
M A N N I N G

Mike Cantelon
Marc Harter
T.J. Holowaychuk
Nathan Rajlich

FOREWORD BY Isaac Z. Schlueter

Node.js in Action
MIKE CANTELON

MARC HARTER
T.J. HOLOWAYCHUK

NATHAN RAJLICH

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2014 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Renae Gregoire
20 Baldwin Road Copyeditor: Andy Carroll
PO Box 261 Proofreader: Katie Tennant
Shelter Island, NY 11964 Typesetter: Dottie Marsico

Cover designer: Marija Tudor

ISBN 9781617290572
Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13

www.manning.com

brief contents
PART 1 NODE FUNDAMENTALS...1

1 ■ Welcome to Node.js 3

2 ■ Building a multiroom chat application 14

3 ■ Node programming fundamentals 37

PART 2 WEB APPLICATION DEVELOPMENT WITH NODE69

4 ■ Building Node web applications 71

5 ■ Storing Node application data 97

6 ■ Connect 123

7 ■ Connect’s built-in middleware 145

8 ■ Express 176

9 ■ Advanced Express 202

10 ■ Testing Node applications 242

11 ■ Web application templating 264

PART 3 GOING FURTHER WITH NODE293

12 ■ Deploying Node applications and maintaining uptime 295

13 ■ Beyond web servers 309
iii

14 ■ The Node ecosystem 343

contents
foreword xiii
preface xv
acknowledgments xvi
about this book xviii
about the cover illustration xx

PART 1 NODE FUNDAMENTALS..1

1 Welcome to Node.js 3
1.1 Built on JavaScript 4
1.2 Asynchronous and evented: the browser 5
1.3 Asynchronous and evented: the server 7
1.4 DIRTy applications 8
1.5 DIRTy by default 10

Simple async example 11 ■ Hello World HTTP server 12
Streaming data 12

1.6 Summary 13

2 Building a multiroom chat application 14
2.1 Application overview 15
2.2 Application requirements and initial setup 17

Serving HTTP and WebSocket 17 ■ Creating the application
file structure 18 ■ Specifying dependencies 19 ■ Installing
v

dependencies 19

CONTENTSvi

2.3 Serving the application’s HTML, CSS, and client-side
JavaScript 20
Creating a basic static file server 20 ■ Adding the HTML and CSS
files 23

2.4 Handling chat-related messaging using Socket.IO 25
Setting up the Socket.IO server 26 ■ Handling application
scenarios and events 27

2.5 Using client-side JavaScript for the application’s user
interface 31
Relaying messages and name/room changes to the server 32
Showing messages and available rooms in the user interface 33

2.6 Summary 36

3 Node programming fundamentals 37
3.1 Organizing and reusing Node functionality 38

Creating modules 40 ■ Fine-tuning module creation using
module.exports 42 ■ Reusing modules using the node_modules
folder 43 ■ Caveats 44

3.2 Asynchronous programming techniques 46
Handling one-off events with callbacks 46 ■ Handling repeating
events with event emitters 50 ■ Challenges with asynchronous
development 57

3.3 Sequencing asynchronous logic 58
When to use serial flow control 59 ■ Implementing serial flow
control 61 ■ Implementing parallel flow control 63
Leveraging community tools 65

3.4 Summary 67

PART 2 WEB APPLICATION DEVELOPMENT WITH NODE69

4 Building Node web applications 71
4.1 HTTP server fundamentals 72

How Node presents incoming HTTP requests to developers 73
A basic HTTP server that responds with “Hello World” 74
Reading request headers and setting response headers 75
Setting the status code of an HTTP response 75

CONTENTS vii

4.2 Building a RESTful web service 76
Creating resources with POST requests 77 ■ Fetching resources
with GET requests 79 ■ Removing resources with DELETE
requests 80

4.3 Serving static files 81
Creating a static file server 82 ■ Handling server errors 85
Preemptive error handling with fs.stat 86

4.4 Accepting user input from forms 87
Handling submitted form fields 87 ■ Handling uploaded files
using formidable 90 ■ Calculating upload progress 94

4.5 Securing your application with HTTPS 94

4.6 Summary 96

5 Storing Node application data 97
5.1 Serverless data storage 98

In-memory storage 98 ■ File-based storage 99

5.2 Relational database management systems 102
MySQL 102 ■ PostgreSQL 110

5.3 NoSQL databases 112
Redis 112 ■ MongoDB 117 ■ Mongoose 119

5.4 Summary 121

6 Connect 123
6.1 Setting up a Connect application 124

6.2 How Connect middleware works 125
Middleware that does logging 126 ■ Middleware that responds
with “hello world” 126

6.3 Why middleware ordering matters 127
When middleware doesn’t call next() 128 ■ Using middleware
order to perform authentication 128

6.4 Mounting middleware and servers 129
Middleware that does authentication 130 ■ A middleware
component that presents an administration panel 131

CONTENTSviii

6.5 Creating configurable middleware 133
Creating a configurable logger middleware component 133
Building a routing middleware component 135
Building a middleware component to rewrite URLs 137

6.6 Using error-handling middleware 138
Connect’s default error handler 139 ■ Handing application errors
yourself 139 ■ Using multiple error-handling middleware
components 141

6.7 Summary 144

7 Connect’s built-in middleware 145
7.1 Middleware for parsing cookies, request bodies,

and query strings 146
cookieParser(): parsing HTTP cookies 147 ■ bodyParser():
parsing request bodies 150 ■ limit(): request body limiting 151
query(): query-string parser 153

7.2 Middleware that implements core web application
functions 154
logger(): logging requests 155 ■ favicon(): serving a
favicon 157 ■ methodOverride(): faking HTTP methods 158
vhost(): virtual hosting 160 ■ session(): session
management 161

7.3 Middleware that handles web application security 165
basicAuth(): HTTP Basic authentication 165 ■ csrf(): cross-site
request forgery protection 167 ■ errorHandler(): development error
handling 168

7.4 Middleware for serving static files 170
static(): static file serving 170 ■ compress(): compressing static
files 172 ■ directory(): directory listings 174

7.5 Summary 175

8 Express 176
8.1 Generating the application skeleton 178

Installing the Express executable 180 ■ Generating the
application 180 ■ Exploring the application 180

8.2 Configuring Express and your application 183
Environment-based configuration 183

CONTENTS ix

8.3 Rendering views 185
View system configuration 185 ■ View lookup 188 ■ Exposing
data to views 189

8.4 Handling forms and file uploads 194
Implementing the photo model 194 ■ Creating a photo upload
form 194 ■ Showing a list of uploaded photos 197

8.5 Handling resource downloads 198
Creating the photo download route 198 ■ Implementing the photo
download route 199

8.6 Summary 201

9 Advanced Express 202
9.1 Authenticating users 203

Saving and loading users 204 ■ Registering new users 209
Logging in registered users 214 ■ User-loading middleware 217

9.2 Advanced routing techniques 219
Validating user content submission 219 ■ Route-specific
middleware 223 ■ Implementing pagination 225

9.3 Creating a public REST API 229
Designing the API 229 ■ Adding Basic authentication 229
Implementing routing 230 ■ Enabling content negotiation 234

9.4 Error handling 236
Handling 404 errors 236 ■ Handling errors 238

9.5 Summary 241

10 Testing Node applications 242
10.1 Unit testing 243

The assert module 244 ■ Nodeunit 247 ■ Mocha 249
Vows 254 ■ Should.js 256

10.2 Acceptance testing 258
Tobi 259 ■ Soda 260

10.3 Summary 262

11 Web application templating 264
11.1 Using templating to keep code clean 265

Templating in action 266

CONTENTSx

11.2 Templating with Embedded JavaScript 269
Creating a template 269 ■ Manipulating template data using EJS
filters 271 ■ Integrating EJS into your application 274
Using EJS for client-side applications 275

11.3 Using the Mustache templating language with
Hogan 276
Creating a template 276 ■ Mustache tags 277 ■ Fine-tuning
Hogan 279

11.4 Templating with Jade 280
Jade basics 281 ■ Logic in Jade templates 284 ■ Organizing
Jade templates 287

11.5 Summary 290

PART 3 GOING FURTHER WITH NODE293

12 Deploying Node applications and maintaining uptime 295
12.1 Hosting Node applications 295

Dedicated and virtual private servers 297 ■ Cloud hosting 297

12.2 Deployment basics 299
Deploying from a Git repository 300 ■ Keeping Node
running 300

12.3 Maximizing uptime and performance 301
Maintaining uptime with Upstart 302 ■ The cluster API: taking
advantage of multiple cores 304 ■ Hosting static files and
proxying 306

12.4 Summary 307

13 Beyond web servers 309
13.1 Socket.IO 310

Creating a minimal Socket.IO application 310 ■ Using Socket.IO
to trigger page and CSS reloads 312 ■ Other uses of
Socket.IO 315

13.2 TCP/IP networking in depth 316
Working with buffers and binary data 316 ■ Creating a TCP
server 318 ■ Creating a TCP client 321

13.3 Tools for interacting with the operating system 323
The process global singleton 324 ■ Using the filesystem

module 327 ■ Spawning external processes 331

CONTENTS xi

13.4 Developing command-line tools 336
Parsing command-line arguments 336 ■ Working with stdin and
stdout 337 ■ Adding colored output 339

13.5 Summary 342

14 The Node ecosystem 343
14.1 Online resources for Node developers 344

Node and module references 344 ■ Google Groups 345
IRC 346 ■ GitHub issues 346

14.2 GitHub 347
Getting started on GitHub 348 ■ Adding a project to
GitHub 349 ■ Collaborating using GitHub 352

14.3 Contributing to the npm repository 354
Preparing a package 355 ■ Writing a package specification 355
Testing and publishing a package 356

14.4 Summary 358

appendix A Installing Node and community add-ons 359
appendix B Debugging Node 367
appendix C Extending and configuring Express 374

index 379

foreword
Writing a book about Node.js is a challenging endeavor. It’s a relatively new platform,
just now attaining stability. The Node.js core continues to evolve, and the community
of user-created modules is exploding at a pace that no one can hope to keep track of.
The community is still finding its voice. The only way to catch such a moving target in
print is to get at the essence of what Node is, and why it has been succeeding as it has.
These Node.js veterans have done just that. Mike Cantelon is extremely active in the
Node community, experimenting with and speaking about Node. He has an excellent
grasp on what Node is good for, and perhaps more importantly, what it isn’t good for.
T.J. Holowaychuk is one of the most prolific authors of Node.js modules, including
the massively popular Express web framework. Nathan Rajlich, better known to many
as TooTallNate, has been a Node.js core committer for some time now and is an active
part of the development of the platform as it has matured into its current state.

 This book draws on their considerable experience, taking you from the very first
steps of installing Node.js on your computer all the way to creating, debugging, and
deploying production applications. You’ll learn what makes Node interesting and get
a glimpse into the authors’ combined understanding, so that the future directions the
Node project takes will make sense. Most importantly, the content ramps up nicely
from basic to advanced, building on prior learning at each stage.

 Node is an ascending rocket, and the authors have done a great job of bringing
you along for the ride. Think of Node.js in Action as the launching pad from which to
explore your own horizons.

ISAAC Z. SCHLUETER

NPM AUTHOR
xiii

NODE.JS PROJECT LEAD

preface
In early 2011, when Manning approached us with the idea of writing a book on
Node.js, the state of the Node community was much different than it is now. The com-
munity was small and, despite the fact that Node was starting to attract a great deal of
interest, Node was still considered a bleeding-edge technology by the mainstream
development community. No books had yet been written about it, and although the
idea of writing a book was daunting, we decided to go for it.

 Given our respective development inclinations, we wanted to create a book that
not only focused on the use of Node for web application development, but also
explored other interesting potential uses. We wanted to provide a way for web applica-
tion developers using conventional technologies to harness Node’s vision of bringing
asynchronous development to the server.

 We’ve worked for more than two years on the book, and during its writing the tech-
nology has evolved, so we’ve updated the book accordingly. In addition to the technol-
ogy changing, the community has also evolved. It is now much larger, and many
established companies have embraced Node.

 For web application developers looking to try something different, this is a great
time to learn Node, and we hope our book helps you learn the technology quickly and
have fun doing so.
xv

acknowledgments
Thanks are due to the great people at Manning for their role in the creation of this
book. Renae Gregoire played a major role, pushing us toward eloquence, clarity, and
quality. Bert Bates helped define the book’s visual feel, working with us to design
graphics expressing various concepts presented in the book. Marjan Bace and Michael
Stephens believed in us enough to entrust us with the creation of the book and
helped keep the project moving. And Manning’s editorial, production, and technical
staff were amazing to work with.

 Many people reviewed the manuscript in various stages of its development, and we
would like to thank them for their feedback. This includes our MEAP readers who
posted comments and corrections in the book’s online forum, and the following
reviewers who read the manuscript multiple times and whose insights and comments
helped make this a much better book: Àlex Madurell, Bert Thomas, Bradley Meck,
Braj Panda, Brian L. Cooley, Brian Del Vecchio, Brian Dillard, Brian Ehmann, Brian
Falk, Daniel Bretoi, Gary Ewan Park, Jeremy Martin, Jeroen Nouws, Jeroen Trappers,
Kassandra Perch, Kevin Baister, Michael Piscatello, Patrick Steger, Paul Stack, and
Scott Banachowski.

 Thanks also to Valentin Crettaz and Michael Levin for their careful technical
proofread of the final manuscript, shortly before it went into production. Last but not
least, we’d like to thank Isaac Schlueter, Node Project Lead, for contributing the fore-
word to our book.

MIKE CANTELON
I’d like to thank my friend Joshua Paul for giving me my first break in the tech indus-
xvi

try, introducing me to the world of open source, and encouraging me to write a book.

ACKNOWLEDGMENTS xvii

I’d also like to thank my partner Malcolm for encouraging me during the book’s cre-
ation and for her patience during the times when writing kept me constantly cooped
up at home. A big thanks, as well, to my parents for bringing me up with a passion for
creativity and exploration, and for putting up with my less-than-balanced childhood
obsession with 8-bit machines. I’d also like to thank my grandparents for gifting me
with the machine that got me hooked, for life, on programming: the Commodore 64.

 During the process of writing the book, T.J. and Nathan’s expertise was invaluable
and their good humor much appreciated. I thank them for taking a leap of faith and
agreeing to collaborate. Marc Harter was also a huge help, chipping in on the Hercu-
lean task of editing, proofing, and writing content that tied everything together.

MARC HARTER
Thanks to Ryan Dahl, who inspired me to take a serious look at server-side JavaScript
programming nearly four years ago. Thanks to Ben Noordhuis, an invaluable
resource on the inner workings of Node. Thanks to Bert Bates, who believed in me,
challenged me, and was always willing to help during the writing process. Thanks to
Mike, Nate, and T.J. for welcoming me in at the 11th hour. It was an honor working
with them. Thanks especially to my wife and friend Hannah, whose courage and kind-
ness carried me into and through this new venture.

NATHAN RAJLICH
I would like to start by thanking Guillermo Rauch for taking me in and helping me
find my place in the Node.js community. I would also like to thank David Blickstein
for encouraging me to take on this book project. I thank Ryan Dahl for starting the
Node.js movement, and Isaac Schlueter for doing an excellent job of stewarding this
ship for the last couple for years. Thanks also to my family, my friends, and my girl-
friend for putting up with the sleepless nights and wide range of emotions exhibited
during the process. And of course a huge thanks to my parents for supporting me
throughout the years in my computing endeavors. I wouldn’t be where I am today
without them at my side.

about this book
Node.js in Action’s primary purpose is to teach you to how to create and deploy Node
applications, with a focus on web applications. A considerable part of the book focuses
on the Express web application framework and the Connect middleware framework
because of their usefulness and community support. You’ll also learn how to create
automated tests for, and how to deploy, your applications.

 This book is targeted toward experienced web application developers who are
interested in creating responsive, scalable applications using Node.js.

 Because Node.js applications are written using JavaScript, a working knowledge of
the language is a prerequisite. Familiarity with the Windows, OS X, or Linux command
line is also recommended.

Roadmap

This book is organized into three parts.
 Part 1 provides an introduction to Node.js, teaching the fundamental techniques

needed to develop with it. Chapter 1 explains the characteristics of Node and steps
through some example code. Chapter 2 guides the reader through the creation of an
example application. Chapter 3 explains the challenges of Node.js development, pro-
vides techniques for overcoming them, and teaches ways to organize application code.

 Part 2 is the largest in the book and focuses on web application development.
Chapter 4 teaches the basics of creating Node-driven web applications, and chapter 5
talks about how to store application data using Node.

 Part 2 then continues into the world of web-related frameworks. Chapter 6 intro-
duces the Connect framework, explaining its benefits and how it works. Chapter 7
xviii

teaches how various built-in Connect framework components can be used to add

ABOUT THIS BOOK xix

functionality to web applications. Chapters 8 provides an introduction to the Express
framework, and chapter 9 guides the reader through advanced Express usage.

 With the basics of web development covered, part 2 concludes after exploring two
more related topics. Chapter 10 guides the reader through the use of various Node
testing frameworks. Chapter 11 then teaches how templating can be used in Node
web applications to separate presentation of data from logic.

 Part 3 moves on to look at things beyond web development that can be done with
Node. Chapter 12 talks about how Node applications can be deployed to production
servers, how uptime can be maintained, and how performance can be maximized.
Chapter 13 explains how non-HTTP applications can be created, how to use the
Socket.io framework to create real-time applications, and the use of a number of handy
build-in Node APIs. Chapter 14, the final chapter, discusses how the Node community
works and how Node creations can be published using the Node Package Manager.

Code conventions and downloads
The code in this book follows common JavaScript conventions. Spaces, rather than
tabs, are used for indentation. Lines longer than 80 characters are avoided. In many
listings, the code is annotated to point out key concepts.

 A single statement per line is used and semicolons are added at the end of simple
statements. For blocks of code, where one or more statements are enclosed in curly
braces, the left curly brace is placed at the end of the opening line of the block. The
right curly brace is indented so it’s vertically aligned with the opening line of the
block.

 Source code for the examples in this book is available for download from the pub-
lisher’s website at www.manning.com/Node.jsinAction.

Author Online
Purchase of Node.js in Action includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the authors and from other users. To access the forum
and subscribe to it, point your web browser to www.manning.com/Node.jsinAction.
This page provides information on how to get on the forum once you’re registered,
what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the authors can take
place. It’s not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the authors some challenging questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

www.manning.com/Node.jsinAction
www.manning.com/Node.jsinAction
http://www.manning.com/makingJavaGroovy
http://www.manning.com/makingJavaGroovy
http://www.manning.com/makingJavaGroovy

about the cover illustration
The figure on the cover of Node.js in Action is captioned “Man about Town.” The illus-
tration is taken from a nineteenth-century edition of Sylvain Maréchal’s four-volume
compendium of regional dress customs published in France. Each illustration is finely
drawn and colored by hand. The rich variety of Maréchal’s collection reminds us viv-
idly of how culturally apart the world’s towns and regions were just 200 years ago. Iso-
lated from each other, people spoke different dialects and languages. Whether on city
streets, in small towns, or in the countryside, it was easy to identify where they lived
and what their trade or station in life was just by their dress.

 Dress codes have changed since then and the diversity by region and class, so rich
at the time, has faded away. It is now hard to tell apart the inhabitants of different con-
tinents, let alone different towns or regions. Perhaps we have traded cultural diversity
for a more varied personal life—certainly for a more varied and fast-paced technolog-
ical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Maréchal’s pictures.
xx

Part 1

Node fundamentals

When learning a programming language or framework, you’ll often
encounter new concepts that require you to think about things in a new way.
Node is no exception, as it takes a new approach to a number of aspects of appli-
cation development.

 The first part of this book will outline exactly how Node is different from
other platforms and will teach the basics of its use. You’ll learn what applications
created in Node look like, how they’re organized, and how to deal with develop-
ment challenges specific to Node. What you learn in part 1 will give you the
foundation needed to learn how to create web applications in Node, detailed in
part 2, and how to create nonweb applications, discussed in part 3.

Welcome to Node.js
So what is Node.js? It’s likely you’ve heard the term. Maybe you already use Node.
Maybe you’re curious about it. At this point in time, Node is very popular and
young (it debuted in 2009). It’s the second-most-watched project on GitHub
(https://github.com/joyent/node), it has quite a following in its Google group
(http://groups.google.com/group/nodejs) and IRC channel (http://webchat
.freenode.net/?channels=node.js), and it has more than 15,000 community mod-
ules published in NPM, the package manager (http://npmjs.org). All this to say,
there’s considerable traction behind this platform.

RYAN DAHL ON NODE You can watch the first presentation on Node by cre-
ator Ryan Dahl on the JSCONF Berlin 2009 website: http://jsconf.eu/
2009/video_nodejs_by_ryan_dahl.html.

This chapter covers
 What Node.js is

 JavaScript on the server

 The asynchronous and evented nature of Node

 Types of applications Node is designed for

 Sample Node programs
3

http://groups.google.com/group/nodejs
http://webchat.freenode.net/?channels=node.js
http://webchat.freenode.net/?channels=node.js
http://npmjs.org
https://github.com/joyent/node
http://jsconf.eu/2009/video_nodejs_by_ryan_dahl.html
http://jsconf.eu/2009/video_nodejs_by_ryan_dahl.html

4 CHAPTER 1 Welcome to Node.js

The official website (http://www.nodejs.org) defines Node as “a platform built on
Chrome’s JavaScript runtime for easily building fast, scalable network applications.
Node.js uses an event-driven, non-blocking I/O model that makes it lightweight and effi-
cient, perfect for data-intensive real-time applications that run across distributed devices.”

 In this chapter, we’ll look at these concepts:

 Why JavaScript matters for server-side development
 How the browser handles I/O using JavaScript
 How Node handles I/O on the server
 What’s meant by DIRTy applications, and why they’re a good fit for Node
 A sampling of a few basic Node programs

Let’s first turn our attention to JavaScript...

1.1 Built on JavaScript
For better or worse, JavaScript is the world’s most popular programming language.1 If
you’ve done any programming for the web, it’s unavoidable. JavaScript, because of the
sheer reach of the web, has fulfilled the “write once, run anywhere” dream that Java
had back in the 1990s.

 Around the time of the Ajax revolution in 2005, JavaScript went from being a “toy”
language to something people wrote real and significant programs with. Some of the
notable firsts were Google Maps and Gmail, but today there are a host of web applica-
tions from Twitter to Facebook to GitHub.

 Since the release of Google Chrome in late 2008, JavaScript performance has
improved at an incredibly fast rate due to heavy competition between browser vendors
(Mozilla, Microsoft, Apple, Opera, and Google). The performance of these modern
JavaScript virtual machines is literally changing the types of applications you can build
on the web.2 A compelling, and frankly mind-blowing, example of this is jslinux,3 a PC
emulator running in JavaScript where you can load a Linux kernel, interact with the
terminal session, and compile a C program, all in your browser.

 Node uses V8, the virtual machine that powers Google Chrome, for server-side pro-
gramming. V8 gives Node a huge boost in performance because it cuts out the middle-
man, preferring straight compilation into native machine code over executing
bytecode or using an interpreter. Because Node uses JavaScript on the server, there
are also other benefits:

 Developers can write web applications in one language, which helps by reduc-
ing the context switch between client and server development, and allowing for
code sharing between client and server, such as reusing the same code for form
validation or game logic.

 JSON is a very popular data interchange format today and is native to JavaScript.

1 See “JavaScript: Your New Overlord” on YouTube: www.youtube.com/watch?v=Trurfqh_6fQ.
2 See the “Chrome Experiments” page for some examples: www.chromeexperiments.com/.

3 Jslinux, a JavaScript PC emulator: http://bellard.org/jslinux/.

http://www.nodejs.org
www.youtube.com/watch?v=Trurfqh_6fQ
www.chromeexperiments.com/
http://bellard.org/jslinux/

5Asynchronous and evented: the browser

 JavaScript is the language used in various NoSQL databases (such as CouchDB
and MongoDB), so interfacing with them is a natural fit (for example,
MongoDB’s shell and query language is JavaScript; CouchDB’s map/reduce is
JavaScript).

 JavaScript is a compilation target, and there are a number of languages that
compile to it already.4

 Node uses one virtual machine (V8) that keeps up with the ECMAScript stan-
dard.5 In other words, you don’t have to wait for all the browsers to catch up to
use new JavaScript language features in Node.

Who knew JavaScript would end up being a compelling language for writing server-
side applications? Yet, due to its sheer reach, performance, and other characteristics
mentioned previously, Node has gained a lot of traction. JavaScript is only one piece
of the puzzle though; the way Node uses JavaScript is even more compelling. To
understand the Node environment, let’s dive into the JavaScript environment you’re
most familiar with: the browser.

1.2 Asynchronous and evented: the browser
Node provides an event-driven and asynchronous platform for server-side JavaScript.
It brings JavaScript to the server in much the same way a browser brings JavaScript to
the client. It’s important to understand how the browser works in order to understand
how Node works. Both are event-driven (they use an event loop) and non-blocking
when handling I/O (they use asynchronous I/O). Let’s look an example to explain
what that means.

EVENT LOOPS AND ASYNCHRONOUS I/O For more about event loops and asyn-
chronous I/O, see the relevant Wikipedia articles at http://en.wikipedia.org/
wiki/Event_loop and http://en.wikipedia.org/wiki/Asynchronous_I/O.

Take this common snippet of jQuery performing an Ajax request using XMLHttp-
Request (XHR):

$.post('/resource.json', function (data) {
console.log(data);
});
// script execution continues

This program performs an HTTP request for resource.json. When the response comes
back, an anonymous function is called (the “callback” in this context) containing the
argument data, which is the data received from that request.

 Notice that the code was not written like this:

var data = $.post('/resource.json');
console.log(data);

4 See the “List of languages that compile to JS”: https://github.com/jashkenas/coffee-script/wiki/
List-of-languages-that-compile-to-JS.

I/O doesn’t
block execution

I/O blocks execution until finished
5 For more about the ECMAScript standard, see Wikipedia: http://en.wikipedia.org/wiki/ECMAScript.

https://github.com/jashkenas/coffee-script/wiki/List-of-languages-that-compile-to-JS
https://github.com/jashkenas/coffee-script/wiki/List-of-languages-that-compile-to-JS
http://en.wikipedia.org/wiki/Event_loop
http://en.wikipedia.org/wiki/Event_loop
http://en.wikipedia.org/wiki/Asynchronous_I/O
http://en.wikipedia.org/wiki/ECMAScript

6 CHAPTER 1 Welcome to Node.js

In this example, the assumption is that the response for resource.json would be stored
in the data variable when it is ready and that the console.log function will not execute
until then. The I/O operation (the Ajax request) would “block” script execution from
continuing until ready. Because the browser is single-threaded, if this request took 400
ms to return, any other events happening on that page would wait until then before
execution. You can imagine the poor user experience if an animation was paused or
the user was trying to interact with the page somehow.

 Thankfully, that’s not the case. When I/O happens in the browser, it happens out-
side of the event loop (outside the main script execution) and then an “event” is emit-
ted when the I/O is finished,6 which is handled by a function (often called the
“callback”) as shown in figure 1.1.

 The I/O happens asynchronously and doesn’t “block” the script execution, allow-
ing the event loop to respond to whatever other interactions or requests are being
performed on the page. This enables the browser to be responsive to the client and to
handle a lot of interactivity on the page.

 Make a note of that, and let’s switch over to the server.

6 Note that there are a few exceptions that “block” execution in the browser, and their use is typically discour-

$.post('/resource.json', function (data) {

 console.log(data);

})

Event loop
1. Ajax request made
 for resource.json.

resource.json

2. User clicks; onclick event handled.

...waiting...

4. Finally, Ajax response for
resource.json comes back
and is handled in the callback.

3. Another Ajax response
 comes back.

Figure 1.1 An example of non-blocking I/O in the browser
aged: alert, prompt, confirm, and synchronous XHR.

7Asynchronous and evented: the server

1.3 Asynchronous and evented: the server
For the most part, you’re likely to be familiar with a conventional I/O model for
server-side programming, like the “blocking” jQuery example in section 1.2. Here’s an
example of how it looks in PHP:

$result = mysql_query('SELECT * FROM myTable');
print_r($result);

This code does some I/O, and the process is blocked from continuing until all the
data has come back. For many applications this model is fine and is easy to follow.
What may not be apparent is that the process has state, or memory, and is essentially
doing nothing until the I/O is completed. That could take anywhere from 10 ms to
minutes depending on the latency of the I/O operation. Latency can also result from
unexpected causes:

 The disk is performing a maintenance operation, pausing reads/writes.
 A database query is slower because of increased load.
 Pulling a resource from sitexyz.com is sluggish today for some reason.

If a program blocks on I/O, what does the server do when there are more requests to
handle? Typically you’d use a multithreaded approach in this context. A common
implementation is to use one thread per connection and set up a thread pool for
those connections. You can think of threads as computational workspaces in which
the processor works on one task. In many cases, a thread is contained inside a process
and maintains its own working memory. Each thread handles one or more server con-
nections. Although this may sound like a natural way to delegate server labor—at least
to developers who’ve been doing this a long time—managing threads within an appli-
cation can be complex. Also, when a large number of threads is needed to handle
many concurrent server connections, threading can tax operating system resources.
Threads require CPU to perform context switches, as well as additional RAM.

 To illustrate this, let’s look at a benchmark (shown in figure 1.2, from http://
mng.bz/eaZT) comparing NGINX and Apache. NGINX (http://nginx.com/), if you
aren’t familiar with it, is an HTTP server like Apache, but instead of using the multi-
threaded approach with blocking I/O, it uses an event loop with asynchronous I/O
(like the browser and Node). Because of these design choices, NGINX is often able to
handle more requests and connected clients, making it a more responsive solution.7

 In Node, I/O is almost always performed outside of the main event loop, allowing
the server to stay efficient and responsive, like NGINX. This makes it much harder for
a process to become I/O-bound because I/O latency isn’t going to crash your server or
use the resources it would if you were blocking. It allows the server to be lightweight
on what are typically the slowest operations a server performs.8

7 If you’re interested in learning more about this problem, see “The C10K problem”: www.kegel.com/
c10k.html.

Execution stops until
DB query completes
8 Node’s “About” page has more details about this: http://nodejs.org/about/.

http://mng.bz/eaZT
http://mng.bz/eaZT
http://nginx.com/
www.kegel.com/c10k.html
www.kegel.com/c10k.html
http://nodejs.org/about/

8 CHAPTER 1 Welcome to Node.js

This mix of event-driven and asynchronous models and the widely accessible
JavaScript language helps open up an exciting world of data-intensive real-time
applications.

1.4 DIRTy applications
There actually is an acronym for the types of applications Node is designed for: DIRT.
It stands for data-intensive real-time applications. Because Node itself is very lightweight
on I/O, it’s good at shuffling or proxying data from one pipe to another. It allows a
server to hold a number of connections open while handling many requests and keep-
ing a small memory footprint. It’s designed to be responsive, like the browser.

 Real-time applications are a new use case of the web. Many web applications now
provide information virtually instantly, implementing things like online whiteboard
collaboration, real-time pinpointing of approaching public transit buses, and multi-
player games. Whether it’s existing applications being enhanced with real-time com-
ponents or completely new types of applications, the web is moving toward more
responsive and collaborative environments. These new types of web applications,
however, call for a platform that can respond almost instantly to a large number of
concurrent users. Node is good at this, and not just for web applications, but also for
other I/O-heavy applications.

 A good example of a DIRTy application written with Node is Browserling (brow-
serling.com, shown in figure 1.3). The site allows in-browser use of other browsers.
This is extremely useful to front-end web developers because it frees them from hav-

Figure 1.2 WebFaction
Apache/NGINX benchmark
ing to install numerous browsers and operating systems solely for testing. Browserling

9DIRTy applications

leverages a Node-driven project called StackVM, which manages virtual machines
(VMs) created using the QEMU (Quick Emulator) emulator. QEMU emulates the CPU
and peripherals needed to run the browser.

 Browserling has VMs run test browsers and then relays the keyboard and mouse
input data from the user’s browser to the emulated browser which, in turn, streams
the repainted regions of the emulated browser and redraws them on the canvas of the
user’s browser. This is illustrated in figure 1.4.

Figure 1.3 Browserling: interactive cross-browser testing using Node.js

Browserling.com
Emulated
browser
(QEMU)

Node.jsWebSocket
HTML5 canvas

User’s mouse and keyboard events

Updated images in the form of data URls

1 In the browser, the user's mouse and keyboard events are passed over
WebSocket in real time to Node.js, which in turn passes them to the emulator.

2 The repainted regions of the emulated browser affected by the user interaction
are streamed back though Node and WebSocket and drawn on the canvas in the browser.

1

1

2

2

Figure 1.4 Browserling workflow

10 CHAPTER 1 Welcome to Node.js

Browserling also provides a complementary project using Node called Testling
(testling.com), which allows you to run a test suite against multiple browsers in paral-
lel from the command line.

 Browserling and Testling are good examples of DIRTy applications, and the infra-
structure for building scalable network applications like them is at play when you sit
down to write your first Node application. Let’s take a look at how Node’s API provides
this tooling right out of the box.

1.5 DIRTy by default
Node was built from the ground up to have an event-driven and asynchronous model.
JavaScript has never had standard I/O libraries, which are common to server-side lan-
guages. The “host” environment has always determined this for JavaScript. The most
common host environment for JavaScript—the one most developers are used to—is
the browser, which is event-driven and asynchronous.

 Node tries to keep consistency between the browser and the server by reimple-
menting common host objects, such as these:

 Timer API (for example, setTimeout)
 Console API (for example, console.log)

Node also includes a core set of modules for many types of network and file I/O.
These include modules for HTTP, TLS, HTTPS, filesystem (POSIX), Datagram (UDP),
and NET (TCP). The core is intentionally small, low-level, and uncomplicated, includ-
ing just the building blocks for I/O-based applications. Third-party modules build
upon these blocks to offer greater abstractions for common problems.

After all this discussion, you’re probably wondering what Node code looks like. Let’s
cover a few simple examples:

 A simple asynchronous example
 A Hello World web server
 An example of streams

Let’s look at a simple asynchronous application first.

Platform vs. framework
Node is a platform for JavaScript applications, and it’s not to be confused with a
framework. It’s a common misconception to think of Node as Rails or Django for
JavaScript, whereas it’s much lower level.

But if you’re interested in frameworks for web applications, we’ll talk about a popular
one for Node called Express later on in this book.

11DIRTy by default

1.5.1 Simple async example

In section 1.2, we looked at this Ajax example using jQuery:

$.post('/resource.json', function (data) {
console.log(data);

});

Let’s do something similar in Node, but instead we’ll use the filesystem (fs) module
to load resource.json from disk. Notice how similar the program is to the previous
jQuery example:

var fs = require('fs');
fs.readFile('./resource.json', function (er, data) {

console.log(data);
})

In this program, we read the resource.json file from disk. When all the data is read, an
anonymous function is called (a.k.a. the “callback”) containing the arguments er, if
any error occurred, and data, which is the file data.

 The process loops behind the scenes, able to handle any other operations that may
come its way until the data is ready. All the evented and async benefits we talked about
earlier are in play automatically. The difference here is that instead of making an Ajax
request from the browser using jQuery, we’re accessing the filesystem in Node to grab
resource.json. This latter action is illustrated in figure 1.5.

Event loop

1. File request made
 for resource.json.

resource.json

2. An event is triggered.

...waiting...

4. Finally, file data for
resource.json comes
back and is handled
in the callback.

3. Another I/O operation finishes.

var fs = require('fs');

fs.readFile('./resource.json', function (err, data) {

 console.log(data);

});
Figure 1.5 An example of non-blocking I/O in Node

12 CHAPTER 1 Welcome to Node.js

1.5.2 Hello World HTTP server

A very common use case for Node is building servers. Node makes it very simple to
create different types of servers. This can feel odd if you’re used to having a server
host your application (such as a PHP application hosted on an Apache HTTP server).
In Node, the server and the application are the same.

 Here’s an example of an HTTP server that simply responds to any request with
“Hello World”:

var http = require('http');
http.createServer(function (req, res) {

res.writeHead(200, {'Content-Type': 'text/plain'});
res.end('Hello World\n');

}).listen(3000);
console.log('Server running at http://localhost:3000/');

Whenever a request happens, the function (req, res) callback is fired and “Hello
World” is written out as the response. This event model is akin to listening to an
onclick event in the browser. A click could happen at any point, so you set up a func-
tion to perform some logic to handle that. Here, Node provides a function that
responds whenever a request happens.

 Here’s another way to write this same server to make the request event even more
explicit:

var http = require('http');
var server = http.createServer();
server.on('request', function (req, res) {

res.writeHead(200, {'Content-Type': 'text/plain'});
res.end('Hello World\n');

})
server.listen(3000);
console.log('Server running at http://localhost:3000/');

1.5.3 Streaming data

Node is also huge on streams and streaming. You can think of streams as being like
arrays, but instead of having data distributed over space, streams can be thought of as
data distributed over time. By bringing data in chunk by chunk, the developer is given
the ability to handle that data as it comes in instead of waiting for it all to arrive before
acting. Here’s how you would stream resource.json:

var stream = fs.createReadStream('./resource.json')
stream.on('data', function (chunk) {

console.log(chunk)
})
stream.on('end', function () {

console.log('finished')
})

A data event is fired whenever a new chunk of data is ready, and an end event is fired
when all the chunks have been loaded. A chunk can vary in size, depending on the

Setting up an
event listener
for request

Data event fires
when a new chunk
is ready

13Summary

type of data. This low-level access to the read stream allows you to efficiently deal with
data as it’s read instead of waiting for it all to buffer in memory.

 Node also provides writable streams that you can write chunks of data to. One of
those is the response (res) object when a request happens on an HTTP server.

 Readable and writable streams can be connected to make pipes, much like you can
do with the | (pipe) operator in shell scripting. This provides an efficient way to write
out data as soon as it’s ready, without waiting for the complete resource to be read and
then written out.

 Let’s use our previous HTTP server to illustrate streaming an image to a client:

var http = require('http');
var fs = require('fs');
http.createServer(function (req, res) {

res.writeHead(200, {'Content-Type': 'image/png'});
fs.createReadStream('./image.png').pipe(res);

}).listen(3000);
console.log('Server running at http://localhost:3000/');

In this one-liner, the data is read in from the file (fs.createReadStream) and is sent
out (.pipe) to the client (res) as it comes in. The event loop is able to handle other
events while the data is being streamed.

 Node provides this DIRTy-by-default approach across multiple platforms, includ-
ing various UNIXes and Windows. The underlying asynchronous I/O library (libuv)
was built specifically to provide a unified experience regardless of the parent operat-
ing system, which allows programs to be more easily ported across devices and to run
on multiple devices if needed.

1.6 Summary
Like any technology, Node is not a silver bullet. It just helps you tackle certain prob-
lems and opens new possibilities. One of the interesting things about Node is that it
brings people from all aspects of the system together. Many come to Node as
JavaScript client-side programmers; others are server-side programmers; and others
are systems-level programmers. Wherever you fit, we hope you have an understanding
of where Node may fit in your stack.

 To review, Node is

 Built on JavaScript
 Evented and asynchronous
 Designed for data-intensive real-time applications

In chapter 2, we’ll build a simple DIRTy web application so you can see how a Node
application works.

Piping from a
readable stream to
a writable stream

Building a multiroom
chat application
In chapter 1, you learned how asynchronous development using Node differs from
conventional synchronous development. In this chapter, we’ll take a practical look
at Node by creating a small event-driven chat application. Don’t worry if the details
in this chapter seem over your head; our intent is to demystify Node development
and give you a preview of what you’ll be able to do when you’ve completed the book.

 This chapter assumes you have experience with web application development,
have a basic understanding of HTTP, and are familiar with jQuery. As you move
through the chapter, you’ll

 Tour the application to see how it will work
 Review technology requirements and perform the initial application setup
 Serve the application’s HTML, CSS, and client-side JavaScript
 Handle chat-related messaging using Socket.IO

This chapter covers
 A first look at various Node components

 A sample real-time application using Node

 Server and client-side interaction
14

 Use client-side JavaScript for the application’s UI

15Application overview

Let’s start with an application overview—you’ll see what the application will look like
and how it’ll behave when it’s completed.

2.1 Application overview
The application you’ll build in this chapter allows users to chat online with each other
by entering messages into a simple form, as shown in figure 2.1. A message, once
entered, is sent to all other users in the same chat room.

 When starting the application, a user is automatically assigned a guest name, but
they can change it by entering a command, as shown in figure 2.2. Chat commands
are prefaced with a slash (/).

Figure 2.1 Entering a message into the chat application
Figure 2.2 Changing one’s chat name

16 CHAPTER 2 Building a multiroom chat application

Similarly, a user can enter a command to create a new chat room (or join it if it already
exists), as shown in figure 2.3. When joining or creating a room, the new room name
will be shown in the horizontal bar at the top of the chat application. The room will
also be included in the list of available rooms to the right of the chat message area.

 After the user changes to a new room, the system will confirm the change, as
shown in figure 2.4.

 While the functionality of this application is deliberately bare-bones, it showcases
important components and fundamental techniques needed to create a real-time web

Figure 2.3 Changing rooms

Figure 2.4 The results of
changing to a new room

17Application requirements and initial setup

application. The application shows how Node can simultaneously serve conventional
HTTP data (like static files) and real-time data (chat messages). It also shows how
Node applications are organized and how dependencies are managed.

 Let’s now look at the technologies needed to implement this application.

2.2 Application requirements and initial setup
The chat application you’ll create needs to do the following:

 Serve static files (such as HTML, CSS, and client-side JavaScript)
 Handle chat-related messaging on the server
 Handle chat-related messaging in the user’s web browser

To serve static files, you’ll use Node’s built-in http module. But when serving files via
HTTP, it’s usually not enough to just send the contents of a file; you also should
include the type of file being sent. This is done by setting the Content-Type HTTP
header with the proper MIME type for the file. To look up these MIME types, you’ll use
a third-party module called mime.

MIME TYPES MIME types are discussed in detail in the Wikipedia article:
http://en.wikipedia.org/wiki/MIME.

To handle chat-related messaging, you could poll the server with Ajax. But to make
this application as responsive as possible, you’ll avoid using traditional Ajax as a means
to send messages. Ajax uses HTTP as a transport mechanism, and HTTP wasn’t
designed for real-time communication. When a message is sent using HTTP, a new
TCP/IP connection must be used. Opening and closing connections takes time, and
the size of the data transfer is larger because HTTP headers are sent on every request.
Instead of employing a solution reliant on HTTP, this application will prefer Web-
Socket (http://en.wikipedia.org/wiki/WebSocket), which was designed as a bidirec-
tional lightweight communications protocol to support real-time communication.

 Since only HTML5-compliant browsers, for the most part, support WebSocket, the
application will leverage the popular Socket.IO library (http://socket.io/), which
provides a number of fallbacks, including the use of Flash, should using WebSocket
not be possible. Socket.IO handles fallback functionality transparently, requiring no
additional code or configuration. Socket.IO is covered more deeply in chapter 13.

 Before we plunge in and actually do the preliminary work of setting up the applica-
tion’s file structure and dependencies, let’s talk more about how Node lets you simul-
taneously handle HTTP and WebSocket—one of the reasons why it’s such a good
choice for real-time applications.

2.2.1 Serving HTTP and WebSocket

Although this application will avoid the use of Ajax for sending and receiving chat
messages, it will still use HTTP to deliver the HTML, CSS, and client-side JavaScript
needed to set things up in the user’s browser.

http://en.wikipedia.org/wiki/MIME
http://en.wikipedia.org/wiki/WebSocket
http://socket.io/

18 CHAPTER 2 Building a multiroom chat application

Node can easily handle simultaneously serving HTTP and WebSocket using a single
TCP/IP port, as figure 2.5 depicts. Node comes with a module that provides HTTP
serving functionality. There are a number of third-party Node modules, such as
Express, that build upon Node’s built-in functionality to make web serving even easier.
We’ll go into depth about how to use Express to build web applications in chapter 8.
In this chapter’s application, however, we’ll stick to the basics.

 Now that you have a rough idea of the core technologies the application will use,
let’s start fleshing it out.

2.2.2 Creating the application file structure

To start constructing the tutorial application, create a project directory for it. The
main application file will go directly in this directory. You’ll need to add a lib subdi-
rectory, within which some server-side logic will be placed. You’ll need to create a pub-
lic subdirectory where client-side files will be
placed. Within the public subdirectory, cre-
ate a javascripts subdirectory and a stylesheets
directory.

 Your directory structure should now look
like figure 2.6. Note that while we’ve chosen
to organize the files in this particular way in
this chapter, Node doesn’t require you to
maintain any particular directory structure;
application files can be organized in any way
that makes sense to you.

Occurs only when user arrives
at the chat application website

Occurs repeatedly while user chats

Web browser

Node server

HTTP
request

HTTP
request

Web browser

Node server

WebSocket
data sent

WebSocket
data received

Figure 2.5 Handling HTTP and WebSocket within a single application

Need to install Node?
If you haven’t already installed Node, please head to appendix A now for instructions
for doing so.

Figure 2.6 The skeletal project directory
for the chat application

19Application requirements and initial setup

Now that you’ve established a directory structure, you’ll want to specify the applica-
tion’s dependencies.

 An application dependency, in this context, is a module that needs to be installed to
provide functionality needed by the application. Let’s say, for example, that you were
creating an application that needed to access data stored using a MySQL database.
Node doesn’t come with a built-in module that allows access to MySQL, so you’d have
to install a third-party module, and this would be considered a dependency.

2.2.3 Specifying dependencies

Although you can create Node applications without formally specifying dependencies,
it’s a good habit to take the time to specify them. That way, if you want others to use
your application, or you plan on running it in more than one place, it becomes more
straightforward to set up.

 Application dependencies are specified using a package.json file. This file is always
placed in an application’s root directory. A package.json file consists of a JSON expres-
sion that follows the CommonJS package descriptor standard (http://wiki.commonjs
.org/wiki/Packages/1.0) and describes your application. In a package.json file you can
specify many things, but the most important are the name of your application, the ver-
sion, a description of what the application does, and the application’s dependencies.

 Listing 2.1 shows a package descriptor file that describes the functionality and
dependencies of the tutorial application. Save this file as package.json in the root
directory of the tutorial application.

{
"name": "chatrooms",
"version": "0.0.1",
"description": "Minimalist multiroom chat server",
"dependencies": {

"socket.io": "~0.9.6",
"mime": "~1.2.7"

}
}

If the content of this file seems a bit confusing, don’t worry...you’ll learn more about
package.json files in the next chapter and, in depth, in chapter 14.

2.2.4 Installing dependencies

With a package.json file defined, installing your application’s dependencies becomes
trivial. The Node Package Manager (npm; https://github.com/isaacs/npm) is a util-
ity that comes bundled with Node. It offers a great deal of functionality, allowing you
to easily install third-party Node modules and globally publish any Node modules you
yourself create. Another thing it can do is read dependencies from package.json files
and install each of them with a single command.

Listing 2.1 A package descriptor file

Name of package

Package dependencies

http://wiki.commonjs.org/wiki/Packages/1.0
http://wiki.commonjs.org/wiki/Packages/1.0
https://github.com/isaacs/npm

Bui
m

pr
filesy

r
functio
20 CHAPTER 2 Building a multiroom chat application

 Enter the following command in the root of your
tutorial directory:

npm install

If you look in the tutorial directory now, there
should be a newly created node_modules directory,
as shown in figure 2.7. This directory contains your
application’s dependencies.

 With the directory structure established and
dependencies installed, you’re ready to start fleshing
out the application logic.

2.3 Serving the application’s HTML,
CSS, and client-side JavaScript
As outlined earlier, the chat application needs to be capable of doing three basic
things:

 Serving static files to the user’s web browser
 Handling chat-related messaging on the server
 Handling chat-related messaging in the user’s web browser

Application logic will be handled by a number of files, some run on the server and
some run on the client, as shown in figure 2.8. The JavaScript files run on the client
need to be served as static assets, rather than being executed by Node.

 In this section, we’ll tackle the first of those requirements: we’ll define the logic
needed to serve static files. We’ll then add the static HTML and CSS files themselves.

2.3.1 Creating a basic static file server

To create a static file server, we’ll leverage some of Node’s built-in functionality as well
as the third-party mime add-on for determining a file MIME type.

 To start the main application file, create a file named server.js in the root of your
project directory and put variable declarations from listing 2.2 in it. These declara-
tions will give you access to Node’s HTTP-related functionality, the ability to interact
with the filesystem, functionality related to file paths, and the ability to determine a
file’s MIME type. The cache variable will be used to cache file data.

var http = require('http');

var fs = require('fs');

var path = require('path');

var mime = require('mime');

Listing 2.2 Variable declarations

Built-in http module provides HTTP
server and client functionality

lt-in fs
odule

ovides
stem-
elated

Built-in path module provides
filesystem path–related functionality

Add-on mime module provides ability to derive a
MIME type based on a filename extension

Figure 2.7 When npm is used to
install dependencies, a
node_modules directory is created.
var cache = {};nality
cache object is where the contents
of cached files are stored

21Serving the application’s HTML, CSS, and client-side JavaScript

SENDING FILE DATA AND ERROR RESPONSES

Next you need to add three helper functions used for serving static HTTP files. The
first will handle the sending of 404 errors when a file is requested that doesn’t exist.
Add the following helper function to server.js:

function send404(response) {
response.writeHead(404, {'Content-Type': 'text/plain'});
response.write('Error 404: resource not found.');
response.end();

}

The second helper function serves file data. The function first writes the appropriate
HTTP headers and then sends the contents of the file. Add the following code to
server.js:

function sendFile(response, filePath, fileContents) {
response.writeHead(

200,
{"content-type": mime.lookup(path.basename(filePath))}

);
response.end(fileContents);

index.html

chat_server.js

Server side
(Node.js)

Client side
(web browser)

server.js

style.css

chat.js

javascripts

stylesheets

public

lib

chat_ui.js
Figure 2.8 In this chat
application, there’s both
client-side and server-
side JavaScript logic.
}

22 CHAPTER 2 Building a multiroom chat application

Accessing memory storage (RAM) is faster than accessing the filesystem. Because of
this, it’s common for Node applications to cache frequently used data in memory. Our
chat application will cache static files to memory, only reading them from disk the first
time they’re accessed. The next helper determines whether or not a file is cached and,
if so, serves it. If a file isn’t cached, it’s read from disk and served. If the file doesn’t
exist, an HTTP 404 error is returned as a response. Add this helper function to
server.js.

function serveStatic(response, cache, absPath) {
if (cache[absPath]) {

sendFile(response, absPath, cache[absPath]);
} else {

fs.exists(absPath, function(exists) {
if (exists) {

fs.readFile(absPath, function(err, data) {
if (err) {

send404(response);
} else {

cache[absPath] = data;
sendFile(response, absPath, data);

}
});

} else {
send404(response);

}
});

}
}

CREATING THE HTTP SERVER

For the HTTP server, an anonymous function is provided as an argument to create-
Server, acting as a callback that defines how each HTTP request should be handled.
The callback function accepts two arguments: request and response. When the call-
back executes, the HTTP server will populate these arguments with objects that,
respectively, allow you to work out the details of the request and send back a response.
You’ll learn about Node’s http module in detail in chapter 4.

 Add the logic in the following listing to server.js to create the HTTP server.

var server = http.createServer(function(request, response) {
var filePath = false;

if (request.url == '/') {
filePath = 'public/index.html';

} else {
filePath = 'public' + request.url;

Listing 2.3 Serving static files

Listing 2.4 Logic to create an HTTP server

Check if file is
cached in memory

Serve file from memory

Check if file exists

Read file from disk

Serve file read
from disk

Send HTTP 404
response

Create HTTP
server, using
anonymous
function to
define
per-request
behavior

Determine HTML file to
be served by default

Translate URL path

} to relative file path

23Serving the application’s HTML, CSS, and client-side JavaScript

var absPath = './' + filePath;
serveStatic(response, cache, absPath);

});

STARTING THE HTTP SERVER

You’ve created the HTTP server in the code, but you haven’t added the logic needed
to start it. Add the following lines, which start the server, requesting that it listen on
TCP/IP port 3000. Port 3000 is an arbitrary choice; any unused port above 1024 would
work (a port under 1024 might also work if you’re running Windows or, if in Linux or
OS X, you start your application using a privileged user such as “root”).

server.listen(3000, function() {
console.log("Server listening on port 3000.");

});

If you’d like to see what the application can do at this point, you can start the server by
entering the following into your command-line prompt:

node server.js

With the server running, visiting http://127.0.0.1:3000 in your web browser will result
in the triggering of the 404 error helper, and the “Error 404: resource not found”
message will be displayed. Although you’ve added the static file–handling logic, you
haven’t added the static files themselves. A point to remember is that a running server
can be stopped by using Ctrl-C on the command line.

 Next, let’s move on to adding the static files necessary to get the chat application
more functional.

2.3.2 Adding the HTML and CSS files

The first static file you’ll add is the base HTML. Create a file in the public directory
named index.html and place the HTML in listing 2.5 in it. The HTML will include a
CSS file, set up some HTML div elements in which application content will be dis-
played, and load a number of client-side JavaScript files. The JavaScript files provide
client-side Socket.IO functionality, jQuery (for easy DOM manipulation), and a couple
of application-specific files providing chat functionality.

<!doctype html>
<html lang='en'>

<head>
<title>Chat</title>
<link rel='stylesheet' href='/stylesheets/style.css'></link>

</head>

<body>
<div id='content'>

Listing 2.5 The HTML for the chat application

Serve static file

div in which the
current room name
<div id='room'></div> will be displayed

div i

a
roo

be di
24 CHAPTER 2 Building a multiroom chat application

<div id='room-list'></div>
<div id='messages'></div>

<form id='send-form'>
<input id='send-message' />
<input id='send-button' type='submit' value='Send'/>

<div id='help'>
Chat commands:

Change nickname: <code>/nick [username]</code>
Join/create room: <code>/join [room name]</code>

</div>

</form>
</div>

<script src='/socket.io/socket.io.js' type='text/javascript'></script>
<script src='http://code.jquery.com/jquery-1.8.0.min.js'
 ➥type='text/javascript'></script>
<script src='/javascripts/chat.js' type='text/javascript'></script>
<script src='/javascripts/chat_ui.js' type='text/javascript'></script>
</body>
</html>

The next file you need to add defines the application’s CSS styling. In the public/
stylesheets directory, create a file named style.css and put the following CSS code in it.

body {
padding: 50px;
font: 14px "Lucida Grande", Helvetica, Arial, sans-serif;

}

a {
color: #00B7FF;

}

#content {
width: 800px;
margin-left: auto;
margin-right: auto;

}

#room {
background-color: #ddd;
margin-bottom: 1em;

}

#messages {
width: 690px;
height: 300px;
overflow: auto;
background-color: #eee;
margin-bottom: 1em;
margin-right: 10px;

Listing 2.6 Application CSS

n which
a list of
vailable
ms will
splayed

div in which chat messages
will be displayed

Form input element
in which user will
enter commands
and messages

Application will be
800 pixels wide and
horizontally centered

CSS rules for area in
which current room
name is displayed

Message display area
will be 690 pixels wide
and 300 pixels high

Allows div in which messages
are displayed to scroll when
it’s filled up with content
}

25Handling chat-related messaging using Socket.IO

With the HTML and CSS roughed out, run the application and take a look using your
web browser. The application should look like figure 2.9.

 The application isn’t yet functional, but static files are being served and the basic
visual layout is established. With that taken care of, let’s move on to defining the
server-side chat message dispatching.

2.4 Handling chat-related messaging using Socket.IO
Of the three things we said the app had to do, we’ve already covered the first one, serv-
ing static files, and now we’ll tackle the second—handling communication between
the browser and server. Modern browsers are capable of using WebSocket to handle
communication between the browser and the server. (See the Socket.IO browser sup-
port page for details on supported browsers: http://socket.io/#browser-support.)

 Socket.IO provides a layer of abstraction over WebSocket and other transports for
both Node and client-side JavaScript. Socket.IO will fall back transparently to other
WebSocket alternatives if WebSocket isn’t implemented in a web browser while keep-
ing the same API. In this section, we’ll

 Briefly introduce you to Socket.IO and define the Socket.IO functionality you’ll
need on the server side

Figure 2.9 The application in progress

http://socket.io/#browser-support

26 CHAPTER 2 Building a multiroom chat application

 Add code that sets up a Socket.IO server
 Add code to handle various chat application events

Socket.IO, out of the box, provides virtual channels, so instead of broadcasting every
message to every connected user, you can broadcast only to those who have subscribed
to a specific channel. This functionality makes implementing chat rooms in your
application quite simple, as you’ll see later.

 Socket.IO is also a good example of the usefulness of event emitters. Event emitters
are, in essence, a handy design pattern for organizing asynchronous logic. You’ll see
some event emitter code at work in this chapter, but we’ll go into more detail in the
next chapter.

First, we’ll start the server functionality and establish the connection logic. Then we’ll
define the functionality you need on the server side.

2.4.1 Setting up the Socket.IO server

To begin, append the following two lines to server.js. The first line loads functionality
from a custom Node module that supplies logic to handle Socket.IO-based server-side
chat functionality. We’ll define that module next. The next line starts the Socket.IO
server functionality, providing it with an already defined HTTP server so it can share
the same TCP/IP port:

var chatServer = require('./lib/chat_server');
chatServer.listen(server);

You now need to create a new file, chat_server.js, inside the lib directory. Start this file
by adding the following variable declarations. These declarations allow the use of
Socket.IO and initialize a number of variables that define chat state:

var socketio = require('socket.io');
var io;
var guestNumber = 1;
var nickNames = {};
var namesUsed = [];
var currentRoom = {};

ESTABLISHING CONNECTION LOGIC

Next, add the logic in listing 2.7 to define the chat server function listen. This func-

Event emitters
An event emitter is associated with a conceptual resource of some kind and can send
and receive messages to and from the resource. The resource could be a connection
to a remote server or something more abstract, like a game character. The Johnny-
Five project (https://github.com/rwldrn/johnny-five), in fact, leverages Node for
robotics applications, using event emitters to control Arduino microcontrollers.
tion is invoked in server.js. It starts the Socket.IO server, limits the verbosity of

https://github.com/rwldrn/johnny-five

S

a
to p

on
HTT

r

27Handling chat-related messaging using Socket.IO

Socket.IO’s logging to the console, and establishes how each incoming connection
should be handled.

 The connection-handling logic, you’ll notice, calls a number of helper functions
that you can now add to chat_server.js.

exports.listen = function(server) {

io = socketio.listen(server);

io.set('log level', 1);

io.sockets.on('connection', function (socket) {

guestNumber = assignGuestName(socket, guestNumber,

 ➥nickNames, namesUsed);

joinRoom(socket, 'Lobby');

handleMessageBroadcasting(socket, nickNames);

handleNameChangeAttempts(socket, nickNames, namesUsed);

handleRoomJoining(socket);

socket.on('rooms', function() {

socket.emit('rooms', io.sockets.manager.rooms);

});

handleClientDisconnection(socket, nickNames, namesUsed);

});

};

With the connection handling established, you now need to add the individual helper
functions that will handle the application’s needs.

2.4.2 Handling application scenarios and events

The chat application needs to handle the following types of scenarios and events:

 Guest name assignment
 Room-change requests
 Name-change requests
 Sending chat messages
 Room creation
 User disconnection

To handle these you’ll add a number of helper functions.

Listing 2.7 Starting up a Socket.IO server

Start
ocket.IO

server,
llowing it
iggyback
 existing
P server

Define how each
user connection
will be handled

Assign user a guest name
when they connect

Place user
in Lobby

oom when
they

connect

Handle user
messages, name-
change attempts,
and room
creation/changes

Provide user with
list of occupied
rooms on request

Define cleanup
logic for when
user disconnects

A
gue
wit

conne

N
us

in t

Let ot
in ro
that

us
su

who
28 CHAPTER 2 Building a multiroom chat application

ASSIGNING GUEST NAMES

The first helper function you need to add is assignGuestName, which handles the
naming of new users. When a user first connects to the chat server, the user is placed
in a chat room named Lobby, and assignGuestName is called to assign them a name to
distinguish them from other users.

 Each guest name is essentially the word Guest followed by a number that incre-
ments each time a new user connects. The guest name is stored in the nickNames vari-
able for reference, associated with the internal socket ID. The guest name is also
added to namesUsed, a variable in which names that are being used are stored. Add
the code in the following listing to lib/chat_server.js to implement this functionality.

function assignGuestName(socket, guestNumber, nickNames, namesUsed) {
var name = 'Guest' + guestNumber;
nickNames[socket.id] = name;
socket.emit('nameResult', {

success: true,
name: name

});
namesUsed.push(name);
return guestNumber + 1;

}

JOINING ROOMS

The second helper function you’ll need to add to chat_server.js is joinRoom. This
function, shown in listing 2.9, handles logic related to a user joining a chat room.

 Having a user join a Socket.IO room is simple, requiring only a call to the join
method of a socket object. The application then communicates related details to the
user and other users in the same room. The application lets the user know what other
users are in the room and lets these other users know that the user is now present.

function joinRoom(socket, room) {
socket.join(room);
currentRoom[socket.id] = room;
socket.emit('joinResult', {room: room});
socket.broadcast.to(room).emit('message', {

text: nickNames[socket.id] + ' has joined ' + room + '.'
});

var usersInRoom = io.sockets.clients(room);
if (usersInRoom.length > 1) {

var usersInRoomSummary = 'Users currently in ' + room + ': ';
for (var index in usersInRoom) {

var userSocketId = usersInRoom[index].id;
if (userSocketId != socket.id) {

if (index > 0) {
usersInRoomSummary += ', ';

Listing 2.8 Assigning a guest name

Listing 2.9 Logic related to joining a room

Generate new
guest namessociate

st name
h client
ction ID

Let user know
their guest name

Note that guest
name is now used

Increment counter used
to generate guest names

Make user join room
ote that

er is now
his room

Let user know
they’re now in
new room

her users
om know
 user has

joined

Determine what
other users are in

same room as user

If other
ers exist,
mmarize
 they are
}

D

29Handling chat-related messaging using Socket.IO

usersInRoomSummary += nickNames[userSocketId];
}

}
usersInRoomSummary += '.';
socket.emit('message', {text: usersInRoomSummary});

}
}

HANDLING NAME-CHANGE REQUESTS

If every user just kept their guest name, it would be hard to remember who’s who.
For this reason, the chat application allows the user to request a name change. As fig-
ure 2.10 shows, a name change involves the user’s web browser making a request via
Socket.IO and then receiving a response indicating success or failure.

Add the code in the following listing to lib/chat_server.js to define a function that
handles requests by users to change their names. From the application’s perspective,
the users aren’t allowed to change their names to anything beginning with Guest or to
use a name that’s already in use.

function handleNameChangeAttempts(socket, nickNames, namesUsed) {
socket.on('nameAttempt', function(name) {

if (name.indexOf('Guest') == 0) {
socket.emit('nameResult', {

success: false,
message: 'Names cannot begin with "Guest".'

});
} else {

if (namesUsed.indexOf(name) == -1) {
var previousName = nickNames[socket.id];
var previousNameIndex = namesUsed.indexOf(previousName);
namesUsed.push(name);
nickNames[socket.id] = name;
delete namesUsed[previousNameIndex];

Listing 2.10 Logic to handle name-request attempts

Send summary of
other users in the
room to the user

nameAttempt event sent by
client with string data "Bob Dobbs"

{
 success: true,
 name: name
}

nameResult event returned by server
with JSON data:

Web browser

Web browser

Node server

Node server

Figure 2.10 A name-change request and response

Add listener for
nameAttempt
events

on’t allow
nicknames

to begin
with Guest

If name isn’t
already registered,
register it

Remove previous name to make
available to other clients

30 CHAPTER 2 Building a multiroom chat application

socket.emit('nameResult', {
success: true,
name: name

});
socket.broadcast.to(currentRoom[socket.id]).emit('message', {

text: previousName + ' is now known as ' + name + '.'
});

} else {
socket.emit('nameResult', {

success: false,
message: 'That name is already in use.'

});
}

}
});

}

SENDING CHAT MESSAGES

Now that user nicknames are taken care of, you need to add a function that defines
how a chat message sent from a user is handled. Figure 2.11 shows the basic process:
the user emits an event indicating the room where the message is to be sent and the
message text. The server then relays the message to all other users in the same room.

 Add the following code to lib/chat_server.js. Socket.IO’s broadcast function is
used to relay the message:

function handleMessageBroadcasting(socket) {
socket.on('message', function (message) {

socket.broadcast.to(message.room).emit('message', {
text: nickNames[socket.id] + ': ' + message.text

});
});

}

Send error to client
if name is already
registered

message event sent by
client with JSON data:

{
text: "Bob Dobbs: Hi all!"

}

{
 room: "Lobby",

text: "Hi all!"
}

message event sent by server
with JSON data:

Web browser A

Web browser B

Web browser C

Web browser D

Node server

Node server
Figure 2.11 Sending a chat message

31Using client-side JavaScript for the application’s user interface

CREATING ROOMS

Next, you need to add functionality that allows a user to join an existing room or, if it
doesn’t yet exist, to create it. Figure 2.12 shows the interaction between the user and
the server.

 Add the following code to lib/chat_server.js to enable room changing. Note the
use of Socket.IO’s leave method:

function handleRoomJoining(socket) {
socket.on('join', function(room) {

socket.leave(currentRoom[socket.id]);
joinRoom(socket, room.newRoom);

});
}

HANDLING USER DISCONNECTIONS

Finally, you need to add the following logic to lib/chat_server.js to remove a user’s
nickname from nickNames and namesUsed when the user leaves the chat application:

function handleClientDisconnection(socket) {
socket.on('disconnect', function() {

var nameIndex = namesUsed.indexOf(nickNames[socket.id]);
delete namesUsed[nameIndex];
delete nickNames[socket.id];

});
}

With the server-side components fully defined, you’re now ready to further develop
the client-side logic.

2.5 Using client-side JavaScript
for the application’s user interface
Now that you’ve added server-side Socket.IO logic to dispatch messages sent from the
browser, it’s time to add the client-side JavaScript needed to communicate with the
server. Client-side JavaScript is needed to handle the following functionality:

join event sent by client with
JSON data

{
room: "Bob's Room"

}

joinResult event sent by
server with JSON data:

Web browser

Web browser

Node server

Node server

{
"newroom": "Bob's Room"

}

Figure 2.12 Changing to a different chat room

32 CHAPTER 2 Building a multiroom chat application

 Sending a user’s messages and name/room change requests to the server
 Displaying other users’ messages and the list of available rooms

Let’s start with the first piece of functionality.

2.5.1 Relaying messages and name/room changes to the server

The first bit of client-side JavaScript you’ll add is a JavaScript prototype object that will
process chat commands, send messages, and request room and nickname changes.

 In the public/javascripts directory, create a file named chat.js and put the follow-
ing code in it. This code starts JavaScript’s equivalent of a “class” that takes a single
argument, a Socket.IO socket, when instantiated:

var Chat = function(socket) {
this.socket = socket;

};

Next, add the following function to send chat messages:

Chat.prototype.sendMessage = function(room, text) {
var message = {

room: room,
text: text

};
this.socket.emit('message', message);

};

Add the following function to change rooms:

Chat.prototype.changeRoom = function(room) {
this.socket.emit('join', {

newRoom: room
});

};

Finally, add the function defined in the following listing for processing a chat com-
mand. Two chat commands are recognized: join for joining or creating a room and
nick for changing one’s nickname.

Chat.prototype.processCommand = function(command) {
var words = command.split(' ');
var command = words[0]

.substring(1, words[0].length)

.toLowerCase();
var message = false;

switch(command) {
case 'join':

words.shift();
var room = words.join(' ');
this.changeRoom(room);
break;

Listing 2.11 Processing chat commands

Parse command
from first word

Handle room

changing/creating

33Using client-side JavaScript for the application’s user interface

case 'nick':
words.shift();
var name = words.join(' ');
this.socket.emit('nameAttempt', name);
break;

default:
message = 'Unrecognized command.';
break;

}

return message;
};

2.5.2 Showing messages and available rooms in the user interface

Now it's time to start adding logic that interacts directly with the browser-based user
interface using jQuery. The first functionality you’ll add will be to display text data.

 In web applications there are, from a security perspective, two types of text data.
There’s trusted text data, which consists of text supplied by the application, and there’s
untrusted text data, which is text created by or derived from text created by users of the
application. Text data from users is considered untrusted because malicious users may
intentionally submit text data that includes JavaScript logic in <script> tags. This text
data, if displayed unaltered to other users, could cause nasty things to happen, such as
redirecting users to another web page. This method of hijacking a web application is
called a cross-site scripting (XSS) attack.

 The chat application will use two helper functions to display text data. One func-
tion will display untrusted text data, and the other function will display trusted text
data.

 The function divEscapedContentElement will display untrusted text. It will sanitize
text by transforming special characters into HTML entities, as shown in figure 2.13, so
the browser knows to display them as entered rather than attempting to interpret them
as part of an HTML tag.

 The function divSystemContentElement will display trusted content created by
the system rather than by other users.

Handle name-
change attempts

Return error
message if
command isn’t
recognized

Message is sanitized by
divEscapedContentElement
and placed in <div> element

<script>alert('XSS attack!');</script>

<div>&It;script>alert('XSS attack!');&Lt:/script><div> Figure 2.13 Escaping
untrusted content

34 CHAPTER 2 Building a multiroom chat application

In the public/javascripts directory, add a file named chat_ui.js and put the following
two helper functions in it:

function divEscapedContentElement(message) {
return $('<div></div>').text(message);

}

function divSystemContentElement(message) {
return $('<div></div>').html('<i>' + message + '</i>');

}

The next function you’ll append to chat_ui.js is for processing user input; it’s detailed
in the following listing. If user input begins with the slash (/) character, it’s treated as
a chat command. If not, it’s sent to the server as a chat message to be broadcast to
other users, and it’s added to the chat room text of the room the user’s currently in.

function processUserInput(chatApp, socket) {
var message = $('#send-message').val();
var systemMessage;

if (message.charAt(0) == '/') {
systemMessage = chatApp.processCommand(message);
if (systemMessage) {

$('#messages').append(divSystemContentElement(systemMessage));
}

} else {
chatApp.sendMessage($('#room').text(), message);
$('#messages').append(divEscapedContentElement(message));
$('#messages').scrollTop($('#messages').prop('scrollHeight'));

}

$('#send-message').val('');
}

Now that you’ve got some helper functions defined, you need to add the logic in the
following listing, which is meant to execute when the web page has fully loaded in the
user’s browser. This code handles client-side initiation of Socket.IO event handling.

var socket = io.connect();

$(document).ready(function() {
var chatApp = new Chat(socket);

socket.on('nameResult', function(result) {
var message;

if (result.success) {
message = 'You are now known as ' + result.name + '.';

} else {
message = result.message;

}
$('#messages').append(divSystemContentElement(message));

Listing 2.12 Processing raw user input

Listing 2.13 Client-side application initialization logic

If user input begins
with slash, treat it
as command

Broadcast noncommand
input to other users

Display results of a
name-change attempt
});

35Using client-side JavaScript for the application’s user interface

socket.on('joinResult', function(result) {
$('#room').text(result.room);
$('#messages').append(divSystemContentElement('Room changed.'));

});

socket.on('message', function (message) {
var newElement = $('<div></div>').text(message.text);
$('#messages').append(newElement);

});

socket.on('rooms', function(rooms) {
$('#room-list').empty();

for(var room in rooms) {
room = room.substring(1, room.length);
if (room != '') {

$('#room-list').append(divEscapedContentElement(room));
}

}

$('#room-list div').click(function() {
chatApp.processCommand('/join ' + $(this).text());
$('#send-message').focus();

});
});

setInterval(function() {
socket.emit('rooms');

}, 1000);

$('#send-message').focus();

$('#send-form').submit(function() {
processUserInput(chatApp, socket);
return false;

});
});

To finish the application off, add the final CSS styling code in the following listing to
the public/stylesheets/style.css file.

#room-list {
float: right;
width: 100px;
height: 300px;
overflow: auto;

}

#room-list div {
border-bottom: 1px solid #eee;

}

#room-list div:hover {
background-color: #ddd;

Listing 2.14 Final additions to style.css

Display results
of a room change

Display
received
messages

Display list
of rooms
available

Allow click of a room
name to change to
that room

Request list of
rooms available
intermittently

Allow submitting the
form to send a chat
message
}

36 CHAPTER 2 Building a multiroom chat application

#send-message {
width: 700px;
margin-bottom: 1em;
margin-right: 1em;

}

#help {
font: 10px "Lucida Grande", Helvetica, Arial, sans-serif;

}

With the final code added, try running the application (using node server.js). Your
results should look like figure 2.14.

2.6 Summary
You’ve now completed a small real-time web application using Node.js!

 You should have a sense of how the application is constructed and what the code is
like. If aspects of this example application are still unclear, don’t worry: in the follow-
ing chapters we’ll go into depth on the techniques and technologies used in this
example.

 Before you delve into the specifics of Node development, however, you’ll want to
learn how to deal with the unique challenges of asynchronous development. The next
chapter will teach you essential techniques and tricks that will save you a lot of time
and frustration.

Figure 2.14 The completed chat application

Node programming
fundamentals
Node, unlike many open source platforms, is easy to set up and doesn’t require
much in terms of memory and disk space. No complex integrated development
environments or build systems are required. Some fundamental knowledge will,
however, help you a lot when starting out. In this chapter we’ll address two chal-
lenges that new Node developers face:

 How to organize your code
 How asynchronous programming works

The problem of organizing code is familiar to most experienced programmers.
Logic is organized conceptually into classes and functions. Files containing the

This chapter covers
 Organizing your code into modules

 Coding conventions

 Handling one-off events with callbacks

 Handling repeating events with event emitters

 Implementing serial and parallel flow control

 Leveraging flow-control tools
37

38 CHAPTER 3 Node programming fundamentals

classes and functions are organized into directories within the source tree. In the end,
code is organized into applications and libraries. Node’s module system provides a
powerful mechanism for organizing your code, and you’ll learn how to harness it in
this chapter.

 Asynchronous programming will likely take some time to grasp and master; it
requires a paradigm shift in terms of thinking about how application logic should exe-
cute. With synchronous programming, you can write a line of code knowing that all
the lines of code that came before it will have already executed. With asynchronous
development, however, application logic can initially seem like a Rube Goldberg
machine. It’s worth taking the time, before beginning development of a large project,
to learn how you can elegantly control your application’s behavior.

 In this chapter, you’ll learn a number of important asynchronous programming
techniques that will allow you to keep a tight rein on how your application executes.
You’ll learn

 How to respond to one-time events
 How to handle repeating events
 How to sequence asynchronous logic

We’ll start, however, with how you can tackle the problem of code organization
through the use of modules, which are Node’s way of keeping code organized and
packaged for easy reuse.

3.1 Organizing and reusing Node functionality
When creating an application, Node or otherwise, you often reach a point where put-
ting all of your code in a single file becomes unwieldy. When this happens, the conven-
tional approach, as represented visually in figure 3.1, is to take a file containing a lot of
code and try to organize it by grouping related logic and moving it into separate files.

 In some language implementations, such as PHP and Ruby, incorporating the logic
from another file (we’ll call this the “included” file) can mean all the logic executed

All code in one file Related logic grouped together in separate files

Commands
Commands

index.js

index.js lib/utilityFunctions.js

lib/commands.js

Utilities

Utilities

Figure 3.1 It’s easier to navigate your code if you organize it using directories and
separate files rather than keeping your application in one long file.

39Organizing and reusing Node functionality

in the included file affects the global scope. This means that any variables created and
functions declared in the included file risk overwriting those created and declared by
the application.

 Say you were programming in PHP; your application might contain the following
logic:

function uppercase_trim($text) {
return trim(strtoupper($text));

}

include('string_handlers.php');

If your string_handlers.php file also attempted to define an uppercase_trim function,
you’d receive the following error:

Fatal error: Cannot redeclare uppercase_trim()

In PHP you can avoid this by using namespaces, and Ruby offers similar functionality
through modules. Node, however, avoids this potential problem by not offering an easy
way to accidentally pollute the global namespace.

PHP NAMESPACES, RUBY MODULES PHP namespaces are discussed in the man-
ual at http://php.net/manual/en/language.namespaces.php. Ruby modules
are explained in the Ruby documentation: www.ruby-doc.org/core-1.9.3/
Module.html.

Node modules bundle up code for reuse, but they don’t alter global scope. Suppose,
for example, you were developing an open source content management system (CMS)
application using PHP, and you wanted to use a third-party API library that doesn’t use
namespaces. This library could contain a class with the same name as one in your
application, which would break your application unless you changed the class name
either in your application or the library. Changing the class name in your application,
however, could cause problems for other developers using your CMS as the basis of
their own projects. Changing the class name in the library would require you to
remember to repeat this hack each time you update the library in your application’s
source tree. Naming collisions are a problem best avoided altogether.

 Node modules allow you to select what functions and variables from the included
file are exposed to the application. If the module is returning more than one function
or variable, the module can specify these by setting the properties of an object called
exports. If the module is returning a single function or variable, the property module
.exports can instead be set. Figure 3.2 shows how this works.

 If this seems a bit confusing, don’t worry; we’ll run through a number of examples
in this chapter.

 By avoiding pollution of the global scope, Node’s module system avoids naming
conflicts and simplifies code reuse. Modules can then be published to the npm (Node
Package Manager) repository, an online collection of ready-to-use Node modules, and
shared with the Node community without those using the modules having to worry

http://php.net/manual/en/language.namespaces.php
www.ruby-doc.org/core-1.9.3/Module.html
www.ruby-doc.org/core-1.9.3/Module.html

40 CHAPTER 3 Node programming fundamentals

about one module overwriting the variables and functions of another. We’ll talk about
how to publish to the npm repository in chapter 14.

 To help you organize your logic into modules, we’ll cover the following topics:

 How you can create modules
 Where modules are stored in the filesystem
 Things to be aware of when creating and using modules

Let’s dive into learning the Node module system by creating our first simple module.

3.1.1 Creating modules

Modules can either be single files or
directories containing one or more
files, as can be seen in figure 3.3. If a
module is a directory, the file in the
module directory that will be evaluated
is normally named index.js (although
this can be overridden: see section 3.1.4).

 To create a typical module, you create a file that defines properties on the exports
object with any kind of data, such as strings, objects, and functions.

 To show how a basic module is created, let’s add some currency conversion func-
tionality to a file named currency.js. This file, shown in the following listing, will con-
tain two functions that will convert Canadian dollars to US dollars, and vice versa.

var canadianDollar = 0.91;

function roundTwoDecimals(amount) {
return Math.round(amount * 100) / 100;

}

Listing 3.1 Defining a Node module

Application Module

Requires module

module.exports
or

exports

Contents of
module.exports or
exports returned
during require.

Module logic
populates
module.exports
or exports.

Figure 3.2 The population of the module.exports property or the exports
object allows a module to select what should be shared with the application.

canadianToUS function is
set in exports module so
it can be used by code
requiring this module

Figure 3.3 Node modules can be created by using
either files (example 1) or directories (example 2).
exports.canadianToUS = function(canadian) {

41Organizing and reusing Node functionality

return roundTwoDecimals(canadian * canadianDollar);
}
exports.USToCanadian = function(us) {

return roundTwoDecimals(us / canadianDollar);
}

Note that only two properties of the exports object are set. This means only the two
functions, canadianToUS and USToCanadian, can be accessed by the application
including the module. The variable canadianDollar acts as a private variable that
affects the logic in canadianToUS and USToCanadian but can’t be directly accessed by
the application.

 To utilize your new module, use Node’s require function, which takes a path to
the module you wish to use as an argument. Node performs a synchronous lookup in
order to locate the module and loads the file’s contents.

In the next listing, which shows test-currency.js, you require the currency.js module.

var currency = require('./currency');

console.log('50 Canadian dollars equals this amount of US dollars:');

console.log(currency.canadianToUS(50));

console.log('30 US dollars equals this amount of Canadian dollars:');

console.log(currency.USToCanadian(30));

Requiring a module that begins with ./ means that if you were to create your applica-
tion script named test-currency.js in a directory named currency_app, then your
currency.js module file, as represented visually in figure 3.4, would also need to exist
in the currency_app directory. When requiring, the .js extension is assumed, so you
can omit it if desired.

Listing 3.2 Requiring a module

USToCanadian function is
also set in exports module

A note about require and synchronous I/O
require is one of the few synchronous I/O operations available in Node. Because
modules are used often and are typically included at the top of a file, having require
be synchronous helps keep code clean, ordered, and readable.

But avoid using require in I/O-intensive parts of your application. Any synchronous
call will block Node from doing anything until the call has finished. For example, if
you’re running an HTTP server, you would take a performance hit if you used require
on each incoming request. This is typically why require and other synchronous oper-
ations are used only when the application initially loads.

Path uses ./ to indicate that module exists
within same directory as application script

Use currency module’s
canadianToUS function

Use currency module’s
USToCanadian function

42 CHAPTER 3 Node programming fundamentals

After Node has located and evaluated your module, the require function returns the
contents of the exports object defined in the module. You’re then able to use the two
functions returned by the module to do currency conversion.

 If you wanted to put the module into a subdirectory, such as lib, you could do so by
simply changing the line containing the require logic to the following:

var currency = require('./lib/currency');

Populating the exports object of a module gives you a simple way to group reusable
code in separate files.

3.1.2 Fine-tuning module creation using module.exports

Although populating the exports object with functions and variables is suitable for
most module-creation needs, there will be times when you want a module to deviate
from this model.

 The currency converter module created earlier in this section, for example, could
be redone to return a single Currency constructor function rather than an object con-
taining functions. An object-oriented implementation could behave something like
the following:

var Currency = require('./currency');
var canadianDollar = 0.91;

var currency = new Currency(canadianDollar);
console.log(currency.canadianToUS(50));

Returning a function from require, rather than an object, will make your code more
elegant if it’s the only thing you need from the module.

 To create a module that returns a single variable or function, you might guess that
you simply need to set exports to whatever you want to return. But this won’t work,
because Node expects exports to not be reassigned to any other object, function, or
variable. The module code in the next listing attempts to set exports to a function.

currency_app

test-currency.js

currency.js

require('./currency');

Figure 3.4 When you put ./ at the
beginning of a module require, Node will
look in the same directory as the
program file being executed.

43Organizing and reusing Node functionality

var Currency = function(canadianDollar) {
this.canadianDollar = canadianDollar;

}

Currency.prototype.roundTwoDecimals = function(amount) {
return Math.round(amount * 100) / 100;

}

Currency.prototype.canadianToUS = function(canadian) {
return this.roundTwoDecimals(canadian * this.canadianDollar);

}

Currency.prototype.USToCanadian = function(us) {
return this.roundTwoDecimals(us / this.canadianDollar);

}

exports = Currency;

In order to get the previous module code to work as expected, you’d need to replace
exports with module.exports. The module.exports mechanism enables you to
export a single variable, function, or object. If you create a module that populates
both exports and module.exports, module.exports will be returned and exports
will be ignored.

By using either exports or module.exports, depending on your needs, you can orga-
nize functionality into modules and avoid the pitfall of ever-growing application
scripts.

3.1.3 Reusing modules using the node_modules folder

Requiring modules in the filesystem to exist relative to an application is useful for
organizing application-specific code, but isn’t as useful for code you’d like to reuse
between applications or share with others. Node includes a unique mechanism for

Listing 3.3 This module won’t work as expected

Incorrect; Node
doesn’t allow exports
to be overwritten

What really gets exported
What ultimately gets exported in your application is module.exports. exports is set
up simply as a global reference to module.exports, which initially is defined as an
empty object that you can add properties to. So exports.myFunc is just shorthand
for module.exports.myFunc.

As a result, if exports is set to anything else, it breaks the reference between
module.exports and exports. Because module.exports is what really gets
exported, exports will no longer work as expected—it doesn’t reference module
.exports anymore. If you want to maintain that link, you can make module.exports
reference exports again as follows:

module.exports = exports = Currency;

44 CHAPTER 3 Node programming fundamentals

code reuse that allows modules to be required without knowing their location in the
filesystem. This mechanism is the use of node_modules directories.

 In the earlier module example, you required ./currency. If you omit the ./ and
simply require currency, Node will follow a number of rules, as specified in figure 3.5,
to search for this module.

 The NODE_PATH environmental variable provides a way to specify alternative loca-
tions for Node modules. If used, NODE_PATH should be set to a list of directories sepa-
rated by semicolons in Windows or colons in other operating systems.

