

Node.js Design Patterns

Get the best out of Node.js by mastering a series of
patterns and techniques to create modular, scalable,
and efficient applications

Mario Casciaro

BIRMINGHAM - MUMBAI

Node.js Design Patterns

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2014

Production reference: 1231214

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-731-4

www.packtpub.com

Cover image by Artie Ng (artherng@yahoo.com.au)

Credits

Author
Mario Casciaro

Reviewers
Afshin Mehrabani

Joel Purra

Alan Shaw

Commissioning Editor
Julian Ursell

Acquisition Editor
Rebecca Youé

Content Development Editor
Sriram Neelakantan

Technical Editor
Menza Mathew

Copy Editors
Shambhavi Pai

Rashmi Sawant

Project Coordinator
Aboli Ambardekar

Proofreaders
Stephen Copestake

Ameesha Green

Steve Maguire

Indexers
Hemangini Bari

Mariammal Chettiyar

Rekha Nair

Tejal Soni

Graphics
Valentina D'silva

Disha Haria

Abhinash Sahu

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

About the Author

Mario Casciaro is a software engineer and technical lead with a passion for open
source. He began programming with a Commodore 64 when he was 12, and grew up
with Pascal and Visual Basic. His programming skills evolved by experimenting with
x86 assembly language, C, C++, PHP, and Java. His relentless work on side projects
led him to discover JavaScript and Node.js, which quickly became his new passion.

In his professional career, he worked with IBM for several years—first in Rome and
then in the Dublin Software Lab. At IBM, Mario worked on products for brands
such as Tivoli, Cognos, and Collaboration Solutions, using a variety of technologies
from C to PHP and Java. He then plunged into the adventurous world of start ups
to work full time on Node.js projects. He ended up working in a lighthouse, at D4H
Technologies, where he led the development of a real-time platform to manage
emergency operations.

Acknowledgments

This book is the result of an amazing amount of work, knowledge, and perseverance
from many people. A big thanks goes to the entire team at Packt who made this book
a reality, from the editors to the project coordinator; in particular, I would like to
thank Rebecca Youé and Sriram Neelakantan for their guidance and patience during
the toughest parts of the writing process. Kudos to Alan Shaw, Joel Purra, and
Afshin Mehrabani who dedicated their time and expertise to reviewing the technical
content of the book; every comment and advice was really invaluable in bringing this
work up to production quality. This book would not exist without the efforts of so
many people who made Node.js a reality—from the big players, who continuously
inspired us, to the contributor of the smallest module.

In these months, I also learned that a book is only possible with the support and
encouragement of all the people around you. My gratitude goes to all my friends
who heard the phrase "Today I can't, I have to work on the book" too many times;
thanks to Christophe Guillou, Zbigniew Mrowinski, Ryan Gallagher, Natalia Lopez,
Ruizhi Wang, and Davide Lionello for still talking to me. Thanks to the D4H crew,
for their inspiration and understanding, and for giving me the chance to work on a
first-class product.

Thanks to all the friends back in Italy, to the legendary company of Taverna and
Centrale, to the lads of Lido Marini for always giving me a great time, laughing
and having fun. I'm sorry for not being present in the past few months.

Thanks to my Mom and Dad, and to my brother and sister, for their unconditional
love and support.

At last, you have to know that there is another person who wrote this book along
with me, that's Miriam, my girlfriend, who walked throughout this long journey
with me and supported me night and day, regardless of how difficult it was.
There's nothing more one could wish for. I send all my love and gratitude to her.
Many adventures await us.

About the Reviewers

Afshin Mehrabani is an open source programmer. He is studying to be a
computer software engineer. He started programming and web development when
he was 12 years old, and started with PHP as well. Later, he joined the Iran Technical
and Vocational Training Organization. He secured the first place and received a gold
medal in a competition that was conducted across the entire country in the area of
web development. He became a member of Iran's National Elites Foundation after
producing a variety of new programming ideas.

He was a software engineer at Tehran Stock Exchange and is now the head of the
web development team in Yara International. He cofounded the Usablica team in
early 2012 to develop and produce usable applications. He is the author of IntroJs,
WideArea, flood.js, and other open source projects. He has contributed to Socket.
IO, Engine.IO, and other open source projects. He is also interested in creating
and contributing to open source applications, writing programming articles, and
challenging himself with new programming technologies.

He has written different articles on JavaScript, Node.js, HTML5, and MongoDB,
which have been published on different academic websites. Afshin has 5 years of
experience in PHP, Python, C#, JavaScript, HTML5, and Node.js in many financial
and stock-trading projects.

Joel Purra started toying around with computers some time before his teens,
seeing them as another kind of a video-gaming device. It was not long before he took
apart (sometimes broke and subsequently fixed) any computer he came across,
in between playing the latest games on them. It was gaming that led him to discover
programming in his early teens, when modifying a Lunar Lander game triggered an
interest in creating digital tools. Soon after getting an Internet connection at home,
he developed his first e-commerce website, and thus his business started; it launched
his career at an early age.

At the age of 17, Joel started studying computer programming and an energy/science
program at a nuclear power plant's school. After graduation, he studied to become
a Second Lieutenant Telecommunications Specialist in the Swedish Army, before
moving on to study for his Master of Science degree in Information Technology and
Engineering at Linköping University.

He has been involved in start ups and other companies—both successful and
unsuccessful—since 1998, and has been a consultant since 2007. Born, raised, and
educated in Sweden, Joel also enjoys the flexible lifestyle of a freelance developer,
having traveled through five continents with his backpack and lived abroad for
several years. A learner constantly looking for challenges, one of his goals is to
build and evolve software for broad public use.

You can visit his website at http://joelpurra.com/.

I'd like to thank the open source community for giving me the
building blocks necessary to compose both small and large software
systems, even as a freelance consultant. Nanos gigantum humeris
insidentes. Remember to commit early, commit often!

Alan Shaw describes himself as a web developer who discovers the limits of the
possible by venturing a little way past them into the impossible. Alan has built and
styled the Web every day since graduating from the University of Bath with a degree
in computer science. He is an advocate of functional programming and has worked
with JavaScript for as long as he can remember.

Alan and Oli Evans own and run TABLEFLIP, a web development company that
focuses on Node.js, good client relationships, and giving back to the community
through open source projects.

In his spare time, Alan hacks on npm modules, browserify transforms, and grunt
plugins. He builds and maintains David (https://david-dm.org), co-organizes
the meetups for Nodebots of London and Meteor London, hacks on hardware, pilots
nano copters into walls, and is a cofounder of the JavaScript Adventure Club.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

Table of Contents
Preface 1
Chapter 1: Node.js Design Fundamentals 7

The Node.js philosophy 8
Small core 8
Small modules 8
Small surface area 9
Simplicity and pragmatism 10

The reactor pattern 11
I/O is slow 11
Blocking I/O 11
Non-blocking I/O 12
Event demultiplexing 13
The reactor pattern 15
The non-blocking I/O engine of Node.js – libuv 17
The recipe for Node.js 17

The callback pattern 18
The continuation-passing style 19

Synchronous continuation-passing style 19
Asynchronous continuation-passing style 20
Non continuation-passing style callbacks 22

Synchronous or asynchronous? 22
An unpredictable function 22
Unleashing Zalgo 23
Using synchronous APIs 25
Deferred execution 26

Node.js callback conventions 28
Callbacks come last 28
Error comes first 28
Propagating errors 29
Uncaught exceptions 29

Table of Contents

[ii]

The module system and its patterns 32
The revealing module pattern 32
Node.js modules explained 32

A homemade module loader 33
Defining a module 35
Defining globals 35
module.exports vs exports 35
require is synchronous 36
The resolving algorithm 37
The module cache 39
Cycles 40

Module definition patterns 41
Named exports 41
Exporting a function 42
Exporting a constructor 43
Exporting an instance 44
Modifying other modules or the global scope 45

The observer pattern 46
The EventEmitter 47
Create and use an EventEmitter 48
Propagating errors 49
Make any object observable 49
Synchronous and asynchronous events 51
EventEmitter vs Callbacks 52
Combine callbacks and EventEmitter 54

Summary 55
Chapter 2: Asynchronous Control Flow Patterns 57

The difficulties of asynchronous programming 58
Creating a simple web spider 58
The callback hell 61

Using plain JavaScript 62
Callback discipline 62
Applying the callback discipline 63
Sequential execution 66

Executing a known set of tasks in sequence 66
Sequential iteration 67

Parallel execution 71
Web spider version 3 73
The pattern 74
Fixing race conditions in the presence of concurrent tasks 75

Limited parallel execution 77
Limiting the concurrency 78
Globally limiting the concurrency 79

Table of Contents

[iii]

The async library 82
Sequential execution 82

Sequential execution of a known set of tasks 83
Sequential iteration 85

Parallel execution 85
Limited parallel execution 86

Promises 88
What is a promise? 88
Promises/A+ implementations 90
Promisifying a Node.js style function 92
Sequential execution 93

Sequential iteration 95
Sequential iteration – the pattern 96

Parallel execution 97
Limited parallel execution 98

Generators 100
The basics 101

A simple example 102
Generators as iterators 103
Passing values back to a generator 103

Asynchronous control flow with generators 104
Generator-based control flow using co 107

Sequential execution 108
Parallel execution 110
Limited parallel execution 112

Producer-consumer pattern 113
Limiting the download tasks concurrency 115

Comparison 116
Summary 118

Chapter 3: Coding with Streams 119
Discovering the importance of streams 119

Buffering vs Streaming 120
Spatial efficiency 122

Gzipping using a buffered API 122
Gzipping using streams 123

Time efficiency 123
Composability 126

Getting started with streams 128
Anatomy of streams 128
Readable streams 129

Reading from a stream 129
Implementing Readable streams 131

Table of Contents

[iv]

Writable streams 134
Writing to a stream 134
Back-pressure 135
Implementing Writable streams 137

Duplex streams 139
Transform streams 140

Implementing Transform streams 141
Connecting streams using pipes 143
Useful packages for working with streams 145

readable-stream 145
through and from 146

Asynchronous control flow with streams 147
Sequential execution 147
Unordered parallel execution 149

Implementing an unordered parallel stream 149
Implementing a URL status monitoring application 151

Unordered limited parallel execution 153
Ordered parallel execution 154

Piping patterns 155
Combining streams 156

Implementing a combined stream 157
Forking streams 159

Implementing a multiple checksum generator 159
Merging streams 160

Creating a tarball from multiple directories 161
Multiplexing and demultiplexing 163

Building a remote logger 164
Multiplexing and demultiplexing object streams 169

Summary 170
Chapter 4: Design Patterns 171

Factory 172
A generic interface for creating objects 172
A mechanism to enforce encapsulation 174
Building a simple code profiler 175
In the wild 178

Proxy 179
Techniques for implementing proxies 180

Object composition 180
Object augmentation 181

A comparison of the different techniques 182
Creating a logging Writable stream 182
Proxy in the ecosystem – function hooks and AOP 184
In the wild 184

Table of Contents

[v]

Decorator 185
Techniques for implementing decorators 185

Composition 185
Object augmentation 186

Decorating a LevelUP database 186
Introducing LevelUP and LevelDB 186
Implementing a LevelUP plugin 187

In the wild 189
Adapter 190

Using LevelUP through the filesystem API 190
In the wild 193

Strategy 194
Multi-format configuration objects 195
In the wild 198

State 198
Implementing a basic fail-safe socket 200

Template 204
A configuration manager template 205
In the wild 207

Middleware 207
Middleware in Express 208
Middleware as a pattern 208
Creating a middleware framework for ØMQ 210

The Middleware Manager 210
A middleware to support JSON messages 213
Using the ØMQ middleware framework 214

Command 216
A flexible pattern 218

The task pattern 218
A more complex command 218

Summary 222
Chapter 5: Wiring Modules 223

Modules and dependencies 224
The most common dependency in Node.js 224
Cohesion and Coupling 225
Stateful modules 226

The Singleton pattern in Node.js 226
Patterns for wiring modules 228

Hardcoded dependency 228
Building an authentication server using hardcoded dependencies 229
Pros and cons of hardcoded dependencies 233

Table of Contents

[vi]

Dependency injection 234
Refactoring the authentication server to use dependency injection 234
The different types of dependency injection 237
Pros and cons of dependency injection 238

Service locator 239
Refactoring the authentication server to use a service locator 241
Pros and cons of a service locator 244

Dependency injection container 245
Declaring a set of dependencies to a DI container 246
Refactoring the authentication server to use a DI container 247
Pros and cons of a Dependency Injection container 250

Wiring plugins 250
Plugins as packages 250
Extension points 252
Plugin-controlled vs Application-controlled extension 253
Implementing a logout plugin 256

Using hardcoded dependencies 256
Exposing services using a service locator 260
Exposing services using dependency injection 262
Exposing services using a dependency injection container 264

Summary 265
Chapter 6: Recipes 267

Requiring asynchronously initialized modules 267
Canonical solutions 268
Preinitialization queues 269

Implementing a module that initializes asynchronously 269
Wrapping the module with preinitialization queues 272

In the wild 274
Asynchronous batching and caching 275

Implementing a server with no caching or batching 275
Asynchronous request batching 277

Batching requests in the total sales web server 278
Asynchronous request caching 280

Caching requests in the total sales web server 281
Notes about implementing caching mechanisms 284

Batching and caching with Promises 284
Running CPU-bound tasks 286

Solving the subset sum problem 287
Interleaving with setImmediate 290

Interleaving the steps of the subset sum algorithm 291
Considerations on the interleaving pattern 293

Using multiple processes 293
Delegating the subset sum task to other processes 294
Considerations on the multiprocess pattern 300

Table of Contents

[vii]

Sharing code with the browser 302
Sharing modules 302

Universal Module Definition 303
Introducing Browserify 305

Fundamentals of cross-platform development 309
Runtime code branching 309
Build-time code branching 310
Design patterns for cross-platform development 311

Sharing business logic and data validation using Backbone Models 313
Implementing the shared models 314
Implementing the platform-specific code 315
Using the isomorphic models 317
Running the application 318

Summary 320
Chapter 7: Scalability and Architectural Patterns 321

An introduction to application scaling 322
Scaling Node.js applications 322
The three dimensions of scalability 322

Cloning and load balancing 324
The cluster module 325

Notes on the behavior of the cluster module 326
Building a simple HTTP server 327
Scaling with the cluster module 328
Resiliency and availability with the cluster module 330
Zero-downtime restart 332

Dealing with stateful communications 334
Sharing the state across multiple instances 335
Sticky load balancing 336

Scaling with a reverse proxy 337
Load balancing with Nginx 339

Using a Service Registry 342
Implementing a dynamic load balancer with http-proxy and seaport 344

Peer-to-peer load balancing 348
Implementing an HTTP client that can balance requests across multiple servers 350

Decomposing complex applications 351
Monolithic architecture 351
The Microservice architecture 353

An example of the Microservice architecture 354
Pros and cons of microservices 355

Integration patterns in a Microservice architecture 357
The API proxy 358
API orchestration 359
Integration with a message broker 361

Summary 364

Table of Contents

[viii]

Chapter 8: Messaging and Integration Patterns 365
Fundamentals of a messaging system 366

One-way and request/reply patterns 367
Message types 368
Asynchronous messaging and queues 369
Peer-to-peer or broker-based messaging 370

Publish/subscribe pattern 372
Building a minimalist real-time chat application 373

Implementing the server side 373
Implementing the client side 374
Running and scaling the chat application 375

Using Redis as a message broker 377
Peer-to-peer publish/subscribe with ØMQ 380

Introducing ØMQ 380
Designing a peer-to-peer architecture for the chat server 380
Using the ØMQ PUB/SUB sockets 382

Durable subscribers 384
Introducing AMQP 386
Durable subscribers with AMQP and RabbitMQ 388

Pipelines and task distribution patterns 392
The ØMQ fan-out/fan-in pattern 394

PUSH/PULL sockets 395
Building a distributed hashsum cracker with ØMQ 395

Pipelines and competing consumers in AMQP 399
Point-to-point communications and competing consumers 400
Implementing the hashsum cracker using AMQP 400

Request/reply patterns 404
Correlation identifier 405

Implementing a request/reply abstraction using correlation identifiers 406
Return address 410

Implementing the return address pattern in AMQP 410
Summary 415

Index 417

Preface
Node.js is considered by many as a game-changer—the biggest shift of the decade
in web development. It is loved not just for its technical capabilities, but also for the
change of paradigm that it introduced in web development.

First, Node.js applications are written in JavaScript, the language of the web, the
only programming language supported natively by a majority of web browsers.
This aspect only enables scenarios such as single-language application stacks and
sharing of code between the server and the client. Node.js itself is contributing to
the rise and evolution of the JavaScript language. People realize that using JavaScript
on the server is not as bad as it is in the browser, and they will soon start to love it
for its pragmatism and for its hybrid nature, half way between object-oriented and
functional programming.

The second revolutionizing factor is its single-threaded, asynchronous architecture.
Besides obvious advantages from a performance and scalability point of view,
this characteristic changed the way developers approach concurrency and
parallelism. Mutexes are replaced by queues, threads by callbacks and events,
and synchronization by causality.

The last and most important aspect of Node.js lies in its ecosystem: the npm package
manager, its constantly growing database of modules, its enthusiastic and helpful
community, and most importantly, its very own culture based on simplicity,
pragmatism, and extreme modularity.

Preface

[2]

However, because of these peculiarities, Node.js development gives you a very
different feel compared to the other server-side platforms, and any developer
new to this paradigm will often feel unsure about how to tackle even the most
common design and coding problem effectively. Common questions include:
"How do I organize my code?", "What's the best way to design this?", "How can I
make my application more modular?", "How do I handle a set of asynchronous calls
effectively?", "How can I make sure that my application will not collapse while it
grows?", or more simply "What's the right way of doing this?" Fortunately, Node.js
has become a mature-enough platform and most of these questions can now be easily
answered with a design pattern, a proven coding technique, or a recommended
practice. The aim of this book is to guide you through this emerging world of
patterns, techniques, and practices, showing you what the proven solutions to the
common problems are and teaching you how to use them as the starting point to
building the solution to your particular problem.

By reading this book, you will learn the following:

• The "Node way". How to use the right point of view when approaching
a Node.js design problem. You will learn, for example, how different
traditional design patterns look in Node.js, or how to design modules
that do only one thing.

• A set of patterns to solve common Node.js design and coding problems.
You will be presented with a "Swiss army knife" of patterns, ready-to-use in
order to efficiently solve your everyday development and design problems.

• How to write modular and efficient Node.js applications. You will gain
an understanding of the basic building blocks and principles of writing
large and well-organized Node.js applications and you will be able to
apply these principles to novel problems that don't fall within the scope
of existing patterns.

Throughout the book, you will be presented with several real-life libraries and
technologies, such as LevelDb, Redis, RabbitMQ, ZMQ, Express, and many others.
They will be used to demonstrate a pattern or technique, and besides making
the example more useful, these will also give you great exposure to the Node.js
ecosystem and its set of solutions.

Whether you use or plan to use Node.js for your work, your side project, or for an
open source project, recognizing and using well-known patterns and techniques will
allow you to use a common language when sharing your code and design, and on
top of that, it will help you get a better understanding about the future of Node.js
and how to make your own contributions a part of it.

Preface

[3]

What this book covers
Chapter 1, Node.js Design Fundamentals, serves as an introduction to the world
of Node.js application design by showing the patterns at the core of the platform
itself. It covers the reactor pattern, the callback pattern, the module pattern, and
the observer pattern.

Chapter 2, Asynchronous Control Flow Patterns, introduces a set of patterns and
techniques for efficiently handling asynchronous control flow in Node.js. This
chapter teaches you how to mitigate the "callback hell" problem using plain
JavaScript, the async library, Promises, and Generators.

Chapter 3, Coding with Streams, dives deeply into one of the most important patterns
in Node.js: Streams. It shows you how to process data with transform streams and
how to combine them into different layouts.

Chapter 4, Design Patterns, deals with a controversial topic: traditional design patterns
in Node.js. It covers the most popular conventional design patterns and shows you
how unconventional they might look in Node.js.

Chapter 5, Wiring Modules, analyzes the different solutions for linking the modules
of an application together. In this chapter, you will learn design patterns such as
Dependency Injection and Service locator.

Chapter 6, Recipes, takes a problem-solution approach to show you how some
common coding and design challenges can be solved with ready-to-use solutions.

Chapter 7, Scalability and Architectural Patterns, teaches you the basic techniques and
patterns for scaling a Node.js application.

Chapter 8, Messaging and Integration Patterns, presents the most important messaging
patterns, teaching you how to build and integrate complex distributed systems using
ZMQ and AMQP.

What you need for this book
To experiment with the code, you will need a working installation of Node.js version
0.10 (or greater) and npm. Some examples will require Node.js 0.11 or greater. You
will also need to be familiar with the command prompt, know how to install an npm
package, and know how to run Node.js applications. You will also need a text editor to
work with the code and a web browser.

Preface

[4]

Who this book is for
This book is for developers who have already had initial contact with Node.js and
now want to get the most out of it in terms of productivity, design quality, and
scalability. You are only required to have some prior exposure to the technology
through some basic examples, since this book will cover some basic concepts as well.
Developers with intermediate experience in Node.js will also find the techniques
presented in this book beneficial.

Some background in software design theory is also an advantage to understand
some of the concepts presented.

This book assumes that you have a working knowledge of web application
development, JavaScript, web services, databases, and data structures.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through
the use of the include directive."

A block of code is set as follows:

var zmq = require('zmq')
var sink = zmq.socket('pull');
sink.bindSync("tcp://*:5001");

sink.on('message', function(buffer) {
 console.log('Message from worker: ', buffer.toString());
});

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

function produce() {
 [...]
 variationsStream(alphabet, maxLength)
 .on('data', function(combination) {
 [...]

Preface

[5]

 var msg = {searchHash: searchHash, variations: batch};
 channel.sendToQueue('jobs_queue',
 new Buffer(JSON.stringify(msg)));
 [...]
 }
 })
 [...]
}

Any command-line input or output is written as follows:

node replier

node requestor

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "To explain
the problem, we will create a little web spider, a command-line application that
takes in a web URL as the input and downloads its contents locally into a file."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[6]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Node.js Design
Fundamentals

Some principles and design patterns literally define the Node.js platform and its
ecosystem; the most peculiar ones are probably its asynchronous nature and its
programming style that makes heavy use of callbacks. However, there are other
fundamental components that characterize the platform; for example, its module
system, which allows multiple versions of the same dependency to coexist in an
application, and the observer pattern, implemented by the EventEmitter class,
which perfectly complements callbacks when dealing with asynchronous code.
It's therefore important that we first dive into these fundamental principles and
patterns, not only for writing correct code, but also to be able to take effective
design decisions when it comes to solving bigger and more complex problems.

Another aspect that characterizes Node.js is its philosophy. Approaching Node.js
is in fact way more than simply learning a new technology; it's also embracing a
culture and a community. We will see how this greatly influences the way we
design our applications and components, and the way they interact with those
created by the community.

In this chapter, we will learn the following topics:

• The Node.js philosophy, the "Node way"
• The reactor pattern: the mechanism at the heart of the Node.js

asynchronous architecture
• The Node.js callback pattern and its set of conventions
• The module system and its patterns: the fundamental mechanisms for

organizing code in Node.js
• The observer pattern and its Node.js incarnation: the EventEmitter class

Node.js Design Fundamentals

[8]

The Node.js philosophy
Every platform has its own philosophy—a set of principles and guidelines that are
generally accepted by the community, an ideology of doing things that influences
the evolution of a platform, and how applications are developed and designed.
Some of these principles arise from the technology itself, some of them are enabled
by its ecosystem, some are just trends in the community, and others are evolutions
of different ideologies. In Node.js, some of these principles come directly from its
creator, Ryan Dahl, from all the people who contributed to the core, from charismatic
figures in the community, and some of the principles are inherited from the
JavaScript culture or are influenced by the Unix philosophy.

None of these rules are imposed and they should always be applied with common
sense; however, they can prove to be tremendously useful when we are looking for a
source of inspiration while designing our programs.

You can find an extensive list of software development philosophies
in Wikipedia at http://en.wikipedia.org/wiki/List_of_
software_development_philosophies.

Small core
The Node.js core itself has its foundations built on a few principles; one of
these is, having the smallest set of functionality, leaving the rest to the so-called
userland (or userspace), the ecosystem of modules living outside the core. This
principle has an enormous impact on the Node.js culture, as it gives freedom to the
community to experiment and iterate fast on a broader set of solutions within the
scope of the userland modules, instead of being imposed with one slowly evolving
solution that is built into the more tightly controlled and stable core. Keeping the
core set of functionality to the bare minimum then, not only becomes convenient
in terms of maintainability, but also in terms of the positive cultural impact that it
brings on the evolution of the entire ecosystem.

Small modules
Node.js uses the concept of module as a fundamental mean to structure the code of a
program. It is the brick for creating applications and reusable libraries called packages
(a package is also frequently referred to as just module; since, usually it has one
single module as an entry point). In Node.js, one of the most evangelized principles
is to design small modules, not only in terms of code size, but most importantly in
terms of scope.

Chapter 1

[9]

This principle has its roots in the Unix philosophy, particularly in two of its
precepts, which are as follows:

• "Small is beautiful."
• "Make each program do one thing well."

Node.js brought these concepts to a whole new level. Along with the help of npm,
the official package manager, Node.js helps solving the dependency hell problem
by making sure that each installed package will have its own separate set of
dependencies, thus enabling a program to depend on a lot of packages without
incurring in conflicts. The Node way, in fact, involves extreme levels of reusability,
whereby applications are composed of a high number of small, well-focused
dependencies. While this can be considered unpractical or even totally unfeasible
in other platforms, in Node.js this practice is encouraged. As a consequence, it is
not rare to find npm packages containing less than 100 lines of code or exposing
only one single function.

Besides the clear advantage in terms of reusability, a small module is also considered
to be the following:

• Easier to understand and use
• Simpler to test and maintain
• Perfect to share with the browser

Having smaller and more focused modules empowers everyone to share or reuse
even the smallest piece of code; it's the Don't Repeat Yourself (DRY) principle
applied at a whole new level.

Small surface area
In addition to being small in size and scope, Node.js modules usually also have the
characteristic of exposing only a minimal set of functionality. The main advantage
here is an increased usability of the API, which means that the API becomes clearer
to use and is less exposed to erroneous usage. Most of the time, in fact, the user of a
component is interested only in a very limited and focused set of features, without
the need to extend its functionality or tap into more advanced aspects.

In Node.js, a very common pattern for defining modules is to expose only one piece
of functionality, such as a function or a constructor, while letting more advanced
aspects or secondary features become properties of the exported function or
constructor. This helps the user to identify what is important and what is secondary.
It is not rare to find modules that expose only one function and nothing else, for the
simple fact that it provides a single, unmistakably clear entry point.

Node.js Design Fundamentals

[10]

Another characteristic of many Node.js modules is the fact that they are created to
be used rather than extended. Locking down the internals of a module by forbidding
any possibility of an extension might sound inflexible, but it actually has the
advantage of reducing the use cases, simplifying its implementation, facilitating its
maintenance, and increasing its usability.

Simplicity and pragmatism
Have you ever heard of the Keep It Simple, Stupid (KISS) principle? Or the
famous quote:

"Simplicity is the ultimate sophistication."

– Leonardo da Vinci

Richard P. Gabriel, a prominent computer scientist coined the term worse is better to
describe the model, whereby less and simpler functionality is a good design choice
for software. In his essay, The rise of worse is better, he says:

"The design must be simple, both in implementation and interface. It is more
important for the implementation to be simple than the interface. Simplicity is
the most important consideration in a design."

Designing a simple, as opposed to a perfect, feature-full software, is a good
practice for several reasons: it takes less effort to implement, allows faster shipping
with less resources, is easier to adapt, and is easier to maintain and understand.
These factors foster the community contributions and allow the software itself to
grow and improve.

In Node.js, this principle is also enabled by JavaScript, which is a very pragmatic
language. It's not rare, in fact, to see simple functions, closures, and object literals
replacing complex class hierarchies. Pure object-oriented designs often try to
replicate the real world using the mathematical terms of a computer system without
considering the imperfection and the complexity of the real world itself. The truth is
that our software is always an approximation of the reality and we would probably
have more success in trying to get something working sooner and with reasonable
complexity, instead of trying to create a near-perfect software with a huge effort and
tons of code to maintain.

Throughout this book, we will see this principle in action many times. For example,
a considerable number of traditional design patterns, such as Singleton or Decorator
can have a trivial, even if sometimes not foolproof implementation and we will see
how an uncomplicated, practical approach most of the time is preferred to a pure,
flawless design.

Chapter 1

[11]

The reactor pattern
In this section, we will analyze the reactor pattern, which is the heart of the Node.js
asynchronous nature. We will go through the main concepts behind the pattern,
such as the single-threaded architecture and the non-blocking I/O, and we will
see how this creates the foundation for the entire Node.js platform.

I/O is slow
I/O is definitely the slowest among the fundamental operations of a computer.
Accessing the RAM is in the order of nanoseconds (10e-9 seconds), while accessing
data on the disk or the network is in the order of milliseconds (10e-3 seconds). For
the bandwidth, it is the same story; RAM has a transfer rate consistently in the order
of GB/s, while disk and network varies from MB/s to, optimistically, GB/s. I/O
is usually not expensive in terms of CPU, but it adds a delay between the moment
the request is sent and the moment the operation completes. On top of that, we also
have to consider the human factor; often, the input of an application comes from a
real person, for example, the click of a button or a message sent in a real-time chat
application, so the speed and frequency of I/O don't depend only on technical
aspects, and they can be many orders of magnitude slower than the disk or network.

Blocking I/O
In traditional blocking I/O programming, the function call corresponding to an
I/O request will block the execution of the thread until the operation completes.
This can go from a few milliseconds, in case of a disk access, to minutes or even
more, in case the data is generated from user actions, such as pressing a key. The
following pseudocode shows a typical blocking read performed against a socket:

//blocks the thread until the data is available
data = socket.read();
//data is available
print(data);

It is trivial to notice that a web server that is implemented using blocking I/O will
not be able to handle multiple connections in the same thread; each I/O operation
on a socket will block the processing of any other connection. For this reason, the
traditional approach to handle concurrency in web servers is to kick off a thread
or a process (or to reuse one taken from a pool) for each concurrent connection
that needs to be handled. This way, when a thread blocks for an I/O operation
it will not impact the availability of the other requests, because they are handled
in separate threads.

Node.js Design Fundamentals

[12]

The following image illustrates this scenario:

handle data from B

handle data

from A

handle data from C

handle data

from A

Server Thread

Thread

Thread

Idle time

Connection A

Connection B

Connection C

The preceding image lays emphasis on the amount of time each thread is idle,
waiting for new data to be received from the associated connection. Now, if we
also consider that any type of I/O can possibly block a request, for example, while
interacting with databases or with the filesystem, we soon realize how many times a
thread has to block in order to wait for the result of an I/O operation. Unfortunately,
a thread is not cheap in terms of system resources, it consumes memory and causes
context switches, so having a long running thread for each connection and not using
it for most of the time, is not the best compromise in terms of efficiency.

Non-blocking I/O
In addition to blocking I/O, most modern operating systems support another
mechanism to access resources, called non-blocking I/O. In this operating mode,
the system call always returns immediately without waiting for the data to be read
or written. If no results are available at the moment of the call, the function will
simply return a predefined constant, indicating that there is no data available to
return at that moment.

For example, in Unix operating systems, the fcntl() function is used to
manipulate an existing file descriptor to change its operating mode to non-blocking
(with the O_NONBLOCK flag). Once the resource is in non-blocking mode, any read
operation will fail with a return code, EAGAIN, in case the resource doesn't have any
data ready to be read.

Chapter 1

[13]

The most basic pattern for accessing this kind of non-blocking I/O is to actively
poll the resource within a loop until some actual data is returned; this is called
busy-waiting. The following pseudocode shows you how it's possible to read
from multiple resources using non-blocking I/O and a polling loop:

resources = [socketA, socketB, pipeA];
while(!resources.isEmpty()) {
 for(i = 0; i < resources.length; i++) {
 resource = resources[i];
 //try to read
 var data = resource.read();
 if(data === NO_DATA_AVAILABLE)
 //there is no data to read at the moment
 continue;
 if(data === RESOURCE_CLOSED)
 //the resource was closed, remove it from the list
 resources.remove(i);
 else
 //some data was received, process it
 consumeData(data);
 }
}

You can see that, with this simple technique, it is already possible to handle
different resources in the same thread, but it's still not efficient. In fact, in the
preceding example, the loop will consume precious CPU only for iterating over
resources that are unavailable most of the time. Polling algorithms usually result
in a huge amount of wasted CPU time.

Event demultiplexing
Busy-waiting is definitely not an ideal technique for processing non-blocking
resources, but luckily, most modern operating systems provide a native mechanism
to handle concurrent, non-blocking resources in an efficient way; this mechanism
is called synchronous event demultiplexer or event notification interface. This
component collects and queues I/O events that come from a set of watched
resources, and block until new events are available to process. The following is the
pseudocode of an algorithm that uses a generic synchronous event demultiplexer to
read from two different resources:

socketA, pipeB;
watchedList.add(socketA, FOR_READ); //[1]
watchedList.add(pipeB, FOR_READ);
while(events = demultiplexer.watch(watchedList)) { //[2]
 //event loop

Node.js Design Fundamentals

[14]

 foreach(event in events) { //[3]
 //This read will never block and will always return data
 data = event.resource.read();
 if(data === RESOURCE_CLOSED)
 //the resource was closed, remove it from the watched list
 demultiplexer.unwatch(event.resource);
 else
 //some actual data was received, process it
 consumeData(data);
 }
}

These are the important steps of the preceding pseudocode:

1. The resources are added to a data structure, associating each one of them
with a specific operation, in our example a read.

2. The event notifier is set up with the group of resources to be watched.
This call is synchronous and blocks until any of the watched resources is
ready for a read. When this occurs, the event demultiplexer returns from
the call and a new set of events is available to be processed.

3. Each event returned by the event demultiplexer is processed. At this point,
the resource associated with each event is guaranteed to be ready to read
and to not block during the operation. When all the events are processed, the
flow will block again on the event demultiplexer until new events are again
available to be processed. This is called the event loop.

It's interesting to see that with this pattern, we can now handle several I/O
operations inside a single thread, without using a busy-waiting technique. The
following image shows us how a web server would be able to handle multiple
connections using a synchronous event demultiplexer and a single thread:

Server

Idle time

Connection A

Connection B

Connection C

Thread
handle data

from B

handle data

from A

handle data

from C

Chapter 1

[15]

The previous image helps us understand how concurrency works in a single-threaded
application using a synchronous event demultiplexer and non-blocking I/O. We can
see that using only one thread does not impair our ability to run multiple I/O bound
tasks concurrently. The tasks are spread over time, instead of being spread across
multiple threads. This has the clear advantage of minimizing the total idle time of the
thread, as clearly shown in the image. This is not the only reason for choosing this
model. To have only a single thread, in fact, also has a beneficial impact on the way
programmers approach concurrency in general. Throughout the book, we will see how
the absence of in-process race conditions and multiple threads to synchronize, allows
us to use much simpler concurrency strategies.

In the next chapter, we will have the opportunity to talk more about the concurrency
model of Node.js.

The reactor pattern
We can now introduce the reactor pattern, which is a specialization of the algorithm
presented in the previous section. The main idea behind it is to have a handler
(which in Node.js is represented by a callback function) associated with each I/O
operation, which will be invoked as soon as an event is produced and processed by
the event loop. The structure of the reactor pattern is shown in the following image:

Request

I/O

Execute

Handler

Resource

Resource Operation Handler

Operation Handler

Event Demultiplexer

Application

Event Handler

Event Handler

Event Handler

Event Queue

Event Loop

2

3

6

4

1

5a

5b

Node.js Design Fundamentals

[16]

This is what happens in an application using the reactor pattern:

1. The application generates a new I/O operation by submitting a request to
the Event Demultiplexer. The application also specifies a handler, which will
be invoked when the operation completes. Submitting a new request to the
Event Demultiplexer is a non-blocking call and it immediately returns the
control back to the application.

2. When a set of I/O operations completes, the Event Demultiplexer pushes the
new events into the Event Queue.

3. At this point, the Event Loop iterates over the items of the Event Queue.
4. For each event, the associated handler is invoked.
5. The handler, which is part of the application code, will give back the

control to the Event Loop when its execution completes (5a). However,
new asynchronous operations might be requested during the execution
of the handler (5b), causing new operations to be inserted in the Event
Demultiplexer (1), before the control is given back to the Event Loop.

6. When all the items in the Event Queue are processed, the loop will block
again on the Event Demultiplexer which will then trigger another cycle.

The asynchronous behavior is now clear: the application expresses the interest to
access a resource at one point in time (without blocking) and provides a handler,
which will then be invoked at another point in time when the operation completes.

A Node.js application will exit automatically when there are no more
pending operations in the Event Demultiplexer, and no more events
to be processed inside the Event Queue.

We can now define the pattern at the heart of Node.js.

Pattern (reactor): handles I/O by blocking until new events are
available from a set of observed resources, and then reacting by
dispatching each event to an associated handler.

Chapter 1

[17]

The non-blocking I/O engine of Node.js – libuv
Each operating system has its own interface for the Event Demultiplexer:
epoll on Linux, kqueue on Mac OS X, and I/O Completion Port API (IOCP) on
Windows. Besides that, each I/O operation can behave quite differently depending
on the type of the resource, even within the same OS. For example, in Unix, regular
filesystem files do not support non-blocking operations, so, in order to simulate a
non-blocking behavior, it is necessary to use a separate thread outside the Event
Loop. All these inconsistencies across and within the different operating systems
required a higher-level abstraction to be built for the Event Demultiplexer. This is
exactly why the Node.js core team created a C library called libuv, with the
objective to make Node.js compatible with all the major platforms and normalize
the non-blocking behavior of the different types of resource; libuv today represents
the low-level I/O engine of Node.js.

Besides abstracting the underlying system calls, libuv also implements the reactor
pattern, thus providing an API for creating event loops, managing the event queue,
running asynchronous I/O operations, and queuing other types of tasks.

A great resource to learn more about libuv is the free
online book created by Nikhil Marathe, which is available
at http://nikhilm.github.io/uvbook/.

The recipe for Node.js
The reactor pattern and libuv are the basic building blocks of Node.js, but we need
the following three other components to build the full platform:

• A set of bindings responsible for wrapping and exposing libuv and other
low-level functionality to JavaScript.

• V8, the JavaScript engine originally developed by Google for the Chrome
browser. This is one of the reasons why Node.js is so fast and efficient.
V8 is acclaimed for its revolutionary design, its speed, and for its efficient
memory management.

• A core JavaScript library (called node-core) that implements the high-level
Node.js API.

Node.js Design Fundamentals

[18]

Finally, this is the recipe of Node.js, and the following image represents its
final architecture:

Userland modules and applications

Core Javascript API (node-core)

Bindings

V8 libuv

Node.js

The callback pattern
Callbacks are the materialization of the handlers of the reactor pattern and they are
literally one of those imprints that give Node.js its distinctive programming style.
Callbacks are functions that are invoked to propagate the result of an operation
and this is exactly what we need when dealing with asynchronous operations.
They practically replace the use of the return instruction that, as we know, always
executes synchronously. JavaScript is a great language to represent callbacks,
because as we know, functions are first class objects and can be easily assigned to
variables, passed as arguments, returned from another function invocation, or stored
into data structures. Also, closures are an ideal construct for implementing callbacks.
With closures, we can in fact reference the environment in which a function was
created, practically, we can always maintain the context in which the asynchronous
operation was requested, no matter when or where its callback is invoked.

If you need to refresh your knowledge about closures, you can refer to
the article on the Mozilla Developer Network at https://developer.
mozilla.org/en-US/docs/Web/JavaScript/Guide/Closures.

In this section, we will analyze this particular style of programming made of
callbacks instead of the return instructions.

Chapter 1

[19]

The continuation-passing style
In JavaScript, a callback is a function that is passed as an argument to another
function and is invoked with the result when the operation completes. In functional
programming, this way of propagating the result is called continuation-passing
style, for brevity, CPS. It is a general concept, and it is not always associated with
asynchronous operations. In fact, it simply indicates that a result is propagated by
passing it to another function (the callback), instead of directly returning it to the caller.

Synchronous continuation-passing style
To clarify the concept, let's take a look at a simple synchronous function:

function add(a, b) {
 return a + b;
}

There is nothing special here; the result is passed back to the caller using the
return instruction; this is also called direct style, and it represents the most
common way of returning a result in synchronous programming. The equivalent
continuation-passing style of the preceding function would be as follows:

function add(a, b, callback) {
 callback(a + b);
}

The add() function is a synchronous CPS function, which means that it will
return a value only when the callback completes its execution. The following
code demonstrates this statement:

console.log('before');
add(1, 2, function(result) {
 console.log('Result: ' + result);
});
console.log('after');

Since add() is synchronous, the previous code will trivially print the following:

before
Result: 3
after

Node.js Design Fundamentals

[20]

Asynchronous continuation-passing style
Now, let's consider the case where the add() function is asynchronous, which is
as follows:

function addAsync(a, b, callback) {
 setTimeout(function() {
 callback(a + b);
 }, 100);
}

In the previous code, we simply use setTimeout() to simulate an asynchronous
invocation of the callback. Now, let's try to use this function and see how the order
of the operations changes:

console.log('before');
addAsync(1, 2, function(result) {
 console.log('Result: ' + result);
});
console.log('after');

The preceding code will print the following:

before
after
Result: 3

Since setTimeout() triggers an asynchronous operation, it will not wait anymore
for the callback to be executed, but instead, it returns immediately giving the control
back to addAsync(), and then back to its caller. This property in Node.js is crucial,
as it allows the stack to unwind, and the control to be given back to the event loop as
soon as an asynchronous request is sent, thus allowing a new event from the queue
to be processed.

Chapter 1

[21]

The following image shows how this works:

console.log(’Result:

‘+result)

console.log(’before’)

addAysnc(...)

setTimeout(...)

console.log(’after’)

callback(a + b)

1

2

3

4
5

6

7

8

9

10

Function invocation

Transfer of control

Event Loop

When the async

operation

completes

When the asynchronous operation completes, the execution is then resumed
starting from the callback provided to the asynchronous function that caused the
unwinding. The execution will start from the Event Loop, so it will have a fresh stack.
This is where JavaScript comes in really handy, in fact, thanks to closures it is trivial to
maintain the context of the caller of the asynchronous function, even if the callback is
invoked at a different point in time and from a different location.

A synchronous function blocks until it completes its operations.
An asynchronous function returns immediately and the result is
passed to a handler (in our case, a callback) at a later cycle of the
event loop.

Node.js Design Fundamentals

[22]

Non continuation-passing style callbacks
There are several circumstances in which the presence of a callback argument might
make you think that a function is asynchronous or is using a continuation-passing
style; that's not always true, let's take, for example, the map() method of the
Array object:

var result = [1, 5, 7].map(function(element) {
 return element – 1;
});

Clearly, the callback is just used to iterate over the elements of the array, and not to
pass the result of the operation. In fact, the result is returned synchronously using a
direct style. The intent of a callback is usually clearly stated in the documentation of
the API.

Synchronous or asynchronous?
We have seen how the order of the instructions changes radically depending
on the nature of a function - synchronous or asynchronous. This has strong
repercussions on the flow of the entire application, both in correctness and efficiency.
The following is an analysis of these two paradigms and their pitfalls. In general,
what must be avoided, is creating inconsistency and confusion around the nature
of an API, as doing so can lead to a set of problems which might be very hard to
detect and reproduce. To drive our analysis, we will take as example the case of an
inconsistently asynchronous function.

An unpredictable function
One of the most dangerous situations is to have an API that behaves synchronously
under certain conditions and asynchronously under others. Let's take the following
code as an example:

var fs = require('fs');
var cache = {};
function inconsistentRead(filename, callback) {
 if(cache[filename]) {
 //invoked synchronously
 callback(cache[filename]);
 } else {
 //asynchronous function

Chapter 1

[23]

 fs.readFile(filename, 'utf8', function(err, data) {
 cache[filename] = data;
 callback(data);
 });
 }
}

The preceding function uses the cache variable to store the results of different
file read operations. Please bear in mind that this is just an example, it does not
have error management, and the caching logic itself is suboptimal. Besides this,
the preceding function is dangerous because it behaves asynchronously until the
cache is not set—which is until the fs.readFile() function returns its results—but
it will also be synchronous for all the subsequent requests for a file already in the
cache—triggering an immediate invocation of the callback.

Unleashing Zalgo
Now, let's see how the use of an unpredictable function, such as the one that we
defined previously, can easily break an application. Consider the following code:

function createFileReader(filename) {
 var listeners = [];
 inconsistentRead(filename, function(value) {
 listeners.forEach(function(listener) {
 listener(value);
 });
 });

 return {
 onDataReady: function(listener) {
 listeners.push(listener);
 }
 };
}

When the preceding function is invoked, it creates a new object that acts as a notifier,
allowing to set multiple listeners for a file read operation. All the listeners will be
invoked at once when the read operation completes and the data is available. The
preceding function uses our inconsistentRead() function to implement this
functionality. Let's now try to use the createFileReader() function:

var reader1 = createFileReader('data.txt');
reader1.onDataReady(function(data) {
 console.log('First call data: ' + data);

Node.js Design Fundamentals

[24]

 //...sometime later we try to read again from
 //the same file
 var reader2 = createFileReader('data.txt');
 reader2.onDataReady(function(data) {
 console.log('Second call data: ' + data);
 });
});

The preceding code will print the following output:

First call data: some data

As you can see, the callback of the second operation is never invoked. Let's see why:

• During the creation of reader1, our inconsistentRead() function behaves
asynchronously, because there is no cached result available. Therefore, we
have all the time to register our listener, as it will be invoked later in another
cycle of the event loop, when the read operation completes.

• Then, reader2 is created in a cycle of the event loop in which the
cache for the requested file already exists. In this case, the inner call to
inconsistentRead() will be synchronous. So, its callback will be invoked
immediately, which means that also all the listeners of reader2 will be
invoked synchronously. However, we are registering the listeners after the
creation of reader2, so they will never be invoked.

The callback behavior of our inconsistentRead() function is really unpredictable,
as it depends on many factors, such as the frequency of its invocation, the filename
passed as argument, and the amount of time taken to load the file.

The bug that we've just seen might be extremely complicated to identify and
reproduce in a real application. Imagine to use a similar function in a web server,
where there can be multiple concurrent requests; imagine seeing some of those
requests hanging, without any apparent reason and without any error being logged.
This definitely falls under the category of nasty defects.

Isaac Z. Schlueter, creator of npm and former Node.js project lead, in one of his blog
posts compared the use of this type of unpredictable functions to unleashing Zalgo.
If you're not familiar with Zalgo, you are invited to find out what it is.

Chapter 1

[25]

You can find the original Isaac Z. Schlueter's post at http://blog.izs.
me/post/59142742143/designing-apis-for-asynchrony.

Using synchronous APIs
The lesson to learn from the unleashing Zalgo example is that it is imperative for an
API to clearly define its nature, either synchronous or asynchronous.

One suitable fix for our inconsistentRead() function, is to make it totally
synchronous. This is possible because Node.js provides a set of synchronous
direct style APIs for most of the basic I/O operations. For example, we can use the
fs.readFileSync() function in place of its asynchronous counterpart. The code
would now be as follows:

var fs = require('fs');
var cache = {};
function consistentReadSync(filename) {
 if(cache[filename]) {
 return cache[filename];
 } else {
 cache[filename] = fs.readFileSync(filename, 'utf8');
 return cache[filename];
 }
}

We can see that the entire function was also converted to a direct style. There is no
reason for the function to have a continuation-passing style if it is synchronous.
In fact, we can state that it is always a good practice to implement a synchronous
API using a direct style; this will eliminate any confusion around its nature and
will also be more efficient from a performance perspective.

Pattern: prefer the direct style for purely synchronous functions.

Node.js Design Fundamentals

[26]

Please bear in mind that changing an API from CPS to a direct style, or from
asynchronous to synchronous, or vice versa might also require a change to the
style of all the code using it. For example, in our case, we will have to totally
change the interface of our createFileReader() API and adapt it to work
always synchronously.

Also, using a synchronous API instead of an asynchronous one has some caveats:

• A synchronous API might not be always available for the needed
functionality.

• A synchronous API will block the event loop and put the concurrent requests
on hold. It practically breaks the Node.js concurrency, slowing down the
whole application. We will see later in the book what this really means for
our applications.

In our consistentReadSync() function, the risk of blocking the event loop is
partially mitigated, because the synchronous I/O API is invoked only once per each
filename, while the cached value will be used for all the subsequent invocations. If
we have a limited number of static files, then using consistentReadSync() won't
have a big effect on our event loop. Things can change quickly if we have to read
many files and only once. Using synchronous I/O in Node.js is strongly discouraged
in many circumstances; however, in some situations, this might be the easiest and
most efficient solution. Always evaluate your specific use case in order to choose the
right alternative.

Use blocking API only when they don't affect the ability of the
application to serve concurrent requests.

Deferred execution
Another alternative for fixing our inconsistentRead() function is to make it purely
asynchronous. The trick here is to schedule the synchronous callback invocation
to be executed "in the future" instead of being run immediately in the same event
loop cycle. In Node.js, this is possible using process.nextTick(), which defers
the execution of a function until the next pass of the event loop. Its functioning is
very simple; it takes a callback as an argument and pushes it on the top of the event
queue, in front of any pending I/O event, and returns immediately. The callback will
then be invoked as soon as the event loop runs again.

Chapter 1

[27]

Let's apply this technique to fix our inconsistentRead() function as follows:

var fs = require('fs');
var cache = {};
function consistentReadAsync(filename, callback) {
 if(cache[filename]) {
 process.nextTick(function() {
 callback(cache[filename]);
 });
 } else {
 //asynchronous function
 fs.readFile(filename, 'utf8', function(err, data) {
 cache[filename] = data;
 callback(data);
 });
 }
}

Now, our function is guaranteed to invoke its callback asynchronously,
under any circumstances.

Another API for deferring the execution of code is setImmediate(), which—despite
the name—might actually be slower than process.nextTick(). While their purpose
is very similar, their semantic is quite different. Callbacks deferred with process.
nextTick() run before any other I/O event is fired, while with setImmediate(),
the execution is queued behind any I/O event that is already in the queue. Since
process.nextTick() runs before any already scheduled I/O, it might cause I/O
starvation under certain circumstances, for example, a recursive invocation; this
can never happen with setImmediate(). We will learn to appreciate the difference
between these two APIs when we analyze the use of deferred invocation for running
synchronous CPU-bound tasks later in the book.

Pattern: we guarantee that a callback is invoked asynchronously by
deferring its execution using process.nextTick().

Node.js Design Fundamentals

[28]

Node.js callback conventions
In Node.js, continuation-passing style APIs and callbacks follow a set of specific
conventions. These conventions apply to the Node.js core API but they are also
followed virtually by every userland module and application. So, it's very important
that we understand them and make sure that we comply whenever we need to
design an asynchronous API.

Callbacks come last
In Node.js, if a function accepts in input a callback, this has to be passed as the last
argument. Let's take the following Node.js core API as an example:

fs.readFile(filename, [options], callback)

As you can see from the signature of the preceding function, the callback is always
put in last position, even in the presence of optional arguments. The motivation
for this convention is that the function call is more readable in case the callback is
defined in place.

Error comes first
In CPS, errors are propagated as any other type of result, which means using the
callback. In Node.js, any error produced by a CPS function is always passed as
the first argument of the callback, and any actual result is passed starting from the
second argument. If the operation succeeds without errors, the first argument
will be null or undefined. The following code shows you how to define a callback
complying with this convention:

fs.readFile('foo.txt', 'utf8', function(err, data) {
 if(err)
 handleError(err);
 else
 processData(data);
});

It is a good practice to always check for the presence of an error, as not doing so will
make it harder for us to debug our code and discover the possible points of failures.
Another important convention to take into account is that the error must always be
of type Error. This means that simple strings or numbers should never be passed as
error objects.

Chapter 1

[29]

Propagating errors
Propagating errors in synchronous, direct style functions is done with the
well-known throw command, which causes the error to jump up in the call
stack until it's caught.

In asynchronous CPS however, proper error propagation is done by simply passing
the error to the next callback in the CPS chain. The typical pattern looks as follows:

var fs = require('fs');
function readJSON(filename, callback) {
 fs.readFile(filename, 'utf8', function(err, data) {
 var parsed;
 if(err)
 //propagate the error and exit the current function
 return callback(err);

 try {
 //parse the file contents
 parsed = JSON.parse(data);
 } catch(err) {
 //catch parsing errors
 return callback(err);
 }
 //no errors, propagate just the data
 callback(null, parsed);
 });
};

The detail to notice in the previous code is how the callback is invoked when we
want to pass a valid result and when we want to propagate an error.

Uncaught exceptions
You might have seen from the readJSON() function defined previously that in
order to avoid any exception to be thrown into the fs.readFile() callback, we
put a try-catch block around JSON.parse(). Throwing inside an asynchronous
callback, in fact, will cause the exception to jump up to the event loop and never be
propagated to the next callback.

Node.js Design Fundamentals

[30]

In Node.js, this is an unrecoverable state and the application will simply shut down
printing the error to the stderr interface. To demonstrate this, let's try to remove the
try-catch block from the readJSON() function defined previously:

var fs = require('fs');
function readJSONThrows(filename, callback) {
 fs.readFile(filename, 'utf8', function(err, data) {
 if(err)
 return callback(err);
 //no errors, propagate just the data
 callback(null, JSON.parse(data));
 });
};

Now, in the function we just defined, there is no way of catching an eventual
exception coming from JSON.parse(). Let's try, for example, to parse an invalid
JSON file with the following code:

readJSONThrows('nonJSON.txt', function(err) {
 console.log(err);
});

This would result in the application being abruptly terminated and the following
exception being printed on the console:

SyntaxError: Unexpected token d

 at Object.parse (native)

 at [...]/06_uncaught_exceptions/uncaught.js:7:25

 at fs.js:266:14

 at Object.oncomplete (fs.js:107:15)

Now, if we look at the preceding stack trace, we will see that it starts somewhere
from the fs.js module, practically from the point at which the native API has
completed reading and returned its result back to the fs.readFile() function, via
the event loop. This clearly shows us that the exception traveled from our callback
into the stack that we saw, and then straight into the event loop, where it's finally
caught and thrown in the console.

Chapter 1

[31]

This also means that wrapping the invocation of readJSONThrows() with a
try-catch block will not work, because the stack in which the block operates
is different from the one in which our callback is invoked. The following code
shows the anti-pattern that we just described:

try {
 readJSONThrows('nonJSON.txt', function(err, result) {
 [...]
 });
} catch(err) {
 console.log('This will not catch the JSON parsing exception');
}

The preceding catch statement will never receive the JSON parsing exception,
as it will travel back to the stack in which the exception was thrown, and we just
saw that the stack ends up in the event loop and not with the function that triggers
the asynchronous operation.

We already said that the application is aborted the moment an exception reaches
the event loop; however, we still have a last chance to perform some cleanup
or logging before the application terminates. In fact, when this happens, Node.js
emits a special event called uncaughtException just before exiting the process.
The following code shows a sample use case:

process.on('uncaughtException', function(err){
 console.error('This will catch at last the ' +
 'JSON parsing exception: ' + err.message);
 //without this, the application would continue
 process.exit(1);
});

It's important to understand that an uncaught exception leaves the application in a
state that is not guaranteed to be consistent, which can lead to unforeseeable problems.
For example, there might still have incomplete I/O requests running, or closures might
have become inconsistent. That's why it is always advised, especially in production, to
exit anyway from the application after an uncaught exception is received.

Node.js Design Fundamentals

[32]

The module system and its patterns
Modules are the bricks for structuring non-trivial applications, but also the main
mechanism to enforce information hiding by keeping private all the functions and
variables that are not explicitly marked to be exported. In this section, we will
introduce the Node.js module system and its most common usage patterns.

The revealing module pattern
One of the major problems with JavaScript is the absence of namespacing.
Programs run in the global scope polluting it with data that comes from both
internal application code and dependencies. A popular technique to solve this
problem is called revealing module pattern and it looks like the following:

var module = (function() {
 var privateFoo = function() {...};
 var privateVar = [];

 var export = {
 publicFoo: function() {...},
 publicBar: function() {...}
 }

 return export;
})();

This pattern leverages a self-invoking function to create a private scope, exporting
only the parts that are meant to be public. In the preceding code, the module variable
contains only the exported API, while the rest of the module content is practically
inaccessible from outside. As we will see in a moment, the idea behind this pattern is
used as a base for the Node.js module system.

Node.js modules explained
CommonJS is a group with the aim to standardize the JavaScript ecosystem, and one
of their most popular proposals is called CommonJS modules. Node.js built its module
system on top of this specification, with the addition of some custom extensions. To
describe how it works, we can make an analogy with the revealing module pattern,
where each module runs in a private scope, so that every variable that is defined
locally does not pollute the global namespace.

Chapter 1

[33]

A homemade module loader
To explain how this works, let's build a similar system from scratch. The code that
follows creates a function that mimics a subset of the functionality of the original
require() function of Node.js.

Let's start by creating a function that loads the content of a module, wraps it into a
private scope, and evaluates it:

function loadModule(filename, module, require) {
 var wrappedSrc =
 '(function(module, exports, require) {' +
 fs.readFileSync(filename, 'utf8') +
 '})(module, module.exports, require);';
 eval(wrappedSrc);
}

The source code of a module is essentially wrapped into a function, as it was for
the revealing module pattern. The difference here is that we pass a list of variables
to the module, in particular: module, exports, and require. Make a note of how
the exports argument of the wrapping function is initialized with the contents of
module.exports, as we will talk about this later.

Please bear in mind that this is only an example and you will rarely
need to evaluate some source code in a real application. Features such
as eval() or the functions of the vm module (http://nodejs.org/
api/vm.html) can be easily used in the wrong way or with the wrong
input, thus opening a system to code injection attacks. They should
always be used with extreme care or avoided altogether.

Let's now see what these variables contain by implementing our require() function:

var require = function(moduleName) {
 console.log('Require invoked for module: ' + moduleName);
 var id = require.resolve(moduleName); //[1]
 if(require.cache[id]) { //[2]
 return require.cache[id].exports;
 }

 //module metadata
 var module = { //[3]
 exports: {},
 id: id
 };

Node.js Design Fundamentals

[34]

 //Update the cache
 require.cache[id] = module; //[4]

 //load the module
 loadModule(id, module, require); //[5]

 //return exported variables
 return module.exports; //[6]
};
require.cache = {};
require.resolve = function(moduleName) {
 /* resolve a full module id from the moduleName */
}

The preceding function simulates the behavior of the original require() function
of Node.js, which is used to load a module. Of course, this is just for educative
purposes and it does not accurately or completely reflect the internal behavior of
the real require() function, but it's great to understand the internals of the Node.js
module system, how a module is defined, and loaded. What our homemade module
system does is explained as follows:

1. A module name is accepted as input and the very first thing that we do is
resolve the full path of the module, which we call id. This task is delegated
to require.resolve(), which implements a specific resolving algorithm
(we will talk about it later).

2. If the module was already loaded in the past, it should be available in the
cache. In this case, we just return it immediately.

3. If the module was not yet loaded, we set up the environment for the first
load. In particular, we create a module object that contains an exports
property initialized with an empty object literal. This property will be used
by the code of the module to export any public API.

4. The module object is cached.
5. The module source code is read from its file and the code is evaluated, as we

have seen before. We provide to the module, the module object that we just
created, and a reference to the require() function. The module exports its
public API by manipulating or replacing the module.exports object.

6. Finally, the content of module.exports, which represents the public API of
the module, is returned to the caller.

As we see, there is nothing magical behind the workings of the Node.js module
system; the trick is all in the wrapper we create around a module's source code
and the artificial environment in which we run it.

Chapter 1

[35]

Defining a module
By looking at how our homemade require() function works, we should now know
how to define a module. The following code gives us an example:

//load another dependency
var dependency = require('./anotherModule');

//a private function
function log() {
 console.log('Well done ' + dependency.username);
}

//the API to be exported for public use
module.exports.run = function() {
 log();
};

The essential concept to remember is that everything inside a module is private
unless it's assigned to the module.exports variable. The contents of this variable
are then cached and returned when the module is loaded using require().

Defining globals
Even if all the variables and functions that are declared in a module are defined
in its local scope, it is still possible to define a global variable. In fact, the module
system exposes a special variable called global, which can be used for this
purpose. Everything that is assigned to this variable will end up automatically
in the global scope.

Please note that polluting the global scope is considered a bad practice
and nullifies the advantage of having a module system. So, use it only
if you really know what you are doing.

module.exports vs exports
For many developers who are not yet familiar with Node.js, a common source of
confusion is the difference between using exports and module.exports to expose
a public API. The code of our homemade require function should again clear
any doubt. The variable exports is just a reference to the initial value of module.
exports; we have seen that such a value is essentially a simple object literal created
before the module is loaded.

Node.js Design Fundamentals

[36]

This means that we can only attach new properties to the object referenced by the
exports variable, as shown in the following code:

exports.hello = function() {
 console.log('Hello');
}

Reassigning the exports variable doesn't have any effect, because it doesn't
change the contents of module.exports, it will only reassign the variable itself.
The following code is therefore wrong:

exports = function() {
 console.log('Hello');
}

If we want to export something other than an object literal, as for example a function,
an instance, or even a string, we have to reassign module.exports as follows:

module.exports = function() {
 console.log('Hello');
}

require is synchronous
Another important detail that we should take into account is that our homemade
require function is synchronous. In fact, it returns the module contents using a
simple direct style, and no callback is required. This is true for the original Node.js
require() function too. As a consequence, any assignment to module.export must
be synchronous as well. For example, the following code is incorrect:

setTimeout(function() {
 module.exports = function() {...};
}, 100);

This property has important repercussions in the way we define modules, as it
limits us to mostly using synchronous code during the definition of a module.
This is actually one of the most important reasons why the core Node.js libraries
offer synchronous APIs as an alternative to most of the asynchronous ones.

Chapter 1

[37]

If we need some asynchronous initialization steps for a module, we can always
define and export an uninitialized module that is initialized asynchronously at
a later time. The problem with this approach though, is that loading such a module
using require does not guarantee that it's ready to be used. In Chapter 6, Recipes,
we will analyze this problem in detail and we will present some patterns to solve
this issue elegantly.

For the sake of curiosity, you might want to know that in its early days,
Node.js used to have an asynchronous version of require(), but it
was soon removed because it was overcomplicating a functionality that
was actually meant to be used only at initialization time, and where
asynchronous I/O brings more complexities than advantages.

The resolving algorithm
The term dependency hell, describes a situation whereby the dependencies of a
software, in turn depend on a shared dependency, but require different incompatible
versions. Node.js solves this problem elegantly by loading a different version of a
module depending on where the module is loaded from. All the merits of this feature
go to npm and also to the resolving algorithm used in the require function.

Let's now give a quick overview of this algorithm. As we saw, the resolve() function
takes a module name (which we will call here, moduleName) as input and it returns
the full path of the module. This path is then used to load its code and also to identify
the module uniquely. The resolving algorithm can be divided into the following three
major branches:

• File modules: If moduleName starts with "/" it's considered already an
absolute path to the module and it's returned as it is. If it starts with "./",
then moduleName is considered a relative path, which is calculated starting
from the requiring module.

• Core modules: If moduleName is not prefixed with "/" or "./", the algorithm
will first try to search within the core Node.js modules.

• Package modules: If no core module is found matching moduleName,
then the search continues by looking for a matching module into the first
node_modules directory that is found navigating up in the directory
structure starting from the requiring module. The algorithm continues
to search for a match by looking into the next node_modules directory
up in the directory tree, until it reaches the root of the filesystem.

Node.js Design Fundamentals

[38]

For file and package modules, both the individual files and directories can match
moduleName. In particular, the algorithm will try to match the following:

• <moduleName>.js

• <moduleName>/index.js

• The directory/file specified in the main property of <moduleName>/
package.json

The complete, formal documentation of the resolving algorithm can
be found at http://nodejs.org/api/modules.html#modules_
all_together.

The node_modules directory is actually where npm installs the dependencies
of each package. This means that, based on the algorithm we just described,
each package can have its own private dependencies. For example, consider
the following directory structure:

myApp

├── foo.js

└── node_modules

 ├── depA

 │ └── index.js

 ├── depB

 │ ├── bar.js

 │ └── node_modules

 │ └── depA

 │ └── index.js

 └── depC

 ├── foobar.js

 └── node_modules

 └── depA

 └── index.js

Chapter 1

[39]

In the preceding example, myApp, depB, and depC all depend on depA; however,
they all have their own private version of the dependency! Following the rules of the
resolving algorithm, using require('depA') will load a different file depending on
the module that requires it, for example:

• Calling require('depA') from /myApp/foo.js will load /myApp/node_
modules/depA/index.js

• Calling require('depA') from /myApp/node_modules/depB/bar.js will
load /myApp/node_modules/depB/node_modules/depA/index.js

• Calling require('depA') from /myApp/node_modules/depC/foobar.js
will load /myApp/node_modules/depC/node_modules/depA/index.js

The resolving algorithm is the magic behind the robustness of the Node.js
dependency management, and is what makes it possible to have hundreds or even
thousands of packages in an application without having collisions or problems of
version compatibility.

The resolving algorithm is applied transparently for us when we
invoke require(); however, if needed, it can still be used directly
by any module by simply invoking require.resolve().

The module cache
Each module is loaded and evaluated only the first time it is required, since any
subsequent call of require() will simply return the cached version. This should result
clear by looking at the code of our homemade require function. Caching is crucial
for performances, but it also has some important functional implications:

• It makes it possible to have cycles within module dependencies
• It guarantees, to some extent, that always the same instance is returned

when requiring the same module from within a given package

The module cache is exposed in the require.cache variable, so it is possible to
directly access it if needed. A common use case is to invalidate any cached module
by deleting the relative key in the require.cache variable, a practice very useful
during testing but very dangerous if applied in normal circumstances.

Node.js Design Fundamentals

[40]

Cycles
Many consider circular dependencies as an intrinsic design issue, but it is something
which might actually happen in a real project, so it's useful for us to know at least how
this works in Node.js. If we look again at our homemade require() function, we
immediately get a glimpse of how this might work and what are its caveats.

Suppose we have two modules defined as follows:

• Module a.js:
exports.loaded = false;
var b = require('./b');
module.exports = {
 bWasLoaded: b.loaded,
 loaded: true
};

• Module b.js:

exports.loaded = false;
var a = require('./a');
module.exports = {
 aWasLoaded: a.loaded,
 loaded: true
};

Now, let's try to load these from another module, main.js, as follows:

var a = require('./a');
var b = require('./b');
console.log(a);
console.log(b);

The preceding code will print the following output:

{ bWasLoaded: true, loaded: true }

{ aWasLoaded: false, loaded: true }

This result reveals the caveats of circular dependencies. While both the modules
are completely initialized the moment they are required from the main module,
the a.js module will be incomplete when it is loaded from b.js. In particular,
its state will be the one that it reached the moment it required b.js. This behavior
should ring another bell, which will be confirmed if we swap the order in which
the two modules are required in main.js.

Chapter 1

[41]

If you try it, you will see that this time it will be the module a.js that will receive an
incomplete version of b.js. We understand now that this can become quite a fuzzy
business if we lose control of which module is loaded first, which can happen quite
easily if the project is big enough.

Module definition patterns
The module system, besides being a mechanism for loading dependencies, is also
a tool for defining APIs. As for any other problem related to API design, the main
factor to consider is the balance between private and public functionality. The aim
is to maximize information hiding and API usability, while balancing these with other
software qualities like extensibility and code reuse.

In this section, we will analyze some of the most popular patterns for defining
modules in Node.js; each one has its own balance of information hiding,
extensibility, and code reuse.

Named exports
The most basic method for exposing a public API is using named exports, which
consists in assigning all the values we want to make public to properties of the object
referenced by exports (or module.exports). In this way, the resulting exported
object becomes a container or namespace for a set of related functionality.

The following code shows a module implementing this pattern:

//file logger.js
exports.info = function(message) {
 console.log('info: ' + message);
};

exports.verbose = function(message) {
 console.log('verbose: ' + message);
};

The exported functions are then available as properties of the loaded module,
as shown in the following code:

//file main.js
var logger = require('./logger');
logger.info('This is an informational message');
logger.verbose('This is a verbose message');

Most of the Node.js core modules use this pattern.

Node.js Design Fundamentals

[42]

The CommonJS specification only allows the use of the exports
variable to expose public members. Therefore, the named exports
pattern is the only one that is really compatible with the CommonJS
specification. The use of module.exports is an extension provided
by Node.js to support a broader range of module definition patterns,
as those we are going to see next.

Exporting a function
One of the most popular module definition patterns consists in reassigning the
whole module.exports variable to a function. Its main strength it's the fact that
it exposes only a single functionality, which provides a clear entry point for the
module, and makes it simple to understand and use; it also honors the principle
of small surface area very well. This way of defining modules is also known in the
community as substack pattern, after one of its most prolific adopters, James Halliday
(nickname substack). The following code is an example of this pattern:

//file logger.js

module.exports = function(message) {
 console.log('info: ' + message);
};

A possible extension of this pattern is using the exported function as namespace
for other public APIs. This is a very powerful combination, because it still gives the
module the clarity of a single entry point (the main exported function), but it also
allows us to expose other functionalities that have secondary or more advanced
use cases. The following code shows you how to extend the module we defined
previously by using the exported function as a namespace:

module.exports.verbose = function(message) {
 console.log('verbose: ' + message);
};

The following code demonstrates how to use the module that we just defined:

//file main.js
var logger = require('./logger');
logger('This is an informational message');
logger.verbose('This is a verbose message');

Chapter 1

[43]

Even though exporting just a function might seem a limitation, in reality, it's a
perfect way to put the emphasis on a single functionality—the most important for
the module—while giving less visibility to secondary aspects, which are instead
exposed as properties of the exported function itself.

Pattern (substack): expose the main functionality of a module by
exporting only one function. Use the exported function as namespace
to expose any auxiliary functionality.

Exporting a constructor
A module that exports a constructor is a specialization of a module that exports a
function. The difference is that with this new pattern, we allow the user to create
new instances using the constructor, but we also give them the ability to extend its
prototype and forge new classes. The following is an example of this pattern:

//file logger.js
function Logger(name) {
 this.name = name;
};
Logger.prototype.log = function(message) {
 console.log('[' + this.name + '] ' + message);
};
Logger.prototype.info = function(message) {
 this.log('info: ' + message);
};
Logger.prototype.verbose = function(message) {
 this.log('verbose: ' + message);
};
module.exports = Logger;

And, we can use the preceding module as follows:

//file logger.js
var Logger = require('./logger');
var dbLogger = new Logger('DB');
dbLogger.info('This is an informational message');
var accessLogger = new Logger('ACCESS');
accessLogger.verbose('This is a verbose message');

Exporting a constructor still provides a single entry point for the module, but
compared to the substack pattern, it exposes a lot more of the module internals;
however on the other side it allows much more power when it comes to extending
its functionality.

Node.js Design Fundamentals

[44]

A variation of this pattern consists in applying a guard against invocations that don't
use the new instruction. This little trick allows us to use our module as a factory.
The following code shows you how this works:

function Logger(name) {
 if(!(this instanceof Logger)) {
 return new Logger(name);
 }
 this.name = name;
};

The trick is simple; we check whether this exists and is an instance of Logger. If any
of these conditions is false, it means that the Logger() function was invoked without
using new, so we proceed with creating the new instance properly and returning it to
the caller. This technique allows us to use the module also as a factory, as shown in
the following code:

//file logger.js
var Logger = require('./logger');
var dbLogger = Logger('DB');
accessLogger.verbose('This is a verbose message');

Exporting an instance
We can leverage the caching mechanism of require() to easily define stateful
instances—objects with a state created from a constructor or a factory, which can be
shared across different modules. The following code shows an example of this pattern:

//file logger.js
function Logger(name) {
 this.count = 0;
 this.name = name;
};
Logger.prototype.log = function(message) {
 this.count++;
 console.log('[' + this.name + '] ' + message);
};
module.exports = new Logger('DEFAULT');

This newly defined module can then be used as follows:

//file main.js
var logger = require('./logger');
logger.log('This is an informational message');

Chapter 1

[45]

Because the module is cached, every module that requires the logger module
will actually always retrieve the same instance of the object, thus sharing its state.
This pattern is very much like creating a Singleton, however, it does not guarantee
the uniqueness of the instance across the entire application, as it happens in the
traditional Singleton pattern. When analyzing the resolving algorithm, we have seen
in fact, that a module might be installed multiple times inside the dependency tree
of an application. This results with multiple instances of the same logical module, all
running in the context of the same Node.js application. In Chapter 5, Wiring Modules,
we will analyze the consequences of exporting stateful instances and some of the
patterns we can use as alternatives.

An extension to the pattern we just described, consists in exposing the constructor
used to create the instance, in addition to the instance itself. This allows the user to
create new instances of the same object, or even to extend it if necessary. To enable
this, we just need to assign a new property to the instance, as shown in the following
line of code:

module.exports.Logger = Logger;

Then, we can use the exported constructor to create other instances of the class,
as follows:

var customLogger = new logger.Logger('CUSTOM');
customLogger.log('This is an informational message');

From a usability perspective, this is similar to using an exported function as
namespace; the module exports the default instance of an object—the piece of
functionality we might want to use most of the time—while more advanced
features, such as the ability to create new instances or extend the object, are still
made available through less exposed properties.

Modifying other modules or the global scope
A module can even export nothing. This can look a bit out of place, however,
we should not forget that a module can modify the global scope and any object
in it, including other modules in the cache. Please note that these are in general
considered bad practices, but since this pattern can be useful and safe under some
circumstances (for example, for testing) and is sometimes used in the wild, it is
worth to know and understand it. So, we said a module can modify other modules
or objects in the global scope. Well, this is called monkey patching, which generally
refers to the practice of modifying the existing objects at runtime to change or extend
their behavior or to apply temporary fixes.

Node.js Design Fundamentals

[46]

The following example shows you how we can add a new function to
another module:

//file patcher.js

// ./logger is another module
require('./logger').customMessage = function() {
 console.log('This is a new functionality');
};

Using our new patcher module would be as easy as writing the following code:

//file main.js

require('./patcher');
var logger = require('./logger');
logger.customMessage();

In the preceding code, patcher must be required before using the logger module
for the first time in order to allow the patch to be applied.

The techniques described here are all dangerous ones to apply. The main concern
is that, to have a module that modifies the global namespace or other modules is an
operation with side effects. In other words, it affects the state of entities outside their
scope, which can have consequences that are not always predictable, especially when
multiple modules interact with the same entities. Imagine to have two different
modules trying to set the same global variable, or modifying the same property
of the same module; the effects might be unpredictable (which module wins?),
but most importantly it would have repercussions on the entire application.

The observer pattern
Another important and fundamental pattern used in Node.js is the observer
pattern. Together with reactor, callbacks, and modules, this is one of the pillars
of the platform and an absolute prerequisite for using many node-core and
userland modules.

Observer is an ideal solution for modeling the reactive nature of Node.js, and a
perfect complement for callbacks. Let's give a formal definition as follows:

Pattern (observer): defines an object (called subject), which can notify a
set of observers (or listeners), when a change in its state happens.

Chapter 1

[47]

The main difference from the callback pattern is that the subject can actually notify
multiple observers, while a traditional continuation-passing style callback will
usually propagate its result to only one listener, the callback.

