

Python	Testing	Cookbook
Second	Edition

	

	

	

	

	

	

	

	

	

Easy	solutions	to	test	your	Python	projects	using	test-driven	development	and
Selenium

	

	

	

	

	

	

	

	

	

	

Greg	L.	Turnquist
Bhaskar	N.	Das

	

	

	

	

	

	

	

BIRMINGHAM	-	MUMBAI

Python	Testing	Cookbook	Second
Edition
Copyright	©	2018	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted	in
any	form	or	by	any	means,	without	the	prior	written	permission	of	the	publisher,	except	in	the	case	of	brief
quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the	information
presented.	However,	the	information	contained	in	this	book	is	sold	without	warranty,	either	express	or
implied.	Neither	the	author(s),	nor	Packt	Publishing	or	its	dealers	and	distributors,	will	be	held	liable	for
any	damages	caused	or	alleged	to	have	been	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and	products
mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot	guarantee	the
accuracy	of	this	information.

Commissioning	Editor:	Merint	Matthew
Acquisition	Editor:	Chaitanya	Nair
Content	Development	Editor:	Rohit	Singh
Technical	Editor:	Romy	Dias
Copy	Editor:	Safis	Editing
Project	Coordinator:	Vaidehi	Sawant
Proofreader:	Safis	Editing
Indexer:	Pratik	Shirodkar
Graphics:	Jason	Monteiro
Production	Coordinator:	Deepika	Naik

First	published:	May	2011
Second	edition:	June	2018

Production	reference:	1290618

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham
B3	2PB,	UK.

978-1-78712-252-9

www.packtpub.com

	

http://www.packtpub.com

mapt.io

Mapt	is	an	online	digital	library	that	gives	you	full	access	to	over	5,000	books
and	videos,	as	well	as	industry	leading	tools	to	help	you	plan	your	personal
development	and	advance	your	career.	For	more	information,	please	visit	our
website.

https://mapt.io/

Why	subscribe?
Spend	less	time	learning	and	more	time	coding	with	practical	eBooks	and
Videos	from	over	4,000	industry	professionals

Improve	your	learning	with	Skill	Plans	built	especially	for	you

Get	a	free	eBook	or	video	every	month

Mapt	is	fully	searchable

Copy	and	paste,	print,	and	bookmark	content

PacktPub.com
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with
PDF	and	ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktP
ub.com	and	as	a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook
copy.	Get	in	touch	with	us	at	service@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign
up	for	a	range	of	free	newsletters,	and	receive	exclusive	discounts	and	offers	on
Packt	books	and	eBooks.

	

http://www.PacktPub.com
http://www.packtpub.com

Contributors

About	the	authors
Greg	L.	Turnquist	has	worked	in	the	software	industry	since	1997.	He	is	an
active	participant	in	the	open	source	community	and	has	contributed	patches	to
several	projects,	including	MythTV,	Spring	Security,	MediaWiki,	and	the
TestNG	Eclipse	plugin.	As	a	test-obsessed	script	junky,	he	has	always	sought	the
right	tool	for	the	job.	He	is	a	firm	believer	in	agile	practices	and	automated
testing.	He	has	developed	distributed	systems	and	LAMP-based	setups,	and	he
has	supported	mission-critical	systems	hosted	on	various	platforms.
After	graduating	from	Auburn	University	with	a	master's	in	computer
engineering,	Greg	started	working	with	the	Harris	Corporation.	He	worked	on
many	contracts	utilizing	many	types	of	technology.	In	2006,	he	created	the
Spring	Python	project	and	went	on	to	write	Spring	Python	1.1	in	2010.	He	joined
SpringSource,	a	division	of	VMware	in	2010,	as	part	of	its	international	software
development	team.

	

Bhaskar	N.	Das	has	8	years'	experience	in	various	projects	involving
application	development,	maintenance,	and	support	with	IBM.	He	has	worked	in
various	technologies	and	domains	including	Java,	Python,	application	servers,
the	cloud,	and	various	database	technologies.	His	domain	expertise	includes
finance	and	asset	management	(IT	and	finance	assets).	His	areas	of	interest
include	big	data,	business	finance	optimization	and	scaling,	data	science,	and
Machine	Learning.

	

About	the	reviewers
Maurice	HT	Ling	is	a	Research	Assistant	Professor	at	the	Perdana	University
School	of	Data	Sciences.	He	obtained	his	BSc.(Hons.)	in	Molecular	and	Cell
Biology	from	The	University	of	Melbourne,	Australia,	in	2004,	and	his	BSc.	in
Computing	from	the	University	of	Portsmouth,	United	Kingdom,	in	2007,	before
obtaining	his	Ph.D.	in	Bioinformatics	from	The	University	of	Melbourne,
Australia,	in	2009.	He	is	a	bioinformatician	who	is	currently	working	on	looking
at	evolutionary	biology	and	various	aspects	of	life.	His	main	techniques	involve
experimental	evolution	and	simulations,	such	as	artificial	life	simulation,	for
accessing	evolutionary	perspectives,	and	using	existing	published	data.	He	has
developed	computational	algorithms	as	part	of	this	research.	He	has	a	wide	range
of	other	interests,	including	professional	and	social	aspects	of	science	and
education,	and	studies	this	area	using	autoethnographical	and	autobiographical
methods.	He	co-founded	Python	User	Group	(Singapore),	and	has	been
instrumental	in	inaugurating	PyCon	Asia-Pacific	as	one	of	the	3	major	Python
conferences	worldwide,	together	with	PyCon	US	and	EuroPython.	On	the
commercial	side,	he	is	the	principal	partner	of	Colossus	Technologies	LLP,
Singapore.	In	his	free	time,	he	likes	to	read,	enjoy	a	cup	of	coffee,	writing	his
personal	journal,	or	philosophizing	on	various	aspects	of	life.

	

Packt	is	searching	for	authors	like
you
If	you're	interested	in	becoming	an	author	for	Packt,	please	visit	authors.packtpub.c
om	and	apply	today.	We	have	worked	with	thousands	of	developers	and	tech
professionals,	just	like	you,	to	help	them	share	their	insight	with	the	global	tech
community.	You	can	make	a	general	application,	apply	for	a	specific	hot	topic
that	we	are	recruiting	an	author	for,	or	submit	your	own	idea.

	

http://authors.packtpub.com

Table	of	Contents

Title	Page

Copyright	and	Credits

Python	Testing	Cookbook

Second	Edition

Packt	Upsell

Why	subscribe?

PacktPub.com

Contributors

About	the	authors

About	the	reviewers

Packt	is	searching	for	authors	like	you

Preface

Who	this	book	is	for

What	this	book	covers

To	get	the	most	out	of	this	book

Download	the	example	code	files

Conventions	used

Sections

Getting	ready

How	to	do	it…

How	it	works…

There's	more…

See	also

Get	in	touch

Reviews

1.	 Using	Unittest	to	Develop	Basic	Tests

Introduction

Asserting	the	basics

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

assertEquals	is	preferred	over	assertTrue	and	assertFalse

self.fail([msg])	can	usually	be	rewritten	with	assertions

Our	version	of	Python	can	impact	our	options

Setting	up	and	tearing	down	a	test	harness

How	to	do	it...

How	it	works...

Running	test	cases	from	the	command	line

How	to	do	it...

How	it	works...

There's	more...

Running	a	subset	of	test	case	methods

How	to	do	it...

How	it	works...

Chaining	together	a	suite	of	tests

How	to	do	it...

How	it	works...

There's	more...

The	name	of	the	test	case	should	be	significant

Defining	test	suites	inside	the	test	module

How	to	do	it...

How	it	works...

There's	more...

Test	suite	methods	must	be	outside	of	the	test	class

Why	have	different	suites?

optparse	is	being	phased	out	and	replaced	by	argparse

Retooling	old	test	code	to	run	inside	unittest

How	to	do	it...

How	it	works...

There's	more...

Where	are	the	bugs?

FunctionTestCase	is	a	temporary	measure

Breaking	down	obscure	tests	into	simple	ones

How	to	do	it...

How	it	works...

There's	more...

Where	is	the	bug?

What	is	the	right	size	for	a	test	method?

Unittests	versus	integration	tests

Testing	the	edges

How	to	do	it...

How	it	works...

There's	more...

Identifying	the	edges	is	important

Testing	for	unexpected	conditions

Testing	corner	cases	by	iteration

How	to	do	it...

How	it	works...

There's	more...

Does	this	defy	the	recipe –	breaking	down	obscure	tests	

into	simple	ones?

How	does	this	compare	with	the	recipe –	testing	the	edge

s?

See	also

2.	 Running	Automated	Test	Suites	with	Nose

Introduction

Getting	nosy	with	testing

How	to	do	it...

How	it	works...

There's	more...

Nose	is	extensible

Nose	is	embeddable

See	also

Embedding	nose	inside	Python

How	to	do	it...

How	it	works...

There's	more...

Writing	a	nose	extension	to	pick	tests	based	on	regular	expressions

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

Writing	a	nose	extension	to	generate	a	CSV	report

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

Writing	a	project-level	script	that	lets	you	run	different	test	suites

How	to	do	it...

How	it	works...

There's	more...

Why	use	getopt	instead	of	optparse?

3.	 Creating	Testable	Documentation	with	doctest

Introduction

Documenting	the	basics

How	to	do	it...

How	it	works...

There's	more...

Catching	stack	traces

How	to	do	it...

How	it	works...

Running	a doctest from	the	command	line

How	to	do	it...

How	it	works...

Coding	a	test	harness	for	doctest

How	to	do	it...

How	it	works...

There's	more...

Filtering	out	test	noise

How	to	do	it...

How	it	works...

There's	more...

Printing	out	all	your	documentation	including	a	status	report

How	to	do	it...

How	it	works...

There's	more...

Testing	the	edges

How	to	do	it...

How	it	works...

There's	more...

See	also

Testing	corner	cases	by	iteration

How	to	do	it...

How	it	works...

Does	this	type	of	test	fit	better	into	doctest	or	unittest?

See	also

Getting	nosy	with	doctest

Getting	ready

How	to	do	it...

How	it	works...

Updating	the	project-level	script	to	run	this	chapter's	doctests

How	to	do	it...

How	it	works...

There's	more...

4.	 Testing	Customer	Stories	with	Behavior-Driven	Development

Introduction

Naming	tests	that	sound	like	sentences	and	stories

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

Testing	separate	doctest	documents

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

Doesn't	this	defy	the	usability	of	docstrings?

Writing	a	testable	story	with	doctest

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

Writing	a	testable	novel	with	doctest

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

Writing	a	testable	story	with	Voidspace	Mock	and	nose

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

Tell	me	more	about	the	spec	nose	plugin!

Why	didn't	we	reuse	the	plugin	from	the	recipe	"Naming	tests	so	they

sound	like	sentences	and	stories"?

See	also

Writing	a	testable	story	with	mockito	and	nose

Getting	ready

How	to	do	it...

How	it	works...

See	also

Writing	a	testable	story	with	Lettuce

Getting	ready...

How	to	do	it...

How	it	works...

There's	more...

How	complex	should	a	story	be?

Don't	mix	wiring	code	with	application	code

Lettuce	works	great	using	folders

See	also

Using	Should	DSL	to	write	succinct	assertions	with	Lettuce

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

See	also

Updating	the	project-level	script	to	run	this	chapter's	BDD	tests

Getting	ready

How	to	do	it...

How	it	works...

See	also

5.	 High-Level	Customer	Scenarios	with	Acceptance	Testing

Introduction

Installing	Pyccuracy

How	to	do	it...

How	it	works...

See	also

Testing	the	basics	with	Pyccuracy

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

See	also

Using	Pyccuracy	to	verify	web	app	security

Getting	ready

How	to	do	it...

How	it	works...

See	also

Installing	Robot	Framework

How	to	do	it...

There's	more...

Creating	a	data-driven	test	suite	with	Robot	Framework

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

Do	I	have	to	write	HTML	tables?

What	are	the	best	ways	to	write	the	code	that	implements	our	custom	

keywords?

Robot	Framework	variables	are	Unicode

See	also

Writing	a	testable	story	with	Robot	Framework

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

Given-When-Then	results	in	duplicate	rules

Do	the	try-except	blocks	violate	the	idea	of	keeping	things	light?

See	also

Tagging	Robot	Framework	tests	and	running	a	subset

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

What	about	documentation?

See	also

Testing	web	basics	with	Robot	Framework

Getting	ready...

How	to	do	it...

How	it	works...

There's	more...

Learn	about	timing	configurations –	they	may	be	importan

t!

See	also

Using	Robot	Framework	to	verify	web	app	security

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

Why	not	use	a	"remember	me"	option?

Shouldn't	we	refactor	the	first	test	scenario	to	use	the	keyword?

Would	arguments	make	the	login	keyword	more	flexible?

See	also

Creating	a	project-level	script	to	verify	this	chapter's	acceptance	tests

Getting	ready

How	to	do	it...

How	it	works...

There's	more

Can	we	only	use	getopt?

What's	wrong	with	using	the	various	command-line	tools?

6.	 Integrating	Automated	Tests	with	Continuous	Integration

Introduction

Generating	a	CI	report	for	Jenkins	using	NoseXUnit

Getting	ready

How	to	do	it...

How	it	works...

Configuring	Jenkins	to	run	Python	tests	upon	commit

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

Do	I	have	to	use	git	for	source	code	management?

What	is	the	format	of	polling?

See	also

Configuring	Jenkins	to	run	Python	tests	when	scheduled

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

Jenkins	versus	TeamCity

See	also

Generating	a	CI	report	for	TeamCity	using	teamcity-nose

Getting	ready

How	to	do	it...

How	it	works...

Configuring	TeamCity	to	run	Python	tests	upon	commit

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

What	did	teamcity-nose	give	us?

See	also

Configuring	TeamCity	to	run	Python	tests	when	scheduled

Getting	ready

How	to	do	it...

How	it	works...

See	also

7.	 Measuring	Your	Success	with	Test	Coverage

Introduction

Building	a	network	management	application

How	to	do	it...

How	it	works...

Installing	and	running	coverage	on	your	test	suite

How	to	do	it...

There's	more...

Why	are	there	no	asserts	in	unittest?

Generating	an	HTML	report	using	coverage

How	to	do	it...

How	it	works...

Generating	an	XML	report	using	coverage

How	to	do	it...

How	it	works...

What	use	is	an	XML	report?

See	also

Getting	nosy	with	coverage

How	to	do	it...

How	it	works...

There's	more...

Why	use	the	nose	plugin	instead	of	the	coverage	tool	directly?

Why	are	SQLite3	and	Spring	Python	included?

Filtering	out	test	noise	from	coverage

How	to	do	it...

How	it	works...

There's	more...

See	also

Letting	Jenkins	get	nosy	with	coverage

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

Nose	doesn't	directly	support	coverage's	XML	option

Updating	the	project-level	script	to	provide	coverage	reports

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

Can	we	only	use	getopt?

8.	 Smoke/Load	Testing	–	Testing	Major	Parts

Introduction

Defining	a	subset	of	test	cases	using	import	statements

How	to	do	it...

How	it	works...

There's	more...

Security,	checking,	and	integration	aren't	smoke	tests!

What	provides	good	flexibility?

See	also

Leaving	out	integration	tests

How	to	do	it...

How	it	works...

There's	more...

Should	a	smoke	test	include	integration	or	unit	tests?

See	also

Targeting	end-to-end	scenarios

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

How	does	this	define	smoke	tests?

See	also

Targeting	the	test	server

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

How	likely	is	it	that	a	development	and	production	environment	would

use	two	different	database	systems?

This	isn't	just	confined	to	database	systems

Coding	a	data	simulator

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

Why	does	the	server	script	initialize	the	database?

Why	MySQL	instead	of	SQLite?

See	also

Recording	and	playing	back	live	data	in	real	time

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

I	thought	this	recipe	was	about	live	data!

Is	opening	and	closing	a	file	for	every	event	a	good	idea?

What	about	offloading	the	storage	of	data?

See	also

Recording	and	playing	back	live	data	as	fast	as	possible

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

What	is	the	difference	between	this	and	playing	back	in	real	time?

Where	are	the	breaking	points	of	this	application?

What	amount	of	live	data	should	be	collected?

See	also

Automating	your	management	demo

How	to	do	it...

How	it	works...

There's	more...

What	if	my	manager	likes	to	take	detours?

9.	 Good	Test	Habits	for	New	and	Legacy	Systems

Introduction

Something	is	better	than	nothing

How	to	do	it...

How	it	works...

That	can't	be	everything!

See	also

Coverage	isn't	everything

How	to	do	it...

How	it	works...

There's	more...

Are	we	not	supposed	to	increase	coverage?

But	I	want	to	brag	about	the	coverage	of	my	system!

Be	willing	to	invest	in	test	fixtures

How	to	do	it....

How	it	works...

There's	more...

Is	this	just	about	setting	up	a	database?

If	you	aren't	convinced	about	the	value	of	testing,	your	team	won't	be	either

Harvesting	metrics

How	to	do	it...

How	it	works...

There's	more...

Metrics	aren't	just	for	defending	yourself	to	management

Capturing	a	bug	in	an	automated	test

How	to	do	it...

How	it	works...

There's	more...

When	the	time	comes	to	add	a	completely	new	module,	you	will be

ready	for	it

Don't	give	into	the	temptation	to	skip	testing

Separating	algorithms	from	concurrency

How	to	do	it...

How	it	works...

Research	test	options	provided	by	your	concurrency	frameworks

Pause	to	refactor	when	a	test	suite	takes	too	long	to	run

How	to	do	it...

How	it	works...

There's	more...

See	also

Cash	in	on	your	confidence

How	to	do	it...

How	it	works...

Be	willing	to	throw	away	an	entire	day's changes

How	to	do	it...

How	it	works...

There's	more...

How	does	this	mesh	with	"Something	is	better	than	nothing"

See	also

Instead	of	shooting	for	100	percent coverage,	try	to	have	a	steady	growth

How	to	do	it...

How	it	works...

Randomly	breaking up	your	app	can	lead	to better	code

How	to	do	it...

How	it	works...

There's	more...

How	does	this	compare	to	fuzz	testing?

Are	there	any	tools	to	help	with	this?

Other	Books	You	May	Enjoy

Leave	a	review	-	let	other	readers	know	what	you	think

Preface
Testing	has	always	been	part	of	software	development.	For	decades,
comprehensive	testing	was	defined	by	complex	manual	test	procedures	backed
by	big	budgets;	but	something	revolutionary	happened	in	1998.	In	his	Guide	to
Better	Smalltalk,	Smalltalk	guru,	Kent	Beck,	introduced	an	automated	test
framework	called	SUnit.	This	triggered	an	avalanche	of	test	frameworks,
including	JUnit,	PyUnit,	and	many	others	for	different	languages	and	various
platforms,	dubbed	the	xUnit	movement.	Automated	testing	was	made	a
cornerstone	of	the	agile	movement	when	the	top	17	software	experts	signed	the
Agile	Manifesto	in	2001.

Testing	includes	many	different	styles,	including	unit	testing,	integration	testing,
acceptance	testing,	smoke	testing,	load	testing,	and	countless	others.	This	book
delves	deeper	and	explores	testing	at	all	the	important	levels	while	using	the
nimble	power	of	Python.	It	also	demonstrates	many	tools.

This	book	is	meant	to	expand	your	knowledge	of	testing	from	something	you
either	heard
about,	or	have	practiced	a	little,	into	something	you	can	apply	at	any	level	to
meet	your	needs	in	improving	software	quality.	We	hope	to	give	you	the	tools	to
reap	huge	rewards	in	better	software	development	and	customer	satisfaction.

Who	this	book	is	for
If	you're	a	Python	developer	who	wants	to	take	testing	to	the	next	level	and
would	like	to	expand	your	testing	skills,	this	book	is	for	you.	It	is	assumed	that
you	have	some	Python	programming	knowledge.

What	this	book	covers
Chapter	1,	Using	Unittest	to	Develop	Basic	Tests,	gives	you	a	quick	introduction
to	the	most	commonly	used	test	framework	in	the	Python	community.

Chapter	2,	Running	Automated	Test	Suites	with	Nose,	introduces	the	most
ubiquitous	Python	test	tool	and	gets	busy	by	showing	you	how	to	write
specialized	plugins.

Chapter	3,	Creating	Testable	Documentation	with	doctest,	shows	many	different
ways	of	using	Python's	docstrings	to	build	runnable	doctests	as	well	as	write
custom	test	runners.

Chapter	4,	Testing	Customer	Stories	with	Behavior-Driven	Development,	dives
into	writing	easy-to-read	testable	customer	stories	using	doctest,	mocking,	and
Lettuce/Should	DSL.

Chapter	5,	High	Level	Customer	Scenarios	with	Acceptance	Testing,	helps	you	get
into	the	mindset	of	the	customer	and	write	tests	from	their	perspective	using
Pyccuracy	and	the	Robot	Framework.

Chapter	6,	Integrating	Automated	Tests	with	Continuous	Integration,	shows	you
how	to	add	continuous	integration	to	your	development	process	with	Jenkins	and
TeamCity.

Chapter	7,	Measuring	your	Success	with	Test	Coverage,	explores	how	to	create
coverage	reports	and	interpret	them	correctly.	It	also	delves	deeper	in	terms	of
seeing	how	to	tie	them	in	with	your	continuous	integration	system.

Chapter	8,	Smoke/Load	Testing	–	Testing	Major	Parts,	focuses	on	how	to	create
smoke	test	suites	to	get	a	pulse	from	the	system.	It	also	demonstrates	how	to	put
the	system	under	load	in	order	to	ensure	that	it	can	handle	the	current	load	as
well	as	find	the	next	breaking	point	for	future	loads.

Chapter	9,	Good	Test	Habits	for	New	and	Legacy	Systems,	takes	you	through
many	different	lessons	learned	from	the	author	about	what	works	when	it	comes

to	software	testing.

Chapter	10,	Web	UI	Tesing	Using	Selenium,	teaches	you	how	to	write	suitable
test	sets	for	their	software.	It	will	explain	the	various	test	sets	and	frameworks	to
use.	This	chapter	is	not	available	in	the	book,	it	is	available	online	in	the
following	link:	https://www.packtpub.com/sites/default/files/downloads/Web_UI_Testing_Usi
ng_Selenium.pdf

https://www.packtpub.com/sites/default/files/downloads/Web_UI_Testing_Using_Selenium.pdf

To	get	the	most	out	of	this	book
You	will	need	Python	installed	on	your	machine.	This	book	uses	many	other
Python	test	tools	but	includes	detailed	steps	showing	how	to	install	and	use
them.

Download	the	example	code	files
You	can	download	the	example	code	files	for	this	book	from	your	account	at	www.
packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit	www.packtpub.com/su
pport	and	register	to	have	the	files	emailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	at	www.packtpub.com.
2.	 Select	the	SUPPORT	tab.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box	and	follow	the	onscreen

instructions.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the
folder	using	the	latest	version	of:

WinRAR/7-Zip	for	Windows
Zipeg/iZip/UnRarX	for	Mac
7-Zip/PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/PacktPu
blishing/Python-Testing-Cookbook-Second-Edition.	We	also	have	other	code	bundles
from	our	rich	catalog	of	books	and	videos	available	at	https://github.com/PacktPubli
shing/.	Check	them	out!

	

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Python-Testing-Cookbook-Second-Edition
https://github.com/PacktPublishing/

Conventions	used
There	are	a	number	of	text	conventions	used	throughout	this	book.

CodeInText:	Indicates	code	words	in	text,	database	table	names,	folder	names,
filenames,	file	extensions,	pathnames,	dummy	URLs,	user	input,	and	Twitter
handles.	Here	is	an	example:	"You	can	also	use	pip	install	virtualenv	as	well."

A	block	of	code	is	set	as	follows:

if	__name__==	"__main__":	

				suite	=	unittest.TestLoader().loadTestsFromTestCase(\

														RomanNumeralConverterTest)	

				unittest.TextTestRunner(verbosity=2).run(suite)	

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the
relevant	lines	or	items	are	set	in	bold:

def	test_bad_inputs(self):	

				r	=	self.cvt.convert_to_roman	

				d	=	self.cvt.convert_to_decimal	

				edges	=	[("equals",	r,	"",	None),\	

Any	command-line	input	or	output	is	written	as	follows:

$	python	recipe3.py

Bold:	Indicates	a	new	term,	an	important	word,	or	words	that	you	see	on	screen.
For	example,	words	in	menus	or	dialog	boxes	appear	in	the	text	like	this.	Here	is
an	example:	"Pick	a	class	to	test.	This	is	known	as	the	class	under	test."

Warnings	or	important	notes	appear	like	this.

Tips	and	tricks	appear	like	this.

Sections
In	this	book,	you	will	find	several	headings	that	appear	frequently	(Getting
ready,	How	to	do	it...,	How	it	works...,	There's	more...,	and	See	also).

To	give	clear	instructions	on	how	to	complete	a	recipe,	use	these	sections	as
follows:

Getting	ready
This	section	tells	you	what	to	expect	in	the	recipe	and	describes	how	to	set	up
any	software	or	any	preliminary	settings	required	for	the	recipe.

How	to	do	it…
This	section	contains	the	steps	required	to	follow	the	recipe.

How	it	works…
This	section	usually	consists	of	a	detailed	explanation	of	what	happened	in	the
previous	section.

There's	more…
This	section	includes	of	additional	information	about	the	recipe	in	order	to	make
you	more	knowledgeable	about	the	recipe.

See	also
This	section	provides	helpful	links	to	other	useful	information	for	the	recipe.

Get	in	touch
Feedback	from	our	readers	is	always	welcome.

General	feedback:	Email	feedback@packtpub.com	and	mention	the	book	title	in	the
subject	of	your	message.	If	you	have	questions	about	any	aspect	of	this	book,
please	email	us	at	questions@packtpub.com.

Errata:	Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our
content,	mistakes	do	happen.	If	you	have	found	a	mistake	in	this	book,	we	would
be	grateful	if	you	would	report	this	to	us.	Please	visit	www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering
the	details.

Piracy:	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
internet,	we	would	be	grateful	if	you	would	provide	us	with	the	location	address
or	website	name.	Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the
material.

If	you	are	interested	in	becoming	an	author:	If	there	is	a	topic	that	you	have
expertise	in	and	you	are	interested	in	either	writing	or	contributing	to	a	book,
please	visit	authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews
	

Please	leave	a	review.	Once	you	have	read	and	used	this	book,	why	not	leave	a
review	on	the	site	that	you	purchased	it	from?	Potential	readers	can	then	see	and
use	your	unbiased	opinion	to	make	purchase	decisions,	we	at	Packt	can
understand	what	you	think	about	our	products,	and	our	authors	can	see	your
feedback	on	their	book.	Thank	you!

For	more	information	about	Packt,	please	visit	packtpub.com.

	

	

	

https://www.packtpub.com/

Using	Unittest	to	Develop	Basic	Tests
	

In	this	chapter,	we	will	cover	the	following	recipes:

Asserting	the	basics
Setting	up	and	tearing	down	a	test	harness
Running	test	cases	from	the	command	line
Running	a	subset	of	test	case	methods
Chaining	together	a	suite	of	tests
Defining	test	suites	inside	the	test	module
Retooling	old	test	code	to	run	inside	unittest
Breaking	down	obscure	tests	into	simple	ones
Testing	the	edges
Testing	corner	cases	by	iteration

	

	

Introduction
Testing	has	always	been	a	part	of	software	development.	However,	the	world
was	introduced	to	a	new	concept	called	automated	testing	when	Kent	Beck	and
Erich	Gamma	introduced	JUnit	for	Java	development	(http://junit.org).	It	was
based	on	Kent's	earlier	work	with	Smalltalk	and	automated	testing.	Currently,
automated	testing	has	become	a	well-accepted	concept	in	the	software	industry.

A	Python	version,	originally	dubbed	PyUnit,	was	created	in	1999	and	added	to
Python's	standard	set	of	libraries	later	in	2001	in	Python	2.1.	Currently,	the
PyUnit	library	is	available	for	both	versions	of	Python,	that	is,	2.7	(https://docs.py
thon.org/2.7/library/unittest.html)	and	3.x	(https://docs.python.org/3.6/library/unittest.
html).	Since	then,	the	Python	community	has	referred	to	it	as	unittest,	the	name
of	the	library	imported	into	the	test	code.

Unittest	is	the	foundation	of	automated	testing	in	the	Python	world.	In	this
chapter,	we	will	explore	the	basics	of	testing	and	asserting	code	functionality,
building	suites	of	tests,	test	situations	to	avoid,	and	finally	testing	edges	and
corner	cases.

For	all	the	recipes	in	this	chapter,	we	will	use	virtualenv	(https://pypi.python.org/pyp
i/virtualenv)	to	create	a	controlled	Python	runtime	environment.	Unittest	is	part
of	the	standard	library,	which	requires	no	extra	installation	steps.	But	in	later
chapters,	using	virtualenv	will	allow	us	to	conveniently	install	other	test	tools,
without	cluttering	up	our	default	Python	installation.	The	steps	to	install
virtualenv	are	as	follows:

1.	 To	install	virtualenv,	either	download	it	from	the	site	mentioned	previously
or	if	you	have	Easy	Install,	just	type:	easy_install	virtualenv.	You	can	also	use
pip	install	virtualenv	as	well.

For	some	systems,	you	may	need	to	install	it	either	as	root	or	by	using	sudo.

2.	 After	installing	virtualenv,	use	it	to	create	a	clean	environment	named	ptc	(an
abbreviation	used	for	Python	Testing	Cookbook)	by	using	--no-site-packages.

http://junit.org
http://www.xprogramming.com/testfram.htm)
https://docs.python.org/2.7/library/unittest.html
https://docs.python.org/3.6/library/unittest.html
https://pypi.python.org/pypi/virtualenv

3.	 Activate	the	virtual	Python	environment.	This	can	vary,	depending	on
which	shell	you	are	using.	Take	a	look	at	this	screenshot:

4.	 For	the	Windows	platform,	you	can	either	select	the	folder	where	you	want
to	create	the	ptc	folder	or	you	can	directly	get	it	created	in	your	desired
drive.	Look	at	this	screenshot:

5.	 Finally,	verify	that	the	environment	is	active	by	checking	the	path	of	pip.

For	more	information	on	the	usage	and	benefits	of	virtualenv,	please	read	http://iamzed.com/2009/05/
07/a-primer-on-virtualenv.

http://iamzed.com/2009/05/07/a-primer-on-virtualenv

Asserting	the	basics
	

The	basic	concept	of	an	automated	unittest	test	case	is	to	instantiate	part	of	our
code,	subject	it	to	operations,	and	verify	certain	results	using	assertions:

If	the	results	are	as	expected,	unittest	counts	it	as	a	test	success
If	the	results	don't	match,	an	exception	is	thrown,	and	unittest	counts	it	as	a
test	failure

	

	

Getting	ready
Unittest	was	added	to	Python's	standard	batteries	included	library	suite	and
doesn't	require	any	extra	installation.

How	to	do	it...
	

With	these	steps,	we	will	code	a	simple	program	and	then	write	some	automated
tests	using	unittest:

1.	 Create	a	new	file	called	recipe1.py	for	this	recipe's	code.	Pick	a	class	to	test.
This	is	known	as	the	class	under	test.	For	this	recipe,	we'll	pick	a	class	that
uses	a	simplistic	Roman	numeral	converter:

class	RomanNumeralConverter(object):

				def	__init__	(self,	roman_numeral):	

								self.roman_numeral	=	roman_numeral	

								self.digit_map	=	{"M":1000,	"D":500,"C":100,\

																									"L":50,	"X":10,	"V":5,	"I":1}	

					def	convert_to_decimal(self):	

								val	=	0	

								for	char	in	self.roman_numeral:	

												val	+=	self.digit_map[char]	

								return	val	

This	Roman	numeral	converter	applies	the	simple	rules	of	addition,	but	it	doesn't	have	the
special	subtraction	patterns	such	as	XL	mapping	to	40.	The	purpose	is	not	to	have	the	best
Roman	numeral	converter,	but	to	observe	the	various	test	assertions.

2.	 Write	a	new	class	and	give	it	the	same	name	with	Test	appended	to	the	end,
subclassing	unittest.TestCase.	Appending	a	test	class	with	Test	is	a	common
convention,	but	not	a	requirement.	Extending	unittest.TestCase	is	a
requirement	needed	to	hook	into	unittest's	standard	test	runner:

import	unittest	

class	RomanNumeralConverterTest(unittest.TestCase):	

3.	 Create	several	methods	with	names	starting	with	test,	so	they	are
automatically	picked	up	by	the	test	number	of	unittest:

def	test_parsing_millenia(self):

								value	=RomanNumeralConverter("M")	

								self.assertEqual(1000,	value.convert_to_decimal())	

					def	test_parsing_century(self):	

								value	=RomanNumeralConverter("C")	

								self.assertEqual(100,	value.convert_to_decimal())	

					def	test_parsing_half_century(self):	

								value	=RomanNumeralConverter("L")	

								self.assertEqual(50,	value.convert_to_decimal())	

					def	test_parsing_decade(self):	

								value	=RomanNumeralConverter("X")	

								self.assertEqual(10,	value.convert_to_decimal())	

					def	test_parsing_half_decade(self):	

								value	=RomanNumeralConverter("V")	

								self.assertEqual(5,	value.convert_to_decimal())	

					def	test_parsing_one(self):	

								value	=	RomanNumeralConverter("I")	

								self.assertEqual(1,	value.convert_to_decimal())	

					def	test_empty_roman_numeral(self):	

								value	=RomanNumeralConverter("")	

								self.assertTrue(value.convert_to_decimal()	==	0)	

								self.assertFalse(value.convert_to_decimal()	>	0)	

					def	test_no_roman_numeral(self):	

								value	=RomanNumeralConverter(None)	

								self.assertRaises(TypeError,	value.convert_to_decimal)	

4.	 Make	the	entire	script	runnable	and	then	use	unittest's	test	runner:

if	__name__=="__main__":	

				unittest.main()

5.	 Run	the	file	from	the	command	line,	as	shown	in	this	screenshot:

self.assertEquals()	has	been	deprecated	in	Python	3.

	

	

	

How	it	works...
	

In	the	first	step,	we	picked	a	class	to	test.	Next,	we	created	a	separate	class	to
test.	By	naming	the	test	class	as	[class	under	test]Test,	it	is	easy	to	tell	which	class
is	under	test.	Each	test	method	name	must	start	with	test,	so	that	unittest	will
automatically	pick	it	up	and	run	it.	To	add	more	tests,	just	define	more	test
methods.	Each	of	these	tests	utilizes	various	assertions:

assertEqual(first,	second[,	msg]):	Compares	first	and	second	expressions	and
fails	if	they	don't	have	the	same	value.	We	can	optionally	print	a	special
message	if	there	is	a	failure.
assertTrue(expression[,	msg]):	Tests	the	expression	and	fails	if	it	is	false.	We
can	optionally	print	a	special	message	if	there	is	a	failure.
assertFalse(expression[,	msg]):	Tests	the	expression	and	fails	if	it	is	true.	We
can	optionally	print	a	special	message	if	there	is	a	failure.
assertRaises(exception,	callable,	...):	Runs	the	callable	with	any	arguments,
for	the	callable	listed	afterwards,	and	fails	if	it	doesn't	raise	the	exception.

	

	

There's	more...
Unittest	provides	many	options	for	asserting,	failing,	and	other	convenient
options.	The	following	sections	show	some	recommendations	on	how	to	pick
and	choose	from	these	options.

assertEquals	is	preferred	over
assertTrue	and	assertFalse
	

When	an	assertEquals	assertion	fails,	the	first	and	second	values	are	printed	in	the
error	report,	giving	a	better	feedback	of	what	went	wrong,	whereas	assertTrue	and
assertFalse	simply	report	failure.	Not	all	testable	results	fit	this,	but,	if	possible,
use	assertEquals.

It's	important	to	understand	the	concept	of	equality.	When	comparing	integers,
strings,	and	other	scalars,	it's	very	simple.	It	doesn't	work	as	well	with
collections	such	as	dictionaries,	lists,	and	sets.	Complex,	custom-defined	objects
may	carry	custom	definitions	of	equality.	These	complex	objects	may	require
more	fine-grained	assertions.	That	is	why	it's	probably	a	good	idea	to	also
include	some	test	methods	that	directly	target	equality	and	inequality	when
working	with	custom	objects.

	

	

	

self.fail([msg])	can	usually	be
rewritten	with	assertions
	

Unittest	has	a	self.fail([msg])	operation	that	unconditionally	causes	the	test	to
fail,	along	with	an	optional	message.	This	was	not	shown	earlier	because	it	is	not
recommended	for	use.

The	fail	method	is	often	used	to	detect	certain	situations	such	as	exceptions.	A
common	idiom	is	as	follows:	import	unittest	class	BadTest(unittest.TestCase):
def	test_no_roman_number(self):	value	=	RomanNumeralConverter(None)	try:

value.convert_to_decimal()	self.fail("Expected	a	TypeError")	except	TypeError:

pass

if	__name__=="__main__":	unittest.main()

This	tests	the	same	behavior	as	the	earlier	test_no_roman_numeral.	The	problem	with
this	approach	is	that	when	the	code	is	working	properly	the	fail	method	is	never
executed.	Code	not	executed	regularly	is	at	risk	of	becoming	out	of	date	and
invalid.	This	will	also	interfere	with	coverage	reports.	Instead,	it	is	better	to	use
assertRaises	as	we	used	in	the	earlier	examples.	For	other	situations	look	at
rewriting	the	test	using	the	other	assertions.

	

	

	

Our	version	of	Python	can	impact	our
options
	

Python's	official	documentation	on	unittest	shows	many	other	assertions;
however,	they	depend	on	the	version	of	Python	we	are	using.	Some	have	been
deprecated;	others	are	only	available	in	later	versions,	such	as	Python	3.6.

If	our	code	must	support	multiple	versions	of	Python	then	we	must	use	the
lowest	common	denominator.	This	recipe	shows	core	assertions	available	in	all
versions	since	Python	3.6.

	

	

	

Setting	up	and	tearing	down	a	test
harness
	

Unittest	provides	an	easy	mechanism	to	configure	the	state	of	the	system	when	a
piece	of	code	is	put	through	a	test.	It	also	allows	us	to	clean	things	up	afterward,
if	needed.	This	is	commonly	needed	when	a	particular	test	case	has	repetitive
steps	used	in	every	test	method.

Barring	any	references	to	external	variables	or	resources	that	carry	state	from
one	test	method	to	the	next,	each	test	method	starts	from	the	same	state.

	

	

	

How	to	do	it...
	

With	the	following	steps,	we	will	set	up	and	teardown	a	test	harness	for	each	test
method:

1.	 Create	a	new	file	called	recipe2.py	for	the	code	in	this	recipe.
2.	 Pick	a	class	to	test.	In	this	case,	we	will	use	a	slightly	altered	version	of	our

Roman	numeral	converter,	where	the	function,	not	the	constructor,	provides
the	input	value	to	convert:

class	RomanNumeralConverter(object):	

				def	__init__(self):	

								self.digit_map	=	{"M":1000,	"D":500,	"C":100,\

																									"L":50,	"X":10,	"V":5,	"I":1}	

				def	convert_to_decimal(self,	roman_numeral):

								val	=	0	

								for	char	in	roman_numeral:	

												val	+=	self.digit_map[char]	

								return	val	

3.	 Create	a	class	to	test	using	the	same	name	as	the	class	under	test	with	Test
appended	to	the	end:

import	unittest	

class	RomanNumeralConverterTest(unittest.TestCase):	

4.	 Create	a	setUp	method	that	creates	an	instance	of	the	class	under	test:

def	setUp(self):	

								print	("Creating	a	new	RomanNumeralConverter...")	

								self.cvt	=RomanNumeralConverter()

5.	 Create	a	tearDown	method	that	destroys	the	instance	of	the	class	under	test:

def	tearDown(self):	

								print	("Destroying	the	RomanNumeralConverter...")	

								self.cvt	=	None	

6.	 Create	all	the	test	methods	using	self.converter:

def	test_parsing_millenia(self):

								self.assertEqual(1000,\

																									self.cvt.convert_to_decimal("M"))	

					def	test_parsing_century(self):	

								self.assertEqual(100,	\

																										self.cvt.convert_to_decimal("C"))	

					def	test_parsing_half_century(self):	

								self.assertEqual(50,\

																									self.cvt.convert_to_decimal("L"))	

					def	test_parsing_decade(self):	

								self.assertEqual(10,self.cvt.convert_to_decimal("X"))	

					def	test_parsing_half_decade(self):	

								self.assertEqual(5,self.cvt.convert_to_decimal("V"))	

					def	test_parsing_one(self):	

								self.assertEqual(1,self.cvt.convert_to_decimal("I"))	

					def	test_empty_roman_numeral(self):	

								self.assertTrue(self.cvt.convert_to_decimal()	==	0)	

								self.assertFalse(self.cvt.convert_to_decimal()	>	0)	

					def	test_no_roman_numeral(self):	

								self.assertRaises(TypeError,\

																										self.cvt.convert_to_decimal,None)

7.	 Make	the	entire	script	runnable	and	then	use	the	test	runner	of	unittest:

if	__name__=="__main__":	

					unittest.main()

8.	 Run	the	file	from	the	command	line,	as	shown	in	this	screenshot:

	

	

	

How	it	works...
In	the	first	step,	we	picked	a	class	to	test.	Next,	we	created	a	separate	test	class.
By	naming	the	test	class	[class	under	test]Test,	it	is	easy	to	tell	which	class	is
under	test.

Then,	we	defined	a	setUp	method	that	unittest	runs	before	every	Test	method.
Next,	we	created	a	tearDown	method	that	unittest	runs	after	every	Test	method.	In
this	case,	we	added	a	print	statement	in	each	of	them	to	demonstrate	unittest
rerunning	these	two	methods	for	every	test	method.	In	reality,	it	would	probably
add	too	much	noise	to	our	testing.

One	deficiency	of	unittest	is	the	lack	of	setUpClass/tearDownClass	and
setUpModule/tearDownModule,	providing	the	opportunity	to	run	code	in	greater	scopes
than	at	the	test	method	level.	This	has	been	added	to	unittest2.

Each	test	case	can	have	one	setUp	and	one	tearDown	method:	Our	RomanNumeralConverter	is
pretty	simple	and	fits	easily	into	a	single	test	class.	But	the	test	class	allows	only	one	setUp
method	and	one	tearDown	method.	If	different	combinations	of	setUp/tearDown	methods	are	needed
for	various	test	scenarios,	then	this	is	a	cue	to	code	more	test	classes.	Just	because	we	write	a
setUp	method,	doesn't	mean	we	need	a	tearDown	method.	In	our	case,	we	could	have	skipped
destroying	the	RomanNumeralConverter,	because	a	new	instance	would	be	replacing	it	for	every	test
method.	It	was	really	for	demonstration	purposes	only.	What	are	the	other	uses	of	those	cases
that	need	a	tearDown	method?	Using	a	library	that	requires	some	sort	of	close	operation	is	a
ripe	candidate	for	writing	a	tearDown	method.

Running	test	cases	from	the
command	line
It	is	easy	to	adjust	the	test	runner	to	print	out	every	test	method	as	it	is	run.

How	to	do	it...
	

In	the	following	steps,	we	will	run	test	cases	with	more	detailed	output,	giving	us
better	insight	into	how	things	run:

1.	 Create	a	new	file	called	recipe3.py	for	this	recipe's	code.
2.	 Pick	a	class	to	test.	In	this	case,	we	will	use	our	Roman	numeral	converter:

class	RomanNumeralConverter(object):	

				def	__init__(self,	roman_numeral):	

								self.roman_numeral	=	roman_numeral	

								self.digit_map	=	{"M":1000,	"D":500,	"C":100,	"L":50,\

																											"X":10,"V":5,	"I":1}	

	

				def	convert_to_decimal(self):

								val	=	0	

								for	char	in	self.roman_numeral:

												val	+=	self.digit_map[char]	

								return	val

3.	 Create	a	test	class	using	the	same	name	as	the	class	under	test	with	Test
appended	to	the	end:

import	unittest

class	RomanNumeralConverterTest(unittest.TestCase):	

4.	 Create	several	test	methods.	For	this	recipe,	the	second	test	have	been
deliberately	coded	to	fail:

def	test_parsing_millenia(self):	

				value	=RomanNumeralConverter("M")	

				self.assertEqual(1000,	value.convert_to_decimal())	

	

def	test_parsing_century(self):	

				"This	test	method	is	coded	to	fail	for	demo."

					value	=RomanNumeralConverter("C")	

					self.assertEqual(10,	value.convert_to_decimal())	

5.	 Define	a	test	suite	that	automatically	loads	all	the	test	methods,	and	then
runs	them	with	the	higher	level	of	verbosity:

if	__name__==	"__main__":	

				suite	=	unittest.TestLoader().loadTestsFromTestCase(\

														RomanNumeralConverterTest)	

				unittest.TextTestRunner(verbosity=2).run(suite)	

6.	 Run	the	file	from	the	command	line.	Notice	how,	in	this	screenshot	the	test
method	that	fails,	prints	out	its	Python	docstring:

	

	

	

How	it	works...
A	key	part	of	automated	testing	is	organizing	the	tests.	The	base	units	are	called
test	cases.	These	can	be	combined	together	into	test	suites.	Python's	unittest
module	provides	TestLoader().loadTestsFromTestCase	to	fetch	all	the	test*	methods
automatically	into	a	test	suite.	This	test	suite	is	then	run	through	unittest's
TextTestRunner	with	an	increased	level	of	verbosity.

TextTestRunner	is	unittest's	only	test	runner.	Later	in	this	book,	we	will	look	at	other	test	tools
that	have	different	runners,	including	the	one	that	plugs	in	a	different	unittest	test	runner.

The	previous	screenshot	shows	each	method	along	with	its	module	and	class
name,	as	well	as	success/failure.

There's	more...
This	recipe	not	only	demonstrates	how	to	turn	up	the	verbosity	of	running	tests,
but	also	shows	what	happens	when	a	test	case	fails.	It	renames	the	test	method
with	the	document	string	embedded	in	the	test	method,	and	prints	the	details
later	after	all	the	test	methods	have	been	reported.

	

Running	a	subset	of	test	case	methods
Sometimes,	it's	convenient	to	run	only	a	subset	of	test	methods	in	a	given	test
case.	This	recipe	will	show	how	to	run	either	the	whole	test	case,	or	pick	a	subset
from	the	command	line.

How	to	do	it...
	

The	following	steps	show	how	to	code	a	command-line	script	to	run	subsets	of
tests:

1.	 Create	a	new	file	named	recipe4.py	to	put	all	the	code	for	this	recipe.
2.	 Pick	a	class	to	test.	In	this	case,	we	will	use	our	Roman	numeral	converter:

class	RomanNumeralConverter(object):

				def	__init__(self,	roman_numeral):	

								self.roman_numeral	=	roman_numeral	

								self.digit_map	=	{"M":1000,	"D":500,\

																								"C":100,	"L":50,	"X":10,	"V":5,	"I":1}	

	

				def	convert_to_decimal(self):

								val	=	0	

								for	char	in	self.roman_numeral:	

												val+=self.digit_map[char]

								return	val

3.	 Create	a	test	class	using	the	same	name	as	the	class	under	test	with	Test
appended	to	the	end:

import	unittest	

class	RomanNumeralConverterTest(unittest.TestCase):	

4.	 Create	several	test	methods:

def	test_parsing_millenia(self):

								value	=	RomanNumeralConverter("M")	

								self.assertEquals(1000,	value.convert_to_decimal())	

	

				def	test_parsing_century(self):

								value	=	RomanNumeralConverter("C")	

								self.assertEquals(100,	value.convert_to_decimal())	

5.	 Write	a	main	runner	that	either	runs	the	entire	test	case	or	accepts	a	variable
number	of	test	methods:

if	__name__=	"__main__":

				import	sys

				suite	=	unittest.TestSuite()

				if	len(sys.argv)	==	1:

								suite	=	unittest.TestLoader().loadTestsFromTestCase(\																																																																							

RomanNumeralConverterTest)	

				else:	

								for	test_name	in	sys.argv[1:]:

												suite.addTest(RomanNumeralConverterTest(test_name))

				unittest.TextTestRunner(verbosity=2).run(suite)	

6.	 Run	the	recipe	with	no	extra	command-line	arguments	and	see	it	run	all	the
tests,	as	shown	in	this	screenshot:

	

	

	

How	it	works...
For	this	test	case,	we	coded	a	couple	of	test	methods.	But	instead	of	simply
running	all	the	tests,	or	defining	a	fixed	list,	we	used	Python's	sys	library	to	parse
the	command-line	arguments.	If	there	are	no	extra	arguments,	it	runs	the	entire
test	case.	If	there	are	extra	arguments,	then	they	are	assumed	to	be	test	method
names.	It	uses	unittest's	inbuilt	ability	to	specify	test	method	names	when
instantiating	RomanNumeralConverterTest.

	

Chaining	together	a	suite	of	tests
	

Unittest	makes	it	easy	to	chain	together	test	cases	into	a	TestSuite.	A	TestSuite	can
be	run	just	like	a	TestCase,	but	it	also	provides	additional	functionality	to	add	a
single/multiple	tests,	and	count	them.

Why	do	we	need	this?	Chaining	together	tests	into	a	suite	gives	us	the	ability	to
pull	together	more	than	one	module	of	test	cases	for	a	test	run,	as	well	as	picking
and	choosing	a	subset	of	test	cases.	Up	until	now,	we	have	generally	run	all	the
test	methods	from	a	single	class.	TestSuite	gives	us	an	alternative	means	to	define
a	block	of	testing.

	

	

	

How	to	do	it...
	

In	the	following	steps,	we	will	code	multiple	test	case	classes,	and	then	load	their
test	methods	into	suites	so	we	can	run	them:

1.	 Create	a	new	file	named	recipe5.py	to	put	our	sample	application	and	test
cases.

2.	 Pick	a	class	to	test.	In	this	case,	we	will	use	our	Roman	numeral	converter:

class	RomanNumeralConverter(object):	

				def	__init__(self):	

												self.digit_map	=	{"M":1000,	"D":500,\

																								"C":100,	"L":50,	"X":10,	"V":5,	"I":1}	

	

				def	convert_to_decimal(self,	roman_numeral):

												val	=	0	

												for	char	in	roman_numeral:	

																val	+=	self.digit_map[char]	

												return	val	

3.	 Create	two	test	classes	with	various	test	methods	spread	between	them:

import	unittest	

class	RomanNumeralConverterTest(unittest.TestCase):	

				def	setUp(self):	

								self.cvt	=	RomanNumeralConverter()

				def	test_parsing_millenia(self):	

								self.assertEquals(1000,	\	

																				self.cvt.convert_to_decimal("M"))	

	

				def	test_parsing_century(self):	

								self.assertEquals(100,	\	

																				self.cvt.convert_to_decimal("C"))	

	

class	RomanNumeralComboTest(unittest.TestCase):

				def	setUp(self):

								self.cvt=RomanNumeralConverter()

				def	test_multi_millenia(self):

								self.assertEquals(4000,\

				def	test_multi_add_up(self):	

								self.assertEquals(2010,	\	

								self.cvt.convert_to_decimal("MMX"))

4.	 Create	a	test	runner	in	a	separate	file	named	recipe5_runner.py	that	pulls	in
both	test	cases:

if	__name__	==	"__main__":	

				import	unittest	

				from	recipe5	import	*	

				suite1	=	unittest.TestLoader().loadTestsFromTestCase(\		

																RomanNumeralConverterTest)	

				suite2	=	unittest.TestLoader().loadTestsFromTestCase(\	

																RomanNumeralComboTest)	

				suite	=	unittest.TestSuite([suite1,	suite2])					

				unittest.TextTestRunner(verbosity=2).run(suite)

5.	 Execute	the	test	runner,	and	observe	from	this	screenshot	how	tests	are
pulled	in	from	both	test	cases.

	

	

	

How	it	works...
The	unittest	module	provides	a	convenient	way	to	find	all	the	test	methods	in	a
TestClass	and	bundle	them	together	as	a	suite	using	its	loadTestsFromTestCase.	To
further	the	usage	of	test	suites,	we	are	able	to	combine	these	two	suites	together
as	a	single	suite	using	unittest.TestSuite([list...]).	The	TestSuite	class	is	designed
to	act	as	a	TestCase	class	does,	even	though	it	doesn't	subclass	TestClass,	allowing
us	to	run	it	using	TextTestRunner.	This	recipe	shows	the	verbosity	turned	up,
allowing	us	to	see	exactly	what	test	methods	were	run,	and	from	what	test	case
they	came	from.

	

There's	more...
In	this	recipe,	we	ran	the	tests	from	a	different	file	than	where	the	test	cases	are
defined.	This	is	different	than	the	previous	recipes	where	the	runnable	code	and
the	test	case	were	contained	in	the	same	file.	Since	the	runner	is	defining	the
tests	we	run,	we	can	easily	create	more	runners	that	combine	different	suites	of
tests.

	

The	name	of	the	test	case	should	be
significant
In	the	previous	recipes,	it	has	been	advised	to	name	the	test	case	as	[class	under
test]Test.	This	is	to	make	it	apparent	to	the	reader	that	the	class	under	test	and	the
related	test	share	an	important	relationship.	Now	that	we	are	introducing	another
test	case,	we	need	to	pick	a	different	name.	The	name	should	explain	clearly	why
these	particular	test	methods	are	split	out	into	a	separate	class.	For	this	recipe,
the	methods	are	split	out	to	show	more	complex	combinations	of	Roman
numerals.

	

Defining	test	suites	inside	the	test
module
Each	test	module	can	provide	one	or	more	methods	that	define	a	different	test
suite.	One	method	can	exercise	all	the	tests	in	a	given	module,	another	method
can	define	a	particular	subset.

How	to	do	it...
	

With	the	following	steps,	we	will	create	some	methods	that	define	test	suites
using	different	means:

1.	 Create	a	new	file	called	recipe6.py	to	put	our	code	for	this	recipe.
2.	 Pick	a	class	to	test.	In	this	case,	we	will	use	our	Roman	numeral	converter:

class	RomanNumeralConverter(object):	

				def	__init__(self):	self.digit_map	=	{"M":1000,	"D":500,	"C":100,	

"L":50,	"X":10,	"V":5,	"I":1}	

	

				def	convert_to_decimal(self,	roman_numeral):	

				val	=	0	

				for	char	in	roman_numeral:	

								val	+=	self.digit_map[char]	

				return	val	

3.	 Create	a	test	class	using	the	same	name	as	the	class	under	test	with	Test
appended	to	the	end:

import	unittest	

class	RomanNumeralConverterTest(unittest.TestCase):	

4.	 Write	a	series	of	test	methods,	including	a	setUp	method	that	creates	a	new
instance	of	the	RomanNumeralConverter	for	each	test	method:

import	unittest	

	

class	RomanNumeralConverterTest(unittest.TestCase):	

				def	setUp(self):	self.cvt	=	RomanNumeralConverter()	

	

				def	test_parsing_millenia(self):	

								self.assertEquals(1000,	\	

													self.cvt.convert_to_decimal("M"))	

	

				def	test_parsing_century(self):	

								self.assertEquals(100,	\	

												self.cvt.convert_to_decimal("C"))	

	

				def	test_parsing_half_century(self):	

								self.assertEquals(50,	\	

												self.cvt.convert_to_decimal("L"))	

	

				def	test_parsing_decade(self):	

								self.assertEquals(10,	\	

												self.cvt.convert_to_decimal("X"))	

	

				def	test_parsing_half_decade(self):	

								self.assertEquals(5,	self.cvt.convert_to_decimal("V"))	

				def	test_parsing_one(self):	

								self.assertEquals(1,	self.cvt.convert_to_decimal("I"))	

				def	test_empty_roman_numeral(self):					

								self.assertTrue(self.cvt.convert_to_decimal("")	==	0)	

self.assertFalse(self.cvt.convert_to_decimal("")	>	0)	

				def	test_no_roman_numeral(self):	

								self.assertRaises(TypeError,	\	

												self.cvt.convert_to_decimal,	None)	

	

				def	test_combo1(self):	

								self.assertEquals(4000,	\	

												self.cvt.convert_to_decimal("MMMM"))	

	

				def	test_combo2(self):	

								self.assertEquals(2010,	\	

												self.cvt.convert_to_decimal("MMX"))	

	

				def	test_combo3(self):	

								self.assertEquals(4668,	\	

												self.cvt.convert_to_decimal("MMMMDCLXVIII"))	

5.	 Create	some	methods	in	the	recipe's	module	(but	not	in	the	test	case)	that
define	different	test	suites:

def	high_and_low():	

				suite	=	unittest.TestSuite()	

				suite.addTest(\	

								RomanNumeralConverterTest("test_parsing_millenia"))				

				suite.addTest(\	

								RomanNumeralConverterTest("test_parsing_one"))	return	suite	def	

combos():	

				return	unittest.TestSuite(map(RomanNumeralConverterTest,\				

								["test_combo1",	"test_combo2",	"test_combo3"]))	def	all():	

				return	unittest.TestLoader().loadTestsFromTestCase(\			

												RomanNumeralConverterTest)	

6.	 Create	a	runner	that	will	iterate	over	each	of	these	test	suites	and	run	them
through	unittest's	TextTestRunner:

if	__name__	==	"__main__":	

				for	suite_func	in	[high_and_low,	combos,	all]:	

								print	("Running	test	suite	'%s'"	%	suite_func.__name__)		

								suite	=	suite_func()				

								unittest.TextTestRunner(verbosity=2).run(suite)

7.	 Run	the	combination	of	test	suites,	and	see	the	results.	Take	a	look	at	this
screenshot:

	

	

	

How	it	works...
We	pick	a	class	to	test	and	define	a	number	of	test	methods	that	check	things	out.
Then	we	define	a	few	module-level	methods	such	as,	high_and_low,	combos,	and	all,
to	define	test	suites.	Two	of	them	contain	fixed	subsets	of	methods	while	all
dynamically	loads	the	test*	methods	from	the	class.	Finally,	the	main	part	of	our
module	iterates	over	a	listing	of	all	these	functions	that	generate	suites	to
smoothly	create	and	run	them.

	

There's	more...
All	of	our	test	suites	were	run	from	the	recipe's	main	runner.	But	this	probably
wouldn't	be	the	case	for	a	real	project.	Instead,	the	idea	is	to	define	different
suites,	and	code	a	mechanism	to	pick	which	suite	to	run.	Each	suite	is	geared
towards	a	different	purpose,	and	it	is	necessary	to	allow	the	developer	to	pick
which	suite	to	run.	This	can	be	done	by	coding	a	command-line	script	using
Python's	optparse	module	to	define	command-line	flags	to	pick	one	of	these
suites.

	

Test	suite	methods	must	be	outside	of
the	test	class
If	we	make	these	suite-defining	methods	members	of	the	test	class,	we	would
have	to	instantiate	the	test	class.	Classes	that	extend	unittest.TestCase	have	a
specialized	init	method	that	doesn't	work	well	with	an	instance	that	is	created
just	to	call	a	non-test	method.	That	is	why	the	methods	are	outside	the	test	class.
While	these	methods	can	be	in	other	modules,	it	is	very	convenient	to	define
them	inside	the	module	containing	the	test	code,	to	keep	things	in	proximity.

	

Why	have	different	suites?
	

What	if	we	started	our	project	off	by	running	all	tests?	Sounds	like	a	good	idea,
right?	But	what	if	the	time	to	run	the	entire	test	suite	grew	to	over	an	hour?
There	is	a	certain	threshold	after	which	developers	tend	to	stop	running	tests,	and
nothing	is	worse	than	an	un-run	testsuite.	By	defining	subsets	of	tests,	it	is	easy
to	run	alternate	suites	during	the	day,	and	then	perhaps	run	the	comprehensive
test	suite	once	a	day.	Bear	in	mind	the	following:

all	is	the	comprehensive	suite
high_and_low	is	an	example	of	testing	the	edges
combos	is	a	random	sampling	of	values	used	to	show	that	things	are	generally
working

Defining	our	test	suites	is	a	judgment	call.	It's	also	worth	re-evaluating	each	test
suite	every	so	often.	If	one	test	suite	is	getting	too	costly	to	run,	consider	moving
some	of	its	more	expensive	tests	to	another	suite.

	

	

	

optparse	is	being	phased	out	and
replaced	by	argparse
While	optparse	is	a	convenient	way	to	add	command-line	flags	to	Python	scripts,
it	won't	be	available	forever.	Python	2.7	has	deprecated	this	module	and	is
continuing	this	development	in	argparse.

Retooling	old	test	code	to	run	inside
unittest
Sometimes,	we	may	have	developed	demo	code	to	exercise	our	system.	We	don't
have	to	rewrite	it	to	run	it	inside	unittest.	Instead,	it	is	easy	to	hook	it	up	to	the
test	framework	and	run	it	with	some	small	changes.

How	to	do	it...
	

With	these	steps,	we	will	dive	into	capturing	the	test	code	that	was	written
without	using	unittest,	and	repurposing	it	with	minimal	effort	to	run	inside
unittest:

1.	 Create	a	file	named	recipe7.py	to	put	our	application	code	that	we	will	be
testing.

2.	 Pick	a	class	to	test.	In	this	case,	we	will	use	our	Roman	numeral	converter:

class	RomanNumeralConverter(object):	

				def	__init__(self):	

								self.digit_map	=	{"M":1000,	"D":500,	"C":100,	"L":50,	"X":10,	

"V":5,	"I":1}	

	

				def	convert_to_decimal(self,	roman_numeral):	

								val	=	0	

								for	char	in	roman_numeral:	

												val	+=	self.digit_map[char]	

								return	val	

3.	 Create	a	new	file	named	recipe7_legacy.py	to	contain	test	code	that	doesn't	use
the	unittest	module.

4.	 Create	a	set	of	legacy	tests	that	are	coded,	based	on	Python's	assert	function,
not	with	unittest,	along	with	a	runner:

from	recipe7	import	*	

class	RomanNumeralTester(object):	

		def			init		(self):	

				self.cvt	=	RomanNumeralConverter()	

		def	simple_test(self):

				print	("+++	Converting	M	to	1000")

				assert	self.cvt.convert_to_decimal("M")	==	1000

		def	combo_test1(self):	

				print	("+++	Converting	MMX	to	2010")	

				assert	self.cvt.convert_to_decimal("MMXX")	==	2010	

		def	combo_test2(self):	

				print	("+++	Converting	MMMMDCLXVIII	to	4668")	

				val	=	self.cvt.convert_to_decimal("MMMMDCLXVII")									

				self.check(val,	4668)	

		def	other_test(self):	

				print	("+++	Converting	MMMM	to	4000")	

				val	=	self.cvt.convert_to_decimal("MMMM")	

				self.check(val,	4000)	

		def	check(self,	actual,	expected):	

				if	(actual	!=	expected):	

						raise	AssertionError("%s	doesn't	equal	%s"	%	\	

												(actual,		expected))	

		def	test_the_system(self):	

				self.simple_test()	

				self.combo_test1()	

				self.combo_test2()	

				self.other_test()	

if	__name	==	"__main__":	

		tester	=	RomanNumeralTester()	

		tester.test_the_system()

This	set	of	legacy	tests	is	meant	to	represent	legacy	test	code	that	our	team	has	developed	to
exercise	things	before	unittest	was	an	option.

5.	 Run	the	legacy	tests.	What	is	wrong	with	this	situation?	Did	all	the	test
methods	run?	Have	we	caught	all	the	bugs?	Take	a	look	at	this	screenshot:

6.	 Create	a	new	file	called	recipe7_pyunit.py.
7.	 Create	a	unittest	set	of	tests,	wrapping	each	legacy	test	method	inside

unittest's	FunctionTestCase:

from	recipe7	import	*	

from	recipe7_legacy	import	*	import	unittest	

	

if	__name__	==	"__main__":		

				tester	=	RomanNumeralTester()	

				suite	=	unittest.TestSuite()	

				for	test	in	[tester.simple_test,	tester.combo_test1,	\	

												tester.combo_test2,	tester.other_test]:	

								testcase	=	unittest.FunctionTestCase(test)			

								suite.addTest(testcase)	

				unittest.TextTestRunner(verbosity=2).run(suite)

8.	 Run	the	unittest	test.	Did	all	the	tests	run	this	time?	Which	test	failed?
Where	is	the	bug?	Look	at	this	screenshot:

	

	

	

How	it	works...
Python	provides	a	convenient	assert	statement	that	tests	a	condition.	When	true,
the	code	continues.	When	false,	it	raises	an	AssertionError.	In	the	first	test	runner,
we	have	several	tests	that	check	results	using	a	mixture	of	assert	statements	or
raising	an	AssertionError.

unittest	provides	a	convenient	class,	unittest.FunctionTestCase,	that	wraps	a	bound
function	as	a	unittest	test	case.	If	an	AssertionError	is	thrown,	FunctionTestCase
catches	it,	flags	it	as	a	test	failure,	and	proceeds	to	the	next	test	case.	If	any	other
type	of	exception	is	thrown,	it	will	be	flagged	as	a	test	error.	In	the	second	test
runner,	we	wrap	each	of	these	legacy	test	methods	with	FunctionTestCase,	and	chain
them	together	in	a	suite	for	unittest	to	run.

As	seen	by	running	the	second	test	run,	there	is	a	bug	lurking	in	the	third	test
method.	We	were	not	aware	of	it	because	the	test	suite	was	prematurely
interrupted.

Another	deficiency	of	Python's	assert	statement	is	shown	by	the	first	failure,	as
seen	in	the	previous	screenshot.	When	an	assert	fails,	there	is	little	to	no
information	about	the	values	that	were	compared.	All	we	have	is	the	line	of	code
where	it	failed.	The	second	assert	in	that	screenshot	was	more	useful,	because
we	coded	a	custom	checker	that	threw	a	custom	AssertionError.

There's	more...
Unittest	does	more	than	just	run	tests.	It	has	a	built-in	mechanism	to	trap	errors
and	failures,	and	then	it	continues	running	as	much	of	our	test	suite	as	possible.
This	helps,	because	we	can	shake	out	more	errors	and	fix	more	things	within	a
given	test	run.	This	is	especially	important	when	a	test	suite	grows	to	the	point	of
taking	minutes	or	hours	to	run.

	

Where	are	the	bugs?
They	exist	in	the	test	methods,	and	fundamentally	were	made	by	making	slight
alterations	to	the	Roman	numeral	being	converted,	as	shown	in	the	code:

def	combo_test1(self):	

				print	("+++	Converting	MMX	to	2010")	

				assert	self.cvt.convert_to_decimal("MMXX")	==	2010	

def	combo_test2(self):	

				print	("+++	Converting	MMMMDCLXVIII	to	4668")

				val	=	self.cvt.convert_to_decimal("MMMMDCLXVII")	

				self.check(val,	4668)	

The	combo_test1	test	method	prints	out	that	it	is	converting	MMX,	but	actually	tries	to
convert	MMXX.	The	combo_test2	test	method	prints	out	that	it	is	converting
MMMMDCLXVIII,	but	actually	tries	to	convert	MMMMDCLXVII.

This	is	a	contrived	example,	but	have	you	ever	run	into	bugs	just	as	small	that
drove	you	mad	trying	to	track	them	down?	The	point	is,	showing	how	easy	or
hard	it	can	be	to	track	them	down	is	based	on	how	the	values	are	checked.
Python's	assert	statement	isn't	very	effective	at	telling	us	what	values	are
compared	where.	The	customized	check	method	is	much	better	at	pinpointing	the
problem	with	combo_test2.

This	highlights	the	problem	with	having	comments	or	print	statements	trying	to	reflect	what
the	asserts	do.	They	can	easily	get	out	of	sync	and	the	developer	may	face	some	problems
trying	to	track	down	bugs.	Avoiding	this	situation	is	known	as	the	DRY	principle	(Don't
Repeat	Yourself).

FunctionTestCase	is	a	temporary
measure
FunctionTestCase	is	a	test	case	that	provides	an	easy	way	to	quickly	migrate	tests
based	on	Python's	assert	statement,	so	they	can	be	run	with	unittest.	But	things
shouldn't	stop	there.	If	we	take	the	time	to	convert	RomanNumeralTester	into	a	unittest
TestCase,	then	we	gain	access	to	other	useful	features	such	as	the	various	assert*
methods	that	come	with	TestCase.	It's	a	good	investment.	The	FunctionTestCase	just
lowers	the	bar	to	migrate	to	unittest.

	

Breaking	down	obscure	tests	into
simple	ones
Unittest	provides	the	means	to	test	the	code	through	a	series	of	assertions.	I	have
often	felt	the	temptation	to	exercise	many	aspects	of	a	particular	piece	of	code
within	a	single	test	method.	If	any	part	fails,	it	becomes	obscured	as	to	which
part	failed.	It	is	preferable	to	split	things	up	into	several	smaller	test	methods,	so
that	when	some	part	of	the	code	under	test	fails,	it	is	obvious.

	

How	to	do	it...
	

