

Reactive Programming in
Kotlin

Design and build non-blocking, asynchronous Kotlin
applications with RXKotlin, Reactor-Kotlin, Android, and
Spring

Rivu Chakraborty

BIRMINGHAM - MUMBAI

Reactive Programming in Kotlin
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2017

Production reference: 1011217

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78847-302-6

www.packtpub.com

http://www.packtpub.com

Credits

Author
Rivu Chakraborty

Copy Editor
Zainab Bootwala

Reviewers
Alexander Hanschke
Ravindra Kumar

Project Coordinator
Prajakta Naik

Commissioning Editor
Richa Tripathi

Proofreader
Safis Editing

Acquisition Editor
Sandeep Mishra

Indexer
Francy Puthiry

Content Development Editor
Akshada Iyer

Graphics
Jason Monteiro

Technical Editor
Supriya Thabe

Production Coordinator
Nilesh Mohite

About the Author
Rivu Chakraborty is a Google-certified Android developer and a senior tech member at the
Institute of Engineers (India), and also has certifications in Scrum. With over 5 years of
experience, he is currently working as a senior software engineer (Android) at Indus Net
Technologies Pvt. Ltd.

He considers himself a Kotlin and Android enthusiast and a Kotlin evangelist. He has been
using Kotlin since December 2015, so he has around 2 years of experience in Kotlin at the
time of publishing this book. As a part of his mission to spread the use and knowledge of
the Kotlin language as much as possible, he created the KotlinKolkata user group—one of
the most active Kotlin user groups throughout the world, and he is the Founder Organizer
of KotlinKolkata. He is also an active member of GDG Kolkata and gives talks at the GDG
Kolkata meetups.

As Rivu believes that knowledge increases by sharing, he writes a lot of tutorials on
JavaCodeGeeks, AndroidHive, and his own site (http://www.rivuchk.com), which you can
visit to read his tutorials and learn more about him.

I would like to thank my wife, parents and whole family (including inlaws) for being with
me while I was writing this book.

I would like to thank my college teachers, Avik Dey and Nandan Banerjee—they have
always encouraged and helped me learn and strive to become a better developer from the
beginning of my engineering course till date. I always feel more encouraged whenever I
speak to them.

Also, this book wouldn't have been completed without the continuous guidance and
support of the Packt team, especially by the CDE of this book, Akshada—her encouraging
comments meant a lot to me.

http://www.rivuchk.com

About the Reviewers
Alexander Hanschke is CTO at techdev Solutions GmbH, a technology company located in
Berlin. He worked on various Java-based projects in the financial industry for 8 years,
before turning to Kotlin in 2016. Since then, he has been applying Kotlin to all kinds of
projects, including Alexa skills, blockchain clients, and Spring-based applications. He
frequently speaks at technology meetups and occasionally writes articles about various
aspects of the Kotlin programming language.

Ravindra Kumar is an Android developer and Computer Polyglot from Bengaluru, India.
He is an Android + WEB lover, speaker, start-up geek, and open source junkie.

He is working as an Android developer at Fueled. Previously, he used to work with
Cleartrip, as the lead developer of Cleartrip.com’s Android App. He likes open source
projects. He is a huge fan of fancy Android libraries out there, and he contributes to bug
reporting, fixing, and feedbacks. He has given talks at DroidCon, TiConf, and JSFOO.

Ravindra started as a web engineer who used to write lots of JavaScript, but, after some
time, looking for his real passion, he started his journey in mobile app development
through Titanium, where, later, he discovered the Android world. After getting some
experience on such an awesome platform, he started a new adventure at a mobile company,
where he led several projects for important Indian companies.

He has a strong interest in code quality, testing, and automation—preferably all three
together. Combining technical skills with soft skills, he also ventures into the realms of
mentoring and article writing. He hates doing things manually and hates to see
src/test/java directories with Empty Example classes. He believes that by working with
legacy code, and improving it, he can make the world a better place. To his disappointment,
the world does not seem to care all that much about his efforts.

He is a pretty normal person—a husband and father of one who loves cricket. Follow him
on Twitter at @ravidsrk or email him at ravidsrk@gmail.com.

mailto:ravidsrk@gmail.com

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

https://www.packtpub. com/ mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon. com/ dp/ 1788473027.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1788473027
https://www.amazon.com/dp/1788473027
https://www.amazon.com/dp/1788473027
https://www.amazon.com/dp/1788473027
https://www.amazon.com/dp/1788473027
https://www.amazon.com/dp/1788473027
https://www.amazon.com/dp/1788473027
https://www.amazon.com/dp/1788473027
https://www.amazon.com/dp/1788473027
https://www.amazon.com/dp/1788473027
https://www.amazon.com/dp/1788473027
https://www.amazon.com/dp/1788473027
https://www.amazon.com/dp/1788473027

I would like to dedicate this book to my wife - Esha, and my to be born child
(yes, my wife is expecting at the time of writing this whole book), and my parents for

supporting and encouraging me while I was writing this book.

Table of Contents
Preface 1

Chapter 1: A Short Introduction to Reactive Programming 8

What is reactive programming? 9
Reasons to adapt functional reactive programming 10
Reactive Manifesto 11

Reactive Streams standard specifications 12
Reactive Frameworks for Kotlin 12

Getting started with RxKotlin 13
Downloading and setting up RxKotlin 13
Comparing the pull mechanism with the RxJava push mechanism 14
The ReactiveEvenOdd program 16

The ReactiveCalculator project 17
Summary 20

Chapter 2: Functional Programming with Kotlin and RxKotlin 21

Introducing functional programming 22
Fundamentals of functional programming 23

Lambda expressions 23
Pure function 24
High-order functions 25
Inline functions 26

Applying functional programming to the ReactiveCalculator class 28
Coroutines 31

Getting started with coroutines 33
Building sequences 35
The ReactiveCalculator class with coroutines 36

Functional programming – monads 38
Single monad 39

Summary 40

Chapter 3: Observables, Observers, and Subjects 41

Observables 42
How Observable works 42

Understanding the Observable.create method 45
Understanding the Observable.from methods 47
Understanding the toObservable extension function 49

Table of Contents

[ii]

Understanding the Observable.just method 51
Other Observable factory methods 52

Subscribers - the Observer interface 54
Subscribing and disposing 55

Hot and Cold Observables 59
Cold Observables 59
Hot Observables 61

Introducing the ConnectableObservable object 61
Subjects 64

Varieties of Subject 68
Understanding AsyncSubject 68
Understanding PublishSubject 71
Understanding BehaviorSubject 72
Understanding ReplaySubject 73

Summary 75

Chapter 4: Introduction to Backpressure and Flowables 76

Understanding backpressure 77
Flowable 80
When to use Flowables and Observables 85

When to use Flowables? 85
When to use Observables? 85

Flowable and Subscriber 86
Creating Flowable from scratch 89
Creating Flowable from Observable 92
BackpressureStrategy.MISSING and onBackpressureXXX() 96

Operator onBackpressureBuffer() 96
Operator onBackpressureDrop() 98
Operator onBackpressureLatest() 99

Generating Flowable with backpressure at source 101
ConnectableFlowable 102
Processor 104
Learning Buffer, Throttle, and Window operators 105

The buffer() operator 106
The window() operator 109
The throttle() operators 110

Summary 111

Chapter 5: Asynchronous Data Operators and Transformations 112

Operator 112
The filtering/suppressing operators 113

Table of Contents

[iii]

The debounce operator 114
The distinct operators – distinct, distinctUntilChanged 116
The elementAt operator 117
Filtering emissions - filter operator 118
The first and last operator 119
The ignoreElements operator 120

The transforming operators 121
The map operator 121
Casting emissions (cast operator) 122
The flatMap operator 123
The defaultIfEmpty operator 126
The switchIfEmpty operator 127
The startWith operator 128
Sorting emissions (sorted operator) 129
Accumulating data – scan operator 132

Reducing operators 135
Counting emissions (count operator) 135
Accumulating emissions – reduce operator 136
The collection operators 136

The error handling operators 137
The utility operators 138
Summary 139

Chapter 6: More on Operators and Error Handling 140

Combining producers (Observable/Flowable) 141
The startWith operator 142
Zipping emissions – zip operator 144

The zipWith operator 146
The combineLatest operator 147
Merging Observables/Flowables – merge operator 149
Concatenating producers (Observable/Flowable) 154
Ambiguously combining producers 155

Grouping 157
flatMap, concatMap – In details 159

When to use flatMap operator 160
When to use concatMap operator 161

Understanding switchMap operator 161
Skipping and taking emissions 163

Skipping emissions (skip, skipLast, skipUntil, and skipWhile) 164
Take operators (take, takeLast, takeWhile, and takeUntil) 170

Table of Contents

[iv]

The error handling operators 174
onErrorReturn – return a default value on error 175
The onErrorResumeNext operator 176

Retrying on error 177
An HTTP example 178
Summary 180

Chapter 7: Concurrency and Parallel Processing in RxKotlin with
Schedulers 182

Introduction to concurrency 183
Parallel execution versus concurrency 183
What is a scheduler? 185

Types of scheduler 186
Schedulers.io() - I/O bound scheduler 189
Schedulers.computation() - CPU bound schedulers 189
Schedulers.newThread() 190
Schedulers.single() 190
Schedulers.trampoline() 190

Schedulers.from 194
How to use schedulers – subscribeOn and observeOn operators 196

Changing thread on subscription – subscribeOn operator 197
Observing on a different thread – observeOn operator 201

Summary 203

Chapter 8: Testing RxKotlin Applications 204

Introduction to unit testing and its importance 205
Why is unit testing so important? 206

Writing JUnit tests in Kotlin 206
Testing your code 209

Testing in RxKotlin 213
Blocking subscribers 214
Blocking operators 215

Getting the first emitted item – blockingFirst() 216
Getting the only item from single or maybe - blockingGet 217
Getting the last Item - blockingLast 218
Getting all emissions as iterable - blockingIterable operator 219
Looping through all emissions - blockingForEach 220

Introducing TestObserver and TestSubscriber 221
Understanding TestScheduler 223
Summary 224

Chapter 9: Resource Management and Extending RxKotlin 225

Table of Contents

[v]

Resource management 226
Creating your own operators 229
Composing operators with transformer 234
Summary 238

Chapter 10: Introduction to Web Programming with Spring for Kotlin
Developers 239

Spring, history, and origin of Spring 240
The origin and history of Spring 240

Dependency injection and IoC 241
Spring Annotation configuration 246

Spring – AOP 249
Introduction to Spring Boot 252
Creating a Rest API with Spring Boot 256
Summary 258

Chapter 11: REST APIs with Spring JPA and Hibernate 259

REST API with Spring Boot, Hibernate, and JPA 259
Reactive programming with Reactor 267

Add Reactor to your project 267
Understanding Flux and Mono 268

Summary 271

Chapter 12: Reactive Kotlin and Android 272

Setting up Kotlin in Android Studio 273
Getting started with ToDoApp on Android 276
Retrofit 2 for API calls 283
RxKotlin with Retrofit 287
Making Android events reactive 290

Introducing RxBinding in Android 291
Kotlin extensions 292
Summary 293

Index 294

Preface
Is our world just a collection of states? No. Then why do all the programming paradigms
represent our world as a series of states? Can't we reflect objects that are real, moving, and
continuously changing state in programming? These are the questions that have interested
me ever since I first learned programming.

