
    })
   [...]
}

As we can see, the absence of any exchange or binding makes the setup of an AMQP 
communication much simpler. In the preceding code, we didn't even need a queue, 
as we are interested only in publishing a message.

The most important detail though, is the channel.sendToQueue()API, which is 
actually new to us. As its name says, that's the API responsible for delivering a 
message straight to a queue—jobs_queue in our example—bypassing any  
exchange or routing.

Implementing the worker
On the other side of the jobs_queue we have the workers listening for the incoming 
tasks. Let's implement their code in a file called worker.js, as follows:

var amqp = require('amqplib');
[...]

var channel, queue;
amqp
  .connect('amqp://localhost')
  .then(function(conn) {
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    return conn.createChannel();
  })
  .then(function(ch) {
    channel = ch;
    return channel.assertQueue('jobs_queue');
  })
  .then(function(q) {
    queue = q.queue;
    consume();
  })

[...]

function consume() {
  channel.consume(queue, function(msg) {
    [...]
    variations.forEach(function(word) {
      [...]
      if(digest === data.searchHash) {
        console.log('Found! => ' + word);
        channel.sendToQueue('results_queue',
          new Buffer('Found! ' + digest + ' => ' + word));
      }
      [...]
    });
    channel.ack(msg);
  });
};

Our new worker is also very similar to the one we implemented in the previous 
section using ØMQ, except for the part related to the message exchange. In the 
preceding code, we can see how we first make sure that jobs_queue exists and then 
we start listening for incoming tasks using channel.consume(). Then, every time a 
match is found, we send the result to the collector via results_queue, using again a 
point-to-point communication.

If multiple workers are started, they will all listen on the same queue, resulting in the 
messages to be load balanced between them.



Messaging and Integration Patterns

[ 404 ]

Implementing the result collector
The results collector is again a trivial module, simply printing any message received 
to the console. This is implemented in the collector.js file, as follows:

[...]
  .then(function(ch) {
    channel = ch;
    return channel.assertQueue('results_queue');
  })
  .then(function(q) {
    queue = q.queue;
    channel.consume(queue, function(msg) {
      console.log('Message from worker: ', msg.content.toString());
    });
  })
[...]

Running the application
Now everything is ready to give our new system a try, we can start by running a 
couple of workers, which will both connect to the same queue (jobs_queue),  
so that every message will be load balanced between them:

node worker

node worker

Then, we can run the collector module and then producer (by providing the 
maximum word length and the hash to crack):

node collector

node producer 4 f8e966d1e207d02c44511a58dccff2f5429e9a3b

With this, we implemented a message pipeline and the competing consumers pattern 
using nothing but AMQP.

Request/reply patterns
Dealing with a messaging system often means using a one-way asynchronous 
communication; publish/subscribe is a perfect example.
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One-way communications can give us great advantages in terms of parallelism and 
efficiency, but alone they are not able to solve all our integration and communication 
problems. Sometimes, a good old request/reply pattern might just be the perfect 
tool for the job. Therefore, in all those situations where an asynchronous one-way 
channel is all that we have, it's important to know how to build an abstraction that 
allows us to exchange messages in a request/reply fashion. That's exactly what we 
are going to learn next.

Correlation identifier
The first request/reply pattern we are going to learn is called correlation identifier 
and it represents the basic block for building a request/reply abstraction on top of a 
one-way channel.

The pattern consists in marking each request with an identifier, which is then attached 
to the response by the receiver; this way the sender of the request can correlate the 
two messages and return the response to the right handler. This elegantly solves the 
problem in presence of a one-way asynchronous channel where messages can travel in 
any direction at any time. Let's take a look at the example in the following figure:

Replier
Requestor

ID: 1 Request

ID: 2 Request

ID: 3 Request

Response ID:2

Response ID:1

Response ID:3

Correlations

Messages
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The preceding scenario shows how using a correlation ID allows us to match  
each response with the right request, even if those are sent and then received in a 
different order.

Implementing a request/reply abstraction using 
correlation identifiers
Let's now start working on an example by choosing the most simple type of the  
one-way channels, one that is point-to-point (which directly connects two nodes  
of the system) and full-duplex (messages can travel in both directions). 

In the simple channel category, we can find, for example, WebSockets: they establish 
a point-to-point connection between the server and browser, and the messages 
can travel in any direction. Another example, is the communication channel that 
is created when a child process is spawned using child_process.fork(), we 
should already know about it, we saw this API in Chapter 6, Recipes. This channel 
too is asynchronous, it connects the parent only with the child process and it allows 
messages to travel in any direction. This is probably the most basic channel of this 
category, so that's what we are going to use in our next example.