3.1.4 Caveats

While the essence of Node’s module system is straightforward, there are two things to
be aware of.

No

No

No

No

Yes

Yes

Yes

Yes

Start looking in the same
directory as the program file.

Is the module
a core module?

Return module.

Is module in node_modules
directory in the current directory?

Attempt to move to parent directory.

Does parent directory exist?

Does
module exist in a directory

specified by the NODE_MODULES
environment variable?

Throw exception.

Figure 3.5 Steps to finding a module

45Organizing and reusing Node functionality

First, if a module is a directory, the file in the module directory that will be evaluated
must be named index.js, unless specified otherwise by a file in the module directory
named package.json. To specify an alternative to index.js, the package.json file must
contain JavaScript Object Notation (JSON) data defining an object with a key named
main that specifies the path, within the module directory, to the main file. Figure 3.6
shows a flowchart summarizing these rules.

 Here’s an example of a package.json file specifying that currency.js is the main file:

{
"main": "./currency.js"

}

The other thing to be aware of is Node’s ability to cache modules as objects. If two
files in an application require the same module, the first require will store the data
returned in application memory so the second require won’t need to access and eval-
uate the module’s source files. The second require will, in fact, have the opportunity
to alter the cached data. This “monkey patching” capability allows one module to
modify the behavior of another, freeing the developer from having to create a new
version of it.

 The best way to get comfortable with Node’s module system is to play with it, verify-
ing the behavior described in this section yourself.

 Now that you have a basic understanding of how modules work, let’s move on to
asynchronous programming techniques.

Module directory
found

Contains
package.json file?

package.json file
contains a main

element?

File named by
main element

exists?

File named by
main element
defines module

Throw
exception

Does file named
index.js exist?

File index.js
defines module

Yes

Yes Yes No

YesNo

No

No

Figure 3.6 The package.json file, when placed in a module directory, allows you to
define your module using a file other than index.js.

46 CHAPTER 3 Node programming fundamentals

3.2 Asynchronous programming techniques
If you’ve done front-end web programming in which interface events (such as mouse
clicks) trigger logic, then you’ve done asynchronous programming. Server-side asyn-
chronous programming is no different: events occur that trigger response logic.
There are two popular models in the Node world for managing response logic: call-
backs and event listeners.

Callbacks generally define logic for one-off responses. If you perform a database
query, for example, you can specify a callback to determine what to do with the query
results. The callback may display the database results, do a calculation based on the
results, or execute another callback using the query results as an argument.

Event listeners, on the other hand, are essentially callbacks that are associated with a
conceptual entity (an event). For comparison, a mouse click is an event you would han-
dle in the browser when someone clicks the mouse. As an example, in Node an HTTP
server emits a request event when an HTTP request is made. You can listen for that
request event to occur and add some response logic. In the following example, the
function handleRequest will be called whenever a request event is emitted:

server.on('request', handleRequest)

A Node HTTP server instance is an example of an event emitter, a class (EventEmitter)
that can be inherited and that adds the ability to emit and handle events. Many
aspects of Node’s core functionality inherit from EventEmitter, and you can also cre-
ate your own.

 Now that we’ve established that response logic is generally organized in one of two
ways in Node, let’s jump into how it all works by learning about the following:

 How to handle one-off events with callbacks
 How to respond to repeating events using event listeners
 Some of the challenges of asynchronous programming

Let’s look first at one of the most common ways asynchronous code is handled: the
use of callbacks.

3.2.1 Handling one-off events with callbacks

A callback is a function, passed as an argument to an asynchronous function, that
describes what to do after the asynchronous operation has completed. Callbacks are
used frequently in Node development, more so than event emitters, and they’re sim-
ple to use.

 To demonstrate the use of callbacks in an application, let’s make a simple HTTP
server that does the following:

 Pulls the titles of recent posts stored as a JSON file asynchronously
 Pulls a basic HTML template asynchronously
 Assembles an HTML page containing the titles
 Sends the HTML page to the user
 The results will be similar to figure 3.7.

47Asynchronous programming techniques

The JSON file (titles.json), shown in the following listing, will be formatted as an array
of strings containing titles of posts.

[
"Kazakhstan is a huge country... what goes on there?",
"This weather is making me craaazy",
"My neighbor sort of howls at night"

]

The HTML template file (template.html), shown next, will include just a basic struc-
ture to insert the titles of the blog posts.

<!doctype html>
<html>

<head></head>
<body>

<h1>Latest Posts</h1>
%

</body>
</html>

The code that pulls in the JSON file and renders the web page is shown next
(blog_recent.js). The callback functions are displayed in bold.

var http = require('http');
var fs = require('fs');

http.createServer(function(req, res) {
if (req.url == '/') {

fs.readFile('./titles.json', function(err, data) {
if (err) {

console.error(err);
res.end('Server Error');

}

Listing 3.4 A list of post titles

Listing 3.5 A basic HTML template to render the blog titles

Listing 3.6 An example of the use of callbacks in a simple application

Figure 3.7 An HTML response
from a web server that pulls titles
from a JSON file and returns
results as a web page

% will be replaced
with title data

Create HTTP server
and use callback to
define response logic

Read JSON file and
use callback to
define what to do
with its contents

If error occurs, log error
and return “Server
Error” to client

48 CHAPTER 3 Node programming fundamentals

else {
var titles = JSON.parse(data.toString());

fs.readFile('./template.html', function(err, data) {
if (err) {

console.error(err);
res.end('Server Error');

}
else {

var tmpl = data.toString();

var html = tmpl.replace('%', titles.join(''));
res.writeHead(200, {'Content-Type': 'text/html'});
res.end(html);

}
});

}
});

}
}).listen(8000, "127.0.0.1");

This example nests three levels of callbacks:

http.createServer(function(req, res) { ...
fs.readFile('./titles.json', function (err, data) { ...

fs.readFile('./template.html', function (err, data) { ...

Three levels isn’t bad, but the more levels of callbacks you use, the more cluttered your
code looks, and the harder it is to refactor and test, so it’s good to limit callback nest-
ing. By creating named functions that handle the individual levels of callback nesting,
you can express the same logic in a way that requires more lines of code, but that could
be easier to maintain, test, and refactor. The following listing is functionally equivalent
to listing 3.6.

var http = require('http');
var fs = require('fs');

var server = http.createServer(function (req, res) {
getTitles(res);

}).listen(8000, "127.0.0.1");

function getTitles(res) {
fs.readFile('./titles.json', function (err, data) {

if (err) {
hadError(err, res);

}
else {

getTemplate(JSON.parse(data.toString()), res);
}

})
}

function getTemplate(titles, res) {

Listing 3.7 An example of reducing nesting by creating intermediary functions

Parse data
from JSON

text
Read HTML template

and use callback
when it’s loaded

Send HTML
page to user

Assemble HTML page
showing blog titles

Client request
initially comes
in here

Control is passed to getTitles

getTitles pulls
titles and
passes control
to getTemplate

getTemplate reads
template file and passes
control to formatHtml
fs.readFile('./template.html', function (err, data) {

49Asynchronous programming techniques

if (err) {
hadError(err, res);

}
else {

formatHtml(titles, data.toString(), res);
}

})
}

function formatHtml(titles, tmpl, res) {
var html = tmpl.replace('%', titles.join(''));
res.writeHead(200, {'Content-Type': 'text/html'});
res.end(html);

}

function hadError(err, res) {
console.error(err);
res.end('Server Error');

}

You can also reduce the nesting caused by if/else blocks with another common
idiom in Node development: returning early from a function. The following listing is
functionally the same but avoids further nesting by returning early. It also makes it
explicit that the function should not continue executing.

var http = require('http');
var fs = require('fs');

var server = http.createServer(function (req, res)
getTitles(res);

}).listen(8000, "127.0.0.1");

function getTitles(res) {
fs.readFile('./titles.json', function (err, data) {

if (err) return hadError(err, res)
getTemplate(JSON.parse(data.toString()), res)

})
}

function getTemplate(titles, res) {
fs.readFile('./template.html', function (err, data) {

if (err) return hadError(err, res)
formatHtml(titles, data.toString(), res)

})
}

function formatHtml(titles, tmpl, res) {
var html = tmpl.replace('%', titles.join(''));
res.writeHead(200, {'Content-Type': 'text/html'});
res.end(html);

}

function hadError(err, res) {
console.error(err)
res.end('Server Error')

Listing 3.8 An example of reducing nesting by returning early

formatHtml takes
titles and template,
and renders a response
back to client

If an error occurs along
the way, hadError logs
error to console and
responds to client with
“Server Error”

Instead of creating an
else branch, you
return, because if an
error occurred you
don’t need to continue
executing this function.
}

50 CHAPTER 3 Node programming fundamentals

Now that you’ve learned how to use callbacks to handle one-off events for such tasks as
defining responses when reading files and web server requests, let’s move on to orga-
nizing events using event emitters.

3.2.2 Handling repeating events with event emitters

Event emitters fire events and include the ability to handle those events when trig-
gered. Some important Node API components, such as HTTP servers, TCP servers, and
streams, are implemented as event emitters. You can also create your own.

 As we mentioned earlier, events are handled through the use of listeners. A listener
is the association of an event with a callback function that gets triggered each time the
event occurs. For example, a TCP socket in Node has an event called data that’s trig-
gered whenever new data is available on the socket:

socket.on('data', handleData);

Let’s look at using data events to create an echo server.

AN EXAMPLE EVENT EMITTER

A simple example where repeated events could occur is an echo server, which, when
you send data to it, will echo the data back, as shown in figure 3.8.

 The following listing shows the code needed to implement an echo server. When-
ever a client connects, a socket is created. The socket is an event emitter to which you

The Node convention for asynchronous callbacks
Most Node built-in modules use callbacks with two arguments: the first argument is
for an error, should one occur, and the second argument is for the results. The error
argument is often abbreviated as er or err.

Here’s a typical example of this common function signature:
var fs = require('fs');

fs.readFile('./titles.json', function(er, data) {
if (er) throw er;
// do something with data if no error has occurred

});

Figure 3.8 An echo server
repeating the data sent to it

51Asynchronous programming techniques

can then add a listener, using the on method, to respond to data events. These data
events are emitted whenever new data is available on the socket.

var net = require('net');

var server = net.createServer(function(socket) {
socket.on('data', function(data) {

socket.write(data);
});

});

server.listen(8888);

You run this echo server by entering the following command:

node echo_server.js

After the echo server is running, you can connect to it by entering the following
command:

telnet 127.0.0.1 8888

Every time data is sent from your connected telnet session to the server, it will be
echoed back into the telnet session.

TELNET ON WINDOWS If you’re using the Microsoft Windows operating sys-
tem, telnet may not be installed by default, and you’ll have to install it your-
self. TechNet has instructions for the various versions of Windows: http://
mng.bz/egzr.

RESPONDING TO AN EVENT THAT SHOULD ONLY OCCUR ONCE

Listeners can be defined to repeatedly respond to events, as the previous example
showed, or listeners can be defined to respond only once. The code in the following
listing, using the once method, modifies the previous echo server example to only
echo the first chunk of data sent to it.

var net = require('net');

var server = net.createServer(function(socket) {
socket.once ('data', function(data) {

socket.write(data);
});

});

server.listen(8888);

CREATING EVENT EMITTERS: A PUB/SUB EXAMPLE

In the previous example, we used a built-in Node API that leverages event emitters.
Node’s built-in events module, however, allows you to create your own event emitters.

Listing 3.9 Using the on method to respond to events

Listing 3.10 Using the once method to respond to a single event

data events handled
whenever new data
has been read

Data is written
(echoed back) to client

data event will only
be handled once

http://mng.bz/egzr
http://mng.bz/egzr

52 CHAPTER 3 Node programming fundamentals

 The following code defines a channel event emitter with a single listener that
responds to someone joining the channel. Note that you use on (or, alternatively, the
longer form addListener) to add a listener to an event emitter:

var EventEmitter = require('events').EventEmitter;
var channel = new EventEmitter();
channel.on('join', function() {

console.log("Welcome!");
});

This join callback, however, won’t ever be called, because you haven’t emitted any
events yet. You could add a line to the listing that would trigger an event using the
emit function:

channel.emit('join');

EVENT NAMES Events are simply keys and can have any string value: data,
join, or some crazy long event name. There’s only one special event, called
error, that we’ll look at soon.

In chapter 2 you built a chat application that leverages the Socket.io module for pub-
lish/subscribe capabilities. Let’s look at how you could implement your own publish/
subscribe logic.

 If you run the script in listing 3.11, you’ll have a simple chat server. A chat server
channel is implemented as an event emitter that responds to join events emitted by
clients. When a client joins the channel, the join listener logic, in turn, adds an addi-
tional client-specific listener to the channel for the broadcast event that will write any
message broadcast to the client socket. The names of the event types, such as join and
broadcast, are completely arbitrary. You could use other names for these event types
if you wished.

var events = require('events');
var net = require('net');

var channel = new events.EventEmitter();
channel.clients = {};
channel.subscriptions = {};

channel.on('join', function(id, client) {
this.clients[id] = client;
this.subscriptions[id] = function(senderId, message) {

if (id != senderId) {
this.clients[id].write(message);

}
}
this.on('broadcast', this.subscriptions[id]);

});

var server = net.createServer(function (client) {

Listing 3.11 A simple publish/subscribe system using an event emitter

Add a listener for the join
event that stores a user’s
client object, allowing the
application to send data
back to the user.

Ignore data if it’s been directly
broadcast by the user.

Add a listener, specific to
the current user, for the
broadcast event.
var id = client.remoteAddress + ':' + client.remotePort;

53Asynchronous programming techniques

client.on('connect', function() {
channel.emit('join', id, client);

});
client.on('data', function(data) {

data = data.toString();
channel.emit('broadcast', id, data);

});
});
server.listen(8888);

After you have the chat server running, open a new command line and enter the fol-
lowing code to enter the chat:

telnet 127.0.0.1 8888

If you open up a few command lines, you’ll see that anything typed in one command
line is echoed to the others.

 The problem with this chat server is that when users close their connection and
leave the chat room, they leave behind a listener that will attempt to write to a client
that’s no longer connected. This will, of course, generate an error. To fix this issue,
you need to add the listener in the following listing to the channel event emitter, and
add logic to the server’s close event listener to emit the channel’s leave event. The
leave event essentially removes the broadcast listener originally added for the client.

...
channel.on('leave', function(id) {

channel.removeListener(
 ➥'broadcast', this.subscriptions[id]);
channel.emit('broadcast', id, id + " has left the chat.\n");

});

var server = net.createServer(function (client) {
...
client.on('close', function() {

channel.emit('leave', id);
});

});
server.listen(8888);

If you want to prevent a chat for some reason, but don’t want to shut down the server,
you could use the removeAllListeners event emitter method to remove all listeners
of a given type. The following code shows how this could be implemented for our chat
server example:

channel.on('shutdown', function() {
channel.emit('broadcast', '', "Chat has shut down.\n");
channel.removeAllListeners('broadcast');

});

You could then add support for a chat command that would trigger the shutdown. To

Listing 3.12 Creating a listener to clean up when clients disconnect

Emit a join event when a user
connects to the server, specifying
the user ID and client object.

Emit a channel broadcast event,
specifying the user ID and message,
when any user sends data.

Create listener for
leave event

Remove broadcast
listener for

specific client

Emit leave event when
client disconnects
do so, change the listener for the data event to the following code:

54 CHAPTER 3 Node programming fundamentals

client.on('data', function(data) {
data = data.toString();
if (data == "shutdown\r\n") {

channel.emit('shutdown');
}
channel.emit('broadcast', id, data);

});

Now when any chat participant enters shutdown into the chat, it’ll cause all chat par-
ticipants to be kicked off.

If you want to provide users connecting to chat with a count of currently connected
users, you could use the following listeners method, which returns an array of listen-
ers for a given event type:

Error handling
A convention you can use when creating event emitters is to emit an error type event
instead of directly throwing an error. This allows you to define custom event response
logic by setting one or more listeners for this event type.

The following code shows how an error listener handles an emitted error by logging
into the console:
var events = require('events');
var myEmitter = new events.EventEmitter();

myEmitter.on('error', function(err) {
console.log('ERROR: ' + err.message);

});

myEmitter.emit('error', new Error('Something is wrong.'));

If no listener for this event type is defined when the error event type is emitted, the
event emitter will output a stack trace (a list of program instructions that had exe-
cuted up to the point when the error occurred) and halt execution. The stack trace will
indicate an error of the type specified by the emit call’s second argument. This
behavior is unique to error type events; when other event types are emitted, and
they have no listeners, nothing happens.

If an error type event is emitted without an error object supplied as the second
argument, a stack trace will indicate an “Uncaught, unspecified ‘error’ event” error,
and your application will halt. There is a deprecated method you can use to deal with
this error—you can define your own response by defining a global handler using the
following code:
process.on('uncaughtException', function(err){

console.error(err.stack);
process.exit(1);

});

Alternatives to this, such as domains (http://nodejs.org/api/domain.html), are being
developed, but they’re considered experimental.

http://nodejs.org/api/domain.html

55Asynchronous programming techniques

channel.on('join', function(id, client) {
var welcome = "Welcome!\n"

+ 'Guests online: ' + this.listeners('broadcast').length;
client.write(welcome + "\n");
...

To increase the number of listeners an event emitter has, and to avoid the warnings
Node displays when there are more than ten listeners, you could use the setMax-
Listeners method. Using your channel event emitter as an example, you’d use the
following code to increase the number of allowed listeners:

channel.setMaxListeners(50);

EXTENDING THE EVENT EMITTER: A FILE WATCHER EXAMPLE

If you’d like to build upon the event emitter’s behavior, you can create a new
JavaScript class that inherits from the event emitter. For example, you could create a
class called Watcher that would process files placed in a specified filesystem directory.
You’d then use this class to create a utility that would watch a filesystem directory
(renaming any files placed in it to lowercase) and then copy the files into a separate
directory.

 There are three steps to extending an event emitter:

1 Creating a class constructor
2 Inheriting the event emitter’s behavior
3 Extending the behavior

The following code shows how to create the constructor for your Watcher class. The
constructor takes, as arguments, the directory to monitor and the directory in which
to put the altered files:

function Watcher(watchDir, processedDir) {
this.watchDir = watchDir;
this.processedDir = processedDir;

}

Next, you need to add logic to inherit the event emitter’s behavior:

var events = require('events')
, util = require('util');

util.inherits(Watcher, events.EventEmitter);

Note the use of the inherits function, which is part of Node’s built-in util module.
The inherits function provides a clean way to inherit another object’s behavior.

 The inherits statement in the previous code snippet is equivalent to the following
JavaScript:

Watcher.prototype = new events.EventEmitter();

After setting up the Watcher object, you need to extend the methods inherited from
EventEmitter with two new methods, as shown in the following listing.

P
each

dir
56 CHAPTER 3 Node programming fundamentals

var fs = require('fs')
, watchDir = './watch'
, processedDir = './done';

Watcher.prototype.watch = function() {
var watcher = this;
fs.readdir(this.watchDir, function(err, files) {

if (err) throw err;
for(var index in files) {

watcher.emit('process', files[index]);
}

})
}

Watcher.prototype.start = function() {
var watcher = this;
fs.watchFile(watchDir, function() {

watcher.watch();
});

}

The watch method cycles through the directory, processing any files found. The
start method starts the directory monitoring. The monitoring leverages Node’s
fs.watchFile function, so when something happens in the watched directory, the
watch method is triggered, cycling through the watched directory and emitting a
process event for each file found.

 Now that you’ve defined the Watcher class, you can put it to work by creating a
Watcher object using the following code:

var watcher = new Watcher(watchDir, processedDir);

With your newly created Watcher object, you can use the on method, inherited from the
event emitter class, to set the logic used to process each file, as shown in this snippet:

watcher.on('process', function process(file) {
var watchFile = this.watchDir + '/' + file;
var processedFile = this.processedDir + '/' + file.toLowerCase();

fs.rename(watchFile, processedFile, function(err) {
if (err) throw err;

});
});

Now that all the necessary logic is in place, you can start the directory monitor using
the following code:

watcher.start();

After putting the Watcher code into a script and creating watch and done directories,
you should be able to run the script using Node, drop files into the watch directory,
and see the files pop up, renamed to lowercase, in the done directory. This is an exam-
ple of how the event emitter can be a useful class from which to create new classes.

Listing 3.13 Extending the event emitter’s functionality

Extend EventEmitter
with method that
processes files

Store reference to
Watcher object
for use in readdir
callback

rocess
 file in
watch
ectory

Extend EventEmitter with
method to start watching

57Asynchronous programming techniques

 By learning how to use callbacks to define one-off asynchronous logic and how to
use event emitters to dispatch asynchronous logic repeatedly, you’re one step closer to
mastering control of a Node application’s behavior. In a single callback or event emit-
ter listener, however, you may want to include logic that performs additional asynchro-
nous tasks. If the order in which these tasks are performed is important, you may be
faced with a new challenge: how to control exactly when each task, in a series of asyn-
chronous tasks, executes.

 Before we get to controlling when tasks execute—coming up in section 3.3—let’s
take a look at some of the challenges you’ll likely encounter as you write asynchronous
code.

3.2.3 Challenges with asynchronous development

When creating asynchronous applications, you have to pay close attention to how your
application flows and keep a watchful eye on application state: the conditions of the
event loop, application variables, and any other resources that change as program
logic executes.

 Node’s event loop, for example, keeps track of asynchronous logic that hasn’t com-
pleted processing. As long as there’s uncompleted asynchronous logic, the Node pro-
cess won’t exit. A continually running Node process is desirable behavior for
something like a web server, but it isn’t desirable to continue running processes that
are expected to end after a period of time, like command-line tools. The event loop
will keep track of any database connections until they’re closed, preventing Node
from exiting.

 Application variables can also change unexpectedly if you’re not careful. Listing
3.14 shows an example of how the order in which asynchronous code executes can
lead to confusion. If the example code was executing synchronously, you’d expect the
output to be “The color is blue.” Because the example is asynchronous, however, the
value of the color variable changes before console.log executes, and the output is
“The color is green.”

function asyncFunction(callback) {
setTimeout(callback, 200);

}

var color = 'blue';

asyncFunction(function() {
console.log('The color is ' + color);

});

color = 'green';

To “freeze” the contents of the color variable, you can modify your logic and use a
JavaScript closure. In listing 3.15, you wrap the call to asyncFunction in an anonymous

Listing 3.14 How scope behavior can lead to bugs

This is executed last
(200 ms later).
function that takes a color argument. You then execute the anonymous function

58 CHAPTER 3 Node programming fundamentals

immediately, sending it the current contents of color. By making color an argument
for the anonymous function, it becomes local to the scope of that function, and when
the value of color is changed outside of the anonymous function, the local version is
unaffected.

function asyncFunction(callback) {
setTimeout(callback, 200);

}
var color = 'blue';

(function(color) {
asyncFunction(function() {

console.log('The color is ' + color);
})

})(color);

color = 'green';

This is but one of many JavaScript programming tricks you’ll come across in your
Node development.

CLOSURES For more information on closures, see the Mozilla JavaScript doc-
umentation: https://developer.mozilla.org/en-US/docs/JavaScript/Guide/
Closures.

Now that you understand how you can use closures to control your application state,
let’s look at how you can sequence asynchronous logic in order to keep the flow of
your application under control.

3.3 Sequencing asynchronous logic
During the execution of an asynchronous program, there are some tasks that can hap-
pen any time, independent of what the rest of the program is doing, without causing
problems. But there are also some tasks, however, that should happen only before or
after certain other tasks.

 The concept of sequencing groups of asynchronous tasks is called flow control
by the Node community. There are two types of flow control: serial and parallel, as
figure 3.9 shows.

 Tasks that need to happen one after the other are called serial. A simple example
would be the tasks of creating a directory and then storing a file in it. You wouldn’t be
able to store the file before creating the directory.

 Tasks that don’t need to happen one after the other are called parallel. It isn’t nec-
essarily important when these tasks start and stop relative to one another, but they
should all be completed before further logic executes. One example would be down-
loading a number of files that will later be compressed into a zip archive. The files can
be downloaded simultaneously, but all of the downloads should be completed before
creating the archive.

Listing 3.15 Using an anonymous function to preserve a global variable’s value

https://developer.mozilla.org/en-US/docs/JavaScript/Guide/Closures
https://developer.mozilla.org/en-US/docs/JavaScript/Guide/Closures

59Sequencing asynchronous logic

Keeping track of serial and parallel flow control involves programmatic bookkeeping.
When you implement serial flow control, you need to keep track of the task currently
executing or maintain a queue of unexecuted tasks. When you implement parallel
flow control, you need to keep track of how many tasks have executed to completion.

 Flow control tools handle the bookkeeping for you, which makes grouping asyn-
chronous serial or parallel tasks easy. Although there are plenty of community-created
add-ons that deal with sequencing asynchronous logic, implementing flow control
yourself demystifies it and helps you gain a deeper understanding of how to deal with
the challenges of asynchronous programming.

 In this section we’ll show you the following:

 When to use serial flow control
 How to implement serial flow control
 How to implement parallel flow control
 How to leverage third-party modules for flow control

Let’s start by looking at when and how you handle serial flow control in an asychro-
nous world.

3.3.1 When to use serial flow control

In order to execute a number of asynchronous tasks in sequence, you could use call-
backs, but if you have a significant number of tasks, you’ll have to organize them. If
you don’t, you’ll end up with messy code due to excessive callback nesting.

Serial execution Parallel execution

Start

Task 1

Then task 2

Then task 3

Continue when
task 3 complete

Continue when
all tasks complete

Start

Task Task Task

Figure 3.9 Serial execution of asynchronous tasks is
similar, conceptually, to synchronous logic: tasks are
executed in sequence. Parallel tasks, however, don’t
have to execute one after another.

60 CHAPTER 3 Node programming fundamentals

 The following code is an example of executing tasks in sequence using callbacks.
The example uses setTimeout to simulate tasks that take time to execute: the first task
takes one second, the next takes half of a second, and the last takes one-tenth of a sec-
ond. setTimeout is only an artificial simulation; in real code you could be reading
files, making HTTP requests, and so on. Although this example code is short, it’s argu-
ably a bit messy, and there’s no easy way to programmatically add an additional task.

setTimeout(function() {
console.log('I execute first.');
setTimeout(function() {

console.log('I execute next.');
setTimeout(function() {

console.log('I execute last.');
}, 100);

}, 500);
}, 1000);

Alternatively, you can use a flow-control tool such as Nimble to execute these tasks.
Nimble is straightforward to use and benefits from having a very small codebase (a
mere 837 bytes, minified and compressed). You can install Nimble with the following
command:

npm install nimble

Now, use the code in the next listing to re-implement the previous code snippet using
serial flow control.

var flow = require('nimble');

flow.series([
function (callback) {

setTimeout(function() {
console.log('I execute first.');
callback();

}, 1000);
},
function (callback) {

setTimeout(function() {
console.log('I execute next.');
callback();

}, 500);
},
function (callback) {

setTimeout(function() {
console.log('I execute last.');
callback();

}, 100);
}

]);

Listing 3.16 Serial control using a community-created add-on

Provide an array of
functions for Nimble to
execute, one after the other.

61Sequencing asynchronous logic

Although the implementation using flow control means more lines of code, it’s gener-
ally easier to read and maintain. You’re likely not going to use flow control all the
time, but if you run into a situation where you want to avoid callback nesting, it’s a
handy tool for improving code legibility.

 Now that you’ve seen an example of the use of serial flow control with a specialized
tool, let’s look at how to implement it from scratch.

3.3.2 Implementing serial flow control

In order to execute a number of asynchronous tasks in sequence using serial flow con-
trol, you first need to put the tasks in an array, in the desired order of execution. This
array, as figure 3.10 shows, will act as a queue: when you finish one task, you extract
the next task in sequence from the array.

 Each task exists in the array as a function. When a task has completed, the task
should call a handler function to indicate error status and results. The handler func-
tion in this implementation will halt execution if there’s an error. If there isn’t an
error, the handler will pull the next task from the queue and execute it.

 To demonstrate an implementation of serial flow control, we’ll make a simple
application that will display a single article’s title and URL from a randomly chosen
RSS feed. The list of possible RSS feeds will be specified in a text file. The application’s
output will look something like the following text:

Of Course ML Has Monads!
http://lambda-the-ultimate.org/node/4306

Our example requires the use of two helper modules from the npm repository. First,
open a command-line prompt, and then enter the following commands to create a
directory for the example and install the helper modules:

mkdir random_story
cd random_story
npm install request
npm install htmlparser

Tasks stored in array in order of desired execution

Task

Task performs
function; then calls
dispatch function
to execute next
task in queue

Task Task Task

Figure 3.10 How serial flow control works

62 CHAPTER 3 Node programming fundamentals

The request module is a simplified HTTP client that you can use to fetch RSS data.
The htmlparser module has functionality that will allow you to turn raw RSS data into
JavaScript data structures.

 Next, create a file named random_story.js inside your new directory that contains
the code shown here.

var fs = require('fs');
var request = require('request');
var htmlparser = require('htmlparser');
var configFilename = './rss_feeds.txt';

function checkForRSSFile () {
fs.exists(configFilename, function(exists) {

if (!exists)
return next(new Error('Missing RSS file: ' + configFilename));

next(null, configFilename);
});

}

function readRSSFile (configFilename) {
fs.readFile(configFilename, function(err, feedList) {

if (err) return next(err);

feedList = feedList
.toString()
.replace(/^\s+|\s+$/g, '')
.split("\n");

var random = Math.floor(Math.random()*feedList.length);
next(null, feedList[random]);

});
}

function downloadRSSFeed (feedUrl) {
request({uri: feedUrl}, function(err, res, body) {

if (err) return next(err);
if (res.statusCode != 200)

return next(new Error('Abnormal response status code'))

next(null, body);
});

}

function parseRSSFeed (rss) {
var handler = new htmlparser.RssHandler();
var parser = new htmlparser.Parser(handler);
parser.parseComplete(rss);

if (!handler.dom.items.length)
return next(new Error('No RSS items found'));

var item = handler.dom.items.shift();
console.log(item.title);
console.log(item.link);

Listing 3.17 Serial flow control implemented in a simple application

Task 1: Make sure file
containing the list of
RSS feed URLs exists.

Whenever there is an
error, return early.

Task 2: Read and
parse file containing
the feed URLs.

Convert list of feed URLs
to a string and then into
an array of feed URLs.

Select
random

feed URL
from array

of feed
URLs.

Task 3: Do an HTTP
request and get data
for the selected feed.

Task 4: Parse RSS data
into array of items.

Display title and URL
of the first feed item,
if it exists.
}

63Sequencing asynchronous logic

var tasks = [checkForRSSFile,
readRSSFile,
downloadRSSFeed,
parseRSSFeed];

function next(err, result) {
if (err) throw err;

var currentTask = tasks.shift();

if (currentTask) {
currentTask(result);

}
}

next();

Before trying out the application, create the file rss_feeds.txt in the same directory as
the application script. Put the URLs of RSS feeds into the text file, one on each line of
the file. After you’ve created this file, open a command line and enter the following
commands to change to the application directory and execute the script:

cd random_story
node random_story.js

Serial flow control, as this example implementation shows, is essentially a way of put-
ting callbacks into play when they’re needed, rather than simply nesting them.

 Now that you know how to implement serial flow control, let’s look at how you can
execute asynchronous tasks in parallel.

3.3.3 Implementing parallel flow control

In order to execute a number of asynchronous tasks in parallel, you again need to put
the tasks in an array, but this time the order of the tasks is unimportant. Each task
should call a handler function that will increment the number of completed tasks.
When all tasks are complete, the handler function should perform some subsequent
logic.

 For a parallel flow control example, we’ll make a simple application that will read
the contents of a number of text files and output the frequency of word use through-
out the files. Reading the contents of the text files will be done using the asynchro-
nous readFile function, so a number of file reads could be done in parallel. How this
application works is shown in figure 3.11.

 The output will look something like the following text (although it will likely be
much longer):

would: 2
wrench: 3
writeable: 1
you: 24

Add each task to be performed
to an array in execution order.

A function
called next

executes
each task.

Throw exception if task
encounters an error.

Next task comes from
array of tasks.

Execute current task.

Start serial execution of tasks.

64 CHAPTER 3 Node programming fundamentals

Open a command-line prompt and enter the following commands to create two direc-
tories: one for the example, and another within that to contain the text files you want
to analyze:

mkdir word_count
cd word_count
mkdir text

Next, create a file named word_count.js inside the word_count directory that contains
the code that follows.

var fs = require('fs');
var completedTasks = 0;
var tasks = [];
var wordCounts = {};
var filesDir = './text';

function checkIfComplete() {
completedTasks++;
if (completedTasks == tasks.length) {

for (var index in wordCounts) {
console.log(index +': ' + wordCounts[index]);

}
}

Listing 3.18 Parallel flow control implemented in a simple application

Read
file

Count
words

Read
file

Count
words

Read
file

Get list of
files in

directory.

Handle each file using asynchronous logic.

Are all the files read and words counted?

Each file read and subsequent word count is done in parallel.

Display word
counts.

Count
words

Read
file

Count
words

Read
file

Count
words

Figure 3.11 Using parallel flow
control to implement a frequency
count of word use in a number of files

When all tasks have
completed, list each
word used in the
files and how many
times it was used.
}

65Sequencing asynchronous logic

function countWordsInText(text) {
var words = text

.toString()

.toLowerCase()

.split(/\W+/)

.sort();
for (var index in words) {

var word = words[index];
if (word) {

wordCounts[word] =
(wordCounts[word]) ? wordCounts[word] + 1 : 1;

}
}

}

fs.readdir(filesDir, function(err, files) {
if (err) throw err;
for(var index in files) {

var task = (function(file) {
return function() {

fs.readFile(file, function(err, text) {
if (err) throw err;
countWordsInText(text);
checkIfComplete();

});
}

})(filesDir + '/' + files[index]);
tasks.push(task);

}
for(var task in tasks) {

tasks[task]();
}

});

Before trying out the application, create some text files in the text directory you cre-
ated earlier. After you’ve created these files, open a command line and enter the fol-
lowing commands to change to the application directory and execute the script:

cd word_count
node word_count.js

Now that you’ve learned how serial and parallel flow control work under the hood,
let’s look at how to leverage community-created tools that allow you to easily benefit
from flow control in your applications, without having to implement it yourself.

3.3.4 Leveraging community tools

Many community add-ons provide convenient flow-control tools. Some popular add-
ons include Nimble, Step, and Seq. Although each of these is worth checking out,
we’ll use Nimble again for another example.

COMMUNITY ADD-ONS FOR FLOW CONTROL For more information about com-
munity add-ons for flow control, see the article “Virtual Panel: How to Survive
Asynchronous Programming in JavaScript” by Werner Schuster and Dio Syno-

Count word
occurrences
in text.

Get a list of the
files in the text
directory.

Define a task to handle each file.
Each task includes a call to a
function that will asynchronously
read the file and then count the
file’s word usage.

Add each task to an
array of functions to
call in parallel.

Start executing
every task in
parallel.
dinos on InfoQ: http://mng.bz/wKnV.

http://mng.bz/wKnV

E
dow
in p
66 CHAPTER 3 Node programming fundamentals

The next listing is an example of using Nimble to sequence tasks in a script that uses
parallel flow control to download two files simultaneously and then archives them.

THE FOLLOWING EXAMPLE WON’T WORK IN MICROSOFT WINDOWS Because the
Windows operating system doesn’t come with the tar and curl commands,
the following example won’t work in this operating system.

In this example, we use serial control to make sure that the downloading is done
before proceeding to archiving.

var flow = require('nimble')
var exec = require('child_process').exec;

function downloadNodeVersion(version, destination, callback) {
var url = 'http://nodejs.org/dist/node-v' + version + '.tar.gz';
var filepath = destination + '/' + version + '.tgz';
exec('curl ' + url + ' >' + filepath, callback);

}

flow.series([
function (callback) {

flow.parallel([
function (callback) {

console.log('Downloading Node v0.4.6...');
downloadNodeVersion('0.4.6', '/tmp', callback);

},
function (callback) {

console.log('Downloading Node v0.4.7...');
downloadNodeVersion('0.4.7', '/tmp', callback);

}
], callback);

},
function(callback) {

console.log('Creating archive of downloaded files...');
exec(

'tar cvf node_distros.tar /tmp/0.4.6.tgz /tmp/0.4.7.tgz',
function(error, stdout, stderr) {

console.log('All done!');
callback();

}
);

}
]);

The script defines a helper function that will download any specified release version
of the Node source code. Two tasks are then executed in series: the parallel download-
ing of two versions of Node and the bundling of the downloaded versions into a new
archive file.

Listing 3.19 Using a community add-on flow-control tool in a simple application

Download Node
source code for

given version

Execute series
of tasks in
sequencexecute

nloads
arallel

Create
archive
file

67Summary

3.4 Summary
In this chapter, you’ve learned how to organize your application logic into reusable
modules, and how to make asynchronous logic behave the way you want it to.

 Node’s module system, which is based on the CommonJS module specification
(www.commonjs.org/specs/modules/1.0/), allows you to easily reuse modules by
populating the exports and module.exports objects. The module lookup system
affords you a lot of flexibility in terms of where you can put modules and have them
be found by application code when you require them. In addition to allowing you to
include modules in your application’s source tree, you can also use the node_modules
folder to share module code between multiple applications. Within a module, the
package.json file can be used to specify which file in the module’s source tree is first
evaluated when the module is required.

 To manage asynchronous logic, you can use callbacks, event emitters, and flow
control. Callbacks are appropriate for one-off asynchronous logic, but their use
requires care to prevent messy code. Event emitters can be helpful for organizing
asynchronous logic, since they allow it to be associated with a conceptual entity and to
be easily managed through the use of listeners.

 Flow control allows you to manage how asynchronous tasks execute, either one
after another or simultaneously. Implementing your own flow control is possible, but
community add-ons can save you the trouble. Which flow-control add-on you prefer is
largely a matter of taste and project or design constraints.

 Now that you’ve spent this chapter and the last preparing for development, it’s
time to sink your teeth into one of Node’s most important features: its HTTP APIs. In
the next chapter, you’ll learn the basics of web application development using Node.

www.commonjs.org/specs/modules/1.0/

Part 2

Web application
development with Node

Node’s inclusion of built-in HTTP functionality makes Node a natural fit
for web application development. This type of development is the most popular
use for Node, and part 2 of this book focuses on it.

 You’ll first learn how to use Node’s built-in HTTP functionality. You’ll then
learn about how to use middleware to add more functionality, such as the ability
to process data submitted in forms. Finally, you’ll learn how to use the popular
Express web framework to speed up your development and how to deploy the
applications you’ve created.

Building Node web
applications
In this chapter, you’ll become familiar with the tools Node provides for creating
HTTP servers, and you’ll get acquainted with the fs (filesystem) module, which is
necessary for serving static files. You’ll also learn how to handle other common web
application needs, such as creating low-level RESTful web services, accepting user
input through HTML forms, monitoring file upload progress, and securing a web
application with Node’s Secure Sockets Layer (SSL).

 At Node’s core is a powerful streaming HTTP parser consisting of roughly 1,500
lines of optimized C, written by the author of Node, Ryan Dahl. This parser, in com-
bination with the low-level TCP API that Node exposes to JavaScript, provides you
with a very low-level, but very flexible, HTTP server.

This chapter covers
 Handling HTTP requests with Node’s API

 Building a RESTful web service

 Serving static files

 Accepting user input from forms

 Securing your application with HTTPS
71

72 CHAPTER 4 Building Node web applications

Like most modules in Node’s core, the http module favors simplicity. High-level
“sugar” APIs are left for third-party frameworks, such as Connect or Express, that
greatly simplify the web application building process. Figure 4.1 illustrates the anat-
omy of a Node web application, showing that the low-level APIs remain at the core,
and that abstractions and implementations are built on top of those building blocks.

 This chapter will cover some of Node’s low-level APIs directly. You can safely skip
this chapter if you’re more interested in higher-level concepts and web frameworks,
like Connect or Express, which will be covered in later chapters. But before creating
rich web applications with Node, you’ll need to become familiar with the fundamental
HTTP API, which can be built upon to create higher-level tools and frameworks.

4.1 HTTP server fundamentals
As we’ve mentioned throughout this book, Node has a relatively low-level API. Node’s
HTTP interface is similarly low-level when compared with frameworks or languages
such as PHP in order to keep it fast and flexible.

Application logic

Community modules
Database drivers

Middleware

Upload parsing

Routing

Real-time WebSocket

Low-level
HTTP parser

Node core

Low-level
TCP server

mongoose

express

connect

Route handlers

Directory structures

Business algorithms
http.createServer()

app.use()

node-cginode-formidable

socket.io

querystring

http
net

1

2

3

1. Node’s core APIs are always lightweight
and low-level. This leaves opinions, syntactic
sugar, and specific details up to the
community modules.

2. Community modules are where Node
thrives. Community members take the
low-level core APIs and create fun and
easy-to-use modules that allow you to
get tasks done easily.

3. The application logic layer is where
your app is implemented. The size
of this layer depends on the number
of community modules used and the
complexity of the application.

31

2

Figure 4.1 Overview of the layers that
make up a Node web application

73HTTP server fundamentals

 To get you started creating robust and performant web applications, this section
will focus on the following topics:

 How Node presents incoming HTTP requests to developers
 How to write a basic HTTP server that responds with “Hello World”
 How to read incoming request headers and set outgoing response headers
 How to set the status code of an HTTP response

Before you can accept incoming requests, you need to create an HTTP server. Let’s
take a look at Node’s HTTP interface.

4.1.1 How Node presents incoming HTTP requests to developers

Node provides HTTP server and client interfaces through the http module:

var http = require('http');

To create an HTTP server, call the http.createServer() function. It accepts a single
argument, a callback function, that will be called on each HTTP request received by
the server. This request callback receives, as arguments, the request and response
objects, which are commonly shortened to req and res:

var http = require('http');
var server = http.createServer(function(req, res){
// handle request
});

For every HTTP request received by the server, the request callback function will be
invoked with new req and res objects. Prior to the callback being triggered, Node will
parse the request up through the HTTP headers and provide them as part of the req
object. But Node doesn’t start parsing the body of the request until the callback has
been fired. This is different from some server-side frameworks, like PHP, where both
the headers and the body of the request are parsed before your application logic runs.
Node provides this lower-level interface so you can handle the body data as it’s being
parsed, if desired.

 Node will not automatically write any response back to the client. After the request
callback is triggered, it’s your responsibility to end the response using the res.end()
method (see figure 4.2). This allows you to run any asynchronous logic you want dur-
ing the lifetime of the request before ending the response. If you fail to end the
response, the request will hang until the client times out or it will just remain open.

 Node servers are long-running processes that serve many requests throughout
their lifetimes.

74 CHAPTER 4 Building Node web applications

4.1.2 A basic HTTP server that responds with “Hello World”

To implement a simple Hello World HTTP server, let’s flesh out the request callback
function from the previous section.

 First, call the res.write() method, which writes response data to the socket, and
then use the res.end() method to end the response:

var http = require('http');
var server = http.createServer(function(req, res){

res.write('Hello World');
res.end();

});

As shorthand, res.write() and res.end() can be combined into one statement,
which can be nice for small responses:

res.end('Hello World');

The last thing you need to do is bind to a port so you can listen for incoming requests.

Web browser

Node process

HTTP server

Request callback

GET / HTTP/1.1

HTTP/1.1 200 OK
Hello World

1 An HTTP client, like a web browser,
initiates an HTTP request.

1

2 Node accepts the connection,
and incoming request data is given
to the HTTP server.

2

3 The HTTP server parses up to the end
of the HTTP headers and then hands
control over to the request callback.

3

4 The request callback performs
application logic, in this case
responding immediately with
the text “Hello World.”

4

5 The request is sent back through the
HTTP server, which formats a proper
HTTP response for the client.

5

http.createServer(cb);

function cb (req, res) {
 res.end(’Hello World’);
}

1

2

3

4

5

Figure 4.2 The lifecycle of an HTTP request
going through a Node HTTP server
You do this by using the server.listen() method, which accepts a combination of

75HTTP server fundamentals

arguments, but for now the focus will be on listening for connections on a specified
port. During development, it’s typical to bind to an unprivileged port, such as 3000:

var http = require('http');
var server = http.createServer(function(req, res){

res.end('Hello World');
});
server.listen(3000);

With Node now listening for connections on port 3000, you can visit http://local-
host:3000 in your browser. When you do, you should receive a plain-text page consist-
ing of the words “Hello World.”

 Setting up an HTTP server is just the start. You’ll need to know how to set response
status codes and header fields, handle exceptions appropriately, and use the APIs
Node provides. First we’ll take a closer look at responding to incoming requests.

4.1.3 Reading request headers and setting response headers

The Hello World example in the previous section demonstrates the bare minimum
required for a proper HTTP response. It uses the default status code of 200 (indicating
success) and the default response headers. Usually, though, you’ll want to include any
number of other HTTP headers with the response. For example, you’ll have to send a
Content-Type header with a value of text/html when you’re sending HTML content
so that the browser knows to render the result as HTML.

 Node offers several methods to progressively alter the header fields of an
HTTP response: the res.setHeader(field, value), res.getHeader(field), and res
.removeHeader(field) methods. Here’s an example of using res.setHeader():

var body = 'Hello World';
res.setHeader('Content-Length', body.length);
res.setHeader('Content-Type', 'text/plain');
res.end(body);

You can add and remove headers in any order, but only up to the first res.write() or
res.end() call. After the first part of the response body is written, Node will flush the
HTTP headers that have been set.

4.1.4 Setting the status code of an HTTP response

It’s common to want to send back a different HTTP status code than the default of
200. A common case would be sending back a 404 Not Found status code when a
requested resource doesn’t exist.

 To do this, you set the res.statusCode property. This property can be assigned at
any point during the application’s response, as long as it’s before the first call to
res.write() or res.end(). As shown in the following example, this means
res.statusCode = 302 can be placed above the res.setHeader() calls, or below
them:

76 CHAPTER 4 Building Node web applications

var url = 'http://google.com';
var body = '<p>Redirecting to '

+ url + '</p>';

res.setHeader('Location', url);
res.setHeader('Content-Length', body.length);
res.setHeader('Content-Type', 'text/html');
res.statusCode = 302;
res.end(body);

Node’s philosophy is to provide small but robust networking APIs, not to compete with
high-level frameworks such as Rails or Django, but to serve as a tremendous platform
for similar frameworks to build upon. Because of this design, neither high-level con-
cepts like sessions nor fundamentals such as HTTP cookies are provided within Node’s
core. Those are left for third-party modules to provide.

 Now that you’ve seen the basic HTTP API, it’s time to put it to use. In the next sec-
tion, you’ll make a simple, HTTP-compliant application using this API.

4.2 Building a RESTful web service
Suppose you want to create a to-do list web service with Node, involving the typical
create, read, update, and delete (CRUD) actions. These actions can be implemented
in many ways, but in this section we’ll focus on creating a RESTful web service—a ser-
vice that utilizes the HTTP method verbs to expose a concise API.

 In 2000, representational state transfer (REST) was introduced by Roy Fielding,1

one of the prominent contributors to the HTTP 1.0 and 1.1 specifications. By conven-
tion, HTTP verbs, such as GET, POST, PUT, and DELETE, are mapped to retrieving, creat-
ing, updating, and removing the resources specified by the URL. RESTful web services
have gained in popularity because they’re simple to utilize and implement in compar-
ison to protocols such as the Simple Object Access Protocol (SOAP).

 Throughout this section, cURL (http://curl.haxx.se/download.html) will be used,
in place of a web browser, to interact with your web service. cURL is a powerful
command-line HTTP client that can be used to send requests to a target server.

 To create a compliant REST server, you need to implement the four HTTP verbs.
Each verb will cover a different task for the to-do list:

 POST—Add items to the to-do list
 GET—Display a listing of the current items, or display the details of a specific

item
 DELETE—Remove items from the to-do list
 PUT—Should modify existing items, but for brevity’s sake we’ll skip PUT in this

chapter

To illustrate the end result, here’s an example of creating a new item in the to-do list
using the curl command:

1 Roy Thomas Fielding, “Architectural Styles and the Design of Network-based Software Architectures” (PhD

diss, University of California, Irvine, 2000), www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

http://curl.haxx.se/download.html
www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

77Building a RESTful web service

And here’s an example of viewing the items in the to-do list:

4.2.1 Creating resources with POST requests

In RESTful terminology, the creation of a resource is typically mapped to the POST
verb. Therefore, POST will create an entry in the to-do list.

 In Node, you can check which HTTP method (verb) is being used by checking the
req.method property (as shown in listing 4.1). When you know which method the
request is using, your server will know which task to perform.

 When Node’s HTTP parser reads in and parses request data, it makes that data
available in the form of data events that contain chunks of parsed data ready to be
handled by the program:

var http = require('http')
var server = http.createServer(function(req, res){

req.on('data', function(chunk){
console.log('parsed', chunk);

});
req.on('end', function(){

console.log('done parsing');
res.end()

});
});

By default, the data events provide Buffer objects, which are Node’s version of byte
arrays. In the case of textual to-do items, you don’t need binary data, so setting the
stream encoding to ascii or utf8 is ideal; the data events will instead emit strings.
This can be set by invoking the req.setEncoding(encoding) method:

req.setEncoding('utf8')
req.on('data', function(chunk){

console.log(chunk);
});

In the case of a to-do list item, you need to have the entire string before it can be
added to the array. One way to get the whole string is to concatenate all of the chunks
of data until the end event is emitted, indicating that the request is complete. After the
end event has occurred, the item string will be populated with the entire contents of
the request body, which can then be pushed to the items array. When the item has
been added, you can end the request with the string OK and Node’s default status code

Data events are fired
whenever a new chunk
of data has been read.

 A chunk, by default, is a
Buffer object (a byte array).

The end event is fired when
everything has been read.

A chunk is now a utf8 string
instead of a Buffer.
of 200. The following listing shows this in the todo.js file.

b

i

78 CHAPTER 4 Building Node web applications

var http = require('http');
var url = require('url');
var items = [];

var server = http.createServer(function(req, res){
switch (req.method) {

case 'POST':
var item = '';
req.setEncoding('utf8');
req.on('data', function(chunk){

item += chunk;
});
req.on('end', function(){

items.push(item);
res.end('OK\n');

});
break;

}
});

Figure 4.3 illustrates the HTTP server handling an incoming HTTP request and buffer-
ing the input before acting on the request at the end.

 The application can now add items, but before you try it out using cURL, you
should complete the next task so you can get a listing of the items as well.

Listing 4.1 POST request body string buffering

The data store is a regular
JavaScript Array in memory.

req.method is the HTTP
method requested.

Set up
string

uffer for
the

ncoming
item.

Encode incoming
data events as
UTF-8 strings.Concatenate

data chunk
onto the

buffer. Push complete
new item onto
the items array.

E
nd

Da
ta

 3

"o
!"

Data 2

"l
l"

Data 1
"He"

Server

An incoming HTTP request
with a request body

var item = '';

item ==

item ==

item ==

After data 1:
'He'

After data 2:
'Hell'

After data 3:
'Hello!'

After end:
Have full body: 'Hello!'
Can now add to items list

Figure 4.3 Concatenating
data events to buffer the
request body

79Building a RESTful web service

4.2.2 Fetching resources with GET requests

To handle the GET verb, add it to the same switch statement as before, followed by the
logic for listing the to-do items. In the following example, the first call to res.write()
will write the header with the default fields, as well as the data passed to it:

...
case 'GET':
items.forEach(function(item, i){

res.write(i + ') ' + item + '\n');
});
res.end();
break;
...

Now that the app can display the items, it’s time to give it a try! Fire up a terminal,
start the server, and POST some items using curl. The -d flag automatically sets the
request method to POST and passes in the value as POST data:

$ curl -d 'buy groceries' http://localhost:3000
OK
$ curl -d 'buy node in action' http://localhost:3000
OK

Next, to GET the list of to-do list items, you can execute curl without any flags, as GET is
the default verb:

$ curl http://localhost:3000
0) buy groceries
1) buy node in action

SETTING THE CONTENT-LENGTH HEADER

To speed up responses, the Content-Length field should be sent with your response
when possible. In the case of the item list, the body can easily be constructed ahead of
time in memory, allowing you to access the string length and flush the entire list in
one shot. Setting the Content-Length header implicitly disables Node’s chunked
encoding, providing a performance boost because less data needs to be transferred.

 An optimized version of the GET handler could look something like this:

var body = items.map(function(item, i){
return i + ') ' + item;

}).join('\n');
res.setHeader('Content-Length', Buffer.byteLength(body));
res.setHeader('Content-Type', 'text/plain; charset="utf-8"');
res.end(body);

You may be tempted to use the body.length value for the Content-Length, but the
Content-Length value should represent the byte length, not character length, and the
two will be different if the string contains multibyte characters. To avoid this problem,
Node provides the Buffer.byteLength() method.

 The following Node REPL session illustrates the difference by using the string

length directly, as the five-character string is comprised of seven bytes:

80 CHAPTER 4 Building Node web applications

$ node
> 'etc …'.length
5
> Buffer.byteLength('etc …')
7

4.2.3 Removing resources with DELETE requests

Finally, the DELETE verb will be used to remove an item. To accomplish this, the app
will need to check the requested URL, which is how the HTTP client will specify which
item to remove. In this case, the identifier will be the array index in the items array;
for example, DELETE /1 or DELETE /5.

 The requested URL can be accessed with the req.url property, which may contain
several components depending on the request. For example, if the request was DELETE
/1?api-key=foobar, this property would contain both the pathname and query string
/1?api-key=foobar.

 To parse these sections, Node provides the url module, and specifically the
.parse() function. The following node REPL session illustrates the use of this func-
tion, parsing the URL into an object, including the pathname property you’ll use in the
DELETE handler:

$ node
> require('url').parse('http://localhost:3000/1?api-key=foobar')
{ protocol: 'http:',

slashes: true,
host: 'localhost:3000',
port: '3000',
hostname: 'localhost',
href: 'http://localhost:3000/1?api-key=foobar',
search: '?api-key=foobar',
query: 'api-key=foobar',
pathname: '/1',
path: '/1?api-key=foobar' }

url.parse() parses out only the pathname for you, but the item ID is still a string. In
order to work with the ID within the application, it should be converted to a number.
A simple solution is to use the String#slice() method, which returns a portion of
the string between two indexes. In this case, it can be used to skip the first character,
giving you just the number portion, still as a string. To convert this string to a number,

The Node REPL
Node, like many other languages, provides a REPL (read-eval-print-loop) interface,
available by running node from the command line without any arguments. A REPL
allows you to write snippets of code and to get immediate results as each statement
is written and executed. It can be great for learning a programming language, running
simple tests, or even debugging.
it can be passed to the JavaScript global function parseInt(), which returns a Number.

81Serving static files

 Listing 4.2 first does a couple of checks on the input value, because you can never
trust user input to be valid, and then it responds to the request. If the number is “not
a number” (the JavaScript value NaN), the status code is set to 400 indicating a Bad
Request. Following that, the code checks if the item exists, responding with a 404 Not
Found error if it doesn’t. After the input has been validated, the item can be removed
from the items array, and then the app will respond with 200, OK.

...
case 'DELETE':

var path = url.parse(req.url).pathname;
var i = parseInt(path.slice(1), 10);

if (isNaN(i)) {
res.statusCode = 400;
res.end('Invalid item id');

} else if (!items[i]) {
res.statusCode = 404;
res.end('Item not found');

} else {
items.splice(i, 1);
res.end('OK\n');

}
break;

...

You might be thinking that 15 lines of code to remove an item from an array is a bit
much, but we promise that this is much easier to write with higher-level frameworks
providing additional sugar APIs. Learning these fundamentals of Node is crucial for
understanding and debugging, and it enables you to create more powerful applica-
tions and frameworks.

 A complete RESTful service would also implement the PUT HTTP verb, which
should modify an existing item in the to-do list. We encourage you to try implement-
ing this final handler yourself, using the techniques used in this REST server so far,
before you move on to the next section, in which you’ll learn how to serve static files
from your web application.

4.3 Serving static files
Many web applications share similar, if not identical, needs, and serving static files
(CSS, JavaScript, images) is certainly one of these. Although writing a robust and effi-
cient static file server is nontrivial, and robust implementations already exist within
Node’s community, implementing your own static file server in this section will illus-
trate Node’s low-level filesystem API.

 In this section you’ll learn how to

 Create a simple static file server
 Optimize the data transfer with pipe()
 Handle user and filesystem errors by setting the status code

Listing 4.2 DELETE request handler

Add DELETE case to the
switch statement

Check that number
is valid

Ensure requested
index exists

Delete requested
 item
Let’s start by creating a basic HTTP server for serving static assets.

82 CHAPTER 4 Building Node web applications

4.3.1 Creating a static file server

Traditional HTTP servers like Apache and IIS are first and foremost file servers. You
might currently have one of these file servers running on an old website, and moving
it over to Node, replicating this basic functionality, is an excellent exercise to help you
better understand the HTTP servers you’ve probably used in the past.

 Each static file server has a root directory, which is the base directory files are
served from. In the server you’ll create, you’ll define a root variable, which will act as
the static file server’s root directory:

var http = require('http');
var parse = require('url').parse;
var join = require('path').join;
var fs = require('fs');

var root = __dirname;

...

__dirname is a magic variable provided by Node that’s assigned the directory path to
the file. It’s magic because it could be assigned different values in the same program if
you have files spread about in different directories. In this case, the server will be serv-
ing static files relative to the same directory as this script, but you could configure
root to specify any directory path.

 The next step is accessing the pathname of the URL in order to determine the
requested file’s path. If a URL’s pathname is /index.html, and your root file directory
is /var/www/example.com/public, you can simply join these using the path module’s
.join() method to form the absolute path /var/www/example.com/public/
index.html. The following code shows how this could be done:

var http = require('http');
var parse = require('url').parse;
var join = require('path').join;
var fs = require('fs');

var root = __dirname;

var server = http.createServer(function(req, res){
var url = parse(req.url);
var path = join(root, url.pathname);

});

server.listen(3000);

Directory traversal attack
The file server built in this section is a simplified one. If you want to run this in
production, you should validate the input more thoroughly to prevent users from get-
ting access to parts of the filesystem you don’t intend them to via a directory traversal
attack. Wikipedia has an explanation of how this type of attack works (http://
en.wikipedia.org/wiki/Directory_traversal_attack).

http://en.wikipedia.org/wiki/Directory_traversal_attack
http://en.wikipedia.org/wiki/Directory_traversal_attack

83Serving static files

Now that you have the path, the contents of the file need to be transferred. This can
be done using high-level streaming disk access with fs.ReadStream, one of Node’s
Stream classes. This class emits data events as it incrementally reads the file from disk.
The next listing implements a simple but fully functional file server.

var http = require('http');
var parse = require('url').parse;
var join = require('path').join;
var fs = require('fs');

var root = __dirname;

var server = http.createServer(function(req, res){
var url = parse(req.url);
var path = join(root, url.pathname);
var stream = fs.createReadStream(path);
stream.on('data', function(chunk){

res.write(chunk);
});
stream.on('end', function(){

res.end();
});

});

server.listen(3000);

This file server would work in most cases, but there are many more details you’ll need
to consider. Next up, you’ll learn how to optimize the data transfer while making the
code for the server even shorter.

OPTIMIZING DATA TRANSFER WITH STREAM#PIPE()
Although it’s important to know how the fs.ReadStream works and what flexibility its
events provide, Node also provides a higher-level mechanism for performing the same
task: Stream#pipe(). This method allows you to greatly simplify your server code.

Listing 4.3 Bare-bones ReadStream static file server

Construct absolute path

Create fs.ReadStream

Write file data to response

End response when file is complete

Pipes and plumbing
A helpful way to think about pipes in Node is to think about plumbing. If you have
water coming from a source (such as a water heater) and you want to direct it to a
destination (like a kitchen faucet), you can route that water from its source to its des-
tination by adding a pipe to connect the two. Water can then flow from the source
through the pipe to the destination.

The same concept is true for pipes in Node, but instead of water you’re dealing with
data coming from a source (called a ReadableStream) that you can then “pipe” to
some destination (called a WritableStream). You hook up the plumbing with the
pipe method:
ReadableStream#pipe(WritableStream);

84 CHAPTER 4 Building Node web applications

var server = http.createServer(function(req, res){
var url = parse(req.url);
var path = join(root, url.pathname);
var stream = fs.createReadStream(path);
stream.pipe(res);

});

Figure 4.4 shows an HTTP server in the act of reading a static file from the filesystem
and then piping the result to the HTTP client using pipe().

 At this point, you can test to confirm that the static file server is functioning by exe-
cuting the following curl command. The -i, or --include flag, instructs cURL to
output the response header:

$ curl http://localhost:3000/static.js -i
HTTP/1.1 200 OK
Connection: keep-alive
Transfer-Encoding: chunked

var http = require('http');
var parse = require('url').parse;
var join = require('path').join;
...

As previously mentioned, the root directory used is the directory that the static file
server script is in, so the preceding curl command requests the server’s script itself,
which is sent back as the response body.

 This static file server isn’t complete yet, though—it’s still prone to errors. A single
unhandled exception, such as a user requesting a file that doesn’t exist, will bring
down your entire server. In the next section, you’ll add error handling to the file
server.

(continued)
An example of using pipes is reading a file (ReadableStream) and writing its contents
to another file (WritableStream):
var readStream = fs.createReadStream('./original.txt')
var writeStream = fs.createWriteStream('./copy.txt')
readStream#pipe(writeStream);

Any ReadableStream can be piped into any WritableStream. For example, an HTTP
request (req) object is a ReadableStream, and you can stream its contents to a file:
req.pipe(fs.createWriteStream('./req-body.txt'))

For an in-depth look at streams in Node, including a list of available built-in streams,
check out the stream handbook on GitHub: https://github.com/substack/stream-
handbook.

res.end() called internally
by stream.pipe()

https://github.com/substack/stream-handbook
https://github.com/substack/stream-handbook

85Serving static files

4.3.2 Handling server errors

Our static file server is not yet handling errors that could occur as a result of using
fs.ReadStream. Errors will be thrown in the current server if you access a file that
doesn’t exist, access a forbidden file, or run into any other file I/O–related problem.
In this section, we’ll touch on how you can make the file server, or any Node server,
more robust.

 In Node, anything that inherits from EventEmitter has the potential of emitting
an error event. A stream, like fs.ReadStream, is simply a specialized EventEmitter
that contains predefined events such as data and end, which we’ve already looked at.
By default, error events will be thrown when no listeners are present. This means that
if you don’t listen for these errors, they’ll crash your server.

 To illustrate this, try requesting a file that doesn’t exist, such as /notfound.js. In
the terminal session running your server, you’ll see the stack trace of an exception
printed to stderr, similar to the following:

Server

var stream = fs.createReadStream(path);

stream.pipe(res);

<html>...</html>

<html>...</html>

GET / index.html
Node process

fs.ReadStream

index.html

 Someone requests a file
 from your server.

1

1

 Your Node server receives the
 request, and your app logic
 attempts to read the file.

2

2

 The file is streamed to the server
 as a ReadStream instance.

3

 The file ReadStream is piped
 back to the HTTP response to
 complete the client request.

4

4

3

Figure 4.4 A Node HTTP server serving a static file from the filesystem using fs.ReadStream

Co
a

86 CHAPTER 4 Building Node web applications

stream.js:99
throw arguments[1]; // Unhandled 'error' event.
^
Error: ENOENT, No such file or directory
 ➥'/Users/tj/projects/node-in-action/source/notfound.js'

To prevent errors from killing the server, you need to listen for errors by registering
an error event handler on the fs.ReadStream (something like the following snip-
pet), which responds with the 500 response status indicating an internal server error:

...
stream.pipe(res);
stream.on('error', function(err){

res.statusCode = 500;
res.end('Internal Server Error');

});
...

Registering an error event helps you catch any foreseen or unforeseen errors and
enables you to respond more gracefully to the client.

4.3.3 Preemptive error handling with fs.stat

The files transferred are static, so the stat() system call can be utilized to request
information about the files, such as the modification time, byte size, and more. This
information is especially important when providing conditional GET support, where a
browser may issue a request to check if its cache is stale.

 The refactored file server shown in listing 4.4 makes a call to fs.stat() and
retrieves information about a file, such as its size, or an error code. If the named file
doesn’t exist, fs.stat() will respond with a value of ENOENT in the err.code field, and
you can return the error code 404, indicating that the file is not found. If you receive
other errors from fs.stat(), you can return a generic 500 error code.

var server = http.createServer(function(req, res){
var url = parse(req.url);
var path = join(root, url.pathname);
fs.stat(path, function(err, stat){

if (err) {
if ('ENOENT' == err.code) {

res.statusCode = 404;
res.end('Not Found');

} else {
res.statusCode = 500;
res.end('Internal Server Error');

}
} else {

res.setHeader('Content-Length', stat.size);
var stream = fs.createReadStream(path);
stream.pipe(res);

Listing 4.4 Checking for a file’s existence and responding with Content-Length

Parse URL to
obtain path namenstruct

bsolute
path Check for

file’s existence
File

doesn’t
exist Some other

error

Set Content-Length
using stat object
stream.on('error', function(err){

87Accepting user input from forms

res.statusCode = 500;
res.end('Internal Server Error');

});
}

});
});

Now that we’ve taken a low-level look at file serving with Node, let’s take a look at an
equally common, and perhaps more important, feature of web application develop-
ment: getting user input from HTML forms.

4.4 Accepting user input from forms
Web applications commonly gather user input through form submissions. Node
doesn’t handle the workload (like validation or file uploads) for you—Node just pro-
vides you with the body data. Although this may seem inconvenient, it leaves opinions
to third-party frameworks in order to provide a simple and efficient low-level API.

 In this section, we’ll take a look at how you can do the following:

 Handle submitted form fields
 Handle uploaded files using formidable
 Calculate upload progress in real time

Let’s dive into how you process incoming form data using Node.

4.4.1 Handling submitted form fields

Typically two Content-Type values are associated with form submission requests:

 application/x-www-form-urlencoded—The default for HTML forms
 multipart/form-data—Used when the form contains files, or non-ASCII or

binary data

In this section, you’ll rewrite the to-do list application from the previous section to uti-
lize a form and a web browser. When you’re done, you’ll have a web-based to-do list
that looks like the one in figure 4.5.

 In this to-do list application, a switch is used on the request method, req.method,
to form simple request routing. This is shown in listing 4.5. Any URL that’s not exactly
“/” is considered a 404 Not Found response. Any HTTP verb that is not GET or POST is

Figure 4.5 A to-do-list application
utilizing an HTML form and a web browser.
The left screenshot shows the state of the
application when it’s first loaded and the
right shows what the applications looks
like after some items have been added.

88 CHAPTER 4 Building Node web applications

a 400 Bad Request response. The handler functions show(), add(), badRequest(),
and notFound() will be implemented throughout the rest of this section.

var http = require('http');
var items = [];

var server = http.createServer(function(req, res){
if ('/' == req.url) {

switch (req.method) {
case 'GET':

show(res);
break;

case 'POST':
add(req, res);
break;

default:
badRequest(res);

}
} else {

notFound(res);
}

});

server.listen(3000);

Although markup is typically generated using template engines, the example in the
following listing uses string concatenation for simplicity. There’s no need to assign
res.statusCode because it defaults to 200 OK. The resulting HTML page in a browser
is shown in figure 4.5.

function show(res) {
var html = '<html><head><title>Todo List</title></head><body>'

+ '<h1>Todo List</h1>'
+ ''
+ items.map(function(item){

return '' + item + ''
}).join('')

+ ''
+ '<form method="post" action="/">'
+ '<p><input type="text" name="item" /></p>'
+ '<p><input type="submit" value="Add Item" /></p>'
+ '</form></body></html>';

res.setHeader('Content-Type', 'text/html');
res.setHeader('Content-Length', Buffer.byteLength(html));
res.end(html);

}

The notFound() function accepts the response object, setting the status code to 404
and response body to Not Found:

Listing 4.5 HTTP server supporting GET and POST

Listing 4.6 To-do list form and item list

For simple apps, inlining
the HTML instead of
using a template engine
works well.

89Accepting user input from forms

function notFound(res) {
res.statusCode = 404;
res.setHeader('Content-Type', 'text/plain');
res.end('Not Found');

}

The implementation of the 400 Bad Request response is nearly identical to not-
Found(), indicating to the client that the request was invalid:

function badRequest(res) {
res.statusCode = 400;
res.setHeader('Content-Type', 'text/plain');
res.end('Bad Request');

}

Finally, the application needs to implement the add() function, which will accept
both the req and res objects. This is shown in the following code:

var qs = require('querystring');

function add(req, res) {
var body = '';
req.setEncoding('utf8');
req.on('data', function(chunk){ body += chunk });
req.on('end', function(){

var obj = qs.parse(body);
items.push(obj.item);
show(res);

});
}

For simplicity, this example assumes that the Content-Type is application/x-www-
form-urlencoded, which is the default for HTML forms. To parse this data, you simply
concatenate the data event chunks to form a complete body string. Because you’re
not dealing with binary data, you can set the request encoding type to utf8 with
res.setEncoding(). When the request emits the end event, all data events have com-
pleted, and the body variable contains the entire body as a string.

Buffering too much data
Buffering works well for small request bodies containing a bit of JSON, XML, and the
like, but the buffering of this data can be problematic. It can create an application
availability vulnerability if the buffer isn’t properly limited to a maximum size, which
we’ll discuss further in chapter 7. Because of this, it’s often beneficial to implement
a streaming parser, lowering the memory requirements and helping prevent resource
starvation. This process incrementally parses the data chunks as they’re emitted,
though this is more difficult to use and implement.

90 CHAPTER 4 Building Node web applications

THE QUERYSTRING MODULE

In the server’s add() function implementation, you utilized Node’s querystring mod-
ule to parse the body. Let’s take a look at a quick REPL session demonstrating how
Node’s querystring.parse() function works—this is the function used in the server.

 Imagine the user submitted an HTML form to your to-do list with the text “take fer-
rets to the vet”:

$ node
> var qs = require('querystring');
> var body = 'item=take+ferrets+to+the+vet';
> qs.parse(body);
{ item: 'take ferrets to the vet' }

After adding the item, the server returns the user back to the original form by calling
the same show() function previously implemented. This is only the route taken for
this example; other approaches could potentially display a message such as “Added to-
do list item” or could redirect the user back to /.

 Try it out. Add a few items and you’ll see the to-do items output in the unor-
dered list. You can also implement the delete functionality that we did in the REST
API previously.

4.4.2 Handling uploaded files using formidable

Handling uploads is another very common, and important, aspect of web develop-
ment. Imagine you’re trying to create an application where you upload your photo
collection and share it with others using a link on the web. You can do this using a web
browser through HTML form file uploads.

 The following example shows a form that uploads a file with an associated name
field:

<form method="post" action="/" enctype="multipart/form-data">
<p><input type="text" name="name" /></p>
<p><input type="file" name="file" /></p>
<p><input type="submit" value="Upload" /></p>
</form>

To handle file uploads properly and accept the file’s content, you need to set the
enctype attribute to multipart/form-data, a MIME type suited for BLOBs (binary
large objects).

 Parsing multipart requests in a performant and streaming fashion is a nontrivial
task, and we won’t cover the details in this book, but Node’s community has provided
several modules to perform this function. One such module, formidable, was created
by Felix Geisendörfer for his media upload and transformation startup, Transloadit,
where performance and reliability are key.

 What makes formidable a great choice for handling file uploads is that it’s a
streaming parser, meaning it can accept chunks of data as they arrive, parse them, and
emit specific parts, such as the part headers and bodies previously mentioned. Not

91Accepting user input from forms

only is this approach fast, but the lack of buffering prevents memory bloat, even for
very large files such as videos, which otherwise could overwhelm a process.

 Now, back to our photo-sharing example. The HTTP server in the following listing
implements the beginnings of the file upload server. It responds to GET with an HTML
form, and it has an empty function for POST, in which formidable will be integrated to
handle file uploading.

var http = require('http');
var server = http.createServer(function(req, res){

switch (req.method) {
case 'GET':

show(req, res);
break;

case 'POST':
upload(req, res);
break;

}
});

function show(req, res) {
var html = ''

+ '<form method="post" action="/" enctype="multipart/form-data">'
+ '<p><input type="text" name="name" /></p>'
+ '<p><input type="file" name="file" /></p>'
+ '<p><input type="submit" value="Upload" /></p>'
+ '</form>';

res.setHeader('Content-Type', 'text/html');
res.setHeader('Content-Length', Buffer.byteLength(html));
res.end(html);

}

function upload(req, res) {
// upload logic

}

Now that the GET request is taken care of, it’s time to implement the upload() func-
tion, which is invoked by the request callback when a POST request comes in. The
upload() function needs to accept the incoming upload data, which is where formida-
ble comes in. In the rest of this section, you’ll learn what’s needed in order to inte-
grate formidable into your web application:

1 Install formidable through npm.
2 Create an IncomingForm instance.
3 Call form.parse() with the HTTP request object.
4 Listen for form events field, file, and end.
5 Use formidable’s high-level API.

Listing 4.7 HTTP server setup prepared to accept file uploads

Serve HTML form
with file input

92 CHAPTER 4 Building Node web applications

The first step to utilizing formidable in the project is to install it. This can be
done by executing the following command, which installs the module locally into the
./node_modules directory:

$ npm install formidable

To access the API, you need to require() it, along with the initial http module:

var http = require('http');
var formidable = require('formidable');

The first step to implementing the upload() function is to respond with 400 Bad
Request when the request doesn’t appear to contain the appropriate type of content:

function upload(req, res) {
if (!isFormData(req)) {

res.statusCode = 400;
res.end('Bad Request: expecting multipart/form-data');
return;

}
}

function isFormData(req) {
var type = req.headers['content-type'] || '';
return 0 == type.indexOf('multipart/form-data');

}

The helper function isFormData() checks the Content-Type header field for
multipart/form-data by using the JavaScript String.indexOf() method to assert
that multipart/form-data is at the beginning of the field’s value.

 Now that you know that it’s a multipart request, you need to initialize a new
formidable.IncomingForm form and then issue the form.parse(req) method call,
where req is the request object. This allows formidable to access the request’s data
events for parsing:

function upload(req, res) {
if (!isFormData(req)) {

res.statusCode = 400;
res.end('Bad Request');
return;

}

var form = new formidable.IncomingForm();
form.parse(req);

}

The IncomingForm object emits many events itself, and by default it streams file
uploads to the /tmp directory. As shown in the following listing, formidable issues
events when form elements have been processed. For example, a file event is issued
when a file has been received and processed, and field is issued on the complete
receipt of a field.

93Accepting user input from forms

...
var form = new formidable.IncomingForm();

form.on('field', function(field, value){
console.log(field);
console.log(value);

});

form.on('file', function(name, file){
console.log(name);
console.log(file);

});

form.on('end', function(){
res.end('upload complete!');

});

form.parse(req);
...

By examining the first two console.log() calls in the field event handler, you can
see that “my clock” was entered in the name text field:

name
my clock

The file event is emitted when a file upload is complete. The file object provides
you with the file size, the path in the form.uploadDir directory (/tmp by default), the
original basename, and the MIME type. The file object looks like the following when
it’s passed to console.log():

{ size: 28638,
path: '/tmp/d870ede4d01507a68427a3364204cdf3',
name: 'clock.png',
type: 'image/png',
lastModifiedDate: Sun, 05 Jun 2011 02:32:10 GMT,
length: [Getter],
filename: [Getter],
mime: [Getter],
...

}

Formidable also provides a higher-level API, essentially wrapping the API we’ve already
looked at into a single callback. When a function is passed to form.parse(), an error
is passed as the first argument if something goes wrong. Otherwise, two objects are
passed: fields and files.

 The fields object may look something like the following console.log() output:

{ name: 'my clock' }

The files object provides the same File instances that the file event emits, keyed by
name like fields.

Listing 4.8 Using formidable’s API

94 CHAPTER 4 Building Node web applications

 It’s important to note that you can listen for these events even while using the call-
back, so functions like progress reporting aren’t hindered. The following code shows
how this more concise API can be used to produce the same results that we’ve already
discussed:

var form = new formidable.IncomingForm();
form.parse(req, function(err, fields, files){

console.log(fields);
console.log(files);
res.end('upload complete!');

});

Now that you have the basics, we’ll look at calculating upload progress, a process that
comes quite naturally to Node and its event loop.

4.4.3 Calculating upload progress

Formidable’s progress event emits the number of bytes received and bytes expected.
This allows you to implement a progress bar. In the following example, the percentage
is computed and logged by invoking console.log() each time the progress event is
fired:

form.on('progress', function(bytesReceived, bytesExpected){
var percent = Math.floor(bytesReceived / bytesExpected * 100);
console.log(percent);

});

This script will yield output similar to the following:

1
2
4
5
6
8
...
99
100

Now that you understand this concept, the next obvious step would be to relay that
progress back to the user’s browser. This is a fantastic feature for any application
expecting large uploads, and it’s a task that Node is well suited for. By using the Web-
Socket protocol, for instance, or a real-time module like Socket.IO, it would be possi-
ble in just a few lines of code. We’ll leave that as an exercise for you to figure out.

 We have one final, and very important, topic to cover: securing your application.

4.5 Securing your application with HTTPS
A frequent requirement for e-commerce sites, and sites dealing with sensitive data, is
to keep traffic to and from the server private. Standard HTTP sessions involve the cli-
ent and server exchanging information using unencrypted text. This makes HTTP

traffic fairly trivial to eavesdrop on.

95Securing your application with HTTPS

 The Hypertext Transfer Protocol Secure (HTTPS) protocol provides a way to keep
web sessions private. HTTPS combines HTTP with the TLS/SSL transport layer. Data
sent using HTTPS is encrypted and is therefore harder to eavesdrop on. In this sec-
tion, we’ll cover some basics on securing your application using HTTPS.

 If you’d like to take advantage of HTTPS in your Node application, the first step is
getting a private key and a certificate. The private key is, essentially, a “secret” needed
to decrypt data sent between the server and client. The private key is kept in a file on
the server in a place where it can’t be easily accessed by untrusted users. In this sec-
tion, you’ll generate what’s called a self-signed certificate. These kinds of SSL certificates
can’t be used in production websites because browsers will display a warning message
when a page is accessed with an untrusted certificate, but it’s useful for development
and testing encrypted traffic.

 To generate a private key, you’ll need OpenSSL, which will already be installed on
your system if you installed Node. To generate a private key, which we’ll call key.pem,
open up a command-line prompt and enter the following:

openssl genrsa 1024 > key.pem

In addition to a private key, you’ll need a certificate. Unlike a private key, a certificate
can be shared with the world; it contains a public key and information about the cer-
tificate holder. The public key is used to encrypt traffic sent from the client to the
server.

 The private key is used to create the certificate. Enter the following to generate a
certificate called key-cert.pem:

openssl req -x509 -new -key key.pem > key-cert.pem

Now that you’ve generated your keys, put them in a safe place. In the HTTPS server in
the following listing we reference keys stored in the same directory as our server
script, but keys are more often kept elsewhere, typically ~/.ssh. The following code
will create a simple HTTPS server using your keys.

var https = require('https');
var fs = require('fs');

var options = {
key: fs.readFileSync('./key.pem'),
cert: fs.readFileSync('./key-cert.pem')

};

https.createServer(options, function (req, res) {
res.writeHead(200);
res.end("hello world\n");

}).listen(3000);

Once the HTTPS server code is running, you can connect to it securely using a web
browser. To do so, navigate to https://localhost:3000/ in your web browser. Because

Listing 4.9 HTTPS server options

SSL key and cert
given as options

options object is
passed in first

https and http modules
have almost identical APIs

96 CHAPTER 4 Building Node web applications

the certificate used in our example isn’t backed by a Certificate Authority, a warning
will be displayed. You can ignore this warning here, but if you’re deploying a public
site, you should always properly register with a Certificate Authority (CA) and get a
real, trusted certificate for use with your server.

4.6 Summary
In this chapter, we’ve introduced the fundamentals of Node’s HTTP server, showing
you how to respond to incoming requests and how to handle asynchronous excep-
tions to keep your application reliable. You’ve learned how to create a RESTful web
application, serve static files, and even create an upload progress calculator.

 You may also have seen that starting with Node from a web application developer’s
point of view can seem daunting. As seasoned web developers, we promise that it’s
worth the effort. This knowledge will aid in your understanding of Node for debug-
ging, authoring open source frameworks, or contributing to existing frameworks.

 This chapter’s fundamental knowledge will prepare you for diving into Connect, a
higher-level framework that provides a fantastic set of bundled functionality that every
web application framework can take advantage of. Then there’s Express—the icing on
the cake! Together, these tools will make everything you’ve learned in this chapter eas-
ier, more secure, and more enjoyable.

 Before we get there, though, you’ll need somewhere to store your application
data. In the next chapter, we’ll look at the rich selection of database clients created
by the Node community, which will help power the applications you create through-
out the rest of the book.

Storing Node
application data
Almost every application, web-based or otherwise, requires data storage of some
kind, and the applications you build with Node are no different. The choice of an
appropriate storage mechanism depends on five factors:

 What data is being stored
 How quickly data needs to be read and written to maintain adequate

performance
 How much data exists
 How data needs to be queried
 How long and reliably the data needs to be stored

Methods of storing data range from keeping data in server memory to interfacing
with a full-blown database management system (DBMS), but all methods require
trade-offs of one sort or another.

This chapter covers
 In-memory and filesystem data storage

 Conventional relational database storage

 Nonrelational database storage
97

98 CHAPTER 5 Storing Node application data

 Mechanisms that support long-term persistence of complex structured data, along
with powerful search facilities, incur significant performance costs, so using them is
not always the best strategy. Similarly, storing data in server memory maximizes perfor-
mance, but it’s less reliably persistent because data will be lost if the application
restarts or the server loses power.

 So how will you decide which storage mechanism to use in your applications? In
the world of Node application development, it isn’t unusual to use different storage
mechanisms for different use cases. In this chapter, we’ll talk about three different
options:

 Storing data without installing and configuring a DBMS

 Storing data using a relational DBMS—specifically, MySQL and PostgreSQL
 Storing data using NoSQL databases—specifically, Redis, MongoDB, and

Mongoose

You’ll use some of these storage mechanisms to build applications later in the book,
and by the end of this chapter you’ll know how to use these storage mechanisms to
address your own application needs.

 To start, let’s look at the easiest and lowest level of storage possible: serverless data
storage.

5.1 Serverless data storage
From the standpoint of system administration, the most convenient storage mecha-
nisms are those that don’t require you to maintain a DBMS, such as in-memory storage
and file-based storage. Removing the need to install and configure a DBMS makes the
applications you build much easier to install.

 The lack of a DBMS makes serverless data storage a perfect fit for Node applica-
tions that users will run on their own hardware, like web applications and other TCP/
IP applications. It’s also great for command-line interface (CLI) tools: a Node-driven
CLI tool might require storage, but it’s likely the user won’t want to go through the
hassle of setting up a MySQL server in order to use the tool.

 In this section, you’ll learn when and how to use in-memory storage and file-based
storage, both of which are primary forms of serverless data storage. Let’s start with the
simplest of the two: in-memory storage.

5.1.1 In-memory storage

In the example applications in chapters 2 and 4, in-memory storage was used to keep
track of details about chat users and tasks. In-memory storage uses variables to store
data. Reading and writing this data is fast, but as we mentioned earlier, you’ll lose the
data during server and application restarts.

 The ideal use of in-memory storage is for small bits of frequently accessed data.
One such application would be a counter that keeps track of the number of page
views since the last application restart. For example, the following code will start a web

server on port 8888 that counts each request:

99Serverless data storage

var http = require('http');
var counter = 0;

var server = http.createServer(function(req, res) {
counter++;
res.write('I have been accessed ' + counter + ' times.');
res.end();

}).listen(8888);

For applications that need to store information that can persist beyond application
and server restarts, file-based storage may be more suitable.

5.1.2 File-based storage

File-based storage uses a filesystem to store data. Developers often use this type of stor-
age for application configuration information, but it also allows you to easily persist
data that can survive application and server restarts.

To illustrate the use of file-based storage, let’s create a simple command-line variant
of chapter 4’s web-based Node to-do list application. Figure 5.1 shows this variant in
operation.

 The application will store tasks in a file named .tasks in whatever directory the
script runs from. Tasks will be converted to JSON before being stored, and they’ll be
converted from JSON when they’re read from the file.

 To create the application, you’ll need to write the starting logic and then define
helper functions to retrieve and store tasks.