The EventEmitter
In traditional object-oriented programming, the observer pattern requires interfaces,
concrete classes, and a hierarchy; in Node.js, all becomes much simpler. The observer
pattern is already built into the core and is available through the EventEmitter class.
The EventEmitter class allows us to register one or more functions as listeners,
which will be invoked when a particular event type is fired. The following image
visually explains the concept:

Event B

Event A

EventEmitter

Listener

Listener

Listener

The EventEmitter is a prototype, and it is exported from the events core module.
The following code shows how we can obtain a reference to it:

var EventEmitter = require('events').EventEmitter;
var eeInstance = new EventEmitter();

The essential methods of the EventEmitter are given as follows:

• on(event, listener): This method allows you to register a new listener
(a function) for the given event type (a string)

• once(event, listener): This method registers a new listener, which is
then removed after the event is emitted for the first time

• emit(event, [arg1], […]): This method produces a new event and
provides additional arguments to be passed to the listeners

• removeListener(event, listener): This method removes a listener for
the specified event type

Node.js Design Fundamentals

[48]

All the preceding methods will return the EventEmitter instance to allow chaining.
The listener function has the signature, function([arg1], […]), so it simply
accepts the arguments provided the moment the event is emitted. Inside the listener,
this refers to the instance of the EventEmitter that produces the event.

We can already see that there is a big difference between a listener and a traditional
Node.js callback; in particular, the first argument is not an error, but it can be any
data passed to emit() at the moment of its invocation.

Create and use an EventEmitter
Let's see how we can use an EventEmitter in practice. The simplest way is to create
a new instance and use it directly. The following code shows a function, which uses
an EventEmitter to notify its subscribers in real time when a particular pattern is
found in a list of files:

var EventEmitter = require('events').EventEmitter;
var fs = require('fs');

function findPattern(files, regex) {
 var emitter = new EventEmitter();
 files.forEach(function(file) {
 fs.readFile(file, 'utf8', function(err, content) {
 if(err)
 return emitter.emit('error', err);

 emitter.emit('fileread', file);
 var match = null;
 if(match = content.match(regex))
 match.forEach(function(elem) {
 emitter.emit('found', file, elem);
 });
 });
 });
 return emitter;
}

The EventEmitter created by the preceding function will produce the following
three events:

• fileread: This event occurs when a file is read
• found: This event occurs when a match has been found
• error: This event occurs when an error has occurred during the reading

of the file

Chapter 1

[49]

Let's see now how our findPattern() function can be used:

findPattern(
 ['fileA.txt', 'fileB.json'],
 /hello \w+/g
)
 .on('fileread', function(file) {
 console.log(file + ' was read');
 })
 .on('found', function(file, match) {
 console.log('Matched "' + match + '" in file ' + file);
 })
 .on('error', function(err) {
 console.log('Error emitted: ' + err.message);
 });

In the preceding example, we registered a listener for each of the three event types
produced by the EventEmitter which was created by our findPattern() function.

Propagating errors
The EventEmitter - as it happens for callbacks - cannot just throw exceptions
when an error condition occurs, as they would be lost in the event loop if the
event is emitted asynchronously. Instead, the convention is to emit a special event,
called error, and to pass an Error object as an argument. That's exactly what we
are doing in the findPattern() function that we defined earlier.

It is always a good practice to register a listener for the
error event, as Node.js will treat it in a special way and will
automatically throw an exception and exit from the program if
no associated listener is found.

Make any object observable
Sometimes, creating a new observable object directly from the EventEmitter
class is not enough, as this makes it impractical to provide functionality that
goes beyond the mere production of new events. It is more common, in fact, to
have the need to make a generic object observable; this is possible by extending
the EventEmitter class.

Node.js Design Fundamentals

[50]

To demonstrate this pattern, let's try to implement the functionality of the
findPattern() function in an object as follows:

var EventEmitter = require('events').EventEmitter;
var util = require('util');
var fs = require('fs');

function FindPattern(regex) {
 EventEmitter.call(this);
 this.regex = regex;
 this.files = [];
}
util.inherits(FindPattern, EventEmitter);

FindPattern.prototype.addFile = function(file) {
 this.files.push(file);
 return this;
};

FindPattern.prototype.find = function() {
 var self = this;
 self.files.forEach(function(file) {
 fs.readFile(file, 'utf8', function(err, content) {
 if(err)
 return self.emit('error', err);

 self.emit('fileread', file);
 var match = null;
 if(match = content.match(self.regex))
 match.forEach(function(elem) {
 self.emit('found', file, elem);
 });
 });
 });
 return this;
};

Chapter 1

[51]

The FindPattern prototype that we defined extends the EventEmitter using the
inherits() function provided by the core module util. This way, it becomes a
full-fledged observable class. The following is an example of its usage:

var findPatternObject = new FindPattern(/hello \w+/);
findPatternObject
 .addFile('fileA.txt')
 .addFile('fileB.json')
 .find()
 .on('found', function(file, match) {
 console.log('Matched "' + match + '" in file ' + file);
 })
 .on('error', function(err) {
 console.log('Error emitted ' + err.message);
 });

We can now see how the FindPattern object has a full set of methods, in addition to
being observable by inheriting the functionality of the EventEmitter.

This is a pretty common pattern in the Node.js ecosystem, for example, the
Server object of the core http module defines methods such as listen(), close(),
setTimeout(), and internally it also inherits from the EventEmitter function,
thus allowing it to produce events, such as request, when a new request is received,
or connection, when a new connection is established, or closed, when the
server is closed.

Other notable examples of objects extending the EventEmitter are Node.js streams.
We will analyze streams in more detail in Chapter 3, Coding with Streams.

Synchronous and asynchronous events
As with callbacks, events can be emitted synchronously or asynchronously, and it is
crucial that we never mix the two approaches in the same EventEmitter, but even
more importantly, when emitting the same event type, to avoid to produce the same
problems that we described in the Unleashing Zalgo section.

Node.js Design Fundamentals

[52]

The main difference between emitting synchronous or asynchronous events lies in
the way listeners can be registered. When the events are emitted asynchronously,
the user has all the time to register new listeners even after the EventEmitter is
initialized, because the events are guaranteed not to be fired until the next cycle
of the event loop. That's exactly what is happening in the findPattern() function.
We defined this function previously and it represents a common approach that is
used in most Node.js modules.

On the contrary, emitting events synchronously requires that all the listeners are
registered before the EventEmitter function starts to emit any event. Let's look
at an example:

function SyncEmit() {
 this.emit('ready');
}
util.inherits(SyncEmit, EventEmitter);

var syncEmit = new SyncEmit();
syncEmit.on('ready', function() {
 console.log('Object is ready to be used');
});

If the ready event was emitted asynchronously, then the previous code would
work perfectly; however, the event is produced synchronously and the listener is
registered after the event was already sent, so the result is that the listener is never
invoked; the code will print nothing to the console.

Contrarily to callbacks, there are situations where using an EventEmitter in a
synchronous fashion makes sense, given its different purpose. For this reason,
it's very important to clearly highlight the behavior of our EventEmitter in its
documentation to avoid confusion, and potentially a wrong usage.

EventEmitter vs Callbacks
A common dilemma when defining an asynchronous API is to check whether
to use an EventEmitter or simply accept a callback. The general differentiating
rule is semantic: callbacks should be used when a result must be returned in
an asynchronous way; events should instead be used when there is a need to
communicate that something has just happened.

Chapter 1

[53]

But besides this simple principle, a lot of confusion is generated from the fact that the
two paradigms are most of the time equivalent and allow you to achieve the same
results. Consider the following code for an example:

function helloEvents() {
 var eventEmitter = new EventEmitter();
 setTimeout(function() {
 eventEmitter.emit('hello', 'world');
 }, 100);
 return eventEmitter;
}
function helloCallback(callback) {
 setTimeout(function() {
 callback('hello', 'world');
 }, 100);
}

The two functions helloEvents() and helloCallback() can be considered
equivalent in terms of functionality; the first communicates the completion of the
timeout using an event, the second uses a callback to notify the caller instead,
passing the event type as an argument. But what really differentiates them is the
readability, the semantic, and the amount of code that is required to be implemented
or used. While we cannot give a deterministic set of rules to choose between one or
the other style, we can certainly provide some hints to help take the decision.

As a first observation, we can say that callbacks have some limitations when it comes
to supporting different types of events. In fact, we can still differentiate between
multiple events by passing the type as an argument of the callback, or by accepting
several callbacks, one for each supported event. However, this cannot exactly be
considered an elegant API. In this situation, an EventEmitter can give a better
interface and leaner code.

Another case where the EventEmitter might be preferable is when the same event
can occur multiple times, or not occur at all. A callback, in fact, is expected to be
invoked exactly once, whether the operation is successful or not. The fact that we have
a possibly repeating circumstance should let us think again about the semantic nature
of the occurrence, which is more similar to an event that has to be communicated
rather than a result; in this case an EventEmitter is the preferred choice.

Lastly, an API using callbacks can notify only that particular callback, while
using an EventEmitter function it's possible for multiple listeners to receive
the same notification.

Node.js Design Fundamentals

[54]

Combine callbacks and EventEmitter
There are also some circumstances where an EventEmitter can be used in
conjunction with a callback. This pattern is extremely useful when we want to
implement the principle of small surface area by exporting a traditional asynchronous
function as the main functionality, while still providing richer features, and more
control by returning an EventEmitter. One example of this pattern is offered by the
node-glob module (https://npmjs.org/package/glob), a library that performs
glob-style file searches. The main entry point of the module is the function it exports,
which has the following signature:

glob(pattern, [options], callback)

The function takes pattern as the first argument, a set of options, and a callback
function which is invoked with the list of all the files matching the provided pattern.
At the same time, the function returns an EventEmitter that provides a more
fine-grained report over the state of the process. For example, it is possible to be
notified in real-time when a match occurs by listening to the match event, to obtain
the list of all the matched files with the end event, or to know whether the process
was manually aborted by listening to the abort event. The following code shows
how this looks:

var glob = require('glob');
glob('data/*.txt', function(error, files) {
 console.log('All files found: ' + JSON.stringify(files));
}).on('match', function(match) {
 console.log('Match found: ' + match);
});

As we can see, the practice of exposing a simple, clean, and minimal entry point
while still providing more advanced or less important features with secondary
means is quite common in Node.js, and combining EventEmitter with traditional
callbacks is one of the ways to achieve that.

Pattern: create a function that accepts a callback and returns an
EventEmitter, thus providing a simple and clear entry point for
the main functionality, while emitting more fine-grained events
using the EventEmitter.

Chapter 1

[55]

Summary
In this chapter, we have seen how the Node.js platform is based on a few important
principles that provide the foundation to build efficient and reusable code. The
philosophy and the design choices behind the platform have, in fact, a strong
influence on the structure and behavior of every application and module we create.
Often, for a developer moving from another technology, these principles might
seem unfamiliar and the usual instinctive reaction is to fight the change by trying
to find more familiar patterns inside a world which in reality requires a real shift in
the mindset. On one hand, the asynchronous nature of the reactor pattern requires
a different programming style made of callbacks and things that happen at a later
time, without worrying too much about threads and race conditions. On the other
hand, the module pattern and its principles of simplicity and minimalism creates
interesting new scenarios in terms of reusability, maintenance, and usability.

Finally, besides the obvious technical advantages of being fast, efficient, and based
on JavaScript, Node.js is attracting so much interest because of the principles
we have just discovered. For many, grasping the essence of this world feels like
returning to the origins, to a more humane way of programming for both size
and complexity and that's why developers end up falling in love with Node.js.

In the next chapter, we will focus our attention on the mechanisms to handle
asynchronous code, we will see how callbacks can easily become our enemy, and
we will learn how to fix that by using some simple principles, patterns, or even
constructs that do not require a continuation-passing style programming.

Asynchronous Control
Flow Patterns

Moving from a synchronous programming style to a platform such as Node.js, where
continuation-passing style and asynchronous APIs are the norm, can be frustrating.
Writing asynchronous code can be a different experience, especially when it comes
to control flow. Simple problems such as iterating over a set of files, executing tasks
in sequence, or waiting for a set of operations to complete, require the developer
to take new approaches and techniques to avoid ending up writing inefficient and
unreadable code. One common mistake is to fall into the trap of the callback hell
problem and see the code growing horizontally rather than vertically, with a nesting
that makes even simple routines hard to read and maintain.

In this chapter, we will see how it's actually possible to tame callbacks and write
clean, manageable asynchronous code by using some discipline and with the
aid of some patterns. We will see how control flow libraries, such as async, can
significantly simplify our problems, and we will also discover that the continuation-
passing style is not the only way to implement asynchronous API. In fact, we will
learn how Promises and ECMAScript 6 generators can be powerful and flexible
alternatives. For each one of these paradigms, we will learn about patterns that will
help us implement the most common control flows, and by the end of the chapter,
we should be ready and confident to write clean and efficient asynchronous code.

Asynchronous Control Flow Patterns

[58]

The difficulties of asynchronous
programming
Losing control of asynchronous code in JavaScript is undoubtedly easy. Closures
and in-place definition of anonymous functions allow a smooth programming
experience that doesn't require the developer to jump to other points in the code
base. This is perfectly in line with the KISS principle; it's simple, it keeps the code
flowing, and we get it working in less time. Unfortunately, sacrificing qualities
such as modularity, reusability, and maintainability will sooner or later lead to the
uncontrolled proliferation of callback nesting, the growth in the size of functions,
and will lead to poor code organization. Most of the time, creating closures is not
functionally needed, so it's more a matter of discipline than a problem related to
asynchronous programming. Recognizing that our code is becoming unwieldy—or
even better, knowing in advance that it might become unwieldy—and then acting
accordingly with the most adequate solution is what differentiates a novice from
an expert.

Creating a simple web spider
To explain the problem, we will create a little web spider, a command-line
application that takes in a web URL as input and downloads its contents
locally into a file. In the code presented in this chapter, we are going to use a
few npm dependencies:

• request: A library to streamline HTTP calls
• mkdirp: A small utility to create directories recursively

Also, we will often refer to a local module named ./utilities, which contains
some helpers which we will be using in our application. We omit the contents of this
file for brevity, but you can find the full implementation, along with a package.json
containing the full list of dependencies, in the download pack for this book available
at http://www.packtpub.com.

The core functionality of our application is contained inside a module named
spider.js. Let's see how it looks. To start with, let's load all the dependencies
that we are going to use:

var request = require('request');
var fs = require('fs');
var mkdirp = require('mkdirp');
var path = require('path');
var utilities = require('./utilities');

Chapter 2

[59]

Next, we create a new function named spider(), which takes in the URL
to download and a callback function that will be invoked when the download
process completes:

function spider(url, callback) {
 var filename = utilities.urlToFilename(url);
 fs.exists(filename, function(exists) { //[1]
 if(!exists) {
 console.log("Downloading " + url);
 request(url, function(err, response, body) { //[2]
 if(err) {
 callback(err);
 } else {
 mkdirp(path.dirname(filename), function(err) { //[3]
 if(err) {
 callback(err);
 } else {
 fs.writeFile(filename, body, function(err) { //[4]
 if(err) {
 callback(err);
 } else {
 callback(null, filename, true);
 }
 });
 }
 });
 }
 });
 } else {
 callback(null, filename, false);
 }
 });
}

The preceding function executes the following tasks:

1. Checks if the URL was already downloaded by verifying that the
corresponding file was not already created:
fs.exists(filecodename, function(exists) …

2. If the file is not found, the URL is downloaded using the following line
of code:
request(url, function(err, response, body) …

Asynchronous Control Flow Patterns

[60]

3. Then, we make sure whether the directory that will contain the file
exists or not:
mkdirp(path.dirname(filename), function(err) …

4. Finally, we write the body of the HTTP response to the filesystem:

fs.writeFile(filename, body, function(err) …

To complete our web spider application, we just need to invoke the spider()
function by providing a URL as an input (in our case, we read it from the
command-line arguments):

spider(process.argv[2], function(err, filename, downloaded) {
 if(err) {
 console.log(err);
 } else if(downloaded){
 console.log('Completed the download of "'+ filename +'"');
 } else {
 console.log('"'+ filename +'" was already downloaded');
 }
});

Now, we are ready to try our web spider application, but first, make sure you
have the utilities.js module and the package.json containing the full list
of dependencies in your project directory. Then, install all the dependencies by
running the following command:

npm install

Next, we can execute the spider module to download the contents of a web page,
with a command like this:

node spider http://www.example.com

Our web spider application requires that we always include the
protocol (for example, http://) in the URL we provide. Also, do
not expect HTML links to be rewritten or resources such as images to
be downloaded as this is just a simple example to demonstrate how
asynchronous programming works.

Chapter 2

[61]

The callback hell
Looking at the spider() function we defined earlier, we can surely notice that even
though the algorithm we implemented is really straightforward, the resulting code
has several levels of indentation and is very hard to read. Implementing a similar
function with direct style blocking API would be straightforward, and there would
be very few chances to make it look so wrong. However, using asynchronous CPS is
another story, and making bad use of closures can lead to an incredibly bad code.

The situation where the abundance of closures and in-place callback definitions
transform the code into an unreadable and unmanageable blob is known as callback
hell. It's one of the most well recognized and severe anti-patterns in Node.js and
JavaScript in general. The typical structure of a code affected by this problem looks
like the following:

asyncFoo(function(err) {
 asyncBar(function(err) {
 asyncFooBar(function(err) {
 [...]
 });
 });
});

We can see how code written in this way assumes the shape of a pyramid due to the
deep nesting and that's why it is also colloquially known as the pyramid of doom.

The most evident problem with code such as the preceding one is the poor
readability. Due to the nesting being too deep, it's almost impossible to keep
track of where a function ends and where another one begins.

Another issue is caused by the overlapping of the variable names used in each scope.
Often, we have to use similar or even identical names to describe the content of a
variable. The best example is the error argument received by each callback. Some
people often try to use variations of the same name to differentiate the object in each
scope—for example, err, error, err1, err2, and so on; others prefer to just hide the
variable defined in the scope by always using the same name; for example, err. Both
the alternatives are far from perfect, and cause confusion and increase the probability
of introducing defects.

Also, we have to keep in mind that closures come at a small price in terms of
performances and memory consumption. In addition, they can create memory
leaks that are not so easy to identify because we shouldn't forget that any context
referenced by an active closure is retained from garbage collection.

Asynchronous Control Flow Patterns

[62]

For a great introduction to how closures work in V8 you can refer to
the blog post by Vyacheslav Egorov, a software engineer at Google
working on V8, at http://mrale.ph/blog/2012/09/23/
grokking-v8-closures-for-fun.html.

If we look at our spider() function, we will notice that it clearly represents a
callback hell situation and has all the problems we just described. That's exactly what
we are going to fix with the patterns and techniques we will learn in this chapter.

Using plain JavaScript
Now that we have met our first example of callback hell, we know what we should
definitely avoid; however, that's not the only concern when writing asynchronous
code. In fact, there are several situations where controlling the flow of a set of
asynchronous tasks requires the use of specific patterns and techniques, especially
if we are using only plain JavaScript without the aid of any external library. For
example, iterating over a collection by applying an asynchronous operation in
sequence is not as easy as invoking forEach() over an array, but it actually
requires a technique similar to a recursion.

In this section, we will learn not only about how to avoid the callback hell but also
about how to implement some of the most common control flow patterns using only
simple and plain JavaScript.

Callback discipline
When writing asynchronous code, the first rule to keep in mind is to not abuse
closures when defining callbacks. It can be tempting to do so, because it does not
require any additional thinking for problems such as modularization and reusability;
however, we have seen how this can have more disadvantages than advantages.
Most of the times, fixing the callback hell problem does not require any library,
fancy technique, or change of paradigm but just some common sense.

Chapter 2

[63]

These are some basic principles that can help us keep the nesting level low and
improve the organization of our code in general:

• You must exit as soon as possible. Use return, continue, or break,
depending on the context, to immediately exit the current statement instead
of writing (and nesting) complete if/else statements. This will help keep
our code shallow.

• You need to create named functions for callbacks, keeping them out of
closures and passing intermediate results as arguments. Naming our
functions will also make them look better in stack traces.

• You need to modularize the code. Split the code into smaller, reusable
functions whenever it's possible.

Applying the callback discipline
To demonstrate the power of the earlier mentioned principles, let's apply them to fix
the callback hell problem in our web spider application.

For the first step, we can refactor our error-checking pattern by removing the else
statement. This is made possible by returning from the function immediately after
we receive an error. So, instead of having a code such as the following:

if(err) {
 callback(err);
} else {
 //code to execute when there are no errors
}

We can improve the organization of our code by writing the following one instead:

if(err) {
 return callback(err);
}
//code to execute when there are no errors

With this simple trick, we immediately have a reduction of the nesting level of our
functions; it is easy and doesn't require any complex refactoring.

Asynchronous Control Flow Patterns

[64]

A common mistake when executing the optimization we just described, is
forgetting to terminate the function after the callback is invoked. For the
error-handling scenario, the following code is a typical source of defects:

if(err) {

 callback(err);

}

//code to execute when there are no errors

We should never forget that the execution of our function will continue
even after we invoke the callback. It is then important to insert a return
instruction to block the execution of the rest of the function. Also note
that it doesn't really matter what output is returned by the function;
the real result (or error) is produced asynchronously and passed to
the callback. The return value of the asynchronous function is usually
ignored. This property allows us to write shortcuts such as the following:

return callback(...)

Instead of the slightly more verbose ones such as the following:
callback(...)

return;

As a second optimization for our spider() function, we can try to identify reusable
pieces of code. For example, the functionality that writes a given string to a file can
be easily factored out into a separate function as follows:

function saveFile(filename, contents, callback) {
 mkdirp(path.dirname(filename), function(err) {
 if(err) {
 return callback(err);
 }
 fs.writeFile(filename, contents, callback);
 });
}

Following the same principle, we can create a generic function named download()
which takes a URL and a filename as input, and downloads the URL into the given
file. Internally, we can use the saveFile() function we created earlier.

function download(url, filename, callback) {
 console.log('Downloading ' + url);
 request(url, function(err, response, body) {

Chapter 2

[65]

 if(err) {
 return callback(err);
 }
 saveFile(filename, body, function(err) {
 console.log('Downloaded and saved: ' + url);
 if(err) {
 return callback(err);
 }
 callback(null, body);
 });
 });
}

For the last step, we modify the spider() function, which, thanks to our changes,
will now look like the following:

function spider(url, callback) {
 var filename = utilities.urlToFilename(url);
 fs.exists(filename, function(exists) {
 if(exists) {
 return callback(null, filename, false);
 }
 download(url, filename, function(err) {
 if(err) {
 return callback(err);
 }
 callback(null, filename, true);
 })
 });
}

The functionality and the interface of the spider() function remain exactly the
same; what changed is only the way the code was organized. By applying the basic
principles that we discussed, we were able to drastically reduce the nesting of our
code and at the same time increase its reusability and testability. In fact, we could
think of exporting both saveFile() and download(), so that we can reuse them in
other modules. This also allows us to test their functionality more easily.

The refactoring we carried out in this section clearly demonstrates that most of the
time, all we need is just some discipline to make sure we do not abuse closures and
anonymous functions. It works brilliantly, requires minimal effort, and just uses
plain JavaScript.

Asynchronous Control Flow Patterns

[66]

Sequential execution
We now begin our exploration of the asynchronous control flow patterns. We will
start by analyzing the sequential execution flow.

Executing a set of tasks in sequence means running them one at a time, one after the
other. The order of execution matters and must be preserved, because the result of a
task in the list may affect the execution of the next. The following image illustrates
this concept:

Start Task 1 Task 2 Task 3 End

There are different variations of this flow:

• Executing a set of known tasks in sequence, without chaining or
propagating results

• Using the output of a task as the input for the next (also known as
chain, pipeline, or waterfall)

• Iterating over a collection while running an asynchronous task on each
element, one after the other

Sequential execution, despite being trivial when implemented using the direct style
blocking API, is usually the main cause of the callback hell problem when using
asynchronous CPS.

Executing a known set of tasks in sequence
We already met a sequential execution while implementing the spider() function
in the previous section. By applying the simple rules that we studied, we were able
to organize a set of known tasks in a sequential execution flow. Taking that code as a
guideline, we can then generalize the solution with the following pattern:

function task1(callback) {
 asyncOperation(function() {
 task2(callback);
 });
}

Chapter 2

[67]

function task2(callback) {
 asyncOperation(function(result) {
 task3(callback);
 });
}

function task3(callback) {
 asyncOperation(function() {
 callback();
 });
}

task1(function() {
 //task1, task2, task3 completed
});

The preceding pattern shows how each task invokes the next upon the completion
of a generic asynchronous operation. The pattern puts the emphasis on the
modularization of tasks, showing how closures are not always necessary to handle
asynchronous code.

Sequential iteration
The pattern we described earlier works perfectly if we know in advance what and
how many tasks are to be executed. This allows us to hardcode the invocation of the
next task in the sequence; but what happens if we want to execute an asynchronous
operation for each item in a collection? In cases such as this, we cannot hardcode the
task sequence anymore, instead, we have to build it dynamically.

Web spider version 2
To show an example of sequential iteration, let's introduce a new feature to the web
spider application. We now want to download all the links contained in a web page
recursively. To do that, we are going to extract all the links from the page and then
trigger our web spider on each one of them recursively and in sequence.

The first step is modifying our spider() function so that it triggers a recursive
download of all the links of a page by using a function named spiderLinks(),
which we are going to create shortly.

Asynchronous Control Flow Patterns

[68]

Also, instead of checking if the file already exists, we now try to read it, and start
spidering its links; this way, we are able to resume interrupted downloads. As a final
change, we make sure we propagate a new parameter, nesting, which helps us limit
the recursion depth. The resultant code is as follows:

function spider(url, nesting, callback) {
 var filename = utilities.urlToFilename(url);
 fs.readFile(filename, 'utf8', function(err, body) {
 if(err) {
 if(err.code !== 'ENOENT') {
 return callback(err);
 }

 return download(url, filename, function(err, body) {
 if(err) {
 return callback(err);
 }
 spiderLinks(url, body, nesting, callback);
 });
 }

 spiderLinks(url, body, nesting, callback);
 });
}

Sequential crawling of links
Now we can create the core of this new version of our web spider application, the
spiderLinks() function, which downloads all the links of an HTML page using a
sequential asynchronous iteration algorithm. Pay attention to the way we are going
to define that in the following code block:

function spiderLinks(currentUrl, body, nesting, callback) {
 if(nesting === 0) {
 return process.nextTick(callback);
 }
 var links = utilities.getPageLinks(currentUrl, body); //[1]
 function iterate(index) { //[2]
 if(index === links.length) {
 return callback();
 }

Chapter 2

[69]

 spider(links[index], nesting - 1, function(err) { //[3]
 if(err) {
 return callback(err);
 }
 iterate(index + 1);
 });
 }
 iterate(0); //[4]
}

The important steps to understand from this new function are as follows:

1. We obtain the list of all the links contained in the page using the
utilities.getPageLinks() function. This function returns only
the links pointing to an internal destination (same hostname)

2. We iterate over the links using a local function called iterate(), which
takes the index of the next link to analyze. In this function, the first thing
we do is checking if the index is equal to the length of the links array, in
which case we immediately invoke the callback() function, as it means
we processed all the items.

3. At this point, everything should be ready for processing the link. We invoke
the spider() function by decreasing the nesting level and invoking the next
step of the iteration when the operation completes.

4. As the last step in the spiderLinks() function, we bootstrap the iteration by
invoking iterate(0).

The algorithm we just presented allows us to iterate over an array by executing an
asynchronous operation in sequence, which in our case is the spider() function.

We can now try this new version of the spider application and watch it download
all the links of a web page recursively, one after the other. To interrupt the process,
which can take a while if there are many links, remember that we can always use
Ctrl + C. If we then decide to resume it, we can do so by launching the spider
application and providing the same URL we used for the first run.

Now that our web spider application might potentially trigger the
download of an entire website, please consider using it carefully.
For example, do not set a high nesting level or leave the spider
running for more than a few seconds. It is not polite to overload a
server with thousands of requests. In some circumstances this can
also be considered illegal. Do it responsibly!

Asynchronous Control Flow Patterns

[70]

The pattern
The code of the spiderLinks() function that we showed previously is a clear
example of how it's possible to iterate over a collection while applying an
asynchronous operation. We can also notice that it's a pattern that can be adapted to
any other situation where we have the need to iterate asynchronously in sequence
over the elements of a collection or in general over a list of tasks. This pattern can be
generalized as follows:

function iterate(index) {
 if(index === tasks.length) {
 return finish();
 }
 var task = tasks[index];
 task(function() {
 iterate(index + 1);
 });
}

function finish() {
 //iteration completed
}

iterate(0);

It's important to notice that these types of algorithms become really
recursive if task() is a synchronous operation. In such a case, the
stack will not unwind at every cycle and there might be a risk of
hitting the maximum call stack size limit.

The pattern we just presented is very powerful as it can adapt to several situations;
for example, we can map the values of an array or we can pass the results of an
operation to the next one in the iteration to implement a reduce algorithm, we can
quit the loop prematurely if a particular condition is met, or we can even iterate over
an infinite number of elements.

We could also choose to generalize the solution even further by wrapping it into a
function having a signature such as the following:

iterateSeries(collection, iteratorCallback, finalCallback)

Chapter 2

[71]

We leave this to you as an exercise.

Pattern (sequential iterator): execute a list of tasks in sequence
by creating a function named iterator, which invokes the next
available task in the collection and makes sure to invoke the next
step of the iteration when the current task completes.

Parallel execution
There are some situations where the order of the execution of a set of asynchronous
tasks is not important and all we want is just to be notified when all those running
tasks are completed. Such situations are better handled using a parallel execution
flow, as shown in the following diagram:

This may sound strange if we consider that Node.js is single threaded, but if we
remember what we discussed in Chapter 1, Node.js Design Fundamentals, we realize
that even though we have just one thread, we can still achieve concurrency, thanks
to the nonblocking nature of Node.js. In fact, the word parallel is used improperly in
this case, as it does not mean that the tasks run simultaneously, but rather that their
execution is carried out by an underlying nonblocking API and interleaved by the
event loop.

As we know, a task gives the control back to the event loop when it requests a
new asynchronous operation allowing the event loop to execute another task.
The proper word to use for this kind of flow is concurrency, but we will still use
parallel for simplicity.

Asynchronous Control Flow Patterns

[72]

The following diagram shows how two asynchronous tasks can run in parallel in a
Node.js program:

Event Loop

1

Main Task 1 Task 2

2

3

Call

Return

In the previous image, we have a Main function that executes two
asynchronous tasks:

1. The Main function triggers the execution of Task 1 and Task 2. As these
trigger an asynchronous operation, they immediately return the control
back to the Main function, which then returns it to the event loop.

2. When the asynchronous operation of Task 1 is completed, the event
loop gives control to it. When Task 1 completes its internal synchronous
processing as well, it notifies the Main function.

3. When the asynchronous operation triggered by Task 2 is completed, the
event loop invokes its callback, giving the control back to Task 2. At the
end of Task 2, the Main function is again notified. At this point, the Main
function knows that both Task 1 and Task 2 are complete, so it can continue
its execution or return the results of the operations to another callback.

Chapter 2

[73]

In short, this means that in Node.js, we can execute in parallel only asynchronous
operations, because their concurrency is handled internally by the nonblocking
APIs. In Node.js, synchronous (blocking) operations cannot run concurrently unless
their execution is interleaved with an asynchronous operation, or deferred with
setTimeout() or setImmediate(). We will see this in more detail in Chapter 6, Recipes.

Web spider version 3
Our web spider application seems like a perfect candidate to apply the concept of
parallel execution. So far, our application is executing the recursive download of the
linked pages in a sequential fashion. We can easily improve the performance of this
process by downloading all the linked pages in parallel.

To do that, we just need to modify the spiderLinks() function to make sure to
spawn all the spider() tasks at once, and then invoke the final callback only when
all of them have completed their execution. So let's modify our spiderLinks()
function as follows:

function spiderLinks(currentUrl, body, nesting, callback) {
 if(nesting === 0) {
 return process.nextTick(callback);
 }
 var links = utilities.getPageLinks(currentUrl, body);
 if(links.length === 0) {
 return process.nextTick(callback);
 }

 var completed = 0, errored = false;

 function done(err) {
 if(err) {
 errored = true;
 return callback(err);
 }
 if(++completed === links.length && !errored) {
 return callback();
 }
 }

 links.forEach(function(link) {
 spider(link, nesting - 1, done);
 });
}

Asynchronous Control Flow Patterns

[74]

Let's explain what we changed. As we mentioned earlier, the spider() tasks are
now started all at once. This is possible by simply iterating over the links array
and starting each task without waiting for the previous one to finish:

 links.forEach(function(link) {
 spider(link, nesting - 1, done);
 });

Then, the trick to make our application wait for all the tasks to complete is to provide
the spider() function with a special callback, which we call done(). The done()
function increases a counter when a spider task completes. When the number of
completed downloads reaches the size of the links array, the final callback is invoked:

function done(err) {
 if(err) {
 errored = true;
 return callback(err);
 }
 if(++completed === links.length && !errored) {
 callback();
 }
}

With these changes in place, if we now try to run our spider against a web page, we
will notice a huge improvement in the speed of the overall process, as every download
is carried out in parallel without waiting for the previous link to be processed.

The pattern
Also, for the parallel execution flow, we can extract our nice little pattern, which we
can adapt and reuse for different situations. We can represent a generic version of
the pattern with the following code:

var tasks = [...];
var completed = 0;
tasks.forEach(function(task) {
 task(function() {
 if(++completed === tasks.length) {
 finish();
 }
 });

Chapter 2

[75]

});

function finish() {
 //all the tasks completed
}

With small modifications, we can adapt the pattern to accumulate the results
of each task into a collection, to filter or map the elements of an array, or to
invoke the finish() callback as soon as one or a given number of tasks complete
(this last situation in particular is called competitive race).

Pattern (unlimited parallel execution): run a set of asynchronous
tasks in parallel by spawning them all at once, and then wait for
all of them to complete by counting the number of times their
callbacks are invoked.

Fixing race conditions in the presence of
concurrent tasks
Running a set of tasks in parallel can be a pain when using blocking I/O in
combination with multiple threads. However, we have just seen that in Node.js this
is a totally different story; running multiple asynchronous tasks in parallel is in fact
straightforward and cheap in terms of resources. This is one of the most important
strengths for Node.js, because it makes parallelization a common practice rather than
a complex technique to use only when strictly necessary.

Another important characteristic of the concurrency model of Node.js is the way we
deal with task synchronization and race conditions. In multithreaded programming,
this is usually done using constructs such as locks, mutexes, semaphores, and
monitors, and it can be one of the most complex aspects of parallelization which
has considerable impact on performances as well. In Node.js, we usually don't
need any fancy synchronization mechanism, as everything runs on a single thread!
However, this doesn't mean that we can't have race conditions, on the contrary, they
can be quite common. The root of the problem is the delay between the invocation
of an asynchronous operation and the notification of its result. To make a concrete
example, we can refer again to our web spider application, in particular, the last
version we created, which actually contains a race condition (can you spot it?).

Asynchronous Control Flow Patterns

[76]

The problem we are talking about lies in the spider() function, where we check if a
file already exists, before starting to download the corresponding URL:

function spider(url, nesting, callback) {
 var filename = utilities.urlToFilename(url);
 fs.readFile(filename, 'utf8', function(err, body) {
 if(err) {
 if(err.code !== 'ENOENT') {
 return callback(err);
 }

 return download(url, filename, function(err, body) {
 [...]

The problem is that, two spider tasks operating on the same URL might invoke
fs.readFile() on the same file before one of the two tasks completes the download
and creates a file, causing both tasks to start a download. This situation is shown in
the following diagram:

spider(foo.com) fs.readFile(foo.html) download(foo.com)

Download and save completes,
file was saved twice

Read completes,
file does not exists

Read completes,
file does not exists

Download and save completes,
now the files exists

download(foo.com) callback() callback()

Task 1

Task 2

spider(foo.com) fs.readFile(foo.html)

The preceding diagram shows how Task 1 and Task 2 are interleaved in the single
thread of Node.js and how an asynchronous operation can actually introduce a race
condition. In our case, the two spider tasks end up downloading the same file.

How can we fix that? The answer is much simpler than we might think it to be. In
fact, all we need is a variable to mutually exclude multiple spider() tasks running
on the same URL. This can be achieved with some code such as the following:

var spidering = {};
function spider(url, nesting, callback) {
 if(spidering[url]) {
 return process.nextTick(callback);
 }
 spidering[url] = true;
 [...]

Chapter 2

[77]

The fix does not require many comments. We simply exit the function immediately
if the flag for the given url is set in the spidering map; otherwise, we set the flag
and continue with the download. For our case, we don't need to release the lock, as
we are not interested in downloading a URL two times, even if the spider tasks are
executed during two completely different points in time.

Race conditions can cause many problems, even if we are in a single-threaded
environment. In some circumstances, they can lead to data corruption and are
usually very hard to debug because of their ephemeral nature. So, it's always a good
practice to double check for this type of situation when running tasks in parallel.

Limited parallel execution
Often, spawning parallel tasks without control can lead to an excessive load.
Imagine having thousands of files to read, URLs to access, or database queries to run
in parallel. A common problem in such situations is running out of resources, for
example, by utilizing all the file descriptors available for an application when trying
to open too many files at once. In a web application, it may also create a vulnerability
that is exploitable with Denial of Service (DoS) attacks. In all such situations, it is a
good idea to limit the number of tasks that can run at the same time. This way, we
can add some predictability to the load of our server and also make sure that our
application will not run out of resources. The following diagram describes a situation
where we have five tasks that run in parallel with a concurrency limit of 2:

Start

Task 1

Task 2

End

Task 4

Task 3 Task 5

From the preceding figure, it should be clear how our algorithm will work:

1. Initially, we spawn as many tasks as we can without exceeding the
concurrency limit.

2. Then, every time a task is completed, we spawn one or more tasks until we
don't reach the limit again.

Asynchronous Control Flow Patterns

[78]

Limiting the concurrency
We now present a pattern to execute a set of given tasks in parallel with
limited concurrency:

var tasks = [...];
var concurrency = 2, running = 0, completed = 0, index = 0;
function next() { //[1]
 while(running < concurrency && index < tasks.length) {
 task = tasks[index++];
 task(function() { //[2]
 if(completed === tasks.length) {
 return finish();
 }
 completed++, running--;
 next();
 });
 running++;
 }
}
next();

function finish() {
 //all tasks finished
}

This algorithm can be considered a mix between a sequential execution and a parallel
execution. In fact, we might notice similarities with both the patterns we presented
earlier in the chapter:

1. We have an iterator function, which we called next(), and then an inner
loop that spawns in parallel as many tasks as possible while staying within
the concurrency limit.

2. The next important part is the callback we pass to each task, which checks if
we completed all the tasks in the list. If there are still tasks to run, it invokes
next() to spawn another bunch of tasks.

Pretty simple, isn't it?

Chapter 2

[79]

Globally limiting the concurrency
Our web spider application is perfect for applying what we learned about
limiting the concurrency of a set of tasks. In fact, to avoid the situation in which
we have thousands of links crawled at the same time, we can enforce a limit on
the concurrency of this process by adding some predictability on the number of
concurrent downloads.

Node.js versions before 0.11 are already limiting the number of
concurrent HTTP connections per host to 5. This can, however, be
changed to accommodate our needs. Find out more in the official docs
at http://nodejs.org/docs/v0.10.0/api/http.html#http_
agent_maxsockets. Starting from Node.js 0.11, there is no default
limit on the number of concurrent connections.

We could apply the pattern we just learned to our spiderLinks() function, but
what we would obtain is only limiting the concurrency of a set of links found within
one single page. If we chose, for example, a concurrency of 2, we would have at
most two links downloaded in parallel for each page. However, as we can download
multiple links at once, each page would then spawn another two downloads, causing
the grand total of download operations to grow exponentially anyway.

Queues to the rescue
What we really want then, is to limit the global number of download operations
we can have running in parallel. We could slightly modify the pattern showed
before, but we prefer to leave this as an exercise for you, as we want to take this
opportunity to introduce another mechanism, which makes use of queues,
to limit the concurrency of multiple tasks. Let's see how this works.

We are now going to implement a simple class named TaskQueue, which will
combine a queue with the algorithm we presented before. Let's create a new
module named taskQueue.js, and let's start by defining its constructor:

function TaskQueue(concurrency) {
 this.concurrency = concurrency;
 this.running = 0;
 this.queue = [];
}

The constructor takes as input only the concurrency limit, but besides that,
it initializes other instance variables that we are going to need later.

Asynchronous Control Flow Patterns

[80]

Next, we implement the pushTask() method as follows:

TaskQueue.prototype.pushTask = function(task, callback) {
 this.queue.push(task);
 this.next();
}

The previous function simply adds a new task to the queue and then bootstraps the
execution of the worker by invoking this.next().

Let's see how the next() method looks; its role is to spawn a set of tasks from the
queue ensuring that it does not exceed the concurrency limit:

TaskQueue.prototype.next = function() {
 var self = this;
 while(self.running < self.concurrency && self.queue.length) {
 var task = self.queue.shift();
 task(function(err) {
 self.running--;
 self.next();
 });
 self.running++;
 }
}

We might notice that this method has some similarities with the pattern that limits
the concurrency we presented earlier. It essentially starts as many tasks from the
queue as possible, without exceeding the concurrency limit. When each task is
complete, it updates the count of running tasks and then starts another round of
tasks by invoking next() again. The interesting property of the TaskQueue class is
that it allows us to dynamically add new items to the queue. The other advantage is
that now we have a central entity responsible for the limitation of the concurrency
of our tasks, which can be shared across all the instances of a function's execution.
In our case, it's the spider() function, as we will see in a moment.

Web spider version 4
Now that we have our generic queue to execute tasks in a limited parallel flow,
let's use it straightaway in our web spider application. Let's first load the new
dependency and create a new instance of the TaskQueue class, by setting the
concurrency limit to 2:

var TaskQueue = require('./taskQueue');
var downloadQueue = new TaskQueue(2);

Chapter 2

[81]

Next, we need to update the spiderLinks() function so that it can use the newly
created downloadQueue:

function spiderLinks(currentUrl, body, nesting, callback) {
 if(nesting === 0) {
 return process.nextTick(callback);
 }

 var links = utilities.getPageLinks(currentUrl, body);
 if(links.length === 0) {
 return process.nextTick(callback);
 }

 var completed = 0, errored = false;
 links.forEach(function(link) {
 downloadQueue.pushTask(function(done) {
 spider(link, nesting - 1, function(err) {
 if(err) {
 errored = true;
 return callback(err);
 }
 if(++completed === links.length && !errored) {
 callback();
 }
 done();
 });
 });
 });
}

This new implementation of the function is extremely easy, and it's very similar to
the algorithm for unlimited parallel execution, which we presented earlier in the
chapter. This is because we are delegating the concurrency control to the TaskQueue
object, and the only thing we have to do is to check when all our tasks are complete.
The only interesting part in the preceding code is how we defined our tasks.

• We run the spider() function by providing a custom callback.
• In the callback, we check if all the tasks relative to this execution of the

spiderLinks() function are completed. When this condition is true,
we invoke the final callback of the spiderLinks() function.

• At the end of our task, we invoke the done() callback so that the queue
can continue its execution.

After we have applied these small changes, we can now try to run the spider
module again. This time, we should notice that no more than two downloads
will be active at the same time.

Asynchronous Control Flow Patterns

[82]

The async library
If we take a look for a moment at every control flow pattern we have analyzed
so far, we can see that they could be used as a base to build reusable and more
generic solutions. For example, we could wrap the unlimited parallel execution
algorithm into a function which accepts a list of tasks, runs them in parallel, and
invokes the given callback when all of them are complete. This way of wrapping
control flow algorithms into reusable functions can lead to a more declarative and
expressive way to define asynchronous control flows, and that's exactly what
async (https://npmjs.org/package/async) does. The async library is a very
popular solution, in Node.js and JavaScript in general, to deal with asynchronous
code. It offers a set of functions that greatly simplify the execution of a set of tasks
in different configurations and it also provides useful helpers for dealing with
collections asynchronously. Even though there are several other libraries with a
similar goal, async is a de facto standard in Node.js due to its popularity.

Let's try it straightaway to demonstrate its capabilities.

Sequential execution
The async library can help us immensely when implementing complex
asynchronous control flows, but one difficulty with it is choosing the right helper
for the problem at hand. For example, for the case of the sequential execution flow,
there are around 20 different functions to choose from, including: eachSeries(),
mapSeries(), filterSeries(), rejectSeries(), reduce(), reduceRight(),
detectSeries(), concatSeries(), series(), whilst(), doWhilst(), until(),
doUntil(), forever(), waterfall(), compose(), seq(), applyEachSeries(),
iterator(), and timesSeries().

Choosing the right function is an important step in writing more compact and
readable code, but this also requires some experience and practice. In our examples,
we are going to cover only a few of these situations, but they will still provide a solid
base to understand and efficiently use the rest of the library.

Now, to show in practice how async works, we are going to adapt our web spider
application. Let's start directly with version 2, the one that downloads all the links
recursively in sequence.

However, first let's make sure we install the async library into our current project:

npm install async

Then we need to load the new dependency from the spider.js module:

var async = require('async');

Chapter 2

[83]

Sequential execution of a known set of tasks
Let's modify the download() function first. As we have already seen, it executes the
following three tasks in sequence:

1. Download the contents of a URL.
2. Create a new directory if it doesn't exist yet.
3. Save the contents of the URL into a file.

The ideal function to use with this flow is definitely async.series(), which has the
following signature:

async.series(tasks, [callback])

It takes a list of tasks and a callback function that is invoked when all the tasks
have been completed. Each task is just a function that accepts a callback function,
which must be invoked when the task completes its execution:

function task(callback) {}

The nice thing about async is that it uses the same callback conventions of
Node.js, and it automatically handles error propagation. So, if any of the tasks
invoke its callback with an error, async will skip the remaining tasks in the list
and jump directly to the final callback.

With this in mind, let's see how the download() function would change by
using async:

function download(url, filename, callback) {
 console.log('Downloading ' + url);
 var body;

 async.series([
 function(callback) { //[1]
 request(url, function(err, response, resBody) {
 if(err) {
 return callback(err);
 }
 body = resBody;
 callback();
 });
 },
 mkdirp.bind(null, path.dirname(filename)), //[2]
 function(callback) { //[3]

Asynchronous Control Flow Patterns

[84]

 fs.writeFile(filename, body, callback);
 }
], function(err) { //[4]
 console.log('Downloaded and saved: ' + url);
 if(err) {
 return callback(err);
 }
 callback(null, body);
 });
}

If we remember the callback hell version of this code, we will surely appreciate
the way async allows us to organize our tasks. There is no need to nest callbacks
anymore, as we just have to provide a flat list of tasks, usually one for each
asynchronous operation, which async will then execute in sequence. This is
how we define each task:

1. The first task involves the download of the URL. Also, we save the response
body into a closure variable (body) so that it can be shared with the
other tasks.

2. In the second task, we want to create the directory that will hold the
downloaded page. We do this by performing a partial application of
the mkdirp() function, binding the path of the directory to be created.
This way, we can save a few lines of code and increase its readability.

3. At last, we write the contents of the downloaded URL to a file. In this case,
we could not perform a partial application (as we did for the second task),
because the variable, body, is only available after the first task in the series
completes. However, we can still save some lines of code by exploiting the
automatic error management of async by simply passing the callback of the
task directly to the fs.writeFile() function.

4. After all the tasks are complete, the final callback of async.series() is
invoked. In our case, we are simply doing some error management and
then returning the body variable to callback of the download() function.

For this specific situation, a possible alternative to async.series() would be
async.waterfall(), which still executes the tasks in sequence but in addition, it
also provides the output of each task as input to the next. In our situation, we could
use this feature to propagate the body variable until the end of our sequence. As an
exercise, you can try to implement the same function using the waterfall flow and
then take a look at the differences.

Chapter 2

[85]

Sequential iteration
We already saw from the previous paragraph how we can execute a set of known tasks
in sequence; we used async.series() to do that. We could use the same functionality
to implement the spiderLinks() function of our web spider version 2, however
async offers a more appropriate helper for the specific situation in which we have
to iterate over a collection; this helper is async.eachSeries(). Let's use it then to
reimplement our spiderLinks() function (version 2, download in series) as follows:

function spiderLinks(currentUrl, body, nesting, callback) {
 if(nesting === 0) {
 return process.nextTick(callback);
 }

 var links = utilities.getPageLinks(currentUrl, body);
 if(links.length === 0) {
 return process.nextTick(callback);
 }

 async.eachSeries(links, function(link, callback) {
 spider(link, nesting - 1, callback);
 }, callback);
}

If we compare the preceding code, which uses async, with the code of the same
function implemented with plain JavaScript patterns, we will notice the big
advantage that async gives us in terms of code organization and readability.

Parallel execution
The async library doesn't lack functions to handle parallel flows, among them
we can find each(), map(), filter(), reject(), detect(), some(), every(),
concat(), parallel(), applyEach(), and times(). They follow the same logic
of the functions we have already seen for the sequential execution, with the
difference that the tasks provided are executed in parallel.

To demonstrate that, we can try to apply one of these functions to implement
version 3 of our web spider application, the one performing the downloads
using an unlimited parallel flow.

Asynchronous Control Flow Patterns

[86]

If we remember the code we used earlier to implement the sequential version of the
spiderLinks() function, adapting it to make it work in parallel is a trivial task:

 function spiderLinks(currentUrl, body, nesting, callback) {
 [...]
 async.each(links, function(link, callback) {
 spider(link, nesting - 1, callback);
 }, callback);
}

The function is exactly the same one that we used for the sequential download,
but this time we used async.each() instead of async.eachSeries(). This clearly
demonstrates the power of abstracting the asynchronous flow with a library such
as async. The code is not bound to a particular execution flow anymore; there is no
code specifically written for that, most of it is just application logic.

Limited parallel execution
If you are wondering if async can also be used to limit the concurrency of parallel
tasks, the answer is yes, it can! We have a few functions we can use for that, namely,
eachLimit(), mapLimit(), parallelLimit(), queue(), and cargo().

Let's try to exploit one of them to implement version 4 of the web spider application,
the one executing the download of the links in parallel with limited concurrency.
Fortunately, async has async.queue(), which works in a similar way as the
TaskQueue class we created earlier in the chapter. The async.queue() function
creates a new queue, which uses a worker() function to execute a set of tasks with a
specified concurrency limit:

var q = async.queue(worker, concurrency);

The worker() function receives, as input, the task to run and a callback function
to invoke, when the task completes:

function worker(task, callback)

We should notice that task in this case can be anything, not just a function. In fact,
it's the responsibility of the worker to handle a task in the most appropriate way.
New tasks can be added to the queue by using q.push(task, callback). The
callback associated to a task has to be invoked by the worker after the task has
been processed.

Chapter 2

[87]

Now, let's modify our code again to implement a parallel globally limited execution
flow, using async.queue(). First of all, we need to create a new queue:

var downloadQueue = async.queue(function(taskData, callback) {
 spider(taskData.link, taskData.nesting - 1, callback);
}, 2);

The code is really straightforward. We are just creating a new queue with a
concurrency limit of 2, having a worker that simply invokes our spider()
function with the data associated with a task. Next, we implement the
spiderLinks() function:

function spiderLinks(currentUrl, body, nesting, callback) {
 if(nesting === 0) {
 return process.nextTick(callback);
 }
 var links = utilities.getPageLinks(currentUrl, body);
 if(links.length === 0) {
 return process.nextTick(callback);
 }
 var completed = 0, errored = false;
 links.forEach(function(link) {
 var taskData = {link: link, nesting: nesting};
 downloadQueue.push(taskData, function(err) {
 if(err) {
 errored = true;
 return callback(err);
 }
 if(++completed === links.length && !errored) {
 callback();
 }
 });
 });
}

The preceding code should look very familiar, as it's almost the same as the one we
used to implement the same flow using the TaskQueue object. Also, in this case, the
important part to analyze is where we push a new task into the queue. At that point,
we ensure that we pass a callback that enables us to check if all the download tasks
for the current page are completed, and eventually invoke the final callback.

Thanks to async.queue(), we could easily replicate the functionality of our
TaskQueue object, again demonstrating that with async, we can really avoid writing
asynchronous control flow patterns from scratch, reducing our efforts and saving
precious lines of code.

Asynchronous Control Flow Patterns

[88]

Promises
We already mentioned at the beginning of the chapter that CPS is not the only way to
write asynchronous code. In fact, the JavaScript ecosystem provides alternatives to the
traditional callback pattern. One of these in particular is receiving a lot of momentum,
especially now that it is going to be part of the ECMAScript 6 specification (also known
as ES6 or Harmony), the upcoming version of the JavaScript language. We are talking,
of course, about promises, and in particular about those implementations that follow
the Promises/A+ specification (https://promisesaplus.com).

There are other promises implementations that are not compliant to
the Promises/A+ specification, and among those, the most popular
is the one provided by JQuery. Most of the topics discussed in this
section do not apply to those noncompliant implementations.

What is a promise?
In very simple terms, promises are an abstraction that allow an asynchronous
function to return an object called a promise, which represents the eventual result
of the operation. In the promises jargon, we say that a promise is pending when
the asynchronous operation is not yet complete, it's fulfilled when the operation
successfully completes, and rejected when the operation terminates with an error.
Once a promise is either fulfilled or rejected, it's considered settled.

To receive the fulfillment value or the error (reason) associated with the rejection,
we can use the then() method of the promise. The following is its signature:

promise.then([onFulfilled], [onRejected])

Where onFulfilled() is a function that will eventually receive the fulfillment value
of the promise, and onRejected() is another function that will receive the reason of
the rejection (if any). Both functions are optional.

To have an idea of how Promises can transform our code, let's consider the following:

asyncOperation(arg, function(err, result) {
 if(err) {
 //handle error
 }
 //do stuff with result
});

Chapter 2

[89]

Promises allow to transform this typical CPS code into a better structured and more
elegant code, such as the following:

asyncOperation(arg)
 .then(function(result) {
 //do stuff with result
 }, function(err) {
 //handle error
 });

One crucial property of the then() method is that it synchronously returns another
promise. If any of the onFulfilled() or onRejected() functions return a value x,
the promise returned by the then() method will be as follows:

• Fulfill with x if x is a value
• Fulfill with the fulfillment value of x if x is a promise or a thenable
• Reject with the eventual rejection reason of x if x is a promise or a thenable

A thenable is a promise-like object with a then() method. This term
is used to indicate a promise that is foreign to the particular promise
implementation in use.

This feature allows us to build chains of promises, allowing easy aggregation and
arrangement of asynchronous operations in several configurations. Also, if we
don't specify an onFulfilled() or onRejected() handler, the fulfillment value
or rejection reasons are automatically forwarded to the next promise in the chain.
This allows us, for example, to automatically propagate errors across the whole
chain until caught by an onRejected() handler. With a promise chain, sequential
execution of tasks suddenly becomes a trivial operation:

asyncOperation(arg)
 .then(function(result1) {
 //returns another promise
 return asyncOperation(arg2);
 })
 .then(function(result2) {
 //returns a value
 return 'done';
 })
 .then(undefined, function(err) {
 //any error in the chain is caught here
 });

Asynchronous Control Flow Patterns

[90]

The following diagram provides another perspective on how a promise chain works:

Promise A then() Promise B

onFulfilled() settled onRejected()

fulfill reject

Their return value eventually settles Promise B

then()

onFulfilled() settled onRejected()

fulfill reject

Their return value eventually settles Promise C

Promise C

Synchronously

Asynchronously

Another important property of promises is that the onFulfilled() and onRejected()
functions are guaranteed to be invoked asynchronously, even if we resolve the promise
synchronously with a value, as we did in the preceding example, where we returned
the string done in the last then() function of the chain. This behavior shields our code
against all those situations where we could unintentionally release Zalgo, making our
asynchronous code more consistent and robust with no effort.

Now comes the best part. If an exception is thrown (using the throw statement) from
the onFulfilled() or onRejected() handler, the promise returned by the then()
method will automatically reject with the exception as the rejection reason. This is
a tremendous advantage over CPS, as it means that with promises, exceptions will
propagate automatically across the chain, and that the throw statement is not an
enemy anymore.

For a detailed description of the Promises/A+ specification, you can
refer to the official website http://promises-aplus.github.
io/promises-spec/.

Promises/A+ implementations
In Node.js, and in general in JavaScript, there are several libraries implementing the
Promises/A+ specifications. The following are the most popular:

• Bluebird (https://npmjs.org/package/bluebird)
• Q (https://npmjs.org/package/q)
• RSVP (https://npmjs.org/package/rsvp)
• Vow (https://npmjs.org/package/vow)
• When.js (https://npmjs.org/package/when)
• ES6 Promises

Chapter 2

[91]

What really differentiates them is the additional set of features they provide on
top of the Promises/A+ standard. The standard, in fact, defines only the behavior of
the then() method and the promise resolution procedure, but it does not specify
other functionalities, for example, how a promise is created from a callback-based
asynchronous function.

In our examples, we will try to use the set of API implemented by the ES6
promises, as they will be natively available in JavaScript without the support of any
external library. Luckily, the preceding list of libraries are gradually adapting to
support the ES6 API, so using any one of them should not force us into any strong
implementation lock-in as far as we use only the feature set of the ES6 standard.

Please bear in mind that the ECMAScript 6 specification is still a draft
at the time of writing. So there might be some differences from what
will be the final standard. Also, consider that at the time of writing, the
version of V8 used by Node.js still does not support promises natively.
So, for our examples, we are going to use one of the preceding listed
implementations, namely, Bluebird. Of course, we will use only the
part of its API that is compatible with ES6 promises.

For reference, here is the list of the APIs currently provided by the ES6 promises:

• Constructor (new Promise(function(resolve, reject) {})):
This creates a new promise that fulfills or rejects based on the behavior
of the function passed as an argument. The arguments of the constructor
are explained as follows:

 ° resolve(obj): This will resolve the promise with a fulfillment value,
which will be obj if obj is a value. It will be the fulfillment value of
obj if obj is a promise or a thenable.

 ° reject(err): This rejects the promise with the reason err. It is a
convention to have err to be an instance of Error.

• Static methods of the Promise object:
 ° Promise.resolve(obj): This creates a new promise from a thenable

or a value.
 ° Promise.reject(err): This creates a promise that rejects with err

as the reason.
 ° Promise.all(array): This creates a promise that fulfills with an

array of fulfillment values when every item in the array fulfills, and
rejects with the first rejection reason if any item rejects. Each item in
the array can be a promise, a generic thenable, or a value.

Asynchronous Control Flow Patterns

[92]

• Methods of a Promise instance:

 ° promise.then(onFulfilled, onRejected): This is the essential
method of a promise. Its behavior is compatible with the Promises/A+
standard we described before.

 ° promise.catch(onRejected): This is just a syntactic sugar for
promise.then(undefined, onRejected).

It is worth mentioning that some promise implementations offer
another mechanism to create new promises; this is called deferreds.
We are not going to describe it here, because it's not part of the
ES6 standard, but if you want to know more, you can read the
documentation for Q (https://github.com/kriskowal/
q#using-deferreds) or When.js (https://github.com/
cujojs/when/wiki/Deferred).

Promisifying a Node.js style function
In Node.js, and in general in JavaScript, there are only a few libraries supporting
promises out-of-the-box. Most of the time, in fact, we have to convert a typical
callback-based function into one that returns a promise; this is also known as
promisification.

Fortunately, the callback conventions used in Node.js allow us to create a reusable
function that we can utilize to promisify any Node.js style API. We can do this easily
by using the constructor of the Promise object. Let's then create a new function called
promisify() and include it into the utilities.js module (so we can use it later in
our web spider application):

var Promise = require('bluebird');

module.exports.promisify = function(callbackBasedApi) {
 return function promisified() {
 var args = [].slice.call(arguments);
 return new Promise(function(resolve, reject) { //[1]
 args.push(function(err, result) { //[2]
 if(err) {
 return reject(err); //[3]
 }
 if(arguments.length <= 2) { //[4]
 resolve(result);
 } else {
 resolve([].slice.call(arguments, 1));
 }

Chapter 2

[93]

 });
 callbackBasedApi.apply(null, args); //[5]
 });
 }
};

The preceding function returns another function called promisified(),
which represents the promisified version of the callbackBasedApi given in
the input. This is how it works:

1. The promisified() function creates a new promise using the Promise
constructor and immediately returns it back to the caller.

2. In the function passed to the Promise constructor, we make sure to pass to
callbackBasedApi, a special callback. As we know that the callback always
comes last, we simply append it to the argument list (args) provided to the
promisified() function.

3. In the special callback, if we receive an error, we immediately reject
the promise.

4. If no error is received, we resolve the promise with a value or an array
of values, depending on how many results are passed to the callback.

5. At last, we simply invoke the callbackBasedApi with the list of
arguments we have built.

Most of the promise implementations already provide, out-of-the-box,
some sort of helper to convert a Node.js style API to one returning
a promise. For example, Q has Q.denodeify() and Q.nbind(),
Bluebird has Promise.promisify(), and When.js has node.lift().

Sequential execution
After a little bit of necessary theory, we are now ready to convert our web spider
application to use promises. Let's start directly from version 2, the one downloading
in sequence the links of a web page.

In the spider.js module, the very first step required is to load our promises
implementation (we will use it later) and promisify the callback-based functions
that we plan to use:

var Promise = require('bluebird');
var utilities = require('./utilities');

var request = utilities.promisify(require('request'));

Asynchronous Control Flow Patterns

[94]

var mkdirp = utilities.promisify(require('mkdirp'));
var fs = require('fs');
var readFile = utilities.promisify(fs.readFile);
var writeFile = utilities.promisify(fs.writeFile);

Now, we can start converting the download() function:

function download(url, filename) {
 console.log('Downloading ' + url);
 var body;
 return request(url)
 .then(function(results) {
 body = results[1];
 return mkdirp(path.dirname(filename));
 })
 .then(function() {
 return writeFile(filename, body);
 })
 .then(function() {
 console.log('Downloaded and saved: ' + url);
 return body;
 });
}

We can see straightaway how elegant some sequential code implemented with
promises is; we simply have an intuitive chain of then() functions. The final
return value of the download() function is the promise returned by the last then()
invocation in the chain. This makes sure that the caller receives a promise that fulfills
with body only after all the operations (request, mkdirp, writeFile) have completed.

Next, it's the turn of the spider() function:

function spider(url, nesting) {
 var filename = utilities.urlToFilename(url);
 return readFile(filename, 'utf8')
 .then(
 function(body) {
 return spiderLinks(url, body, nesting);
 },
 function(err) {
 if(err.code !== 'ENOENT') {
 throw err;
 }

 return download(url, filename)

Chapter 2

[95]

 .then(function(body) {
 return spiderLinks(url, body, nesting);
 });
 }
);
}

The important thing to notice here is that we also registered an onRejected()
function for the promise returned by readFile(), to handle the case when a page
was not already downloaded (file does not exist). Also, it's interesting to see how
we were able to use throw to propagate the error from within the handler.

Now that we have converted our spider() function as well, we can modify its main
invocation as follows:

spider(process.argv[2], 1)
 .then(function() {
 console.log('Download complete');
 })
 .catch(function(err) {
 console.log(err);
 });

Note how we used, for the first time, the syntactic sugar catch to handle any error
situation originated from the spider() function. If we look again at all the code we
have written so far in this section, we would be pleasantly surprised by the fact that
we didn't include any error propagation logic like we would be forced to do by using
callbacks. This is clearly an enormous advantage, as it greatly reduces the boilerplate
in our code and the chances of missing any asynchronous error.

Now, the only missing bit to complete the version 2 of our web spider application is
the spiderLinks() function, which we are going to see in a moment.

Sequential iteration
The web spider code so far was mainly an overview of what promises are and how
they are used, demonstrating how simple and elegant it is to implement a sequential
execution flow using promises. However, the code we considered so far involves
only the execution of a known set of asynchronous operations. So, the missing piece
that will complete our exploration of sequential execution flows is to see how we can
implement an iteration using promises. Again, the spiderLinks() function of web
spider version 2 is a perfect example to show that.

Asynchronous Control Flow Patterns

[96]

Let's add the missing piece to the code we wrote so far:

function spiderLinks(currentUrl, body, nesting) {
 var promise = Promise.resolve(); //[1]
 if(nesting === 0) {
 return promise;
 }
 var links = utilities.getPageLinks(currentUrl, body);
 links.forEach(function(link) { //[2]
 promise = promise.then(function() {
 return spider(link, nesting - 1);
 });
 });

 return promise;
}

To iterate asynchronously over all the links of a web page, we had to dynamically
build a chain of promises:

1. First, we defined an "empty" promise, resolving to undefined. This promise
is just used as a starting point to build our chain.

2. Then, in a loop, we update the promise variable with a new promise
obtained by invoking then() on the previous promise in the chain.
This is actually our asynchronous iteration pattern using promises.

This way, at the end of the loop, the promise variable will contain the promise of the
last then() invocation in the loop, so it will resolve only when all the promises in the
chain have been resolved.

With this, we completely converted our web spider version 2 to use promises.
We should now be able to try it out again.

Sequential iteration – the pattern
To conclude this section on sequential execution, let's extract the pattern to iterate
over a set of promises in sequence:

var tasks = [...]
var promise = Promise.resolve();
tasks.forEach(function(task) {
 promise = promise.then(function() {
 return task();
 });
});

Chapter 2

[97]

promise.then(function() {
 //All tasks completed
});

An alternative to using the forEach() loop is to use reduce(), allowing an even
more compact code:

var tasks = [...]
var promise = tasks.reduce(function(prev, task) {
 return prev.then(function() {
 return task();
 });
}, Promise.resolve());

promise.then(function() {
 //All tasks completed
});

As always, with simple adaptations of this pattern, we could collect all the tasks'
results in an array; we could implement a mapping algorithm, or build a filter,
and so on.

Pattern (sequential iteration with promises): dynamically builds a
chain of promises using a loop.

Parallel execution
Another execution flow that becomes trivial with promises is the parallel execution
flow. In fact, all that we need to do is use the built-in Promise.all() helper that
creates another promise, which fulfills only when all the promises received in an
input are fulfilled. That's essentially a parallel execution because no order between
the various promises' resolutions is enforced.

To demonstrate this, let's consider version 3 of our web spider application, the one
downloading all the links of a page in parallel. Let's update the spiderLinks()
function again to implement a parallel flow, using promises:

function spiderLinks(currentUrl, body, nesting) {
 if(nesting === 0) {
 return Promise.resolve();
 }

Asynchronous Control Flow Patterns

[98]

 var links = utilities.getPageLinks(currentUrl, body);
 var promises = links.map(function(link) {
 return spider(link, nesting - 1);
 });

 return Promise.all(promises);
}

Trivially, the pattern consists in starting the spider() tasks all at once into the
elements.map() loop, which also collects all their promises. This time, in the loop,
we are not waiting for the previous download to complete before starting a new one,
all the download tasks are started in the loop at once, one after the other. Afterwards,
we leveraged the Promise.all()method, which returns a new promise that will
be fulfilled when all the promises in the array are fulfilled. In other words, it fulfills
when all the download tasks have completed; exactly what we wanted.

Limited parallel execution
Unfortunately, the ES6 Promise API does not provide a way to implement a limited
parallel control flow natively, but we can always rely on what we learned about
limiting the concurrency with plain JavaScript. In fact, the pattern we implemented
inside the TaskQueue class can be easily adapted to support tasks that return a
promise. This can be done trivially by modifying the next() method:

TaskQueue.prototype.next = function() {
 var self = this;
 while(self.running < self.concurrency && self.queue.length) {
 var task = self.queue.shift();
 task().then(function() {
 self.running--;
 self.next();
 });
 self.running++;
 }
}

So now, instead of handling the task with a callback, we simply invoke then() on
the promise it returns. The rest of the code is practically identical to the old version
of TaskQueue.

Chapter 2

[99]

Now, we can go back to the spider.js module, modifying it to support our
new version of the TaskQueue class. First, we make sure to define a new instance
of TaskQueue:

var TaskQueue = require('./taskQueue');
var downloadQueue = new TaskQueue(2);

Then, it's the turn of the spiderLinks() function again. The change here is also
pretty straightforward:

function spiderLinks(currentUrl, body, nesting) {
 if(nesting === 0) {
 return Promise.resolve();
 }

 var links = utilities.getPageLinks(currentUrl, body);
 //we need the following because the Promise we create next
 //will never settle if there are no tasks to process
 if(links.length === 0) {
 return Promise.resolve();
 }

 return new Promise(function(resolve, reject) { //[1]
 var completed = 0;
 links.forEach(function(link) {
 var task = function() { //[2]
 return spider(link, nesting - 1)
 .then(function() {
 if(++completed === links.length) {
 resolve();
 }
 })
 .catch(reject);
 };
 downloadQueue.pushTask(task);
 });
 });
}

Asynchronous Control Flow Patterns

[100]

There are a couple of things in the preceding code that merit our attention:

1. First, we needed to return a new promise created using the Promise
constructor. As we will see, this enables us to resolve the promise
manually, when all of the tasks in the queue are completed.

2. Second, we should look at how we defined the task. What we did is attach
an onFulfilled() callback to the promise returned by spider(), so we
could count the number of download tasks completed. When the amount of
completed downloads matches the number of links in the current page, we
know that we are done processing, so we can invoke the resolve() function
of the outer promise.

The Promises/A+ specification states that the onFulfilled()
and onRejected() callbacks of the then() method have to
be invoked only once and exclusively (only one or the other is
invoked). A compliant promises implementation makes sure that
even if we call resolve or reject multiple times, the promise is
either fulfilled or rejected only once.

Version 4 of the web spider application using promises should now be ready to be
tried out. We might notice once again how the download tasks now run in parallel,
with a concurrency limit of 2.

Generators
The ES6 specification introduces another mechanism that, besides other things, can
be used to simplify the asynchronous control flow of our Node.js applications. We
are talking about generators, also known as semi-coroutines. They are a generalization
of subroutines, where there can be different entry points. In a normal function, in
fact, we can have only one entry point, which corresponds to the invocation of
the function itself. A generator is similar to a function, but in addition, it can be
suspended (using the yield statement) and then resumed at a later time. Generators
are particularly useful when implementing iterators, and this should ring a
bell, as we have already seen how iterators can be used to implement important
asynchronous control flow patterns such as sequential and limited parallel execution.

Chapter 2

[101]

In Node.js, generators are available starting from Version 0.11, but at
the moment of writing, this feature is still not enabled by default and
it's necessary to invoke Node.js with the --harmony or --harmony-
generators flags to get generators working. To try the examples in
this section, make sure you have the right version of Node.js installed
(Version 0.11.0 and later), by running the following command:
node --version

The basics
Before we explore the use of generators for asynchronous control flow, it's important
we learn some basic concepts. Let's start from the syntax; a generator function can be
declared by appending the * (asterisk) operator after the function keyword:

function* makeGenerator() {
 //body
}

Inside the makeGenerator() function, we can pause the execution using the
keyword yield and return to the caller the value passed to it:

function* makeGenerator() {
 yield 'Hello World';
 console.log('Re-entered');
}

In the preceding code, the generator yields a string, Hello World, by putting the
execution of the function on pause. When the generator is resumed, the execution
will start from console.log('Re-entered').

The makeGenerator() function is essentially a factory that, when invoked, returns a
new generator object:

var gen = makeGenerator();

The most important method of the generator object is next(), which is used
to start/resume the execution of the generator and returns an object in the
following form:

{
 value: <yielded value>
 done: <true if the execution reached the end>
}

This object contains the value yielded by the generator (value) and a flag to indicate
if the generator has completed its execution (done).

Asynchronous Control Flow Patterns

[102]

A simple example
To demonstrate generators, let's create a new module. We can call it
fruitGenerator.js and include the following code:

function* fruitGenerator() {
 yield 'apple';
 yield 'orange';
 return 'watermelon';
}

var newFruitGenerator = fruitGenerator();
console.log(newFruitGenerator.next()); //[1]
console.log(newFruitGenerator.next()); //[2]
console.log(newFruitGenerator.next()); //[3]

We can run the new module with the following command:

node --harmony-generators fruitGenerator

The preceding code should print the following output:

{ value: 'apple', done: false }

{ value: 'orange', done: false }

{ value: 'watermelon', done: true }

This is a short explanation of what happened in the preceding code:

1. The first time newFruitGenerator.next() was invoked, the generator
started its execution until it reached the first yield command, which put
the generator on pause and returned the value apple, to the caller.

2. At the second invocation of newFruitGenerator.next(), the generator
resumed, starting from the second yield command, which in turn put on
pause the execution again, while returning the value orange to the caller.

3. The last invocation of newFruitGenerator.next() caused the execution of
the generator to resume from its last instruction, a return statement, which
terminates the generator, returns the value, watermelon, and sets the done
property to true in the result object.

Chapter 2

[103]

Generators as iterators
To better understand why generators are so useful for the implementation of iterators,
let's build one. In a new module, which we will call iteratorGenerator.js,
let's write the following code:

function* iteratorGenerator(arr) {
 for(var i = 0; i < arr.length; i++) {
 yield arr[i];
 };
}

var iterator = iteratorGenerator(['apple', 'orange', 'watermelon']);
var currentItem = iterator.next();
while(!currentItem.done) {
 console.log(currentItem.value);
 currentItem = iterator.next();
}

We can execute this code using the following command:

node --harmony-generators iteratorGenerator

The preceding simple program should print the list of the items in the array
as follows:

apple

orange

watermelon

In this example, each time we call iterator.next(), we resume the for loop of
the generator, which runs another cycle by yielding the next item in the array.
This demonstrates how the state of the generator is maintained across invocations.
When resumed, the loop and all the variables are exactly the same as when the
execution was put on pause.

Passing values back to a generator
To conclude our exploration of the basic functionality of generators, we will now
learn how to pass values back to a generator. This is actually very simple; what we
need to do is just providing an argument to the next() method, and that value will
be provided as the return value of the yield statement inside the generator.

Asynchronous Control Flow Patterns

[104]

To show this, let's create a new simple module:

function* twoWayGenerator() {
 var what = yield null;
 console.log('Hello ' + what);
}

var twoWay = twoWayGenerator();
twoWay.next();
twoWay.next('world');

When executed, the preceding code will print Hello world. This means that
the following has happened:

1. When the first next() method is invoked, the generator reaches the first
yield function and is then put on pause.

2. When next('world') is invoked, the generator resumes from the point
where it was put on pause, which is on the yield instruction, but this time
we have a value that is passed back to the generator. This value will then be
set into the what variable. The generator then executes the console.log()
instruction and terminates.

In a similar way, we can force a generator to throw an exception. This is made possible
by using the throw method of the generator, as shown in the following example:

var twoWay = twoWayGenerator();
twoWay.next();
twoWay.throw(new Error());

Using this last code snippet, the twoWayGenerator() function will throw an
exception the moment the yield function returns. This works exactly as if an
exception was thrown from inside the generator, and this means that it can be
caught and handled like any other exception using a try-catch block.