The plan for the next application is to build an abstraction in order to wrap the 
channel created between the parent and child processes. This abstraction should 
provide a request/reply communication by automatically marking each request  
with a correlation identifier and then matching the ID of any incoming reply  
against the list of request handlers awaiting a response.

From Chapter 6, Recipes, we should remember that the parent process can access the 
channel with the child using two primitives:

• child.send(message)

• child.on('message', callback)

In a similar way, the child can access the channel to the parent process using:

• process.send(message)

• process.on('message', callback)

This means that the interface of the channel available in the parent is identical to the 
one available in the child; this will allow us to build a common abstraction, so that 
the requests can be sent from both the ends of the channel.
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Abstracting the request
Let's start building this abstraction by considering the part responsible for sending 
new requests, let's create a new file called request.js:

var uuid = require('node-uuid');

module.exports  = function(channel) {
  var idToCallbackMap = {};           //[1]
  
  channel.on('message', function(message) {       //[2]
    var handler = idToCallbackMap[message.inReplyTo];
    if(handler) {
      handler(message.data);
    }
  });
  
  return function sendRequest(req, callback) {     //[3]
    var correlationId = uuid.v4();
    idToCallbackMap[correlationId] = callback;
    channel.send({
      type: 'request',
      data: req,
      id: correlationId
    });
  };
}

This is how our request abstraction works:

1. The one that follows is a closure created around our request function.  
The magic of the pattern lies in the idToCallbackMap variable, which stores 
the association between the outgoing requests and their reply handlers.

2. As soon as the factory is invoked, the first thing we do is start listening 
for incoming messages. If the correlation ID of the message (contained 
in the inReplyTo property) matches any of the IDs contained in the 
idToCallbackMap variable, we know that we just received a reply, so we 
obtain the reference to the associated response handler and we invoke it with 
the data contained in the message.
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3. Finally, we return the function we will use to send new requests.  
Its job is to generate a correlation ID using the node-uuid package  
(https://npmjs.org/package/node-uuid) and then wrap the request  
data in an envelope that allows us to specify the correlation ID and the  
type of the message.

That's it for the request module; let's move to the next part.

Abstracting the reply
We are just a step away from implementing the full pattern, so let's see how the 
counterpart of the request.js module works. Let's create another file called  
reply.js, which will contain the abstraction for wrapping the reply handler:

module.exports = function(channel) {

  return function registerHandler(handler) {
    channel.on('message', function(message) {     //[1]
      if(message.type !== 'request') return;

      handler(message.data, function(reply) {
        channel.send({             //[2]
          type: 'response',
          data: reply,
          inReplyTo: message.id
        });
      });
    });
  };
  
}

Our reply module is again a factory that returns a function to register new reply 
handlers. This is what happens when a new handler is registered:

1. We start listening for incoming requests and when we receive one, we 
immediately invoke handler by passing the data of the message and a 
callback function to collect the reply from the handler.

2. Once the handler has done its work, it will invoke the callback that we 
provided returning back its reply. We then build an envelope by attaching 
the correlation ID of the request (the inReplyTo property), then we put 
everything back into the channel.
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The amazing thing of this pattern is that in Node.js it comes very easy, everything 
for us is already asynchronous, so an asynchronous request/reply communication 
built on top of a one-way channel is not very different from any other asynchronous 
operation, especially if we build an abstraction to hide its implementation details.

Trying the full request/reply cycle
Now, we are ready to try our new asynchronous request/reply abstraction.  
Let's create a sample replier in a file named replier.js:

var reply = require('./reply')(process);

reply(function(req, callback) {
  setTimeout(function() {
    callback({sum: req.a + req.b});
  }, req.delay);
});

Our replier simply calculates the sum between the two numbers received and returns 
the result after a certain delay (which is also specified in the request). This will allow 
us to verify that the order of the responses can also be different from the order in 
which we sent the requests, to confirm that our pattern is working.