With	these	steps,	we	will	investigate	what	happens	when	we	put	too	much	into	a
single	test	method:

1.	 Create	a	new	file	named	recipe8.py	to	put	out	application	code	in	for	this
recipe.

2.	 Pick	a	class	to	test.	In	this	case,	we	will	use	an	alternative	version	of	the
Roman	numeral	converter,	which	converts	both	ways:

class	RomanNumeralConverter(object):	

				def	__init__(self):	self.digit_map	=	{"M":1000,	"D":500,	"C":100,	

"L":50,	"X":10,	"V":5,	"I":1}	

	

				def	convert_to_decimal(self,	roman_numeral):	

								val	=	0	

								for	char	in	roman_numeral:	

								val	+=	self.digit_map[char]	

				return	val	

	

				def	convert_to_roman(self,	decimal):	

								val	=	""	

				while	decimal	>	1000:	

								val	+=	"M"	

								decimal	-=	1000	

				while	decimal	>	500:	val	+=	"D"

								decimal	-=	500	

				while	decimal	>	100:	

								val	+=	"C"	

								decimal	-=	100	

				while	decimal	>	50:	val	+=	"L"	

								decimal	-=	50	

				while	decimal	>	10:	

								val	+=	"X"	

								decimal	-=	10	

				while	decimal	>	5:	

								val	+=	"V"	

								decimal	-=	5	

				while	decimal	>	1:	

								val	+=	"I"	

								decimal	-=	1	

				return	val	

3.	 Create	a	new	file	called	recipe8_obscure.py	to	put	some	longer	test	methods.
4.	 Create	some	test	methods	that	combine	several	test	assertions:

import	unittest	

from	recipe8	import	*	

	

class	RomanNumeralTest(unittest.TestCase):	

				def	setUp(self):	self.cvt	=	RomanNumeralConverter()	

	

				def	test_convert_to_decimal(self):	

								self.assertEquals(0,	self.cvt.convert_to_decimal(""))					

								self.assertEquals(1,	self.cvt.convert_to_decimal("I"))				

								self.assertEquals(2010,	\	

												self.cvt.convert_to_decimal("MMX"))	

								self.assertEquals(4000,	\	

												self.cvt.convert_to_decimal("MMMM"))	

				def	test_convert_to_roman(self):	

								self.assertEquals("",	self.cvt.convert_to_roman(0))	

self.assertEquals("II",	self.cvt.convert_to_roman(2))					

								self.assertEquals("V",	self.cvt.convert_to_roman(5))				

								self.assertEquals("XII",	\	

												self.cvt.convert_to_roman(12))	

								self.assertEquals("MMX",	\	

												self.cvt.convert_to_roman(2010))	

								self.assertEquals("MMMM",	\	

												self.cvt.convert_to_roman(4000))

	

if	__name__	==	"__main__":		

				unittest.main()

5.	 Run	the	obscure	tests.	Why	did	it	fail?	Where	is	the	bug?	It	reports	that	II	is
not	equal	to	I,	so	something	appears	to	be	off.	Is	this	the	only	bug?	Create
another	file	called	recipe8_clear.py	to	create	a	more	fine-grained	set	of	test
methods.	Take	a	look	at	this	screenshot:

6.	 Split	up	the	assertions	into	separate	test	methods	to	give	a	higher	fidelity	of
output:

import	unittest	

from	recipe8	import	*	

	

class	RomanNumeralTest(unittest.TestCase):	

				def	setUp(self):	self.cvt	=	RomanNumeralConverter()	

	

				def	test_to_decimal1(self):	

								self.assertEquals(0,	self.cvt.convert_to_decimal(""))	

	

				def	test_to_decimal2(self):	

								self.assertEquals(1,	self.cvt.convert_to_decimal("I"))	

	

				def	test_to_decimal3(self):	

								self.assertEquals(2010,	\	

												self.cvt.convert_to_decimal("MMX"))	

	

				def	test_to_decimal4(self):	

								self.assertEquals(4000,	\	

												self.cvt.convert_to_decimal("MMMM"))	

	

				def	test_convert_to_roman1(self):	

								self.assertEquals("",	self.cvt.convert_to_roman(0))	

def	test_convert_to_roman2(self):	

								self.assertEquals("II",	self.cvt.convert_to_roman(2))	

def	test_convert_to_roman3(self):	

								self.assertEquals("V",	self.cvt.convert_to_roman(5))	

def	test_convert_to_roman4(self):	

								self.assertEquals("XII",	\	

																				self.cvt.convert_to_roman(12))	

	

				def	test_convert_to_roman5(self):	

								self.assertEquals("MMX",	\	

																				self.cvt.convert_to_roman(2010))	

	

				def	test_convert_to_roman6(self):	

								self.assertEquals("MMMM",	\	

																				self.cvt.convert_to_roman(4000))	

	

if	__name__	==	"__main__":	

unittest.main()	

8.	 Run	the	clearer	test	suite.	Is	it	a	bit	clearer	where	the	bug	is?	What	did	we
trade	in	to	get	this	higher	degree	of	test	failure?	Was	it	worth	the	effort?
Refer	to	this	screenshot:

	

	

	

How	it	works...
	

In	this	case,	we	created	a	modified	Roman	numeral	converter	that	converts	both
ways.	We	then	started	creating	test	methods	to	exercise	things.	Since	each	of
these	tests	were	a	simple,	one	line	assertion,	it	was	convenient	to	put	them	all	in
the	same	test	method.

In	the	second	test	case,	we	put	each	assertion	into	a	separate	test	method.
Running	it	exposes	the	fact	that	there	are	multiple	bugs	in	this	Roman	numeral
converter.

	

	

	

There's	more...
When	we	started	off	writing	tests,	it	was	very	convenient	to	bundle	all	these
assertions	into	a	single	test	method.	After	all,	if	everything	is	working,	there	is
no	harm,	right?	But	what	if	everything	does	not	work;	what	do	we	have	to	deal
with?	An	obscure	error	report!

	

Where	is	the	bug?
The	obscured	test	runner	may	not	be	clear.	All	we	have	to	go	on	is	II	!=	I	which
isn't	much.	The	clue	is	that	it	is	only	off	by	one.	The	clear	test	runner	gives	more
clues.	We	see	that	V	!=	IIII,	XII	!=	XI,	and	some	more.	Each	of	these	failures
shows	things	being	off	by	one.

The	bug	involves	the	various	Boolean	conditions	in	the	while	checks:

while	decimal	>	1000:	

while	decimal	>	500:	

while	decimal	>	100:	

while	decimal	>	50:	

while	decimal	>	10:	

while	decimal	>	5:	

while	decimal	>	1:

Instead	of	testing	greater	than,	it	should	test	for	greater	than	or	equal	to.	This
causes	it	to	skip	out	of	each	Roman	numeral	before	counting	the	last	one.

What	is	the	right	size	for	a	test
method?
In	this	recipe,	we	broke	things	down	to	a	single	assertion	per	test.	But	I	wouldn't
advise	thinking	along	these	lines.

If	we	look	a	little	closer,	each	test	method	also	involves	a	single	usage	of	the
Roman	numeral	API.	For	the	converter,	there	is	only	one	result	to	examine	when
exercising	the	code.	For	other	systems,	the	output	may	be	more	complex.	It	is
completely	warranted	to	use	several	assertions	in	the	same	test	method	to	check
the	outcome	by	making	that	single	call.

When	we	proceed	to	make	more	calls	to	the	Roman	numeral	API,	it	should
signal	us	to	consider	splitting	it	off	into	a	new	test	method.

This	raises	the	question:	What	is	a	unit	of	code?	There	has	been	much	debate
over	what	defines	a	unit	of	code,	and	what	makes	a	good	unit	test.	There	are
many	opinions.	Hopefully,	reading	this	chapter	and	weighing	it	against	the	other
test	tactics	covered	throughout	this	book	will	help	you	enhance	your	own
opinion	and	ultimately	improve	your	own	testing	talent.

Unittests	versus	integration	tests
Unittest	can	easily	help	us	write	both	unittests	as	well	as	integration	tests.
Unittests	exercise	smaller	blocks	of	code.	When	writing	unittests,	it	is	best	to
keep	the	testing	as	small	and	fine-grained	as	possible.	Breaking	testing	up	into
lots	of	smaller	tests	is	often	a	better	approach	to	detecting	and	pinpointing	bugs.

When	we	move	up	to	a	higher	level	(such	as	integration	testing),	it	makes	sense
to	test	multiple	steps	in	a	single	test	method.	But	this	is	only	recommended	if
there	are	adequate	low-level	unit	tests.	This	will	shed	some	light	on	whether	it	is
broken	at	the	unit	level,	or	there	exists	a	sequence	of	steps	that	causes	the	error.

Integration	tests	often	extend	to	things	such	as	external	systems.	For	example,
many	argue	that	unit	testing	should	never	connect	to	a	database,	talk	to	an	LDAP
server,	or	interact	with	other	systems.

Just	because	we	are	using	unittest	doesn't	mean	the	tests	we	are	writing	are	unit	tests.	Later	in
this	book,	we	will	visit	the	concept	that	unittest	can	be	used	to	write	many	types	of	tests
including	integration	tests,	smoke	tests,	and	other	types	as	well.

Testing	the	edges
When	we	write	automated	tests,	we	pick	the	inputs	and	assert	the	expected
outputs.	It	is	important	to	test	the	limits	of	the	inputs	to	make	sure	our	code	can
handle	good	and	bad	inputs.	This	is	also	known	as	testing	corner	cases.

How	to	do	it...
	

As	we	dig	into	this	recipe,	we	will	look	for	good	boundaries	to	test	against:

1.	 Create	a	new	file	named	recipe9.py	for	the	code	in	this	recipe.
2.	 Pick	a	class	to	test.	In	this	recipe,	we'll	use	another	variation	of	our	Roman

numeral	converter.	This	one	doesn't	process	values	greater	than	4000:

class	RomanNumeralConverter(object):	

				def	__init__(self):	

						self.digit_map	=	{"M":1000,	"D":500,	"C":100,	"L":50,	"X":10,	"V":5,	

"I":1}	

				def	convert_to_decimal(self,	roman_numeral):	

								val	=	0	

								for	char	in	roman_numeral:	

												val	+=	self.digit_map[char]	

								if	val	>	4000:	

								raise	Exception("We	don't	handle	values	over	4000")	

				return	val

	

				def	convert_to_roman(self,	decimal):	

								if	decimal	>	4000:	

												raise	Exception("We	don't	handle	values	over	4000")	

								val	=	""	

								mappers	=	[(1000,"M"),	(500,"D"),	(100,"C"),	(50,"L"),	

(10,"X"),	(5,"V"),	(1,"I")]	

								for	(mapper_dec,	mapper_rom)	in	mappers:	

												while	decimal	>=	mapper_dec:	

																val	+=	mapper_rom	

																decimal	-=	mapper_dec	

								return	val	

3.	 Create	a	test	case	that	sets	up	an	instance	of	the	Roman	numeral	converter:

import	unittest	

	

class	RomanNumeralTest(unittest.TestCase):	

				def	setUp(self):	

						self.cvt	=	RomanNumeralConverter()	

4.	 Add	several	test	methods	that	exercise	the	edges	of	converting	to	Roman
numeral	notation:

def	test_to_roman_bottom(self):	

				self.assertEquals("I",	self.cvt.convert_to_roman(1))		

def	test_to_roman_below_bottom(self):	

				self.assertEquals("",	self.cvt.convert_to_roman(0))	

def	test_to_roman_negative_value(self):	

				self.assertEquals("",	self.cvt.convert_to_roman(-1))	

def	test_to_roman_top(self):	

				self.assertEquals("MMMM",	\	

																self.cvt.convert_to_roman(4000))	

def	test_to_roman_above_top(self):	

				self.assertRaises(Exception,	\	

																self.cvt.convert_to_roman,	4001)	

5.	 Add	several	test	methods	that	exercise	the	edges	of	converting	to	decimal
notation:

def	test_to_decimal_bottom(self):	

				self.assertEquals(1,	self.cvt.convert_to_decimal("I"))	

def	test_to_decimal_below_bottom(self):	

				self.assertEquals(0,	self.cvt.convert_to_decimal(""))	

def	test_to_decimal_top(self):		

				self.assertEquals(4000,	\	

																self.cvt.convert_to_decimal("MMMM"))	

def	test_to_decimal_above_top(self):						

				self.assertRaises(Exception,	\	

																self.cvt.convert_to_decimal,	"MMMMI")

6.	 Add	some	tests	that	exercise	the	tiers	of	converting	decimals	to	Roman
numerals:

def	test_to_roman_tier1(self):	

				self.assertEquals("V",	self.cvt.convert_to_roman(5))	

	

def	test_to_roman_tier2(self):	

				self.assertEquals("X",	self.cvt.convert_to_roman(10))	

	

def	test_to_roman_tier3(self):	

				self.assertEquals("L",	self.cvt.convert_to_roman(50))	

	

def	test_to_roman_tier4(self):	

				self.assertEquals("C",	self.cvt.convert_to_roman(100))	

	

def	test_to_roman_tier5(self):	

				self.assertEquals("D",	self.cvt.convert_to_roman(500))	

	

def	test_to_roman_tier6(self):	

				self.assertEquals("M",	\	

																self.cvt.convert_to_roman(1000))	

7.	 Add	some	tests	that	input	unexpected	values	to	the	Roman	numeral
converter:

def	test_to_roman_bad_inputs(self):	

				self.assertEquals("",	self.cvt.convert_to_roman(None))					

				self.assertEquals("I",	self.cvt.convert_to_roman(1.2))	

def	test_to_decimal_bad_inputs(self):			

				self.assertRaises(TypeError,	\	

																self.cvt.convert_to_decimal,	None)	

				self.assertRaises(TypeError,	\	

																self.cvt.convert_to_decimal,	1.2)	

8.	 Add	a	unit	test	runner:

if	__name__	==	"__main__":	

		unittest.main()	

9.	 Run	the	test	case.	Take	a	look	at	this	screenshot:

	

	

	

How	it	works...
We	have	a	specialized	Roman	numeral	converter	that	only	converts	values	up	to
MMMM	or	4000.	We	have	written	several	test	methods	to	exercise	it.	The	immediate
edges	we	write	tests	for	are	1	and	4000.	We	also	write	some	tests	for	one	step	past
that:	0	and	4001.	To	make	things	complete,	we	also	test	against	-1.

	

There's	more...
A	key	part	of	the	algorithm	involves	handling	the	various	tiers	of	Roman
numerals	(5,	10,	50,	100,	500,	and	1000).	These	could	be	considered	mini-edges,
so	we	wrote	tests	to	check	that	the	code	handled	those	as	well.	Do	you	think	we
should	test	one	past	the	mini-edges?

It's	recommended	we	should.	Many	bugs	erupt	due	to	coding	greater	than,	when
it	should	be	greater	than	or	equal	(or	vice	versa),	and	so	on.	Testing	one	past	the
boundary,	in	both	directions,	is	the	perfect	way	to	make	sure	that	things	are
working	exactly	as	expected.	We	also	need	to	check	bad	inputs,	so	we	tried
converting	None	and	a	float.

That	previous	statement	raises	an	important	question:	How	many	invalid	types
should	we	test	against?	Because	Python	is	dynamic,	we	can	expect	a	lot	of	input
types.	So,	what	is	reasonable?	If	our	code	hinges	on	a	dictionary	lookup,	such	as
certain	parts	of	our	Roman	numeral	API	does,	then	confirming	that	we	correctly
handle	a	KeyError	would	probably	be	adequate.	We	don't	need	to	input	lots	of
different	types	if	they	all	result	in	a	KeyError.

Identifying	the	edges	is	important
It's	important	to	identify	the	edges	of	our	system,	because	we	need	to	know	our
software	can	handle	these	boundaries.	We	also	need	to	know	it	can	handle	both
sides	of	these	boundaries	that	are	good	values	and	bad	values.	That	is	why	we
need	to	check	4000	and	4001	as	well	as	0	and	1.	This	is	a	common	place	where
software	breaks.

	

Testing	for	unexpected	conditions
	

Does	this	sound	a	little	awkward?	Expect	the	unexpected?	Our	code	involves
converting	integers	and	strings	back	and	forth.	By	unexpected,	we	mean	types	of
inputs	passed	in	when	someone	uses	our	library	that	doesn't	understand	the
edges,	or	wires	it	to	receive	inputs	that	are	wider	ranging	types	than	we	expected
to	receive.

A	common	occurrence	of	misuse	is	when	a	user	of	our	API	is	working	against	a
collection,	such	as	a	list,	and	accidentally	passes	the	entire	list	instead	of	a	single
value	by	iteration.	Another,	often	seen	situation	is	when	a	user	of	our	API	passes
in	None	due	to	some	other	bug	in	their	code.	It's	good	to	know	that	our	API	is
resilient	enough	to	handle	this.

	

	

	

Testing	corner	cases	by	iteration
While	developing	code,	new	corner-case	inputs	are	often	discovered.	Being	able
to	capture	these	inputs	in	an	iterable	array	makes	it	easy	to	add	related	test
methods.

How	to	do	it...
	

In	this	recipe,	we	will	look	at	a	different	way	to	test	corner	cases:

1.	 Create	a	new	file	called	recipe10.py	for	our	code	in	this	recipe.
2.	 Pick	a	class	to	test.	In	this	recipe,	we'll	use	another	variation	of	our	Roman

numeral	converter.	This	one	doesn't	process	values	greater	than	4000:

class	RomanNumeralConverter(object):	

				def	__init__(self):	

								self.digit_map	=	{"M":1000,	"D":500,	"C":100,	"L":50,	"X":10,	

"V":5,	"I":1}	

	

				def	convert_to_decimal(self,	roman_numeral):	

								val	=	0	

								for	char	in	roman_numeral:	

												val	+=	self.digit_map[char]	

								if	val	>	4000:	

												raise	Exception(\	

																"We	don't	handle	values	over	4000")	

								return	val	

				def	convert_to_roman(self,	decimal):	

								if	decimal	>	4000:	

												raise	Exception(\	

																"We	don't	handle	values	over	4000")	

								val	=	""		

								mappers	=	[(1000,"M"),	(500,"D"),	(100,"C"),	(50,"L"),	

(10,"X"),	(5,"V"),	(1,"I")]	

								for	(mapper_dec,	mapper_rom)	in	mappers:	

												while	decimal	>=	mapper_dec:	

																val	+=	mapper_rom	

																decimal	-=	mapper_dec	

								return	val	

3.	 Create	a	test	class	to	exercise	the	Roman	numeral	converter:

import	unittest	

	

class	RomanNumeralTest(unittest.TestCase):	

				def	setUp(self):	

								self.cvt	=	RomanNumeralConverter()

4.	 Write	a	test	method	that	exercises	the	edges	of	the	Roman	numeral
converter:

def	test_edges(self):	

				r	=	self.cvt.convert_to_roman	

				d	=	self.cvt.convert_to_decimal	

				edges	=	[("equals",	r,	"I",	1),\	

										("equals",	r,	"",	0),\	

										("equals",	r,	"",	-1),\	

										("equals",	r,	"MMMM",	4000),\	

										("raises",	r,	Exception,	4001),\	

										("equals",	d,	1,	"I"),\	

										("equals",	d,	0,	""),\	

										("equals",	d,	4000,	"MMMM"),\

										("raises",	d,	Exception,	"MMMMI")	

]	

				[self.checkout_edge(edge)	for	edge	in	edges

5.	 Create	a	test	method	that	exercises	the	tiers	converting	from	decimal	to
Roman	numerals:

def	test_tiers(self):

				r	=	self.cvt.convert_to_roman

				edges	=	[("equals",	r,	"V",	5),\

									("equals",	r,	"VIIII",	9),\

									("equals",	r,	"X",	10),\

									("equals",	r,	"XI",	11),\

									("equals",	r,	"XXXXVIIII",	49),\

									("equals",	r,	"L",	50),\

									("equals",	r,	"LI",	51),\

									("equals",	r,	"LXXXXVIIII",	99),\

									("equals",	r,	"C",	100),\

									("equals",	r,	"CI",	101),\

									("equals",	r,	"CCCCLXXXXVIIII",	499),\

									("equals",	r,	"D",	500),\

									("equals",	r,	"DI",	501),\

									("equals",	r,	"M",	1000)\

]

				[self.checkout_edge(edge)	for	edge	in	edges]

6.	 Create	a	test	method	that	exercises	a	set	of	invalid	inputs:

def	test_bad_inputs(self):	

				r	=	self.cvt.convert_to_roman	

				d	=	self.cvt.convert_to_decimal	

				edges	=	[("equals",	r,	"",	None),\	

								("equals",	r,	"I",	1.2),\	

								("raises",	d,	TypeError,	None),\	

								("raises",	d,	TypeError,	1.2)\	

]	

				[self.checkout_edge(edge)	for	edge	in	edges]

7.	 Code	a	utility	method	that	iterates	over	the	edge	cases	and	runs	different
assertions	based	on	each	edge:

def	checkout_edge(self,	edge):	

				if	edge[0]	==	"equals":	

						f,	output,	input	=	edge[1],	edge[2],	edge[3]				

						print("Converting	%s	to	%s..."	%	(input,	output))				

						self.assertEquals(output,	f(input))	

				elif	edge[0]	==	"raises":	

						f,	exception,	args	=	edge[1],	edge[2],	edge[3:]				

						print("Converting	%s,	expecting	%s"	%	\	

																						(args,	exception))	

						self.assertRaises(exception,	f,	*args)

8.	 Make	the	script	runnable	by	loading	the	test	case	into	TextTestRunner:

if	__name__	==	"__main__":	

				suite	=	unittest.TestLoader().loadTestsFromTestCase(\				

																RomanNumeralTest)	

				unittest.TextTestRunner(verbosity=2).run(suite)

9.	 Run	the	test	case,	as	shown	in	this	screenshot:

	

	

	

How	it	works...
We	have	a	specialized	Roman	numeral	converter	that	only	converts	values	up	to
MMMM	or	4000.	The	immediate	edges	we	write	tests	for	are	1	and	4000.	We	also	write
some	tests	for	one	step	past	that:	0	and	4001.	To	make	things	complete,	we	also
test	against	-1.

But	we've	written	the	tests	a	little	differently.	Instead	of	writing	each	test
input/output	combination	as	a	separate	test	method,	we	capture	the	input	and
output	values	in	a	tuple	that	is	embedded	in	a	list.	We	then	feed	it	to	our	test
iterator,	checkout_edge.	Because	we	need	both	assertEqual	and	assertRaise	calls,	the
tuple	also	includes	either	equals	or	raises	to	flag	which	assertion	to	use.

Finally,	to	make	it	flexibly	handle	the	conversion	of	both	Roman	numerals	and
decimals,	the	handles	on	the	convert_to_roman	and	convert_to_decimal	functions	of	our
Roman	numeral	API	are	embedded	in	each	tuple	as	well.

As	shown	in	the	following	highlighted	parts,	we	grab	a	handle	on	convert_to_roman
and	store	it	in	r.	Then	we	embed	it	in	the	third	element	of	the	highlighted	tuple,
allowing	the	checkout_edge	function	to	call	it	when	needed:

def	test_bad_inputs(self):	

				r	=	self.cvt.convert_to_roman	

				d	=	self.cvt.convert_to_decimal	

				edges	=	[("equals",	r,	"",	None),\	

									("equals",	r,	"I",	1.2),\	

									("raises",	d,	TypeError,	None),\	

									("raises",	d,	TypeError,	1.2)\	

]	

	

				[self.checkout_edge(edge)	for	edge	in	edges]	

There's	more...
	

A	key	part	of	the	algorithm	involves	handling	the	various	tiers	of	Roman
numerals	(5,	10,	50,	100,	500,	and	1000).	These	could	be	considered	mini-edges,
so	we	wrote	a	separate	test	method	that	has	a	list	of	input/output	values	to	check
those	out	as	well.	In	the	Testing	the	edges	recipe,	we	didn't	include	testing	before
and	after	these	mini-edges,	for	example,	4	and	6	for	5.	Now	that	it	only	takes	one
line	of	data	to	capture	this	test,	we	have	it	in	this	recipe.	The	same	was	done	for
all	the	others	(except	1000).

Finally,	we	need	to	check	bad	inputs,	so	we	created	one	more	test	method	where
we	try	to	convert	None	and	a	float	to	and	from	a	Roman	numeral.

	

	

	

Does	this	defy	the	recipe	–	breaking
down	obscure	tests	into	simple	ones?
In	a	way,	it	does.	If	something	goes	wrong	in	one	of	the	test	data	entries,	then
that	entire	test	method	will	have	failed.	That	is	one	reason	why	this	recipe	split
things	up	into	three	test	methods	instead	of	one	big	test	method	to	cover	them
all.	This	is	a	judgment	call	about	when	it	makes	sense	to	view	inputs	and	outputs
as	more	data	than	test	method.	If	you	find	the	same	sequence	of	test	steps
occurring	repeatedly,	consider	if	it	makes	sense	to	capture	the	values	in	some
sort	of	table	structure,	such	as	a	list	used	in	this	recipe.

	

How	does	this	compare	with	the
recipe	–	testing	the	edges?
In	case	it	wasn't	obvious,	these	are	the	exact	same	tests	used	in	the	Testing	the
edges	recipe.	The	question	is,	which	version	do	you	find	more	readable?	Both
are	perfectly	acceptable.	Breaking	things	up	into	separate	methods	makes	it	more
fine-grained	and	easier	to	spot	if	something	goes	wrong.	Collecting	things
together	into	a	data	structure,	the	way	we	did	in	this	recipe,	makes	it	more
succinct	and	could	spur	us	on	to	write	more	test	combinations	as	we	did	for	the
conversion	tiers.

In	my	own	opinion,	when	testing	algorithmic	functions	that	have	simple	inputs
and	outputs,	it's	more	suitable	to	use	this	recipe's	mechanism	to	code	an	entire
battery	of	test	inputs	in	this	concise	format.	For	example,	a	mathematical
function,	a	sorting	algorithm,	or	perhaps	a	transform	function.

When	testing	functions	that	are	more	logical	and	imperative,	the	other	recipe
may	be	more	useful.	For	example,	functions	that	interact	with	a	database,	cause
changes	in	the	state	of	the	system,	or	other	types	of	side	effects	that	aren't
encapsulated	in	the	return	value	would	be	hard	to	capture	using	this	recipe.

See	also
Breaking	down	obscure	tests	into	simple	ones
Testing	the	edges

Running	Automated	Test	Suites	with
Nose
	

In	this	chapter,	we	will	cover	the	following	recipes:

Getting	nosy	with	testing
Embedding	nose	inside	Python
Writing	a	nose	extension	to	pick	tests	based	on	regular	expressions
Writing	a	nose	extension	to	generate	a	CSV	report
Writing	a	project-level	script	that	lets	you	run	different	test	suites

	

	

Introduction
In	the	previous	chapter,	we	looked	at	several	ways	to	utilize	unittest	in	creating
automated	tests.	Now,	we	will	look	at	different	ways	to	gather	tests	together	and
run	them.	Nose	is	a	useful	utility	that	was	built	to	discover	tests	and	run	them.	It
is	flexible,	can	be	run	from	either	the	command-line	or	embedded	inside	scripts,
and	is	extensible	through	plugin.	Due	to	its	embeddable	nature	and	high-level
tools,	such	as	project	scripts,	it	can	be	built	with	testing	as	an	option.

What	does	nose	offer	that	unittest	does	not?	Key	things	include	automatic	test
discovery	and	a	useful	plugin	API.	There	are	many	nose	plugins	that	provide
everything	from	specially	formatted	test	reports	to	integration	with	other	tools.
We	will	explore	this	in	more	detail	in	this	chapter	and	in	later	parts	of	this	book.

For	more	information	about	nose	refer	to:	http://somethingaboutorange.com/mrl/projects/nose.

We	need	to	activate	our	virtual	environment	and	then	install	nose	for	the	recipes
in	this	chapter.

Create	a	virtual	environment,	activate	it,	and	verify	that	the	tools	are	working:

Next,	use	pip	install	nose,	as	shown	in	the	following	screenshot:

http://somethingaboutorange.com/mrl/projects/nose

Getting	nosy	with	testing
Nose	automatically	discovers	tests	when	fed	with	a	package,	a	module,	or	a	file.

How	to	do	it...
	

With	the	following	steps,	we	will	explore	how	nose	automatically	finds	test
cases	and	runs	them:

1.	 Create	a	new	file	called	recipe11.py	to	store	all	the	code	for	this	recipe.
2.	 Create	a	class	to	test.	For	this	recipe,	we	will	use	a	shopping	cart

application	that	lets	us	load	items	and	then	calculate	the	bill:

class	ShoppingCart(object):

						def	__init__(self):

										self.items	=	[]

						def	add(self,	item,	price):

										self.items.append(Item(item,	price))

										return	self

					def	item(self,	index):

										return	self.items[index-1].item

					def	price(self,	index):

										return	self.items[index-1].price

					def	total(self,	sales_tax):

										sum_price	=	sum([item.price	for	item	in	self.items])

										return	sum_price*(1.0	+	sales_tax/100.0)

					def	__len__(self):

										return	len(self.items)

class	Item(object):

					def	__init__(self,	item,	price):

										self.item	=	item

										self.price	=	price

3.	 Create	a	test	case	that	exercises	the	various	parts	of	the	shopping	cart
application:

import	unittest

class	ShoppingCartTest(unittest.TestCase):

					def	setUp(self):

								self.cart	=	ShoppingCart().add("tuna	sandwich",	15.00)

					def	test_length(self):

								self.assertEquals(1,	len(self.cart))

					def	test_item(self):

								self.assertEquals("tuna	sandwich",	self.cart.item(1))

					def	test_price(self):

								self.assertEquals(15.00,	self.cart.price(1))

					def	test_total_with_sales_tax(self):

								self.assertAlmostEquals(16.39,

								self.cart.total(9.25),	2)

4.	 Use	the	command-line	nosetests	tool	to	run	this	recipe	by	filename	and	also

by	module:

	

	

	

How	it	works...
We	started	off	by	creating	a	simple	application	that	lets	us	load	up	a	ShoppingCart
with	Items.	This	application	lets	us	look	up	each	item	and	its	price.	Finally,	we
can	calculate	the	total	billing	amount	including	the	sales	tax.

Next,	we	coded	some	test	methods	to	exercise	all	these	features	using	unittest.

Finally,	we	used	the	command-line	nosetests	tool,	which	discovers	test	cases	and
automatically	runs	them.	This	saved	us	from	hand	coding	a	test	runner	to	load
test	suites.

There's	more...
Why	is	it	so	important	to	not	write	the	test	runner?	What	do	we	gain	by	using
nosetests?	After	all,	unittest	gives	us	the	ability	to	embed	an	auto-discovering	test
runner	like	this:

if	__name__	==	"__main__":	

				unittest.main()

Would	the	same	block	of	code	work	if	the	tests	are	spread	across	several
modules?	No,	because	unittest.main()	only	looks	in	the	current	module.	To	grow
into	multiple	modules,	we	need	to	start	loading	tests	using	unittest's
loadTestsFromTestCase	method	or	other	customized	suites.	It	doesn't	matter	how	we
assemble	suites.	When	we	risk	missing	test	cases,	nosetests	conveniently	lets	us
search	for	all	tests,	or	a	subset	of	tests	if	needed.

A	common	situation	on	projects	is	to	spread	out	test	cases	between	lots	of
modules.	Instead	of	writing	one	big	test	case,	we	typically	break	things	up	into
smaller	test	cases	based	on	various	setups,	scenarios,	and	other	logical
groupings.	It's	a	common	practice	to	split	up	test	cases	based	on	which	module	is
being	tested.	The	point	is	that	manually	loading	all	the	test	cases	for	a	real-world
test	suite	can	become	labor-intensive.

Nose	is	extensible
Auto-discovery	of	tests	isn't	the	only	reason	to	use	nose.	Later	in	this	chapter,	we
will	explore	how	we	can	write	a	plugin	to	customize	what	it	discovers	and	also
the	output	of	a	test	run.

Nose	is	embeddable
All	the	functionality	nose	provides	can	be	utilized	either	by	the	command-line,
or	from	inside	a	Python	script.	We	will	also	explore	this	further	in	this	chapter.

See	also
The	Asserting	the	basics	recipe	in	Chapter	1,	Using	Unittest	to	Develop	Basic
Tests.

Embedding	nose	inside	Python
It's	very	convenient	to	embed	nose	inside	a	Python	script.	This	lets	us	create
higher-level	test	tools	besides	allowing	the	developer	to	add	testing	to	an
existing	tool.

How	to	do	it...
	

With	these	steps,	we	will	explore	using	nose's	API	inside	a	Python	script	to	run
some	tests:

1.	 Create	a	new	file	called	recipe12.py	to	contain	the	code	from	this	recipe.
2.	 Create	a	class	to	test.	For	this	recipe,	we	will	use	a	shopping	cart

application	that	lets	us	load	items	and	then	calculate	the	bill:

class	ShoppingCart(object):

			def	__init__(self):

						self.items	=	[]

			def	add(self,	item,	price):

						self.items.append(Item(item,	price))

						return	self

			def	item(self,	index):

						return	self.items[index-1].item

			def	price(self,	index):

						return	self.items[index-1].price

			def	total(self,	sales_tax):

						sum_price	=	sum([item.price	for	item	in	self.items])

						return	sum_price*(1.0	+	sales_tax/100.0)

			def	__len__(self):

						return	len(self.items)

class	Item(object):

			def	__init__(self,	item,	price):

						self.item	=	item

						self.price	=	price

3.	 Create	a	test	case	with	several	test	methods:

import	unittest

class	ShoppingCartTest(unittest.TestCase):

			def	setUp(self):	

						self.cart	=	ShoppingCart().add("tuna	sandwich",	15.00)

			def	test_length(self):

						self.assertEquals(1,	len(self.cart))

			def	test_item(self):

						self.assertEquals("tuna	sandwich",	self.cart.item(1))

			def	test_price(self):

						self.assertEquals(15.00,	self.cart.price(1))

			def	test_total_with_sales_tax(self):

						self.assertAlmostEquals(16.39,

						self.cart.total(9.25),	2)

4.	 Create	a	script	named	recipe12_nose.py	to	use	nose's	API	to	run	tests.
5.	 Make	the	script	runnable	and	use	nose's	run()	method	to	run	selected

arguments:

if	__name__	==	"__main__":

				import	nose

				nose.run(argv=["",	"recipe12",	"--verbosity=2"])

6.	 Run	the	test	script	from	the	command	line	and	see	the	verbose	output:

	

	

	

How	it	works...
In	the	test	running	code,	we	are	using	nose.run().	With	no	arguments,	it	simply
picks	up	on	sys.argv	and	acts	like	the	command-line	nosetests.	But	in	this	recipe,
we	are	plugging	in	the	name	of	the	current	module	along	with	increased
verbosity.

There's	more...
Unittest	has	unittest.main(),	which	discovers	and	runs	test	cases	as	well.	How	is
this	different?	unittest.main()	is	geared	to	discover	test	cases	in	the	same	module
where	it	is	run.	The	nose.run()	function	is	geared	to	let	us	pass	in	command-line
arguments	or	load	them	programmatically.

For	example,	look	at	the	following	steps;	we	must	complete	them	to	turn	up
verbosity	with	unittest:

if	__name__	==	"__main__":	

				import	unittest	

				from	recipe12	import	*	

				suite	=	unittest.TestLoader().loadTestsFromTestCase(

																																								ShoppingCartTest)	

				unittest.TextTestRunner(verbosity=2).run(suite)	

We	had	to	import	the	test	cases,	use	a	test	loader	to	create	a	test	suite,	and	then
run	it	through	TextTestRunner.

To	do	the	same	thing	with	nose,	this	is	all	we	need:

if	__name__	==	"__main__":	

				import	nose	

				nose.run(argv=["",	"recipe12",	"--verbosity=2"])	

This	is	much	more	succinct.	Any	command-line	options	we	could	use	with
nosetests	can	be	used	here.	This	comes	in	handy	when	we	use	the	the	nose	plugin,
which	we	will	explore	in	more	detail	in	this	chapter	and	throughout	the	rest	of
the	book.

Writing	a	nose	extension	to	pick	tests
based	on	regular	expressions
Out-of-the-box	test	tools	such	as	nose	are	very	useful.	But	eventually,	we	reach	a
point	where	the	options	don't	match	our	needs.	Nose	has	the	powerful	ability	to
code	custom	plugins,	and	this	gives	us	the	ability	to	fine-tune	nose	to	meet	our
needs.	This	recipe	will	help	us	write	a	plugin	that	allows	us	to	selectively	choose
test	methods	by	matching	their	method	names	using	a	regular	expression	when
we	run	nosetests.

	

Getting	ready
	

We	need	to	have	easy_install	loaded	in	order	to	install	the	nose	plugin	that	we	are
about	to	create.	If	you	don't	already	have	it,	please	visit	http://pypi.python.org/pypi/
setuptools	to	download	and	install	the	package	as	indicated	at	the	site.

If	you	have	just	installed	it	now,	then	you	will	have	to	do	the	following:

Rebuild	your	virtualenv	used	for	running	code	samples	in	this	book
Reinstall	nose	using	pip

	

	

http://pypi.python.org/pypi/setuptools

How	to	do	it...
	

With	the	following	steps,	we	will	code	a	nose	plugin	that	picks	test	methods	to
run	by	using	a	regular	expression:

1.	 Create	a	new	file	called	recipe13.py	to	store	the	code	for	this	recipe.
2.	 Create	a	shopping	cart	application	that	we	can	build	some	tests	around:

class	ShoppingCart(object):

			def	__init__(self):

					self.items	=	[]

			def	add(self,	item,	price):

					self.items.append(Item(item,	price))

					return	self

			def	item(self,	index):

					return	self.items[index-1].item

			def	price(self,	index):

					return	self.items[index-1].price

			def	total(self,	sales_tax):

					sum_price	=	sum([item.price	for	item	in	self.items])

					return	sum_price*(1.0	+	sales_tax/100.0)

			def	__len__(self):

					return	len(self.items)

class	Item(object):

			def	__init__(self,	item,	price):

					self.item	=	item

					self.price	=	price

3.	 Create	a	test	case	that	contains	several	test	methods,	including	one	that	does
not	start	with	the	word	test:

import	unittest

class	ShoppingCartTest(unittest.TestCase):

			def	setUp(self):

					self.cart	=	ShoppingCart().add("tuna	sandwich",	15.00)

			def	length(self):

					self.assertEquals(1,	len(self.cart))

			def	test_item(self):

					self.assertEquals("tuna	sandwich",	self.cart.item(1))

			def	test_price(self):

					self.assertEquals(15.00,	self.cart.price(1))

			def	test_total_with_sales_tax(self):

					self.assertAlmostEquals(16.39,

					self.cart.total(9.25),	2)

4.	 Run	the	module	using	nosetests	from	the	command	line,	with	verbosity	turned
on.	How	many	test	methods	get	run?	How	many	test	methods	did	we

define?

5.	 Create	a	new	file	called	recipe13_plugin.py	to	write	a	nose	plugin	for	this
recipe.

6.	 Capture	a	handle	to	sys.stderr	to	support	debugging	and	verbose	output:

import	sys	

err	=	sys.stderr	

7.	 Create	a	nose	plugin	named	RegexPicker	by	subclassing	nose.plugins.Plugin:

import	nose

import	re

from	nose.plugins	import	Plugin

class	RegexPicker(Plugin):

			name	=	"regexpicker"

			def	__init__(self):

						Plugin.__init__(self)

						self.verbose	=	False

Our	nose	plugin	requires	a	class-level	name.	This	is	used	to	define	the
with-<name>	command-line	option.

8.	 Override	Plugin.options	and	add	an	option	to	provide	the	pattern	on	the
command	line:

def	options(self,	parser,	env):

				Plugin.options(self,	parser,	env)

				parser.add_option("--re-pattern",

							dest="pattern",	action="store",

							default=env.get("NOSE_REGEX_PATTERN",	"test.*"),

							help=("Run	test	methods	that	have	a	method	name	matching	this	

regular	expression"))

9.	 Override	Plugin.configuration	by	having	it	fetch	the	pattern	and	verbosity:

def	configure(self,	options,	conf):

					Plugin.configure(self,	options,	conf)

					self.pattern	=	options.pattern

					if	options.verbosity	>=	2:

								self.verbose	=	True

								if	self.enabled:

											err.write("Pattern	for	matching	test	methods	is	%sn"	%	

self.pattern)

When	we	extend	Plugin,	we	inherit	some	other	features,	such	as	self.enabled,
which	is	switched	on	when	-with-<name>	is	used	with	nose.

10.	 Override	Plugin.wantedMethod	so	that	it	accepts	test	methods	that	match	our
regular	expression:

def	wantMethod(self,	method):

			wanted	=

					re.match(self.pattern,	method.func_name)	is	not	None

			if	self.verbose	and	wanted:

						err.write("nose	will	run	%sn"	%	method.func_name)

			return	wanted

Write	a	test	runner	that	programmatically	tests	our	plugin	by	running	the	same
test	case	that	we	ran	earlier:

if	__name__	==	"__main__":

					args	=	["",	"recipe13",	"--with-regexpicker",	"--re-pattern=test.*|length",	"--

verbosity=2"]

					print	"With	verbosity..."

					print	"===================="

					nose.run(argv=args,	plugins=[RegexPicker()])

					print	"Without	verbosity..."

					print	"===================="

					args	=	args[:-1]

					nose.run(argv=args,	plugins=[RegexPicker()])

11.	 Execute	the	test	runner.	Looking	at	the	results	in	the	following	screenshot,
how	many	test	methods	ran	this	time?

12.	 Create	a	setup.py	script	that	allows	us	to	install	and	register	our	plugin	with
nosetests:

import	sys

try:

								import	ez_setup

								ez_setup.use_setuptools()

except	ImportError:

								pass

from	setuptools	import	setup

setup(

								name="RegexPicker	plugin",

								version="0.1",

								author="Greg	L.	Turnquist",

								author_email="Greg.L.Turnquist@gmail.com",

								description="Pick	test	methods	based	on	a	regular	expression",

								license="Apache	Server	License	2.0",

								py_modules=["recipe13_plugin"],

								entry_points	=	{

												'nose.plugins':	[

																'recipe13_plugin	=	recipe13_plugin:RegexPicker'

]

								}

)

13.	 Install	our	new	plugin:

14.	 Run	nosetests	using	--with-regexpicker	from	the	command	line:

	

	

	

How	it	works...
Writing	a	nose	plugin	has	some	requirements.	First	of	all,	we	need	the	class-level
name	attribute.	It	is	used	in	several	places,	including	defining	the	command-line
switch	to	invoke	our	plugin,	--with-<name>.

Next,	we	write	options.	There	is	no	requirement	to	override	Plugin.options,	but	in
this	case	we	need	a	way	to	supply	our	plugin	with	the	regular	expression.	To
avoid	destroying	the	useful	machinery	of	Plugin.options,	we	call	it	first,	and	then
add	a	line	for	our	extra	parameter	using	parser.add_option:

The	first,	unnamed	arguments	are	string	versions	of	the	parameter,	and	we
can	specify	multiple	ones.	We	could	have	had	-rp	and	-re-pattern	if	we	had
wanted	to.
Dest:	This	is	the	name	of	the	attribute	that	stores	the	results	(see	configure).
Action:	This	specifies	what	to	do	with	the	value	of	the	parameter	(store,
append,	and	so	on).
Default:	This	specifies	what	value	to	store	when	none	are	provided	(notice
we	use	test.*	to	match	standard	unittest	behavior).
Help:	This	provides	help	info	to	print	out	on	the	command	line.

Nose	uses	Python's	optparse.OptionParser	library	to	define	options.

To	find	out	more	about	Python's	optparse.OptionParser,	please	refer	to	http://docs.python.org/library/op
tparse.html.

Then,	we	write	configure.	There	is	also	no	requirement	to	override	Plugin.configure.
Because	we	had	an	extra	option,	--pattern,	we	need	to	harvest	it.	We	also	want	to
turn	on	a	flag	driven	by	verbosity,	a	standard	nose	option.

There	are	many	things	we	can	do	when	writing	a	nose	plugin.	In	our	case,	we
wanted	to	zero	in	on	test	selection.	There	are	several	ways	to	load	tests,
including	by	module,	and	filename.	After	loading,	they	are	then	run	through	a
method	where	they	are	voted	in	or	out.	These	voters	are	called	want*	methods	and
they	include	wantModule,	wantName,	wantFunction,	and	wantMethod,	as	well	some	others.
We	implemented	wantMethod	where	we	test	method.func_name	matches	our	pattern
using	Python's	re	module.	want*	methods	have	three	return	value	types:

http://docs.python.org/library/optparse.html

True:	This	test	is	wanted.
False:	This	test	is	not	wanted	(and	will	not	be	considered	by	another	plugin).
None:	The	plugin	does	not	care	whether	another	plugin	(or	nose)	gets	to
choose.

This	is	succinctly	achieved	by	not	returning	anything	from	the	want*	method.

wantMethod	only	looks	at	functions	defined	inside	classes.	nosetests	is	geared	to	find
tests	by	many	different	methods	and	is	not	confined	to	just	searching	subclasses
of	unittest.TestCase.	If	tests	are	found	in	the	module,	but	not	as	class	methods,
then	this	pattern	matching	is	not	utilized.	For	this	plugin	to	be	more	robust,	we
would	need	lot	of	different	tests	and	probably	need	to	override	the	other	want*	test
selectors.

There's	more...
This	recipe	just	scratches	the	surface	on	plugin	functionality.	It	focuses	on	the
test	selection	process.

Later	in	this	chapter,	we	will	explore	generating	a	specialized	report.	This
involves	using	other	plugin	hooks	that	gather	information	after	each	test	is	run	as
well	as	generating	a	report	after	the	test	suite	is	exhausted.	Nose	provides	a
robust	set	of	hooks	allowing	detailed	customization	to	meet	our	changing	needs.

Plugins	should	subclass	nose.plugins.Plugin.

There	is	a	lot	of	valuable	machinery	built	into	Plugin.	Subclassing	is	the	recommended	means
of	developing	a	plugin.	If	you	don't	so	this,	you	may	have	to	add	on	methods	and	attributes
you	didn't	realize	were	needed	by	nose	(and	that	come	for	free	when	you	subclass).

It's	a	good	rule	of	thumb	to	subclass	the	parts	of	the	nose	API	that	we	are
plugging	into	instead	of	overriding.

The	online	documentation	for	the	nose	API	is	a	little	incomplete.	It	tends	to
assume	too	much	knowledge.	If	we	override	and	our	plugin	doesn't	work
correctly,	it	may	be	difficult	to	debug	what	is	happening.

Do	not	subclass	nose.plugins.IPluginInterface.

This	class	is	used	for	documentation	purposes	only.	It	provides	information	about	each	of	the
hooks	our	plugin	can	access.	But	it	is	not	designed	for	subclassing	real	plugins.

Writing	a	nose	extension	to	generate
a	CSV	report
This	recipe	will	help	us	write	a	plugin	that	generates	a	custom	report	listing
successes	and	failures	in	a	CSV	file.	It	is	used	to	demonstrate	how	to	gather
information	after	each	test	method	completes.

Getting	ready
	

We	need	to	have	easy_install	loaded	in	order	to	install	the	nose	plugin	we	are
about	to	create.	If	you	don't	already	have	it,	please	visit	http://pypi.python.org/pypi/
setuptools	to	download	and	install	the	package	as	indicated	on	the	site.

If	you	have	just	installed	it	now,	then	you	will	have	to	do	the	following:

Rebuild	your	virtualenv	used	for	running	code	samples	in	this	book
Reinstall	nose	using	easy_install

	

	

http://pypi.python.org/pypi/setuptools

How	to	do	it...
	

1.	 Create	a	new	file	named	recipe14.py	to	store	the	code	for	this	recipe.
2.	 Create	a	shopping	cart	application	that	we	can	build	some	tests	around:

class	ShoppingCart(object):

			def	__init__(self):

					self.items	=	[]	

			def	add(self,	item,	price):

					self.items.append(Item(item,	price))

					return	self

			def	item(self,	index):

					return	self.items[index-1].item

			def	price(self,	index):

					return	self.items[index-1].price

			def	total(self,	sales_tax):

					sum_price	=	sum([item.price	for	item	in	self.items])

					return	sum_price*(1.0	+	sales_tax/100.0)

			def	__len__(self):

					return	len(self.items)

class	Item(object):

			def	__init__(self,	item,	price):

					self.item	=	item

					self.price	=	price

3.	 Create	a	test	case	that	contains	several	test	methods,	including	one
deliberately	set	to	fail:

import	unittest

class	ShoppingCartTest(unittest.TestCase):

				def	setUp(self):

						self.cart	=	ShoppingCart().add("tuna	sandwich",	15.00)

				def	test_length(self):

						self.assertEquals(1,	len(self.cart))

				def	test_item(self):

						self.assertEquals("tuna	sandwich",	self.cart.item(1))

				def	test_price(self):

						self.assertEquals(15.00,	self.cart.price(1))

				def	test_total_with_sales_tax(self):

						self.assertAlmostEquals(16.39,

						self.cart.total(9.25),	2)

				def	test_assert_failure(self):

						self.fail("You	should	see	this	failure	message	in	the	report.")

4.	 Run	the	module	using	nosetests	from	the	command	line.	Looking	at	the
output	in	the	following	screenshot,	does	it	appear	that	a	CSV	report	exists?

5.	 Create	a	new	file	called	recipe14_plugin.py	to	store	our	new	nose	plugin.
6.	 Create	a	nose	plugin	named	CsvReport	by	subclassing	nose.plugins.Plugin:

import	nose

import	re

from	nose.plugins	import	Plugin

class	CsvReport(Plugin):

				name	=	"csv-report"

				def	__init__(self):

						Plugin.__init__(self)

						self.results	=	[]

Our	nose	plugin	requires	a	class-level	name.	This	is	used	to	define	the	-
with-<name>	command-line	option.

7.	 Override	Plugin.options	and	add	an	option	to	provide	the	report's	filename	on
the	command	line:

def	options(self,	parser,	env):

		Plugin.options(self,	parser,	env)

		parser.add_option("--csv-file",

				dest="filename",	action="store",

				default=env.get("NOSE_CSV_FILE",	"log.csv"),

				help=("Name	of	the	report"))

8.	 Override	Plugin.configuration	by	having	it	fetch	the	filename	from	options:

def	configure(self,	options,	conf):

		Plugin.configure(self,	options,	conf)

		self.filename	=	options.filename

When	we	extend	Plugin,	we	inherit	some	other	features,	such	as

self.enabled,	which	is	switched	on	when	-with-<name>	is	used	with	nose.

9.	 Override	addSuccess,	addFailure,	and	addError	to	collect	the	results	in	an	internal
list:

def	addSuccess(self,	*args,	**kwargs):

		test	=	args[0]

		self.results.append((test,	"Success"))

def	addError(self,	*args,	**kwargs):

		test,	error	=	args[0],	args[1]

		self.results.append((test,	"Error",	error))

def	addFailure(self,	*args,	**kwargs):

		test,	error	=	args[0],	args[1]

		self.results.append((test,	"Failure",	error))

10.	 Override	finalize	to	generate	the	CSV	report:

def	finalize(self,	result):

			report	=	open(self.filename,	"w")

			report.write("Test,Success/Failure,Detailsn")

			for	item	in	self.results:

							if	item[1]	==	"Success":

											report.write("%s,%sn"	%	(item[0],	item[1]))

							else:

											report.write("%s,%s,%sn"	%	(item[0],item[1],	item[2][1]))

				report.close()

11.	 Write	a	test	runner	that	programmatically	tests	our	plugin	by	running	the
same	test	case	that	we	ran	earlier:

if	__name__	==	"__main__":

			args	=	["",	"recipe14",	"--with-csv-report",	"--csv-file=recipe14.csv"]

nose.run(argv=args,	plugin=[CsvReport()])

12.	 Execute	the	test	runner.	Looking	at	the	output	in	the	next	screenshot,	is
there	a	test	report	now?

13.	 Open	up	and	view	the	report	using	your	favorite	spreadsheet:

14.	 Create	a	setup.py	script	that	allows	us	to	install	and	register	our	plugin	with
nosetests:

import	sys

try:

			import	ez_setup

			ez_setup.use_setuptools()

except	ImportError:

			pass

from	setuptools	import	setup

setup(

			name="CSV	report	plugin",

			version="0.1",

			author="Greg	L.	Turnquist",

			author_email="Greg.L.Turnquist@gmail.com",

			description="Generate	CSV	report",

			license="Apache	Server	License	2.0",

			py_modules=["recipe14_plugin"],

			entry_points	=	{

							'nose.plugins':	[

											'recipe14_plugin	=	recipe14_plugin:CsvReport'

]

			}

)

15.	 Install	our	new	plugin:

16.	 Run	nosetests	using	--with-csv-report	from	the	command	line:

In	the	previous	screenshot,	notice	how	we	have	the	previous	log	file,	recipe14.csv,
and	the	new	one,	log.csv.

	

	

	

How	it	works...
Writing	a	nose	plugin	has	some	requirements.	First	of	all,	we	need	the	class-level
name	attribute.	It	is	used	in	several	places	including	defining	the	command-line
switch	to	invoke	our	plugin,	--with-<name>.

Next,	we	write	options.	There	is	no	requirement	to	override	Plugin.options.	But	in
this	case,	we	need	a	way	to	supply	our	plugin	with	the	name	of	the	CSV	report	it
will	write.	To	avoid	destroying	the	useful	machinery	of	Plugin.options,	we	call	it
first,	and	then	add	a	line	for	our	extra	parameter	using	parser.add_option:

The	first,	unnamed	arguments	are	string	versions	of	the	parameter
dest:	This	is	the	name	of	the	attribute	that	stores	the	results	(see	configure)
action:	This	tells	what	to	do	with	the	value	of	the	parameter	(store,	append,
and	so	on)
default:	This	tells	what	value	to	store	when	none	is	provided
help:	This	provides	help	info	to	print	out	on	the	command	line

Nose	uses	Python's	optparse.OptionParser	library	to	define	options.

To	learn	more	about	optparse.OptionParser,	visit	http://docs.python.org/optparse.html.

Then,	we	write	configure.	There	is	also	no	requirement	to	override	Plugin.configure.
Because	we	had	an	extra	option,	--csv-file,	we	need	to	harvest	it.

In	this	recipe,	we	want	to	capture	the	test	case	and	the	error	report	whenever	a
test	method	completes.	To	do	this,	we	implement	addSuccess,	addFailure,	and
addError,	because	nose	varies	in	what	arguments	are	sent	to	these	methods	when
called	either	programmatically	or	by	the	command-line,	so	we	must	use	Python's
*args:

The	first	slot	of	this	tuple	contains	the	test,	an	instance	of	nose.case.Test.
Simply	printing	it	is	sufficient	for	our	needs.
The	second	slot	of	this	tuple	contains	the	error,	an	instance	of	the	3-tuple	for
sys.exc_info().	It	is	only	included	for	addFailure	and	addError.
No	more	slots	of	this	tuple	are	documented	on	nose's	website.	We	generally

http://docs.python.org/optparse.html

ignore	them.

There's	more...
	

This	recipe	digs	a	little	deeper	into	the	plugin's	functionality.	It	focuses	on
processing	done	after	a	test	method	succeeds,	fails,	or	causes	an	error.	In	our
case,	we	just	gather	the	results	to	put	into	a	report.	We	could	do	other	things,
such	as	capture	stack	traces,	send	email	failures	to	the	development	team,	or
send	a	page	to	the	QA	team	letting	them	know	a	test	suite	is	complete.

For	more	details	about	writing	a	nose	plugin,	read	the	Writing	a	nose	extension
recipe	to	pick	tests	based	on	regular	expressions.

	

	

	

Writing	a	project-level	script	that	lets
you	run	different	test	suites
	

Python,	with	its	multi-paradigm	nature,	makes	it	easy	to	build	applications	and
provide	scripting	support.

This	recipe	will	help	us	explore	building	a	project-level	script	that	allows	us	to
run	different	test	suites.	We	will	also	show	some	extra	command-line	options	to
create	hooks	for	packaging,	publishing,	registering,	and	writing	automated
documentation.

	

	

	

How	to	do	it...
	

1.	 Create	a	script	called	recipe15.py	that	parses	a	set	of	options	using	Python's
getopt	library:

import	getopt

import	glob

import	logging

import	nose

import	os

import	os.path

import	pydoc

import	re

import	sys

def	usage():

				print

				print	"Usage:	python	recipe15.py	[command]"

				print

				print	"t--help"

				print	"t--test"

				print	"t--suite	[suite]"

				print	"t--debug-level	[info|debug]"

				print	"t--package"

				print	"t--publish"

				print	"t--register"

				print	"t--pydoc"

				print

try:

				optlist,	args	=	getopt.getopt(sys.argv[1:],

																				"ht",	

																				["help",	"test",	"suite=",

																				"debug-level=",	"package",

																				"publish",	"register",	"pydoc"])

except	getopt.GetoptError:

				#	print	help	information	and	exit:

				print	"Invalid	command	found	in	%s"	%	sys.argvusage()

				sys.exit(2)

2.	 Create	a	function	that	maps	to	-test:

def	test(test_suite,	debug_level):

				logger	=	logging.getLogger("recipe15")

				loggingLevel	=	debug_level

				logger.setLevel(loggingLevel)

				ch	=	logging.StreamHandler()

				ch.setLevel(loggingLevel)

				formatter	=	logging.Formatter("%(asctime)s	-	%(name)s	-	%(levelname)s	-

%(message)s")

				ch.setFormatter(formatter)

				logger.addHandler(ch)

				nose.run(argv=["",	test_suite,	"--verbosity=2"])

3.	 Create	stub	functions	that	support	package,	publish,	and	register:

def	package():

				print	"This	is	where	we	can	plug	in	code	to	run	"	+

				"setup.py	to	generate	a	bundle."

def	publish():

				print	"This	is	where	we	can	plug	in	code	to	upload	"	+

										"our	tarball	to	S3	or	some	other	download	site."

def	register():

				print	"setup.py	has	a	built	in	function	to	"	+

										"'register'	a	release	to	PyPI.	It's	"	+

										"convenient	to	put	a	hook	in	here."

				#	os.system("%s	setup.py	register"	%	sys.executable)

4.	 Create	a	function	to	auto-generate	docs	using	Python's	pydoc	module:

def	create_pydocs():

				print	"It's	useful	to	use	pydoc	to	generate	docs."

				pydoc_dir	=	"pydoc"

				module	=	"recipe15_all"

				__import__(module)

				if	not	os.path.exists(pydoc_dir):

								os.mkdir(pydoc_dir)

				cur	=	os.getcwd()

				os.chdir(pydoc_dir)

				pydoc.writedoc("recipe15_all")

				os.chdir(cur)

5.	 Add	some	code	that	defines	debug	levels	and	then	parses	options	to	allow
the	user	to	override:

debug_levels	=	{"info":logging.INFO,	"debug":logging.DEBUG}

#	Default	debug	level	is	INFO

debug_level	=	debug_levels["info"]

for	option	in	optlist:

				if	option[0]	in	("--debug-level"):

								#	Override	with	a	user-supplied	debug	level

								debug_level	=	debug_levels[option[1]]

6.	 Add	some	code	that	scans	the	command-line	options	for	-help	and,	if	it's
found,	exits	the	script:

#	Check	for	help	requests,	which	cause	all	other

#	options	to	be	ignored.

for	option	in	optlist:

if	option[0]	in	("--help",	"-h"):

			usage()

			sys.exit(1)

7.	 Finish	it	by	iterating	through	each	of	the	command-line	options	and
invoking	the	other	functions	based	on	which	options	are	picked:

#	Parse	the	arguments,	in	order

for	option	in	optlist:

				if	option[0]	in	("--test"):

							print	"Running	recipe15_checkin	tests..."

							test("recipe15_checkin",	debug_level)

				if	option[0]	in	("--suite"):

							print	"Running	test	suite	%s..."	%	option[1]

							test(option[1],	debug_level)

				if	option[0]	in	("--package"):

							package()

				if	option[0]	in	("--publish"):

							publish()

				if	option[0]	in	("--register"):

							register()

				if	option[0]	in	("--pydoc"):

							create_pydocs()

8.	 Run	the	recipe15.py	script	with	-help:

9.	 Create	a	new	file	called	recipe15_checkin.py	to	create	a	new	test	suite.
10.	 Reuse	the	test	cases	from	the	Getting	nosy	with	testing	recipe	to	define	a

checkin	test	suite:

import	recipe11	

	

class	Recipe11Test(recipe11.ShoppingCartTest):	

				pass	

11.	 Run	the	recipe15.py	script,	using	-test	-package	-publish	-register	-pydoc.	In	the
following	screenshot,	do	you	notice	how	it	exercises	each	option	in	the
same	sequence	as	it	was	supplied	on	the	command	line?

12.	 Inspect	the	report	generated	in	the	pydoc	directory:

13.	 Create	a	new	file	named	recipe15_all.py	to	define	another	new	test	suite.
14.	 Reuse	the	test	code	from	the	earlier	recipes	of	this	chapter	to	define	an	all

test	suite:

import	recipe11

import	recipe12

import	recipe13

import	recipe14

class	Recipe11Test(recipe11.ShoppingCartTest):

				pass

class	Recipe12Test(recipe12.ShoppingCartTest):

				pass

class	Recipe13Test(recipe13.ShoppingCartTest):

				pass

class	Recipe14Test(recipe14.ShoppingCartTest):

				pass

15.	 Run	the	recipe15.py	script	with	-suite=recipe15_all:

	

	

	

How	it	works...
This	script	uses	Python's	getopt	library,	which	is	modeled	after	the	C
programming	language's	getopt()	function.	This	means	we	use	the	API	to	define	a
set	of	commands,	and	then	we	iterate	over	the	options,	calling	the	corresponding
functions:	Visit	http://docs.python.org/library/getopt.html	for	more	details	on	the	getopt
library.

usage:	This	is	a	function	that	provides	help	to	the	user.
key:	The	option	definitions	are	included	in	the	following	block:

optlist,	args	=	getopt.getopt(sys.argv[1:],

																"ht",

																["help",	"test",	"suite=",

																"debug-level=",	"package",

																"publish",	"register",	"pydoc"])

We	parse	everything	in	the	arguments	except	the	first,	as	this	is	the
executable	itself:

"ht"	defines	short	options:	-h	and	-t.
The	list	defines	long	options.	Those	with	"="	accept	an	argument.
Those	without	it	are	flags.
If	an	option	is	received	that	isn't	on	the	list,	an	exception	is	thrown;
we	print	out	usage()	and	then	exit.

Test:	This	activates	loggers,	which	can	be	very	useful	if	our	app	uses
Python's	logging	library.
Package:	This	generates	tarballs.	We	created	a	stub,	but	it	can	be	handy	to
provide	a	shortcut	by	running	setup.py	sdist|bdist.
Publish:	Its	function	is	to	push	tarballs	to	the	deployment	site.	We	created	a
stub,	but	deploying	it	to	an	S3	site	or	somewhere	else	is	useful.
Register:	This	is	the	register	with	PyPI.	We	created	a	stub,	but	it	would	be
handy	to	provide	a	shortcut	to	running	setup.py	register.
create_pydocs:	These	are	auto-generated	docs.	Generating	HTML	files	based
on	code	is	very	convenient.

With	each	of	these	functions	defined,	we	can	iterate	over	the	options	that	were
parsed.	For	this	script,	there	is	a	sequence	as	follows:

http://docs.python.org/library/getopt.html

1.	 Check	whether	there	is	a	debugging	override.	We	default	to	logging.INFO,	but
provide	the	ability	to	switch	to	logging.DEBUG.

2.	 Check	whether	-h	or	-help	was	called.	If	so,	print	out	the	usage()	information
and	then	exit	with	no	more	parsing.

3.	 Finally,	iterate	over	the	options	and	call	their	corresponding	functions.

To	exercise	things,	we	first	called	this	script	with	the	-help	option.	That	printed
out	the	command	choices	we	had.

Then	we	called	it	with	all	the	options	to	demonstrate	the	features.	The	script	is
coded	to	exercise	a	check	in	suite	when	we	use	-test.	This	short	test	suite
simulates	running	a	quicker	test	that's	designed	to	see	whether	things	look
alright.

Finally,	we	called	the	script	with	-suite=recipe15_all.	This	test	suite	simulates
running	a	more	complete	test	suite	that	typically	takes	longer.

There's	more...
The	features	this	script	provides	could	easily	be	handled	by	commands	that	are
already	built.	We	looked	at	nosetests	earlier	in	this	chapter	and	saw	how	it	can
flexibly	take	arguments	to	pick	tests.

Using	setup.py	to	generate	tarballs	and	register	releases	is	also	a	commonly	used
feature	in	the	Python	community.

So,	why	write	this	script?	Because	we	can	tap	all	these	features	with	a	single
command	script,	setup.py	contains	a	prebuilt	set	of	commands	that	involve
bundling	and	uploading	to	the	Python	Project	Index.	Doing	other	tasks,	such	as
generating	pydocs,	deploying	to	a	location	such	as	an	Amazon	S3	bucket,	or	any
other	system-level	task,	is	not	included.	This	script	demonstrates	how	easy	it	is
to	wire	in	other	command-line	options	and	link	them	with	the	project
management	functions.

We	can	also	conveniently	embed	the	usage	of	pydoc.	Basically,	any	Python	library
that	serves	project	management	needs	can	be	embedded	as	well.

On	an	existing	project,	I	developed	a	script	to	provide	a	unified	way	to	embed	version	info
into	a	templated	setup.py	as	well	as	documentation	generated	by	pydoc,	sphinx,	and	DocBook.	The
script	saved	me	from	having	to	remember	all	the	commands	needed	to	manage	the	project.
Why	didn't	I	extend	distutils	to	create	my	own	commands?	It	was	a	matter	of	taste.	I	preferred
using	getopt	and	working	outside	the	framework	of	distutils	instead	of	creating	and	registering
new	sub-commands.

Why	use	getopt	instead	of	optparse?
Python	has	several	options	for	handling	command-line	option	parsing.	getopt	is
possibly	the	simplest.	It	is	meant	to	quickly	allow	defining	short	and	long
options,	but	it	has	limits.	It	requires	custom	coding	help	output,	as	we	did	with
the	usage	function.

It	also	requires	custom	handling	of	the	arguments.	optparse	provides	more
sophisticated	options,	such	as	better	handling	of	arguments	and	auto-built	help.
But	it	also	requires	more	code	to	get	functional.	optparse	is	also	scheduled	to	be
replaced	by	argparse	in	the	future.

It	is	left	as	an	exercise	for	you	to	write	an	alternative	version	of	this	script	using
optparse,	to	assess	which	one	is	a	better	solution.

Creating	Testable	Documentation
with	doctest
	

In	this	chapter,	we	will	cover	the	following	recipes:

Documenting	the	basics
Catching	stack	traces
Running	a	doctest	from	the	command	line
Coding	a	test	harness	for	doctest
Filtering	out	test	noise
Printing	out	all	your	documentation	including	a	status	report
Testing	the	edges
Testing	corner	cases	by	iteration
Getting	nosy	with	doctest
Updating	the	project-level	script	to	run	this	chapter's	doctests

	

	

Introduction
Python	provides	a	useful	ability	to	embed	comments	inside	functions	that	are
accessible	from	a	Python	shell.	These	are	known	as	docstrings.

A	docstring	provides	the	ability	to	embed	not	only	information,	but	also	code
samples	that	are	runnable.

There	is	an	old	adage	that	says	comments	aren't	code.	This	is	because	comments
don't	undergo	syntax	checks	and	are	often	not	maintained.	Thus,	the	information
they	carry	can	lose	its	value	over	time.	doctest	counters	this	by	turning	comments
into	code,	which	can	serve	many	useful	purposes.

In	this	chapter,	we	will	explore	different	ways	to	use	doctest	to	develop	testing,
documentation,	and	project	support.	No	special	setup	is	required,	as	doctest	is
part	of	Python's	standard	libraries.

Documenting	the	basics
	

Python	provides	an	out-of-the-box	capability	to	put	comments	in	code,	known	as
docstrings.	Docstrings	can	be	read	when	looking	at	the	source	and	also	when
inspecting	the	code	interactively	from	a	Python	shell.	In	this	recipe,	we	will
demonstrate	how	these	interactive	docstrings	can	be	used	as	runnable	tests.

What	does	this	provide?	It	offers	easy-to-read	code	samples	for	the	users.	Not
only	are	the	code	samples	readable,	they	are	also	runnable,	meaning	we	can
ensure	the	documentation	stays	up-to-date.

	

	

	

How	to	do	it...
	

With	the	following	steps,	we	will	create	an	application	combined	with	runnable
docstring	comments,	and	see	how	to	execute	these	tests:

1.	 Create	a	new	file	named	recipe16.py	to	put	all	the	code	we	write	for	this
recipe.

2.	 Create	a	function	that	converts	base-10	numbers	to	any	other	base	using
recursion:

def	convert_to_basen(value,	base):

				import	math

				def	_convert(remaining_value,	base,	exp):

								def	stringify(value):

												if	value	>	9:

																return	chr(value	+	ord('a')-10)

												else:

																return	str(value)

								if	remaining_value	>=	0	and	exp	>=	0:

												factor	=	int(math.pow(base,	exp))

												if	factor	<=	remaining_value:

																multiple	=	remaining_value	/	factor

																return	stringify(multiple)	+	\

																		_convert(remaining_value-multiple*factor,	\

																				base,	exp-1)

								else:

												return	"0"	+	\

																_convert(remaining_value,	base,	exp-1)

								else:

												return	""

				return	"%s/%s"	%	(_convert(value,	base,	\

																int(math.log(value,	base))),	base)

3.	 Add	a	docstring	just	below	the	external	function,	as	shown	in	the
highlighted	section	of	the	following	code.	This	docstring	declaration
includes	several	examples	of	using	the	function:

def	convert_to_basen(value,	base):

				"""Convert	a	base10	number	to	basen

				>>>	convert_to_basen(1,	2)

				'1/2'

				>>>	convert_to_basen(2,	2)

				'10/2'

				>>>	convert_to_basen(3,	2)

				'11/2'

				>>>	convert_to_basen(4,	2)

				'100/2'

				>>>	convert_to_basen(5,	2)

				'101/2'

				>>>	convert_to_basen(6,	2)

				'110/2'

				>>>	convert_to_basen(7,	2)

				'111/2'

				>>>	convert_to_basen(1,	16)

				'1/16'

				>>>	convert_to_basen(10,	16)

				'a/16'

				>>>	convert_to_basen(15,	16)

				'f/16'

				>>>	convert_to_basen(16,	16)

				'10/16'

				>>>	convert_to_basen(31,	16)

				'1f/16'

				>>>	convert_to_basen(32,	16)

				'20/16'

				"""

				import	math

4.	 Add	a	test	runner	block	that	invokes	Python's	doctest	module:

if	__name__	==	"__main__":

				import	doctest

				doctest.testmod()

5.	 From	an	interactive	Python	shell,	import	the	recipe	and	view	its
documentation.	Take	a	look	at	this	screenshot:

6.	 Run	the	code	from	the	command	line.	In	the	following	screenshot,	notice
how	nothing	is	printed.	This	is	what	happens	when	all	the	tests	pass.	Look

at	this	screenshot:

7.	 Run	the	code	from	the	command	line	with	-v	to	increase	verbosity.	In	the
following	screenshot,	we	see	a	piece	of	the	output,	showing	what	was	run
and	what	was	expected.	This	can	be	useful	when	debugging	doctest:

	

	

	

How	it	works...
	

The	doctest	module	looks	for	blocks	of	Python	inside	docstrings	and	runs	it	like
real	code.	>>>	is	the	same	prompt	we	see	when	we	use	the	interactive	Python
shell.	The	line	following	>>>	shows	the	expected	output.	doctest	runs	the
statements	it	sees	and	then	compares	the	actual	output	with	the	expected	output.