Asynchronous control flow with generators
You must be wondering how generators can help us with handling asynchronous
operations. We immediately demonstrate that by creating a function that allows us
to use asynchronous functions inside a generator and then resuming the execution of
the generator when the asynchronous operation completes. We will call this function
asyncFlow():

function asyncFlow(generatorFunction) {
 function callback(err) {

Chapter 2

[105]

 if(err) {
 return generator.throw(err);
 }
 var results = [].slice.call(arguments, 1);
 generator.next(results.length > 1 ? results : results[0]);
 };
 var generator = generatorFunction(callback);
 generator.next();
}

The preceding function takes a generator as an input, instantiates it, and then
immediately starts its execution:

var generator = generatorFunction(callback);
generator.next();

The generatorFunction() receives as input a special callback function that
invokes generator.throw() if an error is received; otherwise, it resumes
the execution of the generator by passing back the results received in the
callback function:

if(err) {
 return generator.throw(err);
}
var results = [].slice.call(arguments, 1);
generator.next(results.length > 1 ? results : results[0]);

To demonstrate the power of this simple function, let's create a new module
called clone.js, which (stupidly) creates a clone of itself. Paste the asyncFlow()
function we just created, followed by the core of the program:

var fs = require('fs');
var path = require('path');

asyncFlow(function* (callback) {
 var fileName = path.basename(__filename);
 var myself = yield fs.readFile(fileName, 'utf8', callback);
 yield fs.writeFile('clone_of_' + fileName, myself, callback);
 console.log('Clone created');
});

Asynchronous Control Flow Patterns

[106]

Remarkably, with the help of the asyncFlow() function, we were able to write
asynchronous code using a linear approach, as we were using blocking functions!
The magic behind this result should be clear by now. The callback passed to
each asynchronous function will in turn resume the generator as soon as the
asynchronous operation is complete. Nothing complicated, but the outcome
is surely impressive.

There are two other variations of this technique, one involving the use of promises
and the other using thunks.

A thunk used in generator-based control flow is just a function that
partially applies all the arguments of the original function except
its callback. The return value is another function that accepts only
the callback as an argument. For example, the thunkified version of
fs.readFile() would be as follows:

function readFileThunk(filename, options) {

 return function(callback) {

 fs.readFile(filename, options, callback);

 }

}

Both thunks and promises allow us to create generators that do not need a callback
to be passed as an argument; for example, a version of asyncFlow() using thunks
might be the following:

function asyncFlowWithThunks(generatorFunction) {
 function callback(err) {
 if(err) {
 return generator.throw(err);
 }
 var results = [].slice.call(arguments, 1);
 var thunk = generator.next(results.length > 1 ? results :
results[0]).value;
 thunk && thunk(callback);
 };
 var generator = generatorFunction();
 var thunk = generator.next().value;
 thunk && thunk(callback);
}

Chapter 2

[107]

The trick is to read the return value of generator.next(), which contains the thunk.
The next step is to invoke the thunk itself, by injecting our special callback. Simple!
This allows us to write the following code:

asyncFlowWithThunks(function* () {
 var myself = yield readFileThunk(__filename, 'utf8');
 yield writeFileThunk("clone of clone.js", myself);
 console.log("Clone created");
});

Similarly, we could implement a version of asyncFlow() that accepts a promise as
yieldable. We leave this as an exercise as its implementation requires only a minimal
change in the asyncFlowWithThunks() function. We may also implement an
asyncFlow() function that accepts both promises and thunks as yieldables,
using the same principles.

Generator-based control flow using co
As you may guess, the Node.js ecosystem already provides some solutions
to handle asynchronous control flows using generators. For example, suspend
(https://npmjs.org/package/suspend) is one of the oldest and supports promises,
thunks, Node.js-style callbacks, as well as raw callbacks. Also, most of the promises
libraries we analyzed earlier in the chapter provide helpers to use promises
with generators.

All these solutions are based on the same principles we demonstrated with the
asyncFlow() function; so, we may want to reuse one of these instead of writing
one ourselves.

For the examples in this section, we chose to use co (https://npmjs.org/package/
co), which is currently receiving a lot of momentum. A flexible solution, co supports
several types of yieldables, some of which are:

• Thunks
• Promises
• Arrays (parallel execution)
• Objects (parallel execution)
• Generators (delegation)
• Generator functions (delegation)

Asynchronous Control Flow Patterns

[108]

co also has its own ecosystem of packages including the following:

• Web frameworks, the most popular being koa (https://npmjs.org/
package/koa)

• Libraries implementing specific control flow patterns
• Libraries wrapping popular APIs to support co

We will use co to reimplement our web spider application using generators.

While, to convert Node.js style functions to thunks, we are going to use a little library
called thunkify (https://npmjs.org/package/thunkify).

Sequential execution
Let's start our practical exploration of generators and co by modifying version 2
of the web spider application. The very first thing we want to do is to load our
dependencies and generate a thunkified version of the functions we are going
to use. These will go at the top of the spider.js module:

var thunkify = require('thunkify');
var co = require('co');

var request = thunkify(require('request'));
var fs = require('fs');
var mkdirp = thunkify(require('mkdirp'));
var readFile = thunkify(fs.readFile);
var writeFile = thunkify(fs.writeFile);
var nextTick = thunkify(process.nextTick);

Looking at the preceding code, we can surely notice some similarities with the code
we used earlier in the chapter to promisify some APIs. In this regard, it is interesting
to point out that if we decided to use the promisified version of our functions instead
of their thunkified alternative, the code that will now follow would remain exactly
the same, thanks to the fact that co supports both thunks and promises as yieldable
objects. In fact, if we want, we could even use both thunks and promises in the same
application, even in the same generator. This is a tremendous advantage in terms of
flexibility, as it allows us to use generator-based control flow with whatever solution
we already have at our disposal.

Okay, now let's start transforming the download() function into a generator:

function* download(url, filename) {
 console.log('Downloading ' + url);
 var results = yield request(url);
 var body = results[1];
 yield mkdirp(path.dirname(filename));

Chapter 2

[109]

 yield writeFile(filename, body);
 console.log('Downloaded and saved:' + url);
 return body;
}

By using generators and co, our download() function suddenly becomes trivial. All
we had to do is just convert it into a generator function and use yield wherever we
had an asynchronous function (as thunk) to invoke.

Next, it's the turn of the spider() function:

function* spider(url, nesting) {
 var filename = utilities.urlToFilename(url);
 var body;
 try {
 body = yield readFile(filename, 'utf8');
 } catch(err) {
 if(err.code !== 'ENOENT') {
 throw err;
 }
 body = yield download(url, filename);
 }
 yield spiderLinks(url, body, nesting);
}

The interesting detail to notice from this last fragment of code is how we were
able to use a try-catch block to handle exceptions. Also, we can now use throw
to propagate errors! Another remarkable line is where we yield the download()
function, which is not a thunk nor a promisified function, but just another generator.
This is possible, thanks to co, which also supports other generators as yieldables.

At last, we can also convert spiderLinks(), where we implemented an iteration
to download the links of a web page in sequence. With generators, this becomes
trivial as well:

function* spiderLinks(currentUrl, body, nesting) {
 if(nesting === 0) {
 return yield nextTick();
 }

 var links = utilities.getPageLinks(currentUrl, body);
 for(var i = 0; i < links.length; i++) {
 yield spider(links[i], nesting - 1);
 };
}

Asynchronous Control Flow Patterns

[110]

There is really little to explain from the previous code, there is no pattern to show
for the sequential iteration; generators and co are doing all the dirty work for us,
so we were able to write the asynchronous iteration as if we were using blocking,
direct style APIs.

Now comes the most important part, the entry point of our program:

co(function* () {
 try {
 yield spider(process.argv[2], 1);
 console.log('Download complete');
 } catch(err) {
 console.log(err);
 };
})();

This is the only place where we have to invoke co(...) to wrap a generator.
In fact, once we do that, co will automatically wrap any generator we pass to
a yield statement, and this will happen recursively, so the rest of the program
is totally agnostic to the fact we are using co, even though it's under the hood.

It is important to notice that the co() function returns a
thunk, so we have to invoke it to start the spider task.

Now it should be possible to run our generator-based web spider application.
Just remember to use the --harmony or --harmony-generators flag in the
command line:

node --harmony-generators spider <URL>

Parallel execution
The bad news about generators is that they are great for writing sequential
algorithms, but they can't be used to parallelize the execution of a set of tasks,
at least not using just yield and generators. In fact, the pattern to use for these
circumstances is to simply rely on a callback-based or promise-based function,
which in turn can easily be yielded and used with generators.

Fortunately, for the specific case of the unlimited parallel execution, co already
allows us to obtain it natively by simply yielding an array of promises, thunks,
generators, or generator functions.

Chapter 2

[111]

With this in mind, version 3 of our web spider application can be implemented
simply by rewriting the spiderLinks() function as follows:

function* spiderLinks(currentUrl, body, nesting) {
 if(nesting === 0) {
 return nextTick();
 }

 var links = utilities.getPageLinks(currentUrl, body);
 var tasks = links.map(function(link) {
 return spider(link, nesting - 1);
 });
 yield tasks;
}

What we did was just collect all the download tasks, which are essentially
generators, and then yield on the resulting array. All these tasks will be executed
by co in parallel and then the execution of our generator (spiderLinks) will be
resumed when all the tasks finish running.

If you think we cheated by exploiting the feature of co that allows us to yield on
an array, we can demonstrate how the same parallel flow can be achieved using a
callback-based solution similar to what we have already used earlier in the chapter.
Let's use this technique to rewrite the spiderLinks() once again:

function spiderLinks(currentUrl, body, nesting) {
 if(nesting === 0) {
 return nextTick();
 }

 //returns a thunk
 return function(callback) {
 var completed = 0, errored = false;
 var links = utilities.getPageLinks(currentUrl, body);
 if(links.length === 0) {
 return process.nextTick(callback);
 }

 function done(err, result) {
 if(err && !errored) {
 errored = true;
 callback(err);
 }

Asynchronous Control Flow Patterns

[112]

 if(++completed === links.length && !errored) {
 callback();
 }
 }

 for(var i = 0; i < links.length; i++) {
 co(spider(links[i], nesting - 1))(done);
 };
 }
}

To run the spider() function in parallel, which is a generator, we had to convert it
into a thunk and then execute it. This was possible by wrapping it with the co(...)
function, which essentially creates a thunk out of a generator. This way, we were
able to invoke it in parallel and set the done() function as callback. Usually, all the
libraries for generator-based control flow have a similar feature, so you can always
transform a generator into a callback-based function if needed.

To start multiple download tasks in parallel, we just reused the callback-based
pattern for parallel execution, which we defined earlier in the chapter. We should
also notice that we transformed the spiderLinks() function to a thunk (it's not even
a generator anymore.) This enabled us to have a callback function to invoke when
all the parallel tasks are completed.

Pattern (generator-to-thunk): converts a generator to a thunk in
order to be able to run it in parallel or utilize it for taking advantage
of other callback- or promises-based control flow algorithms.

Limited parallel execution
Now that we know how to move in case of nonsequential execution flows, it should
be easy to plan the implementation of version 4 of our web spider application, the
one imposing a limit on the number of concurrent download tasks. We have several
options we can use to do that, some of them are as follows:

• Use the callback-based version of the TaskQueue class we implemented
previously in the chapter. We would need to just thunkify its functions and
any generator we want to use as a task.

• Use the promises-based version of the TaskQueue class, and just make sure
that each generator we want to use as a task is converted into a function
returning a promise.

Chapter 2

[113]

• Use async, and thunkify any helper we plan to use, in addition to converting
any generator to a callback-based function that can be used by the library.

• Use a library from the co ecosystem, specifically designed for this type of
flow, such as, co-limiter (https://npmjs.org/package/co-limiter).

• Implement a custom algorithm based on the producer-consumer pattern, the
same that co-limiter uses internally.

For educational purposes, we are going to choose the last option, so we can dive into
a pattern that is often associated with coroutines (but also threads and processes).

Producer-consumer pattern
The goal is to leverage a queue to feed a fixed number of workers, as many as the
concurrency level we want to set. To implement this algorithm, we are going to take
as starting point the TaskQueue class we defined earlier in the chapter. Let's start
gradually; the first thing we want to do is define the constructor:

function TaskQueue(concurrency) {
 this.concurrency = concurrency;
 this.running = 0;
 this.taskQueue = [];
 this.consumerQueue = [];
 this.spawnWorkers(concurrency);
}

Notice the invocation of this.spawnWorkers() as this is the method in charge of
starting the workers. The next step is, of course, to define our workers; let's see how
they look:

TaskQueue.prototype.spawnWorkers = function(concurrency) {
 var self = this;
 for(var i = 0; i < concurrency; i++) {
 co(function* () {
 while(true) {
 var task = yield self.nextTask();
 yield task;
 }
 })();
 }
}

Asynchronous Control Flow Patterns

[114]

Our workers are very simple; they are just generators wrapped around co() and
executed immediately, so that each one can run in parallel. Internally, each worker
is running an infinite loop that blocks (yield) waiting for a new task to be available
in the queue (yield self.nextTask()), and when this happens, it yields the task
(which is any valid yieldable) waiting for its completion. You may be wondering,
how can we actually wait for the next task to be queued? The answer is in the
nextTask() method that we are now going to define:

TaskQueue.prototype.nextTask = function() {
 var self = this;
 return function(callback) { //[1]
 if(self.taskQueue.length !== 0) {
 callback(null, self.taskQueue.shift()); //[2]
 } else {
 self.consumerQueue.push(callback); //[3]
 }
 }
}

Let's see what happens in this method, which is the core of the pattern:

1. The method returns a thunk, which is a valid yieldable for co.
2. The callback of the returned thunk is invoked by providing the next task

in the taskQueue (if there is any available). This will immediately unblock
a worker, providing the next task to yield on.

3. If there are no tasks in the queue, the callback itself is pushed into the
consumerQueue. By doing this, we are practically putting a worker
in idle mode. The callbacks in the consumerQueue function will be
invoked as soon as we have a new task to process, which will resume
the corresponding worker.

Now, to know how the idle workers in the consumerQueue function are resumed,
we need to define the pushTask() method:

TaskQueue.prototype.pushTask = function(task) {
 if(this.consumerQueue.length !== 0) {
 this.consumerQueue.shift()(null, task);
 } else {
 this.taskQueue.push(task);
 }
}

Chapter 2

[115]

Trivially, the method invokes the first callback in the consumerQueue function
if available, which in turn will unblock a worker. If no callback is available,
it means that all the workers are busy, so we simply add a new item in the
taskQueue function.

In the TaskQueue class we just defined, the workers have the role of consumers,
while whoever uses pushTask() can be considered a producer. This pattern shows
us how a generator can look very similar to a thread (or a process). In fact, the
producer-consumer interaction is probably the most common problem presented
when studying inter-process communication techniques, but as we already
mentioned, it is also a common use case for coroutines.

Limiting the download tasks concurrency
Now that we have implemented our limited parallel algorithm using generators
and the producer-consumer pattern, we can apply it to limit the concurrency of
the download tasks of our web spider application (version 4). First, let's load and
initialize a TaskQueue object:

var TaskQueue = require('./taskQueue')
var downloadQueue = new TaskQueue(2);

Next, we modify the spiderLinks() function. Its body is almost identical to the one
we just used to implement the unlimited parallel execution flow, so we will only
show the changed parts here:

function spiderLinks(currentUrl, body, nesting) {
 [...]
 return function(callback) {
 [...]
 function done(err, result) {
 [...]
 }
 links.forEach(function(link) {
 downloadQueue.pushTask(function *() {
 yield spider(link, nesting - 1);
 done();
 });
 });
 }
}

Asynchronous Control Flow Patterns

[116]

In each of the tasks, we invoke the done() function just after a download completes,
so we can count how many links were downloaded and then notify the callback of
the thunk when all are complete.

As an exercise, you can try to implement version 4 of the web spider application,
using the other four methods we presented at the beginning of this section.

Comparison
At this point of the chapter, we should have a better understanding of what options
we have to tame the asynchronous nature of Node.js. Each one of the solutions
presented has its own pros and cons. Let's summarize them in the following table:

Solutions Pros Cons
Plain JavaScript • Does not require any

additional library or
technology

• Offers the best
performances

• Provides the best level
of compatibility with
third-party libraries

• Allows the creation of ad
hoc and more advanced
algorithms

• Might require extra code
and relatively complex
algorithms

Async • Simplifies the most common
control flow patterns

• Is still a callback-based
solution

• Good performances

• Introduces an external
dependency

• Might still not be enough
for advanced flows

Chapter 2

[117]

Solutions Pros Cons
Promises • Greatly simplify the most

common control flow
patterns

• Robust error handling
• Part of the ES6 specification
• Guarantee deferred

invocation of onFulfilled
and onRejected

• Might require an
external dependency

• Require to promisify
callback-based APIs

• Only a few third-
party libraries support
promises natively

• Introduce a small
performance hit

Generators • Make nonblocking API look
like blocking

• Simplify error handling
• Part of ES6 specification

• Require a
complementary control
flow library

• Still require callbacks or
promises to implement
nonsequential flows

• Not yet available by
default on Node.js

• Require to thunkify or
promisify nongenerator-
based APIs

It is worth mentioning that we chose to present in this chapter only
the most popular solutions to handle asynchronous control flow,
or the ones receiving a lot of momentum, but it's good to know that
there are a few more options you might want to look at, for example,
Fibers (https://npmjs.org/package/fibers) and Streamline
(https://npmjs.org/package/streamline).

Asynchronous Control Flow Patterns

[118]

Summary
At the beginning of this chapter, we said that Node.js programming can be tough
because of its asynchronous nature, especially for people used to developing on
other platforms. However, throughout this chapter we showed how asynchronous
APIs can be bent to our will, starting with plain JavaScript, which provided us
the foundation for the analysis of more sophisticated techniques. We then saw
that the tools at our disposal are indeed variegated and provide good solutions to
most of our problems, in addition to offering a programming style for every taste;
for example, we may choose async to simplify the most common flows, or totally
change paradigm by using promises with their fluent chaining and robust error
management, or if we want to get fancy, we can always leverage generators and
feel like we are programming with blocking APIs.

This chapter should not only have taught you how to choose between one or the
other solutions but also how to use them together, even in the same project.

This chapter, at last, should have given us that confidence needed for efficiently
reading and writing asynchronous code and should have brought us a step closer
to mastering Node.js programming.

In the next chapter, we will introduce streams, the swiss army knife of Node.js.
We will see how they can be used not only to efficiently handle I/O, but also as
a tool for transforming data and objects.

Coding with Streams
Streams are one of the most important components and patterns of Node.js.
There is a motto in the community that says Stream all the things! and this alone
should be enough to describe the role of streams in Node.js. Dominic Tarr, a top
contributor to the Node.js community, defines streams as node's best and most
misunderstood idea. There are different reasons that make Node.js streams so
attractive; again, it's not just related to technical properties, such as performance or
efficiency, but it's something more about their elegance and the way they fit perfectly
into the Node.js philosophy.

In this chapter, you will learn about the following topics:

• Why streams are so important in Node.js
• Using and creating streams
• Streams as a programming paradigm: leveraging their power in many

different contexts and not just for I/O
• Piping patterns and connecting streams together in different configurations

Discovering the importance of streams
In an event-based platform such as Node.js, the most efficient way to handle I/O is
in real time, consuming the input as soon as it is available and sending the output as
soon as it is produced by the application.

In this section, we are going to give an initial introduction to Node.js streams and
their strengths. Please bear in mind that this is only an overview, as a more detailed
analysis on how to use and compose streams will follow later in the chapter.

Coding with Streams

[120]

Buffering vs Streaming
Almost all the asynchronous APIs that we've seen so far in the book work using
the buffer mode. For an input operation, the buffer mode causes all the data coming
from a resource to be collected into a buffer; it is then passed to a callback as soon
as the entire resource is read. The following diagram shows a visual example
of this paradigm:

In the preceding figure, we can see that, at the time t1, some data was received
from the resource and saved into the buffer. At the time t2, another data chunk is
received—the final one—that completes the read operation and causes the entire
buffer to be sent to the consumer.

Chapter 3

[121]

On the other side, streams allow you to process the data as soon as it arrives from the
resource. This is shown in the following diagram:

This time, the diagram shows you how each new chunk of data is received from the
resource and is immediately provided to the consumer, who now has the chance to
process it straightaway without waiting for all the data to be collected in the buffer.

But what are the differences between the two approaches? We can summarize them
in two major categories:

• Spatial efficiency
• Time efficiency

However, Node.js streams have another important advantage: composability.
Let's now see what impact these properties have in the way we design and write
our applications.

Coding with Streams

[122]

Spatial efficiency
First of all, streams allow us to do things that would not be possible, by buffering
data and processing it all at once. For example, consider the case in which we have
to read a very big file, let's say, in the order of hundreds of megabytes or even
gigabytes. Clearly, using an API that returns a big buffer when the file is completely
read, is not a good idea. Imagine reading a few of these big files concurrently; our
application will easily run out of memory. Besides that, buffers in V8 cannot be
bigger than 0x3FFFFFFF bytes (a little bit less than 1 GB). So, we might hit a wall way
before running out of physical memory.

Gzipping using a buffered API
To make a concrete example, let's consider a simple Command-line Interface
(CLI) application that compresses a file using the Gzip format. Using a buffered
API, such an application will look like the following in Node.js (error handling is
omitted for brevity):

var fs = require('fs');
var zlib = require('zlib');

var file = process.argv[2];

fs.readFile(file, function(err, buffer) {
 zlib.gzip(buffer, function(err, buffer) {
 fs.writeFile(file + '.gz', buffer, function(err) {
 console.log('File successfully compressed');
 });
 });
});

Now, we can try to put the preceding code in a file named gzip.js and then run it
with the following command:

node gzip <path to file>

If we choose a file that is big enough, let's say a little bit bigger than 1 GB, we will
receive a nice error message saying that the file that we are trying to read is bigger
than the maximum allowed buffer size, such as the following:

RangeError: File size is greater than possible Buffer: 0x3FFFFFFF bytes

That's exactly what we expected, and it's a symptom that we are using the
wrong approach.

Chapter 3

[123]

Gzipping using streams
The simplest way we have to fix our gzip application and make it work with big files
is to use a streaming API. Let's see how this can be achieved; let's replace the contents
of the module we just created with the following code:

var fs = require('fs');
var zlib = require('zlib');
var file = process.argv[2];

fs.createReadStream(file)
 .pipe(zlib.createGzip())
 .pipe(fs.createWriteStream(file + '.gz'))
 .on('finish', function() {
 console.log('File successfully compressed');
 });

Is that it? You may ask. Yes, as we said, streams are amazing also because of their
interface and composability, thus allowing clean, elegant, and concise code. We
will see this in a while in more detail, but for now the important thing to realize is
that the program will run smoothly against files of any size, ideally with constant
memory utilization. Try it yourself (but consider that compressing a big file might
take a while).

Time efficiency
Let's now consider the case of an application that compresses a file and uploads it to
a remote HTTP server, which in turn decompresses and saves it on the filesystem. If
our client was implemented using a buffered API, the upload would start only when
the entire file has been read and compressed. On the other hand, the decompression
will start on the server only when all the data has been received. A better solution to
achieve the same result involves the use of streams. On the client machine, streams
allows you to compress and send the data chunks as soon as they are read from
the filesystem, whereas, on the server, it allows you to decompress every chunk as
soon as it is received from the remote peer. Let's demonstrate this by building the
application that we mentioned earlier, starting from the server side.

Let's create a module named gzipReceive.js containing the following code:

var http = require('http');
var fs = require('fs');
var zlib = require('zlib');

Coding with Streams

[124]

var server = http.createServer(function (req, res) {
 var filename = req.headers.filename;
 console.log('File request received: ' + filename);
 req
 .pipe(zlib.createGunzip())
 .pipe(fs.createWriteStream(filename))
 .on('finish', function() {
 res.writeHead(201, {'Content-Type': 'text/plain'});
 res.end('That\'s it\n');
 console.log('File saved: ' + filename);
 });
});

server.listen(3000, function () {
 console.log('Listening');
});

The server receives the data chunks from the network, decompresses them,
and saves them as soon as they are received, thanks to Node.js streams.

The client side of our application will go into a module named gzipSend.js
and it looks like the following:

var fs = require('fs');
var zlib = require('zlib');
var http = require('http');
var path = require('path');
var file = process.argv[2];
var server = process.argv[3];

var options = {
 hostname: server,
 port: 3000,
 path: '/',
 method: 'PUT',
 headers: {
 filename: path.basename(file),
 'Content-Type': 'application/octet-stream' ,
 'Content-Encoding': 'gzip'
 }
};

Chapter 3

[125]

var req = http.request(options, function(res) {
 console.log('Server response: ' + res.statusCode);
});

fs.createReadStream(file)
 .pipe(zlib.createGzip())
 .pipe(req)
 .on('finish', function() {
 console.log('File successfully sent');
 });

In the preceding code, we are again using streams to read the data from the file,
then compress and send each chunk as soon as it is read from the filesystem.

Now, to try out the application, let's first start the server using the
following command:

node gzipReceive

Then, we can launch the client by specifying the file to send and the address
of the server (for example localhost):

node gzipSend <path to file> localhost

If we choose a file big enough, we will see more easily how the data flows from the
client to the server, but why exactly is this paradigm where we have flowing data
more efficient compared to using a buffered API? The following diagram should
give us a hint:

read compress send receive decompress write

read compress send receive decompress write

decompressread compress send receive write

On the client

On the server

Buffered

Processing

Streaming

Time

Coding with Streams

[126]

When a file is processed it goes through a set of sequential stages:

1. [Client] Read from the filesystem.
2. [Client] Compress the data.
3. [Client] Send it to the server.
4. [Server] Receive from the client.
5. [Server] Decompress the data.
6. [Server] Write the data to disk.

To complete the processing, we have to go through each stage like in an assembly
line, in sequence, until the end. In the preceding figure, we can see that, using a
buffered API, the process is entirely sequential. To compress the data, we first have
to wait for the entire file to be read, then, to send the data, we have to wait for the
entire file to be both read and compressed, and so on. When instead we are using
streams, the assembly line is kicked off as soon as we receive the first chunk of data,
without waiting for the entire file to be read. But more amazingly, when the next
chunk of data is available, there is no need to wait for the previous set of tasks to be
completed; instead, another assembly line is launched in parallel. This works perfectly
because each task that we execute is asynchronous, so it can be parallelized by Node.
js; the only constraint is that the order in which the chunks arrive in each stage must
be preserved (and Node.js streams take care of this for us).

As we can see from the previous figure, the result of using streams is that the entire
process takes less time, because we waste no time in waiting for all the data to be
read and processed all at once.

Composability
The code we have seen so far has already given us an overview of how streams can
be composed, thanks to the pipe() method, which allows us to connect the different
processing units, each being responsible for one single functionality in perfect Node.
js style. This is possible because streams have a uniform interface, and they can
understand each other in terms of API. The only prerequisite is that the next stream
in the pipeline has to support the data type produced by the previous stream, which
can be either binary, text, or even objects, as we will see later in the chapter.

To take a look at another demonstration of the power of this property, we can
try to add an encryption layer to the gzipReceive/gzipSend application that
we built previously.

Chapter 3

[127]

To do this, we only need to update the client by adding another stream to the
pipeline; to be precise, the stream returned by crypto.createChipher().
The resulting code should be as follows:

var crypto = require('crypto');
[...]
fs.createReadStream(file)
 .pipe(zlib.createGzip())
 .pipe(crypto.createCipher('aes192', 'a_shared_secret'))
 .pipe(req)
 .on('finish', function() {
 console.log('File succesfully sent');
 });

In a similar way, we can update the server so that the data is decrypted before
being decompressed:

var crypto = require('crypto');
[...]
var server = http.createServer(function (req, res) {
 [...]
 req
 .pipe(crypto.createDecipher('aes192', 'a_shared_secret'))
 .pipe(zlib.createGunzip())
 .pipe(fs.createWriteStream(filename))
 .on('finish', function() {
 [...]
 });
});

With very little effort (just a few lines of code), we added an encryption layer to
our application; we simply had to reuse an already available transform stream by
including it in the pipeline that we already had. In a similar way, we can add and
combine other streams, as if we were playing with Lego bricks.

Clearly, the main advantage of this approach is reusability, but as we can see from
the code we presented so far, streams also enable cleaner and more modular code.
For these reasons, streams are often used not just to deal with pure I/O, but also
as a means to simplify and modularize the code.

Coding with Streams

[128]

Getting started with streams
In the previous section, we learned why streams are so powerful, but also that
they are everywhere in Node.js, starting from its core modules. For example, we
have seen that the fs module has createReadStream() for reading from a file and
createWriteStream() for writing to a file, the http request and response objects
are essentially streams, and the zlib module allows us to compress and decompress
data using a streaming interface.

Now that we know why streams are so important, let's take a step back and start to
explore them in more detail.

Anatomy of streams
Every stream in Node.js is an implementation of one of the four base abstract classes
available in the stream core module:

• stream.Readable

• stream.Writable

• stream.Duplex

• stream.Transform

Each stream class is also an instance of EventEmitter. Streams, in fact, can produce
several types of events, such as end, when a Readable stream has finished reading,
or error, when something goes wrong.

Please note that, for brevity, in the examples presented in this
chapter, we will often omit proper error management. However, in
production applications it is always advised to register an error
event listener for all your streams.

One of the reasons why streams are so flexible is the fact that they can handle not
only binary data, but practically, almost any JavaScript value; in fact they can
support two operating modes:

• Binary mode: This mode is where data is streamed in the form of chunks,
such as buffers or strings

• Object mode: This mode is where the streaming data is treated as a sequence
of discreet objects (allowing to use almost any JavaScript value)

Chapter 3

[129]

These two operating modes allow us to use streams not only for I/O, but also as a
tool to elegantly compose processing units in a functional fashion, as we will see later
in the chapter.

In this chapter, we will discuss mainly the Node.js stream interface also
known as Version 2, which was introduced in Node.js 0.10. For further
details about the differences with the old interface, please refer to the
official Node.js blog at http://blog.nodejs.org/2012/12/20/
streams2/.

Readable streams
A readable stream represents a source of data; in Node.js, it's implemented using the
Readable abstract class that is available in the stream module.

Reading from a stream
There are two ways to receive the data from a Readable stream: non-flowing and
flowing. Let's analyze these modes in more detail.

The non-flowing mode
The default pattern for reading from a Readable stream consists of attaching a
listener for the readable event that signals the availability of new data to read.
Then, in a loop, we read all the data until the internal buffer is emptied. This can be
done using the read() method, which synchronously reads from the internal buffer
and returns a Buffer or String object representing the chunk of data. The read()
method has the following signature:

readable.read([size])

Using this approach, the data is explicitly pulled from the stream on demand.

To show how this works, let's create a new module named readStdin.js, which
implements a simple program that reads from the standard input (a Readable
stream) and echoes everything back to the standard output:

process.stdin
 .on('readable', function() {
 var chunk;
 console.log('New data available');
 while((chunk = process.stdin.read()) !== null) {
 console.log(

Coding with Streams

[130]

 'Chunk read: (' + chunk.length + ') "' +
 chunk.toString() + '"'
);
 }
 })
 .on('end', function() {
 process.stdout.write('End of stream');
 });

The read() method is a synchronous operation that pulls a data chunk from
the internal buffers of the Readable stream. The returned chunk is, by default,
a Buffer object if the stream is working in binary mode.

In a Readable stream working in binary mode, we can read strings
instead of buffers by calling setEncoding(encoding) on the
stream, and provide a valid encoding format (for example, utf8).

The data is read exclusively from within the readable listener, which is invoked
as soon as new data is available. The read() method returns null when there is
no more data available in the internal buffers; in such a case, we have to wait for
another readable event to be fired - telling us that we can read again - or wait for
the end event that signals the end of the stream. When a stream is working in binary
mode, we can also specify that we are interested in reading a specific amount of
data by passing a size value to the read() method. This is particularly useful when
implementing network protocols or when parsing specific data formats.

Now, we are ready to run the readStdin module and experiment with it.
Let's type some characters in the console and then press Enter to see the data echoed
back into the standard output. To terminate the stream and hence generate a graceful
end event, we need to insert an EOF (End-Of-File) character (using Ctrl + Z on
Windows or Ctrl + D on Linux).

We can also try to connect our program with other processes; this is possible using the
pipe operator (|), which redirects the standard output of a program to the standard
input of another. For example, we can run a command such as the following:

cat <path to a file> | node readStdin

This is an amazing demonstration of how the streaming paradigm is a universal
interface, which enables our programs to communicate, regardless of the language
they are written in.

Chapter 3

[131]

The flowing mode
Another way to read from a stream is by attaching a listener to the data event;
this will switch the stream into using the flowing mode where the data is not
pulled using read(), but instead it's pushed to the data listener as soon as it arrives.
For example, the readStdin application that we created earlier will look like this
using the flowing mode:

process.stdin
 .on('data', function(chunk) {
 console.log('New data available');
 console.log(
 'Chunk read: (' + chunk.length + ')" ' +
 chunk.toString() + '"'
);
 })
 .on('end', function() {
 process.stdout.write('End of stream');
 });

The flowing mode is an inheritance of the old version of the stream interface
(also known as Streams1), and offers less flexibility to control the flow of data.
With the introduction of the Streams2 interface, the flowing mode is not the
default working mode; to enable it, it's necessary to attach a listener to the data
event or explicitly invoke the resume() method. To temporarily stop the stream
from emitting data events, we can then invoke the pause() method, causing any
incoming data to be cached in the internal buffer.

Calling pause() does not cause the stream to switch back to the
non-flowing mode.

Implementing Readable streams
Now that we know how to read from a stream, the next step is to learn how to
implement a new Readable stream. To do this, it's necessary to create a new class by
inheriting the prototype of stream.Readable. The concrete stream must provide an
implementation of the _read() method, which has the following signature:

readable._read(size)

The internals of the Readable class will call the _read() method, which in turn will
start to fill the internal buffer using push():

readable.push(chunk)

Coding with Streams

[132]

Please note that read() is a method called by the stream consumers,
while _read() is a method to be implemented by a stream subclass and
should never be called directly. The underscore usually indicates that
the method is not public and should not be called directly.

To demonstrate how to implement the new Readable streams, we can try to
implement a stream that generates random strings. Let's create a new module
called randomStream.js that will contain the code of our string generator.
At the top of the file, we will load our dependencies:

var stream = require('stream');
var util = require('util');
var chance = require('chance').Chance();

Nothing special here, except that we are loading a npm module called chance
(https://npmjs.org/package/chance), which is a library for generating all
sorts of random values, from numbers to strings to entire sentences.

The next step is to create a new class called RandomStream and that specifies
stream.Readable as its parent:

function RandomStream(options) {
 stream.Readable.call(this, options);
}
util.inherits(RandomStream, stream.Readable);

In the preceding code, we call the constructor of the parent class to initialize its
internal state, and forward the options argument received as input. The possible
parameters passed through the options object include:

• The encoding argument that is used to convert Buffers to Strings
(defaults to null)

• A flag to enable the object mode (objectMode defaults to false)
• The upper limit of the data stored in the internal buffer after which no more

reading from the source should be done (highWaterMark defaults to 16 KB)

Okay, now that we have our new RandomStream constructor ready, we can proceed
with implementing the _read() method:

RandomStream.prototype._read = function(size) {
 var chunk = chance.string(); //[1]
 console.log('Pushing chunk of size:' + chunk.length);

Chapter 3

[133]

 this.push(chunk, 'utf8'); //[2]
 if(chance.bool({likelihood: 5})) { //[3]
 this.push(null);
 }
}
module.exports = RandomStream;

The preceding method is explained as follows:

1. The method generates a random string using chance.
2. It pushes the string into the internal reading buffer. Note that, since we are

pushing a String, we also specify the encoding, utf8 (this is not necessary
if the chunk is simply a binary Buffer).

3. It terminates the stream randomly, with a likelihood of 5 percent, by pushing
null into the internal buffer to indicate an EOF situation or, in other words,
the end of the stream.

We can also see that the size argument given in input to the _read() function is
ignored, as it is an advisory parameter. We can simply just push all the available
data, but if there are multiple pushes inside the same invocation, then we should
check whether push() returns false, as this would mean that the internal buffer
has reached the highWaterMark limit and we should stop adding more data to it.

That's it for RandomStream; we are not ready to use it. Let's create a new module
named generateRandom.js in which we instantiate a new RandomStream object
and pull some data from it:

var RandomStream = require('./randomStream');
var randomStream = new RandomStream();
randomStream.on('readable', function() {
 var chunk;
 while((chunk = randomStream.read()) !== null) {
 console.log("Chunk received: " + chunk.toString());
 }
});

Now, everything is ready for us to try our new custom stream. Simply execute
the generateRandom module as usual and watch a random set of strings flowing
on the screen.

Coding with Streams

[134]

Writable streams
A writable stream represents a data destination; in Node.js, it's implemented using
the Writable abstract class, which is available in the stream module.

Writing to a stream
Pushing some data down a writable stream is a straightforward business; all we
need to do is to use the write() method, which has the following signature:

writable.write(chunk, [encoding], [callback])

The encoding argument is optional and can be specified if chunk is String
(defaults to utf8, ignored if chunk is Buffer); the callback function instead is
called when the chunk is flushed into the underlying resource and is optional as well.

To signal that no more data will be written to the stream, we have to use the
end() method:

writable.end([chunk], [encoding], [callback])

We can provide a final chunk of data through the end() method; in this case
the callback function is equivalent to registering a listener to the finish event,
which is fired when all the data written in the stream has been flushed into the
underlying resource.

Now, let's show how this works by creating a small HTTP server that outputs a
random sequence of strings:

var chance = require('chance').Chance();
require('http').createServer(function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'}); //[1]
 while(chance.bool({likelihood: 95})) { //[2]
 res.write(chance.string() + '\n'); //[3]
 }
 res.end('\nThe end...\n'); //[4]
 res.on('finish', function() { //[5]
 console.log('All data was sent');
 });
}).listen(8080, function () {
 console.log('Listening');
});

Chapter 3

[135]

The HTTP server that we created writes into the res object, which is an instance
of http.ServerResponse and also a Writable stream. What happens is explained
as follows:

1. We first write the head of the HTTP response. Note that writeHead() is not
a part of the Writable interface; in fact, it's an auxiliary method exposed by
the http.ServerResponse class.

2. We start a loop that terminates with a likelihood of five percent (we instruct
chance.bool() to return true for 95 percent of the time).

3. Inside the loop, we write a random string into the stream.
4. Once we are out of the loop, we call end() on the stream, indicating that no

more data will be written. Also, we provide a final string to be written into
the stream before ending it.

5. Finally, we register a listener for the finish event, which will be fired when
all the data has been flushed into the underlying socket.

We can call this small module, entropyServer.js, and then execute it. To test the
server, we can open a browser at the address http://localhost:8080, or use curl
from the terminal as follows:

curl localhost:8080

At this point, the server should start sending random strings to the HTTP client that
you chose (please bear in mind that some browsers might buffer the data, and the
streaming behavior might not be apparent).

An interesting curiosity is the fact that http.ServerResponse
is actually an instance of the old Stream class (http://nodejs.
org/docs/v0.8.0/api/stream.html). It's important to state,
though, that this does not affect our example, as the interface and
behavior on the writable side remain almost the same in the newer
stream.Writable class.

Back-pressure
Similar to a liquid flowing in a real piping system, Node.js streams can also suffer
from bottlenecks, where data is written faster than the stream can consume it.
The mechanism to cope with this problem consists of buffering the incoming data;
however, if the stream doesn't give any feedback to the writer, we might incur a
situation where more and more data is accumulated into the internal buffer, leading
to undesired levels of memory usage.

Coding with Streams

[136]

To prevent this from happening, writable.write() will return false when
the internal buffer exceeds the highWaterMark limit. The Writable streams have
a highWaterMark property, which is the limit of the internal buffer size beyond
which the write() method starts returning false, indicating that the application
should now stop writing. When the buffer is emptied, the drain event is emitted,
communicating that it's safe to start writing again.
This mechanism is called back-pressure.

The mechanism described in this section is similarly applicable to
Readable streams. In fact, back-pressure exists in the Readable
streams too, and it's triggered when the push() method, which is
invoked inside _read(), returns false. However, it's a problem
specific to stream implementers, so we will deal with it less frequently.

We can quickly demonstrate how to take into account the back-pressure of a
Writable stream, by modifying the entropyServer that we created before:

var chance = require('chance').Chance();

require('http').createServer(function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});

 function generateMore() { //[1]
 while(chance.bool({likelihood: 95})) {
 var shouldContinue = res.write(
 chance.string({length: (16 * 1024) – 1}) //[2]
);
 if(!shouldContinue) { //[3]
 console.log('Backpressure');
 return res.once('drain', generateMore);
 }
 }
 res.end('\nThe end...\n', function() {
 console.log('All data was sent');
 });
 }

 generateMore();
}).listen(8080, function () {
 console.log('Listening');
});

Chapter 3

[137]

The most important steps of the previous code can be summarized as follows:

1. We wrapped the main logic into a function called generateMore().
2. To increase the chances of receiving some back-pressure, we increased the

size of the data chunk to 16 KB - 1 Byte, which is very close to the default
highWaterMark limit.

3. After writing a chunk of data, we check the return value of res.write();
if we receive false, it means that the internal buffer is full and we should
stop sending more data. In this case, we exit from the function, and register
another cycle of writes for when the drain event is emitted.

If we now try to run the server again, and then generate a client request with curl,
there is a good probability that there will be some back-pressure, as the server
produces data at a very high rate, faster than the underlying socket can handle.

Implementing Writable streams
We can implement a new Writable stream by inheriting the prototype of stream.
Writable and providing an implementation for the _write() method. Let's try to
do it immediately while discussing the details along the way.

Let's build a Writable stream that receives objects in the following format:

{
 path: <path to a file>
 content: <string or buffer>
}

For each one of these objects, our stream has to save the content part into a file created
at the given path. We can immediately see that the input of our stream are objects, and
not strings or buffers; this means that our stream has to work in object mode.

Let's call the module toFileStream.js and, as the first step, let's load all the
dependencies that we are going to use:

var stream = require('stream');
var fs = require('fs');
var util = require('util');
var path = require('path');
var mkdirp = require('mkdirp');

Coding with Streams

[138]

Next, we have to create the constructor of our new stream, which inherits the
prototype from stream.Writable:

function ToFileStream() {
 stream.Writable.call(this, {objectMode: true});
};
util.inherits(ToFileStream, stream.Writable);

Again, we had to invoke the parent constructor to initialize its internal state; we also
provide an options object that specifies that the stream works in an object mode
(objectMode: true). Other options accepted by stream.Writable are as follows:

• highWaterMark (the default is 16 KB): This controls the back-pressure limit.
• decodeStrings (defaults to true): This enables the automatic decoding of

strings into binary buffers before passing them to the _write() method.
This option is ignored in the object mode.

Finally, we need to provide an implementation for the _write() method:

ToFileStream.prototype._write = function(chunk, encoding, callback) {
 var self = this;
 mkdirp(path.dirname(chunk.path), function(err) {
 if(err) {
 return callback(err);
 }
 fs.writeFile(chunk.path, chunk.content, callback);
 });
}
module.exports = ToFileStream;

This is a good time to analyze the signature of the _write() method. As you can see,
the method accepts a data chunk, an encoding (which makes sense only if we are in
the binary mode and the stream option decodeStrings is set to false). Also, the
method accepts a callback function, which needs to be invoked when the operation
completes; it's not necessary to pass the result of the operation but, if needed, we can
still pass an error that will cause the stream to emit an error event.

Chapter 3

[139]

Now, to try the stream that we just built, we can create a new module, called for
example, writeToFile.js, and perform some write operations against the stream:

var ToFileStream = require('./toFileStream');
var tfs = new ToFileStream();
tfs.write({path: "file1.txt", content: "Hello"});
tfs.write({path: "file2.txt", content: "Node.js"});
tfs.write({path: "file3.txt", content: "Streams"});
tfs.end(function() {
 console.log("All files created");
});

With this, we created and used our first custom Writable stream. Run the new
module as usual to check its output.

Duplex streams
A Duplex stream is a stream that is both Readable and Writable. It is useful when
we want to describe an entity that is both a data source and a data destination, as
for example, network sockets. Duplex streams inherit the methods of both stream.
Readable and stream.Writable, so this is nothing new to us. This means that we
can read() or write() data, or listen for both the readable and drain events.

To create a custom Duplex stream, we have to provide an implementation for both
_read() and _write(); the options object passed to the Duplex() constructor is
internally forwarded to both the Readable and Writable constructors. The options are
the same as those we already discussed in the previous sections, with the addition of
a new one called allowHalfOpen (defaults to true) that if set to false will cause both
the parts (Readable and Writable) of the stream to end if only one of them does.

To have a Duplex stream working in the object mode on one side
and binary mode on the other, we need to manually set the following
properties from within the stream constructor:

this._writableState.objectMode

this._readableState.objectMode

Coding with Streams

[140]

Transform streams
The Transform streams are a special kind of Duplex stream that are specifically
designed to handle data transformations.

In a simple Duplex stream, there is no immediate relationship between the data read
from the stream and the data written into it (at least, the stream is agnostic to such a
relationship). Think about a TCP socket, which just sends and receives data to and
from the remote peer; the socket is not aware of any relationship between the input
and output. The following diagram illustrates the data flow in a Duplex stream:

On the other side, Transform streams apply some kind of transformation to
each chunk of data that they receive from their Writable side and then make the
transformed data available on their Readable side. The following diagram shows
how the data flows in a Transform stream:

From the outside, the interface of a Transform stream is exactly like that of a Duplex
stream. However, when we want to build a new Duplex stream we have to provide
the _read() and _write() methods while, for implementing a new Transform
stream, we have to fill in another pair of methods: _transform() and _flush().

Let's show how to create a new Transform stream with an example.

Chapter 3

[141]

Implementing Transform streams
Let's implement a Transform stream that replaces all the occurrences of a given
string. To do this, we have to create a new module named replaceStream.js.
As always, we will start building the module from its dependencies, creating the
constructor and extending its prototype with the parent stream class:

var stream = require('stream');
var util = require('util');

function ReplaceStream(searchString, replaceString) {
 stream.Transform.call(this, {decodeStrings: false});
 this.searchString = searchString;
 this.replaceString = replaceString;
 this.tailPiece = '';
}
util.inherits(ReplaceStream, stream.Transform);

We assume that the stream will handle only text, so we initialize the parent
constructor by setting the decodeStrings options to false; this allows us
to receive strings instead of buffers inside the _transform() method.

Now, let's implement the _transform() method itself:

ReplaceStream.prototype._transform = function(chunk, encoding,
 callback) {
 var pieces = (this.tailPiece + chunk) //[1]
 .split(this.searchString);
 var lastPiece = pieces[pieces.length - 1];
 var tailPieceLen = this.searchString.length - 1;

 this.tailPiece = lastPiece.slice(-tailPieceLen); //[2]
 pieces[pieces.length - 1] = lastPiece.slice(0, -tailPieceLen);

 this.push(pieces.join(this.replaceString)); //[3]
 callback();
}

The _transform() method has practically the same signature as that of the
_write() method of the Writable stream but, instead of writing data into an
underlying resource, it pushes it into the internal buffer using this.push(), exactly
as we would do in the _read() method of a Readable stream. This confirms how the
two sides of a Transform stream are actually connected.

Coding with Streams

[142]

The _trasform() method of ReplaceStream implements the core of our
algorithm. To search and replace a string in a buffer is an easy task; however,
it's a totally different story when the data is streaming and possible matches
might be distributed across multiple chunks. The procedure followed by the
code can be explained as follows:

1. Our algorithm splits the chunk using the searchString function
as a separator.

2. Then, it takes the last item of the array generated by the operation
and extracts the last searchString.length - 1 characters. The result
is saved into the tailPiece variable and it will be prepended to the next
chunk of data.

3. Finally, all the pieces resulting from split() are joined together using
replaceString as a separator and pushed into the internal buffer.

When the stream ends, we might still have a last tailPiece variable not pushed
into the internal buffer. That's exactly what the _flush() method is for; it is invoked
just before the stream is ended and this is where we have one final chance to finalize
the stream or push any remaining data before completely ending the stream. Let's
implement it to complete our ReplaceStream class:

ReplaceStream.prototype._flush = function(callback) {
 this.push(this.tailPiece);
 callback();
}
module.exports = ReplaceStream;

The _flush() method takes in only a callback that we have to make sure to invoke
when all the operations are complete, causing the stream to be terminated. With this,
we completed our ReplaceStream class.

Now, it's time to try the new stream. We can create another module called
replaceStreamTest.js that writes some data and then reads the transformed result:

var ReplaceStream = require('./replaceStream');

var rs = new ReplaceStream('World', 'Node.js');
rs.on('data', function(chunk) {
 console.log(chunk);
});

rs.write('Hello W');
rs.write('orld!');
rs.end();

Chapter 3

[143]

To make life a little bit harder for our stream, we spread the search term (which is
World) across two different chunks; then using the flowing mode we read from the
same stream, logging each transformed chunk. Running the preceding program
should produce the following output:

Hel

lo Node.js

!

There is a fifth type of stream that is worth mentioning:
stream.PassThrough. Unlike the other stream classes that we
presented, PassThrough is not abstract and can be instantiated
straightaway without the need to implement any method. It is, in
fact, a Transform stream that outputs every data chunk without
applying any transformation.

Connecting streams using pipes
The concept of Unix pipes was invented by Douglas Mcllroy; this enabled the
output of a program to be connected to the input of the next. Take a look at the
following command:

echo Hello World! | sed s/World/Node.js/g

In the preceding command, echo will write Hello World! to its standard output,
which is then redirected to the standard input of the sed command (thanks to the
pipe | operator); then sed replaces any occurrence of World with Node.js and
prints the result to its standard output (which, this time, is the console).

In a similar way, Node.js streams can be connected together using the pipe()
method of the Readable stream, which has the following interface:

readable.pipe(writable, [options])

Very intuitively, the pipe() method takes the data that is emitted from the readable
stream and pumps it into the provided writable stream. Also, the writable stream
is ended automatically when the readable stream emits an end event (unless, we
specify {end: false} as options). The pipe() method returns the writable stream
passed as an argument allowing us to create chained invocations if such a stream is
also Readable (as for example a Duplex or Transform stream).

Coding with Streams

[144]

Piping two streams together will create a suction which allows the data to flow
automatically to the writable stream, so there is no need to call read() or write();
but most importantly there is no need to control the back-pressure anymore, because
it's automatically taken care of.

To make a quick example (there will be tons of them coming), we can create a new
module called replace.js which takes a text stream from the standard input, applies
the replace transformation, and then pushes the data back to the standard output:

var ReplaceStream = require('./replaceStream');
process.stdin
 .pipe(new ReplaceStream(process.argv[2], process.argv[3]))
 .pipe(process.stdout);

The preceding program pipes the data that comes from the standard input into
a ReplaceStream and then back to the standard output. Now, to try this small
application, we can leverage a Unix pipe to redirect some data into its standard
input, as shown in the following example:

echo Hello World! | node replace World Node.js

This should produce the following output:

Hello Node.js

This simple example demonstrates that streams (and in particular text streams) is
an universal interface, and pipes are the way to compose and interconnect almost
magically all these interfaces.

The error events are not propagated automatically through the
pipeline. Take for example this code fragment:

stream1

 .pipe(stream2)

 .on('error', function() {});

In the preceding pipeline, we will catch only the errors coming from
stream2, which is the stream that we attached the listener to. This means
that, if we want to catch any error generated from stream1, we have to
attach another error listener directly to it. We will later see a pattern that
mitigates this inconvenience (combining streams). Also, we should notice
that if the destination stream emits an error it gets automatically unpiped
from the source stream, causing the pipeline to break.

Chapter 3

[145]

Useful packages for working with streams
We now present some npm packages that might be very useful when working
with streams.

readable-stream
We already mentioned how the streams interface changed considerably between the
0.8 and 0.10 branches of Node.js. Traditionally, the interface supported until Node.js
0.8 is called Streams1, while the newer interface supported by Node.js 0.10 is called
Streams2. The core team did a great job in maintaining backward-compatibility, so
that applications implemented using the Streams1 interface will continue to work
with the 0.10 branch; however, the vice versa is not true, so using Streams2 against
Node.js 0.8 will not work. Also, the upcoming 0.12 release will probably be
shipped with a new version of the stream interface, Streams3, and so on until
the interface stabilizes.

The streams interface, as of version 0.10, is still marked as unstable on
the official documentation (http://nodejs.org/docs/v0.10.0/
api/stream.html).

Thankfully, we have an option to shield our code from these changes; it's called
readable-stream (https://npmjs.org/package/readable-stream), a npm
package that mirrors the Streams2 and Streams3 implementations of the Node.js
core. In particular, using the 1.0 branch of readable-stream we can have the Streams2
interface available even if we run our code against Node.js 0.8. If instead we choose
the 1.1 branch (probably 1.2 when Node.js 0.12 will be released) we get the Streams3
interface regardless of the version of the Node.js platform used.

The readable-stream package is a drop-in replacement for the core stream module
(depending on the version), so using it is as simple as requiring readable-stream
instead of stream:

var stream = require('readable-stream');
var Readable = stream.Readable;
var Writable = stream.Writable;
var Duplex = stream.Duplex;
var Transform = stream.Transform;

Protecting our libraries and applications from the changes of the still unstable
streams interface can greatly reduce the defects that originate from platform
incompatibilities.

Coding with Streams

[146]

For a detailed rationale on the use of readable-stream
you can refer to this excellent article written by Rod Vagg:
http://www.nearform.com/nodecrunch/dont-use-
nodes-core-stream-module/

through and from
The way we created custom streams so far does not exactly follow the Node way;
in fact, inheriting from a base stream class violates the small surface area principle
and requires some boilerplate code. This does not mean that streams were badly
designed; in fact, we should not forget that since they are a part of the Node.js core
they must be as flexible as possible in order to enable userland modules to extend
them for a broad range of purposes.

However, most of the time we don't need all the power and extensibility that
prototypal inheritance can give, but usually what we want is just a quick and an
expressive way to define new streams. The Node.js community, of course, created
a solution also for this. A perfect example is through2 (https://npmjs.org/
package/through2), a small library which simplifies the creation of Transform
streams. With through2, we can create a new Transform stream by invoking a
simple function:

var transform = through2([options], [_transform], [_flush])

In a similar way, from2 (https://npmjs.org/package/from2) allows us to easily
and succinctly create Readable streams with code such as the following:

var readable = from2([options], _read)

The advantages of using these little libraries will be immediately clear as soon as we
start showing their usage in the rest of the chapter.

The packages through (https://npmjs.org/package/through)
and from (https://npmjs.org/package/from) are the
original libraries built on top of Streams1.

Chapter 3

[147]

Asynchronous control flow with streams
Going through the examples that we presented so far, it should be clear that streams
can be useful not only to handle I/O, but also as an elegant programming pattern
that can be used to process any kind of data. But the advantages do not end at the
simple appearance; streams can also be leveraged to turn asynchronous control flow
into flow control, as we will see in this section.

Sequential execution
By default, streams will handle data in a sequence, for example, a _transform()
function of a Transform stream will never be invoked again with the next chunk
of data, until the previous invocation completes by executing callback(). This is
an important property of streams, crucial for processing each chunk in the right
order, but it can also be exploited to turn streams into an elegant alternative to the
traditional control flow patterns.

Some code is always better than too much explanation, so let's work on an example
to demonstrate how we can use streams to execute asynchronous tasks in a sequence.
Let's create a function that concatenates a set of files received as input, making sure
to honor the order in which they are provided. Let's create a new module called
concatFiles.js and let's define its contents starting from its dependencies:

var fromArray = require('from2-array');
var through = require('through2');
var fs = require('fs');

We will be using through2 to simplify the creation of Transform streams and
from2-array in order to create a readable stream from an array of objects.

Next, we can define the concatFiles() function:

function concatFiles(destination, files, callback) {
 var destStream = fs.createWriteStream(destination);

 fromArray.obj(files) //[1]
 .pipe(through.obj(function(file, enc, done) { //[2]
 var src = fs.createReadStream(file);
 src.pipe(destStream, {end: false});
 src.on('end', function() { //[3]
 done();
 });
 }))

Coding with Streams

[148]

 .on('finish', function() { //[4]
 destStream.end();
 callback();
 });
}
module.exports = concatFiles;

The preceding function implements a sequential iteration over the files array
by transforming it into a stream. The procedure followed by the function is
explained as follows:

1. First, we use from2-array to create a Readable stream from the files array.
2. Next, we create a through (Transform) stream to handle each file in the

sequence. For each file, we create a Readable stream and we pipe it into
destStream, which represents the output file. We make sure not to close
destStream after the source file finishes reading, by specifying {end:
false} into the pipe() options.

3. When all the contents of the source file have been piped into destStream,
we invoke done(), which triggers the processing of the next file.

4. When all the files have been processed, the finish event is fired; we
can finally end destStream and invoke the callback() function of
concatFiles(), which signals the completion of the whole operation.

We can now try to use the little module we just created. Let's do that in a new file,
called concat.js:

var concatFiles = require('./concatFiles');
concatFiles(process.argv[2], process.argv.slice(3), function() {
 console.log('Files concatenated succesfully');
});

We can now run the preceding program by passing the destination file as the first
command line argument followed by a list of files to concatenate, for example:

node concat allTogether.txt file1.txt file2.txt

This should create a new file called allTogether.txt containing, in order, the
contents of file1.txt and file2.txt.

With the concatFiles() function, we were able to obtain an asynchronous
sequential iteration using only streams. As we saw in Chapter 2, Asynchronous
Control Flow Patterns, this would have required the use of an iterator, if implemented
with pure JavaScript, or an external library such as async. We have now provided
another option for achieving the same result, which as we see is also very compact
and elegant.

Chapter 3

[149]

Pattern: Use a stream, or combination of streams, to easily iterate
over a set of asynchronous tasks in sequence.

Unordered parallel execution
We just saw that streams process each data chunk in a sequence, but sometimes
this can be a bottleneck as we would not make the most of the Node.js concurrency.
If we have to execute a slow asynchronous operation for every data chunk, it can
be advantageous to parallelize the execution and speed up the overall process.
Of course, this pattern can only be applied if there is no relationship between each
chunk of data, which might happen frequently for object streams, but very rarely
for binary streams.

Caution: parallel streams cannot be used when the order in which
the data is processed is important.

To parallelize the execution of a Transform stream, we can apply the same patterns
that we learned in Chapter 2, Asynchronous Control Flow Patterns, but with some
adaptations to get them working with streams. Let's see how this works.

Implementing an unordered parallel stream
Let's demonstrate this immediately with an example; let's create a module called
parallelStream.js and define a generic Transform stream that executes a given
transform function in parallel. Let's start to define its constructor:

var stream = require('stream');
var util = require('util');

function ParallelStream(userTransform) {
 stream.Transform.call(this, {objectMode: true});
 this.userTransform = userTransform;
 this.running = 0;
 this.terminateCallback = null;
}
util.inherits(ParallelStream, stream.Transform);

The constructor accepts a userTransform() function, which is then saved as an
instance variable; we also invoke the parent constructor and for convenience we
enable the object mode by default.

Coding with Streams

[150]

Next, it is the turn of the _transform() method:

ParallelStream.prototype._transform =
 function(chunk, enc, done) {
 this.running++;
 this.userTransform(chunk, enc, this._onComplete.bind(this));
 done();
 }

In the _transform() method, we execute the userTransform() function, then
we increment the count of running tasks; finally, we notify that the current
transformation step is complete by invoking done(). The trick for triggering the
processing of another item in parallel is exactly this; we are not waiting for the
userTransform() function to complete before invoking done(), instead we do it
immediately. On the other hand, we provide a special callback to userTransform(),
which is the this._onComplete() method (we are going to define it in a moment);
this allows us to get notified when the userTransform() completes.

Next, it is the turn of the _flush() method:

ParallelStream.prototype._flush = function(done) {
 if(this.running > 0) {
 this.terminateCallback = done;
 } else {
 done();
 }
}

The _flush() method is invoked just before the stream terminates, so if there
are still tasks running we can put on hold the release of the finish event by not
invoking the done() callback immediately; instead, we assign it to the this.
terminateCallback variable. To understand how the stream is then properly
terminated, we have to look into the _onComplete() method:

ParallelStream.prototype._onComplete = function(err) {
 this.running--;
 if(err) {
 return this.emit('error', err);
 }
 if(this.running === 0) {
 this.terminateCallback && this.terminateCallback();
 }
}
module.exports = ParallelStream;

Chapter 3

[151]

The _onComplete() method is invoked every time an asynchronous task completes.
It checks whether there are any more tasks running and, if there are none, it invokes
the this.terminateCallback() function, which will cause the stream to end,
releasing the finish event which was put on hold in the _flush() method.

The ParallelStream class, we just built allows us to easily create a Transform
stream which executes its tasks in parallel, but there is a caveat: it does not preserve
the order of the items as they are received. In fact, asynchronous operations can
complete and push data at any time, regardless of when they are started. We
immediately understand that this property does not play well with binary streams
where the order of data usually matters, but it can surely be useful with some types
of object streams.

Implementing a URL status monitoring application
Now, let's apply our ParallelStream to a concrete example. Let's imagine that we
wanted to build a simple service to monitor the status of a big list of URLs. Let's
imagine all these URLs are contained in a single file and are newline separated.

Streams can offer a very efficient and elegant solution to this problem, especially if
we use our ParallelStream to parallelize the checking of the URLs.

Let's build this simple application immediately in a new module called
checkUrls.js:

var fs = require('fs');
var split = require('split');
var request = require('request');
var ParallelStream = require('./parallelStream');

fs.createReadStream(process.argv[2]) //[1]
 .pipe(split()) //[2]
 .pipe(new ParallelStream(function(url, enc, done) { //[3]
 if(!url) return done();
 var self = this;
 request.head(url, function(err, response) {
 self.push(url + ' is ' + (err ? 'down' : 'up') + '\n');
 done();
 });
 }))
 .pipe(fs.createWriteStream('results.txt')) //[4]
 .on('finish', function() {
 console.log('All urls were checked');
 });

Coding with Streams

[152]

As we can see, with streams our code looks very elegant and straightforward;
let's see how it works:

1. First, we create a Readable stream from the file given as input.
2. We pipe the contents of the input file through split (https://npmjs.org/

package/split), a Transform stream that ensures outputting each line on a
different chunk.

3. Then, it's the time to use our ParallelStream to check the URL. We do this
by sending a HEAD request and waiting for a response. When the callback is
invoked, we push the result of the operation down the stream.

4. Finally, all the results are piped into a file, results.txt.

Now, we can run the checkUrls module with a command such as this:

node checkUrls urlList.txt

Where the file urlList.txt contains a list of URLs, for example:

http://www.example.com
http://www.example.com/link1
http://thiswillbedownforsure.com

When the command finishes running, we will see that a file results.txt was
created. This contains the results of the operation, for example:

http://thiswillbedownforsure.com is down
http://www.example.com/link1 is up
http://www.example.com is up

There is a good probability that the order in which the results are written is different
from the order in which the URLs were specified in the input file. This is clear
evidence that our stream executes its tasks in parallel, and it does not enforce any
order between the various data chunks in the stream.

For the sake of curiosity, we might want to try replacing
ParallelStream with a normal through2 stream, and compare the
behavior and performances of the two (you might want to do this as an
exercise). We will see that using through2 is way more slower, because
each URL would be checked in a sequence, but also that the order of the
results in the file results.txt would be preserved.

Chapter 3

[153]

Unordered limited parallel execution
If we try to run the checkUrls application against a file that contains thousands
or millions of URLs, we will surely run into trouble. Our application will create an
uncontrolled number of connections all at once, sending a considerable amount of
data in parallel and potentially undermining the stability of the application and the
availability of the entire system. As we already know, the solution to keep the load
and resource usage under control is to limit the concurrency of the parallel tasks.

Let's see how this works with streams by creating a limitedParallelStream.
js module, which is an adaptation of parallelStream.js that we created in the
previous section.

Let's see how it looks like, starting from its constructor (we will highlight the
changed parts):

function LimitedParallelStream(concurrency, userTransform) {
 stream.Transform.call(this, {objectMode: true});
 this.userTransform = userTransform;
 this.running = 0;
 this.terminateCallback = null;
 this.continueCallback = null;
 this.concurrency = concurrency;
}

We need a concurrency limit to be taken as the input and this time we are going to
save two callbacks, one for any pending _transform method (continueCallback)
and another one for the callback of the _flush method (terminateCallback).

Next is the _transform() method:

LimitedParallelStream.prototype._transform =
 function(chunk, enc, done) {
 this.running++;
 this.userTransform(chunk, enc, this._onComplete.bind(this));
 if(this.running < this.concurrency) {
 done();
 } else {
 this.continueCallback = done;
 }
 }

Coding with Streams

[154]

This time in the _transform() method, we have to check whether we have any free
execution slots before we invoke done() and trigger the processing of the next item.
If we have already reached the maximum number of concurrent running streams, we
can simply save the done() callback into the continueCallback variable, so that it
can be invoked as soon as a task finishes.

The _flush() method remains exactly the same as in the ParallelStream class,
so let's move directly to implementing the _onComplete() method:

LimitedParallelStream.prototype._onComplete =
 function(err, chunk) {
 this.running--;
 if(err) {
 return this.emit('error', err);
 }
 var tmpCallback = this.continueCallback;
 this.continueCallback = null;
 tmpCallback && tmpCallback();
 if(this.running === 0) {
 this.terminateCallback && this.terminateCallback();
 }
 }

Every time a task completes we invoke any saved continueCallback()that will
cause the stream to unblock, triggering the processing of the next item.

That's it for the limitedParallelStream module; we can now use it in the
checkUrls module in place of parallelStream and have the concurrency of our
tasks limited to the value that we set.

Ordered parallel execution
The parallel streams that we created previously might shuffle the order of the
emitted data, but there are situations where this is not acceptable; sometimes, in fact,
it is necessary to have each chunk emitted in the same order in which it was received.
But not all the hopes are lost, we can still run the transform function in parallel; all
we have to do is to sort the data emitted by each task so that it follows the same order
in which the data was received.

This technique involves the use of a buffer to reorder the chunks while they
are emitted by each running task. For brevity, we are not going to provide an
implementation of such a stream, as it's quite verbose for the scope of this book; what
we are going to do instead is reuse one of the available packages on npm built for this
specific purpose, for example, through2-parallel (https://npmjs.org/package/
through2-parallel).

Chapter 3

[155]

We can quickly check the behavior of an ordered parallel execution by modifying
our existing checkUrls module. Let's say that we want our results to be written in
the same order as the URLs in the input file, while executing our checks in parallel.
We can do this using through2-parallel:

[...]
var throughParallel = require('through2-parallel');

fs.createReadStream(process.argv[2])
 .pipe(split())
 .pipe(throughParallel.obj({concurrency: 2},
 function(url, enc, done) {
 [...]
 })
)
 .pipe(fs.createWriteStream('results.txt'))
 .on('finish', function() {
 console.log('All urls were checked');
 });

As we see, the interface of through2-parallel is very similar to that of through2;
the only difference is that we can also specify a concurrency limit for the transform
function that we provide. If we try to run this new version of checkUrls, we will
now see that the results.txt file lists the results in the same order as the URLs
appear in the input file.

It is important to see that, even though the order of the output is the
same as the input, the asynchronous tasks still run in parallel and can
possibly complete in any order.

With this, we conclude our analysis of the asynchronous control flow with streams;
next we are going to focus on some piping patterns.

Piping patterns
As in real-life plumbing, Node.js streams also can be piped together following
different patterns; we can, in fact, merge the flow of two different streams into one,
split the flow of one stream into two or more pipes, or redirect the flow based on
a condition. In this section, we are going to explore the most important plumbing
techniques that can be applied to Node.js streams.

Coding with Streams

[156]

Combining streams
In this chapter, we stressed a lot on the fact that streams provide a simple
infrastructure to modularize and reuse our code, but there is one last piece missing
in this puzzle: what if we want to modularize and reuse an entire pipeline? What if
we want to combine multiple streams so that they look like one from the outside?
The following figure shows what this means:

From the preceding diagram, we should already get a hint of how this works:

• When we write into the combined stream, we are actually writing into the
first stream of the pipeline

• When we read from the combined stream, we are actually reading from the
last stream of the pipeline

A combined stream is usually a Duplex stream, which is built by connecting the first
stream to its Writable side and the last stream to its Readable side.

To create a Duplex stream out of two different streams, one
Writable and one Readable, we can use an npm module such
as duplexer2 (https://npmjs.org/package/duplexer2).

But that's not enough; in fact, another important characteristic of a combined stream is
that it has to capture all the errors that are emitted from any stream inside the pipeline.
As we already mentioned, any error event is not automatically propagated down the
pipeline; so, if we want to have proper error management (and we should), we will
have to explicitly attach an error listener to each stream. However, if the combined
stream is really a black box, this means that we don't have access to any of the streams
in the middle of the pipeline; so it's crucial for the combined stream to also act as an
aggregator for all the errors coming from any stream in the pipeline.

Chapter 3

[157]

To recap, a combined stream has two major advantages:

• We can redistribute it as a black box, by hiding its internal pipeline
• We have simplified error management as we don't have to attach an error

listener to each stream in the pipeline, but just to the combined stream itself

Combining streams is a pretty generic and common practice, so if we don't have
any particular need we might just want to reuse an existing solution such as
multipipe (https://www.npmjs.org/package/multipipe) or combine-stream
(https://www.npmjs.org/package/combine-stream), just to name a few.

Implementing a combined stream
To make a simple example, let's consider the case of the following two
transform streams:

• One that both compresses and encrypts the data.
• One that both decompresses and decrypts the data.

Using a library such as multipipe, we can easily build these streams by
combining some of the streams that we already have available from the core
libraries (file 'combinedStreams.js'):

var zlib = require('zlib');
var crypto = require('crypto');
var combine = require('multipipe');
var fs = require('fs');

module.exports.compressAndEncrypt = function (password) {
 return combine(
 zlib.createGzip(),
 crypto.createCipher('aes192', password)
);
}

module.exports.decryptAndDecompress = function (password) {
 return combine(
 crypto.createDecipher('aes192', password),
 zlib.createGunzip()
);
}

Coding with Streams

[158]

We can now use these combined streams, as if they were black boxes, for example,
to create a small application that archives a file, by compressing and encrypting it.
Let's do that in a new module named archive.js:

var fs = require('fs');
var compressAndEncryptStream =
 require('./combinedStreams').compressAndEncrypt;

fs.createReadStream(process.argv[3])
 .pipe(compressAndEncryptStream(process.argv[2]))
 .pipe(fs.createWriteStream(process.argv[3] + ".gz.enc"));

We can further improve the preceding code by building a combined stream out of
the pipeline that we created, this time not to obtain a reusable black box but only to
take advantage of its aggregated error management. In fact, as we already mentioned
many times, writing something such as the following will only catch the errors that
are emitted by the last stream:

fs.createReadStream(process.argv[3])
 .pipe(compressAndEncryptStream(process.argv[2]))
 .pipe(fs.createWriteStream(process.argv[3] + ".gz.enc"))
 .on('error', function(err) {
 //Only errors from the last stream
 console.log(err);
 });

However, by combining all the streams together we can fix the problem elegantly.
Let's then rewrite the 'archive.js' file as follows:

var combine = require('multipipe');
var fs = require('fs');
var compressAndEncryptStream =
 require('./combinedStreams').compressAndEncrypt;

combine(
 fs.createReadStream(process.argv[3]),
 compressAndEncryptStream(process.argv[2]),
 fs.createWriteStream(process.argv[3] + ".gz.aes")
).on('error', function(err) {
 //this error may come from any stream in the pipeline
 console.log(err);
});

As we can see, we can now attach an error listener directly to the combined stream
and it will receive any error event that is emitted by any of its internal streams.

Chapter 3

[159]

Now, to run the archive module, simply specify a password and a file in the
command line arguments:

node archive mypassword /path/to/a/file.txt

With this example, we have clearly demonstrated how important it is to combine
streams; from one aspect, it allows us to create reusable compositions of streams
and from another it simplifies the error management of a pipeline.

Forking streams
We can perform a fork of a stream by piping a single Readable stream into multiple
Writable streams. This is useful when we want to send the same data to different
destinations, for example, two different sockets or two different files. It can also be
used when we want to perform different transformations on the same data, or when
we want to split the data based on some criteria. The following figure gives us a
graphical representation of this pattern:

Forking a stream in Node.js is a trivial matter; let's see why by working on
an example.

Implementing a multiple checksum generator
Let's create a small utility that outputs both the sha1 and md5 hashes of a given file.
Let's call this new module generateHashes.js and let's start by initializing our
checksum streams:

var fs = require('fs');
var crypto = require('crypto');

var sha1Stream = crypto.createHash('sha1');
sha1Stream.setEncoding('base64');

var md5Stream = crypto.createHash('md5');
md5Stream.setEncoding('base64');

Coding with Streams

[160]

Nothing special so far; the next part of the module is actually where we will
create a Readable stream from a file and fork it to two different streams in order
to obtain two other files, one containing the sha1 hash and the other containing the
md5 checksum:

var inputFile = process.argv[2];
var inputStream = fs.createReadStream(inputFile);

inputStream
 .pipe(sha1Stream)
 .pipe(fs.createWriteStream(inputFile + '.sha1'));

inputStream
 .pipe(md5Stream)
 .pipe(fs.createWriteStream(inputFile + '.md5'));

Very simple, right? The inputStream variable is piped into sha1Stream on one
side and md5Stream on the other. There are a couple of things to note, though,
that happen behind the scenes:

• Both md5Stream and sha1Stream will be ended automatically when
inputStream ends, unless we specify {end: false} as an option when
invoking pipe()

• The two forks of the stream will receive the same data chunks, so we must
be very careful when performing side-effect operations on the data, as that
would affect every stream that we are forking to

• Back-pressure will work out-of-the-box; the flow coming from inputStream
will go as fast as the slowest branch of the fork!

Merging streams
Merging is the opposite operation to forking and consists of piping a set of Readable
streams into a single Writable stream, as shown in the following figure:

Chapter 3

[161]

Merging multiple streams into one is in general a simple operation; however, we
have to pay attention to the way we handle the end event, as piping using the auto end
option will cause the destination stream to be ended as soon as one of the sources ends.
This can often lead to an error situation, as the other active sources will still continue to
write to an already terminated stream. The solution to this problem is to use the option
{end: false} when piping multiple sources to a single destination and then invoke
end() on the destination only when all the sources have completed reading.

Creating a tarball from multiple directories
To make a simple example, let's implement a small program that creates a tarball
from the contents of two different directories. For this purpose, we are going to
introduce two new npm packages:

• tar (https://npmjs.org/package/tar): a streaming library to
create tarballs

• fstream (https://npmjs.org/package/fstream): a library to create
object streams from filesystem files

Our new module is going to be called mergeTar.js; let's define its contents starting
from some initialization steps:

var tar = require('tar');
var fstream = require('fstream');
var path = require('path');

var destination = path.resolve(process.argv[2]);
var sourceA = path.resolve(process.argv[3]);
var sourceB = path.resolve(process.argv[4]);

In the preceding code, we are just loading all the dependencies and initializing
the variables that contain the name of the destination file and the two source
directories (sourceA and sourceB).

Next, we will create the tar stream and pipe it into its destination:

var pack = tar.Pack();
pack.pipe(fstream.Writer(destination));

Now it's time to initialize the source streams:

var endCount = 0;
function onEnd() {
 if(++endCount === 2) {
 pack.end();

Coding with Streams

[162]

 }
}

var sourceStreamA =
 fstream.Reader({type: "Directory", path: sourceA})
 .on('end', onEnd);

var sourceStreamB =
 fstream.Reader({type: "Directory", path: sourceB})
 .on('end', onEnd);

In the preceding code, we created the streams that read from both the two source
directories (sourceStreamA and sourceStreamB); then for each source stream we
attach an end listener, which will terminate the pack stream only when both the
directories are read completely.

Finally, it is time to perform the real merge:

sourceStreamA.pipe(pack, {end: false});
sourceStreamB.pipe(pack, {end: false});

We pipe both the sources into the pack stream and take care to disable the auto
ending of the destination stream by providing the option {end: false} to the two
pipe() invocations.