When I started working as an Android developer, these questions continued to plague me,
but got some friends as well. Why do we need so many loops in an application? Isn't there
anything to replace the iterators? Also, for Android applications, we must keep a lot of
things in mind, as the processors and RAM in a mobile device are not as powerful as those
in your PC. There is often an Out of Memory Exception if you do not structure your projects
well. So, if we could have less iterators in our program, the UX will significantly improve,
but, how do we do it? How do we replace iterators, and with what?

One fine day, I read a blog post about reactive programming and the ReactiveX Framework,
(most probably by Thomas Nield, thanks to him), and it gave me a glimpse of the answers
to all my questions. So, I started learning reactive programming.

I found out that the learning curve of reactive programming is very much complex, and
many developers out there leave it part way through. Reactive programming is considered
an advanced topic in most places. However, I continued my journey toward learning
reactive programming, and as a reward for my patience and consistency, I got answers to
my questions. RxJava (and all other ReactiveX libraries) represents models just like our real-
time world, and, unlike states, they model behavior with moving and continuously
changing states. Unlike an iterator pattern, it believes on push mechanism, which will push
data/event to the subscriber/observer as it comes, making the programming a lot more
easier and a lot more like the human world.

On the other hand, around 2 years ago (in December 2015), when I read a Jetbrains blog
(yes, I do read a lot, and write as well) about a new language that will work in JVM, my first
thought was, why a new language? So, I started exploring Kotlin, and I fell in love with it.
The sole purpose of the language is making programming a lot easier. Whenever someone
speaks about the benefits of Kotlin, they talk about handling null pointer exceptions so
easily, but there are a lot more advantages; the list is never-ending and continues to grow.

The best thing that can happen to a programmer is combining the Kotlin and ReactiveX
Frameworks; Mario Arias did this awesome job for the sake of the Developers Community
and started RxKotlin on October 2013.

Preface

[2]

The only thing that RxKotlin lacks is documentation; I personally believe that the main
reason behind the complex learning curve of ReactiveX libraries is a lack of documentation
and, mostly, a lack of awareness. I've seen a lot of developers, even with more than 6-8
years of experience who have not heard of reactive programming; I believe this book will
have a bigger role in changing this scenario. This book is also a part of my mission (also the
mission of Kotlin Kolkata User Group) to spread the use and knowledge of Kotlin as much
as possible.

As per as my knowledge, this is the first book that helps you learn reactive programming in
Kotlin, covering RxKotlin (precisely RxKotlin 2.0) and the Reactor-Kotlin Framework. It is a
step-by-step guide to learn RxKotlin and Reactor-Kotlin with added coverage on Spring
and Android. I hope this book will help you find the benefits of Kotlin and reactive
programming altogether, and, with the help of this book, you will be able to successfully
apply reactive programming to all your Kotlin projects.

If you have any concerns, feedback, or comments, you can contact me through my
site http://www.rivuchk. com, or drop an email to rivu@rivuchk.com. Make sure to mention
Book Query - Reactive Programming in Kotlin in the subject of the email.

What this book covers
Chapter 1, A Short Introduction to Reactive Programming, helps you understand the context,
thinking pattern, and principles of reactive programming.

Chapter 2, Functional Programming with Kotlin and RxKotlin, chapter walks you through the
essential concepts of functional programming paradigms and their possible
implementations on Kotlin so that you can understand functional reactive programming
easily.

Chapter 3, Observables, Observers, and Subjects, enables you to gain a grip on the base of
RxKotlin—Observables, Observers, and Subjects lay at the core of RxKotlin.

Chapter 4, Introduction to Backpressure and Flowables, introduces you to Flowables, which
enable you to use Backpressure—a technique in RxKotlin that prevents producers from
outpacing consumers.

Chapter 5, Asynchronous Data Operators and Transformations, introduces you to operators in
RxKotlin.

Chapter 6, More on Operators and Error Handling, gets your grip stronger on operators, and
introduces how to combine producers and how to filter them with operators. This chapter
will also help you handle errors more efficiently in RxKotlin.

http://www.rivuchk.com
http://www.rivuchk.com
http://www.rivuchk.com
http://www.rivuchk.com
http://www.rivuchk.com
http://www.rivuchk.com
http://www.rivuchk.com
http://www.rivuchk.com
http://www.rivuchk.com
mailto:rivu@rivuchk.com

Preface

[3]

Chapter 7, Concurrency and Parallel Processing in RxKotlin with Schedulers, enables you to
leverage the benefits of Schedulers to achieve concurrent programming.

Chapter 8, Testing RxKotlin Applications, walks you through the most crucial part of
application development—testing—which is a bit different in RxKotlin as reactive
programming defines behaviors instead of states. This chapter starts with the basics of
testing, enabling you to learn testing from scratch.

Chapter 9, Resource Management and Extending RxKotlin, helps you learn how to manage
resources in Kotlin—resources could be database instances, files, HTTP accesses, or
anything that needs to be closed. You will also learn how to create your own custom
operators in RxKotlin in this chapter.

Chapter 10, Introduction to Web Programming with Spring for Kotlin Developers, gets you
started with Spring and Hibernate so that you can leverage its benefits while writing APIs
in Kotlin.

Chapter 11, REST APIs with Spring JPA and Hibernate, introduces you to the Reactor
framework, the reactor-kotlin extension, so that you can apply reactive programming with
Spring in Kotlin.

Chapter 12, Reactive Kotlin and Android, the last chapter of this book, gets you started with
reactive programming in Android with Kotlin.

What you need for this book
We will be using Java 8 and Kotlin 1.1.50 for the programs in this book, so Oracle's JDK 1.8
along with Kotlin 1.1.50 (this can be skipped downloading if you're using IntelliJ IDEA) will
be required. You will need an environment to write and compile your Kotlin code (I
strongly recommend Intellij IDEA, but you can use anything of your choice), and preferably
a build automation system such as Gradle or Maven. Later in this book, we will use
Android Studio (2.3.3 or 3.0). Everything you need in this book should be free to use and
not require commercial or personal licensing (we are using the IntelliJ IDEA Community
Edition).

Who this book is for
This book is for Kotlin developers who would like to build fault-tolerant, scalable, and
distributed systems. A basic knowledge of Kotlin is required; however, no prior knowledge
of reactive programming is assumed.

Preface

[4]

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Let's first
take a look at the init block of the ReactiveCalculator class"

A block of code is set as follows:

 async(CommonPool) {
 Observable.range(1, 10)
 .subscribeOn(Schedulers.trampoline())//(1)
 .subscribe {
 runBlocking { delay(200) }
 println("Observable1 Item Received $it")
 }

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

abstract class BaseActivity : AppCompatActivity() {
 final override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 onCreateBaseActivity(savedInstanceState)
 }
 abstract fun onCreateBaseActivity(savedInstanceState: Bundle?)
 }

Any command-line input or output is written as follows. The input command might be
broken into several lines to aid readability, but needs to be entered as one continuous line in
the prompt:

$ git clone https://github.com/ReactiveX/RxKotlin.git
$ cd RxKotlin/
$./gradlew build

Preface

[5]

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Go to Android
Studio | Settings | Plugins."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at http:/ /www.
packtpub.com. If you purchased this book elsewhere, you can visit http:/ /www. packtpub.
com/support and register to have the files e-mailed directly to you.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[6]

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Reactive- Programming- in-Kotlin. We also have other code bundles
from our rich catalog of books and videos available at https:/ /github. com/
PacktPublishing/. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from https:/ / www. packtpub. com/ sites/ default/ files/
downloads/ReactiveProgramminginKotlin_ ColorImages. pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http:// www.packtpub. com/ submit- errata,
selecting your book, clicking on the Errata Submission Form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

https://github.com/PacktPublishing/Reactive-Programming-in-Kotlin
https://github.com/PacktPublishing/Reactive-Programming-in-Kotlin
https://github.com/PacktPublishing/Reactive-Programming-in-Kotlin
https://github.com/PacktPublishing/Reactive-Programming-in-Kotlin
https://github.com/PacktPublishing/Reactive-Programming-in-Kotlin
https://github.com/PacktPublishing/Reactive-Programming-in-Kotlin
https://github.com/PacktPublishing/Reactive-Programming-in-Kotlin
https://github.com/PacktPublishing/Reactive-Programming-in-Kotlin
https://github.com/PacktPublishing/Reactive-Programming-in-Kotlin
https://github.com/PacktPublishing/Reactive-Programming-in-Kotlin
https://github.com/PacktPublishing/Reactive-Programming-in-Kotlin
https://github.com/PacktPublishing/Reactive-Programming-in-Kotlin
https://github.com/PacktPublishing/Reactive-Programming-in-Kotlin
https://github.com/PacktPublishing/Reactive-Programming-in-Kotlin
https://github.com/PacktPublishing/Reactive-Programming-in-Kotlin
https://github.com/PacktPublishing/Reactive-Programming-in-Kotlin
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/ReactiveProgramminginKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactiveProgramminginKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactiveProgramminginKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactiveProgramminginKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactiveProgramminginKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactiveProgramminginKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactiveProgramminginKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactiveProgramminginKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactiveProgramminginKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactiveProgramminginKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactiveProgramminginKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactiveProgramminginKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactiveProgramminginKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactiveProgramminginKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactiveProgramminginKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactiveProgramminginKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactiveProgramminginKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactiveProgramminginKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactiveProgramminginKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactiveProgramminginKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactiveProgramminginKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ReactiveProgramminginKotlin_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

Preface

[7]

To view the previously submitted errata, go to https:/ /www. packtpub. com/ books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
mailto:copyright@packtpub.com
mailto:questions@packtpub.com

1
A Short Introduction to Reactive

Programming
The term reactive got famous recently. Not only did it get trending, but it has started ruling
the software development sector with new blog posts articles every day, and presentations,
emerging frameworks and libraries, and more. Even the big IT companies that are often
referred to as market giants, such as Google, Facebook, Amazon, Microsoft, and Netflix, are
not only supporting and using reactive programming themselves, but they've even started
releasing new frameworks for the same.