Later	in	this	chapter,	we	will	see	how	to	catch	things	such	as	stack	traces,	errors,
and	also	add	extra	code	that	equates	to	a	test	fixture.

	

	

	

There's	more...
	

doctest	is	very	picky	when	matching	expected	output	with	actual	results:

An	extraneous	space	or	tab	can	cause	things	to	break.
Structures	such	as	dictionaries	are	tricky	to	test,	because	Python	doesn't
guarantee	the	order	of	items.	On	each	test	run,	the	items	could	be	stored	in	a
different	order.	Simply	printing	out	a	dictionary	is	bound	to	break.
It	is	strongly	advised	not	to	include	object	references	in	expected	outputs.
These	values	also	vary	every	time	the	test	is	run.

	

	

Catching	stack	traces
It's	a	common	fallacy	that	we	should	write	tests	only	for	successful	code	paths.
We	also	need	to	code	against	error	conditions	including	the	ones	that	generate
stack	traces.	With	this	recipe,	we	will	explore	how	stack	traces	are	pattern-
matched	in	doc	testing,	which	allows	us	to	confirm	expected	errors.

	

How	to	do	it...
	

With	the	following	steps,	we	will	see	how	to	use	doctest	to	verify	error
conditions:

1.	 Create	a	new	file	called	recipe17.py	for	all	our	code	in	this	recipe.

2.	 Create	a	function	that	converts	base-10	numbers	to	any	other	base	using
recursion:

def	convert_to_basen(value,	base):

				import	math

				def	_convert(remaining_value,	base,	exp):

								def	stringify(value):

												if	value	>	9:

																return	chr(value	+	ord('a')-10)

												else:

																return	str(value)

								if	remaining_value	>=	0	and	exp	>=	0:

												factor	=	int(math.pow(base,	exp))

												if	factor	<=	remaining_value:

																multiple	=	remaining_value	/	factor

																return	stringify(multiple)	+	\

																				_convert(remaining_value-multiple*factor,	\

																																base,	exp-1)

												else:

																return	"0"	+	\

																				_convert(remaining_value,	base,	exp-1)

								else:

												return	""

				return	"%s/%s"	%	(_convert(value,	base,	\

																int(math.log(value,	base))),	base)

3.	 Add	a	docstring	just	below	the	external	function	declaration	that	includes
two	examples	that	are	expected	to	generate	stack	traces:

def	convert_to_basen(value,	base):

				"""Convert	a	base10	number	to	basen.

				>>>	convert_to_basen(0,	2)

				Traceback	(most	recent	call	last):

								...

				ValueError:	math	domain	error

				>>>	convert_to_basen(-1,	2)

				Traceback	(most	recent	call	last):

								...

				ValueError:	math	domain	error

				"""

				import	math

4.	 Add	a	test	runner	block	that	invokes	Python's	doctest	module:

if	__name__	==	"__main__":

				import	doctest

				doctest.testmod()

5.	 Run	the	code	from	the	command	line.	In	the	following	screenshot,	notice
how	nothing	is	printed.	This	is	what	happens	when	all	the	tests	pass:

6.	 Run	the	code	from	the	command	line	with	-v	to	increase	verbosity.	In	the
following	screenshot,	we	can	see	that	0	and	-1	generate	math	domain	errors.
This	is	due	to	using	math.log	to	find	the	starting	exponent:

	

	

	

How	it	works...
The	doctest	module	looks	for	blocks	of	Python	inside	docstrings	and	runs	it	like
real	code.	>>>	is	the	same	prompt	we	see	when	we	use	the	interactive	Python
shell.	The	line	following	>>>	shows	the	expected	output.	doctest	runs	the
statements	it	sees	and	then	compares	the	actual	output	with	the	expected	output.

With	regard	to	stack	traces,	there	is	a	lot	of	detailed	information	provided	in	the
stack	trace.	Pattern	matching	the	entire	trace	is	ineffective.	By	using	the	ellipsis,
we	are	able	to	skip	the	intermediate	parts	of	the	stack	trace	and	just	match	on	the
distinguishing	part:	ValueError:	math	domain	error.

This	is	valuable,	because	our	users	will	not	only	see	the	way	it	handles	good
values,	but	will	also	observe	what	errors	to	expect	when	bad	values	are	provided.

Running	a	doctest	from	the	command
line
We	have	seen	how	to	develop	tests	by	embedding	runnable	fragments	of	code	in
docstrings.	But	for	each	of	these	tests,	we	had	to	make	the	module	runnable.
What	if	we	wanted	to	run	something	else	other	than	our	doctest	from	the
command	line?	We	would	have	to	get	rid	of	the	doctest.testmod()	statements!

The	good	news	is	that,	starting	with	Python	2.6,	there	is	a	command-line	option
to	run	a	specific	module	using	doctest	without	coding	a	runner.

The	python	-m	doctest	-v	example.py	command	will	import	example.py	and	run	it
through	doctest.testmod().	According	to	the	documentation,	this	may	fail	if	the
module	is	part	of	a	package	and	imports	other	sub	modules.

How	to	do	it...
	

In	the	following	steps,	we	will	create	a	simple	application.	We	will	add	some
doctests	and	then	run	them	from	the	command	line	without	writing	a	special	test
runner:

1.	 Create	a	new	file	called	recipe18.py	to	store	the	code	written	for	this	recipe.

2.	 Create	a	function	that	converts	base-10	numbers	to	any	other	base	using
recursion:

def	convert_to_basen(value,	base):

				import	math

				def	_convert(remaining_value,	base,	exp):

								def	stringify(value):

												if	value	>	9:

																return	chr(value	+	ord('a')-10)

												else:

																return	str(value)

								if	remaining_value	>=	0	and	exp	>=	0:

												factor	=	int(math.pow(base,	exp))

												if	factor	<=	remaining_value:

																multiple	=	remaining_value	/	factor

																return	stringify(multiple)	+	\

																		_convert(remaining_value-multiple*factor,	\

																																base,	exp-1)

												else:

																return	"0"	+	\

																							_convert(remaining_value,	base,	exp-1)

								else:

												return	""

				return	"%s/%s"	%	(_convert(value,	base,	\

																									int(math.log(value,	base))),	base)

3.	 Add	a	docstring	just	below	the	external	function	declaration	that	includes
some	of	the	tests:

def	convert_to_basen(value,	base):

				"""Convert	a	base10	number	to	basen.

				

				>>>	convert_to_basen(10,	2)

				'1010/2'

				

				>>>	convert_to_basen(15,	16)

				'f/16'

				

				>>>	convert_to_basen(0,	2)

				Traceback	(most	recent	call	last):

								...

				ValueError:	math	domain	error

				

				>>>	convert_to_basen(-1,	2)

				Traceback	(most	recent	call	last):

								...

				ValueError:	math	domain	error

				"""

				import	math

4.	 Run	the	code	from	the	command	line	using	-m	doctest.	As	shown	in	the
following	screenshot,	no	output	indicates	that	all	the	tests	have	passed:

5.	 Run	the	code	from	the	command	line	with	-v	to	increase	verbosity.	What
happens	if	we	forget	to	include	-m	doctest?	Using	the	-v	option	helps	us	to
avoid	this	by	giving	us	a	warm	fuzzy	feeling	that	our	tests	are	working.
Take	a	look	at	this	screenshot:

	

	

	

How	it	works...
In	the	previous	chapter,	we	were	using	the	__main__	block	of	a	module	to	run	other
test	suites.	What	if	we	wanted	to	do	the	same	here?	We	would	have	to	pick
whether	__main__	would	be	for	unittest	tests,	doctests,	or	both!	What	if	we	didn't
even	want	to	run	testing	through	__main__,	but	instead	run	our	application?

That	is	why	Python	added	the	option	of	invoking	testing	right	from	the
command	line	using	-m	doctest.

Don't	you	want	to	know	whether	your	tests	are	running	or	working?	Is	the	test
suite	really	doing	what	it	promised?	With	other	tools,	we	usually	have	to	embed
print	statements,	or	deliberate	failures	just	to	know	things	are	being	trapped
properly.	Doesn't	it	appear	that	the	-v	option	in	doctest	provides	a	convenient
quick	glance	at	what's	happening?

Coding	a	test	harness	for	doctest
The	tests	we	have	written	so	far	are	very	simple,	because	the	function	we	are
testing	is	simple.	There	are	two	inputs	and	one	output	with	no	side	effects.	No
objects	have	to	be	created.	This	isn't	the	most	common	use	case	for	us.	Often,	we
have	objects	that	interact	with	other	objects.

The	doctest	module	supports	creating	objects,	invoking	methods,	and	checking
results.	With	this	recipe,	we	will	explore	this	in	more	detail.

An	important	aspect	of	doctest	is	that	it	finds	individual	instances	of	docstrings,
and	runs	them	in	a	local	context.	Variables	declared	in	one	docstring	cannot	be
used	in	another	docstring.

How	to	do	it...
1.	 Create	a	new	file	called	recipe19.py	to	contain	the	code	from	this	recipe.

2.	 Write	a	simple	shopping	cart	application:

class	ShoppingCart(object):

				def	__init__(self):

								self.items	=	[]

				def	add(self,	item,	price):

								self.items.append(Item(item,	price))

								return	self

				def	item(self,	index):

								return	self.items[index-1].item

				def	price(self,	index):

								return	self.items[index-1].price

				def	total(self,	sales_tax):

								sum_price	=	sum([item.price	for	item	in	self.items])

								return	sum_price*(1.0	+	sales_tax/100.0)

				def	__len__(self):

								return	len(self.items)

class	Item(object):

				def	__init__(self,	item,	price):

								self.item	=	item

								self.price	=	price

3.	 Insert	a	docstring	at	the	top	of	the	module,	before	the	ShoppingCart	class
declaration:

"""

This	is	documentation	for	the	this	entire	recipe.

With	it,	we	can	demonstrate	usage	of	the	code.

>>>	cart	=	ShoppingCart().add("tuna	sandwich",	15.0)

>>>	len(cart)

1

>>>	cart.item(1)

'tuna	sandwich'

>>>	cart.price(1)

15.0

>>>	print	(round(cart.total(9.25),	2))

16.39

"""

class	ShoppingCart(object):

...

4.	 Run	the	recipe	using	-m	doctest	and	-v	for	verbosity:

5.	 Copy	all	the	code	we	just	wrote	from	recipe19.py	into	a	new	file	called
recipe19b.py.

6.	 Inside	recipe19b.py,	add	another	docstring	to	item,	which	attempts	to	reuse	the
cart	variable	defined	at	the	top	of	the	module:

def	item(self,	index):

				"""

				>>>	cart.item(1)

				'tuna	sandwich'

				"""

				return	self.items[index-1].item

7.	 Run	this	variant	of	the	recipe.	Why	does	it	fail?	Wasn't	cart	declared	in	the
earlier	docstring?	Look	at	this	screenshot:

	

How	it	works...
	

The	doctest	module	looks	for	every	docstring.	For	each	docstring	it	finds,	it
creates	a	shallow	copy	of	the	module's	global	variables	and	then	runs	the	code
and	checks	results.	Apart	from	that,	every	variable	created	is	locally	scoped	and
then	cleaned	up	when	the	test	is	complete.	This	means	that	our	second	docstring
that	was	added	later	cannot	see	the	cart	that	was	created	in	our	first	docstring.
That	is	why	the	second	run	failed.

There	is	no	equivalent	to	a	setUp	method	as	we	used	with	some	of	the	unittest
recipes.	If	there	is	no	setUp	option	with	doctest,	then	what	value	is	this	recipe?	It
highlights	a	key	limitation	of	doctest	that	all	developers	must	understand	before
using	it.

	

	

	

There's	more...
	

The	doctest	module	provides	an	incredibly	convenient	way	to	add	testability	to
our	documentation.	But	this	is	not	a	substitute	for	a	full-fledged	testing
framework,	such	as	unittest.	As	noted	earlier,	there	is	no	equivalent	to	a	setUp.
There	is	also	no	syntax	checking	of	the	Python	code	embedded	in	the	docstrings.

Mixing	the	right	level	of	a	doctest	with	unittest	(or	any	other	testing	framework
we	may	pick)	is	a	matter	of	judgment.

	

	

	

Filtering	out	test	noise
Various	options	help	doctest	ignore	noise,	such	as	whitespace,	in	test	cases.	This
can	be	useful,	because	it	allows	us	to	structure	the	expected	outcome	in	a	better
way,	to	ease	reading	for	the	users.

We	can	also	flag	some	tests	that	can	be	skipped.	This	can	be	used	where	we	want
to	document	known	issues,	but	haven't	yet	patched	the	system.

Both	of	these	situations	can	easily	be	construed	as	noise	when	we	are	trying	to
run	comprehensive	testing	but	are	focused	on	other	parts	of	the	system.	In	this
recipe,	we	will	dig	in	to	ease	the	strict	checking	done	by	doctest.	We	will	also
look	at	how	to	ignore	entire	tests,	whether	it's	for	temporary	or	permanent	needs.

How	to	do	it...
	

With	the	following	steps,	we	will	experiment	with	filtering	out	test	results	and
easing	certain	restrictions	of	doctest:

1.	 Create	a	new	file	called	recipe20.py	for	the	code	from	this	recipe.

2.	 Create	a	recursive	function	that	converts	base-10	numbers	into	other	bases:

def	convert_to_basen(value,	base):

				import	math

				def	_convert(remaining_value,	base,	exp):

								def	stringify(value):

												if	value	>	9:

																return	chr(value	+	ord('a')-10)

												else:

																return	str(value)

								if	remaining_value	>=	0	and	exp	>=	0:

												factor	=	int(math.pow(base,	exp))

												if	factor	<=	remaining_value:

																multiple	=	remaining_value	/	factor

																return	stringify(multiple)	+	\

																		_convert(remaining_value-multiple*factor,	\

																																base,	exp-1)

												else:

																return	"0"	+	\

																							_convert(remaining_value,	base,	exp-1)

								else:

												return	""

				return	"%s/%s"	%	(_convert(value,	base,	\

																									int(math.log(value,	base))),	base)

3.	 Add	a	docstring	that	includes	a	test	to	exercise	a	range	of	values	as	well	as
document	a	future	feature	that	is	not	yet	implemented:

def	convert_to_basen(value,	base):

				"""Convert	a	base10	number	to	basen.

				>>>	[convert_to_basen(i,	16)	for	i	in	range(1,16)]	#doctest:

+NORMALIZE_WHITESPACE

				['1/16',	'2/16',	'3/16',	'4/16',	'5/16',	'6/16',	'7/16',	'8/16',

				'9/16',		'a/16',	'b/16',	'c/16',	'd/16',	'e/16',	'f/16']

				FUTURE:	Binary	may	support	2's	complement	in	the	future,	but	not

now.

				>>>	convert_to_basen(-10,	2)	#doctest:	+SKIP

				'0110/2'

				"""

				import	math

4.	 Add	a	test	runner:

if	__name__	==	"__main__":

				import	doctest

				doctest.testmod()

5.	 Run	the	test	case	in	verbose	mode,	as	shown	in	this	screenshot:

6.	 Copy	the	code	from	recipe20.py	into	a	new	file	called	recipe20b.py.

7.	 Edit	recipe20b.py	by	updating	the	docstring	to	include	another	test	exposing
that	our	function	doesn't	convert	0:

def	convert_to_basen(value,	base):

				"""Convert	a	base10	number	to	basen.

				>>>	[convert_to_basen(i,	16)	for	i	in	range(1,16)]	#doctest:

+NORMALIZE_WHITESPACE

				['1/16',	'2/16',	'3/16',	'4/16',	'5/16',	'6/16',	'7/16',	'8/16',

				'9/16',		'a/16',	'b/16',	'c/16',	'd/16',	'e/16',	'f/16']

				FUTURE:	Binary	may	support	2's	complement	in	the	future,	but	not

now.

				>>>	convert_to_basen(-10,	2)	#doctest:	+SKIP

				'0110/2'

				BUG:	Discovered	that	this	algorithm	doesn't	handle	0.	Need	to	patch

it.

				TODO:	Renable	this	when	patched.

				>>>	convert_to_basen(0,	2)

				'0/2'

				"""

				import	math

8.	 Run	the	test	case.	Notice	what	is	different	about	this	version	of	the	recipe
and	why	it	fails?	Take	a	look	at	this	screenshot:

9.	 Copy	the	code	from	recipe20b.py	into	a	new	file	called	recipe20c.py.

10.	 Edit	recipe20c.py	and	update	the	docstring,	indicating	that	we	will	skip	the
test	for	now:

def	convert_to_basen(value,	base):	

				"""Convert	a	base10	number	to	basen.	

	

				>>>	[convert_to_basen(i,	16)	for	i	in	range(1,16)]	#doctest:	

+NORMALIZE_WHITESPACE	

				['1/16',	'2/16',	'3/16',	'4/16',	'5/16',	'6/16',	'7/16',	'8/16',	

				'9/16',		'a/16',	'b/16',	'c/16',	'd/16',	'e/16',	'f/16']	

	

				FUTURE:	Binary	may	support	2's	complement	in	the	future,	but	not	now.	

				>>>	convert_to_basen(-10,	2)	#doctest:	+SKIP	

				'0110/2'	

	

				BUG:	Discovered	that	this	algorithm	doesn't	handle	0.	Need	to	patch	it.	

				TODO:	Renable	this	when	patched.	

				>>>	convert_to_basen(0,	2)	#doctest:	+SKIP	

				'0/2'	

				"""	

				import	math

11.	 Run	the	test	case.	Take	a	look	at	this	screenshot:

	

	

	

How	it	works...
In	this	recipe,	we	revisit	the	function	for	converting	from	base-10	to	any	base
numbers.	The	first	test	shows	it	being	run	over	a	range.	Normally,	Python	would
fit	this	array	of	results	on	one	line.	To	make	it	more	readable,	we	spread	the
output	across	two	lines.	We	also	put	some	arbitrary	spaces	between	the	values	to
make	the	columns	line	up	better.

This	is	something	that	doctest	definitely	would	not	support,	due	to	its	strict
pattern	matching	nature.	By	using	#doctest:	+NORMALIZE_WHITESPACE,	we	are	able	to
ask	doctest	to	ease	this	restriction.	There	are	still	constraints.	For	example,	the
first	value	in	the	expected	array	cannot	have	any	whitespace	in	front	of	it
(believe	me,	I	tried	for	maximum	readability!)	But	wrapping	the	array	to	the	next
line	no	longer	breaks	the	test.

We	also	have	a	test	case	that	is	really	meant	as	documentation	only.	It	indicates	a
future	requirement	that	shows	how	our	function	would	handle	negative	binary
values.	By	adding	#doctest:	+SKIP,	we	are	able	to	command	doctest	to	skip	this
particular	instance.

Finally,	we	see	a	scenario	where	we	discover	that	our	code	doesn't	handle	0.	As
the	algorithm	gets	the	highest	exponent	by	taking	a	logarithm,	there	is	a	math
problem.	We	capture	this	edge	case	with	a	test.	We	then	confirm	that	the	code
fails	in	classic	test-driven	design	(TDD)	fashion.	The	final	step	would	be	to	fix
the	code	to	handle	this	edge	case.	But	we	decide,	in	a	somewhat	contrived
fashion,	that	we	don't	have	enough	time	in	the	current	sprint	to	fix	the	code.	To
avoid	breaking	our	continuous	integration	(CI)	server,	we	mark	the	test	with	a
TO-DO	statement	and	add	#doctest:	+SKIP.

There's	more...
Both	situations	that	we	have	marked	up	with	#doctest:	+SKIP	are	cases	where
eventually	we	will	want	to	remove	the	SKIP	tag	and	have	them	run.	There	may	be
other	situations	where	we	will	never	remove	SKIP.	Demonstrations	of	code	that
have	big	fluctuations	may	not	be	readily	testable	without	making	them
unreadable.	For	example,	functions	that	return	dictionaries	are	harder	to	test
because	the	order	of	results	vary.	We	can	bend	it	to	pass	a	test,	but	we	may	lose
the	value	of	the	documentation	in	order	to	present	it	to	the	reader.

	

Printing	out	all	your	documentation
including	a	status	report
	

Since	this	chapter	has	been	about	both	documentation	and	testing,	let's	build	a
script	that	takes	a	set	of	modules	and	prints	out	a	complete	report,	showing	all
documentation	as	well	as	running	any	given	tests.

This	is	a	valuable	recipe,	because	it	shows	us	how	to	use	Python's	APIs	to
harvest	a	code-driven	runnable	report.	This	means	the	documentation	is	accurate
and	up	to	date,	reflecting	the	current	state	of	our	code.

	

	

	

How	to	do	it...
	

In	the	following	steps,	we	will	write	an	application	and	some	doctests.	Then	we
will	build	a	script	to	harvest	a	useful	report:

1.	 Create	a	new	file	called	recipe21_report.py	to	contain	the	script	that	harvests
our	report.

2.	 Start	creating	a	script	by	importing	Python's	inspect	library	as	the	basis	for
drilling	down	into	a	module:	from	inspect	import*.

3.	 Add	a	function	that	focuses	on	either	printing	out	an	item's	__doc__	string	or
prints	out	that	no	documentation	was	found:

def	print_doc(name,	item):

				if	item.__doc__:

								print	"Documentation	for	%s"	%	name

								print	"-------------------------------"

								print	item.doc

								print	"-------------------------------"

				else:

								print	"Documentation	for	%s	-	None"	%	name

4.	 Add	a	function	that	prints	out	the	documentation	based	on	a	given	module.
Make	sure	this	function	looks	for	classes,	methods,	and	functions,	and
prints	out	their	docs:

def	print_docstrings(m,	prefix=""):

				print_doc(prefix	+	"module	%s"	%	m.__name__,	m)

				

				for	(name,	value)	in	getmembers(m,	isclass):

								if	name	==	'__class__':	continue

								print_docstrings(value,	prefix=name	+	".")

				for	(name,	value)	in	getmembers(m,	ismethod):

								print_doc("%s%s()"	%	(prefix,	name),	value)

				for	(name,	value)	in	getmembers(m,	isfunction):

								print_doc("%s%s()"	%	(prefix,	name),	value)

5.	 Add	a	runner	that	parses	the	command-line	string,	and	iterates	over	each
provided	module:

if	__name__	==	"__main__":

				import	sys

				import	doctest

				

				for	arg	in	sys.argv[1:]:

								if	arg.startswith("-"):	continue

								print	"==============================="

								print	"==	Processing	module	%s"	%	arg

								print	"==============================="

								m	=	__import__(arg)

								print_docstrings(m)

								print	"Running	doctests	for	%s"	%	arg

								print	"-------------------------------"

								doctest.testmod(m)

6.	 Create	a	new	file,	recipe21.py,	to	contain	an	application	with	tests	that	we
will	run	the	earlier	script	against.

7.	 In	recipe21.py,	create	a	shopping	cart	app	and	fill	it	with	docstrings	and
doctests.	This	is	documentation	for	the	entire	recipe.	With	it,	we	can
demonstrate	usage	of	the	code:

>>>	cart	=	ShoppingCart().add("tuna	sandwich",	15.0)

>>>	len(cart)

1

>>>	cart.item(1)

'tuna	sandwich'

>>>	cart.price(1)

15.0

>>>	print	round(cart.total(9.25),	2)

16.39

"""

class	ShoppingCart(object):

				"""

				This	object	is	used	to	store	the	goods.

				It	conveniently	calculates	total	cost	including

				tax.

				"""

				def	__init__(self):

								self.items	=	[]

				def	add(self,	item,	price):

								"Add	an	item	to	the	internal	list."

								self.items.append(Item(item,	price))

								return	self

				def	item(self,	index):

								"Look	up	the	item.	The	cart	is	a	1-based	index."

								return	self.items[index-1].item

				def	price(self,	index):

								"Look	up	the	price.	The	cart	is	a	1-based	index."

								return	self.items[index-1].price

				def	total(self,	sales_tax):

								"Add	up	all	costs,	and	then	apply	a	sales	tax."

								sum_price	=	sum([item.price	for	item	in	self.items])

								return	sum_price*(1.0	+	sales_tax/100.0)

				def	__len__(self):

								"Support	len(cart)	operation."

								return	len(self.items)

class	Item(object):

				def	__init__(self,	item,	price):

								self.item	=	item

								self.price	=	price

8.	 Run	the	report	script	against	this	module	using	-v,	and	look	at	the	screen's
output:

===============================

==	Processing	module	recipe21

===============================

Documentation	for	module	recipe21

This	is	documentation	for	the	this	entire	recipe.

With	it,	we	can	demonstrate	usage	of	the	code.

>>>	cart	=	ShoppingCart().add("tuna	sandwich",	15.0)

>>>	len(cart)

1

>>>	cart.item(1)

'tuna	sandwich'

>>>	cart.price(1)

15.0

>>>	print	round(cart.total(9.25),	2)

16.39

Documentation	for	Item.module	Item	-	None

Documentation	for	Item.__init__()	-	None

Documentation	for	ShoppingCart.module	ShoppingCart

				This	object	is	used	to	store	the	goods.

				It	conveniently	calculates	total	cost	including

				tax.

…

Running	doctests	for	recipe21

Trying:

				cart	=	ShoppingCart().add("tuna	sandwich",	15.0)

Expecting	nothing

ok

Trying:

				len(cart)

Expecting:

				1

ok

5	tests	in	10	items.

5	passed	and	0	failed.

Test	passed.

	

	

How	it	works...
This	script	is	tiny,	yet	it	harvests	a	lot	of	useful	information.

By	using	Python's	standard	inspect	module,	we	are	able	to	drill	down	starting	at
the	module	level.	The	reflective	way	to	look	up	a	docstring	is	by	accessing	the
__doc__	property	of	an	object.	This	is	contained	in	modules,	classes,	methods,	and
functions.	They	exist	in	other	places,	but	we	limited	our	focus	for	this	recipe.

We	ran	it	in	verbose	mode	to	show	that	the	tests	were	actually	executed.	We
hand	parsed	the	command-line	options,	but	doctest	automatically	looks	for	-v	to
decide	whether	or	not	to	turn	on	verbose	output.	To	prevent	our	module
processor	from	catching	this	and	trying	to	process	it	as	another	module,	we
added	a	line	to	skip	any	-xyz	style	flags:	if	arg.startswith("-"):	continue

There's	more...
We	could	spend	more	time	enhancing	this	script.	For	example,	we	could	dump
this	out	with	an	HTML	markup,	making	it	viewable	in	a	web	browser.	We	could
also	find	third-party	libraries	to	export	it	in	other	ways.

We	could	also	work	on	refining	where	it	looks	for	docstrings	and	how	it	handles
them.	In	our	case,	we	just	printed	them	to	the	screen.	A	more	reusable	approach
would	be	to	return	some	type	of	structure	containing	all	the	information.	Then,
the	caller	can	decide	whether	to	print	to	screen,	encode	it	in	HTML,	or	generate
a	PDF	document.

This	isn't	necessary,	because	this	recipe's	focus	is	on	seeing	how	to	mix	these
powerful	out-of-the-box	options	Python	provides	into	a	quick	and	useful	tool.

Testing	the	edges
Tests	need	to	exercise	the	boundaries	of	our	code	up	to	and	beyond	the	range
limits.	In	this	recipe,	we	will	dig	into	defining	and	testing	edges	with	doctest.

How	to	do	it...
	

With	the	following	steps,	we	will	see	how	to	write	code	that	tests	the	edges	of
our	software:

1.	 Create	a	new	file	named	recipe22.py	and	use	it	to	place	all	of	our	code	for
this	recipe.

2.	 Create	a	function	that	converts	base-10	numbers	to	anything	between	base-
2	and	base-36:

def	convert_to_basen(value,	base):

				if	base	<	2	or	base	>	36:

								raise	Exception("Only	support	bases	2-36")

				

				import	math

				def	_convert(remaining_value,	base,	exp):

								def	stringify(value):

												if	value	>	9:

																return	chr(value	+	ord('a')-10)

												else:

																return	str(value)

								

								if	remaining_value	>=	0	and	exp	>=	0:

												factor	=	int(math.pow(base,	exp))

												if	factor	<=	remaining_value:

																multiple	=	remaining_value	/	factor

																return	stringify(multiple)	+	\

																		_convert(remaining_value-multiple*factor,	\

																																base,	exp-1)

												else:

																return	"0"	+	\

																							_convert(remaining_value,	base,	exp-1)

								else:

												return	""

				return	"%s/%s"	%	(_convert(value,	base,	\

																									int(math.log(value,	base))),	base)

3.	 Add	a	docstring	just	below	our	function	declaration	that	includes	tests
showing	base-2	edges,	base-36	edges,	and	the	invalid	base-37:

def	convert_to_basen(value,	base):

				"""Convert	a	base10	number	to	basen.

				These	show	the	edges	for	base	2.

				>>>	convert_to_basen(1,	2)

				'1/2'

				>>>	convert_to_basen(2,	2)

				'10/2'

				>>>	convert_to_basen(0,	2)

				Traceback	(most	recent	call	last):

							...

				ValueError:	math	domain	error

				These	show	the	edges	for	base	36.

				>>>	convert_to_basen(1,	36)

				'1/36'

				>>>	convert_to_basen(35,	36)

				'z/36'

				>>>	convert_to_basen(36,	36)

				'10/36'

				>>>	convert_to_basen(0,	36)

				Traceback	(most	recent	call	last):

							...

				ValueError:	math	domain	error

				These	show	the	edges	for	base	37.

				>>>	convert_to_basen(1,	37)

				Traceback	(most	recent	call	last):

							...

				Exception:	Only	support	bases	2-36

				>>>	convert_to_basen(36,	37)

				Traceback	(most	recent	call	last):

							...

				Exception:	Only	support	bases	2-36

				>>>	convert_to_basen(37,	37)

				Traceback	(most	recent	call	last):

							...

				Exception:	Only	support	bases	2-36

				>>>	convert_to_basen(0,	37)			

				Traceback	(most	recent	call	last):

							...

				Exception:	Only	support	bases	2-36

				"""

				if	base	<	2	or	base	>	36:

4.	 Add	a	test	runner:

if	__name__	==	"__main__":

				import	doctest

				doctest.testmod()

5.	 Run	the	recipe,	as	shown	in	this	screenshot:

	

	

	

How	it	works...
This	version	has	a	limit	of	handling	base-2	through	base-36.

For	base-36,	it	uses	a	to	z.	This	is	compared	to	base-16	that	uses	a	to	f.	35	in	base-
10	is	represented	as	z	in	base-36.

We	include	several	tests,	including	1	for	base-2	and	base-36.	We	also	test	the
maximum	value	before	rolling	over,	and	the	next	value,	to	show	the	rollover.	For
base-2,	this	is	1	and	2.	For	base-36,	this	is	35	and	36.

As	we	have	also	included	tests	for	0	to	show	that	our	function	doesn't	handle	this
for	any	base,	we	also	test	base-37,	which	is	invalid	as	well.

There's	more...
It's	important	that	our	software	works	for	valid	inputs.	It's	just	as	important	that
our	software	works	as	expected	for	invalid	inputs.	We	have	documentation	that
can	be	viewed	by	our	users	when	using	our	software	that	documents	these	edges.
And,	thanks	to	Python's	doctest	module,	we	can	test	it	and	make	sure	that	our
software	performs	correctly.

	

See	also
The	Testing	the	edges	section	mentioned	in	Chapter	1,	Using	Unittest	to	Develop
Basic	Tests.

Testing	corner	cases	by	iteration
Corner	cases	will	appear	as	we	continue	to	develop	our	code.	By	capturing
corner	cases	in	an	iterable	list,	there	is	less	code	to	write	for	capturing	another
test	scenario.	This	can	increase	our	efficiency	at	testing	new	scenarios.

How	to	do	it...
	

1.	 Create	a	new	file	called	recipe23.py,	and	use	it	to	store	all	our	code	for	this
recipe.

2.	 Create	a	function	that	converts	base-10	to	any	other	base:

def	convert_to_basen(value,	base):

				import	math

				def	_convert(remaining_value,	base,	exp):

								def	stringify(value):

												if	value	>	9:

																return	chr(value	+	ord('a')-10)

												else:

																return	str(value)

								if	remaining_value	>=	0	and	exp	>=	0:

												factor	=	int(math.pow(base,	exp))

												if	factor	<=	remaining_value:

																multiple	=	remaining_value	/	factor

																return	stringify(multiple)	+	\

																		_convert(remaining_value-multiple*factor,	\

																																base,	exp-1)

												else:

																return	"0"	+	\

																							_convert(remaining_value,	base,	exp-1)

								else:

												return	""

				return	"%s/%s"	%	(_convert(value,	base,	\

																									int(math.log(value,	base))),	base)

3.	 Add	some	instances	of	doctest	that	include	an	array	of	input	values	to
generate	an	array	of	expected	outputs.	Include	one	failure:

def	convert_to_basen(value,	base):

				"""Convert	a	base10	number	to	basen.

				Base	2

				>>>	inputs	=	[(1,2,'1/2'),	(2,2,'11/2')]

				>>>	for	value,base,expected	in	inputs:

				...					actual	=	convert_to_basen(value,base)

				...					assert	actual	==	expected,	'expected:	%s	actual:	%s'	%

(expected,	actual)

				>>>	convert_to_basen(0,	2)

				Traceback	(most	recent	call	last):

							...

				ValueError:	math	domain	error

				Base	36.

				>>>	inputs	=	[(1,36,'1/36'),	(35,36,'z/36'),	(36,36,'10/36')]

				>>>	for	value,base,expected	in	inputs:

				...					actual	=	convert_to_basen(value,base)

				...					assert	actual	==	expected,	'expected:	%s	actual:	%s'	%

(expected,	value)

				>>>	convert_to_basen(0,	36)

				Traceback	(most	recent	call	last):

							...

				ValueError:	math	domain	error

				"""

				import	math

4.	 Add	a	test	runner:

if	__name__	==	"__main__":

				import	doctest

				doctest.testmod()

5.	 Run	the	recipe:

In	the	previous	screenshot,	the	key	information	is	on	this	line:	AssertionError:
expected:	11/2	actual:	10/2.	Is	this	test	failure	a	bit	contrived?	Sure	it	is.	But	seeing
a	test	case	that	shows	useful	output	is	not.	It's	important	to	verify	that	our	tests
give	us	enough	information	to	fix	either	the	tests	or	the	code.

	

	

	

How	it	works...
We	created	an	array	with	each	entry	containing	both	the	input	data	as	well	as	the
expected	output.	This	provides	us	an	easy	way	to	glance	at	a	set	of	test	cases.

Then,	we	iterated	over	each	test	case,	calculated	the	actual	value,	and	ran	it
through	a	Python	assert.	An	important	part	that	is	needed	is	the	custom	message
'expected:	%s	actual:	%s'.	Without	it,	we	would	never	get	the	information	that	tells
us	which	test	case	failed.

What	if	one	test	case	fails?
If	one	of	the	tests	in	the	array	fails,	then	that	code	block	exits	and	skips	over	the	rest	of	the
tests.	This	is	the	trade-off	for	having	a	more	succinct	set	of	tests.

Does	this	type	of	test	fit	better	into
doctest	or	unittest?
	

Here	are	some	criteria	to	help	you	decide	whether	it's	worth	putting	these	tests	in
doctest:

Is	the	code	easy	to	comprehend	at	a	glance?
Is	there	clear,	succinct,	useful	information	when	users	view	the	docstrings?

If	there	is	little	value	of	having	this	in	the	documentation,	and	it	clutters	the
code,	then	that	is	a	strong	hint	that	this	test	block	belongs	to	a	separate	test
module.

	

	

	

See	also
The	Testing	corner	cases	by	iteration	section	of	Chapter	1,	Using	Unittest	to
Develop	Basic	Tests

Getting	nosy	with	doctest
	

Up	to	this	point,	we	have	been	either	appending	modules	with	a	test	runner,	or
we	have	typed	python	-m	doctest	<module>	on	the	command	line	to	exercise	our	tests.

In	the	previous	chapter,	we	introduced	the	powerful	nose	library	(refer	to	http://so
methingaboutorange.com/mrl/projects/nose	for	more	details).

For	a	quick	recap,	nose	has	the	following	features:

Provides	us	with	the	convenient	test	discovering	tool	nosetests
Is	pluggable,	with	a	huge	ecosystem	of	plugins	available
Includes	a	built-in	plugin	targeted	at	finding	doctests	and	running	them

	

	

http://somethingaboutorange.com/mrl/projects/nose

Getting	ready
We	need	to	activate	our	virtual	environment	(virtualenv)	and	then	install	nose	for
this	recipe:

1.	 Create	a	virtual	environment,	activate	it,	and	verify	the	tools	are	working.
Take	a	look	at	this	screenshot:

2.	 Using	pip,	install	nose,	as	shown	in	the	screenshot:

This	recipe	assumes	you	have	built	all	of	the	previous	recipes	in	this	chapter.	If	you	have	built
only	some	of	them,	your	results	may	appear	different.

How	to	do	it...
	

1.	 Run	nosetests	-with-doctest	against	all	the	modules	in	this	folder.	You	may
notice	that	it	prints	a	very	shortF.F...F,	indicating	that	three	tests	have
failed.

2.	 Run	nosetests	-with-doctest	-v	to	get	a	more	verbose	output.	In	the	following
screenshot,	notice	how	the	tests	that	failed	are	the	same	ones	that	failed	for
the	previous	recipes	in	this	chapter.	It	is	also	valuable	to	see	the	<module>.
<method>	format	with	either	ok	or	FAIL:

3.	 Run	nosetests	-with-doctest	against	both	the	recipe19.py	file	as	well	as	the
recipe19	module,	in	different	combinations,	as	shown	in	the	screenshot:

	

	

	

How	it	works...
nosetests	is	targeted	at	discovering	test	cases	and	then	running	them.	With	this
plugin,	when	it	finds	a	docstring,	it	uses	the	doctest	library	to	programmatically
test	it.

The	doctest	plugin	is	built	around	the	assumption	that	doctests	are	not	in	the	same
package	as	other	tests,	such	as	unittest.	This	means	it	will	only	run	doctests
found	from	non-test	packages.

There	isn't	a	whole	lot	of	complexity	to	nosetests	nor	in	using	them,	nosetests	is
meant	to	be	an	easy-to-use	tool	that	puts	testing	at	your	fingertips.	In	this	recipe,
we	have	seen	how	to	use	nosetests	to	get	a	hold	of	all	the	doctest	we	have	built	so
far	in	this	chapter.

	

Updating	the	project-level	script	to
run	this	chapter's	doctests
This	recipe	will	help	us	explore	building	a	project-level	script	that	allows	us	to
run	different	test	suites.	We	will	also	focus	on	how	to	run	it	in	our	doctest.

How	to	do	it...
	

With	the	following	steps,	we	will	craft	a	command-line	script	to	allow	us	to
manage	a	project	that	includes	running	doctest:

1.	 Create	a	new	file	called	recipe25.py	to	put	all	the	code	for	this	recipe.

2.	 Add	code	that	parses	a	set	of	options	using	Python's	getopt	library:

import	getopt

import	glob

import	logging

import	nose

import	os

import	os.path

import	re

import	sys

def	usage():

				print	()

				print	("Usage:	python	recipe25.py	[command]")

				print	()

				print	("\t--help")

				print	("\t--doctest")

				print	("\t--suite	[suite]")

				print	("\t--debug-level	[info|debug]")

				print	("\t--package")

				print	("\t--publish")

				print	("\t--register")

				print	()

try:

				optlist,	args	=	getopt.getopt(sys.argv[1:],

												"h",

											["help",	"doctest",	"suite=",	\

												"debug-level=",	"package",	\

												"publish",	"register"])

except	getopt.GetoptError:

				#	print	help	information	and	exit:

				print	"Invalid	command	found	in	%s"	%	sys.argv

				usage()

				sys.exit(2)

3.	 Create	a	function	that	maps	to	-test:

def	test(test_suite,	debug_level):

				logger	=	logging.getLogger("recipe25")

				loggingLevel	=	debug_level

				logger.setLevel(loggingLevel)

				ch	=	logging.StreamHandler()

				ch.setLevel(loggingLevel)

				formatter	=	logging.Formatter("%(asctime)s	-	%(name)s	-	

(levelname)s	-	%(message)s")

				ch.setFormatter(formatter)

				logger.addHandler(ch)

			

				nose.run(argv=["",	test_suite,	"--verbosity=2"])

4.	 Create	a	function	that	maps	to	-doctest:

def	doctest(test_suite=None):

				args	=	["",	"--with-doctest"]

				if	test_suite	is	not	None:

								print	("Running	doctest	suite	%s"	%	test_suite)

								args.extend(test_suite.split(','))

								nose.run(argv=args)

				else:

								nose.run(argv=args)

5.	 Create	stub	functions	that	support	package,	publish,	and	register:

def	package():	

				print	("This	is	where	we	can	plug	in	code	to	run	"	+	\

										"setup.py	to	generate	a	bundle.")

def	publish():

				print	("This	is	where	we	can	plug	in	code	to	upload	"	+	\

										"our	tarball	to	S3	or	some	other	download	site.")

def	register():

				print	("setup.py	has	a	built	in	function	to	"	+	\

										"'register'	a	release	to	PyPI.	It's	"	+	\

										"convenient	to	put	a	hook	in	here.")

				#	os.system("%s	setup.py	register"	%	sys.executable)

6.	 Add	some	code	that	detects	if	the	option	list	is	empty.	If	so,	have	it	print	out
the	help	menu	and	exit	the	script:

if	len(optlist)	==	0:

				usage()

				sys.exit(1)

7.	 Add	some	code	that	defines	debug	levels	and	then	parses	options	to	allow
the	user	to	override:

debug_levels	=	{"info":logging.INFO,	"debug":logging.DEBUG}

#	Default	debug	level	is	INFO

debug_level	=	debug_levels["info"]

for	option	in	optlist:

				if	option[0]	in	("--debug-level"):

								#	Override	with	a	user-supplied	debug	level

								debug_level	=	debug_levels[option[1]]

8.	 Add	some	code	that	scans	the	command-line	options	for	-help,	and,	if	found,
exits	the	script:

#	Check	for	help	requests,	which	cause	all	other

#	options	to	be	ignored.

for	option	in	optlist:

				if	option[0]	in	("--help",	"-h"):

				usage()

				sys.exit(1)

9.	 Add	code	that	checks	if	--doctest	has	been	picked.	If	so,	have	it	specifically
scan	--suite	and	run	it	through	the	doctest()	method.	Otherwise,	run	-suite
through	the	test()	method:

ran_doctests	=	False

for	option	in	optlist:

				#	If	--doctest	is	picked,	then	--suite	is	a

				#	suboption.

				if	option[0]	in	("--doctest"):

								suite	=	None

								for	suboption	in	optlist:

												if	suboption[0]	in	("--suite"):

																suite	=	suboption[1]

								print	"Running	doctests..."

								doctest(suite)

								ran_doctests	=	True

if	not	ran_doctests:

				for	option	in	optlist:

								if	option[0]	in	("--suite"):

												print	"Running	test	suite	%s..."	%	option[1]

												test(option[1],	debug_level)

10.	 Finish	it	by	iterating	through	each	of	the	command-line	options,	and
invoking	the	other	functions	based	on	the	options	that	are	picked:

#	Parse	the	arguments,	in	order

for	option	in	optlist:

				if	option[0]	in	("--package"):

								package()

				if	option[0]	in	("--publish"):

								publish()

				if	option[0]	in	("--register"):

								register()

11.	 Run	the	script	with	--help,	as	shown	in	the	screenshot:

12.	 Run	the	script	with	--doctest.	Notice	the	first	few	lines	of	output	in	the
following	screenshot.	It	shows	how	the	tests	have	passed	and	failed	along
with	detailed	output.	Take	a	look	at	this	screenshot:

The	output	is	much	longer.	It	has	been	trimmed	for	the	sake	of	brevity.

13.	 Run	the	script	with	-doctest	-suite=recipe16,recipe17.py,	as	shown	in	the
screenshot:

We	deliberately	used	recipe16.py	and	recipe17.py	to	demonstrate	that	it	works	with	both	module
names	and	filenames.

	

	

	

How	it	works...
This	script	uses	Python's	getopt	library,	which	is	modeled	after	the	getopt()
function	(refer	to	http://docs.python.org/library/getopt.html	for	more	details).

We	have	wired	the	following	functions:

Usage:	A	function	to	provide	help	to	the	user.
Key:	The	key	option	definitions	are	included	in	the	following	block:

optlist,	args	=	getopt.getopt(sys.argv[1:],

								"h",

							["help",	"doctest",	"suite=",	\

								"debug-level=",	"package",	\

								"publish",	"register"])

We	parse	everything	in	the	arguments	except	the	first,	it	being	the
executable	itself.
"h"	defined	the	short	option:	-h.
The	list	defines	long	options.	Those	with	"="	accept	an	argument.
Those	without	are	flags.
If	an	option	is	received	that	isn't	in	the	list,	an	exception	is	thrown,	we
print	out	usage(),	and	then	exit.

doctest:	It	runs	modules	through	nose	using	-with-doctest.
package,	pubilsh,	and	register:	These	are	just	like	the	functions	described	in	the
previous	chapter.

With	each	of	these	functions	defined,	we	can	now	iterate	over	the	options	that
were	parsed.	For	this	script,	there	is	a	sequence:

1.	 Check	whether	there	is	a	debugging	override.	We	default	to	logging.INFO,	but
we	provide	the	ability	to	switch	to	logging.DEBUG.

2.	 Check	whether	-h	or	-help	was	called.	If	so,	print	out	the	usage()	information
and	then	exit	with	no	more	parsing.

3.	 Because	-suite	can	be	used	either	by	itself	to	run	unittest	tests,	or	as	a
suboption	for	-doctest,	we	have	to	parse	through	things	and	figure	out
whether	-doctest	was	used.

4.	 Finally,	iterate	over	the	options,	and	call	their	corresponding	functions.

http://docs.python.org/library/getopt.html

To	exercise	things,	we	first	called	this	script	with	the	-help	option	that	printed	out
the	command	choices	we	had.

Then	we	called	it	with	-doctest	to	see	how	it	handled	finding	all	the	doctests	in
this	folder.	In	our	case,	we	found	all	the	recipes	for	this	chapter	including	three
test	failures.

Finally,	we	called	the	script	with	-doctest	-suite=recipe16,recipe17.py.	This	shows
how	we	can	pick	a	subset	of	tests	delineated	by	the	comma.	With	this	example,
we	see	that	nose	can	process	either	by	the	module	name	(recipe16.py)	or	by	the
filename	(recipe17.py).

There's	more...
The	features	this	script	provides	could	easily	be	handled	by	commands	that	are
already	built.	We	looked	at	nosetests	with	doctest	earlier	in	this	chapter	and	saw
how	it	can	take	arguments	to	pick	tests	flexibly.

Using	setup.py	to	generate	tarballs	and	register	releases	is	also	a	commonly	used
feature	in	the	Python	community.

So	why	write	this	script?	Because,	we	can	exploit	all	these	features	with	a	single
command.

	

Testing	Customer	Stories	with
Behavior-Driven	Development
	

In	this	chapter,	we	will	cover	the	following	recipes:

Naming	tests	that	sound	like	sentences	and	stories
Testing	separate	doctest	documents
Writing	a	testable	story	with	doctest
Writing	a	testable	novel	with	doctest
Writing	a	testable	story	with	Voidspace	Mock	and	nose
Writing	a	testable	story	with	mockito	and	nose
Writing	a	testable	story	with	Lettuce
Using	Should	DSL	to	write	succinct	assertions	with	Lettuce
Updating	the	project-level	script	to	run	this	chapter's	BDD	tests

	

	

Introduction
Behavior-driven	development	(BDD)	was	created	as	a	response	to	test-driven
development	(TDD)	by	Dan	North.	It	focuses	on	writing	automated	tests	in	a
natural	language	that	non-programmers	can	read.

"Programmers	wanted	to	know	where	to	start,	what	to	test	and	what	not	to	test,	how	much	to	test	in	one	go,
what	to	call	their	tests,	and	how	to	understand	why	a	test	fails.	The	deeper	I	got	into	TDD,	the	more	I	felt
that	my	own	journey	had	been	less	of	a	wax-on,	wax-off	process	of	gradual	mastery	than	a	series	of	blind
alleys.	I	remember	thinking,	'If	only	someone	had	told	me	that!'	far	more	often	than	I	thought,	'Wow,	a	door
has	opened.'	I	decided	it	must	be	possible	to	present	TDD	in	a	way	that	gets	straight	to	the	good	stuff	and
avoids	all	the	pitfalls."

–	Dan	North

To	discover	more	about	Dan	North,	please	visit:	https://dannorth.net/introducing-bdd/.

The	tests	that	we	have	written	in	prior	unit	test	recipes	had	a	style	of	testThis	and
testThat.	BDD	takes	the	approach	of	getting	out	of	speaking	programmers	and
instead	shifting	to	a	more	customer-oriented	perspective.

Dan	North	goes	on	to	point	out	how	Chris	Stevenson	wrote	a	specialized	test
runner	for	Java's	JUnit	that	printed	test	results	in	a	different	way.	Let's	take	a
look	at	the	following	test	code:

public	class	FooTest	extends	TestCase		{

				public	void	testIsASingleton()	{}

				public	void	testAReallyLongNameIsAGoodThing()	{}

}

This	code,	when	run	through	AgileDox	(http://agiledox.sourceforge.net/),	will	print
out	in	the	following	format:

Foo

-is	a	singleton

-a	really	long	name	is	a	good	thing

AgileDox	does	several	things	such	as	the	following:

It	prints	out	the	test	name	with	the	test	suffix	dropped
It	strips	out	the	test	prefix	from	each	test	method
It	converts	the	remainder	into	a	sentence

https://dannorth.net/introducing-bdd/
http://agiledox.sourceforge.net/

AgileDox	is	a	Java	tool,	so	we	won't	be	exploring	it	in	this	chapter.	But	there	are
many	Python	tools	available,	and	we	will	look	at	some,	including	doctest,
Voidspace	Mock,	mockito,	and	Lettuce.	All	of	these	tools	give	us	the	means	to
write	tests	in	a	more	natural	language	and	empower	customers,	QA,	and	test
teams	to	develop	story-based	tests.

All	the	tools	and	styles	of	BDD	could	easily	fill	up	an	entire	book.	This	chapter	intends	to
introduce	the	philosophy	of	BDD	along	with	some	strong,	stable	tools	used	to	effectively	test
our	system's	behavior.

For	this	chapter,	let's	use	the	same	shopping	cart	application	for	each	recipe.
Create	a	file	called	cart.py	and	add	the	following	code:

class	ShoppingCart(object):

				def	__init__(self):

							self.items	=	[]

				def	add(self,	item,	price):

							for	cart_item	in	self.items:

											#	Since	we	found	the	item,	we	increment

											#	instead	of	append

											if	cart_item.item	==	item:	

														cart_item.q	+=	1

														return	self

							#	If	we	didn't	find,	then	we	append	

							self.items.append(Item(item,	price))

							return	self

				def	item(self,	index):

								return	self.items[index-1].item

				def	price(self,	index):

								return	self.items[index-1].price	*	self.items[index-1].q

				def	total(self,	sales_tax):

								sum_price=sum([item.price*item.q	for	item	in	self.items])

								return	sum_price*(1.0	+	sales_tax/100.0)

				def	__len__(self):

								return	sum([item.q	for	item	in	self.items])

class	Item(object):

				def	__int__(self,item,price,q=1):

								self.item=item

								self.price=price

								self.q=q

Consider	the	following,	regarding	this	shopping	cart:

It	is	one-based,	meaning	the	first	item	and	price	are	at	[1],	not	[0]
It	includes	the	ability	to	have	multiples	of	the	same	item
It	will	calculate	total	price	and	then	add	taxes

This	application	isn't	complex.	Instead,	it	provides	us	opportunities	throughout
this	chapter	to	test	various	customer	stories	and	scenarios	that	aren't	necessarily
confined	to	simple	unit	testing.

Naming	tests	that	sound	like
sentences	and	stories
Test	methods	should	read	like	sentences,	and	test	cases	should	read	like	titles	of
chapters.	This	is	part	of	BDD's	philosophy	of	making	tests	easy	to	read	for	non-
programmers.

Getting	ready
For	this	recipe,	we	will	be	using	the	shopping	cart	application	shown	at	the
beginning	of	this	chapter.

How	to	do	it...
	

With	the	following	steps,	we	will	explore	how	to	write	a	custom	nose	plugin	that
provides	results	in	a	BDD-style	report:

1.	 Create	a	file	called	recipe26.py	to	contain	our	test	cases.
2.	 Create	a	unittest	test,	where	the	test	case	represents	a	cart	with	one	item,

and	the	test	methods	read	like	sentences:

import	unittest

from	cart	import	*

class	CartWithOneItem(unittest.TestCase):

						def	setUp(self):

										self.cart	=	ShoppingCart().add("tuna	sandwich",	15.00)

						def	test_when_checking_the_size_should_be_one_based(self):

										self.assertEquals(1,	len(self.cart))

						def	test_when_looking_into_cart_should_be_one_based(self):

										self.assertEquals("tuna	sandwich",	self.cart.item(1))

										self.assertEquals(15.00,	self.cart.price(1))

						def	test_total_should_have_in_sales_tax(self):

										self.assertAlmostEquals(15.0*1.0925,	\

																														self.cart.total(9.25),	2)

3.	 Add	a	unittest	test,	where	the	test	case	represents	a	cart	with	two	items,	and
the	test	methods	read	like	sentences:

class	CartWithTwoItems(unittest.TestCase):

					def	setUp(self):

									self.cart	=	ShoppingCart()\

																							.add("tuna	sandwich",	15.00)\

																							.add("rootbeer",	3.75)	

				def	test_when_checking_size_should_be_two(self):

								self.assertEquals(2,	len(self.cart))

				def	test_items_should_be_in_same_order_as_entered(self):

							self.assertEquals("tuna	sandwich",	self.cart.item(1))

							self.assertAlmostEquals(15.00,	self.cart.price(1),	2)

							self.assertEquals("rootbeer",	self.cart.item(2))	

							self.assertAlmostEquals(3.75,	self.cart.price(2),	2)

			def	test_total_price_should_have_in_sales_tax(self):

							self.assertAlmostEquals((15.0+3.75)*1.0925,self.cart.total(9.25),2)

4.	 Add	a	unittest	test,	where	the	test	case	represents	a	cart	with	no	items,	and
the	test	methods	read	like	sentences:

class	CartWithNoItems(unittest.TestCase):	

				def	setUp(self):

							self.cart	=	ShoppingCart()

			def	test_when_checking_size_should_be_empty(self):	

						self.assertEquals(0,	len(self.cart))

			def	test_finding_item_out_of_range_should_raise_error(self):

						self.assertRaises(IndexError,	self.cart.item,	2)

			def	test_finding_price_out_of_range_should_raise_error(self):	

						self.assertRaises(IndexError,	self.cart.price,	2)

			def	test_when_looking_at_total_price_should_be_zero(self):

						self.assertAlmostEquals(0.0,	self.cart.total(9.25),	2)

			def	test_adding_items_returns_back_same_cart(self):	

						empty_cart	=	self.cart

						cart_with_one_item=self.cart.add("tuna	sandwich",15.00)

						self.assertEquals(empty_cart,	cart_with_one_item)	

						cart_with_two_items	=	self.cart.add("rootbeer",	3.75)	

						self.assertEquals(empty_cart,	cart_with_one_item)

						self.assertEquals(cart_with_one_item,	cart_with_two_items)

BDD	encourages	using	very	descriptive	sentences	for	method	names.	Several	of	these	method
names	were	shortened	to	fit	the	format	of	this	book,	and	yet	some	were	still	too	long.

5.	 Create	another	file	called	recipe26_plugin.py	to	contain	our	customized	BDD
runner.

6.	 Create	a	nose	plugin	that	can	be	used	as	–with-bdd	to	print	out	results:

import	sys

err	=	sys.stderr

import	nose

import	re

from	nose.plugins	import	Plugin

class	BddPrinter(Plugin):	

					name	=	"bdd"

					def	__init__(self):	

									Plugin.__init__(self)	

									self.current_module	=	None

7.	 Create	a	handler	that	prints	out	either	the	module	or	the	test	method,	with
extraneous	information	stripped	out:

def	beforeTest(self,	test):	

				test_name	=	test.address()[-1]

				module,	test_method	=	test_name.split(".")	

				if	self.current_module	!=	module:

							self.current_module	=	module

				fmt_mod	=	re.sub(r"([A-Z])([a-z]+)",	r"\1\2	",	module)

				err.write("\nGiven	%s"	%	fmt_mod[:-1].lower())	

				message	=	test_method[len("test"):]

				message	=	"	".join(message.split("_"))	err.write("\n-	%s"	%	message)

8.	 Create	a	handler	for	success,	failure,	and	error	messages:

def	addSuccess(self,	*args,	**kwargs):	

				test	=	args[0]

				err.write("	:	Ok")

def	addError(self,	*args,	**kwargs):	

				test,	error	=	args[0],	args[1]	

				err.write("	:	ERROR!\n")

def	addFailure(self,	*args,	**kwargs):	

				test,	error	=	args[0],	args[1]	

				err.write("	:	Failure!\n")

9.	 Create	a	new	file	called	recipe26_plugin.py	to	contain	a	test	runner	for
exercising	this	recipe.

10.	 Create	a	test	runner	that	pulls	in	the	test	cases	and	runs	them	through	nose,
printing	out	results	in	an	easy-to-read	fashion:

if	__name__	==	"__main__":	

			import	nose

			from	recipe26_plugin	import	*

			nose.run(argv=["",	"recipe26",	"--with-bdd"],	plugins=[BddPrinter()])

11.	 Run	the	test	runner.	Take	a	look	at	this	screenshot:

12.	 Introduce	a	couple	of	bugs	in	the	test	cases,	and	rerun	the	test	runner	to	see
how	this	alters	the	output:

				def	test_when_checking_the_size_should_be_one_based(self):

								self.assertEquals(2,	len(self.cart))

...

				def	test_items_should_be_in_same_order_as_entered(self):	

								self.assertEquals("tuna	sandwich",	self.cart.item(1))	

								self.assertAlmostEquals(14.00,	self.cart.price(1),	2)	

								self.assertEquals("rootbeer",	self.cart.item(2))	

								self.assertAlmostEquals(3.75,	self.cart.price(2),	2)

13.	 Run	the	tests	again.	Take	a	look	at	this	screenshot:

	

	

	

How	it	works...
The	test	cases	are	written	as	nouns,	describing	the	object	being	tested.
CartWithTwoItems	describes	a	series	of	test	methods	centered	on	a	shopping	cart	that
is	prepopulated	with	two	items.

The	test	methods	are	written	like	sentences.	They	are	strung	together	with
underscores	instead	of	spaces.	They	have	to	be	prefixed	with	test_,	so	that
unittest	will	pick	them	up.	test_items_should_be_in_the_same_order_as_entered	should
represent	items	that	should	be	in	the	same	order	as	entered.

The	idea	is	that	we	should	be	able	to	quickly	understand	what	is	being	tested	by
putting	these	two	together:	Given	a	cart	with	two	items,	the	items	should	be	in
the	same	order	as	entered.

While	we	could	read	through	the	test	code	with	this	thought	process,	mentally
subtracting	out	the	cruft	of	underscores	and	the	test	prefix,	this	can	become	a
real	cognitive	load	for	us.	To	make	it	easier,	we	coded	a	quick	nose	plugin	that
split	up	the	camel-case	tests	and	replaced	the	underscores	with	spaces.	This	led
to	the	useful	report	format.

Using	this	type	of	quick	tool	encourages	us	to	write	detailed	test	methods	that
will	be	easy	to	read	on	output.	The	feedback,	not	just	to	us	but	to	our	test	team
and	customers,	can	be	very	effective	at	fostering	communications,	confidence	in
software,	and	help	with	generating	new	test	stories.

There's	more...
The	example	test	methods	shown	here	were	deliberately	shortened	to	fit	the
format	of	the	book.	Don't	try	to	make	them	as	short	as	possible.	Instead,	try	to
describe	the	expected	output.

The	plugin	isn't	installable.	This	plugin	was	coded	to	quickly	generate	a	report.
To	make	it	reusable,	especially	with	nosetests.

	

Testing	separate	doctest	documents
	

BDD	doesn't	require	that	we	use	any	particular	tool.	Instead,	it's	more	focused	on
the	approach	to	testing.	That	is	why	it's	possible	to	use	Python	doctest	to	write
BDD	test	scenarios.	doctest	isn't	restricted	to	the	module's	code.	With	this	recipe,
we	will	explore	creating	independent	text	files	to	run	through	Python's	doctest
library.

If	this	is	doctest,	why	wasn't	it	included	in	the	previous	chapter's	recipes?
Because	the	context	of	writing	up	a	set	of	tests	in	a	separate	test	document	fits
more	naturally	into	the	philosophy	of	BDD	than	with	testable	docstrings	that	are
available	for	introspection	when	working	with	a	library.

	

	

	

Getting	ready	
For	this	recipe,	we	will	be	using	the	shopping	cart	application	shown	at	the
beginning	of	this	chapter.

How	to	do	it...
	

With	the	following	steps,	we	will	explore	capturing	various	test	scenarios	in
doctest	files	and	then	running	them:

1.	 Create	a	file	called	recipe27_scenario1.doctest	that	contains	doctest-style	type
tests	to	exercise	the	shopping	cart:

This	is	a	way	to	exercise	the	shopping	cart	

from	a	pure	text	file	containing	tests.

First,	we	need	to	import	the	modules	

>>>	from	cart	import	*

Now,	we	can	create	an	instance	of	a	cart	

>>>	cart	=	ShoppingCart()

Here	we	use	the	API	to	add	an	object.	Because	it	returns	back	the	cart,	we	have	

to	deal	with	the	output

>>>	cart.add("tuna	sandwich",	15.00)	#doctest:+ELLIPSIS	

<cart.ShoppingCart	object	at	...>

Now	we	can	check	some	other	outputs

>>>	cart.item(1)	

'tuna	sandwich'	

>>>	cart.price(1)	

15.0

>>>	cart.total(0.0)	

15.0

Notice	that	there	are	no	quotes	surrounding	the	text.

2.	 Create	another	scenario	in	therecipe27_scenario2.doctest	file	that	tests	the
boundaries	of	the	shopping	cart,	as	shown	here:

This	is	a	way	to	exercise	the	shopping	cart	

from	a	pure	text	file	containing	tests.

First,	we	need	to	import	the	modules	

>>>	from	cart	import	*

Now,	we	can	create	an	instance	of	a	cart	

>>>	cart	=	ShoppingCart()

Now	we	try	to	access	an	item	out	of	range,	expecting	an	exception.

>>>	cart.item(5)

Traceback	(most	recent	call	last):	

...

IndexError:	list	index	out	of	range

We	also	expect	the	price	method	to	fail	in	a	similar	way.

>>>	cart.price(-2)

Traceback	(most	recent	call	last):	

...

IndexError:	list	index	out	of	range

3.	 Create	a	file	called	recipe27.py	and	put	in	the	test	runner	code	that	finds	files
ending	in	.doctest	and	runs	them	through	the	testfile	method	within	doctest:

if	__name__	==	"__main__":

			import	doctest

			from	glob	import	glob

			for	file	in	glob("recipe27*.doctest"):

						print	("Running	tests	found	in	%s"	%	file)	

						doctest.testfile(file)

4.	 Run	the	test	suite.	Take	a	look	at	this	code:

5.	 Run	the	test	suite	with	-v,	as	shown	in	this	screenshot:

	

	

	

How	it	works...
doctest	provides	the	convenient	testfile	function	that	will	exercise	a	block	of	pure
text	as	if	it	were	contained	inside	a	docstring.	This	is	why	no	quotations	are
needed	compared	to	when	we	had	multiple	doctest	inside	docstrings.	The	text
files	aren't	docstrings.

In	fact,	if	we	include	triple	quotes	around	the	text,	the	tests	won't	work	correctly.
Let's	take	the	first	scenario—put	"""	at	the	top	and	bottom	of	the	file,	and	save	it
as	recipe27_bad_	scenario.txt.	Now,	let's	create	a	file	called	recipe27.py,	and	create	an
alternate	test	runner	that	runs	our	bad	scenario,	as	shown	here:

if	__name__	==	"__main__":

			import	doctest

			doctest.testfile("recipe27_bad_scenario.txt")

We	get	the	following	error	message:

It	has	confused	the	tail-end	triple	quotes	as	part	of	the	expected	output.	It's	best
to	just	leave	them	out.

There's	more...
What	is	so	great	about	moving	docstrings	into	separate	files?	Isn't	this	the	same
thing	that	we	were	doing	in	the	Creating	testable	documentation	with	doctest
recipe	discussed	in	Chapter	2,	Running	Automated	Test	Suites	with	Nose?	Yes	and
no.	Yes,	it's	technically	the	same	thing:	doctest	is	exercising	blocks	of	code
embedded	in	the	test.

But	BDD	is	more	than	simply	a	technical	solution.	It	is	driven	by	the	philosophy
of	customer-readable	scenarios.	BDD	aims	to	test	the	behavior	of	the	system.
The	behavior	is	often	defined	by	customer-oriented	scenarios.	Getting	a	hold	of
these	scenarios	is	strongly	encouraged	when	our	customer	can	easily	understand
the	scenarios	that	we	have	captured.	It	is	further	enhanced	when	the	customer
can	see	what	passes	and	fails	and,	in	turn,	sees	a	realistic	status	of	what	has	been
accomplished.

By	decoupling	our	test	scenarios	from	the	code	and	putting	them	into	separate
files,	we	have	the	key	ingredient	to	making	readable	tests	for	our	customers
using	doctest.

Doesn't	this	defy	the	usability	of
docstrings?
In	Chapter	2,	Running	Automated	Test	Suites	with	Nose,	there	are	several	recipes
that	show	how	convenient	it	is	to	embed	examples	of	code	usage	in	docstrings.
They	are	convenient,	because	we	can	read	the	docstrings	from	an	interactive
Python	shell.	What	do	you	think	is	different	about	pulling	some	of	this	out	of	the
code	into	separate	scenario	files?	Do	you	think	there	are	some	doctest	that	would
be	useful	in	docstrings	and	others	that	may	serve	us	better	in	separate	scenario
files?

	

Writing	a	testable	story	with	doctest
Capturing	a	succinct	story	in	a	doctest	file	is	the	key	to	BDD.	Another	aspect	of
BDD	is	providing	a	readable	report	including	the	results.

Getting	ready
For	this	recipe,	we	will	be	using	the	shopping	cart	application	shown	at	the
beginning	of	this	chapter.

How	to	do	it...
	

With	the	following	steps,	we	will	see	how	to	write	a	custom	doctest	runner	to
make	our	own	report:

1.	 Create	a	new	file	called	recipe28_cart_with_no_items.doctest	to	contain	our
doctest	scenario.

2.	 Create	a	doctest	scenario	that	exercises	the	shopping	cart,	as	shown	here:

This	scenario	demonstrates	a	testable	story.

First,	we	need	to	import	the	modules	

>>>	from	cart	import	*

>>>	cart	=	ShoppingCart()

#when	we	add	an	item

>>>	cart.add("carton	of	milk",	2.50)	#doctest:+ELLIPSIS	

<cart.ShoppingCart	object	at	...>

#the	first	item	is	a	carton	of	milk	

>>>	cart.item(1)

'carton	of	milk'

#the	first	price	is	$2.50	

>>>	cart.price(1)

2.5

#there	is	only	one	item	

>>>	len(cart)

This	shopping	cart	lets	us	grab	more	than	one	of	a	particular	item.

#when	we	add	a	second	carton	of	milk

>>>	cart.add("carton	of	milk",	2.50)	#doctest:+ELLIPSIS	

<cart.ShoppingCart	object	at	...>

#the	first	item	is	still	a	carton	of	milk	

>>>	cart.item(1)

'carton	of	milk'

#but	the	price	is	now	$5.00	

>>>	cart.price(1)

5.0

#and	the	cart	now	has	2	items	

>>>	len(cart)

2

#for	a	total	(with	10%	taxes)	of	$5.50	

>>>	cart.total(10.0)

5.5

3.	 Create	a	new	file	called	recipe28.py	to	contain	our	custom	doctest	runner.
4.	 Create	a	customer	doctest	runner	by	sub	classing	DocTestRunner,	as	shown

here:

import	doctest

class	BddDocTestRunner(doctest.DocTestRunner):	

						"""

						This	is	a	customized	test	runner.	It	is	meant	

						to	run	code	examples	like	DocTestRunner,

						but	if	a	line	preceeds	the	code	example	

						starting	with	'#',	then	it	prints	that	

						comment.

						If	the	line	starts	with	'#when',	it	is	printed	

						out	like	a	sentence,	but	with	no	outcome.

						If	the	line	starts	with	'#',	but	not	'#when'

						it	is	printed	out	indented,	and	with	the	outcome.

						"""

5.	 Add	a	report_start	function	that	looks	for	comments	starting	with	#	before	an
example,	as	shown	in	this	code:

def	report_start(self,	out,	test,	example):

				prior_line	=	example.lineno-1

				line_before	=	test.docstring.splitlines()[prior_line]	

				if	line_before.startswith("#"):

							message	=	line_before[1:]

							if	line_before.startswith("#when"):

										out("*	%s\n"	%	message)	

										example.silent	=	True	

										example.indent	=	False

							else:

									out("	-	%s:	"	%	message)	

									example.silent	=	False	

									example.indent	=	True

			else:

					example.silent	=	True	

					example.indent	=	False

			doctest.DocTestRunner(out,	test,	example)

6.	 Add	a	report_success	function	that	conditionally	prints	out	ok,	as	shown	here:

def	report_success(self,	out,	test,	example,	got):

				if	not	example.silent:

							out("ok\n")

				if	self._verbose:

							if	example.indent:	out("	")	

										out(">>>	%s\n"	%	example.source[:-1])

7.	 Add	a	report_failure	function	that	conditionally	prints	out	FAIL,	as	shown
here:

def	report_failure(self,	out,	test,	example,	got):

				if	not	example.silent:

							out("FAIL\n")

				if	self._verbose:

							if	example.indent:	out("	")	

											out(">>>	%s\n"	%	example.source[:-1])

8.	 Add	a	runner	that	replaces	doctest.DocTestRunner	with	our	customer	runner,
and	then	looks	for	doctest	files	to	run,	as	shown	here:

if	__name__	==	"__main__":

			from	glob	import	glob

			doctest.DocTestRunner	=	BddDocTestRunner

			for	file	in	glob("recipe28*.doctest"):

							given	=	file[len("recipe28_"):]

							given	=	given[:-len(".doctest")]

							given	=	"	".join(given.split("_"))

							print	("===================================")

							print	("Given	a	%s..."	%	given)

							print	("===================================")

							doctest.testfile(file)

9.	 Use	the	runner	to	exercise	our	scenario.	Take	a	look	at	this	screenshot:

10.	 Use	the	runner	to	exercise	our	scenario	with	-v,	as	shown	in	this	screenshot:

11.	 Alter	the	test	scenario	so	that	one	of	the	expected	outcomes	fail	by	using
this	code:

#there	is	only	one	item	

>>>	len(cart)

4668

Notice	we	have	changed	the	expected	outcome	from	1	to	4668,	to	guarantee	a	failure.