With this, we completed our simple tar utility. We can try this utility by
providing the destination file as the first command line argument, followed
by the two source directories:

node mergeTar dest.tar /path/to/sourceA /path/to/sourceB

To conclude this section, it's worth mentioning that, on npm, we can find a few
modules that can simplify the merging of streams, for example:

• merge-stream (https://npmjs.org/package/merge-stream)
• multistream-merge (https://npmjs.org/package/multistream-merge)

As for the last comment on the stream merge pattern, it's worth reminding that the
data piped into the destination stream is randomly intermingled; this is a property
that can be acceptable in some types of object streams (as we saw in the last example)
but it is often an undesired effect when dealing with binary streams.

Chapter 3

[163]

However, there is one variation of the pattern that allows us to merge streams
in order; it consists of consuming the source streams one after the other, when
the previous one ends, the next one starts emitting chunks (it is like concatenating
the output of all the sources). As always, on npm we can find some packages that
also deal with this situation, one of them is multistream (https://npmjs.org/
package/multistream).

Multiplexing and demultiplexing
There is a particular variation of the merge stream pattern in which we don't really
want to just join multiple streams together but, instead, to use a shared channel to
deliver the data of a set of streams. This is a conceptually different operation because
the source streams remain logically separated inside the shared channel, which
allows us to split the stream again once the data reaches the other end of the shared
channel. The following figure clarifies the situation:

The operation of combining multiple streams together (in this case also known as
channels) to allow transmission over a single stream is called multiplexing, while
the opposite operation, namely reconstructing the original streams from the data
received from a shared stream, is called demultiplexing. The devices that perform these
operations are called multiplexer (or mux) and demultiplexer (or demux) respectively.
This is a widely studied area in Computer Science and Telecommunications in general,
as it is one of the foundations of almost any type of communication media such as
telephony, radio, TV, and of course the Internet itself. For the scope of this book, we
will not go too far with the explanations, as this is a vast topic.

What we want to demonstrate in this section, instead, is how it's possible to use a
shared Node.js stream in order to convey multiple logically separated streams that
are then split again at the other end of the shared stream.

Coding with Streams

[164]

Building a remote logger
Let's use an example to drive our discussion. We want to have a small program
that starts a child process and redirects both its standard output and standard error
to a remote server, which in turn saves the two streams into two separate files.
So, in this case the shared medium is a TCP connection, while the two channels to
be multiplexed are the stdout and stderr of a child process. We will leverage a
technique called packet switching, the same technique that is used by protocols
such as IP, TCP or UDP and that consists of wrapping the data into packets allowing
us to specify various meta information, useful for mutiplexing, routing, controlling
the flow, checking for corrupted data, and so on. The protocol that we are going to
implement for our example is very minimalist, in fact, we will simply wrap our data
into packets having the following structure:

As shown in the preceding figure, the packet contains the actual data, but also
a header (Channel ID + Data length), which will make it possible to differentiate
the data of each stream and enable the demultiplexer to route the packet to the
right channel.

Client side – Multiplexing
Let's start to build our application from the client side. With a lot of creativity,
we will call the module client.js; this represents the part of the application
that is responsible for starting a child process and multiplexing its streams.

So, let's start by defining the module. First, we need some dependencies:

var child_process = require('child_process');
var net = require('net');
var path = require('path');

 Then, let's implement a function that performs the multiplexing of a list of sources:

function multiplexChannels(sources, destination) {
 var totalChannels = sources.length;
 for(var i = 0; i < sources.length; i++) {
 sources[i]
 .on('readable', function(i) { //[1]
 var chunk;

Chapter 3

[165]

 while((chunk = this.read()) !== null) {
 var outBuff = new Buffer(1 + 4 + chunk.length); //[2]
 outBuff.writeUInt8(i, 0);
 outBuff.writeUInt32BE(chunk.length, 1);
 chunk.copy(outBuff, 5);
 console.log('Sending packet to channel: ' + i);
 destination.write(outBuff); //[3]
 }
 }.bind(sources[i], i))
 .on('end', function() { //[4]
 if(--totalChannels === 0) {
 destination.end();
 }
 });
 }
}

The mutiplexChannels() function takes in as input the source streams to be
multiplexed and the destination channel, and then it performs the following steps:

1. For each source stream, it registers a listener for the readable event where
we read the data from the stream using the non-flowing mode.

2. When a chunk is read, we wrap it into a packet that contains in order: 1 byte
(UInt8) for the channel ID, 4 bytes (UInt32BE) for the packet size, and then
the actual data.

3. When the packet is ready, we write it into the destination stream.
4. Finally, we register a listener for the end event so that we can terminate the

destination stream when all the source streams are ended.

Our protocol is to be able to multiplex up to 8 different source
streams because we only have 1 byte to identify the channel.

Now the last part of our client becomes very easy:

var socket = net.connect(3000, function() { //[1]
 var child = child_process.fork(//[2]
 process.argv[2],
 process.argv.slice(3) ,
 {silent: true}
);
 multiplexChannels([child.stdout, child.stderr], socket); //[3]
});

Coding with Streams

[166]

In this last code fragment, we perform the following operations::

1. We create a new TCP client connection to the address localhost:3000.
2. We start the child process by using the first command-line argument as the

path, while we provide the rest of the process.argv array as arguments for
the child process. We specify the option {silent: true}, so that the child
process does not inherit stdout and stderr of the parent.

3. Finally, we take stdout and stderr of the child process and we multiplex
them into socket using the mutiplexChannels() function.

Server side – demultiplexing
Now we can take care of creating the server side of the application (server.js),
where we demultiplex the streams from the remote connection and pipe them into
two different files. Let's start by creating a function called demultiplexChannel():

function demultiplexChannel(source, destinations) {
 var currentChannel = null;
 var currentLength = null;

 source
 .on('readable', function() { //[1]
 var chunk;
 if(currentChannel === null) { //[2]
 chunk = this.read(1);
 currentChannel = chunk && chunk.readUInt8(0);
 }

 if(currentLength === null) { //[3]
 chunk = this.read(4);
 currentLength = chunk && chunk.readUInt32BE(0);
 if(currentLength === null) {
 return;
 }
 }

 chunk = this.read(currentLength); //[4]
 if(chunk === null) {

Chapter 3

[167]

 return;
 }
 console.log('Received packet from: ' + currentChannel);
 destinations[currentChannel].write(chunk); //[5]
 currentChannel = null;
 currentLength = null;
 })

 .on('end', function() { //[6]
 destinations.forEach(function(destination) {
 destination.end();
 });
 console.log('Source channel closed');
 });
}

The preceding code might look complicated but it is not; thanks to the pull nature of
Node.js Readable streams, we can easily implement the demultiplexing of our little
protocol as follows:

1. We start reading from the stream using the non-flowing mode.
2. First, if we have not read the channel ID yet, we try to read 1 byte from the

stream and then transform it into a number.
3. The next step is to read the length of the data. We need 4 bytes for that, so

it's possible (even if unlikely) that we don't have enough data in the internal
buffer, which will cause the this.read() invocation to return null. In such a
case, we simply interrupt the parsing and retry at the next readable event.

4. When we finally can also read the data size, we know how much data to pull
from the internal buffer, so we try to read it all.

5. When we read all the data, we can write it to the right destination channel,
making sure that we reset the currentChannel and currentLength
variables (these will be used to parse the next packet).

6. Lastly, we make sure to end all the destination channels when the source
channel ends.

Coding with Streams

[168]

Now that we can demultiplex the source stream, let's put our new function at work:

net.createServer(function(socket) {
 var stdoutStream = fs.createWriteStream('stdout.log');
 var stderrStream = fs.createWriteStream('stderr.log');

 demultiplexChannel(socket, [stdoutStream, stderrStream]);
}).listen(3000, function() {
 console.log('Server started');
});

In the preceding code, we first start a TCP server on the port 3000, then for each
connection that we receive, we will create two Writable streams pointing to two
different files, one for the standard output and another for the standard error; these
are our destination channels. Finally, we use demultiplexChannel() to demultiplex
the socket stream into stdoutStream
and stderrStream.

Running the mux/demux application
Now, we are ready to try our new mux/demux application, but first let's
create a small Node.js program to produce some sample output; let's call it
generateData.js:

console.log("out1");
console.log("out2");
console.error("err1");
console.log("out3");
console.error("err2");

Okay, now we are ready to try our remote logging application. First, let's start
the server:

node server

Then the client, by providing the file that we want to start as child process:

node client generateData.js

The client will run almost immediately, but at the end of the process the
standard input and standard output of the generateData application have
traveled through one single TCP connection and then, on the server, have been
demultiplexed into two separate files.

Chapter 3

[169]

Please make a note that, as we are using child_process.fork()
(http://nodejs.org/api/child_process.html#child_
process_child_process_fork_modulepath_args_options),
our client will be able to launch only other Node.js modules.

Multiplexing and demultiplexing object streams
The example that we have just shown demonstrated how to multiplex and
demultiplex a binary/text stream, but it's worth mentioning that the same rules
apply also to object streams. The greatest difference is that, using objects, we
already have a way to transmit the data using atomic messages (the objects), so
multiplexing would be as easy as setting a property channelID into each object,
while demultiplexing would simply involve reading the channelID property and
routing each object towards the right destination stream.

Another pattern involving only demultiplexing consists in routing the data coming
from a source depending on some condition. With this pattern, we can implement
complex flows, such as the one shown in the following diagram:

The demultiplexer used in the system described by the preceding diagram, takes
a stream of objects representing animals and distributes each of them to the right
destination stream based on the class of the animal: reptiles, amphibians, and mammals.

Using the same principle, we can also implement an if-else statement for streams;
for some inspiration, take a look at the ternary-stream package (https://npmjs.
org/package/ternary-stream) that allows us to do exactly that.

Coding with Streams

[170]

Summary
In this chapter, we have shed some light on Node.js streams and their use case, but
at the same time this should have thrown open a door to a programming paradigm
with virtually unlimited possibilities. We learned why streams are so acclaimed
by the Node.js community and we mastered their basic functionality, enabling us
to discover more and navigate comfortably in this new world. We analyzed some
advanced patterns and started to understand how to connect streams together in
different configurations, grasping the importance of interoperability which is what
makes streams so versatile and powerful.

If we can't do something with one stream, we probably can do it by connecting
other streams together, and this works great with the one thing per module philosophy.
At this point, it should be clear that streams are not just a good to know feature
of Node.js; they are, instead, an essential part of this, a crucial pattern to handle
binary data, strings, and objects. It's not by chance that an entire chapter was
dedicated to them.

In the next chapter, we will focus on the traditional object-oriented design patterns.
But don't be fooled; even though JavaScript is an object-oriented language, in Node.js
the functional or hybrid approach is often preferred. Get rid of every prejudice before
reading the next chapter.

Design Patterns
A design pattern is a reusable solution to a recurring problem; the term is really
broad in its definition and can span multiple domains of application. However,
the term is often associated with a well-known set of object-oriented patterns
that were popularized in the 90's by the book, Design Patterns: Elements of Reusable
Object-Oriented Software, Pearson Education by the almost legendary Gang of Four
(GoF): Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. We will
often refer to these specific set of patterns as traditional design patterns, or GoF
design patterns.

Applying this set of object-oriented design patterns in JavaScript is not as linear and
formal as it would happen in a class-based object-oriented language. As we know,
JavaScript is multi-paradigm, object-oriented, and prototype-based, and has dynamic
typing; it treats functions as first class citizens, and allows functional programming
styles. These characteristics make JavaScript a very versatile language, which gives
tremendous power to the developer, but at the same time, it causes a fragmentation
of programming styles, conventions, techniques, and ultimately the patterns of its
ecosystem. There are so many ways to achieve the same result using JavaScript that
everybody has their own opinion on what the best way is to approach a problem.
A clear demonstration of this phenomenon is the abundance of frameworks and
opinionated libraries in the JavaScript ecosystem; probably, no other language
has ever seen so many, especially now that Node.js has given new astonishing
possibilities to JavaScript and has created so many new scenarios.

In this context, the traditional design patterns too are affected by the nature of
JavaScript. There are so many ways in which they can be implemented so that their
traditional, strongly object-oriented implementation is not a pattern anymore, and
in some cases, not even possible because JavaScript, as we know, doesn't have real
classes or abstract interfaces. What doesn't change though, is the original idea at
the base of each pattern, the problem it solves, and the concepts at the heart of
the solution.

Design Patterns

[172]

In this chapter, we will see how some of the most important GoF design patterns
apply to Node.js and its philosophy, thus rediscovering their importance from
another perspective.

The design patterns explored in this chapter are as follows:

• Factory
• Proxy
• Decorator
• Adapter
• Strategy
• State
• Template
• Middleware
• Command

This chapter assumes that the reader has some notion of how
inheritance works in JavaScript. Please also be advised that throughout
this chapter we will often use generic and more intuitive diagrams to
describe a pattern in place of standard UML, since many patterns can
have an implementation based not only on classes, but also on objects
and even functions.

Factory
We begin our journey starting from what probably is the most simple and common
design pattern in Node.js: Factory.

A generic interface for creating objects
We already stressed the fact that, in JavaScript, the functional paradigm is often
preferred to a purely object-oriented design, for its simplicity, usability, and small
surface area. This is especially true when creating new object instances. In fact,
invoking a factory, instead of directly creating a new object from a prototype using
the new operator or Object.create(), is so much more convenient and flexible
under several aspects.

Chapter 4

[173]

First and foremost, a factory allows us to separate the object creation from its
implementation; essentially, a factory wraps the creation of a new instance, giving
us more flexibility and control in the way we do it. Inside the factory, we can create
a new instance leveraging closures, using a prototype and the new operator, using
Object.create(), or even returning a different instance based on a particular
condition. The consumer of the factory is totally agnostic about how the creation of
the instance is carried out. The truth is that, by using new, we are binding our code
to one specific way of creating an object, while in JavaScript we can have much more
flexibility, almost for free. As a quick example, let's consider a simple factory that
creates an Image object:

function createImage(name) {
 return new Image(name);
}
var image = createImage('photo.jpeg');

The createImage() factory might look totally unnecessary, why not instantiate the
Image class by using the new operator directly? Something like the following line
of code:

var image = new Image(name);

As we already mentioned, using new binds our code to one particular type of object;
in the preceding case, to objects of type, Image. A factory instead, gives us much
more flexibility; imagine that we want to refactor the Image class, splitting it into
smaller classes, one for each image format that we support. If we exposed a factory
as the only means to create new images, we can simply rewrite it as follows, without
breaking any of the existing code:

function createImage(name) {
 if(name.match(/\.jpeg$/)) {
 return new JpegImage(name);
 } else if(name.match(/\.gif$/)) {
 return new GifImage(name);
 } else if(name.match(/\.png$/)) {
 return new PngImage(name);
 } else {
 throw new Exception('Unsupported format');
 }
}

Design Patterns

[174]

Our factory also allows us to not expose the constructors of the objects it creates,
and prevents them from being extended or modified (remember the principle of
small surface area?). In Node.js, this can be achieved by exporting only the factory,
while keeping each constructor private.

A mechanism to enforce encapsulation
A factory can also be used as an encapsulation mechanism, thanks to closures.

Encapsulation refers to the technique of controlling the access to
some internal details of an object by preventing the external code
from manipulating them directly. The interaction with the object
happens only through its public interface, isolating the external code
from the changes in the implementation details of the object. This
practice is also referred to as information hiding. Encapsulation is also
a fundamental principle of object-oriented design, together with
inheritance, polymorphism, and abstraction.

As we know, in JavaScript, we don't have access level modifiers (for example, we can't
declare a private variable), so the only way to enforce encapsulation is through
function scopes and closures. A factory makes it straightforward to enforce private
variables, consider the following code for example:

function createPerson(name) {
 var privateProperties = {};

 var person = {
 setName: function(name) {
 if(!name) throw new Error('A person must have a name');
 privateProperties.name = name;
 },
 getName: function() {
 return privateProperties.name;
 }
 };

 person.setName(name);
 return person;
}

Chapter 4

[175]

In the preceding code, we leverage closures to create two objects: a person
object which represents the public interface returned by the factory and a group
of privateProperties that are inaccessible from the outside, and that can be
manipulated only through the interface provided by the person object. For example,
in the preceding code, we make sure that a person's name is never empty, this would
not be possible to enforce if name was just a property of the person object.

Factories are only one of the techniques that we have for creating private
members; in fact, other possible approaches are as follows:

• Defining private variables in a constructor (as recommended by
Douglas Crockford: http://javascript.crockford.com/
private.html)

• Using conventions, for example, prefixing the name of a property
with an underscore "_" or the dollar sign "$" (this however,
does not technically prevent a member from being accessed
from the outside)

• Using ES6 WeakMaps (http://fitzgeraldnick.com/
weblog/53/)

Building a simple code profiler
Now, let's work on a complete example using a factory. Let's build a simple code
profiler, an object with the following properties:

• A start() method that triggers the start of a profiling session
• An end() method to terminate the session and log its execution time

to the console

Let's start by creating a file named profiler.js, which will have the
following content:

function Profiler(label) {
 this.label = label;
 this.lastTime = null;
}

Profiler.prototype.start = function() {
 this.lastTime = process.hrtime();
}

Profiler.prototype.end = function() {
 var diff = process.hrtime(this.lastTime);

Design Patterns

[176]

 console.log('Timer "' + this.label + '" took '
 + diff[0] + ' seconds and '
 + diff[1] + ' nanoseconds.');
}

There is nothing fancy in the preceding class; we simply use the default high
resolution timer to save the current time when start() is invoked, and then
calculate the elapsed time when end() is executed, printing the result to the console.

Now, if we are going to use such a profiler in a real-world application to calculate
the execution time of the different routines, we can easily imagine the huge amount
of logging we will generate to the standard output, especially in a production
environment. What we might want to do instead is redirect the profiling information
to another source, for example, a database, or alternatively, disabling the profiler
altogether if the application is running in production mode. It's clear that if we were
to instantiate a Profiler object directly by using the new operator, we would need
some extra logic in the client code or in the Profiler object itself in order to switch
between the different logics. We can instead use a factory to abstract the creation
of the Profiler object, so that, depending on whether the application runs in
production or development mode, we can return a fully working Profiler object, or
alternatively, a mock object with the same interface, but with empty methods. Let's do
this then, in the profiler.js module instead of exporting the Profiler constructor,
we will export only a function, our factory. The following is its code:

module.exports = function(label) {
 if(process.env.NODE_ENV === 'development') {
 return new Profiler(label); //[1]
 } else if(process.env.NODE_ENV === 'production') {
 return { //[2]
 start: function() {},
 end: function() {}
 }
 } else {
 throw new Error('Must set NODE_ENV');
 }
}

The factory that we created abstracts the creation of a profiler object from
its implementation:

• If the application is running in development mode, we return a new,
fully functional Profiler object

• If instead the application is running in production mode, we return a mock
object where the start() and stop() methods are empty functions

Chapter 4

[177]

The nice feature to highlight is that, thanks to the JavaScript dynamic typing,
we were able to return an object instantiated with the new operator in one
circumstance and a simple object literal in the other (this is also known as duck
typing http://en.wikipedia.org/wiki/Duck_typing). Our factory is doing its
job perfectly; we can really create objects in any way that we like inside the factory
function, and we can execute additional initialization steps or return a different type of
object based on particular conditions, and all of this while isolating the consumer of the
object from all these details. We can easily understand the power of this simple pattern.

Now, we can play with our profiler; this is a possible use case for the factory that we
just created earlier:

var profiler = require('./profiler');

function getRandomArray(len) {
 var p = profiler('Generating a ' + len + ' items long array');
 p.start();
 var arr = [];
 for(var i = 0; i < len; i++) {
 arr.push(Math.random());
 }
 p.end();
}

getRandomArray(1e6);
console.log('Done');

The p variable contains the instance of our Profiler object, but we don't know
how it's created and what its implementation is at this point in the code.

If we include the preceding code in a file named profilerTest.js, we can
easily test these assumptions. To try the program with profiling enabled,
run the following command:

export NODE_ENV=development; node profilerTest

The preceding command enables the real profiler and prints the profiling
information to the console. If we want to try the mock profiler instead,
we can run the following command:

export NODE_ENV=production; node profilerTest

The example that we just presented is just a simple application of the factory function
pattern, but it clearly shows the advantages of separating an object's creation from
its implementation.

Design Patterns

[178]

In the wild
As we said, factories are very popular in Node.js. Many packages offer only a factory
for creating new instances, some examples are the following:

• Dnode (https://npmjs.org/package/dnode): This is an RPC system
for Node.js. If we look into its source code, we will see that its logic is
implemented into a class named D; however, this is never exposed to the
outside as the only exported interface is a factory, which allows us to
create new instances of the class. You can take a look at its source code at
https://github.com/substack/dnode/blob/34d1c9aa9696f13bdf8fb99d
9d039367ad873f90/index.js#L7-9.

• Restify (https://npmjs.org/package/restify): This is a framework to
build REST API that allows us to create new instances of a server using the
restify.createServer()factory, which internally creates a new instance
of the Server class (which is not exported). You can take a look at its source
code at https://github.com/mcavage/node-restify/blob/5f31e2334b3
8361ac7ac1a5e5d852b7206ef7d94/lib/index.js#L91-116.

Other modules expose both a class and a factory, but document the factory as the
main method—or the most convenient way—to create new instances; some of the
examples are as follows:

• http-proxy (https://npmjs.org/package/http-proxy): This is a
programmable proxying library, where new instances are created with
httpProxy.createProxyServer(options).

• The core Node.js HTTP server: This is where new instances are mostly
created using http.createServer(), even though this is essentially a
shortcut for new http.Server().

• bunyan (https://npmjs.org/package/bunyan): This is a popular
logging library; in its readme file the contributors propose a factory,
bunyan.createLogger(), as the main method to create new instances,
even though this would be equivalent to running new bunyan().

Some other modules provide a factory to wrap the creation of other components.
Popular examples are through2 and from2 (we saw them in Chapter 3, Coding with
Streams), which allow us to simplify the creation of new streams using a factory
approach, freeing the developer from explicitly using inheritance and the new operator.

Chapter 4

[179]

Proxy
A proxy is an object that controls the access to another object called subject.
The proxy and the subject have an identical interface and this allows us to
transparently swap one for the other; in fact, the alternative name for this
pattern is surrogate. A proxy intercepts all or some of the operations that are
meant to be executed on the subject, augmenting or complementing their
behavior. The following figure shows the diagrammatic representation:

The preceding figure shows us how the Proxy and the Subject have the same
interface and how this is totally transparent to the client, who can use one or the
other interchangeably. The Proxy forwards each operation to the subject, enhancing
its behavior with additional preprocessing or post-processing.

It's important to observe that we are not talking about proxying
between classes; the Proxy pattern involves wrapping actual
instances of the subject, thus preserving its state.

A proxy is useful in several circumstances, for example, consider the following ones:

• Data validation: The proxy validates the input before forwarding it
to the subject

• Security: The proxy verifies that the client is authorized to perform the
operation and it passes the request to the subject only if the outcome of
the check is positive

• Caching: The proxy keeps an internal cache so that the operations are
executed on the subject only if the data is not yet present in the cache

• Lazy initialization: If the creation of the subject is expensive, the proxy
can delay it to when it's really necessary

• Logging: The proxy intercepts the method invocations and the relative
parameters, recoding them as they happen

• Remote objects: A proxy can take an object that is located remotely,
and make it appear local

Of course, there are many more applications for the Proxy pattern, but these should
give us an idea of the extent of its purpose.

Design Patterns

[180]

Techniques for implementing proxies
When proxying an object, we can decide to intercept all its methods or only part
of them, while delegating the rest of them directly to the subject. There are several
ways in which this can be achieved; let's analyze some of them.

Object composition
Composition is the technique whereby an object is combined with another object for
the purpose of extending or using its functionality. In the specific case of the Proxy
pattern, a new object with the same interface as the subject is created, and a reference
to the subject is stored internally in the proxy in the form of an instance variable
or a closure variable. The subject can be injected from the client at creation time or
created by the proxy itself.

The following is one example of this technique using a pseudo class and a factory:

function createProxy(subject) {
 var proto = Object.getPrototypeOf(subject);

 function Proxy(subject) {
 this.subject = subject;
 }
 Proxy.prototype = Object.create(proto);

 //proxied method
 Proxy.prototype.hello = function() {
 return this.subject.hello() + ' world!';
 }

 //delegated method
 Proxy.prototype.goodbye = function() {
 return this.subject.goodbye
 .apply(this.subject, arguments);
 }

 return new Proxy(subject);
}

To implement a proxy using composition, we have to intercept the methods that we
are interested in manipulating (such as hello()), while simply delegating the rest of
them to the subject (as we did with goodbye()).

The preceding code also shows the particular case where the subject has a prototype
and we want to maintain the correct prototype chain, so that, executing proxy
instanceof Subject will return true; we used pseudo-classical inheritance to
achieve this.

Chapter 4

[181]

This is just an extra step, required only if we are interested in maintaining the
prototype chain, which can be useful in order to improve the compatibility of
the proxy with code initially meant to work with the subject.

However, as JavaScript has dynamic typing, most of the time we can avoid
using inheritance and use more immediate approaches. For example, an alternative
implementation of the proxy presented in the preceding code, might just use an
object literal and a factory:

function createProxy(subject) {
 return {
 //proxied method
 hello: function() {
 return subject.hello() + ' world!';
 },

 //delegated method
 goodbye: function() {
 return subject.goodbye.apply(subject, arguments);
 }
 };
}

If we want to create a proxy that delegates most of its methods, it
would be convenient to generate these automatically using a library,
such as delegates (https://npmjs.org/package/delegates).

Object augmentation
Object augmentation (or monkey patching) is probably the most pragmatic way
of proxying individual methods of an object and consists of modifying the subject
directly by replacing a method with its proxied implementation; consider the
following example:

function createProxy(subject) {
 var helloOrig = subject.hello;
 subject.hello = function() {
 return helloOrig.call(this) + ' world!';
 }

 return subject;
}

This technique is definitely the most convenient one when we need to proxy only one
or a few methods, but it has the drawback of modifying the subject object directly.

Design Patterns

[182]

A comparison of the different techniques
Composition can be considered the safest way of creating a proxy, because it leaves
the subject untouched without mutating its original behavior. Its only drawback is
that we have to manually delegate all the methods, even if we want to proxy only
one of them. If needed, we might also have to delegate the access to the properties
of the subject.

The object properties can be delegated using Object.
defineProperty(). Find out more at https://developer.
mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global_Objects/Object/defineProperty.

Object augmentation, on the other hand, modifies the subject, which might not
always be what we want, but it does not present the various inconveniences related
to delegation. For this reason, object augmentation is definitely the most pragmatic
way to implement proxies in JavaScript, and it's the preferred technique
in all those circumstances where modifying the subject is not a big concern.

However, there is at least one situation where composition is almost necessary;
this is when we want to control the initialization of the subject as for example,
to create it only when needed (lazy initialization).

It is worth pointing out that by using a factory function
(createProxy() in our examples), we can shield our code
from the technique used to generate the proxy.

Creating a logging Writable stream
To see the proxy pattern in a real example, we will now build an object that acts as a
proxy to a Writable stream, by intercepting all the calls to the write() method and
logging a message every time this happens. We will use an object composition
to implement our proxy; this is how the loggingWritable.js file looks:

function createLoggingWritable(writableOrig) {
 var proto = Object.getPrototypeOf(writableOrig);

 function LoggingWritable(subject) {
 this.writableOrig = writableOrig;
 }

Chapter 4

[183]

 LoggingWritable.prototype = Object.create(proto);

 LoggingWritable.prototype.write =
 function(chunk, encoding, callback) {
 if(!callback && typeof encoding === 'function') {
 callback = encoding;
 encoding = undefined;
 }
 console.log('Writing ', chunk);
 return this.writableOrig.write(chunk, encoding, function() {
 console.log('Finished writing ', chunk);
 callback && callback();
 });
 };

 LoggingWritable.prototype.on = function() {
 return this.writableOrig.on
 .apply(this.writableOrig, arguments);
 };

 LoggingWritable.prototype.end = function() {
 return this.writableOrig.end
 .apply(this.writableOrig, arguments);
 }

 return new LoggingWritable(this.writableOrig);
}

In the preceding code, we created a factory that returns a proxied version of the
writable object passed as an argument. We provide an override for the write()
method that logs a message to the standard output every time it is invoked and
every time the asynchronous operation completes. This is also a good example
to demonstrate the particular case of creating proxies of asynchronous functions,
which makes necessary to proxy the callback as well; this is an important detail to
be considered in a platform like Node.js. The remaining methods, on() and end(),
are simply delegated to the original writable stream (to keep the code
leaner we are not considering the other methods of the Writable interface).

We can now include a few more lines of code into the logginWritable.js module
to test the proxy that we just created:

var fs = require('fs');
var writable = fs.createWriteStream('test.txt');
var writableProxy = createProxy(writable);
writableProxy.write('First chunk');

Design Patterns

[184]

writableProxy.write('Second chunk');
writable.write('This is not logged');
writableProxy.end();

The proxy did not change the original interface of the stream or its external behavior,
but if we run the preceding code, we will now see that every chunk that is written
into the stream is transparently logged to the console.

Proxy in the ecosystem – function hooks
and AOP
In its numerous forms, Proxy is a quite popular pattern in Node.js and in the
ecosystem. In fact, we can find several libraries that allow us to simplify the creation
of proxies, most of the time leveraging object augmentation as an implementation
approach. In the community, this pattern can be also referred to as function hooking
or sometimes also as Aspect Oriented Programming (AOP), which is actually
a common area of application for proxies. As it happens in AOP, these libraries
usually allow the developer to set pre or post execution hooks for a specific method
(or a set of methods) that allow us to execute some custom code before and after the
execution of the advised method respectively.

Sometimes proxies are also called middleware, because, as it happens in
the middleware pattern (which we will see later in the chapter), they allow
us to preprocess and post-process the input/output of a function. Sometimes,
they also allow to register multiple hooks for the same method using a
middleware-like pipeline.

There are several libraries on npm that allow us to implement function hooks with
little effort. Among them there are hooks (https://npmjs.org/package/hooks),
hooker (https://npmjs.org/package/hooker), and meld (https://npmjs.org/
package/meld).

In the wild
Mongoose (http://mongoosejs.com) is a popular Object-Document
Mapping (ODM) library for MongoDB. Internally, it uses the hooks package
(https://npmjs.org/package/hooks) to provide pre and post execution hooks
for the init, validate, save, and remove methods of its Document objects.
Find out more on the official documentation at http://mongoosejs.com/docs/
middleware.html.

Chapter 4

[185]

Decorator
Decorator is a structural pattern that consists of dynamically augmenting the
behavior of an existing object. It's different from classical inheritance, because the
behavior is not added to all the objects of the same class but only to the instances
that are explicitly decorated.

Implementation-wise, it is very similar to the Proxy pattern, but instead of enhancing
or modifying the behavior of the existing interface of an object, it augments it with
new functionalities, as described in the following figure:

In the previous figure, the Decorator object is extending the Component object by
adding the methodC() operation. The existing methods are usually delegated to the
decorated object, without further processing. Of course, if necessary we can easily
combine the Proxy pattern, so that also the calls to the existing methods can be
intercepted and manipulated.

Techniques for implementing decorators
Although Proxy and Decorator are conceptually two different patterns, with
different intents, they practically share the same implementation strategies.
Let's revise them.

Composition
Using composition, the decorated component is wrapped around a new object
that usually inherits from it. The Decorator in this case simply needs to define
the new methods while delegating the existing ones to the original component:

function decorate(component) {
 var proto = Object.getPrototypeOf(component);

 function Decorator(component) {
 this.component = component;
 }
 Decorator.prototype = Object.create(proto);

Design Patterns

[186]

 //new method
 Decorator.prototype.greetings = function() {
 //...
 };

 //delegated method
 Decorator.prototype.hello = function() {
 this.component.hello.apply(this.component, arguments);
 };

 return new Decorator(component);
}

Object augmentation
Object decoration can also be achieved by simply attaching new methods directly
to the decorated object, as follows:

function decorate(component) {
 //new method
 component.greetings = function() {
 //...
 };
 return component;
}

The same caveats discussed during the analysis of the Proxy pattern are also valid
for Decorator. Let's now practice the pattern with a working example!

Decorating a LevelUP database
Before we start coding with the next example, let's spend a few words to introduce
LevelUP, the module that we are now going to work with.

Introducing LevelUP and LevelDB
LevelUP (https://npmjs.org/package/levelup) is a Node.js wrapper around
Google's LevelDB, a key-value store originally built to implement IndexedDB in the
Chrome browser, but it's much more than that. LevelDB has been defined by Dominic
Tarr as the "Node.js of databases", because of its minimalism and extensibility. Like
Node.js, LevelDB provides blazing fast performances and only the most basic set of
features, allowing developers to build any kind of database on top of it.

Chapter 4

[187]

The Node.js community, and in this case Rod Vagg, did not miss the chance to bring
the power of this database into Node.js by creating LevelUP. Born as a wrapper for
LevelDB, it then evolved to support several kinds of backends, from in-memory
stores, to other NoSQL databases such as Riak and Redis, to web storage engines
such as IndexedDB and localStorage, allowing to use the same API on both the
server and the client, opening up some really interesting scenarios.

Today, there is a full-fledged ecosystem around LevelUp made of plugins and
modules that extend the tiny core to implement features such as replication,
secondary indexes, live updates, query engines, and more. Also, complete databases
were built on top of LevelUP, including CouchDB clones such as PouchDB
(https://npmjs.org/package/pouchdb) and CouchUP (https://npmjs.org/
package/couchup), and even a graph database, levelgraph (https://npmjs.org/
package/levelgraph) that can work both on Node.js and the browser!

Find out more about the LevelUP ecosystem at
https://github.com/rvagg/node-levelup/wiki/Modules.

Implementing a LevelUP plugin
In the next example, we are going to show how we can create a simple plugin for
LevelUp using the Decorator pattern, and in particular, the object augmentation
technique, which is the simplest but nonetheless the most pragmatic and effective
way to decorate objects with additional capabilities.

For convenience, we are going to use the level package
(http://npmjs.org/package/level) that bundles both
levelup and the default adapter called leveldown, which
uses LevelDB as the backend.

What we want to build is a plugin for LevelUP that allows to receive notifications
every time an object with a certain pattern is saved into the database. For example,
if we subscribe to a pattern such as {a: 1}, we want to receive a notification when
objects such as {a: 1, b: 3} or {a: 1, c: 'x'} are saved into the database.

Design Patterns

[188]

Let's start to build our small plugin by creating a new module called
levelSubscribe.js. We will then insert the following code:

module.exports = function levelSubscribe(db) {

 db.subscribe = function(pattern, listener) { //[1]
 db.on('put', function(key, val) { //[2]
 var match = Object.keys(pattern).every(function(k) { //[3]
 return pattern[k] === val[k];
 });
 if(match) {
 listener(key, val); //[4]
 }
 });
 };

 return db;
}

That's it for our plugin, and it's extremely simple. Let's see what happens in the
preceding code briefly:

1. We decorated the db object with a new method named subscribe().
We simply attached the method directly to the provided db instance
(object augmentation).

2. We listen for any put operation performed on the database.
3. We performed a very simple pattern-matching algorithm, which verified

that all the properties in the provided pattern are also available on the data
being inserted.

4. If we have a match, we notify the listener.

Let's now create some code—in a new file named levelSubscribeTest.js—to try
out our new plugin:

var level = require('level'); //[1]
var db = level(__dirname + '/db', {valueEncoding: 'json'});

var levelSubscribe = require('./levelSubscribe'); //[2]
db = levelSubscribe(db);

db.subscribe({doctype: 'tweet', language: 'en'}, //[3]
 function(k, val){
 console.log(val);
 });

Chapter 4

[189]

 //[4]
db.put('1', {doctype: 'tweet', text: 'Hi', language: 'en'});
db.put('2', {doctype: 'company', name: 'ACME Co.'});

This is what we did in the preceding code:

1. First, we initialize our LevelUP database, choosing the directory where the
files will be stored and the default encoding for the values.

2. Then, we attach our plugin, which decorates the original db object.
3. At this point, we are ready to use the new feature provided by our plugin,

the subscribe() method, where we specify that we are interested in all
the objects with doctype: 'tweet' and language: 'en'.

4. Finally, we save some values in the database, so that we can see our plugin
in action:
db.put('1', {doctype: 'tweet', text: 'Hi', language: 'en'});
db.put('2', {doctype: 'company', name: 'ACME Co.'});

This example shows a real application of the decorator pattern in its most simple
implementation: object augmentation. It might look like a trivial pattern but it has
undoubted power if used appropriately.

For simplicity, our plugin will work only in combination with the
put operations, but it can be easily expanded to work even with
the batch operations (https://github.com/rvagg/node-
levelup#batch).

In the wild
For more examples of how Decorator is used in the real world, we might want to
inspect the code of some more LevelUp plugins:

• level-inverted-index (https://github.com/dominictarr/level-
inverted-index): This is a plugin that adds inverted indexes to a LevelUP
database, allowing to perform simple text searches across the values
stored in the database

• level-plus (https://github.com/eugeneware/levelplus): This is a
plugin that adds atomic updates to a LevelUP database

Design Patterns

[190]

Adapter
The Adapter pattern allows us to access the functionality of an object using
a different interface. As the name suggests, it adapts an object so that it can be
used by components expecting a different interface. The following diagram
clarifies the situation:

The preceding diagram shows how the Adapter is essentially a wrapper for the
Adaptee, exposing a different interface. The diagram also highlight the fact that
the operations of the Adapter can also be a composition of one or more method
invocations on the Adaptee. From an implementation perspective, the most
common technique is composition where the methods of the Adapter provides
a bridge to the methods of the Adaptee. This pattern is pretty straightforward
so let's work immediately on an example.

Using LevelUP through the filesystem API
We are now going to build an adapter around the LevelUP API, transforming it
into an interface that is compatible with the core fs module. In particular, we will
make sure that every call to readFile() and writeFile() will translate into calls
to db.get() and db.put(); this way we will be able to use a LevelUP database
as a storage backend for simple filesystem operations.

Let's start by creating a new module named fsAdapter.js. We will begin by
loading the dependencies and exporting the createFsAdapter() factory that
we are going to use to build the adapter:

var path = require('path');

module.exports = function createFsAdapter(db) {
 var fs = {};
 //...continues with the next code fragments

Next, we will implement the readFile() function inside the factory and ensure that
its interface is compatible with the one of the original function from the fs module:

fs.readFile = function(filename, options, callback) {
 if(typeof options === 'function') {
 callback = options;

Chapter 4

[191]

 options = {};
 } else if(typeof options === 'string') {
 options = {encoding: options};
 }

 db.get(path.resolve(filename), { //[1]
 valueEncoding: options.encoding
 },
 function(err, value) {
 if(err) {
 if(err.type === 'NotFoundError') { //[2]
 err = new Error('ENOENT, open \'' + filename +'\'');
 err.code = 'ENOENT';
 err.errno = 34;
 err.path = filename;
 }
 return callback && callback(err);
 }
 callback && callback(null, value); //[3]
 }
);
};

In the preceding code, we had to do some extra work to make sure that the behavior
of our new function is as close as possible to the original fs.readFile() function.
The steps performed by the function are described as follows:

1. To retrieve a file from the db class, we invoke db.get() using filename as
a key, by making sure to always use its full path (using path.resolve()).
We set the value of valueEncoding used by the database to be equal to any
eventual encoding option received as an input.

2. If the key is not found in the database, we create an error with ENOENT as error
code, which is the code used by the original fs module to indicate a missing
file. Any other type of error is forwarded to callback (for the scope of this
example, we are adapting only the most common error condition).

3. If the key-value pair is retrieved successfully from the database, we will
return the value to the caller using the callback.

As we see, the function that we created is quite rough; it does not want to be a
perfect replacement for the fs.readFile() function but it definitely does its job
in the most common situations.

To complete our small adapter, let's now see how to implement the writeFile()
function:

fs.writeFile = function(filename, contents, options, callback) {
 if(typeof options === 'function') {

Design Patterns

[192]

 callback = options;
 options = {};
 } else if(typeof options === 'string') {
 options = {encoding: options};
 }

 db.put(path.resolve(filename), contents, {
 valueEncoding: options.encoding
 }, callback);
}

Also, in this case, we don't have a perfect wrapper, we will ignore some options such
as file permissions (options.mode), and we will forward any error that we receive
from the database as it is.

Finally, we only have to return the fs object and close the factory function using
the following lines of code:

 return fs;
}

Our new adapter is now ready; if we now write a small test module, we can try
to use it:

var fs = require('fs');

fs.writeFile('file.txt', 'Hello!', function() {
 fs.readFile('file.txt', {encoding: 'utf8'}, function(err, res) {
 console.log(res);
 });
});

//try to read a missing file
fs.readFile('missing.txt', {encoding: 'utf8'}, function(err, res){
 console.log(err);
});

The preceding code uses the original fs API to perform a few read and write
operations on the filesystem and should print something like the following
to the console:

{ [Error: ENOENT, open 'missing.txt'] errno: 34, code: 'ENOENT', path:
'missing.txt' }

Hello!

Chapter 4

[193]

Now, we can try to replace the fs module with our adapter, as follows:

var levelup = require('level');
var fsAdapter = require('./fsAdapter');
var db = levelup('./fsDB', {valueEncoding: 'binary'});
var fs = fsAdapter(db);

Running again our program should produce the same output, except the fact that
none of the file that we specified is read or written using the filesystem; instead,
any operation performed using our adapter will be converted into an operation
performed on a LevelUP database.

The adapter that we just created might look silly; what's the purpose of using
a database in place of the real filesystem? However, we should remember that
LevelUP itself has adapters that enable the database to also run in the browser;
one of these adapters is level.js (https://npmjs.org/package/level-js).
Now, our adapter should make perfect sense; we can think of using it to share with
the browser code, which relies on the fs module! For example, the web spider that
we created in Chapter 2, Asynchronous Control Flow Patterns, uses the fs API to store
the web pages downloaded during its operations; our adapter will allow it to run in
the browser, by applying only minor modifications! We soon realize that Adapter is
an extremely important pattern also when it comes to sharing code with the browser,
as we will see in more detail in Chapter 6, Recipes.

In the wild
There are plenty of real-world examples of the Adapter pattern: we list some of the
most notable examples here for you to explore and analyze:

• We already know that LevelUP is able to run with different storage
backends, from the default LevelDB to IndexedDB in the browser. This
is made possible by the various adapters that are created to replicate the
internal (private) LevelUP API. Take a look at some of them to see how
they are implemented: https://github.com/rvagg/node-levelup/wiki/
Modules#storage-back-ends.

• jugglingdb is a multi-database ORM and of course, multiple adapters are
used to make it compatible with different databases. Take a look at some
of them at https://github.com/1602/jugglingdb/tree/master/lib/
adapters.

• The perfect complement to the example that we created is level-
filesystem (https://www.npmjs.org/package/level-filesystem),
which is the proper implementation of the fs API on top of LevelUP.

Design Patterns

[194]

Strategy
The Strategy pattern enables an object, called the Context, to support variations in
its logic by extracting the variable parts into separate, interchangeable objects called
Strategies. The context implements the common logic of a family of algorithms, while
a strategy implements the mutable parts, allowing the context to adapt its behavior
depending on different factors such as an input value, a system configuration, or
user preferences. The strategies are usually part of a family of solutions and all of
them implement the same interface, which is the one that is expected by the context.
The following figure shows the situation we just described:

The preceding figure shows how the context object can plug different strategies into
its structure, as they were replaceable parts of a piece of machinery. Imagine a car, its
tires can be considered its strategy to adapt to the different road conditions. We can fit
the winter tires to go on snowy roads thanks to their studs, while we can decide to fit
high- performance tires to go mainly on motorways for a long trip. On the one hand,
we don't want to change the entire car for this to be possible, and on the other, we
don't want a car with eight wheels so that it can go on every possible road.

We quickly understand how powerful this pattern is; not only it helps with
separating the concerns within an algorithm but it also enables it to have a
better flexibility and adapt to different variations of the same problem.

The Strategy pattern is particularly useful in all those situations where supporting
variations of an algorithm requires complex conditional logic (lots of if-else or
switch statements) or mixing together different algorithms of the same family.
Imagine an object called Order that represents an online order of an e-commerce
website. The object has a method called pay() that, as it says, finalizes the order
and transfers the funds from the user to the online store.

Chapter 4

[195]

To support different payment systems, we have a couple of options as follows:

• Use an if/else statement in the pay() method to complete the operation
based on the chosen payment option

• Delegate the logic of the payment to a strategy object that implements the
logic for the specific payment gateway selected by the user

In the first solution, our Order object cannot support other payment methods unless
its code is modified. Also, this can become quite complex when the number of
payment options grows. Instead, using the Strategy pattern enables the Order object
to support a virtually unlimited number of payment methods and keeps its scope
limited to only managing the details of the user, the purchased items, and relative
price, while delegating the job of completing the payment to another object.

Let's now demonstrate this pattern with a simple, realistic example.

Multi-format configuration objects
Let's consider an object called Config that holds a set of configuration parameters
used by an application, such as the database URL, the listening port of the server,
and so on. The Config object should be able to provide a simple interface to access
these parameters but also a way to import and export the configuration using a
persistent storage, such as a file. We want to be able to support different formats
to store the configuration, as for example, JSON, INI, or YAML.

By applying what we learned about the Strategy pattern, we can immediately
identify the variable part of the config object, which is the functionality that allows
us to serialize and deserialize the configuration. This is going to be our strategy.

Let's create a new module called config.js and let's define the generic part of our
configuration manager:

var fs = require('fs');
var objectPath = require('object-path');

function Config(strategy) {
 this.data = {};
 this.strategy = strategy;
}

Config.prototype.get = function(path) {
 return objectPath.get(this.data, path);
}

Design Patterns

[196]

Config.prototype.set = function(path, value) {
 return objectPath.set(this.data, path, value);
}

In the preceding code, we encapsulate the configuration data into an instance
variable and then we provide the set() and get() methods that allow us to access
the configuration properties using a dotted path notation (for example, property.
subProperty) by leveraging a npm library called object-path (https://npmjs.
org/package/object-path). In the constructor, we also take in a strategy as input,
which represents an algorithm for parsing and serializing the data.

Let's now see how we are going to use strategy, by writing the remaining part of
the Config class:

Config.prototype.read = function(file) {
 console.log('Deserializing from ' + file);
 this.data = this.strategy.deserialize(fs.readFileSync(file, 'utf-
8'));
}

Config.prototype.save = function(file) {
 console.log('Serializing to ' + file);
 fs.writeFileSync(file, this.strategy.serialize(this.data));
}
module.exports = Config;

In the previous code, when reading the configuration from a file, we delegate the
deserialization task to the strategy; then, when we want to save the configuration
into a file, we use strategy to serialize the configuration. This simple design allows
the Config object to support different file formats when loading and saving its data.

To demonstrate this, let's create a couple of strategies into a file called
strategies.js. Let's start with a strategy for parsing and serializing JSON data:

module.exports.json = {
 deserialize: function(data) {
 return JSON.parse(data);
 },
 serialize: function(data) {
 return JSON.stringify(data, null, ' ');
 }
}

Nothing really complicated! Our strategy simply implements the agreed interface, so
that it can be used by the Config object.

Chapter 4

[197]

Similarly, the next strategy we are going to create allows us to support the INI
file format:

var ini = require('ini'); //-> https://npmjs.org/package/ini
module.exports.ini = {
 deserialize: function(data) {
 return ini.parse(data);
 },
 serialize: function(data) {
 return ini.stringify(data);
 }
}

Now, to show you how everything comes together, let's create a file named
configTest.js and let's try to load and save a sample configuration using
different formats:

var Config = require('./config');
var strategies = require('./strategies');

var jsonConfig = new Config(strategies.json);
jsonConfig.read('samples/conf.json');
jsonConfig.set('book.nodejs', 'design patterns');
jsonConfig.save('samples/conf_mod.json');

var iniConfig = new Config(strategies.ini);
iniConfig.read('samples/conf.ini');
iniConfig.set('book.nodejs', 'design patterns');
iniConfig.save('samples/conf_mod.ini');

Our test module reveals the properties of the Strategy pattern. We defined only one
Config class, which implements the common parts of our configuration manager,
while changing the strategy used for serializing and deserializing allowed us to
create different Config instances supporting different file formats.

The preceding example shows only one of the possible alternatives that we had for
selecting the strategy. Other valid approaches might have been the following:

• Creating two different strategy families: one for the deserialization
and the other for the serialization. This would have allowed reading
from a format and saving into another.

• Dynamically selecting the strategy depending on the extension of
the file provided; the Config object could have maintained a map
extension->strategy and used it to select the right algorithm for
the given extension.

Design Patterns

[198]

As we can see, there are several options for selecting the strategy to use and
the right one only depends on our requirements and the trade-off in terms of
features/simplicity we want to obtain.

Also, the implementation of the pattern itself can vary a lot, for example, in its
simplest form, the context and the strategy can both be simple functions:

function context(strategy) {...}

Even though the preceding situation might seem insignificant, it should not be
underestimated in a programming language, such as JavaScript, where functions
are first-class citizens and used as much as full-fledged objects.

Between all these variations though, what does not change is the idea behind the
pattern, as always the implementation can slightly change but the core concepts
that drive the pattern are always the same.

In the wild
Passport.js (http://passportjs.org) is an authentication framework for
Node.js which allows to add support for different authentication schemes into a
web server. With Passport, we can provide a Login with Facebook or Login with
Twitter functionality to our web application with minimal effort. Passport uses
the Strategy pattern to separate the common logic required during an authentication
process from the parts that can change, namely the actual authentication step.
For example, we might want to use OAuth in order to obtain an accessToken
to access a Facebook or Twitter profile, or simply use a local database to verify
a username/password pair. For Passport, these are all different strategies for
completing the authentication process, and as we can imagine, this allows the library
to support a virtually unlimited number of authentication services. Take a look at
the number of different authentication providers supported at http://passportjs.
org/guide/providers, to get an idea of what the Strategy pattern can do.

State
State is a variation of the Strategy pattern where the strategy changes depending
on the state of the context. We have seen in the previous section how a strategy can
be selected based on different variables such as user preferences, a configuration
parameter, the input provided and once this selection is done, the strategy stays
unchanged for the rest of the lifespan of the context.

Chapter 4

[199]

In the State pattern instead, the strategy (also called State in this circumstance)
is dynamic and can change during the lifetime of the context, thus allowing its
behavior to adapt depending on its internal state, as shown in the following figure:

Imagine that we have a hotel booking system and an object called Reservation that
models a room reservation. This is a classical situation where we have to adapt the
behavior of an object based on its state. Consider the following series of events:

1. When the reservation is initially created, the user can confirm (using
confirm()) the reservation; of course, they cannot cancel (using cancel())
it, because it's still not confirmed. They can however delete (using delete())
it if they change their mind before buying.

2. Once the reservation is confirmed, using the confirm() function again
does not make any sense; however, now it should be possible to cancel
the reservation but not to delete it any longer, because it has to be kept for
the record.

3. On the day before the reservation date, it should not be possible to cancel the
reservation; it's too late for that.

Now, imagine that we have to implement the reservation system that we described
in one monolithic object; we can already picture all the if-else or switch statements
that we would have to write to enable/disable each action depending on the state of
the reservation.

Design Patterns

[200]

The State pattern instead is perfect in this situation: there will be three strategies and
all implementing the three methods described (confirm(), cancel(), delete())
and each one implementing only one behavior, the one corresponding to the
modeled state. By using this pattern, it should be very easy for the Reservation
object to switch from one behavior to another; this will simply require the activation
of a different strategy on each state change.

The state transition can be initiated and controlled by the context object, by the client
code, or by the State objects themselves. This last option usually provides the best
results in terms of flexibility and decoupling as the context does not have to know
about all the possible states and how to transition between them.

Implementing a basic fail-safe socket
Let's now work on a concrete example so that we can apply what we learned
about the State pattern. Let's build a client TCP socket that does not fail when the
connection with the server is lost; instead, we want to queue all the data sent during
the time in which the server is offline and then try to send it again as soon as the
connection is re-established. We want to leverage this socket in the context of a
simple monitoring system, where a set of machines send some statistics about their
resource utilization at regular intervals; if the server that collects these resources
goes down, our socket will continue to queue the data locally until the server
comes back online.

Let's start by creating a new module called failsafeSocket.js that represents our
context object:

var OfflineState = require('./offlineState');
var OnlineState = require('./onlineState');

function FailsafeSocket(options) { //[1]
 this.options = options;
 this.queue = [];
 this.currentState = null;
 this.socket = null;
 this.states = {
 offline: new OfflineState(this),
 online: new OnlineState(this)
 }
 this.changeState('offline');
}

FailsafeSocket.prototype.changeState = function(state) { //[2]

Chapter 4

[201]

 console.log('Activating state: ' + state);
 this.currentState = this.states[state];
 this.currentState.activate();
}

FailsafeSocket.prototype.send = function(data) { //[3]
 this.currentState.send(data);
}

module.exports = function(options) {
 return new FailsafeSocket(options);
};

The FailsafeSocket pseudo class is made of three main elements:

1. The constructor initializes various data structures, including the queue that
will contain any data sent while the socket is offline. Also, it creates a set of
two states, one for implementing the behavior of the socket while it's offline
and another one when the socket is online.

2. The changeState() method is responsible for transitioning from one state
to another. It simply updates the currentState instance variable and calls
activate() on the target state.

3. The send() method is the functionality of the socket, this is where we want
to have a different behavior based on the offline/online state. As we can see,
this is done by delegating the operation to the currently active state.

Let's now see how the two states look like, starting from the offlineState.js
module:

var jot = require('json-over-tcp'); //[1]

function OfflineState(failsafeSocket) {
 this.failsafeSocket = failsafeSocket;
}
module.exports = OfflineState;

OfflineState.prototype.send = function(data) { //[2]
 this.failsafeSocket.queue.push(data);
}

OfflineState.prototype.activate = function() { //[3]
 var self = this;
 function retry() {

Design Patterns

[202]

 setTimeout(function() {
 self.activate();
 }, 500);
 }

 self.failsafeSocket.socket = jot.connect(
 self.failsafeSocket.options,
 function() {
 self.failsafeSocket.socket.removeListener('error', retry);
 self.failsafeSocket.changeState('online');
 }
);
 self.failsafeSocket.socket.once('error', retry);
}

The module that we created is responsible for managing the behavior of the socket
while it's offline; this is how it works:

1. Instead of using a raw TCP socket, we will use a little library called
json-over-tcp (https://npmjs.org/package/json-over-tcp),
which will allow us to easily send JSON objects over a TCP connection.

2. The send() method is only responsible for queuing any data it receives;
we are assuming that we are offline, so that's all we need to do.

3. The activate() method tries to establish a connection with the server using
json-over-tcp. If the operation fails, it tries again after 500 milliseconds.
It continues trying until a valid connection is established, in which case
the state of failsafeSocket is transitioned to online.

Next, let's implement the onlineState.js module, and then, let's implement the
onlineState strategy as follows:

function OnlineState(failsafeSocket) {
 this.failsafeSocket = failsafeSocket;
}
module.exports = OnlineState;

OnlineState.prototype.send = function(data) { //[1]
 this.failsafeSocket.socket.write(data);
};

OnlineState.prototype.activate = function() { //[2]
 var self = this;
 self.failsafeSocket.queue.forEach(function(data) {
 self.failsafeSocket.socket.write(data);

Chapter 4

[203]

 });
 self.failsafeSocket.queue = [];

 self.failsafeSocket.socket.once('error', function() {
 self.failsafeSocket.changeState('offline');
 });
}

The OnlineState strategy is very simple and is explained as follows:

1. The send() method writes the data directly into the socket, as we assume
we are online.

2. The activate() method flushes any data that was queued while the socket
was offline and it also starts listening for any error event; we will take
this as a symptom that the socket went offline (for simplicity). When this
happens, we transition to the offline state.

That's it for our failsafeSocket; now we are ready to build a sample client and a
server to try it out. Let's put the server code in a module named server.js:

var jot = require('json-over-tcp');
var server = jot.createServer(5000);
server.on('connection', function(socket) {
 socket.on('data', function(data){
 console.log('Client data', data);
 });
});
server.listen(5000, function() {console.log('Started')});

Then the client side code, which is what we are really interested in, goes
into client.js:

var createFailsafeSocket = require('./failsafeSocket');

var failsafeSocket = createFailsafeSocket({port: 5000});
setInterval(function() {
 //send current memory usage
 failsafeSocket.send(process.memoryUsage());
}, 1000);

Our server simply prints any JSON message it receives to the console, while our
clients are sending a measurement of their memory utilization every second,
leveraging a FailsafeSocket object.

Design Patterns

[204]

To try the small system that we built, we should run both the client and the server,
then we can test the features of failsafeSocket by stopping and then restarting
the server. We should see that the state of the client changes between online and
offline, and that any memory measurement collected while the server is offline is
queued and then resent as soon as the server goes back online.

This sample should be a clear demonstration of how the State pattern can help
increase the modularity and readability of a component that has to adapt its
behavior depending on its state.

The FailsafeSocket class that we built in this section is only for
demonstrating the State pattern and doesn't want to be a complete and
100 percent-reliable solution to handle connectivity issues within TCP
sockets. For example, we are not verifying that all the data written into
the socket stream is received by the server, which would require some
more code not strictly related to the pattern that we wanted to describe.

Template
The next pattern that we are going to analyze is called Template and it also has a
lot in common with the Strategy pattern. Template consists of defining an abstract
pseudo class that represents the skeleton of an algorithm where some of its steps are
left undefined. Subclasses can then fill the gaps in the algorithm by implementing
the missing steps, called template methods. The intent of this pattern is making it
possible to define a family of classes that are all variations of a similar algorithm.
The following UML diagram shows the structure that we just described:

Chapter 4

[205]

The three concrete classes shown in the previous diagram, extend Template
and provide an implementation for templateMethod(), which is abstract or pure
virtual, to use the C++ terminology; in JavaScript this means that the method is left
undefined or is assigned to a function that always throws an exception, indicating
the fact that the method has to be implemented. The Template pattern can be
considered more classically object-oriented than the other patterns we have seen
so far, because inheritance is a core part of its implementation.

The purpose of Template and Strategy is very similar, but the main difference
between the two lies in their structure and implementation. Both allow us to change
some parts of an algorithm while reusing the common parts; however, while Strategy
allows us to do it dynamically and possibly at runtime, with Template, the complete
algorithm is determined the moment the concrete class is defined. Under these
assumptions, the Template pattern might be more suitable in those circumstances
where we want to create prepackaged variations of an algorithm. As always, the
choice between one pattern and the other is up to the developer who has to consider
the various pros and cons for each use case.

A configuration manager template
To have a better idea of the differences between Strategy and Template, let's now
re-implement the Config object that we defined in the section about the Strategy
pattern, but this time using Template. Like in the previous version of the Config
object, we want to have the ability to load and save a set of configuration properties
using different file formats.

Let's start by defining the template class; we will call it ConfigTemplate:

var fs = require('fs');
var objectPath = require('object-path');

function ConfigTemplate() {}

ConfigTemplate.prototype.read = function(file) {
 console.log('Deserializing from ' + file);
 this.data = this._deserialize(fs.readFileSync(file, 'utf-8'));
}

ConfigTemplate.prototype.save = function(file) {
 console.log('Serializing to ' + file);
 fs.writeFileSync(file, this._serialize(this.data));
}

Design Patterns

[206]

ConfigTemplate.prototype.get = function(path) {
 return objectPath.get(this.data, path);
}

ConfigTemplate.prototype.set = function(path, value) {
 return objectPath.set(this.data, path, value);
}

ConfigTemplate.prototype._serialize = function() {
 throw new Error('_serialize() must be implemented');
}

ConfigTemplate.prototype._deserialize = function() {
 throw new Error('_deserialize() must be implemented');
}

module.exports = ConfigTemplate;

The new ConfigTemplate class defines two template methods: _deserialize()
and _serialize(), that are needed to carry out the loading and saving of the
configuration. The underscore at the beginning of their names indicates that they
are for internal use only, an easy way to flag protected methods. Since, in JavaScript,
we cannot declare a method as abstract, we simply define them as stubs, throwing
an exception if they are invoked (in other words, if they are not overridden by a
concrete subclass).

Let's now create a concrete class using our template, for example, one that allows us
to load and save the configuration using the JSON format:

var util = require('util');
var ConfigTemplate = require('./configTemplate');

function JsonConfig() {}
util.inherits(JsonConfig, ConfigTemplate);

JsonConfig.prototype._deserialize = function(data) {
 return JSON.parse(data);
};

JsonConfig.prototype._serialize = function(data) {
 return JSON.stringify(data, null, ' ');
}

module.exports = JsonConfig;

Chapter 4

[207]

The JsonConfig class inherits from our template, the ConfigTemplate class,
and provides a concrete implementation for the _deserialize() and
_serialize() methods.

The JsonConfig class can now be used as a standalone configuration object, without
the need to specify a strategy for serialization and deserialization, as it is baked in the
class itself:

var JsonConfig = require('./jsonConfig');

var jsonConfig = new JsonConfig();
jsonConfig.read('samples/conf.json');
jsonConfig.set('nodejs', 'design patterns');
jsonConfig.save('samples/conf_mod.json');

With minimal effort, the Template pattern allowed us to obtain a new, fully
working configuration manager by reusing the logic and the interface inherited
from the parent template class and providing only the implementation of a few
abstract methods.

In the wild
This pattern should not sound entirely new to us. We already encountered it in
Chapter 3, Coding with Streams, when we were extending the different stream classes
to implement our custom streams. In that context, the template methods were the
_write(), _read(), _transform(), or _flush() methods, depending on the stream
class that we wanted to implement. To create a new custom stream, we needed to
inherit from a specific abstract stream class, providing an implementation for the
template methods.

Middleware
One of the most distinctive patterns in Node.js is definitely middleware.
Unfortunately it's also one of the most confusing for the inexperienced, especially
for developers coming from the enterprise programming world. The reason for the
disorientation is probably connected with the meaning of the term middleware, which
in the enterprise architecture's jargon represents the various software suites that
help to abstract lower level mechanisms such as OS APIs, network communications,
memory management, and so on, allowing the developer to focus only on the
business case of the application. In this context, the term middleware recalls topics
such as CORBA, Enterprise Service Bus, Spring, JBoss, but in its more generic
meaning it can also define any kind of software layer that acts like a glue between
lower level services and the application (literally the software in the middle).

Design Patterns

[208]

Middleware in Express
Express (http://expressjs.com) popularized the term middleware in the
Node.js world, binding it to a very specific design pattern. In express, in fact,
a middleware represents a set of services, typically functions, that are organized
in a pipeline and are responsible for processing incoming HTTP requests and
relative responses. An express middleware has the following signature:

function(req, res, next) { ... }

Where req is the incoming HTTP request, res is the response, and next is the
callback to be invoked when the current middleware has completed its tasks
and that in turn triggers the next middleware in the pipeline.

Examples of the tasks carried out by an express middleware are as the following:

• Parsing the body of the request
• Compressing/decompressing requests and responses
• Producing access logs
• Managing sessions
• Providing Cross-site Request Forgery (CSRF) protection

If we think about it, these are all tasks that are not strictly related to the main
functionality of an application, rather, they are accessories, components providing
support to the rest of the application and allowing the actual request handlers to focus
only on their main business logic. Essentially, those tasks are software in the middle.

Middleware as a pattern
The technique used to implement middleware in express is not new; in fact, it can be
considered the Node.js incarnation of the Intercepting Filter pattern and the Chain of
Responsibility pattern. In more generic terms, it also represents a processing pipeline,
which reminds us about streams. Today, in Node.js, the word middleware is used well
beyond the boundaries of the express framework, and indicates a particular pattern
whereby a set of processing units, filters, and handlers, under the form of functions are
connected to form an asynchronous sequence in order to perform preprocessing and
postprocessing of any kind of data. The main advantage of this pattern is flexibility; in
fact, this pattern allows us to obtain a plugin infrastructure with incredibly little effort,
providing an unobtrusive way for extending a system with new filters and handlers.

Chapter 4

[209]

If you want to know more about the Intercepting Filter pattern, the
following article is a good starting point: http://www.oracle.
com/technetwork/java/interceptingfilter-142169.html.
A nice overview of the Chain of Responsibility pattern is available
at this URL http://java.dzone.com/articles/design-
patterns-uncovered-chain-of-responsibility.

The following diagram shows the components of the middleware pattern:

The essential component of the pattern is the Middleware Manager, which is
responsible for organizing and executing the middleware functions. The most
important implementation details of the pattern are as follows:

• New middleware can be registered by invoking the use() function
(the name of this function is a common convention in many implementations
of this pattern, but we can choose any name). Usually, new middleware can
only be appended at the end of the pipeline, but this is not a strict rule.

• When new data to process is received, the registered middleware is invoked
in an asynchronous sequential execution flow. Each unit in the pipeline
receives in input the result of the execution of the previous unit.

• Each middleware can decide to stop further processing of the data by simply
not invoking its callback or by passing an error to the callback. An error
situation usually triggers the execution of another sequence of middleware
that is specifically dedicated to handling errors.

There is no strict rule on how the data is processed and propagated in the pipeline.
The strategies include:

• Augmenting the data with additional properties or functions
• Replacing the data with the result of some kind of processing
• Maintaining the immutability of the data and always returning fresh copies

as result of the processing

Design Patterns

[210]

The right approach that we need to take depends on the way the Middleware
Manager is implemented and on the type of processing carried out by the
middleware itself.

Creating a middleware framework for ØMQ
Let's now demonstrate the pattern by building a middleware framework around
the ØMQ (http://zeromq.org) messaging library. ØMQ (also known as ZMQ, or
ZeroMQ) provides a simple interface for exchanging atomic messages across the
network using a variety of protocols; it shines for its performances, and its basic
set of abstractions are specifically built to facilitate the implementation of custom
messaging architectures. For this reason, ØMQ is often chosen to build complex
distributed systems.

In Chapter 8, Messaging and Integration Patterns, we will have the
chance to analyze the features of ØMQ in more detail.

The interface of ØMQ is pretty low-level, it only allows us to use strings and binary
buffers for messages, so any encoding or custom formatting of data has to be
implemented by the users of the library.

In the next example, we are going to build a middleware infrastructure to abstract
the preprocessing and postprocessing of the data passing through a ØMQ socket, so
that we can transparently work with JSON objects but also seamlessly compress the
messages traveling over the wire.

Before continuing with the example, please make sure to install
the ØMQ native libraries following the instructions at this URL:
http://zeromq.org/intro:get-the-software. Any version
in the 4.0 branch should be enough for working on this example.

The Middleware Manager
The first step to build a middleware infrastructure around ØMQ is to create a
component that is responsible for executing the middleware pipeline when a new
message is received or sent. For the purpose, let's create a new module called
zmqMiddlewareManager.js and let's start defining it:

function ZmqMiddlewareManager(socket) {
 this.socket = socket;
 this.inboundMiddleware = []; //[1]

Chapter 4

[211]

 this.outboundMiddleware = [];
 var self = this;
 socket.on('message', function(message) { //[2]
 self.executeMiddleware(self.inboundMiddleware, {
 data: message
 });
 });
}
module.exports = ZmqMiddlewareManager;

This first code fragment defines a new constructor for our new component.
It accepts a ØMQ socket as an argument and:

1. Creates two empty lists that will contain our middleware functions, one for
the inbound messages and another one for the outbound messages.

2. Immediately, it starts listening for the new messages coming from the socket
by attaching a new listener to the 'message' event. In the listener, we
process the inbound message by executing the inboundMiddleware pipeline.

The next method of the ZmqMiddlewareManager prototype is responsible for
executing the middleware when a new message is sent through the socket:

ZmqMiddlewareManager.prototype.send = function(data) {
 var self = this;
 var message = {
 data: data
 };

 self.executeMiddleware(self.outboundMiddleware, message,
 function() {
 self.socket.send(message.data);
 }
);
}

This time the message is processed using the filters in the outboundMiddleware list
and then passed to socket.send() for the actual network transmission.

Now, we need a small method to append new middleware functions to our
pipelines; we already mentioned that such a method is conventionally called use():

ZmqMiddlewareManager.prototype.use = function(middleware) {
 if(middleware.inbound) {
 this.inboundMiddleware.push(middleware.inbound);
 }

Design Patterns

[212]

 if(middleware.outbound) {
 this.outboundMiddleware.unshift(middleware.outbound);
 }
}

Each middleware comes in pairs; in our implementation it's an object that contains
two properties, inbound and outbound, that contain the middleware functions to be
added to the respective list.

It's important to observe here that the inbound middleware is pushed to the end
of the inboundMiddleware list, while the outbound middleware is inserted at
the beginning of the outboundMiddleware list. This is because complementary
inbound/outbound middleware functions usually need to be executed in an inverted
order. For example, if we want to decompress and then deserialize an inbound
message using JSON, it means that for the outbound, we should instead first serialize
and then compress.

It's important to understand that this convention for organizing
the middleware in pairs is not strictly part of the general pattern,
but only an implementation detail of our specific example.

Now, it's time to define the core of our component, the function that is responsible
for executing the middleware:

ZmqMiddlewareManager.prototype.executeMiddleware =
 function(middleware, arg, finish) {
 var self = this;
 (function iterator(index) {
 if(index === middleware.length) {
 return finish && finish();
 }
 middleware[index].call(self, arg, function(err) {
 if(err) {
 console.log('There was an error: ' + err.message);
 }
 iterator(++index);
 });
 })(0);
 }

Chapter 4

[213]

The preceding code should look very familiar; in fact, it is a simple
implementation of the asynchronous sequential iteration pattern that we
learned in Chapter 2, Asynchronous Control Flow Patterns. Each function in the
middleware array received in input is executed one after the other, and the same
arg object is provided as an argument to each middleware function; this is the trick
that makes it possible to propagate the data from one middleware to the next. At the
end of the iteration, the finish() callback is invoked.

Please note that for brevity we are not supporting an error middleware
pipeline. Normally, when a middleware function propagates an error,
another set of middleware specifically dedicated to handling errors is
executed. This can be easily implemented using the same technique that
we are demonstrating here.

A middleware to support JSON messages
Now that we have implemented our Middleware Manager, we can create a pair
of middleware functions to demonstrate how to process inbound and outbound
messages. As we said, one of the goals of our middleware infrastructure is having
a filter that serializes and deserializes JSON messages, so let's create a new
middleware to take care of this. In a new module called 'middleware.js'
let's include the following code:

module.exports.json = function() {
 return {
 inbound: function(message, next) {
 message.data = JSON.parse(message.data.toString());
 next();
 },
 outbound:
 function(message, next) {
 message.data = new Buffer(JSON.stringify(message.data));
 next();
 }
 }
}

The json middleware that we just created is very simple:

• The inbound middleware deserializes the message received as an input and
assigns the result back to the data property of message, so that it can be
further processed along the pipeline

• The outbound middleware serializes any data found into message.data

Design Patterns

[214]

Please note how the middleware supported by our framework is quite different from
the one used in express; this is totally normal and a perfect demonstration of how
we can adapt this pattern to fit our specific need.

Using the ØMQ middleware framework
We are now ready to use the middleware infrastructure that we just created. To do
that, we are going to build a very simple application, with a client sending a ping to a
server at regular intervals and the server echoing back the message received.

From an implementation perspective, we are going to rely on a request/reply
messaging pattern using the req/rep socket pair provided by ØMQ (http://zguide.
zeromq.org/page:all#Ask-and-Ye-Shall-Receive). We will then wrap the sockets
with our zmqMiddlewareManager to get all the advantages from the middleware
infrastructure that we built, including the middleware for serializing/deserializing
JSON messages.

The server
Let's start by creating the server side (server.js). In the first part of the module
we initialize our components:

var zmq = require('zmq');
var ZmqMiddlewareManager = require('./zmqMiddlewareManager');
var middleware = require('./middleware');
var reply = zmq.socket('rep');
reply.bind('tcp://127.0.0.1:5000');

In the preceding code, we loaded the required dependencies and bind a ØMQ 'rep'
(reply) socket to a local port. Next, we initialize our middleware:

var zmqm = new ZmqMiddlewareManager(reply);
zmqm.use(middleware.zlib());
zmqm.use(middleware.json());

We created a new ZmqMiddlewareManager object and then added two middlewares,
one for compressing/decompressing the messages and another one for parsing/
serializing JSON messages.

For brevity, we did not show the implementation of the zlib
middleware, but you can find it in the sample code that is
distributed with the book.

Chapter 4

[215]

Now we are ready to handle a request coming from the client, we will do this by
simply adding another middleware, this time using it as a request handler:

zmqm.use({
 inbound: function(message, next) {
 console.log('Received: ', message.data);
 if(message.data.action === 'ping') {
 this.send({action: 'pong', echo: message.data.echo});
 }
 next();
 }
});

Since this last middleware is defined after the zlib and json middlewares, we
can transparently use the decompressed and deserialized message that is available
in the message.data variable. On the other hand, any data passed to send() will
be processed by the outbound middleware, which in our case will serialize then
compress the data.

The client
On the client side of our little application, 'client.js', we will first have to initiate
a new ØMQ 'req' (request) socket connected to the port 5000, the one
used by our server:

var zmq = require('zmq');
var ZmqMiddlewareManager = require('./zmqMiddlewareManager');
var middleware = require('./middleware');

var request = zmq.socket('req');
request.connect('tcp://127.0.0.1:5000');

Then, we need to set up our middleware framework in the same way that we did for
the server:

var zmqm = new ZmqMiddlewareManager(request);
zmqm.use(middleware.zlib());
zmqm.use(middleware.json());

Next, we create an inbound middleware to handle the responses coming from
the server:

zmqm.use({
 inbound: function(message, next) {
 console.log('Echoed back: ', message.data);
 next();
 }
});

Design Patterns

[216]

In the preceding code, we simply intercept any inbound response and print it
to the console.

Finally, we set up a timer to send some ping requests at regular intervals, always
using the zmqMiddlewareManager to get all the advantages of our middleware:

setInterval(function() {
 zmqm.send({action: 'ping', echo: Date.now()});
}, 1000);

We can now try our application by first starting the server:

node server

We can then start the client with the following command:

node client

At this point, we should see the client sending messages and the server echoing
them back.

Our middleware framework did its job; it allowed us to decompress/compress and
deserialize/serialize our messages transparently, leaving the handlers free to focus
on their business logic!

Command
Another design pattern with huge importance in Node.js is Command. In its most
generic definition, we can consider a command as any object that encapsulates all the
information necessary to perform an action at a later time. So, instead of invoking
a method or a function directly, we create an object representing the intention to
perform such an invocation; it will then be the responsibility of another component
to materialize the intent, transforming it into an actual action. Traditionally, this
pattern is built around four major components, as shown in the following figure:

Chapter 4

[217]

The typical organization of the Command pattern can be described as follows:

• Command: This is the object encapsulating the information necessary
to invoke a method or function.

• Client: This creates the Command and provides it to the Invoker.
• Invoker: This is responsible for executing the Command on the Target.
• Target (or Receiver): This is the subject of the invocation. It can be a lone

function or the method of an object.

As we will see, these four components can vary a lot depending on the way we want
to implement the pattern; this should not sound new at this point.

Using the Command pattern, instead of directly executing an operation, has several
advantages and applications:

• A command can be scheduled for execution at a later time.
• A command can be easily serialized and sent over the network. This simple

property allows us to distribute jobs across remote machines, transmit
commands from the browser to the server, create RPC systems, and so on.

• Commands make it easy to keep a history of all the operations executed
on a system.

• Commands are an important part of some algorithms for data synchronization
and conflict resolution.