Concurrency issues
File-based storage, although easy to use, isn’t suitable for all types of applications.
If a multiuser application, for example, stored records in a file, there could be con-
currency issues. Two users could load the same file at the same time and modify it;
saving one version would overwrite the other, causing one user’s changes to be lost.
For multiuser applications, database management systems are a more sensible
choice because they’re designed to deal with concurrency issues.

Figure 5.1 A command-line
to-do list tool

rem
argu
100 CHAPTER 5 Storing Node application data

WRITING THE STARTING LOGIC

The logic begins by requiring the necessary modules, parsing the task command and
description from the command-line arguments, and specifying the file in which tasks
should be stored. This is shown in the following code.

var fs = require('fs');

var path = require('path');

var args = process.argv.splice(2);

var command = args.shift();

var taskDescription = args.join(' ');

var file = path.join(process.cwd(), '/.tasks');

If you provide an action argument, the application either outputs a list of stored tasks
or adds a task description to the task store, as shown in the following listing. If you
don’t provide the argument, usage help will be displayed.

switch (command) {
case 'list':

listTasks(file);
break;

case 'add':
addTask(file, taskDescription);
break;

default:
console.log('Usage: ' + process.argv[0]

+ ' list|add [taskDescription]');
}

DEFINING A HELPER FUNCTION TO RETRIEVE TASKS

The next step is to define a helper function called loadOrInitializeTaskArray in the
application logic to retrieve existing tasks. As listing 5.3 shows, loadOrInitialize-
TaskArray loads a text file in which JSON-encoded data is stored. Two asynchronous fs
module functions are used in the code. These functions are non-blocking, allowing the
event loop to continue instead of having it sit and wait for the filesystem to return
results.

function loadOrInitializeTaskArray(file, cb) {
fs.exists(file, function(exists) {

var tasks = [];
if (exists) {

Listing 5.1 Gather argument values and resolve file database path

Listing 5.2 Determining what action the CLI script should take

Listing 5.3 Loading JSON-encoded data from a text file

Splice out “node cli_tasks.js”
to leave arguments

Pull out first argument (the
command)Join

aining
ments

Resolve database path
relative to current
working directory

‘list’ will list all
tasks stored

‘add’ will add
new task

Anything else will
show usage help

Check if .tasks file
already exists

Read to-do data

fs.readFile(file, 'utf8', function(err, data) { from .tasks file

101Serverless data storage

if (err) throw err;
var data = data.toString();
var tasks = JSON.parse(data || '[]');
cb(tasks);

});
} else {

cb([]);
}

});
}

Next, you use the loadOrInitializeTaskArray helper function to implement the
listTasks functionality.

function listTasks(file) {
loadOrInitializeTaskArray(file, function(tasks) {

for(var i in tasks) {
console.log(tasks[i]);

}
});

}

DEFINING A HELPER FUNCTION TO STORE TASKS

Now you need to define another helper function, storeTasks, to store JSON-serialized
tasks into a file.

function storeTasks(file, tasks) {
fs.writeFile(file, JSON.stringify(tasks), 'utf8', function(err) {

if (err) throw err;
console.log('Saved.');

});
}

Then you can use the storeTasks helper function to implement the addTask
functionality.

function addTask(file, taskDescription) {
loadOrInitializeTaskArray(file, function(tasks) {

tasks.push(taskDescription);
storeTasks(file, tasks);

});
}

Using the filesystem as a data store enables you to add persistence to an application
relatively quickly and easily. It’s also a great way to handle application configuration. If
application configuration data is stored in a text file and encoded in JSON, the logic
defined earlier in loadOrInitializeTaskArray could be repurposed to read the file
and parse the JSON.

Listing 5.4 List tasks function

Listing 5.5 Storing a task to disk

Listing 5.6 Adding a task

Parse JSON-encoded to-do
data into array of tasks

Create empty array of tasks
if tasks file doesn’t exist

102 CHAPTER 5 Storing Node application data

 In chapter 13, you’ll learn more about manipulating the filesystem with Node.
Now let’s move on to look at the traditional data storage workhorses of applications:
relational database management systems.

5.2 Relational database management systems
Relational database management systems (RDBMSs) allow complex information to be
stored and easily queried. RDBMSs have traditionally been used for relatively high-end
applications, such as content management, customer relationship management, and
shopping carts. They can perform well when used correctly, but they require special-
ized administration knowledge and access to a database server. They also require
knowledge of SQL, although there are object-relational mappers (ORMs) with APIs
that can write SQL for you in the background. RDBMS administration, ORMs, and SQL
are beyond the scope of this book, but you’ll find many online resources that cover
these technologies.

 Developers have many relational database options, but most choose open source
databases, primarily because they’re well supported, they work well, and they don’t cost
anything. In this section, we’ll look at MySQL and PostgreSQL, the two most popular
full-featured relational databases. MySQL and PostgreSQL have similar capabilities,
and both are solid choices. If you haven’t used either, MySQL is easier to set up and has
a larger user base. If you happen to use the proprietary Oracle database, you’ll want to
use the db-oracle module (https://github.com/mariano/node-db-oracle), which is
also outside the scope of this book.

 Let’s start with MySQL and then look at PostgreSQL.

5.2.1 MySQL

MySQL is the world’s most popular SQL database, and it’s well supported by the Node
community. If you’re new to MySQL and interested in learning about it, you’ll find the
official tutorial online (http://dev.mysql.com/doc/refman/5.0/en/tutorial.html).
For those new to SQL, many online tutorials and books, including Chris Fehily’s SQL:
Visual QuickStart Guide (Peachpit Press, 2008), are available to help you get up to speed.

USING MYSQL TO BUILD A WORK-TRACKING APP

To see how Node takes advantage of MySQL, let’s look at an application that requires
an RDBMS. Let’s say you’re creating a serverless web application to keep track of how
you spend your workdays. You’ll need to record the date of the work, the time spent
on the work, and a description of the work performed.

 The application you’ll build will have a form in which details about the work per-
formed can be entered, as shown in figure 5.2.

 Once the work information has been entered, it can be archived or deleted so it
doesn’t show above the fields used to enter more work, as shown in figure 5.3. Click-
ing the Archived Work link will then display any work items that have been archived.

 You could build this web application using the filesystem as a simple data store, but

it would be tricky to build reports with the data. If you wanted to create a report on

https://github.com/mariano/node-db-oracle
http://dev.mysql.com/doc/refman/5.0/en/tutorial.html

103Relational database management systems

the work you did last week, for example, you’d have to read every work record stored
and check the record’s date. Having application data in an RDBMS gives you the ability
to generate reports easily using SQL queries.

 To build a work-tracking application, you’ll need to do the following:

 Create the application logic
 Create helper functions needed to make the application work
 Write functions that let you add, delete, update, and retrieve data with MySQL
 Write code that renders the HTML records and forms

The application will leverage Node’s built-in http module for web server functionality
and will use a third-party module to interact with a MySQL server. A custom module
named timetrack will contain application-specific functions for storing, modifying, and
retrieving data using MySQL. Figure 5.4 provides an overview of the application.

Figure 5.2 Recording details of work performed

Figure 5.3 Archiving or deleting

details of work performed

104 CHAPTER 5 Storing Node application data

The end result, as shown in figure 5.5, will be a simple web application that allows you
to record work performed and review, archive, and delete the work records.

 To allow Node to talk to MySQL, we’ll use Felix Geisendörfer’s popular node-
mysql module (https://github.com/felixge/node-mysql). To begin, install the
MySQL Node module using the following command:

npm install mysql

Web
browser timetrack_server.js

HTTP requests
and responses

Time-tracking application

http module

mysql module

timetrack module

Add function

Archive function

Delete function

Show function

Figure 5.4 How the work-tracking application will be structured

Figure 5.5 A simple web
application that allows you to
track work performed

https://github.com/felixge/node-mysql

105Relational database management systems

CREATING THE APPLICATION LOGIC

Next, you need to create two files for application logic. The application will be com-
posed of two files: timetrack_server.js, used to start the application, and timetrack.js, a
module containing application-related functionality.

 To start, create a file named timetrack_server.js and include the code in listing 5.7.
This code includes Node’s HTTP API, application-specific logic, and a MySQL API. Fill
in the host, user, and password settings with those that correspond to your MySQL
configuration.

var http = require('http');
var work = require('./lib/timetrack');
var mysql = require('mysql');

var db = mysql.createConnection({
host: '127.0.0.1',
user: 'myuser',
password: 'mypassword',
database: 'timetrack'

});

Next, add the logic in listing 5.8 to define the basic web application behavior. The
application allows you to browse, add, and delete work performance records. In addi-
tion, the app will let you archive work records. Archiving a work record hides it on the
main page, but archived records remain browsable on a separate web page.

var server = http.createServer(function(req, res) {
switch (req.method) {

case 'POST':
switch(req.url) {

case '/':
work.add(db, req, res);
break;

case '/archive':
work.archive(db, req, res);
break;

case '/delete':
work.delete(db, req, res);
break;

}
break;

case 'GET':
switch(req.url) {

case '/':
work.show(db, res);
break;

case '/archived':
work.showArchived(db, res);

Listing 5.7 Application setup and database connection initialization

Listing 5.8 HTTP request routing

Require
MySQL API

Connect to MySQL

Route HTTP POST requests

Route HTTP GET requests
}

106 CHAPTER 5 Storing Node application data

break;
}

});

The code in listing 5.9 is the final addition to timetrack_server.js. This logic creates a
database table if none exists and starts the HTTP server listening to IP address
127.0.0.1 on TCP/IP port 3000. All node-mysql queries are performed using the query
function.

db.query(
"CREATE TABLE IF NOT EXISTS work ("
+ "id INT(10) NOT NULL AUTO_INCREMENT, "
+ "hours DECIMAL(5,2) DEFAULT 0, "
+ "date DATE, "
+ "archived INT(1) DEFAULT 0, "
+ "description LONGTEXT,"
+ "PRIMARY KEY(id))",
function(err) {

if (err) throw err;
console.log('Server started...');
server.listen(3000, '127.0.0.1');

}
);

CREATING HELPER FUNCTIONS THAT SEND HTML, CREATE FORMS, AND RECEIVE FORM DATA

Now that you’ve fully defined the file you’ll use to start the application, it’s time to cre-
ate the file that defines the rest of the application’s functionality. Create a directory
named lib, and inside this directory create a file named timetrack.js. Inside this file,
insert the logic from listing 5.10, which includes the Node querystring API and defines
helper functions for sending web page HTML and receiving data submitted through
forms.

var qs = require('querystring');

exports.sendHtml = function(res, html) {
res.setHeader('Content-Type', 'text/html');
res.setHeader('Content-Length', Buffer.byteLength(html));
res.end(html);

};

exports.parseReceivedData = function(req, cb) {
var body = '';
req.setEncoding('utf8');
req.on('data', function(chunk){ body += chunk });
req.on('end', function() {

var data = qs.parse(body);
cb(data);

});
};

Listing 5.9 Database table creation

Listing 5.10 Helper functions: sending HTML, creating forms, receiving form data

Table-creation SQL

Start HTTP server

Send HTML response

Parse HTTP POST data

107Relational database management systems

exports.actionForm = function(id, path, label) {
var html = '<form method="POST" action="' + path + '">' +

'<input type="hidden" name="id" value="' + id + '">' +
'<input type="submit" value="' + label + '" />' +
'</form>';

return html;
};

ADDING DATA WITH MYSQL
With the helper functions in place, it’s time to define the logic that will add a work
record to the MySQL database. Add the code in the next listing to timetrack.js.

exports.add = function(db, req, res) {
exports.parseReceivedData(req, function(work) {

db.query(
"INSERT INTO work (hours, date, description) " +
" VALUES (?, ?, ?)",
[work.hours, work.date, work.description],
function(err) {

if (err) throw err;
exports.show(db, res);

}
);

});
};

Note that you use the question mark character (?) as a placeholder to indicate where
a parameter should be placed. Each parameter is automatically escaped by the query
method before being added to the query, preventing SQL injection attacks.

 Note also that the second argument of the query method is now a list of values to
substitute for the placeholders.

DELETING MYSQL DATA

Next, you need to add the following code to timetrack.js. This logic will delete a work
record.

exports.delete = function(db, req, res) {
exports.parseReceivedData(req, function(work) {

db.query(
"DELETE FROM work WHERE id=?",
[work.id],
function(err) {

if (err) throw err;
exports.show(db, res);

}
);

});
};

Listing 5.11 Adding a work record

Listing 5.12 Deleting a work record

Render simple form
d

Parse HTTP POST data

SQL to
add work

record Work record data

Show user a list of work records

Parse HTTP POST data

SQL to delete work record
Work record ID

Show user a list of work records

108 CHAPTER 5 Storing Node application data

UPDATING MYSQL DATA

To add logic that will update a work record, flagging it as archived, add the following
code to timetrack.js.

exports.archive = function(db, req, res) {
exports.parseReceivedData(req, function(work) {

db.query(
"UPDATE work SET archived=1 WHERE id=?",
[work.id],
function(err) {

if (err) throw err;
exports.show(db, res);

}
);

});
};

RETRIEVING MYSQL DATA

Now that you’ve defined the logic that will add, delete, and update a work record, you
can add the logic in listing 5.14 to retrieve work-record data—archived or unar-
chived—so it can be rendered as HTML. When issuing the query, a callback is pro-
vided that includes a rows argument for the returned records.

exports.show = function(db, res, showArchived) {
var query = "SELECT * FROM work " +

"WHERE archived=? " +
"ORDER BY date DESC";

var archiveValue = (showArchived) ? 1 : 0;
db.query(

query,
[archiveValue],
function(err, rows) {

if (err) throw err;
html = (showArchived)

? ''
: 'Archived Work
';

html += exports.workHitlistHtml(rows);
html += exports.workFormHtml();
exports.sendHtml(res, html);

}
);

};

exports.showArchived = function(db, res) {
exports.show(db, res, true);

};

Listing 5.13 Archiving a work record

Listing 5.14 Retrieving work records

Parse HTTP POST data

SQL to update work record

Work record ID

Show user a list of work records

SQL to fetch work records

Desired work-record archive status

Format results as HTML table

Send HTML response to user

Show only archived work records

r
109Relational database management systems

RENDERING MYSQL RECORDS

Add the logic in the following listing to timetrack.js. It’ll do the rendering of work
records to HTML.

exports.workHitlistHtml = function(rows) {
var html = '<table>';
for(var i in rows) {

html += '<tr>';
html += '<td>' + rows[i].date + '</td>';
html += '<td>' + rows[i].hours + '</td>';
html += '<td>' + rows[i].description + '</td>';
if (!rows[i].archived) {

html += '<td>' + exports.workArchiveForm(rows[i].id) + '</td>';
}
html += '<td>' + exports.workDeleteForm(rows[i].id) + '</td>';
html += '</tr>';

}
html += '</table>';
return html;

};

RENDERING HTML FORMS

Finally, add the following code to timetrack.js to render the HTML forms needed by
the application.

exports.workFormHtml = function() {
var html = '<form method="POST" action="/">' +

'<p>Date (YYYY-MM-DD):
<input name="date" type="text"><p/>' +
'<p>Hours worked:
<input name="hours" type="text"><p/>' +
'<p>Description:
' +
'<textarea name="description"></textarea></p>' +
'<input type="submit" value="Add" />' +
'</form>';

return html;
};

exports.workArchiveForm = function(id) {
return exports.actionForm(id, '/archive', 'Archive');

};

exports.workDeleteForm = function(id) {
return exports.actionForm(id, '/delete', 'Delete');

};

TRYING IT OUT

Now that you’ve fully defined the application, you can run it. Make sure that you’ve
created a database named timetrack using your MySQL administration interface of
choice. Then start the application by entering the following into your command line:

Listing 5.15 Rendering work records to an HTML table

Listing 5.16 HTML forms for adding, archiving, and deleting work records

Render each work record
as HTML table row

Show archive button
if work record isn’t
already archived

Render blank HTML form fo
entering new work record

Render Archive
button form

Render Delete
button form
node timetrack_server.js

110 CHAPTER 5 Storing Node application data

Finally, navigate to http://127.0.0.1:3000/ in a web browser to use the application.
 MySQL may be the most popular relational database, but PostgreSQL is, for many,

the more respected of the two. Let’s look at how you can use PostgreSQL in your
application.

5.2.2 PostgreSQL

PostgreSQL is well regarded for its standards compliance and robustness, and many
Node developers favor it over other RDBMSs. Unlike MySQL, PostgreSQL supports
recursive queries and many specialized data types. PostgreSQL can also use a variety of
standard authentication methods, such as Lightweight Directory Access Protocol
(LDAP) and Generic Security Services Application Program Interface (GSSAPI). For
those using replication for scalability or redundancy, PostgreSQL supports synchro-
nous replication, a form of replication in which data loss is prevented by verifying rep-
lication after each data operation.

 If you’re new to PostgreSQL and interested in learning it, you’ll find the official
tutorial online (www.postgresql.org/docs/7.4/static/tutorial.html).

 The most mature and actively developed PostgreSQL API module is Brian Carl-
son’s node-postgres (https://github.com/brianc/node-Postgres).

UNTESTED FOR WINDOWS While the node-postgres module is intended to work
for Windows, the module’s creator primarily tests using Linux and OS X, so
Windows users may encounter issues, such as a fatal error during installation.
Because of this, Windows users may want to use MySQL instead of PostgreSQL.

Install node-postgres via npm using the following command:

npm install pg

CONNECTING TO POSTGRESQL
Once you’ve installed the node-postgres module, you can connect to PostgreSQL and
select a database to query using the following code (omit the :mypassword portion of
the connection string if no password is set):

var pg = require('pg');
var conString = "tcp://myuser:mypassword@localhost:5432/mydatabase";

var client = new pg.Client(conString);
client.connect();

INSERTING A ROW INTO A DATABASE TABLE

The query method performs queries. The following example code shows how to
insert a row into a database table:

client.query(
'INSERT INTO users ' +
"(name) VALUES ('Mike')"

);

www.postgresql.org/docs/7.4/static/tutorial.html
https://github.com/brianc/node-Postgres

111Relational database management systems

Placeholders ($1, $2, and so on) indicate where to place a parameter. Each parameter
is escaped before being added to the query, preventing SQL injection attacks. The fol-
lowing example shows the insertion of a row using placeholders:

client.query(
"INSERT INTO users " +
"(name, age) VALUES ($1, $2)",
['Mike', 39]

);

To get the primary key value of a row after an insert, you can use a RETURNING clause to
specify the name of the column whose value you’d like to return. You then add a call-
back as the last argument of the query call, as the following example shows:

client.query(
"INSERT INTO users " +
"(name, age) VALUES ($1, $2) " +
"RETURNING id",
['Mike', 39],
function(err, result) {

if (err) throw err;
console.log('Insert ID is ' + result.rows[0].id);

}
);

CREATING A QUERY THAT RETURNS RESULTS

If you’re creating a query that will return results, you’ll need to store the client query
method’s return value to a variable. The query method returns an object that has
inherited EventEmitter behavior to take advantage of Node’s built-in functionality.
This object emits a row event for each retrieved database row. Listing 5.17 shows how
you can output data from each row returned by a query. Note the use of Event-
Emitter listeners that define what to do with database table rows and what to do when
data retrieval is complete.

var query = client.query(
"SELECT * FROM users WHERE age > $1",
[40]

);

query.on('row', function(row) {
console.log(row.name)

});

query.on('end', function() {
client.end();

});

An end event is emitted after the last row is fetched, and it may be used to close the
database or continue with further application logic.

Listing 5.17 Selecting rows from a PostgreSQL database

Handle return
of a row

Handle query
completion

112 CHAPTER 5 Storing Node application data

 Relational databases may be classic workhorses, but another breed of database
manager that doesn’t require the use of SQL is becoming increasingly popular.

5.3 NoSQL databases
In the early days of the database world, nonrelational databases were the norm. But
relational databases slowly gained in popularity and over time became the mainstream
choice for applications both on and off the web. In recent years, a resurgent interest
in nonrelational DBMSs has emerged as their proponents claimed advantages in scal-
ability and simplicity, and these DBMSs target a variety of usage scenarios. They’re pop-
ularly referred to as “NoSQL” databases, interpreted as “No SQL” or “Not Only SQL.”

 Although relational DBMSs sacrifice performance for reliability, many NoSQL data-
bases put performance first. For this reason, NoSQL databases may be a better choice
for real-time analytics or messaging. NoSQL databases also usually don’t require data
schemas to be predefined, which is useful for applications in which stored data is hier-
archical but whose hierarchy varies.

 In this section, we’ll look at two popular NoSQL databases: Redis and MongoDB.
We’ll also look at Mongoose, a popular API that abstracts access to MongoDB, adding
a number of time-saving features. The setup and administration of Redis and
MongoDB are out of the scope of this book, but you’ll find quick-start instructions on
the web for Redis (http://redis.io/topics/quickstart) and MongoDB (http://
docs.mongodb.org/manual/installation/#installation-guides) that should help you
get up and running.

5.3.1 Redis

Redis is a data store well suited to handling simple data that doesn’t need to be
stored for long-term access, such as instant messages and game-related data. Redis
stores data in RAM, logging changes to it to disk. The downside to this is that storage
space is limited, but the advantage is that Redis can perform data manipulation
quickly. If a Redis server crashes and the contents of RAM are lost, the disk log can be
used to restore the data.

 Redis provides a vocabulary of primitive but useful commands (http://redis.io/
commands) that work on a number of data structures. Most of the data structures sup-
ported by Redis will be familiar to developers, as they’re analogous to those frequently
used in programming: hash tables, lists, and key/value pairs (which are used like sim-
ple variables). Hash table and key/value pair types are illustrated in figure 5.6. Redis
also supports a less-familiar data structure called a set, which we’ll talk about later in
this chapter.

 We won’t go into all of Redis’s commands in this chapter, but we’ll run through a
number of examples that will be applicable for most applications. If you’re new to
Redis and want to get an idea of its usefulness before trying these examples, a great
place to start is the “Try Redis" tutorial (http://try.redis.io/). For an in-depth look at
leveraging Redis for your applications, check out Josiah L. Carlson’s book, Redis in

Action (Manning, 2013).

http://redis.io/topics/quickstart
http://docs.mongodb.org/manual/installation/#installation-guides
http://docs.mongodb.org/manual/installation/#installation-guides
http://redis.io/commands
http://redis.io/commands
http://try.redis.io/

113NoSQL databases

The most mature and actively developed Redis API module is Matt Ranney’s
node_redis (https://github.com/mranney/node_redis) module. Install this module
using the following npm command:

npm install redis

CONNECTING TO A REDIS SERVER

The following code establishes a connection to a Redis server using the default TCP/
IP port running on the same host. The Redis client you’ve created has inherited
EventEmitter behavior that emits an error event when the client has problems com-
municating with the Redis server. As the following example shows, you can define
your own error-handling logic by adding a listener for the error event type:

var redis = require('redis');
var client = redis.createClient(6379, '127.0.0.1');

client.on('error', function (err) {
console.log('Error ' + err);

});

MANIPULATING DATA IN REDIS

After you’ve connected to Redis, your application can start manipulating data imme-
diately using the client object. The following example code shows the storage and
retrieval of a key/value pair:

client.set('color', 'red', redis.print);
client.get('color', function(err, value) {

if (err) throw err;
console.log('Got: ' + value);

});

STORING AND RETRIEVING VALUES USING A HASH TABLE

Listing 5.18 shows the storage and retrieval of values in a slightly more complicated
data structure: a hash table, also known as a hash map. A hash table is essentially a table
of identifiers, called keys, that are associated with corresponding values.

Name

Contains Contains

Name

Element Value

Hash table

Key/value pair

Value

shirt color

Contains
weather sunny

red

Contains
size large

Figure 5.6 Redis supports a
number of simple data types,
including hash tables and
key/value pairs.

The print function prints
the results of an operation
or an error if one occurs.

https://github.com/mranney/node_redis

114 CHAPTER 5 Storing Node application data

 The hmset Redis command sets hash table elements, identified by a key, to a value.
The hkeys Redis command lists the keys of each element in a hash table.

client.hmset('camping', {
'shelter': '2-person tent',
'cooking': 'campstove'

}, redis.print);

client.hget('camping', 'cooking', function(err, value) {
if (err) throw err;
console.log('Will be cooking with: ' + value);

});

client.hkeys('camping', function(err, keys) {
if (err) throw err;
keys.forEach(function(key, i) {

console.log(' ' + key);
});

});

STORING AND RETRIEVING DATA USING THE LIST

Another data structure Redis supports is the list. A Redis list can theoretically hold
over four billion elements, memory permitting.

 The following code shows the storage and retrieval of values in a list. The lpush
Redis command adds a value to a list. The lrange Redis command retrieves a range of
list items using start and end arguments. The -1 end argument in the following code
signifies the last item of the list, so this use of lrange will retrieve all list items:

client.lpush('tasks', 'Paint the bikeshed red.', redis.print);
client.lpush('tasks', 'Paint the bikeshed green.', redis.print);
client.lrange('tasks', 0, -1, function(err, items) {

if (err) throw err;
items.forEach(function(item, i) {

console.log(' ' + item);
});

});

A Redis list is an ordered list of strings. If you were creating a conference-planning
application, for example, you might use a list to store the conference’s itinerary.

 Redis lists are similar, conceptually, to arrays in many programming languages, and
they provide a familiar way to manipulate data. One downside to lists, however, is their
retrieval performance. As a Redis list grows in length, retrieval becomes slower (O(n)
in big O notation).

BIG O NOTATION In computer science, big O notation is a way of categorizing
algorithms by complexity. Seeing an algorithm’s description in big O nota-
tion gives you a quick idea of the performance ramifications of using the algo-
rithm. If you’re new to big O, Rob Bell’s “A Beginner’s Guide to Big O
Notation” provides a great overview (http://mng.bz/UJu7).

Listing 5.18 Storing data in elements of a Redis hash table

Set hash table elements

Get “cooking”
element’s value

Get hash table keys

http://mng.bz/UJu7

115NoSQL databases

STORING AND RETRIEVING DATA USING SETS

A Redis set is an unordered group of strings. If you were creating a conference-
planning application, for example, you might use a set to store attendee information.
Sets have better retrieval performance than lists. The time it takes to retrieve a set
member is independent of the size of the set (O(1) in big O notation).

 Sets must contain unique elements—if you try to store two identical values in a set,
the second attempt to store the value will be ignored.

 The following code illustrates the storage and retrieval of IP addresses. The sadd
Redis command attempts to add a value to the set, and the smembers command
returns stored values. In this example, we’ve twice attempted to add the IP address
204.10.37.96, but as you can see, when we display the set members, the address has
only been stored once:

client.sadd('ip_addresses', '204.10.37.96', redis.print);
client.sadd('ip_addresses', '204.10.37.96', redis.print);
client.sadd('ip_addresses', '72.32.231.8', redis.print);
client.smembers('ip_addresses', function(err, members) {

if (err) throw err;
console.log(members);

});

DELIVERING DATA WITH CHANNELS

It’s worth noting that Redis goes beyond the traditional role of data store by provid-
ing channels. Channels are data-delivery mechanisms that provide publish/subscribe
functionality, as shown conceptually in figure 5.7. They’re useful for chat and gaming
applications.

 A Redis client can either subscribe or publish to any given channel. Subscribing to
a channel means you get any message sent to the channel. Publishing a message to a
channel sends the message to all clients subscribed to that channel.

 Listing 5.19 shows an example of how Redis’s publish/subscribe functionality can
be used to implement a TCP/IP chat server.

Channel

Subscriber Subscriber Subscriber

Figure 5.7 Redis
channels provide an
easy solution to a
common data-delivery
scenario.

to
116 CHAPTER 5 Storing Node application data

var net = require('net');
var redis = require('redis');

var server = net.createServer(function(socket) {
var subscriber;
var publisher;

socket.on('connect', function() {
subscriber = redis.createClient();
subscriber.subscribe('main_chat_room');

subscriber.on('message', function(channel, message) {
socket.write('Channel ' + channel + ': ' + message);

});

publisher = redis.createClient();
});

socket.on('data', function(data) {
publisher.publish('main_chat_room', data);

});

socket.on('end', function() {
subscriber.unsubscribe('main_chat_room');
subscriber.end();
publisher.end();

});
});

server.listen(3000);

MAXIMIZING NODE_REDIS PERFORMANCE

When you’re deploying a Node.js application that uses the node_redis API to produc-
tion, you may want to consider using Pieter Noordhuis’s hiredis module (https://
github.com/pietern/hiredis-node). This module will speed up Redis performance
significantly because it takes advantage of the official hiredis C library. The
node_redis API will automatically use hiredis, if it’s installed, instead of the JavaScript
implementation.

 You can install hiredis using the following npm command:

npm install hiredis

Note that because the hiredis library compiles from C code, and Node’s internal APIs
change occasionally, you may have to recompile hiredis when upgrading Node.js. Use
the following npm command to rebuild hiredis:

npm rebuild hiredis

Now that we’ve looked at Redis, which excels at high-performance handling of data
primitives, let’s look at a more generally useful database: MongoDB.

Listing 5.19 A simple chat server implemented with Redis pub/sub functionality

Define setup logic for
each user connecting
to chat server

Create subscriber
client for each
userSubscribe

 a channel
When a message
is received from
a channel, show
it to user

Create publisher
client for each user

When user enters a
message, publish it

If user disconnects, end
client connections

Start chat server

https://github.com/pietern/hiredis-node
https://github.com/pietern/hiredis-node

117NoSQL databases

5.3.2 MongoDB

MongoDB is a general-purpose nonrelational database. It’s used for the same sorts of
applications that you’d use an RDBMS for.

 A MongoDB database stores documents in collections. Documents in a collection, as
shown in figure 5.8, need not share the same schema—each document could conceiv-
ably have a different schema. This makes MongoDB more flexible than conventional
RDBMSs, as you don’t have to worry about predefining schemas.

 The most mature, actively maintained MongoDB API module is Christian Amor Kval-
heim’s node-mongodb-native (https://github.com/mongodb/node-mongodb-native).
You can install this module using the following npm command. Windows users, note
that the installation requires msbuild.exe, which is installed by Microsoft Visual Studio:

npm install mongodb

CONNECTING TO MONGODB
After installing node-mongodb-native and running your MongoDB server, use the fol-
lowing code to establish a server connection:

var mongodb = require('mongodb');
var server = new mongodb.Server('127.0.0.1', 27017, {});

var client = new mongodb.Db('mydatabase', server, {w: 1});

Collection

Document

Name: “Rick”

Age: 23

Document

Item ID: 12

Amount: 45

Figure 5.8 Each item in a MongoDB collection can have a completely different schema.

https://github.com/mongodb/node-mongodb-native

118 CHAPTER 5 Storing Node application data

ACCESSING A MONGODB COLLECTION

The following snippet shows how you can access a collection once the database con-
nection is open. If at any time after completing your database operations you want to
close your MongoDB connection, execute client.close():

client.open(function(err) {
if (err) throw err;
client.collection('test_insert', function(err, collection) {

if (err) throw err;
console.log('We are now able to perform queries.');

});
});

INSERTING A DOCUMENT INTO A COLLECTION

The following code inserts a document into a collection and prints its unique docu-
ment ID:

collection.insert(
{

"title": "I like cake",
"body": "It is quite good."

},
{safe: true},
function(err, documents) {

if (err) throw err;
console.log('Document ID is: ' + documents[0]._id);

}
);

SAFE MODE Specifying {safe: true} in a query indicates that you want the
database operation to complete before executing the callback. If your call-
back logic is in any way dependent on the database operation being com-
plete, you’ll want to use this option. If your callback logic isn’t dependent,
you can get away with using {} instead.

Although you can use console.log to display documents[0]._id as a string, it’s not
actually a string. Document identifiers from MongoDB are encoded in binary JSON
(BSON). BSON is a data interchange format primarily used by MongoDB instead of
JSON to move data to and from the MongoDB server. In most cases, it’s more space
efficient than JSON and can be parsed more quickly. Taking less space and being eas-
ier to scan means database interactions end up being faster.

UPDATING DATA USING DOCUMENT IDS

BSON document identifiers can be used to update data. The following listing shows
how to update a document using its ID.

var _id = new client.bson_serializer
.ObjectID('4e650d344ac74b5a01000001');

collection.update(

Listing 5.20 Updating a MongoDB document

Put MongoDB
query code here

Safe mode indicates
database operation
should be completed
before callback is executed

119NoSQL databases

{_id: _id},
{$set: {"title": "I ate too much cake"}},
{safe: true},
function(err) {

if (err) throw err;
}

);

SEARCHING FOR DOCUMENTS

To search for documents in MongoDB, use the find method. The following example
shows logic that will display all items in a collection with a title of “I like cake”:

collection.find({"title": "I like cake"}).toArray(
function(err, results) {

if (err) throw err;
console.log(results);

}
);

DELETING DOCUMENTS

Want to delete something? You can delete a record by referencing its internal ID (or
any other criteria) using code similar to the following:

var _id = new client
.bson_serializer
.ObjectID('4e6513f0730d319501000001');

collection.remove({_id: _id}, {safe: true}, function(err) {
if (err) throw err;

});

MongoDB is a powerful database, and node-mongodb-native offers high-performance
access to it, but you may want to use an API that abstracts database access, handling
the details for you in the background. This allows you to develop faster, while main-
taining fewer lines of code. The most popular of these APIs is called Mongoose.

5.3.3 Mongoose

LearnBoost’s Mongoose is a Node module that makes using MongoDB painless. Mon-
goose’s models (in model-view-controller parlance) provide an interface to MongoDB
collections as well as additional useful functionality, such as schema hierarchies, mid-
dleware, and validation. A schema hierarchy allows the association of one model with
another, enabling, for example, a blog post to contain associated comments. Middle-
ware allows the transformation of data or the triggering of logic during model data
operations, making possible tasks like the automatic pruning of child data when a par-
ent is removed. Mongoose’s validation support lets you determine what data is accept-
able at the schema level, rather than having to manually deal with it.

 Although we’ll focus solely on the basic use of Mongoose as a data store, if
you decide to use Mongoose in your application, you’ll definitely benefit from read-
ing its online documentation and learning about all it has to offer (http://
mongoosejs.com/).

120 CHAPTER 5 Storing Node application data

 In this section, we’ll walk you through the basics of Mongoose, including how to
do the following:

 Open and close a MongoDB connection
 Register a schema
 Add a task
 Search for a document
 Update a document
 Remove a document

First, you can install Mongoose via npm using the following command:

npm install mongoose

OPENING AND CLOSING A CONNECTION

Once you’ve installed Mongoose and have started your MongoDB server, the follow-
ing example code will establish a MongoDB connection, in this case to a database
called tasks:

var mongoose = require('mongoose');
var db = mongoose.connect('mongodb://localhost/tasks');

If at any time in your application you want to terminate your Mongoose-created con-
nection, the following code will close it:

mongoose.disconnect();

REGISTERING A SCHEMA

When managing data using Mongoose, you’ll need to register a schema. The follow-
ing code shows the registration of a schema for tasks:

var Schema = mongoose.Schema;
var Tasks = new Schema({

project: String,
description: String

});
mongoose.model('Task', Tasks);

Mongoose schemas are powerful. In addition to defining data structures, they also
allow you to set defaults, process input, and enforce validation. For more on Mon-
goose schema definition, see Mongoose’s online documentation (http://mongoosejs
.com/docs/schematypes.html).

ADDING A TASK

Once a schema is registered, you can access it and put Mongoose to work. The follow-
ing code shows how to add a task using a model:

var Task = mongoose.model('Task');
var task = new Task();
task.project = 'Bikeshed';
task.description = 'Paint the bikeshed red.';

task.save(function(err) {

http://mongoosejs.com/docs/schematypes.html
http://mongoosejs.com/docs/schematypes.html

121Summary

if (err) throw err;
console.log('Task saved.');

});

SEARCHING FOR A DOCUMENT

Searching with Mongoose is similarly easy. The Task model’s find method allows you
to find all documents, or to select specific documents using a JavaScript object to spec-
ify your filtering criteria. The following example code searches for tasks associated
with a specific project and outputs each task’s unique ID and description:

var Task = mongoose.model('Task');
Task.find({'project': 'Bikeshed'}, function(err, tasks) {

for (var i = 0; i < tasks.length; i++) {
console.log('ID:' + tasks[i]._id);

 console.log(tasks[i].description);
}

});

UPDATING A DOCUMENT

Although it’s possible to use a model’s find method to zero in on a document that
you can subsequently change and save, Mongoose models also have an update
method expressly for this purpose. The following snippet shows how you can update a
document using Mongoose:

var Task = mongoose.model('Task');
Task.update(

{_id: '4e65b793d0cf5ca508000001'},
{description: 'Paint the bikeshed green.'},
{multi: false},
function(err, rows_updated) {

if (err) throw err;
console.log('Updated.');

}
);

REMOVING A DOCUMENT

It’s easy to remove a document in Mongoose once you’ve retrieved it. You can retrieve
and remove a document using its internal ID (or any other criteria, if you use the find
method instead of findById) using code similar to the following:

var Task = mongoose.model('Task');
Task.findById('4e65b3dce1592f7d08000001', function(err, task) {

task.remove();
});

You’ll find much to explore in Mongoose. It’s an all-around great tool that enables
you to pair the flexibility and performance of MongoDB with the ease of use tradition-
ally associated with relational database management systems.

5.4 Summary
Now that you’ve gained a healthy understanding of data storage technologies, you have

Update using internal ID

Only update one document
the basic knowledge you need to deal with common application data storage scenarios.

122 CHAPTER 5 Storing Node application data

 If you’re creating multiuser web applications, you’ll most likely use a DBMS of
some sort. If you prefer the SQL-based way of doing things, MySQL and PostgreSQL
are well-supported RDBMSs. If you find SQL limiting in terms of performance or flexi-
bility, Redis and MongoDB are rock-solid options. MongoDB is a great general-
purpose DBMS, whereas Redis excels in dealing with frequently changing, less com-
plex data.

 If you don’t need the bells and whistles of a full-blown DBMS and want to avoid the
hassle of setting one up, you have several options. If speed and performance are key,
and you don’t care about data persisting beyond application restarts, in-memory stor-
age may be a good fit. If you aren’t concerned about performance and don’t need to
do complex queries on your data—as with a typical command-line application—stor-
ing data in files may suit your needs.

 Don’t be afraid to use more than one type of storage mechanism in an application.
If you were building a content management system, for example, you might store web
application configuration options using files, stories using MongoDB, and user-
contributed story-ranking data using Redis. How you handle persistence is limited
only by your imagination.

 With the basics of web application development and data persistence under your
belt, you’ve learned the fundamentals you need to create simple web applications.
You’re now ready to move on to testing, an important skill you’ll need to ensure that
what you code today works tomorrow.

Connect
Connect is a framework that uses modular components called middleware to imple-
ment web application logic in a reusable manner. In Connect, a middleware com-
ponent is a function that intercepts the request and response objects provided by
the HTTP server, executes logic, and then either ends the response or passes it to
the next middleware component. Connect “connects” the middleware together
using what’s called the dispatcher.

 Connect allows you to write your own middleware but also includes several com-
mon components that can be used in your applications for request logging, static
file serving, request body parsing, and session managing, among others. Connect
serves as an abstraction layer for developers who want to build their own higher-
level web frameworks, because Connect can be easily expanded and built upon.
Figure 6.1 shows how a Connect application is composed of the dispatcher, as well

In this chapter
 Setting up a Connect application

 How Connect middleware works

 Why middleware ordering matters

 Mounting middleware and servers

 Creating configurable middleware

 Using error-handling middleware
123

as an arrangement of middleware.

124 CHAPTER 6 Connect

To start off, let’s create a basic Connect application.

6.1 Setting up a Connect application
Connect is a third-party module, so it isn’t included by default when you install Node.
You can download and install Connect from the npm registry using the command
shown here:

$ npm install connect

Now that installing is out of the way, let’s begin by creating a basic Connect applica-
tion. To do this, you require the connect module, which is a function that returns a
bare Connect application when invoked.

Dispatcher

bodyParser

logger

static

GET /img/logo.png POST /user/save

res.end()

customMiddleware res.end()

next()

next()

next()

next()

1

4

2

1

2

3

5

1 Dispatcher receives request
and passes it to the first

 middleware

2 Request is logged and passed
to the next middleware using
next()

3 Request body is parsed if any
exists and then passed to the
next middleware using next()

3

4

4 If request is for a static file,
response is sent with that file
and next() is not called;
otherwise, the request moves
to the next middleware

5 Request is handled with a
custom middleware and
response is ended

1

2

3

1

1

2

3

4

5

2

3

4 4

5

Figure 6.1 The lifecycle of two HTTP requests making their way through a Connect server

Connect and Express
The concepts discussed in this chapter are directly applicable to the higher-level
framework Express because it extends and builds upon Connect with additional
higher-level sugar. After reading this chapter, you’ll have a firm understanding of how
Connect middleware works and how to compose components together to create an
application.

In chapter 8 we’ll use Express to make writing web applications more enjoyable with
a higher-level API than Connect provides. In fact, much of the functionality that Con-
nect now provides originated in Express, before the abstraction was made (leaving
lower-level building blocks to Connect and reserving the expressive sugar for Express).

125How Connect middleware works

 In chapter 4, we discussed how http.createServer() accepts a callback function
that acts on incoming requests. The “application” that Connect creates is actually a
JavaScript function designed to take the HTTP request and dispatch it to the middle-
ware you’ve specified.

 Listing 6.1 shows what the minimal Connect application looks like. This bare appli-
cation has no middleware added to it, so the dispatcher will respond to any HTTP
request that it receives with a 404 Not Found status.

var connect = require('connect');
var app = connect();
app.listen(3000);

When you fire up the server and send it an HTTP request (with curl or a web browser),
you’ll see the text “Cannot GET /” indicating that this application isn’t configured to
handle the requested URL. This is the first example of how Connect’s dispatcher
works—it invokes each attached middleware component, one by one, until one of
them decides to respond to the request. If it gets to the end of the list of middleware
and none of the components respond, the application will respond with a 404.

 Now that you’ve learned how to create a bare-bones Connect app and how the dis-
patcher works, let’s take a look at how you can make the application do something by
defining and adding middleware.

6.2 How Connect middleware works
In Connect, a middleware component is a JavaScript function that by convention
accepts three arguments: a request object, a response object, and an argument com-
monly named next, which is a callback function indicating that the component is
done and the next middleware component can be executed.

 The concept of middleware was initially inspired by Ruby’s Rack framework, which
provided a very similar modular interface, but due to the streaming nature of Node
the API isn’t identical. Middleware components are great because they’re designed to
be small, self-contained, and reusable across applications.

 In this section, you’ll learn the basics of middleware by taking that bare-bones Con-
nect application from the previous section and building two simple layers of middle-
ware that together make up the app:

 A logger middleware component to log requests to the console
 A hello middleware component to respond to the request with “hello world”

Let’s start by creating a simple middleware component that logs requests coming in to
the server.

Listing 6.1 A minimal Connect application

126 CHAPTER 6 Connect

6.2.1 Middleware that does logging

Suppose you want to create a log file that records the request method and URL of
requests coming in to your server. To do this, you’d create a function, which we’ll call
logger, that accepts the request and response objects and the next callback function.

 The next function can be called from within the middleware to tell the dispatcher
that the middleware has done its business and that control can be passed to the next
middleware component. A callback function is used, rather than the method return-
ing, so that asynchronous logic can be run within the middleware component, with
the dispatcher only moving on to the next middleware component after the previous
one has completed. Using next() is a nice mechanism to handle the flow between
middleware components.

 For the logger middleware component, you could invoke console.log() with the
request method and URL, outputting something like “GET /user/1,” and then invoke
the next() function to pass control to the next component:

function logger(req, res, next) {
console.log('%s %s', req.method, req.url);
next();

}

And there you have it, a perfectly valid middleware component that prints out the
request method and URL of each HTTP request received and then calls next() to pass
control back to the dispatcher. To use this middleware in the application, invoke the
.use() method, passing it the middleware function:

var connect = require('connect');
var app = connect();
app.use(logger);
app.listen(3000);

After issuing a few requests to your server (again, you can use curl or a web browser)
you’ll see output similar to the following on your console:

GET /
GET /favicon.ico
GET /users
GET /user/1

Logging requests is just one layer of middleware. You still have to send some sort of
response to the client. That will come in your next middleware component.

6.2.2 Middleware that responds with “hello world”

The second middleware component in this app will send a response to the HTTP
request. It’s the same code that’s in the “hello world” server callback function on the
Node homepage:

function hello(req, res) {
res.setHeader('Content-Type', 'text/plain');
res.end('hello world');
}

127Why middleware ordering matters

You can use this second middleware component with your app by invoking the .use()
method, which can be called any number of times to add more middleware.

 Listing 6.2 ties the whole app together. The addition of the hello middleware com-
ponent in this listing will make the server first invoke the logger, which prints text to
the console, and then respond to every HTTP request with the text “hello world.”

var connect = require('connect');

function logger(req, res, next) {
console.log('%s %s', req.method, req.url);
next();

}

function hello(req, res) {
res.setHeader('Content-Type', 'text/plain');
res.end('hello world');

}

connect()
.use(logger)
.use(hello)
.listen(3000);

In this case, the hello middleware component doesn’t have a next callback argu-
ment. That’s because this component finishes the HTTP response and never needs to
give control back to the dispatcher. For cases like this, the next callback is optional,
which is convenient because it matches the signature of the http.createServer call-
back function. This means that if you’ve already written an HTTP server using just the
http module, you already have a perfectly valid middleware component that you can
reuse in your Connect application.

 The use() function returns an instance of a Connect application to support
method chaining, as shown previously. Note that chaining the .use() calls is not
required, as shown in the following snippet:

var app = connect();
app.use(logger);
app.use(hello);
app.listen(3000);

Now that you have a simple “hello world” application working, we’ll look at why the
ordering of middleware .use() calls is important, and how you can use the ordering
strategically to alter how your application works.

6.3 Why middleware ordering matters
Connect tries not to make assumptions, in order to maximize flexibility for applica-
tion and framework developers. One example of this is that Connect allows you to
define the order in which middleware is executed. It’s a simple concept, but one that’s

Listing 6.2 Using multiple Connect middleware components

Prints HTTP method and
request URL and calls next()

Ends response to HTTP
request with “hello world”
often overlooked.

128 CHAPTER 6 Connect

 In this section, you’ll see how the ordering of middleware in your application can
dramatically affect the way it behaves. Specifically, we’ll cover the following:

 Stopping the execution of remaining middleware by omitting next()
 Using the powerful middleware-ordering feature to your advantage
 Leveraging middleware to perform authentication

Let’s first see how Connect handles a middleware component that does explicitly call
next().

6.3.1 When middleware doesn’t call next()

Consider the previous “hello world” example, where the logger middleware compo-
nent is used first, followed by the hello component. In that example, Connect logs to
stdout and then responds to the HTTP request. But consider what would happen if the
ordering were switched, as follows.

var connect = require('connect');

function logger(req, res, next) {
console.log('%s %s', req.method, req.url);
next();

}

function hello(req, res) {
res.setHeader('Content-Type', 'text/plain');
res.end('hello world');

}

var app = connect()
.use(hello)
.use(logger)
.listen(3000);

In this example, the hello middleware component will be called first and will respond
to the HTTP request as expected. But logger will never be called because hello never
calls next(), so control is never passed back to the dispatcher to invoke the next mid-
dleware component. The moral here is that when a component doesn’t call next(),
no remaining middleware in the chain of command will be invoked.

 In this case, placing hello in front of logger is rather useless, but when leveraged
properly, the ordering can be used to your benefit.

6.3.2 Using middleware order to perform authentication

You can use order of middleware to your advantage, such as in the case of authentica-
tion. Authentication is relevant to almost any kind of application. Your users need a
way to log in, and you need a way to prevent people who are not logged in from
accessing the content. The order of the middleware can help you implement your
authentication.

Listing 6.3 Wrong: hello middleware component before logger component

Always calls next(), so
subsequent middleware
is invoked

Doesn’t call next(),
because component
responds to request

logger will never be
invoked because hello
doesn’t call next()

129Mounting middleware and servers

 Suppose you’ve written a middleware component called restrictFileAccess that
grants file access only to valid users. Valid users are able to continue to the next mid-
dleware component, whereas if the user isn’t valid, next() isn’t called. The following
listing shows how the restrictFileAccess middleware component should follow the
logger component but precede the serveStaticFiles component.

var connect = require('connect');
connect()

.use(logger)

.use(restrictFileAccess)

.use(serveStaticFiles)

.use(hello);

Now that we’ve discussed middleware precedence and how it’s an important tool for
constructing application logic, let’s take a look at another of Connect’s features that
helps you use middleware.

6.4 Mounting middleware and servers
Connect includes the concept of mounting, a simple yet powerful organizational tool
that allows you to define a path prefix for middleware or entire applications. Mount-
ing allows you to write middleware as if you were at the root level (the / base req.url)
and use it on any path prefix without altering the code.

 For example, when a middleware component or server is mounted at /blog, a
req.url of /article/1 in the code will be accessible at /blog/article/1 by a client
request. This separation of concerns means you can reuse the blog server in multiple
places without needing to alter the code for different sources. For example, if you
decide you want to host your articles at /articles (/articles/article/1) instead of /blog,
you only need to make a change to the mount path prefix.

 Let’s look at another example of how you can use mounting. It’s common for
applications to have their own administration area, such as for moderating comments
and approving new users. In our example, this admin area will reside at /admin in the
application. Now you need a way to make sure that /admin is only available to autho-
rized users and that the rest of the site is available to all users.

 Besides rewriting requests from the / base req.url, mounting also will only
invoke middleware or applications when a request is made within the path prefix
(the mount point). In the following listing, the second and third use() calls have the
string '/admin' as the first argument, followed by the middleware component. This
means that the following components will only be used when a request is made with a
/admin prefix. Let’s look at the syntax for mounting a middleware component or
server in Connect.

Listing 6.4 Using middleware precedence to restrict file access

next() will only be
called if user is valid

130 CHAPTER 6 Connect

var connect = require('connect');

connect()
.use(logger)
.use('/admin', restrict)
.use('/admin', admin)
.use(hello)
.listen(3000);

Armed with that knowledge of mounting middleware and servers, let’s enhance the
“hello world” application with an admin area. We’ll use mounting and add two new
middleware components:

 A restrict component that ensures a valid user is accessing the page
 An admin component that’ll present the administration area to the user

Let’s begin by looking at a middleware component that restricts users without valid
credentials from accessing resources.

6.4.1 Middleware that does authentication

The first middleware component you need to add will perform authentication. This
will be a generic authentication component, not specifically tied to the /admin
req.url in any way. But when you mount it onto the application, the authentica-
tion component will only be invoked when the request URL begins with /admin.
This is important, because you only want to authenticate users who attempt to
access the /admin URL; you want regular users to pass through as normal.

 Listing 6.6 implements crude Basic authentication logic. Basic authentication is a
simple authentication mechanism that uses the HTTP Authorization header field
with Base64-encoded credentials (see the Wikipedia article for more details: http://
wikipedia.org/wiki/Basic_access_authentication). Once the credentials are decoded
by the middleware component, the username and password are checked for correct-
ness. If they’re valid, the component will invoke next(), meaning the request is okay
to continue processing; otherwise it will throw an error.

function restrict(req, res, next) {
var authorization = req.headers.authorization;
if (!authorization) return next(new Error('Unauthorized'));

var parts = authorization.split(' ')
var scheme = parts[0]
var auth = new Buffer(parts[1], 'base64').toString().split(':')
var user = auth[0]
var pass = auth[1];

authenticateWithDatabase(user, pass, function (err) {
if (err) return next(err);

Listing 6.5 The syntax for mounting a middleware component or server

Listing 6.6 A middleware component that performs HTTP Basic authentication

When a string is the first
argument to .use(), Connect will
only invoke the middleware when
the prefix URL matches.

A function that
checks credentials
against a database
Informs dispatcher
that an error occurred

http://wikipedia.org/wiki/Basic_access_authentication
http://wikipedia.org/wiki/Basic_access_authentication

131Mounting middleware and servers

next();
});

}

Again, notice how this middleware doesn’t do any checking of req.url to ensure that
/admin is what is actually being requested, because Connect is handling this for you.
This allows you to write generic middleware. The restrict middleware component
could be used to authenticate another part of the site or another application.

INVOKING NEXT WITH AN ERROR ARGUMENT Notice in the previous example
how the next function is invoked with an Error object passed in as the argu-
ment. When you do this, you’re notifying Connect that an application error
has occurred, which means that only error-handling middleware will be exe-
cuted for the remainder of this HTTP request. Error-handing middleware is a
topic you’ll learn about a little later in this chapter. For now, just know that it
tells Connect that your middleware has finished and that an error occurred in
the process.

When authorization is complete, and no errors have occurred, Connect will continue
on to the next middleware component, which in this case is admin.

6.4.2 A middleware component that presents an administration panel

The admin middleware component implements a primitive router using a switch
statement on the request URL. The admin component will present a redirect message
when / is requested, and it’ll return a JSON array of usernames when /users is
requested. The usernames are hardcoded for this example, but a real application
would more likely grab them from a database.

function admin(req, res, next) {
switch (req.url) {

case '/':
res.end('try /users');
break;

case '/users':
res.setHeader('Content-Type', 'application/json');
res.end(JSON.stringify(['tobi', 'loki', 'jane']));
break;

}
}

The important thing to note here is that the strings used are / and /users, not /admin
and /admin/users. The reason for this is that Connect removes the prefix from the
req.url before invoking the middleware, treating URLs as if they were mounted at /.
This simple technique makes applications and middleware more flexible because they
don’t care where they’re used.

 For example, mounting would allow a blog application to be hosted at http://

Listing 6.7 Routing admin requests

Calls next() with no arguments
when given valid credentials
foo.com/blog or at http://bar.com/posts without requiring any change to the blog

132 CHAPTER 6 Connect

application code for the change in URL. This is because Connect alters the req.url
by stripping off the prefix portion when mounted. The end result is that the blog
app can be written with paths relative to /, and doesn’t need to know about /blog or
/posts. The requests will use the same middleware components and share the same
state. Consider the server setup used here, which reuses the hypothetical blog appli-
cation by mounting it at two different mount points:

var connect = require('connect');

connect()
.use(logger)
.use('/blog', blog)
.use('/posts', blog)
.use(hello)
.listen(3000);

TESTING IT ALL OUT

Now that the middleware is taken care of, it’s time to take your application for a test
drive using curl. You can see that regular URLs other than /admin will invoke the
hello component as expected:

$ curl http://localhost
hello world

$ curl http://localhost/foo
hello world

You can also see that the restrict component will return an error to the user when
no credentials are given or incorrect credentials are used:

$ curl http://localhost/admin/users
Error: Unauthorized

at Object.restrict [as handle]
(E:\transfer\manning\node.js\src\ch7\multiple_connect.js:24:35)
at next
(E:\transfer\manning\node.js\src\ch7\node_modules\

 ➥connect\lib\proto.js:190:15)
...

$ curl --user jane:ferret http://localhost/admin/users
Error: Unauthorized

at Object.restrict [as handle]
(E:\transfer\manning\node.js\src\ch7\multiple_connect.js:24:35)
at next
(E:\transfer\manning\node.js\src\ch7\node_modules\

 ➥connect\lib\proto.js:190:15)
...

Finally, you can see that only when authenticated as “tobi” will the admin component
be invoked and the server respond with the JSON array of users:

$ curl --user tobi:ferret http://localhost/admin/users
["tobi","loki","jane"]

133Creating configurable middleware

See how simple yet powerful mounting is? Now let’s take a look at some techniques for
creating configurable middleware.

6.5 Creating configurable middleware
You’ve learned some middleware basics; now we’ll go into detail and look at how you
can create more generic and reusable middleware. Reusability is one of the major
benefits of writing middleware, and in this section we’ll create middleware that allows
you to configure logging, routing requests, URLs, and more. You’ll be able to reuse
these components in your applications with just some additional configuration,
rather than needing to re-implement the components from scratch to suit your spe-
cific applications.

 Middleware commonly follows a simple convention in order to provide configura-
tion capabilities to developers: using a function that returns another function. (This is
a powerful JavaScript feature, typically called a closure.) The basic structure for config-
urable middleware of this kind looks like this:

function setup(options) {
// setup logic

return function(req, res, next) {
// middleware logic

}
}

This type of middleware is used as follows:

app.use(setup({some: 'options'}))

Notice that the setup function is invoked in the app.use line, where in our previous
examples we were just passing a reference to the function.

 In this section, we’ll apply this technique to build three reusable configurable mid-
dleware components:

 A logger component with a configurable printing format
 A router component that invokes functions based on the requested URL

 A URL rewriter component that converts URL slugs to IDs

Let’s start by expanding our logger component to make it more configurable.

6.5.1 Creating a configurable logger middleware component

The logger middleware component you created earlier in this chapter was not config-
urable. It was hardcoded to print out the request’s req.method and req.url when
invoked. But what if you want to change what the logger displays at some point in the
future? You could modify your logger component manually, but a better solution
would be to make the logger configurable from the start, instead of hardcoding the
values. So let’s do that.

Additional middleware
initialization here

Options still accessible even though
outer function has returned

L
comp

uses a r
to

r
prop
134 CHAPTER 6 Connect

 In practice, using configurable middleware is just like using any of the middleware
you’ve created so far, except that you can pass additional arguments to the middle-
ware component to alter its behavior. Using the configurable component in your
application might look a little like the following example, where logger can accept a
string that describes the format that it should print out:

var app = connect()
.use(logger(':method :url'))
.use(hello);

To implement the configurable logger component, you first need to define a setup
function that accepts a single string argument (in this example, we’ll name it format).
When setup is invoked, a function is returned, and it’s the actual middleware compo-
nent Connect will use. The returned component retains access to the format variable,
even after the setup function has returned, because it’s defined within the same
JavaScript closure. The logger then replaces the tokens in the format string with the
associated request properties on the req object, logs to stdout, and calls next(), as
shown in the following listing.

function setup(format) {

var regexp = /:(\w+)/g;

return function logger(req, res, next) {

var str = format.replace(regexp, function(match, property){

return req[property];

});

console.log(str);

next();

}

}

module.exports = setup;

Because we’ve created this logger middleware component as configurable middle-
ware, you can .use() the logger multiple times in a single application with different
configurations or reuse this logger code in any number of future applications you
might develop. This simple concept of configurable middleware is used throughout
the Connect community, and it’s used for all core Connect middleware to maintain
consistency.

 Now let’s write a middleware component with a little more involved logic. Let’s cre-
ate a router to map incoming requests to business logic!

Listing 6.8 A configurable logger middleware component for Connect

Setup function can be called multiple
times with different configurations

ogger
onent
egexp
match
equest
erties

Actual logger component
that Connect will use

Use regexp to format
log entry for request

Print request log entry to console

Pass control to next middleware component

Directly export logger setup function

135Creating configurable middleware

6.5.2 Building a routing middleware component

Routing is a crucial web application concept. Put simply, it’s a method of mapping
incoming request URLs to functions that employ business logic. Routing comes in
many shapes and sizes, ranging from highly abstract controllers used by frameworks
like Ruby on Rails to simpler, less abstract, routing based on HTTP methods and paths,
such as the routing provided by frameworks like Express and Ruby’s Sinatra.

 A simple router in your application might look something like listing 6.9. In this
example, HTTP verbs and paths are represented by a simple object and some callback
functions; some paths contain tokens prefixed with a colon (:) that represent path
segments that accept user input, matching paths like /user/12. The result is an appli-
cation with a collection of handler functions that will be invoked when the request
method and URL match one of the routes that’s been defined.

var connect = require('connect');
var router = require('./middleware/router');
var routes = {

GET: {
'/users': function(req, res){

res.end('tobi, loki, ferret');
},
'/user/:id': function(req, res, id){

res.end('user ' + id);
}

},
DELETE: {

'/user/:id': function(req, res, id){
res.end('deleted user ' + id);

}
}

};

connect()
.use(router(routes))
.listen(3000);

Because there are no restrictions on the number of middleware components in an
application or on the number of times a middleware component can be used, it’s pos-
sible to define several routers in a single application. This could be useful for organi-
zational purposes. Suppose you have both user-related routes and administration
routes. You could separate these into module files and require them for the router
component, as shown in the following snippet:

var connect = require('connect');
var router = require('./middleware/router');

connect()
.use(router(require('./routes/user')))
.use(router(require('./routes/admin')))

Listing 6.9 Using the router middleware component

router component, defined
later in this section

Routes are stored
as an object

Each entry maps to request
URL and contains callback
function to be invoked

Pass routes object to
router setup function
.listen(3000);

136 CHAPTER 6 Connect

Now let’s build this router middleware. This will be more complicated than the mid-
dleware examples we’ve gone over so far, so let’s quickly run through the logic this
router will implement, as illustrated in figure 6.2.

 You can see how the flowchart almost acts as pseudocode for the middleware,
which can help you implement the actual code for the router. The middleware in its
entirety is shown in the following listing.

var parse = require('url').parse;
module.exports = function route(obj) {

return function(req, res, next){
if (!obj[req.method]) {

next();
return;

}
var routes = obj[req.method]
var url = parse(req.url)
var paths = Object.keys(routes)

for (var i = 0; i < paths.length; i++) {
var path = paths[i];
var fn = routes[path];
path = path

.replace(/\//g, '\\/')

.replace(/:(\w+)/g, '([^\\/]+)');

Listing 6.10 Simple routing middleware

First an HTTP request comes
in from a web browser
or other HTTP client An HTTP request comes in

Is req.method in
the routes map?

call next()

End of the
routes loop

Invoke the
associated

callback

Connect application

router middleware

Invoke
the next

middleware

var i = 0

i++

i < routes.length?

Does routes[i] match
the current req.url?

No

Yes

Yes

NoNo

Yes

Loop through routes

Figure 6.2 Flowchart of the router component’s logic

Check to make sure
req.method is defined

If not, invoke next() and
stop any further execution

Lookup paths for req.method

Parse URL
for

matching
against

pathname

Store paths for req.method as array

Loop through paths
var re = new RegExp('^' + path + '$'); Construct regular expression

137Creating configurable middleware

var captures = url.pathname.match(re)
if (captures) {

var args = [req, res].concat(captures.slice(1));
fn.apply(null, args);
return;

}
}
next();

}
};

This router is a great example of configurable middleware, as it follows the traditional
format of having a setup function return a middleware component for Connect appli-
cations to use. In this case, it accepts a single argument, the routes object, which con-
tains the map of HTTP verbs, request URLs, and callback functions. It first checks to
see if the current req.method is defined in the routes map, and stops further process-
ing in the router if it isn’t (by invoking next()). After that, it loops through the
defined paths and checks to see if one matches the current req.url. If it finds a
match, then the match’s associated callback function will be invoked, hopefully com-
pleting the HTTP request.

 This is a complete middleware component with a couple of nice features, but you
could easily expand on it. For example, you could utilize the power of closures to
cache the regular expressions, which would otherwise be compiled for each request.

 Another great use of middleware is for rewriting URLs. We’ll look at that next, with
a middleware component that handles blog post slugs instead of IDs in the URL.

6.5.3 Building a middleware component to rewrite URLs

Rewriting URLs can be very helpful. Suppose you want to accept a request to /blog/
posts/my-post-title, look up the post ID based on the end portion of the post’s title
(commonly known as the slug part of the URL), and then transform the URL to /blog/
posts/<post-id>. This is a perfect task for middleware!

 The small blog application in the following snippet first rewrites the URL based on
the slug with a rewrite middleware component, and then passes control to the show-
Post component:

var connect = require('connect')
var url = require('url')
var app = connect()

.use(rewrite)

.use(showPost)

.listen(3000)

The rewrite middleware implementation in listing 6.11 parses the URL to access the
pathname, and then matches the pathname with a regular expression. The first cap-
ture group (the slug) is passed to a hypothetical findPostIdBySlug function that looks
up the blog post ID by slug. When it’s successful, you can then re-assign the request
URL (req.url) to whatever you like. In this example, the ID is appended to /blog/

Attempt
match

against
pathname

Pass the
capture
groupsReturn when match is

found to prevent
following next() call
post/ so that the subsequent middleware can perform the blog post lookup via ID.

Only
lo

/blo
r

138 CHAPTER 6 Connect

var path = url.parse(req.url).pathname;

function rewrite(req, res, next) {
var match = path.match(/^\/blog\/posts\/(.+)/)
if (match) {

findPostIdBySlug(match[1], function(err, id) {
if (err) return next(err);
if (!id) return next(new Error('User not found'));
req.url = '/blog/posts/' + id;
next();

});
} else {

next();
}

}

WHAT THESE EXAMPLES DEMONSTRATE The important takeaway from these
examples is that you should focus on small and configurable pieces when
building your middleware. Build lots of tiny, modular, and reusable middle-
ware components that collectively make up your application. Keeping your
middleware small and focused really helps break down complicated applica-
tion logic into smaller pieces.

Next up, let’s take a look at a final middleware concept in Connect: handing applica-
tion errors.

6.6 Using error-handling middleware
All applications have errors, whether at the system level or the user level, and being
well prepared for error situations—even ones you aren’t anticipating—is a smart thing
to do. Connect implements an error-handling variant of middleware that follows the
same rules as regular middleware but accepts an error object along with the request
and response objects.

 Connect error handling is intentionally minimal, allowing the developer to specify
how errors should be handled. For example, you could pass only system and applica-
tion errors through the middleware (for example, “foo is undefined”) or user errors
(“password is invalid”) or a combination of both. Connect lets you choose which is
best for your application.

 In this section, we’ll make use of both types, and you’ll learn how error-handling
middleware works. You’ll also learn some useful patterns that can be applied while we
look at the following:

 Using Connect’s default error handler
 Handing application errors yourself
 Using multiple error-handling middleware components

Let’s jump in with a look at how Connect handles errors without any configuration.

Listing 6.11 Middleware that rewrites the request URL based on a slug name

perform
okup on
g/posts
equests

If there was a
lookup error, inform
error handler and
stop processing

If there was no
matching ID for
slug name, call
next() with “User
not found” Error
argument

Overwrite req.url
property so that
subsequent
middleware can
utilize real ID

139Using error-handling middleware

6.6.1 Connect’s default error handler

Consider the following middleware component, which will throw a ReferenceError
error because the function foo() isn’t defined by the application:

var connect = require('connect')

connect()
.use(function hello(req, res) {

foo();
res.setHeader('Content-Type', 'text/plain');
res.end('hello world');

})
.listen(3000)

By default, Connect will respond with a 500 status code, a response body containing
the text “Internal Server Error,” and more information about the error itself. This is
fine, but in any kind of real application, you’d probably like to do more specialized
things with those errors, like send them off to a logging daemon.

6.6.2 Handing application errors yourself

Connect also offers a way for you to handle application errors yourself using error-
handling middleware. For instance, in development you might want to respond with a
JSON representation of the error to the client for quick and easy reporting, whereas in
production you’d want to respond with a simple “Server error,” so as not to expose
sensitive internal information (such as stack traces, filenames, and line numbers) to a
potential attacker.

 An error-handling middleware function must be defined to accept four argu-
ments—err, req, res, and next—as shown in the following listing, whereas regular
middleware takes the arguments req, res, and next.

function errorHandler() {
var env = process.env.NODE_ENV || 'development';
return function(err, req, res, next) {

res.statusCode = 500;
switch (env) {

case 'development':
res.setHeader('Content-Type', 'application/json');
res.end(JSON.stringify(err));
break;

default:
res.end('Server error');

}
}

}

Listing 6.12 Error-handling middleware in Connect

Error-handling
middleware defines
four arguments

errorHandler
middleware
component behaves
differently
depending on value
of NODE_ENV

140 CHAPTER 6 Connect

USE NODE_ENV TO SET THE APPLICATION’S MODE A common Connect conven-
tion is to use the NODE_ENV environment variable (process.env.NODE_ENV) to
toggle the behavior between different server environments, like production
and development.

When Connect encounters an error, it’ll switch to invoking only error-handling mid-
dleware, as you can see in figure 6.3.

 For example, in our previous admin application, if the routing middleware compo-
nent for the user routes caused an error, both the blog and admin middleware com-
ponents would be skipped, because they don’t act as error-handling middleware—
they only define three arguments. Connect would then see that errorHandler accepts
the error argument and would invoke it:

connect()
.use(router(require('./routes/user')))
.use(router(require('./routes/blog'))) // Skipped
.use(router(require('./routes/admin'))) // Skipped

A Connect application
that does error handling

The dispatcher

HTTP GET request
/bad-url

Router

hello middleware

Error handler

next()

HTTP client
(Web browser)

1 HTTP request to a URL that will throw an error on the server.

2 Passes the request down the middleware stack as usual.

3 Uh-oh! The router middleware has some kind of error!

4 The hello middleware gets skipped, since it was not defined
 as error-handling middleware.

5 The errorHandler middleware gets the Error that was created
 by the logger middleware, and can respond to the request in
 the context of the Error.

1

1

2

3

4

5

2

3

4

5 Figure 6.3 The lifecycle of
an HTTP request causing an
error in a Connect server
.use(errorHandler());

141Using error-handling middleware

6.6.3 Using multiple error-handling middleware components

Using a variant of middleware for error handling can be useful for separating error-
handling concerns. Suppose your app has a web service mounted at /api. You might
want any web application errors to render an HTML error page to the user, but /api
requests to return more verbose errors, perhaps always responding with JSON so that
receiving clients can easily parse the errors and react properly.

 To see how this /api scenario works, implement this small example as you read
along. Here app is the main web application and api is mounted to /api:

var api = connect()
.use(users)
.use(pets)
.use(errorHandler);

var app = connect()
.use(hello)
.use('/api', api)
.use(errorPage)
.listen(3000);

This configuration is easily visualized in figure 6.4.
 Now you need to implement each of the application’s middleware components:

 The hello component will respond with “Hello World\n.”
 The users component will throw a notFoundError when a user doesn’t exist.
 The pets component will cause a ReferenceError to be thrown to demonstrate

the error handler.
 The errorHandler component will handle any errors from the api app.
 The errorPage component will handle any errors from the main app app.

Application
app

Middleware
hello

Middleware
users

Middleware
pets

Error-handling
middleware

errorHandler

Error-handling
middleware

Application
api

HTTP requests
flow down the

line of
middleware

Figure 6.4 Layout of an application
with two error-handling middleware
errorPage components

142 CHAPTER 6 Connect

IMPLEMENTING THE HELLO MIDDLEWARE COMPONENT

The hello component is simply a function that matches “/hello” with a regular
expression, as shown in the following snippet:

function hello(req, res, next) {
if (req.url.match(/^\/hello/)) {

res.end('Hello World\n');
} else {

next();
}

}

There’s no possible way for an error to occur in such a simple function.

IMPLEMENTING THE USERS MIDDLEWARE COMPONENT

The users component is slightly more complex. As you can see in listing 6.13, you
match the req.url using a regular expression and then check if the user index exists
by using match[1], which is the first capture group for your match. If the user exists,
it’s serialized as JSON; otherwise an error is passed to the next() function with its not-
Found property set to true, allowing you to unify error-handling logic later in the
error-handling component.

var db = {
users: [

{ name: 'tobi' },
{ name: 'loki' },
{ name: 'jane' }

]
};

function users(req, res, next) {
var match = req.url.match(/^\/user\/(.+)/)
if (match) {

var user = db.users[match[1]];
if (user) {

res.setHeader('Content-Type', 'application/json');
res.end(JSON.stringify(user));

} else {
var err = new Error('User not found');
err.notFound = true;
next(err);

}
} else {

next();
}

}

IMPLEMENTING THE PETS MIDDLEWARE COMPONENT

The following code snippet shows the partially implemented pets component. It
illustrates how you can apply logic to the errors, based on properties such as the

Listing 6.13 A component that searches for a user in the database

143Using error-handling middleware

err.notFound Boolean assigned in the users component. Here the undefined foo()
function will trigger an exception, which will not have an err.notFound property:

function pets(req, res, next) {
if (req.url.match(/^\/pet\/(.+)/)) {

foo();
} else {

next();
}

}

IMPLEMENTING THE ERRORHANDER MIDDLEWARE COMPONENT

Finally, it’s time for the errorHandler component! Contextual error messages are
especially important for web services—they allow web services to provide appropriate
feedback to the consumer without giving away too much information. You certainly
don’t want to expose errors such as "{"error":"foo is not defined"}", or even
worse, full stack traces, because an attacker could use this information against you.
You should only respond with error messages that you know are safe, as the following
errorHandler implementation does.

function errorHandler(err, req, res, next) {
console.error(err.stack);
res.setHeader('Content-Type', 'application/json');
if (err.notFound) {

res.statusCode = 404;
res.end(JSON.stringify({ error: err.message }));

} else {
res.statusCode = 500;
res.end(JSON.stringify({ error: 'Internal Server Error' }));

}
}

This error-handling component uses the err.notFound property set earlier to distin-
guish between server errors and client errors. Another approach would be to check
whether the error is an instanceof some other kind of error (such as a Validation-
Error from some validation module) and respond accordingly.

 Using the err.notFound property, if the server were to accept an HTTP request to,
say, /user/ronald, which doesn’t exist in your database, the users component would
throw a notFound error, and when it got to the errorHandler component it would
trigger the err.notFound code path, which returns a 404 status code along with the
err.message property as a JSON object. Figure 6.5 shows what the raw output looks
like in a web browser.

IMPLEMENTING THE ERRORPAGE MIDDLEWARE COMPONENT

The errorPage component is the second error-handling component in this example
application. Because the previous error-handling component never calls next(err),
this component will only be invoked by an error occurring in the hello component.

Listing 6.14 An error-handling component that doesn't expose unnecessary data

144 CHAPTER 6 Connect

That component is very unlikely to generate an error, so there’s very little chance that
this errorPage component will ever be invoked. That said, we’ll leave implementing
this second error-handling component up to you, because it literally is optional in this
example.

 Your application is finally ready. You can fire up the server, which we set to listen
on port 3000 back in the beginning. You can play around with it using a browser or
curl or any other HTTP client. Try triggering the various routes of the error handler
by requesting an invalid user or requesting one of the pets entries.

 To re-emphasize, error handling is a crucial aspect of any kind of application.
Error-handling middleware components offer a clean way to unify the error-handling
logic in your application in a centralized location. You should always include at least
one error-handling middleware component in your application by the time it hits pro-
duction.

6.7 Summary
In this chapter, you’ve learned everything you need to know about the small but pow-
erful Connect framework. You’ve learned how the dispatcher works and how to build
middleware to make your applications modular and flexible. You’ve learned how to
mount middleware to a particular base URL, which enables you to create applications
inside of applications. You’ve also been exposed to configurable middleware that
takes in settings and thus can be repurposed and tweaked. Lastly, you learned how to
handle errors that occur within middleware.

 Now that the fundamentals are out of the way, it’s time to learn about the middle-
ware that Connect provides out of the box. That’s covered in the next chapter.

Figure 6.5 The JSON object output of the “User not found” error

Connect’s built-in
middleware
In the previous chapter, you learned what middleware is, how to create it, and how
to use it with Connect. But Connect’s real power comes from its bundled middle-
ware, which meets many common web application needs, such as session manage-
ment, cookie parsing, body parsing, request logging, and much more. This
middleware ranges in complexity and provides a great starting point for building
simple web servers or higher-level web frameworks.

 Throughout this chapter, we’ll explain and demonstrate the more commonly
used bundled middleware components. Table 7.1 provides an overview of the mid-
dleware we’ll cover.

 First up, we’ll look at middleware that implements the various parsers needed to
build proper web applications, because these are the foundation for most of the

This chapter covers
 Middleware for parsing cookies, request bodies, and

query strings

 Middleware that implements core web application needs

 Middleware that handles web application security

 Middleware for serving static files
145

other middleware.

146 CHAPTER 7 Connect’s built-in middleware

7.1 Middleware for parsing cookies, request bodies,
and query strings
Node’s core doesn’t provide modules for higher-level web application concepts like
parsing cookies, buffering request bodies, or parsing complex query strings, so Con-
nect provides those out of the box for your application to use. In this section, we’ll
cover the four built-in middleware components that parse request data:

Table 7.1 Connect middleware quick reference guide

Middleware component Section Description

cookieParser() 7.1.1 Provides req.cookies and req.signedCookies for subse-
quent middleware to use.

bodyParser() 7.1.2 Provides req.body and req.files for subsequent middle-
ware to use.

limit() 7.1.3 Restricts request body sizes based on a given byte length limit.
Must go before the bodyParser middleware component.

query() 7.1.4 Provides req.query for subsequent middleware to use.

logger() 7.2.1 Logs configurable information about incoming HTTP requests to
a stream, like stdout or a log file.

favicon() 7.2.2 Responds to /favicon.ico HTTP requests. Usually placed before
the logger middleware component so that you don’t have to
see it in your log files.

methodOverride() 7.2.3 Allows you to fake req.method for browsers that can’t use the
proper method. Depends on bodyParser.

vhost() 7.2.4 Uses a given middleware component and/or HTTP server
instances based on a specified hostname (such as nodejs.org).

session() 7.2.5 Sets up an HTTP session for a user and provides a persistent
req.session object in between requests. Depends on
cookieParser.

basicAuth() 7.3.1 Provides HTTP Basic authentication for your application.

csrf() 7.3.2 Protects against cross-site request forgery attacks in HTTP
forms. Depends on session.

errorHandler() 7.3.3 Returns stack traces to the client when a server-side error
occurs. Useful for development; don’t use for production.

static() 7.4.1 Serves files from a given directory to HTTP clients. Works really
well with Connect’s mounting feature.

compress() 7.4.2 Optimizes HTTP responses using gzip compression.

directory() 7.4.3 Serves directory listings to HTTP clients, providing the optimal
result based on the client’s Accept request header (plain text,
JSON, or HTML).

147Middleware for parsing cookies, request bodies, and query strings

 cookieParser()—Parses cookies from web browsers into req.cookies
 bodyParser()—Consumes and parses the request body into req.body
 limit()—Goes hand in hand with bodyParser() to keep requests from getting

too big
 query()—Parses the request URL query string into req.query

Let’s start off with cookies, which are often used by web browsers to simulate state
because HTTP is a stateless protocol.

7.1.1 cookieParser(): parsing HTTP cookies

Connect’s cookie parser supports regular cookies, signed cookies, and special JSON
cookies out of the box. By default, regular unsigned cookies are used, populating the
req.cookies object. But if you want signed cookie support, which is required by the
session() middleware, you’ll want to pass a secret string when creating the cookie-
Parser() instance.

SETTING COOKIES ON THE SERVER SIDE The cookieParser() middleware
doesn’t provide any helpers for setting outgoing cookies. For this, you should
use the res.setHeader() function with Set-Cookie as the header name.
Connect patches Node’s default res.setHeader() function to special-case
the Set-Cookie headers so that it just works, as you’d expect it to.

BASIC USAGE

The secret passed as the argument to cookieParser() is used to sign and unsign
cookies, allowing Connect to determine whether the cookies’ contents have been tam-
pered with (because only your application knows the secret’s value). Typically the
secret should be a reasonably large string, potentially randomly generated.

 In the following example, the secret is tobi is a cool ferret:

var connect = require('connect');
var app = connect()

.use(connect.cookieParser('tobi is a cool ferret'))

.use(function(req, res){
console.log(req.cookies);
console.log(req.signedCookies);
res.end('hello\n');

}).listen(3000);

The req.cookies and req.signedCookies properties get set to objects representing
the parsed Cookie header that was sent with the request. If no cookies are sent with
the request, the objects will both be empty.

REGULAR COOKIES

If you were to fire some HTTP requests off to the preceding server using curl(1) with-
out the Cookie header field, both of the console.log() calls would output an empty
object:

148 CHAPTER 7 Connect’s built-in middleware

$ curl http://localhost:3000/
{}
{}

Now try sending a few cookies. You’ll see that both cookies are available as properties
of req.cookies:

$ curl http://localhost:3000/ -H "Cookie: foo=bar, bar=baz"
{ foo: 'bar', bar: 'baz' }
{}

SIGNED COOKIES

Signed cookies are better suited for sensitive data, as the integrity of the cookie data
can be verified, helping to prevent man-in-the-middle attacks. Signed cookies are
placed in the req.signedCookies object when valid. The reasoning behind having
two separate objects is that it shows the developer’s intention. If you were to place
both signed and unsigned cookies in the same object, a regular cookie could be
crafted to contain data to mimic a signed cookie.

 A signed cookie looks something like tobi.DDm3AcVxE9oneYnbmpqxoyhyKsk, where
the content to the left of the period (.) is the cookie’s value, and the content to the
right is the secret hash generated on the server with SHA-1 HMAC (hash-based mes-
sage authentication code). When Connect attempts to unsign the cookie, it will fail if
either the value or HMAC has been altered.

 Suppose, for example, you set a signed cookie with a key of name and a value of luna.
cookieParser would encode the cookie to luna.PQLM0wNvqOQEObZXUkWbS5m6Wlg. The
hash portion is checked on each request, and when the cookie is sent intact, it will be
available as req.signedCookies.name:

$ curl http://localhost:3000/ -H "Cookie:
➥ name=luna.PQLM0wNvqOQEObZXUkWbS5m6Wlg"
{}
{ name: 'luna' }
GET / 200 4ms

If the cookie’s value were to change, as shown in the next curl command, the name
cookie would be available as req.cookies.name because it wasn’t valid. It might still
be of use for debugging or application-specific purposes:

$ curl http://localhost:3000/ -H "Cookie:
➥name=manny.PQLM0wNvqOQEObZXUkWbS5m6Wlg"
{ name: 'manny.PQLM0wNvqOQEObZXUkWbS5m6Wlg' }
{}
GET / 200 1ms

JSON COOKIES

The special JSON cookie is prefixed with j:, which informs Connect that it is intended
to be serialized JSON. JSON cookies can be either signed or unsigned.

 Frameworks such as Express can use this functionality to provide developers with a
more intuitive cookie interface, instead of requiring them to manually serialize and

parse JSON cookie values. Here’s an example of how Connect parses JSON cookies:

149Middleware for parsing cookies, request bodies, and query strings

$ curl http://localhost:3000/ -H 'Cookie: foo=bar,
bar=j:{"foo":"bar"}'
{ foo: 'bar', bar: { foo: 'bar' } }
{}
GET / 200 1ms

As mentioned, JSON cookies can also be signed, as illustrated in the following request:

$ curl http://localhost:3000/ -H "Cookie:
➥cart=j:{\"items\":[1]}.sD5p6xFFBO/4ketA1OP43bcjS3Y"
{}
{ cart: { items: [1] } }
GET / 200 1ms

SETTING OUTGOING COOKIES

As noted earlier, the cookieParser() middleware doesn’t provide any functionality
for writing outgoing headers to the HTTP client via the Set-Cookie header. Connect,
however, provides explicit support for multiple Set-Cookie headers via the res.set-
Header() function.

 Say you wanted to set a cookie named foo with the string value bar. Connect
enables you to do this in one line of code by calling res.setHeader(). You can also set
the various options of a cookie, like its expiration date, as shown in the second set-
Header() call here:

var connect = require('connect');

var app = connect()
.use(function(req, res){

res.setHeader('Set-Cookie', 'foo=bar');
res.setHeader('Set-Cookie', 'tobi=ferret;

 ➥Expires=Tue, 08 Jun 2021 10:18:14 GMT');
res.end();

}).listen(3000);

If you check out the headers that this server sends back to the HTTP request by using
the --head flag of curl, you can see the Set-Cookie headers set as you would expect:

$ curl http://localhost:3000/ --head
HTTP/1.1 200 OK
Set-Cookie: foo=bar
Set-Cookie: tobi=ferret; Expires=Tue, 08 Jun 2021 10:18:14 GMT
Connection: keep-alive

That’s all there is to sending cookies with your HTTP response. You can store any kind
of text data in cookies, but it has become usual to store a single session cookie on the
client side so that you can have full user state on the server. This session technique is
encapsulated in the session() middleware, which you’ll learn about a little later in
this chapter.

 Another extremely common need in web application development is parsing
incoming request bodies. Next we’ll look at the bodyParser() middleware and how it
will make your life as a Node developer easier.

150 CHAPTER 7 Connect’s built-in middleware

7.1.2 bodyParser(): parsing request bodies

A common need for all kinds of web applications is accepting input from the user.
Let’s say you wanted to accept file uploads using the <input type="file"> HTML tag.
One line of code adding the bodyParser() middleware component is all it takes. This
is an extremely helpful component, and it’s actually an aggregate of three other
smaller components: json(), urlencoded(), and multipart().