So, as a programmer, we are wondering about reactive programming. Why is everyone
getting crazy about it? What does reactive programming exactly mean? What are the benefits
of reactive programming? And, finally, should we learn it? If yes, then how?

On the other hand, Kotlin is also the newest programming language you've heard of (we're
guessing you've heard of Kotlin, as this book assumes that you've a little understanding of
the language). Kotlin, as a language, solves many important problems in Java. The best part
is its interoperability with Java. If you carefully watch the trends, then you would know
that Kotlin has created not a strong wind but a storm to blow things around it. Even the
Google at Google IO/17 declared its official support for Kotlin as an official programming
language for Android application development, noting that it is the first time since the
perception of the Android Framework that Google has added another language to the
Android family other than Java. Soon after, Spring also expressed their support for Kotlin.

To say it in simple words, Kotlin is powerful enough to create a great application, but if you
combine reactive programming style with Kotlin, it would be super easy to build great apps
better.

This book will present reactive programming in Kotlin with RxKotlin and Reactor, along
with their implementations in Spring, Hibernate, and Android.

A Short Introduction to Reactive Programming Chapter 1

[9]

In this chapter, we will cover the following topics:

What is reactive programming?
Reasons to adapt functional reactive programming
Reactive Manifesto
Comparison between the observer (reactive) pattern and familiar patterns
Getting started with RxKotlin

What is reactive programming?
Reactive programming is an asynchronous programming paradigm that revolves around
data streams and the propagation of change. In simpler words, those programs which
propagate all the changes that affected its data/data streams to all the interested parties
(such as end users, components and sub-parts, and other programs that are somehow
related) are called reactive programs.

For example, take any spreadsheet (say the Google Sheet), put any number in the A1 cell,
and in the B1 cell, write the =ISEVEN(A1) function; it'll show TRUE or FALSE, depending
on whether you've entered an even or odd number. Now, if you modify the number in A1,
the value of B1 will also get changed automatically; such behavior is called reactive.

Not clear enough? Let's look at a coding example and then try to understand it again. The
following is a normal Kotlin code block to determine if a number is even or odd:

 fun main(args: Array<String>) {
 var number = 4
 var isEven = isEven(number)
 println("The number is " + (if (isEven) "Even" else "Odd"))
 number = 9
 println("The number is " + (if (isEven) "Even" else "Odd"))
 }

 fun isEven(n:Int):Boolean = ((n % 2) == 0)

If you check the output of the program, then you'll see that, although the number is
assigned a new value, isEven is still true; however, if isEven was made to track changes of
the number, then it would automatically become false. A reactive program would just do
the same.

A Short Introduction to Reactive Programming Chapter 1

[10]

Reasons to adapt functional reactive
programming
So, let's first discuss the reasons to adapt functional reactive programming. There's no point
in changing the whole way you code unless it gets you some really significant benefits,
right? Yes, functional reactive programming gets you a set of mind-blowing benefits, as
listed here:

Get rid of the callback hell:
A callback is a method that gets called when a predefined event occurs. The
mechanism of passing interfaces with callback methods is called callback
mechanism. This mechanism involves a hell of a lot of code, including the
interfaces, their implementations, and more. Hence, it is referred to as callback
hell.
Standard mechanism for error handling:
Generally, while working with complex tasks and HTTP calls, handling errors are
a major concern, especially in the absence of any standard mechanism, it becomes
a headache.
It's a lot simpler than regular threading:
Though Kotlin makes it easier to work with threading as compared to Java, it's
still complicated enough. Reactive programming helps to make it easier.
Straightforward way for async operations:
Threading and asynchronous operations are interrelated. As threading got easier,
so did the async operations.
One for everything, the same API for every operations:
Reactive programming, especially RxKotlin, offers you a simple and
straightforward API. You can use it for anything and everything, be it network
call, database access, computation, or UI operations.
The functional way:
Reactive programming leads you to write readable declarative code as, here,
things are more functional.
Maintainable and testable code:
The most important point-by following reactive programming properly, your
program becomes more maintainable and testable.

A Short Introduction to Reactive Programming Chapter 1

[11]

Reactive Manifesto
So, what is the Reactive Manifesto? The Reactive Manifesto
(http://www.reactivemanifesto.org) is a document defining the four reactive principles.
You can think of it as the map to the treasure of reactive programming, or like the bible for
the programmers of the reactive programming religion.

Everyone starting with reactive programming should have a read of the manifesto to
understand what reactive programming is all about and what its principles are.

So, the following is the gist of four principles that Reactive Manifesto defines:

Responsive:
The system responds in a timely manner. Responsive systems focus on providing
rapid and consistent response times, so they deliver a consistent quality of
service.
Resilient:
In case the system faces any failure, it stays responsive. Resilience is achieved by
replication, containment, isolation, and delegation. Failures are contained within
each component, isolating components from each other, so when failure has
occurred in a component, it will not affect the other components or the system as
a whole.
Elastic:
Reactive systems can react to changes and stay responsive under varying
workload. They achieve elasticity in a cost effective way on commodity hardware
and software platforms.
Message driven:
In order to establish the resilient principle, reactive systems need to establish a
boundary between components by relying on asynchronous message passing.

By implementing all four preceding principles, the system becomes reliable and responsive
thus, reactive.

http://www.reactivemanifesto.org

A Short Introduction to Reactive Programming Chapter 1

[12]

Reactive Streams standard specifications
Along with the Reactive Manifesto, we also have a standard specification on Reactive
Streams. Everything in the reactive world is accomplished with the help of Reactive
Streams. In 2013, Netflix, Pivotal, and Lightbend (previously known as Typesafe) felt a need
for a standards specification for Reactive Streams as the reactive programming was
beginning to spread and more frameworks for reactive programming were starting to
emerge, so they started the initiative that resulted in Reactive Streams standard
specification, which is now getting implemented across various frameworks and platforms.

You can take a look at the Reactive Streams standard specification
at—http://www.reactive-streams.org/.

Reactive Frameworks for Kotlin
To write Reactive programs, we need a library or a specific programming language; we
can't refer to Kotlin as a reactive language (basically, I don't know any such language that is
reactive by itself) as it is a powerful and flexible programming language for modern
multiplatform applications, fully interoperable with Java and Android. However, there are
reactive libraries out there to help us with these. So, let's take a look at the available list:

RxKotlin
Reactor-Kotlin
Redux-Kotlin
FunKTionale
RxJava and other Reactive Java Frameworks can also be used with Kotlin (as
Kotlin is 100% interoperable with Java-bidirectional)

In this book, we will focus on RxJava and Reactor-kotlin (in the later
chapters, on Spring).

http://www.reactive-streams.org/

A Short Introduction to Reactive Programming Chapter 1

[13]

Getting started with RxKotlin
RxKotlin is a specific implementation of reactive programming for Kotlin, which is
influenced by functional programming. It favors function composition, avoidance of global
state, and side effects. It relies on the observer pattern of producer/consumer, with a lot of
operators that allow composing, scheduling, throttling, transforming, error handling, and
lifecycle management.

Whereas Reactor-Kotlin is also based on functional programming, and it is widely accepted
and backed by the Spring Framework.

Downloading and setting up RxKotlin
You can download and build RxKotlin from GitHub
(https://github.com/ReactiveX/RxKotlin). I do not require any other dependencies. The
documentation on the GitHub wiki page is well structured. Here's how you can check out
the project from GitHub and run the build:

$ git clone https://github.com/ReactiveX/RxKotlin.git
$ cd RxKotlin/
$./gradlew build

You can also use Maven and Gradle, as instructed on the page.

For Gradle, use the following compile dependency:

compile 'io.reactivex.rxjava2:rxkotlin:2.x.y'

For Maven, use this dependency:

 <dependency>
 <groupId>io.reactivex.rxjava2</groupId>
 <artifactId>rxkotlin</artifactId>
 <version>2.x.y</version>
 </dependency>

This book targets RxKotlin 2.x, so remember to use io.reactive.rxjava2 instead of
io.reactivex.rxkotlin, as the latter one is for RxKotlin 1.x.

Note that we are using RxKotlin version 2.1.0 for this book.

https://github.com/ReactiveX/RxKotlin

A Short Introduction to Reactive Programming Chapter 1

[14]

Now, let's take a look at what RxKotlin is all about. We will begin with something well-
known and, gradually, we will get into the secrets of the library.

Comparing the pull mechanism with the RxJava
push mechanism
RxKotlin revolves around the observable type that represents a system of data/events
intended for push mechanism (instead of the pull mechanism of the iterator pattern of
traditional programs), thus it is lazy and can be used synchronously and asynchronously.