The final step to complete the sample is to create the requestor in a file  
named  requestor.js, which also has the task of starting the replier using  
child_process.fork() :

var replier = require('child_process')
                .fork(__dirname + '/replier.js');
var request = require('./request')(replier);

request({a: 1, b: 2, delay: 500}, function(res) {
  console.log('1 + 2 = ', res.sum);
  replier.disconnect();
});
 
request({a: 6, b: 1, delay: 100}, function(res) {
  console.log('6 + 1 = ', res.sum);
});

The requestor starts the replier and then passes its reference to our request 
abstraction. We then run a couple of sample requests and verify that the correlation 
with the response they receive is right.
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To try out the sample, simply launch the requestor.js module, the output should 
be something similar to the following:

6 + 1 =  7

1 + 2 =  3

This confirms that our pattern works perfectly fine and that the replies are correctly 
associated with their own requests, no matter in what order they are sent or received.

Return address
The correlation identifier is the fundamental pattern for creating a request/reply 
communication on top of a one-way channel; however, it's not enough when our 
messaging architecture has more than one channel or queue, or when there can be 
potentially more than one requestor. In these situations, in addition to a correlation 
ID, we also need to know the return address, a piece of information which allows the 
replier to send the response back to the original sender of the request.

Implementing the return address pattern in AMQP
In AMQP, the return address is the queue where the requestor is listening for incoming 
replies. Because the response is meant to be received by only one requestor, it's 
important that the queue is private and not shared across different consumers. From 
these properties, we can infer that we are going to need a transient queue, scoped to 
the connection of the requestor and that the replier has to establish a point-to-point 
communication with the return queue , to be able to deliver its responses.

The following image gives us an example of this scenario:

Requestor
A

Requestor
B

R queueequests

Broker

Responses to Requestor B

Responses to Requestor A

Replier
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To create a request/reply pattern on top of AMQP, all that we need to do is to 
specify the name of the response queue in the message properties, this way the 
replier knows where the response message has to be delivered. The theory seems 
very straightforward, so let's see how to implement this in a real application.

Implementing the request abstraction
Let's now build a request/reply abstraction on top of AMQP. We will use RabbitMQ 
as a broker, but any compatible AMQP broker should do the job. Let's start with  
the request abstraction (implemented in the amqpRequest.js module), we will show 
here only the relevant parts.

The first interesting thing to observe, is how we create the queue to hold the 
responses; this is the code responsible for that:

channel.assertQueue('', {exclusive: true});

When we create the queue, we don't specify any name, which means that a random 
one will be chosen for us; in addition to this, the queue is exclusive, which means 
that it's bound to the active AMQP connection and it will be destroyed when the 
connection closes. There is no need to bind the queue to an exchange, as we don't 
need any routing or distribution to the multiple queues, this means that the messages 
have to be delivered straight into our response queue.

Next, let's see how we can generate a new request:

AMQPRequest.prototype.request = function(queue, message, callback) {
  var id = uuid.v4();
  this.idToCallbackMap[id] = callback;
  this.channel.sendToQueue(queue,
    new Buffer(JSON.stringify(message)),
    {correlationId: id, replyTo: this.replyQueue}
  );
}

The request() method accepts as input the name of the requests queue and the 
message to send. As we learned in the previous section, we need to generate a 
correlation ID and associate it to the callback function. Finally, we send the 
message, specifying the correlationId and the replyTo property as metadata.
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It's interesting to see that for sending the message we are using the channel.
sentToQueue() API instead of channel.publish(); this is because we are not 
interested in implementing any publish/subscribe distribution using exchanges,  
but a more basic point-to-point delivery straight into the destination queue.

In AMQP, we can specify a set of properties (or metadata), to be 
passed to the consumer together with the main message.

The last important piece of our amqpRequest prototype is where we listen for 
incoming responses:

AMQPRequest.prototype._listenForResponses = function() {
  var self = this;
  return this.channel.consume(this.replyQueue, function(msg) {
    var correlationId = msg.properties.correlationId;
    var handler = self.idToCallbackMap[correlationId];
    if(handler) {
      handler(JSON.parse(msg.content.toString()));
    }
  });
}

In the preceding code, we listen for messages on the queue we created explicitly for 
receiving responses, then for each incoming message we read the correlation ID and 
we match it against the list of handlers awaiting a reply. Once we have the handler, 
we only need to invoke it by passing the reply message.

Implementing the reply abstraction
That's it for the amqpRequest module, now it's time to implement the response 
abstraction in a new module named amqpReply.js.