12.	 Use	the	runner	with	-v	again,	and	see	the	results.	Take	a	look	at	this
screenshot:

	

	

	

How	it	works...
doctest	provides	a	convenient	means	to	write	a	testable	scenario.	For	starters,	we
wrote	up	a	series	of	behaviors	we	wanted	the	shopping	cart	application	to	prove.
To	polish	things	up,	we	added	lot	of	detailed	comments	so	that	anyone	reading
this	document	can	clearly	understand	things.

This	provides	us	with	a	testable	scenario.	However,	it	leaves	us	short	of	one	key
thing:	a	succinct	report.

Unfortunately,	doctest	won't	print	out	all	these	detailed	comments	for	us.

To	make	this	usable	from	a	BDD	perspective,	we	need	the	ability	to	embed
selective	comments	that	get	printed	out	when	the	test	sequence	runs.	To	do	that,
we	will	subclass	doctest.DocTestRunner	and	insert	our	version	of	the	handling	of	the
docstring.

There's	more...
DocTestRunner	conveniently	gives	us	a	handle	on	the	docstring	as	well	as	the	exact
line	number	where	the	code	example	starts.	We	coded	our	BddDocTestRunner	to	look
at	the	line	preceding	it,	and	check	to	see	whether	it	started	with	#,	our	custom
marker	for	a	piece	of	text	to	print	out	during	a	test	run.

A	#when	comment	is	considered	a	cause.	In	other	words,	a	when	causes	one	or	more
effects.	While	doctest	will	still	verify	the	code	involved	with	a	when;	for	BDD
purposes,	we	don't	really	care	about	the	outcome,	so	we	silently	ignore	it.

Any	other	#	comments	are	considered	effects.	For	each	of	these,	we	strip	out	the
#	and	then	print	the	sentence	indented,	so	we	can	easily	see	which	when	it	is	tied
to.	Finally,	we	print	out	either	ok	or	FAIL	to	indicate	the	results.

This	means	we	can	add	all	the	detail	we	want	to	the	documentation.	But	for
blocks	of	tests,	we	can	add	statements	that	will	be	printed	as	either	causes	(#when)
or	effects	(#anything	else).

Writing	a	testable	novel	with	doctest
	

Running	a	series	of	story	tests	showcases	your	code's	expected	behavior.	We
have	previously	seen	in	the	Writing	a	testable	story	with	doctest	recipe	how	to
build	a	testable	story	and	have	it	generate	a	useful	report.

With	this	recipe,	we	will	see	how	to	use	this	tactic	to	string	together	multiple
testable	stories	to	form	a	testable	novel.

	

	

	

Getting	ready
For	this	recipe,	we	will	be	using	the	shopping	cart	application	shown	at	the
beginning	of	this	chapter.

We	will	also	reuse	the	BddDocTestRunner	defined	in	this	chapter's	Writing	a	testable
story	with	doctest	recipe.	But	we	will	slightly	alter	it	by	implementing	the
following	steps.

How	to	do	it...
	

1.	 Create	a	new	file	called	recipe29.py.
2.	 Copy	the	code	containing	the	BddDocTestRunner	from	the	Writing	a	testable
story	with	doctest	recipe	into	recipe29.py.

3.	 Alter	the	__main__	runnable	to	only	search	for	this	recipe's	doctest	scenarios,
as	shown	in	this	code:

if	__name__	==	"__main__":

			from	glob	import	glob

			doctest.DocTestRunner	=	BddDocTestRunner

			for	file	in	glob("recipe29*.doctest"):

							given	=	file[len("recipe29_"):]	

							given	=	given[:-len(".doctest")]

							given	=	"	".join(given.split("_"))

							print	("===================================")

							print	("Given	a	%s..."	%	given)

							print	("===================================")

							doctest.testfile(file)

4.	 Create	a	new	file	called	recipe29_cart_we_will_load_with_identical_items.doctest.
5.	 Add	a	scenario	to	it	that	tests	the	cart	by	adding	two	instances	of	the	same

object:

>>>	from	cart	import	*

>>>	cart	=	ShoppingCart()

#when	we	add	an	item

>>>	cart.add("carton	of	milk",	2.50)	#doctest:+ELLIPSIS

<cart.ShoppingCart	object	at	...>

#the	first	item	is	a	carton	of	milk

>>>	cart.item(1)

'carton	of	milk'

#the	first	price	is	$2.50

>>>	cart.price(1)

2.5

#there	is	only	one	item

>>>	len(cart)

1

This	shopping	cart	let's	us	grab	more	than	one	of	a	particular	item.

#when	we	add	a	second	carton	of	milk

>>>	cart.add("carton	of	milk",	2.50)	#doctest:+ELLIPSIS

<cart.ShoppingCart	object	at	...>

#the	first	item	is	still	a	carton	of	milk

>>>	cart.item(1)	

'carton	of	milk'

#but	the	price	is	now	$5.00

>>>	cart.price(1)

5.0

#and	the	cart	now	has	2	items

>>>	len(cart)

2

#for	a	total	(with	10%	taxes)	of	$5.50

>>>	cart.total(10.0)

5.5

6.	 Create	another	file	called
recipe29_cart_we_will_load_with_two_different_items.docstest.

7.	 In	that	file,	create	another	scenario	that	tests	the	cart	by	adding	two
different	instances,	as	shown	in	the	following	code:

>>>	from	cart	import	*

>>>	cart	=	ShoppingCart()

#when	we	add	a	carton	of	milk...

>>>	cart.add("carton	of	milk",	2.50)	#doctest:+ELLIPSIS	

<cart.ShoppingCart	object	at	...>

#when	we	add	a	frozen	pizza...

>>>	cart.add("frozen	pizza",	3.00)	#doctest:+ELLIPSIS

	<cart.ShoppingCart	object	at	...>

#the	first	item	is	the	carton	of	milk

>>>	cart.item(1)

'carton	of	milk'

#the	second	item	is	the	frozen	pizza

>>>	cart.item(2)

'frozen	pizza'

#the	first	price	is	$2.50

>>>	cart.price(1)

2.5

#the	second	price	is	$3.00

>>>	cart.price(2)

3.0

#the	total	with	no	tax	is	$5.50

>>>	cart.total(0.0)

5.5

#the	total	with	10%	tax	is	$6.05

>>>	print	(round(cart.total(10.0),	2))

6.05

8.	 Create	a	new	file	called	recipe29_cart_that_we_intend_to_keep_empty.doctest.
9.	 In	that	file,	create	a	third	scenario	that	tests	the	cart	by	adding	nothing	and

yet	tries	to	access	values	outside	the	range,	as	shown	in	this	code:

>>>from	cart	import	*

#when	we	create	an	empty	shopping	cart	

>>>	cart	=	ShoppingCart()

#accessing	an	item	out	of	range	generates	an	exception

>>>	cart.item(5)

Traceback	(most	recent	call	last):

...

IndexError:	list	index	out	of	range

#accessing	a	price	with	a	negative	index	causes	an	exception

>>>	cart.price(-2)

Traceback	(most	recent	call	last):

...

IndexError:	list	index	out	of	range

#calculating	a	price	with	no	tax	results	in	$0.00

>>>	cart.total(0.0)

0.0

#calculating	a	price	with	a	tax	results	in	$0.00

>>>	cart.total(10.0)

0.0

10.	 Use	the	runner	to	execute	our	scenarios.	Take	a	look	at	this	screenshot:

	

	

	

How	it	works...
	

We	reuse	the	test	runner	developed	in	the	previous	recipe.	The	key	is	extending
the	scenarios	to	ensure	that	we	have	complete	coverage	of	the	expected
scenarios.

We	need	to	be	sure	that	we	can	handle	the	following:

A	cart	with	two	identical	items
A	cart	with	two	different	items
The	degenerate	situation	of	an	empty	shopping	cart

	

	

There's	more...
A	valuable	part	of	writing	tests	is	picking	useful	names.	In	our	situation,	each
testable	story	started	with	an	empty	cart.	However,	if	we	named	each	scenario
given	an	empty	cart,	it	would	cause	an	overlap	and	not	result	in	a	very	effective
report.

So,	instead,	we	named	them	based	on	our	story's	intention:

recipe29_cart_we_will_load_with_identical_items.doctest

recipe29_cart_we_will_load_with_two_different_items.doctest

recipe29_cart_that_we_intend_to_keep_empty.doctest

This	leads	to:

Given	a	cart	we	will	load	with	identical	items
Given	a	cart	we	will	load	with	two	different	items
Given	a	cart	that	we	intend	to	keep	empty

The	purpose	of	these	scenarios	is	much	clearer.

Naming	scenarios	are	much	like	certain	aspects	of	software	development	that	are
more	a	craft	than	a	science.	Tuning	the	performance	tends	to	be	more	scientific,
because	it	involves	an	iterative	process	of	measurement	and	adjustment.	But
naming	scenarios	along	with	their	causes	and	effects	tends	to	be	more	of	a	craft.
It	involves	communicating	with	all	the	stakeholders	including	QA	and
customers,	so	everyone	can	read	and	understand	the	stories.

Don't	be	intimidated.	Be	ready	to	embrace	change
Start	writing	your	stories.	Make	them	work.	Then	share	them	with	your	stakeholders.
Feedback	is	important,	and	that	is	the	purpose	of	using	story-based	testing.	Be	ready	for
criticism	and	suggested	changes.

Be	ready	for	more	story	requests.	In	fact,	don't	be	surprised	if	some	of	your	customers	or	QA
want	to	write	their	own	stories.	That	is	a	positive	sign.

If	you	are	new	to	this	type	of	customer	interaction,	don't	worry.	You	will	develop	valuable
communication	skills	and	build	a	solid	professional	relationship	with	your	stakeholders.	And
at	the	same	time,	your	code	quality	will	certainly	improve.

Writing	a	testable	story	with
Voidspace	Mock	and	nose
When	our	code	interacts	with	other	classes	through	methods	and	attributes,	these
are	referred	to	as	collaborators.	Mocking	out	collaborators	using	Voidspace
Mock	(http://www.voidspace.org.uk/python/mock/),	created	by	Michael	Foord,	provides
a	key	tool	for	BDD.	Mocks	provide	canned	behavior	compared	to	stubs,	which
provide	canned	states.	While	mocks	by	themselves	don't	define	BDD,	their
usage	keenly	overlaps	the	ideas	of	BDD.

To	further	demonstrate	the	behavioral	nature	of	the	tests,	we	will	also	use	the	spec
plugin	found	in	the	pinocchio	project
(http://darcs.idyll.org/~t/projects/pinocchio/doc).

As	stated	on	the	project's	website,	Voidspace	Mock	is	experimental.	This	book	was	written
using	version	0.7.0	beta	3.	There	is	the	risk	that	more	API	changes	will	occur	before	reaching
a	stable	1.0	version.	Given	this	project's	high	quality,	excellent	documentation,	and	many
articles	in	the	blogosphere,	I	strongly	feel	it	deserves	a	place	in	this	book.

http://www.voidspace.org.uk/python/mock/
http://darcs.idyll.org/~t/projects/pinocchio/doc

Getting	ready
	

For	this	recipe,	we	will	be	using	the	shopping	cart	application	shown	at	the
beginning	of	this	chapter	with	some	slight	modifications:

1.	 Create	a	new	file	called	recipe30_cart.py,	and	copy	all	the	code	from	cart.py
created	in	the	introduction	of	this	chapter.

2.	 Alter	__init__	to	add	an	extra	storer	attribute	used	for	persistence:

class	ShoppingCart(object):

					def	__init__(self,	storer=None):

								self.items	=	[]

								self.storer	=	storer

3.	 Add	a	store	method	that	uses	the	storer	to	save	the	cart:

def	store(self):

								return	self.storer.store_cart(self)

4.	 Add	a	retrieve	method	that	updates	the	internal	items	by	using	the	storer:

def	restore(self,	id):

							self.items	=	self.storer.retrieve_cart(id).items	

							return	self

The	specifics	of	the	API	of	the	storer	will	be	given	further	down	in	this	recipe.

We	need	to	activate	our	virtual	environment	and	then	install	Voidspace	Mock	for
this	recipe:

1.	 Create	a	virtual	environment,	activate	it,	and	verify	the	tools	are	working.
Take	a	look	at	the	following	screenshot:

2.	 Install	Voidspace	Mock	by	typing	pip	install	mock.
3.	 Install	the	latest	version	of	Pinocchio	by	typing	pip	install

http://darcs.idyll.org/~t/projects/pinocchio-latest.tar.gz.
4.	 This	version	of	Pinocchio	raises	some	warnings.	To	prevent	them,	we	also

need	to	install	figleaf	by	typing	pip	install	figleaf.

	

	

How	to	do	it...
	

With	the	following	steps,	we	will	explore	how	to	use	mock	to	write	a	testable
story:

1.	 In	recipe30_cart.py,	create	a	DataAccess	class	with	empty	methods	for	storing
and	retrieving	shopping	carts:

class	DataAccess(object):

					def	store_cart(self,cart):

									pass

					def	retrieve_cart(self,id):

									pass

2.	 Create	a	new	file	called	recipe30.py	to	write	the	test	code.
3.	 Create	an	automated	unittest	that	exercises	the	cart	by	mocking	out	the

methods	of	DataAccess:

import	unittest

from	copy	import	deepcopy	

from	recipe30_cart	import	*

from	mock	import	Mock

class	CartThatWeWillSaveAndRestoreUsingVoidspaceMock(unittest.	TestCase):

						def	test_fill_up_a_cart_then_save_it_and_restore_it(self):

										#	Create	an	empty	shopping	cart

										cart	=	ShoppingCart(DataAccess())

										#	Add	a	couple	of	items	

										cart.add("carton	of	milk",	2.50)	

										cart.add("frozen	pizza",	3.00)

										self.assertEquals(2,	len(cart))

										#	Create	a	clone	of	the	cart	for	mocking	

										#	purposes.

										original_cart	=	deepcopy(cart)

										#	Save	the	cart	at	this	point	in	time	into	a	database	

										#	using	a	mock

										cart.storer.store_cart	=	Mock()

										cart.storer.store_cart.return_value	=	1	

										cart.storer.retrieve_cart	=	Mock()	

										cart.storer.retrieve_cart.return_value	=	original_cart

										id	=	cart.store()

										self.assertEquals(1,	id)

										#	Add	more	items	to	cart	

										cart.add("cookie	dough",	1.75)	

										cart.add("ginger	ale",	3.25)

										self.assertEquals(4,	len(cart))

										#	Restore	the	cart	to	the	last	point	in	time	

										cart.restore(id)

										self.assertEquals(2,	len(cart))

										cart.storer.store_cart.assert_called_with(cart)

										cart.storer.retrieve_cart.assert_called_with(1)

4.	 Run	the	test	using	nosetests	with	the	spec	plugin:

	

	

	

How	it	works...
Mocks	are	test	doubles	that	confirm	method	calls,	which	is	the	behavior.	This	is
different	from	stubs,	which	provide	canned	data,	allowing	us	to	confirm	states.

Many	mocking	libraries	are	based	on	the	record/replay	pattern.	They	first	require
the	test	case	to	record	every	behavior	the	mock	will	be	subjected	to	when	used.
Then	we	plug	the	mock	into	our	code,	allowing	our	code	to	invoke	calls	against
it.	Finally,	we	execute	replay,	and	the	Mock	library	compares	the	method	calls
we	expected	with	the	ones	that	actually	happened.

A	common	issue	with	record/replay	mocking	is	that,	if	we	miss	a	single	method
call,	our	test	fails.	Capturing	all	the	method	calls	can	become	very	challenging
when	trying	to	mock	out	third-party	systems,	or	dealing	with	variable	calls	that
may	be	tied	to	complex	system	states.

The	Voidspace	Mock	library	differs	by	using	the	action/assert	pattern.	We	first
generate	a	mock	and	define	how	we	want	it	to	react	to	certain	actions.	Then,	we
plug	it	into	our	code,	allowing	our	code	to	operate	against	it.	Finally,	we	assert
what	happened	to	the	mock,	only	picking	the	operations	we	care	about.	There	is
no	requirement	to	assert	every	behavior	experienced	by	the	mock.

Why	is	this	important?	Record/replay	requires	that	we	record	the	method	calls
that	are	made	by	our	code,	third-party	system,	and	all	the	other	layers	in	the	call
chain.	Frankly,	we	may	not	need	this	level	of	confirmation	of	behavior.	Often,
we	are	primarily	interested	in	the	top	layer	of	interaction.	Action/assert	lets	us
cut	back	on	the	behavior	calls	we	care	about.	We	can	set	up	our	mock	to	generate
the	necessary	top	level	actions	and	essentially	ignore	the	lower	level	calls,	which
a	record/replay	mock	would	force	us	to	record.

In	this	recipe,	we	mocked	the	DataAccess	operations	store_cart	and	retrieve_cart.	We
defined	their	return_value,	and	at	the	end	of	the	test	we	asserted	that	they	were
called	the	following:

cart.storer.store_cart.assert_called_with(cart)

cart.storer.retrieve_cart.assert_called_with(1)

cart.storer	was	the	internal	attribute	that	we	injected	with	our	mock.

Mocking	a	method	means	replacing	a	call	to	a	real	method	with	one	to	a	mock	object.

Stubbing	a	method	means	replacing	a	call	to	a	real	method	with	one	to	a	stub.

There's	more...
	

Because	this	test	case	focuses	on	storing	and	retrieving	from	the	cart's
perspective,	we	didn't	have	to	define	the	real	DataAccess	calls.	That	is	why	we
simply	put	pass	in	their	method	definitions.

This	conveniently	lets	us	work	on	the	behavior	of	persistence	without	forcing	us
to	choose	whether	the	cart	would	be	stored	in	a	relational	database,	a	NoSQL
database,	a	flat	file,	or	any	other	file	format.	This	shows	that	our	shopping	cart
and	data	persistence	are	nicely	decoupled.

	

	

	

Tell	me	more	about	the	spec	nose
plugin!
We	quickly	skimmed	over	the	useful	spec	plugin	for	nose.	It	provides	the	same
essential	functionality	that	we	coded	by	hand	in	the	Naming	tests	so	they	sound
like	sentences	and	stories	section.	It	converts	test	case	names	and	test	method
names	into	readable	results.	It	gives	us	a	runnable	spec.	This	plugin	works	with
unittest	and	doesn't	care	whether	or	not	we	were	using	Voidspace	Mock.

	

Why	didn't	we	reuse	the	plugin	from
the	recipe	"Naming	tests	so	they
sound	like	sentences	and	stories"?
Another	way	to	phrase	this	question	is	Why	did	we	write	that	recipe's	plugin	in
the	first	place?	An	important	point	of	using	test	tools	is	to	understand	how	they
work,	and	how	to	write	our	own	extensions.	The	Naming	tests	so	they	sound	like
sentences	and	stories	section	not	only	discussed	the	philosophy	of	naming	tests,
but	also	explored	ways	to	write	nose	plugins	to	support	this	need.	In	this	recipe,
our	focus	was	on	using	Voidspace	Mock	to	verify	certain	behaviors,	and	not	on
coding	nose	plugins.	Producing	a	nice	BDD	report	was	easily	served	by	the
existing	spec	plugin.

	

See	also
Writing	a	testable	story	with	mockito	and	nose.

Writing	a	testable	story	with	mockito
and	nose
	

When	our	code	interacts	with	other	classes	through	methods	and	attributes,	these
are	referred	to	as	collaborators.	Mocking	out	collaborators	using	mockito	(http://co
de.google.com/p/mockito	and	http://code.google.com/p/mockito-python)	provides	a	key	tool
for	BDD.	Mocks	provide	canned	behavior,	whereas	stubs,	provide	canned	states.
While	mocks	by	themselves	don't	define	BDD,	their	usage	keenly	overlaps	the
ideas	of	BDD.

To	further	demonstrate	the	behavioral	nature	of	the	tests,	we	will	also	use	the	spec
plugin	found	in	the	pinocchio	project	(http://darcs.idyll.org/~t/projects/
pinocchio/doc).

	

	

	

http://code.google.com/p/mockito
http://code.google.com/p/mockito-python
http://darcs.idyll.org/~t/projects/

Getting	ready
For	this	recipe,	we	will	be	using	the	shopping	cart	application	shown	at	the
beginning	of	this	chapter	with	some	slight	modifications:

1.	 Create	a	new	file	called	recipe31_cart.py	and	copy	all	the	code	from	cart.py
created	in	the	introduction	of	this	chapter.

	

2.	 Alter	__init__	to	add	an	extra	storer	attribute	used	for	persistence:

class	ShoppingCart(object):

				def	__init__(self,	storer=None):

				self.items	=	[]

				self.storer	=	storer

3.	 Add	a	store	method	that	uses	the	storer	to	save	the	cart:

def	store(self):

							return	self.storer.store_cart(self)

4.	 Add	a	retrieve	method	that	updates	the	internal	items	by	using	the	storer:

def	restore(self,	id):

						self.items	=	self.storer.retrieve_cart(id).items

						return	self

The	specifics	of	the	API	of	the	storer	will	be	given	further	down	in	this	recipe.

We	need	to	activate	our	virtual	environment	and	then	install	mockito	for	this
recipe:

1.	 Create	a	virtual	environment,	activate	it,	and	verify	the	tools	are	working:

2.	 Install	mockito	by	typing	pip	install	mockito.

Install	pinocchio	and	figleaf	using	the	same	steps	from	the	Writing	a	testable	story
with	Voidspace	Mock	and	nose	recipe.

How	to	do	it...
	

With	the	following	steps,	we	will	explore	how	to	use	mocking	to	write	a	testable
story:

1.	 In	recipe31_cart.py,	create	a	DataAccess	class	with	empty	methods	for	storing
and	retrieving	shopping	carts:

class	DataAccess(object):

					def	store_cart(self,	cart):

									pass

					def	retrieve_cart(self,	id):

									pass

2.	 Create	a	new	file	called	recipe31.py	for	writing	the	test	code.
3.	 Create	an	automated	unit	test	that	exercises	the	cart	by	mocking	out	the

methods	of	DataAccess:

import	unittest

from	copy	import	deepcopy

from	recipe31_cart	import	*

from	mockito	import	*

class	CartThatWeWillSaveAndRestoreUsingMockito(unittest.TestCase):

						def	test_fill_up_a_cart_then_save_it_and_restore_it(self):

										#	Create	an	empty	shopping	cart

										cart	=	ShoppingCart(DataAccess())

										#	Add	a	couple	of	items

										cart.add("carton	of	milk",	2.50)

										cart.add("frozen	pizza",	3.00)

										self.assertEquals(2,	len(cart))

									#	Create	a	clone	of	the	cart	for	mocking

									#	purposes.

									original_cart	=	deepcopy(cart)

									#	Save	the	cart	at	this	point	in	time	into	a	database

									#	using	a	mock

									cart.storer	=	mock()

									when(cart.storer).store_cart(cart).thenReturn(1)

									when(cart.storer).retrieve_cart(1).	\			

																													thenReturn(original_cart)

									id	=	cart.store()

									self.assertEquals(1,	id)

									#	Add	more	items	to	cart

									cart.add("cookie	dough",	1.75)

									cart.add("ginger	ale",	3.25)

									self.assertEquals(4,	len(cart))

									#	Restore	the	cart	to	the	last	point	in	time

									cart.restore(id)

									self.assertEquals(2,	len(cart))

									verify(cart.storer).store_cart(cart)

									verify(cart.storer).retrieve_cart(1)

4.	 Run	the	test	using	nosetests	with	the	spec	plugin:

	

	

	

How	it	works...
This	recipe	is	very	similar	to	the	earlier	recipe,	Writing	a	testable	story	with
Voidspace	Mock	and	nose.	For	details	about	mocking	and	the	benefits	with
regards	to	BDD,	it	is	very	useful	to	read	that	recipe.

Let's	compare	the	syntax	of	Voidspace	Mock	with	mockito	to	get	a	feel	for	the
differences.	Look	at	the	following	Voidspace	Mock	block	of	code:

cart.storer.store_cart	=	Mock()

									cart.storer.store_cart.return_value	=	1

									cart.storer.retrieve_cart	=	Mock()

									cart.storer.retrieve_cart.return_value	=	original_cart

It	shows	the	function	store_cart	being	mocked:

cart.storer	=	mock()

									when(cart.storer).store_cart(cart).thenReturn(1)

									when(cart.storer).retrieve_cart(1).thenReturn(original_cart)

mockito	approaches	this	by	mocking	out	the	entire	storer	object.	mockito	originated
as	a	Java	mocking	tool,	which	explains	its	Java-ish	APIs	like	thenReturn,
compared	to	Voidspace	Mock's	Pythonic	style	of	return_value.

Some	find	this	influence	from	Java	on	Python's	implementation	of	mockito
distasteful.	Frankly,	I	believe	that	is	insufficient	reason	to	discard	a	library.	In	the
previous	example,	mockito	records	the	desired	behavior	in	a	more	succinct
fashion,	something	that	would	definitely	offset	the	Java-like	API.

See	also
Writing	a	testable	story	with	Voidspace	Mock	and	nose.

Writing	a	testable	story	with	Lettuce
Lettuce	(http://lettuce.it)	is	a	Cucumber-like	BDD	tool	built	for	Python.

Cucumber	(http://cukes.info)	was	developed	by	the	Ruby	community	and
provides	a	way	to	write	scenarios	in	a	textual	style.	By	letting	our	stakeholders
read	the	stories,	they	can	easily	discern	what	the	software	is	expected	to	do.

This	recipe	shows	how	to	install	Lettuce,	write	a	test	story,	and	then	wire	it	into
our	shopping	cart	application	to	exercise	our	code.

http://lettuce.it
http://cukes.info

Getting	ready...
For	this	recipe,	we	will	be	using	the	shopping	cart	application	shown	at	the
beginning	of	this	chapter.	We	also	need	to	install	Lettuce	and	its	dependencies.

Install	Lettuce	by	typing	pip	install	lettuce.

How	to	do	it...
In	the	following	steps,	we	will	explore	creating	some	testable	stories	with
Lettuce,	and	wiring	them	to	runnable	Python	code:

1.	 Create	a	new	folder	called	recipe32	to	contain	all	the	files	in	this	recipe.
2.	 Create	a	file	named	recipe32.feature	to	capture	our	story.	Write	the	top-level

description	of	our	new	feature,	based	on	our	shopping	cart:

Feature:	Shopping	cart	As	a	shopper

			I	want	to	load	up	items	in	my	cart

			So	that	I	can	check	out	and	pay	for	them

3.	 Let's	first	create	a	scenario	that	captures	the	behavior	of	the	cart	when	it's
empty:

Scenario:	Empty	cart

												Given	an	empty	cart

												Then	looking	up	the	fifth	item	causes	an	error

												And	looking	up	a	negative	price	causes	an	error

												And	the	price	with	no	taxes	is	$0.00

												And	the	price	with	taxes	is	$0.00

4.	 Add	another	scenario	that	shows	what	happens	when	we	add	cartons	of
milk:

Scenario:	Cart	getting	loaded	with	multiple	of	the	same	

												Given	an	empty	cart

												When	I	add	a	carton	of	milk	for	$2.50

												And	I	add	another	carton	of	milk	for	$2.50	

												Then	the	first	item	is	a	carton	of	milk

												And	the	price	is	$5.00	And	the	cart	has	2	items

												And	the	total	cost	with	10%	taxes	is	$5.50

5.	 Add	a	third	scenario	that	shows	what	happens	when	we	combine	a	carton	of
milk	and	a	frozen	pizza:

Scenario:	Cart	getting	loaded	with	different	items	

												Given	an	empty	cart

												When	I	add	a	carton	of	milk

												And	I	add	a	frozen	pizza

												Then	the	first	item	is	a	carton	of	milk

												And	the	second	item	is	a	frozen	pizza

												And	the	first	price	is	$2.50

												And	the	second	price	is	$3.00

												And	the	total	cost	with	no	taxes	is	$5.50

												And	the	total	cost	with	10%	taes	is	$6.05

6.	 Let's	run	the	story	through	Lettuce	to	see	what	the	outcome	is,	considering
we	haven't	linked	this	story	to	any	Python	code.	In	the	following
screenshot,	it's	impossible	to	discern	the	color	of	the	outputs.	The	feature
and	scenario	declarations	are	white.	Given,	When,	and	Then	are	undefined	and
colored	yellow.	This	shows	that	we	haven't	tied	the	steps	to	any	code	yet:

7.	 Create	a	new	file	in	recipe32	called	steps.py	to	implement	the	steps	needed	to
support	Given.

8.	 Add	some	code	to	steps.py	to	implement	the	first	Given:

from	lettuce	import	*

from	cart	import	*

@step("an	empty	cart")

def	an_empty_cart(step):

			world.cart	=	ShoppingCart()

9.	 To	run	the	steps,	we	need	to	make	sure	the	current	path	that	contains	the
cart.py	module	is	part	of	our	PYTHONPATH.

For	Linux	and	Mac	OSX	systems,	type	export	PYTHONPATH=/path/to/	cart.py.

For	Windows,	go	to	Control	Panel	|	System	|	Advanced,	click	Environment	Variables,	and
either	edit	the	existing	PYTHONPATH	variable	or	add	a	new	one,	pointing	to	the	folder	that
contains	cart.py.

10.	 Run	the	stories	again.	It's	hard	to	see	in	the	following	screenshot,	but	Given
an	empty	cart	is	now	green:

While	this	screenshot	only	focuses	on	the	first	scenario,	all	three	scenarios	have	the	same
Given.	The	code	we	wrote	satisfied	all	three	Given.

11.	 Add	code	to	steps.py	that	implements	support	for	the	first	scenario's	Then:

@step("looking	up	the	fifth	item	causes	an	error")	

def	looking_up_fifth_item(step):

				try:

						world.cart.item(5)

						raise	AssertionError("Expected	IndexError")	

				except	IndexError,	e:

						pass

@step("looking	up	a	negative	price	causes	an	error")

				def	looking_up_negative_price(step):

								try:

										world.cart.price(-2)

													raise	AssertionError("Expected	IndexError")

								except	IndexError,	e:

										pass

@step("the	price	with	no	taxes	is	(.*)")

				def	price_with_no_taxes(step,	total):

							assert	world.cart.total(0.0)	==	float(total)

@step("the	price	with	taxes	is	(.*)")

				def	price_with_taxes(step,	total):

								assert	world.cart.total(10.0)	==	float(total)

12.	 Run	the	stories	again	and	notice	how	the	first	scenario	is	completely
passing,	as	shown	in	the	following	screenshot:

13.	 Now	add	code	to	steps.py	to	implement	the	steps	needed	for	the	second
scenario:

@step("I	add	a	carton	of	milk	for	(.*)")

def	add_a_carton_of_milk(step,	price):

				world.cart.add("carton	of	milk",	float(price))

@step("I	add	another	carton	of	milk	for	(.*)")

def	add_another_carton_of_milk(step,	price):

				world.cart.add("carton	of	milk",	float(price))

@step("the	first	item	is	a	carton	of	milk")

def	check_first_item(step):

				assert	world.cart.item(1)	==	"carton	of	milk"

@step("the	price	is	(.*)")

def	check_first_price(step,	price):

				assert	world.cart.price(1)	==	float(price)

@step("the	cart	has	(.*)	items")

def	check_size_of_cart(step,	num_items):	

				assert	len(world.cart)	==	float(num_items)

@step("the	total	cost	with	(.*)%	taxes	is	(.*)")

def	check_total_cost(step,	tax_rate,	total):

				assert	world.cart.total(float(tax_rate))==float(total)

14.	 Finally,	add	code	to	steps.py	to	implement	the	steps	needed	for	the	last
scenario:

@step("I	add	a	carton	of	milk")

def	add_a_carton_of_milk(step):

				world.cart.add("carton	of	milk",	2.50)

@step("I	add	a	frozen	pizza")

def	add_a_frozen_pizza(step):

				world.cart.add("frozen	pizza",	3.00)

@step("the	second	item	is	a	frozen	pizza")

def	check_the_second_item(step):

				assert	world.cart.item(2)	==	"frozen	pizza"

@step("the	first	price	is	(.*)")

def	check_the_first_price(step,	price):

			assert	world.cart.price(1)	==	float(price)

@step("the	second	price	is	(.*)")

def	check_the_second_price(step,	price):	

				assert	world.cart.price(2)	==	float(price)

@step("the	total	cost	with	no	taxes	is	(.*)")

def	check_total_cost_with_no_taxes(step,	total):

				assert	world.cart.total(0.0)	==	float(total)

@step("the	total	cost	with	(.*)%	taxes	is	(.*)")

def	check_total_cost_with_taxes(step,	tax_rate,	total):

				assert	round(world.cart.total(float(tax_rate)),2)	==	float(total)

15.	 Run	the	story	by	typing	lettuce	recipe32	and	see	how	they	are	all	now
passing.	In	the	next	screenshot,	we	have	all	the	tests	passing	and	everything
is	green:

How	it	works...
	

Lettuce	uses	the	popular	Given/When/Then	style	of	BDD	story	telling.

Givens:	This	involves	setting	up	a	scenario.	This	often	includes	creating
objects.	For	each	of	our	scenarios,	we	created	an	instance	of	the	ShoppingCart.
This	is	very	similar	to	unittest's	setup	method.
Thens:	This	acts	on	Given.	These	are	the	operations	we	want	to	exercise	in	a
scenario.	We	can	exercise	more	than	one	Then.
Whens:	This	involves	testing	the	final	results	of	Then.	In	our	code,	we
mostly	used	Python	asserts.	In	a	couple	of	cases,	where	we	needed	to	detect
an	exception,	we	wrapped	the	call	with	a	try-catch	block	with	a	throw	if	the
expected	exception	didn't	occur.

It	doesn't	matter	in	what	order	we	put	the	Given/Then/When.	Lettuce	will	record
everything	so	that	all	the	Givens	are	listed	first,	followed	by	all	the	When
conditions,	and	then	all	the	Then	conditions.	Lettuce	puts	on	the	final	polish	by
translating	successive	Given/When/Then	conditions	into	And	for	better	readability.

	

	

	

There's	more...
If	you	look	closely	at	some	of	the	steps,	you	will	notice	some	wildcards:
@step("the	total	cost	with	(.*)%	taxes	is	(.*)")
def	check_total_cost(step,	tax_rate,	total):
assert	world.cart.total(float(tax_rate))	==	float(total)

The	@step	string	lets	us	dynamically	grab	parts	of	the	string	as	variables	by	using
pattern	matchers:

The	first	(.*)	is	a	pattern	to	capture	tax_rate
The	second	(.*)	is	a	pattern	to	capture	total

The	method	definition	shows	these	two	extra	variables	added	in.	We	can	name
them	anything	we	want.	This	gives	us	the	ability	to	actually	drive	the	tests,	data
and	all,	from	recipe32.feature	and	only	use	steps.py	to	link	things	together	in	a
generalized	way.

It's	important	to	point	out	that	actual	values	stored	in	tax_rate	and	total	are	Unicode	strings.
Because	the	test	involves	floating	point	numbers,	we	have	to	convert	the	variables	or	the	assert
fails.

How	complex	should	a	story	be?
In	this	recipe,	we	fit	everything	into	a	single	story.	Our	story	involved	all	the
various	shopping	cart	operations.	As	we	write	more	scenarios,	we	may	expand
this	into	multiple	stories.	This	goes	back	to	the	concept	discussed	in	the	Breaking
down	obscure	tests	into	simple	ones	section	of	Chapter	1,	Using	Unittest	to
Develop	Basic	Tests.	If	we	overload	a	single	scenario	with	too	many	steps,	it
may	get	too	complex.	It	is	better	if	we	can	visualize	a	single	thread	of	execution
that	is	easy	to	verify	at	the	end.

	

Don't	mix	wiring	code	with
application	code
The	project's	website	shows	a	sample	building	a	factorial	function.	It	has	both
the	factorial	function	as	well	as	the	wiring	in	a	single	file.	For	demo	purposes
this	is	alright.	But	for	actual	production	use,	it	is	best	to	decouple	the	application
from	the	Lettuce	wiring.	This	encourages	a	clean	interface	and	demonstrates
usability.

	

Lettuce	works	great	using	folders
	

Lettuce,	by	default,	will	look	for	a	features	folder	wherever	we	run	it,	and
discover	any	files	ending	in	.feature.	That	way	it	can	automatically	find	all	of	our
stories	and	run	them.

It	is	possible	to	override	the	features	directory	with	-s	or	–-scenarios.

	

	

	

See	also
The	Breaking	down	obscure	tests	into	simple	ones	section	from	Chapter	1,	Using
Unittest	to	Develop	Basic	Tests.

Using	Should	DSL	to	write	succinct
assertions	with	Lettuce
Lettuce	(http://lettuce.it)	is	a	BDD	tool	built	for	Python.

Should	DSL	(http://www.should-dsl.info)	provides	a	simpler	way	to	write
assertions	for	Then	conditions.

This	recipe	shows	how	to	install	Lettuce	and	Should	DSL.	Then,	we	will	write	a
test	story.	Finally,	we	will	wire	it	into	our	shopping	cart	application	using	Should
DSL	to	exercise	our	code.

http://lettuce.it
http://www.should-dsl.info

Getting	ready
For	this	recipe,	we	will	be	using	the	shopping	cart	application	shown	at	the
beginning	of	this	chapter.	We	also	need	to	install	Lettuce	and	its	dependencies	by
doing	the	following:

Install	Lettuce	by	typing	pip	install	lettuce
Install	Should	DSL	by	typing	pip	install	should_dsl

How	to	do	it...
	

With	the	following	steps,	we	will	use	Should	DSL	to	write	more	succinct
assertions	in	our	test	stories:

1.	 Create	a	new	directory	called	recipe33	to	contain	all	the	files	for	this	recipe.
2.	 Create	a	new	file	in	recipe33	called	recipe33.feature	to	contain	our	test

scenarios.
3.	 Create	a	story	in	recipe33.feature	with	several	scenarios	to	exercise	our

shopping	cart,	as	follows:

Feature:	Shopping	cart

		As	a	shopper

		I	want	to	load	up	items	in	my	cart

		So	that	I	can	check	out	and	pay	for	them

					Scenario:	Empty	cart

								Given	an	empty	cart

								Then	looking	up	the	fifth	item	causes	an	error

								And	looking	up	a	negative	price	causes	an	error

								And	the	price	with	no	taxes	is	0.0

								And	the	price	with	taxes	is	0.0

					Scenario:	Cart	getting	loaded	with	multiple	of	the	same

								Given	an	empty	cart

								When	I	add	a	carton	of	milk	for	2.50

								And	I	add	another	carton	of	milk	for	2.50

								Then	the	first	item	is	a	carton	of	milk

								And	the	price	is	5.00

								And	the	cart	has	2	items

								And	the	total	cost	with	10%	taxes	is	5.50

					Scenario:	Cart	getting	loaded	with	different	items

								Given	an	empty	cart

								When	I	add	a	carton	of	milk

								And	I	add	a	frozen	pizza

								Then	the	first	item	is	a	carton	of	milk

								And	the	second	item	is	a	frozen	pizza	

								And	the	first	price	is	2.50

								And	the	second	price	is	3.00

								And	the	total	cost	with	no	taxes	is	5.50

								And	the	total	cost	with	10%	taxes	is	6.05

4.	 Write	a	set	of	assertions	using	Should	DSL,	as	follows:

from	lettuce	import	*

from	should_dsl	import	should,	should_not

from	cart	import	*

@step("an	empty	cart")

def	an_empty_cart(step):

				world.cart	=	ShoppingCart()

@step("looking	up	the	fifth	item	causes	an	error")

def	looking_up_fifth_item(step):

			(world.cart.item,	5)	|should|	throw(IndexError)

@step("looking	up	a	negative	price	causes	an	error")

def	looking_up_negative_price(step):

			(world.cart.price,	-2)	|should|	throw(IndexError)

@step("the	price	with	no	taxes	is	(.*)")

def	price_with_no_taxes(step,	total):

			world.cart.total(0.0)	|should|	equal_to(float(total))

@step("the	price	with	taxes	is	(.*)")

def	price_with_taxes(step,	total):

			world.cart.total(10.0)	|should|	equal_to(float(total))

@step("I	add	a	carton	of	milk	for	2.50")

def	add_a_carton_of_milk(step):

			world.cart.add("carton	of	milk",	2.50)

@step("I	add	another	carton	of	milk	for	2.50")

def	add_another_carton_of_milk(step):

			world.cart.add("carton	of	milk",	2.50)

@step("the	first	item	is	a	carton	of	milk")

def	check_first_item(step):

			world.cart.item(1)	|should|	equal_to("carton	of	milk")

@step("the	price	is	5.00")

def	check_first_price(step):

			world.cart.price(1)	|should|	equal_to(5.0)

@step("the	cart	has	2	items")

def	check_size_of_cart(step):

			len(world.cart)	|should|	equal_to(2)

@step("the	total	cost	with	10%	taxes	is	5.50")

def	check_total_cost(step):

			world.cart.total(10.0)	|should|	equal_to(5.5)

@step("I	add	a	carton	of	milk")

def	add_a_carton_of_milk(step):

			world.cart.add("carton	of	milk",	2.50)

@step("I	add	a	frozen	pizza")

def	add_a_frozen_pizza(step):

			world.cart.add("frozen	pizza",	3.00)

@step("the	second	item	is	a	frozen	pizza")

def	check_the_second_item(step):

			world.cart.item(2)	|should|	equal_to("frozen	pizza")

@step("the	first	price	is	2.50")

def	check_the_first_price(step):

			world.cart.price(1)	|should|	equal_to(2.5)

@step("the	second	price	is	3.00")

def	check_the_second_price(step):

			world.cart.price(2)	|should|	equal_to(3.0)

@step("the	total	cost	with	no	taxes	is	5.50")

def	check_total_cost_with_no_taxes(step):

			world.cart.total(0.0)	|should|	equal_to(5.5)

@step("the	total	cost	with	10%	taxes	is	(.*)")

def	check_total_cost_with_taxes(step,	total):

			world.cart.total(10.0)	|should|	close_to(float(total),\

delta=0.1)

5.	 Run	the	story:

	

	

	

How	it	works...
The	previous	recipe	(Writing	a	testable	story	with	Lettuce)	shows	more	details
on	how	Lettuce	works.	This	recipe	demonstrates	how	to	use	Should	DSL	to
make	useful	assertions.

Why	do	we	need	Should	DSL?	The	simplest	checks	we	write	involve	testing
values	to	confirm	the	behavior	of	the	shopping	cart	application.	In	the	previous
recipe,	we	mostly	used	Python	assertions	such	as:

assert	len(context.cart)	==	2

This	is	pretty	easy	to	understand.	Should	DSL	offers	a	simple	alternative,	which
is	this:

len(context.cart)	|should|	equal_to(2)

Does	this	look	like	much	of	a	difference?	Some	say	yes,	others	say	no.	It	is
wordier,	and	for	some	this	is	easier	to	read.	For	others,	it	isn't.

So	why	are	we	visiting	this?	Because	Should	DSL	has	more	than	just	equal_to.
There	are	many	more	commands,	such	as	these:

be:	Checks	identity
contain,	include,	be_into:	Verifies	whether	an	object	is	contained	or	contains
another
be_kind_of:	Checks	types
be_like:	Checks	using	a	regular	expression
be_thrown_by,throws:	Checks	that	an	exception	is	thrown
close_to:	Checks	whether	a	value	is	close,	given	a	delta
end_with:	Checks	whether	a	string	ends	with	a	given	suffix
equal_to:	Checks	value	equality
respond_to:	Checks	whether	an	object	has	a	given	attribute	or	method
start_with:	Checks	whether	a	string	starts	with	a	given	prefix

There	are	other	alternatives	as	well,	but	this	provides	a	diverse	set	of
comparisons.	If	we	imagine	the	code	needed	to	write	assertions	that	check	the

same	things,	then	things	get	more	complex.

For	example,	let's	think	about	confirming	expected	exceptions.	In	the	previous
recipe,	we	needed	to	confirm	that	an	IndexError	is	thrown	when	accessing	an	item
outside	the	boundaries	of	our	cart.	A	simple	Python	assert	didn't	work,	so	instead
we	coded	this	pattern:

try:

		world.cart.price(-2)

		raise	AssertionError("Expected	an	IndexError")	

except	IndexError,	e:

			pass

This	is	clunky	and	ugly.	Now,	imagine	a	more	complex,	more	realistic	system,
and	the	idea	of	having	to	use	this	pattern	for	lots	of	test	situations	where	we	want
to	verify	that	a	proper	exception	is	thrown.	This	can	quickly	become	an
expensive	coding	task.

Thankfully,	Should	DSL	turns	this	pattern	of	exception	assertion	into	a	one-liner:

(world.cart.price,	-2)	|should|	throw(IndexError)

This	is	clear	and	concise.	We	can	instantly	understand	that	invoking	this	method
with	these	arguments	should	throw	a	certain	exception.	If	no	exception	is	raised,
or	a	different	one	is	raised,	it	will	fail	and	give	us	clear	feedback.

If	you	notice,	Should	DSL	requires	the	method	call	to	be	split	up	into	a	tuple,	with	the	first
element	of	the	tuple	being	the	method	handle,	and	the	rest	being	the	arguments	for	the
method.

There's	more...
	

In	the	sample	code	listed	in	this	chapter,	we	used	|should|.	But	Should	DSL	also
comes	with	|should_not|.	Sometimes,	the	condition	we	want	to	express	is	best
captured	with	a	|should_not|.	Combined	with	all	the	matchers	listed	earlier,	we
have	a	plethora	of	opportunities	to	test	things,	positive	or	negative.

But,	don't	forget,	we	can	still	use	Python's	plain	old	assert	if	it	is	easier	to	read.
The	idea	is	to	have	plenty	of	ways	to	express	the	same	verification	of	behavior.

	

	

	

See	also
Writing	a	testable	story	with	Lettuce.

Updating	the	project-level	script	to
run	this	chapter's	BDD	tests
	

In	this	chapter,	we	have	developed	several	tactics	to	write	and	exercise	BDD
tests.	This	should	help	us	in	developing	new	projects.	An	invaluable	tool	for	any
project	is	having	a	top-level	script	used	to	manage	things	such	as	packaging,
bundling,	and	testing.

This	recipe	shows	how	to	create	a	command-line	project	script	that	will	run	all
the	tests	we	created	in	this	chapter	using	the	various	runners.

	

	

	

Getting	ready
For	this	recipe,	we	need	to	have	coded	all	the	recipes	from	this	chapter.

How	to	do	it...
	

With	the	following	steps,	we	will	create	a	project-level	script	that	will	run	all	the
test	recipes	from	this	chapter:

1.	 Create	a	new	file	called	recipe34.py.
2.	 Add	code	that	uses	the	getopt	library	for	parsing	command-line	arguments,

as	shown	here:

import	getopt

import	logging	

import	nose	

import	os	

import	os.path	

import	re	

import	sys	

import	lettuce	

import	doctest

from	glob	import	glob

def	usage():	

				print()

				print("Usage:	python	recipe34.py	[command]"	

				print()

				print	"\t--help"	

				print	"\t--test"	

				print	"\t--package"	

				print	"\t--publish"	

				print	"\t--register"	

				print()

				try:

						optlist,	args	=	getopt.getopt(sys.argv[1:],	

															"h",

														["help",	"test",	"package",	"publish",	"register"])	

			except	getopt.GetoptError:

							#	print	help	information	and	exit:

							print	"Invalid	command	found	in	%s"	%	sys.argv	

							usage()

							sys.exit(2)

3.	 Add	a	test	function	that	uses	our	custom	nose	plugin,	BddPrinter,	as	shown
here:

def	test_with_bdd():

				from	recipe26_plugin	import	BddPrinter

				suite	=	["recipe26",	"recipe30",	"recipe31"]	

				print("Running	suite	%s"	%	suite)

				args	=	[""]	

				args.extend(suite)	

				args.extend(["--with-bdd"])

				nose.run(argv=args,	plugins=[BddPrinter()])

4.	 Add	a	test	function	that	exercises	file-based	doctest:

def	test_plain_old_doctest():

			for	extension	in	["doctest",	"txt"]:

							for	doc	in	glob("recipe27*.%s"	%	extension):	

											print("Testing	%s"	%	doc)	

											doctest.testfile(doc)

5.	 Add	a	test	function	that	exercises	multiple	doctest	using	a	customized	doctest
runner:

def	test_customized_doctests():

				def	test_customized_doctests():

				from	recipe28	import	BddDocTestRunner

				old_doctest_runner	=	doctest.DocTestRunner	

				doctest.DocTestRunner	=	BddDocTestRunner

				for	recipe	in	["recipe28",	"recipe29"]:

								for	file	in	glob("%s*.doctest"	%	recipe):	

												given	=	file[len("%s_"	%	recipe):]	

												given	=	given[:-len(".doctest")]	

												given	=	"	".join(given.split("_"))

												print("===================================")	

												print("%s:	Given	a	%s..."	%	(recipe,	given))	

												print("===================================")	

												doctest.testfile(file)

												print()

				doctest.DocTestRunner	=	old_doctest_runner

6.	 Add	a	test	function	that	exercises	Lettuce	tests:

def	test_lettuce_scenarios():

				print("Running	suite	recipe32")

				lettuce.Runner(os.path.abspath("recipe32"),	verbosity=3).run()

				print()

				print("Running	suite	recipe33")	

				lettuce.Runner(os.path.abspath("recipe33"),	verbosity=3).run()	

				print()

7.	 Add	a	top-level	test	function	that	runs	all	of	our	test	functions	and	can	be
wired	to	the	command-line	option:

def	test():

				def	test():	

								test_with_bdd()

								test_plain_old_doctest()	

								test_customized_doctests()	

								test_lettuce_scenarios()

8.	 Add	some	extra	stub	functions	that	represent	packaging,	publishing,	and
registration	options:

def	package():

				print	"This	is	where	we	can	plug	in	code	to	run	"	+	\	

										"setup.py	to	generate	a	bundle."

def	publish():

				print	"This	is	where	we	can	plug	in	code	to	upload	"	+	\	

										"our	tarball	to	S3	or	some	other	download	site."

def	register():

				print	"setup.py	has	a	built	in	function	to	"	+	\	

										"'register'	a	release	to	PyPI.	It's	"	+	\	

										"convenient	to	put	a	hook	in	here."

				#	os.system("%s	setup.py	register"	%	sys.executable)

9.	 Add	code	to	parse	the	command-line	options:

if	len(optlist)	==	0:

			usage()

			sys.exit(1)

#	Check	for	help	requests,	which	cause	all	other

#	options	to	be	ignored.

for	option	in	optlist:

			if	option[0]	in	("--help",	"-h"):

						usage()

						sys.exit(1)

#	Parse	the	arguments,	in	order

for	option	in	optlist:

			if	option[0]	in	("--test"):

						test()

			if	option[0]	in	("--package"):

						package()

			if	option[0]	in	("--publish"):

						publish()

			if	option[0]	in	("--register"):

						registe

10.	 Run	the	script	with	no	options:

11.	 Run	the	script	with	–test:

(ptc)gturnquist-mbp:04	gturnquist$	python	recipe34.py	--test	Running	suite	

['recipe26',	'recipe30',	'recipe31']

...

		Scenario:	Cart	getting	loaded	with	different	items								#

recipe33/recipe33.feature:22

					Given	an	empty	cart																																				#

recipe33/steps.py:6

					When	I	add	a	carton	of	milk																												#

recipe33/steps.py:50

					And	I	add	a	frozen	pizza																															#

recipe33/steps.py:54

					Then	the	first	item	is	a	carton	of	milk																#

recipe33/steps.py:34

					And	the	second	item	is	a	frozen	pizza																		#

recipe33/steps.py:58

					And	the	first	price	is	2.50																												#

recipe32/steps.py:69

					And	the	second	price	is	3.00																											#

recipe33/steps.py:66

					And	the	total	cost	with	no	taxes	is	5.50															#

recipe33/steps.py:70

					And	the	total	cost	with	10%	taxes	is	6.05														#

recipe33/steps.py:74

1	feature	(1	passed)

3	scenarios	(3	passed)

21	steps	(21	passed)

12.	 Run	the	script	using	--package	--publish	--register.	Take	a	look	at	this
screenshot:

	

	

	

How	it	works...
This	script	uses	Python's	getopt	library.

See	also
For	more	details	about	how	and	why	to	use	getopt,	reasons	to	write	a	project-level
script,	and	why	we	are	using	getopt	instead	of	optparse.

High-Level	Customer	Scenarios	with
Acceptance	Testing
	

In	this	chapter,	we	will	cover	the	following:

Installing	Pyccuracy
Testing	the	basics	with	Pyccuracy
Using	Pyccuracy	to	verify	web	app	security
Installing	Robot	Framework
Creating	a	data-driven	test	suite	with	Robot	Framework
Writing	a	testable	story	using	Robot	Framework
Tagging	Robot	Framework	tests	and	running	a	subset
Testing	web	basics	with	Robot	Framework
Using	Robot	Framework	to	verify	web	app	security
Creating	a	project-level	script	to	run	this	chapter's	acceptance	tests

	

	

Introduction
	

Acceptance	testing	involves	writing	tests	to	prove	that	our	code	is,	well,
acceptable!	However,	what	does	this	mean?	The	context	implies	acceptable	from
a	customer's	perspective.	Customers	are	usually	more	interested	in	what	the
software	does,	not	how	it	does	it.	This	means	that	tests	are	aimed	at	inputs	and
outputs	and	tend	to	be	at	a	higher	level	than	unit	testing.	This	has	sometimes
been	called	black	box	testing	and	is	usually	more	system	oriented.	At	the	end	of
the	day,	it	is	often	associated	with	testing	that	asserts	whether	or	not	the
customer	will	accept	the	software.

There	is	an	assumption	among	some	developers	that	acceptance	testing	involves
verifying	the	frontend	of	web	applications.	In	fact,	several	testing	tools,
including	Pyccuracy,	are	built	on	the	sole	premise	of	testing	web	applications.
When	viewed	from	the	perspective	of	whether	or	not	a	customer	will	accept	the
software,	this	will	quite	literally	fit	into	acceptable	from	a	customer's
perspective.

However,	web	testing	isn't	the	only	form	of	acceptance	testing.	Not	all	systems
are	web-based.	If	a	subsystem	is	to	be	built	by	one	team	and	handed	off	to
another	team	that	plans	to	build	another	layer	on	top	of	it,	an	acceptance	test	may
be	required	before	the	second	team	will	accept	it.

For	this	chapter,	we	will	dig	into	some	recipes	that	involve	both	web	and	non-
web	application	acceptance	testing.

To	create	an	e-store	web	application	for	testing,	follow	these	steps:

1.	 Ensure	that	you	have	mercurial	installed	on	your	system:
For	macOS,	use	either	MacPorts	or	Homebrew
For	Ubuntu/Debian,	use	sudo	apt-get	install	mercurial
For	other	systems,	you	will	need	to	do	extra	research	in	installing
mercurial

2.	 This	also	requires	having	compilable	tools	installed,	such	as	gcc:

For	Ubuntu,	use	sudo	apt-get	install	build-essential
For	other	systems,	you	will	need	to	do	extra	research	in	installing	gcc

3.	 If	you	have	other	issues	installing	Satchmo	in	the	following	steps,	visit	the
project	site	at	http://www.satchmoproject.com	and	possibly	their	support	group	at	
http://groups.google.com/group/satchmo-users.

4.	 Install	Satchmo,	an	e-commerce	website	builder,	by	typing	the	following
commands:

pip	install	-r	

http://bitbucket.org/gturnquist/satchmo/raw/tip/scripts/requirements.txt

pip	install	-e	hg+http://bitbucket.org/gturnquist/satchmo/#egg=satchmo

5.	 Install	Python's	PIL	library	for	image	processing	with	pip	install	PIL.

6.	 Edit	<virtualenv	root>/lib/python2.6/site-
packages/django/contrib/admin/templates/admin/login.html	to	add	id="login"	to	the
Log	in<input>	tag.	This	allows	Pyccuracy	to	grab	the	Log	in	button	and	click	it.

7.	 Run	the	Satchmo	script	to	create	store	application:	clonesatchmo.py.
8.	 When	prompted	about	creating	a	super-user,	say	yes.
9.	 When	prompted,	enter	a	username.
10.	 When	prompted,	enter	an	e-mail	address.
11.	 When	prompted,	enter	a	password.
12.	 Go	into	store	directory:	cd	store.
13.	 Start	up	the	store	app:	python	manage.py	runserver.

If	you	have	issues	installing	Satchmo	with	these	steps,	visit	the	project	site	at	http://www.satchmopro
ject.com	and	possibly	their	support	group	at	https://groups.google.com/forum/#!forum/satchmo-users.

To	create	a	non-web	shopping	cart	application	for	testing,	create	cart.py	with	the
following	code:	class	ShoppingCart(object):	def	__init__(self):

self.items	=	[]

	

def	add(self,	item,	price):

for	cart_item	in	self.items:

#	Since	we	found	the	item,	we	increment	#	instead	of	append

if	cart_item.item	==	item:	cart_item.q	+=	1

http://www.satchmoproject.com
http://groups.google.com/group/satchmo-users
http://www.satchmoproject.com
https://groups.google.com/forum/#!forum/satchmo-users

return	self

	

#	If	we	didn't	find,	then	we	append	self.items.append(Item(item,	price))	return
self

	

def	item(self,	index):

return	self.items[index-1].item

def	price(self,	index):

return	self.items[index-1].price	*	self.items[index-1].q

def	total(self,	sales_tax):

sum_price	=	sum([item.price*item.q	for	item	in	self.items])	return	sum_price*
(1.0	+	sales_tax/100.0)

def	__len__(self):

return	sum([item.q	for	item	in	self.items])

class	Item(object):

def	__init__(self,	item,	price,	q=1):	self.item	=	item

self.price	=	price

self.q	=	q

This	shopping	cart	has	the	following	characteristics:

Is	1-based,	meaning	that	the	first	item	and	price	are	at	[1]	not	[0]
Includes	the	ability	to	have	multiples	of	the	same	item
Will	calculate	total	price	and	then	add	taxes

This	application	isn't	complex.	Maybe	it	doesn't	look	exactly	at	a	system	level,

but	it	does	provide	an	easy	application	to	write	acceptance	tests	against.

	

	

	

Installing	Pyccuracy
Pyccuracy	is	a	useful	tool	for	writing	web	acceptance	tests	using	a	BDD-style
language.	This	recipe	shows	all	the	steps	needed	to	install	it	and	set	it	up	for	later
recipes.

How	to	do	it...
	

With	these	steps,	we	will	install	Pyccuracy	and	all	the	tools	needed	to	run	the
scenarios	later	in	this	chapter:

1.	 Install	Pyccuracy	by	typing	pip	install	pyccuracy.
2.	 Download	selenium-server.jar	from	http://github.com/heynemann/pyccuracy/raw/mast

er/lib/selenium-server.jar.
3.	 Start	it	up	by	typing	java	-jar	selenium-server.jar.	Note	that	if	you	don't	have

Java	installed,	you	definitely	need	to	download	and	install	it	as	well.
4.	 Install	lxml	by	typing	pip	install	lxml.

5.	 Create	a	simple	test	file	called	recipe35.acc	and	enter	the	following	code:

As	a	Yahoo	User

I	want	to	search	Yahoo

So	that	I	can	test	my	installation	of	Pyccuracy

Scenario	1	-	Searching	for	Python	Testing	Cookbook

Given

				I	go	to	"http://yahoo.com"

When

				I	fill	"p"	textbox	with	"Python	Testing	Cookbook"

				And	I	click	"search-submit"	button	and	wait

Then

				I	see	"Python	Testing	Cookbook	-	Yahoo!	Search	Results"	title

6.	 Run	it	by	typing	pyccuracy_console	-p	test.acc.	The	following	screenshot
shows	it	being	run	with	Firefox	(default	for	this	system):

http://github.com/heynemann/pyccuracy/raw/master/lib/selenium-server.jar

7.	 Run	it	again,	using	a	different	web	browser	such	as	Safari,	by	typing
pyccuracy_console	-p	test.acc	-b	safari:

At	the	time	of	writing,	Selenium	supports	Firefox,	Safari,	Opera,	and	IE	7+,	but	not	Chrome.

8.	 In	the	folder	where	we	ran	the	test,	there	should	now	be	a	report.html	file.
Open	it	up	using	a	browser	to	view	the	results.	Then,	click	on	Expand	All:

	

	

	

How	it	works...
	

Pyccuracy	uses	Selenium,	a	popular	browser-driving	application	tester	to	run	its
scenarios.	Pyccuracy	provides	an	out-of-the-box	Domain	Specific	Language
(DSL)	to	write	tests.	The	DSL	provides	the	means	to	send	commands	to	a	test
browser	and	also	check	the	results,	verifying	web	application	behavior.

Later	on	in	this	chapter,	there	are	several	recipes	that	show	more	details	of
Pyccuracy.

	

	

	

See	also
Testing	the	basics	with	Pyccuracy
Using	Pyccuracy	to	verify	web	app	security

Testing	the	basics	with	Pyccuracy
Pyccuracy	provides	an	easy-to-read	set	of	operations	to	drive	the	frontend	of	a
web	application.	This	recipe	shows	how	to	use	it	to	drive	a	shopping	cart
application	and	verify	application	functionality.

Getting	ready
	

1.	 If	it	isn't	already	running,	start	up	the	Selenium	server	in	another	shell	or
window	by	typing	java	-jar	selenium-server.jar:

2.	 If	the	Satchmo	store	application	isn't	already	running,	start	it	up	in	another
shell	or	window	by	typing	python	manage.py	runserver.

This	must	run	inside	the	virtualenv	environment.

	

	

	

How	to	do	it...
	

With	these	steps,	we	will	explore	the	basics	of	writing	a	Pyccuracy	test:

1.	 Create	a	new	file	called	recipe36.acc.
2.	 Create	a	story	for	loading	items	into	the	shopping	cart:

As	a	store	customer

I	want	to	put	things	into	my	cart

So	that	I	can	verify	the	store's	functionality.

3.	 Add	a	scenario	where	the	empty	cart	is	looked	at	in	detail,	with	a	confirmed
balance	of	$0.00:

Scenario	1	-	Inspect	empty	cart	in	detail

Given

I	go	to	"http://localhost:8000"

When

I	click	"Cart"	link	and	wait

Then

I	see	that	current	page	contains	"Your	cart	is	empty"

And	I	see	that	current	page	contains	"0	-	$0.00"

4.	 Add	another	scenario	where	a	book	is	selected	and	two	of	them	are	added	to
the	cart:

Scenario	2	-	Load	up	a	cart	with	2	of	the	same

Given

I	go	to	"http://localhost:8000"

When

I	click	"Science	Fiction"	link

And	I	click	"Robots	Attack!"	link	and	wait

And	I	fill	"quantity"	textbox	with	"2"

And	I	click	"addcart"	button	and	wait

And	I	click	"Cart"	link	and	wait

Then

I	see	that	current	page	contains	"Robots	Attack!"

And	I	see	"quantity"	textbox	contains	"2"

And	I	see	that	current	page	contains	"<td	align="center">$7.99</td>"

And	I	see	that	current	page	contains	"<td	align="center">$15.98</td>"

And	I	see	that	current	page	contains	"<td>$15.98</td>"

5.	 Run	the	story	by	typing	pyccuracy_console	-p	recipe36.acc:

	

	

	

How	it	works...
Pyccuracy	has	a	lot	of	built-in	actions	based	on	driving	the	browser	or	reading
the	page.	These	actions	are	patterns	used	to	parse	the	story	file	and	generate
commands	sent	to	the	Selenium	server,	which	in	turn	drives	the	browser	and	then
reads	the	results	of	the	page.

The	key	is	picking	the	right	text	to	identify	the	element	being	actioned	or	read.

Web	apps	that	are	missing	ID	tags	are	much	hard	to	read.

There's	more...
The	key	is	picking	the	right	identifier	and	element	type.	With	good	identifiers,	it
is	easy	to	do	things	like—I	click	on	Cart	link.	Did	you	note	the	issue	we	had
with	drilling	into	the	shopping	cart	table?	The	HTML	<table>	tag	had	no
identifier,	which	made	it	impossible	for	us	to	pick.	Instead,	we	had	to	look	at	the
whole	page	and	do	a	global	search	for	some	markup.

This	makes	it	more	difficult	to	read	the	test.	A	good	solution	is	to	alter	the	web
app	to	include	an	ID	in	the	<table>	tag.	Then,	we	narrow	down	our	acceptance
criteria	to	just	the	table.	With	this	application	it	was	okay,	but	with	complex	web
applications,	it	will	surely	be	much	more	difficult	to	find	the	exact	bit	of	text	we
are	looking	for	without	good	IDs.

This	raises	an	interesting	question—should	an	application	be	amended	to	support
a	test?	Simply	put,	yes.	It	isn't	a	major	upheaval	to	add	some	good	identifiers	to
key	HTML	elements	to	support	testing.	It	didn't	involve	major	design	changes	to
the	application.	The	net	result	was	easier	to	read	test	cases	and	better-automated
testing.

This	begs	another	question—what	if	making	the	application	more	testable	did
involve	major	design	changes?	This	can	be	viewed	as	a	major	interruption	in
work.	Alternatively,	maybe	it's	a	strong	hint	that	our	design	has	components	that
are	too	tightly	coupled	or	not	cohesive	enough.

In	software	development,	coupling	and	cohesiveness	are	subjective	terms	that
aren't	very	measurable.	What	can	be	said	is	that	applications	that	don't	lend
themselves	to	testing	are	often	monolithic,	hard	to	maintain,	and	probably	have
circular	dependencies,	which	implies	that	it	will	be	much	harder	for	us	to	make
changes	(as	developers)	to	meet	needs	without	impacting	the	entire	system.

Of	course,	all	of	this	would	be	a	big	leap	from	our	recipe's	situation,	where	we
simply	lack	an	identifier	for	an	HTML	table.	However,	it's	important	to	ask	this
question—what	if	we	need	more	changes	than	something	so	small?

See	also
Installing	Pyccuracy

Using	Pyccuracy	to	verify	web	app
security
Applications	often	have	login	screens.	Testing	a	secured	web	application
requires	us	to	capture	the	login	process	as	a	custom	action.	That	way,	we	can
reuse	it	repeatedly	for	as	many	scenarios	as	we	need.

Getting	ready
	

1.	 If	it	isn't	already	running,	start	up	the	Selenium	server	in	another	shell	or
window	by	typing	java	-jar	selenium-server.jar.

2.	 If	the	Satchmo	store	application	isn't	already	running,	start	it	up	in	another
shell	or	window	by	typing	python	manage.py	runserver.

This	must	run	inside	the	virtualenv	environment.

	

	

	

How	to	do	it...
	

With	the	following	steps,	we	will	exercise	a	web	application's	security	and	then
see	how	to	extend	Pyccuracy	by	creating	a	custom	action	that	does	so:

1.	 Create	a	new	file	called	recipe37.acc	to	put	this	recipe's	scenario	into.
2.	 Create	a	story	for	exercising	Django's	admin	application:

As	a	system	administrator,	

I	want	to	log	in	to	Django's	admin	page	

so	that	I	can	check	the	product	catalog.

3.	 Add	a	scenario	that	logs	in	to	the	admin	application:

Scenario	1	-	Logging	in	to	the	admin	page

Given

				I	go	to	"http://localhost:8000/admin"

When

				I	fill	"username"	textbox	with	"gturnquist"

				And	I	fill	"password"	textbox	with	"password"

				And	I	click	"login"	button	and	wait

Then

				I	see	that	current	page	contains	

				"<ahref="product/product/">Products"

4.	 Add	a	scenario	that	inspects	the	product	catalog,	using	the	custom	login
action:

Scenario	2	-	Check	product	catalog

Given

				I	am	logged	in	with	username	"gturnquist"	and	password	"password"

When

				I	click	"Products"	link	and	wait

Then

				I	see	that	current	page	contains	"robot-attack"

5.	 Create	a	matching	file	called	recipe37.py	containing	a	custom-defined	action.
6.	 Code	the	custom	action	of	logging	in	to	the	admin	action:

from	pyccuracy.actions	import	ActionBase

from	pyccuracy.errors	import	*

class	LoggedInAction(ActionBase):

				regex	=	r'(And)?I	am	logged	in	with	username	["]	(?P<username>.+)["]	and	

password	["](?P<password>.+)["]$'

				def	execute(self,	context,	username,	password):

								self.execute_action(u'I	go	to	"http://localhost:8000/

admin"',	context)

				logged_in	=	False

				try:

								self.execute_action(

										u'And	I	see	that	current	page	contains	"id_username"',	context)

								except	ActionFailedError:

												logged_in	=	True

								if	not	logged_in:

												self.execute_action(u'And	I	fill	"username"	textbox	with	"%s"'	%	

username,	context)

												self.execute_action(u'And	I	fill	"password"	textbox	with	"%s"'	%	

password,	context)

												self.execute_action(u'And	I	click	"login"	button',	context)

7.	 Run	the	story	by	typing	pyccuracy_console	-p	recipe37.acc:

	

	

	

How	it	works...
The	first	scenario	shows	the	simple	steps	needed	to	exercise	the	login	screen.
After	having	proven	that	the	login	screen	works,	it	becomes	cumbersome	to
repeat	this	procedure	for	more	scenarios.

To	handle	this,	we	create	a	custom	action	in	Python	by	extending	ActionBase.
Custom	actions	require	a	regular	expression	to	define	the	DSL	text.	Next,	we
define	an	execute	method	to	include	a	combination	of	application	logic	and
Pyccuracy	steps	to	execute.	Essentially,	we	can	define	a	set	of	steps	to
automatically	execute	actions	and	dynamically	handle	different	situations.

In	our	situation,	we	coded	it	to	handle	whether	or	not	the	user	was	already
logged	in.	With	this	custom	action,	we	built	the	second	scenario	and	handled
logging	in	with	a	single	statement,	allowing	us	to	move	on	and	test	the	core	part
of	our	scenario.