It will be easier for us to understand if we start with a simple example that works with a list
of data. So, here is the code:

 fun main(args: Array<String>) {
 var list:List<Any> = listOf("One", 2, "Three", "Four", 4.5,
 "Five", 6.0f) // 1
 var iterator = list.iterator() // 2
 while (iterator.hasNext()) { // 3
 println(iterator.next()) // Prints each element 4
 }
 }

The following screenshot is the output:

So, let's go through the program line by line to understand how it works.

A Short Introduction to Reactive Programming Chapter 1

[15]

At comment 1, we're creating a list of seven items (the list contains data of mixed data types
with the help of any class). On comment 2, we are creating iterator from the list, so that
we can iterate over the data. In comment 3, we have created a while loop to pull data from
the list with the help of iterator, and then, in 4, we're printing it.

The thing to notice is that we're pulling data from the list while the current thread is
blocked until the data is received and ready. For example, think of getting that data from a
network call/database query instead of just List and, in that case, how long the thread will
be blocked. You can obviously create a separate thread for those operations, but then also, it
will increase complexity.

Just give a thought; which one is a better approach? Making the program wait for data or
pushing data to the program whenever it's available?

The building blocks of the ReactiveX Framework (be it RxKotlin or RxJava) are the
observables. The observable class is just the opposite of iterator interface. It has an
underlying collection or computation that produces values that can be consumed by a
consumer. However, the difference is that the consumer doesn't pull these values from the
producer, like in the iterator pattern; instead, the producer pushes the values as
notifications to the consumer.

So, let's take the same example again, this time with observable:

 fun main(args: Array<String>) {
 var list:List<Any> = listOf("One", 2, "Three",
 "Four", 4.5, "Five", 6.0f) // 1
 var observable: Observable<Any> = list.toObservable();

 observable.subscribeBy(// named arguments for
 lambda Subscribers
 onNext = { println(it) },
 onError = { it.printStackTrace() },
 onComplete = { println("Done!") }
)
 }

This program output is the same as the previous one—it prints all the items in the list. The
difference is in the approach. So, let's see how it actually works:

Create a list (just the same as the previous one).1.
An observable instance is created with that list.2.
We're subscribing to the observer instance (we're using named arguments for3.
lambda and covering it in detail later).

A Short Introduction to Reactive Programming Chapter 1

[16]

As we subscribe to observable, each data will be pushed to onNext, and, as it gets ready,
it will call onComplete when all data is pushed and onError if any error occurs.

So, you learned to use the observable instances, and they are quite similar to the
iterator instances, which is something we're very familiar with. We can use these
observable instances to build asynchronous streams and push data updates to their
subscribers (even to multiple subscribers).This was a simple implementation of the reactive
programming paradigm. The data is being propagated to all the interested parties—the
subscribers.

The ReactiveEvenOdd program
So, now that we are somewhat familiar with observables, let's modify the even-odd
program in a reactive way. Here is the code for doing so:

 fun main(args: Array<String>) {
 var subject:Subject<Int> = PublishSubject.create()

 subject.map({ isEven(it) }).subscribe({println
 ("The number is ${(if (it) "Even" else "Odd")}")})

 subject.onNext(4)
 subject.onNext(9)
 }

Here is the output:

In this program, we have used subject and map, which we will cover in the later chapters.
Here, it is just to show how easy it is in reactive programming to notify the changes. If you
look at the program closely, then you'll also find that the code is modular and functional.
When we notify subject with a number, it calls the method in map, then it calls the method
in subscribe with the return value of the map method. The map method checks if the
number is even and returns true or false accordingly; in the subscribe method, we are
receiving that value and printing even or odd accordingly. The subject.onNext method is
the way through which we message the new value to the subject, so it can process it.

A Short Introduction to Reactive Programming Chapter 1

[17]

The ReactiveCalculator project
So, let's start with an event with the user input. Go through the following example:

 fun main(args: Array<String>) {
 println("Initial Out put with a = 15, b = 10")
 var calculator:ReactiveCalculator = ReactiveCalculator(15,10)
 println("Enter a = <number> or b = <number> in separate
 lines\nexit to exit the program")
 var line:String?
 do {
 line = readLine();
 calculator.handleInput(line)
 } while (line!= null && !line.toLowerCase().contains("exit"))
 }

If you run the code, you'll get the following output:

A Short Introduction to Reactive Programming Chapter 1

[18]

In the main method, we are not doing much operation except for just listening to the input
and passing it to the ReactiveCalculator class, and doing all other operations in the
class itself, thus it is modular. In the later chapters, we will create a separate observable
for the input process, and we will process all user inputs there. We have followed the pull
mechanism on the user input for the sake of simplicity, which you will learn to remove in
the next chapters. So, let's now take a look at the following ReactiveCalculator class:

 class ReactiveCalculator(a:Int, b:Int) {
 internal val subjectAdd: Subject<Pair<Int,Int>> =
 PublishSubject.create()
 internal val subjectSub: Subject<Pair<Int,Int>> =
 PublishSubject.create()
 internal val subjectMult: Subject<Pair<Int,Int>> =
 PublishSubject.create()
 internal val subjectDiv: Subject<Pair<Int,Int>> =
 PublishSubject.create()

 internal val subjectCalc:Subject<ReactiveCalculator> =
 PublishSubject.create()

 internal var nums:Pair<Int,Int> = Pair(0,0)

 init{
 nums = Pair(a,b)

 subjectAdd.map({ it.first+it.second }).subscribe
 ({println("Add = $it")})
 subjectSub.map({ it.first-it.second }).subscribe
 ({println("Substract = $it")})
 subjectMult.map({ it.first*it.second }).subscribe
 ({println("Multiply = $it")})
 subjectDiv.map({ it.first/(it.second*1.0) }).subscribe
 ({println("Divide = $it")})

 subjectCalc.subscribe({
 with(it) {
 calculateAddition()
 calculateSubstraction()
 calculateMultiplication()
 calculateDivision()
 }
 })

 subjectCalc.onNext(this)
 }

 fun calculateAddition() {

A Short Introduction to Reactive Programming Chapter 1

[19]

 subjectAdd.onNext(nums)
 }

 fun calculateSubstraction() {
 subjectSub.onNext(nums)
 }

 fun calculateMultiplication() {
 subjectMult.onNext(nums)
 }

 fun calculateDivision() {
 subjectDiv.onNext(nums)
 }

 fun modifyNumbers (a:Int = nums.first, b: Int = nums.second) {
 nums = Pair(a,b)
 subjectCalc.onNext(this)
 }

 fun handleInput(inputLine:String?) {
 if(!inputLine.equals("exit")) {
 val pattern: Pattern = Pattern.compile
 ("([a|b])(?:\\s)?=(?:\\s)?(\\d*)");

 var a: Int? = null
 var b: Int? = null

 val matcher: Matcher = pattern.matcher(inputLine)

 if (matcher.matches() && matcher.group(1) != null
 && matcher.group(2) != null) {
 if(matcher.group(1).toLowerCase().equals("a")){
 a = matcher.group(2).toInt()
 } else if(matcher.group(1).toLowerCase().equals("b")){
 b = matcher.group(2).toInt()
 }
 }

 when {
 a != null && b != null -> modifyNumbers(a, b)
 a != null -> modifyNumbers(a = a)
 b != null -> modifyNumbers(b = b)
 else -> println("Invalid Input")
 }
 }
 }
 }

A Short Introduction to Reactive Programming Chapter 1

[20]

In this program, we have push mechanism (observable pattern) only to the data, not the
event (user input). While the initial chapters in this book will show you how to observe on
data changes; RxJava also allows you to observer events (such as user input), we will get
them covered during the end of the book while discussing RxJava on Android. So, now,
let's understand how this code works.

First, we created a ReactiveCalculator class, which observes on its data and even on
itself; so, whenever its property is modified, it calls all its calculate methods.

We used Pair to pair two variables and created four subject on the Pair to observe
changes on it and then process it; we need four subject as there are four separate
operations. You will also learn to optimize it with just one method in the later chapters.

On the calculate methods, we are just notifying the subject to process the Pair and print
the new result.

If you focus on the map methods in both the programs, then you will learn that the map
method takes the value that we passed with onNext and processes it to come up with a
resultant value; that resultant value can be of any data type, and this resultant value is
passed to the subscriber to process further and/or show the output.

Summary
In this chapter, we learned about what reactive programming is and the reasons we should
learn it. We also started with coding. The reactive coding pattern may seem new or
somehow uncommon, but it is not that hard; while using it, you just need to declare a few
more things.

We learned about observable and its use. We also got introduced to subject and map,
which we will learn in depth in the later chapters.

We will continue with ReactiveCalculator example in the later chapters and see how we
can optimize and enhance this program.

The three examples presented in this chapter may seem a bit confusing and complex at first,
but they're really simple, and they will become familiar to you as you proceed with this
book.

In the next chapter, we will learn more about functional programming and functional
interfaces in RxKotlin.

2
Functional Programming with

Kotlin and RxKotlin
Functional programming paradigms are slightly different than that of Object-oriented
programming (OOP). It focuses on the use of declarative and expressive programs and
immutable data rather than on statements. The definition of functional programming says
functional programming is a programming system that relies on structuring the program as the
evaluation of mathematical functions with immutable data, and it avoids state-change. It is a
declarative programming paradigm that suggests use of small, reusable declarative
functions.

We have seen the definition of functional programming; now, don't you want to delve into
its definition and see what it exactly means? Do all languages support functional
programming? If not, then which languages does and what about Kotlin? What exactly does
reactive programming have to do with functional programming? And, finally, what do we
need to learn, for functional programming?

In this chapter, we will cover the following topics:

Getting started with functional programming
Relationship of functional programming with reactive programming
The path breaking feature of Kotlin–coroutines

Functional Programming with Kotlin and RxKotlin Chapter 2

[22]

Introducing functional programming
So, functional programming wants you to distribute your programming logic into small
pieces of reusable declarative small and pure functions. Distributing your logic into small
pieces of code will make the code modular and non-complex, thus you will be able to
refactor/change any module/part of the code at any given point without any effects to other
modules.