• A command scheduled for execution can be cancelled if it's not yet executed.
It can also be reverted (undone), bringing the state of the application to the
point before the command was executed.

• Several commands can be grouped together. This can be used to create atomic
transactions or to implement a mechanism whereby all the operations in the
group are executed at once.

• Different kinds of transformations can be performed on a set of commands
such as duplicate removal, joining and splitting, or applying more complex
algorithms such as Operational Transformation (OT), which is the base
for most of today's real-time collaborative software such as collaborative
text editing.

A great explanation of how Operational Transformation works can be
found at www.codecommit.com/blog/java/understanding-
and-applying-operational-transformation.

Design Patterns

[218]

The preceding list clearly shows us how important this pattern is, especially in
a platform like Node.js, where networking and asynchronous execution are
essential players.

A flexible pattern
As we already mentioned, the command pattern in JavaScript can be implemented in
many different ways; we are now going to demonstrate only a few of them just to
give an idea of its scope.

The task pattern
We can start off with the most basic and trivial implementation: the task pattern.
The easiest way in JavaScript to create an object representing an invocation is,
of course, creating a closure:

function createTask(target, args) {
 return function() {
 target.apply(null, args);
 }
}

This should not look new at all; we have used this pattern already so many times
along the book, and in particular, in Chapter 2, Asynchronous Control Flow Patterns.
This technique allowed us to use a separate component to control and schedule the
execution of our tasks, which is essentially equivalent to the invoker of the Command
pattern. For example, do you remember how we were defining tasks to pass to
the async library? Or even better, do you remember how we were using thunks in
combination with generators? The callback pattern itself can be considered a very
simple version of the Command pattern.

A more complex command
Let's now work on an example of a more complex command; this time we want to
support undo and serialization. Let's start with the target of our commands, a little
object that is responsible for sending status updates to a service like Twitter.
We use a mock of such a service for simplicity:

var statusUpdateService = {
 statusUpdates: {},
 sendUpdate: function(status) {
 console.log('Status sent: ' + status);

Chapter 4

[219]

 var id = Math.floor(Math.random() * 1000000);
 statusUpdateService.statusUpdates[id] = status;
 return id;
 },

 destroyUpdate: function(id) {
 console.log('Status removed: ' + id);
 delete statusUpdateService.statusUpdates[id];
 }
}

Now, let's create a command to represent the posting of a new status update:

function createSendStatusCmd(service, status) {
 var postId = null;
 var command = function() {
 postId = service.sendUpdate(status);
 };

 command.undo = function() {
 if(postId) {
 service.destroyUpdate(postId);
 postId = null;
 }
 };

 command.serialize = function() {
 return {type: 'status', action: 'post', status: status};
 }

 return command;
}

The preceding function is a factory that produces new sendStatus commands.
Each command implements the following three functionalities:

1. The command itself is a function that when invoked will trigger the action;
in other words, it implements the task pattern that we have seen before.
The command when executed will send a new status update using the
methods of the target service.

2. An undo() function, attached to the main task, that reverts the effects of the
operations. In our case, we are simply invoking
the destroyUpdate() method on the target service.

3. A serialize() function that builds a JSON object that contains all the
necessary information to reconstruct the same command object.

Design Patterns

[220]

After this, we can build an Invoker; we can start by implementing its constructor and
its run() method:

function Invoker() {
 this.history = [];
}

Invoker.prototype.run = function(cmd) {
 this.history.push(cmd);
 cmd();
 console.log('Command executed', cmd.serialize());
};

The run() method that we defined earlier is the basic functionality of our Invoker;
it is responsible for saving the command into the history instance variable and then
triggering the execution of the command itself. Next, we can add a new method that
delays the execution of a command:

Invoker.prototype.delay = function(cmd, delay) {
 var self = this;
 setTimeout(function() {
 self.run(cmd);
 }, delay)
}

Then, we can implement an undo() method that reverts the last command:

Invoker.prototype.undo = function() {
 var cmd = this.history.pop();
 cmd.undo();
 console.log('Command undone', cmd.serialize());
}

Finally, we also want to be able to run a command on a remote server, by serializing
and then transferring it over the network using a web service:

Invoker.prototype.runRemotely = function(cmd) {
 var self = this;
 request.post('http://localhost:3000/cmd',
 {json: cmd.serialize()}, function(err) {
 console.log('Command executed remotely', cmd.serialize());
 });
}

Chapter 4

[221]

Now that we have the Command, the Invoker, and the Target, the only component
missing is the Client. Let's start from instantiating the Invoker:

var invoker = new Invoker();

Then, we can create a command using the following line of code:

var command = createSendStatusCmd(statusUpdateService, 'HI!');

We now have a command representing the posting of a status message; we can then
decide to dispatch it immediately:

invoker.run(command);

Oops, we made a mistake; let's revert to the state of our timeline, as it was before
sending the last message:

invoker.undo();

We can also decide to schedule the message to be sent in a hour from now:

invoker.delay(command, 1000 * 60 * 60);

Alternatively, we can distribute the load of the application by migrating the task to
another machine:

invoker.runRemotely(command);

The little example that we have just created shows how wrapping an operation in a
command can open a world of possibilities, and that's just the tip of the iceberg.

As the last remarks, it is worth noticing that a full-fledged Command pattern has be
used only when really needed. We saw, in fact, how much additional code we had to
write to simply invoke a method of statusUpdateService; if all that we need is only
an invocation, then a complex command would be overkill. If however, we need to
schedule the execution of a task or run an asynchronous operation, then the simpler
task pattern offers the best compromise. If instead, we need more advanced features
such as undo support, transformations, conflict resolution, or one of the other fancy
use cases that we described previously, using a more complex representation for the
command is almost necessary.

Design Patterns

[222]

Summary
In this chapter, we learned how some of the traditional GoF design patterns can be
applied to JavaScript and, in particular, to the Node.js philosophy. Some of them
were transformed, some were simplified, other renamed or adapted as part of their
assimilation by the language, the platform, and the community. We emphasized how
simple patterns such as Factory can greatly improve the flexibility of our code and
how with Proxy, Decorator, and Adapter we can manipulate, extend, and adapt the
interface of existing objects. Strategy, State, and Template, instead, have shown us how
to split a bigger algorithm into its static and variable parts, allowing us to improve
the code reuse and extensibility of our components. By learning the Middleware
pattern, we are now able to process our data using a simple, extensible, and elegant
paradigm. Finally, the Command pattern provided us with a simple abstraction to
make any operation more flexible and powerful.

We also acquired other evidence of how JavaScript is about getting things done
and building software by composing different reusable objects or functions instead
of extending many little classes or interfaces. Also, for developers coming from
other Object-Oriented languages, it might have looked weird to see how different
some design patterns become when implemented in JavaScript; some might feel
lost knowing that there might be not just one but rather many different ways for
implementing a design pattern.

JavaScript is a pragmatic language, we said; it allows us to get things done quickly;
however, without any kind of structure or guideline, we are asking for trouble.
That's where this book and, in particular, this chapter comes useful. They try to teach
the right balance between creativity and rigor, by showing that there are patterns
that can be reused to improve our code but also that their implementation is not
the most important detail, as it can vary a lot or even overlap with other patterns;
what really matters is instead the blueprint, the guideline, the idea at the base of the
pattern. This is the real reusable piece of information that we can exploit to design
better Node.js applications with both fun and method.

In the next chapter, we will analyze some more design patterns by focusing on one
of the most opinionated aspects of programming: how to organize and connect
modules together.

Wiring Modules
The Node.js module system brilliantly fills an old gap in the JavaScript language: the
lack of a native way of organizing code into different self-contained units. One of its
biggest advantages is the ability to link these modules together using the require()
function (as we have seen in Chapter 1, Node.js Design Fundamentals), a simple yet
powerful approach. However, many developers new to Node.js might find this
confusing; one of the most asked questions is in fact: what's the best way to pass an
instance of component X into module Y?

Sometimes, this confusion results in a desperate quest for the Singleton pattern in
the hope of finding a more familiar way to link our modules together. On the other
side, some might overuse the Dependency Injection pattern, leveraging it to handle
any type of dependency (even stateless) without a particular reason. It should not
be surprising that the art of module wiring is one of the most controversial and
opinionated topics in Node.js. There are many schools of thought influencing this
area, but none of them can be considered to possess the undisputed truth. Every
approach, in fact, has its pros and cons and they often end up mixed together in the
same application, adapted, customized, or used in disguise under other names.

In this chapter, we're going to analyze the various approaches for wiring modules
and highlight their strengths and weaknesses, so that we can rationally choose and
mix them together depending on the balance between simplicity, reusability, and
extensibility that we want to obtain. In particular, we're going to present the most
important patterns related to this topic, which are as follows:

• Hardcoded dependency
• Dependency injection
• Service locator
• Dependency injection containers

Wiring Modules

[224]

We will then explore a closely related problem, namely, how to wire plugins.
This can be considered a specialization of module wiring and it mostly presents the
same traits, but the context of its application is slightly different and presents its own
challenges, especially when a plugin is distributed as a separate Node.js package.
We will learn the main techniques to create a plugin-capable architecture and we will
then focus on how to integrate these plugins into the flow of the main application.

At the end of this chapter, the obscure art of Node.js module wiring should not be a
mystery to us anymore.

Modules and dependencies
Every modern application is the result of the aggregation of several components and,
as the application grows, the way we connect these components becomes a win or
lose factor. It's not only a problem related to technical aspects such as extensibility,
but it's also a concern with the way we perceive the system. A tangled dependency
graph is a liability and it adds to the technical debt of the project; in such a situation,
any change in the code aimed to either modify or extend its functionality can result
in a tremendous effort.

In the worst case, the components are so tightly connected together that it becomes
impossible to add or change anything without refactoring or even completely
rewriting entire parts of the application. This, of course, does not mean that we have
to over-engineer our design starting from the very first module, but surely finding
a good balance from the very beginning can make a huge difference.

Node.js provides a great tool for organizing and wiring the components of an
application together: it's the CommonJS module system. However, the module
system alone is not a guarantee for success; if on one side, it adds a convenient level
of indirection between the client module and the dependency, then on the other,
it might introduce a tighter coupling if not used properly. In this section, we will
discuss some fundamental aspects of dependency wiring in Node.js.

The most common dependency in Node.js
In software architecture, we can consider any entity, state, or data format, which
influences the behavior or structure of a component, as a dependency. For example,
a component might use the services offered by another component, rely on a
particular global state of the system, or implement a specific communication
protocol in order to exchange information with other components, and so on.
The concept of dependency is very broad and sometimes hard to evaluate.

Chapter 5

[225]

In Node.js, though, we can immediately identify one essential type of dependency,
which is the most common and easy to identify; of course, we are talking about
the dependency between modules. Modules are the fundamental mechanism at
our disposal to organize and structure our code; it's unreasonable to build a large
application without relying on the module system at all. If used properly to group
the various elements of an application, it can bring a lot of advantages. In fact, the
properties of a module can be summed up as follows:

• A module is more readable and understandable because (ideally) it's
more focused

• Being represented as a separate file, a module is easier to identify
• A module can be more easily reused across different applications

A module represents the perfect level of granularity for performing information
hiding and gives an effective mechanism to expose only the public interface of a
component (using module.exports).

However, simply spreading the functionality of an application or a library across
different modules is not enough for a successful design; it has to be done right. One of
the fallacies is ending up in a situation where the relationship between our modules
becomes so strong we create a unique monolithic entity, where removing or replacing
a module would reverberate across most of the architecture. We are immediately able
to recognize that the way we organize our code into modules and the way we connect
them together, play a strategic role. And as with any problem in software design, it's a
matter of finding the right balance between different measures.

Cohesion and Coupling
The two most important properties to balance when building modules are cohesion
and coupling. They can be applied to any type of a component or subsystem in
software architecture, so we can use them as guidelines when building Node.js
modules as well. These two properties can be defined as follows:

• Cohesion: This is a measure of the correlation between the functionalities
of a component. For example, a module that does only one thing, where all
its parts contribute to that one single task has a high cohesion. A module that
contains functions to save any type of object into a database—saveProduct(),
saveInvoice(), saveUser(), and so on—has a low cohesion.

Wiring Modules

[226]

• Coupling: This measures how much a component is dependent on the other
components of a system. For example, a module is tightly coupled to another
module when it directly reads or modifies the data of the other module. Also,
two modules that interact via a global or shared state are tightly coupled.
On the other side, two modules that communicate only via the passing of
parameters are loosely coupled.

The desirable scenario is to have a high cohesion and a loose coupling, which usually
results in more understandable, reusable, and extensible modules.

Stateful modules
In JavaScript, everything is an object. We don't have abstract concepts such as pure
interfaces or classes; its dynamic typing already provides a natural mechanism
to decouple the interface (or policy) from the implementation (or detail). That's
one of the reasons why some of the design patterns that we have seen in Chapter
4, Design Patterns, looked so different and simplified compared to their traditional
implementation.

In JavaScript, we have minimal problems in separating interfaces from
implementations; however, by simply using the Node.js module system, we are
already introducing a hardcoded relationship with one particular implementation.
Under normal conditions, there is nothing wrong with this, but if we use require()
to load a module that exports a stateful instance, such as a db handle, an HTTP
server instance, the instance of a service, or in general any object which is not
stateless, we are actually referencing something very similar to a Singleton,
thus inheriting its pros and cons, with the addition of some caveats.

The Singleton pattern in Node.js
A lot of people new to Node.js get confused about how to implement the Singleton
pattern correctly, most of the time with the simple intent of sharing an instance
across the various modules of an application. But, the answer in Node.js is easier
than what we might think; simply exporting an instance using module.exports is
already enough to obtain something very similar to the Singleton pattern. Consider,
for example, the following line of code:

//'db.js' module
module.exports = new Database('my-app-db');

Chapter 5

[227]

By simply exporting a new instance of our database, we can already assume that
within the current package (which can easily be the entire code of our application),
we are going to have only one instance of the db module. This is possible because,
as we know, Node.js will cache the module after the first invocation of require(),
making sure to not execute it again at any subsequent invocation, returning instead
the cached instance. For example, we can easily obtain a shared instance of the db
module that we defined earlier, with the following line of code:

var db = require('./db');

But there is a caveat; the module is cached using its full path as lookup key, therefore
it is guaranteed to be a Singleton only within the current package. We saw in Chapter
1, Node.js Design Fundamentals, that each package might have its own set of private
dependencies inside its node_modules directory, which might result in multiple
instances of the same package and therefore of the same module, with the result that
our Singleton might not be single anymore. Consider, for example, the case where the
db module is wrapped into a package named mydb. The following lines of code will
be in its package.json file:

{
 "name": "mydb",
 "main": "db.js"
}

Now consider the following package dependency tree:

app/
`-- node_modules
 |-- packageA
 | `-- node_modules
 | `-- mydb
 `-- packageB
 `-- node_modules
 `-- mydb

Both packageA and packageB have a dependency on the mydb package; in turn, the
app package, which is our main application, depends on packageA and packageB.
The scenario we just described, will break the assumption about the uniqueness of
the database instance; in fact, both packageA and packageB will load the database
instance using a command such as the following:

var db = require('mydb');

Wiring Modules

[228]

However, packageA and packageB will actually load two different instances of our
pretending singleton, because the mydb module will resolve to a different directory
depending on the package it is required from.

At this point, we can easily say that the Singleton pattern, as described in the
literature, does not exist in Node.js unless we don't use a real global variable to
store it, something such as the following:

global.db = new Database('my-app-db');

This would guarantee that the instance will be only one and shared across the entire
application, and not just the same package. However, this is a practice to avoid at
all costs; most of the time, we don't really need a pure Singleton, and anyway, as we
will see later, there are other patterns that we can use to share an instance across the
different packages.

Throughout this book, for simplicity, we will use the term Singleton
to describe a stateful object exported by a module, even if this
doesn't represent a real singleton in the strict definition of the term.
We can surely say though, that it shares the same practical intent
with the original pattern: to easily share a state across different
components.

Patterns for wiring modules
Now that we have discussed some basic theory around dependencies and coupling,
we are ready to dive into some more practical concepts. In this section, in fact, we are
going to present the main module wiring patterns. Our focus will be mainly pointed
towards the wiring of stateful instances, which are, without any doubts, the most
important type of dependencies in an application.

Hardcoded dependency
We start our analysis by looking at the most conventional relationship between two
modules, which is the hardcoded dependency. In Node.js, this is obtained when a
client module explicitly loads another module using require(). As we will see in
this section, this way of establishing module dependencies is simple and effective,
but we have to pay additional attention to hardcoding dependencies with stateful
instances, as this would limit the reusability of our modules.

Chapter 5

[229]

Building an authentication server using hardcoded
dependencies
Let's start our analysis by looking at the structure represented by the following figure:

The preceding figure shows a typical example of layered architecture; it describes
the structure of a simple authentication system. AuthController accepts the input
from the client, extracts the login information from the request, and performs some
preliminary validation. It then relies on AuthService to check whether the provided
credentials match with the information stored in the database; this is done by
executing some specific queries using a DB handle as a means to communicate with
the database. The way these three components are connected together will determine
their level of reusability, testability, and maintainability.

The most natural way to wire these components together is requiring the DB module
from AuthService and then requiring AuthService from AuthController. This is
the hardcoded dependency that we are talking about.

Let's demonstrate this in practice by actually implementing the system that we
just described. Let's then design a simple authentication server, which exposes
the following two HTTP APIs:

• POST '/login': This receives a JSON object that contains a username
and password pair to authenticate. On success, it returns a JSON Web
Token (JWT), which can be used in subsequent requests to verify the
identity of the user.

JSON Web Token is a format for representing and sharing claims
between parties. Its popularity is growing with the explosion
of Single Page Applications and Cross-origin resource
sharing (CORS), as a more flexible alternative to cookie-based
authentication. To know more about JWT, you can refer to its
specification (currently in draft) at http://self-issued.
info/docs/draft-ietf-oauth-json-web-token.html.

• GET '/checkToken': This reads a token from a GET query parameter and
verifies its validity.

Wiring Modules

[230]

For this example, we are going to use several technologies; some of them are not new
to us. In particular, we are going to use express (https://npmjs.org/package/
express) to implement the Web API, and levelup (https://npmjs.org/package/
levelup) to store the user's data.

The db module
Let's start by building our application from the bottom up; the very first thing we
need is a module that exposes a levelUp database instance. Let's do this by creating
a new file named lib/db.js and including the following content:

var level = require('level');
var sublevel = require('level-sublevel');

module.exports = sublevel(
 level('example-db', {valueEncoding: 'json'})
);

The preceding module simply creates a connection to a LevelDB database stored
in the ./example-db directory, then it decorates the instance using the sublevel
plugin (https://npmjs.org/package/level-sublevel), which adds the support to
create and query separate sections of the database (it can be compared to a SQL table
or MongoDB collection). The object exported by the module is the database handle
itself, which is a stateful instance, therefore, we are creating a singleton.

The authService module
Now that we have the db singleton, we can use it to implement the lib/authService.
js module, which is the component responsible for checking a user's credentials
against the information in the database. The code is as follows (only the relevant
parts are shown):

[...]
var db = require('./db');
var users = db.sublevel('users');

var tokenSecret = 'SHHH!';

exports.login = function(username, password, callback) {
 users.get(username, function(err, user) {
 [...]
 });
};

exports.checkToken = function(token, callback) {
 [...]

Chapter 5

[231]

 users.get(userData.username, function(err, user) {
 [...]
 });
};

The authService module implements the login() service, which is responsible
for checking a username/password pair against the information in the database,
and the checkToken() service, which takes in a token and verifies its validity.

The preceding code also shows the first example of a hardcoded dependency with
a stateful module. We are talking about the db module, which we load by simply
requiring it. The resulting db variable contains an already initialized database handle
that we can use straightaway to perform our queries.

At this point, we can see that all the code that we created for the authService module
does not really necessitate one particular instance of the db module—any instance will
simply work. However, we hardcoded the dependency to one particular db instance,
and this means that we will be unable to reuse authService in combination with
another database instance without touching its code.

The authController module
Continuing to go up in the layers of the application, we are now going to see what
the lib/authController.js module looks like. This module is responsible for
handling the HTTP requests and it's essentially a collection of the express routes;
the module's code is the following:

var authService = require('./authService');

exports.login = function (req, res, next) {
 authService.login(req.body.username, req.body.password,
 function(err, result) {
 [...]
 }
);
};

exports.checkToken = function (req, res, next) {
 authService.checkToken(req.query.token,
 function(err, result) {
 [...]
 }
);
};

Wiring Modules

[232]

The authController module implements two express routes: one for performing
the login and returning the corresponding authentication token (login()), and
another for checking the validity of the token (checkToken()). Both the routes
delegate most of their logic to authService, so their only job is to deal with the
HTTP request and response.

We can see that, in this case too, we are hardcoding the dependency with a stateful
module, authService. Yes, the authService module is stateful by transitivity,
because it depends directly on the db module. With this, we should start to
understand how a hardcoded dependency can easily propagate across the structure
of the entire application: the authController module depends on the authService
module, which in turn depends on the db module; transitively, this means that the
authService module itself is indirectly linked to one particular db instance.

The app module
Finally, we can put all the pieces together by implementing the entry point of the
application. Following the convention, we will place this logic in a module named
app.js sitting in the root of our project, as follows:

var express = require('express');
var bodyParser = require('body-parser');
var errorHandler = require('errorhandler');
var http = require('http');

var authController = require('./lib/authController');

var app = module.exports = express();
app.use(bodyParser.json());

app.post('/login', authController.login);
app.get('/checkToken', authController.checkToken);
app.use(errorHandler());
http.createServer(app).listen(3000, function () {
 console.log('Express server started');
});

As we can see, our app module is really basic; it contains a simple express server,
which registers some middleware and the two routes exported by authController.
Of course, the most important line of code for us is where we require
authController to create a hardcoded dependency with its stateful instance.

Chapter 5

[233]

Running the authentication server
Before we can try the authentication server that we just implemented, we advise you
to populate the database with some sample data using the populate_db.js script,
which is provided in the code samples. After doing this, we can fire up the server
by running the following command:

node app

We can then try to invoke the two web services that we created; we can use a REST
client to do this or alternatively the good old curl command. For example, to execute
a login, we can run the following command:

curl -X POST -d '{"username": "alice", "password":"secret"}' http://
localhost:3000/login -H "Content-Type: application/json"

The preceding command should return a token that we can use to test the
/checkLogin web service (just replace <TOKEN> in the following command):

curl -X GET -H "Accept: application/json" http://localhost:3000/
checkToken?token=<TOKEN HERE>

The preceding command should return a string such as the following, which
confirms that our server is working as expected:

{"ok":"true","user":{"username":"alice"}}

Pros and cons of hardcoded dependencies
The sample we just implemented, demonstrated the conventional way of wiring
modules in Node.js, leveraging the full power of its module system to manage the
dependencies between the various components of the application. We exported
stateful instances from our modules, letting Node.js manage their life cycle, and
then we required them directly from other parts of the application. The result is
an immediately intuitive organization, easy to understand and debug, where each
module initializes and wires itself without any external intervention.

On the other side, however, hardcoding the dependency on a stateful instance limits
the possibility of wiring the module against other instances, which makes it less
reusable and harder to unit test. For example, reusing authService in combination
with another database instance would be close to impossible, as its dependency is
hardcoded with one particular instance. Similarly, testing authService in isolation can
be a difficult task, because we cannot easily mock the database used by the module.

Wiring Modules

[234]

As a last consideration, it's important to see that most of the disadvantages of using
hardcoded dependencies are associated with stateful instances. This means that if we
use require() to load a stateless module, for example, a factory, constructor, or a set
of stateless functions, we don't incur the same kind of problems. We will still have a
tight coupling with a specific implementation, but in Node.js, this usually does not
impact the reusability of a component, as it does not introduce a coupling with a
particular state.

Dependency injection
The dependency injection (DI) pattern is probably one of the most misunderstood
concepts in software design. Many associate the term with frameworks and
dependency injection containers such as Spring (for Java and C#) or Pimple
(for PHP), but in reality it is a much simpler concept. The main idea behind the
dependency injection pattern is the dependencies of a component being provided
as input by an external entity.

Such an entity can be a client component or a global container, which centralizes the
wiring of all the modules of the system. The main advantage of this approach is an
improved decoupling, especially for modules depending on stateful instances. Using
DI, each dependency, instead of being hardcoded into the module, is received from
the outside. This means that the module can be configured to use any dependency and
therefore can be reused in different contexts.

To demonstrate this pattern in practice, we are now going to refactor the authentication
server that we built in the previous section, using dependency injection to wire
its modules.

Refactoring the authentication server to use
dependency injection
Refactoring our modules to use dependency injection involves the use of a very
simple recipe: instead of hardcoding the dependency to a stateful instance, we
will instead create a factory, which takes a set of dependencies as arguments.

Let's start immediately with this refactoring; let's work on the lib/db.js module
given as follows:

var level = require('level');
var sublevel = require('level-sublevel');

module.exports = function(dbName) {
 return sublevel(

Chapter 5

[235]

 level(dbName, {valueEncoding: 'json'})
);
};

The first step in our refactoring process is to transform the db module into a factory.
The result is that we can now use it to create as many database instances as we want;
this means that the entire module is now reusable and stateless.

Let's move on and implement the new version of the lib/authService.js module:

var jwt = require('jwt-simple');
var bcrypt = require('bcrypt');

module.exports = function(db, tokenSecret) {
 var users = db.sublevel('users');
 var authService = {};

 authService.login = function(username, password, callback) {
 //...same as in the previous version
 };

 authService.checkToken = function(token, callback) {
 //...same as in the previous version
 };

 return authService;
};

Also, the authService module is now stateless; it doesn't export any particular
instance anymore, just a simple factory. The most important detail though is that we
made the db dependency injectable as an argument of the factory function, removing
what previously was a hardcoded dependency. This simple change enables us to
create a new authService module by wiring it to any database instance.

We can refactor the lib/authController.js module in a similar way as follows:

module.exports = function(authService) {
 var authController = {};

 authController.login = function (req, res, next) {
 //...same as in the previous version
 };

 authController.checkToken = function (req, res, next) {

Wiring Modules

[236]

 //...same as in the previous version
 };

 return authController;
};

The authController module does not have any hardcoded dependency at all, not
even stateless! The only dependency, the authService module, is provided as input
to the factory at the moment of its invocation.

Okay, now it's time to see where all these modules are actually created and wired
together; the answer lies in the app.js module, which represents the topmost layer
in our application; its code is the following:

[...]
var dbFactory = require('./lib/db'); //[1]
var authServiceFactory = require('./lib/authService');
var authControllerFactory = require('./lib/authController');

var db = dbFactory('example-db'); //[2]
var authService = authServiceFactory(db, 'SHHH!');
var authController = authControllerFactory(authService);

app.post('/login', authController.login); //[3]
app.get('/checkToken', authController.checkToken);
[...]

The previous code can be summed up as follows:

1. Firstly, we load the factories of our services; at this point, they are still
stateless objects.

2. Next, we instantiate each service by providing the dependencies it requires.
This is the phase where all the modules are created and wired.

3. Finally, we register the routes of the authController module with the
express server as we would normally do.

Our authentication server is now wired using dependency injection and ready
to be used again.

Chapter 5

[237]

The different types of dependency injection
The example we just presented demonstrated only one type of dependency
injection (factory injection), but there are a couple more worth mentioning:

• Constructor injection: In this type of DI, the dependencies are passed to
a constructor at the moment of its creation; one possible example can be
the following:
var service = new Service(dependencyA, dependencyB);

• Property injection: In this type of DI, the dependencies are attached to an
object after its creation, as demonstrated by the following code:
var service = new Service(); //works also with a factory
service.dependencyA = anInstanceOfDependencyA;

Property injection implies that an object is created in an inconsistent state, because
it's not wired to its dependencies, so it's the least robust, but sometimes it might be
useful when there are cycles between the dependencies. For example, if we have two
components, A and B, both using factory or constructor injection and both depending
on each other, we cannot instantiate either of them because both would require the
other to exist in order to be created. Let's consider a simple example, as follows:

function Afactory(b) {
 return {
 foo: function() {
 b.say();
 },
 what: function() {
 return 'Hello!';
 }
 }
}

function Bfactory(a) {
 return {
 a: a,
 say: function() {
 console.log('I say: ' + a.what);
 }
 }
}

Wiring Modules

[238]

The dependency deadlock between the two preceding factories can be resolved only
using property injection, for example, by first creating an incomplete instance of B,
which then can be used to create A. Finally, we will inject A into B by setting the
relative property as follows:

var b = Bfactory(null);
var a = Afactory(b);
a.b = b;

In some rare circumstances, a cycle in the dependency graph is
not easily avoidable; however, it is important to remember that
often it is a symptom of bad design.

Pros and cons of dependency injection
In the authentication server example, using dependency injection we were able to
decouple our modules from a particular dependency instance. The result is that we
can now reuse each module with minimal effort and without any change in their
code. Testing a module that uses the dependency injection pattern is also greatly
simplified; we can easily provide mocked dependencies and test our modules in
isolation from the state of the rest of the system.

Another important aspect to be highlighted from the example we presented earlier
is that we shifted the dependency wiring responsibility from the bottom to the top of
our architecture. The idea is that high-level components are by nature less reusable
than low-level components, and that's because the more we go up in the layers of an
application the more a component becomes specific.

Starting from this assumption we can then understand that the conventional way to
see an application architecture, where high-level components own their lower-level
dependencies, can be inverted, so that the lower-level components depend only on
an interface (in JavaScript, it's just the interface that we expect from a dependency),
while the ownership of defining the implementation of a dependency is given to the
higher-level components. In our authentication server, in fact, all the dependencies
are instantiated and wired in the topmost component, the app module, which is also
the less reusable and so is the most expendable in terms of coupling.

All these advantages in terms of decoupling and reusability, though, come with a
price to pay. In general, the inability to resolve a dependency at coding time makes
it more difficult to understand the relationship between the various components
of a system. Also, if we look at the way we instantiated all the dependencies in the
app module, we can see that we had to follow a specific order; we practically had
to manually build the dependency graph of the entire application. This can become
unmanageable when the number of modules to wire becomes high.

Chapter 5

[239]

A viable solution to this problem is to split the dependency ownership between
multiple components, instead of having it centralized all in one place. This can
reduce the complexity involved in managing the dependencies exponentially, as
each component would be responsible only for its particular dependency subgraph.
Of course, we can also choose to use dependency injection only locally, just when
necessary, instead of building the entire application on top of it.

We will see later in the chapter that, another possible solution to simplify the wiring
of modules in complex architectures is to use a dependency injection container, a
component exclusively responsible for instantiating and wiring all the dependencies
of an application.

Using dependency injection surely increases the complexity and verbosity of our
modules, but as we saw earlier, there are many good reasons for doing this. It is up
to us to choose the right approach, depending on the balance between simplicity and
reusability that we want to obtain.

Dependency injection is often mentioned in combination with the
Dependency Inversion principle and Inversion of Control; however,
they all are different concepts (even though correlated).

Service locator
In the previous section, we learned how dependency injection can literally transform
the way we wire our dependencies, obtaining reusable and decoupled modules.
Another pattern with a very similar intent is Service Locator. Its core principle is to
have a central registry in order to manage the components of the system and to act
as a mediator whenever a module needs to load a dependency. The idea is to ask
the service locator for the dependency, instead of hardcoding it, as shown in the
following image:

Wiring Modules

[240]

It is important to understand that by using a service locator we are introducing a
dependency on it, so the way we wire it to our modules determines their level of
coupling and therefore their reusability. In Node.js, we can identify three types of
service locators, depending on the way they are wired to the various components
of the system:

• Hardcoded dependency on service locator
• Injected service locator
• Global service locator

The first is definitely the one offering the least advantages in terms of decoupling, as
it consists of directly referencing the instance of the service locator using require().
In Node.js, this can be considered an anti-pattern because it introduces a tight
coupling with the component supposedly meant to provide a better decoupling.
In this context, a service locator clearly does not provide any value in terms of
reusability, but it only adds another level of indirection and complexity.

On the other side, an injected service locator is referenced by a component through
dependency injection. This can be considered a more convenient way for injecting
an entire set of dependencies at once, instead of providing them one by one, but as
we will see, its advantages do not end here.

The third way of referencing a service locator is directly from the global scope.
This has the same disadvantages as that of the hardcoded service locator, but since
it is global, it is a real singleton and therefore it can be easily used as a pattern for
sharing instances between packages. We will see how this works later in the chapter,
but for now we can certainly say that there are very few reasons for using a global
service locator.

The Node.js module system already implements a variation of the
service locator pattern, with require() representing the global
instance of the service locator itself.

All the considerations discussed here will be more clear once we start using the
service locator pattern in a real example. Let's then refactor the authentication
server again to apply what we learned.

Chapter 5

[241]

Refactoring the authentication server to use a
service locator
We are now going to convert the authentication server to use an injected service
locator. To do this, the first step is to implement the service locator itself; we will
use a new module, 'lib/serviceLocator.js':

module.exports = function() {
 var dependencies = {};
 var factories = {};
 var serviceLocator = {};

 serviceLocator.factory = function(name, factory) { //[1]
 factories[name] = factory;
 };

 serviceLocator.register = function(name, instance) { //[2]
 dependencies[name] = instance;
 };

 serviceLocator.get = function(name) { //[3]
 if(!dependencies[name]) {
 var factory = factories[name];
 dependencies[name] = factory && factory(serviceLocator);
 if(!dependencies[name]) {
 throw new Error('Cannot find module: ' + name);
 }
 }
 return dependencies[name];
 };

 return serviceLocator;
};

Our serviceLocator module is a factory returning an object with three methods:

• factory() is used to associate a component name against a factory.
• register() is used to associate a component name directly with an instance.
• get() retrieves a component by its name. If an instance is already available,

it simply returns it; otherwise, it tries to invoke the registered factory to
obtain a new instance. It is very important to observe that the module
factories are invoked by injecting the current instance of the service locator
(serviceLocator). This is the core mechanism of the pattern that allows the
dependency graph for our system to be built automatically and on-demand.
We will see how this works in a moment.

Wiring Modules

[242]

A simple pattern, closely resembling a service locator, is to use an object
as a namespace for a set of dependencies:

var dependencies = {};
var db = require('./lib/db');
var authService = require('./lib/authService');

dependencies.db = db();
dependencies.authService = authService(dependencies);

Let's now convert the 'lib/db.js' module straightaway to demonstrate how our
serviceLocator works:

var level = require('level');
var sublevel = require('level-sublevel');

module.exports = function(serviceLocator) {
 var dbName = serviceLocator.get('dbName');

 return sublevel(
 level(dbName, {valueEncoding: 'json'})
);
}

The db module uses the service locator received in input to retrieve the name of the
database to instantiate. This is an interesting point to highlight; a service locator can
be used not only to return component instances but also to provide configuration
parameters that define the behavior of the entire dependency graph that we want
to create.

The next step is to convert the 'lib/authService.js' module:

[...]
module.exports = function(serviceLocator) {
 var db = serviceLocator.get('db');
 var tokenSecret = serviceLocator.get('tokenSecret');

 var users = db.sublevel('users');
 var authService = {};

 authService.login = function(username, password, callback) {
 //...same as in the previous version
 }

Chapter 5

[243]

 authService.checkToken = function(token, callback) {
 //...same as in the previous version
 }

 return authService;
};

Also, the authService module is a factory that takes the service locator as the
input. The two dependencies of the module, the db handle and tokenSecret
(which is another configuration parameter) are retrieved using the get() method
of the service locator.

In a similar way, we can convert the 'lib/authController.js' module:

module.exports = function(serviceLocator) {
 var authService = serviceLocator.get('authService');
 var authController = {};

 authController.login = function (req, res, next) {
 //...same as in the previous version
 };

 authController.checkToken = function (req, res, next) {
 //...same as in the previous version
 };

 return authController;
}

Now we are ready to see how the service locator is instantiated and configured.
This happens of course, in the 'app.js' module:

[...]
var svcLoc = require('./lib/serviceLocator')(); //[1]

svcLoc.register('dbName', 'example-db'); //[2]
svcLoc.register('tokenSecret', 'SHHH!');
svcLoc.factory('db', require('./lib/db'));
svcLoc.factory('authService', require('./lib/authService'));
svcLoc.factory('authController', require('./lib/authController'));

var authController = svcLoc.get('authController'); //[3]

app.post('/login', authController.login);
app.all('/checkToken', authController.checkToken);
[...]

Wiring Modules

[244]

This is how the wiring works using our new service locator:

1. We instantiate a new service locator by invoking its factory.
2. We register the configuration parameters and module factories against the

service locator. At this point, all our dependencies are not instantiated yet;
we just registered their factories.

3. We load authController from the service locator; this is the entry point that
triggers the instantiation of the entire dependency graph of our application.
When we ask for the instance of the authController component, the service
locator invokes the associated factory by injecting an instance of itself, then
the authController factory will try to load the authService module, which
in turn instantiates the db module.

It's interesting to see the lazy nature of the service locator; each instance is created
only when needed. But there is another important implication; we can see, in fact,
that every dependency is automatically wired without the need to manually do it
in advance. The advantage is that we don't have to know in advance what the right
order for instantiating and wiring the modules is, it all happens automatically and
on-demand. This is much more convenient compared to the simple dependency
injection pattern.

Another common pattern is to use an express server instance as
a simple service locator. This can be achieved using expressApp.
set(name, instance) to register a service and expressApp.
get(name) to then retrieve it. The convenient part of this pattern is that
the server instance, which acts as a service locator, is already injected into
each middleware and is accessible through the request.app property.
You can find an example of this pattern in the samples distributed with
the book.

Pros and cons of a service locator
Service locator and dependency injection have a lot in common; both shift the
dependency ownership to an entity external to the component. But the way we
wire the service locator determines the flexibility of our entire architecture. It is
not by chance that we chose an injected service locator to implement our example,
as opposed to a hardcoded or global service locator. These last two variations almost
nullify the advantages of this pattern. In fact, the result would be that, instead of
coupling a component directly to its dependencies using require(), we would
be coupling it to one particular instance of the service locator. It's also true that
a hardcoded service locator will still give more flexibility in configuring what
component to associate with a particular name, but this does still not give any
big advantage in terms of reusability.

Chapter 5

[245]

Also, like dependency injection, using a service locator makes it harder to identify
the relationship between the components, as they are resolved at runtime. But in
addition it also makes it more difficult to know exactly what dependency a particular
component is going to require. With dependency injection this is expressed in a
much clearer way, by declaring the dependencies in the factory or constructor
arguments. With a service locator, this is much less clear and would require a
code inspection or an explicit statement in the documentation explaining what
dependencies a particular component will try to load.

As a final note, it is important to know that often a service locator is incorrectly
mistaken for a dependency injection container because it shares the same role of
service registry with it; however, there is a big difference between the two. With a
service locator, each component loads its dependencies explicitly from the service
locator itself, when using a DI container instead, the component has no knowledge
of the container.

The difference between these two approaches is noticeable for two reasons:

• Reusability: A component relying on a service locator is less reusable
because it requires that a service locator is available in the system.

• Readability: As we have already said, a service locator obfuscates the
dependency requirements of a component.

In terms of reusability, we can say that the service locator pattern sits in between
hardcoded dependencies and DI. In terms of convenience and simplicity, it is
definitely better than manual dependency injection, as we don't have to manually
take care of building the entire dependency graph.

Under these assumptions, a DI container definitely offers the best compromise in
terms of reusability of the components and convenience. We are going to better
analyze this pattern in the next section.

Dependency injection container
The step to transform a service locator into a Dependency Injection container is not
big, but as we already mentioned, it makes a huge difference in terms of decoupling.
With this pattern, in fact, each module doesn't have to depend on the service locator
anymore, but it can simply express its need in terms of dependencies and the DI
container will do the rest seamlessly. As we will see, the big leap forward of this
mechanism is that every module can be reused even without the container.

Wiring Modules

[246]

Declaring a set of dependencies to a DI container
A DI container is essentially a service locator with the addition of one feature:
it identifies the dependency requirements of a module before instantiating it.
For this to be possible, a module has to declare its dependencies in some way,
and as we will see, we have multiple options for doing this.

The first and probably the most popular technique consists of injecting a set of
dependencies based on the arguments' names used in a factory or constructor.
Let's take, for example, the authService module:

module.exports = function(db, tokenSecret) {
 //...
}

As we defined it, the preceding module will be instantiated by our DI container
using the dependencies with names db and tokenSecret, a very simple and intuitive
mechanism. However, to be able to read the names of the arguments of a function,
it's necessary to use a little trick. In JavaScript, we have the possibility to serialize a
function, obtaining at runtime its source code; this is as easy as invoking toString()
on the function reference. Then, with some regular expressions,
obtaining the arguments list is certainly not black magic.

This technique of injecting a set of dependencies using the names
of the arguments of a function was popularized by AngularJS
(http://angularjs.org), a client-side JavaScript framework
developed by Google and entirely built on top of a DI container.

The biggest problem of this approach is that it doesn't play well with minification,
a practice used extensively in client-side JavaScript, which consists of applying
particular code transformations to reduce to the minimum the size of the source
code. Many minificators apply a technique known as name mangling, which essentially
renames any local variable to reduce its length, usually to a single character. The
bad news is that function arguments are local variables and are usually affected by
this process, causing the mechanism that we described for declaring dependencies
to fall apart. Even though minification is not really necessary in server-side code, it's
important to consider that often Node.js modules are shared with the browser, and
this is an important factor to consider in our analysis.

Chapter 5

[247]

Luckily, a DI container might use other techniques to know which dependencies to
inject. These techniques are given as follows:

• We can use a special property attached to the factory function, for example,
an array explicitly listing all the dependencies to inject:
module.exports = function(a, b) {};
module.exports._inject = ['db', 'another/dependency'];

• We can specify a module as an array of dependency names followed by
the factory function:
module.exports = ['db', 'another/depencency',
 function(a, b) {}];

• We can use a comment annotation that is appended to each argument of
a function (however, this also doesn't play well with minification):
module.exports = function(a /*db*/,
 b /*another/depencency*/) {};

All these techniques are quite opinionated, so for our example, we are going to use
the most simple and popular, which is to obtain the dependency names using the
arguments of a function.

Refactoring the authentication server to use
a DI container
To demonstrate how a DI container is much less invasive than a service locator,
we are now going to refactor again our authentication server, and to do so we
are going to use as starting point the version in which we were using the plain
dependency injection pattern. In fact, what we are going to do is just leave untouched
all the components of the application except for the app.js module, which is going
to be the module responsible for initializing the container.

But first, we need to implement our DI container. Let's do that by creating a new
module called diContainer.js under the lib/ directory. This is its initial part:

var argsList = require('args-list');

module.exports = function() {
 var dependencies = {};
 var factories = {};
 var diContainer = {};

 diContainer.factory = function(name, factory) {
 factories[name] = factory;

Wiring Modules

[248]

 };

 diContainer.register = function(name, dep) {
 dependencies[name] = dep;
 };

 diContainer.get = function(name) {
 if(!dependencies[name]) {
 var factory = factories[name];
 dependencies[name] = factory &&
 diContainer.inject(factory);
 if(!dependencies[name]) {
 throw new Error('Cannot find module: ' + name);
 }
 }
 return dependencies[name];
 };
 //...to be continued

The first part of the diContainer module is functionally identical to the service
locator we have seen previously. The only notable differences are:

• We require a new npm module called args-list (https://npmjs.org/
package/args-list), which we will use to extract the names of the
arguments of a function.

• This time, instead of directly invoking the module factory, we rely on another
method of the diContainer module called inject(), which will resolve the
dependencies of a module, and use them to invoke the factory.

Let's see how the diContainer.inject() method looks like:

 diContainer.inject = function(factory) {
 var args = argsList(factory)
 .map(function(dependency) {
 return diContainer.get(dependency);
 });
 return factory.apply(null, args);
 };

}; //end of module.exports = function() {

Chapter 5

[249]

The preceding method is what makes the DI container different from a service
locator. Its logic is very straightforward:

1. We extract the arguments list from the factory function we receive as the
input, using the args-list library.

2. We then map each argument name to the correspondent dependency
instance retrieved using the get() method.

3. At the end, all we have to do is just invoke the factory by providing the
dependency list that we just generated.

That's really it for our diContainer. As we saw it's not that much different from
a service locator, but the simple step of instantiating a module by injecting its
dependencies makes a dramatic difference (as compared to injecting the entire
service locator).

To complete the refactoring of the authentication server, we also need to tweak the
'app.js' module:

[...]
var diContainer = require('./lib/diContainer')();

diContainer.register('dbName', 'example-db');
diContainer.register('tokenSecret', 'SHHH!');
diContainer.factory('db', require('./lib/db'));
diContainer.factory('authService', require('./lib/authService'));
diContainer.factory('authController', require('./lib/
authController'));

var authController = diContainer.get('authController');

app.post('/login', authController.login);
app.get('/checkToken', authController.checkToken);
[...]

As we can see, the code of the app module is identical to the one that we used
to initialize the service locator in the previous section. We can also notice that
to bootstrap the DI container, and therefore trigger the loading of the entire
dependency graph, we still have to use it as a service locator by invoking
diContainer.get('authController'). From that point on, every module
registered with the DI container will be instantiated and wired automatically.

Wiring Modules

[250]

Pros and cons of a Dependency Injection container
A DI container assumes that our modules use the dependency injection pattern and
therefore it inherits most of its pros and cons. In particular, we have an improved
decoupling and testability but on the other side more complexity because our
dependencies are resolved at runtime. A DI container also shares many properties
with the service locator pattern, but it has on its side the fact that it doesn't force
the modules to depend on any extra service except its actual dependencies. This is
a huge advantage because it allows each module to be used even without the DI
container, using a simple manual injection.

That's essentially what we demonstrated in this section: we took the version of the
authentication server where we used the plain dependency injection pattern and
then, without modifying any of its components (except for the app module), we
were able to automatize the injection of every dependency.

On npm, you can find a lot of DI containers to reuse or take inspiration
from at https://www.npmjs.org/search?q=dependency%20
injection.

Wiring plugins
The dream architecture of a software engineer is the one having a small, minimal
core, extensible as needed through the use of plugins. Unfortunately, this is not
always easy to obtain, since most of the time it has a cost in terms of time, resources,
and complexity. Nonetheless, it's always desirable to support some kind of external
extensibility, even if limited to just some parts of the system. In this section, we are
going to plunge into this fascinating world and focus on a dualistic problem:

• Exposing the services of an application to a plugin
• Integrating a plugin into the flow of the parent application

Plugins as packages
Often in Node.js, the plugins of an application are installed as packages into the
node_modules directory of a project. There are two advantages for doing this.
Firstly, we can leverage the power of npm to distribute the plugin and manage
its dependencies. And secondly, a package can have its own private dependency
graph, which reduces the chances of having conflicts and incompatibilities between
dependencies, as opposed to letting the plugin use the dependencies of the
parent project.

Chapter 5

[251]

The following directory structure gives an example of an application with two
plugins distributed as packages:

application
'-- node_modules
 |-- pluginA
 '-- pluginB

In the Node.js world this is a very common practice, some popular examples are
express (http://expressjs.com) with its middleware, gulp (http://gulpjs.com),
grunt (http://gruntjs.com), nodebb (http://nodebb.org), and docpad
(http://docpad.org).

However, the benefits of using packages are not only limited to external plugins.
In fact, one popular pattern is to build entire applications by wrapping their
components into packages, as if they were internal plugins. So, instead of organizing the
modules in the main package of the application, we can create a separate package for
each big chunk of functionality and install it into the node_modules directory.

A package can be private and not necessarily available on the
public npm registry. We can always set the 'private' flag into the
'package.json' to prevent accidental publication to npm. Then, we
can commit the packages into a version control system such as git or
leverage a private npm server to share them with the rest of the team.

Why follow this pattern? First of all convenience: people often find it impractical
or too verbose to reference the local modules of a package using the relative path
notation. Let's, for example, consider the following directory structure:

application
|-- componentA
| '-- subdir
| '-- moduleA
'-- componentB
 '-- moduleB

If we want to reference moduleB from moduleA, we have to write something like this:

require('../../componentB/moduleB');

Wiring Modules

[252]

Instead, we can leverage the properties of the resolving algorithm of require()
(as we have studied it in Chapter 1, Node.js Design Fundamentals) and put the entire
componentB directory into a package. By installing it into the node_modules
directory, we can then write something such as the following (from anywhere
in the main package of the application):

require('componentB/module');

The second reason for splitting a project into packages is of course reusability. A
package can have its own private dependencies and it forces the developer to think in
terms of what to expose to the main application and what instead to keep private, with
beneficial effects on the decoupling and information hiding of the entire application.

Pattern: use packages as a means to organize your application,
not just for distributing code in combination with npm.

The use cases we have just described make use of a package not just as a stateless,
reusable library (like most of the packages on npm), but more as an integral part of a
particular application, providing services, extending its functionality or modifying
its behavior. The main difference is that these types of packages are integrated inside
an application rather than just used.

For simplicity, we will use the term plugin to describe any
package meant to integrate with a particular application.

As we will see, the common problem that we are going to face when deciding to
support this type of architecture is exposing parts of the main application to plugins.
In fact, we cannot think of only stateless plugins—this is of course, the aim for a
perfect extensibility—but sometimes the plugin has to use some of the services of the
parent application in order to carry out its tasks. This aspect might depend a lot on
the technique used to wire modules in the parent application.

Extension points
There are literally infinite ways to make an application extensible. For example, some
of the design patterns we studied in Chapter 4, Design Patterns are meant exactly for
this: using Proxy or Decorator we are able to change or augment the functionality
of a service; with Strategy we can swap parts of an algorithm; with Middleware we
can insert processing units in an existing pipeline. Also, Streams can provide great
extensibility thanks to their composable nature.

Chapter 5

[253]

On the other hand, EventEmitters allow us to decouple our components using
events and the publish/subscribe pattern. Another important technique is to
explicitly define in the application some points where new functionalities can be
attached or the existing ones modified; these points in an application are commonly
known as hooks. To summarize, the most important ingredient to support plugins is
a set of extension points.

But also the way we wire our components plays a decisive role because it can
affect the way we expose the services of the application to the plugin. In this section,
we are mainly going to focus on this aspect.

Plugin-controlled vs Application-controlled
extension
Before we go ahead and present some examples, it is important to understand the
background of the technique we are going to use. There are mainly two approaches
for extending the components of an application:

• Explicit extension
• Extension through Inversion of Control (IoC)

In the first case, we have a more specific component (the one providing the new
functionality) explicitly extending the infrastructure, while in the second case, it is
the infrastructure to control the extension by loading, installing, or executing the new
specific component. In this second scenario, the flow of control is inverted, as shown in
the following image:

Wiring Modules

[254]

Inversion of Control is a very broad principle that can be applied not only to the
problem of application extensibility. In fact, in more general terms it can be said
that by implementing some form of IoC, instead of the custom code controlling the
infrastructure, the infrastructure controls the custom code. With IoC, the various
components of an application trade off their power of controlling the flow in
exchange for an improved level of decoupling. This is also known as the Hollywood
principle or "don't call us, we'll call you".

For example, a dependency injection container is a demonstration of the Inversion
of Control principle applied to the specific case of dependency management. The
observer pattern is another example of IoC applied to state management. Template,
Strategy, State, and Middleware are also more localized manifestations of the same
principle. The browser implements the IoC principle when dispatching UI events
to the JavaScript code (it's not the JavaScript code actively polling the browser for
events). And guess what, Node.js itself follows the IoC principle when controlling
the execution of the various callbacks for us.

To know more about the Inversion of Control principle, we advise you
to study the topic directly from the words of its master, Martin Fowler at
http://martinfowler.com/bliki/InversionOfControl.html.

Applying this concept to the specific case of plugins we can then identify two forms
of extension:

• Plugin-controlled extension
• Application-controlled extension (IoC)

In the first case, it is the plugin that taps into the components of the application to
extend them as needed, while in the second case, the control is in the hands of
the application, which integrates the plugin into one of its extension points.

To make a quick example, let's consider a plugin that extends the express
application with a new route. By using a plugin-controlled extension this would
look like the following:

//in the application:
var app = express();
require('thePlugin')(app);

//in the plugin:
module.exports = function plugin(app) {
 app.get('/newRoute', function(req, res) {...})
};

Chapter 5

[255]

If instead, we want to use an application-controlled extension (IoC), the same
preceding example would look like the following:

//in the application:
var app = express();
var plugin = require('thePlugin')();
app[plugin.method](plugin.route, plugin.handler);

//in the plugin:
module.exports = function plugin() {
 return {
 method: 'get',
 route: '/newRoute',
 handler: function(req, res) {...}
 }
}

In the last code fragment, we saw how the plugin is only a passive player in the
extension process; the control is in the hands of the application, which implements
the framework to receive the plugin.

Based on the preceding example, we can immediately identify a few important
differences between the two approaches:

• Plugin-controlled extension is more powerful and flexible, as often we have
access to the internals of the application and we can move freely as if the
plugin was actually a part of the application itself. However, this sometimes
can be more a liability than an advantage. In fact, any change in the
application would more easily have repercussions on the plugins, requiring
constant updates as the main application evolves.

• Application-controlled extension requires a plugin infrastructure in the main
application. With a plugin-controlled extension, the only requirement is that
the components of the application are extensible in some way.

• With a plugin-controlled extension, it becomes essential to share the internal
services of the application with the plugin (in the preceding small example,
the service to share was the app instance), otherwise we would not be able
to extend them. With an application-controlled extension, it might still be
necessary to access some of the services of the application, not to extend but
rather to use them. For example, we might want to query the db instance
in our plugin, or leverage the logger of the main application, just to name
a few scenarios.

Wiring Modules

[256]

This last point should let us think about the importance of exposing the services of
an application to the plugin and that's what we are mainly interested in exploring.
The best way of doing this is to show a practical example of a plugin-controlled
extension, which requires a small effort in terms of infrastructure and we can
emphasize more on the problem of sharing the application's state with the plugins.

Implementing a logout plugin
Let's now start to work on a small plugin for our authentication server. With the
way we originally created the application, it is not possible to explicitly invalidate a
token, it simply becomes invalid when it expires. Now, we want to add support for
this feature, namely logout, and we want to do that by not modifying the code of the
main application but rather delegating the task to an external plugin.

To support this new feature, we need to save each token in the database after
it is created and then check for its existence every time we want to validate it.
To invalidate a token, we simply need to remove it from the database.

To do this, we are going to use a plugin-controlled extension to proxy the calls to
authService.login() and authService.checkToken(). We then need to decorate
the authService with a new method called logout(). After doing this, we also want
to register a new route against the main express server to expose a new endpoint
('/logout'), which we can use to invalidate a token using an HTTP request.

We are going to implement the plugin we just described in four different variations:

• Using hardcoded dependencies
• Using dependency injection
• Using a service locator
• Using a dependency injection container

Using hardcoded dependencies
The first variation of the plugin we are now going to implement covers the case
in which our application mainly uses hardcoded dependencies for wiring its stateful
modules. In this context, if our plugin lives in a package under the node_modules
directory, to use the services of the main application we have to gain access to the
parent package. We can do this in two ways:

• Using require() and navigating to the application's root using relative or
absolute paths.

Chapter 5

[257]

• Using require() by impersonating a module in the parent
application—usually the module instantiating the plugin. This will allow us
to easily gain access to all the services of the application by using require(),
as if it was invoked by the parent application and not from the plugin.

The first technique is less robust as it assumes that the package is aware of the
position of the main application. The module impersonation pattern instead,
can be used regardless of where the package is required from, and for this reason
this is the technique that we are going to use to implement the next demo.

To build our plugin, we first need to create a new package under the node_modules
directory, named authsrv-plugin-logout. Before we start coding, we need to
create a minimal package.json to describe the package, filling in only the essential
parameters (the complete path to the file is: node_modules/authsrv-plugin-
logout/package.json):

{
 "name": "authsrv-plugin-logout",
 "version": "0.0.0"
}

Now, we are ready to create the main module of our plugin, we will use the file
'index.js' as it is the default module that Node.js will try to load when requiring
the package (if no 'main' property is defined in the 'package.json'). As always,
the initial lines of the module are dedicated to loading the dependencies; pay
attention on how we are going to require them (file 'node_modules/authsrv-
plugin-logout/index.js'):

var parentRequire = module.parent.require;

var authService = parentRequire('./lib/authService');
var db = parentRequire('./lib/db');
var app = parentRequire('./app');

var tokensDb = db.sublevel('tokens');

The first line of code is what makes the difference. We obtain a reference to the
require() function of the parent module, which is the one that loads the plugin.
In our case the parent is going to be the app module in the main application, and
this means that every time we use parentRequire() we are loading a module
as if we were doing it from 'app.js'.

The next step is creating a proxy for the authService.login() method.
After studying this pattern in Chapter 4, Design Patterns, we should already
know how it works:

var oldLogin = authService.login; //[1]
authService.login = function(username, password, callback) {

Wiring Modules

[258]

 oldLogin(username, password, function(err, token) { //[2]
 if(err) return callback(err); //[3]

 tokensDb.put(token, {username: username}, function() {
 callback(null, token);
 });
 });
}

In the preceding code, the steps performed are explained as follows:

1. We first save a reference to the old login() method and then we override it
with our proxied version.

2. In the proxy function, we invoke the original login() method by providing
a custom callback so that we can intercept the original return value.

3. If the original login() returns an error, we simply forward it to the callback,
otherwise we save the token into the database.

Similarly, we need to intercept the calls to checkToken() so that we can add our
custom logic:

var oldCheckToken = authService.checkToken;

authService.checkToken = function(token, callback) {
 tokensDb.get(token, function(err, res) {
 if(err) return callback(err);

 oldCheckToken(token, callback);
 });
}

This time, we first want to check whether the token exists in the database before
giving the control to the original checkToken() method. If the token is not found,
the get() operation returns an error; this means that our token was invalidated
and so we immediately return the error back to the callback.

To finalize the extension of the authService, we now need to decorate it with a new
method, which we will use to invalidate a token:

authService.logout = function(token, callback) {
 tokensDb.del(token, callback);
}

The logout() method is very simple: we just delete the token from the database.

Chapter 5

[259]

Finally, we can attach a new route to the express server to expose the new
functionality through a web service:

app.get('/logout', function (req, res, next) {
 authService.logout(req.query.token, function() {
 res.status(200).send({ok: true});
 });
});

Now, our plugin is ready to be attached to the main application, so to do this we just
need to go back to the main directory of the application and edit the 'app.js' module:

[...]
var app = module.exports = express();
app.use(bodyParser.json());

require('authsrv-plugin-logout');

app.post('/login', authController.login);
app.all('/checkToken', authController.checkToken);
[...]

As we can see, to attach the plugin we only need to require it. As soon as this
happens—during the startup of the application—the flow of control is given to
the plugin, which in turn will extend the authService and the app modules,
as we saw earlier.

Now our authentication server also supports the invalidation of the token.
We did that in a reusable way, the core of the application remained almost
untouched, and we were able to easily apply the Proxy and Decorator patterns
to extend its functionalities.

We can now try to start the application again:

node app

Then, we can verify that the new /logout web service actually exists and works
as expected. Using curl we can now try to obtain a new token using /login:

curl -X POST -d '{"username": "alice", "password":"secret"}' http://
localhost:3000/login -H "Content-Type: application/json"

Then, we can check whether the token is valid using /checkToken:

curl -X GET -H "Accept: application/json" http://localhost:3000/
checkToken?token=<TOKEN HERE>

Wiring Modules

[260]

Then, we can pass the token to the /logout endpoint to invalidate it; with curl this
can be done with a command such as this:

curl -X GET -H "Accept: application/json" http://localhost:3000/
logout?token=<TOKEN HERE>

Now, if we try to check again the validity of the token we should get a negative
response, confirming that our plugin is working perfectly.

Even with a small plugin like the one we just implemented the advantages
of supporting plugin-based extensibility are clear. We also learned how to gain
access to the services of the main application from another package using the
module impersonation.

The module impersonation pattern is used by quite a few NodeBB
plugins; you might want to check a couple of them in order to have an
idea of how this is used in a real application. These are the links to some
notable examples:

• nodebb-plugin-poll: https://github.
com/Schamper/nodebb-plugin-poll/blob/
b4a46561aff279e19c23b7c635fda5037c534b84/lib/
nodebb.js

• nodebb-plugin-mentions: https://github.com/
julianlam/nodebb-plugin-mentions/blob/9638118fa7e
06a05ceb24eb521427440abd0dd8a/library.js#L4-13

Module impersonation is, of course, a form of hardcoded dependency and shares
with it strengths and weaknesses. From one side, it allows us to access any service
of the main application with little effort and minimal infrastructural requirements,
but from the other, it creates a tight coupling, not only with a particular instance of
a service but also with its location, which more easily exposes the plugin to changes
and refactorings in the main application.

Exposing services using a service locator
Similar to module impersonation, the service locator is also a good choice if we want to
expose all the components of an application to its plugins, but on top of that, it has
a major advantage, because a plugin can use the service locator to expose its own
services to the application or even to other plugins.

Chapter 5

[261]

Let's now refactor our logout plugin again to use a service locator. We'll refactor
the main module of the plugin in the node_modules/authsrv-plugin-logout/
index.js file:

module.exports = function(serviceLocator) {
 var authService = serviceLocator.get('authService');
 var db = serviceLocator.get('db');
 var app = serviceLocator.get('app');

 var tokensDb = db.sublevel('tokens');

 var oldLogin = authService.login;
 authService.login = function(username, password, callback) {
 //...same as in the previous version
 }

 var oldCheckToken = authService.checkToken;
 authService.checkToken = function(token, callback) {
 //...same as in the previous version
 }

 authService.logout = function(token, callback) {
 //...same as in the previous version
 }

 app.get('/logout', function (req, res, next) {
 //...same as in the previous version
 });
};

Now that our plugin receives the service locator of the parent application as the
input, it can access any of its services as needed. This means that the application
does not have to know in advance what the plugin is going to need in terms
of dependencies; this is surely a major advantage when implementing a
plugin-controlled extension.

The next step is to execute the plugin from the main application, and to do that,
we have to modify the app.js module. We will use the version of the authentication
server already based on the service locator pattern. The required changes are given
in the following block of code:

[...]
var svcLoc = require('./lib/serviceLocator')();
svcLoc.register(...);
[...]

Wiring Modules

[262]

svcLoc.register('app', app);
var plugin = require('authsrv-plugin-logout');
plugin(svcLoc);

[...]

The changes are highlighted in the preceding code; those changes enabled us to:

• Register the app module itself in the service locator, as the plugin might
want to have access to it

• Require the plugin
• Invoke the plugin's main function by providing the service locator

as an argument

As we already said, the main strength of the service locator is that it provides a
simple way to expose all the services of an application to its plugins, but it can also
be used as a mechanism for sharing services from the plugin back into the parent
application or even other plugins. This last consideration is probably the main
strength of the service locator pattern in the context of plugin-based extensibility.

Exposing services using dependency injection
Using dependency injection to propagate services to a plugin is as easy as using it
in the application itself. This pattern becomes almost a requirement if it's already
the main method for wiring dependencies in the parent application, but nothing
prevents us from using it when the prevalent form of dependency management is
hardcoded dependencies or a service locator. DI is also an ideal choice when we
want to support an application-controlled extension, because it provides better
control over what is shared with the plugin.

To test these assumptions, let's immediately try to refactor the logout plugin to use
dependency injection. The changes required are minimal, so let's start from the main
module of the plugin ('node_modules/authsrv-plugin-logout/index.js'):

module.exports = function(app, authService, db) {
 var tokensDb = db.sublevel('tokens');

 var oldLogin = authService.login;
 authService.login = function(username, password, callback) {
 //...same as in the previous version
 }

 var oldCheckToken = authService.checkToken;
 authService.checkToken = function(token, callback) {

Chapter 5

[263]

 //...same as in the previous version
 }

 authService.logout = function(token, callback) {
 //...same as in the previous version
 }

 app.get('/logout', function (req, res, next) {
 //...same as in the previous version
 });
};

All we did is wrap the plugin's code into a factory that receives the services of the
parent application as the input; the rest of it remains unchanged.

To complete our refactoring, we also need to change the way we attach the plugin
from the parent application; let's then change that one line where we require the
plugin in the app.js module:

[...]
var plugin = require('authsrv-plugin-logout');
plugin(app, authService, authController, db);
[...]

We intentionally didn't show how these dependencies were obtained. In fact,
it doesn't really make any difference, any method will equally work; we might use
hardcoded dependencies or obtain the instances from factories or from a service
locator, it doesn't really matter. This proves that dependency injection is a flexible
pattern when wiring plugins that can be used regardless of the way we wire the
services in the parent application.

But the differences are much more profound. Dependency injection is definitely the
cleanest way of providing a set of services to a plugin, but most importantly, it offers
the best level of control over what's exposed to it, resulting in better information
hiding and better protection against too aggressive extensions. However, this can be
also considered a drawback, because the main application can't always know what
services the plugin is going to need, so we end up either injecting every service,
which is impractical, or only a subset of them, for example, only the essential core
services of the parent application. For this reason, dependency injection is not the
ideal choice if we mainly want to support plugin-controlled extensibility; however,
the use of a DI container can easily solve these issues.

Wiring Modules

[264]

Grunt (http://gruntjs.com), a task runner for Node.js, uses
dependency injection to provide each plugin with an instance of the core
grunt service. Each plugin can then extend it by attaching new tasks,
using it to retrieve the configuration parameters, or running other tasks.
A grunt plugin looks like the following:

module.exports = function(grunt) {

 grunt.registerMultiTask('taskName', 'description',
 function(...) {...}
);
};

Exposing services using a dependency
injection container
Taking the previous example as a starting point , we can use a DI container in
combination with our plugin by applying a small change to the app module,
as shown in the following code:

[...]
var diContainer = require('./lib/diContainer')();
diContainer.register(...);
[...]
//initialize the plugin
diContainer.inject(require('authsrv-plugin-logout'));
[...]

After registering the factories or the instances of our application, all we have
to do is instantiate the plugin, which is done by injecting its dependencies using
the DI container. This way, each plugin can require its own set of dependencies
without the parent application needing to know. All the wiring is again carried
out automatically by the DI container.

Using a DI container also means that each plugin can potentially access any service
of the application, reducing the information hiding and the control over what can
be used or extended. A possible solution to this problem is to create a separate DI
container registering only the services that we want to expose to plugins; this way
we can control what each plugin can see of the main application. This demonstrates
that a DI container can also be a very good choice in terms of encapsulation and
information hiding.

This concludes our last refactoring of the logout plugin and the authentication server.

Chapter 5

[265]

Summary
The topic of dependency wiring is certainly one of the most opinionated in software
engineering, but in this chapter, we tried to keep the analysis as factual as possible
to give an objective overview of the most important wiring patterns. We cleared
some of the most common doubts around Singletons and instances in Node.js, and
we learned how to connect modules using hardcoded dependencies, dependency
injection, and service locators. We practiced each technique using the authentication
server as a playground, allowing us to identify the pros and cons of each approach.

In the second part of the chapter, we learned how an application can support
plugins, but most importantly, how we can wire those plugins into the main
application. We applied the same techniques presented in the first part of the
chapter, but analyzed them from another perspective. We discovered how
important it can be for a plugin to have access to the right services of the main
application, and how much this can impact its capabilities.

By the end of this chapter, we should feel comfortable in choosing the best
approach for the level of decoupling, reusability, and simplicity we want to obtain
in our application. We can also consider using more than one pattern in the same
application. For example, we can use hardcoded dependencies as the main technique
and then use a service locator when it comes to linking plugins; there are really no
limits to what we can do, now that we know the best use case for each approach.

So far in this book, we have focused our analysis on highly generic and customizable
patterns, but from the next chapter onward, we will shift our attention to solving
more specific technical problems. What comes next is, in fact, a collection of recipes,
which can be used to solve specific issues related to CPU-bound tasks, asynchronous
caching, and sharing code with the browser.

Recipes
Almost all the design patterns we've seen so far can be considered generic and
applicable to many different areas of an application. There is, however, a set of
patterns that are more specific and focused on solving well-defined problems; we can
call these patterns recipes. As in real-life cooking, we have a set of well-defined steps
to follow that will lead us to an expected outcome. Of course, this doesn't mean that
we can't use some creativity to customize the recipes to match the taste of our guests,
but the outline of the procedure is usually the one that matters. In this chapter,
we are going to provide some popular recipes to solve some specific problems we
encounter in our everyday Node.js development. These recipes include:

• Requiring modules that are initialized asynchronously
• Batching and caching asynchronous operations to get a performance boost in

busy applications, using only a minimal development effort
• Running synchronous CPU-bound operations that can block the event loop

and cripple the ability of Node.js to handle concurrent requests
• Sharing code with the browser, the Holy Grail of Node.js development

Requiring asynchronously initialized
modules
In Chapter 1, Node.js Design Fundamentals, when we discussed the fundamental
properties of the Node.js module system, we mentioned the fact that require()
works synchronously and that module.exports cannot be set asynchronously.

This is one of the main reasons for the existence of synchronous API in the
core modules and many npm packages, they are provided more as a convenient
alternative, to be used primarily for initialization tasks rather than a substitute for
asynchronous API.

Recipes

[268]

Unfortunately, this is not always possible; a synchronous API might not always be
available, especially for components using the network during their initialization
phase, for example, to perform handshake protocols or to retrieve configuration
parameters. This is the case for many database drivers and clients for middleware
systems such as message queues.

Canonical solutions
Let's take an example: a module called db, which connects to a remote database.
The db module will be able to accept requests only after the connection and the
handshake with the server have been completed. In this scenario, we usually
have two options:

• Making sure that the module is initialized before starting to use it, otherwise
wait for its initialization. This process has to be done every time we want to
invoke an operation on the asynchronous module:

var db = require('aDb'); //The async module

module.exports = function findAll(type, callback) {
 if(db.connected) { //is it initialized?
 runFind();
 } else {
 db.once('connected', runFind);
 }
 function runFind() {
 db.findAll(type, callback);
 });
};

• Use Dependency Injection instead of directly requiring the asynchronous
module. By doing this, we can delay the initialization of some modules until
their asynchronous dependencies are fully initialized. This technique shifts
the complexity of managing the module initialization to another component,
usually the parent module. In the following example, this component is
app.js:

//in the module app.js
var db = require('aDb'); //The async module
var findAllFactory = require('./findAll');
db.on('connected', function() {
 var findAll = findAllFactory(db);
});

Chapter 6

[269]

//in the module findAll.js
module.exports = function(db) {
 //db is guaranteed to be initialized
 return function findAll(type, callback) {
 db.findAll(type, callback);
 }
}

We can immediately see that the first option can become highly undesirable,
considering the amount of boilerplate code involved.

Also, the second option, which uses Dependency Injection, sometimes is undesirable,
as we have seen in Chapter 5, Wiring Modules. In big projects, it can quickly become
over-complicated, especially if done manually and with asynchronously initialized
modules. These problems would be mitigated if we were using a DI container
designed to support asynchronously initialized modules.

As we will see though, there is a third alternative that allows us to easily isolate the
module from the initialization state of its dependencies.

Preinitialization queues
A simple pattern to decouple a module from the initialization state of a dependency
involves the use of queues and the Command pattern. The idea is to save all the
operations received by a module while it's not yet initialized and then execute them
as soon as all the initialization steps have been completed.

Implementing a module that initializes
asynchronously
To demonstrate this simple but effective technique, let's build a small test
application, nothing fancy, just something to verify our assumptions. Let's start
by creating an asynchronously initialized module called asyncModule.js:

var asyncModule = module.exports;

asyncModule.initialized = false;

asyncModule.initialize = function(callback) {
 setTimeout(function() {
 asyncModule.initialized = true;

Recipes

[270]

 callback();
 }, 10000);
}

asyncModule.tellMeSomething = function(callback) {
 process.nextTick(function() {
 if(!asyncModule.initialized) {
 return callback(
 new Error('I don\'t have anything to say right now')
);
 }
 callback(null, 'Current time is: ' + new Date());
 });
}

In the preceding code, asyncModule tries to demonstrate how an asynchronously
initialized module works. It exposes an initialize() method, which after a delay
of 10 seconds, sets the initialized variable to true and notifies its callback
(10 seconds is a lot for a real application, but for us it's great to highlight any
race condition). The other method, tellMeSomething(), returns the current time,
but if the module is not yet initialized, it generates an error.

The next step is to create another module depending on the service we just
created. Let's consider a simple HTTP request handler implemented in a file
called routes.js:

var asyncModule = require('./asyncModule');

module.exports.say = function(req, res) {
 asyncModule.tellMeSomething(function(err, something) {
 if(err) {
 res.writeHead(500);
 return res.end('Error:' + err.message);
 }
 res.writeHead(200);
 res.end('I say: ' + something);
 });
}

The handler invokes the tellMeSomething() method of asyncModule, then it writes
the result into an HTTP response. As we can see, we are not performing any check on
the initialization state of asyncModule, and as we can imagine, this will likely lead
to problems.

Chapter 6

[271]

Now, let's create a very basic HTTP server using nothing but the core http module
(the app.js file):

var http = require('http');
var routes = require('./routes');
var asyncModule = require('./asyncModule');

asyncModule.initialize(function() {
 console.log('Async module initialized');
});

http.createServer(function(req, res) {
 if (req.method === 'GET' && req.url === '/say') {
 return routes.say(req, res);
 }
 res.writeHead(404);
 res.end('Not found');
}).listen(8000, function() {console.log('Started')});

The preceding small module is the entry point of our application, and all it does is
trigger the initialization of asyncModule and create an HTTP server that makes use
of the request handler we created previously (routes.say()).

We can now try to fire up our server by executing the app.js module as usual.
After the server is started, we can try to hit the URL, http://localhost:8000/say,
with a browser and see what comes back from our asyncModule.

As expected, if we send the request just after the server is started, the result will be
an error as follows:

Error:I don't have anything to say right now

This means that asyncModule is not yet initialized, but we still tried to use it.
Depending on the implementation details of the asynchronously initialized module,
we could have received a graceful error, lost important information, or even crashed
the entire application. In general, the situation we just described has to always
be avoided. Most of the time, a few failing requests might not be a concern or the
initialization might be so fast that, in practice, it would never happen; however,
for high load applications and cloud servers designed to autoscale, both of these
assumptions might quickly get obliterated.

Recipes

[272]

Wrapping the module with preinitialization queues
To add robustness to our server, we are now going to refactor it by applying the
pattern we described at the beginning of the section. We will queue any operation
invoked on asyncModule during the time it's not yet initialized and then flush the
queue as soon we are ready to process them. This looks like a great application for
the State pattern! We will need two states, one that queues all the operations while
the module is not yet initialized, and another that simply delegates each method to
the original asyncModule module, when the initialization is complete.

Often, we don't have the chance to modify the code of the asynchronous module;
so, to add our queuing layer, we will need to create a proxy around the original
asyncModule module.

Let's start to work on the code; let's create a new file named asyncModuleWrapper.
js and let's start building it piece by piece. The first thing that we need to do is to
create the object that delegates the operations to the active state:

var asyncModule = require('./asyncModule');

var asyncModuleWrapper = module.exports;

asyncModuleWrapper.initialized = false;
asyncModuleWrapper.initialize = function() {
 activeState.initialize.apply(activeState, arguments);
};

asyncModuleWrapper.tellMeSomething = function() {
 activeState.tellMeSomething.apply(activeState, arguments);
};

In the preceding code, asyncModuleWrapper simply delegates each of its methods to
the currently active state. Let's then see what the two states look like, starting from
notInitializedState:

var pending = [];
var notInitializedState = {

 initialize: function(callback) {
 asyncModule.initialize(function() {
 asyncModuleWrapper.initalized = true;
 activeState = initializedState; //[1]

Chapter 6

[273]

 pending.forEach(function(req) { //[2]
 asyncModule[req.method].apply(null, req.args);
 });
 pending = [];

 callback(); //[3]
 });
 },

 tellMeSomething: function(callback) {
 return pending.push({
 method: 'tellMeSomething',
 args: arguments
 });
 }
};

When the initialize() method is invoked, we trigger the initialization of the
original asyncModule module, providing a callback proxy. This allows our wrapper
to know when the original module is initialized and consequently triggers the
following operations:

1. Updates the activeState variable with the next state object in our
flow—initializedState.

2. Executes all the commands that were previously stored in the
pending queue.

3. Invokes the original callback.

As the module at this point is not yet initialized, the tellMeSomething() method
of this state simply creates a new Command object and adds it to the queue of the
pending operations.