See	also
Installing	Pyccuracy

Installing	Robot	Framework
	

Robot	Framework	is	a	useful	framework	for	writing	acceptance	tests	using	the
keyword	approach.	Keywords	are	shorthand	commands	that	are	provided	by
various	libraries	and	can	also	be	user	defined.	This	easily	supports	BDD-style
Given-When-Then	keywords.	It	also	opens	the	door	to	third-party	libraries	defining
custom	keywords	to	integrate	with	other	test	tools,	such	as	Selenium.	It	also
means	that	acceptance	tests	written	using	Robot	Framework	aren't	confined	to
web	applications.

This	recipe	shows	all	the	steps	needed	to	install	Robot	Framework	as	well	as	the
third-party	Robot	Framework	Selenium	library	for	use	in	later	recipes.

	

	

	

How	to	do	it...
	

1.	 Ensure	that	you	activate	your	virtualenv	sandbox.
2.	 Install	by	typing	easy_install	robotframework.

At	the	time	of	writing,	Robot	Framework	was	not	able	to	be	installed	using	pip.

3.	 Using	any	type	of	window	navigator,	go	to
<virtualenvroot>/build/robotframework/doc/quickstart	and	open	quickstart.html	with
your	favorite	browser.	This	is	not	only	a	guide	but	also	a	runnable	test	suite.

4.	 Switch	to	your	virtualenv's	build	directory	for	Robot	Framework:
cd<virtualenvroot>/build/robotframework/doc/quickstart.

5.	 Run	the	Quick	Start	manual	through	pybot	to	verify	installation	with	pybot
quickstart.html:

6.	 Inspect	the	report.html,	log.html,	and	output.xml	files	generated	by	the	test	run.

7.	 Install	the	Robot	Framework	Selenium	library	to	allow	integration	with
Selenium	by	first	downloading	http://robotframework-seleniumlibrary.googlecode.
com/files/robotframework-seleniumlibrary-2.5.tar.gz.

8.	 Unpack	the	tarball.
9.	 Switch	to	the	directory	with	cd	robotframework-seleniumlibrary-2.5.
10.	 Install	the	package	with	python	setup.py	install.
11.	 Switch	to	the	demo	directory	with	cd	demo.
12.	 Start	up	the	demo	web	app	with	python	run	demo.py	demoapp	start.
13.	 Start	up	the	Selenium	server	with	python	run	demo.py	selenium	start.
14.	 Run	the	demo	tests	with	pybot	login_tests:

15.	 Shut	down	the	demo	web	app	with	python	run	demo.py	demoapp	stop.
16.	 Shut	down	the	Selenium	server	with	python	run	demo.py	selenium	stop.
17.	 Inspect	the	report.html,	log.html,	output.xml,	and	selenium_log.txt	files	generated

by	the	test	run.

	

	

http://robotframework-seleniumlibrary.googlecode.com/files/robotframework-seleniumlibrary-2.5.tar.gz

There's	more...
	

With	this	recipe,	we	have	installed	Robot	Framework	and	one	third-party	library
that	integrates	Robot	Framework	with	Selenium.

There	are	many	more	third-party	libraries	that	provide	enhanced	functionality	to
Robot	Framework.	The	options	have	enough	potential	to	fill	an	entire	book.	So,
we	must	narrow	our	focus	to	some	of	the	core	features	provided	by	Robot
Framework,	including	both	web	and	non-web	testing.

	

	

	

Creating	a	data-driven	test	suite	with
Robot	Framework
	

Robot	Framework	uses	keywords	to	define	tests,	test	steps,	variables,	and	other
testing	components.	Keywords	are	shorthand	commands	that	are	provided	by
various	libraries	and	can	also	be	custom-defined.	This	allows	many	different
ways	of	writing	and	organizing	tests.

In	this	recipe,	we'll	explore	how	to	run	the	same	test	procedure	with	varying
inputs	and	outputs.	These	can	be	described	as	data-driven	tests.

	

	

	

Getting	ready
1.	 We	first	need	to	activate	our	virtualenv	setup
2.	 For	this	recipe,	we	will	use	the	shopping	cart	application
3.	 Next,	we	need	to	install	Robot	Framework,	as	shown	in	the	previous	recipe

How	to	do	it...
The	following	steps	will	show	us	how	to	write	a	simple	acceptance	test	using
HTML	tables:

1.	 Create	a	new	file	called	recipe39.html	to	capture	the	tests	and	configurations.
2.	 Add	an	HTML	paragraph	and	table	that	contains	a	set	of	data-driven	test

cases,	as	shown	in	the	following	browser	screenshot:

3.	 Add	another	HTML	paragraph	and	table	defining	the	custom	keywords
Adding	items	to	cart	and	Add	item:

4.	 Create	a	new	file	called	recipe39.py	to	contain	Python	code	that	is	wired	into
our	custom	keywords.

5.	 Create	an	old-style	Python	class	that	implements	the	custom	keywords
needed	for	the	scenarios:

from	cart	import	*

class	recipe39:

				def	__init__(self):

								self.cart	=	ShoppingCart()

				def	add_item_to_cart(self,	description,	price):

								self.cart.add(description,	float(price))

				def	get_total(self,	tax):

								return	format(self.cart.total(float(tax)),	".2f")

It's	important	to	define	the	class	old-style.	If	we	define	it	as	new-style	by	subclassing	object,

Robot	Framework's	runner,	pybot,	won't	find	the	methods	and	associate	them	with	our	HTML
keywords.

6.	 Add	a	third	HTML	paragraph	and	table	that	loads	our	Python	code	to
implement	Add	item	to	cart	and	Get	total:

7.	 View	the	HTML	file	in	your	favorite	browser:

8.	 Run	the	HTML	file	through	pybot	to	exercise	the	tests	by	typing	pybot
recipe39.html:

9.	 You	can	inspect	report.html	and	log.html	using	your	favorite	browser	for	more
details	about	the	results.

How	it	works...
	

Robot	Framework	uses	HTML	tables	to	define	test	components.	The	header	row
of	the	table	identifies	what	type	of	component	the	table	defines.

The	first	table	we	created	was	a	set	of	test	cases.	Robot	Framework	spots	this	by
seeing	Test	Case	in	the	first	cell	of	the	header	row.	The	rest	of	the	header	cells
aren't	parsed,	which	leaves	us	free	to	put	in	descriptive	text.	In	this	recipe,	each
of	our	test	cases	is	defined	with	one-line.	The	second	column	has	Adding	items	to
cart	on	every	row,	which	is	a	custom	keyword	defined	in	the	second	table.	The
rest	of	the	columns	are	arguments	for	this	custom	keywords.

The	second	table	we	wrote	is	used	to	define	custom	keywords.	Robot
Framework	figures	this	out	by	seeing	Keyword	in	the	first	cell	of	the	header	row.
Our	table	defines	two	keywords:

Adding	items	to	cart:

The	first	line	defines	the	arguments	by	starting	with	[Arguments]	and	six
input	variables:	${item1},	${price1},	${item2},	${price2},	${tax},	and	${total}
The	next	set	of	lines	are	actions
Lines	two	and	three	use	another	custom	keyword:	Add	item	with	two
arguments
Line	four	defines	a	new	variable,	${calculated	total},	which	is	assigned
the	results	of	another	keyword,	Get	total	with	one	argument,	${tax},	that
is	defined	in	our	Python	module
The	last	line	uses	a	built-in	keyword,	Should	Be	Equal,	to	confirm	that	the
output	of	Get	total	matches	the	original	${total}

Add	item:

The	first	line	defines	arguments	by	starting	with	[Arguments]	and	two
input	variables:	${description}	and	${price}.
The	second	line	uses	another	keyword,	Add	item	to	cart,	that	is	defined
in	our	Python	module,	with	two	named	arguments:	${description}	and
${price}.

The	third	table	we	made	contains	settings.	This	is	identified	by	seeing	Setting	in
the	first	cell	of	the	header	row.	This	table	is	used	to	import	Python	code	that
contains	the	final	keywords	using	the	built-in	keyword	Library.

	

	

	

There's	more...
	

Robot	Framework	maps	our	keywords	to	our	Python	code	by	a	very	simple
convention:

Get	total	${tax}	maps	to	get_total(self,tax)
Add	item	to	cart	${description}	${price}	maps	to	add_item_to_cart(self,
description,	price)

The	reason	we	need	add_item_to_cart	and	couldn't	have	just	written	add_item	to	tie	in	to	the	Add
item	keyword	is	because	Robot	Framework	uses	named	arguments	when	connecting	to	Python
code.	Since	each	usage	of	Add	item	in	our	tables	had	a	different	variable	name,	we	needed	a
separate	keyword	with	distinct	arguments.

	

	

	

Do	I	have	to	write	HTML	tables?
	

Robot	Framework	is	driven	by	HTML	tables,	but	it	doesn't	matter	how	the	tables
are	generated.	Many	projects	use	tools	like	reStructuredText	(http://docutils.sou
rceforge.net/rst.html)	to	write	tables	in	a	less	verbose	way,	and	then	have	a	parser
that	converts	it	into	HTML.	A	useful	tool	for	converting	.rst	to	HTML	is
docutils	(http://docutils.sourceforge.net/).	It	provides	a	convenient	rst2html.py
script	that	will	convert	all	the	.rst	tables	into	HTML.

Unfortunately,	the	format	of	this	book	makes	it	hard	to	present	.rst	as	either	code
or	with	a	screenshot.

	

	

	

http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/

What	are	the	best	ways	to	write	the
code	that	implements	our	custom
keywords?
We	wrote	a	chunk	of	Python	code	to	tie	in	our	custom	keywords	with	the
ShoppingCart	application.	It	is	important	to	make	this	as	light	as	possible.	Why?	It's
because	when	we	deploy	the	actual	application,	this	bridge	shouldn't	be	a	part	of
it.	It	may	be	tempting	to	use	this	bridge	as	an	opportunity	to	bundle	things	up	or
to	transform	things,	but	this	should	be	avoided.

Instead,	it	is	better	to	include	these	functions	in	the	software	application	itself.
Then,	this	extra	functionality	becomes	a	part	of	the	tested,	deployed	software
functionality.

If	we	don't	invest	too	heavily	in	the	bridging	code,	it	helps	us	avoid	making	the
software	dependent	on	the	test	framework.	For	some	reason,	if	we	ever	decided
to	switch	to	something	other	than	Robot	Framework,	we	wouldn't	be	tied	into
that	particular	tool	due	to	having	too	much	invested	in	the	bridging	code.

Robot	Framework	variables	are
Unicode
	

Another	critical	factor	in	making	our	Python	code	work	is	recognizing	that	the
input	values	are	Unicode	strings.	Since	ShoppingCart	is	based	on	floating	point
values,	we	had	to	use	Python's	float(input)	function	to	convert	inputs,	and
format(output,	".2f")	to	convert	outputs.

Does	this	contradict	the	previous	section	where	we	discussed	keeping	this	bridge
as	light	as	possible?	It	doesn't.	By	using	pure,	built-in	Python	functions	that	have
no	side	effects,	we	aren't	getting	in	deep,	and	instead	are	only	messaging	the
formats	to	line	things	up.	If	we	started	manipulating	containers,	or	converting
strings	to	lists,	and	vice	versa,	or	even	defining	new	classes,	then	that	would
definitely	be	getting	too	heavy	for	this	bridge.

	

	

	

See	also
Installing	Robot	Framework

Writing	a	testable	story	with	Robot
Framework
As	discussed	earlier	in	this	chapter,	Robot	Framework	lets	us	use	custom-defined
keywords.

This	gives	us	the	ability	to	structure	keywords	in	any	style.	In	this	recipe,	we
will	define	custom	keywords	that	implement	the	BDD-Given-When-Then-style	of
specification.

Getting	ready
1.	 We	first	need	to	activate	our	virtualenv	setup.
2.	 For	this	recipe,	we	will	use	the	shopping	cart	application.
3.	 Next,	we	need	to	install	Robot	Framework,	as	shown	in	the	previous

sections	of	this	chapter.

How	to	do	it...
The	following	steps	will	explore	how	to	write	a	BDD-Given-When-Then-style
acceptance	test:

1.	 Create	a	new	file	called	recipe40.html	to	put	our	HTML	tables.
2.	 Create	a	story	file	in	HTML	with	an	opening	statement:

3.	 Add	a	table	with	several	scenarios	used	to	exercise	the	shopping	cart
application	with	a	series	of	Given-When-Then	keywords:

4.	 Add	a	second	table	that	defines	all	of	our	custom	Given-When-Then	custom
keywords:

5.	 Create	a	new	file	called	recipe40.py	to	put	Python	code	that	links	the	custom
keywords	to	the	ShoppingCart	application:

from	cart	import	*

class	recipe40:

def	__init__(self):

self.cart	=	None

def	create_empty_cart(self):

self.cart	=	ShoppingCart()

def	lookup_item(self,	index):

try:

return	self.cart.item(int(index))

except	IndexError:

return	"ERROR"

def	lookup_price(self,	index):

try:

return	format(self.cart.price(int(index)),	".2f")

except	IndexError:

return	"ERROR"

def	add_item(self,	description,	price):

self.cart.add(description,	float(price))

def	size_of_cart(self):

return	len(self.cart)

def	total(self,	tax):

return	format(self.cart.total(float(tax)),	".2f")

It	is	critical	that	this	class	is	implemented	old-style.	If	implemented	new-style	by	extending
object,	Robot	Framework	will	not	link	the	keywords.

6.	 Add	a	third	table	to	our	recipe40.html	file	to	import	our	Python	module:

7.	 Run	the	story	by	typing	pybot	recipe40.html:

How	it	works...
Robot	Framework	uses	HTML	tables	to	define	test	components.	The	header	row
of	the	table	identifies	what	type	of	component	the	table	defines.

The	first	table	we	created	was	a	set	of	test	cases.	Robot	Framework	spots	this	by
seeing	Test	Case	in	the	first	cell	of	the	header	row.	The	rest	of	the	header	cells
aren't	parsed,	which	leaves	us	free	to	put	in	descriptive	text.

In	this	recipe,	each	of	our	test	cases	comprised	several	custom	keywords	using
the	Given-When-Then-style	familiar	to	BDD	testers.	Many	of	these	keywords	have
one	or	more	arguments.

The	second	table	we	wrote	was	used	to	define	our	custom	Given-When-Then-
keywords.	Robot	Framework	figures	this	out	by	seeing	Keyword	in	the	first	cell	of
the	header	row.

The	third	table	we	made	contains	settings.	This	is	identified	by	seeing	Setting	in
the	first	cell	of	the	header	row.	This	table	is	used	to	import	Python	code	that
contains	the	final	keywords	using	the	built-in	keyword	Library.

An	important	aspect	of	our	custom	keywords,	in	this	recipe,	is	that	we	wrote
them	in	a	natural,	flowing	language:

When	I	add	a	carton	of	milk	for	2.50	

This	is	broken	up	into	four	HTML	cells	in	order	to	parameterize	the	inputs	and
make	the	keywords	reusable	for	several	test	steps:

Robot	Framework	sees	this	as	a	custom	keyword,	WhenIadda,	with	three
arguments:	carton	of	milk,	for,	and	2.50.

Later	on,	we	fill	in	the	actual	steps	involved	with	this	keyword.	In	doing	so,	we
are	really	only	concerned	with	using	carton	of	milk	and	2.50,	but	we	still	have	to
treat	for	like	an	input	variable.	We	do	this	using	a	place	holder	variable,	${noop},

which	we	will	simply	not	use	in	any	following	keyword	steps.

In	this	recipe,	we	call	the	throwaway	variable,	${noop}.	We	could	have	called	it	anything.	We
can	also	reuse	it	if	we	have	more	than	one	throwaway	argument	in	the	same	keyword.	This	is
because	Robot	Framework	doesn't	engage	in	strong	type	checks.

There's	more...
This	entire	chunk	of	HTML	that	we	had	to	write	starts	to	feel	a	bit	heavy.	As
mentioned	in	the	Creating	a	data-driven	test	suite	with	Robot	Framework	recipe,
.rst	is	a	great	alternative.	Unfortunately,	writing	this	recipe	using	.rst	is	too	wide
for	the	format	of	this	book.	Refer	to	that	recipe	for	more	details	about	writing
.rst	and	getting	the	tools	to	convert	.rst	to	HTML.

	

Given-When-Then	results	in
duplicate	rules
It's	true	that	we	had	to	define	both	Then	item	and	Add	item,	which	are	basically	the
same,	in	order	to	support	two	different	test	scenarios.	In	other	BDD	tools,	these
would	have	been	automatically	spotted	as	the	same	clause.	Robot	Framework
doesn't	directly	provide	a	BDD	domain	specific	language,	so	we	had	to	fill	this
in	for	ourselves.

The	most	efficient	way	to	handle	this	was	to	define	Then	item	in	detail	with	all	the
steps	needed,	and	then	code	And	item	to	just	call	Then	item.

In	contrast,	When	I	add	a	and	And	I	add	a	were	implemented	by	calling	add	item.
Since	this	clause	was	a	simpler	pass-through	to	our	Python	module,	it	wasn't
necessary	to	chain	them	together	like	the	previous	example.

Another	option	would	be	to	investigate	coding	our	own	BDD	plugin	library	to
simplify	all	of	this.

Do	the	try-except	blocks	violate	the
idea	of	keeping	things	light?
In	the	Creating	a	data-driven	test	suite	with	Robot	Framework	recipe,	I
mentioned	that	the	code	that	bridges	the	HTML	tables	with	the	ShoppingCart
application	should	be	kept	as	light	as	possible	and	avoid	transformations	and
other	manipulations.

It	is	quite	possible	to	view	trapping	of	an	expected	exception	and	returning	a
string	as	crossing	this	line.	In	our	case,	the	solution	was	to	define	a	single	clause
that	could	handle	errors	and	legitimate	values.	The	clause	takes	whatever	is
returned	and	verifies	it	using	the	built-in	Should	Be	Equal	keyword.

If	this	wasn't	the	case,	it	may	have	been	smoother	to	not	have	the	try-expect
block,	and	instead	use	the	built-in	Run	Keyword	And	Expect	Error	keyword	linked	to
another	custom	Python	keyword.	However,	in	this	situation,	I	think	the	goal	of
keeping	things	light	was	satisfied.

See	also
Installing	the	Robot	Framework
Creating	a	data-driven	test	suite	with	Robot	Framework

Tagging	Robot	Framework	tests	and
running	a	subset
Robot	Framework	provides	a	comprehensive	way	to	capture	test	scenarios	using
table-driven	structures.	This	includes	the	ability	to	add	metadata	in	the	form	of
tagging	as	well	as	documentation.

Tagging	allows	including	or	excluding	tags	for	testing.	Documentation	appears
on	the	command	line	and	also	in	the	outcome	reports.	This	recipe	will
demonstrate	both	of	these	keen	features.

Finally,	HTML	tables	aren't	the	only	way	to	define	data	tables	with	Robot
Framework.	In	this	recipe,	we	will	explore	using	double-space-separated	entries.
While	this	isn't	the	only	non-HTML	way	to	write	stories,	it	is	the	easiest	non-
HTML	way	to	demonstrate	that	still	fits	within	the	font	size	limits	of	this	book	in
printed	form.

Getting	ready
	

1.	 We	first	need	to	activate	our	virtualenv	setup.
2.	 Create	a	new	file	called	cart41.py	to	put	an	alternate	version	of	the	shopping

cart	application.

3.	 Type	in	the	following	code	that	stores	the	cart	to	a	database:

class	ShoppingCart(object):

				def	__init__(self):

								self.items	=	[]

				def	add(self,	item,	price):

								for	cart_item	in	self.items:

												#	Since	we	found	the	item,	we	increment

												#	instead	of	append

												if	cart_item.item	==	item:

																cart_item.q	+=	1

																return	self

								#	If	we	didn't	find,	then	we	append

								self.items.append(Item(item,	price))

								return	self

				def	item(self,	index):

								return	self.items[index-1].item

				def	price(self,	index):

								return	self.items[index-1].price	*	self.items[index-1].q

				def	total(self,	sales_tax):

								sum_price	=	sum([item.price*item.q	for	item	in	self.items])

								return	sum_price*(1.0	+	sales_tax/100.0)

				def	store(self):

								#	This	simulates	a	DB	being	created.

								f	=	open("cart.db",	"w")

								f.close()

				def	retrieve(self,	id):

								#	This	simulates	a	DB	being	read.

								f	=	open("cart.db")

								f.close()

				def	__len__(self):

								return	sum([item.q	for	item	in	self.items])

class	Item(object):

				def	__init__(self,	item,	price,	q=1):

								self.item	=	item

								self.price	=	price

								self.q	=	q

This	version	of	the	shopping	cart	has	two	extra	methods:	store	and	retrieve.	They	don't	actually
talk	to	a	database,	but	instead	create	an	empty	cart.db	file.	Why?	The	purpose	is	to	simulate
interaction	with	a	database.	Later	in	the	recipe,	we	will	show	how	to	tag	test	cases	that
involve	this	operation	and	easily	exclude	them	from	test	runs.

4.	 Next,	we	need	to	install	Robot	Framework,	as	shown	in	the	earlier	sections

of	this	chapter.

	

	

How	to	do	it...
	

The	following	steps	will	show	how	to	write	scenarios	in	a	format	other	than
HTML	tables	and	also	how	to	tag	tests	to	allow	picking	and	choosing	which	tests
are	run	on	the	command	line:

1.	 Create	a	new	file	called	recipe41.txt	using	plain	text	and	space-separated
entries	that	has	a	couple	of	test	cases:	a	simple	one	and	another	a	more
complex	one	with	documentation	and	tags:

Test	Cases

Simple	check	of	adding	one	item

				Given	an	empty	cart

				When	I	add	a	carton	of	milk	for	2.50

				Then	the	total	with	0	%	tax	is	2.50

				And	the	total	with	10	%	tax	is	2.75

More	complex	by	storing	cart	to	database

				[Documentation]	This	test	case	has	special	tagging,	so	it	can	be

excluded.	This	is	in	case	the	developer	doesn't	have	the	right	database

system	installed	to	interact	properly.cart.db

				[Tags]	database

				Given	an	empty	cart

				When	I	add	a	carton	of	milk	for	2.50

				And	I	add	a	frozen	pizza	for	3.50

				And	I	store	the	cart

				And	I	retrieve	the	cart

				Then	there	are	2	items

It's	important	to	note	that	two	spaces	at	the	minimum	are	required	to	identify	breaks	between
one	cell	and	the	next.	The	line	with	When	I	add	a	carton	of	milk	for	2.50	actually	has	four	cells	of
information:	|	When	I	add	a	|	carton	of	milk	|	for	|	2.50	|.	There	is	actually	a	fifth,	empty	cell
that	prefixes	this	row	indicated	by	the	two-space	indentation.	It	is	necessary	to	mark	this	row
as	a	step	in	test	case	Simple	check	of	adding	one	item	rather	than	another	test	case.

2.	 Add	a	table	for	custom	keyword	definitions	using	plain	text	and	space-
separated	values:

Keywords

Given	an	empty	cart

				create	empty	cart

When	I	add	a

				[Arguments]	${description}	${noop}	${price}

				add	item	${description}	${price}

And	I	add	a

				[Arguments]	${description}	${noop}	${price}

				add	item	${description}	${price}

Then	the	total	with

				[Arguments]	${tax}	${noop}	${total}

				${calc	total}=	total	${tax}

				Should	Be	Equal	${calc	total}	${total}

And	the	total	with

				[Arguments]	${tax}	${noop}	${total}

				Then	the	total	with	${tax}	${noop}	${total}

And	I	store	the	cart

				Set	Test	Variable	${cart	id}	store	cart

And	I	retrieve	the	cart

				retrieve	cart	${cart	id}

Then	there	are

				[Arguments]	${size}	${noop}

				${calc	size}=	Size	of	cart

				Should	Be	Equal	As	Numbers	${calc	size}	${size}

3.	 Create	a	new	file	called	recipe41.py	that	contains	Python	code	that	bridges
some	of	the	keywords	with	the	shopping	cart	application:

from	cart41	import	*

class	recipe41:

				def	__init__(self):

								self.cart	=	None

				def	create_empty_cart(self):

								self.cart	=	ShoppingCart()

				def	lookup_item(self,	index):

								try:

												return	self.cart.item(int(index))

								except	IndexError:

												return	"ERROR"

				def	lookup_price(self,	index):

								try:

												return	format(self.cart.price(int(index)),	".2f")

								except	IndexError:

												return	"ERROR"

				def	add_item(self,	description,	price):

								self.cart.add(description,	float(price))

				def	size_of_cart(self):

								return	len(self.cart)

				def	total(self,	tax):

								return	format(self.cart.total(float(tax)),	".2f")

				def	store_cart(self):

								return	self.cart.store()

				def	retrieve_cart(self,	id):

								self.cart.retrieve(id)

				def	size_of_cart(self):

								return	len(self.cart)

4.	 Add	a	last	table	to	recipe41.txt	that	imports	our	Python	code	as	a	library	to
provide	the	last	set	of	needed	keywords:

Settings*

Library	recipe41.py

5.	 Run	the	test	scenario	as	if	we	are	on	a	machine	that	has	database	support	by
typing	pybot	recipe41.txt:

6.	 Run	the	test	scenario,	excluding	tests	that	were	tagged	database,	by	typing
pybot	-exclude	database	recipe41.txt:

7.	 Run	the	test	scenario,	including	tests	that	were	tagged	database,	by	typing
pybot	-include	database	recipe41.txt:

8.	 Look	at	report.html,	and	observe	where	the	extra	[Documentation]	text	appears

as	well	as	our	database	tag:

	

	

	

How	it	works...
	

In	this	recipe,	we	added	an	extra	section	to	the	second	test	case,	including	both
documentation	and	a	tag:

More	complex	by	storing	cart	to	database	

		[Documentation]		This	test	case	has	special	tagging,	so	it	can	be	excluded.	This	is	

in	case	the	developer	doesn't	have	the	right	database	system	installed	to	interact	

properly.cart.db	

		[Tags]		database	

		Given	an	empty	cart	

		When	I	add	a		carton	of	milk		for		2.50	

		And	I	add	a			frozen	pizza				for		3.50	

		And	I	store	the	cart	

		And	I	retrieve	the	cart	

		Then	there	are		2		items	

Tags	are	usable	on	the	command	line,	as	shown	in	the	previous	example.	It
provides	a	useful	way	to	organize	test	cases.	Test	cases	can	have	as	many	tags	as
needed.

We	showed	earlier	that	this	provides	a	convenient	command-line	option	to
include	or	exclude	based	on	tags.	Tags	also	provide	useful	documentation,	and
the	previous	screenshot	of	report.html	shows	that	test	results	are	also	subtotaled
by	tag:

Tags	can	be	used	to	identify	different	layers	of	testing,	such	as	smoke,
integration,	and	customer-facing	layers
Tags	can	also	be	used	to	mark	subsystems	such	as	databases,	invoicing,
customer-service,	and	billing

	

	

There's	more...
This	recipe	demonstrates	plain	text	formatting.	Triple	asterisks	are	used	to
surround	header	cells,	and	two	spaces	are	used	to	designate	a	break	between	two
cells.

It	is	debatable	as	to	whether	this	is	more	difficult	to	read	than	HTML.	It	may	not	be	as	crisp
as	reading	the	HTML	markup,	but	I	personally	preferred	this	to	angle	tax	of	reading	HTML.
It's	possible	to	add	more	spaces	so	that	the	table's	cells	are	clearer,	but	I	didn't,	because	the
font	sizes	of	this	book	don't	work	very	well	with	it.

	

What	about	documentation?
We	also	added	a	little	bit	of	documentation	for	demonstration	purposes.	A	piece
of	the	text	appears	when	pybot	runs,	and	it	also	appears	in	the	resulting	artifacts.

See	also
Installing	Robot	Framework
Creating	a	data-driven	test	suite	with	Robot	Framework
Writing	a	testable	story	using	Robot	Framework

Testing	web	basics	with	Robot
Framework
	

Web	testing	is	a	common	style	of	acceptance	testing,	because	the	customer	wants
to	know	whether	the	system	is	acceptable,	and	this	is	a	perfect	way	to
demonstrate	it.

In	the	previous	recipes,	we	have	explored	writing	tests	against	non-web
applications.	In	this	recipe,	let's	see	how	to	use	a	third-party	Robot	Framework
plugin	to	use	Selenium	to	test	a	shopping	cart	web	application.

	

	

	

Getting	ready...
	

1.	 We	first	need	to	activate	our	virtualenv	setup.
2.	 For	this	recipe,	we	are	using	the	Satchmo	shopping	cart	web	application.	To

start	it,	switch	to	the	store	directory	and	type	python	manage.py	runserver.
You	can	explore	it	by	visiting	http://localhost:8000.

3.	 Next,	install	Robot	Framework	and	the	third-party	Selenium	plugin,	as
shown	in	the	Installing	Robot	Framework	recipe.

	

	

How	to	do	it...
	

With	the	following	steps,	we	will	see	how	to	get	going	with	using	some	of	the
basic	Robot	commands	for	driving	a	web	application:

1.	 Create	a	plain	text	story	file	called	recipe42.txt,	with	an	opening	description
of	the	story:

As	a	store	customer

I	want	to	put	things	into	my	cart

So	that	I	can	verify	the	store's	functionality.

2.	 Create	a	section	for	test	cases,	and	add	a	scenario	that	verifies	that	there	is
an	empty	shopping	cart	and	captures	a	screenshot:

Test	Cases

Inspect	empty	cart	in	detail

		Click	link	Cart

		Page	Should	Contain	Your	cart	is	empty

		Page	Should	Contain	0	-	$0.00

		Capture	Page	Screenshot	recipe42-scenario1-1.png

3.	 Add	another	scenario	that	picks	a	book,	adds	two	copies	of	the	cart,	and
confirms	the	total	cart	value:

Load	up	a	cart	with	2	of	the	same

		Click	link	Science	Fiction	don't	wait

		Capture	Page	Screenshot	recipe42-scenario2-1.png

		Click	link	Robots	Attack!

		Capture	Page	Screenshot	recipe42-scenario2-2.png

		Input	text	quantity	2

		Capture	Page	Screenshot	recipe42-scenario2-3.png

		Click	button	Add	to	cart

		Click	link	Cart

		Capture	Page	Screenshot	recipe42-scenario2-4.png

		Textfield	Value	Should	Be	quantity	2

		Page	Should	Contain	Robots	Attack!	(Hard	cover)

		Html	Should	Contain	<td	align="center">$7.99</td>

		Html	Should	Contain	<td	align="center">$15.98</td>

		Html	Should	Contain	<td>$15.98</td>

4.	 Add	a	section	of	keywords	and	define	a	keyword	for	inspecting	the	raw
HTML	of	the	page:

Keywords

Html	Should	Contain

				[Arguments]					${expected}

				${html}=	Get	Source

				Should	Contain	${html}	${expected}

Startup

				Start	Selenium	Server

				Sleep	3s

Get	Source	is	a	Selenium	Library	keyword	that	fetches	the	raw	HTML	of	the	entire	page.	Start
Selenium	Server	is	another	keyword	to	launch	the	Selenium	server.	A	built-in	Sleep	call	is
included	to	avoid	startup/shutdown	timing	issues,	if	this	test	happens	before	or	after	another
one	Selenium-based	test	suite.

5.	 Add	a	section	that	imports	the	Selenium	library	and	also	defines	a	setup	and
teardown	process	for	launching	and	shutting	down	the	browser	for	each	test
case:

Settings

Library									SeleniumLibrary

Test	Setup						Open	Browser	http://localhost:8000

Test	Teardown			Close	All	Browsers

Suite	Setup					Startup

Suite	Teardown		Stop	Selenium	Server

Test	Setup	is	a	built-in	keyword	that	defines	steps	executed	before	each	test	case.	In	this	case,	it
uses	the	Selenium	library	keyword	Open	Browser	to	launch	a	browser	pointed	at	the	Satchmo
application.	Test	Teardown	is	a	built-in	keyword	that	executes	at	the	end	of	each	test	and
closes	the	browsers	launched	by	this	test.	Suite	Setup	is	a	built-in	keyword	that	is	only	run
before	any	tests	are	executed,	and	Suite	Teardown	is	only	run	after	all	the	tests	in	this	suite.	In
this	case,	we	use	it	to	start	and	stop	the	Selenium	library.

6.	 Run	the	test	suite	by	typing	pybot	recipe42.txt:

7.	 Open	log.html	and	observe	the	details,	including	the	captured	screenshots	in
each	scenario.	The	following	screenshot	is	just	one	of	the	many	captured
screenshots.	Feel	free	to	inspect	the	rest	of	the	screenshots	as	well	as	the
logs:

	

	

	

How	it	works...
	

Robot	Framework	provides	a	powerful	environment	to	define	tests	through
keywords.	The	Selenium	plugin	interfaces	with	Selenium	and	provides	a	whole
set	of	keywords	that	are	focused	on	manipulating	web	applications	and	reading
and	confirming	their	outputs.

An	important	part	of	web	application	testing	is	getting	a	hold	of	an	element	to
manipulate	it	or	test	values.	The	most	common	way	of	doing	this	is	by	checking
key	attributes	of	the	element,	such	as	id,	name,	or	href.	For	example,	in	our
scenario,	there	is	a	button	we	need	to	click	on	to	add	the	book	to	the	cart.	It	can
be	identified	by	either	the	ID,	addcart,	or	the	displayed	text,	Add	to	cart.

	

	

	

There's	more...
While	Robot	Framework	is	free	compared	to	other	commercial	frontend	test
solutions,	it	is	important	to	realize	that	the	effort	in	writing	automated	tests	isn't
free	and	effortless.	It	takes	effort	to	make	this	an	active	part	of	frontend	design.

Incorporating	tools	like	Robot	and	Selenium	library	early	in	the	process	of
screen	design	will	encourage	good	practices	like	tagging	frames	and	elements	so
that	they'll	be	testable	early	on.	This	is	no	different	from	attempting	to	write
automated	tests	for	a	backend	server	system	after	it's	already	built.	Both
situations	are	much	more	costly,	if	they	are	introduced	later.	Making	automated
testing	a	part	of	backend	systems	early	on	encourages	similar	coding	to	support
testability.

If	we	are	looking	at	embracing	acceptance	testing	late	in	our	development	cycle,
or	perhaps	trying	to	test	a	system	we	inherited	from	another	team,	we	need	to
include	time	to	make	changes	to	the	web	interface	in	order	to	add	tags	and
identifiers	to	support	writing	the	tests.

Learn	about	timing	configurations	–
they	may	be	important!
While	the	Satchmo	shopping	cart	application	didn't	have	any	significant	delays
in	the	tests	we	wrote,	it	doesn't	mean	other	applications	won't.	If	your	web
application	has	certain	parts	that	are	noticeably	slower,	it	is	valuable	to	read	the
online	documentation	about	configuring	how	long	Selenium	should	wait	for	a
response	from	your	application.

	

See	also
Installing	Robot	Framework
Creating	a	data-driven	test	suite	with	Robot	Framework
Writing	a	testable	story	using	Robot	Framework

Using	Robot	Framework	to	verify
web	app	security
	

Web	applications	often	have	some	sort	of	security	in	place.	This	is	often	in	the
form	of	a	login	page.	A	well	written	test	case	should	start	a	new	browser	session
at	the	beginning	and	close	it	at	the	end.	This	results	in	the	user	logging	in
repeatedly	for	every	test	case.

In	this	recipe,	we	will	explore	writing	code	to	log	in	to	Satchmo's	admin	page,	as
provided	by	Django.	Then,	we	will	show	how	to	capture	this	entire	login
procedure	into	a	single	keyword,	allowing	us	to	smoothly	write	a	test	that	visits
the	product	catalog	without	getting	encumbered	by	logging	in.

	

	

	

Getting	ready
	

1.	 We	first	need	to	activate	our	virtualenv	setup.
2.	 For	this	recipe,	we	are	using	the	Satchmo	shopping	cart	web	application.	To

start	it,	switch	to	the	store	directory	and	type	python	manage.py	runserver.	You
can	explore	it	by	visiting	http://localhost:8000.

3.	 Next,	install	Robot	Framework	and	the	third-party	Selenium	plugin,	as
shown	in	the	Installing	Robot	Framework	recipe.

	

	

How	to	do	it...
	

The	following	steps	will	highlight	how	to	capture	login	steps	and	then
encapsulate	them	in	a	single	custom	keyword:

1.	 Create	a	new	file	called	recipe43.txt,	and	write	a	test	story	for	exercising
Django's	admin	interface:

As	a	system	administrator

I	want	to	login	to	Django's	admin	page

So	that	I	can	check	the	product	catalog.

2.	 Add	a	section	for	test	cases,	and	write	a	test	case	that	exercises	the	login
page:

Test	Cases

Logging	in	to	the	admin	page

		Open	Browser	http://localhost:8000/admin

		Input	text	username	gturnquist

		Input	text	password	password

		Submit	form

		Page	Should	Contain	Link	Products

		Close	All	Browsers

3.	 Add	another	test	case	that	inspects	the	product	catalog	and	verifies	a
particular	row	of	the	table:

Check	product	catalog

		Given	that	I	am	logged	in

		Click	link	Products

		Capture	Page	Screenshot	recipe43-scenario2-1.png

		Table	Should	Contain	result_list	Robots	Attack!

		Table	Row	Should	Contain	result_list	4	Robots	Attack!

		Table	Row	Should	Contain	result_list	4	7.99

		Close	All	Browsers

4.	 Create	a	keyword	section	that	captures	the	login	procedure	as	a	single
keyword:

Keywords

Given	that	I	am	logged	in

		Open	Browser	http://localhost:8000/admin/

		Input	text	username	gturnquist

		Input	text	password	password

		Submit	form

Startup

		Start	Selenium	Server

		Sleep	3s

For	your	own	testing,	put	in	the	username	and	password	you	used	when	installing	Satchmo.
The	Start	Selenium	Server	keyword	is	another	keyword	to	launch	the	Selenium	server.	A	built-in
Sleep	call	is	included	to	avoid	startup/shutdown	timing	issues	if	this	test	happens	before	or
after	another	one	Selenium-based	test	suite.

5.	 Finally,	add	a	settings	section	that	imports	Selenium	library	and	also	starts
and	stops	the	Selenium	server	at	the	beginning	and	end	of	the	test	suite:

Settings

Library	SeleniumLibrary

Suite	Setup	Startup

Suite	Teardown	Stop	Selenium	Server

6.	 Run	the	test	suite	by	typing	pybot	recipe43.txt:

	

	

	

How	it	works...
The	first	test	case	shows	how	we	input	username	and	password	data	and	then
submit	the	form.	SeleniumLibrary	allows	us	to	pick	a	form	by	name,	but	in	the
event	we	don't	identify	it,	it	picks	the	first	HTML	form	it	finds.	Since	there	is
only	one	form	on	the	login	page,	this	works	fine	for	us.

With	the	second	test	case,	we	want	to	navigate	to	the	product	catalog.	Since	it
runs	with	a	clean	browser	session,	we	are	forced	to	deal	with	the	login	screen
again.	This	means	we	need	to	include	the	same	steps	to	log	in	again.	For	more
comprehensive	testing,	we	would	probably	write	lots	of	test	cases.	Why	should
we	avoid	copying	and	pasting	the	same	login	steps	for	every	test	case?	That's
because	it	violates	the	Don't	Repeat	Yourself	(DRY)	principle.	If	the	login	page
is	modified,	we	might	have	to	alter	every	instance.

Instead,	we	captured	the	login	steps	with	Given	that	I	am	logged	in	keyword.	This
gives	us	a	useful	clause	for	many	test	cases,	and	lets	us	focus	on	the	admin	page.

There's	more...
	

In	this	recipe,	we	used	some	of	Selenium	library's	table	testing	operations.	We
verified	that	a	particular	book	exists	both	at	the	table	level	as	well	as	the	row
level.	We	also	verified	the	price	of	the	book	in	that	row.

Finally,	we	captured	a	screenshot	of	the	product	catalog.	This	screenshot	gives
us	a	quick,	visual	glance	we	can	use	to	either	manually	confirm	the	product
catalog,	or	use	to	plan	our	next	test	step.

	

	

	

Why	not	use	a	"remember	me"
option?
	

Lots	of	websites	include	a	"remember	me"	checkbox	in	order	to	save	login
credentials	in	a	client-side	cookie.	The	Django	admin	page	doesn't	have	one,	so
why	is	this	relevant?	It's	because	many	websites	do,	and	we	may	be	tempted	to
incorporate	it	into	our	tests	to	avoid	logging	in	every	time.	Even	if	this	option
existed	for	the	web	app	we	want	to	test,	it	is	not	a	good	idea	to	use	it.	It	creates	a
persistent	state	that	can	propagate	from	one	test	to	the	next.	Different	user
accounts	may	have	different	roles,	impacting	what	is	visible.	We	may	not	know
in	what	order	test	cases	run	and	therefore	have	to	add	extra	code	to	sniff	what
user	we	are	logged	in	as.

Instead,	it	is	much	easier	and	cleaner	to	not	persist	this	information.	Instead,
explicitly	logging	in	through	a	single	keyword	provides	a	clearer	intent.	This
doesn't	mean	we	shouldn't	test	and	confirm	the	remember	checkbox	of	our
particular	web	application.	On	the	contrary,	we	should	actually	test	both	good
and	bad	accounts	to	ensure	that	the	login	screen	works	as	expected.	However,
beyond	that,	it	is	best	to	not	confuse	future	test	cases	with	persisted	results	of	the
current	test	case.

	

	

	

Shouldn't	we	refactor	the	first	test
scenario	to	use	the	keyword?
To	uphold	the	DRY	principle,	we	should	have	the	login	procedure	in	only	one
place	inside	our	test	story.	However,	for	demonstration	purposes,	we	coded	it	at
the	top,	and	then	later	copied	the	same	code	into	a	keyword.	The	best	solution
would	be	to	encapsulate	it	into	a	single	keyword	that	can	be	reused	in	either	a
test	case	or	to	define	other	custom	keywords	like	Given	I	am	logged	in.

	

Would	arguments	make	the	login
keyword	more	flexible?
Absolutely—in	this	test	story,	we	hardcoded	the	username	as	well	as	the
password.	However,	good	testing	of	the	login	page	would	involve	a	data-driven
table	with	lots	of	combinations	of	good	and	bad	accounts	along	with	valid	and
invalid	passwords.	This	drives	the	need	for	some	sort	of	login	keyword	that
would	accept	username	and	password	as	arguments.

	

See	also
Installing	Robot	Framework
Using	Pyccuracy	to	verify	web	app	security
Creating	a	data-driven	test	suite	with	Robot	Framework

Creating	a	project-level	script	to
verify	this	chapter's	acceptance	tests
	

We	have	used	pyccuracy_console	and	pybot	to	run	various	test	recipes.	However,
management	of	a	Python	project	involves	more	than	just	running	tests.	Things
like	packaging,	registering	with	the	Python	Project	Index,	and	pushing	to
deployment	sites	are	important	procedures	to	manage.

Building	a	command-line	script	to	encapsulate	all	this	is	very	convenient.	With
this	recipe,	we	will	run	a	script	that	runs	all	the	tests	covered	in	this	chapter.

	

	

	

Getting	ready
	

1.	 We	first	need	to	activate	our	virtualenv	setup.
2.	 For	this	recipe,	we	are	using	the	Satchmo	shopping	cart	web	application.	To

start	it,	switch	to	the	store	directory	and	type	python	manage.py	runserver.	You
can	explore	it	by	visiting	http://localhost:8000.

3.	 Next,	install	Robot	Framework	and	the	third-party	Selenium	plugin,	as
shown	in	the	Installing	Robot	Framework	recipe.

4.	 This	recipe	assumes	that	all	the	various	recipes	from	this	chapter	have	been
coded.

	

	

How	to	do	it...
	

With	these	steps,	we	will	see	how	to	programmatically	run	all	the	tests	in	this
chapter:

1.	 Create	a	new	file	called	recipe44.py	to	contain	the	code	for	this	recipe.
2.	 Create	a	command-line	script	that	defines	several	options:

import	getopt

import	logging

import	os

import	os.path

import	re

import	sys

from	glob	import	glob

def	usage():

				print

				print	"Usage:	python	recipe44.py	[command]"

				print

				print	"t--help"

				print	"t--test"

				print	"t--package"

				print	"t--publish"

				print	"t--register"

				print

try:

				optlist,	args	=	getopt.getopt(sys.argv[1:],

												"h",

												["help",	"test",	"package",	"publish",	"register"])

except	getopt.GetoptError:

				#	print	help	information	and	exit:

				print	"Invalid	command	found	in	%s"	%	sys.argv

				usage()

				sys.exit(2)

3.	 Add	a	method	that	starts	Selenium,	runs	the	Pyccuracy-based	tests,	and	then
shuts	down	Selenium:

def	test_with_pyccuracy():

				from	SeleniumLibrary	import	start_selenium_server

				from	SeleniumLibrary	import	shut_down_selenium_server

				from	time	import	sleep

				f	=	open("recipe44_selenium_log.txt",	"w")

				start_selenium_server(logfile=f)

				sleep(10)

				import	subprocess

				subprocess.call(["pyccuracy_console"])

				shut_down_selenium_server()

				sleep(5)

				f.close()

4.	 Add	a	method	that	runs	the	Robot	Framework	tests:

def	test_with_robot():

				from	robot	import	run

				run(".")

5.	 Add	a	method	to	run	both	of	these	test	methods:

def	test():

				test_with_pyccuracy()

				test_with_robot()

6.	 Add	some	stubbed	out	methods	for	the	other	project	functions:

def	package():

				print	"This	is	where	we	can	plug	in	code	to	run	"	+

								"setup.py	to	generate	a	bundle."

def	publish():

				print	"This	is	where	we	can	plug	in	code	to	upload	"	+

								"our	tarball	to	S3	or	some	other	download	site."

def	register():

				print	"setup.py	has	a	built	in	function	to	"	+

								"'register'	a	release	to	PyPI.	It's	"	+

								"convenient	to	put	a	hook	in	here."

				#	os.system("%s	setup.py	register"	%	sys.executable)

7.	 Add	some	code	that	parses	the	options:

if	len(optlist)	==	0:

				usage()

				sys.exit(1)

#	Check	for	help	requests,	which	cause	all	other

#	options	to	be	ignored.

for	option	in	optlist:

				if	option[0]	in	("--help",	"-h"):

								usage()

								sys.exit(1)

#	Parse	the	arguments,	in	order

for	option	in	optlist:

				if	option[0]	in	("--test"):

								test()

				if	option[0]	in	("--package"):

								package()

				if	option[0]	in	("--publish"):

								publish()

				if	option[0]	in	("--register"):

								register()

8.	 Run	the	script	with	the	testing	flag	by	typing	pythonrecipe44	-test.	In	the
following	screenshot,	we	can	see	that	all	the	Pyccuracy	tests	passed:

In	the	next	screenshot,	we	can	see	that	the	Robot	Framework	tests	passed	as
well:

	

	

	

How	it	works...
	

We	use	Python's	getopt	module	to	define	command-line	options:

optlist,	args	=	getopt.getopt(sys.argv[1:],	

												"h",	

											["help",	"test",	"package",	"publish",	"register"])	

This	maps	the	following:

"h":	-h
"help":	--help
"test":	--test
"package":	--package
"publish":	--publish
"register":	--register

We	scan	the	list	of	received	arguments	and	call	the	appropriate	functions.	For	our
test	functions,	we	used	Python's	subprocess	module	to	call	pyccuracy_console.	We
could	have	done	the	same	to	call	pybot,	but	Robot	Framework	provides	a
convenient	API	to	call	it	directly:

from	robot	import	run	

				run(".")	

This	lets	us	use	it	inside	our	code.

	

	

	

There's	more
	

To	run	these	tests,	we	need	Selenium	running.	Our	Robot	Framework	tests	are
built	to	run	Selenium	on	their	own.	Pyccuracy	doesn't	have	such	a	feature,	so	it
needed	another	means.	In	those	recipes,	we	used	java	-jar	selenium-server.jar.	We
could	try	to	manage	this,	but	it	is	easier	to	use	Selenium	library's	API	to	start	and
stop	Selenium.

This	is	where	writing	code	in	pure	Python	gives	us	the	most	options.	We	are	able
to	empower	Pyccuracy	with	parts	of	another	library	that	was	never	intended	to
work	with	it.

	

	

	

Can	we	only	use	getopt?
Python	2.7	introduces	argparse	as	an	alternative.	Current	documentation	has	no
indication	that	getopt	is	deprecated,	so	it's	safe	to	use	it	as	we	have	just	done.	The
getopt	module	is	a	nice,	easy-to-use	command-line	parser.

What's	wrong	with	using	the	various
command-line	tools?
There	is	nothing	wrong	with	using	tools	like	pyccuracy_console,	pybot,	nosetests,	and
many	other	tools	that	come	with	the	Python	libraries.	The	purpose	of	this	recipe
is	to	offer	a	convenient,	alternative	approach	that	brings	all	these	tools	into	one
central	script.	By	investing	a	little	bit	of	time	in	this	script,	we	don't	have	to
remember	how	to	use	all	these	features;	instead,	we	can	develop	our	script	to
support	the	development	workflow	of	our	project.

	

Integrating	Automated	Tests	with
Continuous	Integration
	

In	this	chapter,	we	will	cover:

Generating	a	continuous	integration	report	for	Jenkins	with	NoseXUnit
Configuring	Jenkins	to	run	Python	tests	upon	commit
Configuring	Jenkins	to	run	Python	tests	when	scheduled
Generating	a	continuous	integration	report	for	TeamCity	using	teamcity-
nose
Configuring	TeamCity	to	run	Python	tests	upon	commit
Configuring	TeamCity	to	run	Python	tests	when	scheduled

	

	

Introduction
	

The	classic	software	development	process	known	as	the	waterfall	model
involves	the	following	stages:

1.	 Requirements	are	collected	and	defined
2.	 Designs	are	drafted	to	satisfy	the	requirements
3.	 An	implementation	strategy	is	written	to	meet	the	design
4.	 Coding	is	done
5.	 The	coded	implementation	is	tested
6.	 The	system	is	integrated	with	other	systems	as	well	as	future	versions	of

that	system

In	the	waterfall	model,	these	steps	are	often	spread	across	several	months	of
work.	What	this	means	is	that	the	final	step	of	integration	with	external	systems
is	done	after	several	months	and	often	takes	a	lot	of	effort.	Continuous
integration	(CI)	remedies	the	deficiencies	of	the	waterfall	model	by	introducing
the	concept	of	writing	tests	that	exercise	these	points	of	integration	and	has	them
run	automatically	whenever	the	code	is	checked	into	the	system.	Teams	that
adopt	CI	often	adopt	a	corresponding	policy	of	immediately	fixing	the	baseline	if
the	test	suite	fails.	This	forces	the	team	to	keep	their	code	working	and
integrated	continuously,	thus	making	this	final	step	relatively	cost-free.	Teams
that	adopt	a	more	agile	approach	work	in	much	shorter	cycles.	Teams	may	work
in	coding	sprints	that	may	vary	anywhere	from	the	weekly	to	the	monthly.
Again,	by	having	integrating	test	suites	run	with	every	check-in,	the	baseline	is
always	kept	functional;	thus,	it	is	ready	for	delivery	at	any	time.	This	prevents
the	system	from	being	in	a	nonworking	state	that	is	only	brought	into	working
state	at	the	end	of	a	sprint	or	at	the	end	of	a	waterfall	cycle.	It	opens	the	door	to
more	code	demonstrations	for	either	the	customer	or	management,	in	which
feedback	can	be	garnered	and	fed	more	proactively	into	development.	This
chapter	is	more	focused	on	integrating	automated	tests	with	CI	systems	than	with
writing	the	tests.	For	that	reason,	we	will	reuse	the	following	Shopping	Cart
application.	Create	a	new	file	called	cart.py	and	enter	the	following	code	into	it:
class	ShoppingCart(object):	def	__init__(self):

self.items	=	[]

	

def	add(self,	item,	price):

for	cart_item	in	self.items:	#	Since	we	found	the	item,	we	increment	#	instead	of
append

if	cart_item.item	==	item:	cart_item.q	+=	1

return	self

	

#	If	we	didn't	find,	then	we	append	self.items.append(Item(item,	price))	return
self

	

def	item(self,	index):

return	self.items[index-1].item

def	price(self,	index):

return	self.items[index-1].price	*	self.items[index-1].q

def	total(self,	sales_tax):

sum_price	=	sum([item.price*item.q	for	item	in	self.items])	return	sum_price*
(1.0	+	sales_tax/100.0)

def	__len__(self):

return	sum([item.q	for	item	in	self.items])

class	Item(object):

def	__init__(self,	item,	price,	q=1):	self.item	=	item

self.price	=	price

self.q	=	q

To	exercise	this	simple	application,	the	following	simple	set	of	unit	tests	will	be
used	by	various	recipes	in	this	chapter	to	demonstrate	CI.	Create	another	file
called	tests.py	and	enter	the	following	test	code	into	it:	from	cart	import	*

import	unittest

	

class	ShoppingCartTest(unittest.TestCase):	def	setUp(self):

self.cart	=	ShoppingCart().add("tuna	sandwich",	15.00)

def	test_length(self):

self.assertEquals(1,	len(self.cart))

def	test_item(self):

self.assertEquals("tuna	sandwich",	self.cart.item(1))

def	test_price(self):

self.assertEquals(15.00,	self.cart.price(1))

def	test_total_with_sales_tax(self):	self.assertAlmostEquals(16.39,
self.cart.total(9.25),	2)

This	simple	set	of	tests	doesn't	look	very	impressive,	does	it?	In	fact,	it	isn't
really	integration	testing	like	we	were	talking	about	earlier,	but	instead	it	appears
to	be	basic	unit	testing,	right?	Absolutely!	This	chapter	isn't	focusing	on	writing
test	code.	So,	if	this	book	is	about	code	recipes,	why	are	we	focusing	on	tools?
Because	there	is	more	to	making	automated	testing	work	with	your	team	than
writing	tests.	It's	important	to	become	aware	of	the	tools	that	take	the	concepts	of
automating	tests	and	leverage	them	into	our	development	cycles.	CI	products	are
a	valuable	tool,	and	we	need	to	see	how	to	link	them	with	our	test	code,	in	turn
allowing	the	whole	team	to	come	on	board	and	make	testing	a	first-class	citizen

of	our	development	process.	This	chapter	explores	two	powerful	CI	products:
Jenkins	and	TeamCity.

Jenkins	(http://jenkins-ci.org/)	is	an	open	source	product	whose	creation	was	led
by	a	developer	originally	from	Sun	Microsystems,	who	left	after	Sun's
acquisition	by	Oracle.	It	has	a	strong	developer	community	with	many	people
providing	patches,	plugins,	and	improvements.	It	was	originally	called	Hudson,
but	the	development	community	voted	to	rename	it	to	avoid	legal	entanglements.
There	is	more	history	to	the	entire	Hudson/Jenkins	naming	that	can	be	read
online,	but	it's	not	relevant	to	the	recipes	in	this	book.	TeamCity	(http://www.jetbr
ains.com/teamcity/)	is	a	product	created	by	JetBrains,	the	same	company	that
produces	commercial	products	such	as	IntelliJ	IDE,	ReSharper,	and	the	PyCharm
IDE.	The	Professional	Edition	is	a	free	version	that	will	be	used	in	this	chapter	to
show	another	CI	system.	It	has	an	enterprise	version,	a	commercial	upgrade,
which	you	can	evaluate	for	yourself.

	

	

	

http://jenkins-ci.org/
http://www.jetbrains.com/teamcity/

Generating	a	CI	report	for	Jenkins
using	NoseXUnit
JUnit	(http://junit.org)	is	a	software	industry	leader	in	automated	testing.	It
provides	the	ability	to	generate	XML	report	files	that	are	consumable	by	many
tools.	This	extends	to	continuous	tools	like	Jenkins.	NoseXUnit	(http://nosexunit.
sourceforge.net/)	is	a	nose	plugin	that	generates	XML	reports	with	Python	test
results	in	the	same	format.	It	works	like	JUnit	with	XML	reporting	but	for
PyUnit.	Even	though	we	aren't	building	Java	code,	there	is	no	requirement	that
states	our	CI	server	can't	be	a	Java-based	system.	As	long	as	we	can	generate	the
right	reports,	those	tools	are	candidates	for	usage.	Considering	that	one	of	the
most	popular	and	well-supported	CI	systems	is	Jenkins,	this	type	of	plugin	is
very	useful.	With	this	recipe,	we	will	explore	generating	consumable	reports
from	simple	Python	testing.

	

http://junit.org
http://nosexunit.sourceforge.net/

Getting	ready
The	following	steps	are	needed	to	have	all	the	components	installed	for	this
chapter:

1.	 Install	nose.
2.	 Install	NoseXUnit	(http://nosexunit.sourceforge.net/)	by	typing	pip	install

nosexunit

http://nosexunit.sourceforge.net/

How	to	do	it...
	

The	following	steps	will	show	how	to	use	the	NoseXUnit	plugin	to	generate	an
XML	report	in	a	Jenkins-compatible	format:

1.	 Test	the	shopping	cart	application	using	nosetests	and	the	NoseXUnit	plugin
by	typing	nosetests	tests.py	--with-nosexunit:

2.	 Open	the	report	found	in	target/NoseXUnit/core/TEST-tests.xml	using	an	XML	or
text	editor.	The	following	screenshot	shows	the	report	displayed	in	Spring
Tool	Suite	(http://www.springsource.com/developer/sts),	an	Eclipse	derivative
(this	is	by	no	means	a	recommendation).	Many	modern	IDEs	have	built-in
XML	support	as	do	other	editors	like	Emacs,	TextPad,	and	so	on:

	

	

	

http://www.springsource.com/developer/sts

How	it	works...
	

NoseXUnit	collects	the	outcome	of	each	test	and	generates	an	XML	report	that
has	the	same	format	as	JUnit.	The	XML	file	isn't	designed	to	be	human-
consumable,	but	it's	not	too	hard	to	discern	the	results.	When	we	ran	nosetests
earlier,	how	many	test	cases	passed?	What	were	the	test	method	names?	In	this
XML	file,	we	can	see	the	names	of	the	four	test	cases.	In	fact,	if	this	file	is
opened	inside	certain	tools	such	as	STS,	it	displays	itself	as	a	test	outcome:

We	don't	have	to	use	STS	to	do	any	of	this.	In	fact,	STS	is	a	bit	heavyweight	for
this	simple	task.	Your	favorite	XML	or	text	editor	is	fine	to	inspect	the	report.	I
just	wanted	to	demonstrate	how	the	output	of	this	plugin	works	neatly	with
existing	tools.	By	typing	nosetests	help,	we	can	see	all	the	options	that	nose	has
from	all	the	installed	plugins.	This	includes:

--core-target=CORE_TARGET:	Output	folder	for	test	reports	(defaults	to
target/NoseXUnit/core)
--with-nosexunit:	Runs	it	through	the	plugin

	

	

Configuring	Jenkins	to	run	Python
tests	upon	commit
Jenkins	can	be	configured	to	invoke	our	test	suite	upon	commit.	This	is	very
useful,	because	we	can	gear	it	to	track	our	changes.	Teams	that	use	CI	systems
usually	adopt	an	attitude	of	addressing	CI	failures	immediately	in	order	to	keep
the	baseline	functional.	Jenkins	offers	an	almost	unlimited	number	of	features,
such	as	retrieving	the	latest	source	from	version	control,	packaging	a	release,
running	tests,	and	even	analyzing	source	code.	This	recipe	shows	how	to
configure	Jenkins	to	run	our	test	suite	against	our	Shopping	Cart	application.

	

Getting	ready
	

1.	 Download	Jenkins	from	http://mirrors.jenkins-ci.org/war/latest/jenkins.war:

2.	 Start	it	up	by	running	java	-jar	jenkins.war.	It's	important	that	no	other
applications	are	listening	on	port	8080:

3.	 Open	the	console	to	confirm	Jenkins	is	working:

http://mirrors.jenkins-ci.org/war/latest/jenkins.war

4.	 Click	on	Manage	Jenkins.
5.	 Click	on	Manage	Plugins.
6.	 Click	on	the	Available	tab.
7.	 Find	the	Git	Plugin	and	click	the	checkbox	next	to	it.
8.	 At	the	bottom	of	the	page,	click	on	the	Install	button.	Verify	that	the	plugin

has	successfully	installed.
9.	 Navigate	back	to	the	dashboard	screen.
10.	 Shut	down	Jenkins	and	start	it	back	up	again.
11.	 Install	Git	source	code	control	on	your	machine.	You	can	visit	http://git-scm.

com/	to	find	downloadable	packages.	It	is	also	possible	that	your	system	may
include	package	installation	options	like	MacPorts	or	Homebrew	for	Macs,
yum	for	Red	Hat-based	Linux	distributions,	and	apt-get	for	Debian/Ubuntu
systems.

12.	 Create	an	empty	folder	for	this	recipe:

gturnquist$	mkdir	/tmp/recipe46

		

13.	 Initialize	the	folder	for	source	code	maintenance:

gturnquist$	git	init	/tmp/recipe46

http://git-scm.com/

				Initialized	empty	Git	repository	in	/private/tmp/recipe46/.git/

		

14.	 Copy	the	Shopping	Cart	application	into	the	folder,	add	it,	and	commit	the
changes:

gturnquist$	cp	cart.py	/tmp/recipe46/

				gturnquist$	cd	/tmp/recipe46/

				gturnquist$	git	add	cart.py

				gturnquist$	git	commit	-m	"Added	shopping	cart	application	to	setup	this	recipe."

				[master	(root-commit)	057d936]	Added	shopping	cart	application	to	setup	this	

recipe.

					1	files	changed,	35	insertions(+),	0	deletions(-)

					create	mode	100644	cart.py

		

	

	

How	to	do	it...
	

The	following	steps	will	show	how	to	put	our	code	under	control	and	then	run
the	test	suite	when	we	make	any	changes	and	commit	them:

1.	 Open	the	Jenkins	console.
2.	 Click	on	New	Job.
3.	 Enter	recipe46	as	the	Job	name	and	pick	build	a	free-style	software	project.
4.	 Click	on	a.
5.	 In	the	Source	Code	Management	section,	pick	Git.	For	the	URL,	enter

/tmp/recipe46/.
6.	 In	the	Build	Triggers	section,	pick	Poll	SCM	and	enter	*	*	*	*	*	into	the

schedule	box,	to	trigger	a	poll	once	per	minute.
7.	 In	the	Build	section,	select	Execute	shell	and	enter	the	following	ad	hoc

script,	which	loads	the	virtualenv	and	runs	the	test	suite:

.	/Users/gturnquist/ptc/bin/activate	

nosetests	tests.py	-with-nosexunit	

You	need	to	substitute	the	command	to	activate	your	own	virtualenv,
whether	this	is	on	Windows,	Linux,	or	macOS,	and	then	follow	it	with
the	command	used	to	run	the	tests	just	like	we	did	earlier	in	this	chapter.

8.	 In	the	Post-build	Actions	section,	pick	Publish	JUnit	test	result	report	and
enter	target/NoseXUnit/core/*.xml,	so	that	the	test	results	are	collected	by
Jenkins.

9.	 Click	on	Save	to	store	all	the	job	settings.
10.	 Click	on	Enable	Auto	Refresh.	We	should	expect	the	first	run	to	fail,

because	we	haven't	added	any	tests	yet:

11.	 Copy	the	test	suite	into	the	controlled	source	folder,	add	it,	and	commit	it:

gturnquist$	cp	tests.py	/tmp/recipe46/

				gturnquist$	cd	/tmp/recipe46/

				gturnquist$	git	add	tests.py

				gturnquist$	git	commit	-m	"Added	tests	for	the	recipe."

				[master	0f6ef56]	Added	tests	for	the	recipe.

					1	files	changed,	20	insertions(+),	0	deletions(-)

					create	mode	100644	tests.py

		

12.	 Watch	to	verify	whether	Jenkins	launches	a	successful	test	run:

13.	 Navigate	to	the	test	results	page,	where	we	can	see	that	four	of	our	tests
were	run.

	

	

How	it	works...
Jenkins	provides	a	powerful,	flexible	way	to	configure	CI	jobs.	In	this	recipe,	we
configured	it	to	poll	our	software	confirmation	management	system	once	a
minute.	When	it	detects	a	change,	it	pulls	a	fresh	copy	of	the	software	and	runs
our	test	script.	By	using	the	NoseXUnit	plugin,	we	generated	an	artifact	that	was
easy	to	harvest	with	Jenkins.	With	a	handful	of	steps,	we	were	able	to	configure
a	web	page	that	monitors	our	source	code.

	

There's	more...
Jenkins	has	lots	of	options.	If	you	examine	the	web	interface,	you	can	drill	into
output	logs	to	see	what	actually	happened.	It	also	collects	trends	showing	how
long	we	have	had	success,	when	the	last	build	failed,	and	more.

Do	I	have	to	use	git	for	source	code
management?
The	answer	is	no.	We	used	it	in	this	recipe	to	show	quickly	how	to	install	a
Jenkins	plugin	from	inside	the	web	interface.	To	apply	the	plugin,	we	had	to
restart	Jenkins.	Subversion	and	CVS	are	supported	out	of	the	box.	Jenkins	also
has	plugins	that	support	every	major	source	code	control	system	out	there,	so	it
should	be	easy	to	meet	your	needs.	In	fact,	there	is	support	for	social	coding	sites
like	GitHub	and	BitKeeper.	Instead	of	using	the	Git	plugin,	we	could	configure
our	Jenkins	installation	to	watch	a	certain	GitHub	account	for	updates.

	

What	is	the	format	of	polling?
	

We	configured	the	polling	with	*	*	*	*	*,	which	means	once	a	minute.	This	is
based	on	the	format	used	to	configure	crontab	files.	The	columns	from	left	to
right	are:

MINUTE:	Minutes	within	the	hour	(0-59)
HOUR:	The	hour	of	the	day	(0-23)
DOM:	The	day	of	the	month	(1-31)
MONTH:	The	month	(1-12)
DOW:	The	day	of	the	week	(0-7)	where	0	and	7	are	Sunday

	

	

See	also
Generating	a	CI	report	for	Jenkins	using	NoseXUnit

Configuring	Jenkins	to	run	Python
tests	when	scheduled
We	just	explored	how	to	configure	Jenkins	to	run	our	test	suite	when	we	commit
the	code	changes.	Jenkins	can	also	be	configured	to	invoke	our	test	suite	at
scheduled	intervals.	This	is	very	useful,	because	we	can	gear	it	to	make
scheduled	releases.	Daily	or	weekly	releases	can	provide	potential	customers
with	a	nice	release	cadence.	CI	releases	are	usually	understood	to	not	necessarily
be	final,	but	instead	provide	bleeding-edge	support	in	case	new	features	need	to
be	investigated	early	and	integrated	by	the	customer.

	

Getting	ready
	

The	following	steps	are	used	to	set	up	Jenkins	as	well	as	a	copy	of	our	tests,	so
we	can	poll	it	at	a	scheduled	interval:

1.	 Set	up	Jenkins	as	shown	in	the	earlier	recipe,	Configuring	Jenkins	to	run
Python	tests	upon	commit.	This	should	include	having	set	up	the	Git	plugin.

2.	 Create	an	empty	folder	for	this	recipe:

gturnquist$	mkdir	/tmp/recipe47

		

3.	 Initialize	the	folder	for	source	code	maintenance:

gturnquist$	git	init	/tmp/recipe47

				Initialized	empty	Git	repository	in	/private/tmp/recipe47/.git/

		

4.	 Copy	the	Shopping	Cart	application	into	the	folder,	add	it,	and	commit	the
changes:

gturnquist$	cp	cart.py	/tmp/recipe47/

				gturnquist$	cd	/tmp/recipe47/

				gturnquist$	git	add	cart.py

				gturnquist$	git	commit	-m	"Added	shopping	cart	application	to	setup	this	recipe."

				[master	(root-commit)	057d936]	Added	shopping	cart	application	to	setup	this	

recipe.

					1	files	changed,	35	insertions(+),	0	deletions(-)

					create	mode	100644	cart.py

		

	

	

How	to	do	it...
	

The	following	steps	will	let	us	explore	creating	a	Jenkins	job	to	run	our
automated	test	suite	periodically:

1.	 Open	the	Jenkins	console.
2.	 Click	on	New	Job.
3.	 Enter	recipe47	as	the	Job	name	and	pick	Build	a	free-style	software	project.
4.	 Click	on	Ok.
5.	 In	the	Source	Code	Management	section,	pick	Git.	For	the	URL,	enter

/tmp/recipe47/.
6.	 In	the	Build	Triggers	section,	pick	Build	periodically	and	enter	some	time

in	the	future.	While	writing	this	recipe	for	the	book,	the	job	was	created
around	6:10	P.M.,	so	entering	15	18	*	*	*	into	the	schedule	box	schedules	the
job	five	minutes	into	the	future	at	6:15	P.M.

7.	 In	the	Build	section,	select	Execute	shell	and	enter	the	following	ad	hoc
script,	which	loads	the	virtualenv	and	runs	the	test	suite:

.	/Users/gturnquist/ptc/bin/activatenosetests	tests.py	-with-nosexunit

You	need	to	replace	this	with	the	command	used	to	activate	your
virtualenv,	followed	by	the	step	to	run	the	tests.

8.	 In	the	Post-build	Actions	section,	pick	Publish	JUnit	test	result	report	and
enter	target/NoseXUnit/core/*.xml,	so	that	test	results	are	collected	by	Jenkins.

9.	 Click	on	Save	to	store	all	the	job	settings.
10.	 Click	on	Enable	Auto	Refresh.
11.	 Copy	the	test	suite	into	the	controlled	source	folder,	add	it,	and	commit	it:

gturnquist$	cp	tests.py	/tmp/recipe47/

				gturnquist$	cd	/tmp/recipe47/

				gturnquist$	git	add	tests.py

				gturnquist$	git	commit	-m	"Added	tests	for	the	recipe."

				[master	0f6ef56]	Added	tests	for	the	recipe.

					1	files	changed,	20	insertions(+),	0	deletions(-)

					create	mode	100644	tests.py

		

12.	 Watch	to	verify	whether	Jenkins	launches	a	successful	test	run:

13.	 Navigate	to	the	test	results,	and	we	can	see	that	four	of	our	tests	were	run.

	

	

How	it	works...
This	is	very	similar	to	the	previous	recipe,	only	this	time	we	configured	a	polling
interval	for	running	our	test	suite	instead	of	polling	the	version	control	system.	It
is	useful	to	run	a	build	once	a	day	to	make	sure	things	are	stable	and	working.