Functional programming requires some interfaces and support from the language, thus we
can't say any language is functional unless it gives some sort of support to implement
functional programming. However, functional programming isn't something new; it is
actually quite an old concept and has several languages supporting it. We call those
languages functional programming languages, and the following is a list of some of the
most popular functional programming languages:

Lisp
Clojure
Wolfram
Erlang
OCaml
Haskell
Scala
F#

Lisp and Haskell are some of the oldest languages and are still used today in academia and
industry. While talking about Kotlin, it has excellent support for functional programming
from its first stable release in contrast to Java, which doesn't have any support for functional
programming before Java 8. You can use Kotlin in both object-oriented and functional-
programming style or even in a mix of two, which is really a great benefit for us. With a
first-class support for features, such as higher-order functions, function types, and lambdas,
Kotlin is a great choice if you're doing or exploring functional programming.

The concept of functional reactive programming (FRP) is actually a product of mixing
reactive programming with functional programming. The main objective of writing
functional programming is to implement modular programming; this modular
programming is really helpful, or sometimes a necessity to implement reactive
programming or rather to implement the four principles of the Reactive Manifesto.

Functional Programming with Kotlin and RxKotlin Chapter 2

[23]

Fundamentals of functional programming
Functional programming consists of few new concepts such as lambdas, pure functions,
high-order functions, function types, and inline functions, which we will be learning. Quite
interesting, isn't it?

Note that, although in many programmers word, pure functions and
lambdas are the same, they are actually not. In the following part of this
chapter, we will learn more about them.

Lambda expressions
Lambda or lambda expressions generally mean anonymous functions, that is, functions
without names. You can also say a lambda expression is a function, but not every function
is a lambda expression. Not every programming language provides support for lambda
expressions, for instance, Java didn't have it until Java 8. The implementations of lambda
expressions are also different in respect to languages. Kotlin has good support for lambda
expressions and implementing them in Kotlin is quite easy and natural. Let's now take a
look at how lambda expressions work in Kotlin:

 fun main(args: Array<String>) {
 val sum = { x: Int, y: Int -> x + y } // (1)
 println("Sum ${sum(12,14)}")// (2)
 val anonymousMult = {x: Int -> (Random().nextInt(15)+1) * x}
 // (3)
 println("random output ${anonymousMult(2)}")// (4)
 }

In the preceding program, in comment (1), we declare a lambda expression that will add
two numbers and return the sum as result; in comment (2), we call that function and print
it; in comment (3), we declare another lambda that will multiply a random number bound
to 15 with the value x passed to it and return the result; in comment (4), we, again, print it.
Both the lambda expressions are actually functions, but without any function name; thus
they are also referred to as an anonymous function. If you compare with Java, Java has a
feature of anonymous class, but included lambda/anonymous functions only after Java 8.

Functional Programming with Kotlin and RxKotlin Chapter 2

[24]

If you are curious about the output, then refer to the following screenshot:

Pure function
The definition of pure function says that if the return value of a function is completely dependent
on its arguments/parameters, then this function may be referred to as a pure function. So, if we
declare a function as fun func1(x:Int):Int, then its return value will be strictly
dependent on its argument x; say, if you call func1 with a value of 3 twice, then, for both
the times, its return value will be the same. A pure function can be a lambda or a named
function as well. In the previous example, the first lambda expression was a pure function
but not the second one, as for the second one, its return value can be different at different
times with the same value passed to it. Let's look at the following example to understand it
better:

 fun square(n:Int):Int {//(1)
 return n*n
 }

 fun main(args: Array<String>) {
 println("named pure func square = ${square(3)}")
 val qube = {n:Int -> n*n*n}//(2)
 println("lambda pure func qube = ${qube(3)}")
 }

Both the functions, (1) and (2), here are pure functions–one is named, while the other is
lambda. If you pass the value 3 to any of the functions n times, their return value will be the
same for each time. Pure functions don't have side effects.

Side effects: A function or expression is said to have a side effect if it
modifies some state outside its scope or has an observable interaction with
its calling functions or the outside world besides returning a value.
Source–Wikipedia https:/ /en. wikipedia. org/ wiki/ Side_ effect_
(computer_ science).

https://en.wikipedia.org/wiki/Side_effect_(computer_science)
https://en.wikipedia.org/wiki/Side_effect_(computer_science)
https://en.wikipedia.org/wiki/Side_effect_(computer_science)
https://en.wikipedia.org/wiki/Side_effect_(computer_science)
https://en.wikipedia.org/wiki/Side_effect_(computer_science)
https://en.wikipedia.org/wiki/Side_effect_(computer_science)
https://en.wikipedia.org/wiki/Side_effect_(computer_science)
https://en.wikipedia.org/wiki/Side_effect_(computer_science)
https://en.wikipedia.org/wiki/Side_effect_(computer_science)
https://en.wikipedia.org/wiki/Side_effect_(computer_science)
https://en.wikipedia.org/wiki/Side_effect_(computer_science)
https://en.wikipedia.org/wiki/Side_effect_(computer_science)
https://en.wikipedia.org/wiki/Side_effect_(computer_science)
https://en.wikipedia.org/wiki/Side_effect_(computer_science)
https://en.wikipedia.org/wiki/Side_effect_(computer_science)
https://en.wikipedia.org/wiki/Side_effect_(computer_science)
https://en.wikipedia.org/wiki/Side_effect_(computer_science)
https://en.wikipedia.org/wiki/Side_effect_(computer_science)

Functional Programming with Kotlin and RxKotlin Chapter 2

[25]

It is to note that, as we said earlier, pure functions have nothing to do with lambda
expressions, their definitions are completely different.

The following is the output:

named pure func square = 9
lambda pure func qube = 27

High-order functions
Those functions that take another function as an argument or return a function as result are
called high-order functions. Consider the following example to understand it better:

 fun highOrderFunc(a:Int, validityCheckFunc:(a:Int)->Boolean) {//(1)
 if(validityCheckFunc(a)) {//(2)
 println("a $a is Valid")
 } else {
 println("a $a is Invalid")
 }
 }

 fun main(args: Array<String>) {
 highOrderFun(12,{ a:Int -> a.isEven()})//(3)
 highOrderFunc(19,{ a:Int -> a.isEven()})
 }

In this program, we've declared a highOrderFunc function, which will take an Int and a
validityCheckFunc(Int) function. We are calling the validityCheckFunc function
inside the highOrderFunc function, to check whether the value was valid or not. However,
we are defining the validityCheckFunc function at runtime, while we are calling the
highOrderFunc function inside the main function.

Note that the isEven function in this program is an extension function
that has been defined inside the project files you got with the book.

Here is the output:

a 12 is Valid
a 19 is Invalid

Functional Programming with Kotlin and RxKotlin Chapter 2

[26]

Inline functions
While functions are a great way to write modular code, it may sometimes increase program
execution time and reduce memory optimization due to function stack maintenance and
overhead. Inline functions are a great way to avoid those hurdles in functional
programming. For example, see the following code snippet:

 fun doSomeStuff(a:Int = 0) = a+(a*a)

 fun main(args: Array<String>) {
 for (i in 1..10) {
 println("$i Output ${doSomeStuff(i)}")
 }
 }

Let's recite the definition of inline function; it says that inline functions are an enhancement
feature to improve the performance and memory optimization of a program. Functions can be
instructed to the compiler to make them inline so that the compiler can replace those
function definitions wherever those are being called. Compiler replaces the definition of
inline functions at compile time instead of referring function definition at runtime; thus, no
extra memory is needed for a function call, stack maintenance, and more, and getting the
benefits of functions as well.

The preceding program declares a function that adds two numbers and returns the result,
and we will call the function in the loop. Instead of declaring a function for this, we can
write the addition code right in the place where we will call the function, but declaring a
function gives us freedom to modify the addition logic anytime without any effect on the
remaining code, for example, if we want to modify the addition with multiplication or
something else. If we declare a function as inline, then the code inside that function will
replace all the function calls, thus improving performance while keeping our freedom
intact. Consider the following code snippet as an example:

 inline fun doSomeStuff(a:Int = 0) = a+(a*a)

 fun main(args: Array<String>) {
 for (i in 1..10) {
 println("$i Output ${doSomeStuff(i)}")
 }
 }

Functional Programming with Kotlin and RxKotlin Chapter 2

[27]

Here is the output of the program:

There is one more feature Kotlin provides with inline functions–if you declare a high-order
function as inline, then the inline keyword affects both the function itself and the
lambda passed to it. Let's modify the high-order function code with inline:

 inline fun highOrderFuncInline(a:Int, validityCheckFunc:(a:Int)-
 >Boolean) {
 if(validityCheckFunc(a)) {
 println("a $a is Valid")
 } else {
 println("a $a is Invalid")
 }
 }

 fun main(args: Array<String>) {
 highOrderFuncInline(12,{ a:Int -> a.isEven()})
 highOrderFuncInline(19,{ a:Int -> a.isEven()})
 }

The compiler will replace all calls to validityCheckFunc with its lambda, as it would do
with highOrderFuncInline with its definition. As you can see, there's not much
modification of the code, just a small change of adding inline before a function
declaration can improve performance.