 The bodyParser() component provides a req.body property for your application
to use by parsing JSON, x-www-form-urlencoded, and multipart/form-data requests.
When the request is a multipart/form-data request, like a file upload, the req.files
object will also be available.

BASIC USAGE

Suppose you want to accept registration information for your application though a
JSON request. All you have to do is add the bodyParser() component before any
other middleware that will access the req.body object. Optionally, you can pass in an
options object that will be passed through to the subcomponents mentioned previ-
ously (json(), urlencoded(), and multipart()):

var app = connect()
.use(connect.bodyParser())
.use(function(req, res){

// .. do stuff to register the user ..
res.end('Registered new user: ' + req.body.username);

});

PARSING JSON DATA

The following curl(1) request could be used to submit data to your application, send-
ing a JSON object with the username property set to tobi:

$ curl -d '{"username":"tobi"}' -H "Content-Type: application/json"
 ➥http://localhost
Registered new user: tobi

PARSING REGULAR <FORM> DATA

Because bodyParser() parses data based on the Content-Type, the input format is
abstracted, so that all your application needs to care about is the resulting req.body
data object.

 For example, the following curl(1) command will send x-www-form-urlencoded
data, but the middleware will work as expected without any additional changes to the
code. It will provide the req.body.name property just as before:

$ curl -d name=tobi http://localhost
Registered new user: tobi

PARSING MULTIPART <FORM> DATA

The bodyParser parses multipart/form-data, typical for file uploads. It’s backed by
the third-party module formidable, discussed earlier in chapter 4.

 To test this functionality, you can log both the req.body and req.files objects to

inspect them:

151Middleware for parsing cookies, request bodies, and query strings

var app = connect()
.use(connect.bodyParser())
.use(function(req, res){

console.log(req.body);
console.log(req.files);
res.end('thanks!');

});

Now you can simulate a browser file upload using curl(1) with the -F or --form flag,
which expects the name of the field and the value. The following example will upload
a single image named photo.png, as well as the field name containing tobi:

$ curl -F image=@photo.png -F name=tobi http://localhost
thanks!

If you take a look at the output of the application, you’ll see something very similar to
the following example output, where the first object represents req.body and the sec-
ond is req.files. As you can see in the output, req.files.image.path would be
available to your application, and you could rename the file on disk, transfer the data
to a worker for processing, upload to a content delivery network, or do anything else
your app requires:

{ name: 'tobi' }
{ image:

{ size: 4,
path: '/tmp/95cd49f7ea6b909250abbd08ea954093',
name: 'photo.png',
type: 'application/octet-stream',
lastModifiedDate: Sun, 11 Dec 2011 20:52:20 GMT,
length: [Getter],
filename: [Getter],
mime: [Getter] } }

Now that we’ve looked at the body parsers, you may be wondering about security. If
bodyParser() buffers the json and x-www-form-urlencoded request bodies in mem-
ory, producing one large string, couldn’t an attacker produce extremely large bodies
of JSON to deny service to valid visitors? The answer to that is essentially yes, and this is
why the limit() middleware component exists. It allows you to specify what an
acceptable request body size is. Let’s take a look.

7.1.3 limit(): request body limiting

Simply parsing request bodies is not enough. Developers also need to properly classify
acceptable requests and place limits on them when appropriate. The limit() middle-
ware component is designed to help filter out huge requests, whether they are
intended to be malicious or not.

 For example, an innocent user uploading a photo may accidentally send an
uncompressed RAW image consisting of several hundred megabytes, or a malicious
user may craft a massive JSON string to lock up bodyParser(), and in turn V8’s
JSON.parse() method. You must configure your server to handle these situations.

152 CHAPTER 7 Connect’s built-in middleware

WHY IS LIMIT() NEEDED?
Let’s take a look at how a malicious user can render a vulnerable server useless. First,
create the following small Connect application named server.js, which does nothing
other than parse request bodies using the bodyParser() middleware component:

var connect = require('connect');

var app = connect()
.use(connect.bodyParser());

app.listen(3000);

Now create a file named dos.js, as shown in the following listing. You can see how a
malicious user could use Node’s HTTP client to attack the preceding Connect applica-
tion, simply by writing several megabytes of JSON data.

var http = require('http');

var req = http.request({
method: 'POST',
port: 3000,
headers: {

 'Content-Type': 'application/json'
 }
});

req.write('[');
var n = 300000;
while (n--) {

req.write('"foo",');
}
req.write('"bar"]');

req.end();

Fire up the server and run the attack script:

$ node server.js &
$ node dos.js

You’ll see that it can take V8 up to 10 seconds (depending on your hardware) to parse
such a large JSON string. This is bad, but thankfully it’s exactly what the limit() mid-
dleware component was designed to prevent.

BASIC USAGE

By adding the limit() component before bodyParser(), you can specify a maximum
size for the request body either by the number of bytes (like 1024) or by using a string
representation in any of the following ways: 1gb, 25mb, or 50kb.

 If you set limit() to 32kb and run the server and attack script again, you’ll see that
Connect will terminate the request at 32 kilobytes:

var app = connect()

Listing 7.1 Performing a denial of service attack on a vulnerable HTTP server

Notify server that you’re
sending JSON data

Begin sending a very
large array object

Array contains 300,000
“foo” string entries
.use(connect.limit('32kb'))

H

153Middleware for parsing cookies, request bodies, and query strings

.use(connect.bodyParser())

.use(hello);

http.createServer(app).listen(3000);

WRAPPING LIMIT() FOR GREATER FLEXIBILITY

Limiting every request body to a small size like 32kb is not feasible for applications
accepting user uploads, because most image uploads will be larger than this, and files
such as videos will definitely be much larger. But it may be a reasonable size for bodies
formatted as JSON or XML, for example.

 A good idea for applications needing to accept varying sizes of request bodies
would be to wrap the limit() middleware component in a function based on some
type of configuration. For example, you could wrap the component to specify a
Content-Type, as shown in the following listing.

function type(type, fn) {

return function(req, res, next){

var ct = req.headers['content-type'] || '';

if (0 != ct.indexOf(type)) {

return next();

}

fn(req, res, next);

}

}

var app = connect()

.use(type('application/x-www-form-urlencoded', connect.limit('64kb')))

.use(type('application/json', connect.limit('32kb')))

.use(type('image', connect.limit('2mb')))

.use(type('video', connect.limit('300mb')))

.use(connect.bodyParser())

.use(hello);

Another way to use this middleware would be to provide the limit option to body-
Parser(), and the latter could call limit() transparently.

 The next middleware component we’ll cover is a small, but very useful, component
that parses the request’s query strings for your application to use.

7.1.4 query(): query-string parser

You’ve already learned about bodyParser(), which can parse POST form requests, but
what about the GET form requests? That’s where the query() middleware component
comes in. It parses the query string, when one is present, and provides the req.query
object for your application to use. For developers coming from PHP, this is similar to
the $_GET associative array. Much like bodyParser(), query() should be placed
before any middleware that will use it.

Listing 7.2 Limiting body size based on a request's Content-Type

fn, in this case, is a
limit() instance

Returned middleware first
checks content-type

Middleware then invokes
passed-in limit() component

andles
forms,

JSON

Handles image uploads up to 2 MB

Handles video uploads
up to 300 MB

154 CHAPTER 7 Connect’s built-in middleware

BASIC USAGE

The following application utilizes the query() middleware component, which will
respond with a JSON representation of the query string sent by the request. Query-
string parameters are usually used for controlling the display of the data being sent
back:

var app = connect()
.use(connect.query())
.use(function(req, res, next){

res.setHeader('Content-Type', 'application/json');
res.end(JSON.stringify(req.query));

});

Suppose you were designing a music library app. You could offer a search engine and
use the query string to build up the search parameters, something like this: /song-
Search?artist=Bob%20Marley&track=Jammin. This example query would produce a
res.query object like this:

{ artist: 'Bob Marley', track: 'Jammin' }

The query() component uses the same third-party qs module as bodyParser(), so
complex query strings like ?images[]=foo.png&images[]=bar.png produce the fol-
lowing object:

{ images: ['foo.png', 'bar.png'] }

When no query-string parameters are given in the HTTP request, like /songSearch,
then req.query will default to an empty object:

{}

That’s all there is to it. Next we’ll look at the built-in middleware that covers core web
application needs, such as logging and sessions.

7.2 Middleware that implements core web
application functions
Connect aims to implement and provide built-in middleware for the most common
web application needs, so that they don’t need to be re-implemented over and over by
every developer. Core web application functions like logging, sessions, and virtual
hosting are all provided by Connect out of the box.

 In this section, you’ll learn about five very useful middleware components that
you’ll likely use in your applications:

 logger()—Provides flexible request logging
 favicon()—Takes care of the /favicon.ico request without you having to think

about it
 methodOverride()—Enables incapable clients to transparently overwrite

req.method

 vhost()—Sets up multiple websites on a single server (virtual hosting)

 session()—Manages session data

155Middleware that implements core web application functions

Up until now you’ve created your own custom logging middleware, but Connect pro-
vides a very flexible solution named logger(), so let’s explore that first.

7.2.1 logger(): logging requests

logger() is a flexible request-logging middleware component with customizable log
formats. It also has options for buffering log output to decrease disk writes, and for
specifying a log stream if you want to log to something other than the console, such as
a file or socket.

BASIC USAGE

To use Connect’s logger() component in your own application, invoke it as a func-
tion to return a logger() middleware instance, as shown in the following listing.

var connect = require('connect');

var app = connect()
.use(connect.logger())
.use(hello)
.listen(3000);

By default, the logger uses the following format, which is extremely verbose, but it
provides useful information about each HTTP request. This is similar to how other
web servers, such as Apache, create their log files:

':remote-addr - - [:date] ":method :url HTTP/:http-version" :status
 ➥:res[content-length] ":referrer" ":user-agent"'

Each of the :something pieces are tokens, and in an actual log entry they’d contain
real values from the HTTP request that’s being logged. For example, a simple curl(1)
request would generate a log line similar to the following:

127.0.0.1 - - [Wed, 28 Sep 2011 04:27:07 GMT]
➥"GET / HTTP/1.1" 200 - "-"
➥"curl/7.19.7 (universal-apple-darwin10.0)
➥libcurl/7.19.7 OpenSSL/0.9.8l zlib/1.2.3"

CUSTOMIZING LOG FORMATS

The most basic use of logger() doesn’t require any customization. But you may want
a custom format that records other information, or that’s less verbose, or that provides
custom output. To customize the log format, you pass a custom string of tokens. For
example, the following format would output something like GET /users 15 ms:

var app = connect()
.use(connect.logger(':method :url :response-time ms'))
.use(hello);

By default, the following tokens are available for use (note that the header names are
not case-sensitive):

 :req[header] ex: :req[Accept]

Listing 7.3 Using the logger() middleware component

With no arguments, default
logger options will be used

hello is hypothetical
middleware component
that responds with
“Hello World”
 :res[header] ex: :res[Content-Length]

156 CHAPTER 7 Connect’s built-in middleware

 :http-version

 :response-time

 :remote-addr

 :date

 :method

 :url

 :referrer

 :user-agent

 :status

Defining custom tokens is easy. All you have to do is provide a token name and call-
back function to the connect.logger.token function. For example, say you wanted to
log each request’s query string. You might define it like this:

var url = require('url');

connect.logger.token('query-string', function(req, res){
return url.parse(req.url).query;

});

logger() also comes with other predefined formats than the default one, such as
short and tiny. Another predefined format is dev, which produces concise output for
development, for situations when you’re usually the only user on the site and you don’t
care about the details of the HTTP requests. This format also color-codes the response
status codes by type: responses with a status code in the 200s are green, 300s are blue,
400s are yellow, and 500s are red. This color scheme makes it great for development.

 To use a predefined format, you simply provide the name to logger():

var app = connect()
.use(connect.logger('dev'))
.use(hello);

Now that you know how to format the logger’s output, let’s take a look at the options
you can provide to it.

LOGGER OPTIONS: STREAM, IMMEDIATE, AND BUFFER

As mentioned previously, you can use options to tweak how logger() behaves.
 One such option is stream, which allows you to pass a Node Stream instance that

the logger will write to instead of stdout. This would allow you to direct the logger out-
put to its own log file, independent of your server’s own output using a Stream
instance created from fs.createWriteStream.

 When you use these options, it's generally recommended to also include the format
property. The following example uses a custom format and logs to /var/log/
myapp.log with the append flag, so that the file isn’t truncated when the application
boots:

var fs = require('fs')

var log = fs.createWriteStream('/var/log/myapp.log', { flags: 'a' })

157Middleware that implements core web application functions

var app = connect()
.use(connect.logger({ format: ':method :url', stream: log }))
.use('/error', error)
.use(hello);

Another useful option is immediate, which writes the log line when the request is first
received, rather than waiting for the response. You might use this option if you’re writ-
ing a server that keeps its requests open for a long time, and you want to know when
the connection begins. Or you might use it for debugging a critical section of your
app. This means that tokens such as :status and :response-time can’t be used,
because they’re related to the response. To enable immediate mode, pass true for the
immediate value, as shown here:

var app = connect()
.use(connect.logger({ immediate: true }))
.use('/error', error)
.use(hello);

The third option available is buffer, which is useful when you want to minimize the
number of writes to the disk where your log file resides. This is especially useful if your
log file is being written over a network, and you want to minimize the amount of net-
work activity. The buffer option takes a numeric value specifying the interval in milli-
seconds between flushes of the buffer, or you can just pass true to use the default
interval.

 That’s it for logging! Next we’ll look at the favicon-serving middleware component.

7.2.2 favicon(): serving a favicon

A favicon is that tiny website icon your browser
displays in the address bar and bookmarks.
To get this icon, the browser makes a request
for a file at /favicon.ico. It’s usually best to
serve favicon files as soon as possible, so the
rest of your application can simply ignore
them. The favicon() middleware component
will serve Connect’s favicon by default (when
no arguments are passed to it). This favicon is
shown in figure 7.1.

BASIC USAGE

Typically favicon() is used at the very top of the stack, so even logging is ignored for
favicon requests. The icon is then cached in memory for fast subsequent responses.

 The following example shows favicon() requesting a custom .ico file by passing
the file path as the only argument:

connect()
.use(connect.favicon(__dirname + '/public/favicon.ico'))
.use(connect.logger())

Figure 7.1 Connect’s default favicon
.use(function(req, res) {

158 CHAPTER 7 Connect’s built-in middleware

res.end('Hello World!\n');
});

Optionally, you can pass in a maxAge argument to specify how long browsers should
cache the favicon in memory.

 Next we have another small but helpful middleware component: method-
Override(). It provides the means to fake the HTTP request method when client
capabilities are limited.

7.2.3 methodOverride(): faking HTTP methods

An interesting problem arises in the browser when you’re building a server that uti-
lizes special HTTP verbs, like PUT or DELETE. The browser <form> methods can only be
GET or POST, restricting you from using any other methods in your application.

 A common workaround is to add an <input type=hidden> with the value set to
the method name you want to use, and then have the server check that value and “pre-
tend” it’s the request method for this request. The methodOverride() middleware
component is the server-side half of this technique.

BASIC USAGE

By default, the HTML input name is _method, but you can pass a custom value to
methodOverride(), as shown in the following snippet:

connect()
.use(connect.methodOverride('__method__'))
.listen(3000)

To demonstrate how methodOverride() is implemented, let’s create a tiny application
to update user information. The application will consist of a single form that will
respond with a simple success message when the form is submitted by the browser and
processed by the server, as illustrated in figure 7.2.

Figure 7.2 Using
methodOverride() to simulate
a PUT request to update a form in
the browser

159Middleware that implements core web application functions

The application updates the user data through the use of two separate middleware
components. In the update function, next() is called when the request method is not
PUT. As mentioned previously, most browsers don’t respect the form attribute
method="put", so the application in the following listing won’t function properly.

var connect = require('connect');

function edit(req, res, next) {
if ('GET' != req.method) return next();
res.setHeader('Content-Type', 'text/html');
res.write('<form method="put">');
res.write('<input type="text" name="user[name]" value="Tobi" />');
res.write('<input type="submit" value="Update" />');
res.write('</form>');
res.end();

}

function update(req, res, next) {
if ('PUT' != req.method) return next();
res.end('Updated name to ' + req.body.user.name);

}

var app = connect()
.use(connect.logger('dev'))
.use(connect.bodyParser())
.use(edit)
.use(update);

app.listen(3000);

The update application needs to look something like listing 7.5. Here an additional
input with the name _method has been added to the form, and methodOverride() has
been added below the bodyParser() component because it references req.body to
access the form data.

var connect = require('connect');

function edit(req, res, next) {
if ('GET' != req.method) return next();
res.setHeader('Content-Type', 'text/html');
res.write('<form method="post">');
res.write('<input type="hidden" name="_method" value="put" />');
res.write('<input type="text" name="user[name]" value="Tobi" />');
res.write('<input type="submit" value="Update" />');
res.write('</form>');
res.end();

}

function update(req, res, next) {
if ('PUT' != req.method) return next();
res.end('Updated name to ' + req.body.user.name);

Listing 7.4 A broken user-update application

Listing 7.5 A user-update application with methodOverride() implemented
}

160 CHAPTER 7 Connect’s built-in middleware

var app = connect()
.use(connect.logger('dev'))
.use(connect.bodyParser())
.use(connect.methodOverride())
.use(edit)
.use(update)
.listen(3000);

ACCESSING THE ORIGINAL REQ.METHOD

methodOverride() alters the original req.method property, but Connect copies over
the original method, which you can always access with req.originalMethod. This
means the previous form would output values like these:

console.log(req.method);
// "PUT"

console.log(req.originalMethod);
// "POST"

This may seem like quite a bit of work for a simple form, but we promise this will be
more enjoyable when we discuss higher-level features from Express in chapter 8 and
templating in chapter 11.

 The next thing we’ll look at is vhost(), which is a small middleware component
for serving applications based on hostnames.

7.2.4 vhost(): virtual hosting

The vhost() (virtual host) middleware component is a simple, lightweight way to
route requests via the Host request header. This task is commonly performed by a
reverse proxy, which then forwards the request to a web server running locally on a
different port. The vhost() component does this in the same Node process by passing
control to a Node HTTP server associated with the vhost instance.

BASIC USAGE

Like all the middleware that Connect provides out of the box, a single line is all it
takes to get up and running with the vhost() component. It takes two arguments:
The first is the hostname string that this vhost instance will match against. The sec-
ond is the http.Server instance that will be used when an HTTP request with a match-
ing hostname is made (all Connect apps are subclasses of http.Server, so an
application instance will work as well).

var connect = require('connect');

var server = connect()
var app = require('./sites/expressjs.dev');

server.use(connect.vhost('expressjs.dev', app));

server.listen(3000);

In order to use the preceding ./sites/expressjs.dev module, it should assign the HTTP
server to module.exports as in the following example:
var http = require('http')

161Middleware that implements core web application functions

module.exports = http.createServer(function(req, res){
res.end('hello from expressjs.com\n');

});

USING MULTIPLE VHOST() INSTANCES

Like any other middleware, you can use vhost() more than once in an application to
map several hosts to their associated applications:

var app = require('./sites/expressjs.dev');
server.use(connect.vhost('expressjs.dev', app));

var app = require('./sites/learnboost.dev');
server.use(connect.vhost('learnboost.dev', app));

Rather than setting up the vhost() middleware manually like this, you could generate
a list of hosts from the filesystem. That’s shown in the following example, with the
fs.readdirSync() method returning an array of directory entries:

var connect = require('connect')
var fs = require('fs');

var app = connect()
var sites = fs.readdirSync('source/sites');

sites.forEach(function(site){
console.log(' ... %s', site);
app.use(connect.vhost(site, require('./sites/' + site)));

});

app.listen(3000);

The benefit of using vhost() instead of a reverse proxy is simplicity. It allows you to
manage all of your applications as a single unit. This is ideal for serving several smaller
sites, or for serving sites that are largely comprised of static content, but it also has the
downside that if one site causes a crash, all of your sites will be taken down (because
they all run in the same process).

 Next we’ll take a look at one of the most fundamental middleware components
that Connect provides: the session management component appropriately named
session(), which relies on cookieParser() for cookie signing.

7.2.5 session(): session management

In chapter 4, we explained that Node provides all the means to implement concepts
like sessions, but it doesn’t provide them out of the box. Following Node’s general
philosophy of having a small core and a large user-land, session management has
been left to be created as a third-party add-on to Node. And that’s exactly what the
session() middleware component is for.

 Connect’s session() component provides robust, intuitive, and community-
backed session management with numerous session stores ranging from the default
memory store to stores based on Redis, MongoDB, CouchDB, and cookies. In this sec-
tion we’ll look at setting up the middleware, working with session data, and utilizing

the Redis key/value store as an alternative session store.

162 CHAPTER 7 Connect’s built-in middleware

 First let’s set up the middleware and explore the options available.

BASIC USAGE

As previously mentioned, the session() middleware component requires signed
cookies to function, so you should use cookieParser() somewhere above it and pass a
secret.

 Listing 7.6 implements a small pageview count application with minimal setup,
where no options are passed to session() at all and the default in-memory data store
is used. By default, the cookie name is connect.sid and it’s set to be httpOnly, mean-
ing client-side scripts can’t access its value. But these are options you can tweak, as
you’ll soon see.

var connect = require('connect');

var app = connect()
.use(connect.favicon())
.use(connect.cookieParser('keyboard cat'))
.use(connect.session())
.use(function(req, res, next){

var sess = req.session;
if (sess.views) {

res.setHeader('Content-Type', 'text/html');
res.write('<p>views: ' + sess.views + '</p>');
res.end();
sess.views++;

} else {
sess.views = 1;
res.end('welcome to the session demo. refresh!');

}
});

app.listen(3000);

SETTING THE SESSION EXPIRATION DATE

Suppose you want sessions to expire in 24 hours, to send the session cookie only when
HTTPS is used, and to configure the cookie name. You might pass an object like the
one shown here:

var hour = 3600000;
var sessionOpts = {

key: 'myapp_sid',
cookie: { maxAge: hour * 24, secure: true }

};

...
.use(connect.cookieParser('keyboard cat'))
.use(connect.session(sessionOpts))

...

When using Connect (and, as you’ll see in the next chapter, “Express”) you’ll often set

Listing 7.6 A Connect pageview counter using sessions
maxAge, specifying a number of milliseconds from that point in time. This method of

163Middleware that implements core web application functions

expressing future dates is often written more intuitively, essentially expanding to new
Date(Date.now() + maxAge).

 Now that sessions are set up, let’s look at the methods and properties available
when working with session data.

WORKING WITH SESSION DATA

Connect’s session data management is very simple. The basic principle is that any
properties assigned to the req.session object are saved when the request is com-
plete; then they’re loaded on subsequent requests from the same user (browser). For
example, saving shopping cart information is as simple as assigning an object to the
cart property, as shown here:

req.session.cart = { items: [1,2,3] };

When you access req.session.cart on subsequent requests, the .items array will be
available. Because this is a regular JavaScript object, you can call methods on the
nested objects in subsequent requests, as in the following example, and they’ll be
saved as you expect:

req.session.cart.items.push(4);

One important thing to keep in mind is that this session object gets serialized as JSON
in between requests, so the req.session object has the same restrictions as JSON:
cyclic properties aren’t allowed, function objects can’t be used, Date objects can’t be
serialized correctly, and so on. Keep those restrictions in mind when using the session
object.

 Connect will save session data for you automatically, but internally it’s calling the
Session#save([callback]) method, which is also available as a public API. Two addi-
tional helpful methods are Session#destroy() and Session#regenerate(), which
are often used when authenticating a user to prevent session fixation attacks. When
you build applications with Express in later chapters, you’ll use these methods for
authentication.

 Now let’s move on to manipulating session cookies.

MANIPULATING SESSION COOKIES

Connect allows you to provide global cookie settings for sessions, but it’s also possible
to manipulate a specific cookie via the Session#cookie object, which defaults to the
global settings.

 Before you start tweaking properties, let’s extend the previous session application
to inspect the session cookie properties by writing each property into individual <p>
tags in the response HTML, as shown here:

...
res.write('<p>views: ' + sess.views + '</p>');
res.write('<p>expires in: ' + (sess.cookie.maxAge / 1000) + 's</p>');
res.write('<p>httpOnly: ' + sess.cookie.httpOnly + '</p>');
res.write('<p>path: ' + sess.cookie.path + '</p>');

res.write('<p>domain: ' + sess.cookie.domain + '</p>');

164 CHAPTER 7 Connect’s built-in middleware

res.write('<p>secure: ' + sess.cookie.secure + '</p>');
...

Connect allows all of the cookie properties, such as expires, httpOnly, secure, path,
and domain, to be altered programmatically on a per-session basis. For example, you
could expire an active session in 5 seconds like this:

req.session.cookie.expires = new Date(Date.now() + 5000);

An alternative, more intuitive API for expiry is the .maxAge accessor, which allows you
to get and set the value in milliseconds relative to the current time. The following will
also expire the session in 5 seconds:

req.session.cookie.maxAge = 5000;

The remaining properties, domain, path, and secure, limit the cookie scope, restricting
it by domain, path, or to secure connections, whereas httpOnly prevents client-side
scripts from accessing the cookie data. These properties can be manipulated in the
same manner:

req.session.cookie.path = '/admin';
req.session.cookie.httpOnly = false;

So far you’ve been using the default memory store to store session data, so let’s take a
look at how you can plug in alternative data stores.

SESSION STORES

The built-in connect.session.MemoryStore is a simple, in-memory data store, which
is ideal for running application tests because no other dependencies are necessary.
But during development and in production, it’s best to have a persistent, scalable
database backing your session data.

 Just about any database can act as a session store, but low-latency key/value stores
work best for such volatile data. The Connect community has created several session
stores for databases, including CouchDB, MongoDB, Redis, Memcached, PostgreSQL,
and others.

 Here you’ll use Redis with the connect-redis module. In chapter 5 you learned
about interacting with Redis using the node_redis module. Now you’ll learn how to
use Redis to store your session data in Connect. Redis is a good backing store because
it supports key expiration, it provides great performance, and it’s easy to install.

 You should have Redis installed and running from chapter 5, but try invoking the
redis-server command just to be sure:

$ redis-server
[11790] 16 Oct 16:11:54 * Server started, Redis version 2.0.4
[11790] 16 Oct 16:11:54 * DB loaded from disk: 0 seconds
[11790] 16 Oct 16:11:54 * The server is now ready to accept
 ➥connections on port 6379
[11790] 16 Oct 16:11:55 - DB 0: 522 keys (0 volatile) in 1536 slots HT.

165Middleware that handles web application security

Next, you need to install connect-redis by adding it to your package.json file and run-
ning npm install, or by executing npm install connect-redis directly. The connect-
redis module exports a function that should be passed connect, as shown here:

var connect = require('connect')
var RedisStore = require('connect-redis')(connect);

var app = connect()
.use(connect.favicon())
.use(connect.cookieParser('keyboard cat'))
.use(connect.session({ store: new RedisStore({ prefix: 'sid' }) }))

...

Passing the connect reference to connect-redis allows it to inherit from connect
.session.Store.prototype. This is important because in Node a single process may
use multiple versions of a module simultaneously; by passing your specific version of
Connect, you can be sure that connect-redis uses the proper copy.

 The instance of RedisStore is passed to session() as the store value, and any
options you want to use, such as a key prefix for your sessions, can be passed to the
RedisStore constructor.

 Whew! session was a lot to cover, but that finishes up all the core concept middle-
ware. Next we’ll go over the built-in middleware that handles web application security.
This is a very important subject for applications needing to secure their data.

7.3 Middleware that handles web application security
As we’ve stated many times, Node’s core API is intentionally low-level. This means it
provides no built-in security or best practices when it comes to building web applica-
tions. Fortunately, Connect steps in to implement these security practices for use in
your Connect applications.

 This section will teach you about three more of Connect’s built-in middleware
components, this time with a focus on security:

 basicAuth()—Provides HTTP Basic authentication for protecting data
 csrf()—Implements protection against cross-site request forgery (CSRF)

attacks
 errorHandler()—Helps you debug during development

First, basicAuth() implements HTTP Basic authentication for safeguarding restricted
areas of your application.

7.3.1 basicAuth(): HTTP Basic authentication

In chapter 6’s section 6.4, you created a crude Basic authentication middleware com-
ponent. Well, it turns out that Connect provides a real implementation of this out of
the box. As previously mentioned, Basic authentication is a very simple HTTP authen-
tication mechanism, and it should be used with caution because user credentials can
be trivial for an attacker to intercept unless Basic authentication is served over HTTPS.

166 CHAPTER 7 Connect’s built-in middleware

That being said, it can be useful for adding quick and dirty authentication to a small
or personal application.

 When your application has the basicAuth() component in use, web browsers will
prompt for credentials the first time the user attempts to connect to your application,
as shown in figure 7.3.

BASIC USAGE

The basicAuth() middleware component provides three means of validating creden-
tials. The first is to pass it a single username and password, as shown here:

var app = connect()
.use(connect.basicAuth('tj', 'tobi'));

PROVIDING A CALLBACK FUNCTION

The second way of validating credentials is to pass basicAuth() a callback, which must
return true in order to succeed. This is useful for checking the credentials against a
hash:

var users = {
tobi: 'foo',
loki: 'bar',
jane: 'baz'

};

var app = connect()
.use(connect.basicAuth(function(user, pass){

return users[user] === pass;
});

PROVIDING AN ASYNCHRONOUS CALLBACK FUNCTION

The final option is similar, except this time a callback is passed to basicAuth() with
three arguments defined, which enables the use of asynchronous lookups. This is use-
ful when authenticating from a file on disk, or when querying from a database.

var app = connect();

app.use(connect.basicAuth(function(user, pass, callback){
User.authenticate({ user: user, pass: pass }, gotUser);

Listing 7.7 A Connect basicAuth middleware component doing asynchronous lookups

Figure 7.3 Basic
authentication prompt

Performs a
database
validation
function

167Middleware that handles web application security

function gotUser(err, user) {
if (err) return callback(err);
callback(null, user);

}
}));

AN EXAMPLE WITH CURL(1)
Suppose you want to restrict access to all requests coming to your server. You might set
up the application like this:

var connect = require('connect');

var app = connect()
.use(connect.basicAuth('tobi', 'ferret'))
.use(function (req, res) {

res.end("I'm a secret\n");
});

app.listen(3000);

Now try issuing an HTTP request to the server with curl(1), and you’ll see that you’re
unauthorized:

$ curl http://localhost -i
HTTP/1.1 401 Unauthorized
WWW-Authenticate: Basic realm="Authorization Required"
Connection: keep-alive
Transfer-Encoding: chunked

Unauthorized

Issuing the same request with HTTP Basic authorization credentials (notice the begin-
ning of the URL) will provide access:

$ curl --user tobi:ferret http://localhost -i
HTTP/1.1 200 OK
Date: Sun, 16 Oct 2011 22:42:06 GMT
Cache-Control: public, max-age=0
Last-Modified: Sun, 16 Oct 2011 22:41:02 GMT
ETag: "13-1318804862000"
Content-Type: text/plain; charset=UTF-8
Accept-Ranges: bytes
Content-Length: 13
Connection: keep-alive

I'm a secret

Continuing on with the security theme of this section, let’s look at the csrf() middle-
ware component, which is designed to help protect against cross-site request forgery
attacks.

7.3.2 csrf(): cross-site request forgery protection

Cross-site request forgery (CSRF) is a form of attack that exploits the trust that a web
browser has in a site. The attack works by having an authenticated user on your

Runs asynchronous
callback when database
has respondedProvides basicAuth()

callback with user
object from database

168 CHAPTER 7 Connect’s built-in middleware

application visit a different site that an attacker has either created or compromised,
and then making requests on the user’s behalf without them knowing about it.

 This is a complicated attack, so let’s go through it with an example. Suppose that
in your application the request DELETE /account will trigger a user’s account to be
destroyed (though only while the user is logged in). Now suppose that user visits a
forum that happens to be vulnerable to CSRF. An attacker could post a script that
issues the DELETE /account request, thus destroying the user’s account. This is a bad
situation for your application to be in, and the csrf() middleware component can
help protect against such an attack.

 The csrf() component works by generating a 24-character unique ID, the authen-
ticity token, and assigning it to the user’s session as req.session._csrf. This token can
then be included as a hidden form input named _csrf, and the CSRF component can
validate the token on submission. This process is repeated for each interaction.

BASIC USAGE

To ensure that csrf() can access req.body._csrf (the hidden input value) and
req.session._csrf, you’ll want to make sure that you add the csrf() below body-
Parser() and session(), as shown in the following example:

connect()
.use(connect.bodyParser())
.use(connect.cookieParser('secret'))
.use(connect.session())
.use(connect.csrf());

Another aspect of web development is ensuring verbose logs and detailed error report-
ing are available both in production and development environments. Let’s look at the
errorHandler() middleware component, which is designed to do exactly that.

7.3.3 errorHandler(): development error handling

The errorHandler() middleware component bundled with Connect is ideal for devel-
opment, providing verbose HTML, JSON, and plain-text error responses based on the
Accept header field. It’s meant for use during development and shouldn’t be part of
the production configuration.

BASIC USAGE

Typically this component should be the last used so it can catch all errors:

var app = connect()
.use(connect.logger('dev'))
.use(function(req, res, next){

setTimeout(function () {
next(new Error('something broke!'));

}, 500);
})

.use(connect.errorHandler());

169Middleware that handles web application security

RECEIVING AN HTML ERROR RESPONSE

If you view any page in your browser with the setup shown here, you’ll see a Connect
error page like the one shown in figure 7.4, displaying the error message, the
response status, and the entire stack trace.

RECEIVING A PLAIN-TEXT ERROR RESPONSE

Now suppose you’re testing an API built with Connect. It’s far from ideal to respond
with a large chunk of HTML, so by default errorHandler() will respond with text/
plain, which is ideal for command-line HTTP clients such as curl(1). This is illus-
trated in the following stdout:

$ curl http://localhost/
Error: something broke!

at Object.handle (/Users/tj/Projects/node-in-action/source
 ➥/connect-middleware-errorHandler.js:12:10)

at next (/Users/tj/Projects/connect/lib/proto.js:179:15)
at Object.logger [as handle] (/Users/tj/Projects/connect

 ➥/lib/middleware/logger.js:155:5)
at next (/Users/tj/Projects/connect/lib/proto.js:179:15)
at Function.handle (/Users/tj/Projects/connect/lib/proto.js:192:3)
at Server.app (/Users/tj/Projects/connect/lib/connect.js:53:31)
at Server.emit (events.js:67:17)
at HTTPParser.onIncoming (http.js:1134:12)
at HTTPParser.onHeadersComplete (http.js:108:31)
at Socket.ondata (http.js:1029:22)

Figure 7.4 Connect’s default errorHandler() middleware as displayed in a
web browser

170 CHAPTER 7 Connect’s built-in middleware

RECEIVING A JSON ERROR RESPONSE

If you send an HTTP request that has the Accept: application/json HTTP header,
you’ll get the following JSON response:

$ curl http://localhost/ -H "Accept: application/json"
{"error":{"stack":"Error: something broke!\n
 ➥at Object.handle (/Users/tj/Projects/node-in-action
 ➥/source/connect-middleware-errorHandler.js:12:10)\n
 ➥at next (/Users/tj/Projects/connect/lib/proto.js:179:15)\n
 ➥at Object.logger [as handle] (/Users/tj/Projects
 ➥/connect/lib/middleware/logger.js:155:5)\n
 ➥at next (/Users/tj/Projects/connect/lib/proto.js:179:15)\n
 ➥at Function.handle (/Users/tj/Projects/connect/lib/proto.js:192:3)\n
 ➥at Server.app (/Users/tj/Projects/connect/lib/connect.js:53:31)\n
 ➥at Server.emit (events.js:67:17)\n
 ➥at HTTPParser.onIncoming (http.js:1134:12)\n
 ➥at HTTPParser.onHeadersComplete (http.js:108:31)\n
 ➥at Socket.ondata (http.js:1029:22)","message":"something broke!"}}

We’ve added additional formatting to the JSON response, so it’s easier to read on the
page, but when Connect sends the JSON response, it gets compacted nicely by
JSON.stringify().

 Are you feeling like a Connect security guru now? Maybe not yet, but you should
have enough of the basics down to make your applications secure, all using Connect’s
built-in middleware. Now let’s move on to a very common web application function:
serving static files.

7.4 Middleware for serving static files
Serving static files is another requirement common to many web applications that’s
not provided by Node’s core. Fortunately, Connect has you covered here as well.

 In this section, you’ll learn about three more of Connect’s built-in middleware
components, this time focusing on serving files from the filesystem, much like regular
HTTP servers do:

 static()—Serves files from the filesystem from a given root directory
 compress()—Compresses responses, ideal for use with static()
 directory()—Serves pretty directory listings when a directory is requested

First we’ll show you how to serve static files with a single line of code using the static
component.

7.4.1 static(): static file serving

Connect’s static() middleware component implements a high-performance, flexi-
ble, feature-rich static file server supporting HTTP cache mechanisms, Range requests,
and more. Even more important, it includes security checks for malicious paths, disal-
lows access to hidden files (beginning with a .) by default, and rejects poison null
bytes. In essence, static() is a very secure and compliant static file-serving middle-

ware component, ensuring compatibility with the various HTTP clients out there.

171Middleware for serving static files

BASIC USAGE

Suppose your application follows the typical scenario of serving static assets from a
directory named ./public. This can be achieved with a single line of code:

app.use(connect.static('public'));

With this configuration, static() will check for regular files that exist in ./public/
based on the request URL. If a file exists, the response’s Content-Type field value will
be defaulted based on the file’s extension, and the data will be transferred. If the
requested path doesn’t represent a file, the next() callback will be invoked, allowing
subsequent middleware (if any) to handle the request.

 To test it out, create a file named ./public/foo.js with console.log('tobi'), and
issue a request to the server using curl(1) with the -i flag, telling it to print the HTTP
headers. You’ll see that the HTTP cache-related header fields are set appropriately, the
Content-Type reflects the .js extension, and the content is transferred:

$ curl http://localhost/foo.js -i
HTTP/1.1 200 OK
Date: Thu, 06 Oct 2011 03:06:33 GMT
Cache-Control: public, max-age=0
Last-Modified: Thu, 06 Oct 2011 03:05:51 GMT
ETag: "21-1317870351000"
Content-Type: application/javascript
Accept-Ranges: bytes
Content-Length: 21
Connection: keep-alive

console.log('tobi');

Because the request path is used as is, files nested within directories are served as
you’d expect. For example, you might have a GET /javascripts/jquery.js request
and a GET /stylesheets/app.css request on your server, which would serve the files
./public/javascripts/jquery.js and ./public/stylesheets/app.css, respectively.

USING STATIC() WITH MOUNTING

Sometimes applications prefix pathnames with /public, /assets, /static, and so on.
With the mounting concept that Connect implements, serving static files from multi-
ple directories is simple. Just mount the app at the location you want. As mentioned in
chapter 6, the middleware itself has no knowledge that it’s mounted, because the pre-
fix is removed.

 For example, a request to GET /app/files/js/jquery.js with static() mounted
at /app/files will appear to the middleware as GET /js/jquery. This works out well for
the prefixing functionality because /app/files won’t be part of the file resolution:

app.use('/app/files', connect.static('public'));

The original request of GET /foo.js won’t work anymore, because the middleware
isn’t invoked unless the mount point is present, but the prefixed version GET /app/
files/foo.js will transfer the file:

172 CHAPTER 7 Connect’s built-in middleware

$ curl http://localhost/foo.js
Cannot get /foo.js

$ curl http://localhost/app/files/foo.js
console.log('tobi');

ABSOLUTE VS. RELATIVE DIRECTORY PATHS

Keep in mind that the path passed into the static() component is relative to the cur-
rent working directory. That means passing in "public" as your path will essentially
resolve to process.cwd() + "public".

 Sometimes, though, you may want to use absolute paths when specifying the base
directory, and the __dirname variable helps with that:

app.use('/app/files', connect.static(__dirname + '/public'));

SERVING INDEX.HTML WHEN A DIRECTORY IS REQUESTED

Another useful feature of static() is its ability to serve index.html files. When a
request for a directory is made and an index.html file lives in that directory, it will be
served.

 Now that you can serve static files with a single line of code, let’s take a look at how
you can compress the response data using the compress() middleware component to
decrease the amount of data being transferred.

7.4.2 compress(): compressing static files

The zlib module provides developers with mechanisms for compressing and decom-
pressing data with gzip and deflate. Connect 2.0 and above provide zlib at the
HTTP server level for compressing outgoing data with the compress() middleware
component.

 The compress() component autodetects accepted encodings via the Accept-
Encoding header field. If this field isn’t present, the identity encoding is used, mean-
ing the response is untouched. Otherwise, if the field contains gzip, deflate, or both,
the response will be compressed.

BASIC USAGE

You should generally add compress() high in the Connect stack, because it wraps the
res.write() and res.end() methods.

 In the following example, the static files served will support compression:

var connect = require('connect');

var app = connect()
.use(connect.compress())
.use(connect.static('source'));

app.listen(3000);

In the snippet that follows, a small 189-byte JavaScript file is served. By default,
curl(1) doesn’t send the Accept-Encoding field, so you receive plain text:

$ curl http://localhost/script.js -i

HTTP/1.1 200 OK

173Middleware for serving static files

Date: Sun, 16 Oct 2011 18:30:00 GMT
Cache-Control: public, max-age=0
Last-Modified: Sun, 16 Oct 2011 18:29:55 GMT
ETag: "189-1318789795000"
Content-Type: application/javascript
Accept-Ranges: bytes
Content-Length: 189
Connection: keep-alive

console.log('tobi');
console.log('loki');
console.log('jane');
console.log('tobi');
console.log('loki');
console.log('jane');
console.log('tobi');
console.log('loki');
console.log('jane');

The following curl(1) command adds the Accept-Encoding field, indicating that it’s
willing to accept gzip-compressed data. As you can see, even for such a small file, the
data transferred is reduced considerably because the data is quite repetitive:

$ curl http://localhost/script.js -i -H "Accept-Encoding: gzip"
HTTP/1.1 200 OK
Date: Sun, 16 Oct 2011 18:31:45 GMT
Cache-Control: public, max-age=0
Last-Modified: Sun, 16 Oct 2011 18:29:55 GMT
ETag: "189-1318789795000"
Content-Type: application/javascript
Accept-Ranges: bytes
Content-Encoding: gzip
Vary: Accept-Encoding
Connection: keep-alive
Transfer-Encoding: chunked

K??+??I???O?P/?O?T??JF?????J?K???v?!?_?

You could try the same example with Accept-Encoding: deflate.

USING A CUSTOM FILTER FUNCTION

By default, compress() supports the MIME types text/*, */json, and */javascript,
as defined in the default filter function:

exports.filter = function(req, res){
var type = res.getHeader('Content-Type') || '';
return type.match(/json|text|javascript/);

};

To alter this behavior, you can pass a filter in the options object, as shown in the fol-
lowing snippet, which will only compress plain text:

function filter(req) {
var type = req.getHeader('Content-Type') || '';
return 0 == type.indexOf('text/plain');
}

174 CHAPTER 7 Connect’s built-in middleware

connect()
.use(connect.compress({ filter: filter }))

SPECIFYING COMPRESSION AND MEMORY LEVELS

Node’s zlib bindings provide options for tweaking performance and compression
characteristics, and they can also be passed to the compress() function.

 In the following example, the compression level is set to 3 for less but faster com-
pression, and memLevel is set to 8 for faster compression by using more memory.
These values depend entirely on your application and the resources available to it.
Consult Node’s zlib documentation for details:

connect()
.use(connect.compress({ level: 3, memLevel: 8 }))

Next is the directory() middleware component, which helps static() to serve
directory listings in all kinds of formats.

7.4.3 directory(): directory listings

Connect’s directory() is a small directory-listing middleware component that pro-
vides a way for users to browse remote files. Figure 7.5 illustrates the interface pro-
vided by this component, complete with a search input field, file icons, and clickable
breadcrumbs.

Figure 7.5 Serving directory listings with Connect’s directory()
middleware component

175Summary

BASIC USAGE

This component is designed to work with static(), which will perform the actual file
serving; directory() simply serves the listings. The setup can be as simple as the fol-
lowing snippet, where the request GET / serves the ./public directory:

var connect = require('connect');

var app = connect()
.use(connect.directory('public'))
.use(connect.static('public'));

app.listen(3000);

USING DIRECTORY() WITH MOUNTING

Through the use of middleware mounting, you can prefix both the directory() and
static() middleware components to any path you like, such as GET /files in the fol-
lowing example. Here the icons option is used to enable icons, and hidden is enabled
for both components to allow the viewing and serving of hidden files:

var app = connect()
.use('/files', connect.directory('public',

 ➥{ icons: true, hidden: true }))
.use('/files', connect.static('public', { hidden: true }));

app.listen(3000);

It’s now possible to navigate through files and directories with ease.

7.5 Summary
The real power of Connect comes from its rich suite of bundled reusable middleware,
which provides implementations for common web application functions like session
management, robust static file serving, and compression of outgoing data, among oth-
ers. Connect’s goal is to give developers some functionality right out of the box, so
that everyone isn’t constantly rewriting the same pieces of code (possibly less effi-
ciently) for their own applications or frameworks.

 Connect is perfectly capable when used for building entire web applications using
combinations of middleware, as you’ve seen throughout this chapter. But Connect is
typically used as a building block for higher-level frameworks; for example, it doesn’t
provide any routing or templating helpers. This low-level approach makes Connect
great as a base for higher-level frameworks, which is exactly how Express integrates
with it.

 You might be thinking, why not just use Connect for building a web application?
That’s perfectly possible, but the higher-level Express web framework makes full use
of Connect’s functionality, while taking application development one step further.
Express makes application development quicker and more enjoyable with an elegant
view system, powerful routing, and several request- and response-related methods.
We’ll explore Express in the next chapter.

Express
Things are about to get even more fun. The Express web framework (http://
expressjs.com) is built on top of Connect, providing tools and structure that make
writing web applications easier, faster, and more fun. Express offers a unified view
system that lets you use nearly any template engine you want, plus simple utilities for
responding with various data formats, transferring files, routing URLs, and more.

 In comparison to application frameworks such as Django or Ruby on Rails,
Express is extremely small. The philosophy behind Express is that applications vary
greatly in their requirements and implementations, and a lightweight framework
allows you to craft exactly what you need and nothing more. Both Express and the
entire Node community are focused on smaller, more modular bits of functionality
rather than monolithic frameworks.

 Throughout this chapter, you’ll learn how to use Express to create applications
by building a photo sharing application from start to finish. During the build,
you’ll learn how to do the following:

This chapter covers
 Starting a new Express application

 Configuring your application

 Creating Express views

 Handling file uploads and downloads
176

http://expressjs.com
http://expressjs.com

177

 Generate the initial application structure
 Configure Express and your application
 Render views and integrate template engines
 Handle forms and file uploads
 Handle resource downloads

The final stock photo application will have a list view that will look like figure 8.1.

It’ll also include a form for uploading new photos, as shown in figure 8.2.

Figure 8.1 The photo list view

Figure 8.2 The photo upload view

178 CHAPTER 8 Express

Finally, it’ll have a mechanism for downloading photos, as shown in figure 8.3.
Let’s get started by looking at the application’s structure.

8.1 Generating the application skeleton
Express doesn’t force application structure on the developer—you can place routes in
as many files as you want, public assets in any directory you want, and so on. A minimal
Express application can be as small as the following listing, which implements a fully
functional HTTP server.

var express = require('express');
var app = express();

app.get('/', function(req, res){
res.send('Hello');

});

app.listen(3000);

The express(1) executable script bundled with Express can set up an application
skeleton for you. Using the generated application is a good way to get started if you’re
new to Express, as it sets up an application complete with templates, public assets, con-
figuration, and more.

 The default application skeleton that express(1) generates consists of only a few
directories and files, as shown in figure 8.4. This structure is designed to get develop-
ers up and running with Express in seconds, but the application’s structure is entirely
up to you and your team to create.

Listing 8.1 A minimal Express application

Figure 8.3 Downloading a file

Respond to any web
request to /

Send “Hello” as
response text

Listen on port 3000

179Generating the application skeleton

In this chapter’s example, we’ll use EJS templates, which are similar in structure to
HTML. EJS is similar to PHP, JSP (for Java), and ERB (for Ruby), where server-side
JavaScript is embedded in an HTML document and executed prior to being sent to the
client. We’ll look at EJS more closely in chapter 11.

 By the end of this chapter, you’ll have an application with a similar but expanded
structure, as shown in figure 8.5.

 In this section you’ll do the following:

 Install Express globally with npm
 Generate the application
 Explore the application and install dependencies

Let’s get started.

Figure 8.4 Default application skeleton structure using EJS templates

Figure 8.5 Final application structure

180 CHAPTER 8 Express

8.1.1 Installing the Express executable

First you’ll want to install Express globally with npm:

$ npm install -g express

Once it’s installed, you can use the --help flag to see the options available, as shown
in figure 8.6.

Some of these options will generate small portions of the application for you. For
example, you can specify a template engine to generate a dummy template file for the
chosen template engine. Similarly, if you specify a CSS preprocessor using the --css
option, a dummy template file will be generated for it. If you use the --sessions
option, session middleware will be enabled.

 Now that the executable is installed, let’s generate what will become the photo
application.

8.1.2 Generating the application

For this application, you’ll use the -e (or --ejs) flag to use the EJS templating engine.
Execute express -e photo.

 A fully functional application will be created in the photo directory. It will contain
a package.json file to describe the project and dependencies, the application file
itself, the public file directories, and a directory for routes (see figure 8.7).

8.1.3 Exploring the application

Let’s take a closer look at what was generated. Open the package.json file in your edi-
tor to see the application’s dependencies, as shown in figure 8.8. Express can’t guess
which version of the dependencies you’ll want, so it’s good practice to supply the
major, minor, and patch levels of the module so you don’t introduce any surprise
bugs. For example, "express": "3.0.0" is explicit and will provide you with identical

Figure 8.6 Express help
code on each installation.

181Generating the application skeleton

To add the latest version of a module, in this case EJS, you can pass npm the --save
flag on installation. Execute the following command, and then open package.json
again to see the change:

$ npm install ejs --save

Now look at the application file generated by express(1), shown in the following list-
ing. For now you’ll leave this file as is. You should be familiar with these middleware
components from the Connect chapter, but it’s worth taking a look at how the default
middleware configuration is set up.

var express = require('express')
, routes = require('./routes')

Listing 8.2 Generated Express application skeleton

Figure 8.7 Generating the Express application

Figure 8.8 Generated package.json contents
, user = require('./routes/user')

r

182 CHAPTER 8 Express

, http = require('http')
, path = require('path');

var app = express();

app.configure(function(){
app.set('port', process.env.PORT || 3000);
app.set('views', __dirname + '/views');
app.set('view engine', 'ejs');
app.use(express.favicon());
app.use(express.logger('dev'));
app.use(express.bodyParser());
app.use(express.methodOverride());
app.use(app.router);
app.use(express.static(path.join(__dirname, 'public')));

});

app.configure('development', function(){
app.use(express.errorHandler());

});

app.get('/', routes.index);
app.get('/users', user.list);

http.createServer(app).listen(app.get('port'), function(){
console.log("Express server listening on port " + app.get('port'));

});

You’ve got the package.json and app.js files, but the application won’t run yet because
the dependencies haven’t been installed. Whenever you generate a package.json file
from express(1), you’ll need to install the dependencies (as shown in figure 8.9). Exe-
cute npm install to do this, and then execute node app.js to fire up the application.
Check out the application by visiting http://localhost:3000 in your browser. The
default application looks like the one in figure 8.10.

 Now that you’ve seen the generated application, let’s dive into the environment-
specific configuration.

Serve default favicon
Output development-
friendly colored logsParse

equest
bodies

Serve static files
from ./public

Display styled HTML error
pages in development

Specify application routes

Figure 8.9 Install dependencies and run application

183Configuring Express and your application

8.2 Configuring Express and your application
Your application’s requirements will depend on the environment in which it’s running.
For example, you may want verbose logging when your product’s in development, but
a leaner set of logs and gzip compression when it’s in production. In addition to con-
figuring environment-specific functionality, you may want to define some application-
level settings so Express knows what template engine you’re using and where it can
find the templates. Express also lets you define custom configuration key/value pairs.

 Express has a minimalistic environment-driven configuration system, consisting of
five methods, all driven by the NODE_ENV environment variable:

 app.configure()

 app.set()

 app.get()

 app.enable()

 app.disable()

In this section, you’ll see how to use the
configuration system to customize how
Express behaves, as well as how to use it
for your own purposes throughout
development.

 Let’s take a closer look at what “envi-
ronment-based configuration” means.

8.2.1 Environment-based configuration

Although the NODE_ENV environment variable originated in Express, many other Node
frameworks have adopted it as a means to notify the Node application which environ-
ment it’s operating within, defaulting to development.

 As shown in listing 8.3, the app.configure() method accepts optional strings rep-
resenting the environment, and a function. When the environment matches the string

Figure 8.10 Default Express application

Setting environment variables
To set an environment variable in UNIX
systems, you can use this command:
$ NODE_ENV=production node app

In Windows, you can use this code:
$ set NODE_ENV=production
$ node app

These environment variables will be
available in your application on the
process.env object.
passed, the callback is immediately invoked; when only a function is given, it will be

184 CHAPTER 8 Express

invoked for all environments. These environment names are completely arbitrary. For
example, you may have development, stage, test, and production, or prod for short.

app.configure(function(){
app.set('views', __dirname + '/views');
app.set('view engine', 'ejs');
...

});

app.configure('development', function(){
app.use(express.errorHandler());

});

To illustrate that app.configure() is purely sugar, the following listing would be
equivalent to the preceding one. You’re not forced to use this feature; for example,
you could load the configuration from JSON or YAML.

var env = process.env.NODE_ENV || 'development';

app.set('views', __dirname + '/views');
app.set('view engine', 'ejs');
...

if ('development' == env) {
app.use(express.errorHandler());

}

Express uses the configuration system internally, allowing you to customize how
Express behaves, but it’s also available for your own use. For the application you’re
building in this chapter, you’ll only use a single setting, photos, whose value is the
directory that will be used to store the uploaded images. This value could be changed
in production to permit saving and serving photos from a different volume with more
disk space:

app.configure(function(){
...
app.set('photos', __dirname + '/public/photos');
...

});

app.configure('production', function(){
...
app.set('photos', '/mounted-volume/photos');
...

});

Express also provides Boolean variants of app.set() and app.get(). For example,
app.enable(setting) is equivalent to app.set(setting, true), and app.enabled
(setting) can be used to check if the value was enabled. The methods app.disable
(setting) and app.disabled(setting) complement the truthful variants.

Listing 8.3 Using app.configure() to set environment-specific options

Listing 8.4 Using conditionals to set environment-specific options

All environments

Development only

Default to
“development”

All environments

Development only, using if
statement instead of app.configure

185Rendering views

 Now that you’ve seen how to take advantage of the configuration system for your
own use, let’s look at rendering views in Express.

8.3 Rendering views
In this chapter’s application, we’ll utilize EJS
templates, though as previously mentioned
almost any template engine in the Node
community can be used. If you’re not famil-
iar with EJS, don’t worry. It’s similar to tem-
plating languages found in other languages
(PHP, JSP, ERB). We’ll cover some basics of
EJS in this chapter, but we’ll discuss EJS and
several other template engines in greater
detail in chapter 11.

 Whether it’s rendering an entire HTML
page, an HTML fragment, or an RSS feed, rendering views is crucial for nearly every
application. The concept is simple: you pass data to a view, and that data is trans-
formed, typically to HTML for web applications. You’re likely familiar with the idea of
views, because most frameworks provide similar functionality; figure 8.11 illustrates
how a view forms a new representation for the data.

 Express provides two ways to render views: at the application level with app
.render(), and at the request or response level with res.render(), which uses the for-
mer internally. In this chapter, you’ll only use res.render(). If you look in ./routes/
index.js, a single function is exported: the index function. This function invokes
res.render() in order to render the ./views/index.ejs template, as shown in the fol-
lowing code:

exports.index = function(req, res){
res.render('index', { title: 'Express' });

};

In this section, you’ll see how to do the following:

 Configure the Express view system
 Look up view files
 Expose data when rendering views

Before looking at res.render() more closely, let’s configure the view system.

8.3.1 View system configuration

Configuring the Express view system is simple. But even though express(1) gener-
ated the configuration for you, it’s still useful to know what’s going on behind the
scenes so you can make changes. We’ll focus on three areas:

 Adjusting the view lookup
 Configuring the default template engine
 Enabling view caching to reduce file I/O

Figure 8.11 HTML template plus data =
HTML view of data
First up is the views setting.

186 CHAPTER 8 Express

CHANGING THE LOOKUP DIRECTORY

The following snippet shows the views setting that the Express executable created:

app.set('views', __dirname + '/views');

This specifies the directory that Express will use during view lookup. It’s a good idea
to use __dirname so that your application isn’t dependent on the current working
directory being the application’s root.

The next setting is view engine.

DEFAULT TEMPLATE ENGINE

When express(1) generated the application, the view engine setting was assigned
ejs because EJS was the template engine selected by the -e command-line option.
This setting enables you to render index rather than index.ejs. Otherwise Express
requires the extension in order to determine which template engine is to be used.

 You might be wondering why Express even considers extensions. The use of exten-
sions allows you to use multiple template engines within a single Express application,
while providing a clean API for common use cases, because most applications will use
one template engine.

 Suppose, for example, you find writing RSS feeds easier with another template
engine, or perhaps you’re migrating from one template engine to another. You might
use Jade as the default, and EJS for the /feed route, as indicated in the following list-
ing by the .ejs extension.

app.set('view engine', 'jade');

app.get('/', function(){
res.render('index');

});

app.get('/feed', function(){
res.render('rss.ejs')

;
});

KEEPING PACKAGE.JSON IN SYNC Keep in mind that any additional template
engines you wish to use should be added to your package.json dependencies

Listing 8.5 Specifying the template engine using a file extension

__dirname
__dirname (with two leading underscores) is a global variable in Node that identifies
the directory in which the currently running file exists. Often in development this direc-
tory will be the same as your current working directory (CWD), but in production the
Node executable may run from another directory. Using __dirname helps keep paths
consistent across environments.

.jade is assumed
because it’s set as
view engine

Because .ejs extension is
provided, use EJS template engine
object.

187Rendering views

VIEW CACHING

The view cache setting is enabled by default in the production environment and pre-
vents subsequent render() calls from performing disk I/O. The contents of the tem-
plates are saved in memory, greatly improving performance. The side effect of
enabling this setting is that you can no longer edit the template files without restarting
the server, which is why it’s disabled in development. If you’re running a staging envi-
ronment, you’ll likely want to enable this option.

 As illustrated in figure 8.12, when view cache is disabled, the template is read
from disk on every request. This is what allows you to make changes to a template
without restarting the application. When view cache is enabled, the disk is only hit
once per template.

1

2

1

2

Request Caching disabled

Request
Disk

res.render('user', {name: 'Tobi'})

Response

Cache

Request
Disk

res.render('user', {name: 'Tobi'})

Response

Cache

Request
Disk

res.render('user', {name: 'Tobi'})

Response

Cache

Request
Disk

res.render('user', {name: 'Tobi'})

Response

Cache

Request Caching enabled

Figure 8.12 The view cache setting

188 CHAPTER 8 Express

You’ve seen how the view-caching mechanism helps improve performance in a nonde-
velopment environment. Now let’s see how Express locates views in order to render
them.

8.3.2 View lookup

Now that you know how to configure the view system, let’s take a look at how Express
looks up the view, which is where the target view file is located. Don’t worry about cre-
ating these templates yet; you’ll do that later.

 The process of looking up a view is similar to how Node’s require() works. When
res.render() or app.render() is invoked, Express will first check whether a file exists
at an absolute path. Next, Express will look relative to the views directory setting dis-
cussed in section 8.3.1. Finally, Express will try an index file.

 This process is represented as a flowchart in figure 8.13.

View render
requested

Found?
Yes

Yes

Yes

No

No

No

Processing view
using file

Return error

Does an index file exist?

Does a file exist relative to the
“views” setting directory?

Found?

Found?

Does a file exist with an absolute path?

Figure 8.13 Express view lookup process

189Rendering views

Because ejs is set as the default engine, the render call omits the .ejs extension, but
it’s still resolved correctly.

 As the application evolves, you’ll need more views, and sometimes several for a sin-
gle resource. Using view lookup can help with organization—for example, you can
use subdirectories related to the resource and create views within them, as illustrated
by the photos directory in figure 8.14.

 Adding subdirectories allows you to eliminate redundant parts of names such as
upload-photo.ejs and show-photo.ejs. Express will then add the view engine exten-
sion and resolve the view as ./views/photos/upload.ejs.

 Express will check to see if a file named index resides in that directory. When files
are named with a pluralized resource, such as photos, this typically implies a resource
listing. An example is res.render('photos') in figure 8.14.

 Now that you know how Express looks up views, let’s start creating the photo list-
ings and put this feature to work.

8.3.3 Exposing data to views

Express provides several mechanisms for exposing local variables to the views being
rendered, but first you need something to render. In this section, you’ll use some
dummy data to populate the initial photo listing view.

 Before getting databases involved, let’s create this placeholder data. Create a file
named ./routes/photos.js, which will contain the photo-specific routes. Now create a
photos array in this same file that will act as the faux database. This is shown in the fol-
lowing code.

var photos = [];
photos.push({

name: 'Node.js Logo',
path: 'http://nodejs.org/images/logos/nodejs-green.png'

});

photos.push({
name: 'Ryan Speaking',
path: 'http://nodejs.org/images/ryan-speaker.jpg'

});
...

Listing 8.6 Dummy photo data to populate the view

Figure 8.14 Express view lookup
Now that you have some content, you’ll need a route to display it.

190 CHAPTER 8 Express

CREATING THE PHOTO LISTING VIEW

To start displaying the dummy photo data, you need to define a route that will render
an EJS photos view, as shown in figure 8.15.

 To get started, open up ./routes/photos.js and export a function named list
(shown in the following code). In practice, this function can be named whatever you
like. Route functions are identical to regular Connect middleware functions, accept-
ing request and response objects, as well as the next() callback, which isn’t used in
this example. This is the first and main method of passing objects to a view, by passing
an object to res.render().

exports.list = function(req, res){
res.render('photos', {

title: 'Photos',
photos: photos

});
};

In ./app.js you can then require the photos module to get access to the exports.list
function you just wrote. To display the photos for the index page, /, pass the photos
.list function to the app.get() method, which is used to map the HTTP method GET
and the path matching / to this function.

...
var routes = require('./routes');
var photos = require('./routes/photos');
...

Listing 8.7 List route

Listing 8.8 Adding photos.list route

Figure 8.15 Initial photo listing view

Replaces app.get('/',

app.get('/', photos.list); routes.index)

191Rendering views

With the dummy data and route set up, you can write the photo view. You’ll have sev-
eral photo-related views, so create a directory named ./views/photos and index.ejs
inside of it. Using a JavaScript forEach, you can then iterate through each photo in
the photos object that was passed to res.render(). Each photo name and image is
then displayed, as the following listing shows.

<!DOCTYPE html>
<html>

<head>
<title><%= title %></title>
<link rel='stylesheet' href='/stylesheets/style.css' />

</head>
<body>

<h1>Photos</h1>
<p>Express stock photo application.</p>
<div id="photos">

<% photos.forEach(function(photo) { %>
<div class="photo">

<h2><%=photo.name%></h2>
<img src='<%=photo.path%>'/>

</div>
<% }) %>

</div>
</body>

</html>

This view will produce markup similar to the following listing.

...
<h1>Photos</h1>
<p>Express stock photo application.</p>
<div id="photos">

<div class="photo">
<h2>Node.js Logo</h2>

</div>
...

If you’re interested in styling your application, here’s the CSS used for ./public/
stylesheets/style.css.

body {
padding: 50px;
font: 14px "Helvetica Neue", Helvetica, Arial, sans-serif;

}
a { color: #00B7FF; }

Listing 8.9 A view template to list photos

Listing 8.10 HTML produced by the photos/index.ejs template

Listing 8.11 CSS used to style this chapter’s tutorial application

EJS outputs escaped values
by using <%= value %>

EJS executes vanilla JS
using <% code %>
.photo {

192 CHAPTER 8 Express

display: inline-block;
margin: 5px;
padding: 10px;
border: 1px solid #eee;
border-radius: 5px;
box-shadow: 0 1px 2px #ddd;

}
.photo h2 {

margin: 0;
margin-bottom: 5px;
font-size: 14px;
font-weight: 200;

}
.photo img { height: 100px; }

Fire up the application with node app, and take a look at http://localhost:3000 in your
browser. You’ll see the photo display shown earlier in figure 8.15.

METHODS OF EXPOSING DATA TO VIEWS

You’ve seen how you can pass local variables directly to res.render() calls, but you
can also use a few other mechanisms for this. For example, app.locals can be used
for application-level variables and res.locals for request-level local variables.

 The values passed directly to res.render() will take precedence over values set in
res.locals and app.locals, as figure 8.16 shows.

 By default, Express exposes only one application-level variable, settings, to views,
which is the object containing all of the values set with app.set(). For example, using
app.set('title', 'My Application') would expose settings.title in the tem-
plate, as shown in the following EJS snippet:

<html>
<head>

<title><%=settings.title%></title>
</head>
<body>

<h1><%=settings.title%></h1>
<p>Welcome to <%=settings.title%>.</p>

</body>

Internally, Express exposes this object with the following JavaScript:

app.locals.settings = app.settings;

That’s all there is to it.
 For convenience, app.locals is also a JavaScript function. When an object is

passed, all the keys will be merged, so if you have existing objects that you want to
expose in their entirety, such as some i18n data, you can do the following:

var i18n = {
prev: 'Prev',
next: 'Next',
save: 'Save

};
app.locals(i18n);

193Rendering views

This will expose prev, next, and save to all templates. This feature exposes view help-
ers to help reduce logic within templates. For example, if you have the Node module
helpers.js with a few functions exported, you could expose all of these functions to the
views by doing the following:

app.locals(require('./helpers'));

Let’s add a way to upload files to this site and learn how Express uses Connect’s body-
Parser middleware component to make that possible.

Variable found
in template

Found in values passed to render?

Found?
Yes

Yes

Yes

No

No

No

Return value

Return error

Found in app.locals?

Found in res.locals?

Found?

Found?

Figure 8.16 Values passed directly to
the render function take precedence
when rendering a template.

194 CHAPTER 8 Express

8.4 Handling forms and file uploads
Let’s implement the photo upload feature. Make sure you have the photos setting
defined for this application, as discussed earlier in section 8.2.1. This will give you the
freedom to change the photo directory in various environments. For now they’ll be
saved in ./public/photos, as the following code shows. Create this directory.

...
app.configure(function(){

app.set('views', __dirname + '/views');
app.set('view engine', 'ejs');
app.set('photos', __dirname + '/public/photos');

...

There are three main steps involved in implementing the photo upload feature:

 Define the photo model
 Create a photo upload form
 Display a photo listing

8.4.1 Implementing the photo model

We’ll use the simple Mongoose model we discussed in chapter 5 to make the model.
Install Mongoose with npm install mongoose --save. Then create the file ./models/
Photo.js with the model definition shown here.

var mongoose = require('mongoose');
mongoose.connect('mongodb://localhost/photo_app');

var schema = new mongoose.Schema({
name: String,
path: String

});

module.exports = mongoose.model('Photo', schema);

Mongoose provides all the CRUD methods (Photo.create, Photo.update, Photo
.remove, and Photo.find) on the model, so you’re done.

8.4.2 Creating a photo upload form

With the photo model in place, you can now implement the upload form and related
routes. Much like the other pages, you’ll need a GET route and a POST route for the
uploads page.

 You’ll pass the photos directory the POST handler and return a route callback, so
the handler has access to the directory. Add the new routes to app.js below the default
(/) route:

Listing 8.12 A custom setting that allows a photo upload destination to be set

Listing 8.13 A model for your photos

Set up connection to
mongodb on localhost
and use photo_app as
database

195Handling forms and file uploads

...
app.get('/upload', photos.form);
app.post('/upload', photos.submit(app.get('photos')));
...

CREATING THE PHOTO UPLOAD FORM

Next you’ll create the upload form shown in figure 8.17. This form contains an
optional photo name and a file input for the image.

 Create the file views/photos/upload.ejs with the following EJS code.

<!DOCTYPE html>
<html>

<head>
<title><%= title %></title>
<link rel='stylesheet' href='/stylesheets/style.css' />

</head>
<body>

<h1><%= title %></h1>
<p>Upload a photo to your account below.</p>
<form method='post' enctype='multipart/form-data'>

<p><input
type='text', name='photo[name]', placeholder='Name'/>
</p>

<p><input type='file', name='photo[image]'/></p>
<p><input type='submit', value='Upload'/></p>

</form>
</body>

</html>

Let’s now look at adding a route for the photo upload.

Listing 8.14 A form for uploading photos

Figure 8.17 Photo upload form

D

196 CHAPTER 8 Express

ADDING A ROUTE FOR THE PHOTO UPLOAD PAGE

Now you have a photo upload form, but no way to display it. The photos.form func-
tion will do this. In ./routes/photos.js, export the form function, which will render
./views/photos/upload.ejs.

exports.form = function(req, res){
res.render('photos/upload', {

title: 'Photo upload'
});

};

HANDLING PHOTO SUBMISSIONS

Next you’ll need a route to handle the form submission. As discussed in chapter 7, the
bodyParser() and, more specifically, the multipart() middleware component
(which bodyParser includes), will provide you with a req.files object representing
files that have been uploaded and saved to disk. This object can be accessed via
req.files.photo.image, and the field in the upload form, photo[name], can be
accessed via req.body.photo.name.

 The file is “moved” with fs.rename() to its new destination within the dir passed
to exports.submit(). Remember, in your case, dir is the photos setting you defined
in app.js. After the file is moved, a new Photo object is populated and saved with the
photo’s name and path. Upon a successful save, the user is redirected to the index
page, as the following code shows.

var Photo = require('../models/Photo');
var path = require('path');
var fs = require('fs');
var join = path.join;

...

exports.submit = function (dir) {
return function(req, res, next){

var img = req.files.photo.image;
var name = req.body.photo.name || img.name;
var path = join(dir, img.name);

fs.rename(img.path, path, function(err){
if (err) return next(err);

Photo.create({
name: name,
path: img.name

}, function (err) {
if (err) return next(err);
res.redirect('/');

});
});

};
};

Listing 8.15 Add the form route

Listing 8.16 Adding photo submit route definition

Require the Photo model

Reference path.join so you
can name variables “path”

Default to
original filename

Rename file
elegate
errors

Delegate errors
Perform HTTP
redirect to index page

197Handling forms and file uploads

Great! Now you can upload photos. Next you’ll implement the logic necessary to dis-
play them on the index page.

8.4.3 Showing a list of uploaded photos

In section 8.3.3, you implemented the route app.get('/', photos.list) using
dummy data. Now it’s time to replace it with the real thing.

 Previously the route callback did little more than pass the dummy array of photos
to the template, as shown here:

exports.list = function(req, res){
res.render('photos', {

title: 'Photos',
photos: photos

});
};

The updated version uses Photo.find, provided in Mongoose, to grab every photo
you ever uploaded. Note that this example will perform poorly with a large collection
of photos. You'll learn how to implement pagination in the next chapter.

 Once the callback is invoked with an array of photos, the rest of the route remains
the same as it was before introducing the asynchronous query.

exports.list = function(req, res, next){
Photo.find({}, function(err, photos){

if (err) return next(err);
res.render('photos', {

title: 'Photos',
photos: photos

});
});

};

Let’s also update the ./views/photos/index.ejs template so it’s relative to ./public/
photos.

...
<% photos.forEach(function(photo) { %>

<div class="photo">
<h2><%=photo.name%></h2>
<img src='/photos/<%=photo.path%>'/>

</div>
<% }) %>
...

The index page will now display a dynamic list of photos uploaded through the appli-
cation, as shown in figure 8.18.

Listing 8.17 Modified list route

Listing 8.18 Modified view to use settings for photos path

{} finds all records in
photo collection

198 CHAPTER 8 Express

So far the routes you’ve defined have been simple: they don’t accept wildcards. Let’s
dive into the routing capabilities of Express.

8.5 Handling resource downloads
You’ve been serving static files with the express.static() middleware component,
but Express provides several helpful response methods for dealing with file transfers.
These include res.sendfile() for transferring files and the res.download() variant,
which prompts the browser to save the file.

 In this section, you’ll tweak your application so that original photos can be down-
loaded by adding a GET /photo/:id/download route.

8.5.1 Creating the photo download route

First you’ll need to add a link to the photos so that users can download them. Open
up ./views/photos/index.ejs and revise it to match the following listing. This change
adds a link around the img tag pointing to the GET /photo/:id/download route.

...
<% photos.forEach(function(photo) { %>

<div class="photo">
<h2><%=photo.name%></h2>
<a href='/photo/<%=photo.id%>/download'>

<img src='/photos/<%=photo.path%>'/>

</div>

<% }) %>
...

Listing 8.19 Add a download hyperlink

Figure 8.18 The photo application as it appears at this point

Mongoose provides ID
field that can be used to
look up specific record

199Handling resource downloads

Back in app.js, define the following route anywhere you like among the others:

app.get('/photo/:id/download', photos.download(app.get('photos')));

Before you can try this out, you need the download route. Let’s implement it.

8.5.2 Implementing the photo download route

In ./routes/photos.js, export a download function, as shown in listing 8.20. This route
loads up the requested photo and transfers the file at that given path. res.sendfile()
is provided by Express and is backed by the same code as express.static(), so you get
HTTP cache, range, and other features for free. This method also takes the same
options, so you can pass values like { maxAge: oneYear } as the second argument.

exports.download = function(dir){

return function(req, res, next){

var id = req.params.id;

Photo.findById(id, function(err, photo){

if (err) return next(err);

var path = join(dir, photo.path);

res.sendfile(path);

});

};

};

If you fire up the application, you should now be able to click the photos when you’re
authenticated.

 The result you get may not be what you’d expected. With res.sendfile(), the
data is transferred and interpreted by the browser. In the case of images, the browser
will display them within the window, as shown in figure 8.19. Next we’ll look at
res.download(), which will prompt the browser for download.

Listing 8.20 Photo download route

Set directory you’ll serve files from
Set route callback

Load photo record

Construct absolute path to file
Transfer file
Figure 8.19 Photo transferred with res.sendfile()

200 CHAPTER 8 Express

SENDFILE CALLBACK ARGUMENT A callback can also be provided as the second
or third argument (when using options) to notify the application when a
download is complete. For example, you could use a callback to decrement a
user’s download credits.

TRIGGER A BROWSER DOWNLOAD

Replacing res.sendfile() with res.download() will alter the behavior of browsers
when files are transferred. The Content-Disposition header field will be set to the
file’s name, and the browser will prompt for download accordingly.

 Figure 8.20 shows how the original image’s name (littlenice_by_dhor.jpeg) was
used as the downloaded file’s name. Depending on your application, this might not
be ideal.

 Let’s look at res.download()’s optional filename argument next.

SETTING A DOWNLOAD’S FILENAME

The second argument of res.download() allows you to define a custom name to be
used when downloading rather than defaulting to the original filename. Listing 8.21
changes the previous implementation to provide the name given when the photo was
uploaded, such as Flower.jpeg.

...
var path = join(dir, photo.path);
res.download(path, photo.name+'.jpeg');
...

If you fire up the application and try clicking a photo now, you should be prompted to
download it, as shown in figure 8.21.

Listing 8.21 Photo download route with explicit filename

Figure 8.20 Photo transferred
with res.download()

201Summary

8.6 Summary
In this chapter, you learned how to create an Express application from scratch and
how to deal with common web development tasks.

 You learned how a typical Express application’s directories are structured and how
to use environmental variables and the app.configure method to change application
behavior for different environments.

 The most basic components of Express applications are routes and views. You
learned how to render views and how to expose data to them by setting app.locals
and res.locals and by passing values directly using res.render(). You also learned
how basic routing works.

 In the next chapter, we’ll go into more advanced things you can do with Express,
such as using authentication, routing, middleware, and REST APIs.

Figure 8.21 Photo
transferred with
res.download() and
a custom filename

Advanced Express
In this chapter, you’ll learn a number of advanced Express techniques that will
enable you to take more advantage of the framework’s functionality.

 To demonstrate these techniques, you’ll create a simple application that allows
people to register and post public messages that are displayed, in reverse chrono-
logical order, for visitors to see. This type of application is known as a “shoutbox”
application. Figure 9.1 shows the front and user registration pages. Figure 9.2
shows the login and post pages.

 For this application, you’ll add logic to do the following:

 Authenticate users
 Implement validation and pagination
 Provide a public representational state transfer (REST) API to send and

receive messages

This chapter covers
 Implementing authentication

 URL routing

 Creating a REST API

 Handling errors
202

Let’s dive in by leveraging Express for user authentication.

203Authenticating users

9.1 Authenticating users
In this section you’ll start working on the shoutbox application by creating an authen-
tication system for it from scratch. Within this section you’ll implement the following:

 Logic to store and authenticate registered users
 Registration functionality
 Login functionality
 Middleware to load user information, on request, for logged-in users

For user authentication, you’ll need some way to store the data. For this application
you’ll be using Redis, which you learned about in section 5.3.1. It’s a quick install and
has a minimal learning curve, which makes it a good candidate since we’re focusing
on application logic, not the database layer. The database interaction within this chap-
ter translates well to nearly every database available, so if you’re feeling adventurous

Figure 9.1 The front and
registration pages of the
shoutbox application

Figure 9.2 The login and
post pages of the shoutbox
application
you may want to replace Redis with your favorite database. Let’s create a User model.

204 CHAPTER 9 Advanced Express

9.1.1 Saving and loading users

In this section you’ll follow a series of steps to implement user loading, saving, and
authentication. You’ll do the following:

 Define application dependencies using a package.json file
 Create a user model
 Add logic to load and save user data using Redis
 Secure user passwords using bcrypt
 Add logic to authenticate attempts to log in

Bcrypt is a salted hashing function that’s available as a third-party module designed
specifically for hashing passwords. Bcrypt is great for passwords because as computers
get faster and faster, bcrypt can be made slower to effectively eliminate brute-force
attacks.

CREATING A PACKAGE.JSON FILE

To create an application skeleton with support for EJS and sessions, start a command-
line session, change to a development directory, and enter express -e -s shoutbox.
You used the -e flag in the previous chapter to enable EJS support in app.js. The -s
flag similarly enables sessions support.

 With the application skeleton created, change to the shoutbox directory. Next,
modify the package.json file, which specifies dependencies, to include a couple of
additional modules. Change the package.json file so it looks like the contents of the
next listing.

{
"name": "shoutbox",
"version": "0.0.1",
"private": true,
"scripts": {

"start": "node app"
},
"dependencies": {

"express": "3.x",
"ejs": "*",
"bcrypt": "0.7.3",
"redis": "0.7.2"

}
}

To install the dependencies, enter npm install. This will install them to ./node
_modules.

 Finally, execute the following command to create an empty EJS template file that
you’ll define later. As this template file is included by other template files, you’ll get
errors if you don’t precreate it:

Listing 9.1 A package.json file with additional bcrypt and Redis dependencies
touch views/menu.ejs

205Authenticating users

With the application skeleton set up and dependencies installed, you can now define
the application’s user model.

CREATING A USER MODEL

You now need to create a lib directory and, within that, a file named user.js. You’ll put
the code for the user model in this file.

 Listing 9.2 specifies the first logic you’ll want to add. In this code, the redis and
bcrypt dependencies are required, and then a Redis connection is opened with
redis.createClient(). The User function accepts an object and merges this object’s
properties into its own. For example, new User({ name: 'Tobi' }) creates an object
and sets the object’s name property to Tobi.

var redis = require('redis');
var bcrypt = require('bcrypt');
var db = redis.createClient();

module.exports = User;

function User(obj) {
for (var key in obj) {

this[key] = obj[key];
}

}

SAVING A USER INTO REDIS

The next functionality you’ll need is the ability to save a user, storing their data with
Redis. The save() method shown in listing 9.3 checks if the user already has an ID,
and if so it invokes the update() method, indexing the user ID by name, and populat-
ing a Redis hash with the object’s properties. Otherwise, if the user doesn’t have an ID,
they’re considered a new user, the user:ids value is incremented, which gives the
user a unique ID, and the password is hashed before saving into Redis with the same
update() method.

 Add the code in the following listing to lib/user.js.

User.prototype.save = function(fn){
if (this.id) {

this.update(fn);
} else {

var user = this;
db.incr('user:ids', function(err, id){

if (err) return fn(err);
user.id = id;
user.hashPassword(function(err){

if (err) return fn(err);
user.update(fn);

});

Listing 9.2 Starting to create a user model

Listing 9.3 The user model’s save implementation

Create long-running
Redis connection

Export User function
from the module

Iterate keys in the
object passed

Merge values

User already exists

Create unique ID

Set ID so it’ll be saved

Hash
password

Save user properties
});

206 CHAPTER 9 Advanced Express

}
};

User.prototype.update = function(fn){
var user = this;
var id = user.id;
db.set('user:id:' + user.name, id, function(err) {

if (err) return fn(err);
db.hmset('user:' + id, user, function(err) {

fn(err);
});

});
};

SECURING USER PASSWORDS

When the user is first created, it’ll need to have a .pass property set to the user’s pass-
word. The user-saving logic will then replace the .pass property with a hash gener-
ated using the password.

 The hash will be salted. Per-user salting helps to protect against rainbow table
attacks: the salt acts as a private key for the hashing mechanism. You can use bcrypt to
generate a 12-character salt for the hash with genSalt().

RAINBOW TABLE ATTACKS Rainbow table attacks use precomputed tables to
break hashed passwords. You can read more about it in the Wikipedia article:
http://en.wikipedia.org/wiki/Rainbow_table.

After the salt is generated, bcrypt.hash() is called, which hashes the .pass property
and the salt. This final hash value then replaces the .pass property before .update()
stores it in Redis, ensuring that plain-text passwords aren’t saved, only the hash.

 The following listing, which you’ll add to lib/user.js, defines a function that creates
the salted hash and stores it in the user’s .pass property.

User.prototype.hashPassword = function(fn){
var user = this;
bcrypt.genSalt(12, function(err, salt){

if (err) return fn(err);
user.salt = salt;
bcrypt.hash(user.pass, salt, function(err, hash){

if (err) return fn(err);
user.pass = hash;
fn();

});
});

};

That’s all there is to it.

TESTING THE USER-SAVING LOGIC

To try it out, start the Redis server by entering redis-server on the command line.

Listing 9.4 Adding bcrypt encryption support to the user model

Index user ID by name

Use Redis hash
to store data

Generate a
12-character salt

Set salt so
it’ll be savedGenerate

hash
Set hash so
it’ll be saved
Then add the code in listing 9.5, which will create an example user, to the bottom of

http://en.wikipedia.org/wiki/Rainbow_table

Pro
of
ma
207Authenticating users

lib/user.js. You can then run node lib/user on the command line to create the exam-
ple user.

var tobi = new User({
name: 'Tobi',
pass: 'im a ferret',
age: '2'

});

tobi.save(function(err){
if (err) throw err;
console.log('user id %d', tobi.id);

});

You should see output indicating that the user has been created: user id 1, for exam-
ple. After testing the user model, remove the code in listing 9.5 from lib/user.js.

 When you use the redis-cli tool that comes with Redis, you can use the HGETALL
command to fetch each key and value of the hash, as the following command-line ses-
sion demonstrates.

$ redis-cli
redis> get user:ids
"1"
redis> hgetall user:1
1) "name"
2) "Tobi"
3) "pass"
4) "$2a$12$BAOWThTAkNjY7Uht0UdBku46eDGpKpK5iJcf0eLW08sMcfPL7.PN."
5) "age"
6) "2"
7) "id"
8) "4"
9) "salt"

10) "$2a$12$BAOWThTAkNjY7Uht0UdBku"
redis> quit

Having defined logic to save a user, you’ll now need to add logic to retrieve user
information.

OTHER REDIS COMMANDS YOU CAN RUN IN THE REDIS-CLI TOOL For more infor-
mation about Redis commands, see the Redis command reference at
http://redis.io/commands.