At this point, the pattern should already be clear: when the original asyncModule
module is not yet initialized, our wrapper will simply queue all the received
requests. Then, when we are notified that the initialization is complete, we execute
all the queued operations and then switch the internal state to initializedState.
Let's then see what this last piece of the wrapper looks like:

var initializedState = asyncModule;

Without (probably) any surprise, the initializedState object is simply a reference
to the original asyncModule! In fact, when the initialization is complete, we can
safely route any request directly to the original module, nothing more is required.

Recipes

[274]

At last, we have to set the initial active state, which of course will be
notInitializedState:

var activeState = notInitializedState;

We can now try to launch our test server again, but first, let's not forget to replace the
references to the original asyncModule module with our new asyncModuleWrapper
object; this has to be done in the app.js and routes.js modules.

After doing this, if we try to send a request to the server again, we will see that
during the time, the asyncModule module is not yet initialized; the requests will not
fail; instead, they will hang until the initialization is completed and will only then be
actually executed. We can surely affirm that this is a much more robust behavior.

Pattern: If a module is initialized asynchronously, queue every
operation until the module is fully initialized.

Now, our server can start accepting requests immediately after it's started and it
guarantees that none of these requests will ever fail because of the initialization
state of its modules. We were able to obtain this result without using Dependency
Injection or requiring verbose and error-prone checks to verify the state of the
asynchronous module.

In the wild
The pattern we just presented is used by many database drivers and ORM libraries.
The most notable is Mongoose (http://mongoosejs.com), which is an ORM for
MongoDB. With Mongoose, it's not necessary to wait for the database connection
to open in order to be able to send queries, because each operation is queued and
then executed later when the connection with the database is fully established.
This clearly boosts the usability of its API.

Take a look at the code of Mongoose to see how every method in the
native driver is proxied to add the preinitialization queue (it also
demonstrates an alternative way of implementing this pattern). You
can find the code fragment responsible for implementing the pattern at
https://github.com/LearnBoost/mongoose/blob/21f16c6
2e2f3230fe616745a40f22b4385a11b11/lib/drivers/node-
mongodb-native/collection.js#L103-138.

Chapter 6

[275]

Asynchronous batching and caching
In high-load applications, caching plays a critical role and is used almost everywhere
in the web, from static resources such as web pages, images, and stylesheets, to pure
data such as the result of database queries. In this section, we are going to learn how
caching applies to asynchronous operations and how a high request throughput can
be turned to our advantage.

Implementing a server with no caching or
batching
Before we start diving into this new challenge, let's implement a small demo server
that we will use as a reference to measure the impact of the various techniques we
are going to implement.

Let's consider a web server that manages the sales of an e-commerce company,
in particular, we want to query our server for the sum of all the transactions of a
particular type of merchandise. For this purpose, we are going to use LevelUP again
for its simplicity and flexibility. The data model that we are going to use is a simple
list of transactions stored in the sales sublevel (a section of the database), which is
organized in the following format:

transactionId à {amount, item}

The key is represented by transactionId and the value is a JSON object
that contains the amount of the sale (amount) and the item type.

The data to process is really basic, so let's implement the API immediately
in a file named totalSales.js, which will be as follows:

var level = require('level');
var sublevel = require('level-sublevel');
var db = sublevel(level('example-db', {valueEncoding: 'json'}));
var salesDb = db.sublevel('sales');

module.exports = function totalSales(item, callback) {
 var sum = 0;
 salesDb.createValueStream() //[1]
 .on('data', function(data) {
 if(!item || data.item === item) { //[2]
 sum += data.amount;
 }
 })
 .on('end', function() {
 callback(null, sum); //[3]
 });
}

Recipes

[276]

The core of the module is the totalSales function, which is also the only exported
API, this is how it works:

1. We create a stream from the salesDb sublevel that contains the sales
transactions. The stream pulls all the entries from the database.

2. The data event receives each sale transaction as it is returned from the
database stream. We add the amount value of the current entry to the total
sum value, but only if the item type is equal to the one provided in the input
(or if no input is provided at all, allowing us to calculate the sum of all the
transactions, regardless of the item type).

3. At last, when the end event is received, we invoke the callback() method
by providing the final sum as result.

The simple query that we built is definitely not the best in terms of performances.
Ideally, in a real-world application, we would have used an index to query the
transactions by the item type, or even better, an incremental map/reduce to calculate
the sum in real time; however, for our example, a slow query is actually better as it
will highlight the advantages of the patterns we are going to analyze.

To finalize the total sales application, we only need to expose the totalSales API
from an HTTP server; so, the next step is to build one (the app.js file):

var http = require('http');
var url = require('url');
var totalSales = require('./totalSales');

http.createServer(function(req, res) {
 var query = url.parse(req.url, true).query;
 totalSales(query.item, function(err, sum) {
 res.writeHead(200);
 res.end('Total sales for item ' +
 query.item + ' is ' + sum);
 });
}).listen(8000, function() {console.log('Started')});

The server we created is very minimalistic; we only need it to expose the
totalSales API.

Before we start the server for the first time, we need to populate the database with
some sample data; we can do this with the populate_db.js script that we can find
in the code samples dedicated to this section. The script will create 100 K random
sales transactions in the database.

Chapter 6

[277]

Okay! Now, everything is ready in order to start the server; as usual we can do this
by executing the following command:

node app

To query the server, simply navigate with a browser to the following URL:

http://localhost:8000?item=book

However, to have a better idea of the performance of our server, we will need more
than one request; so, we will use a small script named loadTest.js which sends
requests at an interval of 200 ms. The script can be found in the code samples of the
book and it's already configured to connect to the URL of the server, so, to run it,
just execute the following command:

node loadTest

We will see that the 20 requests will take a while to complete, take note of the total
execution time of the test, because we are now going to apply our optimizations and
measure how much time we can save.

Asynchronous request batching
When dealing with asynchronous operations, the most basic level of caching can
be achieved by batching together a set of invocations to the same API. The idea is
very simple: if we are invoking an asynchronous function while there is still another
one pending, we can attach the callback to the already running operation, instead of
creating a brand new request. Take a look at the following figure:

Client A Client B AsyncOperation AsyncOperation

Recipes

[278]

The previous image shows two clients (they can be two different objects, or two
different web requests) invoking the same asynchronous operation with exactly the
same input. Of course, the natural way to picture this situation is with the two clients
starting two separate operations that will complete in two different moments,
as shown by the preceding image. Now, consider the next scenario, depicted
in the following figure:

Client A Client B AsyncOperation

Queue

Queue

This second image shows us how the two requests—which invoke the same API with
the same input—can be batched, or in other words appended to the same running
operation. By doing this, when the operation completes, both the clients will be
notified. This represents a simple, yet extremely powerful, way to optimize the load
of an application while not having to deal with more complex caching mechanisms,
which usually require an adequate memory management and invalidation strategy.

Batching requests in the total sales web server
Let's now add a batching layer on top of our totalSales API. The pattern we are
going to use is very simple: if there is already another identical request pending
when the API is invoked, we will add the callback to a queue. When the asynchronous
operation completes, all the callbacks in its queue are invoked at once.

Now, let's see how this pattern translates in code. Let's create a new module named
totalSalesBatch.js. Here, we're going to implement a batching layer on top of the
original totalSales API:

var totalSales = require('./totalSales');

var queues = {};

Chapter 6

[279]

module.exports = function totalSalesBatch(item, callback) {
 if(queues[item]) { //[1]
 console.log('Batching operation');
 return queues[item].push(callback);
 }

 queues[item] = [callback]; //[2]
 totalSales(item, function(err, res) {
 var queue = queues[item]; //[3]
 queues[item] = null;
 queue.forEach(function(cb) {
 cb(err, res);
 });
 });
}

The totalSalesBatch() function is a proxy for the original totalSales() API,
and it works as follows:

1. If a queue already exists for the item type provided as the input, it means
that a request for that particular item is already running. In this case, all we
have to do is simply append the callback to the existing queue and return
from the invocation immediately. Nothing else is required.

2. If no queue is defined for the item, it means that we have to create a new
request. To do this, we create a new queue for that particular item and we
initialize it with the current callback function. Next, we invoke the original
totalSales() API.

3. When the original totalSales() request completes, we iterate over all the
callbacks that were added in the queue for that specific item and invoke
them one by one with the result of the operation.

The behavior of the totalSalesBatch() function is identical to that of the original
totalSales() API, with the difference that, now, multiple calls to the API using the
same input are batched, thus saving time and resources.

Curious to know what is the performance improvement compared to the raw,
non-batched version of the totalSales() API? Let's then replace the totalSales
module used by the HTTP server with the one we just created (the app.js file):

//var totalSales = require('./totalSales');
var totalSales = require('./totalSalesBatch');

http.createServer(function(req, res) {
[...]

Recipes

[280]

If we now try to start the server again and run the load test against it, the first thing
we will see is that the requests are returned in batches. This is the effect of the pattern
we just implemented and it's a great practical demonstration of how it works.

Besides that, we should also observe a considerable reduction in the total time
for executing the test; it should be at least four times faster than the original test
performed against the plain totalSales() API!

This is a stunning result, confirming the huge performance boost we can
obtain by just applying a simple batching layer, without all the complexity
of managing a full-fledged cache, and more importantly, without worrying
about invalidation strategies.

The request-batching pattern reaches its best potential in high-load
applications and with slow APIs, because it's exactly in these
circumstances that we can batch together a high number of requests.

Asynchronous request caching
One of the problems with the request-batching pattern is that the faster the API, the
fewer batched requests we get. One can argue that if an API is already fast, there is no
point in trying to optimize it; however, it still represents a factor in the resource load
of an application that, when summed up, can still have a substantial impact. Also,
sometimes we can safely assume that the result of an API invocation will not change
so often; therefore, a simple request batching will not provide the best performances.
In all these circumstances, the best candidate to reduce the load of an application and
increase its responsiveness is definitely a more aggressive caching pattern.

The idea is simple: as soon as a request completes, we store its result in the cache,
which can be a variable, an entry in the database, or in a specialized caching server.
Hence, the next time the API is invoked, the result can be retrieved immediately
from the cache, instead of spawning another request.

The idea of caching should not be new to an experienced developer, but what makes
this pattern different in asynchronous programming is that it should be combined
with the request batching, to be optimal. The reason is because multiple requests
might run concurrently while the cache is not set, and when those requests complete,
the cache will be set multiple times.

Chapter 6

[281]

Based on these assumptions, the final structure of the asynchronous request-caching
pattern is shown in the following figure:

The preceding figure shows us the two phases of an optimal asynchronous
caching algorithm:

• The first phase is totally identical to the batching pattern. Any request
received while the cache is not set will be batched together. When the
request completes, the cache is set, once.

• When the cache is finally set, any subsequent request will be served
directly from it.

Another crucial detail to consider is the unleashing Zalgo anti-pattern (we have
seen it in action in Chapter 1, Node.js Design Fundamentals). As we are dealing
with asynchronous APIs, we must be sure to always return the cached value
asynchronously, even if accessing the cache involves only a synchronous operation.

Caching requests in the total sales web server
To demonstrate and measure the advantages of the asynchronous caching
pattern, let's now apply what we've learned to the totalSales() API. As in the
request-batching example, we have to create a proxy for the original API with the
sole purpose of adding a caching layer.

Recipes

[282]

Let's then create a new module named totalSalesCache.js that contains the
following code:

var totalSales = require('./totalSales');

var queues = {};
var cache = {};
module.exports = function totalSalesBatch(item, callback) {
 var cached = cache[item]; //[1]
 if(cached) {
 console.log('Cache hit');
 return process.nextTick(callback.bind(null, null, cached));
 }

 if(queues[item]) {
 console.log('Batching operation');
 return queues[item].push(callback);
 }

 queues[item] = [callback];
 totalSales(item, function(err, res) {
 if(!err) { //[2]
 cache[item] = res;
 setTimeout(function() {
 delete cache[item];
 }, 30 * 1000); //30 seconds expiry
 }

 var queue = queues[item];
 queues[item] = null;
 queue.forEach(function(cb) {
 cb(err, res);
 });
 });
}

Chapter 6

[283]

We should straightaway see that the preceding code is in many parts identical to
what we used for the asynchronous batching. In fact, the only differences are the
following ones:

1. The first thing that we need to do when the API is invoked is to check
whether the cache is set and if that's the case, we will immediately return
the cached value using callback(), making sure to defer it with process.
nextTick().

2. The execution continues in batching mode, but this time, when the
original API successfully completes, we save the result into the cache.
We also set a timeout to invalidate the cache after 30 seconds. A simple
but effective technique!

Now, we are ready to try the totalSales wrapper we just created; to do that,
we only need to update the app.js module as follows:

//var totalSales = require('./totalSales');
//var totalSales = require('./totalSalesBatch');
var totalSales = require('./totalSalesCache');

http.createServer(function(req, res) {
[...]

Now, the server can be started again and profiled using the loadTest.js script
as we did in the previous examples. With the default test parameters, we should
see a 10-percent reduction in the execution time as compared to simple batching.
Of course, this is highly dependent on a lot of factors; for example, the number of
requests received, and the delay between one request and the other. The advantages
of using caching over batching will be much more substantial when the amount of
requests is higher and spans a longer period of time.

Memoization is the practice of caching the result of a function
invocation. In npm, you can find many packages to implement
asynchronous memoization with little effort; one of the most complete
packages is memoizee (https://npmjs.org/package/memoizee).

Recipes

[284]

Notes about implementing caching mechanisms
We must remember that in real-life applications, we might want to use more
advanced invalidation techniques and storage mechanisms. This might be
necessary for the following reasons:

• A large amount of cached values might easily consume a lot of memory.
In this case, a Least Recently Used (LRU) algorithm can be applied to
maintain constant memory utilization.

• When the application is distributed across multiple processes, using a
simple variable for the cache might result in different results to be returned
by each server instance. If that's undesired for the particular application
we are implementing, the solution is to use a shared store for the cache.
Popular solutions are Redis (http://redis.io) and Memcached
(http://memcached.org).

• A manual cache invalidation, as opposed to a timed expiry, can enable a
longer-living cache and at the same time provide more up-to-date data,
but, of course, it would be a lot more complex to manage.

Batching and caching with Promises
In Chapter 2, Asynchronous Control Flow Patterns, we saw how Promises can greatly
simplify our asynchronous code, but they offer an even more interesting application
when dealing with batching and caching. If we recall what we said about Promises,
there are two properties that can be exploited to our advantage in this circumstance:

• Multiple then() listeners can be attached to the same promise.
• The then()listener is guaranteed to be invoked at most once and it works

even if it's attached after the promise is already resolved. Moreover, then()
is guaranteed to be invoked asynchronously, always.

In short, the first property is exactly what we need for batching requests, while the
second means that a promise is already a cache for the resolved value and offers a
natural mechanism for returning a cached value in a consistent asynchronous way.
In other words, this means that batching and caching are extremely simple and
concise with Promises.

To demonstrate this, we can try to create a wrapper for the totalSales() API, using
Promises, and see what it takes to add a batching and caching layer. Let's see then
how this looks like. Let's create a new module named totalSalesPromises.js:

var totalSales = require('./totalSales');
var Promise = require('bluebird'); //[1]

Chapter 6

[285]

totalSales = Promise.promisify(totalSales);

var cache = {};
module.exports = function totalSalesPromises(item) {
 if(cache[item]) { //[2]
 return cache[item];
 }

 cache[item] = totalSales(item) //[3]
 .then(function(res) { //[4]
 setTimeout(function() {
 delete cache[item];
 }, 30 * 1000); //30 seconds expiry
 return res;
 })
 .catch(function(err) { //[5]
 delete cache[item];
 throw err;
 });

 return cache[item]; //[6]
}

The first thing that strikes us is the simplicity and elegance of the solution
we implemented in the preceding code. Promises are indeed a great tool, but
for this particular application they offer a huge, out-of-the-box advantage.
This is what happens in the preceding code:

1. First, we require our Promise implementation (bluebird) and then apply
a promisification to the original totalSales() function. After doing this,
totalSales() will return a Promise instead of accepting a callback.

2. When the totalSalesPromises() wrapper is invoked, we check whether
a cached Promise already exists for the given item type. If we already have
such a Promise, we return it back to the caller.

3. If we don't have a Promise in the cache for the given item type, we proceed
to create one by invoking the original (promisified) totalSales() API.

4. When the Promise resolves, we set up a time to clear the cache after 30
seconds and we return res to propagate the result of the operation to any
other then() listener attached to the Promise.

5. If the Promise rejects with an error, we immediately reset the cache and
throw the error again to propagate it to the promise chain, so any other
listener attached to the same Promise will receive the error as well.

6. At last, we return the cached promise we just created.

Recipes

[286]

Very simple and intuitive, and more importantly, we were able to achieve both
batching and caching.

If we now want to try the totalSalesPromise() function, we will have to slightly
adapt the app.js module as well, because now, the API is using Promises instead
of callbacks. Let's do it by creating a modified version of the app module named
appPromises.js:

var http = require('http');
var url = require('url');
var totalSales = require('./totalSalesPromises');

http.createServer(function(req, res) {
 var query = url.parse(req.url, true).query;
 totalSales(query.item).then(function(sum) {
 res.writeHead(200);
 res.end('Total sales for item ' +
 query.item + ' is ' + sum);
 });
}).listen(8000, function() {console.log('Started')});

Its implementation is almost identical to the original app module with the difference
that now we use the Promise-based version of the batching/caching wrapper;
therefore, the way we invoke it is also slightly different.

That's it! We are now ready to try this new version of the server by running the
following command:

node appPromises

Using the loadTest script, we can verify that the new implementation is working
as expected. The execution time should be the same as when we tested the server
using the totalSalesCache() API.

Running CPU-bound tasks
The totalSales() API, even though expensive in terms of resources, was not
affecting the ability of the server to accept concurrent requests. What we learned
in Chapter 1, Node.js Design Fundamentals, about the event loop should provide an
explanation for this behavior: invoking an asynchronous operation causes the stack
to unwind back to the event loop, leaving it free to handle other requests.

Chapter 6

[287]

However, what happens when we run a long, synchronous task that never gives
back the control to the event loop? This kind of task is also known as CPU-bound,
because its main characteristic is that it is heavy on CPU utilization rather than being
heavy on I/O operations.

Let's work immediately on an example to see how these types of tasks behave
in Node.js.

Solving the subset sum problem
Let's now choose a computationally expensive problem to use as a base for our
experiment. A good candidate is the subset sum problem that consists of deciding
whether a set (or multiset) of integers contains a non-empty subset that has a sum
equal to zero. For example, if we had as input the set [1, 2, -4, 5, -3], the subsets
satisfying the problem are [1, 2, -3] and [2, -4, 5, -3].

The most simple algorithm is the one that checks every possible combination of
subsets of any size, and it has a computational cost of O(2n), or in other words, it
grows exponentially with the size of the input. This means that a set of 20 integers
would require up to 1,048,576 combinations to be checked, not bad for testing
our assumptions. Of course, the solution might be found a lot sooner than that;
so, to make things harder, we are going to consider the following variation of the
subset sum problem: given a set of integers, we want to calculate all the possible
combinations whose sum is equal to a given arbitrary integer.

Let's then work to build such an algorithm, let's create a new module called
'subsetSum.js'; we will start by creating a class called SubsetSum:

var inherits = require('util').inherits;
var EventEmitter = require('events').EventEmitter;

function SubsetSum(sum, set) {
 EventEmitter.call(this);
 this.sum = sum;
 this.set = set;
 this.totalSubsets = 0;
}
inherits(SubsetSum, EventEmitter);
module.exports = SubsetSum;

The SubsetSum class is inheriting from the EventEmitter, this allows us to
produce an event every time we find a new subset matching the sum received
as input. As we will see, this will give us a lot of flexibility.

Recipes

[288]

Next, let's see how we can generate all the possible combinations of subsets:

SubsetSum.prototype._combine = function(set, subset) {
 for(var i = 0; i < set.length; i++) {
 var newSubset = subset.concat(set[i]);
 this._combine(set.slice(i + 1), newSubset);
 this._processSubset(newSubset);
 }
}

We will not go into too much detail about the algorithm, but there are two important
things to notice:

• The _combine() method is completely synchronous; it recursively generates
every possible subset without ever giving back the control to the event loop.
If we think about it, this is perfectly normal for an algorithm not requiring
any I/O.

• Every time a new combination is generated, we provide it to the
_processSubset() method for further processing.

The _processSubset() method is responsible for verifying that the sum of the
elements of the given subset is equal to the number we are looking for:

SubsetSum.prototype._processSubset = function(subset) {
 console.log('Subset', ++this.totalSubsets, subset);
 var res = subset.reduce(function(prev, item) {
 return prev + item;
 }, 0);
 if(res == this.sum) {
 this.emit('match', subset);
 }
}

Trivially, the _processSubset() method applies a reduce operation to the subset
in order to calculate the sum of its elements. Then, it emits an event of type 'match'
when the resulting sum is equal to the one we are interested in finding (this.sum).

Finally, the start() method puts all the preceding pieces together:

SubsetSum.prototype.start = function() {
 this._combine(this.set, []);
 this.emit('end');
}

Chapter 6

[289]

The preceding method triggers the generation of all the combinations by invoking
_combine(), and lastly, emits an 'end' event signaling that all the combinations
were checked and any possible match already emitted. This is possible because
_combine() is synchronous; therefore, the 'end' event will be emitted as soon
as the function returns, which means that all the combinations were calculated.

Next, we have to expose over the network the algorithm we just created, as always
we can use a simple HTTP server for the task. In particular, we want to create an
endpoint in the format, '/subsetSum?data=<Array>&sum=<Integer>' that invokes
the SubsetSum algorithm with the given array of integers and sum to match.

Let's then implement this simple server in a module named app.js:

var http = require('http');
var SubsetSum = require('./subsetSum');

http.createServer(function(req, res) {
 var url = require('url').parse(req.url, true);
 if(url.pathname === '/subsetSum') {
 var data = JSON.parse(url.query.data);
 res.writeHead(200);
 var subsetSum = new SubsetSum(url.query.sum, data);
 subsetSum.on('match', function(match) {
 res.write('Match: ' + JSON.stringify(match) + '\n');
 });
 subsetSum.on('end', function() {
 res.end();
 });
 subsetSum.start();
 } else {
 res.writeHead(200);
 res.end('I\m alive!\n');
 }
}).listen(8000, function() {console.log('Started')});

Thanks to the fact that the SubsetSum object returns its results using events, we can
stream the matching subsets as soon as they are generated by the algorithm, in real
time. Another detail to mention is that our server responds with the text I'm Alive!
every time we hit a URL different from /subsetSum. We will use this for checking
the responsiveness of our server, as we will see in a moment.

We are now ready to try our subset sum algorithm, curious to know how our server
will handle it? Let's then fire it up:

node app

Recipes

[290]

As soon as the server starts, we are ready to send our first request, let's try then
with a set of 17 random numbers, which will result in the generation of 131,071
combinations, a nice amount to keep our server busy for a while:

curl -G http://localhost:8000/subsetSum --data-urlencode "data=[116,
119,101,101,-116,109,101,-105,-102,117,-115,-97,119,-116,-104,-105,115]"
--data-urlencode "sum=0"

We will start to see the results streaming live from the server, but if we try the
following command in another terminal while the first request is still running,
we will spot a huge problem:

curl -G http://localhost:8000

We will immediately see that this last request hangs until the SubsetSum algorithm
of the first request has finished; the server is unresponsive! This was kind of what we
expected, the Node.js event loop runs in a single thread, and if this thread is blocked
by a long synchronous computation, it will be unable to execute even one more cycle
in order to respond with a simple I'm alive!.

We quickly understand that this behavior does not work for any kind of application
meant to serve multiple requests. But don't despair, in Node.js, we can tackle this type
of situation in several ways, let's analyze the two most important ones.

Interleaving with setImmediate
Usually, a CPU-bound algorithm is built upon a set of steps, it can be a set of
recursive invocations, a loop or any variation/combination of those. So, a simple
solution to our problem would be to give back the control to the event loop after
each one of these steps completes (or after a certain number of them). This way, any
pending I/O can still be processed by the event loop in those intervals where the
long-running algorithm yields the CPU. A simple way to achieve this is to schedule
the next step of the algorithm to run after any pending I/O requests. This sounds like
the perfect use case for the setImmediate() function (we already introduced this
API in Chapter 1, Node.js Design Fundamentals).

Pattern: Interleave the execution of a long-running synchronous
task with setImmediate().

Chapter 6

[291]

Interleaving the steps of the subset sum algorithm
Let's now see how this pattern applies to the subset sum algorithm. All we have to
do is slightly modify the subsetSum.js module. For convenience, we are going to
create a new module called subsetSumDefer.js, taking the code of the original
subsetSum class as a starting point.

The first change we are going to make is to add a new method called _
combineInterleaved(), which is the core of the pattern we are implementing:

SubsetSumDefer.prototype._combineInterleaved = function(set, subset) {
 this.runningCombine++;
 setImmediate(function() {
 this._combine(set, subset);
 if(--this.runningCombine === 0) {
 this.emit('end');
 }
 }.bind(this));
}

As we can see, all we had to do is defer the invocation of the original (synchronous)
_combine() method with setImmediate(). However, now it becomes more difficult
to know when the function has finished generating all the combinations, because
the algorithm is not synchronous anymore. To fix this, we have to keep track of all
the running instances of the _combine() method using a pattern very similar to the
asynchronous parallel execution we have seen in Chapter 2, Asynchronous Control Flow
Patterns. When all the instances of the _combine() method are finished running, we
can then emit the end event notifying any listener that the process has completed.

To finalize the refactoring of the SubsetSum algorithm, we need a couple of more
tweaks. First, we need to replace the recursive step in the _combine() method with
its deferred counterpart:

SubsetSumDefer.prototype._combine = function(set, subset) {
 for(var i = 0; i < set.length; i++) {
 var newSubset = subset.concat(set[i]);
 this._combineInterleaved(set.slice(i + 1), newSubset);
 this._processSubset(newSubset);
 }
}

With the preceding change, we make sure that each step of the algorithm will be
queued in the event loop using setImmediate() and therefore executed after any
pending I/O request, instead of running synchronously.

Recipes

[292]

The other small tweak is in the start() method:

SubsetSumDefer.prototype.start = function() {
 this.runningCombine = 0;
 this._combineInterleaved(this.set, []);
}

In the preceding code, we initialize the number of running instances of the
_combine() method to 0. We also replaced the call to _combine() with a call to
_combineInterleaved() and removed the emission of the 'end' event, because
now this is handled asynchronously in _combineInterleaved().

With this last change, our subset sum algorithm should now be able to run its
CPU-bound code in steps interleaved by intervals where the event loop can run
and process any other pending request.

The last missing bit is updating the app.js module so that it can use the new
version of the SubsetSum API, this is actually a trivial change:

var http = require('http');
//var SubsetSum = require('./subsetSum');
var SubsetSum = require('./subsetSumDefer');

http.createServer(function(req, res) {
[...]

We are now ready to try this new version of the subset sum server. Let's start the
app module by using the following command:

node app

Then, try to send a request again to calculate all the subsets matching a given sum:

curl -G http://localhost:8000/subsetSum --data-urlencode "data=[116,
119,101,101,-116,109,101,-105,-102,117,-115,-97,119,-116,-104,-105,115]"
--data-urlencode "sum=0"

While the request is running, we might now want to see whether the server is
responsive:

curl -G http://localhost:8000

Cool! The second request now should return immediately, even while a SubsetSum
task is running, confirming that our pattern is working great.

Chapter 6

[293]

Considerations on the interleaving pattern
As we saw, running a CPU-bound task while preserving the responsiveness of an
application is not that complicated, it just requires the use of setImmediate() to
schedule the next step of an algorithm after any pending I/O. However, this is not
the best pattern in terms of efficiency; in fact, deferring a task introduces a small
overhead that, multiplied by all the steps that an algorithm has to run, can have a
significant impact. This is usually the last thing we want when running a CPU-bound
task, especially if we have to return the result directly to the user, which should
happen in a reasonable amount of time. A possible solution to mitigate the problem
would be using setImmediate() only after a certain number of steps—instead of
using it at every single step—but still this would not solve the root of the problem.

Bear in mind that this does not mean that the pattern we have just seen should be
avoided at all costs, in fact, if we look at the bigger picture, a synchronous task
does not necessarily have to be extremely long and complex to create troubles. In a
busy server, even a task that blocks the event loop for 200 milliseconds can create
undesirable delays. In those situations, where the task is executed sporadically or
in the background and does not have to run for too long, using setImmediate()
to interleave its execution is probably the simplest and most effective way to avoid
blocking the event loop.

process.nextTick() cannot be used to interleave a long-running
task. As we saw in Chapter 1, Node.js Design Fundamentals, nextTick()
schedules an operation before any pending I/O, and this can eventually
cause I/O starvation in case of repeated calls. You can verify that by
yourself by replacing setImmediate() with process.nextTick()
in the previous sample. You might also want to know that this behavior
was introduced with Node.js 0.10, in fact, with Node.js 0.8, process.
nextTick() can still be used as an interleaving mechanism. Take a look
at this GitHub issue to know more about the history and motivations of
this change at https://github.com/joyent/node/issues/3335

Using multiple processes
Deferring the steps of an algorithm is not the only option we have for running
CPU-bound tasks; another pattern for preventing the event loop from blocking is
using child processes. We already know that Node.js gives its best when running
I/O intensive applications such as web servers, which allows us to optimize resource
utilization, thanks to its asynchronous architecture.

Recipes

[294]

So, the best way we have to maintain the responsiveness of an application is to
not run expensive CPU-bound tasks in the context of the main application and
use instead separate processes. This has three main advantages:

• The synchronous task can run at full speed, without the need to interleave
the steps of its execution

• Working with processes in Node.js is simple, probably easier than modifying
an algorithm to use setImmediate(), and allows us to easily use multiple
processors without the need to scale the main application itself

• If we really need maximum performances, the external process might be
created in lower-level languages, such as the good old C (always use the
best tool for the job!)

Node.js has an ample tool belt of APIs for interacting with external processes, we
can find all we need in the child_process module. Moreover, when the external
process is just another Node.js program, connecting it to the main application is
extremely easy and we don't even feel like we are running something external to
the local application. The magic happens thanks to the child_process.fork()
function, which creates a new child Node.js process and also automatically creates
a communication channel with it, allowing us to exchange information using an
interface very similar to an EventEmitter. Let's see how this works by refactoring
our subset sum server again.

Delegating the subset sum task to other processes
The goal for the refactoring of the SubsetSum task is to create a separate child process
responsible for handling the synchronous processing, leaving the event loop of the
server free to handle requests coming from the network. This is the recipe we are
going to follow to make this possible:

1. We will create a new module named processPool.js that will allow us
to create a pool of running processes. Starting a new process is expensive
and requires time, so keeping them constantly running and ready to handle
requests allows us to save time and CPU. Also, the pool will help us limit
the number of processes running at the same time to avoid exposing the
application to Denial of Service (DoS) attacks.

Chapter 6

[295]

2. Next, we will create a module called 'subsetSumFork.js' responsible
for abstracting a SubsetSum task running in a child process. Its role will be
communicating with the child process and exposing the results of the task as
if they were coming from the current application.

3. At last, we need a worker (our child process), a new Node.js program with
the only goal of running the SubsetSum algorithm and forwarding its results
to the parent process.

Implementing a process pool
Let's start by building the processPool.js module piece by piece:

var fork = require('child_process').fork;

function ProcessPool(file, poolMax) {
 this.file = file;
 this.poolMax = poolMax;
 this.pool = [];
 this.active = [];
 this.waiting = [];
}
module.exports = ProcessPool;

In the first part of the module, we import the child_process.fork() function
that we will use to create new processes. Then, we define the ProcessPool
constructor that accepts a file representing the Node.js program to run and
the maximum number of running instances in the pool (poolMax). We then
define three instance variables:

• pool is the set of running processes ready to be used
• active contains the list of the processes currently being used
• waiting contains a queue of callbacks for all those requests that could

not be fulfilled immediately because of the lack of an available process

The next piece of the ProcessPool class is the acquire() method, which is
responsible for returning a process ready to be used:

ProcessPool.prototype.acquire = function(callback) {
 var worker;
 if(this.pool.length > 0) { //[1]
 worker = this.pool.pop();

Recipes

[296]

 this.active.push(worker);
 return process.nextTick(callback.bind(null, null, worker));
 }

 if(this.active.length >= this.poolMax) { //[2]
 return this.waiting.push(callback);
 }

 worker = fork(this.file); //[3]
 this.active.push(worker);
 process.nextTick(callback.bind(null, null, worker));
}

Its logic is very simple and is explained as follows:

1. If we have a process in pool ready to be used, we simply move it to the
active list and then return it by invoking callback (in a deferred fashion,
remember Zalgo?).

2. If there are no available processes in pool and we already have reached
the maximum number of running processes, we have to wait for one to be
available. We achieve this by queuing the current callback in the waiting list.

3. If we haven't yet reached the maximum number of running processes, we
will create a new one using child_process.fork(), add it to the active
list, and then return it to the caller using the callback.

The last method of the ProcessPool class is release(), whose purpose is to put a
process back in the pool:

ProcessPool.prototype.release = function(worker) {
 if(this.waiting.length > 0) { //[1]
 var waitingCallback = this.waiting.shift();
 waitingCallback(null, worker);
 }

 this.active = this.active.filter(function(w) { //[2]
 return worker !== w;
 });
 this.pool.push(worker);
}

Chapter 6

[297]

The preceding code is also very simple and its explanation is as follows:

1. If there is a request in the waiting list, we simply reassign the worker being
released by passing it to the callback at the head of the waiting queue.

2. Otherwise, we remove the worker from the active list and put it back
into pool.

As we can see, the processes are never stopped but just reassigned, allowing us
to save time by not restarting them at each request. However, it's important to
observe that this might not always be the best choice and this greatly depends on
the requirements of our application. Possible tweaks for reducing long-term memory
usage and adding robustness to our process pool are:

• Terminate idle processes to free memory after a certain time of inactivity
• Add a mechanism to kill non-responsive processes, or restart those that have

simply crashed

But in this example, we will keep the implementation of our process pool simple, as
the details we might want to add are really endless.

Communicating with a child process
Now that our ProcessPool class is ready, we can use it to implement
the SubsetSumFork wrapper whose role is to communicate with the worker
and expose the results it produces. As we said, starting a process with
child_process.fork() also gives us a simple message-based communication
channel, so let's see how this works by implementing the subsetSumFork.js module:

var inherits = require('util').inherits;
var EventEmitter = require('events').EventEmitter;
var ProcessPool = require('./processPool');

var workers = new ProcessPool(__dirname + '/subsetSumWorker.js', 2);

function SubsetSumFork(sum, set) {
 EventEmitter.call(this);
 this.sum = sum;
 this.set = set;
}
inherits(SubsetSumFork, EventEmitter);
module.exports = SubsetSumFork;

Recipes

[298]

SubsetSumFork.prototype.start = function() {
 workers.acquire(function(worker) { //[1]
 worker.send({sum: this.sum, set: this.set});

 var onMessage = function(msg) {
 if(msg.event === 'end') { //[3]
 worker.removeListener('message', onMessage);
 workers.release(worker);
 }

 this.emit(msg.event, msg.data); //[4]
 }.bind(this);

 worker.on('message', onMessage); //[2]
 }.bind(this));
}

The first thing to notice is that we initialized a ProcessPool object using as target
a file named subsetSumWorker.js, which represents our child worker. We also set
to two the maximum capacity of the pool.

Another point worth mentioning is that we tried to maintain the same public
API of the original SubsetSum class. In fact, SubsetSumFork is an EventEmitter
whose constructor accepts a sum and a set, while the start() method triggers the
execution of the algorithm, which runs on a separate process this time. This is what
happens when the start() method is invoked:

1. We try to acquire a new child process from the pool. When this happens,
we immediately use the worker handle to send the child process a message
with the input of the job to run. The send() API is provided automatically
by Node.js to all processes that start with child_process.fork(), this is
essentially the communication channel that we were talking about.

2. We then start listening for any message returned from the worker process,
using the on() method to attach a new listener (this is also a part of the
communication channel provided by all processes that start with child_
process.fork()).

3. In the listener, we first check whether we received an end event, which
means that the SubsetSum task has finished, in which case we remove the
onMessage listener and release the worker, putting it back into the pool.

4. The worker produces messages in the format {event, data} allowing us to
seamlessly re-emit any event produced by the child process.

Chapter 6

[299]

That's it for the SubsetSumFork wrapper; let's now implement the worker application.

It is good to know that the send() method available on a child
process instance can also be used to propagate a socket handle from
the main application to a child process (look at the documentation
http://nodejs.org/api/child_process.html#child_
process_child_send_message_sendhandle). This is actually
the technique used by the cluster module to distribute the load of
an HTTP server across multiple processes (as of Node.js 0.10). We will
see this in more detail in the next chapter.

Communicating with the parent process
Let's now create the subsetSumWorker.js module, our worker application,
the entire content of this module will run in a separate process:

var SubsetSum = require('./subsetSum');

process.on('message', function(msg) { //[1]
 var subsetSum = new SubsetSum(msg.sum, msg.set);

 subsetSum.on('match', function(data) { //[2]
 process.send({event: 'match', data: data});
 });

 subsetSum.on('end', function(data) {
 process.send({event: 'end', data: data});
 });

 subsetSum.start();
});

We can immediately see that we are reusing the original (and synchronous)
SubsetSum as it is. Now that we are in a separate process, we don't have to worry to
block the event loop anymore, all the HTTP requests will continue to be handled by
the event loop of the main application, without disruptions.

Recipes

[300]

When the worker is started as a child process, this is what happens:

1. It immediately starts listening for messages coming from the parent
process. This can be easily done with the process.on() function
(also, a part of the communication API provided when the process starts
using child_process.fork()). The only message we expect from the parent
process is the one providing the input to a new SubsetSum task. As soon as
such a message is received, we create a new instance of a SubsetSum class
and register the listeners for the match and end events. Lastly, we start the
computation with subsetSum.start().

2. Every time an event is received from the running algorithm, we wrap it in
an object with the format, {event, data}, and send it to the parent process.
These messages are then handled in the subsetSumFork.js module, as we
have seen in the previous section.

As we can see, we just had to wrap the algorithm we already built, without
modifying its internals. This clearly shows that any portion of an application can
be easily put in an external process by simply using the pattern we have just seen.

When the child process is not a Node.js program, the simple
communication channel we just described is not available. In these
situations, we can still establish an interface with the child process
by implementing our own protocol on top of the standard input and
standard output streams, which are exposed to the parent process.
To find out more about all the capabilities of the child_process API,
you can refer to the official Node.js documentation at http://nodejs.
org/api/child_process.html.

Considerations on the multiprocess pattern
As always, to try this new version of the subsetSum algorithm, we simply have to
replace the module used by the HTTP server (file app.js):

var http = require('http');
//var SubsetSum = require('./subsetSum');
//var SubsetSum = require('./subsetSumDefer');
var SubsetSum = require('./subsetSumFork');
[...]

Chapter 6

[301]

We can now start the server again and try to send a sample request:

curl -G http://localhost:8000/subsetSum --data-urlencode
"data=[116,119,101,101,-116,109,101,-105,-102,117,-115,-97,119,-116,-
104,-105,115]" --data-urlencode "sum=0"

Similar to the interleaving pattern we have seen before, also with this new version of
the subsetSum module the event loop is not blocked while running the CPU-bound
task. This can be confirmed by sending another concurrent request as follows:

curl -G http://localhost:8000

The preceding command line should immediately return a string as follows:

I'm alive!

More interestingly, we can also try to start two subsetSum tasks concurrently, we
can see that they will use the full power of two different processors in order to run
(if our system has more than one processor, of course). Instead, if we try to run three
subsetSum tasks concurrently, the result should be that the last one to start will
hang. This is not because the event loop of the main process is blocked, but because
we set a concurrency limit of two processes for the subsetSum task, which means
that the third request will be handled as soon as at least one of the two processes in
the pool becomes available again.

As we saw, the multiprocess pattern is definitely more powerful and flexible than the
interleaving pattern; however, it's still not scalable, as the amount of resources offered
by a single machine is still a hard limit. The answer in this case is to distribute the load
across multiple machines, but this is another story and falls under the category of
distributed architectural patterns, which we will explore in the next chapters.

It is worth mentioning that threads can be a possible alternative to
processes when running CPU-bound tasks. Currently, there are a
few npm packages that expose an API for working with threads to
userland modules; one of the most popular is webworker-threads
(https://npmjs.org/package/webworker-threads).
However, even if threads are more lightweight, full-fledged processes
can offer more flexibility and a better level of isolation in the case of
problems such as freezing or crashing.

Recipes

[302]

Sharing code with the browser
One of the main selling point of Node.js is the fact that it's based on JavaScript and
runs on V8, an engine that actually powers one of the most popular browsers: Chrome.
We might think that that's enough to conclude that sharing code between Node.js and
the browser is an easy task; however as we will see, this is not always true. Unless
we want to share only some small, self-contained and generic fragments of code,
developing for both the client and the server requires a non-negligible level of effort
in making sure that the same code can run properly in two environments that are
intrinsically different. For example, in Node.js we don't have the DOM or long-living
views, while in the browser we surely don't have the filesystem or the ability to start
new processes. Most of the effort required when developing for both the platforms is
making sure to reduce those differences to the minimum. This can be done with the
help of abstractions and patterns that enable the application to switch, dynamically or
at build time, between the browser-compatible code and the Node.js code.

Luckily, with the rising interest in this new mind-blowing possibility, many libraries
and frameworks in the ecosystem have started to support both environments. This
evolution is also backed by a growing number of tools supporting this new kind of
workflow, which over the years have been refined and perfected. This means that if
we are using an npm package on Node.js, there is a good probability that it will work
seamlessly on the browser as well. However, this is often not enough to guarantee
that our application can run without problems on both the browser and Node.js. As
we will see, a careful design is always needed when developing cross-platform code.

In this section, we are going to explore the fundamental problems we might
encounter when writing code for both Node.js and the browser and we are going
to propose some tools and patterns that can help us in tackling this new and
exciting challenge.

Sharing modules
The first wall we hit when we want to share some code between the browser and
the server is the mismatch between the module system used by Node.js and the
heterogeneous landscape of the module systems used in the browser. Another
problem is that in the browser we don't have a require() function or the filesystem
from which we can resolve modules. So if we want to write large portions of code
that can work on both the platforms and we want to continue to use the CommonJS
module system, we need to take an extra step, we need a tool to help us in bundling
all the dependencies together at build time and abstracting the require()
mechanism on the browser.

Chapter 6

[303]

Universal Module Definition
In Node.js, we know perfectly well that the CommonJS modules are the default
mechanism for establishing dependencies between components. The situation in
browser-space is unfortunately way more fragmented:

• We might have an environment with no module system at all, which
means that globals are the main mechanism to access other modules

• We might have an environment based on an Asynchronous
Module Definition (AMD) loader, as for example, RequireJS
(http://requirejs.org)

• We might have an environment abstracting the CommonJS module system

Luckily, there is a set of patterns called Universal Module Definition (UMD) that
can help us abstract our code from the module system used in the environment.

Creating an UMD module
UMD is not quite standardized yet, so there might be many variations that depend
on the needs of the component and the module systems it has to support. However,
there is one form that probably is the most popular and allows us to support the
most common module systems, which are AMD, CommonJS, and browser globals.

Let's see a simple example of how it looks like. In a new project, let's create a new
module called 'umdModule.js':

(function(root, factory) { //[1]
 if(typeof define === 'function' && define.amd) { //[2]
 define(['mustache'], factory);
 } else if(typeof module === 'object' && //[3]
 typeof module.exports === 'object') {
 var mustache = require('mustache');
 module.exports = factory(mustache);
 } else { //[4]
 root.UmdModule = factory(root.Mustache);
 }
}(this, function(mustache) { //[5]
 var template = '<h1>Hello <i>{{name}}</i></h1>';
 mustache.parse(template);

 return {
 sayHello:function(toWhom) {
 return mustache.render(template, {name: toWhom});
 }
 };
}));

Recipes

[304]

The preceding example defines a simple module with one external dependency:
Mustache (http://mustache.github.io), which is a simple template engine.
The final product of the preceding UMD module is an object with one method
called sayHello() that will render a mustache template and return it to the caller.
The goal of UMD is integrating the module with other module systems available
on the environment. This is how it works:

1. All the code is wrapped in an anonymous self-executing function, very
similar to the Revealing Module pattern we have seen in Chapter 1, Node.js
Design Fundamentals. The function accepts a root that is the global namespace
object available on the system (for example, window on the browser). This is
needed mainly for registering the dependency as a global variable, as we will
see in a moment. The second argument is the factory() of the module, a
function returning an instance of the module and accepting its dependencies
as input (Dependency Injection).

2. The first thing we do is check whether AMD is available on the system. We
do this by verifying the existence of the define function and its amd flag. If
found, it means that we have an AMD loader on the system, so we proceed
with registering our module using define and requiring the dependency
mustache to be injected into factory().

3. We then check whether we are in a Node.js-flavored CommonJS environment
by checking the existence of the module and module.exports objects. If
that's the case, we load the dependencies of the module using require() and
we provide them to the factory(). The return value of the factory is then
assigned to module.exports.

4. Lastly, if we have neither AMD nor CommonJS, we proceed with assigning
the module to a global variable, using the root object, which in a browser
environment will usually be the window object. Also, you can see how the
dependency, Mustache, is expected to be in the global scope as well.

5. As a final step, the wrapper function is self-invoked, providing the this
object as root (in the browser, it will be the window object) and providing our
module factory as a second argument. You can see how the factory accepts its
dependencies as arguments.

In the code distributed with the book, you can find a set of examples
showing how the UMD module we just created can be used in
combination with an AMD loader, a CommonJS system, or simply
with none of the above (using globals).

Chapter 6

[305]

Considerations on the UMD pattern
The UMD pattern is an effective and simple technique used for creating a module
compatible with the most popular module systems out there. However, we have seen
that it requires a lot of boilerplate, which can be difficult to test in each environment
and is inevitably error-prone. This means that manually writing the UMD boilerplate
can make sense for wrapping a single module and not as a practice to use for every
module we create in our projects. It is simply unfeasible and impractical. In these
situations, it would be better to leave the task to some tool that can help us automate
the process, one of those tools is Browserify, which we will see in a moment.

Also, we should mention that AMD, CommonJS and browser globals are not the
only module systems out there. The pattern we have presented will cover most of
the use cases, but it requires adaptations to support any other module system. For
example, the upcoming ES6 module specification will be something that we might
want to support as soon as it gets standardized.

You can find a broad list of formalized UMD patterns at
https://github.com/umdjs/umd.

Introducing Browserify
When writing a Node.js application, the last thing we want to do is to manually
add support for a module system different from the one offered, by default,
by the platform. The ideal situation would be continuing to write our modules
as we have always done, using require() and module.exports, and then use a
tool to transform our code into a bundle that can easily run in the browser. Luckily,
this is a problem that has already been solved by many projects, among which
Browserify (http://browserify.org) is the most popular and broadly supported.

Browserify allows us to write modules using the Node.js module conventions
and then, thanks to a compilation step, it creates a bundle (a single JavaScript file)
that contains all the dependencies our modules need for working, including an
abstraction of the require() function. This bundle can then be easily included into
a web page and executed inside a browser. Browserify recursively scans our sources
looking for references of the require() function, resolving, and then including the
referenced modules into the bundle.

Recipes

[306]

Browserify is not the only tool we have for creating browser
bundles from Node.js modules. Other popular alternatives are
Webmake (https://npmjs.org/package/webmake) and Webpack
(https://npmjs.org/package/webpack). Also, require.js allows
us to create modules for both the client and Node.js but it uses AMD in
place of CommonJS (http://requirejs.org/docs/node.html).

Exploring the magic of Browserify
To quickly demonstrate how this magic works, let's see how the umdModule we
created in the previous section looks like if we use Browserify. First, we need to
install Browserify itself, we can do it with a simple command:

npm install browserify -g

The -g option will tell npm to install Browserify globally, so that we can access it
using a simple command from the console, as we will see in a moment.

Next, let's create a fresh project and let's try to build a module equivalent to the
umdModule we created before. This is how it looks like if we had to implement
it in Node.js (file sayHello.js):

var mustache = require('mustache');
var template = '<h1>Hello <i>{{name}}</i></h1>';
mustache.parse(template);
module.exports.sayHello = function(toWhom) {
 return mustache.render(template, {name: toWhom});
};

Definitely simpler than applying a UMD pattern, isn't it? Now, let's create a file
called main.js that is the entry point of our browser code:

window.addEventListener('load', function() {
 var sayHello = require('./sayHello').sayHello;
 var hello = sayHello('World!');
 var body = document.getElementsByTagName("body")[0];
 body.innerHTML = hello;
});

In the preceding code, we require the sayHello module in exactly the same way
as we would do in Node.js, so no more annoyances for managing dependencies
or configuring paths, a simple require() does the job.

Chapter 6

[307]

Next, let's make sure to have mustache installed in the project:

npm install mustache

Now, comes the magical step. In a terminal, let's run the following command:

browserify main.js -o bundle.js

The previous command will compile the main module and bundle all the required
dependencies into a single file called bundle.js, which is now ready to be used in
the browser!

To quickly test this assumption, let's create an HTML page called magic.html that
contains the following code:

<html>
 <head>
 <title>Browserify magic</title>
 <script src="bundle.js"></script>
 </head>
 <body>
 </body>
</html>

This is enough for running our code in the browser. Try to open the page and see it
with your eyes. Boom!

During development, we surely don't want to manually run
browserify at every change we make to our sources. What we want
instead is an automatic mechanism to regenerate the bundle when our
sources change. To do that, we can use watchify (https://npmjs.
org/package/watchify), a companion tool that we can install by
running the following command:
npm install watchify -g

Watchify can be used in the exact same way as browserify, the
two tools have a similar purpose and command line options. The
difference between the two is that watchify, after compiling the
bundle for the first time, will continue to watch the sources of the
projects for any change and will then rebuild the bundle automatically
by processing only the changed files for maximum speed.

Recipes

[308]

The advantages of using Browserify
The magic of Browserify doesn't stop here. This is a (incomplete) list of features that
make sharing code with the browser a simple and seamless experience:

• Browserify automatically provides a version of the core Node.js modules
that are compatible with the browser. This means that we can use streams,
HTTP clients, Buffers, EventEmitter, and many more in the browser!

Note that the fs module is among those not supported.

• If we have a module that is incompatible with the browser, we can
exclude it from the build (--exclude option), replace it with an empty
object (--ignore option), or replace it with another module providing an
alternative and browser-compatible implementation (by using the 'browser'
section in the package.json). This is a crucial feature and we will have the
chance to use it in the example we are going to see in a while.

• Browserify can generate an UMD bundle that is compatible with other
module loaders (--standalone option).

• Browserify allows us to perform additional processing of the source files
using third-party transforms. There is a transform for almost everything
one might need, from CoffeeScript compilation, to support for loading
AMD, Bower (http://bower.io), and Component (http://component.
github.io) packages using require(), from minification to the compilation
and bundling of other assets such as templates and stylesheets.

You can find a list of all the available transforms on the project's wiki
page at https://github.com/substack/node-browserify/
wiki/list-of-transforms.

• We can easily invoke Browserify from task managers such as Gulp
(https://npmjs.org/package/gulp-browserify) and Grunt
(https://npmjs.org/package/grunt-browserify).

The power and flexibility of Browserify are so captivating that many developers
started to use it even to manage only client-side code, in place of more popular
module systems such as AMD. This is also made possible by the fact that many
client-side libraries are starting to support CommonJS and npm by default, opening
new and interesting scenarios. For example, we can install JQuery as follows:

npm install jquery

Chapter 6

[309]

And then load it into our code with a simple line of code:

var $ = require('jquery');

You will be surprised at how many client-side libraries already support CommonJS
and Browserify.

A great resource for knowing more about Browserify and its
capabilities is its official handbook that you can find on GitHub at
https://github.com/substack/browserify-handbook.

Fundamentals of cross-platform development
When developing for different platforms, the most common problem we have
to face is sharing the common parts of a component, while providing different
implementations for the details that are platform-specific. We will now explore
some of the principles and the patterns to use when facing this challenge.

Runtime code branching
The most simple and intuitive technique for providing different implementations
based on the host platform is to dynamically branch our code. This requires that
we have a mechanism to recognize at runtime the host platform and then switch
dynamically the implementation with an if-else statement. If we are using
Browserify, this is as simple as checking the variable process.browser, which is
automatically set to true by Browserify when bundling our modules:

if(process.browser) {
 //client side code
} else {
 //Node.js code
}

Some more generic approaches involve checking globals that are available only
on Node.js or only in the browser. For example, we can check the existence of the
window global:

if(window && window.document) {
 //client side code
} else {
 //Node.js code
}

Recipes

[310]

Using a runtime branching for switching between Node.js and browser
implementation is definitely the most intuitive and simple pattern we can
use for the purpose; however it has some inconveniences:

• The code for both the platforms is included in the same module and
therefore also in the final bundle, increasing its size with unreachable code.

• If used too extensively, it can considerably reduce the readability of the
code, as business logic would be mixed with logic meant only to add
cross-platform compatibility.

• Using dynamic branching to load a different module depending on the
platform will result in all the modules to be added to the final bundle
regardless of their target platform. For example, if we consider the next
code fragment, both clientModule and serverModule will be included in a
bundle generated with Browserify, unless we don't explicitly exclude one of
them from the build:

if(window && window.document) {
 require('clientModule');
} else {
 require('serverModule');
}

This last inconvenience is due to the fact that bundlers have no way of knowing
the value of a runtime variable at build-time (unless the variable is a constant),
so they include any module regardless of whether it's required from reachable or
unreachable code.

A consequence of this last property is that modules required
dynamically using variables are not included in the bundle.
For example, from the following code, no module will be bundled:

moduleList.forEach(function(module) {

 require(module);

});

Build-time code branching
Most of the time, we already know at build-time what code has to be included in the
client bundle and what shouldn't. This means that we can take this decision upfront
and instruct the bundler to replace the implementation of a module at build-time.
This often results in a leaner bundle, as we are excluding unnecessary modules, and
a more readable code because we don't have all the if-else statements required by
a runtime branching.

Chapter 6

[311]

In Browserify, this module swapping mechanism can be easily configured in a special
section of the package.json. For example, consider the following three modules:

//moduleA.js
var showAlert = require('./alert');

//alert.js
module.exports = console.error;

//clientAlert.js
module.exports = alert;

In Node.js, moduleA is using the default implementation of the alert module,
which will log a message to the console, in the browser though we want a proper
alert pop up to show. To do that, we can instruct Browserify to swap at build time,
the implementation of the alert.js module with clientAlert.js. All we need
to do is to add a section such as the following into the package.json of a project:

"browser": {
 "./alert.js": "./clientAlert.js"
}

This will result in every reference to the alert.js module being replaced with
a reference to the clientAlert.js module. The first module will not even be
included in the bundle.

We realize how build-time branching is much more elegant and powerful than
runtime branching. On one side, it allows us to create modules that are focused
on only one platform, and on the other, it provides a simple mechanism to exclude
Node.js-only modules from the final bundle.

Design patterns for cross-platform development
Now that we know how to switch between Node.js and browser code, the remaining
piece of the puzzle is how to integrate this within our design and how we can create
our components in such a way that some of their parts are interchangeable. These
challenges should not sound new to us at all, in fact, all throughout the book we
have seen, analyzed, and used patterns to achieve this very purpose.

Recipes

[312]

Let's remind some of them and describe how they apply to cross-platform
development:

• Strategy and Template: These two are probably the most useful patterns
when sharing code with the browser. Their intent is, in fact, to define the
common steps of an algorithm, allowing some of its parts to be replaced,
which is exactly what we need! In cross-platform development, these
patterns allow us to share the platform-agnostic part of our components,
while allowing their platform-specific parts to be changed using a different
strategy or template method (which can be changed using runtime or
compile-time branching).

• Adapter: This pattern is probably the most useful when we need to swap
an entire component. In Chapter 4, Design Patterns, we have already seen an
example of how an entire module, incompatible with the browser, can be
replaced with an adapter built on top of a browser-compatible interface.
Do you remember the LevelUP adapter for the fs interface?

• Proxy: When code meant to run in the server runs in the browser, we
often expect things that live on the server to be available in the browser
as well. This is where the remote Proxy pattern comes into place. Imagine
if we wanted to access the filesystem of the server from the browser, we
could think of creating an fs object on the client that proxies every call to
the fs module living on the server, using Ajax or WebSockets as a way of
exchanging commands and return values.

• Observer: The observer pattern provides a natural abstraction
between the component that emits the event and those that receive it.
In cross-platform development, this means that we can replace the emitter
with its browser-specific implementation without affecting the listeners
and vice versa.

• Dependency Injection and Service locator: Both DI and service locator
can be useful to replace the implementation of a module at the moment
of its injection.

As we can see, the arsenal of patterns at our disposal is quite powerful, but the
most powerful weapon is still the ability of the developer to choose the best
approach and adapt it to the specific problem at hand. In the next section, we are
going to put what we learned into action, leveraging some of the concepts and
patterns we have seen so far.

Chapter 6

[313]

Sharing business logic and data validation
using Backbone Models
As a perfect conclusion for this section and chapter, we are now going to work on an
application more complex than usual to demonstrate how to perform code sharing
between Node.js and the browser. We will take as example a personal contact
manager application with very basic functionalities.

In particular, we are only interested in some basic CRUD operations such as listing,
creating, and removing contacts. But the main feature of our application, the one
that we are really interested in exploring, is the sharing of the models between the
server and the client. This is actually one of the most sought after capabilities when
developing an application that has to validate and process data both on the client and
on the server, which is what most of the modern applications actually need to do.

To give you an idea, this is how our application should look like once it's completed:

Recipes

[314]

The plan is to use a familiar stack on the server with express and levelup, Backbone
Views (http://backbonejs.org) on the client, and a set of Backbone Models shared
between Node.js and the browser, to implement persistence and validation. Browserify
is our choice for bundling the modules for the browser. If you don't know Backbone,
don't worry, the concepts we are going to demonstrate here are generic enough and
can be understood also without any knowledge of this framework.

The project we are going to explore now is pretty large to be described
and written in full on these pages. Please be advised that only the
relevant parts will be shown here. For the full code, please refer to the
samples distributed with the book.

Implementing the shared models
Let's start from the focal center of our application, the Backbone models we
 want to share with the browser. In our application, we have two models:
Contact, a Backbone Model, and Contacts, a Backbone Collection. Let's see
how the Contact module looks like (the models/Contact.js file):

var Backbone = require('backbone');
var validator = require('validator');

module.exports = Backbone.Model.extend({
 defaults: {
 name: '',
 email: '',
 phone: ''
 },
 validate: function(attrs, options) {
 var errors = [];
 if(!validator.isLength(attrs.name, 2)) {
 errors.push('Must specify a name');
 }
 if(attrs.email && !validator.isEmail(attrs.email)) {
 errors.push('Not a valid email');
 }
 if(attrs.phone && !validator.isNumeric(attrs.phone)) {
 errors.push('Not a valid phone');
 }
 if(!attrs.phone && !attrs.email) {
 errors.push('Must specify at least one contact information');
 }

Chapter 6

[315]

 return errors.length ? errors : undefined;
 },
 collectionName: 'contacts',
 url: function() {
 if (this.isNew()) return this.collectionName;
 return this.collectionName + '/' + this.id;
 },
 sync: require('./modelSync')
});

Most of the preceding code is shared between the browser and the server, namely,
the logic for setting the default attributes values and their validation. Both the
defaults() and validate() methods are part of the Backbone framework and are
overridden to provide the custom logic for our model. We also added an extra field
to the object, called collectionName, that will be used by the server for persisting
the model in the right sublevel (we will see this later) and by the client in order to
calculate the URL of the REST API endpoint (the url field).

Now, comes the best part: when a Backbone model is saved, deleted, or fetched
(using save(), remove(), and fetch() respectively), Backbone internally delegates
the task to the sync() method of the model. Sounds familiar? This is actually a
Template pattern and it's perfect for us to perform a build-time branching of our
code. That's in fact where the models must have a different behavior based on the
target environment:

• On the server, when save() is invoked, we want to persist a model in the
database; similarly, with fetch(), we want to retrieve the model's data from
the database, and with remove(), we want to delete it

• On the client instead, we want each one of save(), fetch(), and remove()
to trigger an AJAX call to the server, which in turn executes the required
operation and returns the result back to the client

Implementing the platform-specific code
In the code fragment given earlier, the sync attribute is a function loaded from the
modelSync module, which represents our server-side implementation of the method.
This is how it looks like (the models/modelSync.js file):

var db = require('../db');
var Backbone = require('backbone');
var uuid = require('node-uuid');

var self = module.exports = function(method, model, options) {
 switch(method) {

Recipes

[316]

 case 'create':
 return self.saveModel(model, options);
 [...]
 }
};

self.saveModel = function(model, options) {
 var collection = db.sublevel(model.collectionName);
 var results = [];
 if(!model.id) model.set('id', uuid.v4());

 collection.put(model.id, model.toJSON(), function(err) {
 if(err) return options.error();
 options.success(model.toJSON());
 });
}
[...]

When the internals of the Backbone Model invoke the sync() method, three
parameters are provided, as follows:

• The method parameter representing the action being performed (which can
be one of the following: 'create', 'read', 'update' or 'delete')

• The model parameter, which is the object of the operation
• A set of options that contains, among other things, a success callback

to be invoked when the operation completes and an error callback to
invoke if it fails

In the preceding code, we are showing what happens when we receive a 'create'
request. As we can see, the saveModel() function is invoked, which saves the model
into the database.

The sync() implementation we have just seen, is meant to be executed only on the
server, where we want to persist the data. Ideally, it could also work on the browser,
because LevelUP has adapters for IndexedDB and LocalStorage, but that's not what
we want in this example.

What we want instead is to persist the data on the server, and to do this we have
to invoke a web service when an operation is performed on the model. This
means that the modelSync module is not good for us to use on the browser, so we
need a different implementation. Luckily, Backbone already provides a default
implementation for the sync() method that does exactly what we need. So that's
what we are going to use on the client-side implementation of the modelSync
module (file: models/clientSync.js):

module.exports = require('backbone').sync;

Chapter 6

[317]

That's it, the next step is to instruct Browserify to use the module we just created in
place of modelSync when creating the client-side bundle. As we have seen, this can
be done in the package.json file:

[...]
"browser": {
 "./models/modelSync.js": "./models/clientSync.js"
 [...]
}

The preceding few lines create a build-time branching telling Browserify to
replace any reference to the module "./models/modelSync.js" with a reference
to "./models/clientSync.js". The module modelSync will not be included
in the final bundle.

Using the isomorphic models
At this point, the Contact module should be isomorphic, which means that it can
run transparently both on the client and on Node.js. To show how this looks like,
let's see how the model is used in the server routes (file routes.js):

var Contact = require('./models/Contact');
[...]
module.exports.createContact = function(req, res, next) {
 var contact = new Contact(req.body);
 contact.once('invalid', function(model, errors) {
 res.status(400).json({error: errors});
 });
 contact.save({}, {success: function(contact) {
 res.status(200).json(contact);
 }});
}
[...]

The createContact() handler builds a new contact (Contact) from the JSON
data received in the body of the request (a POST to the '/contacts' URL). Then,
we attach to the model a listener for the invalid event, which triggers when its
attributes do not pass the validation tests we have defined. Finally, contact.save()
will persist the data in the database.

As we will see, this is exactly what we do in the browser-side of the application
as well. This happens in the Backbone View responsible for handling the data
submitted in a form (file client/ContactsView.js):

var Backbone = require('backbone');
var Contact = require('../models/Contact');
var $ = require('jquery');

Recipes

[318]

[...]

module.exports = Backbone.View.extend({
 [...]
 createContact: function(evt) {
 evt.preventDefault();
 var contactJson = {
 name: $('#newContactForm input[name=name]').val(),
 email: $('#newContactForm input[name=email]').val(),
 phone: $('#newContactForm input[name=phone]').val()
 };
 var contact = new Contact(contactJson); //[1]
 $('.error-container', this.$el).empty();
 contact.once('invalid', this.invalid, this); //[2]
 contact.save({}, {success: function() { //[3]
 this.contacts.add(contact);
 }.bind(this)});
 }
 [...]
});

As we can see, when the createContact() function is invoked (after the "new contact"
form is submitted), we issue the exact same commands we used on the server:

1. We create a new Contact model from the form data.
2. We register a listener for the invalid event so that we can immediately

display a message to the user if the data does not pass the validation.
3. Finally, we save the model, which this time will result in an HTTP POST

request to the /contacts URL.

As we wanted to demonstrate, our Contact model is isomorphic and enables us to
share its business logic and validation between the browser and the server!

Running the application
To run the full sample distributed with the book, don't forget to install all the
modules with:

npm install

Chapter 6

[319]

Then, run Browserify on the main module of the client-side application to generate
the bundle used on the browser:

browserify client/main.js -o www/bundle.js

Then finally, fire up the server with:

node app

Now, we can open our browser at the following URL to access the application
http://localhost:8080.

We can now verify that the validation is actually performed identically on the
browser as it is on the server. To check this on the browser, we can simply try
to create a contact with a phone number that contains letters, which will fail the
validation. Then, to test the server-side validation, we can try to invoke the REST
API directly with curl:

curl -X POST http://localhost:8000/contacts –data '{"name":"John","phone
":"wrong"}' --header "Content-Type:application/json"

The preceding command should return an error indicating that the data we are
trying to save is invalid.

This concludes our exploration of the fundamental principles for sharing code between
Node.js and the browser. As we have seen, the challenges are many and the effort
to design isomorphic code can be substantial. In this context, it's worth mentioning
that one big challenge related to this area is shared rendering, which is the ability to
render a view on the server as well as dynamically on the client. This requires a much
more complex design effort that easily affects the entire architecture of the application
on both the server and the browser. Many frameworks tried to solve this ultimate
challenge, which usually is the most complex in the area of cross-platform JavaScript
development. Among those projects, we can find Derby (http://derbyjs.com),
Meteor (https://www.meteor.com), React (http://facebook.github.io/react),
and then Rendr (https://github.com/rendrjs/rendr) and Ezel (http://ezeljs.
com), which are based on Backbone, similar to what we did in our example.

Recipes

[320]

Summary
This chapter added some great new weapons to our tool belt, and as we can notice,
our journey is getting more focused on specific problems and we have started to
delve deeply into more advanced solutions. Often, we reused some of the patterns
we have analyzed in the previous chapters: State, Command, and Proxy to provide
an effective abstraction for asynchronously initialized modules, asynchronous
control flow patterns to add batching and caching to our APIs, deferred execution
and events to help us run CPU-bound tasks, and finally a mix of various design
patterns to enable our modules to run seamlessly in both Node.js and the browser.

This chapter gave us not only a set of recipes to reuse and customize for our needs,
but also some great demonstrations of how the mastering of a few principles and
patterns can help us tackle the most complex problems in Node.js development.

The next two chapters represent the peak of our journey. After studying the
various tactics, we are now ready to move to the strategies, and explore the
patterns for scaling and distributing our Node.js applications.

Scalability and
Architectural Patterns

In its early days, Node.js was mainly a non-blocking web server; its original name
was in fact web.js. Its creator, Ryan Dahl, soon realized the potential of the platform
and started extending it with tools to enable the creation of any type of server-side
application on top of the duo JavaScript/non-blocking paradigm. The characteristics
of Node.js were perfect for the implementation of distributed systems, made of
nodes orchestrating their operations through the network. Node.js was born to be
distributed. Unlike other web platforms, the word scalability enters the vocabulary
of a Node.js developer very early in the life of an application, mainly because of its
single-threaded nature, incapable of exploiting all the resources of a machine, but
often there are more profound reasons. As we will see in this chapter, scaling an
application does not only mean increasing its capacity, enabling it to handle more
requests faster; it's also a crucial path to achieving high availability and tolerance
to errors. Amazingly, it can also be a way to split the complexity of an application
into more manageable pieces. Scalability is a concept with multiple faces, six to be
precise, as many as the faces of a cube—the scale cube.

In this chapter, we will learn the following topics:

• What the scale cube is
• How to scale by running multiple instances of the same application
• How to leverage a load balancer when scaling an application
• What a Service Registry is and how it can be used
• How to design a Microservice architecture out of a Monolithic application
• How to integrate a large number of services through the use of some simple

architectural patterns

Scalability and Architectural Patterns

[322]

An introduction to application scaling
Before we dive into some practical patterns and examples, it is worth saying a few
words about the reasons for scaling an application and how it can be achieved.

Scaling Node.js applications
We already know that most of the tasks of a typical Node.js application run in the
context of a single thread. In Chapter 1, Node.js Design Fundamentals, we learned
that this is not really a limitation but rather an advantage, because it allows the
application to optimize the usage of the resources necessary to handle concurrent
requests, thanks to the non-blocking I/O paradigm. A single thread fully exploited
by non-blocking I/O works wonderfully for applications handling a moderate
number of requests per second, usually a few hundred per second (this greatly
depends on the application). Assuming we are using commodity hardware, the
capacity that a single thread can support is limited no matter how powerful a server
can be, therefore, if we want to use Node.js for high-load applications, the only way
is to scale it across multiple processes and machines.

However, workload is not the only reason to scale a Node.js application; in fact, with
the same techniques, we can obtain other desirable properties such as availability
and tolerance to failures. Scalability is also a concept applicable to the size and the
complexity of an application; in fact, building architectures that can grow big is
another important factor when designing software. JavaScript is a tool to be used
with caution, the lack of type checking and its many gotchas can be an obstacle to the
growth of an application, but with discipline and an accurate design, we can turn
this into an advantage. With JavaScript, we are often pushed to keep the application
simple and split it into manageable pieces, making it easier to scale and distribute.

The three dimensions of scalability
When talking about scalability, the first fundamental principle to understand is
load distribution, the science of splitting the load of an application across several
processes and machines. There are many ways to achieve this, and the book The Art
of Scalability by Martin L. Abbott and Michael T. Fisher, proposes an ingenious model
to represent them, called the scale cube. This model describes scalability in terms of
the following three dimensions:

• X Axis: Cloning
• Y Axis: Decomposing by service/functionality
• Z Axis: Splitting by data partition

Chapter 7

[323]

These three dimensions can be represented as a cube, as shown in the
following figure:

The bottom-left corner of the cube represents the applications having all their
functionalities and services in a single codebase (monolithic applications) and
running on a single instance. This is a common situation for applications handling
small workloads or at the early stages of development.

The most intuitive evolution of a monolithic, unscaled application is moving
right along the X axis, which is simple, most of the time inexpensive (in terms of
development cost), and highly effective. The principle behind this technique is
elementary—that is, cloning the same application n times and letting each instance
handle 1/nth of the workload.

Scaling along the Y axis means decomposing the application based on its
functionalities, services, or use cases. In this instance, decomposing means creating
different, standalone applications, each with its own codebase, sometimes with
its own dedicated database, or even with a separate UI. For example, a common
situation is separating the part of an application responsible for the administration
from the public-facing product. Another example is extracting the services
responsible for the user authentication, creating a dedicated authentication server.
The criteria to split an application by its functionalities depend mostly on its
business requirements, the use cases, the data, and many other factors, as we will
see later in this chapter. Interestingly, this is the scaling dimension with the biggest
repercussions, not only on the architecture of an application, but also on the way it
is managed from a development perspective. As we will see, microservices is a term
that at the moment is most commonly associated with a fine-grained Y axis scaling.

Scalability and Architectural Patterns

[324]

The last scaling dimension is the Z axis, where the application is split in such a
way that each instance is responsible for only a portion of the whole data. This
is a technique mainly used in databases and also takes the name of horizontal
partitioning or sharding. In this setup, there are multiple instances of the same
application, each of them operating on a partition of the data, which is determined
using different criteria. For example, we could partition the users of an application
based on their country (list partitioning), or based on the starting letter of their
surname (range partitioning), or by letting a hash function decide the partition each
user belongs to (hash partitioning). Each partition can then be assigned to a particular
instance of our application. The use of data partitions requires each operation to
be preceded by a lookup step to determine which instance of the application is
responsible for a given datum. As we said, data partitioning is usually applied and
handled at database level because its main purpose is overcoming the problems
related to handling large monolithic datasets (limited disk space, memory, and
network capacity). Applying it at the application level is worth considering only for
complex, distributed architectures or for very particular use cases as, for example,
when building applications relying on custom solutions for data persistence, when
using databases not supporting partitioning, or when building applications at
Google scale. Considering its complexity, scaling an application along the Z axis
should be taken in consideration only after the X and Y axes of the scale cube have
been fully exploited.

In the next sections, we will focus on the two most common and effective
techniques to scale Node.js applications, namely, cloning and decomposing by
functionality/service.

Cloning and load balancing
Traditional, multithreaded web servers are usually scaled only when the resources
assigned to a machine cannot be upgraded any more or when doing so would involve
a higher cost than simply launching another machine. By using multiple threads,
traditional web servers can take advantage of all the processing power of a server,
using all the available processors and memory. However, a single Node.js process is
unable to do that, being single-threaded and having a memory limit of 1GB (on 64-bit
machines, which can be increased to a maximum of 1.7GB). This means that Node.js
applications are usually scaled much sooner compared to traditional web servers, even
in the context of a single machine, to be able to take advantage of all its resources.

In Node.js, vertical scaling (adding more resources to a single machine)
and horizontal scaling (adding more machines to the infrastructure) are
almost equivalent concepts; both in fact involve similar techniques to
leverage all the available processing power.

Chapter 7

[325]

Don't be fooled into thinking about this as a disadvantage. On the contrary, being
almost forced to scale has beneficial effects on other attributes of an application, in
particular availability and fault-tolerance. In fact, scaling a Node.js application by
cloning is relatively simple and it's often implemented even if there is no need to
harvest more resources, just for the purpose of having a redundant, fail-tolerant setup.

This also pushes the developer to take into account scalability from the early
stages of an application, making sure the application does not rely on any resource
that cannot be shared across multiple processes or machines. In fact, an absolute
prerequisite to scaling an application is that each instance does not have to store
common information on resources that cannot be shared, usually hardware, such as
memory or disk. For example, in a web server, storing the session data in memory
or on disk is a practice that does not work well with scaling; instead, using a
shared database will assure that each instance will have access to the same session
information, wherever it is deployed.

Let's now introduce the most basic mechanism for scaling Node.js applications:
the cluster module.

The cluster module
In Node.js, the simplest pattern to distribute the load of an application across
different instances running on a single machine is by using the cluster module,
which is part of the core libraries. The cluster module simplifies the forking of new
instances of the same application and automatically distributes incoming connections
across them, as shown in the following figure:

Incoming
requests

Server machine

Worker
process

Worker
process

Worker
process

Master
process

Scalability and Architectural Patterns

[326]

The master process is responsible for spawning a number of processes (workers),
each representing an instance of the application we want to scale. Each incoming
connection is then distributed across the cloned workers, spreading the load
across them.