Functional Programming with Kotlin and RxKotlin Chapter 2

[28]

Applying functional programming to the
ReactiveCalculator class
So, now, after trying to understand the ReactiveCalculator class from the previous
chapter, we will try to optimize the code as well. Let's first take a look at the init block of
the ReactiveCalculator class:

 init{
 nums = Pair(a,b)

 subjectAdd.map({ it.first+it.second }).subscribe({println
 ("Add = $it")})//1
 subjectSub.map({ it.first-it.second }).subscribe({println
 ("Substract = $it")})
 subjectMult.map({ it.first*it.second }).subscribe
 ({println("Multiply = $it")})
 subjectDiv.map({ it.first/(it.second*1.0) }).subscribe
 ({println("Divide = $it")})

 subjectCalc.subscribe({
 with(it) {
 calculateAddition()
 calculateSubstraction()
 calculateMultiplication()
 calculateDivision()
 }
 })

 subjectCalc.onNext(this)
 }

So, now, with the knowledge of functional programming, we can easily say that the map
and subscribe methods are high-order functions that take function as parameter.
However, do you really think that many subject and subscriber are required?
Shouldn't subscriber on the class be sufficient to accomplish the job itself? Let's try to
modify and optimize the following piece of code:

 class ReactiveCalculator(a:Int, b:Int) {
 val subjectCalc: io.reactivex.subjects.Subject
 <ReactiveCalculator> =
 io.reactivex.subjects.PublishSubject.create()

 var nums:Pair<Int,Int> = Pair(0,0)

 init{

Functional Programming with Kotlin and RxKotlin Chapter 2

[29]

 nums = Pair(a,b)

 subjectCalc.subscribe({
 with(it) {
 calculateAddition()
 calculateSubstraction()
 calculateMultiplication()
 calculateDivision()
 }
 })

 subjectCalc.onNext(this)
 }

 inline fun calculateAddition():Int {
 val result = nums.first + nums.second
 println("Add = $result")
 return result
 }

 inline fun calculateSubstraction():Int {
 val result = nums.first - nums.second
 println("Substract = $result")
 return result
 }

 inline fun calculateMultiplication():Int {
 val result = nums.first * nums.second
 println("Multiply = $result")
 return result
 }

 inline fun calculateDivision():Double {
 val result = (nums.first*1.0) / (nums.second*1.0)
 println("Multiply = $result")
 return result
 }

 inline fun modifyNumbers (a:Int = nums.first, b:
 Int = nums.second) {
 nums = Pair(a,b)
 subjectCalc.onNext(this)
 }

 fun handleInput(inputLine:String?) {
 if(!inputLine.equals("exit")) {
 val pattern: java.util.regex.Pattern =
 java.util.regex.Pattern.compile

Functional Programming with Kotlin and RxKotlin Chapter 2

[30]

 ("([a|b])(?:\\s)?=(?:\\s)?(\\d*)");

 var a: Int? = null
 var b: Int? = null

 val matcher: java.util.regex.Matcher =
 pattern.matcher(inputLine)

 if (matcher.matches() && matcher.group(1) != null &&
 matcher.group(2) != null) {
 if(matcher.group(1).toLowerCase().equals("a")){
 a = matcher.group(2).toInt()
 } else if(matcher.group(1).toLowerCase().equals("b")){
 b = matcher.group(2).toInt()
 }
 }

 when {
 a != null && b != null -> modifyNumbers(a, b)
 a != null -> modifyNumbers(a = a)
 b != null -> modifyNumbers(b = b)
 else -> println("Invalid Input")

 }
 }
 }

 }

So, we have removed all other subscriber and are doing the job with only one. And here's
the output:

Initial Output with a = 15, b = 10
Add = 25
Substract = 5
Multiply = 150
Multiply = 1.5
Enter a = <number> or b = <number> in separate lines
exit to exit the program
a = 6
Add = 16
Substract = -4
Multiply = 60
Multiply = 0.6
b=4
Add = 10
Substract = 2
Multiply = 24

Functional Programming with Kotlin and RxKotlin Chapter 2

[31]

Multiply = 1.5
exit

We subscribe to the class object itself; so, whenever its variables get changed, we get
notified, and we perform all the tasks right there in the subscribe method. Moreover, as
we have made the functions inline, they'll also help in the optimization of performance.

Coroutines
Path breaking and, probably, the most exciting feature in Kotlin are coroutines. They are a
new way to write asynchronous, non-blocking code somewhere like the threads, but way
more simple, efficient, and lightweight. Coroutines were added in Kotlin 1.1 and are still
experimental, so think before using it in production.

In the later chapters of this book, you'll learn about Schedulers in RxKotlin, which
encapsulates the complexities of threading, but you can use it only in RxKotlin chain, while
you can use coroutines anywhere and everywhere. That is indeed a path-breaking feature of
Kotlin. They provide a great abstraction on threads, making context changes and
concurrency easier.

Keep in mind that RxKotlin does not use coroutines yet; the reason is quite simple–both
coroutines and Schedulers in RxKotlin share nearly the same internal architecture; while
coroutines are new, Schedulers have been there for a long time with RxJava, RxJs, RxSwift,
and more.

Coroutines are the best fit for developers to implement concurrency when they're not
using/can't use RxKotlin Schedulers.

So, let's start by adding it to our project. If you are using Gradle, follow these steps (apply
plugin could be 'kotlin' or 'kotlin-android', depending on whether you use it for
JVM or Android):

 apply plugin: 'kotlin'

 kotlin {
 experimental {
 coroutines 'enable'
 }
 }

Functional Programming with Kotlin and RxKotlin Chapter 2

[32]

And then, we have to add the following dependency:

 repositories {
 ...
 jcenter()
 }
 dependencies {
 ...
 compile "org.jetbrains.kotlinx:kotlinx-coroutines-core:0.16"
 }

If you are using Maven, then add the following code block in the pom.xml file:

 <plugin>
 <groupId>org.jetbrains.kotlin</groupId>
 <artifactId>kotlin-maven-plugin</artifactId>
 ...
 <configuration>
 <args>
 <arg>-Xcoroutines=enable</arg>
 </args>
 </configuration>
 </plugin>
 <repositories>
 ...
 <repository>
 <id>central</id>
 <url>http://jcenter.bintray.com</url>
 </repository>
 </repositories>
 <dependencies>
 ...
 <dependency>
 <groupId>org.jetbrains.kotlin</groupId>
 <artifactId>kotlinx-coroutines-core</artifactId>
 <version>0.16</version>
 </dependency>
 </dependencies>

Apache Maven is a software project management and comprehension tool.
Based on the concept of a Project Object Model (POM), Maven can
manage a project's build, reporting, and documentation from a central
piece of information. Please refer to the following URL for more
information–https:/ /maven. apache. org/ .

https://maven.apache.org/
https://maven.apache.org/
https://maven.apache.org/
https://maven.apache.org/
https://maven.apache.org/
https://maven.apache.org/
https://maven.apache.org/
https://maven.apache.org/
https://maven.apache.org/
https://maven.apache.org/

Functional Programming with Kotlin and RxKotlin Chapter 2

[33]

So, what exactly is a coroutine? While developing applications, we often come into
situations where we need to perform long running or time taking operations, such as
network call, database operations, or some complex computations. The only option in Java
is to use a thread to handle such situations, which is very complex itself. Whenever we face
those situations, we feel the need for a simple yet powerful API to handle such cases.
Developers from the .NET domain, especially those who used C# before, are familiar with
the async/await operators; this is somehow the closest to Kotlin coroutines.

Getting started with coroutines
So, let's take the following example into consideration:

 suspend fun longRunningTsk():Long {//(1)
 val time = measureTimeMillis {//(2)
 println("Please wait")
 delay(2,TimeUnit.SECONDS)//(3)
 println("Delay Over")
 }
 return time
 }

 fun main(args: Array<String>) {
 runBlocking {//(4)
 val exeTime = longRunningTsk()//(5)
 println("Execution Time is $exeTime")
 }
 }

We will inspect through the code, but let's first see the output:

Please wait
Delay Over
Execution Time is 2018

Functional Programming with Kotlin and RxKotlin Chapter 2

[34]

So, now, let's understand the code. On comment (1), while declaring the function, we mark
the function with the suspend keyword, which is used to mark a function as suspending,
that is, while executing the function the program should wait for its result; therefore,
execution of suspending a function in main thread is not allowed (giving you a clear barrier
between main thread and suspending functions). On comment (2), we started a block with
measureTimeMillis and assigned its value to the (val) time variable. The job of
measureInMillis is quite simple–it executes the block passed to it while measuring its
execution time, and returns the same. We will use the delay function on comment (3) to
intentionally delay the program execution by 2 seconds. The runBlocking block in the
main function on comment (4) makes the program wait until the called longRunningTsk
function on comment (5) completes. So, this was a quite simple example; however, we are
making the main thread wait here. Sometimes, you will not want this; instead, you will
want to do asynchronous operations. So, let's try to achieve this as well:

 fun main(args: Array<String>) {
 val time = async(CommonPool) { longRunningTsk() }//(1)
 println("Print after async ")
 runBlocking { println("printing time ${time.await()}") }//(2)
 }

Here, we kept longRunningTsk same, just modified the main function. On comment (1),
we assigned the time variable to the value of longRunningTsk inside the async block. The
async block is quite interesting; it executes the code inside its block asynchronously on the
coroutine context passed to it.

There are basically three types of coroutine contexts. Unconfined means
it'll run on the main thread, CommonPool runs on the common thread
pool, or you can create a new coroutine context as well.

On comment (2) we run a blocking code that will make the main function wait until the
value of the time variable is available; the await function helps us accomplish this task–it
tells the runBlocking block to wait until the async block completes execution to make the
value of time available.

Functional Programming with Kotlin and RxKotlin Chapter 2

[35]

Building sequences
As I mentioned earlier, Kotlin coroutines are something more than threads in Java and
async/await in C#. Here is a feature that, after learning, you will be pissed that it was not
there while you were learning to code. To add icing on the cake, this feature is application
level, it is even shipped with kotlin-stdlib, so you can use it right there without doing
anything or even using coroutines explicitly.

Before learning what I am talking about, let's do some old school code, say the fibonacci
series? Consider the following piece of code as an example:

 fun main(args: Array<String>) {
 var a = 0
 var b = 1
 print("$a, ")
 print("$b, ")

 for(i in 2..9) {
 val c = a+b
 print("$c, ")
 a=b
 b=c
 }
 }

So, this is the old-school fibonacci series program in Kotlin. This code becomes more
problematic when you plan to take the user input for how many numbers to print. What if I
say Kotlin has a buildSequence function that can do this task for you, that too pretty
naturally and in a simpler way? So, let's modify the code now:

 fun main(args: Array<String>) {
 val fibonacciSeries = buildSequence {//(1)
 var a = 0
 var b = 1
 yield(a)//(2)
 yield(b)

 while (true) {
 val c = a+b
 yield(c)//(3)
 a=b
 b=c
 }
 }

 println(fibonacciSeries.take(10) join ",")//(4)

Functional Programming with Kotlin and RxKotlin Chapter 2

[36]

 }

The following is the output for both the programs:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34

Now, let's understand the program. On comment (1), we declare val fibonacciSeries
to be filled up by the buildSequence block. Whenever we have computed some value to
output to the sequence/series, we will yield that value (in comment 2 and 3). On comment
4, we call fibonacciSeries to compute up to the 10th variable and join elements of the
sequence with a comma (,).