RETRIEVING USER DATA

When a user attempts to log in to a web application, they’ll usually enter a username
and password into a form, and this data is then submitted to the application for
authentication. Once the login form is submitted, you’ll need a method for fetching

Listing 9.5 Testing the user model

Listing 9.6 Using the redis-cli tool to examine stored data

Create new user

Save user

Starting the Redis command line

Finding out the ID of the
most recently created user

Retrieving data in
a hash map itemperties

 a hash
p item

Quitting the Redis
command line
the user via name.

http://redis.io/commands

H

pa
208 CHAPTER 9 Advanced Express

 This logic is defined in the following listing as User.getByName(). The function
first does an ID lookup with User.getId() and then passes the ID that it finds to
User.get(), which gets the Redis hash data for that user. Add the following logic to
lib/user.js.

User.getByName = function(name, fn){
User.getId(name, function(err, id){

if (err) return fn(err);
User.get(id, fn);

});
};

User.getId = function(name, fn){
db.get('user:id:' + name, fn);

};

User.get = function(id, fn){
db.hgetall('user:' + id, function(err, user){

if (err) return fn(err);
fn(null, new User(user));

});
};

Having retrieved the hashed password, you can now proceed with authenticating the
user.

AUTHENTICATING USER LOGINS

The final component needed for user authentication is a method, defined in the fol-
lowing listing, that takes advantage of the functions defined earlier for user data
retrieval. Add this logic to lib/user.js.

User.authenticate = function(name, pass, fn){
User.getByName(name, function(err, user){

if (err) return fn(err);
if (!user.id) return fn();
bcrypt.hash(pass, user.salt, function(err, hash){

if (err) return fn(err);
if (hash == user.pass) return fn(null, user);
fn();

});
});

};

The authentication logic begins by fetching the user by name. If the user isn’t found,
the callback function is immediately invoked. Otherwise, the user’s stored salt and the
password submitted are hashed to produce what should be identical to the stored
user.pass hash. If the submitted and stored hashes don’t match, the user has entered

Listing 9.7 Fetching a user from Redis

Listing 9.8 Authenticating a user’s name and password

Look up user
ID by name

Grab user with the ID

Get ID indexed
by name

Fetch plain-
object hash

Convert plain object
to a new User object

Look up user by name

User doesn’t exist

ash the
given

ssword Match found
Invalid password

209Authenticating users

invalid credentials. When looking up a key that doesn’t exist, Redis will give you an
empty hash, which is why the check for !user.id is used instead of !user.

 Now that you’re able to authenticate users, you’ll need a way for users to register.

9.1.2 Registering new users

To allow users to create new accounts and then sign in,
you’ll need both registration and login capabilities.

 In this section, you’ll do the following to imple-
ment registration:

 Map registration and login routes to URL paths
 Add route logic to display a registration form
 Add logic to store user data submitted from the

form

The form will look like figure 9.3.
 This form will be displayed when a user visits /reg-

ister with a web browser. Later you’ll create a similar
form that will allow users to log in.

ADDING REGISTRATION ROUTES

To get the registration form to show up, you’ll first want to create a route to render
the form and return it to the user’s browser for display.

 Listing 9.9 shows how you should alter app.js, using Node’s module system to
import a module defining registration route behavior from the routes directory and
associating HTTP methods and URL paths to route functions. This forms a sort of
“front controller.” As you can see, there will be both GET and POST register routes.

...
var register = require('./routes/register');

...
app.get('/register', register.form);
app.post('/register', register.submit);

Next, to define the route logic, create an empty file in the routes directory called
register.js. Start defining registration route behavior by exporting the following func-
tion from routes/register.js—a route that renders the registration template:

exports.form = function(req, res){
res.render('register', { title: 'Register' });

};

This route uses an Embedded JavaScript (EJS) template, which you’ll create next, to
define the registration form HTML.

Listing 9.9 Adding registration routes

Requiring route logic

Adding routes

Figure 9.3 User registration form

Use

use
210 CHAPTER 9 Advanced Express

CREATING A REGISTRATION FORM

To define the registration form’s HTML, create a file in the views directory called
register.ejs. You can define this form using the HTML/EJS detailed in the following
listing.

<!DOCTYPE html>
<html>

<head>
<title><%= title %></title>
<link rel='stylesheet' href='/stylesheets/style.css' />

</head>
<body>

<% include menu %>

<h1><%= title %></h1>
<p>Fill in the form below to sign up!</p>

<% include messages %>

<form action='/register' method='post'>
<p>

<input type='text' name='user[name]' placeholder='Username' />
</p>
<p>

<input type='password' name='user[pass]'
 ➥ placeholder='Password' />

</p>
<p>

<input type='submit' value='Sign Up' />
</p>

</form>
</body>

</html>

Note the use of include messages, which literally includes another template:
messages.ejs. This template, which you’ll define next, is used to communicate with the
user.

RELAYING FEEDBACK TO USERS

During user registration, and in many other parts of a typical application, it can be
necessary to relay feedback to the user. A user, for example, may attempt to register
with a username that someone else is already using. In this case, you’ll need to let the
user know they must choose another name.

 In your application, the messages.ejs template will be used to display errors. A
number of templates throughout the application will include the messages.ejs
template.

 To create the messages template, create a file in the views directory called
messages.ejs and put the logic in the following snippet into it. The template logic
checks if the locals.messages variable is set, and, if so, the template cycles through

Listing 9.10 A view template that provides a registration form

Navigation links will
be added later

Display of messages
will be added later

r must
enter a
rname

User must enter
a password
the variable displaying message objects. Each message object has a type property

211Authenticating users

(allowing you to use messages for non-error notifications if need be) and a string
property (the message text). Application logic can queue an error for display by add-
ing to the res.locals.messages array. After messages are displayed, removeMessages
is called to empty the messages queue:

<% if (locals.messages) { %>
<% messages.forEach(function(message) { %>

<p class='<%= message.type %>'><%= message.string %></p>
<% }) %>
<% removeMessages() %>

<% } %>

Figure 9.4 shows how the registration form will look
when displaying an error message.

 Adding a message to res.locals.messages is a sim-
ple way to communicate with the user, but as res.locals
doesn’t persist across redirects, you need to make it
more robust by storing messages between requests using
sessions.

STORING TRANSIENT MESSAGES IN SESSIONS

A common web application design pattern is the
Post/Redirect/Get (PRG) pattern. In this pattern, a user requests a form, the form
data is submitted as an HTTP POST request, and the user is then redirected to another
web page. Where the user is redirected to depends on whether the form data was con-
sidered valid by the application. If the form data isn’t considered valid, the application
redirects the user back to the form page. If the form data is valid, the user is redi-
rected to a new web page. The PRG pattern is primarily used to prevent duplicate form
submissions.

 In Express, when a user is redirected, the contents of res.locals are reset. If
you’re storing messages to the user in res.locals, the messages are lost before they
can be displayed. By storing messages in a session variable, however, you can work
around this. Messages can then be displayed on the final redirect page.

 To accommodate the ability to queue messages to the user in a session variable,
you need to add an additional module to your application. Create a file named
./lib/messages.js and add the following code:

var express = require('express');
var res = express.response;

res.message = function(msg, type){
type = type || 'info';
var sess = this.req.session;
sess.messages = sess.messages || [];
sess.messages.push({ type: type, string: msg });

};

The res.message function provides a way to add messages to a session variable from

Figure 9.4 Registration form
error reporting
any Express request. The express.response object is the prototype that Express uses

212 CHAPTER 9 Advanced Express

for the response objects. Adding properties to this object means they’ll then be avail-
able to all middleware and routes alike. In the preceding snippet, express.response
is assigned to a variable named res to make it easier to add properties on the object
and to improve readability.

 To made it even easier to add messages, add the code in the following snippet. The
res.error function allows you to easily add a message of type error to the message
queue. It leverages the res.message function you previously defined in the module:

res.error = function(msg){
return this.message(msg, 'error');

};

The last step is to expose these messages to the templates for output. If you don’t do
this, you’d have to pass req.session.messages to every res.render() call in the
application, which isn’t exactly ideal.

 To address this, you’ll create middleware that will populate res.locals.messages
with the contents of res.session.messages on each request, effectively exposing the
messages to any templates that are rendered. So far, ./lib/messages.js extends the
response prototype, but it doesn’t export anything. Adding the following snippet to
this file, however, will export the middleware you need:

module.exports = function(req, res, next){
res.locals.messages = req.session.messages || [];
res.locals.removeMessages = function(){

req.session.messages = [];
};
next();

};

First, a messages template variable is defined to store the session’s messages—it’s an
array that may or may not exist from the previous request (remember that these are
session-persisted messages). Next, you’ll need a way to remove the messages from the
session; otherwise they’ll build up, because nothing is clearing them.

 Now, all you need to do to integrate this new feature is to require() the file in
app.js. You should mount this middleware below the session middleware because it
depends on req.session being defined. Note that because this middleware was
designed not to accept options and doesn’t return a second function, you can call
app.use(messages) instead of app.use(messages()). For future-proofing, it’s typi-
cally best for third-party middleware to use app.use(messages()) regardless of
whether or not it accepts options:

...
var register = require('./routes/register');
var messages = require('./lib/messages');
...

app.use(express.methodOverride());
app.use(express.cookieParser('your secret here'));
app.use(express.session());
app.use(messages);

...

213Authenticating users

Now you’re able to access messages and removeMessages() within any view, so
messages.ejs should work perfectly when included in any template.

 With the display of the registration form completed and a way to relay any necessary
feedback to the user worked out, let’s move on to handling registration submissions.

IMPLEMENTING USER REGISTRATION

Now that the registration form is defined and you’ve added a way to relay feedback to
the user, you need to create the route function that will handle HTTP POST requests to
/register. This function will be called submit.

 As discussed in chapter 7, when form data is submitted, the bodyParser() middle-
ware will populate req.body with the submitted data. The registration form uses the
object notation user[name], which translates to req.body.user.name once parsed by
Connect. Likewise, req.body.user.pass is used for the password field.

 You need only a small amount of code in the submission route to handle valida-
tion, such as ensuring the username isn’t already taken, and to save the new user, as
listing 9.11 shows.

 Once registration is complete, the user.id is assigned to the user’s session, which
you’ll later check to verify that the user is authenticated. If validation fails, a message is
exposed to templates as the messages variable, via res.locals.messages, and the
user is redirected back to the registration form.

 To add this functionality, add the contents of the following listing to
routes/register.js.

var User = require('../lib/user');

...

exports.submit = function(req, res, next){
var data = req.body.user;
User.getByName(data.name, function(err, user){

if (err) return next(err);

// redis will default it
if (user.id) {

res.error("Username already taken!");
res.redirect('back');

} else {
user = new User({

name: data.name,
pass: data.pass

});

user.save(function(err){
if (err) return next(err);
req.session.uid = user.id;
res.redirect('/');

});
}

});

Listing 9.11 Creating a user with submitted data

Check if username
is unique

Defer database connection
errors and other errors

Username is
already taken

Create a user
with POST data

Save new user
Store uid for
authentication

Redirect to
entry listing page
};

214 CHAPTER 9 Advanced Express

You can now fire up the application, visit /register, and register a user. The next thing
you’ll need is a way for returning registered users to authenticate, via the /login form.

9.1.3 Logging in registered users

Adding login functionality is even simpler than registra-
tion because the bulk of the necessary logic is already in
User.authenticate(), the general-purpose authentica-
tion method defined earlier.

 In this section you’ll add the following:

 Route logic to display a login form
 Logic to authenticate user data submitted from

the form

The form will look like figure 9.5.
 Let’s start by modifying app.js so login routes are required and the route paths are

established:

...
var login = require('./routes/login');
...
app.get('/login', login.form);
app.post('/login', login.submit);
app.get('/logout', login.logout);
...

Next, you’ll add functionality to display a login form.

DISPLAYING A LOGIN FORM

The first step in implementing a login form is creating a file for login- and logout-
related routes: routes/login.js. The route logic you’ll need to add to display the login
form is nearly identical to the logic used earlier to display the registration form; the
only differences are the name of the template displayed and the page title:

exports.form = function(req, res){
res.render('login', { title: 'Login' });

};

The EJS login form that you’ll define in ./views/login.ejs, shown in listing 9.12, is
extremely similar to register.ejs as well; the only differences are the instruction text
and the route that data is submitted to.

<!DOCTYPE html>
<html>

<head>
<title><%= title %></title>
<link rel='stylesheet' href='/stylesheets/style.css' />

</head>

Listing 9.12 A view template for a login form

Figure 9.5 User login form
<body>

215Authenticating users

<% include menu %>
<h1><%= title %></h1>
<p>Fill in the form below to sign in!</p>

<% include messages %>

<form action='/login' method='post'>
<p>

<input type='text' name='user[name]' placeholder='Username' />
</p>
<p>

<input type='password' name='user[pass]'
 ➥ placeholder='Password' />

</p>
<p>

<input type='submit' value='Login' />
</p>

</form>
</body>

</html>

Now that you’ve added the route and template needed to display the login form, the
next step is to add logic to handle login attempts.

AUTHENTICATING LOGINS

To handle login attempts, you need to add route logic that will check the submitted
username and password and, if they’re correct, set a session variable to the user’s ID
and redirect the user to the home page. The following listing contains this logic, and
you should add it to routes/login.js.

var User = require('../lib/user');

...

exports.submit = function(req, res, next){
var data = req.body.user;
User.authenticate(data.name, data.pass, function(err, user){

if (err) return next(err);
if (user) {

req.session.uid = user.id;
res.redirect('/');

} else {
res.error("Sorry! invalid credentials.");
res.redirect('back');

}
});

};

In listing 9.13, if the user is authenticated using User.authenticate(), req.session
.uid is assigned in the same way as in the POST /register route: the session will persist
this value, which you can use later to retrieve the User or other associated user data. If
a match isn’t found, an error is set and the form is redisplayed.

Listing 9.13 A route to handle logins

User must
enter a

username

User must enter
a password

Check
credentialsDelegate

errors

Handle a user
with valid
credentials

Store uid for
authenticationRedirect

to entry
listing Expose an

error messageRedirect back
to login form

216 CHAPTER 9 Advanced Express

 Users may also prefer to explicitly log out, so you should provide a link for this
somewhere in the application. In app.js, you assigned app.get('/logout',

login.logout), so in ./routes/login.js the following function will remove the session,
which is detected by the session() middleware, causing the session to be assigned for
subsequent requests:

exports.logout = function(req, res){
req.session.destroy(function(err) {

if (err) throw err;
res.redirect('/');

})
};

Now that the registration and login pages have been created, the next thing you need
to add is a menu so users can reach them. Let’s create one.

CREATING A MENU FOR AUTHENTICATED AND ANONYMOUS USERS

In this section, you’ll create a menu for both anonymous and authenticated users,
allowing them to sign in, register, submit entries, and log out. Figure 9.6 shows the
menu for an anonymous user.

When the user is authenticated, you’ll display a different menu showing their user-
name, as well as a link to a page for posting messages to the shoutbox and a link allow-
ing the user to log out. This menu is shown in figure 9.7.

Each EJS template you’ve created, representing an application page, has contained
the code <% include menu %> after the <body> tag. This includes the ./views/menu.ejs
template, which you’ll create next with the contents of the following listing.

<% if (locals.user) { %>

<div id='menu'>

Listing 9.14 Anonymous and authenticated user menu template

Figure 9.6 User login and registration menu used to access the forms you created

Figure 9.7 Menu when the user is authenticated

Menu for logged-in users

<%= user.name %>

217Authenticating users

post
logout

</div>
<% } else { %>

<div id='menu'>
login
register

</div>
<% } %>

In this application, you can assume that if a user variable is exposed to the template,
that a user is authenticated, because you won’t be exposing the variable otherwise;
you’ll see this next. That means that when this variable is present, you can display the
username along with the entry submission and logout links. When an anonymous user
is visiting, the site login and register links are displayed.

 You may be wondering where this user local variable comes from—you haven’t
written it yet. Next you’ll write some code to load the logged-in user’s data for each
request and make this data available to templates.

9.1.4 User-loading middleware

A common task when you work with a web application is loading user information
from a database, typically represented as a JavaScript object. Having this data readily
available makes interacting with the user simpler. For this chapter’s application you’ll
load the user data on every request, using middleware.

 This middleware script will be placed in ./lib/middleware/user.js, requiring the
User model from the directory above (./lib). The middleware function is first
exported, and then it checks the session for the user ID. When the user ID is present, a
user is authenticated, so it’s safe to fetch the user data from Redis.

 Because Node is single-threaded, there’s no thread-local storage. In the case of an
HTTP server, the request and response variables are the only contextual objects avail-
able. High-level frameworks could build upon Node to provide additional objects to
store things like the authenticated user, but Express made the choice to stick with the
original objects that Node provides. As a result, contextual data is typically stored on
the request object, as shown in listing 9.15 where the user is stored as req.user; subse-
quent middleware and routes can access it using the same property.

 You may wonder what the assignment to res.locals.user is for. res.locals is the
request-level object that Express provides to expose data to templates, much like
app.locals. It’s also a function that can be used to merge existing objects into itself.

var User = require('../user');

module.exports = function(req, res, next){
var uid = req.session.uid;
if (!uid) return next();
User.get(uid, function(err, user){

Listing 9.15 Middleware that loads a logged-in user’s data

Menu for anonymous users

Get logged-in user ID
from session

Get logged-in user’s
data from Redis
if (err) return next(err);

218 CHAPTER 9 Advanced Express

req.user = res.locals.user = user;
next();

});
};

To use this new middleware, first delete all lines in app.js containing the text “user.”
You can then require the module as usual, and then pass it to app.use(). In this appli-
cation, user is used above the router, so only the routes and middleware following
user will have access to req.user. If you’re using middleware that loads data, as this
middleware does, you may want to move the express.static middleware above it;
otherwise each time a static file is served, a needless round trip to the database will
have taken place to fetch the user.

 The following listing shows how you can enable this middleware in app.js.

var user = require('./lib/middleware/user');

...
app.use(express.session());
app.use(express.static(__dirname + '/public'));
app.use(user);
app.use(messages);
app.use(app.router);
...

If you fire up the application again and visit either the /login or /register pages in
your browser, you should see the menu. If you’d like to style the menu, add the follow-
ing lines of CSS to public/stylesheets/style.css.

#menu {
position: absolute;
top: 15px;
right: 20px;
font-size: 12px;
color: #888;

}

#menu .name:after {
content: ' -';

}

#menu a {
text-decoration: none;
margin-left: 5px;
color: black;

}

With the menu in place, you should be able to register yourself as a user. Once you’ve
registered a user, you should see the authenticated user menu with the Post link.

 In the next section, you’ll learn advanced routing techniques while adding the

Listing 9.16 Enabling user-loading middleware

Listing 9.17 CSS that can be added to style.css to style application menus

Expose user data to
response object

Adds the middleware
to the application
functionality for posting shoutbox messages.

219Advanced routing techniques

9.2 Advanced routing techniques
The primary function of Express routes is to pair a URL pattern with response logic.
Routes can also, however, pair a URL pattern with middleware. This allows you to use
middleware to provide reusable functionality to certain routes.

 In this section, you’ll do the following:

 Validate user-submitted content using route-specific middleware
 Implement route-specific validation
 Implement pagination

Let’s explore some of the various ways you can leverage route-specific middleware.

9.2.1 Validating user content submission

To give you something to apply validation to, let’s finally add the ability to post to the
shoutbox application. To add the ability to post, you’ll need to do a few things:

 Create an entry model
 Add entry-related routes
 Create an entry form
 Add logic to create entries using submitted form data

You’ll start by creating an entry model.

CREATING AN ENTRY MODEL

Create a file to contain the entry model definition at lib/entry.js. Add the code con-
tained in the following listing to this file. The entry model will be quite similar to the
user model created earlier, except it will save data in a Redis list.

var redis = require('redis');
var db = redis.createClient();

module.exports = Entry;

function Entry(obj) {
for (var key in obj) {

this[key] = obj[key];
}

}

Entry.prototype.save = function(fn){
var entryJSON = JSON.stringify(this);

db.lpush(
'entries',
entryJSON,
function(err) {

if (err) return fn(err);
fn();

}
);

Listing 9.18 A model for entries

Instantiate Redis client

Export Entry function from the module

Iterate keys in the
object passed

Merge values

Convert saved entry
data to JSON string

Save JSON string
to Redis list
};

220 CHAPTER 9 Advanced Express

With the basic model fleshed out, you now need to add a function called getRange,
using the contents of the following listing. This function will allow you to retrieve
entries.

Entry.getRange = function(from, to, fn){
db.lrange('entries', from, to, function(err, items){

if (err) return fn(err);
var entries = [];

items.forEach(function(item){
entries.push(JSON.parse(item));

});

fn(null, entries);
});

};

With a model created, you can now add routes to list and create entries.

ADDING ENTRY-RELATED ROUTES

Before you add entry-related routes to the application, you’ll need to make some
modifications to app.js. First, add the following require statement to the top of your
app.js file:

var entries = require('./routes/entries');

Next, also in app.js, change the line containing the text app.get('/' to the following
to make any requests to the path / return the entry listing:

app.get('/', entries.list);

You can now begin adding routing logic.

ADDING FRONT-PAGE DISPLAY OF ENTRIES

Start by creating the file routes/entries.js and add the code in the following listing to
require the entry model and export a function for rendering a list of entries.

var Entry = require('../lib/entry');

exports.list = function(req, res, next){
Entry.getRange(0, -1, function(err, entries) {

if (err) return next(err);

res.render('entries', {
title: 'Entries',
entries: entries,

});
});

};

Listing 9.19 Logic to retrieve a range of entries

Listing 9.20 Listing entries

Redis lrange
function is used
to retrieve
entries

Decode entries
previously stored
as JSON

Retrieve entries

Render HTTP response

221Advanced routing techniques

With route logic defined for listing entries, you now need to add an EJS template to
display them. In the views directory, create a file named entries.ejs and put the follow-
ing EJS in it.

<!DOCTYPE html>
<html>

<head>
<title><%= title %></title>
<link rel='stylesheet' href='/stylesheets/style.css' />

</head>
<body>

<% include menu %>

<% entries.forEach(function(entry) { %>
<div class='entry'>

<h3><%= entry.title %></h3>
<p><%= entry.body %></p>
<p>Posted by <%= entry.username %></p>

</div>
<% }) %>

</body>
</html>

Now, when you run the application, the front page will display a list of entries. As no
entries have yet been created, however, let’s move on to adding the necessary compo-
nents to create some.

CREATING AN ENTRY FORM

Now you have the ability to list entries, but no way to add them. You’ll add this capabil-
ity next, starting by adding the following lines to the routing section of app.js:

app.get('/post', entries.form);
app.post('/post', entries.submit);

Next, add the following route to routes/entries.js. This route logic will render a tem-
plate containing a form:

exports.form = function(req, res){
res.render('post', { title: 'Post' });

};

Next, use the EJS template in the following listing to create a template for the form
and save it to views/post.ejs.

<!DOCTYPE html>
<html>

<head>
<title><%= title %></title>
<link rel='stylesheet' href='/stylesheets/style.css' />

Listing 9.21 Modified entries.ejs including pagination

Listing 9.22 A form into which post data can be entered
</head>

222 CHAPTER 9 Advanced Express

<body>
<% include menu %>

<h1><%= title %></h1>
<p>Fill in the form below to add a new post.</p>

<% include messages %>

<form action='/post' method='post'>
<p>

<input type='text' name='entry[title]' placeholder='Title' />
</p>
<p>

<textarea name='entry[body]' placeholder='Body'></textarea>
</p>
<p>

<input type='submit' value='Post' />
</p>

</form>
</body>

</html>

With form display taken care of, let’s move on to creating entries from the submitted
form data.

IMPLEMENTING ENTRY CREATION

To add the capability to create entries from submitted form data, add the logic in the
next listing to the file routes/entries.js. This logic will add entries when form data is
submitted.

exports.submit = function(req, res, next){
var data = req.body.entry;

var entry = new Entry({
"username": res.locals.user.name,
"title": data.title,
"body": data.body

});

entry.save(function(err) {
if (err) return next(err);
res.redirect('/');

});
};

Now when you use a browser to access /post on your application, you’ll be able to add
entries if you’re logged in.

 With that taken care of, let’s move on to route-specific middleware and how you
can use it to validate form data.

Listing 9.23 Add an entry using submitted form data

Entry
title
text

Entry
body
text

223Advanced routing techniques

9.2.2 Route-specific middleware

Suppose you want the entry text field in the post entry form to be required. The first
way you might think of to address this problem is to simply add it straight in your
route callback, as shown in the following snippet. This approach isn’t ideal, however,
because it tightly ties the validation logic to this particular form. In many cases valida-
tion logic can be abstracted into reusable components, making development easier,
faster, and more declarative:

...
exports.submit = function(req, res, next){

var data = req.body.entry;

if (!data.title) {
res.error("Title is required.");
res.redirect('back');
return;

}

if (data.title.length < 4) {
res.error("Title must be longer than 4 characters.");
res.redirect('back');
return;

}
...

Express routes can optionally accept middleware of their own, applied only when that
route is matched, before the final route callback. The route callbacks themselves that
you’ve been using throughout the chapter aren’t treated specially. These are the same
as any other middleware, even the ones you’re about to create for validation!

 Let’s get started with route-specific middleware by looking at a simple, but inflexi-
ble, way to implement validation as route-specific middleware.

FORM VALIDATION USING ROUTE-SPECIFIC MIDDLEWARE

The first possibility is to write a few simple, yet specific, middleware components to
perform validation. Extending the POST /post route with this middleware might look
something like the following:

app.post('/post',
requireEntryTitle,
requireEntryTitleLengthAbove(4),
entries.submit

);

Note in the previous snippet that the route definition, which normally has only a path
and routing logic as arguments, has two additional arguments specifying validation
middleware.

 The two example middleware components in the following listing illustrate how
the original validations can be abstracted out. But they’re still not very modular and
only work for the single field entry[title].

224 CHAPTER 9 Advanced Express

function requireEntryTitle(req, res, next) {
var title = req.body.entry.title;
if (title) {

next();
} else {

res.error("Title is required.");
res.redirect('back');

}
}

function requireEntryTitleLengthAbove(len) {
return function(req, res, next) {

var title = req.body.entry.title;
if (title.length > len) {

next();
} else {

res.error("Title must be longer than " + len);
res.redirect('back');

}
}

}

A more viable solution would be to abstract the validators and pass the target field
name. Let’s take a look at approaching it this way.

BUILDING FLEXIBLE VALIDATION MIDDLEWARE

You can pass the field name, as shown in the following snippet. This allows you to
reuse validation logic, lessening the amount of code you need to write.

app.post('/post',
validate.required('entry[title]'),
validate.lengthAbove('entry[title]', 4),
entries.submit);

Swap the line app.post('/post', entries.submit); in the routing section of app.js
with this snippet. It’s worth noting that the Express community has created many sim-
ilar libraries for public consumption, but understanding how validation middleware
works, and how to author your own, is invaluable.

 So let’s get on with it. Create a file named ./lib/middleware/validate.js using the
program code in the next listing. In it you’ll export several middleware components—
in this case, validate.required() and validate.lengthAbove(). The implementa-
tion details here aren’t important; the point of this example is that a small amount of
effort can go a long way if the code is common within the application.

function parseField(field) {
return field

.split(/\[|\]/)

.filter(function(s){ return s });

Listing 9.24 Two more potential, but imperfect, attempts at validation middleware

Listing 9.25 Validation middleware implementation

Parse entry[name] notation
}

225Advanced routing techniques

function getField(req, field) {
var val = req.body;
field.forEach(function(prop){

val = val[prop];
});
return val;

}

exports.required = function(field){
field = parseField(field);
return function(req, res, next){

if (getField(req, field)) {
next();

} else {
res.error(field.join(' ') + ' is required');
res.redirect('back');

}
}

};

exports.lengthAbove = function(field, len){
field = parseField(field);
return function(req, res, next){

if (getField(req, field).length > len) {
next();

} else {
res.error(field.join(' ') + ' must have more than '

 ➥ + len + ' characters');
res.redirect('back');

}
}

};

To make this middleware available to your application, add the following line at the
top of app.js:

var validate = require('./lib/middleware/validate');

If you try the application now, you’ll find that the validation will be in effect. This vali-
dation API could be made even more fluent, but we’ll leave that for you to investigate.

9.2.3 Implementing pagination

Pagination is another great candidate for route-specific middleware. In this section,
you’ll write a small middleware function that will make it easy to paginate any resource
you have available.

DESIGNING A PAGER API
The API for the page() middleware you’ll create will look like the following snippet,
where Entry.count is a function that will look up the total count of entries, and 5 is
the number to display per page, defaulting to 10. In apps.js, change the line contain-
ing app.get('/' to the contents of the following snippet:

app.get('/', page(Entry.count, 5), entries.list);

Look up property based
on parseField() results

Parse field once

On each
request,
check if

field has
a value

If it does, move on to next
middleware component

If it doesn’t,
display an error

226 CHAPTER 9 Advanced Express

To make the application ready for the pagination middleware, add the lines in the fol-
lowing snippet to the top of app.js. This will require the pagination middleware you’ll
be creating and the entry model:

...
var page = require('./lib/middleware/page');
var Entry = require('./lib/entry');
...

Next, you need to implement Entry.count(). With Redis, this is simple. Open up
lib/entry.js and add the following function, which utilizes the LLEN command to get
the list’s cardinality (the number of elements):

Entry.count = function(fn){
db.llen('entries', fn);

};

You’re now ready to implement the middleware itself.

IMPLEMENTING PAGINATION MIDDLEWARE

For pagination, you’ll use the query-string ?page=N value to determine the current
page. Add the following middleware function to ./lib/middleware/page.js.

module.exports = function(fn, perpage){
perpage = perpage || 10;
return function(req, res, next){

var page = Math.max(
parseInt(req.param('page') || '1', 10),
1

) - 1;

fn(function(err, total){
if (err) return next(err);

req.page = res.locals.page = {
number: page,
perpage: perpage,
from: page * perpage,
to: page * perpage + perpage - 1,
total: total,
count: Math.ceil(total / perpage)

};

next();
});

}
};

The middleware in listing 9.26 grabs the value assigned to ?page=N; for example,
?page=1. It then fetches the total number of results and exposes the page object with
some precomputed values to any views that may later be rendered. These values are
computed outside of the template to allow for a cleaner template containing less logic.

Listing 9.26 Pagination middleware

Default to 10 per page

Return middleware function

Parse page param as
a base 10 integer

Invoke
the

function
passed

Delegate
errors Store page properties

for future reference

Pass control to next
middleware component

227Advanced routing techniques

USING THE PAGER IN A ROUTE

Now you need to update the entries.list route. All you have to change is the origi-
nal Entry.getRange(0, -1) to use the range that the page() middleware defined, as
the following code shows:

exports.list = function(req, res, next){
var page = req.page;
Entry.getRange(page.from, page.to, function(err, entries){

if (err) return next(err);
...

CREATING A TEMPLATE FOR PAGINATION LINKS

Next, you need a template to implement the pager itself. Add the following listing to
./views/pager.ejs, which is a simple pager that consists of Previous and Next buttons.

<div id='pager'>
 <% if (page.count > 1) { %>
 <% if (page.number) { %>
 <a id='prev' href='/?page=<%= page.number %>'>Prev
 <% } %>
 <% if (page.number < page.count - 1) { %>
 <% if (page.number) { %>

 <% } %>
 <a id='next' href='/?page=<%= page.number + 2 %>'>Next
 <% } %>
 <% } %>
</div>

INCLUDING PAGINATION LINKS IN A TEMPLATE

Now that you’re all set up with the pager middleware and pager template, you can use
EJS’s include directive to add the template to the entry listing template ./views
/entries.ejs.

<!DOCTYPE html>
<html>

<head>
<title><%= title %></title>
<link rel='stylesheet' href='/stylesheets/style.css' />

Listing 9.27 An EJS template for rendering paging buttons

Listing 9.28 Modified entries.ejs including pagination

What’s req.param() all about?
req.param() is similar to PHP’s $_REQUEST associative array. It allows you to check
the query string, route, or body. For example, ?page=1, /:page with the value /1, or
even posting JSON with {"page":1} would all be equivalent. If you were to access
req.query.page directly, only the query-string value would be used.

Don’t show page controls if
there’s only one page

If not on
first

page,
show a
link to

previous
page

If not on last
page, show a link
to next page
</head>

228 CHAPTER 9 Advanced Express

<body>
<% include menu %>

<% entries.forEach(function(entry) { %>
<div class='entry'>

<h3><%= entry.title %></h3>
<p><%= entry.body %></p>
<p>Posted by <%= entry.username %></p>

</div>
<% }) %>

<% include pager %>

</body>
</html>

ENABLING CLEAN PAGINATION URLS

You might be wondering how to implement paging using only the pathname, such as
/entries/2, instead of a URL parameter, such as ?page=2. Fortunately, only two
changes need to be made to the pagination implementation to make this possible:

1 Change the route path to accept a page number.
2 Modify the page template.

The first step is to change the entries listing route path to accept a page number. You
could do this by calling app.get() with the string /:page, but you’ll want to consider
/ equivalent to /0, so make it optional using the string /:page?. In route paths, strings
like :page are called route parameters, or params for short.

 With the parameter being optional, both /15 and / are valid, and the page() mid-
dleware defaults the page to 1. Because this route is top-level—/5 and not /entries/5,
for example—the :page parameter may potentially consume routes such as /upload.
The simple solution is to move this route definition down below the others so that it’s
the last route defined. This way, more specific routes will be matched before ever
reaching this route.

 To implement this, the first step is to remove the existing route path in app.js for /.
Remove the following line:

app.get('/', page(Entry.count, 5), entries.list);

Next, you’ll want to add the following route path to app.js. Add this after all of the
other route definitions:

app.get('/:page?', page(Entry.count, 5), entries.list);

The only other change necessary is to the pager template. The query string needs to
be removed so the value becomes part of the path rather than a URL parameter.
Change views/pager.ejs to the following:

<div id='pager'>
<% if (page.count > 1) { %>

<% if (page.number) { %>
<a id='prev' href='/<%= page.number %>'>Prev
<% } %>

229Creating a public REST API

<% if (page.number < page.count - 1) { %>
<% if (page.number) { %>

<% } %>
<a id='next' href='/<%= page.number + 2 %>'>Next

<% } %>
<% } %>

</div>

Now if you start up your application, you’ll notice paging URLs are clean.

9.3 Creating a public REST API
In this section, you’ll implement a RESTful public API for the shoutbox application, so
that third-party applications can access and add to publication data. The idea of REST
is that application data can be queried and changed using verbs and nouns, repre-
sented by HTTP methods and URLs, respectively. A REST request will typically return
data in a machine-readable form, such as JSON or XML.

 To implement an API, you’ll do the following:

 Design an API that allows users to show, list, remove, and post entries
 Add Basic authentication
 Implement routing
 Provide JSON and XML responses

Various techniques can be used to authenticate and sign API requests, but implement-
ing the more complex solutions are beyond the scope of this book. To illustrate how
you could integrate authentication, you’ll use the basicAuth() middleware bundled
by Connect.

9.3.1 Designing the API

Before proceeding with the implementation, it’s a good idea to rough out the routes
that will be involved. For this application, you’ll prefix the RESTful API with the /api
path, but this is a design choice you can alter. For example, you may wish to use a sub-
domain such as http://api.myapplication.com.

 The following snippet illustrates why it can be a good choice to move the callback
functions into separate Node modules, versus defining them inline with the
app.VERB() calls. A single list of routes gives you a clear picture of what you and the
rest of your team has implemented, and where the implementation callback lives:

app.get('/api/user/:id', api.user);
app.get('/api/entries/:page?', api.entries);
app.post('/api/entry', api.add);

9.3.2 Adding Basic authentication

As previously mentioned, there are many ways to approach API security and restric-
tions that fall outside the scope of this book. But it’s worth illustrating the process with

Basic authentication.

230 CHAPTER 9 Advanced Express

 The api.auth middleware will abstract this process, because the implementation
will live in the soon-to-be-created ./routes/api.js module. If you recall from chapter 6,
app.use() can be passed a pathname. This is the mount point, meaning that request
pathnames beginning with /api and any HTTP verb will cause this middleware to be
invoked.

 The line app.use('/api', api.auth), as shown in the following snippet, should
be placed before the middleware that loads user data. This is so that you can later
modify the user-loading middleware to load data for authenticated API users:

...
var api = require('./routes/api');
...
app.use('/api', api.auth);
app.use(user);
...

Next, create the ./routes/api.js file, and require both express and the user model, as
shown in the following snippet. As mentioned in chapter 7, the basicAuth() middle-
ware accepts a function to perform the authentication, taking the function signature
(username, password, callback). Your User.authentication function is a perfect
fit:

var express = require('express');
var User = require('../lib/user');

exports.auth = express.basicAuth(User.authenticate);

Authentication is ready to roll. Let’s move on to implementing the API routes.

9.3.3 Implementing routing

The first route you’ll implement is GET /api/user/:id. The logic for this route will
have to first fetch the user by ID, responding with a 404 Not Found code if the user
doesn’t exist. If the user exists, the user data will be passed to res.send() to be serial-
ized, and the application will respond with a JSON representation of this data. Add the
logic in the following snippet to routes/api.js:

exports.user = function(req, res, next){
User.get(req.params.id, function(err, user){

if (err) return next(err);
if (!user.id) return res.send(404);
res.json(user);

});
};

Next, add the following route path to app.js:

app.get('/api/user/:id', api.user);

You’re now ready to test it.

231Creating a public REST API

TESTING USER DATA RETRIEVAL

Fire up the application and test it out with the cURL command-line tool. The following
snippet shows how you can test the application’s REST authentication. Credentials are
provided in the URL tobi:ferret, which cURL uses to produce the Authorization
header field:

$ curl http://tobi:ferret@127.0.0.1:3000/api/user/1 -v

The following listing shows the result of a successful test.

* About to connect() to local port 80 (#0)
* Trying 127.0.0.1... connected
* Connected to local (127.0.0.1) port 80 (#0)
* Server auth using Basic with user 'tobi'
> GET /api/user/1 HTTP/1.1
> Authorization: Basic Zm9vYmFyYmF6Cg==
> User-Agent: curl/7.21.4 (universal-apple-darwin11.0) libcurl/7.21.4
 ➥OpenSSL/0.9.8r zlib/1.2.5
> Host: local
> Accept: */*
>
< HTTP/1.1 200 OK
< X-Powered-By: Express
< Content-Type: application/json; charset=utf-8
< Content-Length: 150
< Connection: keep-alive
<
{

"name": "tobi",
"pass":

 ➥"$2a$12$P.mzcfvmumS3MMO1EBN9wutf0Eiyw5X0VcGroeoVPGE7MLVtziYqK",
"id": "1",
"salt": "$2a$12$P.mzcfvmumS3MMO1EBN9wu"

}

REMOVING SENSITIVE USER DATA

As you can see by the JSON response, both the user’s password and salt are provided in
the response. To alter this, you can implement .toJSON() on the User.prototype in
lib/user.js:

User.prototype.toJSON = function(){
return {

id: this.id,
name: this.name

}
};

If .toJSON exists on an object, it will be used by JSON.stringify calls to get the JSON
format. If the cURL request shown earlier was to be issued again, you’d now receive
only the ID and name properties:

Listing 9.29 Testing output

Display of HTTP
headers sent

Display of HTTP
headers received

Display of JSON
data received

232 CHAPTER 9 Advanced Express

{
"id": "1",
"name": "tobi"

}

The next thing you’ll add to the API is the ability to create entries.

ADDING ENTRIES

The processes for adding an entry via the HTML form and through an API are nearly
identical, so you’ll likely want to reuse the previously implemented entries.submit()
route logic.

 When adding entries, however, the route logic stores the name of the user, adding
the entry in addition to the other details. For this reason, you’ll need to modify the
user-loading middleware to populate res.locals.user with the user data loaded
by the basicAuth middleware. The basicAuth middleware stores this data in a
property of the request object: req.remoteUser. Adding a check for this in the user-
loading middleware is straightforward: simply change the module.exports definition
in lib/middleware/user.js as follows to make the user-loading middleware work with
the API:

...
module.exports = function(req, res, next){

if (req.remoteUser) {
res.locals.user = req.remoteUser;

}
var uid = req.session.uid;
if (!uid) return next();
User.get(uid, function(err, user){

if (err) return next(err);
req.user = res.locals.user = user;
next();

});
};

With this change made, you’ll now be able to add entries via the API.
 One more change you’ll want to implement, however, is an API-friendly response,

rather than redirection to the application’s homepage. To add this functionality,
change the entry.save call in routes/entries.js to the following:

...
entry.save(function(err) {

if (err) return next(err);
if (req.remoteUser) {

res.json({message: 'Entry added.'});
} else {

res.redirect('/');
}

});
...

Finally, to activate the entry-adding API in your application, add the contents of the

following snippet to the routing section of api.js:

233Creating a public REST API

app.post('/api/entry', entries.submit);

By using the following cURL command, you can test adding an entry via the API. Here
the title and body data is sent using the same field names that are in the HTML form:

$ curl -F entry[title]='Ho ho ho' -F entry[body]='Santa loves you'
 ➥http://tobi:ferret@127.0.0.1:3000/api/entry

Now that you’ve added the ability to create entries, you need to add the ability to
retrieve entry data.

ADDING ENTRY LISTING SUPPORT

The next API route you’ll implement is GET /api/entries/:page?. The route imple-
mentation is nearly identical to the existing entry listing route in ./routes/entries.js.
You’ll want to use the already defined page() middleware to provide you with the
req.page object used for pagination, as you did previously.

 Because the routing logic will be accessing entries, you’ll require the Entry model
at the top of routes/api.js using the following line:

var Entry = require('../lib/entry');

Next, you’ll add the line in the following snippet to the app.js routing section:

app.get('/api/entries/:page?', page(Entry.count), api.entries);

Now add the routing logic in the following snippet to routes/api.js. The difference
between this route logic and the similar logic in routes/entries.js reflects the fact that
you’re no longer rendering a template, but JSON instead:

exports.entries = function(req, res, next){
var page = req.page;
Entry.getRange(page.from, page.to, function(err, entries){

if (err) return next(err);
res.json(entries);

});
};

The following cURL command will request entry data from the API:

$ curl http://tobi:ferret@127.0.0.1:3000/api/entries

This cURL command should result in output similar to the following JSON:

[
{

"username": "rick",
"title": "Cats can't read minds",
"body": "I think you're wrong about the cat thing."

},
{

"username": "mike",
"title": "I think my cat can read my mind",
"body": "I think cat can hear my thoughts."

},

...

234 CHAPTER 9 Advanced Express

With basic API implementation covered, let’s move on to look at how APIs can support
multiple response formats.

9.3.4 Enabling content negotiation

Content negotiation is what enables a client to specify what formats it’s willing to
accept, and which it would prefer. In this section, you’ll provide JSON and XML repre-
sentations of the API content so that the API consumers can decide what they want.

HTTP provides the content negotiation mechanism via the Accept header field.
For example, a client that prefers HTML, but that is willing to accept plain text, could
set the following request header:

Accept: text/plain; q=0.5, text/html

The qvalue or quality value (q=0.5 in this example) indicates that even though
text/html is specified second, it’s favored by 50 percent over text/plain. Express
parses this information and provides a normalized req.accepted array:

[{ value: 'text/html', quality: 1 },
{ value: 'text/plain', quality: 0.5 }]

Express also provides the res.format() method, which accepts an array of MIME
types and callbacks. Express will determine what the client is willing to accept and
what you’re willing to provide, and it’ll invoke the appropriate callback.

IMPLEMENTING CONTENT NEGOTIATION

Implementing content negotiation for the GET /api/entries route might look some-
thing like listing 9.30. JSON is supported as it was before—you serialize the entries as
JSON with res.send(). The XML callback iterates the entries and writes to the socket
as it does so. Note that there’s no need to set the Content-Type explicitly; res
.format() will set it to the associated type automatically.

exports.entries = function(req, res, next){
var page = req.page;
Entry.getRange(page.from, page.to, function(err, entries){

if (err) return next(err);

res.format({
'application/json': function(){

res.send(entries);
},

'application/xml': function(){
res.write('<entries>\n');
entries.forEach(function(entry){

res.write(' <entry>\n');
res.write(' <title>' + entry.title + '</title>\n');
res.write(' <body>' + entry.body + '</body>\n');
res.write(' <username>' + entry.username

Listing 9.30 Implementing content negotiation

Fetch
entry data

Respond differently based
on Accept header value

JSON response

XML response
 ➥ + '</username>\n');

t

235Creating a public REST API

res.write(' </entry>\n');
});
res.end('</entries>');

}
})

});
};

If you set a default response format callback, this will execute if a user hasn’t
requested a format you’ve explicitly handled.

 The res.format() method also accepts an extension name that maps to an associ-
ated MIME type. For example, json and xml can be used in place of applica-
tion/json and application/xml, as the following snippet shows:

...
res.format({

json: function(){
res.send(entries);

},

xml: function(){
res.write('<entries>\n');
entries.forEach(function(entry){

res.write(' <entry>\n');
res.write(' <title>' + entry.title + '</title>\n');
res.write(' <body>' + entry.body + '</body>\n');
res.write(' <username>' + entry.username + '</username>\n');
res.write(' </entry>\n');

});
res.end('</entries>');

}
})
...

RESPONDING WITH XML
Writing a bunch of custom logic in the route in order to respond with XML may not
be the cleanest way to go, so let’s use the view system to clean this up.

 Create a template named ./views/entries/xml.ejs with the following EJS iterating
the entries to generate <entry> tags.

<entries>
<% entries.forEach(function(entry){ %>

<entry>
<title><%= entry.title %></title>
<body><%= entry.body %></body>
<username><%= entry.username %></username>

</entry>
<% }) %>
</entries>

The XML callback can now be replaced with a single res.render() call, passing the

Listing 9.31 Using an EJS template to generate XML

Cycle through each entry

Output
he fields
entries array, as shown in the following code:

236 CHAPTER 9 Advanced Express

...
xml: function(){

res.render('entries/xml', { entries: entries });
}

})
...

You’re now ready to test the XML version of the API. Enter the following in the com-
mand line to see the XML output:

curl -i -H 'Accept: application/xml'
 ➥http://tobi:ferret@127.0.0.1:3000/api/entries

9.4 Error handling
So far, neither the application itself nor the API respond with error or 404 Not Found
pages. This means that if a resource isn’t found, or if the connection to the database
goes down, Express will respond with its default of 404 or 500, respectively. As you can
see in figure 9.8, this isn’t user friendly, so let’s customize it. In this section, you’ll
implement both 404 and error middleware, which will be used to respond with HTML,
JSON, or plain text as accepted by the client.

 Let’s get started with the missing resources by implementing the 404 middleware.

9.4.1 Handling 404 errors

As previously mentioned, the default behavior when Connect exhausts all middleware
without a response is to respond with 404 and a small plain-text string. It looks some-
thing like the following response for an entry that doesn’t exist:

$ curl http://tobi:ferret@127.0.0.1:3000/api/not/a/real/path -i
 ➥-H "Accept: application/json"

HTTP/1.1 404 Not Found
Content-Type: text/plain
Connection: keep-alive
Transfer-Encoding: chunked

Cannot GET /api/not/a/real/path

Figure 9.8 A standard Connect 404 error message

237Error handling

Depending on your needs, this may be acceptable, but ideally a JSON API will respond
with a JSON response, as the following snippet shows:

$ curl http://tobi:ferret@127.0.0.1:3000/api/not/a/real/path
 ➥-i -H "Accept: application/json"
HTTP/1.1 404 Not Found
Content-Type: application/json; charset=utf-8
Content-Length: 37
Connection: keep-alive

{ "message": "Resource not found" }

Implementing the 404 middleware is nothing special; neither Connect nor Express
special-case this functionality. A 404 middleware function is a regular middleware
function that’s used below any other. If it’s reached, you can safely assume nothing
else decided to respond, so you can go ahead and render a template or respond in any
other way you prefer.

 Figure 9.9 shows the HTML response for a 404 error you’ll create.

ADDING A ROUTE TO RETURN THE ERROR RESPONSE

Open up ./routes/index.js. So far this file only contains the original exports.index
function that express(1) generated. Feel free to get rid of that, because it was
replaced with entries.list.

 The implementation of the error response function will depend on your applica-
tion’s needs. In the following snippet, you’ll use the res.format() content negotiation
method to provide text/html, application/json, and text/plain responses to the
client, depending on which they prefer. The response method res.status(code) is
identical to setting Node’s res.statusCode = code property, but because it’s a method,
it’s chainable, as you can see by the immediate .format() call in the following code.

exports.notfound = function(req, res){
res.status(404).format({

html: function(){
res.render('404');

},
json: function(){

Listing 9.32 Not Found route logic

Figure 9.9 A 404 error
message that’s easier on
the eyes than a standard
Connect 404 message
res.send({ message: 'Resource not found' });

238 CHAPTER 9 Advanced Express

},
xml: function() {

res.write('<error>\n');
res.write(' <message>Resource not found</message>\n');
res.end('</error>\n');

},
text: function(){

res.send('Resource not found\n');
}

});
};

CREATING THE ERROR PAGE TEMPLATE

You haven’t created the 404 template yet, so create a new file named ./views/404.ejs
containing the following EJS snippet. The design of the template is entirely up to you.

<!DOCTYPE html>
<html>

<head>
<title>404 Not Found</title>
<link rel='stylesheet' href='/stylesheets/style.css' />

</head>
<body>

<% include menu %>

<h1>404 Not Found</h1>
<p>Sorry we can't find that!</p>

</body>
</html>

ENABLING THE MIDDLEWARE

Add the routes.notfound middleware below the others, and you can now handle 404
errors as you wish:

...
app.use(app.router);
app.use(routes.notfound);
...

Now that you can handle 404s in style, let’s implement a custom error-handling mid-
dleware component to provide a better experience for users when an error occurs.

9.4.2 Handling errors

Up until now you’ve been passing errors to next(). But by default Connect will
respond with the canned 500 Internal Server Error response, much like the bland
default 404 response. Typically, it’s not a good idea to leak error details to a client, as it
poses a potential security issue, but this default response isn’t helpful for the consum-
ers of your API or visitors viewing it from a browser.

 In this section, you’ll create a generic 5xx template that will be used to respond to
clients when an error occurs. It will provide HTML for clients who accept HTML, and

Listing 9.33 Sample 404 page
JSON for those accepting JSON, such as the API consumers.

239Error handling

 The middleware function can live wherever you like, but for now place it in
./routes/index.js alongside the 404 function. The key difference with the exports
.error middleware here is that it accepts four parameters. As we discussed in chapter 6,
error-handling middleware must have no more and no fewer than four parameters.

USING A CONDITIONAL ROUTE TO TEST ERROR PAGES

If your application is robust, it may be difficult to trigger an error on demand. For this
reason, it can be handy to create conditional routes. These routes are only enabled via
a configuration flag, environment variable, or perhaps an environment type, such as
when you’re in development.

 The following snippet from app.js illustrates how you can add a /dev/error route
to the application only when the ERROR_ROUTE environment variable is specified, cre-
ating a faux error with an arbitrary err.type property. Add this code to the routing
section of app.js:

if (process.env.ERROR_ROUTE) {
app.get('/dev/error', function(req, res, next){

var err = new Error('database connection failed');
err.type = 'database';
next(err);

});
}

Once this is in place, you can fire up the application with this optional route by exe-
cuting the following command. Visit /dev/error in the browser if you’re curious, but
you’ll be using it in a moment to test the error handler:

$ ERROR_ROUTE=1 node app

IMPLEMENTING THE ERROR HANDLER

To implement the error handler in ./routes/index.js, listing 9.34 starts off with a call
to console.error(err.stack). This is possibly the most important line in this func-
tion. It ensures that when an error propagates through Connect, reaching this func-
tion, you’ll know about it. The error message and stack trace will be written to the
stderr stream for later review.

exports.error = function(err, req, res, next){
console.error(err.stack);
var msg;

switch (err.type) {
case 'database':

msg = 'Server Unavailable';
res.statusCode = 503;
break;

default:
msg = 'Internal Server Error';
res.statusCode = 500;

Listing 9.34 Error handler with content negotiation

Error handlers must
accept four argumentsLog

error to
stderr

stream An example of
special-casing errors
}

240 CHAPTER 9 Advanced Express

res.format({
html: function(){

res.render('5xx', { msg: msg, status: res.statusCode });
},

json: function(){
res.send({ error: msg });

},

text: function(){
res.send(msg + '\n');

}
});

};

In order to provide a more meaningful response to the user, without exposing too
much information about a given error, you might want to check the properties of the
error and respond accordingly. Here the err.type property you added on the
/dev/error route is checked in order to customize the message, and you then
respond with HTML, JSON, or plain-text representations, much like the 404 handler.

APPLICATION ERROR ALERTS This unified error handler is a great place to per-
form additional error-related tasks, like alerting your team that something
has gone wrong. Try it out yourself: choose one of the third-party email mod-
ules and write an error-handling middleware component that will alert you
via email, and then invoke next(err) to pass the error to the remaining
error-handling middleware.

CREATING THE ERROR PAGE TEMPLATE

The EJS template for the res.render('5xx') call will live in ./views/5xx.ejs, as shown
in the following listing.

<!DOCTYPE html>
<html>

<head>
<title><%= status %> <%= msg %></title>
<link rel='stylesheet' href='/stylesheets/style.css' />

</head>
<body>

<% include menu %>

<h1><%= status %> Error</h1>
<p><%= msg %></p>
<p>

Try refreshing the page, if this problem
 ➥persists then we're already working on it!

</p>
</body>

</html>

Listing 9.35 Sample 500 error page

Render template
when HTML is
accepted

Respond with JSON
when accepted

Respond with
plain text

241Summary

ENABLING THE MIDDLEWARE

By editing app.js and placing the routes.error middleware below the others—even
below routes.notfound—you’ll ensure that all errors Connect can see, even potential
errors in routes.notfound, will hit this middleware component:

...
app.use(app.router);
app.use(routes.notfound);
app.use(routes.error);
});

Fire up the application with the ERROR_ROUTE enabled again, and take a look at the
new error page in figure 9.10.

You’ve now created a fully functioning shoutbox application and have learned some
essential Express development techniques in the process.

9.5 Summary
In this chapter, you built a simple web application that employs many aspects of
Express’s functionality that we didn’t touch on in the previous chapter. The tech-
niques you’ve learned in this chapter should help you go further in your web applica-
tion development efforts.

 You first created a general-purpose user authentication and registration system
that uses sessions to store the IDs of logged-in users and any messages the system wants
displayed to the users.

 You then leveraged the authentication system, through the use of middleware, to
create a REST API. The REST API exposes selected application data to developers
and, through the use of content negotiation, makes the data available in either JSON
or XML.

 Having spent the last two chapters honing your web application development
skills, you’re ready to focus on a subject useful for all types of Node development:

Figure 9.10 An error page
automated testing.

Testing Node applications
As you add features to your application, you run the risk of introducing bugs. An
application isn’t complete if it’s not tested, and as manual testing is tedious and
prone to human error, automated testing has become increasingly popular with
developers. Automated testing involves writing logic to test your code, rather than
running through application functionality by hand.

 If the idea of automated testing is new to you, think of it as a robot doing all of
the boring stuff for you, allowing you to focus on the interesting stuff. Every time
you make a change to the code, you can get the robot to make sure bugs haven’t
crept in. Although you may not have completed or started your first Node applica-
tion yet, it’s good to get a handle on how you can implement automated testing
because you’ll be able to write tests as you develop.

 In this chapter, we’ll look at two types of automated testing: unit testing and
acceptance testing. Unit testing tests code logic directly, typically at a function or
method level, and it’s applicable to all types of applications. Unit-testing methodol-

This chapter covers
 Testing logic with Node’s assert module

 Using Node unit-testing frameworks

 Simulating and controlling web browsers using Node
242

ogy can be divided into two major forms: test-driven development (TDD) and

243Unit testing

behavior-driven development (BDD). Practically speaking, TDD and BDD are largely
the same thing, with the differences mostly being in the language used to describe the
tests, as you’ll see when we go through some examples. There are other differences
between TDD and BDD, but they’re beyond the scope of this book.

 Acceptance testing is an additional layer of testing most commonly used for web
applications. Acceptance testing involves scripting control of a browser and attempt-
ing to trigger web application functionality with it.

 We’ll look at established solutions for both unit and acceptance testing. For unit
testing, we’ll cover Node’s assert module and the Mocha, nodeunit, Vows, and
should.js frameworks. For acceptance testing, we’ll look at the Tobi and Soda frame-
works. Figure 10.1 places the tools alongside their respective testing methodologies
and flavors.

 Let’s start with unit testing.

10.1 Unit testing
Unit testing is a type of automated testing where you write logic to test discrete parts
of your application. Writing tests makes you think more critically about your applica-
tion design choices and helps you avoid pitfalls early. The tests also give you confi-
dence that your recent changes haven’t introduced errors. Although unit tests take a
bit of work up front to write, they can save you time by lessening the need to manually
retest every time you make a change to an application.

 Unit testing can be tricky, and asynchronous logic can add new challenges. Asyn-
chronous unit tests can run in parallel, so you’ve got to be careful to ensure that tests
don’t interfere with each other. For example, if your tests create temporary files on

Unit testing

Test application logic Test application interface
and functionality

Acceptance testing

TDD flavor

Mocha
nodeunit

assert module

Traditional
unit testing

Easier
to read

Mocha
Vows

should.js

Tobi
SodaBDD flavor

Figure 10.1 Test framework overview
disk, you’ll have to be careful that when you delete the files after a test, you don’t

244 CHAPTER 10 Testing Node applications

delete the working files of another test that hasn’t yet finished. For this reason, many
unit-testing frameworks include flow control to sequence the running of tests.

 In this section, we’ll show you how to use the following:

 Node’s built-in assert module—A good building block for TDD-style automated
testing

 nodeunit—A longtime favorite TDD-style testing framework of the Node
community

 Mocha—A relatively new testing framework that can be used for TDD- or
BDD-style testing

 Vows—A widely used BDD-style testing framework
 should.js—A module that builds on Node’s assert module to provide BDD-style

assertions

Let’s start with the assert module, which is included with Node.

10.1.1 The assert module

The basis for most Node unit testing is the built-in assert module, which tests a condi-
tion and, if the condition isn’t met, throws an error. Node’s assert module is taken
advantage of by many third-party testing frameworks, but even without a testing frame-
work, you can do useful testing with it.

A SIMPLE EXAMPLE

Suppose you have a simple to-do application that stores items in memory, and you
want to assert that it’s doing what you think it’s doing.

 The following listing defines a module containing the core application functional-
ity. Module logic supports creating, retrieving, and deleting to-do items. It also
includes a simple doAsync method, so we can look at testing asynchronous methods
too. Let’s call this file todo.js.

function Todo () {
this.todos = [];

}

Todo.prototype.add = function (item) {
if (!item) throw new Error('Todo#add requires an item')
this.todos.push(item);

}

Todo.prototype.deleteAll = function () {
this.todos = [];

}

Todo.prototype.getCount = function () {
return this.todos.length;

}

Listing 10.1 A model for a to-do list

Define to-do database

Add a to-do item

Delete all to-do items

Get count of to-do items
Todo.prototype.doAsync = function (cb) { Call back with “true” after 2 secs

245Unit testing

setTimeout(cb, 2000, true);
}

module.exports = Todo;

Now you can use Node’s assert module to test the code.
 In a file called test.js, enter the following code to load the necessary modules, set

up a new to-do list, and set a variable that will track testing progress.

var assert = require('assert');
var Todo = require('./todo');
var todo = new Todo();
var testsCompleted = 0;

USING EQUAL TO TEST THE CONTENTS OF A VARIABLE

Next, you can add a test of the to-do application’s delete functionality.
 Note the use of equal in listing 10.3. equal is the assert module’s most-used asser-

tion, and it tests that the contents of a variable are indeed equal to a value specified in
the second argument. In the example here, a to-do item is created, and then all items
are deleted.

function deleteTest () {
todo.add('Delete Me');
assert.equal(todo.getCount(), 1, '1 item should exist');
todo.deleteAll();
assert.equal(todo.getCount(), 0, 'No items should exist');
testsCompleted++;

}

As there should be no to-dos at the end of this test, the value of todo.getCount()
should be 0 if the application logic is working properly. If a problem occurs, an
exception is thrown. If the variable todo.getCount() isn’t set to 0, the assertion will
result in a stack trace showing an error message, “No items should exist,” outputted
to the console. After the assertion, testsCompleted is incremented to note that a test
has completed.

USING NOTEQUAL TO FIND PROBLEMS IN LOGIC

Next, add the code in the following listing to test.js. This code is a test of the to-do
application’s add functionality.

function addTest () {
todo.deleteAll();
todo.add('Added');
assert.notEqual(todo.getCount(), 0, '1 item should exist');
testsCompleted++;

Listing 10.2 Set up necessary modules

Listing 10.3 Test to make sure that no to-do items remain after deletion

Listing 10.4 Test to make sure adding a to-do works

Export Todo function

Add some data in
order to test delete Assert data was

added correctly

Delete
all

records
Assert record
was deletedNote that test

has completed

Delete any existing items
Add itemAssert

that
items
exist Note that test has completed
}

246 CHAPTER 10 Testing Node applications

The assert module also allows notEqual assertions. This type of assertion is useful when
the generation of a certain value by application code indicates a problem in logic.

 Listing 10.4 shows the use of a notEqual assertion. All to-do items are deleted, an
item is added, and the application logic then gets all items. If the number of items is 0,
the assertion will fail and an exception will be thrown.

USING ADDITION FUNCTIONALITY: STRICTEQUAL, NOTSTRICTEQUAL, DEEPEQUAL, NOTDEEPEQUAL

In addition to equal and notEqual functionality, the assert module offers strict ver-
sions of assertions called strictEqual and notStrictEqual. These use the strict
equality operator (===) rather than the more permissive version (==).

 To compare objects, the assert module offers deepEqual and notDeepEqual. The
deep in the names of these assertions indicates that they recursively compare two
objects, comparing two object’s properties and, if the properties are themselves
objects, comparing these as well.

USING OK TO TEST FOR AN ASYNCHRONOUS VALUE BEING TRUE

Now it’s time to add a test of the to-do application’s doAsync method, as shown in list-
ing 10.5. Because this is an asynchronous test, we’re providing a callback function
(cb) to signal to the test runner when the test has completed—we can’t rely on the
function returning to tell us like we can with synchronous tests. To see if the result of
doAsync is the value true, we use the ok assertion. The ok assertion provides an easy
way to test a value for being true.

function doAsyncTest (cb) {
todo.doAsync(function (value) {

assert.ok(value,'Callback should be passed true');
testsCompleted++;
cb();

})
}

TESTING THAT THROWN ERRORS ARE CORRECT

You can also use the assert module to check that thrown error messages are correct, as
the following listing shows. The second argument in the throws call is a regular
expression that looks for the text “requires” in the error message.

function throwsTest (cb) {
assert.throws(todo.add, /requires/);
testsCompleted++

}

ADDING LOGIC TO RUN YOUR TESTS

Now that you’ve defined the tests, you can add logic to the file to run each of the tests.
The logic in the following listing will run each test, and then print how many tests

Listing 10.5 Test to see if the doAsync callback is passed true

Listing 10.6 Test to see if add throws when missing a parameter

Callback will
fire 2 secs later

Assert value is true
Note that test has completed

Trigger callback when done

todo.add called with no arguments
Note that test has completed
were run and completed.

247Unit testing

deleteTest();
addTest();
throwsTest();
doAsyncTest(function () {

console.log('Completed ' + testsCompleted + ' tests');
})

You can run the tests with the following command:

$ node test.js

If the tests don’t fail, the script informs you of the number of tests completed. It also
can be smart to keep track of when tests start execution as well as when they complete,
to protect against flaws in individual tests. For example, a test may execute without
reaching the assertion.

 In order to use Node’s built-in functionality, each test case had to include a lot of
boilerplate to set up the test (such as deleting all items) and to keep track of progress
(the “completed” counter). All this boilerplate shifts the focus away from the primary
concern of writing test cases, and it’s better left to a dedicated framework that can do
the heavy lifting while you focus on testing business logic. Let’s look at how you can
make things easier using nodeunit, a third-party unit-testing framework.

10.1.2 Nodeunit

Using a unit-testing framework simplifies unit testing. Frameworks generally keep
track of how many tests have run and they make it easy to run multiple test scripts.

 A number of excellent testing frameworks have been created by the Node com-
munity. We’ll start with a look at nodeunit (https://github.com/caolan/nodeunit) as
it’s a time-tested favorite of Node developers who prefer TDD-flavored testing. Node-
unit provides a command-line tool that will run all of your application’s tests and let
you know how many pass and fail, saving you from having to implement your own
application-specific testing tool.

 In this section, you’ll learn how to write tests with nodeunit that can test both Node
application code and client-side code run using a web browser. You’ll also learn how
nodeunit deals with the challenge of keeping track of running tests asynchronously.

INSTALLING NODEUNIT

Enter the following to install nodeunit:

$ npm install -g nodeunit

Once it has completed, you’ll have a new command available named nodeunit. This
command is given one or more directories or files containing tests, as an argument,
and it will run all scripts with the extension .js within the directories passed.

Listing 10.7 Running the tests and reporting test completion

Indicate
completion

https://github.com/caolan/nodeunit

248 CHAPTER 10 Testing Node applications

TESTING NODE APPLICATIONS WITH NODEUNIT

To add nodeunit tests to your project, create a directory for them (the directory is usu-
ally named test). Each test script should populate the exports object with tests.

 Here’s an example nodeunit server-side test file:

exports.testPony = function(test) {
var isPony = true;
test.ok(isPony, 'This is not a pony.');
test.done();

}

Note that the previous test script doesn’t require any modules. Nodeunit automati-
cally includes Node’s assert module’s methods in an object that it passes to each func-
tion exported by a test script. In the preceding example, this object is called test.

 Once each function exported by the test script has completed, the done method
should be called. If it isn’t called, the test will report a failure of “Undone tests.” By
requiring that this method be called, nodeunit checks that all tests that were started
were also finished.

 It also can be helpful to check that all the assertions fire within a test. Why wouldn’t
assertions fire? When writing unit tests, the danger always exists that the test logic itself
is buggy, leading to false positives. Logic in the test may be written in such a way that
certain assertions don’t evaluate. The following example shows how test.done() can
fire and report success even though one of the assertions hasn’t executed:

exports.testPony = function(test) {
if (false) {

test.ok(false, 'This should not have passed.');
}
test.ok(true, 'This should have passed.');
test.done();

}

If you want to safeguard against this, you could manually implement an assertion
counter, such as the one shown in the following listing.

exports.testPony = function(test) {
var count = 0;
if (false) {

test.ok(false, 'This should not have passed.');
count++;

}
test.ok(true, 'This should have passed.');
count++;
test.equal(count, 2, 'Not all assertions triggered.');
test.done();

}

Listing 10.8 Manually counting assertions

Count assertions

Increment assertion count

Increment assertion count
Test assertion count

249Unit testing

This is tedious. Nodeunit offers a nicer way to do this by using test.expect. This
method allows you to specify the number of assertions each test should include. The
result is fewer lines of unnecessary code:

exports.testPony = function(test) {
test.expect(2);
if (false) {

test.ok(false, 'This should not have passed.');
}
test.ok(true, 'This should have passed.');
test.done();

}

In addition to testing Node modules, nodeunit also allows you to test client-side
JavaScript, giving you the ability to use one test harness for your web applications. You
can learn about that and more advanced techniques by checking out nodeunit’s
online documentation: https://github.com/caolan/nodeunit.

 Now that you’ve learned how to use a TDD-flavored unit-testing framework, let’s
look at how you can incorporate a BDD style of unit testing.

10.1.3 Mocha

Mocha is the newest testing framework you’ll learn about in this chapter, and it’s an
easy framework to grasp. Although it defaults to a BDD style, you can also use it in a
TDD style. Mocha has a wide variety of features, including global variable leak detec-
tion, and, like nodeunit, Mocha supports client-side testing.

By default, Mocha tests are defined and their logic is set up using BDD-flavored func-
tions called describe, it, before, after, beforeEach, and afterEach. Alternatively,
you can use Mocha’s TDD interface, which replaces the use of describe with suite, it
with test, before with setup, and after with teardown. For our example, we’ll stick
with the default BDD interface.

Global variable leak detection
You should have little need for global variables that are readable application-wide,
and it’s considered a programming best practice to minimize your use of them. But
in JavaScript it’s easy to inadvertently create global variables by forgetting to include
the var keyword when declaring a variable. Mocha helps detect accidental global vari-
able leaks by throwing an error when you create a global variable during testing.

If you want to disable global leak detection, run mocha with the --ignored-leaks
command-line option. Alternatively, if you want to allow a select number of globals to
be used, you can specify them using the --globals command-line option followed
by a comma-delimited list of allowable global variables.

https://github.com/caolan/nodeunit

250 CHAPTER 10 Testing Node applications

TESTING NODE APPLICATIONS WITH MOCHA

Let’s dive right in and create a small project called memdb—a small in-memory data-
base—and use Mocha to test it. First, you need to create the directories and files for
the project:

$ mkdir -p memdb/test
$ cd memdb
$ touch index.js
$ touch test/memdb.js

The test directory is where the tests will live, but before you write any tests you need to
install Mocha:

$ npm install -g mocha

By default, Mocha will use the BDD interface. The following listing shows what it looks
like.

var memdb = require('..');

describe('memdb', function(){
describe('.save(doc)', function(){

it('should save the document', function(){

});
});

});

Mocha also supports TDD and qunit, and exports style interfaces, which are detailed
on the project’s site (http://visionmedia.github.com/mocha), but to illustrate the
concept of different interfaces, here’s the exports interface:

module.exports = {
'memdb': {

'.save(doc)': {
'should save the document': function(){

}
}

}
}

All of these interfaces provide the same functionality, but for now let’s stick to the BDD
interface and write the first test, shown in the following listing, in test/memdb.js. This
test uses Node’s assert module to perform the assertions.

var memdb = require('..');
var assert = require('assert');

describe('memdb', function(){

Listing 10.9 Basic structure for Mocha test

Listing 10.10 Describing the memdb.save functionality

Describe
memdb
functionality Describe .save()

method’s functionality
describe('.save(doc)', function(){

http://visionmedia.github.com/mocha

251Unit testing

it('should save the document', function(){
var pet = { name: 'Tobi' };
memdb.save(pet);
var ret = memdb.first({ name: 'Tobi' });
assert(ret == pet);

})
})

})

To run the tests, all you need to do is execute mocha. Mocha will look in the ./test direc-
tory by default for JavaScript files to execute. Because you haven’t implemented the
.save() method yet, you’ll see that the single test defined fails, as shown in figure 10.2.

 Let’s make it pass! Add the code in the following listing to index.js.

var db = [];

exports.save = function(doc){
db.push(doc);

};

exports.first = function(obj) {
return db.filter(function(doc){

for (var key in obj) {
if (doc[key] != obj[key]) {

return false;
}

}
return true;

}).shift();
};

Run the tests again with Mocha and see success, as shown in figure 10.3.

Listing 10.11 Added save functionality

Describe the
expectation

Ensure the
pet was found

Figure 10.2 Failing test in Mocha

Add the doc to
database array

Select docs that match
every property in obj

Not a match; return false
and don’t select this doc

They all matched; return
and select the doc

Only want the first
doc or null

252 CHAPTER 10 Testing Node applications

DEFINING SETUP AND CLEANUP LOGIC USING MOCHA HOOKS

This test case makes the assumption that memdb.first() functions appropriately, so
you’ll want to add a few test cases for it as well, with expectations defined using the
it() function. The revised test file, listing 10.12, includes a new concept—the con-
cept of Mocha hooks. For example, the BDD interface exposes beforeEach(), afte-
rEach(), before(), and after(), which take callbacks, allowing you to define setup
and cleanup logic before and after test cases and suites defined with describe().

var memdb = require('..');
var assert = require('assert');

describe('memdb', function(){
beforeEach(function(){

memdb.clear();
})

describe('.save(doc)', function(){
it('should save the document', function(){

var pet = { name: 'Tobi' };
memdb.save(pet);
var ret = memdb.first({ name: 'Tobi' });
assert(ret == pet);

})
})

describe('.first(obj)', function(){
it('should return the first matching doc', function(){

var tobi = { name: 'Tobi' };
var loki = { name: 'Loki' };

memdb.save(tobi);
memdb.save(loki);

var ret = memdb.first({ name: 'Tobi' });
assert(ret == tobi);

var ret = memdb.first({ name: 'Loki' });
assert(ret == loki);

})

it('should return null when no doc matches', function(){

Listing 10.12 Adding a beforeEach hook

Figure 10.3 Successful test in Mocha

Clear database before
each test case to keep
tests stateless

The first
expectation
for .first()

Save two
documents

Make sure each
one can be
returned properly

The second

var ret = memdb.first({ name: 'Manny' }); expectation

for .first()

c

f

253Unit testing

assert(ret == null);
})

})
})

Ideally test cases share no state whatsoever. To achieve this with memdb, you simply
need to remove all the documents by implementing the .clear() method in index.js:

exports.clear = function(){
db = [];

};

Running Mocha again should show you that three tests have passed.

TESTING ASYNCHRONOUS LOGIC

One thing we haven’t yet dealt with in Mocha testing is testing asynchronous logic. To
show how this is done, let’s make a small change to one of the functions defined ear-
lier in index.js. By changing the save function to the following, a callback can be
optionally provided that will execute after a small delay (meant to simulate some sort
of asynchronous operation):

exports.save = function(doc, cb){
db.push(doc);
if (cb) {

setTimeout(function() {
cb();

}, 1000);
}

};

Mocha test cases can be defined as async simply by adding an argument to a function
defining testing logic. The argument is commonly named done. The following listing
shows how you could change the initial .save() test to work with asynchronous code.

describe('.save(doc)', function(){
it('should save the document', function(done){

var pet = { name: 'Tobi' };
memdb.save(pet, function(){

var ret = memdb.first({ name: 'Tobi' });
assert(ret == pet);
done();

});
});

});

This same rule applies to all of the hooks. For example, the beforeEach() hook to
clear the database could add a callback, and Mocha could wait until it’s called in order
to move on. If done() is invoked with an error as the first argument, then Mocha will
report the error and mark the hook or test case as a failure:

Listing 10.13 Testing asynchronous logic

Save doc

Invoke
allback

with
irst doc

Assert document
saved properlyTell Mocha

you’re done with
this test case

254 CHAPTER 10 Testing Node applications

beforeEach(function(done){
memdb.clear(done);

})

For more about Mocha, check out its full online documentation: http://visionmedia
.github.com/mocha. Mocha also works for client-side JavaScript like nodeunit.

10.1.4 Vows

The tests you can write using the Vows unit-testing framework are more structured
than those of many other frameworks, with the structure intended to make the tests
easy to read and maintain.

 Vows uses its own BDD-flavored terminology to define test structure. In the realm
of Vows, a test suite contains one or more batches. A batch can be thought of as a group
of related contexts, or conceptual areas of concern that you want to test. The batches
and contexts run in parallel. A context may contain a number of things: a topic, one or
more vows, and/or one or more related contexts (inner contexts also run in parallel).
A topic is testing logic that’s related to a context. A vow is a test of the result of a topic.
Figure 10.4 visually represents how Vows structures tests.

 Vows, like nodeunit and Mocha, is geared toward automated application testing.
The difference is primarily in flavor and parallelism, with Vows tests requiring a spe-
cific structure and terminology. In this section, we’ll run through an example applica-
tion test and explain how you can use a Vows test to run multiple tests at the same time.

 Typically, you’d install Vows globally to give you access to the vows command-line
test-running tool. Enter the following command to install Vows:

$ npm install -g vows

TESTING APPLICATION LOGIC WITH VOWS

You can trigger testing in Vows either by running a script containing test logic or by
using the vows command-line test runner. The following example of a standalone test
script (which can be run like any other Node script) uses one of the tests of the to-do
application’s core logic.

Mocha’s use of nonparallel testing
Mocha executes tests one after another rather than in parallel, which makes test
suites execute more slowly but makes writing tests easier. But Mocha won’t let any
test run for an inordinately long time. Mocha, by default, will only allow any given test
to run for 2,000 milliseconds before failing it. If you have tests that take longer, you
can run Mocha with the --timeout command-line option and then specify a larger
number.

For most testing, running tests serially is fine. If you find this problematic, there are
other frameworks that execute in parallel, like Vows, covered in the next section.

http://visionmedia.github.com/mocha
http://visionmedia.github.com/mocha

255Unit testing

Listing 10.14 creates a batch. Within the batch, you define a context. Within the con-
text, you define a topic and a vow. Note how the code makes use of the callback to
deal with asynchronous logic in the topic. If a topic isn’t asynchronous, a value can be
returned rather than being sent via a callback.

var vows = require('vows')
var assert = require('assert')
var Todo = require('./todo');

vows.describe('Todo').addBatch({
'when adding an item': {

topic: function () {
var todo = new Todo();
todo.add('Feed my cat');
return todo;

},
'it should exist in my todos': function(er, todo) {

assert.equal(todo.getCount(), 1);
}

}
}).run();

If you want to include the previous code listing in a folder of tests, where it could be
run with the Vows test runner, you’d change the last line to the following:

...
}).export(module);

Listing 10.14 Using Vows to test the to-do application

Suite

One or more
batches

One or more
contexts

One or more
vows

One or more
contexts

Topic

May contain May contain May contain

Contains

Contains

Figure 10.4 Vows can
structure tests in a suite
using batches, contexts,
topics, and vows.

A batch
A context

A topic

A vow

256 CHAPTER 10 Testing Node applications

To run all tests in a folder named test, enter the following command:

$ vows test/*

For more about Vows, check out the project’s online documentation (http://
vowsjs.org/), as shown in figure 10.5.

 Vows offers a comprehensive testing solution, but you might not like the test struc-
ture it imposes, as Vows requires the use of batches, contexts, topics, and vows. Or you
might like the features of a competing testing framework or be familiar with another
framework and see no need to learn Vows. If this sounds like you, should.js might be a
good alternative to explore. Rather than being yet another testing framework,
should.js offers a BDD-flavored alternative to using Node’s assert module.

10.1.5 Should.js

Should.js is an assertion library that can help make your tests easier to read by allow-
ing you to express assertions in a BDD-like style. It’s designed to be used in conjunc-
tion with other testing frameworks, which lets you continue to use your own preferred
framework. In this section, you’ll learn how to write assertions with should.js and, as
an example, you’ll write a test for a custom module.

 Should.js is easy to use with other frameworks because it augments Object
.prototype with a single property: should. This allows you to write expressive assertions
such as user.role.should.equal("admin"), or users.should.include("rick").

TESTING MODULE FUNCTIONALITY USING SHOULD.JS
Let’s say you’re writing a Node command-line tip calculator that you want to use to fig-
ure out who should pay what amount when you split a bill with friends. You’d like to

Figure 10.5 Vows combines full-featured BDD testing capabilities with features such as
macros and flow control.

http://vowsjs.org/
http://vowsjs.org/

257Unit testing

write tests for your calculation logic in a way that’s easily understood by your nonpro-
grammer friends, because then they won’t think you’re cheating them.

 To set up your tip calculator application, enter the following commands, which will
set up a folder for the application and install should.js for testing:

$ mkdir -p tips/test
$ cd tips
$ touch index.js
$ touch test/tips.js

Now you can install should.js by running the following command:

$ npm install should

Next, edit the index.js file, which will contain the logic defining the application’s core
functionality. Specifically, the tip calculator logic includes four helper functions:

 addPercentageToEach—Increases each number in an array by a given
percentage

 sum—Calculates the sum of each element in an array
 percentFormat—Formats a percentage for display
 dollarFormat—Formats a dollar value for display

Add this logic by populating index.js with the contents of the following listing.

exports.addPercentageToEach = function(prices, percentage) {
return prices.map(function(total) {

total = parseFloat(total);
return total + (total * percentage);

});
}

exports.sum = function(prices) {
return prices.reduce(function(currentSum, currentValue) {

return parseFloat(currentSum) + parseFloat(currentValue);
})

}

exports.percentFormat = function(percentage) {
return parseFloat(percentage) * 100 + '%';

}

exports.dollarFormat = function(number) {
return '$' + parseFloat(number).toFixed(2);

}

Now edit the test script in test/tips.js, as shown in listing 10.16. The script loads the tip
logic module, defines a tax and tip percentage and the bill items to test, tests the addi-
tion of a percentage to each array element, and tests the bill total.

Listing 10.15 Logic for calculating tips when splitting a bill

Add percentage
to array
elements

Calculate sum
of array
elements

Format
percentage
for display

Format
dollar value
for display

258 CHAPTER 10 Testing Node applications

var tips = require('..');
var should = require('should');

var tax = 0.12;
var tip = 0.15;
var prices = [10, 20];
var pricesWithTipAndTax = tips.addPercentageToEach(prices, tip + tax);

pricesWithTipAndTax[0].should.equal(12.7);
pricesWithTipAndTax[1].should.equal(25.4);

var totalAmount = tips.sum(pricesWithTipAndTax).toFixed(2);
totalAmount.should.equal('38.10');

var totalAmountAsCurrency = tips.dollarFormat(totalAmount);
totalAmountAsCurrency.should.equal('$38.10');

var tipAsPercent = tips.percentFormat(tip);
tipAsPercent.should.equal('15%');

Run the script using the following command. If all is well, the script should generate
no output, because no assertions have been thrown, and your friends will be reassured
of your honesty:

$ node test/tips.js

Should.js supports many types of assertions—everything from assertions that use regu-
lar expressions to assertions that check object properties—allowing comprehensive
testing of data and objects generated by your application. The project’s GitHub page
(http://github.com/visionmedia/should.js) provides comprehensive documenta-
tion of should.js’s functionality.

 Now that we’ve looked at tools designed for unit testing, let’s move on to an alto-
gether different style of testing: acceptance testing.

10.2 Acceptance testing
Acceptance testing, also called functional testing, tests outcomes, not logic. After you’ve
created a suite of unit tests for your project, acceptance testing will provide an addi-
tional level of protection against bugs that unit testing might not detect.

 Acceptance testing is similar, conceptually, to testing by end users who follow a list
of things to test. But being automated makes acceptance testing fast, and it doesn’t
require human labor.

 Acceptance testing also deals with complications created by client-side JavaScript
behavior. If there’s a serious problem created by client-side JavaScript, server-side unit
testing won’t catch it, but thorough acceptance testing will. For example, your applica-
tion may make use of client-side JavaScript form validation. Acceptance testing will
ensure that your validation logic works, rejecting and accepting input appropriately.
Or, for another example, you may have Ajax-driven administration functionality—
such as the ability to browse content to select featured content for a website’s front

Listing 10.16 Logic that calculates tips when splitting a bill

Use tip logic module

Define tax and tip rates

Define bill items to test

Test tax and tip addition

Test bill totaling

http://github.com/visionmedia/should.js

259Acceptance testing

page—that should only be available to authenticated users. To deal with this, you
could write a test to ensure that the Ajax request produces expected results when the
user logs in, and write another test to make sure that those who aren’t authenticated
can’t access this data.

 In this section, you’ll learn how to use two acceptance-testing frameworks: Tobi and
Soda. Soda provides the benefit of harnessing real browsers for acceptance testing,
whereas Tobi, which we’ll look at first, is easier to learn and to get up and running on.

10.2.1 Tobi

Tobi (https://github.com/LearnBoost/tobi) is an easy-to-use, acceptance-testing
framework that emulates the browser and takes advantage of should.js, offering access
to its assertion capabilities. The framework uses two third-party modules, jsdom and
htmlparser, to simulate a web browser, allowing access to a virtual DOM.

 Tobi enables you to painlessly write tests that will log into your web application, if
need be, and send web requests that emulate someone using your application. If Tobi
returns unexpected results, your test can then alert you to the problem.

 Because Tobi must emulate a user’s activities and check the results of web requests,
it must often manipulate or examine DOM elements. In the world of client-side
JavaScript development, web developers often use the jQuery library (http://
jquery.com) when they need to interact with the DOM. Developers can also use jQuery
on the server side, and Tobi’s use of jQuery minimizes the amount of learning
required to create tests with it.

 In this section, we’ll talk about how you can use Tobi to test any running web appli-
cation, including non-Node applications, over the network. We’ll also show you how
to use Tobi to test a web application created with Express, even if the Express-based
web application isn’t running.

TESTING WEB APPLICATIONS WITH TOBI

If you’d like to create tests using Tobi, first create a directory for them (or use an exist-
ing application directory), and then change to the directory in the command line and
enter the following to install Tobi:

$ npm install tobi

Listing 10.17 is an example of using Tobi to test web application functionality of a
website—in this case running the to-do application we tested in chapter 5. The test
attempts to create a to-do item, and then looks for it on the response page. If you run
the script using Node and no exceptions are thrown, the test passed.