Notes on the behavior of the cluster module
In Node.js 0.8 and 0.10, the cluster module shares the same server socket across
the workers and leaves to the operating system the job of load-balancing incoming
connections across the available workers. However, there is a problem with this
approach; in fact, the algorithms used by the operating system to distribute the load
across the workers are not meant to load-balance network requests, but rather to
schedule the execution of processes. As a result, the distribution is not always uniform
across all the instances; often, a fraction of workers receive most of the load. This type
of behavior can make sense for the operating system scheduler because it focuses on
minimizing the context switches between different processes. The short story is that
the cluster module does not work at its full potential in Node.js <= 0.10.

However, the situation changes starting from version 0.11.2, where an explicit
round robin load-balancing algorithm is included inside the master process,
which makes sure the requests are evenly distributed across all the workers. The new
load-balancing algorithm is enabled by default on all platforms except Windows,
and it can be globally modified by setting the variable cluster.schedulingPolicy,
using the constants cluster.SCHED_RR (round robin) or cluster.SCHED_NONE
(handled by the operating system).

The round robin algorithm distributes the load evenly across the
available servers on a rotational basis. The first request is forwarded
to the first server, the second to the next server in the list, and so on.
When the end of the list is reached, the iteration starts again from the
beginning. This is one of the simplest and most used load-balancing
algorithms; however, it's not the only one. More sophisticated
algorithms allow assigning priorities, selecting the least loaded
server or the one with the fastest response time.

You can find more details about the evolution of the cluster module
in these two Node.js issues:

• https://github.com/joyent/node/issues/3241

• https://github.com/joyent/node/issues/4435

Chapter 7

[327]

Building a simple HTTP server
Let's now start working on an example. Let's build a small HTTP server, cloned and
load-balanced using the cluster module. First of all, we need an application to
scale; for this example we don't need too much, just a very basic HTTP server.

Let's create a file called app.js containing the following code:

var http = require('http');
var pid = process.pid;

http.createServer(function(req, res) {
 for(var i = 1e7; i > 0; i--) {}
 console.log('Handling request from ' + pid);
 res.end('Hello from ' + pid + '\n');
}).listen(8080, function() {
 console.log('Started ' + pid);
});

The HTTP server we just built responds to any request by sending back a message
containing its PID; this will be useful to identify which instance of the application
is handling the request. Also, to simulate some actual CPU work, we perform an
empty loop 10 million times; without this, the server load would be almost nothing
considering the small scale of the tests we are going to run for this example.

The app module we want to scale can be anything and
can also be implemented using a web framework, for
example, express.

We can now check if all works as expected by running the application as usual and
sending a request to http://localhost:8080 using either a browser or curl.

We can also try to measure the requests per second that the server is able to handle
using only one process, for this purpose, we can use a network benchmarking tool
such as siege (http://www.joedog.org/siege-home) or Apache ab (http://
httpd.apache.org/docs/2.4/programs/ab.html):

siege -c200 -t10S http://localhost:8080

With ab, the command line would be very similar:

ab -c200 -t10 http://localhost:8080/

Scalability and Architectural Patterns

[328]

The preceding commands will load the server with 200 concurrent connections for
10 seconds. As a reference, the result for a system with four processors is in the order
of 90 transactions per second, with an average CPU utilization of only 20 percent.

Please remember that the load tests we will perform in this
chapter are intentionally simple and minimal and are provided
only for reference and learning purposes. Their results cannot
provide a 100 percent accurate evaluation of the performance of
the various techniques we are analyzing.

Scaling with the cluster module
Let's now try to scale our application using the cluster module. Let's create a new
module called clusteredApp.js:

var cluster = require('cluster');
var os = require('os');

if(cluster.isMaster) {
 var cpus = os.cpus().length;
 //start as many children as the number of CPUs
 for (var i = 0; i < cpus; i++) { //[1]
 cluster.fork();
 }
} else {
 require('./app'); //[2]
}

As we can see, using the cluster module requires very little effort. Let's analyze
what is happening:

1. When we launch clusteredApp from the command line, we are actually
executing the master process. The cluster.isMaster variable is set to true
and the only work we are required to do is forking the current process using
cluster.fork(). In the preceding example, we are starting as many workers
as the number of CPUs in the system to take advantage of all the available
processing power.

2. When cluster.fork() is executed from the master process, the current
main module (clusteredApp) is run again, but this time in worker mode
(cluster.isWorker is set to true, while cluster.isMaster is false). When
the application runs as a worker, it can start doing some actual work. In our
example, we load the app module, which actually starts a new HTTP server.

Chapter 7

[329]

It's important to remember that each worker is a different
Node.js process with its own event loop, memory space,
and loaded modules.

It's interesting to notice that the usage of the cluster module is based on a recurring
pattern, which makes it very easy to run multiple instances of an application:

if(cluster.isMaster) {
 // fork()
} else {
 //do work
}

Under the hood, the cluster module uses the child_process.
fork() API (we already met this API in Chapter 6, Recipes), therefore,
we also have a communication channel available between the master
and the workers. The instances of the workers can be accessed from the
variable, cluster.workers, so broadcasting a message to all of them
would be as easy as running the following lines of code:

Object.keys(cluster.workers).forEach(function(id) {

 cluster.workers[id].send('Hello from the master');

});

Now, let's try to run our HTTP server in cluster mode. We can do that by starting the
clusteredApp module as usual:

node clusteredApp

If our machine has more than one processor, we should see a number of workers
being started by the master process, one after the other. For example, in a system
with four processors, the terminal should look like this:

Started 14107

Started 14099

Started 14102

Started 14101

If we now try to hit our server again using the URL http://localhost:8080,
we should notice that each request will return a message with a different PID,
which means that these requests have been handled by different workers,
confirming that the load is being distributed among them.

Scalability and Architectural Patterns

[330]

Now we can try to load test our server again:

siege -c200 -t10S http://localhost:8080

This way, we should be able to discover the performance increase obtained by scaling
our application across multiple processes. As a reference, by using Node.js 0.10 in
a Linux system with four processors, the performance increase should be around
3x (270 trans/sec versus 90 trans/sec) with an average CPU load of 90 percent.

Resiliency and availability with the cluster module
As we already mentioned, scaling an application also brings other advantages, in
particular, the ability to maintain a certain level of service even in the presence of
malfunctions or crashes. This property is also known as resiliency and it contributes
towards the availability of a system.

By starting multiple instances of the same application, we are creating a redundant
system, which means that if one instance goes down for whatever reason, we still
have other instances ready to serve requests. This pattern is pretty straightforward to
implement using the cluster module. Let's see how it works!

Let's take the code from the previous section as the starting point. In particular,
let's modify the app.js module so that it crashes after a random interval of time:

// [...]
// At the end of app.js
setTimeout(function() {
 throw new Error('Ooops');
}, Math.ceil(Math.random() * 3) * 1000);

With this change in place, our server exits with an error after a random number of
seconds between 1 and 3. In a real-life situation, this would cause our application
to stop working, and of course, serve requests, unless we use some external tool
to monitor its status and restart it automatically. However, if we only have one
instance, there may be a non-negligible delay between restarts caused by the startup
time of the application. This means that during those restarts, the application is not
available. Having multiple instances instead will make sure we always have a backup
system to serve an incoming request even when one of the workers fails.

With the cluster module, all we have to do is spawn a new worker as soon
as we detect that one is terminated with an error code. Let's then modify the
'clusteredApp.js' module to take this into account:

if(cluster.isMaster) {
 // [...]

 cluster.on('exit', function(worker, code) {

Chapter 7

[331]

 if(code != 0 && !worker.suicide) {
 console.log('Worker crashed. Starting a new worker');
 cluster.fork();
 }
 });
} else {
 require('./app');
}

In the preceding code, as soon as the master process receives an 'exit' event, we
check whether the process is terminated intentionally or as the result of an error; we
do this by checking the status code and the flag worker.suicide, which indicates
whether the worker was terminated explicitly by the master. If we confirm that the
process was terminated because of an error, we start a new worker. It's interesting
to notice that while the crashed worker restarts, the other workers can still serve
requests, thus not affecting the availability of the application.

To test this assumption, we can try to stress our server again using siege. When
the stress test completes, we notice that among the various metrics produced by
siege, there is also an indicator that measures the availability of the application.
The expected result would be something similar to this:

Transactions: 3027 hits

Availability: 99.31 %

[...]

Failed transactions: 21

Please bear in mind that this result can vary a lot; it greatly depends on the number
of running instances and how many times they crash during the test, but it should
give a good indicator of how our solution works. The preceding numbers tell us
that despite our application is constantly crashing, we only had 21 failed requests
over 3,027 hits. In the example scenario we built, most of the failing requests will be
caused by the interruption of already established connections during a crash. In fact,
when this happens, siege will print an error like the following:

[error] socket: read error Connection reset by peer sock.c:479:
Connection reset by peer

Unfortunately, there is very little we can do to prevent these types of failures,
especially when the application terminates because of a crash. Nonetheless, our
solution proves to be working and its availability is not bad at all for an application
that crashes so often!

Scalability and Architectural Patterns

[332]

Zero-downtime restart
A Node.js application might need to be restarted also when its code needs to be
updated. So also in this scenario, having multiple instances can help maintain the
availability of our application.

When we have to intentionally restart an application to update it, there is a small
window in which the application restarts and is unable to serve requests. This can
be acceptable if we are updating our personal blog, but it's not even an option for
a professional application with an SLA (Service Level Agreement) or one that is
updated very often as part of a continuous delivery process. The solution is to
implement a zero-downtime restart where the code of an application is updated
without affecting its availability.

With the cluster module, this is again a pretty easy task, the pattern consists in
restarting the workers one at a time. This way, the remaining workers can continue
to operate and maintain the services of the application available.

Let's then add this new feature to our clustered server; all we have to do is add some
new code to be executed by the master process (the clusteredApp.js file):

if(cluster.isMaster) {
 // [...]

 process.on('SIGUSR2', function() { //[1]
 console.log('Restarting workers');
 var workers = Object.keys(cluster.workers);

 function restartWorker(i) { //[2]
 if(i >= workers.length) return;
 var worker = cluster.workers[workers[i]];
 console.log('Stopping worker: ' + worker.process.pid);
 worker.disconnect(); //[3]

 worker.on('exit', function() {
 if(!worker.suicide) return;
 var newWorker = cluster.fork(); //[4]
 newWorker.on('listening', function() {
 restartWorker(i + 1); //[5]
 });
 });
 }
 restartWorker(0);

Chapter 7

[333]

 });
} else {
 require('./app');
}

This is how the preceding block of code works:

1. The restarting of the workers is triggered on receiving the SIGUSR2 signal.
2. We define an iterator function called restartWorker(). This implements

an asynchronous sequential iteration pattern over the items of the
cluster.workers object.

3. The first task of the restartWorker() function is stopping a worker
gracefully by invoking worker.disconnect().

4. When the terminated process exits, we can spawn a new worker.
5. Only when the new worker is ready and listening for new connections we

can proceed with restarting the next worker by invoking the next step of
the iteration.

As our program makes use of UNIX signals, it will not work
properly on Windows systems. Signals are the simplest mechanism
to implement our solution. However, this isn't the only one; in fact,
other approaches include listening for a command coming from a
socket, a pipe, or the standard input.

Now we can test our zero-downtime restart by running the clusteredApp module
and then sending a SIGUSR2 signal. However, first we need to obtain the PID of the
master process; the following command can be useful to identify it from the list of all
the running processes:

ps af

The master process should be the parent of a set of node processes. Once we have the
PID we are looking for, we can send the signal to it:

kill -SIGUSR2 <PID>

Now the output of the clusteredApp application should display something like this:

Restarting workers

Stopping worker: 19389

Started 19407

Stopping worker: 19390

Started 19409

Scalability and Architectural Patterns

[334]

We can try again to use siege to verify that we don't have any considerable impact
on the availability of our application during the restart of the workers.

pm2 (https://github.com/Unitech/pm2) is a small
utility, based on cluster, which offers load balancing, process
monitoring, zero-downtime restarts, and other goodies.

Dealing with stateful communications
The cluster module does not work well with stateful communications where the
state maintained by the application is not shared between the various instances. This
is because different requests belonging to the same stateful session may potentially be
handled by a different instance of the application. This is not a problem limited only to
the cluster module, but in general it applies to any kind of stateless, load balancing
algorithm. Consider, for example, the situation described by the following figure:

John

Authenticate Load
balancer

authenticated:[‘john’]

authenticated:[]

Instance A

Instance B

John

Request Load
balancer

authenticated:[‘john’]

authenticated:[]

Instance A

Instance B

The user john initially sends a request to our application to authenticate himself,
but the result of the operation is registered locally (for example, in memory), so only
the instance of the application that receives the authentication request (Instance
A) knows that John is successfully authenticated. When John sends a new request,
the load balancer might forward it to a different instance of the application, which
actually doesn't possess the authentication details of john, hence refusing to perform
the operation. The application we just described cannot be scaled as it is, but luckily,
there are two easy solutions we can apply to solve the problem.

Chapter 7

[335]

Sharing the state across multiple instances
The first option we have to scale an application using stateful communications is
sharing the state across all the instances. This can be easily achieved with a shared data
store, as, for example, a database such as PostgreSQL (http://www.postgresql.org),
MongoDB (http://www.mongodb.org), or CouchDB (http://couchdb.apache.org),
or even better, we can use an in-memory store such as Redis (http://redis.io) or
Memcached (http://memcached.org).

The following diagram outlines this simple and effective solution:

John

Authenticate Load
balancer

authenticated:[‘john’]

Instance A

Instance B

John

Request Load
balancer

authenticated:[‘john’]

Instance A

Instance B

The only drawback of using a shared store for the communication state is that it's
not always possible, for example, we might be using an existing library that keeps
the communication state in memory; anyway, if we have an existing application,
applying this solution requires a change in the code of the application (if it's not
already supported). As we will see next, there is a less invasive solution.

Scalability and Architectural Patterns

[336]

Sticky load balancing
The other alternative we have to support stateful communications is having the
load balancer routing all the requests associated with a session always to the same
instance of the application. This technique is also called sticky load balancing.
The following figure illustrates a simplified scenario involving this technique:

As we can see from the preceding figure, when the load balancer receives a request
associated to a new session, it creates a mapping with one particular instance selected
by the load-balancing algorithm. The next time the load balancer receives a request
from that same session, it bypasses the load-balancing algorithm, selecting the
application instance that was previously associated to the session. The particular
technique we just described involves the inspection of the session ID associated with
the requests (usually included in a cookie by the application or the load balancer itself).

Chapter 7

[337]

A simpler alternative to associate a stateful connection to a single server is by using
the IP address of the client performing the request. Usually, the IP is provided to a
hash function that generates an ID representing the application instance designated to
receive the request. This technique has the advantage of not requiring the association
to be remembered by the load balancer. However it doesn't work well with devices
changing the IP frequently, as, for example, when roaming on different networks.

Sticky load balancing is not supported by default by the cluster
module; however, it can be added with an npm library called sticky-
session (https://www.npmjs.org/package/sticky-session).

One big problem with sticky load balancing is the fact that it nullifies most of the
advantages of having a redundant system, where all the instances of the application
are the same, and where an instance can eventually replace another one that stopped
working. For these reasons, the recommendation is to always try to avoid sticky load
balancing, preferring to build applications that maintain any session state in a shared
store or that don't require stateful communications at all (for example, by including
the state in the request itself).

For a real example of a library requiring a sticky load balancing,
we can mention Socket.io (http://socket.io/blog/
introducing-socket-io-1-0/#scalability).

Scaling with a reverse proxy
The cluster module is not the only option we have to scale a Node.js web
application. In fact, more traditional techniques are often preferred because they
offer more control and power in highly available production environments.

The alternative to using cluster is to start multiple standalone instances of the
same application running on different ports or machines, and then use a reverse
proxy (or gateway) to provide access to those instances, distributing the traffic across
them. In this configuration, we don't have any master process distributing requests
to a set of workers, but a set of distinct processes running on the same machine
(using different ports) or scattered across different machines inside a network.
To provide a single access point to our application, we can then use a reverse
proxy, a special device or service placed between the clients and the instances of
our application, which takes any request and forwards it to a destination server,
returning the result to the client as if it was itself the origin. In this scenario, the
reverse proxy is also used as a load balancer, distributing the requests among the
instances of the application.

Scalability and Architectural Patterns

[338]

For a clear explanation of the differences between a reverse proxy and a
forward proxy, you can refer to the Apache HTTP server documentation
at http://httpd.apache.org/docs/2.4/mod/mod_proxy.
html#forwardreverse.

The next figure shows a typical multiprocess, multimachine configuration with a
reverse proxy acting as a load balancer on the front:

Application
instance

Application
instance

Server #2

Application
instance

Application
instance

Server #3

Application
instance

Application
instance

Server #4

Server #1

Load
balancer

For a Node.js application, there are many reasons to choose this approach in place of
the cluster module:

• A reverse proxy can distribute the load across several machines, not just
several processes

• The most popular reverse proxies on the market support sticky
load balancing

• A reverse proxy can route a request to any available server, regardless of its
programming language or platform

Chapter 7

[339]

• We can choose more powerful load-balancing algorithms
• Many reverse proxies also offer other services such as URL rewrites, caching,

SSL termination point, or even the functionality of full-fledged web servers
that can be used, for example, to serve static files

That said, the cluster module could also be easily combined with a reverse proxy if
necessary; for example, using cluster to scale vertically inside a single machine and
then using the reverse proxy to scale horizontally across different nodes.

Pattern: use a reverse proxy to balance the load of an
application across multiple instances running on different
ports or machines.

We have many options to implement a load balancer using a reverse proxy;
popular solutions are:

• Nginx (http://nginx.org): This is a web server, reverse proxy, and load
balancer, built upon the non-blocking I/O model.

• HAProxy (http://www.haproxy.org): This is a fast load balancer for
TCP/HTTP traffic.

• Node.js-based proxies: There are many solutions for the implementation
of reverse proxies and load balancers directly in Node.js. This might have
advantages and disadvantages, as we will see later.

• Cloud-based proxies: In the era of Cloud Computing, it's not rare to utilize
a load balancer as-a-service. This can be convenient because it requires
minimal maintenance, it's usually highly scalable, and sometimes, it can
support dynamic configurations to enable on-demand scalability.

In the next few sections of this chapter, we will analyze a sample configuration using
Nginx and later on, we will also work on building our very own load balancer using
nothing but Node.js!

Load balancing with Nginx
To give an idea of how a dedicated reverse proxies work, we will now build a
scalable architecture based on Nginx (http://nginx.org); but first we need to
install it. We can do that by following the instructions at http://nginx.org/en/
docs/install.html.

Scalability and Architectural Patterns

[340]

On a latest Ubuntu system, you can quickly install Nginx with
the command:
sudo apt-get install nginx

On Mac OS X, you can use brew (http://brew.sh):
brew install nginx

As we are not going to use cluster to start multiple instances of our server,
we need to slightly modify the code of our application so that we can specify
the listening port using a command line argument. This will allow us to launch
multiple instances on different ports. Let's then consider again the main module
of our example application (app.js):

var http = require('http');
var pid = process.pid;

http.createServer(function(req, res) {
 for(var i = 1e7; i > 0; i--) {}
 console.log('Handling request from ' + pid);
 res.end('Hello from ' + pid + '\n');
}).listen(process.env.PORT || process.argv[2] || 8080, function() {
 console.log('Started ' + pid);
});

The tiny change is highlighted in the preceding code.

Another important feature we lack by not using cluster is the automatic restart
in case of a crash. Luckily this is easy to fix by using a dedicated supervisor, which
is an external process monitoring our application and restarting it if necessary.
Possible choices are:

• Node.js-based supervisors such as forever (https://npmjs.org/package/
forever) or pm2 (https://npmjs.org/package/pm2)

• OS-based monitors such as Upstart (http://upstart.ubuntu.com) or
Systemd (http://freedesktop.org/wiki/Software/systemd)

• More advanced monitoring solutions such as Monit (http://mmonit.com/
monit)

For this example, we are going to use forever, which is the simplest and
most immediate for us to use. We can install it globally by running the
following command:

npm install forever -g

Chapter 7

[341]

The next step is to start the four instances of our application, all on different ports
and supervised by forever:

forever start app.js 8081

forever start app.js 8082

forever start app.js 8083

forever start app.js 8084

We can check the list of the started processes using the command:

forever list

Now it's time to configure the Nginx server as a load balancer.

First, we need to identify the location of the nginx.conf file that can be found in one
of the following locations, depending on your system /usr/local/nginx/conf, /
etc/nginx, or /usr/local/etc/nginx.

Next, let's open the nginx.conf file and apply the following configuration, which is
the very minimum required to get a working load balancer:

http {
 # [...]
 upstream nodejs_design_patterns_app {
 server 127.0.0.1:8081;
 server 127.0.0.1:8082;
 server 127.0.0.1:8083;
 server 127.0.0.1:8084;
 }
 # [...]
 server {
 listen 80;

 location / {
 proxy_pass http://nodejs_design_patterns_app;
 }
 }
 # [...]
}

Scalability and Architectural Patterns

[342]

The configuration needs very little explanation. In the upstream nodejs_design_
patterns_app section, we are defining a list of the backend servers used to handle
the network requests, and then, in the server section, we specify the proxy_pass
directive, which essentially tells Nginx to forward any request to the server group
we defined before (nodejs_design_patterns_app). That's it, now we only need to
reload the Nginx configuration with the command:

nginx -s reload

Our system should now be up-and-running, ready to accept requests and balance
the traffic across the four instances of our Node.js application. Simply point your
browser to the address http://localhost to see how the traffic is balanced by
our Nginx server.

Using a Service Registry
One important advantage of modern cloud-based infrastructures is the ability to
dynamically adjust the capacity of an application based on the current or predicted
traffic; this is also known as dynamic scaling. If implemented properly, this practice
can reduce the cost of the IT infrastructure enormously while still maintaining the
application highly available and responsive.

The idea is simple; if our application is experiencing a performance degradation
caused by a peak in the traffic, we automatically spawn new servers to cope with
the increased load. We could also decide to shut down some servers during certain
hours, as, for example, at night, when we know that the traffic will be less, and
restarting them again in the morning. This mechanism requires the load balancer
to always be up-to-date with the current network topology, knowing at any time
which server is up.

Chapter 7

[343]

A common pattern to solve this problem is to use a central repository called Service
Registry, which keeps track of the running servers and the services they provide.
The next figure shows a multiservice architecture with a load balancer on the front,
dynamically configured using a Service Registry:

The preceding architecture assumes the presence of two services, API and WebApp.
The load balancer distributes the requests arriving on the /api endpoint to all the
servers implementing the API service, while the rest of the requests are spread across
the servers implementing the WebApp service. The load balancer obtains the list of
servers using the service registry.

For this to work in complete automation, each application instance has to register
itself to the service registry the moment it comes up online and unregister itself
when it stops. This way, the load balancer can always have an up-to-date view
of the servers and the services available in the network.

Scalability and Architectural Patterns

[344]

Pattern (service registry): use a central repository to store an always
up-to-date view of the servers and the services available in a system.

This pattern can be applied not only to load balancing, but also more generally as a
way to decouple a service type from the servers providing it. We can look at it as a
Service Locator design pattern applied to network services.

Implementing a dynamic load balancer with http-
proxy and seaport
To support a dynamic network infrastructure, we can use a reverse proxy such
as Nginx or HAProxy; all we need to do is update their configuration using an
automated service and then force the load balancer to pick the changes. For Nginx,
this can be done using the following command line:

nginx -s reload

The same result can be achieved with a cloud-based solution, but we have a third
and more familiar alternative that makes use of our favorite platform.

We all know that Node.js is a great tool to build any sort of network application;
as we said, this is exactly one of its main design goals. So, why not build a load
balancer using nothing but Node.js? This would give us much more freedom and
power, and would allow us to implement any sort of pattern or algorithm straight
into our custom-built load balancer, including the one we are now going to explore,
dynamic load balancing using a Service Registry.

For this example, we want to replicate the multiservice architecture we saw in
the figure of the previous section, and to do that, we are going to mainly use two
npm packages:

• http-proxy (https://npmjs.org/package/http-proxy): This is a library
to simplify the creation of proxies and load balancers in Node.js

• seaport (https://npmjs.org/package/seaport): This is a minimalist
Service Registry written in Node.js

Chapter 7

[345]

Let's start by implementing our services. They are simple HTTP servers as the ones
we have used so far to test cluster and Nginx, but this time we want each server to
register itself into the Service Registry the moment it starts.

Let's see how this looks (file app.js):

var http = require('http');
var pid = process.pid;
var seaport = require('seaport').connect('localhost', 9090);
var serviceType = process.argv[2];
var port = seaport.register(serviceType);

http.createServer(function(req, res) {
 for(var i = 1e7; i > 0; i--) {}
 console.log('Handling request from ' + pid);
 res.end(serviceType + ' response from ' + pid + '\n');
}).listen(port, function() {
 console.log('Started ' + pid);
});

In the preceding code, there are three lines of code that deserve our attention:

1. First, we initialize the seaport client and connect it to the registry server,
listening on port 9090.

2. Next, we read from the command line a serviceType, so we can
start a server by choosing the service it provides. This is only for our
convenience, to allow us to simulate a multiservice setup without
implementing multiple servers.

3. Finally, we register the service using seaport.register(). This also returns
a port number that we use to bind the HTTP server.

The registry will automatically unregister the service when it loses the connection
to the HTTP server. This means that we don't need to manually do it; the server will
simply disappear from the registry as soon as it stops.

Scalability and Architectural Patterns

[346]

Now it's time to implement the load balancer. Let's do that by creating a new
module called 'loadBalancer.js'. First, we need to define a routing table to
map URL paths to services:

var routing = [{
 path: '/api',
 service: 'api-service',
 index: 0
 },{
 path: '/',
 service: 'webapp-service',
 index: 0
 }];

Each item in the routing array contains the service used to handle the requests
arriving on the mapped path. The index property will be used to round robin the
requests of a given service.

Let's see how this works by implementing the second part of loadbalancer.js:

var httpProxy = require('http-proxy');
var seaport = require('seaport').connect('localhost', 9090); //[1]

var proxy = httpProxy.createProxyServer({});
require('http').createServer(function(req, res) {
 var route;
 routing.some(function(entry) { //[2]
 route = entry;
 //Starts with the route path?
 return req.url.indexOf(route.path) === 0;
 });

 var servers = seaport.query(route.service); //[3]
 if(!servers.length) {
 res.writeHead(502);
 return res.end('Bad gateway');
 }

 route.index = (route.index + 1) % servers.length; //[4]
 proxy.web(req, res, {target: servers[route.index]});
}).listen(8080, function() {console.log('Started');});

Chapter 7

[347]

This is how we implemented our Node.js-based load balancer:

1. First, we need to connect to the seaport server so that we can have access
to the registry. Next, we instantiate an http-proxy object and start a normal
web server.

2. In the request handler of the server, the first thing we do is match the URL
against our routing table. The result will be a descriptor containing the
service name.

3. We obtain from seaport the list of servers implementing the required
service. If this list is empty, we return an error to the client. For maximum
speed, seaport caches the registry locally, and keeps it up-to-date by
synchronizing it with the main registry server. That's why seaport.query()
is a synchronous call.

4. At last, we can route the request to its destination. We update route.index
to point to the next server in the list, following a round robin approach. We
then use the index to select a server from the list, passing it to proxy.web()
along with the request (req) and the response (res) objects. This will simply
forward the request to the server we chose.

It is now clear how simple it is to implement a load balancer using only Node.js and
how much flexibility we can have by doing so. Now we should be ready to give it a
go, but first, let's install the seaport server by running the following command:

npm install seaport -g

This allows us to start the seaport service registry with this simple command line:

seaport listen 9090

Now we are ready to start the load balancer:

node loadBalancer

Now if we try to access some of the services exposed by the load balancer, we will
notice that it returns an HTTP 502 error, because we didn't start any server yet.
Try it yourself:

curl localhost:8080/api

The preceding command should return the following output:

Bad Gateway

Scalability and Architectural Patterns

[348]

The situation will change if we spawn some instances of our services, for example,
two api-service and one webapp-service:

forever start app.js api-service

forever start app.js api-service

forever start app.js webapp-service

Now the load balancer should automatically see the new servers and start
distributing requests across them. Let's try again with the following command:

curl localhost:8080/api

The preceding command should now return this:

api-service response from 6972

By running it again, we should now receive a message from another server,
confirming that the requests are being distributed evenly among the different servers:

api-service response from 6979

The advantages of this pattern are immediate. We can now scale our infrastructure
dynamically, on-demand, or based on a schedule, and our load balancer will
automatically adjust with the new configuration without any extra effort!

Peer-to-peer load balancing
Using a reverse proxy is almost a necessity when we want to expose a complex
internal network architecture to a public network such as the Internet. It helps hide
the complexity, providing a single access point that external applications can easily
use and rely on. However, if we need to scale a service that is for internal use only,
we can have much more flexibility and control.

Let's imagine having a Service A which relies on a Service B to implement its
functionality. Service B is scaled across multiple machines and it's available only in
the internal network. What we have learned so far is that Service A will connect to
Service B using a reverse proxy, which will distribute the traffic to all the servers
implementing Service B.

However, there is an alternative. We can remove the reverse proxy from the picture
and distribute the requests directly from the client (Service A), which now becomes
directly responsible for load balancing its connections across the various instances
of Service B. This is possible only if Server A knows the details about the servers
exposing Service B, and in an internal network, this is usually known information.
With this approach we are essentially implementing peer-to-peer load balancing.

Chapter 7

[349]

The following diagram compares the two alternatives we just described:

Centralized load balancing

Service A
(Client)

Load
Balancer

Service B Service B Service B

Peer-to-peer load balancing

Service A
(Client)

Service B Service B Service B

This is an extremely simple and effective pattern that enables truly distributed
communications without bottlenecks or single points of failure. Besides that,
it also does the following:

• Reduces the infrastructure complexity by removing a network node
• Allows faster communications, because messages will travel through one

fewer node
• Scales better, because performances are not limited by what the load

balancer can handle

On the other side, by removing the reverse proxy, we are actually exposing the
complexity of its underlying infrastructure. Also, each client has to be smarter by
implementing a load-balancing algorithm and possibly, also a way to keep its
knowledge of the infrastructure up-to-date.

Peer-to-peer load balancing is a pattern used extensively in the
ØMQ (http://zeromq.org) library.

Scalability and Architectural Patterns

[350]

Implementing an HTTP client that can balance
requests across multiple servers
We already know how to implement a load balancer using only Node.js and
distribute incoming requests across the available servers, so implementing the
same mechanism on the client side should not be that different. All we have to
do in fact is wrap the client API and augment it with a load-balancing mechanism.
Take a look at the following module (balancedRequest.js):

var http = require('http');
var servers = [
 {host: 'localhost', port: '8081'},
 {host: 'localhost', port: '8082'}
];
var i = 0;

module.exports = function(options, callback) {
 i = (i + 1) % servers.length;
 options.hostname = servers[i].host;
 options.port = servers[i].port;

 return http.request(options, callback);
};

The preceding code is very simple and needs little explanation. We wrapped the
original http.request API so that it overrides hostname and port of the request
with those selected from the list of available servers using a round robin algorithm.

The new wrapped API can then be used seamlessly (client.js):

var request = require('./balancedRequest');
for(var i = 10; i >= 0; i--) {
 request({method: 'GET', path: '/'}, function(res) {
 var str = '';
 res.on('data', function (chunk) {
 str += chunk;
 }).on('end', function () {
 console.log(str);
 });
 }).end();
}

Chapter 7

[351]

To try the preceding code, we have to start two instances of the sample
server provided:

node app 8081

node app 8082

Followed by the client application we just built:

node client

We should notice how each request is sent to a different server, confirming that
we are now able to balance the load without a dedicated reverse proxy!

An improvement to the wrapper we created before would be to
integrate a Service Registry directly into the client and obtain the
server list dynamically. You can find an example of this technique
in the code distributed with the book.

Decomposing complex applications
So far in the chapter, we have mainly focused our analysis on the X axis of the scale
cube. We saw how it represents the easiest and most immediate way to distribute
the load of an application, also improving its availability. In the following section,
we are now going to focus on the Y axis of the scale cube, where applications are
scaled by decomposing them by functionality and service. As we will learn, this
technique allows to scale not only the capacity of an application, but also, and most
importantly, its complexity.

Monolithic architecture
The term monolithic might make us think of a system without modularity, where all
the services of an application are interconnected together and almost indistinguishable.
However, this is not always the case. Often, monolithic systems have a highly modular
architecture and a good decoupling between their internal components.

Scalability and Architectural Patterns

[352]

A perfect example is the Linux Operating System kernel, which is part of a category
called monolithic kernels (in perfect opposition with its ecosystem and the Unix
philosophy). Linux has thousands of services and modules that we can load and
unload dynamically even while the system is running. However, they all run in kernel
mode, which means that a failure in any of them might bring the entire OS down
(have you ever seen a kernel panic?). This approach is opposed to the microkernel
architecture, where only the core services of the operating system run in kernel mode,
while the rest is running in user mode, usually each one with its own process. The
main advantage of this approach is that a problem in any of these services would more
likely cause it to crash in isolation instead of affecting the stability of the entire system.

The Torvalds-Tanenbaum debate on kernel design is probably one of the
most famous flame wars in the history of computer science, where one of
the main points of dispute was exactly monolithic versus microkernel
design. You can find a web version of the discussion (it originally
appeared on Usenet) at https://groups.google.com/d/msg/
comp.os.minix/wlhw16QWltI/P8isWhZ8PJ8J.

It's remarkable how these design principles, more than 30 years old, can still be
applied today and in totally different environments. Modern monolithic applications
are comparable to monolithic kernels; if any of their components fail, the entire
system is affected, which translated in to Node.js terms means that all the services
are part of the same codebase and run in a single process (when not cloned).

To make an example of a monolithic architecture, let's take a look at the
following figure:

E-commerce application

Store front-end
Admin

front-end

Datastore

Checkout Search
Authentication

and
Users

Products Cart

Chapter 7

[353]

The preceding figure shows the architecture of a typical e-commerce application.
Its structure is modular; we have two different frontends, one for the main store
and another for the administration interface. Internally, we have a clear separation
of the services implemented by the application, each one responsible for a specific
portion of its business logic: Products, Cart, Checkout, Search, and Authentication
and Users. However, the preceding architecture is monolithic, every module, in fact,
is part of the same codebase and runs as part of a single application. A failure in any
of its components, for example, an uncaught exception, can potentially tear down the
entire online store.

Another problem with this type of architecture is the interconnection between its
modules; the fact that they all live inside the same application makes it very easy
for a developer to build interactions and coupling between modules. For example,
consider the use case when a product is being purchased; the Checkout module
has to update the availability of the Product object, and if those two modules are
in the same application, it's too easy for a developer to just obtain a reference to
a Product object and update its availability directly. Maintaining a low coupling
between internal modules is very hard in monolithic application, partly because
the boundaries between them are not always clear or properly enforced.

A high coupling is often one of the main obstacles to the growth of an application
and prevents its scalability in terms of complexity. In fact, an intricate dependency
graph means that every part of the system is a liability; it has to be maintained for
the entire life of the product, and any change should be carefully evaluated because
every component is like a wooden block in a Jenga tower, moving or removing one
of them can cause the entire tower to collapse. This often results in the building of
conventions and development processes to cope with the increasing complexity of
the project.

The Microservice architecture
Now we are going to reveal the most important pattern in Node.js to write big
applications: avoid writing big applications. This seems like a trivial statement,
but it's an incredibly effective strategy to scale both the complexity and the capacity
of a software system. So what's the alternative to writing big applications? The
answer is in the Y axis of the scale cube, decomposition and splitting by service and
functionality. The idea is to break down an application into its essential components,
creating separate, independent applications. It is practically the opposite of the
monolithic architecture. This fits perfectly with the Unix philosophy, and the
Node.js principles we discussed in the beginning of the book, in particular
"make each program do one thing well".

Scalability and Architectural Patterns

[354]

The Microservice architecture is probably today the reference pattern for this type of
approach, where a set of self-sufficient services replaces big monolithic applications.
The prefix micro means that the services should be as small as possible, but always
within reasonable limits. Don't be misled by thinking that creating an architecture
with a hundred different applications exposing only one web service is necessarily
a good choice. In reality, there is no strict rule on how small or big a service should
be, it's not the size that matters in the design of a Microservice architecture; instead,
it's a combination of different factors, mainly loose coupling, high cohesion, and
integration complexity.

An example of the Microservice architecture
Let's now see how the monolithic e-commerce application would look like, using a
Microservice architecture:

DatastoreDatastoreDatastore Datastore Datastore

Products service Cart service Checkout service Search service
Auth and Users

service

Checkout Search
Authentication

and
Users

Products Cart

Store front-end application

Store front-end

Admin front-end application

Admin front-end

As we can see from the previous figure, each fundamental component of the
e-commerce application is now a self-sustaining and independent entity, living in its
own context, with its own database. In practice, they are all independent applications
exposing a set of related services (high cohesion).

Chapter 7

[355]

The data ownership of a service is an important characteristic of the Microservice
architecture. This is why the database also has to be split to maintain the proper level
of isolation and independence. If a unique shared database is used, it would become
much easier for the services to work together; however, this would also introduce a
coupling between the services (based on data), nullifying some of the advantages of
having different applications.

The dashed line connecting all the nodes tells us that, in some way, they have to
communicate and exchange information for the entire system to be fully functional.
As the services do not share the same database, there is more communication
involved to maintain the consistency of the whole system. For example, the
Checkout application needs to know some information about Products, such as
the price and restrictions on shipping, and at the same time, it needs to update the
data stored in the Products service, for example, the product availability when the
checkout is complete. In the preceding figure, we tried to keep the way the nodes
communicate abstract. Surely, the most popular strategy is using web services,
but as we will see later, this is not the only option.

Pattern (microservice architecture): split a complex application by
creating several small, self-contained services.

Pros and cons of microservices
In this section we are going to highlight some of the advantages and disadvantages
of implementing the Microservice architecture. As we will see, this approach
promises to bring a radical change in the way we develop our applications,
revolutionizing the way we see scalability and complexity, but on the other side,
it introduces new nontrivial challenges as well.

Martin Fowler wrote a great article about microservices that
you can find at http://martinfowler.com/articles/
microservices.html.

Scalability and Architectural Patterns

[356]

Every service is expendable
The main technical advantage of having each service living in its own application
context is that crashes, bugs, and breaking changes do not propagate to the entire
system. The goal is to build truly independent services that are smaller, easier to
change, or even rebuild from scratch. If, for example, the Checkout service of our
e-commerce application suddenly crashes because of a serious bug, the rest of the
system would continue to work as normal. Some functionality may be affected, for
example, the ability to purchase a product, but the rest of the system would
continue to work.

Also, imagine if we suddenly realized that the database or the programming
language we used to implement a component was not a good design decision.
In a monolithic application, there would be very little we could do to change things
without affecting the entire system; instead, in a Microservice architecture, we could
more easily re-implement the entire service from scratch, using a different database
or platform, and the rest of the system would not even notice it.

Reusability across platforms and languages
Splitting a big monolithic application into many small services allows us to
create independent units that can be re-used much more easily. Elasticsearch
(http://www.elasticsearch.org) is a great example of a re-usable search
service, also the authentication server we built in Chapter 5, Wiring Modules,
is another example of a service that can be easily re-used in any application,
regardless of the programming language it's built in.

The main advantage is that the level of information hiding is usually much higher
compared to monolithic applications. This is possible because the interactions
usually happen through a remote interface such as a web service or a message
broker, which makes it much easier to hide the implementation details and shield
the client from changes in the way the service is implemented or deployed. For
example, if all we have to do is invoke a web service, we are shielded from the
way the infrastructure behind is scaled, from what programming language it
uses, from what database it uses to store its data, and so on.

A way to scale the application
Going back to the scale cube, it's clear that microservices are equivalent to scaling
an application along the Y axis, so it's already a means for the distribution of the
load across multiple machines. Also, we should not forget that we can combine
microservices with the other two dimensions of the cube to scale the application
even further. For example, each service could be cloned to handle more traffic,
and the interesting aspect is that they can be scaled independently, allowing better
resource management.

Chapter 7

[357]

The challenges of microservices
At this point, it would look like microservices are the solution to all our problems;
however, this is far from being true. In fact, having more nodes to manage introduces
a higher complexity in terms of integration, deployment, and code sharing; it fixes
some of the pains of traditional architectures but it also opens many new questions.
How do we make the services interact? How can we deploy, scale, and monitor such
a high number of applications? How can we share and reuse code between services?
Fortunately, cloud services and modern DevOps methodologies can provide some
answers to those questions, and also, Node.js can help a lot. Its module system
is a perfect companion to share code between different projects. Node.js was
made to be a node in a distributed system such as those implemented using the
Microservice architecture.

Although microservices can be built using any framework (or
even just the core Node.js modules), there are a few solutions
specialized for this purpose, among the most notable we have
Seneca (https://npmjs.org/package/seneca). A useful
tool to manage the deployment of microservices is nscale
(https://github.com/nearform/nscale).

Integration patterns in a Microservice
architecture
One of the toughest challenges of microservices is connecting all the nodes together to
make them collaborate. For example, the Cart service of our e-commerce application
would make little sense without some Products to add, and the Checkout service
would be useless without a list of products to buy (a cart). As we already mentioned,
there are also other factors that necessitate an interaction between the various services.
For example, the Search service has to know which Products are available and
must also ensure to keep its information up-to-date. The same can be said about
the Checkout service that has to update the information about Product availability
when a purchase is completed.

When designing an integration strategy, it's also important to consider the coupling that
it's going to introduce between the services in the system. We should not forget that
designing a distributed architecture involves the same practices and principles that we
use locally when designing a module or subsystem, therefore, we also need to take into
consideration properties such as the reusability and extensibility of the service.

Scalability and Architectural Patterns

[358]

The API proxy
The first pattern we are going to show makes use of an API proxy, a server that proxies
the communications between a client and a set of remote API. In the Microservice
architecture, its main purpose is to provide a single access point for multiple API
endpoints, but it can also offer load balancing, caching, authentication, and traffic
limiting, all features that prove out to be very useful to implement a solid API solution.

This pattern should not be new to us; we already saw it in action when we built the
custom load balancer with http-proxy and seaport. For that example, our load
balancer was exposing only two services, and then, thanks to a Service Registry,
it was able to map a URL path to a service and hence to a list of servers. An API
proxy works in the same way; it is essentially a reverse proxy and often also a load
balancer, specifically configured to handle API requests. The next figure shows how
we can apply such a solution to our e-commerce application:

From the preceding figure, it should be clear how an API proxy can hide the
complexity of its underlying infrastructure. This is really handy in a Microservice
infrastructure, as the number of nodes may be high, especially if each service is
scaled across multiple machines. The integration achieved by an API Proxy is
therefore only structural; there is no semantic mechanism. It simply provides a
familiar monolithic view of a complex Microservice infrastructure. This is opposed
to the next pattern we are going to learn, where the integration is semantic instead.

Chapter 7

[359]

API orchestration
The pattern we are going to describe next is probably the most natural and explicit
way to integrate and compose a set of services, and it's called API orchestration.
Daniel Jacobson, VP of engineering for the Netflix API, in one of his blog posts
(http://thenextweb.com/dd/2013/12/17/future-api-design-orchestration-
layer), defines API Orchestration as follows:

An API Orchestration Layer (OL) is an abstraction layer that takes
generically-modeled data elements and/or features and prepares them in
a more specific way for a targeted developer or application.

The generically modeled elements and/or features fit the description of a service in a
Microservice architecture perfectly. The idea is to create an abstraction to connect
those bits and pieces to implement new services specific to the application.

Let's make an example using the e-commerce application. Refer to the
following figure:

Scalability and Architectural Patterns

[360]

The preceding figure shows how the Store front-end application uses an
Orchestration layer to build more complex and specific features by composing
and orchestrating existing services. The described scenario takes as example
a hypothetical completeCheckout() service that is invoked the moment a
customer clicks the Pay button at the end of the checkout. The figure shows how
completeCheckout() is a composite operation made of three different steps:

1. First, we complete the transaction by invoking checkoutService/pay.
2. Then, when the payment is successfully processed, we need to tell the cart

service that the items were purchased and they can be removed from the cart.
We do that by invoking cartService/delete.

3. Also, when the payment is complete, we need to update the availability
of the products that were just purchased. This is done through
productsService/update.

As we can see, we took three operations from three different services and we
built a new API that coordinates the services to maintain the entire system in a
consistent state.

Another common operation performed by the API Orchestration Layer is data
aggregation, in other words, combining data from different services into a single
response. Imagine if we wanted to list all the products contained in a cart. In this
case, the Orchestration would need to retrieve the list of product IDs from the Cart
service and then retrieve the complete information about the products from the
Products service. The ways by which we can combine and coordinate services
are really infinite, but the important pattern to remember is the role of the
Orchestration layer, which acts as an abstraction between a number of services
and a specific application.

The Orchestration layer is a great candidate for a further functional splitting. It is in
fact very common to have it implemented as a dedicated, independent service, in
which case it takes the name of API Orchestrator. This practice is perfectly in line
with the Microservice philosophy.

Chapter 7

[361]

The next figure shows this further improvement of our architecture:

Creating a standalone Orchestrator, as shown in the previous figure, can help
in decoupling the client application (in our case, the Store front-end) from the
complexity of the Microservice infrastructure. This reminds us about the API
Proxy; however, there is a crucial difference; an Orchestrator performs a semantic
integration of the various services—it's not just a naïve proxy—and it often exposes
an API that is different from the one exposed by the underlying services.

Integration with a message broker
The Orchestrator pattern gave us a mechanism to integrate the various services in an
explicit way. This has both advantages and disadvantages. It is easy to design, easy to
debug, and easy to scale, but unfortunately, it has to have a complete knowledge of the
underlying architecture and how each service works. If we were talking about objects
instead of architectural nodes, the Orchestrator would be an anti-pattern called God
Object, which defines an object that knows and does too much, which usually results
in high coupling, low cohesion, but most importantly, high complexity.

Scalability and Architectural Patterns

[362]

The pattern we are now going to show tries to distribute across the services the
responsibility of synchronizing the information of the entire system. However, the
last thing we want to do is create direct relationships between services, which would
result in high coupling and a further increase in the complexity of the system, due to
the increasing number of interconnections between nodes. The goal is to have each
service maintain its isolation; they should be able to work even without the rest of
the services in the system or in combination with new services and nodes.

The solution is to use a message broker, a system capable of decoupling the
sender from the receiver of a message, allowing to implement a centralized
publish/subscribe pattern, in practice an observer pattern for distributed systems
(we will talk more about this pattern later in the book). The following diagram
shows an example of how this applies to the e-commerce application:

Products service

Products

Cart service

Cart

Checkout service

Checkout

Store front-end application

Store front-end

(1)checkoutService/pay

Message broker

(2){
event: ‘purchased’,
cartId: ‘---’,
products: [---]
}

(3){
event: ‘purchased’,

}

(4){
event: ‘purchased’,

}

Chapter 7

[363]

As we can see, the client of the Checkout service, which is the front-end application,
does not need to carry out any explicit integration with the other services. All it has
to do is invoke checkoutService/pay to complete the checkout and take the money
from the customer; all the integration work happens in the background:

1. The Store front-end invokes the checkoutService/pay operation on the
Checkout service.

2. When the operation completes, the Checkout service generates an event,
attaching the details of the operation, that is, the cartId and the list of
products that were just purchased. The event is published into the message
broker. At this point, the Checkout service does not know who is going to
receive the message.

3. The Cart service is subscribed to the broker, so it's going to receive the
purchased event that was just published by the Checkout service. The
Cart service reacts by removing from its database the cart identified with
the ID contained in the message.

4. The Products service was subscribed to the message broker as well,
so it receives the same purchased event. It then updates its database based
on this new information, adjusting the availability of the products included
in the message.

The whole process happens without any explicit intervention from external entities
such as an Orchestrator. The responsibility for spreading the knowledge and keeping
information in sync is distributed across the services themselves. There is no God
service that has to know how to move the gears of the entire system, each service is
in charge of its own part of the integration.

The message broker is a fundamental element to decouple the services and reduce
the complexity of their interaction. It might also offer other interesting features such
as persistent message queues and guaranteed ordering of the messages. We will talk
more about this in the next chapter.

Scalability and Architectural Patterns

[364]

Summary
In this chapter, we learned how to design Node.js architectures that scale both
in capacity and complexity. We saw how scaling an application is not only about
handling more traffic or reducing the response time, but it's also a practice to apply
when we want better availability and tolerance to failures. We saw how these
properties often are on the same wavelength and we understood that scaling early
is not a bad practice, especially in Node.js, which allows us to do it easily and with
few resources.

The scale cube taught us that applications can be scaled across three dimensions.
We dived into the two most important of them, the X and Y axes, allowing us
to discover two essential architectural patterns, namely, load balancing and
microservices. We should know by now how to start multiple instances of the same
Node.js application, how to distribute the traffic across them, and how to exploit
this setup for other purposes such as fail tolerance and zero-downtime restarts. We
also analyzed how to handle the problem of dynamic and autoscaled infrastructures,
we saw that a Service Registry can come really useful in those situations. However,
cloning and load balancing cover only one dimension of the scale cube, so we moved
our analysis to another dimension, studying in more detail what it means to split an
application by its constituent services, by building a Microservice architecture. We
saw how microservices enable a complete revolution in how a project is developed
and managed, providing a natural way to distribute the load of an application
and split its complexity. However, we learned that this also means shifting the
complexity from how to build a big monolithic application to how to integrate a set of
services. This last aspect is where we focused the last part of our analysis, showing
some of the architectural solutions to integrate a set of independent services.

In the next chapter, we will have the chance to analyze in more detail the messaging
patterns we discussed in this chapter in addition to more advanced integration
techniques, useful when implementing complex distributed architectures.

Messaging and
Integration Patterns

If scalability is about splitting, systems integration is about rejoining. In the previous
chapter, we learned how to distribute an application, fragmenting it across several
machines. In order for it to work properly, all those pieces have to communicate in
some way, and hence, they have to be integrated.

There are two main techniques to integrate a distributed application: one is to use
a shared store as a central coordinator and keeper of all the information, the other
one is to use messages to disseminate data, events, and commands across the nodes
of the system. This last option is what really makes the difference when scaling
distributed systems, and it's also what makes this topic so fascinating and
sometimes complex.

Messages are used in every layer of a software system. We exchange messages to
communicate on the Internet, we can use messages to send information to other
processes using pipes, we can use messages within an application as an alternative to
direct function invocation (Command pattern), and also device drivers use messages
to communicate with the hardware. Any discrete and structured data that is used as
a way to exchange information between components and systems can be seen as a
message. However, when dealing with distributed architectures, the term messaging
system is used to describe a specific class of solutions, patterns, and architectures
that are meant to facilitate the exchange of information over the network.

Messaging and Integration Patterns

[366]

As we will see, there are several traits that characterize these types of systems.
We might choose to use a broker versus a peer-to-peer structure, we might use a
request/reply or one-way communication, or we might use queues to deliver our
messages more reliably; the scope of the topic is really broad. The book, Enterprise
Integration Patterns, by Gregor Hohpe and Bobby Woolf, gives you an idea about the
vastness of the topic. It is considered the Bible of messaging and integration patterns
that has more than 700 pages describing 65 different integration patterns. This
chapter explores the most important of those well-known patterns, considering them
from the perspective of Node.js and its ecosystem.

To sum up, in this chapter, we will learn about the following topics:

• The fundamentals of a messaging system
• The publish/subscribe pattern
• Pipelines and task distribution patterns
• Request/reply patterns

Fundamentals of a messaging system
When talking about messages and messaging systems, there are four fundamental
elements to take in consideration, these are as follows:

• The direction of the communication, which can be one-way only or a
request/reply exchange

• The purpose of the message, which also determines its content
• The timing of the message, which can be sent and received immediately or at a

later time (asynchronously)
• The delivery of the message, which can happen directly or via a broker

In the sections that will follow, we are going to formalize these aspects in order to
provide a base for our later discussions.

Chapter 8

[367]

One-way and request/reply patterns
The most fundamental aspect in a messaging system is the direction of the
communication, which often also determines its semantics.

The most simple communication pattern is when the message is pushed,
one-way from a source to a destination, this is a trivial situation, and it doesn't
need many explanations.

Initiator

push

A typical example of one-way communication is the e-mail, or a web server that
sends a message to a connected browser using WebSockets, or a system that
distributes tasks to a set of workers.

The request/reply pattern is, however, far more popular than the one-way only
communication, a typical example is the invocation of a web service. The following
figure shows this simple and well-known scenario:

Initiator

(1) Request

(2) Reply

The request/reply pattern might seem a trivial pattern to implement; however, we
will see that it becomes more complicated when the communication is asynchronous
or involves multiple nodes. Take a look at the example in the following figure:

(1) Request (2) Request

(3) Reply

Messaging and Integration Patterns

[368]

With the setup shown in the preceding diagram, we can appreciate the complexity
of some request/reply patterns. If we consider the direction of the communication
between any two nodes, we can surely say that it is one-way. However, from a
global point of view, the initiator sends a request and in turn receives an associated
response, even if from a different node. In these situations, what really differentiates
a request/reply pattern from a bare one-way loop is the relationship between the
request and the reply, which is kept in the initiator. The reply is usually handled in
the same context of the request.

Message types
A message is essentially a means to connect different software components and
there are different reasons for doing so: it might be because we want to obtain some
information held by another system or a component, to execute operations remotely,
or to notify some peers that something has just happened. The message content will
also vary depending on the reason of the communication. In general, we can identify
three types of messages, depending on their purpose:

• Command Message
• Event Message
• Document Message

The Command Message is already familiar to us; it's essentially a serialized
Command Object as we described it in Chapter 4, Design Patterns. The purpose of this
type of message is to trigger the execution of an action or a task on the receiver. For
this to be possible, our message has to contain the essential information to run the
task, which is usually the name of the operation and a list of arguments to provide
when it's executed. The Command Message can be used to implement Remote
Procedure Call (RPC) systems, distributed computations, or more simply used to
request some data. RESTful HTTP calls are simple examples of commands; each
HTTP verb has a specific meaning and is associated with a precise operation: GET, to
retrieve the resource; POST, to create a new one; PUT, to update it; and DELETE, to
destroy it.

An Event Message is used to notify another component that something has occurred.
It usually contains the type of the event and sometimes also some details such as
the context, the subject or actor involved. In web development, we are using an
Event message in the browser when using long-polling or WebSockets to receive
notifications from the server that something has just happened, as for example,
changes in the data or in general, the state of the system. The use of events is a very
important integration mechanism in distributed applications, as it enables us to keep
all the nodes of the system on the same page.

Chapter 8

[369]

The Document Message is primarily meant to transfer data between components and
machines. The main characteristic that differentiates a Document from a Command
(which might also contain data) is that the message does not contain any information
that tells the receiver what to do with the data. On the other side, the main difference
from an Event message is mainly the absence of an association with a particular
occurrence, with something that happened. Often, the replies to the Command
messages are Document messages, as they usually contain only the data that was
requested or the result of an operation.

Asynchronous messaging and queues
As Node.js developers, we should already know the advantages of executing
asynchronous operations. For messaging and communications, it's the same story.

We can compare a synchronous communication to a phone call: the two peers
must be connected to the same channel at the same time and they should exchange
messages in real time. Normally, if we want to call someone else, we either need
another phone or close the ongoing communication in order to start a new one.

An asynchronous communication is similar to an SMS, it doesn't require the recipient
to be connected to the network the moment we send it, we might receive a response
immediately or after an unknown delay, or we might not receive a response at all.
We might send multiple SMS to multiple recipients one after the other, and receive
their responses (if any) in any order. In short, we have a better parallelism with the
use of fewer resources.

Another important advantage of asynchronous communications is that the messages
can be stored and then delivered as soon as possible or at a later time. This might be
useful when the receiver is too busy to handle new messages or when we want to
guarantee the delivery. In messaging systems, this is made possible using a message
queue, a component that mediates the communication between the sender and the
receiver, storing any message before it gets delivered to its destination, as shown in
the following figure:

Message queueSender Receiver

Messaging and Integration Patterns

[370]

If for any reason the receiver crashes, disconnects from the network, or experiences a
slowdown, the messages are accumulated in the queue and dispatched as soon as the
receiver comes online and is fully working. The queue can be located in the sender,
or split between the sender and receiver, or living in a dedicated external system
acting as a middleware for the communication.

Peer-to-peer or broker-based messaging
Messages can be delivered directly to the receiver, in a peer-to-peer fashion or
through a centralized intermediary system called Message Broker. The main role of
the broker is to decouple the receiver of the message from the sender. The following
figure shows the architectural difference between the two approaches:

Peer-to-peer Message Broker

Message

Broker

In a peer-to-peer architecture, every node is directly responsible for the delivery of
the message to the receiver. This implies that the nodes have to know the address
and port of the receiver and they have to agree on a protocol and message format.
The broker eliminates these complexities from the equation: each node can be totally
independent and can communicate with an undefined number of peers without
directly knowing their details. A broker can also act as a bridge between the different
communication protocols, for example, the popular RabbitMQ broker (http://www.
rabbitmq.com) supports Advanced Message Queuing Protocol (AMQP), Message
Queue Telemetry Transport (MQTT), and Simple/Streaming Text Orientated
Messaging Protocol (STOMP), enabling multiple applications supporting different
messaging protocols to interact.

Chapter 8

[371]

MQTT (http://mqtt.org) is a lightweight messaging protocol,
specifically designed for machine-to-machine communications
(Internet of Things). AMQP (http://www.amqp.org) is a more
complex protocol, which is designed to be an open source alternative
to proprietary messaging middlewares. STOMP (http://stomp.
github.io) is a lightweight text-based protocol, which comes from
the HTTP school of design. All three are Application layer protocols,
and based on TCP/IP.

Besides the decoupling and the interoperability, a broker can offer more advanced
features such as persistent queues, routing, message transformations, and monitoring,
without mentioning the broad range of messaging patterns that many brokers
support out of the box. Of course, nothing can stop us from implementing all these
features using a peer-to-peer architecture, but unfortunately there is much more effort
involved. Nonetheless, there might be different reasons to avoid a broker:

• Removing a single point of failure
• A broker has to be scaled, while in a peer-to-peer architecture we only need

to scale the single nodes
• Exchanging messages without intermediaries can greatly reduce the latency

of the transmission

If we want to implement a peer-to-peer messaging system, we can also have much
more flexibility and power, because we are not bound to any particular technology,
protocol, or architecture. The popularity of ØMQ (http://zeromq.org), which is
a low-level library for building messaging systems, is a great demonstration of the
flexibility that we can have by building custom peer-to-peer or hybrid architectures.

Messaging and Integration Patterns

[372]

Publish/subscribe pattern
Publish/subscribe (often abbreviated Pub/Sub) is probably the best known
one-way messaging pattern. We should already be familiar with it, as it's nothing
more than a distributed observer pattern. As in the case of observer, we have a set of
subscribers registering their interest in receiving a specific category of messages. On
the other side, the publisher produces messages that are distributed across all
the relevant subscribers. The following figure shows the two main variations of the
pub/sub pattern, the first peer-to-peer, the second using a broker to mediate
the communication:

Subscriber

Subscriber

Subscriber

Publisher

Subscriber

Subscriber

Subscriber

BrokerPublisher

Peer-to-peer Pub/Sub Pub/Sub with a broker

What makes pub/sub so special is the fact that the publisher doesn't know who the
recipients of the messages are in advance. As we said, it's the subscriber which has
to register its interest to receive a particular message, allowing the publisher to work
with an unknown number of receivers. In other words, the two sides of the pub/sub
pattern are loosely coupled, which makes this an ideal pattern to integrate the nodes of
an evolving distributed system.

The presence of a broker further improves the decoupling between the nodes of the
system because the subscribers interact only with the broker, not knowing which
node is the publisher of a message. As we will see later, a broker can also provide
a message queuing system, allowing a reliable delivery even in the presence of
connectivity problems between the nodes.

Now, let's work on an example to demonstrate this pattern.

Chapter 8

[373]

Building a minimalist real-time chat
application
To show a real example of how the pub/sub pattern can help us integrate a
distributed architecture, we are now going to build a very basic real-time chat
application using pure WebSockets. Then, we will try to scale it by running
multiple instances and using a messaging system to put them in communication.

Implementing the server side
Now, let's take one step at a time. Let's first build our chat application; to do this,
we will rely on the ws package (https://npmjs.org/package/ws), which is a
pure WebSocket implementation for Node.js. As we know, implementing real-time
applications in Node.js is pretty simple, and our code will confirm this assumption.
Let's then create the server side of our chat; its content is as follows (in the app.js file):

var WebSocketServer = require('ws').Server;

//static file server
var server = require('http').createServer(//[1]
 require('ecstatic')({root: __dirname + '/www'})
);

var wss = new WebSocketServer({server: server}); //[2]
wss.on('connection', function(ws) {
 console.log('Client connected');
 ws.on('message', function(msg) { //[3]
 console.log('Message: ' + msg);
 broadcast(msg);
 });
});

function broadcast(msg) { //[4]
 wss.clients.forEach(function(client) {
 client.send(msg);
 });
}

server.listen(process.argv[2] || 8080);

Messaging and Integration Patterns

[374]

That's it! That's all we need to implement our chat application on the server. This is
the way it works:

1. We first create an HTTP server and attach a middleware called ecstatic
(https://npmjs.org/package/ecstatic) to serve static files. This is needed
to serve the client-side resources of our application (JavaScript and CSS).

2. We create a new instance of the WebSocket server and we attach it to our
existing HTTP server. We then start listening for incoming WebSocket
connections, by attaching an event listener for the connection event.

3. Each time a new client connects to our server, we start listening for
incoming messages. When a new message arrives, we broadcast it to
all the connected clients.

4. The broadcast() function is a simple iteration over all the connected clients,
where the send() function is invoked on each one of them.

This is the magic of Node.js! Of course, the server that we implemented is very
minimal and basic, but as we will see, it does its job.

Implementing the client side
Next, it's time to implement the client side of our chat; this is also a very small
and simple fragment of code, essentially a minimal HTML page with some basic
JavaScript code. Let's create this page in a file named www/index.html as follows:

<html>
 <head>
 <script>
 var ws = new WebSocket('ws://' + window.document.
 location.host);
 ws.onmessage = function(message) {
 var msgDiv = document.createElement('div');
 msgDiv.innerHTML = message.data;
 document.getElementById('messages').appendChild(msgDiv);
 };

 function sendMessage() {
 var message = document.getElementById('msgBox').value;

Chapter 8

[375]

 ws.send(message);
 }
 </script>
 </head>
 <body>
 Messages:
 <div id='messages'></div>
 <input type='text' placeholder='Send a message' id='msgBox'>
 <input type='button' onclick='sendMessage()' value='Send'>
 </body>
</html>

The HTML page we created doesn't really need many comments; it is just a piece of
straightforward web development. We use the native WebSocket object to initialize
a connection to our Node.js server, and then start listening for messages from the
server displaying them in new div elements as they arrive. For sending messages,
instead, we use a simple textbox and a button.

When stopping or restarting the chat server, the WebSocket connection
is closed and it will not reconnect automatically (as it would using
high-level libraries such as Socket.io). This means that it is
necessary to refresh the browser after a server restart, to re-establish
the connection (or implement a reconnection mechanism, which we
will not cover here).

Running and scaling the chat application
We can try running our application immediately, just launch the server with a
command such as the following:

node app 8080

To run this demo, you will need a recent browser, which supports
native WebSockets. Here is a list of compatible browsers: http://
caniuse.com/#feat=websockets

Messaging and Integration Patterns

[376]

Pointing a browser to http://localhost:8080 should present an interface similar
to the following:

What we want to show now, is what happens when we try to scale our application
by launching multiple instances. Let's try to do this, let's start another server on
another port:

node app 8081

The desired outcome of scaling our chat application should be that the two clients
connecting to the two different servers should be able to exchange chat messages.
Unfortunately, this is not what happens with our current implementation, we can
try that by opening another browser tab to http://localhost:8081.

When sending a chat message on one instance, we broadcast a message locally,
distributing it to only the clients connected to that particular server. In practice,
the two servers don't talk to each other. We need to integrate them.

In a real application, we will use a load balancer to distribute the
load across our instances, but for this demo we will not use one. This
allows us to access each server in a deterministic way to verify how it
interacts with the other instances.

Chapter 8

[377]

Using Redis as a message broker
We start our analysis of the most important pub/sub implementations by
introducing Redis (http://redis.io), which is a very fast and flexible key-value
store, also defined by many as a data structure server. Redis is more a database than
a message broker, however among its many features there is a pair of commands
specifically designed to implement a centralized publish/subscribe pattern.
Of course, this implementation is very simple and basic, compared to more
advanced message-oriented middleware, but this is one of the main reasons for its
popularity. Often, in fact, Redis is already available in an existing infrastructure, for
example, as a caching server or session store; its speed and flexibility make it a very
popular choice for sharing data in a distributed system. So, as soon as the need for a
publish/subscribe broker arises in a project, the most simple and immediate choice
is to reuse Redis itself, avoiding to install and maintain a dedicated message broker.
Let's work on an example to demonstrate its simplicity and power.

This example requires a working installation of Redis,
listening on its default port. You can find more details
at http://redis.io/topics/quickstart.

Our plan of action is to integrate our chat servers using Redis as a message broker.
Each instance publishes any message received from its clients to the broker, and at
the same time it subscribes for any message coming from other server instances. As
we can see, each server in our architecture is both a subscriber and a publisher. The
following figure shows a representation of the architecture that we want to obtain:

Redis

Chat Server

Chat Server

Chat Server

1

4

4
3

2

4

Messaging and Integration Patterns

[378]

By looking at the preceding figure, we can sum up the journey of a message
as follows:

1. The message is typed into the textbox of the web page and sent to the
connected instance of our chat server.

2. The message is then published to the broker.
3. The broker dispatches the message to all the subscribers, which in our

architecture are all the instances of the chat server.
4. In each instance, the message is distributed to all the connected clients.

Redis allows publishing and subscribing to channels, which are
identified by a string, for example, chat.nodejs. It also allows us
to use glob-style patterns to define subscriptions that can potentially
match multiple channels, for example, chat.*.

Let's see in practice how this works. Let's modify the server code by adding the
publish/subscribe logic:

var WebSocketServer = require('ws').Server;
var redis = require("redis"); //[1]
var redisSub = redis.createClient();
var redisPub = redis.createClient();

//static file server
var server = require('http').createServer(
 require('ecstatic')({root: __dirname + '/www'})
);

var wss = new WebSocketServer({server: server});
wss.on('connection', function(ws) {
 console.log('Client connected');
 ws.on('message', function(msg) {
 console.log('Message: ' + msg);
 redisPub.publish('chat_messages', msg); //[2]
 });
});

redisSub.subscribe('chat_messages'); //[3]
redisSub.on('message', function(channel, msg) {

Chapter 8

[379]

 wss.clients.forEach(function(client) {
 client.send(msg);
 });
});

server.listen(process.argv[2] || 8080);

The changes that we made to our original chat server are highlighted in the
preceding code; this is how it works:

1. To connect our Node.js application to the Redis server, we use the redis
package (https://npmjs.org/package/redis), which is a complete client
that supports all the available Redis commands. Next, we instantiate two
different connections, one used to subscribe to a channel, the other to publish
messages. This is necessary in Redis, because once a connection is put in
subscriber mode only commands related to the subscription can be used.
This means that we need a second connection for publishing messages.

2. When a new message is received from a connected client, we publish a
message in the chat_messages channel. We don't directly broadcast the
message to our clients because our server is subscribed to the same channel
(as we will see in a moment), so it will come back to us through Redis.
For the scope of this example, this is a simple and effective mechanism.

3. As we said, our server also has to subscribe to the chat_messages channel,
so we register a listener to receive all the messages published into that
channel (either by the current server or any other chat server). When a
message is received, we simply broadcast it to all the clients connected
to the current WebSocket server.

These few changes are enough to integrate all the chat servers that we might decide
to start. To prove this, we can try starting multiple instances of our application:

node app 8080

node app 8081

node app 8082

We can then connect multiple browsers' tabs to each instance and verify that the
messages we send to one server are successfully received by all the other clients
connected to different servers. Congratulations! We just integrated a distributed
real-time application using the publish/subscribe pattern.

Messaging and Integration Patterns

[380]

Peer-to-peer publish/subscribe with ØMQ
The presence of a broker can considerably simplify the architecture of a messaging
system; however, there are circumstances where it is not an optimal solution, as
for example, when latency is critical, when scaling complex distributed systems,
or when the presence of a single point of failure is not an option.

Introducing ØMQ
If our project falls in the category of possible candidates for a peer-to-peer message
exchange, the best solution to evaluate is certainly ØMQ (http://zeromq.org, also
known as zmq, ZeroMQ, or 0MQ); we already mentioned this library earlier in the
book. ØMQ is a networking library that provides the basic tools to build a large
variety of messaging patterns. It is low level, extremely fast, and has a minimalistic
API but it offers all the basic building blocks of a messaging system such as atomic
messages, load balancing, queues, and many more. It supports many types of
transports such as in-process channels (inproc://), inter-process communication
(ipc://), multicast using the PGM protocol (pgm:// or epgm://), and of course,
the classic TCP (tcp://).

Among the features of ØMQ, we can also find tools to implement a publish/subscribe
pattern, exactly what we need for our example. So, what we are going to do now is,
remove the broker (Redis) from the architecture of our chat application and let the
various nodes communicate in a peer-to-peer fashion leveraging the publish/subscribe
sockets of ØMQ.

A ØMQ socket can be considered a network socket on steroids,
which provides additional abstractions to help implement the
most common messaging patterns. For example, we can find
sockets designed to implement publish/subscribe, request/reply,
or one-way communications.

Designing a peer-to-peer architecture for the
chat server
When we remove the broker from our architecture, each instance of the chat
application has to directly connect to the other available instances in order to receive
the messages they publish. In ØMQ, we have two types of sockets specifically
designed for this purpose: PUB and SUB. The typical pattern is to bind a PUB socket to
a port that will start listening for subscriptions coming from the other SUB sockets.

Chapter 8

[381]

A subscription can have a filter that specifies what messages will be delivered to the
SUB sockets. The filter is a simple binary buffer (so it can also be a string), which will
be matched against the beginning of the message (which is also a binary buffer).
When a message is sent through the PUB socket it is broadcast to all the connected
SUB sockets, but only after their subscription filters are applied. The filters will be
applied to the publisher side only if a connected protocol is used, as for example, TCP.

The following figure shows us the pattern applied to our distributed chat server
architecture (with only two instances, for simplicity):

Message

Subscription

Chat Server Chat Server

PUB SUB PUB SUB

1 3

2

The preceding figure shows us the flow of information when we have two instances
of the chat application, but the same concept can be applied for N instances. The
architecture tells us that each node must be aware of the other nodes in the system,
to be able to establish all the necessary connections. It also shows us how the
subscriptions go from a SUB socket to a PUB socket, while messages travel in the
opposite direction.

To run the example in this section, you need to install the native
ØMQ binaries on your system. You can find more information at
http://zeromq.org/intro:get-the-software. Note: this
example was tested against the 4.0 branch of ØMQ.

Messaging and Integration Patterns

[382]

Using the ØMQ PUB/SUB sockets
Let's see how this works in practice by modifying our chat server (we will show you
only the changed parts):

[...]
var args = require('minimist')(process.argv.slice(2)); //[1]
var zmq = require('zmq');

var pubSocket = zmq.socket('pub'); //[2]
pubSocket.bind('tcp://127.0.0.1:' + args['pub']);

var subSocket = zmq.socket('sub'); //[3]
var subPorts = [].concat(args['sub']);
subPorts.forEach(function(p) {
 console.log('Subscribing to ' + p);
 subSocket.connect('tcp://127.0.0.1:' + p);
});
subSocket.subscribe('chat');

[...]
 ws.on('message', function(msg) { //[4]
 console.log('Message: ' + msg);
 broadcast(msg);
 pubSocket.send('chat ' + msg);
 });
[...]

subSocket.on('message', function(msg) { //[5]
 console.log('From other server: ' + msg);
 broadcast(msg.toString().split(' ')[1]);
});

[...]
server.listen(args['http'] || 8080);

The preceding code clearly shows that the logic of our application became slightly
more complicated, however it's still straightforward considering that we are
implementing a distributed and peer-to-peer publish/subscribe pattern. Let's see
how all the pieces come together:

1. We require the zmq package (https://npmjs.org/package/zmq), which
is essentially the Node.js binding for the ØMQ native library. We also
require minimist (https://npmjs.org/package/minimist), which is a
command-line argument parser; we need this to be able to easily accept
named arguments.

2. We immediately create our PUB socket and bind it to the port provided in the
--pub command-line argument.

Chapter 8

[383]

3. We create the SUB socket and we connect it to the PUB sockets of the other
instances of our application. The ports of the target PUB sockets are provided
in the --sub command-line arguments (there might be more than one).
We then create the actual subscription, by providing chat as a filter, which
means that we will receive only the messages beginning with chat.

4. When a new message is received by our WebSocket, we broadcast it to all the
connected clients but we also publish it through our PUB socket. We use chat
as a prefix followed by a space, so the message will be published to all the
subscriptions using chat as a filter.

5. We start listening for messages that arrive at our SUB socket, we do some
simple parsing of the message to remove the chat prefix, and then we
broadcast it to all the clients connected to the current WebSocket server.

We have now built a simple distributed system, integrated using a peer-to-peer
publish/subscribe pattern!

Let's fire it up, let's start three instances of our application by making sure to connect
their PUB and SUB sockets properly:

node app --http 8080 --pub 5000 --sub 5001 --sub 5002

node app --http 8081 --pub 5001 --sub 5000 --sub 5002

node app --http 8082 --pub 5002 --sub 5000 --sub 5001

The first command will start an instance with an HTTP server listening on the port
8080, while binding a PUB socket on port 5000 and connecting the SUB socket to
the ports 5001 and 5002, which is where the PUB sockets of the other two instances
should be listening at. The other two commands work in a similar way.

Now, the first thing we can see, is that ØMQ will not complain if a port
corresponding to a PUB socket is not available. For example, at the time of the first
command, there is nobody listening on the ports 5001 and 5002, however ØMQ
is not throwing any error. This is because ØMQ has a reconnection mechanism
that will automatically try to establish a connection to these ports at regular time
intervals. This feature also comes particularly handy if any node goes down or
is restarted. The same forgiving logic applies to the PUB socket: if there are no
subscriptions, it will simply drop all the messages, but it will continue working.

At this point, we can try to navigate with a browser to any of the server instances that
we started and verify that the messages are properly broadcast to all the chat servers.

Messaging and Integration Patterns

[384]

In the previous example, we assumed a static architecture, where the
number of instances and their addresses are known in advance. We can
introduce a Service Registry, as explained in the previous chapter, to
connect our instances dynamically. It is also important to point out that
ØMQ can be used to implement a broker using the same primitives we
demonstrated here.

Durable subscribers
An important abstraction in a messaging system is the message queue (MQ).
With a message queue, the sender and the receiver(s) of the message don't necessarily
need to be active and connected at the same time to establish a communication,
because the queuing system takes care of storing the messages until the destination
is able to receive them. This behavior is opposed to the set and forget paradigm,
where a subscriber can receive messages only during the time it is connected to
the messaging system.

A subscriber that is able to always reliably receive all the messages, even those sent
when it's not listening for them, is called a durable subscriber.