There's	more...
Jenkins	has	lots	of	options.	If	you	examine	the	web	interface,	you	can	drill	into
output	logs	to	see	what	actually	happened.	It	also	collects	trends	showing	how
long	we	have	had	success,	when	the	last	build	failed,	and	more.	To	be	honest,
Jenkins	has	so	many	plugins	and	options	that	an	entire	book	could	be	devoted	to
exploring	its	features.	This	half	of	the	chapter	is	merely	an	introduction	to	using
it	with	some	common	jobs	that	are	test-oriented.

	

Jenkins	versus	TeamCity
So	far,	we	have	explored	using	Jenkins.	Later	in	this	chapter,	we	will	visit
TeamCity.	What	are	the	differences?	Why	should	we	pick	one	or	the	other?
Feature-wise,	they	both	offer	powerful	choices.	That	is	why	they	are	both
covered	in	this	book.	The	key	thing	both	provide	is	setting	up	jobs	to	run	tests,	as
well	as	other	things	like	packaging.	A	key	difference	is	that	Jenkins	is	an	open
source	product	and	TeamCity	is	commercial.	You	or	your	company	may	prefer
to	have	a	paid	company	associated	with	the	product	(http://www.jetbrains.com/),
which	is	what	TeamCity	offers.	This	doesn't	make	the	decision	crystal	clear
because	the	principal	developer	of	Jenkins	currently	works	for	CloudBees	(http:/
/www.cloudbees.com/),	which	invests	effort	in	Jenkins	as	well	as	products
surrounding	it.	If	commercial	support	isn't	imperative,	you	may	find	the	pace	of
development	of	Jenkins	is	faster	and	the	number	of	plugins	more	diverse.	The
bottom	line	is	that	choosing	the	product	that	meets	your	CI	needs	requires	a
detailed	analysis	and	simply	can't	be	answered	here.

	

http://www.jetbrains.com/
http://www.cloudbees.com/

See	also
Generating	a	CI	report	for	Jenkins	using	NoseXUnit

Generating	a	CI	report	for	TeamCity
using	teamcity-nose
There	is	a	nose	plugin	that	automatically	detects	when	tests	are	being	run	from
inside	TeamCity.	This	conveniently	captures	test	results	and	communicates	them
with	TeamCity.	With	this	recipe,	we	will	explore	how	to	setup	a	CI	job	inside
TeamCity	that	runs	our	tests	and	then	manually	invokes	that	job.

	

Getting	ready
	

The	following	steps	are	needed	to	get	us	prepared	to	run	a	TeamCity	CI	job:

1.	 Install	nosetests.
2.	 Install	teamcity-nose	by	typing	pip	install	teamcity-nose.

3.	 Download	TeamCity	using	Wget	(http://download.jetbrains.com/teamcity/TeamCit
y-6.0.tar.gz).

4.	 Unpack	the	download.
5.	 Switch	to	the	TeamCity/bin	directory.
6.	 Start	it	up:	./runAll.sh	start.
7.	 Open	a	browser	to	http://localhost:8111.
8.	 If	this	is	the	first	time	you	are	starting	TeamCity,	accept	the	license

agreement.
9.	 Create	an	administrator	account	by	picking	a	username	and	password.
10.	 Install	Git	source	code	control	on	your	machine.
11.	 Create	an	empty	folder	for	this	recipe:

gturnquist$	mkdir	/tmp/recipe48

		

12.	 Initialize	the	folder	for	source	code	maintenance:

gturnquist$	git	init	/tmp/recipe48

				Initialized	empty	Git	repository	in	/private/tmp/recipe48/.git/

		

13.	 Copy	the	shopping	cart	application	and	tests	into	the	folder,	add	it,	and
commit	the	changes:

gturnquist$	cp	cart.py	/tmp/recipe48/

				gturnquist$	cp	tests.py	/tmp/recipe48/

				gturnquist$	cd	/tmp/recipe48/

				gturnquist$	git	add	cart.py	tests.py

				gturnquist$	git	commit	-m	"Added	shopping	cart	and	tests	to	setup	this	recipe."

				[master	(root-commit)	ccc7155]	Added	shopping	cart	and	tests	to	setup	this	recipe.

					2	files	changed,	55	insertions(+),	0	deletions(-)

					create	mode	100644	cart.py

					create	mode	100644	tests.py

		

http://download.jetbrains.com/teamcity/TeamCity-6.0.tar.gz

	

	

How	to	do	it...
	

The	following	steps	show	how	to	configure	a	CI	job	in	TeamCity:

1.	 Log	in	to	the	TeamCity	console.
2.	 Underneath	the	Projects	tab,	click	Create	project.
3.	 Type	in	recipe48,	and	then	click	Create.

4.	 Click	Add	a	build	configuration	for	this	project.
5.	 Enter	nose	testing	for	the	name	and	then	click	VCS	settings.
6.	 Click	on	Create	and	attach	new	VCS	root.
7.	 Enter	recipe48	in	VCS	root	name.
8.	 Select	Git	as	the	Type	of	VCS.
9.	 Enter	/tmp/recipe48	as	the	Fetch	URL.
10.	 Click	on	Test	Connection	to	confirm	the	settings	and	then	click	Save.
11.	 Click	on	Add	Build	Step.
12.	 Select	Command	Line	for	Runner	type.
13.	 Select	Custom	script	for	Run	type	and	enter	the	following	script:

.	/Users/gturnquist/ptc/bin/activatenosetests	tests.py

You	need	to	customize	this	with	the	command	needed	to	activate	your
virtualenv.

14.	 Click	on	Save.
15.	 Go	back	to	the	project,	and	run	it	manually:

	

	

	

How	it	works...
This	plugin	is	designed	not	to	be	used	in	the	classic	style	of	being	invoked	by	a
command-line	argument.	Instead,	it	is	manually	run	automatically	whenever
nosetests	is	executed,	and	it	checks	if	there	is	a	TeamCity-specific	environment
variable	set.	If	so,	it	kicks	in	by	printing	out	viewable	results	as	well	as	sending
back	useful	information	to	TeamCity:	

Otherwise,	the	plugin	lets	itself	be	bypassed	and	does	nothing.	If	the	plugin	was
NOT	installed,	the	following	screenshot	would	be	the	output:	

In	turn,	drilling	into	the	details	shows	the	following	output	with	little	detail.
There	are	four	periods,	one	for	each	test	method,	but	we	don't	know	much	more

than	that:	

This	means	no	extra	arguments	are	needed	to	use	the	TeamCity	plugin,	but
running	it	from	the	command	line,	outside	of	TeamCity,	causes	no	changes.

Configuring	TeamCity	to	run	Python
tests	upon	commit
TeamCity	can	be	configured	to	invoke	your	test	suite	upon	commit.

Getting	ready
	

The	following	steps	will	help	us	prep	TeamCity	to	run	our	test	suite	when	the
code	changes	are	committed:

1.	 Set	up	TeamCity	like	in	the	previous	recipe,	and	have	it	started	up.	You	also
need	to	have	git	installed,	as	mentioned	earlier	in	this	chapter.

2.	 Create	an	empty	folder	for	this	recipe:

gturnquist$	mkdir	/tmp/recipe49

		

3.	 Initialize	the	folder	for	source	code	maintenance:

gturnquist$	git	init	/tmp/recipe49

				Initialized	empty	Git	repository	in	/private/tmp/recipe49/.git/

		

4.	 Copy	the	Shopping	Cart	application	into	the	folder,	add	it,	and	commit	the
changes:

gturnquist$	cp	cart.py	/tmp/recipe49/

				gturnquist$	cd	/tmp/recipe49/

				gturnquist$	git	add	cart.py

				gturnquist$	git	commit	-m	"Added	shopping	cart	application	to	setup	this	recipe."

				[master	(root-commit)	057d936]	Added	shopping	cart	application	to	setup	this	

recipe.

					1	files	changed,	35	insertions(+),	0	deletions(-)

					create	mode	100644	cart.py

		

	

	

How	to	do	it...
	

These	steps	will	show	us	how	to	create	a	TeamCity	job	that	polls	version	control
to	detect	a	change	and	then	run	a	test	suite:

1.	 Log	in	to	the	TeamCity	console.
2.	 Underneath	the	Projects	tab,	click	Create	project.
3.	 Type	in	recipe49,	and	then	click	Create.
4.	 Click	Add	a	build	configuration	for	this	project.
5.	 Enter	nose	testing	for	the	name	and	then	click	VCS	settings.
6.	 Click	on	Create	and	attach	new	VCS	root.
7.	 Enter	recipe49	in	VCS	root	name.
8.	 Select	Git	as	the	Type	of	VCS.
9.	 Enter	/tmp/recipe49	as	the	Fetch	URL.
10.	 Click	on	Test	Connection	to	confirm	settings	and	then	click	Save.
11.	 Click	on	Add	Build	Step.
12.	 Select	Command	Line	for	Runner	type.
13.	 Select	Custom	script	for	Run	type	and	enter	the	following	script:

.	/Users/gturnquist/ptc/bin/activatenosetests	tests.py

You	must	replace	this	with	the	command	to	activate	your	own	virtualenv
and	invoke	nosetests.

14.	 Click	on	Save.
15.	 Click	on	Build	Triggering.
16.	 Click	on	Add	new	Trigger.
17.	 Pick	VCS	Trigger	from	Trigger	Type.
18.	 At	the	top,	it	should	display	VCS	Trigger	will	add	build	to	the	queue	if

VCS	check-in	is	detected.	Click	Save.
19.	 Navigate	back	to	Projects.	There	should	be	no	jobs	scheduled	or	results

displayed.

20.	 Click	on	Run.	It	should	fail,	because	we	haven't	added	the	tests	to	the
repository:

21.	 From	the	command	line,	copy	the	test	file	into	the	repository.	Then	add	it
and	commit	it:

gturnquist$	cp	tests.py	/tmp/recipe49/

				gturnquist$	cd	/tmp/recipe49/

				gturnquist$	git	add	tests.py

				gturnquist$	git	commit	-m	"Adding	tests."

				[master	4c3c418]	Adding	tests.

					1	files	changed,	20	insertions(+),	0	deletions(-)

					create	mode	100644	tests.py

		

22.	 Go	back	to	the	browser.	It	may	take	a	minute	for	TeamCity	to	detect	the
change	in	the	code	and	start	another	build	job.	It	should	automatically
update	the	screen:

	

	

	

How	it	works...
In	this	recipe,	we	configured	TeamCity	to	do	a	job	for	us	tied	to	a	specific
trigger.	The	trigger	is	activated	whenever	a	check-in	is	done	to	the	software
baseline.	We	had	to	take	several	steps	to	configure	this,	but	it	demonstrates	the
flexible	power	TeamCity	offers.	We	also	installed	the	teamcity-nose	plugin,	which
gave	us	more	details	about	the	results.

	

There's	more...
TeamCity	calls	our	nose	testing	job	a	build	job.	That	is	because	running	tests	isn't
the	only	thing	TeamCity	is	used	for.	Instead,	it's	geared	to	build	packages,	deploy
to	sites,	and	any	other	action	we	may	want	it	to	do	anytime	a	commit	happens.
This	is	why	CI	servers	are	sometimes	called	build	servers.	But	if	we	start	with
simple	jobs	like	testing	the	baseline,	we	are	well	on	our	way	to	discovering	the
other	useful	features	TeamCity	has	to	offer.

	

What	did	teamcity-nose	give	us?
This	is	a	nose	plugin	that	provided	us	with	a	more	detailed	output.	We	didn't	go
into	much	detail	in	this	recipe.

See	also
Generating	a	CI	report	for	TeamCity	using	teamcity-nose
Configuring	Jenkins	to	run	Python	tests	upon	commit

Configuring	TeamCity	to	run	Python
tests	when	scheduled
TeamCity	can	be	configured	to	invoke	our	test	suite	and	collect	results	at	a
scheduled	interval.

Getting	ready
	

These	steps	will	prepare	us	for	this	recipe	by	starting	up	TeamCity	and	having
some	code	ready	for	testing:

1.	 Set	up	TeamCity	like	we	did	earlier	in	this	chapter	and	have	it	up	and
running.

2.	 Create	an	empty	folder	for	this	recipe:

gturnquist$	mkdir	/tmp/recipe50

3.	 Initialize	the	folder	for	source	code	maintenance:

gturnquist$	git	init	/tmp/recipe50

				Initialized	empty	Git	repository	in	/private/tmp/recipe50/.git/

4.	 Copy	the	shopping	cart	application	into	the	folder,	add	it,	and	commit	the
changes:

gturnquist$	cp	cart.py	/tmp/recipe50/

				gturnquist$	cp	tests.py	/tmp/recipe50/

				gturnquist$	cd	/tmp/recipe50/

				gturnquist$	git	add	cart.py	tests.py

				gturnquist$	git	commit	-m	"Adding	shopping	cart	and	tests	for	this	recipe."

				[master	(root-commit)	01cd72a]	Adding	shopping	cart	and	tests	for	this	recipe.

					2	files	changed,	55	insertions(+),	0	deletions(-)

					create	mode	100644	cart.py

					create	mode	100644	tests.py		

	

	

How	to	do	it...
	

These	steps	show	the	details	for	configuring	TeamCity	to	run	our	test	suite	on	a
scheduled	basis:

1.	 Log	in	to	the	TeamCity	console.
2.	 Underneath	the	Projects	tab,	click	Create	project.
3.	 Type	in	recipe50,	and	then	click	Create.
4.	 Click	Add	a	build	configuration	for	this	project.
5.	 Enter	nose	testing	for	the	name	and	then	click	VCS	settings.
6.	 Click	on	Create	and	attach	new	VCS	root.
7.	 Enter	recipe50	in	VCS	root	name.
8.	 Select	Git	as	the	Type	of	VCS.
9.	 Enter	/tmp/recipe50	as	the	Fetch	URL.
10.	 Click	on	Test	Connection	to	confirm	settings	and	then	click	Save.
11.	 Click	on	Add	Build	Step.
12.	 Select	Command	Line	for	Runner	type.

13.	 Select	Custom	script	for	Run	type	and	enter	the	following	script:

.	/Users/gturnquist/ptc/bin/activatenosetests	tests.py

Replace	this	with	your	own	steps	to	activate	your	virtualenv	and	then	run
the	tests	using	nosetests.

14.	 Click	on	Save.
15.	 Click	on	Build	Triggering.
16.	 Click	on	Add	new	Trigger.
17.	 Select	Schedule	Trigger	from	Trigger	Type.
18.	 Pick	daily	for	frequency,	and	pick	a	time	of	about	five	minutes	into	the

future.
19.	 Deselect	the	option	to	Trigger	build	only	if	there	are	pending	changes.
20.	 Click	Save.
21.	 Navigate	back	to	Projects.	There	should	be	no	jobs	scheduled	or	results

displayed.

22.	 Wait	for	the	scheduled	time	to	occur.	The	following	screenshot	shows	the
job	when	it	is	activated:

The	following	screenshot	shows	the	results	summarized	with	our	tests	having
passed:

	

	

	

How	it	works...
Doesn't	this	look	suspiciously	similar	to	the	previous	recipe?	Of	course!	We
varied	it	a	bit	by	creating	a	time-based	trigger	instead	of	a	source-based	trigger.
The	time	trigger	we	picked	is	a	daily,	scheduled	build	at	a	set	time.	The	point	is
to	show	a	commonly	used	trigger	rule.	By	seeing	what	is	the	same	and	what's
different,	we	can	start	to	see	how	to	bend	TeamCity	to	serve	our	needs.
TeamCity	has	other	triggers	that	are	very	useful,	like	triggering	one	job	when
another	one	completes.	This	lets	us	build	lots	of	small,	simple	jobs,	and	chaining
them	together.	We	also	installed	the	teamcity-nose	plugin,	which	gave	us	more
details	in	the	results.

	

See	also
Generating	a	CI	report	for	TeamCity	using	teamcity-nose
Configuring	Jenkins	to	run	Python	tests	when	scheduled

Measuring	Your	Success	with	Test
Coverage
	

In	this	chapter,	we	will	cover:

Building	a	network	management	application
Installing	and	running	coverage	on	your	test	suite
Generating	an	HTML	report	using	coverage
Generating	an	XML	report	using	coverage
Getting	nosy	with	coverage
Filtering	out	test	noise	from	coverage
Letting	Jenkins	get	nosy	with	coverage
Updating	the	project-level	script	to	provide	coverage	reports

	

	

Introduction
Coverage	analysis	is	measuring	which	lines	in	a	program	are	run	and	which
lines	aren't.	This	type	of	analysis	is	also	known	as	code	coverage,	or	more
simply	coverage.

A	coverage	analyzer	can	be	used	while	running	a	system	in	production,	but	what
are	the	pros	and	cons	of	this?	What	about	using	a	coverage	analyzer	when
running	test	suites?	What	benefits	would	this	approach	provide	compared	to
checking	systems	in	production?

Coverage	helps	us	to	see	whether	we	are	adequately	testing	our	system.	But	it
must	be	performed	with	a	certain	amount	of	skepticism.	This	is	because,	even	if
we	achieve	100%	coverage,	meaning	every	line	of	our	system	was	run,	in	no
way	does	this	guarantee	us	having	no	bugs.	Testing	can	only	uncover	the
presence	of	bugs.	A	quick	example	involves	code	we	have	written,	and	what	it
processes	is	the	return	value	from	a	system	call.	What	if	there	are	three	possible
values,	but	we	only	handle	two	of	them?	We	may	write	two	test	cases	covering
our	handling	of	it,	and	this	could	certainly	achieve	100%	statement	coverage.
However,	it	doesn't	mean	we	have	handled	the	third	possible	return	value,	thus
leaving	us	with	a	potentially	undiscovered	bug.	100%	code	coverage	can	also	be
obtained	by	condition	coverage,	but	may	not	be	achieved	with	statement
coverage.	The	kind	of	coverage	we	are	planning	to	target	should	be	clear.

Another	key	point	is	that	not	all	testing	is	aimed	at	fixing	bugs.	Another	key
purpose	is	to	make	sure	that	the	application	meets	our	customer's	needs.	This
means	that,	even	if	we	have	100%	code	coverage,	we	can't	guarantee	that	we	are
covering	all	the	scenarios	expected	by	our	users.	This	is	the	difference	between
building	it	right	and	building	the	right	thing.

In	this	chapter,	we	will	explore	various	recipes	to	build	a	network	management
application,	run	coverage	tools,	and	harvest	the	results.	We	will	discuss	how
coverage	can	introduce	noise	and	show	us	more	than	we	need	to	know,	and	we'll
introduce	performance	issues	when	it	implements	our	code.	We	will	also	see
how	to	trim	out	information	we	don't	need	to	get	a	concise,	targeted	view	of

things.

This	chapter	uses	several	third-party	tools	in	many	recipes:

Spring	Python	(http://springpython.webfactional.com)	contains	many	useful
abstractions.	The	one	used	in	this	chapter	is	its	DatabaseTemplate,	which
provides	easy	ways	to	write	SQL	queries	and	updates	without	having	to
deal	with	Python's	verbose	API.	Install	it	by	typing	pip	install	springpython.
Install	the	coverage	tool	by	typing	pip	install	coverage.	This	may	fail	because
other	plugins	may	install	an	older	version	of	coverage.	If	so,	uninstall
coverage	by	typing	pip	uninstall	coverage,	and	then	install	it	again	with	pip
install	coverage.
Nose,	a	useful	test	runner,	is	covered	in	Chapter	2,	Running	Automated	Test
Suites	with	Nose.	Refer	to	that	chapter	to	see	how	to	install	nose.

http://springpython.webfactional.com

Building	a	network	management
application
	

For	this	chapter,	we	will	build	a	very	simple	network	management	application,
write	different	types	of	test,	and	check	their	coverage.	This	network	management
application	is	focused	on	digesting	alarms,	also	referred	to	as	network	events.
This	is	different	from	certain	other	network	management	tools	that	focus	on
gathering	SNMP	alarms	from	devices.

For	reasons	of	simplicity,	this	correlation	engine	doesn't	contain	complex	rules,
but	instead	contains	a	simple	mapping	of	network	events	onto	equipment	and
customer	service	inventory.	We'll	explore	this	in	the	next	few	paragraphs	as	we
dig	through	the	code.

	

	

	

How	to	do	it...
With	the	following	steps,	we	will	build	a	simple	network	management
application:

1.	 Create	a	file	called	network.py	to	store	the	network	application.
2.	 Create	a	class	definition	to	represent	a	network	event:

class	Event(object):

			def	init		(self,	hostname,	condition,	severity,	event_time):

							self.hostname	=	hostname

							self.condition	=	condition

							self.severity	=	severity

							self.id	=	-1

			def	str(self):

							return	"(ID:%s)	%s:%s	-	%s"	%	(self.id,	self.hostname,\	

															self.condition,self.severity)

Let's	have	a	look	at	few	properties	of	self:

hostname:	It	is	assumed	that	all	network	alarms	originate	from	pieces
of	equipment	that	have	a	hostname.
condition:	This	indicates	the	type	of	alarm	being	generated.	Two
different	alarm	conditions	can	come	from	the	same	device.
severity:	1	indicates	a	clear,	green	status,	and	5	indicates	a	faulty,	red
status.
id:	This	is	the	primary	key	value	used	when	the	event	is	stored	in	a
database.

3.	 Create	a	new	file	called	network.sql	to	contain	the	SQL	code.

4.	 Create	a	SQL	script	that	sets	up	the	database	and	adds	the	definition	for
storing	network	events:

CREATE	TABLE	EVENTS(

							ID	INTEGER	PRIMARY	KEY,

							HOST_NAME	TEXT,

							SEVERITY	INTEGER,

							EVENT_CONDITION	TEXT

);		

5.	 Code	a	high-level	algorithm	where	events	are	assessed	for	their	impact	on
equipment	and	customer	services,	and	add	it	to	network.py:

from	springpython.database.core	import*

class	EventCorrelator(object):

			def	init(self,	factory):

						self.dt	=	DatabaseTemplate(factory)

			def	del(self):

						del(self.dt)

			def	process(self,	event):

					stored_event,	is_active	=	self.store_event(event)

					affected_services,	affected_equip	=	self.impact(event)

					updated_services	=	[

										self.update_service(service,	event)	

										for	service	in	affected_services]

					updated_equipment	=	[

										self.update_equipment(equip,	event)

										for	equip	in	affected_equip]

					return	(stored_event,	is_active,

									updated_services,updated_equipment)

The	init	method	contains	some	setup	code	for	creating	a	DatabaseTemplate.	This	is	a	Spring
Python	utility	class	used	for	database	operations.	See	https://docs.spring.io/spring-python/1.2.x/sphinx/
html/dao.html	for	more	details.	We	are	also	using	SQLite3	as	our	database	engine,	since	it	is	a
standard	part	of	Python.

The	process	method	contains	some	simple	steps	to	process	an	incoming
event:

We	first	need	to	store	the	event	in	the	EVENTS	table.	This	includes
evaluating	whether	or	not	it	is	an	active	event,	meaning	that	it	is
actively	impacting	a	piece	of	equipment.
Then	we	determine	what	equipment	and	what	services	the	event
impacts.
Next,	we	update	the	affected	service	by	determining	whether	it	causes
any	service	outages	or	restorations.
Then	we	update	the	affected	equipment	by	determining	whether	it	fails
or	clears	a	device.
Finally,	we	return	a	tuple	containing	all	the	affected	assets	to	support
any	screen	interfaces	that	could	be	developed	on	top	of	this.

6.	 Implement	the	store_event	algorithm:

def	store_event(self,event):

			try:

					max_id	=	self.dt.query_for_init("""select	max(ID)	

								from	EVENTS""")

			except	DataAccessException,	e:

					max_id=0

			event.id	=	max_id+1

			self.dt.update("""insert	into	EVENTS

																					(ID,	HOST_NAME,	SEVERITY,	EVENT_CONDITION)

																								values(?,?,?,?)""",

																					(event.id,	event.hostname,	event.severity,

https://docs.spring.io/spring-python/1.2.x/sphinx/html/dao.html

																								event.condition))

			is	active	=	self.add_or_remove_from_active_events(event)

																					

This	method	stores	every	event	that	is	processed.	This	supports	many
things,	including	data	mining	and	the	post-mortem	analysis	of	outages.	It
is	also	the	authoritative	place	where	other	event-related	data	can	point
back	using	a	foreign	key:

The	store_event	method	looks	up	the	maximum	primary	key	value	from
the	EVENTS	table.
It	increments	it	by	1.
It	assigns	it	to	event.id.
It	then	inserts	it	into	the	EVENTS	table.
Next,	it	calls	a	method	to	evaluate	whether	or	not	the	event	should	be
added	to	the	list	of	active	events,	or	if	it	clears	out	existing	active
events.	Active	events	are	events	that	are	actively	causing	a	piece	of
equipment	to	be	unclear.
Finally,	it	returns	a	tuple	containing	the	event	and	whether	or	not	it
was	classified	as	an	active	event.

For	a	more	sophisticated	system,	some	sort	of	partitioning	solution	needs	to	be	implemented.
Querying	against	a	table	containing	millions	of	rows	is	very	inefficient.	However,	this	is	for
demonstration	purposes	only,	so	we	will	skip	scaling	as	well	as	performance	and	security.

7.	 Implement	a	method	to	evaluate	whether	to	add	or	remove	active	events:

def	add_or_remove_from_active_events(self,event):

				"""Active	events	are	current	ones	that	cause	equipment

							and\or	services	to	be	down."""

				if	event.severity	==	1:

							self.dt.update	("""DELETE	FROM	ACTIVE_EVENTS

																										WHERE	EVENT_FK	in	(

																										SELECT	ID	FROM	EVENTS

																										WHERE	HOST_NAME=?

																										AND	EVENT_CONDITION=?)""",

																							(event.hostname,event.condition))

						return	False

				else:

						self.dt.execute	("""INSERT	INTO	ACTIVE_EVENTS	(EVENT_FK)	values	(?)	

""",	event.id,))

						return	True

When	a	device	fails,	it	sends	a	severity	5	event.	This	is	an	active	event,
and	in	this	method	a	row	is	inserted	into	the	ACTIVE_EVENTS	table	with	a
foreign	key	pointing	back	to	the	EVENTS	table.	Then	we	return	True,
indicating	that	this	is	an	active	event.

8.	 Add	the	table	definition	for	ACTIVE_EVENTS	to	the	SQL	script:

CREATE	TABLE	ACTIVE_EVENTS(ID	INTEGER	PRIMARY	KEY,	EVENT_FK,

				FOREIGN	KEY(EVENT_FK)	REFERENCES	EVENTS(ID)

);

This	table	makes	it	easy	to	query	what	events	are	currently	causing
equipment	failures.

Later,	when	the	failing	condition	on	the	device	clears,	it	sends	a	severity	1
event.	This	means	that	severity	1	events	are	never	active,	since	they	aren't
contributing	to	a	piece	of	equipment	being	down.	In	our	previous
method,	we	search	for	any	active	events	that	have	the	same	hostname	and
condition,	and	delete	them.	Then	we	return	False,	indicating	this	is	not	an
active	event.

9.	 Write	a	method	that	evaluates	the	services	and	pieces	of	equipment	that	are
affected	by	the	network	event:

def	impact(self,	event):

			"""Look	up	this	event	has	impact	on	either	equipment	

						or	services."""

			affected_equipment	=	self.dt.query(\

															"""select	*	from	EQUIPMENT	

																		where	HOST_NAME	=	?""",

															(event.hostname,),	

															rowhandler=DictionaryRowMapper())

			affected_services	=	self.dt.query(\

															"""select	SERVICE.*	from			SERVICE

																		join	SERVICE_MAPPING	SM

																		on	(SERVICE.ID	=	SM.SERVICE_FK)

																		join	EQUIPMENT

																		on	(SM.EQUIPMENT_FK	=	EQUIPMENT.ID)	where

																		EQUIPMENT.HOST_NAME	=	?""",

																		(event.hostname,),																			

																		rowhandler=DictionaryRowMapper())

			return	(affected_services,	affected_equipment)

We	first	query	the	EQUIPMENT	table	to	see	if	event.hostname	matches
anything.
Next,	we	join	the	SERVICE	table	to	the	EQUIPMENT	table	through	a	many-to-
many	relationship	tracked	by	the	SERVICE_MAPPING	table.	Any	service	that
is	related	to	the	equipment	that	the	event	was	reported	on	is	captured.
Finally,	we	return	a	tuple	containing	both	the	list	of	equipment	and	list
of	services	that	are	potentially	impacted.

Spring	Python	provides	a	convenient	query	operation	that	returns	a	list	of	objects	mapped	to
every	row	of	the	query.	It	also	provides	an	out-of-the-box	DictionaryRowMapper	that	converts	each

row	into	a	Python	dictionary,	with	the	keys	matching	the	column	names.

10.	 Add	the	table	definitions	to	the	SQL	script	for	EQUIPMENT,	SERVICE,	and
SERVICE_MAPPING:

CREATE	TABLE	EQUIPMENT(

						ID	INTEGER	PRIMARY	KEY,	

						HOST_NAME	TEXT	UNIQUE,

						STATUS	INTEGER);

CREATE	TABLE	SERVICE	(

						ID	INTEGER	PRIMARY	KEY,	

						NAME	TEXT	UNIQUE,	

						STATUS	TEXT);

CREATE	TABLE	SERVICE_MAPPING	(

						ID	INTEGER	PRIMARY	KEY,	

						SERVICE_FK,EQUIPMENT_FK,

						FOREIGN	KEY(SERVICE_FK)	REFERENCES	SERVICE(ID),

						FOREIGN	KEY(EQUIPMENT_FK)	REFERENCES	EQUIPMENT(ID));

11.	 Write	the	update_service	method,	which	stores	or	clears	service-related	events
and	then	updates	the	service's	status	based	on	the	remaining	active	events:

def	update_service(self,	service,	event):

				if	event.severity	==	1:

								self.dt.update("""delete	from	SERVICE_EVENTS

																										where	EVENT_FK	in	(select	ID	from	EVENTS

																										where	HOST_NAME	=	?

																										and	EVENT_CONDITION	=	?)""",

																										(event.hostname,event.condition))

				else:

						self.dt.execute("""insert	into	SERVICE_EVENTS	

																									(EVENT_FK,	SERVICE_FK)	values	(?,?)""",

																									(event.id,service["ID"]))

				try:

						max	=	self.dt.query_for_int(\

																						"""select	max(EVENTS.SEVERITY)			

																									from	SERVICE_EVENTS	SE	join	EVENTS

																									on	(EVENTS.ID	=	SE.EVENT_FK)	join	SERVICE

																									on	(SERVICE.ID	=	SE.SERVICE_FK)

																									where	SERVICE.NAME	=	?""",	

																									(service["NAME"],))

				except	DataAccessException,	e:

											max=1

				if	max	>	1	and	service["STATUS"]	==	"Operational":

							service["STATUS"]	=	"Outage"

							self.dt.update("""update	SERVICE

																									set	STATUS	=	?	

																									where	ID	=	?""",

																					(service["STATUS"],	service["ID"]))

				if	max	==	1	and	service["STATUS"]	==	"Outage":

							service["STATUS"]	=	"Operational"

							self.dt.update("""update	SERVICE	set	STATUS	=	?

																									where	ID	=	?""",

																					(service["STATUS"],	service["ID"]))

				if	event.severity	==	1:

							return	{"service":service,	"is_active":False}

				else:

							return	{"service":service,	"is_active":True}

Service-related	events	are	active	events	related	to	a	service.	A	single
event	can	be	related	to	many	services.	For	example,	what	if	we	were
monitoring	a	wireless	router	that	provided	internet	service	to	a	lot	of
users,	and	it	reported	a	critical	error?	This	one	event	would	be	mapped	as
an	impact	to	all	the	end	users.	When	a	new	active	event	is	processed,	it	is
stored	in	SERVICE_EVENTS	for	each	related	service.

Then,	when	a	clearing	event	is	processed,	the	previous	service	event
must	be	deleted	from	the	SERVICE_EVENTS	table.

12.	 Add	the	table	definition	for	SERVICE_EVENTS	to	the	SQL	script:

CREATE	TABLE	SERVICE_EVENTS	(

				ID	INTEGER	PRIMARY	KEY,	

				SERVICE_FK,

				EVENT_FK,FOREIGN	KEY(SERVICE_FK)	REFERENCES	SERVICE(ID),

				FOREIGN	KEY(EVENT_FK)	REFERENCES	EVENTS(ID));

It	is	important	to	recognize	that	deleting	an	entry	from	SERVICE_EVENTS	doesn't	mean	that	we
delete	the	original	event	from	the	EVENTS	table.	Instead,	we	are	merely	indicating	that	the
original	active	event	is	no	longer	active	and	it	does	not	impact	the	related	service.

13.	 Prepend	the	entire	SQL	script	with	DROP	statements,	making	it	possible	to	run
the	script	for	several	recipes:

DROP	TABLE	IF	EXISTS	SERVICE_MAPPING;

DROP	TABLE	IF	EXISTS	SERVICE_EVENTS;

DROP	TABLE	IF	EXISTS	ACTIVE_EVENTS;

DROP	TABLE	IF	EXISTS	EQUIPMENT;

DROP	TABLE	IF	EXISTS	SERVICE;

DROP	TABLE	IF	EXISTS	EVENTS;

14.	 Append	the	SQL	script	used	to	set	up	the	database	with	inserts	to	pre-load
some	equipment	and	services:

INSERT	into	EQUIPMENT	(ID,	HOST_NAME,	STATUS)	values	(1,'pyhost1',	1);

INSERT	into	EQUIPMENT	(ID,	HOST_NAME,	STATUS)	values	(2,'pyhost2',	1);

INSERT	into	EQUIPMENT	(ID,	HOST_NAME,	STATUS)	values	(3,'pyhost3',	1);

INSERT	into	SERVICE	(ID,	NAME,	STATUS)	values	(1,	'service-abc',	

'Operational');

INSERT	into	SERVICE	(ID,	NAME,	STATUS)	values	(2,	'service-xyz',	'Outage');

INSERT	into	SERVICE_MAPPING	(SERVICE_FK,	EQUIPMENT_FK)	values	(1,1);

INSERT	into	SERVICE_MAPPING	(SERVICE_FK,	EQUIPMENT_FK)	values	(1,2);

INSERT	into	SERVICE_MAPPING	(SERVICE_FK,	EQUIPMENT_FK)	values	(2,1);

INSERT	into	SERVICE_MAPPING	(SERVICE_FK,	EQUIPMENT_FK)	values	(2,3);

15.	 Finally,	write	a	method	that	updates	the	equipment	status	based	on	the
currently	active	events:

def	update_equipment(self,equip,event):

				try:

						max	=	self.dt.query_for_int(\

																		"""select	max(EVENTS.SEVERITY)	

																					from	ACTIVE_EVENTS	AE

																					join	EVENTS	on	(EVENTS.ID	=	AE.EVENT_FK)	

																					where	EVENTS.HOST_NAME	=	?""",

																		(event.hostname,))

				except	DataAccessException:

								max	=	1

				if	max	!=	equip["STATUS"]:

									equip["STATUS"]	=	max	

									self.dt.update("""update	EQUIPMENT

																											set	STATUS	=	?""",

																								(equip["STATUS"],))

				return	equip

Here,	we	need	to	find	the	maximum	severity	from	the	list	of	active	events	for	a
given	host	name.	If	there	are	no	active	events,	then	Spring	Python	raises	a
DataAccessException	and	we	translate	that	to	a	severity	of	1.

We	check	whether	this	is	different	from	the	existing	device's	status.	If	so,	we
issue	a	SQL	update.	Finally,	we	return	the	record	for	the	device,	with	its	status
updated	appropriately.

How	it	works...
This	application	uses	a	database-backed	mechanism	to	process	incoming
network	events,	and	checks	them	against	the	inventory	of	equipment	and
services	to	evaluate	failures	and	restorations.	Our	application	doesn't	handle
specialized	devices	or	unusual	types	of	service.	This	real-world	complexity	has
been	traded	in	for	a	relatively	simple	application	that	can	be	used	to	write
various	test	recipes.

Events	typically	map	to	a	single	piece	of	equipment	and	to	zero	or	more	services.	A	service
can	be	thought	of	as	a	string	of	equipment	used	to	provide	a	type	of	service	to	the	customer.
New	failing	events	are	considered	active	until	a	clearing	event	arrives.	Active	events,	when
aggregated	against	a	piece	of	equipment,	define	its	current	status.	Active	events,	when
aggregated	against	a	service,	define	the	service's	current	status.

	

Installing	and	running	coverage	on
your	test	suite
Install	the	coverage	tool	and	run	it	against	your	test	suite.	Then	you	can	view	a
report	showing	what	lines	were	covered	by	the	test	suite.

How	to	do	it...
With	the	following	steps,	we	will	build	some	unittests	and	then	run	them	through
the	coverage	tool:

1.	 Create	a	new	file	called	recipe52.py	to	contain	our	test	code	for	this	recipe.
2.	 Write	a	simple	unit	test	that	injects	a	single,	alarming	event	into	the	system:

from	network	import	*	

import	unittest

from	springpython.database.factory	import	*

from	springpython.database.core	import	*

class	EventCorrelationTest(unittest.TestCase):

						def	setUp(self):

										db_name	=	"recipe52.db"

										factory	=	Sqlite3ConnectionFactory(db_name)

										self.correlator	=	EventCorrelator(factory)

										dt	=	DatabaseTemplate(factory)

										sql	=	open("network.sql").read().split(";")

										for	statement	in	sql:

														dt.execute(statement	+	";")

						def	test_process_events(self):

										evt1	=	Event("pyhost1",	"serverRestart",	5)

										stored_event,	is_active,	\

																updated_services,	updated_equipment	=	\

																self.correlator.process(evt1)

										print	"Stored	event:	%s"	%	stored_event

										if	is_active:

													print	"This	event	was	an	active	event."

													print	"Updated	services:	%s"	%	updated_services

													print	"Updated	equipment:	%s"	%	updated_equipment

													print	"---------------------------------"

if	__name__	==	"main":

					unittest.main()										

3.	 Clear	out	any	existing	coverage	report	data	using	coverage	-e.
4.	 Run	the	test	suite	using	the	coverage	tool:

gturnquist$	coverage	-x	recipe52.py

Stored	event:	(ID:1)	pyhost1:serverRestart	-	5	This	event	was	an	active	

event.

Updated	services:	[{'is_active':	True,	'service':	{'STATUS':	'Outage',	

'ID':	1,	'NAME':	u'service-abc'}},	{'is_active':	True,	'service':	

{'STATUS':	u'Outage',	'ID':	2,	'NAME':	u'service-	xyz'}}]	

Updated	equipment:	[{'STATUS':	5,	'ID':	1,	'HOST_NAME':	u'pyhost1'}]

.

--

Ran	1	test	in	0.211s	OK

5.	 Print	out	the	report	captured	by	the	previous	command	by	typing	coverage	-r.
If	the	report	shows	several	other	modules	listed	from	Python's	standard
libraries,	it's	a	hint	that	you	have	an	older	version	of	the	coverage	tool
installed.	If	so,	uninstall	the	old	version	by	typing	pip	uninstall	coverage
followed	by	reinstalling	with	pip	install	coverage:

5.	 Create	another	file	called	recipe52b.py	to	contain	a	different	test	suite.

6.	 Write	another	test	suite	that	generates	two	faults	and	then	clears	them	out:

from	network	import*

import	unittest

from	springpython.database.factory	import*

from	springpython.database.core	import*

class	EventCorrelationTest(unittest.TestCase):

						def	setUp(self):

										db_name	=	"recipe52b.db"

										factory	=	Sqlite3ConnectionFactory(db=db_name)

										self.correlator	=	EventCorrelator(factory)

										dt	=	DatabaseTemplate(factory)

										sql	=	open("network.sql").read().split(";")

										for	statement	in	sql:

													dt.execute(statement	+	";")

						def	test_process_events(self):

										evt1	=	Event("pyhost1",	"serverRestart",	5)

										evt2	=	Event("pyhost2",	"lineStatus",	5)

										evt3	=	Event("pyhost2",	"lineStatus",	1)

										evt4	=	Event("pyhost1",	"serverRestart",	1)

										for	event	in	[evt1,	evt2,	evt3,	evt4]:

														stored_event,	is_active,	\	

																	updated_services,	updated_equipment	=	\

																		self.correlator.process(event)

														print	"Stored	event:	%s"	%	stored_event

														if	is_active:

																print	"This	event	was	an	active	event."

																print	"Updated	services:	%s"	%	updated_services

																print	"Updated	equipment:	%s"	%	updated_equipment

																print	"---------------------------------"

		if	__name__	==	"__main__":	

					unittest.main()

8.	 Run	this	test	suite	through	the	coverage	tool	using	coverage	-x	recipe52b.py.
9.	 Print	out	the	report	by	typing	coverage	-r:

The	first	test	suite	only	injects	a	single	alarm.	We	expect	it	to	cause	a	service
outage	and	take	its	related	piece	of	equipment	down.	Since	this	would	not
exercise	any	event	clearing	logic,	we	certainly	don't	expect	100%	code	coverage.

In	the	report,	we	can	see	that	it	says	network.py	had	65	statements,	and	has
executed	55	of	them,	resulting	in	85%	coverage.	We	also	see	that	recipe52.py	had
23	statements	and	executed	all	of	them.	This	means	all	of	our	test	code	ran.

At	this	point,	we	realize	that	we	are	only	testing	the	alarming	part	of	the	event
correlator.	To	make	this	more	effective,	we	should	inject	another	alarm,	followed
by	a	couple	of	clears	to	make	sure	that	everything	clears	out	and	the	services
return	to	operational	status.	This	should	result	in	100%	coverage	in	our	simple
application.

The	second	screenshot	indeed	shows	that	we	have	reached	full	coverage	of
network.py.

There's	more...
	

We	also	see	Spring	Python	reported	as	well.	If	we	had	used	any	other	third-party
libraries,	then	they	would	also	appear.	Is	this	right?	It	depends.	The	previous
comments	seem	to	indicate	that	we	don't	really	care	about	coverage	of	Spring
Python,	but	in	other	situations,	we	might	be	very	interested.	And	how	can	the
coverage	tool	know	where	to	draw	the	line?

In	later	recipes,	we	will	look	into	how	to	be	more	selective	of	what	to	measure
so	we	can	filter	out	the	noise.

	

	

	

Why	are	there	no	asserts	in	unittest?
It	is	true	that	unittest	isn't	adequate	with	regard	to	testing	outcomes.	To	draw	up
this	recipe,	I	visually	inspected	the	output	to	see	whether	the	network
management	application	was	performing	as	expected.	But	this	is	incomplete.	A
real	production	grade	unit	test	needs	to	finish	this	with	a	set	of	assertions	so	that
visual	scanning	is	not	needed.

So	why	didn't	we	code	any?	Because	the	focus	of	this	recipe	was	on	how	to
generate	a	coverage	report	and	then	use	that	information	to	enhance	the	testing.
We	covered	both	of	these	things.	By	thinking	about	what	was	and	wasn't	tested,
we	wrote	a	comprehensive	test	that	shows	services	going	into	outage	and	back	to
operational	status.	We	just	didn't	just	confirm	this	automatically.

Generating	an	HTML	report	using
coverage
	

Using	the	coverage	tool,	generate	an	HTML	visual	coverage	report.	This	is
useful	because	we	can	drill	into	the	source	code	and	see	what	lines	did	not	run	in
the	test	procedures.

Reading	a	coverage	report	without	reading	the	source	code	is	not	very	useful.	It
may	be	tempting	to	compare	two	different	projects	based	on	the	coverage
percentages.	But	unless	the	actual	code	is	analyzed,	this	type	of	comparison	can
lead	to	faulty	conclusions	about	the	quality	of	the	software.

	

	

	

How	to	do	it...
	

With	these	steps,	we	will	explore	creating	a	nicely	viewable	HTML	coverage
report:

1.	 Generate	coverage	metrics	by	following	the	steps	in	the	Installing	and
running	coverage	on	your	test	suite	recipe	and	only	running	the	first	test
suite	(which	resulted	in	less	than	100%	coverage).

2.	 Generate	an	HTML	report	by	typing	coverage.html.

3.	 Open	htmlcov/index.html	using	your	favorite	browser	and	inspect	the	overall
report:

3.	 Click	on	network,	and	scroll	down	to	see	where	the	event	clearing	logic
didn't	run	due	to	no	clearing	events	being	processed:

	

	

	

How	it	works...
	

The	coverage	tool	has	a	built-in	feature	to	generate	an	HTML	report.	This
provides	a	powerful	way	to	visually	inspect	the	source	code	and	see	which	lines
were	not	executed.

By	looking	at	this	report,	we	can	clearly	see	that	the	lines	that	were	not	executed
relate	to	the	lack	of	clearing	network	events	that	are	being	processed.	This	tips
us	off	about	another	test	case,	which	involves	clearing	events	that	need	to	be
drafted.

	

	

	

Generating	an	XML	report	using
coverage
The	coverage	tool	can	generate	an	XML	coverage	report	in	Cobertura	format	(htt
p://cobertura.sourceforge.net/).	This	is	useful	if	we	want	to	process	the	coverage
information	in	another	tool.	In	this	recipe,	we	will	see	how	to	use	the	coverage
command-line	tool,	and	then	view	the	XML	report	by	hand.

It's	important	to	understand	that	reading	a	coverage	report	without	reading	the
source	code	is	not	very	useful.	It	may	be	tempting	to	compare	two	different
projects	based	on	the	coverage	percentages.	But	unless	the	actual	code	is
analyzed,	this	type	of	comparison	can	lead	to	faulty	conclusions	about	the
quality	of	the	software.

For	example,	a	project	with	85%	coverage	may	appear,	on	the	surface,	to	be
better	tested	than	one	with	60%.	However,	if	the	60%	application	has	much	more
thoroughly	exhaustive	scenarios—as	they	are	only	covering	the	core	parts	of	the
system	that	are	in	heavy	use—then	it	may	be	much	more	stable	than	the	85%
application.

Coverage	analysis	serves	a	useful	purpose	when	comparing	test	results	between	iterations,
and	when	we	use	it	to	decide	which	scenarios	need	to	be	added	to	our	testing	repertoire.

http://cobertura.sourceforge.net/

How	to	do	it...
	

With	these	steps,	we	will	discover	how	to	create	an	XML	report	that	is
consumable	by	other	tools,	using	the	coverage	tool:

1.	 Generate	coverage	metrics	by	following	the	steps	in	Installing	and	running
coverage	on	your	test	suite	recipe	(mentioned	in	Chapter	1,	Using	Unittest	to
Develop	Basic	Tests)	and	only	running	the	first	test	suite	(which	resulted	in
less	than	100%	coverage).

2.	 Generate	an	XML	report	by	typing	coverage	xml.
3.	 Open	coverage.xml	using	your	favorite	text	or	XML	editor.	The	format	of	the

XML	is	the	same	as	Cobertura—a	Java	code	coverage	analyzer.	This	means
that	many	tools,	such	as	Jenkins,	can	parse	the	results:

	

	

	

How	it	works...
The	coverage	tool	has	a	built-in	feature	that	generates	an	XML	report.	This
provides	a	powerful	way	to	parse	the	output	using	some	type	of	external	tool.

In	the	previous	screenshot,	I	opened	it	using	Spring	Tool	Suite	(you	can	download	it	from	http:/
/www.springsource.com/developer/sts),	partly	because	I	happen	to	use	STS	every	day,	but	you	can	use
any	text	or	XML	editor	you	like.

	

http://www.springsource.com/developer/sts)

What	use	is	an	XML	report?
XML	is	not	the	best	way	to	communicate	coverage	information	to	users.
Generating	an	HTML	report	with	coverage	is	a	more	practical	recipe	when	it
comes	to	human	users.

What	if	we	want	to	capture	a	coverage	report	and	publish	it	inside	a	continuous
integration	system	such	as	Jenkins?	All	we	need	to	do	is	install	the	Cobertura
plugin	(refer	to	https://wiki.jenkins-ci.org/display/JENKINS/Cobertura+Plugin),	and	this
report	becomes	traceable.	Jenkins	can	nicely	monitor	trends	in	coverage	and	give
us	more	feedback	as	we	develop	our	system.

https://wiki.jenkins-ci.org/display/JENKINS/Cobertura+Plugin

See	also
Letting	Jenkins	get	nosy	with	coverage
Generating	an	HTML	report	using	coverage

Getting	nosy	with	coverage
Install	the	coverage	nose	plugin,	and	run	your	test	suite	using	nose.	This
provides	a	quick	and	convenient	report	using	the	ubiquitous	nosetests	tool.	This
recipe	assumes	you	have	already	created	the	network	management	application	as
described	in	the	Building	a	network	management	application	section.

How	to	do	it...
	

With	these	steps,	we	will	see	how	to	combine	the	coverage	tool	with	nose:

1.	 Create	a	new	file	called	recipe55.py	to	store	our	test	code.
2.	 Create	a	test	case	that	injects	a	faulty	alarm:

from	network	import*

import	unittest

from	springpython.database.factory	import*

from	springpython.database.core	import*

class	EventCorrelationTest(unittest.TestCase):

						def	setUp(self):

									db_name	=	"recipe55.db"

									factory	=	Sqlite3ConnectionFactory(db=db_name)

									self.correlator	=	EventCorrelator(factory)

									dt	=	DatabaseTemplate(factory)

									sql	=	open("network.sql").read().split(";")

									for	statement	in	sql:

												dt.execute(statement	+	";")

						def	test_process_events(self):

									evt1	=	Event("pyhost1",	"serverRestart",	5)

									stored_event,	is_active,	\	

														updated_services,	updated_equipment	=	\

									self.correlator.process(evt1)

									print	"Stored	event:	%s"	%	stored_event

									if	is_active:

												print	"This	event	was	an	active	event."

												print	"Updated	services:	%s"	%	updated_services

												print	"Updated	equipment:	%s"	%	updated_equipment

												print	"---------------------------------"

3.	 Run	the	test	module	using	the	coverage	plugin	by	typing	nosetests	recipe55	–
with-coverage:

	

	

	

How	it	works...
The	nose	plugin	for	coverage	invokes	the	coverage	tool	and	provides	a	formatted
report.	For	each	module,	it	displays	the	following:

Total	number	of	statements
Number	of	missed	statements
Percentage	of	covered	statements
Line	numbers	for	the	missed	statements

There's	more...
A	common	behavior	of	nose	is	to	alter	stdout,	disabling	the	print	statements
embedded	in	the	test	case.

Why	use	the	nose	plugin	instead	of
the	coverage	tool	directly?
The	coverage	tool	works	fine	by	itself,	as	was	demonstrated	in	other	recipes	in
this	chapter.	However,	nose	is	a	ubiquitous	testing	tool	used	by	many	developers.
Providing	a	plugin	makes	it	easy	to	support	this	vast	community	by	empowering
users	to	run	the	exact	set	of	test	plugins	they	want,	with	coverage	being	part	of
that	test	complement.

	

Why	are	SQLite3	and	Spring	Python
included?
	

SQLite3	is	a	relational	database	library	that	is	included	with	Python.	It	is	file-
based,	which	means	that	no	separate	processes	are	required	to	create	and	use	a
database.	Details	about	Spring	Python	can	be	found	in	the	earlier	sections	of	this
chapter.

The	purpose	of	this	recipe	was	to	measure	the	coverage	of	our	network
management	application	and	the	corresponding	test	case.	So	why	are	these	third-
party	libraries	included?	The	coverage	tool	has	no	way	of	automatically	knowing
what	we	want	and	the	things	we	don't	want	to	see	from	a	coverage	perspective.
To	delve	into	this,	refer	to	the	next	section,	Filtering	out	test	noise	from
coverage.

	

	

	

Filtering	out	test	noise	from	coverage
Using	command-line	options,	you	can	filter	out	counted	lines.	This	recipe
assumes	you	have	already	created	the	network	management	application	as
described	in	the	Building	a	network	management	application	section.

How	to	do	it...
	

With	these	steps,	we	will	see	how	to	filter	out	certain	modules	from	being
counted	in	our	coverage	report:

1.	 Create	a	test	suite	that	exercises	all	the	code	functionality:

from	network	import*

import	unittest

from	springpython.database.factory	import*

from	springpython.database.core	import	*

class	EventCorrelationTest(unittest.TestCase):

			def	setUp(self):

						db_name	=	"recipe56.db"

						factory	=	Sqlite3ConnectionFactory(db=db_name)

						self.correlator	=	EventCorrelator(factory)

						dt	=	DatabaseTemplate(factory)

						sql	=	open("network.sql").read().split(";")

						for	statement	in	sql:

								dt.execute(statement	+	";")

			def	test_process_events(self):

							evt1	=	Event("pyhost1",	"serverRestart",	5)

							evt2	=	Event("pyhost2",	"lineStatus",	5)

							evt3	=	Event("pyhost2",	"lineStatus",	1)

							evt4	=	Event("pyhost1",	"serverRestart",	1)

							for	event	in	[evt1,	evt2,	evt3,	evt4]:

											stored_event,	is_active,\

														updated_services,	updated_equipment=\

																		self.correlator.process(event)

											print	"Stored	event:	%s"	%	stored_event

							if	is_active:

										print	"This	event	was	an	active	event."

										print	"Updated	services:	%s"	%	updated_services

										print	"Updated	equipment:	%s"	%	updated_equipment

										print	"---------------------------------"

if	__name__=="__main__":

			unittest.main()

2.	 Clear	out	any	previous	coverage	data	by	running	coverage	-e.
3.	 Run	it	using	coverage	-x	recipe56.py.
4.	 Generate	a	console	report	using	coverage	-r.	In	the	following	screenshot,

observe	how	Spring	Python	is	included	in	the	report	and	reduces	the	total
metric	to	73%:

2.	 Clean	out	coverage	data	by	running	coverage	-e.
3.	 Run	the	test	again	using	coverage	run	–source	network.py,recipe56.py,recipe56.py.

4.	 Generate	another	console	report	using	coverage	-r.	Notice	in	the	next
screenshot	how	Spring	Python	is	no	longer	listed,	bringing	our	total
coverage	back	up	to	100%:

2.	 Clean	out	coverage	data	by	running	coverage	-e.
3.	 Run	the	test	using	coverage	-x	recipe56.py.
4.	 Generate	a	console	report	using	coverage	-r	recipe56.py	network.py:

	

	

	

How	it	works...
Coverage	provides	the	ability	to	decide	which	files	will	be	analyzed	and	what
files	will	be	reported.	The	steps	in	the	previous	section	gather	metrics	several
times,	either	by	running	coverage	with	a	restricted	set	of	source	files	(in	order	to
filter	out	Spring	Python),	or	by	requesting	an	explicit	set	of	modules	in	the
report.

One	question	that	arises	from	all	this	is,	What's	the	best	choice?	For	our	test
scenario,	the	two	choices	were	equivalent.	With	approximately	the	same	amount
of	typing,	we	filtered	out	Spring	Python	and	got	a	report	showing	network.py	and
recipe56.py	with	100%	coverage	either	way.	However,	a	real	project	with	a	lot	of
modules	and	possibly	different	teams	working	in	different	areas	would	probably
do	better	by	gathering	all	the	metric	data	available	and	filtering	at	the	report
level.

This	way,	different	reports	on	subsystems	can	be	run	as	needed	without	having
to	keep	recapturing	metric	data,	and	an	overall	report	can	still	be	run	for	the
whole	system	coverage,	all	from	the	same	gathered	data.

There's	more...
The	options	used	in	the	previous	section	were	inclusive.	We	picked	what	was	to
be	included.	The	coverage	tool	also	comes	with	an	–omit	option.	The	challenge	is
that	it's	a	file-based	option,	not	module-based.	It	doesn't	work	to	use	–omit
springpython.	Instead,	every	file	must	be	specified,	and	in	this	case	that	would
have	required	four	complete	files	to	exclude	it	all.

To	further	complicate	this,	the	full	paths	for	the	Spring	Python	files	need	to	be
included.	This	results	in	a	very	lengthy	command,	not	providing	much	of	a
benefit	over	the	ways	we	demonstrated.

In	other	situations,	if	the	file	to	be	excluded	is	local	to	where	coverage	is	being
run,	then	it	might	be	more	practical.

The	coverage	tool	has	other	options	not	covered	in	this	chapter,	such	as
measuring	branch	coverage	instead	of	statement	coverage,	excluding	lines,	and
the	ability	to	run	in	parallel	to	manage	collecting	metrics	from	multiple
processes.

As	mentioned	previously,	the	coverage	tool	has	the	ability	to	filter	out	individual
lines.	In	my	opinion,	this	sounds	very	much	like	trying	to	get	the	coverage	report
to	meet	some	mandated	percentage.	The	coverage	tool	is	best	used	to	work
towards	writing	more	comprehensive	tests,	fixing	bugs,	and	improving
development,	and	not	towards	building	a	better	report.

See	also
The	Building	a	network	management	application	recipe	earlier	in	the	chapter

Letting	Jenkins	get	nosy	with
coverage
Configure	Jenkins	to	run	a	test	suite	using	nose,	generating	a	coverage	report.
This	recipe	assumes	you	have	already	created	the	network	management
application	as	described	in	the	Building	a	network	management	application
section.

Getting	ready
	

Let's	look	at	the	following	steps:

1.	 If	you	have	already	downloaded	Jenkins	and	used	it	for	previous	recipes,
look	for	a	.jenkins	folder	in	your	home	directory	and	delete	it,	to	avoid
unexpected	variances	caused	by	this	recipe.

2.	 Install	Jenkins.
3.	 Open	the	console	to	confirm	that	Jenkins	is	working:

4.	 Click	on	Manage	Jenkins.
5.	 Click	on	Manage	Plugins.
6.	 Click	on	the	Available	tab.
7.	 Find	the	Cobertura	Plugin	and	click	the	checkbox	next	to	it.
8.	 Find	the	Git	Plugin	and	click	the	checkbox	next	to	it.

9.	 At	the	bottom	of	the	page,	click	on	the	Install	button.
10.	 Navigate	back	to	the	dashboard	screen.
11.	 Shut	down	Jenkins	and	start	it	again.
12.	 Install	Git	source	code	control	on	your	machine.
13.	 Create	an	empty	folder	for	this	recipe:

gturnquist$	mkdir	/tmp/recipe57

14.	 Initialize	the	folder	for	source	code	maintenance:

gturnquist$	git	init	/tmp/recipe57

15.	 Copy	the	network	application	and	SQL	script	into	the	folder,	add	it,	and
commit	the	changes:

gturnquist$	cp	network.py	/tmp/recipe57/	

gturnquist$	cp	network.sql	/tmp/recipe57/	

gturnquist$	cd	/tmp/recipe57/

gturnquist$	git	add	network.py	network.sql

gturnquist$	git	commit	-m	"Add	network	app"

[master	(root-commit)	7f78d46]	Add	network	app

2	files	changed,	221	insertions(+),	0	deletions(-)

create	mode	100644	network.py

create	mode	100644	network.sql

	

	

How	to	do	it...
	

With	these	steps,	we	will	explore	how	to	configure	Jenkins	to	build	a	coverage
report	and	serve	it	through	Jenkins'	interface.

1.	 Create	a	new	file	called	recipe57.py	to	contain	our	test	code	for	this	recipe.
2.	 Write	a	test	case	that	partially	exercises	the	network	management

application:

from	network	import*

import	unittest

from	springpython.database.factory	import*

from	springpython.database.core	import*

class	EventCorrelationTest(unittest.TestCase):

				def	setUp(self):

								db_name	=	"recipe57.db"

								factory	=	Sqlite3ConnectionFactory(db=db_name)

								self.correlator	=	EventCorrelator(factory)

								dt	=	DatabaseTemplate(factory)

								sql	=	open("network.sql").read().split(";")

								for	statement	in	sql:

											dt.execute(statement	+	";")

				def	test_process_events(self):

								evt1	=	Event("pyhost1",	"serverRestart",	5)

								stored_event,	is_active,	updated_services,	updated_equipment	=	\

												self.correlator.process(evt1)

								print	"Stored	event:	%s"	%	stored_event

								if	is_active:

								print	"This	event	was	an	active	event."

								print	"Updated	services:	%s"	%	updated_services

								print	"Updated	equipment:	%s"	%	updated_equipment

								print	"---------------------------------"

3.	 Copy	it	into	the	source	code	repository.	Add	it	and	commit	the	changes:

gturnquist$	cp	recipe57.py	/tmp/recipe57/

gturnquist$	cd	/tmp/recipe57/

gturnquist$	git	add	recipe57.py

gturnquist$	git	commit	-m	"Added	tests."

[master	0bf1761]	Added	tests.

1	files	changed,	37	insertions(+),	0	deletions(-)

create	mode	100644	recipe57.py

4.	 Open	the	Jenkins	console.
5.	 Click	on	New	Job.
6.	 Enter	recipe57	as	the	Job	Name	and	pick	Build	a	free-style	software	project.
7.	 Click	on	Ok.

8.	 In	the	Source	Code	Management	section,	select	Git.	For	URL,	enter	/tmp/
recipe57/.

9.	 In	the	Build	Triggers	section,	pick	Poll	SCM	and	enter	*	*	*	*	*	into	the
schedule	box	in	order	to	trigger	a	poll	once	a	minute.

10.	 In	the	Build	section,	select	Execute	Shell	and	enter	the	following	script,
which	loads	virtualenv	and	runs	the	test	suite:

.	/Users/gturnquist/ptc/bin/activate

coverage	-e

coverage	run	/Users/gturnquist/ptc/bin/nosetests

recipe57.py	coverage	xml	--include=network.py,recipe57.py

You	need	to	include	the	step	to	activate	your	virtualenv	and	then	run	the	coverage	tool,	as
shown	in	the	following	steps.

11.	 In	the	Post-build	Actions	section,	pick	Publish	Cobertura	Coverage
Report.

12.	 Enter	coverage.xml	for	Cobertura	xml	report	pattern.
13.	 Click	on	Save	to	store	all	job	settings.
14.	 Navigate	back	to	the	dashboard.
15.	 Click	on	Enable	Auto	Refresh.
16.	 Wait	about	a	minute	for	the	build	job	to	run:

11.	 Click	on	results	(#1	in	the	previous	screenshot).

18.	 Click	on	Coverage	Report.	Observe	the	next	screenshot	where	it	reports
89%	coverage:

18.	 Click	on	module	.	(dot)	to	see	network.py	and	recipe57.py.
19.	 Click	on	recipe57.py	to	see	which	lines	were	covered	and	which	ones	were

missed.

	

	

How	it	works...
The	coverage	tool	generates	a	useful	XML	file	that	the	Jenkins	Cobertura	plugin
can	harvest.	It's	possible	to	just	generate	the	HTML	report	and	serve	it	up
through	Jenkins,	but	the	XML	file	allows	Jenkins	to	nicely	chart	the	coverage
trend.	It	also	provides	the	means	to	drill-down	and	view	the	source	code	along
with	lines	covered	and	missed.

We	also	integrated	it	with	source	control	so	that,	as	changes	are	committed	to	the
repository,	new	jobs	will	be	run.

There's	more...
It's	important	not	to	get	too	wrapped	up	in	coverage	reports.	The	coverage	tool	is
useful	to	track	testing,	but	working	purely	to	increase	coverage	doesn't	guarantee
building	better	code.	It	should	be	used	as	a	tool	to	illuminate	what	test	scenarios
are	missing	instead	of	thinking	about	testing	a	missing	line	of	code.

	

Nose	doesn't	directly	support
coverage's	XML	option
The	nose	plugin	for	the	coverage	tool	doesn't	include	the	ability	to	generate
XML	files.	This	is	because	the	coverage	plugin	is	part	of	nose	and	not	part	of	the
coverage	project.	It	is	not	up	to	date	with	the	latest	features,	including	XML
reports.

I	asked	Ned	Batchelder,	the	creator	of	the	coverage	project,	about	this	lack	of	XML	support
from	nose.	He	recommended	that	I	run	nosetests	inside	coverage,	as	shown	previously	in	the
Jenkins	job.	It	generates	the	same	.coverage	trace	data	file.	It	is	easy	to	then	execute	coverage	xml
with	the	required	arguments	in	order	to	get	our	desired	report.	In	fact,	we	can	use	any	of
coverage's	reporting	features	at	this	stage.	Unfortunately,	the	coverage	tool	needs	the	explicit
path	to	nosetests,	and	running	inside	Jenkins	requires	the	path	to	be	spelled	out.

	

Updating	the	project-level	script	to
provide	coverage	reports
Update	the	project-level	script	to	generate	HTML,	XML,	and	console	coverage
reports	as	runnable	options.

Getting	ready
Install	coverage	by	typing	pip	install	coverage
Create	the	network	management	application	described	in	the	Building	a
network	management	application	recipe

How	to	do	it...
	

With	these	steps,	we	will	explore	how	to	use	coverage	programmatically	in	a
project	management	script:

1.	 Create	a	new	file	called	recipe58.py	to	store	this	command-line	script.
2.	 Create	a	script	that	uses	getopt	to	parse	command-line	arguments:

import	getopt

import	logging

import	nose	

import	os

import	os.path

import	re

import	sys

from	glob	import	glob

def	usage():

print

print	"Usage:	python	recipe58.py	[command]"

print	"\t--help"

print	"\t--test"

print	"\t--package"

print	"\t--publish"

print	"\t--register"

print

try:

	optlist,	args	=	getopt.getopt(sys.argv[1:],

	"h",

	["help",	"test",	"package",	"publish",	"register"])

except	getopt.GetoptError:

#	print	help	information	and	exit:

	print	"Invalid	command	found	in	%s"	%	sys.argv

	usage()

	sys.exit(2)

3.	 Add	a	test	function	that	uses	coverage's	API	to	gather	metrics	and	then
generate	a	console	report,	an	HTML	report,	and	an	XML	report,	while	also
using	nose's	API	to	run	the	tests:

def	test():

			from	coverage	import	coverage

			cov	=	coverage()	cov.start()

			suite	=	["recipe52",	"recipe52b",	"recipe55",	"recipe56",	"recipe57"]

			print("Running	suite	%s"	%	suite)

			args	=	[""]

			args.extend(suite)

			nose.run(argv=args)

			cov.stop()

			modules_to_report	=	[module	+	".py"	for	module	in	suite]

			modules_to_report.append("network.py")

			cov.report(morfs=modules_to_report)

			cov.html_report(morfs=modules_to_report,	\

																									directory="recipe58")

			cov.xml_report(morfs=modules_to_report,	\

																								outfile="recipe58.xml")						

4.	 Add	some	other	stubbed	out	functions	to	simulate	packaging,	publishing,
and	registering	this	project:

def	package():

		print	"This	is	where	we	can	plug	in	code	to	run	"	+	\	

								"setup.py	to	generate	a	bundle."

def	publish():

		print	"This	is	where	we	can	plug	in	code	to	upload	"	+\

								"our	tarball	to	S3	or	some	other	download	site."

def	publish():

		print	"This	is	where	we	can	plug	in	code	to	upload	"	+\

								"our	tarball	to	S3	or	some	other	download	site."

def	register():

		print	"setup.py	has	a	built	in	function	to	"	+	\

								"'register'	a	release	to	PyPI.	It's	"	+	\

								"convenient	to	put	a	hook	in	here."

#	os.system("%s	setup.py	register"	%	sys.executable)

5.	 Add	code	that	processes	command-line	arguments	and	calls	the	functions
defined	earlier:

if	len(optlist)	==	0:

			usage()

			sys.exit(1)

#	Check	for	help	requests,	which	cause	all	other

#	options	to	be	ignored.	for	option	in	optlist:

if	option[0]	in	("--help",	"-h"):

				usage()

				sys.exit(1)

#	Parse	the	arguments,	in	order	for	option	in	optlist:

if	option[0]	in	("--test"):

			test()

if	option[0]	in	("--package"):

			package()

if	option[0]	in	("--publish"):

			publish()

if	option[0]	in	("--register"):

			

6.	 Run	the	script	using	the	--test	option:

7.	 Open	the	HTML	report	using	your	favorite	browser:

6.	 Inspect	recipe58.xml.

	

	

How	it	works...
	

The	coverage	API	is	easy	to	use	as	shown	in	the	following	steps:

1.	 In	the	test	method,	we	create	a	coverage()	instance:

from	coverage	import	coverage

cov	=	coverage()

2.	 We	need	to	call	the	start	method	to	begin	tracing:

cov.start()

3.	 Next,	we	need	to	exercise	the	main	code.	In	this	case,	we	are	using	the	nose
API.	We	will	use	it	to	run	the	various	recipes	coded	in	this	chapter:

suite	=	["recipe52",	"recipe52b",	"recipe55",	"recipe56",	"recipe57"]

print("Running	suite	%s"	%	suite)	

args	=	[""]

args.extend(suite)

nose.run(argv=args)

4.	 Then	we	need	to	stop	coverage	from	tracing:

cov.stop()

5.	 Now	that	we	have	gathered	metrics,	we	can	generate	a	console	report,	an
HTML	report,	and	an	XML	report:

modules_to_report	=	[module	+	".py"	for	module	in	suite]	

modules_to_report.append("network.py")

cov.report(morfs=modules_to_report)

cov.html_report(morfs=modules_to_report,	directory="recipe58")

cov.xml_report(morfs=modules_to_report,	outfile="recipe58.xml")

The	first	report	is	a	console	report.	The	second	report	is	an	HTML	report	written
into	the	recipe58	subdirectory.	The	third	report	is	an	XML	report	in	Cobertura
format	written	to	recipe58.xml.

	

	

	

There's	more...
There	are	many	more	options	to	fine-tune	gathering	as	well	as	reporting.	Just
visit	the	online	documentation	at	http://nedbatchelder.com/code/coverage/api.html	for
more	details.

http://nedbatchelder.com/code/coverage/api.html

Can	we	only	use	getopt?
Python	2.7	introduced	argparse	as	an	alternative	to	getopt.	The	current
documentation	gives	no	indication	that	getopt	is	deprecated,	so	it's	safe	to	use	as
we	have	just	done.	The	getopt	module	is	a	nice,	easy-to-use	command-line	parser.