 The script creates a simulated browser, uses it to perform an HTTP GET request for
the main page with the entry form, fills in the form’s fields, and submits the form. The
script then checks the contents of a table cell for the text “Floss the Cat.” If the table
cell contains the text, the test passes.

https://github.com/LearnBoost/tobi
http://jquery.com
http://jquery.com

260 CHAPTER 10 Testing Node applications

var tobi = require('tobi');
var browser = tobi.createBrowser(3000, '127.0.0.1');

browser.get('/', function(res, $){
$('form')

.fill({ description: 'Floss the cat' })

.submit(function(res, $) {
$('td:nth-child(3)').text().should.equal('Floss the cat');

});
});

You can test the previous application without even running it. The following Tobi test
shows how you’d do this:

var tobi = require('tobi');
var app = require('./app');
var browser = tobi.createBrowser(app);

browser.get('/about', function(res, $){
res.should.have.status(200);
$('div').should.have.one('h1', 'About');
app.close();

});

Tobi doesn’t include a test runner, but you can use it with unit-testing frameworks
such as Mocha or nodeunit.

10.2.2 Soda

Soda (https://github.com/LearnBoost/soda) takes a different approach to accep-
tance testing. Whereas other Node acceptance-testing frameworks simulate browsers,
Soda remotely controls real browsers. Soda, as shown in figure 10.6, does this by send-
ing instructions to the Selenium Server (also known as Selenium RC), or the Sauce
Labs on-demand testing service.

 Selenium Server will open browsers on the machine on which it’s installed,
whereas Sauce Cloud will open virtual ones on a server somewhere on the internet.

Listing 10.17 Testing a web application via HTTP

Create browser

Get to-do form

Fill in form
Submit data

Soda

Machine boundary (optional)

Selenium RC or
Sauce Labs

Firefox Safari

Figure 10.6 Soda is an
acceptance-testing framework
that allows real browsers to be
remotely controlled. Whether
using Selenium RC or the Sauce
Labs service, Soda provides an
API that allows Node to perform
direct testing that takes into
account the realities of different
Internet Explorer
browser implementations.

https://github.com/LearnBoost/soda

261Acceptance testing

Selenium Server and Sauce Labs, rather than Soda, do the talking to the browsers, but
they relay any requested info back to Soda. If you want to do a number of tests in par-
allel and not tax your own hardware, consider using Sauce Labs.

 In this section, you’ll learn how to install Soda and the Selenium Server, how to
test applications with Soda and Selenium, and how to test applications with Soda and
Sauce Labs.

INSTALLING SODA AND THE SELENIUM SERVER

To do testing with Soda, you need to install the soda npm package and the Selenium
Server (if you’re not using Sauce Labs). Enter the following to install Soda:

$ npm install soda

Selenium Server requires Java to run. If Java isn’t installed, please consult the official
Java download page for instructions specific to your operating system (www.java.com/
en/download/).

 Installing Selenium Server is fairly straightforward. All you have to do is download
a recent .jar file from the Selenium “Downloads” page (http://seleniumhq.org/
download/). Once you’ve downloaded the file, you can run the server with the follow-
ing command (although the filename will likely contain a different version number):

java -jar selenium-server-standalone-2.6.0.jar

TESTING WEB APPLICATIONS WITH SODA AND SELENIUM

Once you have the server running, you can include the following code in a script to
set up for running tests. In the call to createClient, the host and port settings indi-
cate the host and port used to connect to the Selenium Server. By default, these
should be 127.0.0.1 and 4444, respectively. The url in the call to createClient speci-
fies the base URL that you should open in the browser for testing, and the browser
value specifies the browser to be used for testing:

var soda = require('soda')
var assert = require('assert');

var browser = soda.createClient({
host: '127.0.0.1',
port: 4444,
url: 'http://www.reddit.com',
browser: 'firefox'

});

In order to get feedback on what your testing script is doing, you may want to include
the following code. This code prints each Selenium command as it’s attempted:

browser.on('command', function(cmd, args){
console.log(cmd, args.join(', '));

});

Next in your test script should be the tests themselves. The following listing is an exam-
ple test that attempts to log a user into Reddit and fails if the text “logout” isn’t present

http://www.java.com/en/download/
http://www.java.com/en/download/
http://seleniumhq.org/download/
http://seleniumhq.org/download/

262 CHAPTER 10 Testing Node applications

on the resulting page. Commands like clickAndWait are documented on the Sele-
nium website (http://release.seleniumhq.org/selenium-core/1.0.1/reference.html).

browser

.chain

.session()

.open('/')

.type('user', 'mcantelon')

.type('passwd', 'mahsecret')

.clickAndWait('//button[@type="submit"]')

.assertTextPresent('logout')

.testComplete()

.end(function(err){

 if (err) throw err;

 console.log('Done!');

});

TESTING WEB APPLICATIONS WITH SODA AND SAUCE LABS

If you go the Sauce Labs route, sign up for the service at the Sauce Labs website
(https://saucelabs.com) and change the code in your test script that returns browser
to something like what you see in the following listing.

var browser = soda.createSauceClient({

'url': 'http://www.reddit.com/',

'username': 'yourusername',

'access-key': 'youraccesskey',

'os': 'Windows 2003',

'browser': 'firefox',

'browser-version': '3.6',

'name': 'This is an example test',

'max-duration': 300

});

And that’s it. You’ve now learned the fundamentals of a powerful testing method that
can complement your unit tests and make your applications much more resistant to
accidentally created bugs.

10.3 Summary
By incorporating automated testing into your development, you greatly decrease
the odds of bugs creeping into your codebase, and you can develop with greater
confidence.

 If you’re new to unit testing, Mocha and nodeunit are excellent frameworks to
start with: they’re easy to learn, flexible, and can work with should.js if you want to run

Listing 10.18 A Soda test allows commands to control the actions of a browser.

Listing 10.19 Using Soda to control a Sauce Labs browser

Enable method chaining
Start Selenium session
Open URL

Enter text into form field

Click button and wait
Make sure text exists

Mark test as complete
End Selenium session

Sauce Labs user name
Sauce Labs API key

Desired operating system
Desired browser type

Desired browser version

Make test fail if it takes too long

https://saucelabs.com
http://release.seleniumhq.org/selenium-core/1.0.1/reference.html

263Summary

BDD-style assertions. If you like the BDD approach and are seeking a system for struc-
turing tests and controlling flow, Vows may also be a good choice.

 In the realm of acceptance testing, Tobi is a great place to start. Tobi is easy to set
up and use, and if you’re familiar with jQuery you’ll be up and running quickly. If
your needs require acceptance testing in order to take into account browser discrep-
ancies, Soda may be worth running, but testing is slower and you must learn the Sele-
nium API.

 Now that you’ve got a handle on how automated testing can be conducted in
Node, let’s take a deeper dive into Node web application templating by looking at
some template engines that will help boost your web development productivity and
enjoyment.

Web application
templating
In chapters 8 and 9, you learned some templating basics to use with the Express
framework in order to create views. In this chapter, you’ll focus exclusively on tem-
plating, learning how to use three popular template engines and how to use tem-
plating to keep any web application’s code clean by separating logic from
presentation markup.

 If you’re familiar with templating and the model-view-controller (MVC) pattern,
you can skim through to section 11.2, where you’ll start learning about the tem-
plate engines we’ll detail in this chapter, which include Embedded JavaScript,
Hogan, and Jade. If you’re not familiar with templating, keep reading—we’ll
explore it conceptually in the next few sections.

This chapter covers
 How templating helps keep applications organized

 Creating templates using Embedded JavaScript

 Learning minimalist templating with Hogan

 Using Jade to create templates
264

265Using templating to keep code clean

11.1 Using templating to keep code clean
You can use the model-view-controller (MVC) pattern to develop conventional web
applications in Node as well as with nearly every other web technology. One of the key
concepts in MVC is the separation of logic, data, and presentation. In MVC web appli-
cations, the user will typically request a resource from the server, which will cause the
controller to request application data from the model and then pass the data to the view,
which will finally format the data for the end user. This view portion of the MVC pat-
tern is often implemented using one of various templating languages. When an appli-
cation uses templating, the view will relay selected values, returned by the model, to a
template engine, and specify what template file should define how to display the pro-
vided values.

 Figure 11.1 shows how templating logic fits into the overall architecture of an MVC
application.

 Template files typically contain placeholders for application values as well as
HTML, CSS, and sometimes small bits of client-side JavaScript to do things like display
third-party widgets, such as Facebook’s Like button, or to trigger interface behavior,
such as hiding or revealing parts of the page. As template files focus on presentation
rather than logic, front-end developers and server-side developers can work on them,
which can help with a project’s division of labor.

 In this section, we’ll render HTML with, and without, a template to show you the
difference. But first, let’s start with an example of templating in action.

Template
files

1. Browser request

7. Application response

6. Receives HTML/CSS
that has been structured
by the template engine

5. Template files
read from disk

4. Sends raw data

3. Sends data to view

2. Routes request to

Templating
logic

Model

View

Controller

Web application

Browser

Figure 11.1 The flow of an MVC application and its interaction with the template layer

266 CHAPTER 11 Web application templating

11.1.1 Templating in action

As a quick illustration of how you can apply
templating, let’s look at the problem of ele-
gantly outputting HTML from a simple
blogging application. Each blog entry will
have a title, date of entry, and body text.
The blog will look similar to what’s shown
in figure 11.2, in a web browser.

 Blog entries will be read from a text file
formatted like the following snippet from
entries.txt. The --- in the following listing
indicates where one entry stops and
another begins.

title: It's my birthday!
date: January 12, 2012
I am getting old, but thankfully I'm not in jail!

title: Movies are pretty good
date: January 2, 2012
I've been watching a lot of movies lately. It's relaxing,
except when they have clowns in them.

The blog application code in blog.js will start by requiring necessary modules and
reading in the blog entries, as shown in the following listing.

var fs = require('fs');
var http = require('http');

function getEntries() {
var entries = [];
var entriesRaw = fs.readFileSync('./

entries.txt', 'utf8');

entriesRaw = entriesRaw.split("---");

entriesRaw.map(function(entryRaw) {
var entry = {};
var lines = entryRaw.split("\n");

lines.map(function(line) {
if (line.indexOf('title: ') === 0) {

entry.title = line.replace('title: ', '');
}
else if (line.indexOf('date: ') === 0) {

entry.date = line.replace('date: ', '');
}
else {

Listing 11.1 Blog entries text file

Listing 11.2 Blog entry file-parsing logic for a simple blogging application

Function to read and
parse blog entry text

Read blog entry
data from file

Parse text into
individual blog entries

Parse entry text into
individual lines

Parse lines into
entry properties

Figure 11.2 Example blog application browser
output

267Using templating to keep code clean

entry.body = entry.body || '';
entry.body += line;

}
});

entries.push(entry);
});

return entries;
}

var entries = getEntries();
console.log(entries);

The following code, when added to the blog application, defines an HTTP server.
When the server receives an HTTP request, it’ll return a page containing all blog
entries. This page is rendered using a function called blogPage, which we’ll define
next:

var server = http.createServer(function(req, res) {
var output = blogPage(entries);

res.writeHead(200, {'Content-Type': 'text/html'});
res.end(output);

});

server.listen(8000);

Now you need to define the blogPage function, which renders the blog entries into a
page of HTML that can be sent to the user’s browser. You’ll implement this by trying
two approaches:

 Rendering HTML without a template
 Rendering HTML using a template

Let’s look at rendering without a template first.

RENDERING HTML WITHOUT A TEMPLATE

The blog application could output the HTML directly, but including the HTML with
the application logic would result in clutter. In the following listing, the blogPage
function illustrates a nontemplated approach to displaying blog entries.

function blogPage(entries) {
var output = '<html>'

+ '<head>'
+ '<style type="text/css">'
+ '.entry_title { font-weight: bold; }'
+ '.entry_date { font-style: italic; }'
+ '.entry_body { margin-bottom: 1em; }'
+ '</style>'
+ '</head>'

Listing 11.3 Template engines separate presentation details from application logic.

Too much HTML
interspersed with logic
+ '<body>';

268 CHAPTER 11 Web application templating

entries.map(function(entry) {
output += '<div class="entry_title">' + entry.title + "</div>\n"

+ '<div class="entry_date">' + entry.date + "</div>\n"
+ '<div class="entry_body">' + entry.body + "</div>\n";

});

output += '</body></html>';

return output;
}

Note that all of this presentation-related content, CSS definitions, and HTML adds
many lines to the application.

RENDERING HTML USING A TEMPLATE

Rendering HTML using templating allows you to remove the HTML from the applica-
tion logic, cleaning up the code considerably.

 To try out the demos in this section, you’ll need to install the Embedded JavaScript
(EJS) module into your application directory. You can do this by entering the follow-
ing on the command line:

npm install ejs

The following code loads a template from a file and then defines a new version of the
blogPage function, this time using the EJS template engine, which we’ll show you how
to use in section 11.2:

var ejs = require('ejs');
var template = fs.readFileSync('./template/blog_page.ejs', 'utf8');

function blogPage(entries) {
var values = {entries: entries};
return ejs.render(template, {locals: values});

}

The EJS template file contains HTML markup (keeping it out of the application logic)
and placeholders that indicate where data passed to the template engine should be
put. The EJS template file that shows the blog entries would contain the HTML and
placeholders shown in the following listing.

<html>
<head>

<style type="text/css">
.entry_title { font-weight: bold; }
.entry_date { font-style: italic; }
.entry_body { margin-bottom: 1em; }

</style>
</head>

<body>
<% entries.map(function(entry) { %>

<div class="entry_title"><%= entry.title %></div>

Listing 11.4 An EJS template for displaying blog entries

Placeholder
that loops

through
blog entries

Placeholders
for bits of data
in each entry
<div class="entry_date"><%= entry.date %></div>

269Templating with Embedded JavaScript

<div class="entry_body"><%= entry.body %></div>
<% }); %>

</body>
</html>

Community-contributed Node modules also provide template engines, and a wide
variety of them exist. If you consider HTML and/or CSS inelegant, because HTML
requires closing tags and CSS requires opening and closing braces, take a closer look
at template engines. They allow template files to use special “languages” (such as the
Jade language, which we’ll cover later in this chapter) that provide a shorthand way of
specifying HTML, CSS, or both.

 These template engines can make your templates cleaner, but you may not want to
take the time to learn an alternative way of specifying HTML and CSS. Ultimately, what
you decide to use comes down to a matter of personal preference.

 In the rest of this chapter, you’ll learn how to incorporate templating in your Node
applications through the lens of three popular template engines:

 The Embedded JavaScript (EJS) engine
 The minimalist Hogan engine
 The Jade template engine

Each of these engines allows you to write HTML in an alternative way. Let’s start with
EJS.

11.2 Templating with Embedded JavaScript
Embedded JavaScript (https://github.com/visionmedia/ejs) takes a fairly straightfor-
ward approach to templating, and it will be familiar territory for folks who’ve used
template engines in other languages, such as JSP (Java), Smarty (PHP), ERB (Ruby),
and so on. EJS allows you to embed EJS tags as placeholders for data within HTML. EJS
also lets you execute raw JavaScript logic in your templates for tasks such as condi-
tional branching and iteration, much like PHP does.

 In this section, you’ll learn how to do the following:

 Create EJS templates
 Use EJS filters to provide commonly needed, presentation-related functionality,

such as text manipulation, sorting, and iteration
 Integrate EJS with your Node applications
 Use EJS for client-side applications

Let’s dive deeper into the world of EJS templating.

11.2.1 Creating a template

In the world of templating, the data sent to the template engine for rendering is
sometimes called the context. The following is a bare-bones example of Node using EJS
to render a simple template using a context:

https://github.com/visionmedia/ejs

270 CHAPTER 11 Web application templating

var ejs = require('ejs');
var template = '<%= message %>';
var context = {message: 'Hello template!'};

console.log(ejs.render(template, {locals: context}));

Note the use of locals in the second argument sent to render. The second argument
can include rendering options as well as context data, which means the use of locals
ensures that individual bits of context data aren’t interpreted as EJS options. But it’s
possible in most cases to pass the context itself as the second option, as the following
render call illustrates:

console.log(ejs.render(template, context));

If you pass a context to EJS directly as the second argument to render, make sure you
don’t name context values using any of the following terms: cache, client, close,
compileDebug, debug, filename, open, or scope. These values are reserved to allow
the changing of template engine settings.

CHARACTER ESCAPING

When rendering, EJS escapes any special characters in context values, replacing them
with HTML entity codes. This is intended to prevent cross-site scripting (XSS) attacks,
in which malicious web application users attempt to submit JavaScript as data in the
hopes that, when displayed, it’ll execute in some other user’s browser. The following
code shows EJS’s escaping at work:

var ejs = require('ejs');
var template = '<%= message %>';
var context = {message: "<script>alert('XSS attack!');</script>"};

console.log(ejs.render(template, context));

The previous code will display the following output:

<script>alert('XSS attack!');</script>

If you trust the data being used in your template and don’t want to escape a context
value in an EJS template, you can use <%- instead of <%= in your template tag, as the
following code demonstrates:

var ejs = require('ejs');
var template = '<%- message %>';
var context = {

message: "<script>alert('Trusted JavaScript!');</script>"
};

console.log(ejs.render(template, context));

Note that if you don’t like the characters used by EJS to specify tags, you can customize
them, like so:

var ejs = require('ejs');

ejs.open = '{{:'

ejs.close = '}}:'

271Templating with Embedded JavaScript

var template = '{{= message }}';
var context = {message: 'Hello template!'};

console.log(ejs.render(template, context));

Now that you know the basics of EJS, let’s look at some things you can do with it that
make managing the presentation of data easier.

11.2.2 Manipulating template data using EJS filters

EJS provides support for filters—a feature that allows you to easily do lightweight data
transformations. To indicate that you’re using a filter, you add a colon (:) to the open-
ing characters of your EJS tag. For example:

 <%=: would be used for escaped EJS output using a filter.
 <%-: would be used for unescaped output using a filter.

Filters can also be chained, meaning you can put multiple filters in a single EJS tag and
display the cumulative effect of all filters (similar to the “pipe” concept on *UNIX sys-
tems). In the next few sections, we’ll run through a number of filters that are useful in
common scenarios.

FILTERS THAT HANDLE SELECTION

EJS filters are put into EJS tags. To give you an example of the usefulness of filters,
imagine an application that allows users to let people know what movies they’ve
watched. One bit of important information might be the most recent movie they’ve
watched. The EJS tag in the template in the following example displays the last movie
in an array of movies by using a last filter to display only the last item in an array:

var ejs = require('ejs');
var template = '<%=: movies | last %>';
var context = {'movies': [

'Bambi',
'Babe: Pig in the City',
'Enter the Void'

]};

console.log(ejs.render(template, context));

Note that first is also a valid filter. If you want to get a specific item from a list, you
could use the get filter. The EJS tag <%=: movies | get:1 %> will display the second
item in the movies array (with item 0 being the first item). You can also use the get fil-
ter to show properties if the context value is an object rather than an array.

FILTERS FOR CASE MANIPULATION

EJS filters can also be used to change case. The EJS tag in the following template
includes a filter that will capitalize the first letter in a context value, in this case chang-
ing the displayed value from “bob” to “Bob”:

var ejs = require('ejs');
var template = '<%=: name | capitalize %>';
var context = {name: 'bob'};
console.log(ejs.render(template, context));

272 CHAPTER 11 Web application templating

If you want to display a context value entirely in uppercase, you could use the upcase
filter. Conversely, using the downcase filter will display the value in lowercase.

FILTERS FOR TEXT MANIPULATION

Text can be sliced and diced by EJS filters. You can truncate text, append or prepend
to text, and even replace parts of your text.

 Truncating text to a certain character count allows you to prevent long strings of
text from causing problems with HTML layouts. The following code, for example, will
truncate the title text to 20 characters, displaying “The Hills are Alive”:

var ejs = require('ejs');
var template = '<%=: title | truncate:20 %>';
var context = {title: 'The Hills are Alive With the Sound of Critters'};

console.log(ejs.render(template, context));

If you want to truncate text to a certain number of words, an EJS filter supports that,
too. In the previous example you could replace the EJS tag with <%=: title |

truncate_words:2 %> to truncate the context value to two words. The output would
then be “The Hills.”

 The replace filter uses String.prototype.replace(pattern) behind the scenes,
so it accepts either a string or a regexp. The following code shows an example of auto-
matically abbreviating a word using an EJS filter:

var ejs = require('ejs');
var template = "<%=: weight | replace:'kilogram','kg' %>";
var context = {weight: '40 kilogram'};

console.log(ejs.render(template, context));

You can append text by adding a filter like append:'some text'. Similarly, you can
prepend text using a filter like prepend:'some text'.

FILTERS THAT DO SORTING

EJS filters can also sort. Returning to the previously cited movie title example, you
could use EJS filters to sort the movies by title and display the first item in alphabetical
order, as illustrated by figure 11.3.

Bambi

movies sort first

Babe: Pig in the City

Enter the Void

Babe: Pig in the City Babe: Pig in the City

Bambi

Enter the Void

Figure 11.3 Visualizing the use of EJS filters to process arrays of text

273Templating with Embedded JavaScript

The following code implements this:

var ejs = require('ejs');
var template = '<%=: movies | sort | first %>';
var context = {'movies': [

'Bambi',
'Babe: Pig in the City',
'Enter the Void'

]};

console.log(ejs.render(template, context));

If you want to sort an array composed of objects, but you’d like to sort by comparing
object properties, you can do so using filters:

var ejs = require('ejs');
var template = "<%=: movies | sort_by:'name' | first | get:'name' %>";
var context = {'movies': [

{name: 'Babe: Pig in the City'},
{name: 'Bambi'},
{name: 'Enter the Void'}

]};

console.log(ejs.render(template, context));

Note the use of get:'name' at the end of the filter chain. You use that because the
sort returns an object, and you need to select which property of the object to display.

THE MAP FILTER

The EJS map filter allows you to specify the property of an object that you want subse-
quent filters to operate on. In the previous example, you could use the filter chain
using map. As an alternative to having to specify the property using the sort_by filter
and then having to specify the property to display using the get filter, you would use
the map filter to create an array from object properties. The resulting EJS would be
<%=: movies | map:'name' | sort | first %>.

CREATING CUSTOM FILTERS

Although EJS comes with filters for most common needs, you may want something
beyond what EJS offers. If you want a filter that could, for example, round to an arbi-
trary decimal place, you’ll find there’s no built-in filter to do this. Luckily, with EJS it’s
easy to add your own custom filters, as the following listing shows.

var ejs = require('ejs');
var template = '<%=: price * 1.145 | round:2 %>';
var context = {price: 21};

ejs.filters.round = function(number, decimalPlaces) {
number = isNaN(number) ? 0 : number;

decimalPlaces = !decimalPlaces ? 0 : decimalPlaces;

Listing 11.5 Defining your own custom EJS filters

Define a function on
ejs.filters object

First argument is
input value,
var multiple = Math.pow(10, decimalPlaces); context, or previous
filter result

274 CHAPTER 11 Web application templating

return Math.round(number * multiple) / multiple;
};

console.log(ejs.render(template, context));

As you can see, filters in EJS provide a great way to lessen the amount of logic you need
in order to prepare data for display. Rather than doing these transformations to your
data manually before rendering the template, EJS provides nice built-in mechanisms
that do it for you.

11.2.3 Integrating EJS into your application

Because it’s awkward to store templates in files along with application code, and doing
so clutters up your code, we’ll show you how to use Node’s filesystem API to read them
from separate files.

 Move to a working directory and create a file named app.js containing the code in
the following listing.

var ejs = require('ejs');
var fs = require('fs');
var http = require('http');
var filename = './template/students.ejs';

var students = [
{name: 'Rick LaRue', age: 23},
{name: 'Sarah Cathands', age: 25},
{name: 'Bob Dobbs', age: 37}

];

var server = http.createServer(function(req, res) {
if (req.url == '/') {

fs.readFile(filename, function(err, data) {
var template = data.toString();
var context = {students: students};
var output = ejs.render(template, context);
res.setHeader('Content-type', 'text/html');
res.end(output);

});
} else {

res.statusCode = 404;
res.end('Not found');

}
});

server.listen(8000);

Next, create a child directory called template. You’ll keep
your templates in this directory. Create a file named stu-
dents.ejs in the template directory, so the structure of your
application should look like figure 11.4

 Enter the code in the following listing into students.ejs.

Listing 11.6 Storing template code in files

Note location of
template file

Data to pass to
template engine

Create HTTP server

Read template from file

Render template

Send HTTP response

Figure 11.4 Structure of
our EJS application

275Templating with Embedded JavaScript

<% if (students.length) { %>

<% students.forEach(function(student) { %>
<%= student.name %> (<%= student.age %>)

<% }) %>

<% } %>

CACHING EJS TEMPLATES

EJS supports optional, in-memory caching of template functions. What this means is
that EJS, after parsing your template file once, will store the function that’s created by
the parsing. Rendering a cached template will be faster because the parsing step can
be skipped.

 If you’re doing initial development of a Node web application, and you want to see
any changes you make to your template files reflected immediately, you won’t want to
enable caching. But if you’re deploying an application to production, enabling cach-
ing is a quick, easy win. Caching is conditionally enabled via the NODE_ENV environ-
ment variable.

 To try out caching, change the call to EJS’s render function in the previous exam-
ple to the following:

var cache = process.env.NODE_ENV === 'production';
var output = ejs.render(

template,
{students: students, cache: cache, filename: filename}

);

Note that the filename option doesn’t necessarily have to be a file—you can use a
unique value that identifies whichever template you’re rendering.

 Now that you’ve learned how to integrate EJS with your Node applications, let’s
look at how EJS can be used in a different way: in web browsers.

11.2.4 Using EJS for client-side applications

We’ve shown you an example that uses EJS with Node; now let’s take a quick look at
using EJS in the browser. To use EJS on the client side, you’ll first want to download the
EJS engine to your working directory, as shown by the following commands:

cd /your/working/directory
curl https://raw.github.com/visionmedia/ejs/master/ejs.js -o ejs.js

Once you download the ejs.js file, you can use EJS in your client-side code. The follow-
ing listing shows a simple client-side application of EJS.

<html>
<head>

Listing 11.7 EJS template that renders an array of students

Listing 11.8 Using EJS to add templating capabilities to the client side
<title>EJS example</title>

jQu

ma
276 CHAPTER 11 Web application templating

<script src="ejs.js"></script>
<script

 ➥src="http://ajax.googleapis.com/ajax/libs/jquery/1.8/jquery.js">
</script>

</head>
<body>

<div id='output'></div>

<script>
var template = "<%= message %>";
var context = {message: 'Hello template!'};

$(document).ready(function() {
$('#output').html(

ejs.render(template, context)
);

});
</script>

</body>
</html>

You’ve now learned how to use a fully featured Node template engine, so it’s time to
look at the Hogan template engine, which deliberately limits the functionality avail-
able to templating code.

11.3 Using the Mustache templating language with Hogan
Hogan.js (https://github.com/twitter/hogan.js) is a template engine that was created
by Twitter for its templating needs. Hogan is an implementation of the popular Mus-
tache (http://mustache.github.com/) template language standard, which was cre-
ated by GitHub’s Chris Wanstrath.

 Mustache takes a minimalist approach to templating. Unlike EJS, the Mustache
standard deliberately doesn’t include conditional logic, nor any built-in content-
filtering capabilities other than escaping content to prevent XSS attacks. Mustache
advocates that template code should be kept as simple as possible.

 In this section you’ll learn

 How to create and implement Mustache templates in your application
 The different template tags available in the Mustache standard
 How to organize your templates using “partials”
 How to fine-tune Hogan with your own delimiters and other options

Let’s look at the alternative approach Hogan provides for templating.

11.3.1 Creating a template

To use Hogan in an application, or to try out the demos in this section, you’ll need to
install Hogan in your application directory. You can do this by entering the following
command on the command line:

npm install hogan.js

Include
ery library

for DOM
nipulation Placeholder for

rendered
template output

Template to
use to render
content

Data to
use with
template Wait until browser

loads page
Render template
to div with ID
“output”

https://github.com/twitter/hogan.js
http://mustache.github.com/

277Using the Mustache templating language with Hogan

The following is a bare-bones example of Node using Hogan to render a simple tem-
plate using a context. Running it will output the text “Hello template!”

var hogan = require('hogan.js');
var template = '{{message}}';
var context = {message: 'Hello template!'};

var template = hogan.compile(template);
console.log(template.render(context));

Now that you know how to process Mustache templates with Hogan, let’s look at what
tags Mustache supports.

11.3.2 Mustache tags

Mustache tags are conceptually similar to EJS’s tags. Mustache tags serve as placehold-
ers for variable values, indicate where iteration is needed, and allow you to augment
Mustache’s functionality and add comments to your templates.

DISPLAYING SIMPLE VALUES

To display a context value in a Mustache template, include the name of the value in
double braces. Braces, in the Mustache community, are known as “mustaches.” If you
want to display the value for context item name, for example, you’d use the Hogan tag
{{name}}.

 Like most template engines, Hogan escapes content by default to prevent XSS
attacks. But to display an unescaped value in Hogan, you can either add a third mus-
tache or prepend the name of the context item with an ampersand. Using the previ-
ous name example, you could display the context value unescaped by either using the
{{{name}}} or {{&name}} tag formats.

 If you want to add a comment in a Mustache template, you can use this format: {{!
This is a comment }}.

SECTIONS: ITERATING THROUGH MULTIPLE VALUES

Although Hogan doesn’t allow the inclusion of logic in templates, it does include an
elegant way to iterate through multiple values in a context item using Mustache sections.

 The following context, for example, contains an item with an array of values:

var context = {
students: [

{ name: 'Jane Narwhal', age: 21 },
{ name: 'Rick LaRue', age: 26 }

]
};

If you want to create a template that will display each student in a separate HTML para-
graph, with output similar to the following, it would be a straightforward task using a
Hogan template:

<p>Name: Jane Narwhal, Age: 21 years old</p>
<p>Name: Rick LaRue, Age: 26 years old</p>

278 CHAPTER 11 Web application templating

The following template would produce the desired HTML:

{{#students}}
<p>Name: {{name}}, Age: {{age}} years old</p>

{{/students}}

INVERTED SECTIONS: DEFAULT HTML WHEN VALUES DON’T EXIST

What if the value of the students item in the context data wasn’t an array? If the value
was a single object, for example, the template would display it. But sections won’t dis-
play if the corresponding item’s value is undefined or false, or is an empty array.

 If you want your template to output a message indicating that values don’t exist for
a section, Hogan supports what Mustache calls inverted sections. The following template
code, if added to the previous student display template, would display a message when
no student data exists in the context:

{{^students}}
<p>No students found.</p>

{{/students}}

SECTION LAMBDAS: CUSTOM FUNCTIONALITY IN SECTION BLOCKS

In order to allow developers to augment Mustache’s functionality, the Mustache stan-
dard lets you define section tags that process template content through a function
call, rather than iterating through arrays. This is called a section lambda.

 As an example use of a section lambda, listing 11.9 shows how you’d use one to add
Markdown support when rendering a template. Note that the example uses the
github-flavored-markdown module, which you’ll have to install by entering npm
install github-flavored-markdown on your command line.

 In the following listing, the **Name** in the template gets rendered to
Name when passing through the Markdown parser called by the
section lambda logic.

var hogan = require('hogan.js');
var md = require('github-flavored-markdown');

var template = '{{#markdown}}'
+ '**Name**: {{name}}'
+ '{{/markdown}}';

var context = {
name: 'Rick LaRue',
markdown: function() {

return function(text) {
return md.parse(text);

};
}

};

var template = hogan.compile(template);
console.log(template.render(context));

Listing 11.9 Using a lambda in Hogan

Require Markdown parser

Mustache template
also contains
Markdown formatting

Template context includes a
section lambda to parse
Markdown in the template

279Using the Mustache templating language with Hogan

Section lambdas allow you to easily implement things like caching and translation
mechanisms into your templates.

PARTIALS: REUSING TEMPLATES WITHIN OTHER TEMPLATES

When writing templates, you want to avoid unnecessarily repeating the same code in
multiple templates. One way to avoid this is to create partials. Partials are templates
used as building blocks that are included in other templates. Another use of partials is
to break up complicated templates into simpler templates.

 The following listing, for example, uses a partial to separate the template code
used to display student data from the main template.

var hogan = require('hogan.js');

var studentTemplate = '<p>Name: {{name}}, '
+ 'Age: {{age}} years old</p>';

var mainTemplate = '{{#students}}'
+ '{{>student}}'
+ '{{/students}}';

var context = {
students: [{

name: 'Jane Narwhal',
age: 21

},{
name: 'Rick LaRue',
age: 26

}]
};

var template = hogan.compile(mainTemplate);
var partial = hogan.compile(studentTemplate);

var html = template.render(context, {student: partial});
console.log(html);

11.3.3 Fine-tuning Hogan

Hogan is fairly simple to use—once you’ve learned its vocabulary of tags, you should
be off and running. You may need to tweak only a couple of things as you use it.

 If you don’t like Mustache-style braces, you can change the delimiters Hogan uses
by passing the compile method an option to override them. The following example
shows compiling in Hogan using EJS-style delimiters:

hogan.compile(text, {delimiters: '<% %>'});

If you’d like to use section tags that don’t begin with the # character after the opening
mustaches, you can do that with another compile method option: sectionTags. You
might, for example, want to use a different tag format for section tags in which lamb-
das are employed. The following listing alters the earlier example in listing 11.9 to use

Listing 11.10 The use of partials in Hogan

Template code
used for partial

Main template code

Compiling the main
and partial templates

Rendering the main
template and
partial

280 CHAPTER 11 Web application templating

an underscore prefix to differentiate the markdown section tag from subsequent sec-
tion tags that iterate rather than employ lambdas.

var hogan = require('hogan.js');
var md = require('github-flavored-markdown');

var template = '{{_markdown}}'
+ '**Name**: {{name}}'
+ '{{/markdown}}';

var context = {
name: 'Rick LaRue',
_markdown: function(text) {

return md.parse(text);
}

};

var template = hogan.compile(
template,
{sectionTags: [{o: '_markdown', c: 'markdown'}]}

);
console.log(template.render(context));

When using Hogan, you won’t have to change any options to enable caching. Caching
is built into the compile function and is enabled by default.

 Now that you’ve learned two fairly straightforward Node template engines, let’s
look at the Jade template engine, which approaches the problem of dealing with pre-
sentation markup differently than EJS and Hogan.

11.4 Templating with Jade
Jade (http://jade-lang.com) offers an alternative way to specify HTML. The key differ-
ence between Jade and the majority of other templating systems is the use of meaning-
ful whitespace.

 When creating a template in Jade, you use indentation to indicate HTML tag nest-
ing. HTML tags also don’t have to be explicitly closed, which eliminates the problem
of accidentally closing tags prematurely, or not at all. Using indentation also results in
templates that are less visually dense and easier to maintain.

 For a quick example of this at work, let’s look at how you’d represent this snippet
of HTML:

<html>
<head>

<title>Welcome</title>
</head>
<body>

<div id="main" class="content">
"Hello world!"

</div>
</body>

Listing 11.11 Using custom section tags in Hogan

Require Markdown parser

Custom tag used in template

Lambda for custom tag

Custom opening and
closing tags defined
</html>

http://jade-lang.com

281Templating with Jade

This HTML could be represented using the following Jade template:

html
head

title Welcome
body

div.content#main
strong "Hello world!"

Jade, like EJS, allows you to embed JavaScript, and you can use it on the server or cli-
ent side. But Jade offers additional features, such as support for template inheritance
and mixins. Mixins allow you to define easily reusable mini-templates to represent the
HTML used for commonly occurring visual elements, such as item lists and boxes. Mix-
ins are very similar in concept to the Hogan.js partials, which you learned about in the
previous section. Template inheritance makes it easy to organize the Jade templates
needed to render a single HTML page into multiple files. You’ll learn about these fea-
tures in detail later in this section.

 To install Jade in a Node application directory, enter the following on the com-
mand line:

npm install jade

Installing Jade with the -g global flag is also useful because it gives you access to a jade
command-line tool that allows you to quickly render a template to HTML. The follow-
ing command-line use would result in the template/sidebar.jade file being rendered
to sidebar.html in the template directory. The Jade command-line tool gives you an
easy way to experiment with Jade syntax:

jade template/sidebar.jade

In this section you’ll learn

 Jade basics, such as specifying class names, attributes, and block expansion
 How to add logic to your Jade templates using built-in keywords
 How to organize your templates using inheritance, blocks, and mixins

To get started, let’s look at the basics of Jade usage and syntax.

11.4.1 Jade basics

Jade uses the same tag names as HTML, but it lets you lose the opening and closing
< and > characters and instead uses indentation to express tag nesting.

 A tag can have one or more CSS classes associated with it by adding .<classname>.
A div element with the content and sidebar classes applied to it would be repre-
sented like this:

div.content.sidebar

CSS IDs are assigned by adding #<ID> to the tag. You’d add a CSS ID of featured
_content to the previous example using the following Jade representation:
div.content.sidebar#featured_content

282 CHAPTER 11 Web application templating

Now that you know how to specify HTML tags and their CSS classes and IDs, let’s look
at how to specify HTML tag attributes.

SPECIFYING TAG ATTRIBUTES

You can specify tag attributes by enclosing the attributes in parentheses, separating
the specification of each attribute from the next with a comma. You can specify a
hyperlink that’ll open in a different tab by using the following Jade representation:

a(href='http://nodejs.org', target='_blank')

As the specification of tag attributes can lead to long lines of Jade, the template
engine provides you with some flexibility. The following Jade is valid and equivalent to
the previous example:

a(href='http://nodejs.org',
target='_blank')

You can also specify attributes that don’t require a value. The next Jade example
shows the specification of an HTML form that includes a select element with an
option preselected:

strong Select your favorite food:
form

select
option(value='Cheese') Cheese
option(value='Tofu', selected) Tofu

SPECIFYING TAG CONTENT

In the previous code snippet, you also saw examples of tag content: “Select your favor-
ite food:” after the strong tag; “Cheese” after the first option tag; and “Tofu” after the
second option tag.

 This is the normal way to specify tag content in Jade, but it’s not the only way.
Although this style is great for short bits of content, it can result in Jade templates with
overly long lines if a tag’s content is lengthy. Luckily, as the following example shows,
Jade allows you to specify tag content using the | character:

textarea
| This is some default text
| that the user should be
| provided with.

div tag shorthand
Because the div tag is commonly used in HTML, Jade offers a shorthand way of
specifying it. The following example will render to the same HTML as the previous
example:
.content.sidebar#featured_content

283Templating with Jade

If the HTML tag, such as the style and script tags, only ever accepts text (meaning it
doesn’t allow nested HTML elements), then the | characters can be left out entirely, as
the following example shows:

style
h1 {

font-size: 6em;
color: #9DFF0C;

}

Having two separate ways to express long tag content and short tag content helps you
keep your Jade templates looking elegant. Jade also supports an alternative way to
express nesting, called block expansion.

KEEPING IT ORGANIZED WITH BLOCK EXPANSION

Jade normally expresses nesting through indentation, but sometimes indentation can
lead to excess whitespace.

 For example, here’s a Jade template that uses indentation to define a simple list of
links:

ul
li

a(href='http://nodejs.org/') Node.js homepage
li

a(href='http://npmjs.org/') NPM homepage
li

a(href='http://nodebits.org/') Nodebits blog

A more compact way to express the previous example is by using a Jade block expan-
sion. With block expansion, you add a colon after your tag to indicate nesting. The fol-
lowing code generates the same output as the previous listing, but in four lines instead
of seven:

ul
li: a(href='http://nodejs.org/') Node.js homepage
li: a(href='http://npmjs.org/') NPM homepage
li: a(href='http://nodebits.org/') Nodebits blog

Now that you’ve had a good look at how to represent markup using Jade, let’s look at
how you can integrate Jade with your web application.

INCORPORATING DATA IN JADE TEMPLATES

Data is relayed to the Jade engine in the same basic way as in EJS. The template is first
compiled into a function that’s then called with a context in order to render the
HTML output. The following is an example of this:

var jade = require('jade');
var template = 'strong #{message}';
var context = {message: 'Hello template!'};

var fn = jade.compile(template);
console.log(fn(context));

284 CHAPTER 11 Web application templating

In the previous example, the #{message} in the template specified a placeholder to
be replaced by a context value.

 Context values can also be used to supply values for attributes. The next example
would render :

var jade = require('jade');
var template = 'a(href = url)';
var context = {url: 'http://google.com'};

var fn = jade.compile(template);
console.log(fn(context));

Now that you’ve learned how HTML is represented using Jade, and how you can pro-
vide Jade templates with application data, let’s look at how you can incorporate logic
in Jade.

11.4.2 Logic in Jade templates

Once you supply Jade templates with application data, you need logic to deal with that
data. Jade allows you to directly embed lines of JavaScript code into your templates,
which is how you define logic in your templates. Code like if statements, for loops,
and var declarations are common. Before we dive into the details, here’s an example
Jade template rendering a contact list to give you a practical feel for how you might
use Jade logic in an application:

h3.contacts-header My Contacts

if contacts.length
each contact in contacts

- var fullName = contact.firstName + ' ' + contact.lastName
.contact-box

p fullName
if contact.isEditable

p: a(href='/edit/+contact.id) Edit Record
p

case contact.status
when 'Active'

strong User is active in the system
when 'Inactive'

em User is inactive
when 'Pending'

| User has a pending invitation
else

p You currently do not have any contacts

Let’s first look at the different ways Jade handles output when embedding JavaScript
code.

USING JAVASCRIPT IN JADE TEMPLATES

Prefixing a line of JavaScript logic with - will execute the JavaScript without including
any value returned from the code in the template’s output. Prefixing JavaScript logic
with = will include a value returned from the code, escaped to prevent XSS attacks. But

285Templating with Jade

if your JavaScript generates code that shouldn’t be escaped, you can prefix it with !=.
Table 11.1 summarizes these prefixes.

Jade includes a number of commonly used conditional and iterative statements that
can be written without prefixes: if, else if, else, case, when, default, until, while,
each, and unless.

 Jade also allows you to define variables. The following shows two ways to assign val-
ues that are equivalent in Jade:

- var count = 0
count = 0

The unprefixed statements have no output, just like the - prefix discussed previously.

ITERATING THROUGH OBJECTS AND ARRAYS

Values passed in a context are accessible to JavaScript in Jade. In the next example,
we’ll read a Jade template from a file and pass the Jade template a context containing
a couple of messages that we intend to display in an array:

var jade = require('jade');
var fs = require('fs');
var template = fs.readFileSync('./template.jade');
var context = { messages: [

'You have logged in successfully.',
'Welcome back!'

]};

var fn = jade.compile(template);
console.log(fn(context));

The Jade template would contain the following:

- messages.forEach(function(message) {
p= message

- })

The final HTML output would look like this:

<p>You have logged in successfully.</p><p>Welcome back!</p>

Jade also supports a non-JavaScript form of iteration: the each statement. each state-
ments allow you to cycle through arrays and object properties with ease.

 The following is equivalent to the previous example, but using each instead:

Table 11.1 Prefixes used to embed JavaScript in Jade

Prefix Output

= Escaped output (for untrusted or unpredictable values, XSS-safe)

!= Output without escaping (for trusted or predictable values)

- No output

286 CHAPTER 11 Web application templating

each message in messages
p= message

You can cycle through object properties using a slight variation, like this:

each value, key in post
div

strong #{key}
p value

CONDITIONALLY RENDERING TEMPLATE CODE

Sometimes templates need to make decisions about how data is displayed depending
on the value of the data. The next example illustrates a conditional in which, roughly
half the time, the script tag is outputted as HTML:

- var n = Math.round(Math.random() * 1) + 1
- if (n == 1) {

script
alert('You win!');

- }

Conditionals can also be written in Jade using a cleaner, alternative form:

- var n = Math.round(Math.random() * 1) + 1
if n == 1

script
alert('You win!');

If you’re writing a negated conditional, such as if (n != 1), you could use Jade’s
unless keyword:

- var n = Math.round(Math.random() * 1) + 1
unless n == 1

script
alert('You win!');

USING CASE STATEMENTS IN JADE

Jade also supports a non-JavaScript form of conditional similar to a switch: the case
statement. case statements allow you to specify an outcome based on a number of
template scenarios.

 The following example template shows how the case statement can be used to dis-
play results from the search of a blog in three different ways. If the search finds noth-
ing, a message is shown indicating that. If a single blog post is found, it’s displayed in
detail. If multiple blog posts are found, an each statement is used to iterate through
the posts, displaying their titles:

case results.length
when 0

p No results found.
when 1

p= results[0].content
default

each result in results

p= result.title

287Templating with Jade

11.4.3 Organizing Jade templates

With your templates defined, you next need to know how to organize them. As with
application logic, you don’t want to make your template files overly large. A single
template file should correspond to a conceptual building block: a page, a sidebar, or
blog post content, for example.

 In this section, you’ll learn a few mechanisms that allow different template files to
work together to render content:

 Structuring multiple templates with template inheritance
 Implementing layouts using block prepending/appending
 Template including
 Reusing template logic with mixins

Let’s begin by looking at template inheritance in Jade.

STRUCTURING MULTIPLE TEMPLATES WITH TEMPLATE INHERITANCE

Template inheritance is one means of structuring multiple templates. The concept
treats templates, conceptually, like classes in the object-oriented programming para-
digm. One template can extend another, which can in turn extend another. You can
use as many levels of inheritance as makes sense.

 As a simple example, let’s look at using template inheritance to provide a basic
HTML wrapper that you can use to wrap page content. In a working directory, create a
folder called template in which you’ll put the example’s Jade file. For a page template,
you’ll create a file called layout.jade containing the following Jade:

html
head

block title
body

block content

The layout.jade template contains the bare-bones definition of an HTML page as well
as two blocks. Blocks are used in template inheritance to define where a descendant
template can provide content. In layout.jade there’s a title block, allowing a descen-
dent template to set the title, and a content block, allowing a descendent template to
set what is to be displayed on the page.

 Next, in your working directory’s template directory, create a file named page.jade.
This template file will populate the title and content blocks:

extends layout

block title
title Messages

block content
each message in messages

p= message

288 CHAPTER 11 Web application templating

Finally, add the logic in the following listing (a modification of an earlier example in
this section), which will display the template results, showing inheritance in action.

var jade = require('jade');
var fs = require('fs');
var templateFile = './template/page.jade';
var iterTemplate = fs.readFileSync(templateFile);
var context = {messages: [

'You have logged in successfully.',
'Welcome back!'

]};

var iterFn = jade.compile(
iterTemplate,
{filename: templateFile}

);

console.log(iterFn(context));

Now let’s look at another template inheritance feature: block prepending and
appending.

IMPLEMENTING LAYOUTS USING BLOCK PREPENDING/APPENDING

In the previous example, the blocks in layout.jade contained no content, which made
setting the content in the page.jade template straightforward. But if a block in an
inherited template does contain content, this content can be built upon, rather than
replaced, by descendent templates using block prepending and appending. This
allows you to define common content and add to it, rather than replace it.

 The following layout.jade template contains an additional block, scripts, which
contains content—a script tag that’ll load the jQuery JavaScript library:

html
head

block title
block scripts

script(src='//ajax.googleapis.com/ajax/libs/jquery/1.8/jquery.js')
body

block content

If you want the page.jade template to additionally load the jQuery UI library, you
could do this by using the template in the following listing.

extends layout
baseUrl = "http://ajax.googleapis.com/ajax/libs/jqueryui/1.8/"

block title
title Messages

Listing 11.12 Template inheritance in action

Listing 11.13 Using block append to load an additional JavaScript file

This template extends layout template

Define style block

block style

289Templating with Jade

link(rel="stylesheet", href= baseUrl+"themes/flick/jquery-ui.css")

block append scripts
script(src= baseUrl+"jquery-ui.js")

block content
count = 0
each message in messages

- count = count + 1
script

$(function() {
$("#message_#{count}").dialog({

height: 140,
modal: true

});
});

!= '<div id="message_' + count + '">' + message + '</div>'

But template inheritance isn’t the only way to integrate multiple templates. You also
can use the include Jade command.

TEMPLATE INCLUDING

Another tool for organizing templates is Jade’s include command. This command
incorporates the contents of another template. If you add the line include footer to
the layout.jade template from the earlier example, you’ll end up with the following
template:

html
head

block title
block style
block scripts

script(src='//ajax.googleapis.com/ajax/libs/jquery/1.8/jquery.js')
body

block content
include footer

This template would include the contents of a template named footer.jade in the ren-
dered output of layout.jade, as illustrated in figure 11.5.

Append this scripts block to
the one defined in layout

layout.jade

footer.jade

footer.jade Figure 11.5 Jade’s include mechanism provides a
simple way to include the contents of one template in

another template during rendering.

290 CHAPTER 11 Web application templating

This could be used, for example, to add information about the site, or design ele-
ments, to layout.jade. You can also include non-Jade files by specifying the file exten-
sion (for example, include twitter_widget.html).

REUSING TEMPLATE LOGIC WITH MIXINS

Although Jade’s include command is useful for bringing in previously created chunks
of code, it’s not ideal for creating a library of reusable functionality that you can share
between pages and applications. For this, Jade provides the mixin command, which
lets you define reusable Jade snippets.

 A Jade mixin is analogous to a JavaScript function. A mixin can, like a function,
take arguments, and these arguments can be used to generate Jade code.

 Let’s say, for example, your application handles a data structure similar to the
following:

var students = [
{name: 'Rick LaRue', age: 23},
{name: 'Sarah Cathands', age: 25},
{name: 'Bob Dobbs', age: 37}

];

If you want to define a way to output an HTML list derived from a given property of
each object, you could define a mixin like the following one to accomplish this:

mixin list_object_property(objects, property)
ul

each object in objects
li= object[property]

You could then use the mixin to display the data using this line of Jade:

mixin list_object_property(students, 'name')

By using template inheritance, include statements, and mixins, you can easily reuse
presentation markup and can prevent your template files from becoming larger than
they need to be.

11.5 Summary
Now that you’ve learned how three popular HTML template engines work, you can
use the technique of templating to keep your application logic and presentation orga-
nized. The Node community has created many template engines, which means that if
there’s something you don’t like about the three you’ve tried in this chapter, you can
check out other engines: https://npmjs.org/browse/keyword/template.

 The Handlebars.js template engine (https://github.com/wycats/handlebars.js/),
for example, extends the Mustache templating language, adding additional features
such as conditional tags and globally available lambdas. Dustjs (https://github.com/
akdubya/dustjs) prioritizes performance and features such as streaming. For a list of
Node template engines, check out the consolidate.js project (https://github.com/
visionmedia/consolidate.js), which provides an API that abstracts the use of template

https://npmjs.org/browse/keyword/template
https://github.com/wycats/handlebars.js/
https://github.com/akdubya/dustjs
https://github.com/akdubya/dustjs
https://github.com/visionmedia/consolidate.js
https://github.com/visionmedia/consolidate.js

291Summary

engines, making it easy to use multiple engines in your applications. But if the idea of
having to learn any kind of template language at all seems distasteful, an engine called
Plates (https://github.com/flatiron/plates) allows you to stick to HTML, using its
engine’s logic to map application data to CSS IDs and classes within your markup.

 If you find Jade’s way of dealing with the separation of presentation and applica-
tion logic appealing, you might also want to look at Stylus (https://github.com/
LearnBoost/stylus), a project that takes a similar approach to dealing with the cre-
ation of CSS.

 You now have the final piece you need to create professional web applications. In
the next chapter, we’ll look at deployment: how to make your application available to
the rest of the world.

https://github.com/flatiron/plates
https://github.com/LearnBoost/stylus
https://github.com/LearnBoost/stylus

Part 3

Going further with Node

In the last part of the book, you’ll learn how to use Node for things other
than traditional web applications and how to add real-time components to web
applications using Socket.io. You’ll also learn how Node can be used to create
non-HTTP TCP/IP servers and even command-line tools.

 In addition to these new uses, you’ll learn how the Node community ecosys-
tem works, where you can go to get help, and how you can contribute your own
creations back to the Node community at large via the Node Package Manager
repository.

Deploying Node applications
and maintaining uptime
Developing a web application is one thing, but putting it into production is
another. For every web platform, there are tips and tricks that increase stability and
maximize performance, and Node is no different.

 When you’re faced with deploying a web application, you’ll find yourself consid-
ering where to host it. You’ll want to consider how to monitor your application and
keep it running. You may also wonder what you can do to make it as fast as possible.
In this chapter, you’ll get an overview of how to address these concerns for your
Node web application.

 To start, let’s look at where you might choose to host your application.

12.1 Hosting Node applications
Most web application developers are familiar with PHP-based applications. When an
Apache server with PHP support gets an HTTP request, it’ll map the path portion of

This chapter covers
 Choosing where to host your Node application

 Deploying a typical application

 Maintaining uptime and maximizing performance
295

296 CHAPTER 12 Deploying Node applications and maintaining uptime

the requested URL to a specific file, and PHP will execute the contents of the file. This
functionality makes it easy to deploy PHP applications: you upload PHP files to a certain
location of the filesystem, and they become accessible via web browsers. In addition to
being easy to deploy, PHP applications can also be hosted cheaply, because servers are
often shared between a number of users.

 Deploying Node applications using Node-specific cloud-hosting services offered by
companies like Joyent, Heroku, Nodejitsu, VMware, and Microsoft is no more diffi-
cult. Node-specific cloud-hosting services are worth looking into if you want to avoid
the trouble of administering your own server or want to benefit from Node-specific
diagnostics, such as Joyent SmartOS’s ability to measure which logic in a Node appli-
cation performs slowest. The Cloud9 website, itself built using Node.js, even offers a
browser-based integrated development environment (IDE) in which you can clone
projects from GitHub, work on them via the browser, and then deploy them to a num-
ber of Node-specific cloud hosting services, listed in table 12.1.

An alternative to Node-specific cloud hosting is running your own server. Linux is a
popular choice for Node servers and offers more flexibility than Node-specific cloud
hosting because you can easily install any related applications you need, such as data-
base servers. Node-specific cloud-hosting services typically offer a limited selection of
related applications.

 Linux server administration is its own realm of expertise, however. If you choose to
handle your own deployment, you’ll need to read up on your chosen Linux variant to
be sure you’re familiar with setup and maintenance procedures.

VIRTUALBOX If you’re new to server administration, you can experiment by
running software like VirtualBox (www.virtualbox.org/), which allows you to
run a virtual Linux computer on your workstation, no matter what operating
system your workstation runs.

If you’re familiar with the various server options, you may want to skim through this
chapter until you get to section 12.2, which is where we’ll start to talk about the basics
of deployment. First, let’s talk about the options available to you:

Table 12.1 Node-specific cloud-hosting and IDE services

Name Website

Heroku www.heroku.com/

Nodejitsu www.nodejitsu.com/

VMware’s Cloud Foundry www.cloudfoundry.com/

Microsoft Azure SDK for Node.js www.windowsazure.com/en-us/develop/nodejs/

Cloud9 IDE http://c9.io/

www.heroku.com/
www.nodejitsu.com/
www.cloudfoundry.com/
www.windowsazure.com/en-us/develop/nodejs/
http://c9.io/
https://www.virtualbox.org/

297Hosting Node applications

 Dedicated servers
 Virtual private servers
 General-purpose cloud servers

Let’s tackle some of the options you have when choosing to host your own Node
applications.

12.1.1 Dedicated and virtual private servers

Your server may either be a physical one, commonly known as a dedicated server, or a
virtual one. Virtual servers run inside physical servers and are assigned a share of the
physical server’s RAM, processing power, and disk space. Virtual servers emulate physi-
cal servers and you can administer them in the same way. More than one virtual server
can run inside a physical server.

 Dedicated servers are usually more expensive than virtual servers and often
require more setup time because components may have to be ordered, assembled,
and configured. Virtual private servers (VPSs), on the other hand, can be set up
quickly because they’re created inside preexisting physical servers.

VPSs are a good hosting solution for web applications if you don’t anticipate quick
growth in usage. VPSs are cheap and can easily be allocated additional resources,
when needed, such as disk space and RAM. The technology is established, and many
companies, such as Linode (www.linode.com/) and Prgmr (http://prgmr.com/xen/)
make it easy to get up and running.

VPSs, like dedicated servers, can’t usually be created on demand. Nor can they han-
dle quick growth in usage, because that requires the ability to quickly add more serv-
ers without relying on human intervention. To handle such requirements, you’ll need
to use cloud hosting.

12.1.2 Cloud hosting

Cloud servers are similar to VPSs in that they’re virtual emulations of dedicated serv-
ers. But they have an advantage over dedicated servers and VPSs in that their manage-
ment can be fully automated. Cloud servers can be created, stopped, started, and
destroyed using a remote interface or API.

 Why would you need this? Let’s say you’ve founded a company that has Node-
based corporate intranet software. You’d like clients to be able to sign up for your
service and, shortly after signing up, receive access to their own server running your
software. You could hire technical staff to set up and deploy servers for these clients
around the clock, but unless you maintained your own data center, they’d still have to
coordinate with dedicated or VPS server providers to provide the needed resources in
a timely manner. By using cloud servers, you could have a management server send
instructions via an API to your cloud hosting provider to give you access to new servers
as needed. This level of automation enables you to deliver services to the customer
quickly and without human intervention. Figure 12.1 illustrates how you can use

cloud hosting to automate the creation and destruction of an application’s servers.

http://prgmr.com/xen/
www.linode.com/

298 CHAPTER 12 Deploying Node applications and maintaining uptime

The downside to using cloud servers is that they tend to be more expensive than VPSs
and can require some knowledge specific to the cloud platform.

AMAZON WEB SERVICES

The oldest and most popular cloud platform is Amazon Web Services (AWS; http://
aws.amazon.com/). AWS consists of a range of different hosting-related services, like
email delivery, content-delivery networks, and lots more. Amazon’s Elastic Compute
Cloud (EC2), one of AWS’s central services, allows you to create servers in the cloud
whenever you need them.

EC2 virtual servers are called instances, and they can be managed using either the
command line or a web-based control console, shown in figure 12.2. As command-line
use of AWS takes some time to get used to, the web-based console is recommended for
first-time users.

 Luckily, because AWS is ubiquitous, it’s easy to get help online and find related
tutorials, such as Amazon’s “Getting Started with Amazon EC2 Linux Instances”
(http://mng.bz/cw8n).

RACKSPACE CLOUD

A more basic, easier-to-use cloud platform is Rackspace Cloud (www.rackspace.com/
cloud/). This gentler learning curve may be appealing, but Rackspace Cloud offers a
smaller range of cloud-related products and functionality than does AWS, and it has a

Human or
application logic

Cloud provider
management

console or API

Cloud server Cloud server Cloud server

Sends instructions

Creates Destroys Restarts

Figure 12.1 Creating, starting, stopping, and destroying cloud servers can be
fully automated.

http://aws.amazon.com/
http://aws.amazon.com/
http://mng.bz/cw8n
www.rackspace.com/cloud/
www.rackspace.com/cloud/

299Deployment basics

somewhat clunkier web interface. Rackspace Cloud servers can be managed using a
web interface, or with community-created command-line tools.

 Table 12.2 summarizes the hosting options we've talked about in this section.

Now that you’ve had an overview of where you can host your Node applications, let’s
look at exactly how you’d get your Node application running on a server.

12.2 Deployment basics
Suppose you’ve created a web application that you want to show off, or maybe you’ve
created a commercial application and need to test it before putting it into full produc-
tion. You’ll likely start with a simple deployment, and then do some work later to max-
imize uptime and performance. In this section, we’ll walk you through a simple,
temporary Git deployment, as well as how you can keep the application up and run-
ning with Forever. Temporary deploys don’t persist beyond reboots, but they have the
advantage of being quick to set up.

Table 12.2 Summary of hosting options

Suitable traffic growth Hosting option Relative cost

Slow Dedicated $$

Linear Virtual private server $

Unpredictable Cloud $$$

Figure 12.2 The AWS web console provides an easier way to manage Amazon
cloud servers for new users than the command line.

300 CHAPTER 12 Deploying Node applications and maintaining uptime

12.2.1 Deploying from a Git repository

Let’s quickly go through a basic deployment using a Git repository to give you a feel
for the fundamental steps.

 Deployment is most commonly done by following these steps:

1 Connect to a server using SSH.
2 Install Node and version control tools (such as Git or Subversion) on the server

if needed.
3 Download application files, including Node scripts, images, and CSS stylesheets,

from a version control repository to the server.
4 Start the application.

Here’s an example of an application starting after downloading the application files
using Git:

git clone https://github.com/Marak/hellonode.git
cd hellonode
node server.js

Like PHP, Node doesn’t run as a background task. Because of this, the basic deploy-
ment we outlined would require keeping the SSH connection open. As soon as the
SSH connection closes, the application will terminate. Luckily, it’s fairly easy to keep
your application running using a simple tool.

AUTOMATING DEPLOYMENT You can automate deployment of your Node
application in a number of ways. One is to use a tool like Fleet (https://
github.com/substack/fleet), which allows you to deploy to one or more serv-
ers using git push. A more traditional approach is to use Capistrano, as
detailed in the “Deploying node.js applications with Capistrano” post on Evan
Tahler’s Bricolage blog (http://mng.bz/3K9H).

12.2.2 Keeping Node running

Let’s say you’ve created a personal blog using the Cloud9 Nog blogging application
(https://github.com/c9/nog), and you want to deploy it, making sure that it stays
running even if you disconnect from SSH.

 The most popular tool in the Node community for dealing with this is Nodejitsu’s
Forever (https://github.com/nodejitsu/forever). It keeps your application running
after you disconnect from SSH and, additionally, restarts it if it crashes. Figure 12.3
shows, conceptually, how Forever works.

 You can install Forever globally using the sudo command.

THE SUDO COMMAND Often when installing an npm module globally (with the
-g flag), you’ll need to prefix the npm command with the sudo command
(www.sudo.ws/) in order to run npm with superuser privileges. The first time
you use the sudo command, you’ll be prompted to enter your password. Then
the command specified after it will be run.

http://mng.bz/3K9H
https://github.com/substack/fleet
https://github.com/substack/fleet
https://github.com/c9/nog
https://github.com/nodejitsu/forever
http://www.sudo.ws/

301Maximizing uptime and performance

If you’re following along, install it now using this command:

sudo npm install -g forever

Once you’ve installed Forever, you can use it to start your blog and keep it running
with the following command:

forever start server.js

If you want to stop your blog for some reason, you can use Forever’s stop command:

forever stop server.js

When using Forever, you can get a list of what applications the tool is managing by
using its list command:

forever list

Another useful capability of Forever is that it can optionally restart your application
when any source files have changed. This frees you from having to manually restart
each time you add a feature or fix a bug.

 To start Forever in this mode, use the -w flag:

forever -w start server.js

Although Forever is an extremely useful tool for deploying applications, you may want
to use something more full-featured for long-term deploys. In the next section, we’ll
look at some industrial-strength monitoring solutions and see how to maximize appli-
cation performance.

12.3 Maximizing uptime and performance
Once a Node application is release-worthy, you’ll want to make sure it starts and stops
when the server starts and stops, and that it automatically restarts when the server
crashes. It’s easy to forget to stop an application before a reboot or to forget to restart
an application afterward.

 You’ll also want to make sure you’re taking steps to maximize performance. For

1 The Forever application launches your server application
and monitors it for any potential crashes.

When the application crashes, Forever takes action
and relaunches the application.

Forever

Launches
and monitors

Application
crashes

1

Application

Forever

Relaunches
and monitors

2

Application

1

1

2

2

Figure 12.3 The Forever tool
helps you keep your application
running, even if it crashes.
example, it makes sense when you’re running your application on a server with a

302 CHAPTER 12 Deploying Node applications and maintaining uptime

quad-core CPU to not use only a single core. If you’re using only a single core and
your web application’s traffic increases significantly, a single core may not have the
processing capability to handle the traffic, and your web application won’t be able to
consistently respond.

 In addition to using all CPU cores, you’ll want to avoid using Node to host static
files for high-volume production sites. Node is geared toward interactive applications,
such as web applications and TCP/IP protocols, and it can’t serve static files as effi-
ciently as software optimized to do only that. For serving static files you’ll want to use
technologies like Nginx (http://nginx.org/en/), which specializes in serving static
files. Alternatively, you could upload all your static files to a content delivery network
(CDN), like Amazon S3 (http://aws.amazon.com/s3/), and reference those files in
your application.

 In this section, we’ll cover some server uptime and performance tips:

 Using Upstart to keep your application up and running through restarts and
crashes

 Using Node’s cluster API to utilize multicore processors
 Serving Node application static files using Nginx

Let’s start by looking at a very powerful and easy-to-use tool for maintaining uptime:
Upstart.

12.3.1 Maintaining uptime with Upstart

Let’s say you’re happy with an application and want to market it to the world. You
want to make dead sure that if you restart a server, you don’t then forget to restart
your application. You also want to make sure that if your application crashes, it’s not
only automatically restarted, but the crash is logged and you’re notified, which allows
you to diagnose any underlying issues.

 Upstart (http://upstart.ubuntu.com) is a project that provides an elegant way to
manage the starting and stopping of any Linux application, including Node applica-
tions. Modern versions of Ubuntu and CentOS support the use of Upstart.

 You can install Upstart on Ubuntu, if it’s not already installed, with this command:

sudo apt-get install upstart

You can install Upstart on CentOS, if it’s not already installed, with this command:

sudo yum install upstart

Once you’ve installed Upstart, you’ll need to add an Upstart configuration file for
each of your applications. These files are created in the /etc/init directory and are
named something like my_application_name.conf. The configuration files do not
need to be marked as executable.

 The following will create an empty Upstart configuration file for this chapter’s
example application:
sudo touch /etc/init/hellonode.conf

http://nginx.org/en/
http://aws.amazon.com/s3/
http://upstart.ubuntu.com

n
303Maximizing uptime and performance

Now add the contents of the following listing to your config file. This setup will run
the application when the server starts up and stop it upon shutdown. The exec section
is what gets executed by Upstart.

author "Robert DeGrimston"

description "hellonode"

setuid "nonrootuser"

start on (local-filesystems and net-device-up IFACE=eth0)

stop on shutdown

respawn

console log

env NODE_ENV=production

exec /usr/bin/node /path/to/server.js

This configuration will keep your process up and running after the server restarts and
even after it crashes unexpectedly. All the application-generated output will be sent to
/var/log/upstart/hellonode.log, and Upstart will manage the log rotation for you.

 Now that you’ve created an Upstart configuration file, you can start your applica-
tion using the following command:

sudo service hellonode

If your application was started successfully, you’ll see a line like this:

hellonode start/running, process 6770

Upstart is highly configurable. Check out the online cookbook (http://
upstart.ubuntu.com/cookbook/) for all the available options.

Listing 12.1 A typical Upstart configuration file

Specifies application
author name

Sets
application

name or
description

Runs application as
user nonrootuser

Starts applicatio
on startup after
filesystem and
network are
available

Stops application on shutdown

Restarts application when it crashesLogs stdin
and stderr
to /var/log/

upstart/
yourapp.log

Sets any environmental variables
necessary to the application

Specifies command to
execute application

Upstart and respawning
When the respawn option is used, Upstart will by default continually reload your appli-
cation on crashes unless the application is restarted 10 times within 5 seconds. You
can change this limit using the respawn limit COUNT INTERVAL option, where COUNT
is the number of times within the INTERVAL, which is specified in seconds. For exam-
ple, you’d set a limit of 20 times in 5 seconds like this:
respawn
respawn limit 20 5

http://upstart.ubuntu.com/cookbook/
http://upstart.ubuntu.com/cookbook/

304 CHAPTER 12 Deploying Node applications and maintaining uptime

Now that you know how to keep your application running regardless of crashes and
server reboots, the next logical concern is performance. Node’s cluster API can help
with this.

12.3.2 The cluster API: taking advantage of multiple cores

Most modern computer CPUs have multiple cores, but a Node process uses only one
of them when running. If you were hosting a Node application on a server and wanted
to maximize the server’s usage, you could manually start multiple instances of your
application on different TCP/IP ports and use a load balancer to distribute web traffic
to these different instances, but that’s laborious to set up.

 To make it easier to use multiple cores for a single application, the cluster API was
added to Node. This API makes it easy for your application to simultaneously run mul-
tiple “workers” on different cores that each do the same thing and respond to the
same TCP/IP port. Figure 12.4 shows how an application’s processing would be orga-
nized using the cluster API on a four-core processor.

(continued)
If your application is reloaded 10 times within 5 seconds (the default limit), typically
there’s something wrong in the code or configuration, and it will never start success-
fully. Upstart won’t try to restart after reaching the limit in order to save resources for
other processes.

It’s a good idea to do health checks outside of Upstart that provide alerts to the devel-
opment team through email or some other means of quick communication. A health
check, for a web application, can simply involve hitting the website and seeing if you
get a valid response. You could roll your own methods or use tools such as Monit
(http://mmonit.com/monit/) or Zabbix (www.zabbix.com/) for this.

Master

Worker

CPU core

Worker

CPU core

Worker

CPU core

Figure 12.4 A
master spawning
three workers on a
four-core processor

http://mmonit.com/monit/
www.zabbix.com/

305Maximizing uptime and performance

The following listing automatically spawns a master process and a worker for each
additional core.

var cluster = require('cluster');
var http = require('http');
var numCPUs = require('os').cpus().length;

if (cluster.isMaster) {
for (var i = 0; i < numCPUs; i++) {

cluster.fork();
}

cluster.on('exit', function(worker, code, signal) {
console.log('Worker ' + worker.process.pid + ' died.');

});
} else {

http.Server(function(req, res) {
res.writeHead(200);
res.end('I am a worker running in process ' + process.pid);

}).listen(8000);
}

Because masters and workers run in separate operating system processes, which is nec-
essary if they’re to run on separate cores, they can’t share state through global vari-
ables. But the cluster API does provide a means for the master and workers to
communicate.

 The following listing shows an example in which messages are passed between the
master and the workers. A count of all requests is kept by the master, and whenever a
worker reports handling a request, it’s relayed to each worker.

var cluster = require('cluster');
var http = require('http');
var numCPUs = require('os').cpus().length;
var workers = {};
var requests = 0;

if (cluster.isMaster) {
for (var i = 0; i < numCPUs; i++) {

workers[i] = cluster.fork();

(function (i) {
workers[i].on('message', function(message) {

if (message.cmd == 'incrementRequestTotal') {
requests++;
for (var j = 0; j < numCPUs; j++) {

workers[j].send({
cmd: 'updateOfRequestTotal',
requests: requests

});

Listing 12.2 A demonstration of Node’s cluster API

Listing 12.3 A demonstration of Node’s cluster API

Determine number of
cores server has

Create a fork
for each core

Define work to be
done by each worker

Listen for messages
from worker

Increase
request

total

Send new request total
to each worker
}

306 CHAPTER 12 Deploying Node applications and maintaining uptime

}
});

})(i);
}

cluster.on('exit', function(worker, code, signal) {
console.log('Worker ' + worker.process.pid + ' died.');

});
} else {

process.on('message', function(message) {
if (message.cmd == 'updateOfRequestTotal') {

requests = message.requests;
}

});

http.Server(function(req, res) {
res.writeHead(200);
res.end('Worker in process ' + process.pid

+ ' says cluster has responded to ' + requests
+ ' requests.');

process.send({cmd: 'incrementRequestTotal'});
}).listen(8000);

}

Using Node’s cluster API is a simple way of creating applications that take advantage of
modern hardware.

12.3.3 Hosting static files and proxying

Although Node is an effective solution for serving dynamic web content, it’s not the
most efficient way to serve static files such as images, CSS stylesheets, or client-side
JavaScript. Serving static files over HTTP is a specific task for which specific software
projects are optimized, because they’ve focused primarily on this task for many years.

 Fortunately Nginx (http://nginx.org/en/), an open source web server opti-
mized for serving static files, is easy to set up alongside Node to serve those files. In a
typical Nginx/Node configuration, Nginx initially handles each web request, relaying
requests that aren’t for static files back to Node. This configuration is illustrated in
figure 12.5.

 The configuration in the following listing, which would be put in the Nginx config-
uration file’s http section, implements this setup. The configuration file is conven-
tionally stored in a Linux server’s /etc directory at /etc/nginx/nginx.conf.

http {

upstream my_node_app {
server 127.0.0.1:8000;

}

server {

listen 80;

Listing 12.4 A configuration file that uses Nginx to proxy Node.js and serve static files

Use closure to
preserve the
value of worker

Listen for messages
from master

Update request count
using master’s message

Let master know
request total
should increase

IP and port of
Node application

Port on which proxy
will receive requests
server_name localhost domain.com;

http://nginx.org/en/

307Summary

access_log /var/log/nginx/my_node_app.log;

location ~ /static/ {
root /home/node/my_node_app;
if (!-f $request_filename) {

return 404;
}

}

location / {
proxy_pass http://my_node_app;
proxy_redirect off;

proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header Host $http_host;
proxy_set_header X-NginX-Proxy true;

}
}

}

By using Nginx to handle your static web assets, you’ll ensure that Node is dedicated
to doing what it’s best at.

12.4 Summary
In this chapter, we’ve introduced a number of Node hosting options, including Node-
specific hosting, dedicated hosting, virtual private server hosting, and cloud hosting.
Each option suits different use cases.

 Once you’re ready to deploy a Node application to a limited audience, you can get
up and running quickly by using the Forever tool to supervise your application. For
long-term deployment, you may want to automate your application’s starts and stops
using Upstart.

 To get the most of your server resources, you can take advantage of Node’s cluster
API to run application instances simultaneously on multiple cores. If your web

Handles file requests
for URL paths starting
with /static/

Defines URL path the
proxy will respond to

Web browser

Nginx

Request Response

Node responseFile response

Yes No

Filesystem Node applicationIs request for
a static file?

Figure 12.5 You can
use Nginx as a proxy to
relay static assets
quickly back to web
clients.

308 CHAPTER 12 Deploying Node applications and maintaining uptime

application needs to serve static assets such as images and PDF documents, you may
also want to run the Nginx server and proxy your Node application through it.

 Now that you have a good handle on the ins and outs of Node web applications, it’s
a good time to look at all the other things Node can do. In the next chapter, we’ll look
at Node’s other uses: everything from building command-line tools to scraping data
from websites.

Beyond web servers
Node’s asynchronous nature enables you to perform I/O-intensive tasks that might
be difficult or inefficient in a synchronous environment. We’ve mostly covered
HTTP applications in this book, but what about other kinds of applications? What
else is Node useful for?

 The truth is that Node is tailored not only for HTTP, but for all kinds of general-
purpose I/O. This means you can build practically any type of application using
Node, such as command-line programs, system administration scripts, and real-
time web applications.

 In this chapter, you’ll learn how to create real-time web servers that go beyond
the traditional HTTP server model. You’ll also learn about some of Node’s other
APIs that you can use to create other kinds of applications, like TCP servers or
command-line programs.

This chapter covers
 Using Socket.IO for real-time cross-browser

communication

 Implementing TCP/IP networking

 Using Node’s APIs to interact with the operating system

 Developing and working with command-line tools
309

310 CHAPTER 13 Beyond web servers

 We’ll start by looking at Socket.IO, which enables real-time communication
between browsers and the server.

13.1 Socket.IO
Socket.IO (http://socket.io) is arguably the best-known module in the Node commu-
nity. People who are interested in creating real-time web applications, but have never
heard of Node, usually hear about Socket.IO sooner or later, which then brings them
to Node itself. Socket.IO allows you to write real-time web applications using a bidirec-
tional communication channel between the server and client.

 At its simplest, Socket.IO has an API very similar to the WebSocket API (http://
www .websocket.org), but has built-in fallbacks for older browsers where such features
did not yet exist. Socket.IO also provides convenient APIs for broadcasting, volatile
messages, and a lot more. These features have made Socket.IO very popular for web-
based browser games, chat apps, and streaming applications.

HTTP is a stateless protocol, meaning that the client is only able to make single,
short-lived requests to the server, and the server has no real notion of connected or
disconnected users. This limitation prompted the standardization of the WebSocket
protocol, which specifies a way for browsers to maintain a full-duplex connection to
the server, allowing both ends to send and receive data simultaneously. WebSocket
APIs allow for a whole new breed of web applications utilizing real-time communica-
tion between the client and server.

 The problem with the WebSocket protocol is that it’s not yet finalized, and
although some browsers have begun shipping with WebSocket, there are still a lot of
older versions out there, especially of Internet Explorer. Socket.IO solves this problem
by utilizing WebSocket when it’s available in the browser, and falling back to other
browser-specific tricks to simulate the behavior that WebSocket provides, even in older
browsers.

 In this section, you’ll build two sample applications using Socket.IO:

 A minimal Socket.IO application that pushes the server’s time to connected
clients

 A Socket.IO application that triggers page refreshes when CSS files are edited

After you build the example apps, we’ll show you a few more ways you can use
Socket.IO by briefly revisiting the upload-progress example from chapter 4. Let’s start
with the basics.

13.1.1 Creating a minimal Socket.IO application

Let’s say you want to build a quick little web application that constantly updates the
browser in real time with the server’s UTC time. An app like this would be useful to
identify differences between the client’s and server’s clocks. Now try to think of how
you could build this application using the http module or the frameworks you’ve
learned about so far. Although it’s possible to get something working using a trick like

http://www .websocket.org
http://www .websocket.org
http://socket.io

t

t

wi
311Socket.IO

long-polling, Socket.IO provides a cleaner interface for accomplishing this. Imple-
menting this app with Socket.IO is about as simple as you can get.

 To build it, you can start by installing Socket.IO using npm:

npm install socket.io

The following listing shows the server-side code, so save this file for now and you can
try it out when you have the client-side code as well.

var app = require('http').createServer(handler);

var io = require('socket.io').listen(app);

var fs = require('fs');

var html = fs.readFileSync('index.html', 'utf8');

function handler (req, res) {

res.setHeader('Content-Type', 'text/html');

res.setHeader('Content-Length', Buffer.byteLength(html, 'utf8'));

res.end(html);

}

function tick () {

var now = new Date().toUTCString();

io.sockets.send(now);

}

setInterval(tick, 1000);

app.listen(8080);

As you can see, Socket.IO minimizes the amount of extra code you need to add to the
base HTTP server. It only took two lines of code involving the io variable (which is the
variable for your Socket.IO server instance) to enable real-time messages between
your server and clients. In this clock server example, you invoke the tick() function
once per second to notify all the connected clients of the server’s time.

 The server code first reads the index.html file into memory, and you need to
implement that now. The following listing shows the client side of this application.

<!DOCTYPE html>
<html>

<head>
<script type="text/javascript" src="/socket.io/socket.io.js">
</script>
<script type="text/javascript">

var socket = io.connect();
socket.on('message', function (time) {

document.getElementById('time').innerHTML = time;

Listing 13.1 A Socket.IO server that updates its clients with the time

Listing 13.2 A Socket.IO client that displays the server’s broadcasted time

Upgrade regular HTTP
server to Socket.IO server

HTTP server code always
serves index.html file

Get UTC representation
of current time

Send time to all
connected sockets

Run tick function
once per second

Connect to
Socket.IO server

When message event is
received, server has sen

Update
ime span
element

th server
time
the time

312 CHAPTER 13 Beyond web servers

});
</script>

</head>
<body>Current server time is:
</body>

</html>

TRYING IT OUT

You’re now ready to run the server. Fire it up with node clock-server.js and you’ll see
the response “info - socket.io started.” This means that Socket.IO is set up and ready to
receive connections, so open up your browser to the URL http://localhost:8080/. With
any luck, you’ll be greeted by something that looks like figure 13.1. The time will be
updated every second from the message received by the server. Go ahead and open
another browser at the same time to the same URL, and you’ll see the values change
together in sync.

Just like that, you have real-time communication between the client and server with
just a few lines of code, thanks to Socket.IO.

OTHER KINDS OF MESSAGING WITH SOCKET.IO Sending a message to all the con-
nected sockets is only one way that Socket.IO enables you to interact with con-
nected users. You can also send messages to individual sockets, broadcast to
all sockets except one, send volatile (optional) messages, and a lot more. Be
sure to check out Socket.IO’s documentation for more information (http://
socket.io/#how-to-use).

Now that you have an idea of the simple things that are possible with Socket.IO,
let’s take a look at another example of how server-sent events can be beneficial to
developers.

13.1.2 Using Socket.IO to trigger page and CSS reloads

Let’s quickly take a look at the typical workflow for web page designers:

1 Open the web page in multiple browsers.
2 Look for styling on the page that needs adjusting.

Figure 13.1 The clock server running in a terminal window with a client in a browser
connected to the server
3 Make changes to one or more stylesheets.

http://socket.io/#how-to-use
http://socket.io/#how-to-use

313Socket.IO

4 Manually reload all the web browsers.
5 Go back to step 2.

One step you could automate is step 4, where the designer needs to manually go into
each web browser and click the Refresh button. This is especially time-consuming
when the designer needs to test different browsers on different computers and various
mobile devices.

 But what if you could eliminate this manual refresh step completely? Imagine that
when you save the stylesheet in your text editor, all the web browsers that have that
page open automatically reload the changes in the CSS sheet. This would be a huge
time-saver for devs and designers alike, and Socket.IO matched with Node’s
fs.watchFile and fs.watch functions make it possible in just a few lines of code.

 We’ll use fs.watchFile() in this example instead of the newer fs.watch()
because we’re assured this code will work the same on all platforms, but we’ll cover
the behavior of fs.watch() in depth later.

FS.WATCHFILE() VS. FS.WATCH() Node.js provides two APIs for watching files:
fs.watchFile() (http://mng.bz/v6dA) is rather expensive resource-wise,
but it’s more reliable and works cross-platform. fs.watch() (http://mng.bz/
5KSC) is highly optimized for each platform, but it has behavioral differ-
ences on certain platforms. We’ll go over these functions in greater detail in
section 13.3.2.

In this example, we’ll combine the Express framework with Socket.IO. They work
together seamlessly, just like the regular http.Server in the previous example.

 First, let’s look at the server code in its entirety. Save the following code as watch-
server.js if you’re interested in running this example at the end.

var fs = require('fs');
var url = require('url');
var http = require('http');
var path = require('path');
var express = require('express');
var app = express();
var server = http.createServer(app);
var io = require('socket.io').listen(server);
var root = __dirname;

app.use(function (req, res, next) {
req.on('static', function () {

var file = url.parse(req.url).pathname;
var mode = 'stylesheet';
if (file[file.length - 1] == '/') {

file += 'index.html';
mode = 'reload';

Listing 13.3 Express/Socket.IO server that triggers events on file change

Create Express
app server

Wrap HTTP server to
create Socket.IO instance

Use middleware
to begin
watching files
returned by
static
middleware

Register static
event emitted
by static()
middleware
component
}

http://mng.bz/v6dA
http://mng.bz/5KSC
http://mng.bz/5KSC

314 CHAPTER 13 Beyond web servers

createWatcher(file, mode);
});
next();

});

app.use(express.static(root));

var watchers = {};

function createWatcher (file, event) {
var absolute = path.join(root, file);

if (watchers[absolute]) {
return;

}

fs.watchFile(absolute, function (curr, prev) {
if (curr.mtime !== prev.mtime) {

io.sockets.emit(event, file);
}

});

watchers[absolute] = true;
}

server.listen(8080);

At this point you have a fully functional static file server that’s prepared to fire reload
and stylesheet events across the wire to the client using Socket.IO.

 Now let’s take a look at the basic client-side code. Save this as index.html so that it
gets served at the root path when you fire up the server next.

<!DOCTYPE html>
<html>

<head>
<title>Socket.IO dynamically reloading CSS stylesheets</title>
<link rel="stylesheet" type="text/css" href="/header.css" />
<link rel="stylesheet" type="text/css" href="/styles.css" />
<script type="text/javascript" src="/socket.io/socket.io.js">
</script>
<script type="text/javascript">

window.onload = function () {
var socket = io.connect();

socket.on('reload', function () {
window.location.reload();

});

socket.on('stylesheet', function (sheet) {
var link = document.createElement('link');
var head = document.getElementsByTagName('head')[0];
link.setAttribute('rel', 'stylesheet');
link.setAttribute('type', 'text/css');
link.setAttribute('href', sheet);
head.appendChild(link);

});

Listing 13.4 Client-side code to reload stylesheets after receiving server events

Determine filename served
and call createWatcher()

Set up server as basic
static file server

Keep list of active files
being watched

Begin watching file
for any change

Check if mtime (last
modified time) changed;
if so, fire Socket.IO event

Mark file as
being watched

Connect to server

Receive reload
event from server

Receive
stylesheet
event from
server

315Socket.IO

}
</script>

</head>
<body>

<h1>This is our Awesome Webpage!</h1>
<div id="body">

<p>If this file (<code>index.html</code>) is edited, then the
server will send a message to the browser using Socket.IO telling
it to refresh the page.</p>

<p>If either of the stylesheets (<code>header.css</code> or
<code>styles.css</code>) are edited, then the server will send a
message to the browser using Socket.IO telling it to dynamically
reload the CSS, without refreshing the page.</p>

</div>
<div id="event-log"></div>

</body>
</html>

TRYING IT OUT

Before this will work, you’ll need to create a couple of CSS files, header.css and
styles.css, because the index.html file loads those two stylesheets when it loads.