The MQTT protocol defines a level of Quality of Service (QoS) for the
messages exchanged between the sender and receiver. These levels are
also very useful to describe the reliability of any other messaging system
(not only MQTT). These are as follows:

• QoS0, at most once: Also known as set and forget, the message is
not persisted, and the delivery is not acknowledged. This means
that the message can be lost in cases of crashes or disconnections
of the receiver.

• QoS1, at least once: The message is guaranteed to be received at
least once, but duplicates might occur if, for example, the receiver
crashes before notifying the sender. This implies that the message
has to be persisted in the eventuality it has to be sent again.

• QoS2, exactly once: This is the most reliable QoS, it guarantees
that the message is received once and only once. This comes at
the expense of a slower and more data intensive mechanism for
acknowledging the delivery of messages.

Find out more in the MQTT specifications at http://public.dhe.
ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.
html#qos-flows.

Chapter 8

[385]

As we said, to allow durable subscribers, our system has to use a message queue
to accumulate the messages while the subscriber is disconnected. The queue can be
stored in memory or persisted on disk to allow the recovery of its messages even if
the broker restarts or crashes. The following figure shows a graphical representation
of a durable subscriber backed by a message queue:

Subscriber comes back
online, the queue

is drained

Normal operations Publisher Subsciber

Subscriber not
available, messages

accumulate in the queue
Publisher Subsciber

Publisher Subsciber

The durable subscriber is probably the most important pattern enabled by a message
queue, but it's certainly not the only one, as we will see later in the chapter.

The Redis publish/subscribe commands implement a set and forget
mechanism (QoS0). However, Redis can still be used to implement a
durable subscriber using a combination of other commands (without
relying directly on its publish/subscribe implementation). You can find a
description of this technique in the following blog posts:

• http://davidmarquis.wordpress.com/2013/01/03/
reliable-delivery-message-queues-with-redis

• http://www.ericjperry.com/redis-message-queue

ØMQ defines some patterns to support durable subscribers as well,
but it's mostly up to us to implement this mechanism.

Messaging and Integration Patterns

[386]

Introducing AMQP
A message queue is normally used in all those situations where no message can
be lost, which includes mission-critical applications such as banking or financial
systems. This usually means that the typical enterprise-grade message queue
is a very complex piece of software, which utilizes bulletproof protocols and
persistent storage to guarantee the delivery of the message even in the presence
of malfunctions. For this reason, enterprise messaging middleware have been for
many years a prerogative of giants such as Oracle and IBM, each one of them usually
implementing its own proprietary protocol resulting in a strong customer lock-in.
Fortunately, it's been a few years now that messaging systems have entered the
mainstream, thanks to the growth of open protocols such as AMQP, STOMP, and
MQTT. To understand how a message queuing system works, we are now going to
give an overview of AMQP; this is fundamental to understand how to use a typical
API based on this protocol.

AMQP (Advanced Message Queuing Protocol) is an open standard protocol
supported by many message queuing systems. Besides defining a common
communication protocol, it also provides a model for describing routing, filtering,
queuing, reliability, and security. In AMQP, there are three essential components:

• Queue: The data structure responsible for storing the messages consumed by
the clients. The messages from a queue are pushed (or pulled) to one or more
consumers—essentially our applications. If multiple consumers are attached
to the same queue, the messages are load balanced across them. A queue can
be one of the following:

 ° Durable: This means that the queue is automatically recreated if the
broker restarts. A durable queue does not imply that its contents
are preserved as well; in fact, only messages that are marked as
persistent are saved to the disk and restored in case of a restart.

 ° Exclusive: This means that the queue is bound to only one
particular subscriber connection. When the connection is closed,
the queue is destroyed.

 ° Auto-delete: This will cause the queue to be deleted when the last
subscriber disconnects.

Chapter 8

[387]

• Exchange: This is where a message is published. An Exchange routes the
messages to one or more queues depending on the algorithm it implements:

 ° Direct exchange: It routes the messages by matching an entire
routing key (for example, chat.msg).

 ° Topic exchange: It distributes the messages using a glob-like pattern
matched against the routing key (for example, chat.# matches all the
routing keys starting with chat).

 ° Fanout exchange: It broadcasts a message to all the connected
queues, ignoring any routing key provided.

• Binding: This is the link between exchanges and queues. It also defines
the routing key or the pattern used to filter the messages that arrive from
the exchange.

These components are managed by a broker, which exposes an API for creating and
manipulating them. When connecting to a broker, a client creates a channel—an
abstraction of a connection—which is responsible for maintaining the state of the
communication with the broker.

In AMQP, the durable subscriber pattern can be obtained by
creating any type of queue that is not exclusive or auto-delete.

The following figure shows us all these components put together:

Messaging and Integration Patterns

[388]

The AMQP model is way more complex than the messaging systems we have used
so far (Redis and ØMQ); however, it offers a set of features and a reliability that
would be very hard to obtain using only primitive publish/subscribe mechanisms.

You can find a detailed introduction to the AMQP model on
the RabbitMQ website: https://www.rabbitmq.com/
tutorials/amqp-concepts.html.

Durable subscribers with AMQP and RabbitMQ
Let's now practice what we learned about durable subscribers and AMQP and work
on a small example. A typical scenario where it's important to not lose any message
is when we want to keep the different services of a Microservice architecture in sync;
we already described this integration pattern in the previous chapter. If we want to
use a broker to keep all our services on the same page, it's important that we don't lose
any information, otherwise we might end up in an inconsistent state.

Designing a history service for the chat application
Let's now extend our small chat application using a Microservice approach. Let's add
a history service that persists our chat messages inside a database, so that when a
client connects, we can query the service and retrieve the entire chat history. We are
going to integrate the history service with the chat server using the RabbitMQ broker
(https://www.rabbitmq.com) and AMQP.

The next figure shows our planned architecture:

'chat_srv_8080'
RabbitMQ broker

Fanout Exchange
(‘chat’)

'chat_srv_8081'

'chat_history'

Chat server
(on

port 8080)

Chat server
(on

port 8081)

History
Service

Publish
messages

from clients

Chapter 8

[389]

As described in the preceding architecture, we are going to use a single fanout
exchange; we don't need any particular routing, so our scenario does not require any
exchange more complex than that. Next, we will create one queue for each instance
of the chat server; these queues are exclusive, we are not interested in receiving any
missed message when a chat server is offline, that's the job of our history service,
which eventually can also implement more complicated queries against the stored
messages. In practice, this means that our chat servers are not durable subscribers,
and their queues will be destroyed as soon as the connection is closed.

On the contrary, the history service cannot afford to lose any message; otherwise,
it would not fulfill its very purpose. The queue we are going to create for it has
to be durable, so that any message that is published while the history service is
disconnected will be kept in the queue and delivered when it comes back online.

We are going to use the familiar LevelUP as storage engine for the history service,
while we will use the amqplib package (https://npmjs.org/package/amqplib)
to connect to RabbitMQ using the AMQP protocol.

The following example requires a working RabbitMQ server, listening
on its default port. For more information, please refer to its official
installation guide at http://www.rabbitmq.com/download.html.

Implementing a reliable history service using AMQP
Let's now implement our history service! We are going to create a standalone
application (a typical Microservice), which is implemented in the module
historySvc.js. The module is made up of two parts: an HTTP server to
expose the chat history to clients, and an AMQP consumer which is responsible
for capturing the chat messages and storing them in a local database.

Let's see how this looks like in the code that follows:

var level = require('level');
var timestamp = require('monotonic-timestamp');
var JSONStream = require('JSONStream');
var db = level('./msgHistory');
var amqp = require('amqplib');

//HTTP server for querying the chat history
require('http').createServer(function(req, res) {
 res.writeHead(200);
 db.createValueStream()

Messaging and Integration Patterns

[390]

 .pipe(JSONStream.stringify())
 .pipe(res);
}).listen(8090);

var channel, queue;
amqp
 .connect('amqp://localhost') //[1]
 .then(function(conn) {
 return conn.createChannel();
 })
 .then(function(ch) {
 channel = ch;
 return channel.assertExchange('chat', 'fanout'); //[2]
 })
 .then(function() {
 return channel.assertQueue('chat_history'); //[3]
 })
 .then(function(q) {
 queue = q.queue;
 return channel.bindQueue(queue, 'chat'); //[4]
 })
 .then(function() {
 return channel.consume(queue, function(msg) { //[5]
 var content = msg.content.toString();
 console.log('Saving message: ' + content);
 db.put(timestamp(), content, function(err) {
 if(!err) channel.ack(msg);
 });
 });
 })
 .catch(function(err) {
 console.log(err);
 });

We can immediately see that AMQP requires a little bit of setup, which is necessary
to create and connect all the components of the model. It's also interesting to observe
that amqplib supports Promises by default, so we leveraged them heavily to
streamline the asynchronous steps of the application. Let's see in detail how it works:

1. We first establish a connection with the AMQP broker, which is RabbitMQ in
our case. Then, we create a channel—which is similar to a session—that will
maintain the state of our communications.

Chapter 8

[391]

2. Next, we set up our exchange, named chat. As we already mentioned, it is a
fanout exchange. The assertExchange() command will make sure that the
exchange exists on the broker, otherwise it will create it.

3. We also create our queue, called chat_history. By default, the queue is
durable—not exclusive and not auto-delete—so we don't need to pass
any extra options to support durable subscribers.

4. Next, we bind the queue to the exchange we previously created. Here, we
don't need any other particular option, for example, a routing key or pattern,
as the exchange is of the type, fanout, so it doesn't perform any filtering.

5. Finally, we can begin to listen for messages coming from the queue we just
created. We save every message that we receive in a LevelDB database using
a monotonic timestamp as key (https://npmjs.org/package/monotonic-
timestamp), to keep the messages sorted by date. It's also interesting to see
that we are acknowledging every message using channel.ack(msg), and
only after the message is successfully saved into the database. If the ACK
(acknowledgment) is not received by the broker, the message is kept in the
queue for being processed again. This is another great feature of AMQP
for bringing the reliability of our service to a whole new level. If we are not
interested in sending explicit acknowledgments, we can pass the option
{noAck: true} to the channel.consume() API.

Integrating the chat application with AMQP
To integrate the chat servers using AMQP, we have to use a setup very similar to
the one we implemented in the history service, so we are not going to repeat it here
in full. However, it's still interesting to see how the queue is created and how a new
message is published into the exchange. The relevant parts of the new app.js file,
are the following:

[...]
 .then(function() {
 return channel.assertQueue('chat_srv_'+httpPort, {exclusive:
true});
 })
[...]
 ws.on('message', function(msg) {
 console.log('Message: ' + msg);
 channel.publish('chat', '', new Buffer(msg));
 });
[...]

Messaging and Integration Patterns

[392]

As we mentioned, our chat server does not need to be a durable subscriber, a set
and forget paradigm is enough. So when we create our queue, we pass the option
{exclusive: true} indicating that the queue is scoped to the current connection
and therefore it will be destroyed as soon as the chat server shuts down.

Publishing a new message is also very easy, we simply have to specify the target
exchange (chat) and a routing key, which in our case is empty ('') because we are
using a fanout exchange.

We can now run our improved chat architecture, to do that let's start two chat
servers and the history service:

node app 8080

node app 8081

node historySvc

It is now interesting to see how our system, and in particular the history service,
behaves in case of downtime. If we stop the history server and continue to send
messages using the web UI of the chat application, we will see that when the history
server is restarted, it will immediately receive all the messages it missed. This is a
perfect demonstration of how the durable subscriber pattern works!

It is nice to see how the Microservice approach allows our system to
survive even without one of its components—the history service. There
would be a temporary reduction of functionality (no chat history
available) but people would still be able to exchange chat messages in
real time. Awesome!

Pipelines and task distribution patterns
In Chapter 6, Recipes, we learned how to delegate costly tasks to multiple local
processes, but even though this was an effective approach, it cannot be scaled
beyond the boundaries of a single machine. In this section, we are going to see
how it's possible to use a similar pattern in a distributed architecture, using remote
workers, located anywhere in a network.

The idea is to have a messaging pattern that allows us to spread tasks across multiple
machines. These tasks might be individual chunks of work or pieces of a bigger task
split using a divide and conquer technique.

Chapter 8

[393]

If we look at the logical architecture represented in the following figure, we should
be able to recognize a familiar pattern:

Producer

Consumer

Consumer

Consumer

task1

task2

task3

As we can see from the preceding diagram, the publish/subscribe pattern is not
suitable for this type of application, as we absolutely don't want a task to be received
by multiple workers. What we need instead, is a message distribution pattern similar
to a load balancer, that dispatches each message to a different consumer (also called
worker, in this case). In the messaging systems terminology, this pattern is known as
competing consumers, fan-out distribution, or ventilator.

One important difference with the HTTP load balancers we have seen in the previous
chapter, is that, here, the consumers have a more active role. In fact, as we will see
later, most of the time it's not the producer that connects to the consumers, but they
are the consumers themselves that connect to the task producer or the task queue in
order to receive new jobs. This is a great advantage in a scalable system as it allows
us to seamlessly increase the number of workers without modifying the producer or
adopting a service registry.

Messaging and Integration Patterns

[394]

Also, in a generic messaging system, we don't necessarily have a request/reply
communication between the producer and workers. Instead, most of the time, the
preferred approach is to use a one-way asynchronous communication, which enables
a better parallelism and scalability. In such an architecture, messages can potentially
travel always in one direction, creating pipelines, as shown in the following figure:

Distribution(fan-out) Aggregation (fan-in)

Pipelines allow us to build very complex processing architectures without the
burden of a synchronous request/reply communication, often resulting in lower
latency and higher throughput. In the preceding figure, we can see how messages
can be distributed across a set of workers (fan-out), forwarded to other processing
units, and then aggregated into a single node (fan-in), usually called sink.

In this section, we are going to focus on the building blocks of these kinds of
architectures, by analyzing the two most important variations: peer-to-peer
and broker-based.

The combination of a pipeline with a task distribution
pattern is also called parallel pipeline.

The ØMQ fan-out/fan-in pattern
We have already discovered some of the capabilities of ØMQ for building peer-to-
peer distributed architectures. In the previous section, we used PUB and SUB sockets
to disseminate a single message to multiple consumers; now we are going to see how
it's possible to build parallel pipelines using another pair of sockets called PUSH
and PULL.

Chapter 8

[395]

PUSH/PULL sockets
Intuitively, we can say that the PUSH sockets are made for sending messages,
while the PULL sockets are meant for receiving. It might seem a trivial combination;
however, they have some nice characteristics that make them perfect for building
one-way communication systems:

• Both can work in connect mode or bind mode. In other words, we can build a
PUSH socket and bind it to a local port listening for the incoming connections
from a PULL socket, or vice versa, a PULL socket might listen for connections
from a PUSH socket. The messages always travel in the same direction, from
PUSH to PULL, it's only the initiator of the connection that can be different.
The bind mode is the best solution for durable nodes, as for example, the task
producer and the sink, while the connect mode is perfect for transient nodes,
as for example, the task workers. This allows the number of transient nodes
to vary arbitrarily without affecting the more durable nodes.

• If there are multiple PULL sockets connected to a single PUSH socket, the
messages are evenly distributed across all the PULL sockets, in practice, they
are load balanced (peer-to-peer load balancing!). On the other hand, a PULL
socket that receives messages from multiple PUSH sockets will process the
messages using a fair queuing system, which means that they are consumed
evenly from all the sources—a round-robin applied to inbound messages.

• The messages sent over a PUSH socket that doesn't have any connected PULL
socket, do not get lost; they are instead queued up on the producer until
a node comes online and starts pulling the messages.

We are now starting to understand how ØMQ is different from traditional Web
services and why it's a perfect tool for building any kind of messaging system.

Building a distributed hashsum cracker with ØMQ
Now, it's time to build a sample application to see in action the properties of the
PUSH/PULL sockets we just described.

A simple and fascinating application to work with would be a hashsum cracker,
a system that uses a brute force technique to try to match a given hashsum
(MD5, SHA1, and so on) to every possible variation of characters of a given
alphabet. This is an embarrassingly parallel workload (http://en.wikipedia.
org/wiki/Embarrassingly_parallel), which is perfect for building an example
demonstrating the power of parallel pipelines.

Messaging and Integration Patterns

[396]

For our application, we want to implement a typical parallel pipeline with a node
to create and distribute tasks across multiple workers, plus a node to collect all
the results. The system we just described can be implemented in ØMQ using the
following architecture:

Variations
Generatior
(ventilator)

PUSH
Result

Collector
(sink)

PUSH

PULL PUSHWorker

PULL PUSHWorker

Message

Connect

In our architecture, we have a ventilator generating all the possible variations of
characters in a given alphabet and distributing them to a set of workers, which in
turn calculate the hashsum of every given variation and try to match it against
the hashsum given as the input. If a match is found, the result is sent to a results
collector node (sink).

The durable nodes of our architecture are the ventilator and the sink, while the
transient nodes are the workers. This means that each worker connects its PULL socket
to the ventilator and its PUSH socket to the sink, this way we can start and stop how
many workers we want without changing any parameter in the ventilator or the sink.

Implementing the ventilator
Now, let's start to implement our system by creating a new module for the ventilator,
in a file named ventilator.js:

var zmq = require('zmq');
var variationsStream = require('variations-stream');
var alphabet = 'abcdefghijklmnopqrstuvwxyz';
var batchSize = 10000;
var maxLength = process.argv[2];
var searchHash = process.argv[3];

var ventilator = zmq.socket('push'); //[1]

Chapter 8

[397]

ventilator.bindSync("tcp://*:5000");

var batch = [];
variationsStream(alphabet, maxLength)
 .on('data', function(combination) {
 batch.push(combination);
 if(batch.length === batchSize) { //[2]
 var msg = {searchHash: searchHash, variations: batch};
 ventilator.send(JSON.stringify(msg));
 batch = [];
 }
 })
 .on('end', function() {
 //send remaining combinations
 var msg = {searchHash: searchHash, variations: batch};
 ventilator.send(JSON.stringify(msg));
 });

To avoid generating too many variations, our generator uses only the lowercase
letters of the English alphabet and sets a limit on the size of the words generated.
This limit is provided in input as a command line argument (maxLength) together
with the hashsum to match (searchHash). We use a library called variations-
stream (https://npmjs.org/package/variations-stream) to generate all the
variations using a streaming interface.

But the part that we are most interested in analyzing, is how we distribute the tasks
across the workers:

1. We first create a PUSH socket and we bind it to the local port 5000, this is
where the PULL socket of the workers will connect to receive their tasks.

2. We group the generated variations in batches of 10,000 items each and then
we craft a message that contains the hash to match and the batch of words to
check. This is essentially the task object that the workers will receive. When
we invoke send() over the ventilator socket, the message will be passed to
the next available worker, following a round-robin distribution.

Messaging and Integration Patterns

[398]

Implementing the worker
Now, it's time to implement the worker (worker.js):

var zmq = require('zmq');
var crypto = require('crypto');
var fromVentilator = zmq.socket('pull');
var toSink = zmq.socket('push');

fromVentilator.connect('tcp://localhost:5000');
toSink.connect('tcp://localhost:5001');

fromVentilator.on('message', function(buffer) {
 var msg = JSON.parse(buffer);
 var variations = msg.variations;
 variations.forEach(function(word) {
 console.log('Processing: ' + word);
 var shasum = crypto.createHash('sha1');
 shasum.update(word);
 var digest = shasum.digest('hex');
 if(digest === msg.searchHash) {
 console.log('Found! => ' + word);
 toSink.send('Found! ' + digest + ' => ' + word);
 }
 });
});

As we said, our worker represents a transient node in our architecture, therefore
its sockets should connect to a remote node instead of listening for the incoming
connections. That's exactly what we do in our worker, we create two sockets:

• A PULL socket that connects to the ventilator, for receiving the tasks.
• A PUSH socket that connects to the sink, for propagating the results.

Besides this, the job done by our worker is very simple: for each message received we
iterate over the batch of words it contains, then for each word we calculate the SHA1
checksum and we try to match it against the searchHash passed with the message.
When a match is found, the result is forwarded to the sink.

Chapter 8

[399]

Implementing the sink
For our example, the sink is a very basic result collector, which simply prints the
messages received by the workers to the console. The contents of the file sink.js
are as follows:

var zmq = require('zmq')
var sink = zmq.socket('pull');
sink.bindSync("tcp://*:5001");

sink.on('message', function(buffer) {
 console.log('Message from worker: ', buffer.toString());
});

It's interesting to see that the sink (as the ventilator) is also a durable node of our
architecture and therefore we bind its PULL socket instead of connecting it explicitly
to the PUSH socket of the workers.

Running the application
We are now ready to launch our application, let's start a couple of workers and
the sink:

node worker

node worker

node sink

Then, it's time to start the ventilator, specifying the maximum length of the words to
generate and the SHA1 checksum that we want to match. The following is a sample
list of arguments:

node ventilator 4 f8e966d1e207d02c44511a58dccff2f5429e9a3b

When the preceding command is run, the ventilator will start generating all the
possible words that have a length of at most four characters, distributing them to the
set of workers we started, along with the checksum we provided. The results of the
computation, if any, will appear in the terminal of the sink application.

Pipelines and competing consumers in AMQP
In the previous section, we saw how a parallel pipeline can be implemented in a
peer-to-peer context. Now we are going to explore this pattern when applied to a
fully-fledged message broker, such as RabbitMQ.

Messaging and Integration Patterns

[400]

Point-to-point communications and competing
consumers
In a peer-to-peer configuration, a pipeline is a very straightforward concept to
picture in mind. With a message broker in the middle though, the relationship
between the various nodes of the system are a little bit harder to understand; the
broker itself acts as an intermediary for our communications and often, we don't
really know who is on the other side listening for messages. For example, when
we send a message using AMQP, we don't deliver it directly to its destination, but
instead to an exchange and then to a queue. Finally, it will be for the broker to decide
where to route the message, based on the rules defined in the exchange, the bindings,
and the destination queues.

If we want to implement a pipeline and a task distribution pattern using a system
like AMQP, we have to make sure that each message is received by only one
consumer, but this is impossible to guarantee if an exchange can potentially be
bound to more than one queue. The solution then, is to send a message directly
to the destination queue, bypassing the exchange altogether, this way we can make
sure that only one queue will receive the message. This communication pattern is
called point-to-point.

Once we are able to send a set of messages directly to a single queue, we are already
half-way to implementing our task distribution pattern. In fact, the next step comes
naturally: when multiple consumers are listening on the same queue, the messages
will be distributed evenly across them, implementing a fan-out distribution.
In the context of message brokers, this is better known as the Competing
Consumers pattern.

Implementing the hashsum cracker using AMQP
We just learned that exchanges are the point in a broker where a message is multicast
to a set of consumers, while queues are the place where messages are load balanced.
With this knowledge in mind, let's now implement our brute force hashsum cracker
on top of an AMQP broker (as for example, RabbitMQ). The following figure gives
an overview of the system we want to obtain:

Chapter 8

[401]

Variations
Generator
(producer)

Results
collector

Worker

Worker

Jobs queue

Results queue

Broker

As we discussed, to distribute a set of tasks across multiple workers we need to use
a single queue. In the preceding figure, we called this the jobs queue. On the other
side of the jobs queue, we have a set of workers, which are competing consumers, in
other words, each one will pull a different message from the queue. The result is that
multiple tasks will execute in parallel on different workers.

Any result generated by the workers is published into another queue, which we
called results queue, and then consumed by the results collector; this is actually
equivalent to a sink, or fan-in distribution. In the entire architecture, we don't make
use of any exchange, we only send messages directly to their destination queue,
implementing a point-to-point communication.

Implementing the producer
Let's see how to implement such a system, starting from the producer (the variations
generator). Its code is identical to the sample we have seen in the previous section
except for the parts concerning the message exchange. The producer.js file will
look as follows:

var amqp = require('amqplib');
[...]

var connection, channel;
amqp
 .connect('amqp://localhost')
 .then(function(conn) {
 connection = conn;
 return conn.createChannel();

Messaging and Integration Patterns

[402]

 })
 .then(function(ch) {
 channel = ch;
 produce();
 })
 .catch(function(err) {
 console.log(err);
 });

function produce() {
 [...]
 variationsStream(alphabet, maxLength)
 .on('data', function(combination) {
 [...]
 var msg = {searchHash: searchHash, variations: batch};
 channel.sendToQueue('jobs_queue',
 new Buffer(JSON.stringify(msg)));
 [...]
 }
 })
 [...]
}

As we can see, the absence of any exchange or binding makes the setup of an AMQP
communication much simpler. In the preceding code, we didn't even need a queue,
as we are interested only in publishing a message.

The most important detail though, is the channel.sendToQueue()API, which is
actually new to us. As its name says, that's the API responsible for delivering a
message straight to a queue—jobs_queue in our example—bypassing any
exchange or routing.

Implementing the worker
On the other side of the jobs_queue we have the workers listening for the incoming
tasks. Let's implement their code in a file called worker.js, as follows:

var amqp = require('amqplib');
[...]

var channel, queue;
amqp
 .connect('amqp://localhost')
 .then(function(conn) {

Chapter 8

[403]

 return conn.createChannel();
 })
 .then(function(ch) {
 channel = ch;
 return channel.assertQueue('jobs_queue');
 })
 .then(function(q) {
 queue = q.queue;
 consume();
 })

[...]

function consume() {
 channel.consume(queue, function(msg) {
 [...]
 variations.forEach(function(word) {
 [...]
 if(digest === data.searchHash) {
 console.log('Found! => ' + word);
 channel.sendToQueue('results_queue',
 new Buffer('Found! ' + digest + ' => ' + word));
 }
 [...]
 });
 channel.ack(msg);
 });
};

Our new worker is also very similar to the one we implemented in the previous
section using ØMQ, except for the part related to the message exchange. In the
preceding code, we can see how we first make sure that jobs_queue exists and then
we start listening for incoming tasks using channel.consume(). Then, every time a
match is found, we send the result to the collector via results_queue, using again a
point-to-point communication.

If multiple workers are started, they will all listen on the same queue, resulting in the
messages to be load balanced between them.

Messaging and Integration Patterns

[404]

Implementing the result collector
The results collector is again a trivial module, simply printing any message received
to the console. This is implemented in the collector.js file, as follows:

[...]
 .then(function(ch) {
 channel = ch;
 return channel.assertQueue('results_queue');
 })
 .then(function(q) {
 queue = q.queue;
 channel.consume(queue, function(msg) {
 console.log('Message from worker: ', msg.content.toString());
 });
 })
[...]

Running the application
Now everything is ready to give our new system a try, we can start by running a
couple of workers, which will both connect to the same queue (jobs_queue),
so that every message will be load balanced between them:

node worker

node worker

Then, we can run the collector module and then producer (by providing the
maximum word length and the hash to crack):

node collector

node producer 4 f8e966d1e207d02c44511a58dccff2f5429e9a3b

With this, we implemented a message pipeline and the competing consumers pattern
using nothing but AMQP.

Request/reply patterns
Dealing with a messaging system often means using a one-way asynchronous
communication; publish/subscribe is a perfect example.

Chapter 8

[405]

One-way communications can give us great advantages in terms of parallelism and
efficiency, but alone they are not able to solve all our integration and communication
problems. Sometimes, a good old request/reply pattern might just be the perfect
tool for the job. Therefore, in all those situations where an asynchronous one-way
channel is all that we have, it's important to know how to build an abstraction that
allows us to exchange messages in a request/reply fashion. That's exactly what we
are going to learn next.

Correlation identifier
The first request/reply pattern we are going to learn is called correlation identifier
and it represents the basic block for building a request/reply abstraction on top of a
one-way channel.

The pattern consists in marking each request with an identifier, which is then attached
to the response by the receiver; this way the sender of the request can correlate the
two messages and return the response to the right handler. This elegantly solves the
problem in presence of a one-way asynchronous channel where messages can travel in
any direction at any time. Let's take a look at the example in the following figure:

Replier
Requestor

ID: 1 Request

ID: 2 Request

ID: 3 Request

Response ID:2

Response ID:1

Response ID:3

Correlations

Messages

Messaging and Integration Patterns

[406]

The preceding scenario shows how using a correlation ID allows us to match
each response with the right request, even if those are sent and then received in a
different order.

Implementing a request/reply abstraction using
correlation identifiers
Let's now start working on an example by choosing the most simple type of the
one-way channels, one that is point-to-point (which directly connects two nodes
of the system) and full-duplex (messages can travel in both directions).

In the simple channel category, we can find, for example, WebSockets: they establish
a point-to-point connection between the server and browser, and the messages
can travel in any direction. Another example, is the communication channel that
is created when a child process is spawned using child_process.fork(), we
should already know about it, we saw this API in Chapter 6, Recipes. This channel
too is asynchronous, it connects the parent only with the child process and it allows
messages to travel in any direction. This is probably the most basic channel of this
category, so that's what we are going to use in our next example.

The plan for the next application is to build an abstraction in order to wrap the
channel created between the parent and child processes. This abstraction should
provide a request/reply communication by automatically marking each request
with a correlation identifier and then matching the ID of any incoming reply
against the list of request handlers awaiting a response.

From Chapter 6, Recipes, we should remember that the parent process can access the
channel with the child using two primitives:

• child.send(message)

• child.on('message', callback)

In a similar way, the child can access the channel to the parent process using:

• process.send(message)

• process.on('message', callback)

This means that the interface of the channel available in the parent is identical to the
one available in the child; this will allow us to build a common abstraction, so that
the requests can be sent from both the ends of the channel.

Chapter 8

[407]

Abstracting the request
Let's start building this abstraction by considering the part responsible for sending
new requests, let's create a new file called request.js:

var uuid = require('node-uuid');

module.exports = function(channel) {
 var idToCallbackMap = {}; //[1]

 channel.on('message', function(message) { //[2]
 var handler = idToCallbackMap[message.inReplyTo];
 if(handler) {
 handler(message.data);
 }
 });

 return function sendRequest(req, callback) { //[3]
 var correlationId = uuid.v4();
 idToCallbackMap[correlationId] = callback;
 channel.send({
 type: 'request',
 data: req,
 id: correlationId
 });
 };
}

This is how our request abstraction works:

1. The one that follows is a closure created around our request function.
The magic of the pattern lies in the idToCallbackMap variable, which stores
the association between the outgoing requests and their reply handlers.

2. As soon as the factory is invoked, the first thing we do is start listening
for incoming messages. If the correlation ID of the message (contained
in the inReplyTo property) matches any of the IDs contained in the
idToCallbackMap variable, we know that we just received a reply, so we
obtain the reference to the associated response handler and we invoke it with
the data contained in the message.

Messaging and Integration Patterns

[408]

3. Finally, we return the function we will use to send new requests.
Its job is to generate a correlation ID using the node-uuid package
(https://npmjs.org/package/node-uuid) and then wrap the request
data in an envelope that allows us to specify the correlation ID and the
type of the message.

That's it for the request module; let's move to the next part.

Abstracting the reply
We are just a step away from implementing the full pattern, so let's see how the
counterpart of the request.js module works. Let's create another file called
reply.js, which will contain the abstraction for wrapping the reply handler:

module.exports = function(channel) {

 return function registerHandler(handler) {
 channel.on('message', function(message) { //[1]
 if(message.type !== 'request') return;

 handler(message.data, function(reply) {
 channel.send({ //[2]
 type: 'response',
 data: reply,
 inReplyTo: message.id
 });
 });
 });
 };

}

Our reply module is again a factory that returns a function to register new reply
handlers. This is what happens when a new handler is registered:

1. We start listening for incoming requests and when we receive one, we
immediately invoke handler by passing the data of the message and a
callback function to collect the reply from the handler.

2. Once the handler has done its work, it will invoke the callback that we
provided returning back its reply. We then build an envelope by attaching
the correlation ID of the request (the inReplyTo property), then we put
everything back into the channel.

Chapter 8

[409]

The amazing thing of this pattern is that in Node.js it comes very easy, everything
for us is already asynchronous, so an asynchronous request/reply communication
built on top of a one-way channel is not very different from any other asynchronous
operation, especially if we build an abstraction to hide its implementation details.

Trying the full request/reply cycle
Now, we are ready to try our new asynchronous request/reply abstraction.
Let's create a sample replier in a file named replier.js:

var reply = require('./reply')(process);

reply(function(req, callback) {
 setTimeout(function() {
 callback({sum: req.a + req.b});
 }, req.delay);
});

Our replier simply calculates the sum between the two numbers received and returns
the result after a certain delay (which is also specified in the request). This will allow
us to verify that the order of the responses can also be different from the order in
which we sent the requests, to confirm that our pattern is working.

The final step to complete the sample is to create the requestor in a file
named requestor.js, which also has the task of starting the replier using
child_process.fork() :

var replier = require('child_process')
 .fork(__dirname + '/replier.js');
var request = require('./request')(replier);

request({a: 1, b: 2, delay: 500}, function(res) {
 console.log('1 + 2 = ', res.sum);
 replier.disconnect();
});

request({a: 6, b: 1, delay: 100}, function(res) {
 console.log('6 + 1 = ', res.sum);
});

The requestor starts the replier and then passes its reference to our request
abstraction. We then run a couple of sample requests and verify that the correlation
with the response they receive is right.

Messaging and Integration Patterns

[410]

To try out the sample, simply launch the requestor.js module, the output should
be something similar to the following:

6 + 1 = 7

1 + 2 = 3

This confirms that our pattern works perfectly fine and that the replies are correctly
associated with their own requests, no matter in what order they are sent or received.

Return address
The correlation identifier is the fundamental pattern for creating a request/reply
communication on top of a one-way channel; however, it's not enough when our
messaging architecture has more than one channel or queue, or when there can be
potentially more than one requestor. In these situations, in addition to a correlation
ID, we also need to know the return address, a piece of information which allows the
replier to send the response back to the original sender of the request.

Implementing the return address pattern in AMQP
In AMQP, the return address is the queue where the requestor is listening for incoming
replies. Because the response is meant to be received by only one requestor, it's
important that the queue is private and not shared across different consumers. From
these properties, we can infer that we are going to need a transient queue, scoped to
the connection of the requestor and that the replier has to establish a point-to-point
communication with the return queue , to be able to deliver its responses.

The following image gives us an example of this scenario:

Requestor
A

Requestor
B

R queueequests

Broker

Responses to Requestor B

Responses to Requestor A

Replier

Chapter 8

[411]

To create a request/reply pattern on top of AMQP, all that we need to do is to
specify the name of the response queue in the message properties, this way the
replier knows where the response message has to be delivered. The theory seems
very straightforward, so let's see how to implement this in a real application.

Implementing the request abstraction
Let's now build a request/reply abstraction on top of AMQP. We will use RabbitMQ
as a broker, but any compatible AMQP broker should do the job. Let's start with
the request abstraction (implemented in the amqpRequest.js module), we will show
here only the relevant parts.

The first interesting thing to observe, is how we create the queue to hold the
responses; this is the code responsible for that:

channel.assertQueue('', {exclusive: true});

When we create the queue, we don't specify any name, which means that a random
one will be chosen for us; in addition to this, the queue is exclusive, which means
that it's bound to the active AMQP connection and it will be destroyed when the
connection closes. There is no need to bind the queue to an exchange, as we don't
need any routing or distribution to the multiple queues, this means that the messages
have to be delivered straight into our response queue.

Next, let's see how we can generate a new request:

AMQPRequest.prototype.request = function(queue, message, callback) {
 var id = uuid.v4();
 this.idToCallbackMap[id] = callback;
 this.channel.sendToQueue(queue,
 new Buffer(JSON.stringify(message)),
 {correlationId: id, replyTo: this.replyQueue}
);
}

The request() method accepts as input the name of the requests queue and the
message to send. As we learned in the previous section, we need to generate a
correlation ID and associate it to the callback function. Finally, we send the
message, specifying the correlationId and the replyTo property as metadata.

Messaging and Integration Patterns

[412]

It's interesting to see that for sending the message we are using the channel.
sentToQueue() API instead of channel.publish(); this is because we are not
interested in implementing any publish/subscribe distribution using exchanges,
but a more basic point-to-point delivery straight into the destination queue.

In AMQP, we can specify a set of properties (or metadata), to be
passed to the consumer together with the main message.

The last important piece of our amqpRequest prototype is where we listen for
incoming responses:

AMQPRequest.prototype._listenForResponses = function() {
 var self = this;
 return this.channel.consume(this.replyQueue, function(msg) {
 var correlationId = msg.properties.correlationId;
 var handler = self.idToCallbackMap[correlationId];
 if(handler) {
 handler(JSON.parse(msg.content.toString()));
 }
 });
}

In the preceding code, we listen for messages on the queue we created explicitly for
receiving responses, then for each incoming message we read the correlation ID and
we match it against the list of handlers awaiting a reply. Once we have the handler,
we only need to invoke it by passing the reply message.

Implementing the reply abstraction
That's it for the amqpRequest module, now it's time to implement the response
abstraction in a new module named amqpReply.js.

Here, we have to create the queue that will receive the incoming requests; we
can use a simple durable queue for this purpose. We won't show this part, since it's
again all AMQP boilerplate. What we are interested in seeing instead, is how we
handle a request and then send it back to the right queue:

AMQPReply.prototype.handleRequest = function(handler) {
 var self = this;
 return self.channel.consume(self.queue, function(msg) {
 var content = JSON.parse(msg.content.toString());
 handler(content, function(reply) {
 self.channel.sendToQueue(
 msg.properties.replyTo,

Chapter 8

[413]

 new Buffer(JSON.stringify(reply)),
 {correlationId: msg.properties.correlationId}
);
 self.channel.ack(msg);
 });
 });
}

When sending back a reply, we use channel.sendToQueue() to publish the
message straight into the queue specified in the replyTo property of the message
(our return address). Another important task of our amqpReply object is to set a
correlationId in the reply, so that the receiver can match the message with the
list of pending requests.

Implementing the requestor and the replier
Everything is now ready to give our system a try, but first, let's build a sample
requestor and replier to see how to use our new abstraction.

Let's start from the module replier.js:

var Reply = require('./amqpReply');
var reply = Reply('requests_queue');

reply.initialize().then(function() {
 reply.handleRequest(function(req, callback) {
 console.log('Request received', req);
 callback({sum: req.a + req.b});
 });
});

It's nice to see how the abstraction we built allows us to hide all the mechanisms that
handle the correlation ID and the return address; all we need to do is to initialize a new
reply object, specifying the name of the queue where we want to receive our requests
('requests_queue'). The rest of the code is just trivial; our sample replier simply
calculates the sum of the two numbers received as input and sends back the result
using the provided callback.

On the other side, we have a sample requestor implemented in the
requestor.js file:

var req = require('./amqpRequest')();

req.initialize().then(function() {
 for(var i = 100; i > 0; i--) {
 sendRandomRequest();
 }

Messaging and Integration Patterns

[414]

});

function sendRandomRequest() {
 var a = Math.round(Math.random() * 100);
 var b = Math.round(Math.random() * 100);
 req.request('requests_queue', {a: a, b: b},
 function(res) {
 console.log(a + ' + ' + b + ' = ' + res.sum);
 }
);
}

Our sample requestor sends 100 random requests to the 'requests_queue' queue.
In this case too, it's interesting to see that our abstraction is doing its job perfectly,
hiding all the details of the asynchronous request/reply pattern.

Now, to try out the system, simply run the replier module followed by
requestor module:

node replier

node requestor

We will see a set of operations published by the requestor and then received by the
replier, which in turn will send back the responses.

Now, we can try other experiments. Once the replier is started for the first time,
it creates a durable queue; this means that, if we now stop it and then run the
requestor again, then no request will be lost. All the messages will be stored in
the queue until the replier is started again!

Another nice feature that we get for free using AMQP is the fact that our replier
is scalable out-of-the-box. To test this assumption, we can try to start two or more
instances of the replier, and watch the requests being load balanced between them.
This works because, every time a requestor starts, it attaches itself as a listener to the
same durable queue, and as a result, the broker will load balance the messages across
all the consumers of the queue (competing consumers pattern). Sweet!

ØMQ has a pair of sockets specifically meant for implementing
request/reply patterns (REQ/REP), however they are synchronous
(only one request/response at a time). More complex request/reply
patterns are possible with more sophisticated techniques. For more
information, you can read the official guide at http://zguide.
zeromq.org/page:all#advanced-request-reply.

Chapter 8

[415]

Summary
We reached the end of this chapter. Here, we learned the most important messaging
and integration patterns and the role they play in the design of distributed systems.
We made our acquaintance with the three major types of message exchange patterns:
publish/subscribe, pipelines, and request/reply, and we saw how they can be
implemented using a peer-to-peer architecture or a message broker. We analyzed their
pros and cons, and we saw that by using AMQP and a full-fledged message broker, we
can implement reliable and scalable applications with little development effort but at a
cost of having one more system to maintain and scale. Also, we saw how ØMQ allows
us to build distributed systems where we can have total control over every aspect of
the architecture, fine tuning its properties around our very own requirements.

This chapter also closes the book, by now we should have a tool belt full of patterns
and techniques we can go and apply in our projects. We should also have a more
deep understanding of how Node.js development works and what are its strengths
and weaknesses. Throughout the book, we also had the chance to work with a
myriad of packages and solutions developed by many extraordinary developers. At
the end, this is the most beautiful aspect of Node.js, its people, a community where
everybody plays its part in giving back something.

I hope you enjoyed my small contribution.

Index
A
Adaptee 190
Adapter pattern

about 190
examples 193
LevelUP, using through filesystem

API 190-193
add() function 19
Advanced Message Queuing

Protocol (AMQP)
about 370, 386-388
binding 387
chat application, integrating 391
exchange 387
queue 386
URL 371
using 388

advised method 184
aggressive caching pattern 280
amqplib package

URL 389
AngularJS

URL 246
API orchestration

about 359-361
data aggregation 360

API proxy 358
APIs, ES6 promises

constructor 91
methods, of Promise instance 92
static methods, of Promise object 91

application-controlled extension
versus plugin-controlled extension 253-255

app module 232
args-list module

URL 248
arguments, constructor

reject(err) 91
resolve(obj) 91

Aspect Oriented Programming (AOP) 184
asynchronous batching 275
asynchronous caching 275
asynchronous callback pattern

about 22
execution, deferring 26, 27
synchronous APIs, using 25, 26
unpredictable function 22
unpredictable function, using 23
Zalgo, unleashing 23

asynchronous control flow, with streams
about 147
sequential execution 147, 148
unordered limited parallel execution 153
unordered parallel execution 149

asynchronous control flow, with generators
about 104-107
generator-based control flow,

using co 107, 108
asynchronous function 21
asynchronously initialized modules

canonical solutions 268, 269
implementing 269-271
preinitialization queues 269
requiring 267

asynchronous messaging 369
Asynchronous Module Definition

(AMD) 303

[418]

asynchronous programming
challenges 58

asynchronous request batching
about 277, 278
in total sales web server 278-280

asynchronous request caching
about 280, 281
in total sales web server 281, 283

async library
about 82
cons 116
limited parallel execution 86, 87
parallel execution 85
pros 116
reference link 82
sequential execution 82

async.queue() function 86
authController module 231
authentication server

about 229
building, hardcoded dependencies

used 229
refactoring, for dependency injection

usage 234-236
refactoring, for dependency injection

container usage 247-249
refactoring, for service locator

usage 241-244
running 233

authService module 230, 231
availability, cluster module 330, 331

B
Backbone Models

application, running 318, 319
isomorphic models, using 317, 318
platform-specific code,

implementing 315, 316
shared models, implementing 314, 315
used, for sharing business logic 313
used, for sharing data validation 313

Backbone Views
URL 314

back-pressure, writable streams 135-137

basic concepts, generators
about 101
generators, as iterators 103
simple example 102
values, returning to generator 103, 104

batching 277
batching, with Promises 284-286
batch operations

URL 189
binding, AMQP 387
Bluebird

URL 90
Bower

URL 308
brew

URL 340
broker-based messaging. See

peer-to-peer messaging
browser

code, sharing with 302
Browserify

about 305
advantages 308
demonstrating 306, 307
URL 305

buffering
versus streaming 120, 121

bundle 305
bunyan

about 178
URL 178

business logic
sharing, Backbone Models used 313

busy-waiting 13

C
caching 275
caching mechanisms

implementing 284
caching, with Promises 284-286
callback function 15
callback hell 61
callback pattern

about 18
asynchronous 22

[419]

continuation-passing style 19
Node.js callback conventions 28
non continuation-passing style callbacks 22
synchronous 22

canonical solutions 268, 269
central registry 239
Chain of Responsibility pattern 208
challenges, asynchronous programming

callback hell 61
simple web spider, creating 58-60

chance module
URL 132

channels 163, 378, 387
Checkout service 363
child process

URL 299
child_process API

URL 300
child_process.fork()

URL 169
cloning 324, 325
closures

about 18
reference link 18

Cloud-based proxies 339
cluster module

about 325, 326
availability 330, 331
behavior 326
resiliency 330, 331
scaling 328, 329
simple HTTP server, building 327
zero-downtime restart 332-334

co
about 107
reference link 107
yieldables 107

code
sharing, with browser 302

code profiler, Factory pattern
building 175-177

cohesion 225
co-limiter

reference link 113

combined stream
advantages 157
implementing 157, 158

Command Message 368
Command pattern

about 216
advantages 217
flexible pattern 218

CommonJS modules 32
competing consumers pattern 393, 400
competitive race 75
complex applications

decomposing 351
microservice architecture 353
microservice architecture, integration

patterns 357
monolithic architecture 351

Component
URL 308

composability approach,
streams 123-127

configuration manager template 205-207
consistentReadSync() function 26
constructor

about 91
arguments 91

constructor injection 237
continuation-passing style

about 19
asynchronous continuation-passing

style 20, 21
non continuation-passing style callbacks 22
synchronous continuation-passing style 19

continuous delivery process 332
correlation identifier

about 405, 406
used, for implementing request/reply

abstraction 406
CouchDB

URL 335
CouchUP

URL 187
coupling

about 224, 225
loosely coupled 226
tightly coupled 226

[420]

CPS. See continuation-passing style
CPU-bound

about 287
interleaving pattern, with

setImmediate 290
multiple processes, using 293

CPU-bound tasks
running 286
subset sum problem, solving 287-290

Cross-origin resource sharing (CORS) 229
cross-platform code 302
cross-platform development

design patterns 311, 312
fundamentals 309

D
data ownership 355
data validation

sharing, Backbone Models used 313
db module 230, 242, 268
Decorator pattern

about 185
implementing, techniques 185

deferreds 92
demultiplexer (demux) 163
demultiplexing

about 163
server side application, creating 166-168

Denial of Service (DoS) attacks 77, 294
dependency

about 224
between modules 225

dependency graph 224
dependency hell problem 9
dependency injection containers

about 234, 239, 245
cons 250
pros 250
set of dependencies, declaring to 246, 247
used, for exposing services 264

dependency injection (DI)
about 234
cons 239
pros 238
used, for exposing services 262, 263

dependency injection (DI), types
constructor injection 237
property injection 237

Derby
URL 319

design pattern
about 171
Adapter 190
Command 216
Decorator 185
Factory 172
Middleware 207
Proxy 179
State 198
Strategy 194
Template 204

design patterns, cross-platform
development

about 311
Adapter 312
Dependency Injection 312
Observer 312
Proxy 312
Service locator 312
Strategy 312
Template 312

dimensions, scalability
X Axis 322, 323
Y Axis 322, 323
Z Axis 322-324

direct style 19
distributed hashsum cracker, with ØMQ

building 395, 396
executing 399
sink, implementing 399
ventilator, implementing 396, 397
worker, implementing 398

Dnode
URL 178

docpad
URL 251

Document Message 369
Don't Repeat Yourself (DRY) principle 9
duck typing

URL 177

[421]

duplexer2 module
URL 156

Duplex stream
about 139
creating 139

durable subscribers
about 384, 385
AMQP 386-388
chat application 388, 389

dynamic load balancer
implementing, with http-proxy 344-347
implementing, with seaport 344-347

dynamic scaling 342

E
ECMAScript 6 specification. See ES6
ecstatic middleware

about 374
URL 374

elasticsearch
URL 356

embarrassingly parallel workload
about 395
reference link 395

encapsulation mechanism 174
envelope 408
ES6 88
ES6 promises

about 91
APIs 91

ES6 WeakMaps
URL 175

EventEmitter class 7
EventEmitter function

about 47
creating 48
emit(event, [arg1], […]) method 47
error event 48
fileread event 48
found event 48
once(event, listener) method 47
on(event, listener) method 47
removeListener(event, listener) method 47
using 48

event loop 14
Event Message 368

event notification interface 13
exchange, AMQP

about 387
direct exchange 387
fanout exchange 387
topic exchange 387

express
Middleware 208
URL 208, 230, 251

express middleware
about 208
tasks 208

extension points 253
Ezel

URL 319

F
factory injection 237
Factory pattern

about 172
Dnode 178
encapsulation mechanism 174
generic interface, for creating

objects 172, 173
Restify 178
simple code profiler, building 175-177

fail-safe socket
implementing 200-203

fair queuing system 395
fan-out distribution 393
Fibers

reference link 117
flexible pattern

complex command 218-221
task pattern 218

flowing mode, readable streams 131
forever

URL 340
forward proxy

URL 338
from2 package

URL 146
from package

about 146
URL 146

[422]

fs module
createReadStream() method 128
createWriteStream() method 128

fstream package
URL 161

function hooking 184
fundamentals, cross-platform development

about 309
build-time code branching 310, 311
runtime code branching 309, 310

G
Gang of Four (GoF) 171
gateway 337
generators

about 100
asynchronous control flow, with

generators 104-107
basics 101
cons 117
limited parallel execution 112
parallel execution 110-112
pros 117
sequential execution 108-110

God Object 361
Grunt

about 264
URL 264

gulp
URL 251

H
handler 15
HAProxy

URL 339
hardcoded dependencies

about 228
cons 234
pros 233
used, for building authentication server 229
using 256-259

Harmony 88
hashsum cracker, with AMQP

executing 404
implementing 400, 401

producer, implementing 401, 402
result collector, implementing 404
worker, implementing 402, 403

Hollywood principle 254
hooks

about 253
URL 184

horizontal partitioning 324
horizontal scaling 324
http-proxy

URL 178, 344
HTTP server

building 327
profiling 327

I
implementation techniques,

Decorator pattern
composing, using 185
LevelUP database, decorating 186
object augmentation 186

implementation techniques, Proxy pattern
object augmentation

(monkey patching) 181
object composition 180, 181

inconsistentRead() function 24
IndexedDB 186
information hiding 225
injected service locator 240
integration patterns, microservice

architecture
about 357
API orchestration 359-361
API proxy 358
message broker 361

Intercepting Filter pattern
about 208
URL 209

interleaving pattern
considerations 293

interleaving pattern, with setImmediate
about 290
steps of subset sum algorithm,

interleaving 291, 292

[423]

Inversion of Control (IoC)
about 253, 254
URL 254

I/O Completion Port API (IOCP) 17
isomorphic 317

J
JSON messages

supporting, with middleware 213, 214
json-over-tcp library

URL 202
JSON Web Token (JWT)

about 229
URL 229

jugglingdb
URL 193

K
KISS principle 58
kernel panic 352
koa

reference link 108

L
Least Recently Used (LRU) algorithm 284
LevelDB 186
LevelUP database 187

decorating 186
URL 186

LevelUP ecosystem
URL 187

LevelUP plugin
implementing 187-189

libuv
about 17
reference link 17

limited parallel execution, async
library 86, 87

limited parallel execution, generators
about 112
download tasks concurrency,

limiting 115, 116
options 112, 113
producer-consumer pattern 113-115

limited parallel execution, plain JavaScript
about 77
concurrency, limiting 78
concurrency, limiting globally 79
queues 79, 80
web spider version 4 80, 81

limited parallel execution, promise 98-100
load balancer 337
load balancing 324-326
load distribution 322
logout plugin

implementing 256
lookup 324

M
Main function 72
makeGenerator() function 101
master process 326
Memcached

URL 284, 335
memoization 283
memoizee package

URL 283
merge-stream module

URL 162
Message Broker

about 362, 370
integration 361-363

message queue (MQ) 369, 384
Message Queue Telemetry

Transport (MQTT)
about 370
URL 371

messages 365, 368
messages, types

Command Message 368
Document Message 368
Event Message 368

messaging system
about 365
asynchronous messaging 369
fundamentals 366
one-way pattern 367
peer-to-peer messaging 370, 371
queues 369
request/reply pattern 367

[424]

methods, Promise instance
promise.catch(onRejected) method 92
promise.then(onFulfilled, onRejected) 92

microservice architecture
about 354
data ownership 355
example 354, 355
high cohesion 354
integration complexity 354
integration patterns 357
loose coupling 354

microservices
about 323
application, scaling 356
challenges 357
cons 355, 356
expendable service 356
platform reusability 356
pros 355, 356
URL 355

middleware
about 184, 207, 370
as pattern 208
in Express 208
middleware framework, for ØMQ 210
using, as pattern 209

middleware framework
creating, for ØMQ 210
Middleware Manager 210

middleware framework, creating for ØMQ
json middleware 213, 214
Middleware Manager 210

Middleware Manager 209
middleware, using as pattern

about 208
steps 209

minification 246
minificators 246
Mkdirp dependency 58
models 313
module

about 8, 224
properties 225
sharing 302
wrapping, with preinitialization

queues 272-274

module definition patterns
about 41
constructor, exporting 43
function, exporting 42, 43
instance, exporting 44, 45
modules, modifying on global scope 45, 46
named exports 41

module impersonation pattern 257
module system

about 32
patterns 32
revealing module pattern 32

module wiring patterns
about 228
dependency injection container 245
dependency injection 234
hardcoded dependency 228
service locator 239, 240

MongoDB
URL 335

Mongoose
about 184
references 274
URL 184

Monit
URL 340

monkey patching
(Object augmentation) 45, 181

monolithic applications 323
monolithic architecture 351-353
monolithic kernels 352
monotonic timestamp

URL 391
using 391

multipipe package
URL 157

multiple directories
tarball, creating from 161, 162

multiplexer (mux) 163
multiplexing

about 163
client side application, creating 164, 165

multiprocess pattern
considerations 301

multistream-merge module
URL 162

[425]

multistream package
URL 163

Mustache
about 304
URL 304

mux/demux application
running 168

N
named exports 41
name mangling 246
Nginx

installing, URL 339
load balancing 340-342
URL 339

nodebb
URL 251

nodebb-plugin-mentions
URL 260

nodebb-plugin-poll
URL 260

node-core 17
node-glob module

reference link 54
Node.js

URL, for blog 129
Node.js applications

scaling 322
Node.js-based proxies 339
Node.js callback conventions

about 28
callbacks, passing as last argument 28
error, passing as first argument 28
error propagation 29
uncaught exceptions 29-31

Node.js modules
about 32
cycles 40
defining 35
globals, defining 35
homemade module loader 33, 34
module cache 39
module.exports, versus exports 35, 36
require function 36
resolving algorithm 37-39

Node.js philosophy
about 8
pragmatism 10
simplicity 10

Node.js style function
promisifying 92

node-uuid package
URL 408
using 408

non-flowing mode, readable
streams 129, 130

normal function 100
npm dependencies

Mkdirp 58
request 58

nscale
URL 357

O
Object.defineProperty()

URL 182
Object-Document Mapping (ODM) 184
object-path library

URL 196
object streams

demultiplexing 169
multiplexing 169

observer pattern
about 46
asynchronous events 51, 52
callbacks, combining with EventEmitter 54
errors, propagating 49
EventEmitter 47, 48
EventEmitter, creating 48
EventEmitter, using 48, 49
EventEmitter, versus callbacks 52, 53
observable object, creating 49-51
synchronous events 51, 52

ØMQ
about 380
middleware framework, creating for 210
URL 214, 349, 371, 380
URL, for installation 381

[426]

ØMQ fan-out/fan-in pattern
about 394
distributed hashsum cracker,

building 395, 396
PUSH/PULL sockets 395

ØMQ middleware framework
client 215, 216
server 214, 215
using 214

ØMQ PUB/SUB sockets
using 382, 383

one-way pattern 367
operating modes, streams

binary 128
object 128

Operational Transformation (OT)
URL 217

ordered parallel execution, streams 154, 155
organization, Command pattern

Client 217
Command 217
Invoker 217
Target (or Receiver) 217

P
packages, streams

about 145
from 146
readable-stream 145
through 146

packet switching 164
parallel execution, async library 85
parallel execution, generators 110-112
parallel execution, plain JavaScript

about 72
pattern 74
race conditions, fixing 75, 76
web spider version 3 73, 74

parallel execution, promise 97, 98
parallel pipeline

about 394
ØMQ fan-out/fan-in pattern 394

Passport.js
URL 198

peer-to-peer load balancing
about 348, 349
HTTP client, implementing for multiple

server request balancing 350
peer-to-peer messaging 370, 371
peer-to-peer publish/subscribe pattern

architecture, designing 380, 381
ØMQ PUB/SUB sockets, using 382, 383
with ØMQ 380

pipelines
about 208, 392-394
competing consumers 399
creating 394
point-to-point communications 400

pipe() method 126
pipes

used, for connecting streams 143, 144
piping patterns 155
plain JavaScript, using

about 62
callback discipline 62
callback discipline, applying 63-65
cons 116
limited parallel execution 77
parallel execution 71-73
pros 116
sequential execution 66

plugin-controlled extension
versus application-controlled

extension 253-255
plugin infrastructure 255
plugins 250
plugins, as packages

example 250-252
pm2

URL 334, 340
point-to-point communications

about 400
hashsum cracker, implementing 400, 401

PostgreSQL
URL 335

PouchDB
URL 187

[427]

preinitialization queues
about 269
asynchronously initialized modules,

implementing 269-271
module, wrapping with 272-274

process.nextTick() function 26, 293
producer-consumer pattern 113
promise

about 88-90
cons 117
limited parallel execution 98-100
Node.js style function, promisifying 92, 93
parallel execution 97, 98
Promises/A+ implementations 90, 91
pros 117
sequential execution 93-95
working 90

Promise.all(array) method 91
promise.catch(onRejected) method 92
Promise.reject(err) method 91
Promise.resolve(obj) method 91
Promises

dealing, with batching 284-286
dealing, with caching 284-286

Promises/A+ specification
implementing 90, 91
URL 88, 90

promise.then(onFulfilled, onRejected)
method 92

promisification 92
promisified version 93
property injection 237, 238
Proxy pattern

about 179
Aspect Oriented Programming (AOP) 184
function hooking 184
implementing, techniques 180
techniques, comparing 182

pseudo-classical inheritance 180
publisher 372
publish/subscribe pattern

about 362, 372
durable subscribers 384, 385
peer-to-peer publish/subscribe,

with ØMQ 380
real-time chat application, building 373
Redis, using 377-379

Q
Q library

reference link 92
URL 90

Quality of Service (QoS)
about 384
QoS0, at most once 384
QoS1, at least once 384
QoS2, exactly once 384

queue, AMQP
about 386
auto-delete 387
durable 386
exclusive 387

queues 79, 369

R
RabbitMQ

URL 370, 388
URL, for installation 389
using 388

React
URL 319

reactor pattern
about 11, 15, 16
blocking I/O 11, 12
components 17
core 8
Event Demultiplexer 16
event demultiplexing 13-15
Event Queue 16
I/O 11
libuv 17
modules 8, 9
non-blocking I/O 12, 13
recipe, for Node.js 18
structure 15
surface area 9

readable-stream package
about 145
URL 145, 146

readable streams
about 129
flowing mode 131
implementing 131, 133
non-flowing mode 129, 130

[428]

read() method 130
real singleton 240
real-time chat application

building 373
client side, implementing 374, 375
executing 375, 376
history service, designing 388
history service, implementing with

AMQP 389, 390
integrating, with AMQP 391
scaling 375, 376
server side, implementing 373, 374

Redis
about 377
URL 284, 335, 377
URL, for installation 377
using, as message broker 377-379

redis package
about 379
URL 379

remote logger
building 164

Remote Procedure Call (RPC) 368
Rendr

URL 319
request dependency 58
request/reply abstraction

implementing, correlation identifier
used 406

replier, creating 409
reply, abstracting 408
request, abstracting 407

request/reply pattern
about 367, 404
correlation identifier 405, 406
reference link 414
return address 410

require() function 34
RequireJS

URL 303
resiliency, cluster module 330, 331
resolving algorithm

about 37
core modules 37
file modules 37
package modules 37
reference link 38

Restify
URL 178

return address
about 410
implementing, in AMQP 410
replier, implementing 413, 414
reply abstraction, implementing 412
request abstraction, implementing 411, 412
requestor, implementing 413, 414

revealing module pattern 32
reverse proxy

about 337
load balancing, with Nginx 339
scaling 337, 339
URL 338

round robin 326
RSVP

URL 90

S
scalability

about 322
dimensions 322

scale cube 322
seaport

URL 344
semi-coroutines 100
Seneca

URL 357
sequential execution, asynchronous

control flow of streams 147, 148
sequential execution, async library

about 82
functions 82
known tasks, executing in sequence 83, 84
sequential iteration 85

sequential execution, generators 108-110
sequential execution, plain JavaScript

about 66
analyzing 66
known tasks, executing in sequence 66, 67
pattern, sequential iteration 70
sequential crawling of links, sequential

iteration 68, 69
sequential iteration 67

[429]

variations 66
web spider version 2, sequential

iteration 67, 68
sequential execution, promise

about 93-95
pattern, sequential iteration 96
sequential iteration 95

server
implementing, without batching 275, 276
implementing, without caching 275, 276

service locator
about 239, 240
cons 245
pros 245
readability approach 245
reusability approach 245
used, for exposing services 260-262

serviceLocator module
factory() method 241
get() method 241
register() method 241

Service Registry
dynamic load balancer, implementing with

http-proxy 344-348
dynamic load balancer, implementing with

seaport 344-348
using 342, 343

services
exposing, dependency injection

container used 264
exposing, dependency injection

used 262, 263
exposing, service locator used 260-262

set and forget paradigm 384
sharding 324
shared rendering 319
siege

URL 327
Simple/Streaming Text Orientated

Messaging Protocol (STOMP)
about 370
URL 371

Single Page Applications 229
Singleton pattern 226, 227
sink 394
SLA (Service Level Agreement) 332

Socket.io
URL 337

software development philosophies
reference link 8

spatial efficiency approach, streams
about 122
gzipping, with buffered API 122
gzipping, with streams 123

split package
URL 152

SSL termination point 339
standalone instances 337
stateful communications

dealing with 334
state, sharing across multiple instances 335
sticky load balancing 336

stateful modules
about 226
Singleton pattern 227

State pattern
about 199, 200
fail-safe socket, implementing 200-204

static methods, Promise object
Promise.all(array) 91
Promise.reject(err) 91
Promise.resolve(obj) 91

sticky load balancing 336, 337
sticky-session

URL 337
Store front-end 361
Strategy pattern

about 194, 195
multi format configuration

object 195-197
Passport.js 198

Stream class
URL, for APIs 135

streaming
versus buffering 120, 121

Streamline
reference link 117

streams
about 119, 128
anatomy 128, 129
asynchronous control flow 147
combining 156

[430]

composability approach 126, 127
connecting, pipes used 143, 144
merging 160
need for 119
packages 145
reading from 129
spatial efficiency approach 122
time efficiency approach 123-126
writing to 134, 135

Streams1 145
Streams2 145
Streams3 145
streams, forking

about 159
multiple checksum generator,

implementing 159, 160
subject 179
sublevel plugin

URL 230
subscribers 372
subset sum algorithm

steps, interleaving of 291, 292
subset sum problem

solving 287-289
subset sum task, delegating

about 294
child process communication 297, 298
parent process communication 299
process pool, implementing 295-297

supervisor 340
suspend

reference link 107
synchronous event demultiplexer 13
synchronous function 21
Systemd 340

T
tarball

creating, from multiple directories 161, 162
tar package

URL 161
task distribution pattern 392-394
task pattern 218
TaskQueue class 79
technical debt 224
template methods 204

Template pattern
about 204, 205
configuration manager

template 205-207
ternary-stream package

URL 169
thenable 89
threads 301
through2 package

URL 146
through2-parallel package

URL 154
through package 146

URL 146
thunk 106
thunkify

reference link 108
time efficiency approach, streams 123-126
tolerance to failures 322
transforms, on project's wiki page

URL 308
Transform streams

about 140
implementing 141-143

U
UMD module

creating 303, 304
UMD pattern

considerations 305
URL 305

Universal Module Definition. See
UMD module

unordered limited parallel execution,
asynchronous control flow
of streams 153, 154

unordered parallel execution, asynchronous
control flow of streams

about 149
unordered parallel stream,

implementing 149-151
URL status monitoring,

implementing 151, 152
Upstart

URL 340

minime
Typewriter

minime
Typewriter
Proudly sourced and uploaded by [StormRG]Kickass Torrents | TPB | ExtraTorrent | h33t

[431]

use multiple processors 294
userland 8
userspace 8
uses, Proxy pattern

caching 179
data validation 179
lazy initialization 179
logging 179
remote objects 179
security 179

V
V8

reference link 62
variations-stream library

URL 397
using 397

ventilator 393
vertical scaling 324
vm module

reference link 33
Vow

URL 90

W
watchify

URL 307
web.js 321
WebSockets

about 375
URL 375

web spider 58
webworker-threads

URL 301
wiring plugins 250
worker 295
writable streams

about 134
back-pressure 135, 137
implementing 137, 138

ws package
URL 373

Y
yield statement 100

Z
zero-downtime restart 332, 333
ZeroMQ. See ØMQ
ZMQ. See ØMQ
zmq package

URL 382

Thank you for buying
Node.js Design Patterns

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Using Node.js for UI Testing
ISBN: 978-1-78216-052-6 Paperback: 146 pages

Learn how to easily automate testing of your web
apps using Node.js, Zombie.js, and Mocha

1. Use automated tests to keep your web app rock
solid and bug-free while you code.

2. Use a headless browser to quickly test your
web application every time you make a small
change to it.

3. Use Mocha to describe and test the capabilities
of your web app.

Node.js Starter
ISBN: 978-1-78216-556-9 Paperback: 48 pages

Program your scalable network applications and web
services with Node.js

1. Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results.

2. Learn how to use module patterns and Node
Packet Manager (NPM) in your applications.

3. Discover callback patterns in NodeJS.

4. Understand the use of Node.js streams in
your applications.

Please check www.PacktPub.com for information on our titles

Node.js Blueprints
ISBN: 978-1-78328-733-8 Paperback: 268 pages

Develop stunning web and desktop applications with
the definitive Node.js

1. Utilize libraries and frameworks to develop
real-world applications using Node.js.

2. Explore Node.js compatibility with AngularJS,
Socket.io, BackboneJS, EmberJS, and GruntJS.

3. Step-by-step tutorials that will help you to
utilize the enormous capabilities of Node.js.

Mastering Node.js
ISBN: 978-1-78216-632-0 Paperback: 346 pages

Expert techniques for building fast servers and
scalable, real-time network applications with
minimal effort

1. Master the latest techniques for building
real-time, Big Data applications, integrating
Facebook, Twitter, and other network services.

2. Tame asynchronous programming, the event
loop, and parallel data processing.

3. Use the Express and Path frameworks to speed
up development and deliver scalable, higher
quality software more quickly.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Node.js Design Fundamentals
	The Node.js philosophy
	Small core
	Small modules
	Small surface area
	Simplicity and pragmatism

	The reactor pattern
	I/O is slow
	Blocking I/O
	Non-blocking I/O
	Event demultiplexing
	The reactor pattern
	The non-blocking I/O engine of Node.js – libuv
	The recipe for Node.js

	The callback pattern
	The continuation-passing style
	Synchronous continuation-passing style
	Asynchronous continuation-passing style
	Non continuation-passing style callbacks

	Synchronous or asynchronous?
	An unpredictable function
	Unleashing Zalgo
	Using synchronous APIs
	Deferred execution

	Node.js callback conventions
	Callbacks come last
	Error comes first
	Propagating errors
	Uncaught exceptions

	The module system and its patterns
	The revealing module pattern
	Node.js modules explained
	A homemade module loader
	Defining a module
	Defining globals
	module.exports vs exports
	require is synchronous
	The resolving algorithm
	The module cache
	Cycles

	Module definition patterns
	Named exports
	Exporting a function
	Exporting a constructor
	Exporting an instance
	Modifying other modules or the global scope

	The observer pattern
	The EventEmitter
	Create and use an EventEmitter
	Propagating errors
	Make any object observable
	Synchronous and asynchronous events
	EventEmitter vs Callbacks
	Combine callbacks and EventEmitter

	Summary

	Chapter 2: Asynchronous Control Flow Patterns
	The difficulties of asynchronous programming
	Creating a simple web spider
	The callback hell

	Using plain JavaScript
	Callback discipline
	Applying the callback discipline
	Sequential execution
	Executing a known set of tasks in sequence
	Sequential iteration

	Parallel execution
	Web spider version 3
	The pattern
	Fixing race conditions in the presence of concurrent tasks

	Limited parallel execution
	Limiting the concurrency
	Globally limiting the concurrency

	The async library
	Sequential execution
	Sequential execution of a known set of tasks
	Sequential iteration

	Parallel execution
	Limited parallel execution

	Promises
	What is a promise?
	Promises/A+ implementations
	Promisifying a Node.js style function
	Sequential execution
	Sequential iteration
	Sequential iteration – the pattern

	Parallel execution
	Limited parallel execution

	Generators
	The basics
	A simple example
	Generators as iterators
	Passing values back to a generator

	Asynchronous control flow with generators
	Generator-based control flow using co

	Sequential execution
	Parallel execution
	Limited parallel execution
	Producer-consumer pattern
	Limiting the download tasks concurrency

	Comparison
	Summary

	Chapter 3: Coding with Streams
	Discovering the importance of streams
	Buffering vs Streaming
	Spatial efficiency
	Gzipping using a buffered API
	Gzipping using streams

	Time efficiency
	Composability

	Getting started with streams
	Anatomy of streams
	Readable streams
	Reading from a stream
	Implementing Readable streams

	Writable streams
	Writing to a stream
	Back-pressure
	Implementing Writable streams

	Duplex streams
	Transform streams
	Implementing Transform streams

	Connecting streams using pipes
	Useful packages for working with streams
	readable-stream
	through and from

	Asynchronous control flow with streams
	Sequential execution
	Unordered parallel execution
	Implementing an unordered parallel stream
	Implementing a URL status monitoring application

	Unordered limited parallel execution
	Ordered parallel execution

	Piping patterns
	Combining streams
	Implementing a combined stream

	Forking streams
	Implementing a multiple checksum generator

	Merging streams
	Creating a tarball from multiple directories

	Multiplexing and demultiplexing
	Building a remote logger
	Multiplexing and demultiplexing object streams

	Summary

	Chapter 4: Design Patterns
	Factory
	A generic interface for creating objects
	A mechanism to enforce encapsulation
	Building a simple code profiler
	In the wild

	Proxy
	Techniques for implementing proxies
	Object composition
	Object augmentation

	A comparison of the different techniques
	Creating a logging Writable stream
	Proxy in the ecosystem – function hooks
and AOP
	In the wild

	Decorator
	Techniques for implementing decorators
	Composition
	Object augmentation

	Decorating a LevelUP database
	Introducing LevelUP and LevelDB
	Implementing a LevelUP plugin

	In the wild

	Adapter
	Using LevelUP through the filesystem API
	In the wild

	Strategy
	Multi-format configuration objects
	In the wild

	State
	Implementing a basic fail-safe socket

	Template
	A configuration manager template
	In the wild

	Middleware
	Middleware in Express
	Middleware as a pattern
	Creating a middleware framework for ØMQ
	The Middleware Manager
	A middleware to support JSON messages
	Using the ØMQ middleware framework

	Command
	A flexible pattern
	The task pattern
	A more complex command

	Summary

	Chapter 5: Wiring Modules
	Modules and dependencies
	The most common dependency in Node.js
	Cohesion and Coupling
	Stateful modules
	The Singleton pattern in Node.js

	Patterns for wiring modules
	Hardcoded dependency
	Building an authentication server using hardcoded dependencies
	Pros and cons of hardcoded dependencies

	Dependency injection
	Refactoring the authentication server to use dependency injection
	The different types of dependency injection
	Pros and cons of dependency injection

	Service locator
	Refactoring the authentication server to use a service locator
	Pros and cons of a service locator

	Dependency injection container
	Declaring a set of dependencies to a DI container
	Refactoring the authentication server to use
a DI container
	Pros and cons of a Dependency Injection container

	Wiring plugins
	Plugins as packages
	Extension points
	Plugin-controlled vs Application-controlled extension
	Implementing a logout plugin
	Using hardcoded dependencies
	Exposing services using a service locator
	Exposing services using dependency injection
	Exposing services using a dependency injection container

	Summary

	Chapter 6: Recipes
	Requiring asynchronously initialized modules
	Canonical solutions
	Preinitialization queues
	Implementing a module that initializes asynchronously
	Wrapping the module with preinitialization queues

	In the wild

	Asynchronous batching and caching
	Implementing a server with no caching or batching
	Asynchronous request batching
	Batching requests in the total sales web server

	Asynchronous request caching
	Caching requests in the total sales web server
	Notes about implementing caching mechanisms

	Batching and caching with Promises

	Running CPU-bound tasks
	Solving the subset sum problem
	Interleaving with setImmediate
	Interleaving the steps of the subset sum algorithm
	Considerations on the interleaving pattern

	Using multiple processes
	Delegating the subset sum task to other processes
	Considerations on the multiprocess pattern

	Sharing code with the browser
	Sharing modules
	Universal Module Definition
	Introducing Browserify

	Fundamentals of cross-platform development
	Runtime code branching
	Build-time code branching
	Design patterns for cross-platform development

	Sharing business logic and data validation using Backbone Models
	Implementing the shared models
	Implementing the platform-specific code
	Using the isomorphic models
	Running the application

	Summary

	Chapter 7: Scalability and Architectural Patterns
	An introduction to application scaling
	Scaling Node.js applications
	The three dimensions of scalability

	Cloning and load balancing
	The cluster module
	Notes on the behavior of the cluster module
	Building a simple HTTP server
	Scaling with the cluster module
	Resiliency and availability with the cluster module
	Zero-downtime restart

	Dealing with stateful communications
	Sharing the state across multiple instances
	Sticky load balancing

	Scaling with a reverse proxy
	Load balancing with Nginx

	Using a Service Registry
	Implementing a dynamic load balancer with http-proxy and seaport

	Peer-to-peer load balancing
	Implementing an HTTP client that can balance requests across multiple servers

	Decomposing complex applications
	Monolithic architecture
	The Microservice architecture
	An example of the Microservice architecture
	Pros and cons of microservices

	Integration patterns in a Microservice architecture
	The API proxy
	API orchestration
	Integration with a message broker

	Summary

	Chapter 8: Messaging and Integration Patterns
	Fundamentals of a messaging system
	One-way and request/reply patterns
	Message types
	Asynchronous messaging and queues
	Peer-to-peer or broker-based messaging

	Publish/subscribe pattern
	Building a minimalist real-time chat application
	Implementing the server side
	Implementing the client side
	Running and scaling the chat application

	Using Redis as a message broker
	Peer-to-peer publish/subscribe with ØMQ
	Introducing ØMQ
	Designing a peer-to-peer architecture for the
chat server
	Using the ØMQ PUB/SUB sockets

	Durable subscribers
	Introducing AMQP
	Durable subscribers with AMQP and RabbitMQ

	Pipelines and task distribution patterns
	The ØMQ fan-out/fan-in pattern
	PUSH/PULL sockets
	Building a distributed hashsum cracker with ØMQ

	Pipelines and competing consumers in AMQP
	Point-to-point communications and competing consumers
	Implementing the hashsum cracker using AMQP

	Request/reply patterns
	Correlation identifier
	Implementing a request/reply abstraction using correlation identifiers

	Return address
	Implementing the return address pattern in AMQP

	Summary

	Index