Here, we have to create the queue that will receive the incoming requests; we  
can use a simple durable queue for this purpose. We won't show this part, since it's 
again all AMQP boilerplate. What we are interested in seeing instead, is how we 
handle a request and then send it back to the right queue:

AMQPReply.prototype.handleRequest = function(handler) {
  var self = this;
  return self.channel.consume(self.queue, function(msg) {
    var content = JSON.parse(msg.content.toString());
    handler(content, function(reply) {
      self.channel.sendToQueue(
        msg.properties.replyTo,
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        new Buffer(JSON.stringify(reply)),
        {correlationId: msg.properties.correlationId}
      );
      self.channel.ack(msg);
    });
  });
}

When sending back a reply, we use channel.sendToQueue() to publish the  
message straight into the queue specified in the replyTo property of the message 
(our return address). Another important task of our amqpReply object is to set a 
correlationId in the reply, so that the receiver can match the message with the  
list of pending requests.

Implementing the requestor and the replier
Everything is now ready to give our system a try, but first, let's build a sample 
requestor and replier to see how to use our new abstraction.

Let's start from the module replier.js:

var Reply = require('./amqpReply');
var reply = Reply('requests_queue');

reply.initialize().then(function() {
  reply.handleRequest(function(req, callback) {
    console.log('Request received', req);
    callback({sum: req.a + req.b});
  });
});

It's nice to see how the abstraction we built allows us to hide all the mechanisms that 
handle the correlation ID and the return address; all we need to do is to initialize a new 
reply object, specifying the name of the queue where we want to receive our requests 
('requests_queue'). The rest of the code is just trivial; our sample replier simply 
calculates the sum of the two numbers received as input and sends back the result 
using the provided callback.

On the other side, we have a sample requestor implemented in the  
requestor.js file:

var req = require('./amqpRequest')();

req.initialize().then(function() {
  for(var i = 100; i > 0; i--) {
    sendRandomRequest();
  }
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});

function sendRandomRequest() {
  var a = Math.round(Math.random() * 100);
  var b = Math.round(Math.random() * 100);
  req.request('requests_queue', {a: a, b: b},
    function(res) {
      console.log(a + ' + ' + b + ' = ' + res.sum);
    }
  );
}

Our sample requestor sends 100 random requests to the 'requests_queue' queue. 
In this case too, it's interesting to see that our abstraction is doing its job perfectly, 
hiding all the details of the asynchronous request/reply pattern.

Now, to try out the system, simply run the replier module followed by  
requestor module:

node replier

node requestor

We will see a set of operations published by the requestor and then received by the 
replier, which in turn will send back the responses.

Now, we can try other experiments. Once the replier is started for the first time,  
it creates a durable queue; this means that, if we now stop it and then run the 
requestor again, then no request will be lost. All the messages will be stored in  
the queue until the replier is started again!

Another nice feature that we get for free using AMQP is the fact that our replier 
is scalable out-of-the-box. To test this assumption, we can try to start two or more 
instances of the replier, and watch the requests being load balanced between them. 
This works because, every time a requestor starts, it attaches itself as a listener to the 
same durable queue, and as a result, the broker will load balance the messages across 
all the consumers of the queue (competing consumers pattern). Sweet!

ØMQ has a pair of sockets specifically meant for implementing 
request/reply patterns (REQ/REP), however they are synchronous 
(only one request/response at a time). More complex request/reply 
patterns are possible with more sophisticated techniques. For more 
information, you can read the official guide at http://zguide.
zeromq.org/page:all#advanced-request-reply.



Chapter 8

[ 415 ]

Summary
We reached the end of this chapter. Here, we learned the most important messaging 
and integration patterns and the role they play in the design of distributed systems. 
We made our acquaintance with the three major types of message exchange patterns: 
publish/subscribe, pipelines, and request/reply, and we saw how they can be 
implemented using a peer-to-peer architecture or a message broker. We analyzed their 
pros and cons, and we saw that by using AMQP and a full-fledged message broker, we 
can implement reliable and scalable applications with little development effort but at a 
cost of having one more system to maintain and scale. Also, we saw how ØMQ allows 
us to build distributed systems where we can have total control over every aspect of 
the architecture, fine tuning its properties around our very own requirements.

This chapter also closes the book, by now we should have a tool belt full of patterns 
and techniques we can go and apply in our projects. We should also have a more 
deep understanding of how Node.js development works and what are its strengths 
and weaknesses. Throughout the book, we also had the chance to work with a 
myriad of packages and solutions developed by many extraordinary developers. At 
the end, this is the most beautiful aspect of Node.js, its people, a community where 
everybody plays its part in giving back something.

I hope you enjoyed my small contribution.
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