 Now that you have the server code, the index.html file, and the CSS stylesheets that
the browser will use, you can try it out. Fire up the server:

$ node watch-server.js

Once the server has started, open your web browser to http://localhost:8080 and
you’ll see the simple HTML page being served and rendered. Now try altering one of
the CSS files (perhaps tweak the background color of the body tag), and you’ll see the
stylesheet reload in the browser right in front of your eyes, without even reloading the
page itself. Try opening the page in multiple browsers at once.

 In this example, reload and stylesheet are custom events that you have defined
in the application; they’re not part of Socket.IO’s API. This demonstrates how the
socket object acts like a bidirectional EventEmitter, which you can use to emit events
that Socket.IO will transfer across the wire for you.

13.1.3 Other uses of Socket.IO

As you know, HTTP was never originally intended for any kind of real-time communi-
cation. But with advances in browser technologies, like WebSocket, and with modules
like Socket.IO, this limitation has been lifted, opening a big door for all kinds of new
applications that were never before possible in the web browser.

 Back in chapter 4 we said that Socket.IO would be great for relaying upload prog-
ress events back to the browser for the user to see. Using a custom progress event
would work well:

form.on('progress', function(bytesReceived, bytesExpected) {
var percent = Math.floor(bytesReceived / bytesExpected * 100);

socket.emit('progress', { percent: percent });

Updated from
example in
section 4.4.3

Relay uploaded percentage

}); using Socket.IO

316 CHAPTER 13 Beyond web servers

For this relaying to work, you’ll need to get access to the socket instance that matches
the browser uploading the file. That’s beyond the scope of this book, but there are
resources on the internet that can help you figure that out. (For starters, take a look at
Daniel Baulig’s “socket.io and Express: tying it all together” article on his blinzeln blog:
www.danielbaulig.de/socket-ioexpress.)

 Socket.IO is game changing. As mentioned earlier, developers interested in real-
time web applications often hear about Socket.IO before knowing about Node.js—a
testament to how influential and important Socket.IO is. It’s consistently gaining
traction in web gaming communities and being used for more creative games and
applications than one could have thought possible. It’s also a very popular pick for use
in applications written in Node.js competitions, like Node Knockout (http://
nodeknockout.com). What awesome thing will you write with it?

13.2 TCP/IP networking in depth
Node is well suited for networking applications, because those typically involve a lot
of I/O. Besides the HTTP servers you’ve learned much about already, Node supports
any type of TCP-based networking. Node is a good platform for writing an email
server, file server, or proxy server, for example, and it can also be used as a client for
these kinds of services. Node provides a few tools to aid in writing high quality and
performant I/O applications, and you’ll learn about them in this section.

 Some networking protocols require values to be read at the byte level—chars, ints,
floats, and other data types involving binary data. But JavaScript doesn’t include any
native binary data types to work with. The closest you can get is crazy hacks with
strings. Node picks up the slack by implementing its own Buffer data type, which acts
as a piece of fixed-length binary data, making it possible to access the low-level bytes
needed to implement other protocols.

 In this section you’ll learn about the following topics:

 Working with buffers and binary data
 Creating a TCP server
 Creating a TCP client

Let’s first take a deeper look at how Node deals with binary data.

13.2.1 Working with buffers and binary data

The Buffer is a special data type that Node provides for developers. It acts as a slab of
raw binary data with a fixed length. Buffers can be thought of as the equivalent of the
malloc() C function or the new keyword in C++. Buffers are very fast and light objects,
and they’re used throughout Node’s core APIs. For example, they’re returned in data
events by all Stream classes by default.

 Node exposes the Buffer constructor globally, encouraging you to use it as an
extension of the regular JavaScript data types. From a programming point of view, you
can think of buffers as similar to arrays, except they’re not resizable and can only con-

tain the numbers 0 through 255 as values. This makes them ideal for storing binary

http://nodeknockout.com
http://nodeknockout.com
http://www.danielbaulig.de/socket-ioexpress

317TCP/IP networking in depth

data of, well, anything. Because buffers work with raw bytes, you can use them to
implement any low-level protocol that you desire.

TEXT DATA VS. BINARY DATA

Say you wanted to store the number 121234869 in memory using a Buffer. By default,
Node assumes that you want to work with text-based data in buffers, so when you pass
the string "121234869" to the Buffer constructor function, a new Buffer object will
be allocated with the string value written to it:

var b = new Buffer("121234869");

console.log(b.length);
9
console.log(b);
<Buffer 31 32 31 32 33 34 38 36 39>

In this case, it would return a 9-byte Buffer. This is because the string was written to
the Buffer using the default human-readable text-based encoding (UTF-8), where the
string is represented with 1 byte per character.

 Node also includes helper functions for reading and writing binary (machine-
readable) integer data. These are needed for implementing machine protocols that
send raw data types (like ints, floats, doubles, and so on) over the wire. Because you
want to store a number value in this example, it’s possible to be more efficient by uti-
lizing the helper function writeInt32LE() to write the number 121234869 as a
machine-readable binary integer (assuming a little-endian processor) into a 4-byte
Buffer.

 There are other variations of the Buffer helper functions, as well:

 writeInt16LE() for smaller integer values
 writeUInt32LE() for unsigned values
 writeInt32BE() for big-endian values

There are lots more, so be sure to check the Buffer API documentation page (http://
nodejs.org/docs/latest/api/buffer.html) if you’re interested in them all.

 In the following code snippet, the number is written using the writeInt32LE
binary helper function:

var b = new Buffer(4);
b.writeInt32LE(121234869, 0);

console.log(b.length);
4
console.log(b);
<Buffer b5 e5 39 07>

By storing the value as a binary integer instead of a text string in memory, the data size
is decreased by half, from 9 bytes down to 4. Figure 13.2 shows the breakdown of these
two buffers and essentially illustrates the difference between human-readable (text)

protocols and machine-readable (binary) protocols.

http://nodejs.org/docs/latest/api/buffer.html
http://nodejs.org/docs/latest/api/buffer.html

318 CHAPTER 13 Beyond web servers

Regardless of what kind of protocol you’re working with, Node’s Buffer class will be
able to handle the proper representation.

BYTE ENDIANNESS The term endianness refers to the order of the bytes within
a multibyte sequence. When bytes are in little-endian order, the least signifi-
cant byte (LSB) is stored first, and the byte sequence is read from right to left.
Conversely, big-endian order is when the first byte stored is the most significant
byte (MSB) and the byte sequence is read from left to right. Node.js offers
equivalent helper functions for both little-endian and big-endian data types.

Now it’s time to put these Buffer objects to use by creating a TCP server and interact-
ing with it.

13.2.2 Creating a TCP server

Node’s core API sticks to being low-level, exposing only the bare essentials for modules
to build on. Node’s http module is a good example of this, building on top of the net
module to implement the HTTP protocol. Other protocols, like SMTP for email or FTP
for file transfer, need to be implemented on top of the net module as well, because
Node’s core API doesn’t implement any other higher-level protocols.

WRITING DATA

The net module offers a raw TCP/IP socket interface for your applications to use. The
API for creating a TCP server is very similar to creating an HTTP server: you call
net.createServer() and give it a callback function that will be invoked upon each
connection. The main difference in creating a TCP server is that the callback function
only takes one argument (usually named socket), which is the Socket object, as

UTF-8 text value

Buffer with string data

1“

31Hex value

2

32

1

31

2

32

3

33

4

34

8

38

6

36

9 ”

39

Binary integer value

Buffer with binary data

1“ 2 1 2

b5Hex value

3

e3

4

39

8

07

6 9 ”

Figure 13.2 The difference
between representing 121234869
as a text string vs. a little-endian
binary integer at the byte level
opposed to the req and res arguments used when creating an HTTP server.

319TCP/IP networking in depth

THE SOCKET CLASS The Socket class is used by both the client and server
aspects of the net module in Node. It’s a Stream subclass that’s both readable
and writable (bidirectional). That is, it emits data events when input data
has been read from the socket, and it has write() and end() functions for
sending output data.

Let’s quickly look at a bare-bones net.Server that waits for connections and then
invokes a callback function. In this case, the logic inside the callback function simply
writes “Hello World!” to the socket and closes the connection cleanly:

var net = require('net');

net.createServer(function (socket) {
socket.write('Hello World!\r\n');
socket.end();

}).listen(1337);
console.log('listening on port 1337');

Fire up the server for some testing:

$ node server.js
listening on port 1337

If you were to try to connect to the server in a web browser, it wouldn’t work because
this server doesn’t speak HTTP, only raw TCP. In order to connect to this server and see
the message, you need to connect with a proper TCP client, like netcat(1):

$ netcat localhost 1337
Hello World!

Great! Now let’s try using telnet(1):

$ telnet localhost 1337
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Hello World!
Connection closed by foreign host.

telnet is usually meant to be run in an interactive mode, so it prints out its own stuff
as well, but the “Hello World!” message does get printed right before the connection
is closed, just as expected.

 As you can see, writing data to the socket is easy. You just use write() calls and a
final end() call. This API intentionally matches the API for HTTP res objects when
writing a response to the client.

READING DATA

It’s common for servers to follow the request-response paradigm, where the client
connects and immediately sends a request of some sort. The server reads the request
and processes a response of some sort to write back to the socket. This is exactly how
the HTTP protocol works, as well as the majority of other networking protocols in the
wild, so it’s important to know how to read data in addition to writing it.

320 CHAPTER 13 Beyond web servers

 Fortunately, if you remember how to read a request body from an HTTP req object,
reading from a TCP socket should be a piece of cake. Complying with the readable
Stream interface, all you have to do is listen for data events containing the input data
that was read from the socket:

socket.on('data', function (data) {
console.log('got "data"', data);

});

By default, there’s no encoding set on the socket, so the data argument will be a
Buffer instance. Usually, this is exactly how you want it (that’s why it’s the default),
but when it’s more convenient, you can call the setEncoding() function to have the
data argument be the decoded strings instead of buffers. You also listen for the end
event so you know when the client has closed their end of the socket and won’t be
sending any more data:

socket.on('end', function () {
console.log('socket has ended');

});

You can easily write a quick TCP client that looks up the version string of the given SSH
server by simply waiting for the first data event:

var net = require('net');

var socket = net.connect({ host: process.argv[2], port: 22 });
socket.setEncoding('utf8');

socket.once('data', function (chunk) {
console.log('SSH server version: %j', chunk.trim());
socket.end();

});

Now try it out. Note that this oversimplified example assumes that the entire version
string will come in one chunk. Most of the time this works just fine, but a proper pro-
gram would buffer the input until a \n char was found. Let’s check what the
github.com SSH server uses:

$ node client.js github.com
SSH server version: "SSH-2.0-OpenSSH_5.5p1 Debian-6+squeeze1+github8"

CONNECTING TWO STREAMS WITH SOCKET.PIPE()
Using pipe() (http://mng.bz/tuyo) in conjunction with either the readable or writ-
able portions of a Socket object is also a good idea. In fact, if you wanted to write a
basic TCP server that echoed everything that was sent to it back to the client, you could
do that with a single line of code in your callback function:

socket.pipe(socket);

This example shows that it only takes one line of code to implement the IETF Echo
Protocol (http://tools.ietf.org/rfc/rfc862.txt), but more importantly it demonstrates

http://mng.bz/tuyo
http://tools.ietf.org/rfc/rfc862.txt

321TCP/IP networking in depth

that you can pipe() both to and from the socket object. Of course, you would usually
do this with more meaningful stream instances, like a filesystem or gzip stream.

HANDLING UNCLEAN DISCONNECTIONS

The last thing that should be said about TCP servers is that you need to anticipate cli-
ents that disconnect but don’t cleanly close the socket. In the case of netcat(1), this
would happen when you press Ctrl-C to kill the process, rather than pressing Ctrl-D to
cleanly close the connection. To detect this situation, you listen for the close event:

socket.on('close', function () {
console.log('client disconnected');

});

If you have cleanup to do after a socket disconnects, you should do it from the close
event, not the end event, because end won’t fire if the connection isn’t closed cleanly.

PUTTING IT ALL TOGETHER

Let’s take all these events and create a simple echo server that logs stuff to the termi-
nal when the various events occur. The server is shown in the following listing.

var net = require('net');

net.createServer(function (socket) {
console.log('socket connected!');
socket.on('data', function (data) {

console.log('"data" event', data);
});
socket.on('end', function () {

console.log('"end" event');
});
socket.on('close', function () {

console.log('"close" event');
});
socket.on('error', function (e) {

console.log('"error" event', e);
});
socket.pipe(socket);

}).listen(1337);

Fire up the server and connect to it with netcat or telnet and play around with it a
bit. You should see the console.log() calls for the events being printed to the server’s
stdout as you mash around on the keyboard in the client app.

 Now that you can build low-level TCP servers in Node, you’re probably wondering
how to write a client program in Node to interact with these servers. Let’s do that now.

13.2.3 Creating a TCP client

Node isn’t only about server software; creating client networking programs is just as
useful and just as easy in Node.

Listing 13.5 A simple TCP server that echoes any data it receives back to the client

data event can happen
multiple times

end event can only
happen once per socket

close event can also only
happen once per socket

Set error handler to prevent
uncaught exceptions

pr

s

pr
322 CHAPTER 13 Beyond web servers

 The key to creating raw connections to TCP servers is the net.connect() function;
it accepts an options argument with host and port values and returns a socket
instance. The socket returned from net.connect() starts off disconnected from the
server, so you’ll usually want to listen for the connect event before doing any work
with the socket:

var net = require('net');

var socket = net.connect({ port: 1337, host: 'localhost' });
socket.on('connect', function () {

// begin writing your "request"
socket.write('HELO local.domain.name\r\n');
...

});

Once the socket instance is connected to the server, it behaves just like the socket
instances you get inside a net.Server callback function.

 Let’s demonstrate by writing a basic replica of the netcat(1) command, as shown
in the following listing. Basically, the program connects to the specified remote server
and pipes stdin from the program to the socket, and then pipes the socket’s response
to the program’s stdout.

var net = require('net');

var host = process.argv[2];

var port = Number(process.argv[3]);

var socket = net.connect(port, host);

socket.on('connect', function () {

process.stdin.pipe(socket);

socket.pipe(process.stdout);

process.stdin.resume();

});

socket.on('end', function () {

process.stdin.pause();

});

You can use this client to connect to the TCP server examples you wrote before. Or if
you’re a Star Wars fan, try invoking this netcat replica script with the following argu-
ments for a special Easter egg:

$ node netcat.js towel.blinkenlights.nl 23

Sit back and enjoy the output shown in figure 13.3. You deserve a break.

Listing 13.6 A basic replica of the netcat(1) command implemented using Node

Parse host and port from
command-line arguments

Create socket instance and
begin connecting to server

Handle connect event when a
connection to server is established

Pipe
ocess’s

stdin to
socket

Pipe
ocket’s
data to
ocess’s
stdout

Call resume() on stdin
to begin reading data

Pause stdin when
end event happens

323Tools for interacting with the operating system

That’s all it takes to write low-level TCP servers and clients using Node.js. The net mod-
ule provides a simple, yet comprehensive, API, and the Socket class follows both the
readable and writable Stream interfaces, as you would expect. Essentially, the net
module is a showcase of the core fundamentals of Node.

 Let’s switch gears once again and look at Node’s core APIs that allow you to inter-
act with the process’s environment and query information about the runtime and
operating system.

13.3 Tools for interacting with the operating system
Often you’ll find yourself wanting to interact with the environment that Node is run-
ning in. This might involve checking environment variables to enable debug-mode
logging, implementing a Linux joystick driver using the low-level fs functions to inter-
act with /dev/js0 (the device file for a game joystick), or launching an external child
process like php to compile a legacy PHP script.

 All these kinds of actions require you to use some of the Node core APIs, and we’ll
cover some of these modules in this section:

 The global process object—Contains information about the current process, such
as the arguments given to it and the environment variables that are currently set

 The fs module—Contains the high-level ReadStream and WriteStream classes
that you’re familiar with by now, but also houses low-level functions that we’ll
look at

 The child_process module—Contains both low-level and high-level interfaces
for spawning child processes, as well as a special way to spawn node instances
with a two-way message-passing channel

The process object is one of those APIs that a large majority of programs will interact

Figure 13.3 Connecting to the
ASCII Star Wars server with the
netcat.js script
with, so let’s start with that.

324 CHAPTER 13 Beyond web servers

13.3.1 The process global singleton

Every Node process has a single global process object that every module shares access
to. Useful information about the process and the context it’s running in can be found
in this object. For example, the arguments that were invoked with Node to run the
current script can be accessed with process.argv, and you can get or set the environ-
ment variables using the process.env object. But the most interesting feature of the
process object is that it’s an EventEmitter instance, which emits very special events,
such as exit and uncaughtException.

 The process object has lots of bells and whistles, and some of the APIs not dis-
cussed in this section will be covered later in the chapter. In this section, we’ll focus on
the following:

 Using process.env to get and set environment variables
 Listening for special events emitted by process, such as exit and uncaught-

Exception

 Listening for signal events emitted by process, like SIGUSR2 and SIGKILL

USING PROCESS.ENV TO GET AND SET ENVIRONMENT VARIABLES

Environment variables are great for altering the way your program or module will
work. For example, you can use these variables to configure your server, specifying
which port to listen on. Or the operating system can set the TMPDIR variable to specify
where your programs should output temporary files that can be cleaned up later.

ENVIRONMENT VARIABLES? In case you’re not already familiar with environ-
ment variables, they’re a set of key/value pairs that any process can use to
affect the way it will behave. For example, all operating systems use the PATH
environment variable as a list of file paths to search when looking up a pro-
gram’s location by name (with ls being resolved to /bin/ls).

Suppose you wanted to enable debug-mode logging while developing or debugging
your module, but not during regular use, because that would be annoying for con-
sumers of your module. A great way to do this is with environment variables. You
could look up what the DEBUG variable is set to by checking process.env.DEBUG, as
shown in the next listing.

var debug;
if (process.env.DEBUG) {

debug = function (data) {
console.error(data);

};
} else {

debug = function () {};
}

Listing 13.7 Define a debug function based on a DEBUG environment variable

Set debug function based
on process.env.DEBUG

When DEBUG is set, debug function
will log the argument to stderr

When DEBUG isn’t set, debug
function is empty and does nothing

325Tools for interacting with the operating system

debug('this is a debug call');

console.log('Hello World!');

debug('this another debug call');

If you try running this script regularly (without the process.env.DEBUG environment
variable set), you’ll see that calls to debug do nothing, because the empty function is
being called:

$ node debug-mode.js
Hello World!

To test out debug mode, you need to set the process.env.DEBUG environment vari-
able. The simplest way to do this when launching a Node instance is to prepend the
command with DEBUG=1. When in debug mode, calls to the debug function will then
be printed to the console as well as to the regular output. This is a nice way to get diag-
nostic reporting to stderr when debugging a problem in your code:

$ DEBUG=1 node debug-mode.js
this is a debug call
Hello World!
this is another debug call

The debug community module by T.J. Holowaychuk (https://github.com/visionmedia
/debug) encapsulates precisely this functionality with some additional features. If you
like the debugging technique presented here, you should definitely check it out.

SPECIAL EVENTS EMITTED BY PROCESS

Normally there are two special events that get emitted by the process object:

 exit gets emitted right before the process exits.
 uncaughtException gets emitted any time an unhandled error is thrown.

The exit event is essential for any application that needs to do something right
before the program exits, like clean up an object or print a final message to the con-
sole. One important thing to note is that the exit event gets fired after the event loop
has already stopped, so you won’t have the opportunity to start any asynchronous tasks
during the exit event. The exit code is passed as the first argument, and it’s 0 on a
successful exit.

 Let’s write a script that listens on the exit event to print an “Exiting...” message:

process.on('exit', function (code) {
console.log('Exiting...');

});

The other special event emitted by process is the uncaughtException event. In the
perfect program, there will never be any uncaught exceptions, but in the real world,
it’s better to be safe than sorry. The only argument given to the uncaughtException
event is the uncaught Error object.

Call debug function in various
places throughout the code

https://github.com/visionmedia/debug
https://github.com/visionmedia/debug

326 CHAPTER 13 Beyond web servers

 When there are no listeners for “error” events, any uncaught errors will crash the
process (this is the default behavior for most applications), but when there’s at least
one listener, it’s up to that listener to decide what to do with the error. Node won’t exit
automatically, though it is considered mandatory to do so in your own callback. The
Node.js documentation explicitly warns that any use of this event should contain a
process.exit() call within the callback; otherwise you’ll leave the application in an
undefined state, which is bad.

 Let’s listen for uncaughtException and then throw an uncaught error to see it in
action:

process.on('uncaughtException', function (err) {
console.error('got uncaught exception:', err.message);
process.exit(1);

});

throw new Error('an uncaught exception');

Now when an unexpected error happens, you’re able to catch the error and do any
necessary cleanup before you exit the process.

CATCHING SIGNALS SENT TO THE PROCESS

UNIX has the concept of signals, which are a basic form of interprocess communica-
tion (IPC). These signals are very primitive, allowing for only a fixed set of names to be
used and no arguments to be passed.

 Node has default behaviors for a few signals, which we’ll go over now:

 SIGINT—Sent by your shell when you press Ctrl-C. Node’s default behavior is to
kill the process, but this can be overridden with a single listener for SIGINT on
process.

 SIGUSR1—When this signal is received, Node will enter its built-in debugger.
 SIGWINCH—Sent by your shell when the terminal is resized. Node resets

process.stdout.rows and process.stdout.columns and emits a resize event
when this is received.

Those are the three signals that Node handles by default, but you can also listen for
any of these signals and invoke a callback function by listening for the signal on the
process object.

 Say you’ve written a server, but when you press Ctrl-C to kill the server, it’s an
unclean shutdown, and any pending connections are dropped. The solution to this is
to catch the SIGINT signal and stop the server from accepting connections, letting any
existing connections complete before the process completes. This is done by listening
for process.on('SIGINT', ...). The name of the event emitted is the same as the
signal name:

process.on('SIGINT', function () {
console.log('Got Ctrl-C!');
server.close();

});

327Tools for interacting with the operating system

Now when you press Ctrl-C on your keyboard, the SIGINT signal will be sent to the
Node process from your shell, which will invoke the registered callback instead of kill-
ing the process. Because the default behavior of most applications is to exit the pro-
cess, it’s usually a good idea to do the same in your own SIGINT handler, after any
necessary shutdown actions happen. In this case, stopping a server from accepting
connections will do the trick. This also works on Windows, despite its lack of proper
signals, because Node handles the equivalent Windows actions and simulates artificial
signals in Node.

 You can apply this same technique to catch any of the UNIX signals that get sent to
your Node process. These signals are listed in the Wikipedia article on UNIX signals:
http://wikipedia.org/wiki/Unix_signal#POSIX_signals. Unfortunately, signals don’t
generally work on Windows, except for the few simulated signals: SIGINT, SIGBREAK,
SIGHUP, and SIGWINCH.

13.3.2 Using the filesystem module

The fs module provides functions for interacting with the filesystem of the computer
that Node is running on. Most of the functions are one-to-one mappings of their C func-
tion counterparts, but there are also higher-level abstractions like the fs.readFile(),
fs.writeFile(), fs.ReadStream, and fs.WriteStream classes, which build on top of
open(), read(), write(), and close().

 Nearly all of the low-level functions are identical in use to their C counterparts. In
fact, most of the Node documentation refers you to the equivalent man page explain-
ing the matching C function. You can easily identify these low-level functions because
they’ll always have a synchronous counterpart. For example, fs.stat() and
fs.statSync() are the low-level bindings to the stat(2) C function.

SYNCHRONOUS FUNCTIONS IN NODE.JS As you already know, Node’s API is
mostly asynchronous functions that never block the event loop, so why bother
including synchronous versions of these filesystem functions? The answer is
that Node’s own require() function is synchronous, and it’s implemented
using the fs module functions, so synchronous counterparts were necessary.
Nevertheless, in Node, synchronous functions should only be used during
startup, or when your module is initially loaded, and never after that.

Let’s take a look at some examples of interacting with the filesystem.

MOVING A FILE

A seemingly simple, yet very common, task when interacting with the filesystem is
moving a file from one directory to another. On UNIX platforms you use the mv com-
mand for this, and on Windows it’s the move command. Doing the same thing in Node
should be similarly simple, right?

 Well, if you browse through the fs module in the REPL or in the documentation
(http://nodejs.org/api/fs.html), you’ll notice that there’s no fs.move() function.

http://wikipedia.org/wiki/Unix_signal#POSIX_signals
http://nodejs.org/api/fs.html

328 CHAPTER 13 Beyond web servers

But there is an fs.rename() function, which is the same thing, if you think about it.
Perfect!

 But not so fast there. fs.rename() maps directly to the rename(2) C function, and
one gotcha with this function is that it doesn’t work across physical devices (like two
hard drives). That means the following code wouldn’t work properly and would throw
an EXDEV error:

fs.rename('C:\\hello.txt', 'D:\\hello.txt', function (err) {
// err.code === 'EXDEV'

});

What do you do now? Well, you can still create new files on D: \ and read files from C: \ ,
so copying the file over will work. With this knowledge, you can create an optimized
move() function that calls the very fast fs.rename() when possible and copies the file
from one device to another when necessary, using fs.ReadStream and fs.Write-
Stream. One such implementation is shown in the following listing.

var fs = require('fs');

module.exports = function move (oldPath, newPath, callback) {
fs.rename(oldPath, newPath, function (err) {

if (err) {
if (err.code === 'EXDEV') {

copy();
} else {

callback(err);
}
return;

}
callback();

});

function copy () {
var readStream = fs.createReadStream(oldPath);
var writeStream = fs.createWriteStream(newPath);
readStream.on('error', callback);
writeStream.on('error', callback);
readStream.on('close', function () {

fs.unlink(oldPath, callback);
});
readStream.pipe(writeStream);

}
}

You can test this module directly in the node REPL if you like:

$ node
> var move = require('./copy')
> move('copy.js', 'copy.js.bak', function (err) { if (err) throw err })

Note that this copy function only works with files, not directories. To make it work for

Listing 13.8 A move() function that renames, if possible, or falls back to copying

Call fs.rename()
and hope it works

Fall back to copy
technique if EXDEV error

Fail and report to caller if
any other kind of error

If fs.rename() worked,
you’re done

Reads original file
and pipes it to the
destination path

Unlink (delete) original
file once copy is done
directories, you’d have to first check if the given path was a directory, and if it was

329Tools for interacting with the operating system

you’d call fs.readdir() and fs.mkdir() as necessary. You can implement that on
your own.

FS MODULE ERROR CODES The fs module returns standard UNIX names for
the filesystem error codes (www.gnu.org/software/libc/manual/html_node/
Error-Codes.html), so some familiarity with those names is required. These
names get normalized by libuv even on Windows, so that your application
only needs to check for one error code at a time. According to the GNU docu-
mentation page, an EXDEV error happens when “an attempt to make an
improper link across file systems was detected.”

WATCHING A DIRECTORY OR FILE FOR CHANGES

fs.watchFile() has been around since the early days. It’s expensive on some plat-
forms because it uses polling to see if the file has changed. That is, it stat()s the file,
waits a short period of time, and then stat()s again in a continuous loop, invoking
the watcher function any time the file has changed.

 Suppose you’re writing a module that logs changes from the system log file. To do
this, you’d want a callback function to be invoked any time the global system.log file is
modified:

var fs = require('fs');

fs.watchFile('/var/log/system.log', function (curr, prev) {
if (curr.mtime.getTime() !== prev.mtime.getTime()) {

console.log('"system.log" has been modified');
}

});

The curr and prev variables are the current and previous fs.Stat objects, which
should have different timestamps for one of the file times attached. In this example,
the mtime values are being compared, because you only want to be notified when the
file is modified, not when it’s accessed.

fs.watch() was introduced in the Node v0.6 release. As we mentioned earlier, it’s
more optimized than fs.watchFile() because it uses the platform’s native file
change notification API for watching files. Because of this, the function is also capable
of watching for changes to any file in a directory. In practice, fs.watch() is less reli-
able than fs.watchFile() because of differences between the various platforms’
underlying file-watching mechanisms. For example, the filename parameter doesn’t
get reported on OS X when watching a directory, and it’s up to Apple to change that in
a future release of OS X. Node’s documentation keeps a list of these caveats at http://
nodejs.org/api/fs.html#fs_caveats.

USING COMMUNITY MODULES: FSTREAM AND FILED

As you’ve seen, the fs module, like all of Node’s core APIs, is strictly low-level. That
means there’s plenty of room to innovate and create awesome abstractions on top of
it. Node’s active collection of modules is growing on npm every day, and as you might
guess, there are some quality ones that extend the fs module.

www.gnu.org/software/libc/manual/html_node/Error-Codes.html
www.gnu.org/software/libc/manual/html_node/Error-Codes.html
http://nodejs.org/api/fs.html#fs_caveats
http://nodejs.org/api/fs.html#fs_caveats

330 CHAPTER 13 Beyond web servers

 For example, the fstream module by Isaac Schlueter (https://github.com/isaacs/
fstream) is one of the core pieces of npm itself. This module is interesting because it
began life as a part of npm and then got extracted because its general-purpose func-
tionality was useful to many kinds of command-line applications and sysadmin scripts.
One of the awesome features that sets fstream apart is its seamless handling of permis-
sions and symbolic links, which are maintained by default when copying files and
directories.

 By using fstream, you can perform the equivalent of cp -rp sourceDir destDir
(copying a directory and its contents recursively, and transferring over ownership and
permissions) by simply piping a Reader instance to a Writer instance. In the following
example, we also utilize fstream’s filter feature to conditionally exclude files based on
a callback function:

fstream
.Reader("path/to/dir")
.pipe(fstream.Writer({ path: "path/to/other/dir", filter: isValid)

// checks the file that is about to be written and
// returns whether or not it should be copied over
function isValid () {

// ignore temp files from text editors like TextMate
return this.path[this.path.length - 1] !== '~';

}

The filed module by Mikeal Rogers (https://github.com/mikeal/filed) is another
influential module, mostly because it was written by the same author as the highly
popular request module. These modules made popular a new kind of flow control
over Stream instances: listening for the pipe event, and acting differently based on
what is being piped to it (or what it is being piped to).

 To demonstrate the power of this approach, take a look at how filed turns a regular
HTTP server into a full-featured static file server with just one line of code:

http.createServer(function (req, res) {
req.pipe(filed('path/to/static/files')).pipe(res);

});

This code takes care of sending Content-Length with the proper caching headers. In
the case where the browser already has the file cached, filed will respond to the HTTP
request with a 304 Not Modified code, skipping the steps of opening and reading the
file from the disk process. These are the kinds of optimizations that acting on the pipe
event make possible, because the filed instance has access to both the req and res
objects of the HTTP request.

 We’ve demonstrated two examples of good community modules that extend the
base fs module to do awesome things or expose beautiful APIs, but there are many
more. The npm search command is a good way to find published modules for a given
task. Say you wanted to find another module that simplifies copying files from one
destination to another: executing npm search copy could bring up some useful results.

When you find a published module that looks interesting, you can execute npm info

https://github.com/isaacs/fstream
https://github.com/isaacs/fstream
https://github.com/mikeal/filed

331Tools for interacting with the operating system

module-name to get information about the module, such as its description, home
page, and published versions. Just remember that for any given task, it’s likely that
someone has attempted to solve the problem with an npm module, so always check
there before writing something from scratch.

13.3.3 Spawning external processes

Node provides the child_process module to create child subprocesses from within a
Node server or script. There are two APIs for this: a high-level one, exec(), and a low-
level one, spawn(). Either one may be appropriate, depending on your needs. There’s
also a special way to create child processes of Node itself, with a special IPC channel
built in, called fork(). All of these functions are meant for different use cases:

 cp.exec()—A high-level API for spawning commands and buffering the result
in a callback

 cp.spawn()—A low-level API for spawning single commands into a Child-
Process object

 cp.fork()—A special way to spawn additional Node processes with a built-in
IPC channel

We’ll look at each of these in turn.

PROS AND CONS TO CHILD PROCESSES There are benefits and drawbacks to
using child processes. One obvious downside is that the program being exe-
cuted needs to be installed on the user’s machine, making it a dependency of
your application. The alternative would be to use JavaScript to do whatever
the child process did. A good example of this is npm, which originally used the
system tar command when extracting Node packages. This caused problems
because there were conflicts relating to incompatible versions of tar, and it’s
very rare for a Windows computer to have tar installed. These factors led to
node-tar (https://github.com/isaacs/node-tar) being written entirely in
JavaScript, not using any child processes.

On the flip side, using external applications allows a developer to tap into
a wealth of applications written in other languages. For example, gm (http://
aheckmann.github.com/gm/) is a module that utilizes the powerful
GraphicsMagick and ImageMagick libraries to perform all sorts of image
manipulation and conversions within a Node application.

BUFFERING COMMAND RESULTS USING CP.EXEC()
The high-level API, cp.exec(), is useful for when you want to invoke a command, and
you only care about the final result, not about accessing the data from a child’s stdio
streams as they come. This API allows you to enter full sequences of commands,
including multiple processes piped to one another.

 One good use case for the exec() API is when you’re accepting user commands to
be executed. Say you’re writing an IRC bot, and you’d like to execute commands when
the user enters something beginning with a period (.). For example, if a user typed

https://github.com/isaacs/node-tar
http://aheckmann.github.com/gm/
http://aheckmann.github.com/gm/

em

sent

beg
332 CHAPTER 13 Beyond web servers

.ls as their IRC message, the bot would execute ls and print the output back to the
IRC room. As shown in the following listing, you need to set the timeout option, so
that any never-ending processes are automatically killed after a certain period of time.

var cp = require('child_process');

room.on('message', function (user, message) {
if (message[0] === '.') {

var command = message.substring(1);
cp.exec(command, { timeout: 15000 },

function (err, stdout, stderr) {
if (err) {

room.say(
'Error executing command "' + command + '": ' + err.message

);
room.say(stderr);

} else {
room.say('Command completed: ' + command);
room.say(stdout);

}
}

);
}

});

There are some good modules already in the npm registry that implement the IRC
protocol, so if you’d like to write an IRC bot for real, you should definitely use one of
the existing modules (both irc and irc-js in the npm registry are popular).

 For times when you need to buffer a command’s output, but you’d like Node to
automatically escape the arguments for you, there’s the execFile() function. This
function takes four arguments, rather than three, and you pass the executable you
want to run, along with an array of arguments to invoke the executable with. This is
useful when you have to incrementally build up the arguments that the child process
is going to use:

cp.execFile('ls', ['-l', process.cwd()],
function (err, stdout, stderr) {

if (err) throw err;
console.error(stdout);

});

SPAWNING COMMANDS WITH A STREAM INTERFACE USING CP.SPAWN()
The low-level API for spawning child processes in Node is cp.spawn(). This function
differs from cp.exec() because it returns a ChildProcess object that you can inter-
act with. Rather than giving cp.spawn() a single callback function when the process
completes, cp.spawn() lets you interact with each stdio stream of the child process
individually.

Listing 13.9 Using cp.exec() to run user-entered commands through the IRC bot

room object represents
connection to an IRC room (from
some theoretical IRC module)

message
event is
itted for
each IRC
message
 to room

Check if
message
content
ins with
a period

Spawn child process and have
Node buffer result in a callback,
timing out after 15 seconds
 The most basic use of cp.spawn() looks like this:

333Tools for interacting with the operating system

var child = cp.spawn('ls', ['-l']);

// stdout is a regular Stream instance, which emits 'data',
// 'end', etc.
child.stdout.pipe(fs.createWriteStream('ls-result.txt'));

child.on('exit', function (code, signal) {
// emitted when the child process exits

});

The first argument is the program you want to execute. This can be a single program
name, which will be looked up in the current PATH, or it can be an absolute path to a
program. The second argument is an array of string arguments to invoke the process
with. In the default case, a ChildProcess object contains three built-in Stream
instances that your script is meant to interact with:

 child.stdin is the writable Stream that represents the child’s stdin.
 child.stdout is the readable Stream that represents the child’s stdout.
 child.stderr is the readable Stream that represents the child’s stderr.

You can do whatever you want with these streams, such as piping them to a file or
socket or some other kind of writable stream. You can even completely ignore them if
you like.

 The other interesting event that happens on ChildProcess objects is the exit
event, which is fired when the process has exited and the associated stream objects
have all ended.

 One good example module that abstracts the use of cp.spawn() into helpful func-
tionality is node-cgi (https://github.com/TooTallNate/node-cgi), which allows you to
reuse legacy Common Gateway Interface (CGI) scripts in your Node HTTP servers.
CGI was really just a standard for responding to HTTP requests by invoking CGI scripts
as child processes of an HTTP server with special environment variables describing the
request. For example, you could write a CGI script that uses sh as the CGI interface:

#!/bin/sh
echo "Status: 200"
echo "Content-Type: text/plain"
echo
echo "Hello $QUERY_STRING"

If you were to name that file hello.cgi (don’t forget to chmod +x hello.cgi to make it
executable), you could easily invoke it as the response logic for HTTP requests in your
HTTP server with a single line of code:

var http = require('http');
var cgi = require('cgi');

var server = http.createServer(cgi('hello.cgi'));
server.listen(3000);

With this server set up, when an HTTP request hits the server, node-cgi would handle
the request by doing two things:

https://github.com/TooTallNate/node-cgi

334 CHAPTER 13 Beyond web servers

 Spawning the hello.cgi script as a new child process using cp.spawn()
 Passing the new process contextual information about the current HTTP

request using a custom set of environment variables

The hello.cgi script uses one of the CGI-specific environment variables, QUERY_STRING,
which contains the query-string portion of the request URL. The script uses this in the
response, which gets written to the script’s stdout. If you were to fire up this example
server and send an HTTP request to it using curl, you’d see something like this:

$ curl http://localhost:3000/?nathan
Hello nathan

There are a lot of very good use cases for child processes in Node, and node-cgi is one
example. As you get your server or application to do what it needs to do, you’ll find
that you inevitably have to utilize them at some point.

DISTRIBUTING THE WORKLOAD USING CP.FORK()
The last API offered by the child_process module is a specialized way of spawning
additional Node processes, but with a special IPC channel built in. Since you’re always
spawning Node itself, the first argument passed to cp.fork() is a path to a Node.js
module to execute.

 Like cp.spawn(), cp.fork() returns a ChildProcess object. The major difference
is the API added by the IPC channel: the child process now has a child.send
(message) function, and the script being invoked by fork() can listen for process
.on('message') events.

 Suppose you want to write a Node HTTP server that calculates the Fibonacci
sequence. You might try naively writing the server all in one shot, as shown in the next
listing.

var http = require('http');

function fib (n) {
if (n < 2) {

return 1;
} else {

return fib(n - 2) + fib(n - 1);
}

}

var server = http.createServer(function (req, res) {
var num = parseInt(req.url.substring(1), 10);
res.writeHead(200);
res.end(fib(num) + "\n");

});
server.listen(8000);

If you fire up the server with node fibonacci-naive.js and send an HTTP request to
http://localhost:8000, the server will work as expected, but calculating the Fibonacci

Listing 13.10 A non-optimal implementation of a Fibonacci HTTP server in Node.js

Calculates the
Fibonacci number

335Tools for interacting with the operating system

sequence for a given number is an expensive, CPU-bound computation. While your
Node server’s single thread is grinding away at calculating the result, no additional
HTTP requests can be served. Additionally, you’re only utilizing one CPU core here,
and you likely have others that are sitting there doing nothing. This is bad.

 A better solution is to fork Node processes during each HTTP request and have the
child process do the expensive calculation and report back. cp.fork() offers a clean
interface for doing this.

 This solution involves two files:

 fibonacci-server.js will be the server.
 fibonacci-calc.js does the calculation.

First, here’s the server:

var http = require('http');
var cp = require('child_process');

var server = http.createServer(function(req, res) {
var child = cp.fork(__filename, [req.url.substring(1)]);
child.on('message', function(m) {

res.end(m.result + '\n');
});

});
server.listen(8000);

The server uses cp.fork() to place the Fibonacci calculation logic in a separate Node
process, which will report back to the parent process using process.send(), as shown
in the following fibonacci-calc.js script:

function fib(n) {
if (n < 2) {

return 1;
} else {

return fib(n - 2) + fib(n - 1);
}

}

var input = parseInt(process.argv[2], 10);
process.send({ result: fib(input) });

You can start the server with node fibonacci-server.js and, again, send an HTTP
request to http://localhost:8000.

 This is a great example of how dividing up the various components that make up
your application into multiple processes can be a great benefit to you. cp.fork() pro-
vides child.send() and child.on('message') to send messages to and receive mes-
sages from the child. Within the child process itself, you have process.send() and
process.on('message') to send messages to and receive messages from the parent.
Use them!

 Let’s switch gears once more and look at developing command-line tools in Node.

336 CHAPTER 13 Beyond web servers

13.4 Developing command-line tools
Another task commonly fulfilled by Node scripts is building command-line tools. By
now, you should be familiar with the largest command-line tool written in Node: the
Node Package Manager, a.k.a. npm. As a package manager, it does a lot of filesystem
operations and spawning of child processes, and all of this is done using Node and its
asynchronous APIs. This enables npm to install packages in parallel, rather than seri-
ally, making the overall process faster. And if a command-line tool that complicated
can be written in Node, then anything can.

 Most command-line programs have common process-related needs, like parsing
command-line arguments, reading from stdin, and writing to stdout and stderr. In this
section, you’ll learn about the common requirements for writing a full command-line
program, including the following:

 Parsing command-line arguments
 Working with stdin and stdout streams
 Adding pretty colors to the output using ansi.js

To get started on building awesome command-line programs, you need to be able to
read the arguments the user invoked your program with. We’ll take a look at that first.

13.4.1 Parsing command-line arguments

Parsing arguments is an easy and straightforward process. Node provides you with the
process.argv property, which is an array of strings, which are the arguments that
were used when Node was invoked. The first entry of the array is the Node execut-
able, and the second entry is the name of your script. Parsing and acting on these
arguments simply requires iterating through the array entries and inspecting each
argument.

 To demonstrate, let’s write a quick script called args.js that prints out the result of
process.argv. Most of the time you won’t care about the first two entries, so you can
slice() them off before processing:

var args = process.argv.slice(2);
console.log(args);

When you invoke this script standalone, you’ll get an empty array because no addi-
tional arguments were passed in:

$ node args.js
[]

But when you pass along “hello” and “world” as arguments, the array contains string
values as you’d expect:

$ node args.js hello world
['hello', 'world']

As with any terminal application, you can use quotes around arguments that have

spaces in them to combine them into a single argument. This is not a feature of Node,

337Developing command-line tools

but rather of the shell that you’re using (likely bash on a UNIX platform or cmd.exe
on Windows):

$ node args.js "tobi is a ferret"
['tobi is a ferret']

By UNIX convention, every command-line program should respond to the -h and
--help flags by printing out usage instructions and then exiting. The following listing
shows an example of using Array#forEach() to iterate through the arguments and
parse them in the callback, printing out the usage instructions when the expected flag
is encountered.

var args = process.argv.slice(2);

args.forEach(function (arg) {
switch (arg) {

case '-h':
case '--help':

printHelp();
break;

}
});

function printHelp () {
console.log(' usage:');
console.log(' $ AwesomeProgram <options> <file-to-awesomeify>');
console.log(' example:');
console.log(' $ AwesomeProgram --make-awesome not-yet.awesome');
process.exit(0);

}

You can easily extend that switch block to parse additional switches. Community
modules like commander.js, nopt, optimist, and nomnom (to name a few) all solve
this problem in their own ways, so don’t feel that using a switch block is the only way
to parse the arguments. Like so many things in programming, there’s no single cor-
rect way to do it.

 Another task that every command-line program will need to deal with is reading
input from stdin and writing structured data to stdout. Let’s take a look at how this is
done in Node.

13.4.2 Working with stdin and stdout

It’s common for UNIX programs to be small, self-contained, and focused on a single
task. These programs are then combined by using pipes, feeding the results of one
process to the next, until the end of the command chain. For example, using standard
UNIX commands to retrieve the list of unique authors from any given Git repository,
you could combine the git log, sort, and uniq commands like this:

Listing 13.11 Parsing process.argv using Array#forEach() and a switch block

Slice off first two
entries, which you’re
not interested inIterate through

arguments, looking
for -h or --help

Add additional flags/
switches here as necessary

Print out helpful message,
and then quit
$ git log --format='%aN' | sort | uniq

Pa
338 CHAPTER 13 Beyond web servers

Mike Cantelon
Nathan Rajlich
TJ Holowaychuk

These commands run in parallel, feeding the output of the first process to the next,
continuing on until the end. To adhere to this piping idiom, Node provides two
Stream objects for your command-line program to work with:

 process.stdin—A ReadStream to read input data from
 process.stdout—A WriteStream to write output data to

These objects act like the familiar stream interfaces that you’ve already learned about.

WRITING OUTPUT DATA WITH PROCESS.STDOUT

You’ve been using the process.stdout writable stream implicitly every time you’ve
called console.log(). Internally, the console.log() function calls process.stdout
.write() after formatting the input arguments. But the console functions are more
for debugging and inspecting objects. When you need to write structured data to std-
out, you can call process.stdout.write() directly.

 Say your program connects to an HTTP URL and writes the response to stdout.
Stream#pipe() works well in this context, as shown here:

var http = require('http');
var url = require('url');

var target = url.parse(process.argv[2]);
var req = http.get(target, function (res) {

res.pipe(process.stdout);
});

Voilà! An absolutely minimal curl replica in only seven lines of code. Not too bad,
huh? Next up let’s cover process.stdin.

READING INPUT DATA WITH PROCESS.STDIN

Before you can read from stdin, you must call process.stdin.resume() to indicate
that your script is interested in data from stdin. After that, stdin acts like any other
readable stream, emitting data events as data is received from the output of another
process, or as the user enters keystrokes into the terminal window.

 The following listing shows a command-line program that prompts the user for
their age before deciding whether to continue executing.

var requiredAge = 18;

process.stdout.write('Please enter your age: ');

process.stdin.setEncoding('utf8');

process.stdin.on('data', function (data) {
var age = parseInt(data, 10);

Listing 13.12 An age-restricted program that prompts the user for their age

Set age limit Specify question for
user to answer

Set up stdin to emit UTF-8
strings instead of buffers

rse data
into a

number

if (isNaN(age)) { If user didn’t enter a valid number,

print a message saying so

g

f

339Developing command-line tools

console.log('%s is not a valid number!', data);
} else if (age < requiredAge) {

console.log('You must be at least %d to enter, ' +
'come back in %d years',
requiredAge, requiredAge - age);

} else {
enterTheSecretDungeon();

}
process.stdin.pause();

});

process.stdin.resume();

function enterTheSecretDungeon () {
console.log('Welcome to The Program :)');

}

DIAGNOSTIC LOGGING WITH PROCESS.STDERR

There’s also a process.stderr writable stream in every Node process, which acts
exactly like the process.stdout stream, except that it writes to stderr instead. Because
stderr is usually reserved for debugging, and not for sending structured data and
piping, you’ll generally use console.error() instead of accessing process.stderr
directly.

 Now that you’re familiar with the built-in stdio streams in Node, which is crucial
knowledge for building any command-line program, let’s move on to something a bit
more colorful (pun intended).

13.4.3 Adding colored output

Lots of command-line tools use colored text to make things easier to distinguish on
the screen. Node itself does this in its REPL, as does npm for its various logging levels.
It’s a nice bonus feature that any command-line program can easily benefit from, and
adding colored output to your programs is rather easy, especially with the support of
community modules.

CREATING AND WRITING ANSI ESCAPE CODES

Colors on the terminal are produced by ANSI escape codes (the ANSI name comes from
the American National Standards Institute). These escape codes are simple text
sequences written to the stdout that have special meanings to the terminal—they can
change the text color, change the position of the cursor, make a beep sound, and
more.

 Let’s start simply. To print the word “hello” in the color green in your script, a sin-
gle console.log() call is all it takes:

console.log('\033[32mhello\033[39m');

If you look closely, you can see the word “hello” in the middle of the string with some
weird-looking characters on either side. This may look confusing at first, but it’s rather
simple. Figure 13.4 breaks up the green “hello” string into its three distinct pieces.

If user’s
iven age

is less
than 18,
print a

message
saying to

come
back in a
ew years

If previous conditions
are met, continue
executing

Waits for a single data
event before closing stdin

Call resume() to start reading
because process.stdin begins
in a paused state

340 CHAPTER 13 Beyond web servers

There are a lot of escape codes that terminals recognize, and most developers have
better things to do with their time than memorize them all. Thankfully, the Node
community comes to the rescue again with multiple modules, such as colors.js, cli-
color, and ansi.js, that make using colors in your programs easy and fun.

ANSI ESCAPE CODES ON WINDOWS Technically, Windows and its command
prompt (cmd.exe) don’t support ANSI escape codes. Fortunately for us, Node
interprets the escape codes on Windows when your scripts write them to std-
out, and then calls the appropriate Windows functions to produce the same
results. This is interesting to know, but not something you’ll have to think
about while writing your Node applications.

FORMATTING FOREGROUND COLORS USING ANSI.JS
Let’s take a look at ansi.js (https://github.com/TooTallNate/ansi.js), which you can
install with npm install ansi. This module is nice because it’s a very thin layer on top
of the raw ANSI codes, which gives you greater flexibility compared to the other color
modules (they only work with a single string at a time). In ansi.js, you set the modes
(like “bold”) of the stream, and they’re persistent until cleared by one of the reset()
calls. As an added bonus, ansi.js is the first module to support 256 color terminals, and
it can convert CSS color codes (such as #FF0000) into ANSI color codes.

 The ansi.js module works with the concept of a cursor, which is really just a wrapper
around a writable stream instance with lots of convenience functions for writing ANSI
codes to the stream, all of which support chaining. To print the word “hello” in green
text again, using ansi.js syntax, you would write this:

var ansi = require('ansi');
var cursor = ansi(process.stdout);

cursor
.fg.green()
.write('Hello')
.fg.reset()
.write('\n');

You can see here that to use ansi.js you first have to create a cursor instance from a
writable stream. Because you’re interested in coloring your program’s output, you
pass process.stdout as the writable stream that the cursor will use. Once you have
the cursor, you can invoke any of the methods it provides to alter the way that the text

Figure 13.4 Outputting
“hello” in green text
using ANSI escape codes

https://github.com/TooTallNate/ansi.js

341Developing command-line tools

output will be rendered to the terminal. In this case, the result is equivalent to the
console.log() call from before:

 cursor.fg.green() sets the foreground color to green
 cursor.write('Hello') writes the text “Hello” to the terminal in green
 cursor.fg.reset() resets the foreground color back to the default
 cursor.write('\n') finishes up with a newline

Programmatically adjusting the output using the cursor provides a clean interface for
changing colors.

FORMATTING BACKGROUND COLORS USING ANSI.JS
The ansi.js module also supports background
colors. To set the background color instead
of the foreground color, replace the fg por-
tion of the call with bg. For example, to set a
red background color, you’d call cur-

sor.bg.red().
 Let’s wrap up with a quick program that

prints this book’s title information to the ter-
minal in colors, as shown in figure 13.5.

 The code to output fancy colors like these
is verbose, but very straightforward, because
each function call maps directly to the corre-
sponding escape code being written to the stream. The code shown in the following
listing consists of two lines of initialization followed by one really long chain of func-
tion calls that end up writing color codes and strings to process.stdout.

var ansi = require('ansi');
var cursor = ansi(process.stdout);

cursor
.reset()
.write(' ')
.bold()
.underline()
.bg.white()
.fg.black()
.write('Node.js in Action')
.fg.reset()
.bg.reset()
.resetUnderline()
.resetBold()
.write(' \n')
.fg.green()
.write(' by:\n')
.fg.cyan()

Listing 13.13 A simple program that prints this book’s title and authors in pretty colors

Figure 13.5 The result of ansi-title.js script
printing out the name of this book and the
authors in different colors

342 CHAPTER 13 Beyond web servers

.write(' Mike Cantelon\n')

.fg.magenta()

.write(' TJ Holowaychuk\n')

.fg.yellow()

.write(' Nathan Rajlich\n')

.reset()

Color codes are only one of the key features of ansi.js. We haven’t touched on the
cursor-positioning codes, how to make a beep sound, or how to hide and show the cur-
sor. You can consult the ansi.js documentation and examples to see how that works.

13.5 Summary
Node is primarily designed for I/O-related tasks, such as creating HTTP servers. But as
you’ve learned throughout this chapter, Node is well suited for a large variety of differ-
ent tasks, such as creating a command-line interface to your application server, a cli-
ent program that connects to the ASCII Star Wars server, a program that fetches and
displays statistics from stock market servers—the possibilities are only limited by your
imagination. Take a look at npm or node-gyp for a couple of complicated examples of
command-line programs written using Node. They’re great examples to learn from.

 In this chapter, we talked about a couple of community modules that could aid in
the development of your next application. In the next chapter, we’ll focus on how you
can find these awesome modules in the Node community, and how you can contrib-
ute modules you’ve developed back to the community for feedback and improve-
ments. The social interaction is the exciting stuff!

The Node ecosystem
To get the most out of Node development, you need to know where to go for help
and how to share your contributions with the rest of the community.

 As in most open source communities, the development of Node and related
projects happens via online collaboration. Many developers work together to sub-
mit and review code, document projects, and report bugs. When developers are
ready to release a new version of Node, it’s published on the official Node website.
When a release-worthy third-party module has been created, it can be published to
the npm repository to make it easy for others to install. Online resources provide
the support you need to work with Node and related projects.

 Figure 14.1 illustrates how you can use online resources for Node-related devel-
opment, distribution, and support.

 You’ll likely need support before you need to collaborate, so let’s first look at
where you can go online to get help when you need it.

This chapter covers
 Finding online help with Node

 Collaborating on Node development using GitHub

 Publishing your work using the Node Package Manager
343

344 CHAPTER 14 The Node ecosystem

14.1 Online resources for Node developers
As the Node world is an ever-changing one, you’ll find the most up-to-date references
online. At your disposal are numerous websites, online discussion groups, and chat
rooms where you can find the information you need.

14.1.1 Node and module references

Table 14.1 lists a number of Node-related online references and resources. The most
useful websites for referencing the Node APIs and learning about available third-party
modules are the Node.js and npm homepages, respectively.

Table 14.1 Useful Node.js references

Resource URL

Node.js homepage http://nodejs.org/

Node.js up-to-date core documentation http://nodejs.org/api/

Node.js blog http://blog.nodejs.org/

Node.js job board http://jobs.nodejs.org/

Node Package Manager (npm) homepage http://npmjs.org/

Feedback from
user interaction

Users update
using npm

Collaborate and create
project using GitHub

Publish project
using npm

Support project
using Google
Groups, IRC,
and GitHub
issue tracker

Increment version
number in package.json

Figure 14.1 Node-related projects are created online collaboratively, often via
the GitHub website. They’re then published to npm, and documentation and
support are provided via online resources.

http://nodejs.org/
http://nodejs.org/api/
http://blog.nodejs.org/
http://jobs.nodejs.org/
http://npmjs.org/

345Online resources for Node developers

When you attempt to implement something using Node, or any of its built-in mod-
ules, the Node homepage is an invaluable resource. The site (shown in figure 14.2)
documents the entirety of the Node framework, including each of its APIs. You’ll
always find documentation for the most recent version of Node on the site. The offi-
cial blog also documents the latest Node advances and shares important community
news. There’s even a job board.

 When you’re shopping for third-party functionality, the npm repository search
page is the place to go. It lets you use keywords to search through the thousands of
modules available in npm. If you find a module that you’d like to check out, click on
the module’s name to bring up its detail page, where you’ll find links to the module’s
project homepage, if any, and useful information such as what other npm packages
depend on the module, the module’s dependencies, which versions of Node the mod-
ule is compatible with, and license information.

 Nevertheless, these websites may not answer all your questions about how to use
Node or other third-party modules. Let’s look at some other great places to ask for
help online.

14.1.2 Google Groups

Google Groups have been set up for Node and some other popular third-party mod-
ules, including npm, Express, node-mongodb-native, and Mongoose.

 Google Groups are useful for tough or in-depth questions. For example, if you
were having trouble figuring out how to delete MongoDB documents using the node-
mongodb-native module, you could go to the node-mongodb-native Google Group
(https://groups.google.com/forum/?fromgroups#!forum/node-mongodb-native) and

Figure 14.2 In addition to providing links to useful Node-related resources, nodejs.org offers
authoritative API documentation for every released version of Node
search it to see if anyone else had the same problem. If no one has dealt with your

https://groups.google.com/forum/?fromgroups#!forum/node-mongodb-native

346 CHAPTER 14 The Node ecosystem

problem, the next step would be to join the Google Group and post your question.
You can write lengthy Google Groups posts, which is helpful for complicated ques-
tions, because you can explain your issue thoroughly.

 There’s no central list that includes all Node-related Google Groups. You may find
them mentioned in project documentation, but generally you’ll have to search the
web. You could, for example, search Google for “nameofsomemodule node.js google
group” to check if a Google Group exists for a particular third-party module.

 The drawback to using Google Groups is that often you have to wait hours or days
to get a response, depending on the parameters of the Google Group. For simple
questions when you need a quick reply, you should consider entering an internet chat
room, where you can often get a quick answer.

14.1.3 IRC

Internet Relay Chat (IRC) was created way back in 1988, and while some think it
archaic, it’s still alive and active—and it’s the best online way to get answers to quick
questions about open source software. IRC rooms are called channels, and they exist
for Node and various third-party modules. You won’t find a list of Node-related IRC
channels anywhere, but third-party modules that have a corresponding IRC channel
will sometimes mention it in their documentation.

 To get your question answered on IRC, connect to an IRC network (http://chatzilla
.hacksrus.com/faq/#connect), change to the appropriate channel, and send your
question to the channel. Out of respect to the folks in the channel, it’s good to do
some research beforehand to make sure your question can’t be solved with a quick web
search.

 If you’re new to IRC, the easiest way to get connected is using a web-based client.
Freenode, the IRC network on which most Node-related IRC channels exists, has a web
client available at http://webchat.freenode.net/. To join a channel, enter the appro-
priate name into the connection form. You don’t need to register, and you can enter
any nickname you want. (If someone is already using the name you choose, the under-
score character (_) will be appended to the end of your nickname to differentiate you.)

 Once you click Connect, you’ll end up in a channel with any other users in the
room listed on the right in a sidebar.

14.1.4 GitHub issues

If a project’s development occurs on GitHub, another place to look for problems and
solutions is the project’s GitHub issue queue. To get to the issue queue, navigate to the
project’s main GitHub page and click the Issues tab. You can use the search field to look
for issues related to your problem. An example issue queue is shown in figure 14.3.

 If you’re unable to find an issue that addresses your problem, and you think your
problem may be due to a bug in the project’s code, you can click the New Issue button
on the issues page to describe the bug. Once you’ve created an issue, the project
maintainers will be able to reply on that issue page and either address the issue or ask

questions to get a better idea of your problem.

http://chatzilla.hacksrus.com/faq/#connect
http://chatzilla.hacksrus.com/faq/#connect
http://webchat.freenode.net/

347GitHub

ISSUE TRACKER IS NOT A SUPPORT FORUM Depending on the project, it may
not be considered appropriate for you to open general support questions on
the project’s GitHub issue tracker. This is usually the case if the project has set
up another means for users to get general support, like a Google Group. It’s a
good idea to check the project’s README file to see if it has a preference
regarding general support or questions.

Now that you know where to go to file issues online for projects, we’ll talk about
GitHub’s nonsupport role—it’s the website through which most Node development
collaboration takes place.

14.2 GitHub
GitHub is the center of gravity for much of the open source world, and it’s critical for
Node developers. The GitHub service provides hosting for Git, a powerful version
control system (VCS), and includes a web interface that allows you to easily browse Git
repositories. Open source projects can use GitHub for free.

GIT The Git VCS has become a favorite among open source projects. It’s a
distributed version control system (DVCS), which, unlike Subversion and
many other VCSs, you can use without a network connection to a server. Git
was released in 2005, inspired by a proprietary VCS called BitKeeper. The
publisher of BitKeeper had granted the Linux kernel development team free
use of the software, but revoked it when suspicion arose that members of the
team were attempting to figure out BitKeeper’s inner workings. Linus Tor-
valds, the creator of Linux, decided to create an alternative VCS with similar
functionality, and, within months, Git was being used by the Linux kernel

Figure 14.3 For projects hosted on GitHub, the issue queue can be helpful if you think you’ve identified
a problem in the project’s code.
development team.

348 CHAPTER 14 The Node ecosystem

In addition to Git hosting, GitHub provides projects with issue tracking, wiki, and web
page hosting functionality. Because most Node projects in the npm repository are
hosted on GitHub, knowing how to use GitHub is helpful for getting the most out of
Node development. GitHub gives you a convenient way to browse code, check for
unresolved bugs, and, if need be, contribute fixes and documentation.

 Another use of GitHub is to watch a project. Watching a project provides you with
notification of any changes to the project. The number of people watching a project is
often used to gauge a project’s overall popularity.

 GitHub may be powerful, but how do you use it? Let’s delve into that next.

14.2.1 Getting started on GitHub

When you’ve come up with an idea for a Node-based project or a third-party module,
you’ll want to set up an account on GitHub, if you haven’t already, for easy access to
Git hosting. After you’re set up, you can add your projects, which you’ll learn to do in
the next section.

 Because GitHub requires use of Git, you’ll want to configure it before continuing
to GitHub. Thankfully, GitHub offers help pages for Mac, Windows, and Linux to help
you properly get set up (https://help.github.com/articles/set-up-git). Once you’ve
configured Git, you’ll need to get set up on GitHub by registering on its website and
providing a Secure Shell (SSH) public key. You need the SSH key to keep your interac-
tions with GitHub secure.

 You’ll learn the details of each of these steps in the next section. Note that you only
have to do these steps once, not every time you add a project to GitHub.

GIT CONFIGURATION AND GITHUB REGISTRATION

To use GitHub, you need to configure your Git tool. You need to provide it with your
name and email address using the following two commands:

git config --global user.name "Bob Dobbs"
git config --global user.email subgenius@example.com

Next, register on the GitHub website. Go to the sign-up page (https://github.com/
signup/free), fill it in, and click Create an Account.

PROVIDING GITHUB WITH AN SSH PUBLIC KEY

Once you’re registered, you’ll need to provide GitHub with an SSH public key
(https://help.github.com/articles/generating-ssh-keys). You’ll use this key to authen-
ticate your Git transactions. Follow these steps:

1 Visit https://github.com/settings/ssh in your browser.
2 Click Add SSH Key.

At this point, what you need to do varies depending on your operating system. GitHub
will detect your operating system and show the relevant instructions.

https://help.github.com/articles/set-up-git
https://github.com/signup/free
https://github.com/signup/free
https://help.github.com/articles/generating-ssh-keys
https://github.com/settings/ssh

349GitHub

14.2.2 Adding a project to GitHub

Once you’re set up on GitHub, you can add a project to your account and begin push-
ing commits to it.

 To do so, you first create a GitHub repository for your project, which we’ll go over
shortly. After that, you create a Git repository on your local workstation, which is
where you do your work before pushing it to the GitHub repository. Figure 14.4 out-
lines this process.

 You can also view your project files using GitHub’s web interface.

CREATING A GITHUB REPOSITORY

Creating a repository on GitHub involves the following steps:

1 Log in to github.com in your web browser.
2 Visit https://github.com/new.
3 Fill out the resulting form, describing your repository, and click Create

Repository.
4 GitHub creates an empty Git repository and issues a queue for your project.
5 GitHub will present the steps you need to take to use Git to push your code to

GitHub.

It’s helpful to understand what each of these steps does, so we’ll run through an exam-
ple and demonstrate the bare essentials of using Git.

SETTING UP AN EMPTY GIT REPOSITORY

To add an example project to GitHub, you’ll first need to create an example Node
module. For this example, we’ll create a module containing some URL-shortening
logic and call it node-elf.

Internet

1. Create
 GitHub
 repository

4. Push from
Git to GitHub

2. Set up
 empty Git
 repository

3. Add files to
 Git repository

Figure 14.4 The steps in adding a Node

project to GitHub

https://github.com/new

350 CHAPTER 14 The Node ecosystem

First, create a temporary directory for your project using the following commands:

mkdir -p ~/tmp/node-elf
cd ~/tmp/node-elf

To use this directory as a Git repository, enter the following command (which will cre-
ate a directory called .git that contains repository metadata):

git init

ADDING FILES TO A GIT REPOSITORY

Now that you’ve set up an empty repository, you’ll want to add some files. For this
example, we’ll add a file containing URL-shortening logic. Save the following listing’s
content in a file called index.js in this directory.

exports.initPathData = function(pathData) {
pathData = (pathData) ? pathData : {};
pathData.count = (pathData.count) ? pathData.count : 0;
pathData.map = (pathData.map) ? pathData.map : {};

}

exports.shorten = function(pathData, path) {
exports.initPathData(pathData);
pathData.count++;
pathData.map[pathData.count] = path;
return pathData.count.toString(36);

}

exports.expand = function(pathData, shortened) {
exports.initPathData(pathData);
var pathIndex = parseInt(shortened, 36);
return pathData.map[pathIndex];

}

Next, let Git know that you want this file in your repository. The git add command
works differently than other version control systems. Instead of adding files to your
repository, the add command adds files to Git’s staging area. The staging area can be
thought of as a checklist where you indicate newly added files, or files that you’ve
changed and that you’d like to be included in the next revision of your repository:

git add index.js

Git now knows that it should track this file. You could add other files to the staging
area if you want to, but for now you only need to add this one file.

 To let Git know you’d like to make a new revision in the repository, including the
changed files you’ve selected in the staging area, use the commit command. As in
other VCSs, the commit command can take a -m command-line flag to indicate a mes-
sage describing the changes in the new revision:

git commit -m "Added URL shortening functionality."

Listing 14.1 A Node module for URL shortening

Initialization
function is called
implicitly by
shorten() and
expand()

Accepts a “path” string and
returns a shortened URL
mapping to it

Accepts a previously
shortened URL and returns
the expanded URL

351GitHub

The version of the repository on your workstation now contains a new revision. To
view a list of repository changes, enter the following command:

git log

PUSHING FROM GIT TO GITHUB

At this point, if your workstation was suddenly struck by lightning, you’d lose all your
work. To safeguard against unexpected events, and to get the full benefits of GitHub’s
web interface, you’ll want to send changes you’ve made in your local Git repository to
your GitHub account. But before doing this, you’ve got to let Git know where it
should send changes to. To do this, you need to add a Git remote repository. These
are referred to as remotes.

 The following line shows how you add a GitHub remote to your repository.
Replace username with your username, and note that node-elf.git indicates the
name of the project:

git remote add origin git@github.com:username/node-elf.git

Now that you’ve added a remote, you can send your changes to GitHub. In Git termi-
nology, sending changes is called a repository push. In the following command, you
tell Git to push your work to the origin remote defined in the previous command.
Every Git repository can have one or more branches, which are, conceptually, separate
working areas in the repository. You want to push your work into the master branch:

git push -u origin master

In the push command, the -u option tells Git that this remote is the upstream remote
and branch. The upstream remote is the default remote used.

 After doing your first push with the -u option, you’ll be able to do future pushes by
using the following command, which is easier to remember:

git push

If you go to GitHub and refresh your repository page, you should now see your file.
 Creating a module and hosting it on GitHub is a quick and dirty way to be able to

reuse it. For example, if you want to use your sample module in a project, you could
enter the commands in the following example:

mkdir ~/tmp/my_project/node_modules
cd ~/tmp/my_project/node_modules
git clone https://github.com/mcantelon/node-elf.git elf
cd ..

The require('elf') command would then provide access to the module. Note that
when cloning the repository, you use the last command-line argument to name the
directory into which you’re cloning.

 You now know how to add projects to GitHub, including how to create a repository
on GitHub, how to create and add files to a Git repository on your workstation, and
how to push your workstation repository to GitHub. You’ll find many excellent

352 CHAPTER 14 The Node ecosystem

resources online to help you go further. If you’re looking for comprehensive instruc-
tion on how to use Git, Scott Chacon, one of the founders of GitHub, has written a
thorough book called Pro Git that you can purchase or read free online (http://
progit.org/). If a hands-on approach is more your style, the official Git site’s docu-
mentation page lists a number of tutorials that will get you up and running (http://
git-scm.com/documentation).

14.2.3 Collaborating using GitHub

Now that you know how to create a GitHub repository from scratch, let’s look at how
you can use GitHub to collaborate with others.

 Suppose you’re using a third-party module and you run into a bug. You may be
able to examine the module’s source code and figure out a way to fix it, and you could
email the author of the code, describing your fix and attaching files containing your
fixes. But this would require the author to do some tedious work. The author would
have to compare your files to the latest code and incorporate the fixes from your files.
But if the author was using GitHub, you could clone the author’s project repository,
make some changes, and then inform the author via GitHub of the bug fix. GitHub
would then show the author, on a web page, the differences between your code and
the version you duplicated, and, if the bug fix is acceptable, combine the fixes with
the latest code via a single mouse click.

 In GitHub parlance, duplicating a repository is known as forking. Forking a project
allows you to do anything you want to your copy with no danger to the original reposi-
tory. You don’t need the permission of the original author to fork: anyone can fork
any project and submit their contributions back to the original project. The original
author may not approve your contribution, but even then you still have your own
fixed version, which you can continue to maintain and enhance independently. If
your fork were to grow in popularity, others might well fork your fork, and offer con-
tributions of their own.

 Once you’ve made changes to a fork, you can submit these changes to the original
author with a pull request, which is a message asking a repository author to pull
changes. Pulling, in Git parlance, means importing work from a fork and combining
the work with your own. Figure 14.5 illustrates a GitHub collaboration scenario.

 Now, let’s walk through an example of forking a GitHub repository for the purpose
of collaboration. This process is shown in figure 14.6.

 Forking starts the collaboration process by duplicating the repository on GitHub
to your own account (known as forking) (A). You then clone the forked repository to
your workstation (B), make changes to it, commit the changes (C), push your work
back to GitHub (D), and send a pull request to the owner of the original repository
asking them to consider your changes (E). If they want to include your changes in
their repository, they’ll approve your pull request.

http://progit.org/
http://progit.org/
http://git-scm.com/documentation
http://git-scm.com/documentation

353GitHub

Let’s say you want to fork the node-elf repository you created earlier in this chapter
and add code that exports the module’s version. This would allow anyone using the
module to ensure that they’re using the right version.

 First, log into GitHub and navigate to the repository’s main page: https://
github.com/mcantelon/node-elf. On the repository page, click the Fork button to
duplicate the repository. The resulting page will be similar to the original repository
page, with something like “forked from mcantelon/node-elf” displayed under the
repository name.

GitHub
repository

1 A GitHub repository is created by Contributor A. Contributor A gets a friend,
Contributor B, involved to help with the project.

2 Contributor C decides he’d like to add a feature to the project and creates Fork 1.
When the original repository is updated, contributors to the fork can “pull” changes,
updating their fork’s code. Contributor C has tried to get Contributors A and B to
accept his feature, but they’d rather not because they have a different vision for
the project, so Contributor C’s features are only ever available on his fork.

3 Contributor D finds a bug in the web framework, and decides she wants to
spend some time fixing it, so she creates Fork 2. Contributor D’s bug fixes
are accepted by Contributors A and B, however, and she submits “pull request”
to the original repository, which results in her code getting “pulled” into the
original repository after being reviewed by Contributors A and B.

1

Contributor
A

Contributor
B

Fork 1 Fork 2

Contributor
C

Contributor
D

1

1

2

3

2 3

Figure 14.5 A typical GitHub development scenario

Fork GitHub
repository

A
Clone forked

repo to
workstation

B

Commit
changes

C

Push to
GitHub

D

Create pull
request

E

Figure 14.6 The process of collaborating on GitHub via forking

https://github.com/mcantelon/node-elf
https://github.com/mcantelon/node-elf

354 CHAPTER 14 The Node ecosystem

After forking, your next steps are to clone the repository to your workstation, make
your changes, and push the changes to GitHub. The following commands will do this
for the node-elf repository:

mkdir -p ~/tmp/forktest
cd ~/tmp/forktest
git clone git@github.com:chickentown/node-elf.git
cd node-elf
echo "exports.version = '0.0.2';" >> index.js
git add index.js
git commit -m "Added specification of module version."
git push origin master

Once you’ve pushed your changes, click Pull Request on your fork’s repository page,
and enter the subject and body of a message describing your changes. Click Send Pull
Request. Figure 14.7 shows a screenshot containing typical content.

The pull request is then added to the issue queue of the original repository. The
owner of the original repository can then, after reviewing your changes, incorporate
them by clicking Merge Pull Request, entering a commit message, and clicking Con-
firm Merge. This automatically closes the issue.

 Once you’ve collaborated with someone and have created a great module, the
next step is getting it out into the world. The best way to do so is to add it to the npm
repository.

14.3 Contributing to the npm repository
Suppose you’ve worked on the URL-shortening module for some time, and you think
it would be useful to other Node users. To publicize it, you could post on Node-related
Google Groups, describing its functionality. But you’d be limited in the number of
Node users you’d reach, and as people start using your module, you wouldn’t have a
way to let them know about updates to the module.

 To solve the problems of discoverability and providing updates, you can publish to
npm. With npm, you can easily define a project’s dependencies, allowing them to be
automatically installed at the same time as your module. If you’ve created a module
designed to store comments about content (such as blog posts), you could include a
module handling MongoDB storage of comment data as a dependency. Or a module
that provides a command-line tool might have a helper module for parsing command-
line arguments as a dependency.

Figure 14.7 The details of a GitHub pull request

355Contributing to the npm repository

 Up to this point in the book, you’ve used npm to install everything from testing
frameworks to database drivers, but you haven’t yet published anything. In the next
sections, we’ll show you the steps involved in publishing your own work on npm:

1 Preparing a package
2 Writing a package specification
3 Testing a package
4 Publishing a package

 We’ll start with preparing the package.

14.3.1 Preparing a package

Any Node module you want to share with the world should be accompanied by related
resources, such as documentation, examples, tests, and related command-line utili-
ties. The module should come with a README file that provides enough information
to get users started quickly.

 The package directory should be organized using subdirectories. Table 14.2 lists
conventional subdirectories—bin, docs, example, lib, and test—and what you’d use
each of them for.

Once you’ve organized your package, you’ll want to prepare it for publishing to npm
by writing a package specification.

14.3.2 Writing a package specification

When you publish a package to npm, you need to include a machine-readable pack-
age specification file. This JSON file is called package.json, and it includes information
about your module, such as its name, description, version, dependencies, and other
characteristics. Nodejitsu has a handy website that shows a sample package.json file
and explains what each part of the sample file is for when you hover your mouse over
it (http://package.json.nodejitsu.com/).

 In a package.json file, only the name and version are mandatory. Other character-
istics are optional, but some, if defined, can make your module more useful. By defin-
ing a bin characteristic, for example, you can let npm know which files in your package

Table 14.2 Conventional subdirectories in a Node project

Directory Use

bin Command-line scripts

docs Documentation

example Examples of application use

lib Core application functionality

test Test scripts and related resources
are meant to be command-line tools, and npm will make them globally available.

http://package.json.nodejitsu.com/

356 CHAPTER 14 The Node ecosystem

 A sample specification might look like this:

{
"name": "elf"

, "version": "0.0.1"
, "description": "Toy URL shortener"
, "author": "Mike Cantelon <mcantelon@example.com>"
, "main": "index"
, "engines": { "node": "0.4.x" }

}

For comprehensive documentation on available package.json options, enter the fol-
lowing command:

npm help json

Because generating JSON by hand is only slightly more fun than hand-coding XML,
let’s look at some tools that make it easier. One such tool, ngen, is an npm package
that, when installed, adds a command-line tool called ngen. After asking a number of
questions, ngen will generate a package.json file. It’ll also generate a number of other
files that are normally included in npm packages, such as a Readme.md file.

 You can install ngen with the following command:

npm install -g ngen

After ngen is installed, you’ll have a global ngen command that, when run in your proj-
ect root directory, will ask you questions about your project and generate a package
.json file, as well as some other files commonly used when writing Node packages.
Some files that you don’t need may be generated, and you can delete them. Generated
files include a .gitignore file that specifies a number of files and directories that
shouldn’t normally be added to the Git repository of a project that will be published to
npm. Also, an .npmignore file is generated, which serves a similar function, letting
npm know what files can be ignored when publishing the package to npm.

 Here’s a sample output of running the ngen command:

Project name: elf
Enter your name: Mike Cantelon
Enter your email: mcantelon@gmail.com
Project description: URL shortening library

create : /Users/mike/programming/js/shorten/node_modules/.gitignore
create : /Users/mike/programming/js/shorten/node_modules/.npmignore
create : /Users/mike/programming/js/shorten/node_modules/History.md
create : /Users/mike/programming/js/shorten/node_modules/index.js
...

Generating a package.json file is the hardest part of publishing to npm. Once you’ve
completed this step, you’re ready to publish your module.

14.3.3 Testing and publishing a package

Publishing a module to npm involves three steps, which we’ll go over in this section:

357Contributing to the npm repository

1 Test the installation of your package locally.
2 Add an npm user, if you haven’t already.
3 Publish the package to npm.

TESTING PACKAGE INSTALLATION

To test a package locally, use npm’s link command from the root directory of your
module. This command makes your package globally available on your workstation,
where Node can use it like a package conventionally installed by npm.

sudo npm link

Now that your project is linked globally, you can install it in a separate test directory by
using the link command followed by the name of the package:

npm link elf

When you’ve installed the package, do a quick test of requiring the module by execut-
ing the require function in the Node REPL, as shown in the following code. In the
results, you should see the variables or functions that your module provides:

node
> require('elf');
{ version: '0.0.1',

initPathData: [Function],
shorten: [Function],
expand: [Function] }

If your package passed the test and you’ve finished developing it, use npm’s unlink
command from the root directory of your module:

sudo npm unlink

Your module will now no longer be globally available on your workstation, but later,
once you’ve completed publishing your module to npm, you’ll be able to install it nor-
mally using the install command.

 Having tested your npm package, the next step is to create an npm publishing
account, if you haven’t previously set one up.

ADDING AN NPM USER

Enter the following to create your own npm publishing account:

npm adduser

You’ll be prompted for a username, an email address, and a password. If your account
is successfully added, you won’t see an error message.

PUBLISHING TO NPM

The next step is to publish. Enter the following to publish your package to npm:

npm publish

358 CHAPTER 14 The Node ecosystem

You may see the warning, “Sending authorization over an insecure channel,” but if
you don’t see additional errors, your module was published successfully. You can verify
that your publish was successful by using npm’s view command:

npm view elf description

If you’d like to include one or more private repositories as npm package dependen-
cies, you can. Perhaps you have a module of useful helper functions you’d like to use,
but not release publicly on npm.

 To add a private dependency, where you’d normally put the dependency module’s
name, you can put any name that’s different from the other dependency names. Where
you’d normally put the version, you put a Git repository URL. In the following example,
an excerpt from a package.json file, the last dependency is a private repository:

"dependencies" : {
"optimist" : ">=0.1.3",
"iniparser" : ">=1.0.1",
"mingy": ">=0.1.2",
"elf": "git://github.com/mcantelon/node-elf.git"

},

Note that any private modules should also include package.json files. To make sure
you don’t accidentally publish one of these modules, set the private property in its
package.json file to true:

"private": true,

Now you’re equipped to set up, test, and publish your own modules to the npm
repository.

14.4 Summary
As with most successful open source projects, Node has an active online community,
which means you’ll find plenty of available online resources as well as quick answers to
your questions using online references, Google Groups, IRC, or GitHub issue queues.

 In addition to being a place where projects keep track of bugs, GitHub also pro-
vides Git hosting and the ability to browse Git repository code using a web browser.
Using GitHub, other developers can easily fork your open source code if they want to
contribute bug fixes, add features, or take a project in a new direction. You can also
easily submit changes made to a fork back to the original repository.

 Once a Node project has reached the stage where it’s worth sharing with the world,
you can submit it to the Node Package Manager repository. Inclusion in npm makes
your project easier for others to find, and if your project is a module, inclusion in npm
means your module will be easy to install.

 You know how to get the help you need, collaborate online, and share your work.
Node is what it is because of the active and involved community that surrounds it.
You’re encouraged to get active and be a part of the Node community!

appendix A
Installing Node

and community add-ons
Node is easy to install on most operating systems. Node can either be installed
using conventional application installers or by using the command line. Command-
line installation is easy on OS X and Linux, but it’s not recommended for Windows.

 To help you get started, the following sections detail the Node installation on
OS X, Windows, and Linux operating systems. The last section in this appendix
explains how you can use the Node Package Manager (npm) to find and install use-
ful add-ons.

A.1 OS X setup
Installing Node on OS X is quite straightforward. The official installer
(http://nodejs.org/#download), shown in figure A.1, provides an easy way to
install a precompiled version of Node and npm.
359

Figure A.1 The official Node installer for OS X

http://nodejs.org/#download

360 APPENDIX A Installing Node and community add-ons

If you’d rather install from source, you can either use a tool called Homebrew
(http://mxcl.github.com/homebrew/), which automates installation from source, or
you can manually install from source. Installing Node from source on OS X, however,
requires you to have Xcode developer tools installed.

XCODE If you don’t have Xcode installed, you can download Xcode from
Apple’s website (http://developer.apple.com/downloads/). You’ll have to
register with Apple as a developer, which is free, to access the download page.
The full Xcode installation is a large download (approximately 4 GB), so as an
alternative Apple also offers Command Line Tools for Xcode, which is avail-
able for download on the same web page and gives you the minimal function-
ality needed to compile Node and other open source software projects.

To quickly check if you have Xcode, you can start the Terminal application
and run the command xcodebuild. If you have Xcode installed, you should
get an error indicating that your current directory “does not contain an
Xcode project.”

Either method requires entering OS X’s command-line interface by running the Ter-
minal application that is usually found in the Utilities folder in the main Applications
folder.

 If you’re compiling from source, see section A.4 for the necessary steps.

A.1.1 Installation with Homebrew

An easy way to install Node on OS X is by using Homebrew, an application for manag-
ing the installation of open source software.

 Install Homebrew by entering the following into the command line:

ruby -e "$(curl -fsSkL raw.github.com/mxcl/homebrew/go)"

Once Homebrew is installed, you can install Node by entering the following:

brew install node

As Homebrew compiles code, you’ll see a lot of text scroll by. The text is information
related to the compiling process and can be ignored.

A.2 Windows setup
Node can be most easily installed on Windows by using the official standalone installer
(http://nodejs.org/#download). After installing, you’ll be able to run Node and npm
from the Windows command line.

 An alternative way to install Node on Windows involves compiling it from source
code. This is more complicated and requires the use of a project called Cygwin, which
provides a Unix-compatible environment. You’ll likely want to avoid using Node
through Cygwin unless you’re trying to use modules that won’t otherwise work on
Windows or need to be compiled, such as some database driver modules.

 To install Cygwin, navigate to the Cygwin installer download link in your web

browser (http://cygwin.com/install.html) and download setup.exe. Double-click

http://cygwin.com/install.html
http://mxcl.github.com/homebrew/
http://developer.apple.com/downloads/
http://nodejs.org/#download

361APPENDIX A Installing Node and community add-ons

setup.exe to start installation, and then click Next repeatedly to select the default
options until you reach the Choose a Download Site step. Select any of the download
sites from the list, and click Next. If you see a warning about Cygwin being a major
release, click OK to continue.

 You should now see Cygwin’s package
selector, as shown in figure A.2.

 You’ll use this selector to pick the soft-
ware functionality you’d like installed in
your Unix-like environment (see table
A.1 for a list of Node development–
related packages to install).

 Once you’ve selected the packages,
click Next.

 You’ll then see a list of packages that
the ones you’ve selected depend on. You
need to install those as well, so click
Next again to accept them. Cygwin will
now download the packages you need.
Once the download has completed, click
Finish.