So, you learned coroutine; now, let's implement it into our program.

The ReactiveCalculator class with coroutines
So far, in the ReactiveCalculator program, we were performing everything on the same
thread; don't you think we should rather do the things asynchronously? So, let's do it:

 class ReactiveCalculator(a:Int, b:Int) {
 val subjectCalc:
 io.reactivex.subjects.Subject<ReactiveCalculator> =
 io.reactivex.subjects.PublishSubject.create()

 var nums:Pair<Int,Int> = Pair(0,0)

 init{
 nums = Pair(a,b)

 subjectCalc.subscribe({
 with(it) {
 calculateAddition()
 calculateSubstraction()
 calculateMultiplication()
 calculateDivision()
 }
 })

 subjectCalc.onNext(this)
 }

 inline fun calculateAddition():Int {
 val result = nums.first + nums.second
 println("Add = $result")
 return result

Functional Programming with Kotlin and RxKotlin Chapter 2

[37]

 }

 inline fun calculateSubstraction():Int {
 val result = nums.first - nums.second
 println("Substract = $result")
 return result
 }

 inline fun calculateMultiplication():Int {
 val result = nums.first * nums.second
 println("Multiply = $result")
 return result
 }

 inline fun calculateDivision():Double {
 val result = (nums.first*1.0) / (nums.second*1.0)
 println("Division = $result")
 return result
 }

 inline fun modifyNumbers (a:Int = nums.first, b:
 Int = nums.second) {
 nums = Pair(a,b)
 subjectCalc.onNext(this)

 }

 suspend fun handleInput(inputLine:String?) {//1
 if(!inputLine.equals("exit")) {
 val pattern: java.util.regex.Pattern =
 java.util.regex.Pattern.compile
 ("([a|b])(?:\\s)?=(?:\\s)?(\\d*)");

 var a: Int? = null
 var b: Int? = null

 val matcher: java.util.regex.Matcher =
 pattern.matcher(inputLine)

 if (matcher.matches() && matcher.group(1) != null &&
 matcher.group(2) != null) {
 if(matcher.group(1).toLowerCase().equals("a")){
 a = matcher.group(2).toInt()
 } else if(matcher.group(1).toLowerCase().equals("b")){
 b = matcher.group(2).toInt()
 }
 }

Functional Programming with Kotlin and RxKotlin Chapter 2

[38]

 when {
 a != null && b != null -> modifyNumbers(a, b)
 a != null -> modifyNumbers(a = a)
 b != null -> modifyNumbers(b = b)
 else -> println("Invalid Input")

 }
 }
 }

 }

 fun main(args: Array<String>) {
 println("Initial Out put with a = 15, b = 10")
 var calculator: ReactiveCalculator = ReactiveCalculator(15, 10)

 println("Enter a = <number> or b = <number> in separate lines\nexit
 to exit the program")
 var line:String?
 do {
 line = readLine();
 async(CommonPool) {//2
 calculator.handleInput(line)
 }
 } while (line!= null && !line.toLowerCase().contains("exit"))
 }

On comment (1), we will declare the handleInput function as suspending, which tells the
JVM that this function is supposed to take longer, and the execution of the context calling
this function should wait for it to complete. As I already mentioned earlier, suspending
functions cannot be called in the main context; so, on comment (2), we created an async
block to call the function.

Functional programming – monads
Functional programming is incomplete without monads. If you are into functional
programming, then you know it very well; otherwise, you are hearing it for the first time.
So, what is a monad? Let's learn about it. The concept of monad is quite abstract; the
definition says monad is a structure that creates a new type by encapsulating a value and adding
some extra functionalities to it. So, let's start by using a monad; take a look at the following
program:

 fun main(args: Array<String>) {
 val maybeValue: Maybe<Int> = Maybe.just(14)//1

Functional Programming with Kotlin and RxKotlin Chapter 2

[39]

 maybeValue.subscribeBy(//2
 onComplete = {println("Completed Empty")},
 onError = {println("Error $it")},
 onSuccess = { println("Completed with value $it")}
)
 val maybeEmpty:Maybe<Int> = Maybe.empty()//3
 maybeEmpty.subscribeBy(
 onComplete = {println("Completed Empty")},
 onError = {println("Error $it")},
 onSuccess = { println("Completed with value $it")}
)
 }

Here, Maybe is a monad that encapsulates an Int value with some added functionalities.
The Maybe monad says it may or may not contain a value, and it completes with or without
a value or with an error. So, if there's an error, then it would obviously call onError; if
there are no errors, and if it has a value, it will call onSuccess with the value; and, if it
doesn't have a value and no error as well, it will call onComplete. The thing to note is that
all three methods here, onError, onComplete, and onSuccess, are terminal methods,
meaning either one of these three will get called by a Maybe monad, and others will never
be called.

Let's go through the program to understand the monads better. On comment (1), we will
declare a Maybe monad and assign a value of 14 to it. On comment (2), we will subscribe
to the monad. On comment (3), we will again declare a Maybe monad, this time with an
empty value. The subscription takes three lambdas as parameter–when the monad contains
a value, onSuccess gets called; when it doesn't contain any value, onComplete gets called;
and if any error occurs, then onError gets called. Let's see the output now:

Completed with value 14
Completed Empty

So, as we can see, for maybeValue, onSuccess gets called, but for maybeEmpty , the
onComplete method gets called.

Single monad
Maybe is just another type of monad, there are a lot more; we will cover a few of the most
important ones in later chapters, and combine them with reactive programming as well.

Functional Programming with Kotlin and RxKotlin Chapter 2

[40]

Summary
In this chapter, we learned about functional programming. If you grasped the concept of
functional programming well enough, the puzzles for reactive programming will
automatically get solved for you. We also learned the meaning of functional reactive
programming.

By learning functional programming, we also got a clear idea on the constraints from the
previous chapter.

We also got our hands on the introduction to coroutines, which is a path breaking new
feature of the Kotlin language.

We have modified our ReactiveCalculator class with coroutine and a few new concepts
of functional programming and optimized it.

3
Observables, Observers, and

Subjects
Observables and subscribers are at the base of reactive programming. We can say that they
are the building blocks of reactive programming. In the previous two chapters, you already
got a glimpse of Observables and subject. We observed on data with
observable/subject instances; but that's not all we want; instead, we want to get all the
actions and data changes reactively into the observable instances, making the application
completely reactive. Also, while reading the previous chapters, you may have wondered
how exactly does it operate? In this chapter, let's have a foundation of the pillars of reactive
programming—Observables, Observers, and subjects:

We will look into details of transforming various data sources to observable
instances
You will learn about various types of Observables
How to use Observer instances and subscriptions, and, lastly, subjects and
their various implementations

We will also learn about various factory methods of Observable.

There's a lot to understand in this chapter, so let's start with understanding Observables
first.

Observables, Observers, and Subjects Chapter 3

[42]

Observables
As we discussed earlier, in reactive programming, Observable has an underlying
computation that produces values that can be consumed by a consumer (Observer). The
most important thing here is that the consumer (Observer) doesn't pull values here; rather,
Observable pushes the value to the consumer. So, we may say, an Observable is a push-
based, composable iterator that emits its items through a series of operators to the final
Observer, which finally consumes the items. Let's now break things sequentially to
understand it better:

Observer subscribes to Observable
Observable starts emitting items that it has in it
Observer reacts to whatever item Observable emits

So, let's delve into how an Observable works through its events/methods, namely,
onNext, onComplete, and onError.

How Observable works
As we stated earlier, an Observable has three most important events/methods; let's discuss
them one by one:

onNext: Observable passes all items one by one to this method.
onComplete: When all items have gone through the onNext method,
Observable calls the onComplete method.
onError: When Observable faces any error, it calls the onError method to deal
with the error, if defined. Note that both onError and onComplete are terminal
events, and if onError is called, then it would never call onComplete and vice
versa.

One thing to note here, the item in Observable that we are talking about
can be anything; it is defined as Observable<T>, where T can be any
class; even an array/list can be assigned as an Observable.

Observables, Observers, and Subjects Chapter 3

[43]

Let's look at the following image:

Let's look at this code example to understand it better:

 fun main(args: Array<String>) {

 val observer:Observer<Any> = object :Observer<Any>{//1
 override fun onComplete() {//2
 println("All Completed")
 }

 override fun onNext(item: Any) {//3
 println("Next $item")
 }

 override fun onError(e: Throwable) {//4
 println("Error Occured $e")

Observables, Observers, and Subjects Chapter 3

[44]

 }

 override fun onSubscribe(d: Disposable) {//5
 println("Subscribed to $d")
 }
 }

 val observable: Observable<Any> = listOf
 ("One", 2, "Three", "Four", 4.5, "Five", 6.0f).toObservable() //6

 observable.subscribe(observer)//7

 val observableOnList: Observable<List<Any>> =
 Observable.just(listOf("One", 2, "Three", "Four",
 4.5, "Five", 6.0f),
 listOf("List with Single Item"),
 listOf(1,2,3,4,5,6))//8
 observableOnList.subscribe(observer)//9
 }

In the preceding example, we declared the observer instance of Any datatype on comment
(1).

Here, we are taking benefit of the Any datatype. In Kotlin, every class is a
child class of Any. Also, in Kotlin, everything is class and object; there is no
separate primitive datatype.

The observer interface has four methods declared in it. The onComplete() method at
comment 2 gets called when Observable is finished with all its items without any error.
On comment 3, we defined the onNext(item: Any) function, which will be called by
observable for each item it has to emit. In that method, we will print the data to the
console. On comment 4, we defined the onError(e: Throwable) method, which will be
called in case any error is faced by Observable. On comment 5, the onSubscribe(d:
Disposable) method will get called whenever Observer subscribes to Observable. On
comment 6, we will create Observable from a list (val observable) and subscribe
to observable with observer on comment 7. On comment 8, we will create an observable
(val observableOnList) again, this it holds lists as items.