Smoke/Load	Testing	–	Testing	Major
Parts
	

In	this	chapter,	we	will	cover	the	following	topics:

Defining	a	subset	of	test	cases	using	import	statements
Leaving	out	integration	tests
Targeting	end	to	end	scenarios
Targeting	the	test	server
Coding	a	data	simulator
Recording	and	playing	back	live	data	in	real	time
Recording	and	playing	back	live	data	as	fast	as	possible
Automating	your	management	demo

	

	

Introduction
Smoke	testing	is	not	very	widely	embraced	by	teams	that	write	automated	tests.
Writing	tests	to	verify	things	are	working	or	to	expose	bugs	is	a	commonly
adopted	practice,	and	many	teams	pick	up	the	idea	of	using	acceptance	testing	to
verify	whether	their	applications	are	meeting	customer	demands.

But	smoke	testing	is	a	little	different.	One	of	the	key	ideas	with	smoke	testing	is
to	see	whether	the	system	has	a	pulse.	What	does	this	mean?	It's	similar	to	when
a	doctor	first	sees	a	patient.	The	first	thing	they	do	is	check	the	patient's	pulse,
along	with	other	vital	signs.	No	pulse;	critical	pulse!	So,	what	exactly	in
software	constitutes	a	pulse?	That	is	what	we'll	explore	in	the	recipes	in	this
chapter.

Instead	of	thinking	about	comprehensive	test	suites	that	make	sure	every	corner
of	the	system	has	been	checked,	smoke	testing	takes	a	much	broader	perspective.
A	set	of	smoke	tests	is	meant	to	make	sure	the	system	is	up	and	alive.	It's	almost
like	a	ping	check.	Compare	it	to	sanity	tests.	Sanity	tests	are	used	to	prove	a
small	set	of	situations	actually	work.	Smoke	testing,	which	is	similar	in	the	sense
that	it	is	quick	and	shallow,	is	meant	to	see	whether	the	system	is	in	an	adequate
state	to	proceed	with	more	extensive	testing.

If	you	imagine	an	application	built	to	ingest	invoices,	a	set	of	smoke	tests	could
include	the	following:

Verify	the	test	file	has	been	consumed
Verify	the	number	of	lines	parsed
Verify	the	grand	total	of	the	bill

Does	this	sound	like	a	small	set	of	tests?	Is	it	incomplete?	Yes	it	is.	And	that's
the	idea.	Instead	of	verifying	our	software	parsed	everything	correctly,	we	are
verifying	just	a	few	key	areas	that	must	be	working.	If	it	fails	to	read	one	file,
then	there	is	a	major	issue	that	needs	to	be	addressed.	If	the	grand	total	of	the	bill
is	incorrect,	again,	something	big	must	be	taken	care	of.

A	key	side	effect	of	smoke	testing	is	that	these	tests	should	be	quick	to	run.	What	if	we	altered

the	function	that	handles	files?	If	our	test	suite	involves	parsing	lots	of	different	file	types,	it
could	take	a	long	time	to	verify	we	didn't	break	anything.	Instead	of	spending	30	minutes	to
run	a	comprehensive	test	suite,	wouldn't	it	be	better	to	run	a	one	minute	quick	test	and	then
spend	the	other	29	minutes	working	on	the	software?

Smoke	tests	are	also	good	to	use	when	preparing	for	a	customer	demo.	With	the
tension	turned	up,	it's	good	to	run	tests	more	often	to	make	sure	we	haven't
broken	anything.	Before	launching	a	demo,	one	last	pulse	check	to	know	the
system	is	alive	may	be	needed.

This	chapter	also	dives	into	load	testing.	Load	testing	is	crucial	to	verify	whether
our	applications	can	handle	the	strain	of	real-world	situations.	This	often
involves	collecting	real-world	data	and	playing	it	back	through	our	software	for
a	reproducible	environment.	While	we	need	to	know	our	system	can	handle
today's	load,	how	likely	is	it	that	tomorrow's	load	will	be	the	same?	Not	very
likely.

It	is	very	useful	to	seek	out	the	next	bottleneck	in	our	application.	That	way,	we
can	work	towards	eliminating	it	before	we	hit	that	load	in	production.	One	way
to	stress	the	system	is	to	play	back	real-world	data	as	quickly	as	possible.

In	this	chapter,	we	will	look	at	some	recipes	in	which	we	both	smoke	test	and
load	test	the	network	management	application.	The	types	of	load	we	will	be
placing	on	the	application	could	also	be	described	as	soak	testing	and	stress
testing.	Soak	testing	is	described	as	putting	a	significant	load	on	the	system
over	a	significant	period	of	time.	Stress	testing	is	described	as	loading	down	a
system	until	it	breaks.

In	my	opinion,	soak	testing	and	stress	testing	are	different	sides	of	the	same	coin	of	load
testing.	That	is	why	this	chapter	simply	uses	the	term	load	testing	when	the	various	recipes
can	easily	extend	to	these	types	of	testing.

The	code	in	this	chapter	also	uses	several	utilities	provided	by	Spring	Python	(htt
p://springpython.webfactional.com).

Many	of	the	recipes	in	this	chapter	interact	with	a	MySQL	database.	Install	the
Python	MySQLdb	library	by	typing	pip	install	mysql-python.

Several	of	the	recipes	in	this	chapter	use	Python	Remote	Objects	(Pyro)	(http:/
/www.xs4all.nl/~irmen/pyro3/).	It	is	a	RemoteProcedureCall	(RPC)	library	that

http://springpython.webfactional.com
http://www.xs4all.nl/~irmen/pyro3/

supports	communicating	between	threads	and	processes.	Install	Pyro	by	typing
pip	install	pyro.

Defining	a	subset	of	test	cases	using
import	statements
Create	a	Python	module	that	selectively	imports	which	test	cases	to	run.

How	to	do	it...
	

With	these	steps,	we	will	explore	selectively	picking	a	smaller	set	of	tests	to
facilitate	a	faster	test	run:

1.	 Create	a	test	module	called	recipe59_test.py,	which	will	be	used	to	write
some	tests	against	our	network	application,	as	shown	here:

import	logging

from	network	import	*

import	unittest

from	springpython.database.factory	import	*

from	springpython.database.core	import	*

2.	 Create	a	test	case	that	removes	the	database	connection	and	stubs	out	the
data	access	functions,	as	shown	here:

class	EventCorrelatorUnitTests(unittest.TestCase):

def	setUp(self):

		db_name	=	"recipe59.db"

		factory	=	Sqlite3ConnectionFactory(db=db_name)

		self.correlator	=	EventCorrelator(factory)

		#	We	"unplug"	the	DatabaseTemplate	so	that

		#	we	don't	talk	to	a	real	database.

		self.correlator.dt	=	None

		#	Instead,	we	create	a	dictionary	of

		#	canned	data	to	return	back

		self.return_values	=	{}

		#	For	each	sub-function	of	the	network	app,

		#	we	replace	them	with	stubs	which	return	our

		#	canned	data.

def	stub_store_event(event):

		event.id	=	self.return_values["id"]

		return	event,	self.return_values["active"]

		self.correlator.store_event	=	stub_store_event

def	stub_impact(event):

		return	(self.return_values["services"],

		self.return_values["equipment"])

		self.correlator.impact	=	stub_impact

def	stub_update_service(service,	event):

		return	service	+	"	updated"self.correlator.update_service	=	

		tub_update_service

def	stub_update_equip(equip,	event):

		return	equip	+	"	updated"

		self.correlator.update_equipment	=	stub_update_equip

3.	 Create	a	test	method	that	creates	a	set	of	canned	data	values,	invokes	the

application's	process	method,	and	then	verifies	the	values,	as	shown	here:

def	test_process_events(self):

		#	For	this	test	case,	we	can	preload	the	canned	data,

		#	and	verify	that	our	process	function	is	working

		#	as	expected	without	touching	the	database.

		self.return_values["id"]	=	4668

		self.return_values["active"]	=	True

		self.return_values["services"]	=	["service1",

																																				"service2"]

		self.return_values["equipment"]	=	["device1"]

		evt1	=	Event("pyhost1",	"serverRestart",	5)

		stored_event,	is_active,

		updated_services,	updated_equipment	=

		self.correlator.process(evt1)

		self.assertEquals(4668,	stored_event.id)

		self.assertTrue(is_active)

self.assertEquals(2,	len(updated_services))

self.assertEquals(1,	len(updated_equipment))

4.	 Create	another	test	case	that	preloads	the	database	using	a	SQL	script,	as
shown:

class	EventCorrelatorIntegrationTests(unittest.TestCase):

		def	setUp(self):

						db_name	=	"recipe59.db"

						factory	=	Sqlite3ConnectionFactory(db=db_name)

						self.correlator	=	EventCorrelator(factory)

						dt	=	DatabaseTemplate(factory)

						sql	=	open("network.sql").read().split(";")

for	statement	in	sql:

			dt.execute(statement	+	";")

5.	 Write	a	test	method	that	calls	the	network	application's	process	method	and
then	prints	out	the	results,	as	shown	here:

def	test_process_events(self):

				evt1	=	Event("pyhost1",	"serverRestart",	5)

				stored_event,	is_active,

							updated_services,	updated_equipment	=

																	self.correlator.process(evt1)

				print	"Stored	event:	%s"	%	stored_event

				if	is_active:

									print	"This	event	was	an	active	event."

				print	"Updated	services:	%s"	%	updated_services

				print	"Updated	equipment:	%s"	%	updated_equipment

				print	"---------------------------------"

6.	 Create	a	new	file	called	recipe59.py	that	only	imports	the	SQL-based	test
case,	as	shown	here:

from	recipe59_test	import	EventCorrelatorIntegrationTests

if	__name__	==	"__main__":

					import	unittest

					unittest.main()

7.	 Run	the	test	module.	Take	a	look	at	the	following	screenshot:

	

	

	

How	it	works...
We	need	to	write	various	test	cases	to	cover	the	different	levels	of	testing	we
need.	By	separating	the	test	runner	from	the	test	case,	we	are	able	to	decide	to
only	run	the	test	that	integrated	with	the	database.

Why	would	we	do	this?	In	our	situation,	we	have	only	one	unit	test,	and	it	runs
pretty	quickly.	Do	you	think	that	a	real-world	application	with	months	or	years
of	development	and	a	corresponding	test	suite	will	run	as	quickly?	Of	course
not!

Some	of	the	tests	may	be	complex.	They	may	involve	talking	to	real	systems,
parsing	huge	sample	data	files,	and	other	time-consuming	tasks.	This	could
realistically	take	minutes	or	hours	to	run.

When	we	are	about	to	make	a	presentation	to	a	customer,	we	don't	need	a	long-
running	test	suite.	Instead,	we	need	to	be	able	to	run	a	quick	subset	of	these	tests
that	gives	us	the	confidence	that	things	are	working.	Using	Python's	import
statements	makes	this	easy	to	define.

Some	suites	we	may	want	to	think	about	include	the	following:

pulse.py:	Import	a	set	of	test	cases	that	provide	broad,	yet	shallow	testing	of
the	application,	to	verify	the	system	has	a	pulse
checkin.py:	Import	a	set	of	test	cases	that	are	currently	functioning,	and
provide	enough	confidence	that	code	is	ready	to	be	committed
integration.py:	Import	a	set	of	test	cases	that	start	up,	interact,	and	then	shut
down	external	systems	such	as	LDAP,	databases,	or	other	subsystems
security.py:	Import	a	set	of	test	cases	that	are	focused	on	various	security
scenarios,	confirming	both	good	and	bad	credential	handling
all.py:	Import	all	test	cases	to	make	sure	everything	is	working

This	is	just	a	sample	of	the	types	of	test	module	we	could	define.	It's	possible	to
define	a	module	for	each	subsystem	we	handle.	But	since	we	are	talking	about
smoke	testing,	we	may	want	to	think	more	broadly,	and	instead	pick	some	key
tests	from	each	subsystem	and	tie	them	together	to	give	us	a	sense	that	the

application	is	working.

There's	more...
Let's	have	a	look	at	these	too.

Security,	checking,	and	integration
aren't	smoke	tests!
That	is	absolutely	right.	The	previous	list	shows	that	using	Python	import
statements	isn't	confined	to	defining	smoke	test	suites.	It	can	be	used	to	bundle
together	test	cases	that	serve	a	variety	of	needs.	So	why	bring	this	up,	since	we
are	talking	about	smoke	tests?	Well,	because	I	wanted	to	convey	how	useful	this
mechanism	is	for	organizing	tests,	and	that	it	extends	beyond	smoke	testing.

	

What	provides	good	flexibility?
To	have	good	flexibility	in	being	able	to	pick	test	classes,	we	should	avoid
making	the	test	classes	too	big.	But	putting	each	test	method	inside	a	different
class	is	probably	too	much.

See	also
The	Leaving	out	integration	tests	recipe	in	this	chapter

Leaving	out	integration	tests
A	fast	test	suite	avoids	connecting	to	remote	systems,	such	as	databases	and
LDAP.	Just	verifying	the	core	units	and	avoiding	external	systems	can	result	in	a
faster-running	test	suite	with	more	coverage.	This	can	lead	to	a	useful	smoke	test
that	gives	developers	confidence	in	the	system	without	running	all	the	tests.

	

How	to	do	it...
	

With	these	steps,	we	will	see	how	to	cut	out	test	cases	that	interact	with	external
systems:

1.	 Create	a	test	module	called	recipe60_test.py,	which	will	be	used	for	writing
some	tests	for	our	network	application,	as	shown	here:

import	logging

from	network	import	*

import	unittest

from	springpython.database.factory	import	*

from	springpython.database.core	import	*

2.	 Create	a	test	case	that	removes	the	database	connection	and	stubs	out	the
data	access	functions:

class	EventCorrelatorUnitTests(unittest.TestCase):

def	setUp(self):

db_name	=	"recipe60.db"

factory	=	Sqlite3ConnectionFactory(db=db_name)

self.correlator	=	EventCorrelator(factory)

#	We	"unplug"	the	DatabaseTemplate	so	that

#	we	don't	talk	to	a	real	database.

self.correlator.dt	=	None

#	Instead,	we	create	a	dictionary	of

#	canned	data	to	return	back

self.return_values	=	{}

#	For	each	sub-function	of	the	network	app,

#	we	replace	them	with	stubs	which	return	our

#	canned	data.

def	stub_store_event(event):

event.id	=	self.return_values["id"]

return	event,	self.return_values["active"]

self.correlator.store_event	=	stub_store_event

def	stub_impact(event):

return	(self.return_values["services"],self.return_values["equipment"])

self.correlator.impact	=	stub_impact

def	stub_update_service(service,	event):

return	service	+	"	updated"

self.correlator.update_service	=	stub_update_service

def	stub_update_equip(equip,	event):

return	equip	+	"	updated"

self.correlator.update_equipment	=	stub_update_equip

3.	 Create	a	test	method	that	creates	a	set	of	canned	data	values,	invokes	the
applications	process	method,	and	then	verifies	the	values,	as	shown	here:

def	test_process_events(self):

#	For	this	test	case,	we	can	preload	the	canned	data,

#	and	verify	that	our	process	function	is	working

#	as	expected	without	touching	the	database.

self.return_values["id"]	=	4668

self.return_values["active"]	=	True

self.return_values["services"]	=	["service1",

"service2"]

self.return_values["equipment"]	=	["device1"]

evt1	=	Event("pyhost1",	"serverRestart",	5)

stored_event,	is_active,

updated_services,	updated_equipment	=

self.correlator.process(evt1)

self.assertEquals(4668,	stored_event.id)

self.assertTrue(is_active)

self.assertEquals(2,	len(updated_services))

self.assertEquals(1,	len(updated_equipment))

4.	 Create	another	test	case	that	preloads	the	database	using	a	SQL	script:

class	EventCorrelatorIntegrationTests(unittest.TestCase):

def	setUp(self):

db_name	=	"recipe60.db"

factory	=	Sqlite3ConnectionFactory(db=db_name)

self.correlator	=	EventCorrelator(factory)

dt	=	DatabaseTemplate(factory)

sql	=	open("network.sql").read().split(";")

for	statement	in	sql:

dt.execute(statement	+	";")

5.	 Write	a	test	method	that	calls	the	network	application's	process	method	and
then	prints	out	the	results:

def	test_process_events(self):

evt1	=	Event("pyhost1",	"serverRestart",	5)

stored_event,	is_active,

updated_services,	updated_equipment	=

self.correlator.process(evt1)

print	"Stored	event:	%s"	%	stored_event

if	is_active:

print	"This	event	was	an	active	event."

print	"Updated	services:	%s"	%	updated_services

print	"Updated	equipment:	%s"	%	updated_equipment

print	"---------------------------------"

6.	 Create	a	module	called	recipe60.py	that	only	imports	the	unit	test	that	avoids
making	SQL	calls.	Take	a	look	at	this	code:

from	recipe60_test	import	EventCorrelatorUnitTests

if	__name__	==	"__main__":

import	unittest

unittest.main()

7.	 Run	the	test	module.	Take	a	look	at	the	following	screenshot:

	

	

	

How	it	works...
This	test	suite	runs	the	unit	tests	and	avoids	running	test	cases	that	integrate	with
a	live	database.	It	uses	Python	import	statements	to	decide	which	test	cases	to
include.

In	our	contrived	scenario,	there	is	little	gained	performance.	But	with	a	real
project,	there	are	probably	a	lot	more	computer	cycles	spent	on	integration
testing,	due	to	the	extra	costs	of	talking	to	external	systems.

The	idea	is	to	create	a	subset	of	tests	that	verify	to	some	degree	that	our
application	works	by	covering	a	big	chunk	of	it	in	a	small	amount	of	time.

The	trick	with	smoke	testing	is	deciding	what	constitutes	a	good	enough	test.
Automated	testing	cannot	completely	confirm	that	our	application	has	no	bugs.
We	are	foiled	by	the	fact	that	either	a	particular	bug	doesn't	exist,	or	we	haven't
written	a	test	case	that	exposes	such	a	bug.	To	engage	in	smoke	testing,	we	are
deciding	to	use	a	subset	of	these	tests	for	a	quick	pulse	read.	Again,	deciding
which	subset	gives	us	a	good	enough	pulse	may	be	more	art	than	science.

This	recipe	focuses	on	the	idea	that	unit	tests	will	probably	run	more	quickly,
and	that	cutting	out	the	integration	tests	will	remove	the	slower	test	cases.	If	all
the	unit	tests	pass,	then	we	have	some	confidence	that	our	application	is	in	good
shape.

There's	more...
I	must	point	out	that	test	cases	don't	just	easily	fall	into	the	category	of	unit	test
or	integration	test.	It	is	more	of	a	continuum.	In	this	recipe's	sample	code,	we
wrote	one	unit	test	and	one	integration	test,	and	then	we	picked	the	unit	test	for
our	smoke	test	suite.

Does	this	appear	arbitrary	and	perhaps	contrived?	Sure	it	does.	That	is	why
smoke	testing	isn't	cut	and	dried	but	instead	requires	some	analysis	and	judgment
about	what	to	pick.	And	as	development	proceeds,	there	is	room	for	fine-tuning.

I	once	developed	a	system	that	ingested	invoices	from	different	suppliers.	I
wrote	unit	tests	that	set	up	empty	database	tables,	ingested	files	of	many	formats,
and	then	examined	the	contents	of	the	database	to	verify	processing.	The	test
suite	took	over	45	minutes	to	run.	This	pressured	me	to	not	run	the	test	suite	as
often	as	desired.	I	crafted	a	smoke	test	suite	that	involved	running	only	the	unit
tests	that	did	not	talk	to	the	database	(since	they	were	quick),	combined	with
ingesting	one	supplier	invoice.	It	ran	in	fewer	than	five	minutes,	and	provided	a
quicker	means	to	assure	myself	that	fundamental	changes	to	the	code	did	not
break	the	entire	system.	I	could	run	this	many	times	during	the	day,	and	only	run
the	comprehensive	suite	about	once	a	day.

Should	a	smoke	test	include
integration	or	unit	tests?
Does	this	code	appear	to	be	similar	to	that	shown	in	the	Defining	a	subset	of	test
cases	using	import	statements	recipe?	Yes,	it	does.	So,	why	include	it	in	this
recipe?	Because	what	is	picked	for	the	smoke	test	suite	is	just	as	critical	as	the
tactics	used	to	make	it	happen.	The	other	recipe	decided	to	pick	up	an	integration
test	while	cutting	out	the	unit	tests	to	create	a	smaller,	faster-running	test	suite.

This	recipe	shows	that	another	possibility	is	to	cut	out	the	lengthier	integration
tests	and	instead	run	as	many	unit	tests	as	possible,	considering	they	are
probably	faster.

As	stated	earlier,	smoke	testing	isn't	cut	and	dried.	It	involves	picking	the	best
representation	of	tests	without	taking	up	too	much	time	running	them.	It	is	quite
possible	that	none	the	tests	written	up	to	this	point	precisely	target	the	idea	of
capturing	a	pulse	of	the	system.	A	good	smoke	test	suite	may	involve	mixing
together	a	subset	of	unit	and	integration	tests.

See	also
The	Defining	a	subset	of	test	cases	using	import	statements	recipe

Targeting	end-to-end	scenarios
Pick	a	complement	of	tests	that	runs	enough	parts	to	define	a	thread	of
execution.	This	is	sometimes	referred	to	as	thread	testing.	Not	because	we	are
using	software	threading,	but	instead	because	we	are	focusing	on	a	story	thread.
Many	times,	our	threads	either	come	from	customer	scenarios,	or	they	are	at
least	inspired	by	them.	Other	threads	can	involve	other	groups,	such	as
operations.

For	example,	a	network	management	system	may	push	out	customer-affecting
alarms,	but	the	internal	operations	team	that	has	to	solve	the	network	problems
may	have	a	totally	different	perspective.	Both	of	these	situations	demonstrate
valid	end-to-end	threads	that	are	good	places	to	invest	in	automated	testing.

If	the	different	teams	are	viewed	as	different	types	of	customers,	then	the	concepts	of
acceptance	testing	certainly	apply.	And	it's	also	possible	to	overlap	this	with	the	concepts	of
BDD.

Getting	ready
	

1.	 Copy	the	SQL	script	into	a	new	file	called	recipe61_network.sql	and	replace
the	insert	statements	at	the	bottom	with	the	following:

INSERT	into	EQUIPMENT	(ID,	HOST_NAME,	STATUS)	values	(1,	'pyhost1',	1);

INSERT	into	EQUIPMENT	(ID,	HOST_NAME,	STATUS)	values	(2,	'pyhost2',	1);

INSERT	into	EQUIPMENT	(ID,	HOST_NAME,	STATUS)	values	(3,	'pyhost3',	1);

INSERT	into	SERVICE	(ID,	NAME,	STATUS)	values	(1,	'service-abc',	

'Operational');

INSERT	into	SERVICE_MAPPING	(SERVICE_FK,	EQUIPMENT_FK)	values	(1,1);

INSERT	into	SERVICE_MAPPING	(SERVICE_FK,	EQUIPMENT_FK)	values	(1,2);

In	this	set	of	test	data,	pyhost1	and	pyhost2	map	into	service-abc.	pyhost3	doesn't	map
into	any	service.

	

	

	

How	to	do	it...
	

With	these	steps,	we	will	build	up	an	end-to-end	test	scenario.

1.	 Create	a	test	module	called	recipe61_test.py.
2.	 Create	a	test	case	where	each	test	method	captures	a	different	thread	of

execution,	as	shown	here:

import	logging

from	network	import	*

import	unittest

from	springpython.database.factory	import	*

from	springpython.database.core	import	*

class	EventCorrelatorEquipmentThreadTests(unittest.TestCase):

def	setUp(self):

db_name	=	"recipe61.db"

factory	=	Sqlite3ConnectionFactory(db=db_name)

self.correlator	=	EventCorrelator(factory)

dt	=	DatabaseTemplate(factory)

sql	=	open("recipe61_network.sql").read().split(";")

for	statement	in	sql:

dt.execute(statement	+	";")

def	tearDown(self):

self.correlator	=	None

3.	 Create	a	test	method	that	captures	the	thread	of	failing	and	recovering	a
piece	of	equipment,	as	shown	here:

def	test_equipment_failing(self):

#	This	alarm	maps	to	a	device

#	but	doesn't	map	to	any	service.

4.	 Have	the	test	method	inject	a	single,	faulting	alarm	and	then	confirm	that	a
related	piece	of	equipment	has	failed,	as	shown	here:

evt1	=	Event("pyhost3",	"serverRestart",	5)

stored_event,	is_active,

updated_services,	updated_equipment	=

self.correlator.process(evt1)

self.assertTrue(is_active)

self.assertEquals(len(updated_services),	0)

self.assertEquals(len(updated_equipment),	1)

self.assertEquals(updated_equipment[0]["HOST_NAME"],

"pyhost3")

#	5	is	the	value	for	a	failed	piece	of	equipment

self.assertEquals(updated_equipment[0]["STATUS"],	5)

5.	 In	the	same	test	method,	add	code	that	injects	a	single,	clearing	alarm	and
confirms	that	the	equipment	has	recovered,	as	shown	here:

evt2	=	Event("pyhost3",	"serverRestart",	1)

stored_event,	is_active,

updated_services,	updated_equipment	=

self.correlator.process(evt2)

self.assertFalse(is_active)

self.assertEquals(len(updated_services),	0)

self.assertEquals(len(updated_equipment),	1)

self.assertEquals(updated_equipment[0]["HOST_NAME"],

"pyhost3")

#	1	is	the	value	for	a	clear	piece	of	equipment

self.assertEquals(updated_equipment[0]["STATUS"],	1)

6.	 Create	another	test	method	that	captures	the	thread	of	failing	and	clearing	a
service,	as	shown	here:

def	test_service_failing(self):

#	This	alarm	maps	to	a	service.

7.	 Write	a	test	method	that	injects	a	single,	faulting	alarm	and	confirms	that
both	a	piece	of	equipment	and	a	related	service	fails,	as	shown	here:

evt1	=	Event("pyhost1",	"serverRestart",	5)

stored_event,	is_active,

updated_services,	updated_equipment	=

self.correlator.process(evt1)

self.assertEquals(len(updated_services),	1)

self.assertEquals("service-abc",

updated_services[0]["service"]["NAME"])

self.assertEquals("Outage",

updated_services[0]["service"]["STATUS"])

8.	 In	the	same	test	method,	add	code	that	injects	a	single,	clearing	alarm	and
confirms	that	both	the	equipment	and	the	service	have	recovered,	as	shown
here:

evt2	=	Event("pyhost1",	"serverRestart",	1)

stored_event,	is_active,

updated_services,	updated_equipment	=

self.correlator.process(evt2)

self.assertEquals(len(updated_services),	1)

self.assertEquals("service-abc",

updated_services[0]["service"]["NAME"])

self.assertEquals("Operational",

updated_services[0]["service"]["STATUS"])

9.	 Create	a	test	runner	called	recipe61.py	that	imports	both	of	these	thread	tests,
as	shown	here:

from	recipe61_test	import	*

if	__name__	==	"__main__":

import	unittest

unittest.main()

10.	 Run	the	test	suite.	Look	at	the	following	screenshot:

	

	

	

How	it	works...
	

In	this	recipe	we	coded	two	end	to	end	test	scenarios.	Now	consider	the
following:

The	first	scenario	tested	how	our	application	processes	a	fault,	followed	by
a	clear	that	only	impacts	a	piece	of	the	equipment.
The	second	scenario	tested	how	our	application	processes	a	fault,	followed
by	a	clear	that	impacts	a	service.

We	injected	a	fault	and	then	checked	the	results	to	confirm	that	the	proper	piece
of	inventory	failed.	Then	we	injected	a	clear,	and	again	we	confirmed	that	the
proper	piece	of	inventory	recovered.

Both	of	these	scenarios	show	how	our	application	processes	different	types	of
events	from	the	beginning	to	the	end.

	

	

	

There's	more...
In	a	more	complex,	realistic	version	of	this	application,	what	other	systems	do
you	think	would	be	involved	in	an	end	to	end	thread?	What	about	security?
Transactions?	Publishing	results	to	an	external	interface?

This	is	where	we	need	to	define	where	the	ends	are.	Imagine	that	our	application
was	grown	to	the	point	where	incoming	events	are	received	by	a	web	request	and
equipment	and	service	updates	are	pushed	out	as	JSON	data	to	be	received	by	a
web	page.

A	good	end-to-end	test	would	include	these	parts	as	well.	For	the	JSON	output,
we	can	use	Python's	JSON	library	to	decode	the	output	and	then	confirm	the
results.	For	the	incoming	web	request,	we	can	use	many	different	techniques,
including	acceptance	testing	tools	such	as	the	Robot	Framework.

How	does	this	define	smoke	tests?
If	it	takes	too	long	run	all	the	end-to-end	tests,	we	should	pick	a	subset	of	them
that	covers	some	key	parts.	For	example,	we	could	skip	the	equipment-based
thread	but	keep	the	service-based	one.

See	also
Testing	Web	Basics	with	the	Robot	Framework	recipe	in	Chapter	10,	Web	UI
Testing	Using	Selenium
Using	Robot	to	Verify	Web	Application	Security	recipe	in	Chapter	10,	Web	UI
Testing	Using	Selenium

https://www.packtpub.com/sites/default/files/downloads/Web_UI_Testing_Using_Selenium.pdf
https://www.packtpub.com/sites/default/files/downloads/Web_UI_Testing_Using_Selenium.pdf

Targeting	the	test	server
Does	your	test	server	have	all	the	parts?	If	not,	then	define	an	alternative	set	of
tests.

This	recipe	assumes	that	the	production	server	has	an	enterprise	grade	MySQL
database	system,	while	the	developer's	workstation	does	not.	We	will	explore
writing	some	tests	that	use	the	MySQL	database.	But	when	we	need	to	run	them
in	the	development	lab,	we	will	make	adjustments	so	they	run	on	SQLite,	which
comes	bundled	with	Python.

Are	you	wondering	why	MySQL	isn't	on	the	developer's	workstation?	It	is	true
that	MySQL	is	easy	to	install	and	not	a	huge	performance	load.	But	this	scenario
applies	just	the	same	if	the	production	server	is	Oracle	and	management	deems	it
too	costly	for	our	developers	to	be	granted	an	individual	license.	Due	to	the	cost
of	setting	up	a	commercial	database,	this	recipe	is	uses	MySQL	and	SQLite
rather	than	Oracle	and	SQLite.

Getting	ready
	

Let's	look	at	the	following	steps:

1.	 Make	sure	the	MySQL	production	database	server	is	up	and	running:

2.	 Open	a	command-line	MySQL	client	shell	as	the	root	user.
3.	 Create	a	database	for	this	recipe	called	recipe62	and	a	user	with	permission

to	access	it.
4.	 Exit	the	shell.	Contrary	to	what	is	shown	in	the	following	screenshot,	never,

ever,	ever	create	a	live	production	database	with	passwords	stored	in	the
clear.	This	database	is	for	demonstration	purposes	only:

	

	

	

How	to	do	it...
	

In	these	steps,	we	will	see	how	to	build	tests	that	are	aimed	at	different	servers:

1.	 Create	an	alternate	version	of	the	SQL	script	called	recipe62_network.mysql
used	in	earlier	recipes	that	uses	MySQL	conventions,	as	shown	here:

DROP	TABLE	IF	EXISTS	SERVICE_MAPPING;

DROP	TABLE	IF	EXISTS	SERVICE_EVENTS;

DROP	TABLE	IF	EXISTS	ACTIVE_EVENTS;

DROP	TABLE	IF	EXISTS	EQUIPMENT;

DROP	TABLE	IF	EXISTS	SERVICE;

DROP	TABLE	IF	EXISTS	EVENTS;

CREATE	TABLE	EQUIPMENT	(

ID	SMALLINT	PRIMARY	KEY	AUTO_INCREMENT,

HOST_NAME	TEXT,

STATUS	SMALLINT

);

CREATE	TABLE	SERVICE	(

ID	SMALLINT	PRIMARY	KEY	AUTO_INCREMENT,

NAME	TEXT,

STATUS	TEXT

);

CREATE	TABLE	SERVICE_MAPPING	(

ID	SMALLINT	PRIMARY	KEY	AUTO_INCREMENT,

SERVICE_FK	SMALLINT,

EQUIPMENT_FK	SMALLINT

);

CREATE	TABLE	EVENTS	(

ID	SMALLINT	PRIMARY	KEY	AUTO_INCREMENT,

HOST_NAME	TEXT,

SEVERITY	SMALLINT,

EVENT_CONDITION	TEXT

);

CREATE	TABLE	SERVICE_EVENTS	(

ID	SMALLINT	PRIMARY	KEY	AUTO_INCREMENT,

SERVICE_FK	SMALLINT,

EVENT_FK	SMALLINT

);

CREATE	TABLE	ACTIVE_EVENTS	(

ID	SMALLINT	PRIMARY	KEY	AUTO_INCREMENT,

EVENT_FK	SMALLINT

);

INSERT	into	EQUIPMENT	(ID,	HOST_NAME,	STATUS)	values	(1,	'pyhost1',	1);

INSERT	into	EQUIPMENT	(ID,	HOST_NAME,	STATUS)	values	(2,	'pyhost2',	1);

INSERT	into	EQUIPMENT	(ID,	HOST_NAME,	STATUS)	values	(3,	'pyhost3',	1);

INSERT	into	SERVICE	(ID,	NAME,	STATUS)	values	(1,	'service-abc',	

'Operational');

INSERT	into	SERVICE_MAPPING	(SERVICE_FK,	EQUIPMENT_FK)	values	(1,1);

INSERT	into	SERVICE_MAPPING	(SERVICE_FK,	EQUIPMENT_FK)	values	(1,2)

You	might	not	have	noticed,	but	this	schema	definition	has	no	foreign
key	constraints.	In	a	real-world	SQL	script,	they	should	definitely	be
included.	They	were	left	out	in	this	case	to	reduce	complexity.

2.	 Create	a	new	module	called	recipe62_test.py	to	put	our	test	code.
3.	 Create	an	abstract	test	case	that	has	one	test	method	verifying	event-to-

service	correlation,	as	shown	here:

import	logging

from	network	import	*

import	unittest

from	springpython.database.factory	import	*

from	springpython.database.core	import	*

class	AbstractEventCorrelatorTests(unittest.TestCase):

def	tearDown(self):

self.correlator	=	None

def	test_service_failing(self):

#	This	alarm	maps	to	a	service.

evt1	=	Event("pyhost1",	"serverRestart",	5)

stored_event,	is_active,

updated_services,	updated_equipment	=

self.correlator.process(evt1)

self.assertEquals(len(updated_services),	1)

self.assertEquals("service-abc",

updated_services[0]["service"]["NAME"])

self.assertEquals("Outage",

updated_services[0]["service"]["STATUS"])

evt2	=	Event("pyhost1",	"serverRestart",	1)

stored_event,	is_active,

updated_services,	updated_equipment	=

self.correlator.process(evt2)

self.assertEquals(len(updated_services),	1)

self.assertEquals("service-abc",

updated_services[0]["service"]["NAME"])

self.assertEquals("Operational",

updated_services[0]["service"]["STATUS"])

4.	 Create	a	concrete	subclass	that	connects	to	the	MySQL	database	and	uses
the	MySQL	script,	as	shown	here:

class	MySQLEventCorrelatorTests(AbstractEventCorrelatorTests):

def	setUp(self):

factory	=	MySQLConnectionFactory("user",	"password",

"localhost",	"recipe62")

self.correlator	=	EventCorrelator(factory)

dt	=	DatabaseTemplate(factory)

sql	=	open("recipe62_network.mysql").read().split(";")

for	statement	in	sql:

dt.execute(statement	+	";")

5.	 Create	a	corresponding	production	test	runner	called	recipe62_production.py,	as
shown	here:

from	recipe62_test	import	MySQLEventCorrelatorTests

if	__name__	==	"__main__":

import	unittest

unittest.main()

Run	it	and	verify	that	it	connects	with	the	production	database:

6.	 Now	create	a	SQLite	version	of	the	SQL	script	called	recipe62_network.sql,	as
shown	here:

DROP	TABLE	IF	EXISTS	SERVICE_MAPPING;

DROP	TABLE	IF	EXISTS	SERVICE_EVENTS;

DROP	TABLE	IF	EXISTS	ACTIVE_EVENTS;

DROP	TABLE	IF	EXISTS	EQUIPMENT;

DROP	TABLE	IF	EXISTS	SERVICE;

DROP	TABLE	IF	EXISTS	EVENTS;

CREATE	TABLE	EQUIPMENT	(

ID	INTEGER	PRIMARY	KEY,

HOST_NAME	TEXT	UNIQUE,

STATUS	INTEGER

);

CREATE	TABLE	SERVICE	(

ID	INTEGER	PRIMARY	KEY,

NAME	TEXT	UNIQUE,

STATUS	TEXT

);

CREATE	TABLE	SERVICE_MAPPING	(

ID	INTEGER	PRIMARY	KEY,

SERVICE_FK,

EQUIPMENT_FK,

FOREIGN	KEY(SERVICE_FK)	REFERENCES	SERVICE(ID),

FOREIGN	KEY(EQUIPMENT_FK)	REFERENCES	EQUIPMENT(ID)

);

CREATE	TABLE	EVENTS	(

ID	INTEGER	PRIMARY	KEY,

HOST_NAME	TEXT,

SEVERITY	INTEGER,

EVENT_CONDITION	TEXT

);

CREATE	TABLE	SERVICE_EVENTS	(

ID	INTEGER	PRIMARY	KEY,

SERVICE_FK,

EVENT_FK,

FOREIGN	KEY(SERVICE_FK)	REFERENCES	SERVICE(ID),

FOREIGN	KEY(EVENT_FK)	REFERENCES	EVENTS(ID)

);

CREATE	TABLE	ACTIVE_EVENTS	(

ID	INTEGER	PRIMARY	KEY,

EVENT_FK,

FOREIGN	KEY(EVENT_FK)	REFERENCES	EVENTS(ID)

);

INSERT	into	EQUIPMENT	(ID,	HOST_NAME,	STATUS)	values	(1,	'pyhost1',	1);

INSERT	into	EQUIPMENT	(ID,	HOST_NAME,	STATUS)	values	(2,	'pyhost2',	

1);INSERT	into	EQUIPMENT	(ID,	HOST_NAME,	STATUS)	values	(3,	'pyhost3',	1);

INSERT	into	SERVICE	(ID,	NAME,	STATUS)	values	(1,	'service-abc',	'Op

erational');

INSERT	into	SERVICE_MAPPING	(SERVICE_FK,	EQUIPMENT_FK)	values	(1,1);

INSERT	into	SERVICE_MAPPING	(SERVICE_FK,	EQUIPMENT_FK)	values	(1,2);

7.	 Create	another	concrete	subclass	of	the	abstract	test	case,	have	it	connect	as
SQLite	using	the	SQLite	script,	and	add	it	to	recipe62_test.py,	as	shown	here:

class	Sqlite3EventCorrelatorTests(AbstractEventCorrelatorTests):

def	setUp(self):

factory	=	Sqlite3ConnectionFactory("recipe62.db")

self.correlator	=	EventCorrelator(factory)

dt	=	DatabaseTemplate(factory)

sql	=	open("recipe62_network.sql").read().split(";")for	statement	in	sql:

dt.execute(statement	+	";")

8.	 Create	a	corresponding	development	workstation	test	runner	called
recipe62_dev.py,	as	shown	here:

from	recipe62_test	import	Sqlite3EventCorrelatorTests

if	__name__	==	"__main__":

import	unittest

unittest.main()

9.	 Run	it	and	verify	that	it	connects	with	the	development	database:

	

	

	

How	it	works...
It	is	not	uncommon	to	have	a	production	environment	with	full-fledged	servers
and	software	installed	while	at	the	same	time	having	a	smaller	development
environment.	Some	shops	even	have	a	test	bed	that	is	somewhere	in	between
these	configurations.

Our	network	application	handles	this	situation	by	allowing	database	connection
information	to	get	injected	into	it.	In	each	test	case,	we	used	the	exact	same
application,	but	with	different	database	systems.

We	wrote	a	test	case	that	used	the	production	MySQL	database,	and	we	wrote	a
test	case	that	used	the	development	SQLite	database.	Of	course,	MySQL,	even
though	it	is	used	in	many	production	environments,	doesn't	sound	like	something
that's	not	available	to	developers.	But	it	provides	an	easy-to-see	example	of
having	to	switch	database	systems.

There's	more...
In	this	recipe,	we	showed	the	need	to	switch	database	systems.	This	isn't	the	only
type	of	external	system	that	may	require	alternate	configurations	for	test
purposes.	Other	things,	such	as	LDAP	servers,	third-party	web	services,	and
separate	subsystems,	may	have	totally	different	configurations.

I	have	worked	on	several	contracts	and	have	often	seen	members	of	management
cut	development	lab	resources	to	save	costs.	They	seem	to	conclude	that	the	cost
of	maintaining	multiple	configurations	and	handling	non-reproducible	bugs	is
less	than	the	cost	of	having	the	exact	same	complement	of	equipment	and
software.	I	feel	that	this	conclusion	is	faulty,	because,	at	some	time	in	the	future,
they	end	up	buying	more	hardware	and	upgrade	things	due	to	increasing	issues
involving	platform	variance.

This	means	we	can't	always	write	tests	that	target	the	production	environment.
Writing	our	software	so	that	it	has	maximum	flexibility,	such	as	injecting
database	configuration,	as	we	did	earlier,	is	a	minimum	requirement.

It's	important	that	we	write	as	many	tests	as	possible	that	work	on	the
developer's	platform.	When	developers	have	to	start	sharing	server-side
resources,	then	we	run	into	resource	collisions.	For	example,	two	developers
sharing	a	single	database	server	will	have	to	do	one	of	these	things:

Have	separate	schemas	so	they	can	empty	and	load	test	data
Coordinate	times	when	they	each	have	access	to	the	same	schema
Have	different	servers	set	up	for	each	developer

The	third	option	is	highly	unlikely,	given	that	we	are	talking	about	a
development	lab	with	a	smaller	footprint	than	the	production	one.

A	positive	note	is	that	developers	are	getting	faster	and	more	powerful	machines.
Compared	to	10	years	ago,	a	commonly	seen	workstation	far	exceeds	old	server
machines.	But,	even	though	we	may	each	be	able	to	run	the	entire	software	stack
on	our	machine,	it	doesn't	mean	management	will	pay	for	all	the	necessary
licensing.

Unfortunately,	this	limitation	may	never	change.	Hence,	we	have	to	be	ready	to
write	tests	for	alternate	configurations	and	manage	the	discrepancies	with	the
production	environment.

How	likely	is	it	that	a	development
and	production	environment	would
use	two	different	database	systems?
	

Admittedly,	it	is	unlikely	to	have	something	as	big	as	switching	between	SQLite
and	MySQL.	That	alone	requires	slightly	different	dialects	of	SQL	to	define	the
schema.	Some	would	immediately	consider	this	too	difficult	to	manage.	But
there	are	smaller	differences	in	environment	that	can	still	yield	the	same	need	for
reduced	testing.

I	worked	on	a	system	for	many	years	where	the	production	system	used	Oracle
9i	RAC,	while	the	development	lab	just	had	Oracle	9i.	RAC	required	extra
hardware,	and	we	were	never	allocated	the	resources	for	it.	To	top	it	off,	Oracle
9i	was	too	big	to	install	on	the	relatively	lightweight	PCs	we	developed	with.
While	everything	spoke	Oracle's	dialect	of	SQL,	the	uptime	differences	between
RAC	and	non-RAC	generated	a	fair	number	of	bugs	that	we	couldn't	reproduce
in	the	development	lab.	It	really	did	qualify	as	two	different	database	systems.
Given	that	we	couldn't	work	in	the	production	environment,	we	tested	as	much
as	we	could	in	the	development	lab	and	then	scheduled	time	in	the	test	lab	where
an	RAC	instance	existed.	Since	many	people	needed	access	to	that	lab,	we
confined	our	usage	to	RAC-specific	issues	to	avoid	schedule	delays.

	

	

	

This	isn't	just	confined	to	database
systems
	

As	stated	earlier,	this	isn't	just	about	database	systems.	We	have	discussed
MySQL,	SQLite,	and	Oracle,	but	this	also	involves	any	sort	of	system	we	work
with	or	depend	on	that	varies	between	production	and	development
environments.

Being	able	to	code	subsets	of	tests	to	achieve	confidence	can	help	cut	down	on
the	actual	issues	we	will	inevitably	have	to	deal	with.

	

	

	

Coding	a	data	simulator
Coding	a	simulator	that	spits	out	data	at	a	defined	rate	can	help	simulate	real
load.

This	recipe	assumes	that	the	reader's	machine	is	installed	with	MySQL.

Getting	ready
1.	 Make	sure	the	MySQL	production	database	server	is	up	and	running.
2.	 Open	a	command-line	MySQL	client	shell	as	the	root	user.
3.	 Create	a	database	for	this	recipe	called	recipe63	as	well	as	a	user	with

permission	to	access	it.
4.	 Exit	the	shell	as	shown	here:

How	to	do	it...
	

With	these	steps,	we	will	explore	coding	a	test	simulator:

1.	 Create	a	test	generator	script	called	recipe63.py	that	uses	various	Python
libraries,	as	shown	here:

import	getopt

import	random

import	sys

import	time

from	network	import	*

from	springpython.remoting.pyro	import	*

2.	 Create	a	usage	method	that	prints	out	command-line	options,	as	shown
here:

def	usage():

print	"Usage"

print	"====="

print	"-h,	--help	read	this	help"

print	"-r,	--rate	[arg]	number	of	events	per	second"

print	"-d,	--demo	demo	by	printing	events"

3.	 Use	Python's	getopt	library	to	parse	command-line	arguments,	as	shown
here:

try:

opts,	args	=	getopt.getopt(sys.argv[1:],	"hr:d",	["help",	"rate=",

"demo"])

except	getopt.GetoptError,	err:

print	str(err)

usage()

sys.exit(1)

rate	=	10

demo_mode	=	False

for	o,	a	in	opts:

if	o	in	("-h",	"--help"):

usage()

sys.exit(1)

elif	o	in	("-r",	"--rate"):

rate	=	a

elif	o	in	("-d",	"--demo"):

demo_mode	=	True

4.	 Add	a	switch	so	when	it's	not	in	demo	mode,	it	uses	Spring	Python's
PyroProxyFactory	to	connect	to	a	server	instance	of	the	network	management

application:

if	not	demo_mode:

print	"Sending	events	to	live	network	app.	Ctrl+C	to	exit..."

proxy	=	PyroProxyFactory()

proxy.service_url	=	"PYROLOC://127.0.0.1:7766/network"

5.	 Code	an	infinite	loop	that	creates	a	random	event,	as	shown	here:

while	True:

hostname	=	random.choice(["pyhost1","pyhost2","pyhost3"])

condition	=	random.choice(["serverRestart",	"lineStatus"])

severity	=	random.choice([1,5])

evt	=	Event(hostname,	condition,	severity)

6.	 If	in	demo	mode,	print	out	the	event,	as	shown	here:

if	demo_mode:

now	=	time.strftime("%a,	%d	%b	%Y	%H:%M:%S	+0000",

time.localtime())

print	"%s:	Sending	out	%s"	%	(now,	evt)

7.	 If	not	in	demo	mode,	make	a	remote	call	through	the	proxy	to	the	network
app's	process	method,	as	shown	here:

else:

stored_event,	is_active,	updated_services,

updated_equipment	=	proxy.process(evt)

print	"Stored	event:	%s"	%	stored_event

print	"Active?	%s"	%	is_active

print	"Services	updated:	%s"	%	updated_services

print	"Equipment	updated;	%s"	%	updated_equipment

print	"================"

8.	 Sleep	for	a	certain	amount	of	time	before	repeating	the	loop,	by	using	this
code	line:

time.sleep(1.0/float(rate))

9.	 Run	the	generator	script.	In	the	following	screenshot,	notice	there	is	an
error	because	we	haven't	started	the	server	process	yet.	This	can	also
happen	if	the	client	and	server	have	mismatched	URLs:

10.	 Create	a	server	script	called	recipe63_server.py	that	will	run	our	network
management	app	connected	to	MySQL	using	the	recipe62_network.sql	SQL
script	from	the	Targeting	the	test	server	recipe,	as	shown	here:

from	springpython.database.factory	import	*

from	springpython.database.core	import	*

from	springpython.remoting.pyro	import	*

from	network	import	*

import	logging

logger	=	logging.getLogger("springpython")

loggingLevel	=	logging.DEBUG

logger.setLevel(loggingLevel)

ch	=	logging.StreamHandler()

ch.setLevel(loggingLevel)

formatter	=	logging.Formatter("%(asctime)s	-	%(name)s	-	%(levelname)s	-

%(message)s")

ch.setFormatter(formatter)

logger.addHandler(ch)

#	Initialize	the	database

factory	=	MySQLConnectionFactory("user",	"password",

"localhost",	"recipe63")

dt	=	DatabaseTemplate(factory)

sql	=	open("recipe62_network.mysql").read().split(";")

for	statement	in	sql:

dt.execute(statement	+	";")

11.	 Add	code	to	expose	the	app	using	Pyro,	as	shown	here:

#	Create	an	instance	of	the	network	management	app

target_service	=	EventCorrelator(factory)

#	Expose	the	network	app	as	a	Pyro	service

exporter	=	PyroServiceExporter()

exporter.service_name	=	"network"

exporter.service	=	target_service

exporter.after_properties_set()

12.	 Run	the	server	script	in	a	different	shell:

13.	 The	default	rate	is	10	events/second.	Run	the	generator	script	with	a	rate	of

one	event/second.	In	the	following	screenshot,	notice	how	the	script
generated	a	clear,	fault,	and	then	another	fault.	The	service	started	at
Operational,	moved	to	Outage,	and	stayed	there:

	

	

	

How	it	works...
	

Python's	random.choice	method	makes	it	easy	to	create	a	range	of	random	events.
By	using	the	time.sleep	method,	we	can	control	the	rate	at	which	the	events	are
created.

We	used	Pyro	to	connect	the	test	generator	to	the	network	management
application.	This	isn't	the	only	way	to	connect	things	together.	We	could	have
exposed	the	application	through	other	means,	such	as	REST,	JSON,	or	perhaps
by	communicating	through	a	database	table.	That's	not	important.	What	is
important	is	that	we	built	an	independent	tool	that	fed	data	into	our	application
as	if	it	came	from	a	live	network.

	

	

	

There's	more...
	

We	built	a	test	generator.	It's	easy	to	run	multiple	copies	of	it	in	different	shells,
at	different	rates.	We	have	an	easy	way	to	simulate	different	subnets	producing
different	volumes	of	traffic.

We	could	also	add	more	command-line	options	to	fine-tune	the	events.	For
example,	we	could	make	the	event	condition	a	parameter,	and	emulate	different
rates	for	different	types	of	events.

	

	

	

Why	does	the	server	script	initialize
the	database?
A	production	version	of	the	server	wouldn't	do	this.	For	the	demonstration
purposes	of	this	recipe,	it	is	convenient	to	put	it	there.	Every	time	we	stop	and
start	the	server	script,	it	relaunches	the	database.

Why	MySQL	instead	of	SQLite?
SQLite	has	some	limitations	when	it	comes	to	multithreading.	Pyro	uses
multithreading,	and	SQLite	can't	pass	objects	across	threads.	SQLite	is	also
relatively	lightweight	and	probably	not	well-suited	for	a	real	network
management	application.

See	also
The	Targeting	the	test	server	recipe

Recording	and	playing	back	live	data
in	real	time
Nothing	beats	live	production	data.	With	this	recipe,	we	will	write	some	code	to
record	live	data.	Then	we	will	play	it	back	with	delays	added	to	simulate	playing
back	the	live	data	stream.

Getting	ready
	

Let's	look	at	the	following	steps:

1.	 Make	sure	the	MySQL	production	database	server	is	up	and	running.
2.	 Open	a	command	line	MySQL	client	shell	as	the	root	user.
3.	 Create	a	database	for	this	recipe	called	recipe64	as	well	as	a	user	with

permission	to	access	it.

4.	 Exit	the	shell,	as	shown	here:

	

	

	

How	to	do	it...
	

With	these	steps,	we	will	see	how	to	record	and	play	back	data	in	real-time	pace:

1.	 Write	a	script	called	recipe64_livedata.py	that	simulates	live	data	being	sent
every	one	to	ten	seconds,	as	shown	here:

import	random

import	sys

import	time

from	network	import	*

from	springpython.remoting.pyro	import	*print	"Sending	events	to	live	

network	app.	Ctrl+C	to	exit..."

proxy	=	PyroProxyFactory()

proxy.service_url	=	"PYROLOC://127.0.0.1:7766/network_advised"

while	True:

hostname	=	random.choice(["pyhost1","pyhost2","pyhost3"])

condition	=	random.choice(["serverRestart",	"lineStatus"])

severity	=	random.choice([1,5])

evt	=	Event(hostname,	condition,	severity)

stored_event,	is_active,	updated_services,

updated_equipment	=	proxy.process(evt)

print	"Stored	event:	%s"	%	stored_event

print	"Active?	%s"	%	is_active

print	"Services	updated:	%s"	%	updated_services

print	"Equipment	updated;	%s"	%	updated_equipment

print	"================"

time.sleep(random.choice(range(1,10)))

2.	 Write	a	server	script	called	recipe64_server.py	that	initializes	the	database
using	the	SQL	script	recipe62_network.mysql	from	Targeting	the	test	server,	as
shown	here:

from	springpython.database.factory	import	*

from	springpython.database.core	import	*

from	springpython.remoting.pyro	import	*

from	springpython.aop	import	*

from	network	import	*

from	datetime	import	datetime

import	os

import	os.path

import	pickle

import	logging

logger	=	logging.getLogger("springpython.remoting")

loggingLevel	=	logging.DEBUG

logger.setLevel(loggingLevel)

ch	=	logging.StreamHandler()

ch.setLevel(loggingLevel)

formatter	=	logging.Formatter("%(asctime)s	-	%(name)s	-	%(levelname)s	-

%(message)s")

ch.setFormatter(formatter)

logger.addHandler(ch)

#	Initialize	the	database

factory	=	MySQLConnectionFactory("user",	"password",

"localhost",	"recipe64")

dt	=	DatabaseTemplate(factory)

sql	=	open("recipe62_network.mysql").read().split(";")

for	statement	in	sql:

dt.execute(statement	+	";")

3.	 Add	some	code	that	creates	an	instance	of	the	network	management
application	and	advertises	it	using	Pyro	and	Spring	Python,	as	shown	here:

#	Create	an	instance	of	the	network	management	app

target_service	=	EventCorrelator(factory)

#	Expose	the	original	network	app	as	a	Pyro	service

unadvised_service	=	PyroServiceExporter()

unadvised_service.service_name	=	"network"

unadvised_service.service	=	target_service

unadvised_service.after_properties_set()

4.	 Add	some	more	code	that	defines	an	interceptor	that	captures	incoming
event	data	along	with	a	time	stamp	to	disk,	as	shown	here:

class	Recorder(MethodInterceptor):

"""

An	interceptor	that	catches	each	event,

write	it	to	disk,	then	proceeds	to	the

network	management	app.

"""

def	__init__(self):

self.filename	=	"recipe64_data.txt"

self.special_char	=	"&&&"

if	os.path.exists(self.filename):

os.remove(self.filename)

def	invoke(self,	invocation):

#	Write	data	to	disk

with	open(self.filename,	"a")	as	f:

evt	=	invocation.args[0]

now	=	datetime.now()

output	=	(evt,	now)

print	"Recording	%s"	%	evt

f.write(pickle.dumps(output).replace("n",	"&&&")	+	"n")

#	Now	call	the	advised	service

return	invocation.proceed()

5.	 Add	some	code	that	wraps	the	network	management	application	with	the
interceptor	and	advertises	it	using	Pyro,	as	shown	here:

#	Wrap	the	network	app	with	an	interceptor

advisor	=	ProxyFactoryObject()

advisor.target	=	target_service

advisor.interceptors	=	[Recorder()]

#	Expose	the	advised	network	app	as	a	Pyro	service

advised_service	=	PyroServiceExporter()

advised_service.service_name	=	"network_advised"

advised_service.service	=	advisor

advised_service.after_properties_set()

6.	 Start	up	the	server	app	by	typing	python	recipe64_server.py.	Notice	in	the
following	screenshot	that	there	is	both	a	network	service	and	a	network_advised
service	registered	with	Pyro:

Run	the	live	data	simulator	by	typing	python	recipe64_livedata.py	until	it
generates	a	few	events,	and	then	hit	Ctrl+C	to	break	out	of	it:

7.	 Look	at	the	server-side	of	things,	and	notice	how	it	recorded	several	events:

8.	 Inspect	the	recipe64_data.txt	data	file,	noting	how	each	line	represents	a
separate	event	and	time	stamp.	While	it's	hard	to	decipher	the	data	stored	in
a	pickled	format,	it's	possible	to	spot	bits	and	pieces.

9.	 Create	a	script	called	recipe64_playback.py	that	de-pickles	each	line	of	the	data
file,	as	shown	here:

from	springpython.remoting.pyro	import	*

from	datetime	import	datetime

import	pickle

import	time

with	open("recipe64_data.txt")	as	f:

lines	=	f.readlines()

events	=	[pickle.loads(line.replace("&&&",	"n"))

for	line	in	lines]

10.	 Add	a	function	that	finds	the	time	interval	between	the	current	event	and
the	previous	one,	as	shown	here:

def	calc_offset(evt,	time_it_happened,	previous_time):

if	previous_time	is	None:

return	time_it_happened	-	time_it_happened

else:

return	time_it_happened	-	previous_time

11.	 Define	a	client	proxy	to	connect	to	the	unadvised	interface	to	our	network
management	application,	as	shown	here:

print	"Sending	events	to	live	network	app.	Ctrl+C	to	exit..."

proxy	=	PyroProxyFactory()

proxy.service_url	=	"PYROLOC://127.0.0.1:7766/network"

12.	 Add	code	that	iterates	over	each	event,	calculating	the	difference,	and	then
delaying	the	next	event	by	that	many	seconds,	as	shown	here:

previous_time	=	None

for	(e,	time_it_happened)	in	events:

diff	=	calc_offset(e,	time_it_happened,	previous_time)

print	"Original:	%s	Now:	%s"	%	(time_it_happened,	datetime.now())

stored_event,	is_active,	updated_services,

updated_equipment	=	proxy.process(e)

print	"Stored	event:	%s"	%	stored_event

print	"Active?	%s"	%	is_active

print	"Services	updated:	%s"	%	updated_services

print	"Equipment	updated;	%s"	%	updated_equipment

print	"Next	event	in	%s	seconds"	%	diff.seconds

print	"================"

time.sleep(diff.seconds)

previous_time	=	time_it_happened

13.	 Run	the	playback	script	by	typing	python	recipe64_playback.py	and	observe	how
it	has	the	same	delays	as	the	original	live	data	simulator	did:

	

	

	

How	it	works...
Normally,	we	would	be	recording	data	coming	in	from	the	live	network.	In	this
situation,	we	need	a	simulator	that	generates	random	data.	The	simulator	we
coded	in	this	recipe	is	very	similar	to	the	one	shown	in	the	Coding	a	data
simulator	recipe.

To	capture	the	data,	we	coded	an	interceptor	that	is	embedded	between	Pyro	and
the	network	management	application.	Every	event	published	to	the	network_advised
Pyro	service	name	seamlessly	passes	through	this	interceptor.	Consider	the
following:

1.	 Each	event	that	comes	in	is	appended	to	the	data	file	that	was	initialized
when	the	interceptor	was	first	created.

2.	 The	event	is	also	stored	with	a	copy	of	datetime.now()	to	capture	a	time
stamp.

3.	 The	event	and	time	stamp	are	combined	into	a	tuple	and	pickled,	making	it
easy	to	write	and	later	read	back	from	disk.

4.	 The	data	is	pickled	to	make	it	easy	to	transfer	to	and	from	disk.
5.	 After	writing	it	on	to	the	disk,	the	interceptor	calls	the	target	service	and

passes	the	results	back	to	the	original	caller.

Finally,	we	have	a	playback	script	that	reads	in	the	data	file,	one	event	per	line.	It
de-pickles	each	line	into	the	tuple	format	it	was	originally	stored	in	and	builds	a
list	of	events.

The	list	of	events	is	then	scanned,	one	at	a	time.	By	comparing	the	current
event's	time	stamp	with	the	previous	one,	a	difference	in	seconds	is	calculated	to
use	Python's	time.sleep()	method	to	play	the	events	back	at	the	same	rate	they
were	recorded.

The	playback	script	uses	Pyro	to	send	the	events	into	the	network	management
application.	But	it	talks	to	a	different	exposure	point.	This	is	to	avoid	re-
recording	the	same	event.

There's	more...
	

The	code	in	this	recipe	uses	Pyro	as	the	mechanism	connecting	clients	and
servers	communicate	in	a	publish/subscribe	paradigm.	This	isn't	the	only	way	to
build	such	a	service.	Python	has	XML-RPC	built	in	as	well.	It	just	isn't	as
flexible	as	Pyro.	A	more	thorough	analysis	of	real	traffic	is	needed	to	determine
whether	this	interface	is	good	enough.	Alternatives	include	pushing	events
through	a	database	EVENT	table	where	the	client	inserts	rows	and	the	server
polls	the	table	for	new	rows,	and	then	removes	them	as	they	are	consumed.

This	recipe	also	makes	heavy	use	of	Spring	Python	for	its	aspect-oriented
programming	features	to	insert	the	data	recording	code	(http://static.springsource
.org/spring-python/1.1.x/reference/html/aop.html).	This	provides	a	clean	way	to	add
the	extra	layer	of	functionality	we	need	to	sniff	and	record	network	traffic
without	having	to	touch	the	already-built	network	management	code.

	

	

	

http://static.springsource.org/spring-python/1.1.x/reference/html/aop.html

I	thought	this	recipe	was	about	live
data!
Well,	the	recipe	is	more	about	recording	the	live	data	and	controlling	the	speed
of	playback.	To	capture	this	concept	in	a	reusable	recipe	requires	that	we
simulate	the	live	system.	But	the	fundamental	concept	of	inserting	a	tap	point	in
front	of	the	network	management	processor,	as	we	have	done,	is	just	as	valid.

	

Is	opening	and	closing	a	file	for	every
event	a	good	idea?
	

The	recipe	was	coded	to	ensure	that	stopping	the	recording	would	incur	a
minimal	risk	of	losing	captured	data	not	yet	written	to	disk.	Analysis	of
production	data	is	required	to	determine	the	most	efficient	way	of	storing	data.
For	example,	it	may	take	less	I/O	intense	to	write	data	in	batches	of	10,	or
perhaps	100	events.	But	the	risk	is	that	data	can	be	lost	in	similar	bundles.

If	the	volume	of	traffic	is	low	enough,	writing	each	event	one	by	one,	as	shown
in	this	recipe,	may	not	be	a	problem	at	all.

	

	

	

What	about	offloading	the	storage	of
data?
	

It	is	not	uncommon	to	have	the	actual	logic	of	opening	the	file,	appending	the
data,	and	then	closing	the	file	contained	in	a	separate	class.	This	utility	could
then	be	injected	into	the	interceptor	we	built.	This	may	become	important	if
some	more	elaborate	means	to	storing	or	piping	the	data	is	needed.	For	example,
another	Pyro	service	may	exist	in	another	location	that	wants	a	copy	of	the	live
data	feed.

Injecting	the	data	consumer	into	the	aspect	we	coded	would	give	us	more
flexibility.	In	this	recipe,	we	don't	have	such	requirements,	but	it's	not	hard	to
imagine	making	such	adjustments	as	new	requirements	arrive.

	

	

	

See	also
The	Writing	a	data	simulator	recipe
The	Recording	and	playing	back	live	data	as	fast	as	possible	recipe

Recording	and	playing	back	live	data
as	fast	as	possible
Replaying	production	data	as	fast	as	possible	(instead	of	in	real	time)	can	give
you	insight	into	where	your	bottlenecks	are.

Getting	ready
1.	 Make	sure	the	MySQL	production	database	server	is	up	and	running.
2.	 Open	a	command-line	MySQL	client	shell	as	the	root	user.
3.	 Create	a	database	for	this	recipe	called	recipe65	as	well	as	a	user	with

permission	to	access	it.
4.	 Exit	the	shell,	as	shown	here:

How	to	do	it...
	

In	these	steps,	we	will	write	some	code	that	lets	us	put	a	big	load	on	our	system:

1.	 Write	a	script	called	recipe65_livedata.py	that	simulates	live	data	being	sent
every	one	to	ten	seconds,	as	shown	here:

import	random

import	sys

import	time

from	network	import	*

from	springpython.remoting.pyro	import	*

print	"Sending	events	to	live	network	app.	Ctrl+C	to	exit..."

proxy	=	PyroProxyFactory()

proxy.service_url	=	"PYROLOC://127.0.0.1:7766/network_advised"

while	True:

hostname	=	random.choice(["pyhost1","pyhost2","pyhost3"])

condition	=	random.choice(["serverRestart",	"lineStatus"])

severity	=	random.choice([1,5])

evt	=	Event(hostname,	condition,	severity)

stored_event,	is_active,	updated_services,

updated_equipment	=	proxy.process(evt)

print	"Stored	event:	%s"	%	stored_event

print	"Active?	%s"	%	is_active

print	"Services	updated:	%s"	%	updated_services

print	"Equipment	updated;	%s"	%	updated_equipment

print	"================"

time.sleep(random.choice(range(1,10)))

2.	 Write	a	server	script	called	recipe65_server.py	that	initializes	the	database
using	the	SQL	script	recipe62_network.mysql	from	the	Targeting	the	test	server
recipe,	as	shown	here:

from	springpython.database.factory	import	*

from	springpython.database.core	import	*

from	springpython.remoting.pyro	import	*

from	springpython.aop	import	*

from	network	import	*

from	datetime	import	datetime

import	os

import	os.path

import	pickle

import	logging

logger	=	logging.getLogger("springpython.remoting")

loggingLevel	=	logging.DEBUG

logger.setLevel(loggingLevel)

ch	=	logging.StreamHandler()

ch.setLevel(loggingLevel)

formatter	=	logging.Formatter("%(asctime)s	-	%(name)s	-	%(levelname)s	-%

(message)s")

ch.setFormatter(formatter)

logger.addHandler(ch)

#	Initialize	the	database

factory	=	MySQLConnectionFactory("user",	"password",

"localhost",	"recipe65")

dt	=	DatabaseTemplate(factory)

sql	=	open("recipe62_network.mysql").read().split(";")

for	statement	in	sql:

dt.execute(statement	+	";")

3.	 Add	some	code	that	creates	an	instance	of	the	network	management
application	and	advertises	it	using	Pyro	and	Spring	Python,	as	shown	here:

#	Create	an	instance	of	the	network	management	app

target_service	=	EventCorrelator(factory)

#	Expose	the	original	network	app	as	a	Pyro	service

unadvised_service	=	PyroServiceExporter()

unadvised_service.service_name	=	"network"

unadvised_service.service	=	target_service

unadvised_service.after_properties_set()

4.	 Add	some	more	code	that	defines	an	interceptor	that	captures	incoming
event	data	along	with	a	time	stamp	on	disk,	as	shown	here:

class	Recorder(MethodInterceptor):

"""

An	interceptor	that	catches	each	event,

write	it	to	disk,	then	proceeds	to	the

network	management	app.

"""

def	__init__(self):

self.filename	=	"recipe65_data.txt"

self.special_char	=	"&&&"

if	os.path.exists(self.filename):

os.remove(self.filename)

def	invoke(self,	invocation):

#	Write	data	to	disk

with	open(self.filename,	"a")	as	f:

evt	=	invocation.args[0]

now	=	datetime.now()

output	=	(evt,	now)

print	"Recording	%s"	%	evt

f.write(pickle.dumps(output).replace(

"n",	"&&&")	+	"n")

#	Now	call	the	advised	service

return	invocation.proceed()

5.	 Add	some	code	that	wraps	the	network	management	application	with	the
interceptor	and	advertises	it	using	Pyro,	as	shown	here:

#	Wrap	the	network	app	with	an	interceptor

advisor	=	ProxyFactoryObject()

advisor.target	=	target_service

advisor.interceptors	=	[Recorder()]

#	Expose	the	advised	network	app	as	a	Pyro	service

advised_service	=	PyroServiceExporter()

advised_service.service_name	=	"network_advised"

advised_service.service	=	advisor

advised_service.after_properties_set()

6.	 Start	up	the	server	app	by	typing	python	recipe65_server.py.	In	the	following
screenshot,	notice	that	there	is	both	a	network	service	and	a	network_advised
service	registered	with	Pyro:

7.	 Run	the	live	data	simulator	by	typing	python	recipe65_livedata.py	and	watch	it
run	until	it	generates	a	few	events,	and	then	hit	Ctrl+C	to	break	out	of	it:

8.	 Look	at	the	server	side	of	things,	and	notice	how	it	recorded	several	events:

9.	 Inspect	the	recipe65_data.txt	data	file,	noting	how	each	line	represents	a
separate	event	and	time	stamp.	While	it's	hard	to	decipher	the	data	stored	in
a	pickled	format,	it's	possible	to	spot	bits	and	pieces.

10.	 Create	a	playback	script	called	recipe65_playback.py	that	de-pickles	each	line

of	the	data	file,	as	shown	here:

from	springpython.remoting.pyro	import	*

from	datetime	import	datetime

import	pickle

import	time

with	open("recipe65_data.txt")	as	f:

lines	=	f.readlines()

events	=	[pickle.loads(line.replace("&&&",	"n"))

for	line	in	lines]

11.	 Define	a	client	proxy	to	connect	to	the	unadvised	interface	to	our	network
management	application,	as	shown	here:

print	"Sending	events	to	live	network	app.	Ctrl+C	to	exit..."

proxy	=	PyroProxyFactory()

proxy.service_url	=	"PYROLOC://127.0.0.1:7766/network"

Add	code	that	iterates	over	each	event,	playing	back	the	events	as
quickly	as	possible,	as	shown	here:

for	(e,	time_it_happened)	in	events:

stored_event,	is_active,	updated_services,

updated_equipment	=	proxy.process(e))

print	"Stored	event:	%s"	%	stored_event

print	"Active?	%s"	%	is_active

print	"Services	updated:	%s"	%	updated_services

print	"Equipment	updated;	%s"	%	updated_equipment

print	"================"

12.	 Run	the	playback	script	by	typing	python	recipe65_playback.py,	observing	how
it	doesn't	delay	events	but	instead	plays	them	back	as	quickly	as	possible:

	

	

	

How	it	works...
Normally,	we	would	be	recording	data	coming	in	from	the	live	network.	In	this
situation,	we	need	a	simulator	that	generates	random	data.	The	simulator	we
coded	in	this	recipe	is	very	similar	to	the	one	shown	in	the	Coding	a	data
simulator	recipe.