Figure A.2 Cygwin’s package selector allows you to select open source software that will
be installed on your system.

Table A.1 Cygwin packages needed to run Node

Category Package

devel gcc4-g++

devel git

devel make

devel openssl-devel

devel pkg-config

devel zlib-devel

net inetutils

python python

web wget

362 APPENDIX A Installing Node and community add-ons

 Start Cygwin by clicking the desktop icon or Start menu item. You’ll be presented
with a command-line prompt. You then can compile Node (see section A.4 for the
necessary steps).

A.3 Linux setup
Installing Node on Linux is usually painless. We’ll run through installations from
source code on two popular Linux distributions: Ubuntu and CentOS. Node is also
available through package managers on a number of distributions, and there are
other installation instructions on GitHub: https://github.com/joyent/node/wiki
/Installing-Node.js-via-package-manager.

A.3.1 Ubuntu installation prerequisites

Before installing Node on Ubuntu, you’ll need to install prerequisite packages. This is
done on Ubuntu 11.04 or later using a single command:

sudo apt-get install build-essential libssl-dev

SUDO The sudo command is used to perform another command as “super-
user” (also referred to as “root”). Sudo is often used during software installa-
tion because files need to be placed in protected areas of the filesystem, and
the superuser can access any file on the system regardless of file permissions.

A.3.2 CentOS installation prerequisites

Before installing Node on CentOS, you’ll need to install prerequisite packages. This is
done on CentOS 5 using the following commands:

sudo yum groupinstall 'Development Tools'
sudo yum install openssl-devel

Now that you’ve installed the prerequisites, you can move on to compiling Node.

A.4 Compiling Node
Compiling Node involves the same steps on all operating systems.

 On the command line, you first enter the following command to create a tempo-
rary folder into which you’ll download the Node source code:

mkdir tmp

Next, you navigate into the directory created in the previous step:

cd tmp

You now enter the following command:

curl -O http://nodejs.org/dist/node-latest.tar.gz

Next, you’ll see text indicating the download progress. Once progress reaches 100
percent, you’re returned to the command prompt. Enter the following command to
decompress the file you received:
tar zxvf node-latest.tar.gz

https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager
https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager

363APPENDIX A Installing Node and community add-ons

You should then see a lot of output scroll past, and you’ll be returned to the command
prompt. At the prompt, enter the following command to list the files in the current
folder, which should include the name of the directory you just decompressed:

ls

Next, enter the following command to move into this directory:

cd node-v*

You’re now in the directory containing Node’s source code. Enter the following com-
mand to run a configuration script that will prepare the right installation for your spe-
cific system:

./configure

Next, enter the following command to compile Node:

make

Node normally takes a little while to compile, so be patient and expect to see a lot of
text scroll by. The text is information related to the compiling process and can be
ignored.

A CYGWIN QUIRK If you’re running Cygwin on Windows 7 or Vista, you may
run into errors during this step. These are due to an issue with Cygwin rather
than an issue with Node. To address them, exit the Cygwin shell, and then
run the ash.exe command-line application (located in the Cygwin directory;
usually c:\cygwin\bin\ash.exe). On the ash command line, enter /bin
/rebaseall -v. When this completes, restart your computer. This should fix
your Cygwin issues.

At this point, you’re almost done. Once text stops scrolling and you again see the com-
mand prompt, you can enter the final command in the installation process:

sudo make install

When that’s finished, enter the following command to run Node and have it display
its version number, verifying that it has been successfully installed:

node -v

You should now have Node on your machine!

A.5 Using the Node Package Manager
With Node installed, you’ll be able to use built-in modules that provide you with APIs
to perform networking tasks, interact with the filesystem, and do other things com-
monly needed in applications. Node’s built-in modules are referred to collectively as
the Node core. While Node’s core encompasses a lot of useful functionality, you’ll likely
want to use community-created functionality as well. Figure A.3 shows, conceptually,
the relationship between the Node core and add-on modules.

364 APPENDIX A Installing Node and community add-ons

Depending on what language you’ve been
working in, you may or may not be familiar
with the idea of community repositories of
add-on functionality. These repositories are
akin to libraries of useful application build-
ing blocks that can help you do things that
the language itself doesn’t easily allow out of
the box. These repositories are usually mod-
ular: rather than fetching the entire library
all at once, you can usually fetch just the
add-ons you need.

 The Node community has its own tool
for managing community add-ons: the Node
Package Manager (npm). In this section,
you’ll learn how to use npm to find commu-
nity add-ons, view add-on documentation,
and explore the source code of add-ons.

npm is missing on my system
If you’ve installed Node, then npm is likely already installed. You can test it by running
npm on the command line and seeing if the command is found. If not, you can install
npm by doing the following:
cd /tmp
git clone git://github.com/isaacs/npm.git
cd npm
sudo make install

Once you’ve installed npm, enter the following on a command line to verify that npm
is working (by asking it to output its version number):
npm -v

If npm has installed correctly, you should see a number similar to the following:
1.0.3

If you run into problems installing npm, the best thing to do is to visit the npm project
on GitHub (http://github.com/isaacs/npm), where the latest installation instructions
can be found.

http net ...

Community-created modules

Depend on

Depend on

D
ep

en
d

on Core modules

V8 libev libeio

Node core

Figure A.3 The Node stack is composed of
globally available functionality, core modules,
and community-created modules.

http://github.com/isaacs/npm

365APPENDIX A Installing Node and community add-ons

A.5.1 Searching for packages

The npm command-line tool provides convenient access to community add-ons. These
add-on modules are referred to as packages and are stored in an online repository. For
users of PHP, Ruby, and Perl, npm is analogous to PEAR, Gem, and CPAN, respectively.

 The npm tool is extremely convenient. With npm you can download and install a
package using a single command. You can also easily search for packages, view pack-
age documentation, explore a package’s source code, and publish your own packages
so they can be shared with the Node community.

 You can use npm’s search command to find packages available in its repository.
For example, if you wanted to search for an XML generator, you could simply enter
this command:

npm search xml generator

The first time npm does a search, there’s a long pause as it downloads repository
information. Subsequent searches, however, are quick.

 As an alternative to command-line searching, the npm project also maintains a
web search interface to the repository: http://search.npmjs.org/. This website, shown
in figure A.4, also provides statistics on how many packages exist, which packages are
the most depended on by others, and which packages have recently been updated.

 The npm web search interface also lets you browse individual packages, showing
useful data such as the package dependencies and the online location of a project’s
version control repository.
Figure A.4 The npm search website provides useful statistics on module popularity.

http://search.npmjs.org/

366 APPENDIX A Installing Node and community add-ons

A.5.2 Installing packages

Once you’ve found packages you’d like to install, there are two main ways of doing so
using npm: locally and globally.

Locally installing a package puts the downloaded module into a folder called
node_modules in the current working directory. If this folder doesn’t exist, npm will
create it.

 Here’s an example of installing the express package locally:

npm install express

Globally installing a package puts the downloaded module into the /usr/local direc-
tory on non-Windows operating systems, a directory traditionally used by Unix to store
user-installed applications. In Windows, the Appdata\Roaming\npm subdirectory of
your user directory is where globally installed npm modules are put.

 Here’s an example of installing the express package globally:

npm install -g express

If you don’t have sufficient file permissions when installing globally, you may have to
prefix your command with sudo. For example,

sudo npm install -g express

After you’ve installed a package, the next step is figuring out how it works. Luckily,
npm makes this easy.

A.5.3 Exploring documentation and package code

The npm tool offers a convenient way to view a package author’s online documenta-
tion, when available. The docs npm command will open a web browser with a speci-
fied package’s documentation. Here’s an example of viewing documentation for the
express package:

npm docs express

You can view package documentation even if the package isn’t installed.
 If a package’s documentation is incomplete or unclear, it’s often handy to be able

to check out the package’s source files. The npm tool provides an easy way to spawn a
subshell with the working directory set to the top-level directory of a package’s source
files. Here’s an example of exploring the source files of a locally installed express
package:

npm explore express

To explore the source of a globally installed package, simply add the -g command-line
option after npm. For example:

npm -g explore express

Exploring a package is also a great way to learn. Reading Node source code often

introduces you to unfamiliar programming techniques and ways of organizing code.

appendix B
Debugging Node

During development, and especially while learning a new language or framework,
debugging tools and techniques can be helpful. In this appendix, you’ll learn a
number of ways to figure out exactly what’s going on with your Node application
code.

B.1 Analyzing code with JSHint
Syntax- and scope-related errors are a common pitfall of development. The first
line of defense, when attempting to determine the root of an application problem,
is to look at the code. If you look at the source code, however, and don’t immedi-
ately see a problem, another thing worth doing is running a utility to check your
source code for problems.

 JSHint is one such utility. It can alert you to show-stopping errors, such as func-
tions called in code that aren’t defined anywhere, as well as to stylistic concerns,
such as not heeding the JavaScript convention of capitalizing class constructors.
Even if you never run JSHint, reading over the types of errors it looks for will alert
you to possible coding pitfalls.

 JSHint is a project based on JSLint, a JavaScript source code analysis tool that
has been around for a decade. JSLint, however, is not very configurable, and that’s
where JSHint comes in.

 JSLint is, in the opinion of many, overly strict in terms of enforcing stylistic rec-
ommendations. JSHint, conversely, allows you to tell it what you want it to check for
and what you want it to ignore. Semicolons, for example, are technically required
by JavaScript interpreters, but most interpreters use automated semicolon insertion
(ASI) to insert them where they’re missing. Because of this, some developers omit
them in their source code to lessen visual noise, and their code runs without issue.
Whereas JSLint would complain that a lack of semicolons is an error, JSHint can be
configured to ignore this “error” and check for show-stopping issues.

 Installing JSHint makes available a command-line tool called jshint that
checks source code. JSHint should be installed globally using npm by executing
this command:

npm install -g jshint
367

368 APPENDIX B Debugging Node

Once you’ve installed JSHint, you can check JavaScript files by simply entering some-
thing like the following example:

jshint my_app.js

You’ll most likely want to create a configuration file for JSHint that indicates what you
want it to check. One way to do so is to copy the default configuration file, available
on GitHub (https://github.com/jshint/node-jshint/blob/master/.jshintrc), to your
workstation and modify it.

 If you name your version of the config file .jshintrc and include it in your applica-
tion directory, or in any parent directory of your application directory, JSHint will
automatically find and use it.

 Alternatively, you can run JSHint using the config flag to specify a configuration
file location. The following example shows JSHint being told to use a configuration
file with a nonstandard filename:

jshint my_app.js --config /home/mike/jshint.json

For details about each specific configuration option, check out the JSHint website:
http://www.jshint.com/docs/#options.

B.2 Outputting debugging information
If your code appears to be legitimate, but your application is still behaving unexpect-
edly, you may want to add debugging output to get a better sense of what’s going on
under the hood.

B.2.1 Debugging with the console module

The console module is a built-in Node module that provides functionality useful for
console output and debugging.

OUTPUTTING APPLICATION STATUS INFORMATION

The console.log function is used to output application status information to stan-
dard output; console.info is another name for the same function. Arguments can be
provided, printf()-style (http://en.wikipedia.org/wiki/Printf):

console.log('Counter: %d', counter);

For outputting warnings and errors, the console.warn and console.error functions
operate similarly. The only difference is that instead of printing to standard output,
they print to standard error. This enables you to, if desired, redirect warnings and
errors to a log file, as the following example shows:

node server.js 2> error.log

The console.dir function will output an object’s contents. The next example output
shows what this looks like:

{ name: 'Paul Robeson',

interests: ['football', 'politics', 'music', 'acting'] }

http://en.wikipedia.org/wiki/Printf
http://www.jshint.com/docs/#options
https://github.com/jshint/node-jshint/blob/master/.jshintrc

369APPENDIX B Debugging Node

OUTPUTTING TIMING INFORMATION

The console module includes two functions that, when used together, allow you to time
the execution of parts of your code. More than one thing can be timed simultaneously.

 To start timing, add the following line to your code at the point you’d like timing
to start:

console.time('myComponent');

To end timing, returning the time elapsed since timing started, add this line to your
code at the point where timing should stop:

console.timeEnd('myComponent');

The preceding line will display the elapsed time.

OUTPUTTING STACK TRACES

A stack trace provides you with information about what functions executed before a
certain point in application logic. When Node encounters an error during application
execution, for example, it outputs a stack trace to provide information about what led,
in the application’s logic, to the error.

 At any point during your application, you can output a stack trace, without causing
your application to stop, by executing console.trace().

 This will produce output similar to the following example stack trace:

Trace:
at lastFunction (/Users/mike/tmp/app.js:12:11)
at secondFunction (/Users/mike/tmp/app.js:8:3)
at firstFunction (/Users/mike/tmp/app.js:4:3)
at Object.<anonymous> (/Users/mike/tmp/app.js:15:3)
...

Note that stack traces display execution in reverse chronological order.

B.2.2 Using the debug module to manage debugging output

Debugging output is useful, but if you’re not actively troubleshooting an issue, it can
end up being visual noise. Ideally you could switch debugging output on or off.

 One way to toggle debugging output is to use an environmental variable. T.J. Holo-
waychuk’s debug module provides a handy tool for this, allowing you to manage
debugging output using the DEBUG environmental variable. Chapter 13 details the use
of the debug module.

B.3 Node’s built-in debugger
For debugging needs beyond adding simple debugging output, Node comes with a
built-in command-line debugger. The debugger is invoked by starting your applica-
tion using the debug keyword, like this:

node debug server.js

370 APPENDIX B Debugging Node

When running a Node application this way, you’ll be shown the first few lines of your
application and presented with a debugger prompt, as shown in figure B.1.

 The “break in server.js:1” line means that the debugger has stopped before execut-
ing the first line.

B.3.1 Debugger navigation

At the debugger prompt, you can control the execution of your application. You
could enter next (or just n) to execute the next line; alternatively, you could enter
cont (or just c) to have it execute until interrupted.

 The debugger can be interrupted by the termination of the application or by what
are called breakpoints. Breakpoints are points where you want the debugger to stop
execution so you can examine application state.

 One way to add a breakpoint is by adding a line to your application where you want
to put the breakpoint. This line should contain the statement debugger;, as listing B.1
shows. The debugger; line won’t do anything while running Node normally, so you
can leave it and there will be no ill effects.

var http = require('http');

function handleRequest(req, res) {
res.writeHead(200, {'Content-Type': 'text/plain'});
res.end('Hello World\n');

}

http.createServer(function (req, res) {
debugger;
handleRequest(req, res);

}).listen(1337, '127.0.0.1');

console.log('Server running at http://127.0.0.1:1337/');

If you run listing B.1 in debug mode, it’ll first break at line 1. If you then enter cont
into the debugger, it’ll proceed to create the HTTP server, awaiting a connection. If
you create a connection by visiting http://127.0.0.1:1337 with a browser, you’ll see

Listing B.1 Adding a breakpoint programmatically

Figure B.1 Starting the built-in Node debugger

Adds a breakpoint
to code
that it breaks at the debugger; line.

371APPENDIX B Debugging Node

 Enter next to continue to the next line of code. The current line will now be a
function call to handleRequest. If you again enter next to continue to the next line,
the debugger won’t descend into each line of handleRequest. But if you enter step,
the debugger will descend into the handleRequest function, allowing you to trouble-
shoot any issues with this particular function. If you change your mind about wanting
to debug handleRequest, you can enter out (or o) to step out of the function.

 Breakpoints can be set from within the debugger in addition to being specified in
source code. To put a breakpoint in the current line in the debugger, enter set-
Breakpoint() (or sb()) into the debugger. It’s possible to set a breakpoint at a spe-
cific line (sb(line)) or when a specific function is being executed (sb('fn()')).

 When you want to unset a breakpoint, there’s the clearBreakpoint() function
(cb()). This function takes the same arguments as the setBreakpoint() function,
only it does the inverse.

B.3.2 Examining and manipulating state in the debugger

If you want to keep an eye on particular values in the application, you can add what
are called watchers. Watchers inform you of the value of a variable as you navigate
through code.

 For example, when debugging the code in listing B.1, you could enter watch
("req.headers['user-agent']") and, for each step, you’d see what type of browser
made the request. To see a list of watchers, you’d enter the watchers command. To
remove a watcher, you’d use the unwatch command; unwatch("req .headers['user-
agent']"), for example.

 If at any point during debugging, you want to be able to fully examine, or manipu-
late, the state, you can use the repl command to enter a Read-Eval-Print-Loop
(REPL). This allows you to enter any JavaScript expression and have it evaluate. To exit
the REPL and return to the debugger, press Ctrl-C.

 Once you’re done debugging, you can exit the debugger by pressing Ctrl-C twice,
by pressing Ctrl-D, or by entering the .exit command.

 These are the basics of debugger use. For more information on what can be done
with the debugger, visit the official Node page: http://nodejs.org/api/debugger.html.

B.4 Node Inspector
Node Inspector is an alternative to Node’s built-in debugger. It uses a WebKit-based
browser such as Chrome or Safari, rather than the command line, as an interface.

B.4.1 Starting Node Inspector

Before you begin debugging, Node Inspector should be installed globally with the fol-
lowing npm command. After installation, the node-inspector command will be avail-
able on your system:

npm install -g node-inspector

http://nodejs.org/api/debugger.html

372 APPENDIX B Debugging Node

To debug a Node application, start it using the --debug-brk command-line option:

node --debug-brk server.js

Using the --debug-brk option causes the debugging to insert a breakpoint before the
first line of your application. If this isn’t desired, you can use the --debug option
instead.

 Once your application is running, start Node Inspector:

node-inspector

Node Inspector is interesting because it uses the same code as WebKit’s Web Inspec-
tor, but plugged into Node’s JavaScript engine instead, so web developers should feel
right at home using it.

 Once Node Inspector is running, navigate to http://127.0.0.1:8080/debug?
port=5858 in your WebKit browser, and you should see the Node Inspector. If you ran
Node Inspector using the --debug-brk option, it will immediately show the first script
in your application, as in figure B.2. If you used the --debug option, you’ll have to use
the script selector, indicated by the script name “step.js” in figure B.2, to select the
script you’d like to debug.

A red arrow is shown to the left of the line of code that will execute next.

B.4.2 Node Inspector navigation

To step to the next function call in your application, click the button that looks like a
small circle with an arrow arcing over it. Node Inspector, like the command-line Node

Figure B.2 The Node Inspector

373APPENDIX B Debugging Node

debugger, allows you to step into functions as well. When the red arrow is to the left of
a function call, you can descend into the function by clicking the small circle with an
arrow pointing down at it. To step out of the function, click the small circle with an
arrow pointing up. If you’re using Node core or community modules, the debugger
will switch to script files for these modules as you step through your application. Don’t
be alarmed: it will at some point return to your application’s code.

 To add breakpoints while running Node Inspector, click the line number to the
left of any line of a script. If you’d like to clear all breakpoints, click the button to the
right of the step-out button (arrow pointing up).

 Node Inspector also has the interesting feature of allowing you to change code as
your application runs. If you’d like to change a line of code, simply double-click on it,
edit it, and then click out of the line.

B.4.3 Browsing state in Node Inspector

As you debug your application, you can inspect state using the collapsible panes
under the buttons that allow you to navigate in the debugger, as shown in figure B.3.
These allow you to inspect the call stack and variables in the scope of code currently
being executed. Variables can be manipulated by double-clicking on them and chang-
ing their values. You can also, as with Node’s built-in command-line debugger, add
watch expressions that will display as you step through your application.

 For more details about how to get the most out of Node Inspector, visit its GitHub
project page: https://github.com/dannycoates/node-inspector/.

WHEN IN DOUBT, REFRESH If you run into any odd behavior while using Node
Inspector, refreshing the browser may help. If that doesn’t work, try restarting
both your Node application and Node Inspector.

Figure B.3 Browsing
application state using
Node Inspector

https://github.com/dannycoates/node-inspector/

appendix C
Extending and

configuring Express
Express does a lot right out of the box, but extending Express and tweaking its con-
figuration can simplify development and allow it to do more.

C.1 Extending Express
Let's start by looking at how to extend Express. In this section, you’ll learn how to

 Create your own template engines
 Take advantage of community-created template engines
 Improve your applications using modules that extend Express

C.1.1 Registering template engines

Engines may provide Express support out of the box by exporting an __express
method. But not every engine will provide this, or you may want to write your own
engines. Express facilitates this by providing the app.engine() method. In this sec-
tion, we’ll take a look at writing a small markdown template engine with variable
substitution for dynamic content.

 The app.engine() method maps a file extension to a callback function so that
Express knows how to use it. In the following listing, the .md extension is passed so
that render calls such as res.render('myview.md') will use the callback function
to render the file. This abstraction enables practically any template engine to be
used within the framework. In this custom template engine, braces are used
around local variables to allow for dynamic input—for example, {name} will output
the value of name wherever it’s found in the template.

var express = require('express');

var http = require('http');

var md = require('github-flavored-markdown').parse;

var fs = require('fs');

Listing C.1 Handling the .md extension

Require a
markdown
implementation
374

var app = express();

375APPENDIX C Extending and configuring Express

app.engine('md', function(path, options, fn){

fs.readFile(path, 'utf8', function(err, str){

if (err) return fn(err);

try {

var html = md(str);

html = html.replace(/\{([^}]+)\}/g, function(_, name){

return options[name] || '';

});

fn(null, html);

} catch (err) {

fn(err);

}

});

});

The template engine in listing C.1 will allow you to write dynamic markdown views.
For example, if you want to greet a user with markdown, it might look like this:

{name}

Greetings {name}! Nice to have you check out our application {appName}.

C.1.2 Templates with consolidate.js

The consolidate.js project was created exclusively for Express 3.x, and it provides a sin-
gle unified API for many of Node’s template engines. This means Express 3.x allows
you to use more than 14 different template engines out of the box, or if you’re work-
ing on a library that uses templates, you can take advantage of the wide selection of
engines provided by consolidate.js.

 For example, Swig is a Django-inspired template engine. It uses tags embedded
within HTML to define logic, as shown here:

{% for pet in pets %}

{{ pet.name }}
{% endfor %}

Depending on the template engine and your editor’s syntax-highlighting support,
you’ll probably be tempted to have HTML-style engines use the .html extension rather
than an extension based on the engine name, such as .swig. You can do this with the
Express app.engine() method. Once called, when Express renders a .html file, it will
use Swig:

var cons = require('consolidate');
app.engine('html', cons.swig);

The EJS template engine would also likely be mapped to .html because it also uses

Map this callback to .md files
Read file contents as a string

Delegate errors to Express

Convert string of markdown to HTML

Perform brace
substitutionsDefault the

value to ''
(empty
string)

Pass rendered HTML to Express

Catch any errors thrown
embedded tags:

376 APPENDIX C Extending and configuring Express

<% pets.forEach(function(pet){ %>

<%= pet.name %>
<% }) %>

Some template engines use an entirely different syntax, and it doesn’t make sense to
map them to .html files. Jade is a good example of this, sporting its own declarative
language. Jade could be mapped with the following call:

var cons = require('consolidate');
app.engine('jade', cons.jade);

For details and a list of supported template engines, visit the consolidate.js project
repository at https://github.com/visionmedia/consolidate.js.

C.1.3 Express extensions and frameworks

You might be wondering what options are available for developers who use more struc-
tured frameworks, like Ruby on Rails. Express has several options for those situations.

 The Express community has developed several higher-level frameworks built on
top of Express to provide directory structure, as well as high-level, opinionated fea-
tures, such as Rails-style controllers. In addition to these frameworks, Express also
sports a variety of plugins to extend its functionality.

EXPRESS-EXPOSE

The express-expose plugin can be used to expose server-side JavaScript objects to the
client side. For example, if you wanted to expose the JSON representation of the
authenticated user, you might invoke res.expose() to provide the express.user
object to your client-side code:

res.expose(req.user, 'express.user');

EXPRESS-RESOURCE

Another great plugin is express-resource, a resourceful routing plugin used for struc-
tured routing.

 Routing can be accomplished in many ways, but it boils down to a request method
and path, which is what Express provides out of the box. Higher-level concepts can be
built on top.

 The following example shows how you might define actions for showing, creating,
and updating a user resource in a declarative fashion. First, here’s what you’d add in
app.js:

app.resource('user', require('./controllers/user'));

And here’s what the controller module ./controllers/user.js would look like.

https://github.com/visionmedia/consolidate.js

377APPENDIX C Extending and configuring Express

exports.new = function(req, res){
res.send('new user');

};

exports.create = function(req, res){
res.send('create user');

};

exports.show = function(req, res){
res.send('show user ' + req.params.user);

};

For a full list of plugins, template engines, and frameworks, visit the Express wiki at
https://github.com/visionmedia/express/wiki.

C.2 Advanced configuration
In the previous chapter, you learned how to configure Express using the app
.configure() function, and we covered a number of configuration options. In this
section, you’ll learn about additional configuration options that you can use to
change default behavior and unlock additional functionality.

 Table C.1 lists Express configuration options we didn’t discuss in chapter 8.

The views configuration option is fairly straightforward and is used to designate
where view templates live. When you create an application skeleton on the command
line using the express command, the views configuration option is automatically set
to the application’s views subdirectory.

 Now let’s look at a more involved configuration option: json_replacer.

C.2.1 Manipulating JSON responses

Suppose you have the user object set up with private properties such as an object’s
_id. By default, a call to the res.send(user) method would respond with JSON such
as {"_id":123,"name":"Tobi"}. The json replacer is a setting that takes a function

Listing C.2 The user.js resource file

Table C.1 Built-in Express settings

default engine Default template engine used

views View lookup path

json replacer Response JSON manipulation function

json spaces Amount of spaces used to format JSON responses

jsonp callback Support JSONP with res.json() and res.send()

trust proxy Trust reverse proxy

view cache Cache template engine functions
that Express will pass to JSON.stringify() during res.send() and res.json() calls.

https://github.com/visionmedia/express/wiki

378 APPENDIX C Extending and configuring Express

 The standalone Express application in the following listing illustrates how you
could use this function to omit properties starting with "_" for any JSON response. In
this example, the response is now {"name":"Tobi"}.

var express = require('express');
var app = express();

app.set('json replacer', function(key, value){
if ('_' == key[0]) return;
return value;

});

var user = { _id: 123, name: 'Tobi' };

app.get('/user', function(req, res){
res.send(user);

});

app.listen(3000);

Note that individual objects, or object prototypes, can implement the .toJSON()
method. This method is used by JSON.stringify() when converting an object to a
JSON string. This is a great alternative to the json_replacer callback if your manipula-
tions don’t apply to every object.

 Now that you’ve learned how to control what data is exposed during JSON output,
let’s look at how you can fine-tune JSON formatting.

C.2.2 JSON response formatting

The json spaces configuration setting affects JSON.stringify() calls in Express.
This setting indicates the number of spaces to use when formatting JSON as a string.

 By default, this method will return compressed JSON, such as
{"name":"Tobi","age":2,"species":"ferret"}. Compressed JSON is ideal for a
production environment, as it reduces the response size. But during development,
uncompressed output is much easier to read.

 The json spaces setting is automatically set to 0 in production; it’s set to 2 in
development, which produces the following output:

{
"name": "Tobi",
"age": 2,
"species": "ferret"

}

C.2.3 Trusting reverse proxy header fields

By default, Express internals won’t trust reverse proxy header fields in any environ-
ment. Reverse proxies are out of scope for this book, but if your application is running
behind a reverse proxy, such as Nginx, HAProxy, or Varnish, you’ll want to enable

Listing C.3 Using json_replacer to control and modify JSON data
trust proxy so that Express knows these fields are safe to check.

index

Numerics

404 status code 21, 236–237
500 status code 139, 238

A

absolute paths vs. relative
paths 172

Accept header 234
acceptance testing

defined 243
overview 258–259
Soda

installing 261
overview 260–261
using with Sauce

Labs 262
using with Selenium

Server 261–262
Tobi 259–260

Accept-Encoding header
172–173

add command 350
add-ons for flow control 65
adduser command 357
administration panel

middleware 131–133
after function 249, 252
afterEach function 249, 252
Ajax (Asynchronous JavaScript

and XML) 4
Amazon S3 302
Amazon Web Services 298
ANSI (American National

Standards Institute) 339

ansi.js
formatting background

color using 341–342
formatting foreground

color using 340–341
Apache 7
application dependency 19
application/x-www-form-

urlencoded content
type 87, 89, 150

arguments, command-
line 336–337

argv property 324, 336–337
ascii encoding 77
ASI (automated semicolon

insertion) 367
assert module

adding logic to run
tests 246–247

checking thrown errors 246
deepEqual assertion 246
equal assertion 245
example using 244–245
notDeepEqual

assertion 246
notEqual assertion 245–246
notStrictEqual

assertion 246
ok assertion 246
strictEqual assertion 246

asynchronous I/O 5
Asynchronous JavaScript and

XML. See Ajax
asynchronous programming

challenges of 57–58
flow control for

community tools for

overview 58–59
parallel flow control 63–

65
serial flow control 59–63

handling repeating events
with event emitters
echo server example

50–51
file watcher example

55–57
once method 51
publish/subscribe

example 51–55
Node.js platform 5–6
overview 46
testing with Mocha 253–254
using callbacks 46–50,

166–167
attributes, for tags in Jade 282
authenticating users

authentication
middleware 130–131

logging in users
authenticating

logins 215–216
creating menu for

authenticated
users 216–217

displaying login
form 214–215

registering users
creating registration

form 210
creating routes 209
implementing 213–214
relaying feedback to
379

ANSI escape codes 339–340 65–66 users 210–211

380 INDEX

authenticating users, register-
ing users (continued)
storing messages in

sessions 211–213
storing user data

authenticating user
logins 208–209

creating json file 204–205
creating model for 205
retrieving user data

207–208
saving user into

Redis 205–206
securing passwords 206
testing user-saving

logic 206–207
user loading

middleware 217–218
authenticity token 168
Authorization header 130, 231
automated semicolon insertion.

See ASI

B

background color 341–342
Basic authentication, HTTP

adding to REST API
229–230

example using curl
command 167

overview 166
providing asynchronous call-

back function 166–167
providing callback

function 166
basicAuth() middleware 146,

230, 232
example using curl

command 167
overview 166
providing asynchronous call-

back function 166–167
providing callback

function 166
batches 254
bcrypt function 204
BDD (behavior-driven

development) 242, 249–
250, 254

before function 249, 252
beforeEach function 249, 252–

253
big O notation 114

bin characteristic 355
bin directory 355
binary data vs. text data 317–

318
binary JSON. See BSON
BitKeeper 347
block statements 283, 288–289
blog, Node.js 344
body property 150–151
bodyParser() middleware 213

overview 150
parsing form data 150
parsing JSON data 150
parsing multipart form

data 150–151
breakpoints 370, 373
broadcast function 30
broadcasting 310
browser setting 261–262
Browserling 8–10
BSON (binary JSON) 118
Buffer data type 316
buffer option 157
buffering 89, 316–318
built-in debugger

examining state in 371
navigation 370–371
overview 369–370

byteLength method 79

C

CA (Certificate Authority) 96
cache variable 20, 270
caching

EJS templates 275
in compile function 280
in Express framework 187–

188
callbacks

asynchronous
programming 46–50

conventions for 50
defined 6, 46
nesting 48
using with HTTP Basic

authentication 166–167
Capistrano 300
case manipulation filters 271–

272
case statements 285–286
caveats for modules 44–45
CDN (content delivery

network) 302

Certificate Authority. See CA
CGI (Common Gateway

Interface) 333
chaining filters 271
channels 26, 115–116, 346
character escaping in EJS

270–271
chat application example. See

multiroom chat applica-
tion example

child processes 331
child_process module

buffering command results
using cp.exec() 331–332

distributing workload using
cp.fork() 334–335

overview 331
using stream interface with

cp.spawn() 332–334
ChildProcess objects 332, 334
Chrome Experiments page 4
clear method 253
clearBreakpoint()

function 371
CLI (command-line

interface) 98
clickAndWait command 262
cli-color module 340
client value 270
client-side JavaScript

EJS in 275–276
in multiroom chat applica-

tion example
displaying messages in

UI 33–36
relaying messages to

server 32–33
cloning repositories 352
close event 321
close value 270
close() function 327
closures 58, 133
Cloud Foundry 296
cloud hosting

Amazon Web Services 298
overview 295–298
Rackspace Cloud 298–299

Cloud9 IDE 296
cluster API 304–306
CMS (content management

system) 39
collaborating using

GitHub 352–354
collections in MongoDB

accessing 118

big-endian 318 CentOS 362 inserting document into 118

381INDEX

colored output for command-
line tools

ANSI escape codes 339–340
background colors 341–342
foreground colors 340–341

colors.js module 340
Command Line Tools for

Xcode 360
command-line interface. See

CLI
command-line tools

colored output for
ANSI escape codes

339–340
background colors

341–342
foreground colors

340–341
overview 336
parsing arguments 336–337
stderr stream 339
stdin stream 337–339
stdout stream 337–338

commit command 350
Common Gateway Interface.

See CGI
CommonJS module

specification 19, 67
community

GitHub
adding files to

repository 350–351
collaborating using

352–354
configuring Git 348
creating repository 349
overview 347–348
providing SSH public

key 348
pushing from Git to

351–352
setting up empty

repository 349–350
online resources

GitHub issues 346–347
Google Groups 345–346
IRC 346
overview 344–345

publishing modules to npm
adding npm user 357
advantages of using

npm 354
preparing package 355
publishing to npm

testing package
installation 357

writing package
specification 355–356

community tools for flow
control 65–66

compile method 279–280
compileDebug value 270
compiling Node 362–363
compress() middleware 146

configuring 174
overview 172–173
using custom filter

function 173
compression, static files

configuring 174
overview 172–173
using custom filter

function 173
concurrency, and file-based

storage 99
conditional routes 239
config flag 368
configurable middleware

logging middleware 133–134
rewriting URLs

middleware 137–138
routing middleware

135–137
configure method 183–184,

377
Connect framework

compressing static files
configuring 174
overview 172–173
using custom filter

function 173
configurable middleware

configurable logging
middleware 133–134

rewriting URLs
middleware 137–138

routing middleware 135–
137

cross-site request forgery
protection 167–168

directory listings
mounting 175
overview 175

error handling
HTML error response 169
JSON error response 170
overview 168
plain-text error

error-handling middleware
creating custom 139–140
default error handler 139
overview 138
separating concerns

using 141–144
Express framework and 124
faking HTTP methods

accessing original
req.method
property 160

overview 158–159
favicons 157–158
hello world

middleware 126–127
HTTP Basic authentication

example using curl
command 167

overview 166
providing asynchronous

callback
function 166–167

providing callback
function 166

logging middleware 126
logging requests

customizing formats
155–156

options for 156–157
overview 155

middleware and
next() function 128
order and

precedence 128–129
order in 127–128
overview 125

mounting middleware
administration panel

middleware 131–133
authentication

middleware 130–131
overview 129–130

parsing cookies
JSON cookies 148–149
outgoing cookies 149
overview 147
regular cookies 147–148
signed cookies 148

parsing requests
overview 150
parsing form data 150
parsing JSON data 150
parsing multipart form

data 150–151

357–358 response 169 query-string parser 153–154

382 INDEX

Connect framework (continued)
request limiting

overview 152
why needed 152
wrapping for greater

flexibility 153
session management

data stores 164–165
manipulating

cookies 163–164
overview 162
setting expiration

date 162–163
using session data 163

setting up application
using 124–125

static file serving
absolute vs. relative

paths 172
mounting 171
overview 171
serving index.html when

directory is
requested 172

virtual hosting
multiple instances 161
overview 160

connect() function 322
connections

to MongoDB 117
to Mongoose 120
to PostgreSQL 110
to Redis 113

connect-redis module 164
Console API 10
console module

outputting application status
information 368

outputting stack traces 369
outputting timing

information 369
console.dir function 368
console.error function 368
console.info function 368
console.log function 57, 368
console.time function 369
console.timeEnd function 369
console.trace function 369
console.warn function 368
consolidate.js project 290

extending Express with
375–376

supported template
engines 376

content block 287
content delivery network. See

CDN
content management system.

See CMS
Content-Disposition

header 200
Content-Length header 79–80,

330
Content-Type header 17, 75,

87, 89, 92, 234
contexts 254, 269
controller (MVC) 265
cookieParser()

middleware 146
JSON cookies 148–149
outgoing cookies 149
overview 147
regular cookies 147–148
signed cookies 148

cookies
manipulating with

middleware 163–164
parsing

JSON cookies 148–149
outgoing cookies 149
overview 147
regular cookies 147–148
signed cookies 148

property 147
core, Node 363
CouchDB 164
COUNT option 303
cp.exec() function 331–332
cp.fork() function 334–335
cp.spawn() function 332–334
create method 194
create, read, update, delete.

See CRUD
createClient method 205, 261
createServer method 73, 318
cross-site scripting. See XSS
CRUD (create, read, update,

delete) 76
CSRF (cross-site request

forgery) 167
protection middleware

167–168
_csrf property 168
Ctrl-C keyboard shortcut 23,

326, 371
curl command 76, 79, 132, 233,

334
and Windows 66
example using 167

custom filters in EJS 273–274
Cygwin 360–361, 363

D

data argument 320
data event 12, 50–51, 77, 320
data stores in sessions 164–165
Datagram module 10
data-intensive real-time

(DIRTy) applications 8–10
DBMS (database management

system) 97
db-oracle module 102
DEBUG environment

variable 324–325, 369
debug function 270, 325
debug keyword 369
debug module 325, 369
debugging

analyzing code with
JSHint 367–368

built-in debugger
examining state in 371
navigation 370–371
overview 369–370

Node Inspector
examining state in 373
navigation 372–373
starting 371–372

with console module
outputting application sta-

tus information 368
outputting stack

traces 369
outputting timing

information 369
with debug module 369

dedicated servers 297
deepEqual assertion 246
default statements 285
DELETE requests 80–81
dependencies

installing 19–20
specifying 19

deploying applications
automating 300
from Git repository 300
hosting

Amazon Web Services 298
cloud hosting 295–297
dedicated servers 297
overview 295–297
Rackspace Cloud 298–299
cont command 370 cursor 340–341 VPS 297

383INDEX

deploying applications
(continued)

uptime, maintaining
using Forever 300–301
using Upstart 302–304

describe function 249, 252
/dev/js0 323
dir function 368
directory listing

middleware 175
directory traversal attack 82
directory() middleware 146,

175
__dirname variable 82, 172,

186
DIRTy (data-intensive real-

time) applications 8–10
disable method 183
disconnections, handling

unclean 321
dispatcher 123
distributed version control sys-

tem. See DVCS
div tag shorthand in Jade 282
Django 176
doAsync method 244, 246
docs command 366
docs directory 355
documentation 344

exploring with npm 366
for Git 351

documents
in MongoDB 119
in Mongoose 121

domain property 164
done argument 253
downcase filter 272
download method 198, 200
downloads

creating route for page
198–199

setting filename for 200
triggering browser

download 200
Dustjs 290
DVCS (distributed version con-

trol system) 347

E

each statements 285
EC2 (Elastic Compute

Cloud) 298

ECMAScript standard 5
EJS (Embedded JavaScript)

caching templates 275
character escaping 270–271
creating templates 269–271
filters in

case manipulation
filters 271–272

custom filters 273–274
map filter 273
selection filters 271
sorting filters 272–273
text manipulation

filters 272
in client-side

applications 275–276
integrating in

application 274–275
overview 269

EJS (Embedded JavaScript)
templates 179, 209

Elastic Compute Cloud. See EC2
else statements 285
emit method 54
emitters, event

echo server example 50–51
file watcher example 55–57
once method 51
publish/subscribe

example 51–55
enable method 183
encryption. See HTTPS
enctype attribute 90
end event 12, 77, 111, 320
end method 73–75, 319
endianness 318
engine() method 374–375
ENOENT value 86
env object 183, 324
environment variables 183,

324–325
equal assertion 245
ERB template system 269
err argument 50, 139
error codes for fs module 329
error event 54, 85–86, 93, 113
error function 339, 368
error handling

in Express framework
404 errors 236–237
creating route for 237
creating template for 238,

240
enabling middleware 238,

implementing 239–240
testing using conditional

route 239
middleware for

creating custom 139–140
default error handler 139
HTML error response 169
JSON error response 170
overview 138, 168
plain-text error

response 169
separating concerns

using 141–144
serving static files

overview 85–86
with fs.stat() 86–87

tasks related to 240
Error object 325
ERROR_ROUTE environment

variable 239, 241
etc directory 306
event emitters

defined 26
echo server example 50–51
EventEmitter class 46, 55,

85
file watcher example 55–57
once method 51
publish/subscribe

example 51–55
event loops 5
event-driven platform 5–6
example directory 355
EXDEV error 328–329
exec section 303
exec() function 331–332
execFile() function 332
exit command 371
exit event 325–326, 333
expect method 249
expiration date for

sessions 162–163
expires property 164
exports object 39–40, 42

adding tests to 248
vs. module.exports

property 43
Express framework

authenticating users
logging in users

214–217
user loading

middleware 217–218
configuring 183–185,
echo server example 50–51 241 377–378

384 INDEX

Express framework (continued)
Connect framework and 124
creating REST API

adding Basic
authentication
229–230

adding entries 232–233
adding entry listing

support 233–234
designing 229
implementing content

negotiation 234–235
removing sensitive user

data 231–232
responding with

XML 235–236
testing user data

retrieval 231
downloads, using

creating route for
page 198–199

setting filename for 200
triggering browser

download 200
error handling

404 errors 236–237
creating route for 237
creating template for 238,

240
enabling middleware 238,

241
implementing 239–240
testing using conditional

route 239
extending

extension plugins 376–377
registering template

engines 374–375
with consolidate.js

project 375–376
generating application

180–182
installing 180
pagination using

creating template for
links 227

designing API 225–226
enabling clean pagination

URLs 228–229
implementing

middleware 226
using in route 227

uploads, using
adding route for form 196

creating upload form 195
handling form

submissions 196–197
showing list of

uploads 197–198
validating content submis-

sions
adding front-page

display 220–221
creating form for 221–222
creating model for 219–

220
creating routes for 220
implementing 222

validation middleware
223–225

views in
caching 187–188
default template

engine 186
exposing data to 189–193
looking up 188–189
lookup directory 186

express-expose plugin 376
express-resource plugin 376–

377
extending Express

extension plugins 376–377
registering template

engines 374–375
with consolidate.js

project 375–376
Extensible Markup Language.

See XML
extension plugins for

Express 376–377
external processes

buffering command results
using cp.exec() 331–332

distributing workload using
cp.fork() 334–335

overview 331
using stream interface with

cp.spawn() 332–334

F

Facebook 4
faking HTTP methods

accessing original
req.method property 160

overview 158–159
favicon() middleware 146,

Fibonacci numbers 334
field event 92
file event 92–93
file watcher example 55–57
file-based storage

overview 99
retrieving tasks 100–101
starting logic for 100
storing tasks 101–102

filed module 330–331
filename value 270, 275
filenames for downloads 200
files

moving 327–329
watching for changes

triggering page reload
for 312–315

using fs module 329
files property 150–151, 196
filesystem module. See fs mod-

ule
filter function 173
filters, in EJS

case manipulation
filters 271–272

custom filters 273–274
map filter 273
selection filters 271
sorting filters 272–273
text manipulation filters 272

find method 119, 121, 194
first filter 271
Fleet tool 300
flow control

community tools for 65–66
defined 58
overview 58–59
parallel flow control 63–65
serial flow control

implementing 61–63
when to use 59–61

folders, watching for changes
triggering page reload

for 312–315
using fs module 329

for loops 284
forEach statement 191
foreground color 340–341
Forever tool 300–301
fork() function 331, 334–335
forking repositories 352
form function 196
form input

handling submitted form

creating model 194 157–158 fields 87–90

385INDEX

form input (continued)
uploaded files

calculating upload
progress 94

handling with formidable
module 90–94

using querystring module 90
format method 234, 237
format property 156
formidable module 90–94
forms

multipart() middleware 150,
196

multipart/form-data content
type 87, 90, 150

parsing multipart form
data 150–151

frameworks vs. platforms 10
Freenode 346
fs (filesystem) module 100

core modules 10
error codes for 329
example using 11
filed module 330–331
fstream module 329–330
moving files 327–329
overview 327
watching for changes 329

fstream module 329–330
functional testing. See accep-

tance testing

G

games 310
gcc4-g++ package 361
Generic Security Services Appli-

cation Program Interface.
See GSSAPI

genSalt method 206
get filter 271
get method 183, 190
GET requests 76, 79–80
getHeader method 75
Git

configuring 348
deploying applications from

repository 300
documentation 351
package 361
pushing to GitHub 351–352

GitHub
adding files to

and JavaScript 4
collaborating using 352–354
configuring Git 348
creating repository 349
issues on 346–347
Node.js on 3
overview 347–348
providing SSH public

key 348
pushing from Git to 351–352
setting up empty

repository 349–350
global scope

included files 38
modules 39

global variables, testing for 249
globally installing

packages 366
gm module 331
Gmail 4
Google Chrome

influence on JavaScript 4
JavaScript engine in 4

Google group for Node.js 3
Google Groups 345–346
Google Maps 4
GraphicsMagick library 331
GSSAPI (Generic Security Ser-

vices Application Program
Interface) 110

H

Handlebars.js template
engine 290

handleRequest function 46
hash method 206
hash tables 113–114
headers 75
Hello World server 12, 74–75
Heroku 296
HGETALL command 207
hidden option 175
hiredis module 116
hkeys command 114
hmset command 114
Hogan

creating templates 276–277
customizing tags for 279–280
displaying values 277
history of 276
inverted sections 278
iterating through

overview 276
partials in 279
section lambdas 278–279

Homebrew 360
hooks

defined 252
in Mocha 252–253

host setting 105, 261, 322
hosting

cloud hosting
Amazon Web Services 298
overview 295–298
Rackspace Cloud 298–299

dedicated servers 297
overview 295–297
VPS 297

htmlparser module 62, 259
HTTP Basic authentication

adding to REST API 229–
230

example using curl
command 167

overview 166
providing asynchronous call-

back function 166–167
providing callback

function 166
HTTP module 10
http module 20
HTTP servers

Hello World server 74–75
in multiroom chat applica-

tion example
creating 22–23
starting 23

incoming requests 73
reading request headers 75
setting Content-Length

header 79–80
setting response headers 75
setting status code for HTTP

response 75–76
httpOnly property 164
HTTPS (Hypertext Transfer

Protocol Secure)
module 10
using for web

applications 94–96
:http-version token 156

I

icons option 175
IDE (integrated development
repository 350–351 sections 277–278 environment) 296

386 INDEX

if statements 284–285
ImageMagick library 331
immediate option 157
include directive

and global scope 38
in Jade 289–290
using 227

IncomingForm object 92
index function 185, 237
index.html, serving when direc-

tory is requested 172
index.js file 40
inetutils package 361
info function 368
inheritance, for templates in

Jade 287–288
inherits function 55
in-memory storage 98–99
install command 357
installing

dependencies 19–20
Express framework 180
Node

compiling 362–363
on CentOS 362
on Linux 362
on OS X 359–360
on OS X with

Homebrew 360
on Ubuntu 362
on Windows 360–362

nodeunit 247
npm 364
Selenium Server 261
Soda 261
using npm

exploring documentation
and package
code 366

installing packages 366
searching for

packages 365
instances 298
integrated development envi-

ronment. See IDE
intermediary functions 48
Internet Explorer 310
Internet Relay Chat. See IRC
interprocess communication.

See IPC
INTERVAL option 303
inverted sections 278
io variable 311
IPC (interprocess

IRC (Internet Relay Chat) 332,
346

IRC channel for Node.js 3
it function 249, 252
iterating

in Jade 285–286
through sections in

Hogan 277–278

J

Jade
block expansion in 283
block statements 288–289
case statements 286
conditionally rendering tem-

plate code 286
include statements 289–290
iterating in 285–286
logic in 284
mixins 290
overview 280–282
specifying tag attributes 282
specifying tag content 282–

283
template inheritance

287–288
using data in 283–284
using JavaScript in 284–285

Java 261
JavaScript

Google Chrome influence
on 4

Node.js built on 4–5
using in Jade 284–285

JavaScript Object Notation. See
JSON

javascripts directory 18
JavaServer Pages. See JSP
join method 82
Jonny-Five project 26
jQuery 23, 259
jsdom module 259
JSHint 368
JSLint 367
jslinux 4
JSON (JavaScript Object Nota-

tion)
buffering 89
error response using 170
package.json file 45
parsing cookies 148–149
parsing request data 150

json spaces option 378

json() middleware 150
JSP (JavaServer Pages) 269

K

keys in hash tables 113

L

last filter 271
least significant byte. See LSB
leave method 31
lengthAbove method 224
level option 174
lib directory 18, 355
libuv library 13
Lightweight Directory Access

Protocol (LDAP) 110
limit() middleware 146

overview 152
why needed 152
wrapping for greater

flexibility 153
link command 357
Linode 297
Linux

installing Node 362
ports on 23

list command 301
listen function 26, 74
listeners 50, 54
lists 114
little-endian 318
LLEN command 226
locally installing packages 366
locals argument 270
log method 57, 368
logging in users

authenticating logins 215–
216

creating menu for authenti-
cated users 216–217

displaying login form 214–
215

logging middleware
configurable 133–134
creating 126
logger() middleware

customizing formats 155–
156

options for 156–157
overview 155

logging requests

communication) 326 json_replacer option 377–378 customizing formats 155–156

387INDEX

logging requests (continued)
options for 156–157
overview 155

lookup directory in Express
framework 186

lpush command 114
lrange command 114
LSB (least significant byte) 318

M

Mac OS X
installing Node 359–360
ports on 23

main key 45
make package 361
malloc() function 316
map filter 273
mapping file extensions in

Express 374
master branch 351
maxAge argument 158, 162
Memcached 164
memLevel option 174
memory storage 22
MemoryStore object 164
message property 143
method property 77, 87, 133,

137, 160
:method token 156
methodOverride()

middleware 146
accessing original

req.method property 160
overview 158–159

Microsoft Azure SDK for
Node.js 296

Microsoft Windows
and node-postgres

module 110
ANSI escape codes 340
installing Node 360–362
ports on 23
setting environment

variables 183
telnet on 51

middleware
configurable middleware

configurable logging
middleware 133–134

rewriting URLs
middleware 137–138

routing middleware 135–
137

error-handling middleware
creating custom 139–140
default error handler 139
overview 138
separating concerns

using 141–144
hello world

middleware 126–127
logging middleware 126
mounting middleware

administration panel
middleware 131–133

authentication
middleware 130–131

overview 129–130
next() function 128
order in

and precedence 128–129
overview 127–128

overview 125
mime module 17, 20
MIME types 17, 20, 93, 173, 235
mixins

defined 281
in Jade 290

mkdir() function 329
Mocha

defining setup using
hooks 252–253

overview 249
testing applications

with 250–251
testing asynchronous

logic 253–254
model-view-controller pattern.

See MVC
modes, for ansi.js module 340
module.exports property 39,

43
overview 42–43
vs. exports object 43

modules
caveats for 44–45
creating 40–42
for template engines 269
global scope and 39
namespaces and 39
overview 38–40
publishing to npm

adding npm user 357
advantages of using

npm 354
preparing package 355
publishing to npm 357–

358
testing package

writing package
specification 355–356

reusing between
applications 43–44

using module.exports 42–43
using node_modules

folder 43–44
MongoDB

accessing collections 118
and session stores 164
connecting to 117
deleting documents 119
Google Group for 345
inserting document into

collection 118
safe mode for 118
searching for

documents 119
updating data 118

Mongoose
adding task 120
connecting to 120
deleting documents 121
registering schema 120
searching for

documents 121
updating documents 121

most significant byte. See MSB
mounting middleware

administration panel
middleware 131–133

authentication
middleware 130–131

defined 129
directory listing

middleware 175
overview 129–130
static file serving

middleware 171
move() function 327
moving files with fs

module 327–329
MSB (most significant

byte) 318
multipart form data

multipart() middleware 150,
196

multipart/form-data content
type 87, 90, 150

parsing 150–151
multiroom chat application

example
client-side JavaScript

displaying messages in

defined 123 installation 357 UI 33–36

388 INDEX

multiroom chat application
example, client-side
JavaScript (continued)
relaying messages to

server 32–33
CSS files for 23–25
dependencies

installing 19–20
specifying 19

file structure for 18–19
HTML files for 23–25
overview 15–17
simultaneously serving HTTP

and WebSocket 17–18
static file server

creating HTTP server 22–
23

functions for serving
files 21–22

overview 20
starting server 23

using Socket.IO
assigning guest names 28
creating rooms 31
handling name-change

requests 29–30
handling user

disconnections 31
joining rooms 28–29
overview 25–26
sending chat messages 30
setting up server 26–27

multiuser applications and file-
based storage 99

Mustache template language.
See Hogan

mv command 327
MVC (model-view-controller)

pattern
and templates 265
application flow 265

MySQL
adding data 107
deleting data 107–108
retrieving data 108
updating data 108
work-tracking app example

application logic 105–106
forms for 109
helper functions for

106–107
overview 102–104
rendering records in

HTML 109

N

namespaces 39
NaN (not a number) value 81
navigation

in built-in debugger 370–371
in Node Inspector 372–373

nesting callbacks 48
NET module 10
netcat command 321–322
new keyword 316
next argument 125, 127, 139
next command 370
next function 126, 128, 131,

142
ngen tool 356
Nginx 7, 306–307
Nimble 66
node command 80
Node Inspector

examining state in 373
navigation 372–373
starting 371–372

Node Knockout 316
Node Package Manager

(npm) 39, 110
NODE_ENV environment

variable 140, 183, 275
NODE_PATH environment

variable 44
node_redis module 113, 116
Node.js

asynchronous platform 5–6
built on JavaScript 4–5
compiling 362–363
core 363
defined 4
DIRTy applications 8–10
event-driven platform 5–6
Hello World HTTP server 12
JavaScript engine used in 4
non-blocking I/O model

7–8
streaming data 12–13

node-cgi module 333
node-elf module 349
node-inspector command 371
Nodejitsu 296, 355
node-mongodb-native Google

Group 345
node-mongodb-native

module 117
node-mysql module 104
node-postgres module 110

nodeunit
installing 247
overview 247
testing applications

with 248–249
non-blocking I/O model 7–8
nonparallel testing 254
NoSQL databases

MongoDB
accessing collections 118
connecting to 117
deleting documents 119
inserting document into

collection 118
searching for

documents 119
updating data 118

Mongoose
adding task 120
connecting to 120
deleting documents 121
registering schema 120
searching for

documents 121
updating documents 121

Redis
connecting to 113
delivering data with

channels 115–116
manipulating data in 113
maximizing performance

with hiredis
module 116

storing and retrieving data
using hash table
113–114

storing and retrieving data
using list 114

storing and retrieving data
using sets 115

not a number. See (NaN) value
notDeepEqual assertion 246
notEqual assertion 245–246
notFound property 142–143
notStrictEqual assertion 246
npm (Node Package

Manager) 39, 110
as command-line tool 336
exploring documentation

and package code 366
homepage for 344
information about modules

in 330
installing 364
testing 109–110 node-tar module 331 installing dependencies 19

389INDEX

npm (Node Package Manager)
(continued)

installing packages 366
overview 363–364
publishing modules to

adding npm user 357
advantages of using

npm 354
preparing package 355
publishing to npm 357–358
testing package

installation 357
writing package

specification 355–356
searching for packages 330,

365
searching for packages

online 345, 365
using sudo command 300

.npmignore file 356

O

object-relational mappers.
See ORMs

ok assertion 246
on method 51–52, 56, 335
once method 51
onclick event 12
online resources. See resources
open value 270
open() function 327
OpenSSL 95
openssl-devel package 361
operating system interaction

fs module
filed module 330–331
fstream module 329–330
moving files 327–329
overview 327
watching for changes 329

process object
accessing environment

variables 324–325
catching signals sent to

process 326–327
exit event 325–326
overview 324
uncaughtException

event 325–326
spawning external processes

using child_process module
buffering command results

using cp.exec() 331–

distributing workload
using cp.fork()
334–335

overview 331
using stream interface with

cp.spawn() 332–334
option tags 282
optional messages 312
Oracle database 102
order, of middleware

and precedence 128–129
overview 127–128

originalMethod property 160
ORMs (object-relational

mappers) 102
out command 371
output

adding for debugging
outputting application sta-

tus information 368
outputting stack

traces 369
outputting timing

information 369
coloring, for command-line

tools
ANSI escape codes

339–340
background colors

341–342
foreground colors

340–341
stderr stream 339
stdout stream 337–338

P

package.json file 19, 45, 186,
355

packages
defined 365
exploring code for 366
installing 366
preparing 355
searching 365
searching online 330, 345
testing installation of 357
writing specification

for 355–356
page() middleware 233
pagination, using Express

framework
creating template for

designing API 225–226
enabling clean pagination

URLs 228–229
implementing

middleware 226
using in route 227

parallel flow control
defined 58
overview 63–65

param method 227
parse function 80, 90, 92–93
parseInt function 80
parsing

cookies
JSON cookies 148–149
outgoing cookies 149
overview 147
regular cookies 147–148
signed cookies 148

query strings 153–154
requests

overview 150
parsing form data 150
parsing JSON data 150
parsing multipart form

data 150–151
partials

defined 279
in Hogan 279

pass property 206, 208
passwords

securing 206
setting 105

PATH environment
variable 324

path module 20
path property 164
pathname property 80, 82
performance

maintaining uptime
using Forever 300–301
using Upstart 302–304

using multiple cores with
cluster API 304–306

using Nginx as proxy for
static files 306–307

PHP namespaces 39
pipe method

connecting streams
with 320–321

serving static files 83–84
piping commands 337–338
pkg-config package 361
plain-text error response 169
332 links 227 Plates template engine 290

390 INDEX

platforms vs. frameworks 10
plugins for Express 376–377
port setting 261, 322
Portable Operating System

Interface (POSIX) 10
ports for HTTP server 23
POST requests 76–78
PostgreSQL

and session stores 164
connecting to 110
inserting rows 110–111
querying 111–112

precedence of
middleware 128–129

PRG (Post/Redirect/Get)
pattern 211

Prgmr 297
printf() style 368
private property 358
Pro Git 351
process object

accessing environment
variables 324–325

catching signals sent to
process 326–327

exit event 325–326
overview 324
uncaughtException

event 325–326
progress

calculating for uploaded
files 94

displaying using
Socket.IO 315–316

proxy, Nginx as 306–307
public directory 18
publish command 357
publish/subscribe

example 51–55
publishing modules to npm

adding npm user 357
advantages of using npm 354
preparing package 355
publishing to npm 357–358
testing package

installation 357
writing package

specification 355–356
pulling, defined 352
push command 351
PUT verb 76

Q

QEMU (Quick Emulator) 8
query method 106–107,

110–111
query property 154
QUERY_STRING environment

variable 334
query() middleware 146,

153–154
querying

MongoDB 119
Mongoose 121
MySQL 108
PostgreSQL 111–112

querystring module 90
query-string parser 153–154
qunit 250
qvalue 234

R

Rack framework 125
Rackspace Cloud 298–299
rainbow table attacks 206
RAM (random access

memory) 22
RDBMSs (relational database

management system) 102
read() function 327
readable 319
ReadableStream 83
readdir() function 329
readdirSync method 161
read-eval-print-loop interface.

See REPL
readFile() function 63, 327
README file 355
Readme.md file 356
ReadStream class 83, 327–328
Redis

and session stores 164
commands for 207
connecting to 113
delivering data with

channels 115–116
manipulating data in 113
maximizing performance

with hiredis module 116
saving user data in 205–206
storing and retrieving data

using hash table 113–114
using list 114

Redis in Action 112
redis-server command 164, 206
ReferenceError 139
:referrer token 156
refreshing pages. See reloading

pages
relational database manage-

ment system
(RDBMSs) 102

relational databases
MySQL

adding data 107
deleting data 107–108
retrieving data 108
updating data 108

PostgreSQL
connecting to 110
inserting rows 110–111
querying 111–112

relative paths vs. absolute
paths 172

reload event 314
reloading pages

triggering for file
changes 312–315

when using Node
Inspector 373

:remote-addr token 156
remotes 351
remoteUser property 232
remove method 194
removeAllListeners method 53
removeHeader method 75
removeMessages method 211
rename method 196, 328
render method 185, 188, 270,

275
rendering HTML

with templates 268–269
without templates 267–268

repeating events
echo server example 50–51
file watcher example 55–57
once method 51
publish/subscribe

example 51–55
REPL (read-eval-print-loop)

interface 80, 339, 371
repl command 371
replace filter 272
repositories, Git

adding files to 350–351
creating 349
pushing to GitHub 351–352
python package 361 using sets 115 setting up empty 349–350

391INDEX

Representational State Trans-
fer (REST). See REST

req argument 22, 139, 318
req object 73, 77, 227, 320
:req token 155
request event 12, 46
request module 62
requests, HTTP

limiting
overview 152
why needed 152
wrapping for greater

flexibility 153
logging

customizing formats
155–156

options for 156–157
overview 155

overview 73
parsing

overview 150
parsing form data 150
parsing JSON data 150
parsing multipart form

data 150–151
reading headers 75

require function 92, 212, 327,
357

required method 224
res argument 139, 318
res object 73
:res token 155
reset() function 340
resize event 326
resources

GitHub issues 346–347
Google Groups 345–346
IRC 346
overview 344–345

respawn option 303–304
response argument 22
response, HTTP

setting headers 75
setting status code for 75–76

:response-time token 156–157
REST (Representational State

Transfer)
creating API in Express

framework
adding Basic

authentication 229–
230

adding entries 232–233
adding entry listing

designing 229
implementing content

negotiation 234–235
removing sensitive user

data 231–232
responding with

XML 235–236
testing user data

retrieval 231
DELETE requests 80–81
GET requests 79–80
history of 76
overview 76–77
POST requests 77–78

resume() function 338
RETURNING clause 111
returning early from

functions 49
reusing modules between

applications 43–44
reverse proxy header fields 378
rewriting URLs

middleware 137–138
root, running commands

as 362
route parameters 228
routing middleware 135–137
rows argument 108
Ruby on Rails 39, 176

S

sadd command 115
safe mode for MongoDB 118
salting 206
Sauce Labs 262

See also Soda
save method 205
sb() function 371
scope value 270
scope, for cookies 164
script tags 33, 283, 288
search command 365
section lambdas in

Hogan 278–279
sections

defined 277
iterating through 277–278

secure property 164
Secure Sockets Layer. See SSL
select elements 282
selection filters in EJS 271
Selenium Server

testing web applications
with 261–262

See also Soda
self-signed certificate 95
send method 230, 234, 335
sendfile method 198–200
serial flow control

defined 58
implementing 61–63
when to use 59–61

session() middleware
data stores 164–165
manipulating cookies

163–164
overview 162
setting expiration date

162–163
using session data 163

sessions
data stores 164–165
setting expiration date

162–163
using data from 163

set method 183
setBreakpoint() function 371
Set-Cookie header 147, 149
setEncoding method 77, 89,

320
setHeader method 75, 147, 149
setMaxListeners method 55
sets 115
setTimeout method 60
setup function 249
should property 256
Should.js 256–258
SIGBREAK signal 327
SIGHUP signal 327
SIGINT signal 326–327
signals

catching 326–327
defined 326

signed cookies 148
signedCookies property

147–148
SIGUSR1 signal 326
SIGWINCH signal 326–327
slice() method 80, 333
slug 137
Smarty 269
smembers command 115
SOAP (Simple Object Access

Protocol) 76
socket object 20, 319
Socket.IO library

displaying progress

support 233–234 installing 261 using 315–316

392 INDEX

Socket.IO library (continued)
fallbacks included 17
in multiroom chat applica-

tion example
assigning guest names 28
creating rooms 31
handling name-change

requests 29–30
handling user

disconnections 31
joining rooms 28–29
overview 25–26
sending chat messages 30
setting up server 26–27

overview 310
time update application

example 310–312
triggering reload for file

changes 312–315
socket.pipe() function

320–321
Soda

installing 261
overview 260–261
using with Sauce Labs 262
using with Selenium

Server 261–262
sort_by filter 273
sorting filters in EJS 272–273
spawn() function 331–334
spawning external processes

using child_process
module

buffering command results
using cp.exec() 331–332

distributing workload using
cp.fork() 334–335

overview 331
using stream interface with

cp.spawn() 332–334
SSH public key for GitHub 348
SSL (Secure Sockets Layer) 71
stack traces 369
StackVM 8
staging area, Git 350
stat() method 86–87, 327
state

examining in built-in
debugger 371

examining in Node
Inspector 373

static files
compressing

configuring 174

using custom filter
function 173

creating server for 82–84
error handling

overview 85–86
with fs.stat() 86–87

in multiroom chat applica-
tion example
creating HTTP server

22–23
functions for serving

files 21–22
overview 20
starting server 23

middleware for
absolute vs. relative

paths 172
mounting 171
overview 171
serving index.html when

directory is
requested 172

using pipe method 83–84
static() middleware 146

absolute vs. relative
paths 172

mounting 171
overview 171
serving index.html when

directory is requested
172

statSync() function 327
status codes, HTTP 75–76
status property 237
:status token 156–157
statusCode property 75, 88
stderr stream 333, 339
stdin stream 333, 337–339
stdout stream 333, 337–338
step command 371
stop command 301
storing application data

file-based storage
overview 99
retrieving tasks 100–101
starting logic for 100
storing tasks 101–102

in-memory storage 98–99
MongoDB

accessing collections
118

connecting to 117
deleting documents 119
inserting document into

searching for
documents 119

updating data 118
Mongoose

adding task 120
connecting to 120
deleting documents 121
registering schema 120
searching for

documents 121
updating documents 121

MySQL
adding data 107
deleting data 107–108
retrieving data 108
updating data 108

PostgreSQL
connecting to 110
inserting rows 110–111
querying 111–112

Redis
connecting to 113
delivering data with

channels 115–116
manipulating data in 113
maximizing performance

with hiredis
module 116

storing and retrieving
data 113–115

Stream class 83, 319–320
stream option 156
streaming data 12–13, 310
streams, connecting 320–321
strictEqual assertion 246
strong tags 282
style tags 283
stylesheet event 314
stylesheets directory 18
Stylus 291
submit method 196
Subversion 347
sudo command 300, 362, 366
suite function 249
superuser, running commands

as 362
switch statements 79, 131
synchronous functions 327
synchronous I/O 41

T

tags in templates 269

overview 172–173 collection 118 tar command 66, 331

393INDEX

TCP/IP networking
buffers 316–318
creating TCP client 321–323
creating TCP server

connecting streams with
socket.pipe()
320–321

handling unclean
disconnections 321

overview 321
reading data 319–320
writing data 318–319

text data vs. binary data
317–318

TDD (test-driven
development) 242,
249–250

teardown function 249
telnet command 51, 319
templates

and MVC pattern 265
directory for 274, 287
EJS

caching templates 275
case manipulation

filters 271–272
character escaping

270–271
creating templates

269–271
custom filters 273–274
in client-side

applications 275–276
integrating in

application 274–275
map filter 273
overview 269
selection filters 271
sorting filters 272–273
text manipulation

filters 272
engines for 265, 376
for error pages 238, 240
Hogan

creating templates
276–277

customizing tags for
279–280

displaying values 277
inverted sections 278
iterating through

sections 277–278
overview 276
partials in 279

implementing
overview 266–267
rendering HTML using

template 268–269
rendering HTML without

template 267–268
in Express framework 186
Jade

block expansion in 283
conditionally rendering

template code 286
include statements

289–290
iterating in 285–286
logic in 284
overview 280–282
specifying tag

attributes 282
specifying tag

content 282–283
template inheritance

287–288
using block

statements 288–289
using case statements

286
using data in 283–284
using JavaScript in

284–285
using mixins 290

registering engines in
Express 374–375

test directory 355
test function 249
test-driven development.

See TDD
testing

assert module
adding logic to run

tests 246–247
checking thrown

errors 246
example using 244–245
using deepEqual

assertion 246
using equal assertion 245
using notDeepEqual

assertion 246
using notEqual

assertion 245–246
using notStrictEqual

assertion 246
using ok assertion 246
using strictEqual

Mocha
defining setup using

hooks 252–253
overview 249
testing applications

with 250–251
testing asynchronous

logic 253–254
nodeunit

installing 247
overview 247
testing applications

with 248–249
nonparallel, using

Mocha 254
Should.js 256–258
Soda

installing 261
overview 260–261
using with Sauce Labs 262
using with Selenium

Server 261–262
Tobi 259–260
Vows 254–256

Testling 10
text data vs. binary data 317–

318
text manipulation filters 272
text/html content type 75
throws assertion 246
tick function 311
time function 369
time update application

example 310–312
timeEnd function 369
Timer API 10
title block 287
TLS module 10
TMPDIR variable 324
Tobi 259–260
toJSON method 231
token function 156
tokens 155
topics 254
trace function 369
Transloadit 90
trusted text data 33
Twitter 4, 276
type property 239

U

Ubuntu 362
uncaughtException event
section lambdas 278–279 assertion 246 325–326

394 INDEX

unit testing
assert module

adding logic to run
tests 246–247

checking thrown
errors 246

example using 244–245
using deepEqual

assertion 246
using equal assertion 245
using notDeepEqual

assertion 246
using notEqual

assertion 245–246
using notStrictEqual

assertion 246
using ok assertion 246
using strictEqual

assertion 246
defined 242
Mocha

defining setup using
hooks 252–253

overview 249
testing applications

with 250–251
testing asynchronous

logic 253–254
nodeunit

installing 247
overview 247
testing applications

with 248–249
Should.js 256–258
Vows 254–256

UNIX signals 327
UNIX systems 183
unless statements 285–286
unlink command 357
until statements 285
untrusted text data 33
unwatch command 371
upcase filter 272
update method 121, 194, 205
uploads

calculating upload
progress 94

handling with formidable
module 90–94

in Express framework
adding route for form 196
creating model 194
creating upload form 195
handling form

showing list of
uploads 197–198

Upstart 302–304
uptime, maintaining

using Forever 300–301
using Upstart 302–304

url property 80, 133, 137
:url token 156
urlencoded() middleware 150
use method 126–127, 129
user loading middleware

217–218
user setting 105
:user-agent token 156
utf8 encoding 77

V

V8 JavaScript engine 4
validation

middleware for 223–225
of content submissions

adding front-page
display 220–221

creating form for 221–222
creating model for

219–220
creating routes for 220
implementing 222

ValidationError 143
values in hash tables 113
var keyword 249, 284
VCS (version control

system) 347
vhost() middleware 146

multiple instances 161
overview 160

view (MVC) 265
view command 358
views in Express framework

caching 187–188
default template engine 186
exposing data to 189–193
looking up 188–189
lookup directory 186

views option 377
virtual hosting middleware

multiple instances 161
overview 160

virtual private servers. See VPS
VirtualBox 296
VM (virtual machines) 8
VMware 296

Vows 254–256
VPS (virtual private

servers) 297

W

warn function 368
watch function 313, 329
watchers command 371
watchFile function 313, 329
watching

file/folder changes
triggering page reload

for 312–315
using fs module 329

projects on GitHub 348
web applications

accepting form input
calculating upload

progress 94
handling submitted form

fields 87–90
handling uploaded files

using formidable
module 90–94

using querystring
module 90

HTTP servers
Hello, World server 74–75
incoming requests 73
reading request

headers 75
setting Content-Length

header 79–80
setting response

headers 75
setting status code for

HTTP response
75–76

REST
DELETE requests 80–81
GET requests 79–80
overview 76–77
POST requests 77–78

serving static files
creating server for 82–84
error handling 85–86
error handling with

fs.stat() 86–87
using Stream.pipe()

83–84
using HTTPS 94–96

WebSocket API 17, 310
wget package 361
submissions 196–197 volatile messages 310, 312 when statements 285

395INDEX

while statements 285
Windows. See Microsoft Windows
work-tracking app example

application logic 105–106
forms for 109
helper functions for 106–

107
overview 102–104
rendering records in

HTML 109
testing 109–110

writable 319

WritableStream 83
write() function 74–75, 79,

319, 327, 338
writeFile() function 327
writeInt16LE function 317
writeInt32BE function 317
WriteStream class 327–328
writeUInt32LE function 317

X

Xcode 360
xcodebuild command 360

XML (Extensible Markup Lan-
guage)

buffering 89
output for REST API

235–236
XSS (cross-site scripting) 33,

270, 276
x-www-form-urlencoded con-

tent type 87, 89, 150

Z

zlib-devel package 361

Cantelon ● Harter ● Holowaychuk ● Rajlich

J
avaScript on the server? You bet. Node.js is a JavaScript
server capable of supporting scalable, high-performance web
applications. Using asynchronous I/O, the server can do

more than one thing at a time, a key requirement for real-time
apps like chat, games, and live statistics. And since it’s JavaScript,
you use the same language end to end.

Node.js in Action shows you how to build production-quality
applications. Clear introductions of key concepts and example-
by-example coverage take you from setup to deployment. You’ll
dive into asynchronous programming, data storage, and output
templating, and interact with the fi lesystem to create non-HTTP
applications like TCP/IP servers and command-line tools. Perfect
for a web developer transitioning from Rails, Django, or PHP.

What’s Inside
● Set up Node and extensions
● Grok asynchronous programming and the event loop
● Examples including microblogging, IM, games, and more

Requires basic knowledge of JavaScript. No prior experience
with Node.js needed.

As skilled practitioners, expert teachers and trainers, and
contributors to the core framework, authors Mike Cantelon,
Marc Harter, T.J. Holowaychuk, and Nathan Rajlich represent
the best of the Node.js development community.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/Node.jsinAction

$44.99 / Can $47.99 [INCLUDING eBOOK]

Node.js IN ACTION

JAVASCRIPT/WEB DEVELOPMENT

M A N N I N G

“Th e content ramps up nicely
from basic to advanced.”

—From the Foreword by Isaac Z.
Schlueter, Node.js Project Lead

“Th e defi nitive guide to Node
and the Node.js ecosystem.”—Kevin Baister

1KB Soft ware Solutions

“Superbly written with
practical (and even funny)

real-world examples.”
—Àlex Madurell, Polymedia SpA

“Th oroughly enjoyable ... will
get you up and running

very quickly.”—Gary Ewan Park, Honeywell

“An excellent resource
written by the people

behind the code.”—Brian Falk, NodeLingo, GoChime

SEE INSERT

	Node.js in Action
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Roadmap
	Code conventions and downloads
	Author Online

	about the cover illustration
	Part 1 Node fundamentals
	1 Welcome to Node.js
	1.1 Built on JavaScript
	1.2 Asynchronous and evented: the browser
	1.3 Asynchronous and evented: the server
	1.4 DIRTy applications
	1.5 DIRTy by default
	1.5.1 Simple async example
	1.5.2 Hello World HTTP server
	1.5.3 Streaming data

	1.6 Summary

	2 Building a multiroom chat application
	2.1 Application overview
	2.2 Application requirements and initial setup
	2.2.1 Serving HTTP and WebSocket
	2.2.2 Creating the application file structure
	2.2.3 Specifying dependencies
	2.2.4 Installing dependencies

	2.3 Serving the application’s HTML, CSS, and client-side JavaScript
	2.3.1 Creating a basic static file server
	2.3.2 Adding the HTML and CSS files

	2.4 Handling chat-related messaging using Socket.IO
	2.4.1 Setting up the Socket.IO server
	2.4.2 Handling application scenarios and events

	2.5 Using client-side JavaScript for the application’s user interface
	2.5.1 Relaying messages and name/room changes to the server
	2.5.2 Showing messages and available rooms in the user interface

	2.6 Summary

	3 Node programming fundamentals
	3.1 Organizing and reusing Node functionality
	3.1.1 Creating modules
	3.1.2 Fine-tuning module creation using module.exports
	3.1.3 Reusing modules using the node_modules folder
	3.1.4 Caveats

	3.2 Asynchronous programming techniques
	3.2.1 Handling one-off events with callbacks
	3.2.2 Handling repeating events with event emitters
	3.2.3 Challenges with asynchronous development

	3.3 Sequencing asynchronous logic
	3.3.1 When to use serial flow control
	3.3.2 Implementing serial flow control
	3.3.3 Implementing parallel flow control
	3.3.4 Leveraging community tools

	3.4 Summary

	Part 2 Web application development with Node
	4 Building Node web applications
	4.1 HTTP server fundamentals
	4.1.1 How Node presents incoming HTTP requests to developers
	4.1.2 A basic HTTP server that responds with “Hello World”
	4.1.3 Reading request headers and setting response headers
	4.1.4 Setting the status code of an HTTP response

	4.2 Building a RESTful web service
	4.2.1 Creating resources with POST requests
	4.2.2 Fetching resources with GET requests
	4.2.3 Removing resources with DELETE requests

	4.3 Serving static files
	4.3.1 Creating a static file server
	4.3.2 Handling server errors
	4.3.3 Preemptive error handling with fs.stat

	4.4 Accepting user input from forms
	4.4.1 Handling submitted form fields
	4.4.2 Handling uploaded files using formidable
	4.4.3 Calculating upload progress

	4.5 Securing your application with HTTPS
	4.6 Summary

	5 Storing Node application data
	5.1 Serverless data storage
	5.1.1 In-memory storage
	5.1.2 File-based storage

	5.2 Relational database management systems
	5.2.1 MySQL
	5.2.2 PostgreSQL

	5.3 NoSQL databases
	5.3.1 Redis
	5.3.2 MongoDB
	5.3.3 Mongoose

	5.4 Summary

	6 Connect
	6.1 Setting up a Connect application
	6.2 How Connect middleware works
	6.2.1 Middleware that does logging
	6.2.2 Middleware that responds with “hello world”

	6.3 Why middleware ordering matters
	6.3.1 When middleware doesn’t call next()
	6.3.2 Using middleware order to perform authentication

	6.4 Mounting middleware and servers
	6.4.1 Middleware that does authentication
	6.4.2 A middleware component that presents an administration panel

	6.5 Creating configurable middleware
	6.5.1 Creating a configurable logger middleware component
	6.5.2 Building a routing middleware component
	6.5.3 Building a middleware component to rewrite URLs

	6.6 Using error-handling middleware
	6.6.1 Connect’s default error handler
	6.6.2 Handing application errors yourself
	6.6.3 Using multiple error-handling middleware components

	6.7 Summary

	7 Connect’s built-in middleware
	7.1 Middleware for parsing cookies, request bodies, and query strings
	7.1.1 cookieParser(): parsing HTTP cookies
	7.1.2 bodyParser(): parsing request bodies
	7.1.3 limit(): request body limiting
	7.1.4 query(): query-string parser

	7.2 Middleware that implements core web application functions
	7.2.1 logger(): logging requests
	7.2.2 favicon(): serving a favicon
	7.2.3 methodOverride(): faking HTTP methods
	7.2.4 vhost(): virtual hosting
	7.2.5 session(): session management

	7.3 Middleware that handles web application security
	7.3.1 basicAuth(): HTTP Basic authentication
	7.3.2 csrf(): cross-site request forgery protection
	7.3.3 errorHandler(): development error handling

	7.4 Middleware for serving static files
	7.4.1 static(): static file serving
	7.4.2 compress(): compressing static files
	7.4.3 directory(): directory listings

	7.5 Summary

	8 Express
	8.1 Generating the application skeleton
	8.1.1 Installing the Express executable
	8.1.2 Generating the application
	8.1.3 Exploring the application

	8.2 Configuring Express and your application
	8.2.1 Environment-based configuration

	8.3 Rendering views
	8.3.1 View system configuration
	8.3.2 View lookup
	8.3.3 Exposing data to views

	8.4 Handling forms and file uploads
	8.4.1 Implementing the photo model
	8.4.2 Creating a photo upload form
	8.4.3 Showing a list of uploaded photos

	8.5 Handling resource downloads
	8.5.1 Creating the photo download route
	8.5.2 Implementing the photo download route

	8.6 Summary

	9 Advanced Express
	9.1 Authenticating users
	9.1.1 Saving and loading users
	9.1.2 Registering new users
	9.1.3 Logging in registered users
	9.1.4 User-loading middleware

	9.2 Advanced routing techniques
	9.2.1 Validating user content submission
	9.2.2 Route-specific middleware
	9.2.3 Implementing pagination

	9.3 Creating a public REST API
	9.3.1 Designing the API
	9.3.2 Adding Basic authentication
	9.3.3 Implementing routing
	9.3.4 Enabling content negotiation

	9.4 Error handling
	9.4.1 Handling 404 errors
	9.4.2 Handling errors

	9.5 Summary

	10 Testing Node applications
	10.1 Unit testing
	10.1.1 The assert module
	10.1.2 Nodeunit
	10.1.3 Mocha
	10.1.4 Vows
	10.1.5 Should.js

	10.2 Acceptance testing
	10.2.1 Tobi
	10.2.2 Soda

	10.3 Summary

	11 Web application templating
	11.1 Using templating to keep code clean
	11.1.1 Templating in action

	11.2 Templating with Embedded JavaScript
	11.2.1 Creating a template
	11.2.2 Manipulating template data using EJS filters
	11.2.3 Integrating EJS into your application
	11.2.4 Using EJS for client-side applications

	11.3 Using the Mustache templating language with Hogan
	11.3.1 Creating a template
	11.3.2 Mustache tags
	11.3.3 Fine-tuning Hogan

	11.4 Templating with Jade
	11.4.1 Jade basics
	11.4.2 Logic in Jade templates
	11.4.3 Organizing Jade templates

	11.5 Summary

	Part 3 Going further with Node
	12 Deploying Node applications and maintaining uptime
	12.1 Hosting Node applications
	12.1.1 Dedicated and virtual private servers
	12.1.2 Cloud hosting

	12.2 Deployment basics
	12.2.1 Deploying from a Git repository
	12.2.2 Keeping Node running

	12.3 Maximizing uptime and performance
	12.3.1 Maintaining uptime with Upstart
	12.3.2 The cluster API: taking advantage of multiple cores
	12.3.3 Hosting static files and proxying

	12.4 Summary

	13 Beyond web servers
	13.1 Socket.IO
	13.1.1 Creating a minimal Socket.IO application
	13.1.2 Using Socket.IO to trigger page and CSS reloads
	13.1.3 Other uses of Socket.IO

	13.2 TCP/IP networking in depth
	13.2.1 Working with buffers and binary data
	13.2.2 Creating a TCP server
	13.2.3 Creating a TCP client

	13.3 Tools for interacting with the operating system
	13.3.1 The process global singleton
	13.3.2 Using the filesystem module
	13.3.3 Spawning external processes

	13.4 Developing command-line tools
	13.4.1 Parsing command-line arguments
	13.4.2 Working with stdin and stdout
	13.4.3 Adding colored output

	13.5 Summary

	14 The Node ecosystem
	14.1 Online resources for Node developers
	14.1.1 Node and module references
	14.1.2 Google Groups
	14.1.3 IRC
	14.1.4 GitHub issues

	14.2 GitHub
	14.2.1 Getting started on GitHub
	14.2.2 Adding a project to GitHub
	14.2.3 Collaborating using GitHub

	14.3 Contributing to the npm repository
	14.3.1 Preparing a package
	14.3.2 Writing a package specification
	14.3.3 Testing and publishing a package

	14.4 Summary

	Appendix A Installing Node and community add-ons
	A.1 OS X setup
	A.1.1 Installation with Homebrew

	A.2 Windows setup
	A.3 Linux setup
	A.3.1 Ubuntu installation prerequisites
	A.3.2 CentOS installation prerequisites

	A.4 Compiling Node
	A.5 Using the Node Package Manager
	A.5.1 Searching for packages
	A.5.2 Installing packages
	A.5.3 Exploring documentation and package code

	Appendix B Debugging Node
	B.1 Analyzing code with JSHint
	B.2 Outputting debugging information
	B.2.1 Debugging with the console module
	B.2.2 Using the debug module to manage debugging output

	B.3 Node’s built-in debugger
	B.3.1 Debugger navigation
	B.3.2 Examining and manipulating state in the debugger

	B.4 Node Inspector
	B.4.1 Starting Node Inspector
	B.4.2 Node Inspector navigation
	B.4.3 Browsing state in Node Inspector

	Appendix C Extending and configuring Express
	C.1 Extending Express
	C.1.1 Registering template engines
	C.1.2 Templates with consolidate.js
	C.1.3 Express extensions and frameworks

	C.2 Advanced configuration
	C.2.1 Manipulating JSON responses
	C.2.2 JSON response formatting
	C.2.3 Trusting reverse proxy header fields

	index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