To	capture	the	data,	we	coded	an	interceptor	that	is	embedded	between	Pyro	and
the	network	management	application.	Every	event	published	to	the	network_advised
Pyro	service	name	seamlessly	passes	through	this	interceptor.	Consider	the
following:

Each	event	that	comes	in	is	appended	to	the	data	file	that	was	initialized
when	the	interceptor	was	first	created.

The	event	is	also	stored	with	a	copy	of	datetime.now()	to	capture	a	time
stamp.

The	event	and	time	stamp	are	combined	into	a	tuple,	and	pickled,	making	it
easy	to	write	and	later	read	back	from	disk.

The	data	is	pickled	to	make	it	easy	to	transfer	to	and	from	disk.
After	writing	it	to	disk,	the	interceptor	calls	the	target	service	and	passes	the
results	back	to	the	original	caller.

Finally,	we	have	a	playback	script	that	reads	in	the	data	file,	one	event	per	line.	It
de-pickles	each	line	into	the	tuple	format	it	was	originally	stored	in,	and	builds	a
list	of	events.

The	list	of	events	is	then	scanned,	one	at	a	time.	Instead	of	evaluating	the	time
stamps	to	figure	out	how	long	to	delay	playing	back	the	events,	they	are	injected
immediately	into	the	network	management	application.

The	playback	script	uses	Pyro	to	send	the	events	in	to	the	network	management
application,	but	it	talks	to	a	different	exposure	point.	This	is	to	avoid	re-
recording	the	same	event.

There's	more...
	

The	code	in	this	recipe	uses	Pyro	as	the	mechanism	connecting	clients	and
servers	communicates	in	a	publish/subscribe	paradigm.	This	isn't	the	only	way	to
build	such	a	service.	Python	has	XML-RPC	built	in	as	well.	It	just	isn't	as
flexible	as	Pyro.	A	more	thorough	analysis	of	real	traffic	is	needed	to	determine
whether	this	interface	is	good	enough.	Alternatives	include	pushing	events
through	a	database	EVENT	table	where	the	client	inserts	rows	and	the	server
polls	the	table	for	new	rows,	and	then	removes	them	as	they	are	consumed.

This	recipe	also	makes	heavy	use	of	Spring	Python	for	its	aspect-oriented
programming	features	to	insert	the	data	recording	code	(http://static.springsource
.org/spring-python/1.1.x/reference/html/aop.html).	This	provides	a	clean	way	to	add
the	extra	layer	of	functionality	we	need	to	sniff	and	record	network	traffic
without	having	to	touch	the	existing	network	management	code.

	

	

	

http://static.springsource.org/spring-python/1.1.x/reference/html/aop.html

What	is	the	difference	between	this
and	playing	back	in	real	time?
	

Real-time	playback	is	useful	to	see	how	the	system	handles	production	load.	But
this	doesn't	answer	the	question	of	where	the	system	is	expected	to	break.	Traffic
flow	is	never	steady.	Instead,	it	often	has	bursts	that	are	not	expected.	That	is
when	playing	back	live	data	at	an	accelerated	rate	will	help	expose	the	system's
next	breakpoints.

Preemptively	addressing	some	of	these	concerns	will	make	our	system	more
resilient.

	

	

	

Where	are	the	breaking	points	of	this
application?
Admittedly,	this	recipe	didn't	break	when	we	played	back	four	events	as	fast	as
possible.	Would	this	be	the	same	result	in	production?	Things	break	in	different
ways.	We	may	not	get	a	real	exception	or	error	message	but	instead	discover	that
certain	parts	of	the	system	become	backlogged.

That	is	where	this	recipe	reaches	its	limit.	While	we	have	demonstrated	how	to
overload	the	system	with	a	large	volume	of	traffic,	we	are	not	showing	how	to
monitor	where	the	bottlenecks	are.

If	the	application	under	load	uses	database	tables	to	queue	up	work,	then	we
would	need	to	write	the	code	that	monitors	them	all	and	report	the	following:

Which	one	is	the	longest
Which	one	is	getting	longer,	and	showing	no	sign	of	catching	up
Which	one	is	the	earliest	in	the	pipeline	of	activity

In	systems	with	stages	of	processing,	there	is	often	one	bottleneck	that	makes
itself	known.	When	that	bottleneck	is	fixed,	it	is	rarely	the	only	bottleneck.	It
was	simply	either	the	most	critical	one	or	the	first	one	in	a	chain.

Also,	this	recipe	cannot	solve	your	bottleneck.	The	purpose	of	this	recipe	is	to
find	it.

I	once	built	a	network	load	tester	very	much	like	this	one.	The	code	could	handle
processing	lots	of	traffic	in	parallel,	but	events	from	the	same	device	had	to	be
processed	in	order.	Replaying	a	days	worth	of	events	all	at	once	exposed	the	fact
that	too	many	events	from	the	same	device	caused	the	entire	queue	system	to
become	overloaded	and	starve	out	handling	other	devices.	After	improving	the
service	update	algorithm,	we	were	able	to	replay	the	same	load	test	and	verify	it
could	keep	up.	This	helped	avoid	non-reproducible	outages	that	happened	after
hours	or	on	weekends.

What	amount	of	live	data	should	be
collected?
It	is	useful	for	capturing	things	such	as	a	24-hour	block	of	traffic	to	allow	an
entire	day	of	events	to	be	played	back.	Another	possibility	is	an	entire	week.
Live	systems	may	be	apt	to	have	different	loads	on	weekends	rather	than
weekdays,	and	a	week	of	data	will	allow	better	investigation.

The	problem	with	this	much	data	is	that	it	is	hard	to	pick	out	a	window	to
investigate.	This	is	why	24	hours	of	data	from	the	weekend	and	24	hours	of	data
during	the	week	may	be	more	practical.

If	there	is	some	sort	of	network	instability	where	huge	outages	are	occurring	and
causing	a	huge	flow	of	traffic,	it	may	be	useful	to	turn	on	the	collector	and	wait
for	another	similar	outage	to	occur.	After	such	an	outage	occurs,	it	may	be	useful
to	shift	through	the	data	file	and	trim	it	down	to	where	the	uptick	in	traffic
occurred.

These	types	of	captured	scenarios	are	invaluable	in	load	testing	new	releases,
because	they	confirm	that	new	patches	either	improve	performance	as	expected,
or	at	least	don't	reduce	performance	when	fixing	non-performance	issues.

See	also
The	Writing	a	data	simulator	recipe
The	Recording	and	playing	back	live	data	in	real-time	recipe

Automating	your	management	demo
Got	a	demo	coming?	Write	automated	tests	that	simulate	the	steps	you'll	be
taking.	Then	print	out	your	test	suite,	and	use	it	like	a	script.

How	to	do	it...
	

With	these	steps,	we	will	see	how	to	write	our	management	demo	script	in	a
runnable	fashion:

1.	 Create	a	new	file	called	recipe66.py	for	the	test	code	for	our	management
demo.

2.	 Create	a	unittest	test	scenario	to	capture	your	demo.
3.	 Write	a	series	of	operations	as	if	you	were	driving	the	application	from	this

automated	test.
4.	 Include	asserts	at	every	point	where	you	will	vocally	point	out	something

during	the	demo.	Take	a	look	at	this	code:

import	unittest

from	network	import	*

from	springpython.database.factory	import	*

class	ManagementDemo(unittest.TestCase):

def	setUp(self):

factory	=	MySQLConnectionFactory("user",	"password",

"localhost",	"recipe62")

self.correlator	=	EventCorrelator(factory)

dt	=	DatabaseTemplate(factory)

sql	=	open("recipe62_network.mysql").read().split(";")

for	statement	in	sql:

dt.execute(statement	+	";")

def	test_processing_a_service_affecting_event(self):

#	Define	a	service-affecting	event

evt1	=	Event("pyhost1",	"serverRestart",	5)

#	Inject	it	into	the	system

stored_event,	is_active,

updated_services,	updated_equipment	=

self.correlator.process(evt1)

#	These	are	the	values	I	plan	to	call

#	attention	to	during	my	demo

self.assertEquals(len(updated_services),	1)

self.assertEquals("service-abc",

updated_services[0]["service"]["NAME"])

self.assertEquals("Outage",

updated_services[0]["service"]["STATUS"])

if	__name__	==	"__main__":

unittest.main()

5.	 Run	the	test	suite	by	typing	python	recipe66.py:

	

	

	

How	it	works...
This	recipe	is	more	philosophical	and	less	code-based.	While	the	concept	of	this
recipe	is	valuable,	it	is	hard	to	capture	in	a	single	nugget	of	reusable	code.

In	this	test	case,	I	inject	an	event,	process	it,	and	then	confirm	what	it	impacts.
This	test	case	is	headless,	but	our	demo	probably	won't	be.	So	far	in	this	chapter,
we	haven't	built	any	user	screens.	As	we	develop	user	screens,	we	need	to	ensure
they	call	the	same	APIs	this	automated	test	calls.

Given	this,	we	are	set	up	to	use	the	screens	to	define	the	same	event	shown	in	the
test.	After	the	event	is	digested,	another	screen	will	probably	exist	that	shows
current	service	status.	We	would	expect	it	to	reflect	the	update	to	Outage.

During	our	management	demo,	we	will	then	point	out/zoom	in	to	this	part	of	the
screen	and	show	how	service-abc	switched	from	Operational	to	Outage.

If	the	screens	are	built	to	delegate	to	this	underlying	logic,	then	the	screen	logic
is	little	more	than	components	put	together	to	display	information.	The	core
logic	being	tested	maintains	its	headless	and	easy-to-test	nature.

Our	code	sample	isn't	complete,	and	wouldn't	amount	to	more	than	a	one	minute
demo.	But	the	concept	is	sound.	By	capturing	the	steps	we	plan	to	execute	in	our
demo	in	a	runnable	form,	our	management	demo	should	go	off	without	a	hitch.

Did	I	say	without	a	hitch?	Well,	demos	rarely	work	that	well.	Doesn't	something
about	management	appearances	cause	things	to	break?	At	one	time,	I	began
prepping	for	a	senior	management	demo	a	month	in	advance	using	this	recipe.	I
uncovered	and	subsequently	fixed	several	bugs,	such	that	my	demo	worked
flawlessly.	Management	was	impressed.	I'm	not	making	any	promises	here,	but
sincerely	making	your	demo	100%	runnable	will	greatly	increase	your	odds.

There's	more...
What	is	the	secret	to	this	recipe?	It	seems	to	be	a	bit	short	on	code.	While	it's
important	to	make	the	demo	100	percent	runnable,	the	key	is	then	printing	out
the	test	and	using	it	like	a	script.	That	way,	the	only	steps	you	are	taking	have
already	been	proven	to	work.

	

What	if	my	manager	likes	to	take
detours?
If	your	manager	likes	to	ask	lots	of	what-if	questions	that	pull	you	off-script,
then	you	are	sailing	into	uncharted	territory.	Your	odds	for	a	successful	demo
may	drop	quickly.

You	can	politely	dodge	this	by	capturing	their	what-ifs	for	a	future	demo	and	try
to	keep	the	current	one	on	track.	If	you	take	the	plunge	to	try	other	things	out,
realize	the	risk	you	are	taking.

Don't	be	afraid	to	promise	a	future	demo	where	you	will	travel	down	the	path
requested	instead	of	risking	it	in	this	demo.	Managers	are	actually	pretty	open	to
accepting	a	response	such	as:	I	haven't	tested	that	yet.	How	about	another	demo
next	month	where	we	cover	that?	Failed	demos	leave	a	bad	taste	in	the	mouth	of
management	and	put	your	reputation	in	jeopardy.	Successful	ones	have	an
equally	positive	effect	on	your	reputation	as	a	developer.	Management	tends	to
have	a	more	optimistic	view	of	seeing	70%	of	the	system	succeed	100%	rather
than	100%	of	the	system	succeed	70%.

This	is	where	the	line	between	engineer	and	manager	needs	to	be	observed.
While	managers	want	to	see	what's	available,	it	is	our	job	to	show	them	what	is
currently	working	and	give	an	accurate	status	on	what	is	and	isn't	available.
Asking	to	see	something	we	haven't	tested	yet	definitely	warrants	pushing	back
and	telling	them	such	a	demo	isn't	ready	yet.

Good	Test	Habits	for	New	and	Legacy
Systems
	

In	this	chapter,	we	will	cover	the	following	topics:

Something	is	better	than	nothing
Coverage	isn't	everything
Be	willing	to	invest	in	text	fixtures
If	you	aren't	convinced	about	the	value	of	testing,	your	team	won't	be	either
Harvesting	metrics
Capturing	a	bug	in	an	automated	test
Separating	algorithms	from	concurrency
Pausing	to	refactor	when	a	test	suite	takes	too	long	to	run
Cashing	in	on	your	confidence
Be	willing	to	throw	away	an	entire	day's	changes
Instead	of	shooting	for	100	percent	coverage,	try	to	have	steady	growth
Randomly	breaking	up	your	application	can	lead	to	better	code

	

	

Introduction
I	hope	you	have	enjoyed	the	previous	chapters	of	this	book.	Up	to	this	point,	we
have	explored	a	lot	of	areas	of	automated	testing,	such	as:

Unit	testing
Nose	testing
Doctest	testing
Behavior-driven	development
Acceptance	testing
Continuous	integration
Smoke	and	load	testing

In	this	chapter,	we	will	do	something	different.	Instead	of	providing	lots	of	code
samples	for	various	tips	and	tricks,	I	want	to	share	some	ideas	I	have	picked	up
in	my	career	as	a	software	engineer.

All	of	the	previous	recipes	in	this	book	had	very	detailed	steps	on	how	to	write
the	code,	run	it,	and	review	its	results.	Hopefully,	you	have	taken	those	ideas,
expanded	on	them,	improvised	them,	and,	ultimately,	applied	them	to	help	solve
your	own	software	problems.

In	this	chapter,	let's	explore	some	of	the	bigger	ideas	behind	testing	and	how
they	can	empower	our	development	of	quality	systems.

Something	is	better	than	nothing
Don't	get	caught	up	in	the	purity	of	total	isolation	or	worry	about	obscure	test
methods.	The	first	thing	to	do	is	to	start	testing.

How	to	do	it...
You	have	just	been	handed	an	application	that	was	developed	by	others	who	are
no	longer	with	your	company.	Been	there	before?	We	all	have,	and	probably	on
several	occasions.	Can	we	predict	some	of	the	common	symptoms?	Well,	they
could	be	similar	to	these:

There	are	few	(if	any)	automated	tests.
There	is	little	documentation.
There	are	chunks	of	code	that	have	been	commented	out.
There	are	either	no	comments	in	the	code,	or	there	are	comments	that	were
written	ages	ago	and	are	no	longer	correct.

And	here	is	the	fun	part—we	don't	know	about	all	of	these	issues	up	front.	We
are	basically	told	where	to	check	the	source	tree,	and	to	get	cracking.	For
example,	it's	only	when	we	run	into	an	issue	and	seek	documentation	that	we
discover	what	does	(or	does	not)	exist.

Maybe	I	didn't	catch	everything	you	have	encountered	in	that	list,	but	I	bet
you've	experienced	a	lot	of	those	things.	I	don't	want	to	sound	like	an	embittered
software	developer,	because	I'm	not.	Not	every	project	is	like	this.	But	I'm	sure
we	have	all	had	to	deal	with	this	at	one	time	or	another.	So,	what	do	we	do?	We
start	testing.

But	the	devil	is	in	the	details.	Do	we	write	a	unit	test?	What	about	a	thread	test
or	an	integration	test?	You	know	what?	It	doesn't	matter	what	type	of	test	we
write.	In	fact,	it	doesn't	even	matter	whether	we	use	the	right	name.

When	it's	just	you	and	the	code	sitting	in	a	cubicle,	terminology	doesn't	matter.
Writing	a	test	is	what	matters.	If	you	can	pick	out	one	small	unit	of	code	and
write	a	test,	then	go	for	it!	But	what	if	you	picked	up	a	jumbled	piece	of
spaghetti	code	that	doesn't	come	with	nicely	isolated	units?

Consider	a	system	where	the	smallest	unit	you	can	get	hold	of	is	a	module	that
parses	an	electronic	file	and	then	stores	the	parsed	results	in	a	database.	The
parsed	results	aren't	handed	back	through	the	API.	They	just	silently,

mysteriously	end	up	in	the	database.	How	do	we	automate	that?	Well,	we	can	do
the	following	things:

1.	 Write	a	test	that	starts	by	emptying	all	the	tables	relevant	to	the	application.
2.	 Find	one	of	your	users	who	has	one	of	these	files	and	get	a	copy	of	it.
3.	 Add	code	to	the	test	that	invokes	the	top-level	API	to	ingest	the	file.
4.	 Add	some	more	code	that	pulls	data	out	of	the	database	and	checks	the

results.	(You	may	have	to	grab	that	user	to	make	sure	the	code	is	working
correctly.)

Congratulations!	You	just	wrote	an	automated	test!	It	probably	didn't	qualify	as	a
unit	test.	In	fact,	it	may	look	kind	of	ugly	to	you,	but	so	what?	Maybe	it	took	five
minutes	to	run,	but	isn't	that	better	than	no	test	at	all?

How	it	works...
Since	the	database	is	the	place	where	we	can	assert	results,	we	need	to	have	a
cleaned-out	version	before	every	run	of	our	test.	This	will	definitely	require
coordination	if	other	developers	are	using	some	of	the	same	tables.	We	may	need
our	own	schema	allocated	to	us	so	that	we	can	empty	tables	at	will.

The	modules	probably	suffer	from	a	lack	of	cohesion	and	too	much	tight
coupling.	While	we	can	try	to	identify	why	the	code	is	bad,	it	doesn't	advance
our	cause	of	building	automated	tests.

Instead,	we	must	recognize	that	if	we	try	to	jump	immediately	into	the	unit	level
test,	we	will	have	to	refactor	the	modules	to	support	us.	With	little	or	no	safety
net,	the	risk	is	incredibly	high,	and	we	can	feel	it!	If	we	tried	to	stick	to	a
textbook	unit	test,	then	we	would	probably	give	up	and	consider	automated
testing	an	impossibility.

So,	we	have	to	take	the	first	step	and	write	an	expensive,	end-to-end,	automated
test	to	build	the	first	link	of	the	chain.	That	test	may	take	a	long	time	to	run	and
may	not	be	very	comprehensive	in	what	we	can	assert,	but	it's	a	start,	and	that	is
what's	important.	Hopefully,	after	making	steady	progress	writing	more	tests	like
this,	we	will	build	up	a	safety	net	that	will	prevent	us	from	having	to	go	back	and
refactor	this	code.

That	can't	be	everything!
Does	just	write	the	test	sound	a	little	too	simple?	Well,	the	concept	is	simple,	but
the	work	is	going	to	be	hard—very	hard.

You	will	be	forced	to	crawl	through	lots	of	APIs	and	find	out	exactly	how	they
work.	And,	guess	what?	You	probably	won't	be	handed	lots	of	intermediate
results	to	assert.	Understanding	the	API	is	just	so	that	you	can	track	down	where
the	data	travels	to.

When	I	described	the	data	of	our	situation	as	mysteriously	ending	up	in	the
database,	I	was	referring	to	the	likelihood	that	the	APIs	you	have	probably
weren't	designed	with	lots	of	return	values	aimed	at	testability.

Just	don't	let	anyone	tell	you	that	you	are	wasting	your	time	building	a	long-
running	test	case.	An	automated	test	suite	that	takes	an	hour	to	run	and	is
exercised	at	least	once	a	day	probably	instills	more	confidence	than	clicking
through	the	screens	manually.	Something	is	better	than	nothing.

See	also
The	Cash	in	on	your	confidence	recipe

Coverage	isn't	everything
You've	figured	out	how	to	run	coverage	reports.	However,	don't	assume	that
more	coverage	is	automatically	better.	Sacrificing	test	quality	in	the	name	of
coverage	is	a	recipe	for	failure.

How	to	do	it...
	

Coverage	reports	provide	good	feedback.	They	tell	us	what	is	getting	exercised
and	what	is	not.	But,	just	because	a	line	of	code	is	exercised,	that	doesn't	mean	it
is	doing	everything	it	is	meant	to	do.

Are	you	ever	tempted	to	brag	about	coverage	percentage	scores	in	the	break
room?	Taking	pride	in	good	coverage	isn't	unwarranted,	but	when	it	leads	to
comparing	different	projects	using	these	statistics,	we	are	wandering	into	risky
territory.

	

	

	

How	it	works...
	

Coverage	reports	are	meant	to	be	read	in	the	context	of	the	code	they	were	run
against.	The	reports	show	us	what	was	covered	and	what	was	not,	but	this	isn't
where	things	stop.	Instead,	it's	where	they	begin.	We	need	to	look	at	what	was
covered	and	analyze	how	well	the	tests	exercised	the	system.

It's	obvious	that	0%	coverage	of	a	module	indicates	we	have	work	to	do.	But
what	does	it	mean	when	we	have	70%	coverage?	Do	we	need	to	code	tests	that
go	after	the	other	30%?	Sure	we	do!	But	there	are	two	different	schools	of
thought	on	how	to	approach	this.	One	is	right,	and	one	is	wrong.

The	first	approach	is	to	write	the	new	tests	specifically	targeting	the
uncovered	parts	while	trying	to	avoid	overlapping	the	original	70%.
Redundantly	testing	code	already	covered	in	another	test	is	an	inefficient
use	of	resources.
The	second	approach	is	to	write	the	new	tests	so	that	they	target	scenarios
the	code	is	expected	to	handle,	but	that	we	haven't	tackled	yet.	What	was
not	covered	should	give	us	a	hint	about	which	scenarios	haven't	been	tested
yet.

The	right	approach	is	the	second	one.	OK,	I	admit	I	wrote	that	in	a	leading
fashion.	But	the	point	is	that	it's	very	easy	to	look	at	what	wasn't	hit	and	write	a
test	that	aims	to	close	the	gap	as	fast	as	possible.

	

	

	

There's	more...
	

Python	gives	us	incredible	power	to	monkey	patch,	inject	alternate	methods,	and
do	other	tricks	to	exercise	the	uncovered	code.	But	doesn't	this	sound	a	little
suspicious?	Here	are	some	of	the	risks	we	are	setting	ourselves	up	for:

The	new	tests	may	be	more	brittle	when	they	aren't	based	on	sound
scenarios.
A	major	change	to	our	algorithms	may	require	us	to	totally	rewrite	these
tests.
Ever	written	mock-based	tests?	It's	possible	to	mock	the	target	system	out
of	existence	and	end	up	just	testing	the	mocks.
Even	though	some	(or	even	most)	of	our	tests	may	have	good	quality,	the
low-quality	ones	will	cast	our	entire	test	suite	as	low	quality.

The	coverage	tool	may	not	let	us	get	away	with	some	of	these	tactics	if	we	do
things	that	interfere	with	line	counting	mechanisms.	But	whether	or	not	the
coverage	tool	counts	the	code	should	not	be	the	gauge	by	which	we	determine
the	quality	of	tests.

Instead,	we	need	to	look	at	our	tests	and	see	whether	they	are	trying	to	exercise
real-use	cases	we	should	be	handling.	When	we	are	merely	looking	for	ways	to
get	more	coverage	percentage,	we	stop	thinking	about	how	our	code	is	meant	to
operate,	and	that	is	not	good.

	

	

	

Are	we	not	supposed	to	increase
coverage?
We	are	supposed	to	increase	coverage	by	improving	our	tests,	covering	more
scenarios,	and	removing	code	that's	no	longer	supported.	These	things	all	lead	us
toward	overall	better	quality.	Increasing	coverage	for	the	sake	of	coverage
doesn't	lend	itself	to	improving	the	quality	of	our	system.

	

But	I	want	to	brag	about	the	coverage
of	my	system!
I	think	it's	all	right	to	celebrate	good	coverage.	Sharing	a	coverage	report	with
your	manager	is	all	right.	But	don't	let	it	consume	you.

If	you	start	to	post	weekly	coverage	reports,	double	check	your	motives.	The
same	goes	if	your	manager	requests	postings	as	well.

If	you	find	yourself	comparing	the	coverage	of	your	system	to	another	system,
then	watch	out!	Unless	you	are	familiar	with	the	code	of	both	systems,	and	really
know	more	than	the	bottom	line	of	the	reports,	you	will	probably	wander	into
risky	territory.	You	may	be	headed	into	the	faulty	competition	that	could	drive
your	team	to	write	brittle	tests.

Be	willing	to	invest	in	test	fixtures
Spend	time	working	on	some	test	fixtures.	You	may	not	get	a	lot	of	tests	written
at	first,	but	this	investment	will	pay	off.

How	to	do	it....
	

When	we	start	building	a	new	greenfield	project,	it's	a	lot	easier	to	write	test-
oriented	modules,	but	when	dealing	with	legacy	systems,	it	may	take	more	time
to	build	a	working	test	fixture.	This	may	be	tough	to	go	through,	but	it's	a
valuable	investment.

As	an	example,	in	the	section	Something	is	better	than	nothing,	we	talked	about
a	system	that	scanned	electronic	files	and	put	the	parsed	results	into	database
tables.	What	steps	would	our	test	fixture	require?	Perhaps	we	should	consider
the	following	issues:

Set	up	steps	to	clean	out	the	appropriate	tables.
Quite	possibly,	we	may	need	to	use	code	or	a	script	to	create	a	new	database
schema	to	avoid	collisions	with	other	developers.
It	may	be	necessary	to	place	the	file	in	a	certain	location	so	the	parser	can
find	it.

These	are	all	steps	that	take	time	to	build	a	working	test	case.	More	complex
legacy	systems	may	require	even	more	steps	to	gear	up	for	a	test	run.

	

	

	

How	it	works...
All	of	this	can	become	intimidating	and	may	push	us	to	drop	automated	testing
and	just	continue	with	clicking	through	the	screens	to	verify	things.	But	taking
the	time	to	invest	in	coding	this	fixture	will	begin	to	pay	off	as	we	write	more
test	cases	that	use	our	fixture.

Have	you	ever	built	a	test	fixture	and	had	to	alter	it	for	certain	scenarios?	After
having	developed	enough	test	cases	using	our	fixture,	we	will	probably
encounter	another	use	case	we	need	to	test	that	exceeds	the	limits	of	our	fixture.
Since	we	are	now	familiar	with	it,	it	is	probably	easier	to	create	another	fixture.

This	is	another	way	that	coding	the	first	fixture	pays	off.	Future	fixtures	have	a	good	chance	of
being	easier	to	code.	However,	this	isn't	a	cut-and-dried	guarantee	of	improvement.	Often,	the
first	variation	of	our	test	fixture	is	a	simple	one.

There's	more...
	

We	will	probably	run	into	a	situation	where	we	need	another	test	fixture	that	is
totally	different	than	what	we've	built.	At	this	point,	investing	in	the	first	test
fixture	doesn't	have	the	same	payoff.	But,	by	this	time,	we	will	have	become
more	seasoned	test	writers	and	have	a	better	handle	on	what	works	and	what
doesn't	when	it	comes	to	testing	the	system.

All	the	work	done	up	to	this	point	will	have	sharpened	our	skill	set	and	that,	in
and	of	itself,	is	a	great	payoff	for	investing	in	the	test	fixture.

	

	

	

Is	this	just	about	setting	up	a
database?
This	is	not	just	about	setting	up	a	database.	If	our	system	interacts	extensively
with	an	LDAP	server,	we	may	need	to	code	a	fixture	that	cleans	out	the	directory
structure	and	loads	it	up	with	test	data.

If	the	legacy	system	is	flexible	enough,	we	can	put	this	whole	test	structure	into
a	sub	node	in	the	hierarchy.	But	it's	just	as	likely	that	it	expects	the	data	to	exist
at	a	certain	location.	In	that	situation,	we	may	have	to	develop	a	script	that	spins
up	a	separate,	empty	LDAP	server,	and	then	shuts	it	down	after	the	test	is
complete.

Setting	up	and	tearing	down	an	LDAP	server	may	not	be	the	fastest,	nor	the	most
efficient	test	fixture.	But	if	we	invest	time	into	building	this	fixture	to	empower
ourselves	to	write	automated	tests,	we	will	eventually	be	able	to	refactor	the
original	system	to	decouple	it	from	a	live	LDAP	server.	And	this	whole	process
will	sharpen	our	skill	set.	That	is	why	creating	the	original	test	fixture	truly	is	an
investment.

If	you	aren't	convinced	about	the
value	of	testing,	your	team	won't	be
either
Test-bitten	developers	exhibit	zeal;	they	are	excited	to	run	their	test	suite	and	see
things
complete	with	100%	success.	This	sort	of	emotion	and	pride	tends	to	rub	off	on
their	fellow	developers.

But	the	reverse	is	also	true.	If	you	aren't	excited	by	all	this	and	don't	spread	the
word,	none	of	your	teammates	will	either.	The	idea	of	adding	automated	tests	to
your	system	will	die	a	sad	death.

This	isn't	just	confined	to	my	own	personal	experience.	At	the	2010	DevLink
conference,	I	attended	an	open-space	discussion	about	testing,	and	saw	this	sort
of	reaction	among	a	dozen	other	developers	I	don't	work	with
(pythontestingcookbook.posterous.com/
greetings-programs).	The	testers	showed	a	certain	type	of	excitement	as	they
relayed
their	experiences	with	testing.	The	ones	that	were	on	the	fence	about	embracing
automated	testing	were	listening	with	glee,	drinking	it	in.	Those	not	interested
simply	weren't	there	for	the	discussion.

If	you	are	reading	this	book	(which	of	course	you	are),	there	is	a	fair	chance	you
are	the	only	person	on	your	team	seriously	interested	in	automated	testing.	Your
teammates	may	have	heard	of	it,	but	aren't	as	bitten	by	the	idea	as	you.	To	add	it
to	your	system	will	require	a	lot	of	investment	by	you,	but	don't	confine	yourself
to	just	sharing	the	code;	consider	the	following:

Demonstrate	the	excitement	you	feel	as	you	make	progress,	and	tackle
thorny	issues.
Share	your	test	results	by	posting	them	on	your	walls,	where	others	can	see
them.
Talk	about	your	accomplishments	while	chatting	with	co-workers	in	the

break	room.

Testing	isn't	a	cold,	mechanical	process;	it's	an	exciting,	fiery	area	of
development.	Test-bitten	developers	can't	wait	to	share	it	with	others.	If	you	look
for	ways	to	spread	the	fire	of	automated	testing,	eventually	others	will	warm	up
to	it,	and	you	will	find	yourself	talking	about	new	testing	techniques	with	them.

Harvesting	metrics
Start	a	spreadsheet	that	shows	lines,	code,	a	number	of	tests,	the	total	test
execution	time,	and	the	number	of	bugs,	and	track	this	with	every	release.	The
numbers	will	defend	your	investment.

How	to	do	it...
	

These	high-level	steps	show	how	to	capture	metrics	over	time:

1.	 Create	a	spreadsheet	to	track	the	number	of	test	cases,	the	time	taken	to	run
the	test	suite,	the	date	of	the	test	run,	any	bugs,	and	the	average	time	per
test.

2.	 Check	the	spreadsheet	into	your	code	base	as	another	controlled	artifact.
3.	 Add	some	graphs	to	show	the	curve	of	the	test	time	versus	the	test	quantity.
4.	 Add	a	new	row	of	data	at	least	each	time	you	do	a	release.	If	you	can

capture	data	more	often,	such	as	once	a	week	or	even	once	a	day,	that	is
better.

	

	

How	it	works...
As	you	write	more	tests,	the	test	suite	will	take	longer	to	run.	But	you	will	also
find	that	the	number	of	bugs	tends	to	decrease.	The	more	testing	you	do,	and	the
more	often	you	do	it,	the	better	your	code	will	be.	Capturing	the	metrics	of	your
testing	can	act	as	hard	evidence	that	the	time	spent	writing	and	running	tests	is	a
well-placed	investment.

	

There's	more...
	

Why	do	I	need	this	document?	Don't	I	already	know	that	testing	works?	Think	of
it	as	a	backup	for	your	assertion	of	quality.	Months	down	the	road,	you	may	be
challenged	by	management	to	speed	things	up.	Maybe	they	need	something
faster,	and	they	think	you	are	simply	spending	too	much	time	on	this	testing
stuff.

If	you	can	pull	out	your	spreadsheet	and	show	how	bugs	decreased	with	testing
effort,	they	will	have	little	to	argue	with.	But	if	you	don't	have	this,	and	simply
argue	that	testing	makes	things	better,	you	may	lose	the	argument.

	

	

	

Metrics	aren't	just	for	defending
yourself	to	management
I	personally	enjoyed	seeing	the	tests	grow	and	the	bugs	decline.	It	was	a	personal
way	to	track	myself	and	keep	a	handle	on	how	much	progress	was	made.	And,	to
be	honest,	my	last	manager	gave	me	full	support	for	automated	testing.	He	had
his	own	metrics	of	success,	so	I	never	had	to	pull	out	mine.

	

Capturing	a	bug	in	an	automated	test
Before	you	fix	that	one-line	bug	you	spotted,	write	an	automated	test	instead,
and	make	sure	it's	repeatable.	This	helps	to	build	up	insulation	from	our	system,
regressing	back	into	failures	we	fixed	in	the	past.

How	to	do	it...
	

These	high-level	steps	capture	the	workflow	of	capturing	bugs	in	automated	tests
before
we	fix	them:

1.	 When	a	new	bug	is	discovered,	write	a	test	case	that	recreates	it.	It	doesn't
matter	if	the	test	case	is	long-running,	complex,	or	integrates	with	lots	of
components.	The	critical	thing	is	to	reproduce	the	bug.

2.	 Add	the	bug	to	your	suite	of	tests.
3.	 Fix	the	bug.
4.	 Verify	that	the	test	suite	passes	before	checking	your	changes.

	

	

How	it	works...
	

The	simplest	way	to	introduce	automated	testing	to	an	application	that	never	had
it	before	is	to	test	one	bug	at	a	time.	This	method	ensures	that	newly	discovered
bugs	won't	sneak	back	into	the	system	later	on.

The	tests	may	have	a	loose-knit	feel	instead	of	a	comprehensive	one,	but	that
doesn't	matter.	What	does	matter	is	that,	over	time,	you	will	slowly	develop	a
solid	safety	net	of	test	cases	that	verify	that	the	system	performs	as	expected.

	

	

	

There's	more...
I	didn't	say	this	would	be	easy.	Writing	an	automated	test	for	software	that	wasn't
built	with	testability	in	mind	is	hard	work.	As	mentioned	in	the	recipe	Something
is	better	than	nothing,	the	first	test	case	is	probably	the	hardest.	But,	over	time,
as	you	develop	more	tests,	you	will	gain	the	confidence	to	go	back	and	refactor
things.	You	will	definitely	feel	empowered	by	knowing	that	you	can't	break
things	without	realizing.

	

When	the	time	comes	to	add	a
completely	new	module,	you	will	be
ready	for	it
	

This	approach	of	capturing	a	bug	with	a	test	case	is	useful,	but	slow.	But	that's
OK,	because	slowly	adding	testing	will	give	you	time	to	grow	your	testing	skills
at	a	comfortable	pace.

Where	does	this	pay	off?	Well,	eventually,	you	will	need	to	add	a	new	module	to
your	system.	Doesn't	this	always	happen?	By	that	time,	your	investment	in
testing	and	test	fixtures	should	already	be	paying	dividends	in	the	improvement
of	the	quality	of	existing	code,	but	you	will	also	have	a	head	start	on	testing	the
new	module.	Consider	the	following:

You	will	not	just	know,	but	really	understand,	the	meaning	of	test-oriented
code.
You	will	be	able	to	write	both	the	code	and	its	tests	at	the	same	time	in	a
very	effective	way.
The	new	module	will	have	a	head	start	of	higher	quality	and	will	not	require
as	much	effort	to	catch	up	as	the	legacy	parts	of	your	system	did.

	

	

Don't	give	into	the	temptation	to	skip
testing
	

As	I	stated	earlier,	the	first	test	case	will	be	very	hard	to	write.	And	the	next	few
after	that	won't	be	much	easier.	This	makes	it	very	tempting	to	throw	up	your
hands	and	skip	automated	testing.	But,	if	you	stick	with	it	and	write	something
that	works,	you	can	continue	building	on	that	successful	bit	of	effort.

This	may	sound	like	a	cliché,	but	if	you	stick	with	it	for	about	a	month,	you	will
start	to	see	some	results	from	your	work.	This	is	also	a	great	time	to	start
harvesting	metrics.	Capturing	your	progress	and	being	able	to	reflect	on	it	can
provide	positive	encouragement.

	

	

	

Separating	algorithms	from
concurrency
Concurrency	is	very	hard	to	test,	but	most	algorithms	are	not	when	decoupled.

How	to	do	it...
Herb	Sutter	wrote	an	article	in	2005	entitled	The	Free	Lunch	Is	Over,	where	he
pointed	out	how	microprocessors	are	approaching	a	physical	limitation	in	serial
processing,	which	will	be	forcing	developers	to	turn	towards	concurrent
solutions	(http://www.gotw.ca/publications/concurrency-ddj.htm).

Newer	processors	come	with	multiple	cores.	To	build	scalable	applications,	we
can	no	longer	just	wait	for	a	faster	chip.	Instead,	we	must	use	alternate,
concurrent	techniques.	This	issue	is	being	played	out	in	a	whole	host	of
languages.	Erlang	was	one	of	the	first	languages	on	the	scene	that	allowed	a
telecommunications	system	to	be	built	with	nine	9's	of	availability,	which	means
about	one	second	of	downtime	every	30	years.

One	of	its	key	features	is	the	use	of	immutable	data	sent	between	actors.	This
provides	nice	isolation	and	allows	multiple	units	to	run	across	the	CPU	cores.
Python	has	libraries	that	provide	a	similar	style	of	decoupled,	asynchronous
message	passing.	The	two	most	common	ones	are	Twisted	and	Kamaelia.

But,	before	you	dive	into	using	either	of	these	frameworks,	there	is	something
important	to	keep	in	mind:	it's	very	hard	to	test	concurrency	while	also	testing
algorithms.	To	use	these	libraries,	you	will	register	code	that	issues	messages
and	also	registers	handlers	to	process	messages.

http://www.gotw.ca/publications/concurrency-ddj.htm

How	it	works...
	

It's	important	to	decouple	the	algorithms	from	the	machinery	of	whatever
concurrency	library	you	pick.	This	will	make	it	much	easier	to	test	the
algorithms,	but	it	doesn't	mean	that	you	shouldn't	conduct	load	tests	or	try	to
overload	your	system	with	live	data	playback	scenarios.

What	it	does	mean	is	that	starting	with	large	volume	test	scenarios	is	the	wrong
priority.	Your	system	needs	to	correctly	handle	one	event	in	an	automated	test
case	before	it	can	handle	a	thousand	events.

	

	

	

Research	test	options	provided	by
your	concurrency	frameworks
A	good	concurrency	library	should	provide	sound	testing	options.	Seek	them	out
and	try	to	use	them	to	their	fullest.	But	don't	forget	to	verify	that	your	custom
algorithms	work	in	simple,	serial	fashion	as	well.	Testing	both	sides	will	give
you	great	confidence	that	the	system	is	performing	as	expected	under	light	and
heavy	loads.

	

Pause	to	refactor	when	a	test	suite
takes	too	long	to	run
As	you	start	to	build	a	test	suite,	you	may	notice	the	runtime	getting	quite	long.
If	it's	so	long	that	you	aren't	willing	to	run	it	at	least	once	a	day,	you	need	to	stop
coding	and	focus	on	speeding	up	the	tests,	whether	it	involves	the	tests
themselves	or	the	code	being	tested.

	

How	to	do	it...
This	assumes	you	have	started	to	build	a	test	suite	using	some	of	the	following
practices:

Something	is	better	than	nothing
Be	willing	to	invest	in	test	fixtures
Capturing	a	bug	in	an	automated	test

These	are	slow-starting	steps	to	start	adding	tests	to	a	system	that	was	originally
built	without	any	automated	testing.	One	of	the	trade-offs	to	get	moving	on
automated	testing	involves	writing	relatively	expensive	tests.	For	instance,	if	one
of	your	key	algorithms	is	not	adequately	decoupled	from	the	database,	you	will
be	forced	to	write	a	test	case	that	involves	setting	up	some	tables,	processing	the
input	data,	and	then	making	queries	against	the	state	of	the	database	afterward.

As	you	write	more	tests,	the	time	to	run	the	test	suite	will	certainly	grow.	At
some	point,	you	will	feel	less	inclined	to	spend	the	time	waiting	for	your	test
suite	to	run.	Since	a	test	suite	is	only	good	when	used,	you	must	pause
development	and	pursue	refactoring	either	the	code	or	the	test	cases	themselves
to	speed	things	up.

Here	is	a	problem	I	ran	into:	my	test	suite	initially	took	about	15	minutes	to	run.
It	eventually	grew	to	take	one-and-a-half	hours	to	run	all	the	tests.	I	reached	a
point	where	I	would	only	run	it	once	a	day,	and	even	skipped	some	days.	One
day,	I	tried	to	do	a	massive	code	edit.	When	most	of	the	test	cases	failed,	I
realized	that	I	had	not	run	the	test	suite	often	enough	to	detect	which	step	broke
things.	I	was	forced	to	throw	away	all	the	code	edits	and	start	over.	Before
proceeding	further,	I	spent	a	few	days	refactoring	the	code	as	well	as	the	tests,
bringing	the	run	time	of	the	test	suite	back	down	to	a	tolerable	30	minutes.

How	it	works...
That	is	the	key	measurement:	when	you	feel	hesitant	to	run	the	test	suite	more
than	once	a	day,	this	may	be	a	sign	that	things	need	to	be	cleaned	up.	Test	suites
are	meant	to	be	run	multiple	times	a	day.

This	is	because	we	have	competing	interests:	writing	code	and	running	tests.	It's
important	to	recognize	these	things:

To	run	tests,	we	must	suspend	our	coding	efforts
To	write	more	code,	we	must	suspend	testing	efforts

When	testing	takes	a	big	chunk	of	our	daily	schedule,	we	must	start	choosing
which	is	more	important.	We	tend	to	migrate	toward	writing	more	code,	and	this
is	probably	the	key	reason	people	abandon	automated	testing	and	consider	it
unsuitable	for	their	situation.

It's	tough,	but	if	we	can	resist	taking	the	easy	way	out,	and	instead	do	some
refactoring	of	either	the	code	or	our	tests,	we	will	be	encouraged	to	run	the	tests
more	often.

There's	more...
	

It's	less	science	and	more	voodoo	when	it	comes	to	what	to	refactor.	It's
important	to	seek	out	opportunities	that	give	us	a	good	yield.	It's	important	to
understand	that	this	can	be	either	our	test	code,	our	production	code,	or	a
combination	of	both	that	needs	to	be	refactored.	Consider	the	following	points:

Performance	analysis	can	show	us	where	the	hotspots	are.	Refactoring	or
rewriting	these	chunks	can	improve	tests.
Tight	coupling	often	forces	us	to	put	in	more	parts	of	the	system	than	we
want,	such	as	database	usage.	If	we	can	look	for	ways	to	decouple	the	code
from	the	database	and	replace	it	with	mocks	or	stubs,	that	sets	us	up	to
update	the	relevant	tests	to	come	up	with	a	faster	running	test	suite.

Coverage	obtained	from	tests	can	help.	All	of	these	approaches	have	positive
consequences	for	our	code's	quality.	More	efficient	algorithms	lead	to	better
performance,	and	looser	coupling	helps	to	keep	our	long-term	maintenance	costs
down.

	

	

	

See	also
Be	willing	to	throw	away	an	entire	day's	changes

Cash	in	on	your	confidence
After	building	up	enough	tests,	you	will	feel	confident	enough	to	rewrite	a	big
chunk	of	code	or	conduct	shotgun	surgery	that	touches	almost	every	file.	Go	for
it!

How	to	do	it...
	

As	you	build	more	tests	and	run	them	several	times	a	day,	you	will	start	to	get	a
feel	for	what	you	know	and	don't	know	about	the	system.	Even	more	so,	when
you've	written	enough	expensive,	long-running	tests	about	a	particular	part	of	the
system,	you	will	feel	a	strong	desire	to	rewrite	that	module.

What	are	you	waiting	for?	This	is	the	point	of	building	a	runnable	safety	net	of
tests.	Understanding	the	ins	and	outs	of	a	module	gives	you	the	knowledge	to
attack	it.	You	may	rewrite	it,	be	able	to	better	decouple	its	parts,	or	whatever	else
is	needed	to	make	it	work	better,	as	well	as	being	able	to	better	support	tests.

	

	

	

How	it	works...
While	you	may	feel	a	strong	desire	to	attack	the	code,	there	may	be	an	equal	and
opposing	feeling	to	resist	making	such	changes.	This	is	risk	aversion,	and	we	all
have	to	deal	with	it.	We	want	to	avoid	diving	in	head	first	to	a	situation	that
could	have	drastic	consequences.

Assuming	we	have	built	an	adequate	safety	net,	it's	time	to	engage	the	code	and
start	cleaning	it	up.	If	we	run	the	test	suite	frequently	while	making	these
changes,	we	can	safely	move	through	the	changes	we	need	to	make.	This	will
improve	the	quality	of	the	code	and	will	possibly	speed	up	the	runtime	of	the	test
suite.

While	making	changes,	we	don't	have	to	go	all	in
Cashing	in	on	our	confidence	means	we	move	in	and	make	changes	to	the	code	base,	but	it
doesn't	mean	we	go	into	areas	of	code	where	the	tests	are	shallow	and	inadequate.	There	may
be	several	areas	we	want	to	clean	up,	but	we	should	only	go	after	the	parts	we	are	most
confident	about.	There	will	be	future	opportunities	to	get	the	other	parts	as	we	add	more	tests
in	the	future.

Be	willing	to	throw	away	an	entire
day's	changes
Have	you	ever	worked	for	a	whole	day	making	changes,	only	to	discover	that
half	the	tests	failed	because	you	forgot	to	run	the	test	suite	more	often?	Be	ready
to	throw	away	the	changes.	This	is	what	automated	testing	lets	us	do…	back	up
to	when	everything	ran	perfectly.	It	will	hurt,	but	next	time	you	will	remember	to
run	the	test	suite	more	often.

	

How	to	do	it...
This	recipe	assumes	you	are	using	version	control	and	are	making	regular
commits.	This	idea	is	no	good	if	you	haven't	made	a	commit	for	two	weeks.

If	you	run	your	test	suite	at	least	once	a	day,	and	when	it	passes,	you	commit	the
changes	you	have	made,	then	it	becomes	easy	to	back	up	to	some	previous	point,
such	as	the	beginning	of	the	day.

I	have	done	this	many	times.	The	first	time	was	the	hardest.	It	was	a	new	idea	to
me,	but	I	realized	the	real	value	of	software	was	now	resting	on	my	automated
test	suite.	In	the	middle	of	the	afternoon,	I	ran	the	test	suite	for	the	first	time	that
day	after	having	edited	half	the	system.	Over	half	of	the	tests	failed.

I	tried	to	dig	in	and	fix	the	issue.	The	trouble	was,	I	couldn't	figure	out	where	the
issue	stemmed	from.	I	spent	a	couple	of	hours	trying	to	track	it	down.	It	began	to
dawn	on	me	that	I	wasn't	going	to	figure	it	out	without	wasting	loads	of	time.

But	I	remembered	that	everything	had	passed	with	flying	colors	the	previous
day.	I	finally	decided	to	throw	away	my	changes,	run	the	test	suite,	verifying
everything	passed,	and	then	grudgingly	go	home	for	the	day.

The	next	day,	I	attacked	the	problem	again.	Only,	this	time,	I	ran	the	tests	more
often.	I	was	able	to	get	it	coded	successfully.	Looking	back	at	the	situation,	I
realize	that	this	issue	only	cost	me	one	lost	day.	If	I	had	tried	to	ride	it	out,	I
could	have	spent	a	week	and	still	probably	ended	up	throwing	things	away.

How	it	works...
Depending	on	how	your	organization	manages	source	control,	you	may	have	to
do	the	following	things:

Simply	do	it	yourself	by	deleting	a	branch	or	canceling	your	checkouts
Contact	your	CM	team	to	delete	the	branch	or	the	commits	you	made	for
the	day

This	isn't	really	a	technical	issue.	The	source	control	system	makes	it	easy	to	do
this	regardless	of	who	is	in	charge	of	branch	management.	The	hard	part	is
making	the	decision	to	throw	away	the	changes.	We	often	feel	the	desire	to	fix
what	is	broken.	The	more	our	efforts	cause	it	to	break	further,	the	more	we	want
to	fix	it.	At	some	point,	we	must	realize	that	it	is	more	costly	to	move	forward
rather	than	to	back	up	and	start	again.

There	is	an	axis	of	agility	that	stretches	from	classic	waterfall	software
production	to	heavily	agile	processes.	Agile	teams	tend	to	work	in	smaller
sprints	and	commit	in	smaller	chunks.	This	makes	it	more	palatable	to	throw
away	a	day	of	work.	The	bigger	the	task	and	the	longer	the	release	cycle,	the
greater	the	odds	are	that	your	changes	haven't	been	checked	since	you	started	a
task	two	weeks	ago.

Believe	me,	throwing	away	two	weeks'	work	is	totally	different	than	throwing
away	one	day's	worth.	I	would	never	advocate	throwing	out	two	weeks'	work.

The	core	idea	is	to	not	go	home	without	your	test	suite	passing.	If	that	means
you	have	to	throw	things	away	to	make	it	happen,	then	that	is	what	you	must	do.
It	really	drives	the	point	home	of	code	a	little/test	a	little	until	a	new	feature	is
ready	for	release.

There's	more...
We	also	need	to	reflect	on	why	didn't	we	run	the	test	suite	often	enough.	It	may
be	because	the	test	suite	is	taking	too	long	to	run,	and	you	are	hesitating	to	use
up	that	time.	It	may	be	time	to	pause	to	refactor	when	the	test	suite	takes	too
long	to	run.	The	time	I	really	learned	this	lesson	was	when	my	test	suite	took
one-and-a-half	hours	to	run.	After	I	got	through	this	whole	issue,	I	realized	that	I
needed	to	speed	things	up	and	spent	probably	a	week	or	two	cutting	it	down	to	a
tolerable	30	minutes.

	

How	does	this	mesh	with	"Something
is	better	than	nothing"
	

Earlier	in	this	chapter,	we	talked	about	writing	a	test	case	that	may	be	quite
expensive	to	run	to	get	automated	testing	in	action.	What	if	our	testing	becomes
so	expensive	that	it	is	time	prohibitive?	After	all,	couldn't	what	we	just	said	lead
to	the	situation	we	are	dealing	with?

Code	a	little/test	a	little	may	seem	to	be	a	very	slow	way	to	proceed.	This	is
probably	the	reason	many	legacy	systems	never	embrace	automated	testing.	The
hill	we	must	climb	is	steep.	But	if	we	can	hang	in	there,	start	building	the	tests,
make	sure	they	run	at	the	end	of	the	day,	and	then	eventually	pause	to	refactor
our	code	and	tests,	we	can	eventually	reach	a	happy	balance	of	better	code
quality	and	system	confidence.

	

	

	

See	also
Something	is	better	than	nothing
Pause	to	refactor	when	a	test	suite	takes	too	long

Instead	of	shooting	for	100	percent
coverage,	try	to	have	a	steady	growth
You	won't	know	how	you're	doing	without	coverage	analysis.	However,	don't
aim	too	high.	Instead,	focus	on	a	gradual	increase.	You	will	find	that	your	code
gets	better	over	time—maybe	even	drops	in	volume—while	the	quality	and
coverage	steadily	improve.

	

How	to	do	it...
If	you	start	with	a	system	that	has	no	tests,	don't	get	focused	on	a	ridiculously
high	number.	I	worked	on	a	system	that	had	16%	coverage	when	I	picked	it	up.
A	year	later,	I	had	worked	it	up	to	65%.	This	was	nowhere	near	100%,	but	the
quality	of	the	system	had	grown	in	leaps	and	bounds	due	to	capturing	a	bug	in	an
automated	test	and	harvesting	metrics.

At	one	time,	I	was	discussing	the	quality	of	my	code	with	my	manager,	and	he
showed	me	a	report	he	had	developed.	He	had	run	a	code-counting	tool	on	every
release	of	every	application	he	was	overseeing.	He	said	my	code	counts	had	a
unique	shape.	All	the
other	tools	had	a	constant	increase	in	lines	of	code.	Mine	had	grown,	peaked,
and	then	started	to	decrease	and	were	still	on	the	decline.

This	happened	despite	the	fact	that	my	software	did	more	than	ever.	It's	because
I	started	throwing	away	unused	features,	bad	code,	and	clearing	out	cruft	during
refactorings.

How	it	works...
By	slowly	building	an	automated	test	suite,	you	will	gradually	cover	more	of
your	code.	By	keeping	a	focus	on	building	quality	code	with	corresponding	tests,
the	coverage	will	grow	naturally.	When	we	shift	to	focusing	on	coverage	reports,
the	numbers	may	grow	more	quickly,	but	it	will	tend	to	be	more	artificial.

From	time	to	time,	as	you	cash	in	on	your	confidence	and	rewrite	chunks,	you
should	feel	empowered	to	throw	away	old	junk.	This	will	also	grow	your
coverage	metrics	in	a	healthy	way.

All	of	these	factors	will	lead	to	increased	quality	and	efficiency.	While	your	code
may	eventually	peak	and	then	decrease,	it	isn't	unrealistic	for	it	to	eventually
grow	again	due	to	new	features.

By	that	time,	the	coverage	will	probably	be	much	higher,	because	you	will	be
building	completely	new	features,	hand	in	hand	with	tests,	instead	of	just
maintaining	legacy	parts.

Randomly	breaking	up	your	app	can
lead	to	better	code
"The	best	way	to	avoid	failure	is	to	fail	constantly."

–	Netflix

How	to	do	it...
	

Netflix	has	built	a	tool	they	call	Chaos	Monkey.	Its	job	is	to	randomly	kill
instances	and	services.	This	forces	developers	to	make	sure	their	system	can	fail
smoothly	and	safely.	To	build	our	own	version	of	this,	some	of	the	things	we
would	need	it	to	do	are	the	following:

Randomly	kill	processes
Inject	faulty	data	at	interface	points
Shut	down	network	interfaces	between	distributed	systems
Issue	shutdown	commands	to	subsystems
Create	denial-of-service	attacks	by	overloading	interface	points	with	too
much	data

This	is	a	starting	point.	The	idea	is	to	inject	errors	wherever	you	can	imagine
them	happening.	This	may	require	writing	scripts,	Cron	jobs,	or	any	means
necessary	to	cause	these	errors	to	happen.

	

	

	

How	it	works...
Given	that	there	is	a	chance	of	a	remote	system	being	unavailable	in	production,
we	should	introduce	ways	for	this	to	happen	in	our	development	environment.
This	will	encourage	us	to	code	higher	fault	tolerance	into	our	system.

Before	we	introduce	a	random-running	Chaos	Monkey	such	as	Netflix	has,	we
need	to	ensure	that	our	system	can	handle	these	situations	manually.	For
example,	if	our	system	includes	communication	between	two	servers,	a	fair	test
is	unplugging	the	network	cable	to	one	box,	simulating	network	failure.	When
we	verify	that	our	system	can	continue	working	with	acceptable	means,	then	we
can	add	scripts	to	do	this	automatically	and,	eventually,	randomly.

Audit	logs	are	valuable	tools	to	verify	that	our	system	is	handling	these	random
events.	If	we	can	read	a	log	entry	showing	a	forced	network	shutdown	and	then
see	log	entries	of	similar	timestamps,	we	can	easily	evaluate	whether	the	system
handled	the	situation.

After	building	that	in,	we	can	work	on	the	next	error	to	randomly	introduce	into
the	system.	By	following	this	cycle,	we	can	build	up	the	robustness	of	our
system.

There's	more...
This	doesn't	exactly	fit	into	the	realm	of	automated	testing.	This	is	also	very	high
level.	It's	hard	to	go	into	much	more	detail,	because	the	type	of	faulty	data	to
inject	requires	an	intimate	understanding	of	the	actual	system.

How	does	this	compare	to	fuzz
testing?
Fuzz	testing	is	a	style	of	testing	where	invalid,	unexpected,	and	random	data	is
injected	into	input	points	of	our	software	(http://en.wikipedia.org/wiki/Fuzz_testing).
If	the	application	fails,	this	is	considered	a	failure.	If	it	doesn't,	then	it	has
passed.	This	type	of	testing	goes	in	a	similar	direction,	but	the	blog	article
written	by	Netflix	appears	to	go	much	further	than	simply	injecting	different
data.	It	talks	about	killing	instances	and	interrupting	distributed	communications.
Basically,	anything	you	can	think	of	that	could	happen	in	production,	we	should
try	to	replicate	in	a	test	bed.	Fusil	(https://bitbucket.org/haypo/fusil)	is	a	Python
tool	that	aims	to	provide	fuzz	testing.	You	may	want	to	investigate	whether	it	is
useful	for	your	project	needs.

	

http://en.wikipedia.org/wiki/Fuzz_testing
https://bitbucket.org/haypo/fusil

Are	there	any	tools	to	help	with	this?
	

Jester	(for	Java),	Pester	(for	Python),	and	Nester	(for	C#)	are	used	to	conduct
mutation	testing	(http://jester.sourceforge.net/).	These	tools	find	out	what	code	is
not	covered	by	test	cases,	alter	the	source	code,	and	rerun	the	test	suites.	Finally,
they	give	a	report	on	what	was	changed,	what	passed,	and	what	didn't	pass.	It
can	illuminate	what	is	and	is	not	covered	by	our	test	suites	in	ways	coverage
tools	can't.

This	isn't	a	complete	Chaos	Monkey,	but	it	provides	one	area	of	assistance	by
trying	to	break	the	system	and	force	us	to	improve	our	test	regime.	To	really
build	a	full-blown	system	probably	wouldn't	fit	inside	a	test	project,	because	it
requires	writing	custom	scripts	based	on	the	environment	it's	meant	to	run	in.

	

	

	

http://jester.sourceforge.net/

Other	Books	You	May	Enjoy
	

If	you	enjoyed	this	book,	you	may	be	interested	in	these	other	books	by	Packt:

Python	Programming	Blueprints
Daniel	Furtado,	Marcus	Pennington

ISBN:	978-1-78646-816-1

Learn	object-oriented	and	functional	programming	concepts	while
developing	projects
The	dos	and	don'ts	of	storing	passwords	in	a	database
Develop	a	fully	functional	website	using	the	popular	Django	framework
Use	the	Beautiful	Soup	library	to	perform	web	scrapping
Get	started	with	cloud	computing	by	building	microservice	and	serverless
applications	in	AWS
Develop	scalable	and	cohesive	microservices	using	the	Nameko	framework
Create	service	dependencies	for	Redis	and	PostgreSQL

https://www.packtpub.com/application-development/python-programming-blueprints
https://www.packtpub.com/web-development/python-interviews

Python	Interviews
Mike	Driscoll

ISBN:	978-1-78839-908-1

How	successful	programmers	think
The	history	of	Python
Insights	into	the	minds	of	the	Python	core	team
Trends	in	Python	programming

Leave	a	review	-	let	other	readers
know	what	you	think
Please	share	your	thoughts	on	this	book	with	others	by	leaving	a	review	on	the
site	that	you	bought	it	from.	If	you	purchased	the	book	from	Amazon,	please
leave	us	an	honest	review	on	this	book's	Amazon	page.	This	is	vital	so	that	other
potential	readers	can	see	and	use	your	unbiased	opinion	to	make	purchasing
decisions,	we	can	understand	what	our	customers	think	about	our	products,	and
our	authors	can	see	your	feedback	on	the	title	that	they	have	worked	with	Packt
to	create.	It	will	only	take	a	few	minutes	of	your	time,	but	is	valuable	to	other
potential	customers,	our	authors,	and	Packt.	Thank	you!

	

	Title Page
	Copyright and Credits
	Python Testing Cookbook Second Edition

	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributors
	About the authors
	About the reviewers
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Conventions used

	Sections
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Get in touch
	Reviews

	Using Unittest to Develop Basic Tests
	Introduction
	Asserting the basics
	Getting ready
	How to do it...
	How it works...
	There's more...
	assertEquals is preferred over assertTrue and assertFalse
	self.fail([msg]) can usually be rewritten with assertions
	Our version of Python can impact our options

	Setting up and tearing down a test harness
	How to do it...
	How it works...

	Running test cases from the command line
	How to do it...
	How it works...
	There's more...

	Running a subset of test case methods
	How to do it...
	How it works...

	Chaining together a suite of tests
	How to do it...
	How it works...
	There's more...
	The name of the test case should be significant

	Defining test suites inside the test module
	How to do it...
	How it works...
	There's more...
	Test suite methods must be outside of the test class
	Why have different suites?
	optparse is being phased out and replaced by argparse

	Retooling old test code to run inside unittest
	How to do it...
	How it works...
	There's more...
	Where are the bugs?
	FunctionTestCase is a temporary measure

	Breaking down obscure tests into simple ones
	How to do it...
	How it works...
	There's more...
	Where is the bug?
	What is the right size for a test method?
	Unittests versus integration tests

	Testing the edges
	How to do it...
	How it works...
	There's more...
	Identifying the edges is important
	Testing for unexpected conditions

	Testing corner cases by iteration
	How to do it...
	How it works...
	There's more...
	Does this defy the recipe – breaking down obscure tests into simple ones?
	How does this compare with the recipe – testing the edges?

	See also

	Running Automated Test Suites with Nose
	Introduction
	Getting nosy with testing
	How to do it...
	How it works...
	There's more...
	Nose is extensible
	Nose is embeddable

	See also

	Embedding nose inside Python
	How to do it...
	How it works...
	There's more...

	Writing a nose extension to pick tests based on regular expressions
	Getting ready
	How to do it...
	How it works...
	There's more...

	Writing a nose extension to generate a CSV report
	Getting ready
	How to do it...
	How it works...
	There's more...

	Writing a project-level script that lets you run different test suites
	How to do it...
	How it works...
	There's more...
	Why use getopt instead of optparse?

	Creating Testable Documentation with doctest
	Introduction
	Documenting the basics
	How to do it...
	How it works...
	There's more...

	Catching stack traces
	How to do it...
	How it works...

	Running a doctest from the command line
	How to do it...
	How it works...

	Coding a test harness for doctest
	How to do it...
	How it works...
	There's more...

	Filtering out test noise
	How to do it...
	How it works...
	There's more...

	Printing out all your documentation including a status report
	How to do it...
	How it works...
	There's more...

	Testing the edges
	How to do it...
	How it works...
	There's more...
	See also

	Testing corner cases by iteration
	How to do it...
	How it works...
	Does this type of test fit better into doctest or unittest?

	See also

	Getting nosy with doctest
	Getting ready
	How to do it...
	How it works...

	Updating the project-level script to run this chapter's doctests
	How to do it...
	How it works...
	There's more...

	Testing Customer Stories with Behavior-Driven Development
	Introduction
	Naming tests that sound like sentences and stories
	Getting ready
	How to do it...
	How it works...
	There's more...

	Testing separate doctest documents
	Getting ready
	How to do it...
	How it works...
	There's more...
	Doesn't this defy the usability of docstrings?

	Writing a testable story with doctest
	Getting ready
	How to do it...
	How it works...
	There's more...

	Writing a testable novel with doctest
	Getting ready
	How to do it...
	How it works...
	There's more...

	Writing a testable story with Voidspace Mock and nose
	Getting ready
	How to do it...
	How it works...
	There's more...
	Tell me more about the spec nose plugin!
	Why didn't we reuse the plugin from the recipe "Naming tests so they sound like sentences and stories"?

	See also

	Writing a testable story with mockito and nose
	Getting ready
	How to do it...
	How it works...
	See also

	Writing a testable story with Lettuce
	Getting ready...
	How to do it...
	How it works...
	There's more...
	How complex should a story be?
	Don't mix wiring code with application code
	Lettuce works great using folders

	See also

	Using Should DSL to write succinct assertions with Lettuce
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Updating the project-level script to run this chapter's BDD tests
	Getting ready
	How to do it...
	How it works...
	See also

	High-Level Customer Scenarios with Acceptance Testing
	Introduction
	Installing Pyccuracy
	How to do it...
	How it works...
	See also

	Testing the basics with Pyccuracy
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using Pyccuracy to verify web app security
	Getting ready
	How to do it...
	How it works...
	See also

	Installing Robot Framework
	How to do it...
	There's more...

	Creating a data-driven test suite with Robot Framework
	Getting ready
	How to do it...
	How it works...
	There's more...
	Do I have to write HTML tables?
	What are the best ways to write the code that implements our custom keywords?
	Robot Framework variables are Unicode

	See also

	Writing a testable story with Robot Framework
	Getting ready
	How to do it...
	How it works...
	There's more...
	Given-When-Then results in duplicate rules
	Do the try-except blocks violate the idea of keeping things light?

	See also

	Tagging Robot Framework tests and running a subset
	Getting ready
	How to do it...
	How it works...
	There's more...
	What about documentation?

	See also

	Testing web basics with Robot Framework
	Getting ready...
	How to do it...
	How it works...
	There's more...
	Learn about timing configurations – they may be important!

	See also

	Using Robot Framework to verify web app security
	Getting ready
	How to do it...
	How it works...
	There's more...
	Why not use a "remember me" option?
	Shouldn't we refactor the first test scenario to use the keyword?
	Would arguments make the login keyword more flexible?

	See also

	Creating a project-level script to verify this chapter's acceptance tests
	Getting ready
	How to do it...
	How it works...
	There's more
	Can we only use getopt?
	What's wrong with using the various command-line tools?

	Integrating Automated Tests with Continuous Integration
	Introduction
	Generating a CI report for Jenkins using NoseXUnit
	Getting ready
	How to do it...
	How it works...

	Configuring Jenkins to run Python tests upon commit
	Getting ready
	How to do it...
	How it works...
	There's more...
	Do I have to use git for source code management?
	What is the format of polling?

	See also

	Configuring Jenkins to run Python tests when scheduled
	Getting ready
	How to do it...
	How it works...
	There's more...
	Jenkins versus TeamCity

	See also

	Generating a CI report for TeamCity using teamcity-nose
	Getting ready
	How to do it...
	How it works...

	Configuring TeamCity to run Python tests upon commit
	Getting ready
	How to do it...
	How it works...
	There's more...
	What did teamcity-nose give us?

	See also

	Configuring TeamCity to run Python tests when scheduled
	Getting ready
	How to do it...
	How it works...
	See also

	Measuring Your Success with Test Coverage
	Introduction
	Building a network management application
	How to do it...
	How it works...

	Installing and running coverage on your test suite
	How to do it...
	There's more...
	Why are there no asserts in unittest?

	Generating an HTML report using coverage
	How to do it...
	How it works...

	Generating an XML report using coverage
	How to do it...
	How it works...
	What use is an XML report?

	See also

	Getting nosy with coverage
	How to do it...
	How it works...
	There's more...
	Why use the nose plugin instead of the coverage tool directly?
	Why are SQLite3 and Spring Python included?

	Filtering out test noise from coverage
	How to do it...
	How it works...
	There's more...
	See also

	Letting Jenkins get nosy with coverage
	Getting ready
	How to do it...
	How it works...
	There's more...
	Nose doesn't directly support coverage's XML option

	Updating the project-level script to provide coverage reports
	Getting ready
	How to do it...
	How it works...
	There's more...
	Can we only use getopt?

	Smoke/Load Testing – Testing Major Parts
	Introduction
	Defining a subset of test cases using import statements
	How to do it...
	How it works...
	There's more...
	Security, checking, and integration aren't smoke tests!
	What provides good flexibility?

	See also

	Leaving out integration tests
	How to do it...
	How it works...
	There's more...
	Should a smoke test include integration or unit tests?

	See also

	Targeting end-to-end scenarios
	Getting ready
	How to do it...
	How it works...
	There's more...
	How does this define smoke tests?

	See also

	Targeting the test server
	Getting ready
	How to do it...
	How it works...
	There's more...
	How likely is it that a development and production environment would use two different database systems?
	This isn't just confined to database systems

	Coding a data simulator
	Getting ready
	How to do it...
	How it works...
	There's more...
	Why does the server script initialize the database?
	Why MySQL instead of SQLite?

	See also

	Recording and playing back live data in real time
	Getting ready
	How to do it...
	How it works...
	There's more...
	I thought this recipe was about live data!
	Is opening and closing a file for every event a good idea?
	What about offloading the storage of data?

	See also

	Recording and playing back live data as fast as possible
	Getting ready
	How to do it...
	How it works...
	There's more...
	What is the difference between this and playing back in real time?
	Where are the breaking points of this application?
	What amount of live data should be collected?

	See also

	Automating your management demo
	How to do it...
	How it works...
	There's more...
	What if my manager likes to take detours?

	Good Test Habits for New and Legacy Systems
	Introduction
	Something is better than nothing
	How to do it...
	How it works...
	That can't be everything!

	See also

	Coverage isn't everything
	How to do it...
	How it works...
	There's more...
	Are we not supposed to increase coverage?
	But I want to brag about the coverage of my system!

	Be willing to invest in test fixtures
	How to do it....
	How it works...
	There's more...
	Is this just about setting up a database?

	If you aren't convinced about the value of testing, your team won't be either
	Harvesting metrics
	How to do it...
	How it works...
	There's more...
	Metrics aren't just for defending yourself to management

	Capturing a bug in an automated test
	How to do it...
	How it works...
	There's more...
	When the time comes to add a completely new module, you will be ready for it
	Don't give into the temptation to skip testing

	Separating algorithms from concurrency
	How to do it...
	How it works...
	Research test options provided by your concurrency frameworks

	Pause to refactor when a test suite takes too long to run
	How to do it...
	How it works...
	There's more...
	See also

	Cash in on your confidence
	How to do it...
	How it works...

	Be willing to throw away an entire day's changes
	How to do it...
	How it works...
	There's more...
	How does this mesh with "Something is better than nothing"

	See also

	Instead of shooting for 100 percent coverage, try to have a steady growth
	How to do it...
	How it works...

	Randomly breaking up your app can lead to better code
	How to do it...
	How it works...
	There's more...
	How does this compare to fuzz testing?
	Are there any tools to help with this?

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