Observables, Observers, and Subjects Chapter 3

[45]

The output of the program is as follows:

So, as you can see in the output, for the first subscription (comment 7), when we subscribe
to Observable, it calls the onSubscribe method, and then Observable starts emitting
items as Observer starts receiving them on the onNext method and prints them. When all
items are emitted from Observable, it calls the onComplete method to denote that all
items have been successfully emitted. Same with the second one, except that, here, each
item is a list.

So, as we gained some basis in Observables, let's learn various ways to
create Observable—factory methods for Observable.

Understanding the Observable.create method
You can create your own Observable with the Observable.create method at any time.
This method takes an instance of the ObservableEmitter<T> interface as a source to
observe on. So, let's consider this following example:

 fun main(args: Array<String>) {

 val observer: Observer<String> = object : Observer<String> {
 override fun onComplete() {
 println("All Completed")
 }

 override fun onNext(item: String) {
 println("Next $item")
 }

Observables, Observers, and Subjects Chapter 3

[46]

 override fun onError(e: Throwable) {
 println("Error Occured ${e.message}")
 }

 override fun onSubscribe(d: Disposable) {
 println("New Subscription ")
 }
 }//Create Observer

 val observable:Observable<String> = Observable.create<String> {//1
 it.onNext("Emit 1")
 it.onNext("Emit 2")
 it.onNext("Emit 3")
 it.onNext("Emit 4")
 it.onComplete()
 }

 observable.subscribe(observer)

 val observable2:Observable<String> = Observable.create<String> {//2
 it.onNext("Emit 1")
 it.onNext("Emit 2")
 it.onNext("Emit 3")
 it.onNext("Emit 4")
 it.onError(Exception("My Custom Exception"))
 }

 observable2.subscribe(observer)
 }

First, we created an instance of the Observer interface as the previous example. I will not
elaborate on observer, as we have already seen an overview in the previous example, and
we will see it in detail later in this chapter.

On comment 1, we created Observable with the Observable.create method; we
emitted four string from Observable with the help of the onNext method, and then
notified it is complete with the onComplete method.

On comment 2, we did almost the same, except here instead of calling onComplete, we
called onError with a custom Exception.

Observables, Observers, and Subjects Chapter 3

[47]

Here is the output of the program:

The Observable.create method is useful, especially when you are working with a
custom data structure and want to have control over what values are getting emitted. You
can also emit values to Observer from a different thread.

Note that the Observable contract
(http://reactivex.io/documentation/contract.html) states that
Observable must issue notifications to observers serially (not in
parallel). They may issue these notifications from different threads, but
there must be a formal happens—before relationship between the
notifications.

Understanding the Observable.from methods
The Observable.from methods are comparatively simpler than the Observable.create
method. You can create Observable instances from nearly every Kotlin structure with the
help of from methods.

Note that in RxKotlin 1, you will have Observale.from as a method;
however, from RxKotlin 2.0 (as with RxJava2.0), operator overloads have
been renamed with a postfix, such as fromArray, fromIterable,
fromFuture, and so on.

http://reactivex.io/documentation/contract.html
http://reactivex.io/documentation/contract.html

Observables, Observers, and Subjects Chapter 3

[48]

So, let's take a look at this code:

 fun main(args: Array<String>) {

 val observer: Observer<String> = object : Observer<String> {
 override fun onComplete() {
 println("All Completed")
 }

 override fun onNext(item: String) {
 println("Next $item")
 }

 override fun onError(e: Throwable) {
 println("Error Occured ${e.message}")
 }

 override fun onSubscribe(d: Disposable) {
 println("New Subscription ")
 }
 }//Create Observer

 val list = listOf("String 1","String 2","String 3","String 4")
 val observableFromIterable: Observable<String> =
 Observable.fromIterable(list)//1
 observableFromIterable.subscribe(observer)

 val callable = object : Callable<String> {
 override fun call(): String {
 return "From Callable"
 }
 }
 val observableFromCallable:Observable<String> =
 Observable.fromCallable(callable)//2
 observableFromCallable.subscribe(observer)

 val future:Future<String> = object :Future<String> {
 override fun get(): String = "Hello From Future"

 override fun get(timeout: Long, unit: TimeUnit?): String =
 "Hello From Future"

 override fun isDone(): Boolean = true

 override fun isCancelled(): Boolean = false

 override fun cancel(mayInterruptIfRunning: Boolean):

Observables, Observers, and Subjects Chapter 3

[49]

 Boolean = false

 }
 val observableFromFuture:Observable<String> =
 Observable.fromFuture(future)//3
 observableFromFuture.subscribe(observer)
 }

On comment 1, I used the Observable.fromIterable method to create Observable
from an Iterable instance (here, List). On comment 2, I called the
Observable.fromCallable method to create Observable from a Callable instance,
and same for comment 3, where I called the Observable.fromFuture method to derive
Observable from a Future instance.

Here is the output:

Understanding the toObservable extension function
Thanks to the extension functions of Kotlin, you can turn any Iterable instance, such as
List, to Observable without much effort; we have already used this method in Chapter
1, A Short Introduction to Reactive Programming, however, take a look at this:

 fun main(args: Array<String>) {

 val observer: Observer<String> = object : Observer<String> {
 override fun onComplete() {
 println("All Completed")
 }

 override fun onNext(item: String) {
 println("Next $item")
 }

Observables, Observers, and Subjects Chapter 3

[50]

 override fun onError(e: Throwable) {
 println("Error Occured ${e.message}")
 }

 override fun onSubscribe(d: Disposable) {
 println("New Subscription ")
 }
 }//Create Observer

 val list:List<String> = listOf
 ("String 1","String 2","String 3","String 4")

 val observable:Observable<String> = list.toObservable()

 observable.subscribe(observer)
 }

And the following is the output:

So, aren't you curious to look into the toObservable method? Let's do it. You can find this
method inside the observable.kt file provided with the RxKotlin package:

 fun <T : Any> Iterator<T>.toObservable(): Observable<T> =
 toIterable().toObservable()
 fun <T : Any> Iterable<T>.toObservable(): Observable<T> =
 Observable.fromIterable(this)
 fun <T : Any> Sequence<T>.toObservable(): Observable<T> =
 asIterable().toObservable()

 fun <T : Any> Iterable<Observable<out T>>.merge(): Observable<T> =
 Observable.merge(this.toObservable())
 fun <T : Any> Iterable<Observable<out T>>.mergeDelayError():
 Observable<T> = Observable.mergeDelayError(this.toObservable())

Observables, Observers, and Subjects Chapter 3

[51]

So, it basically uses the Observable.from method internally; thanks again to extension
functions of Kotlin.

Understanding the Observable.just method
Another interesting factory method is Observable.just; this method creates Observable
and adds the parameters passed to it as the only items of the Observable. Note that if you
pass an Iterable instance to Observable.just as a single parameter, it will take the
entire list as a single item, unlike Observable.from, where it will create items of
Observable from each item in Iterable.

Here is what happens when you call Observable.just:

You call Observable.just with parameters
Observable.just will create Observable
It will emit each of its parameters as the onNext notification
When all parameters are emitted successfully, it will emit the onComplete
notification

Let's look at this code example to understand it better:

 fun main(args: Array<String>) {
 val observer: Observer<Any> = object : Observer<Any> {
 override fun onComplete() {
 println("All Completed")
 }

 override fun onNext(item: Any) {
 println("Next $item")
 }

 override fun onError(e: Throwable) {
 println("Error Occured ${e.message}")
 }

 override fun onSubscribe(d: Disposable) {
 println("New Subscription ")
 }
 }//Create Observer

 Observable.just("A String").subscribe(observer)
 Observable.just(54).subscribe(observer)
 Observable.just(listOf("String 1","String 2","String 3",
 "String 4")).subscribe(observer)

Observables, Observers, and Subjects Chapter 3

[52]

 Observable.just(mapOf(Pair("Key 1","Value 1"),Pair
 ("Key 2","Value 2"),Pair("Key 3","Value
 3"))).subscribe(observer)
 Observable.just(arrayListOf(1,2,3,4,5,6)).subscribe(observer)
 Observable.just("String 1","String 2",
 "String 3").subscribe(observer)//1
 }

And here is the output:

As you can see in the output, lists and maps are also treated as a single item, but look at
comment 1 in the code where I passed three strings as parameters of the Observable.just
method. Observable.just took each of the parameters as a separate item and emitted
them accordingly (see the output).

Other Observable factory methods
Before moving forward with Observer, subscribing, unsubscribing, and Subjects, let's try
our hands on a few other factory methods of Observable.

So, let's look at this code first, and then we will try to learn it line by line:

 fun main(args: Array<String>) {
 val observer: Observer<Any> = object : Observer<Any> {
 override fun onComplete() {

Observables, Observers, and Subjects Chapter 3

[53]

 println("All Completed")
 }

 override fun onNext(item: Any) {
 println("Next $item")
 }

 override fun onError(e: Throwable) {
 println("Error Occured ${e.message}")
 }

 override fun onSubscribe(d: Disposable) {
 println("New Subscription ")
 }
 }//Create Observer

 Observable.range(1,10).subscribe(observer)//(1)
 Observable.empty<String>().subscribe(observer)//(2)

 runBlocking {
 Observable.interval(300,TimeUnit.MILLISECONDS).
 subscribe(observer)//(3)
 delay(900)
 Observable.timer(400,TimeUnit.MILLISECONDS).
 subscribe(observer)//(4)
 delay(450)
 }

 }

On comment (1), we created Observable with the Observable.range() factory method.
This method creates an Observable and emits integers with the supplied start parameter
until it emits a number of integers as per the count parameter.

On comment (2), we created Observable with the Observable.empty() method. This
method creates Observable and emits onComplete() right away, without emitting any
items with onNext().

On comment (3) and comment (4), we used two interesting Observable factory
methods. The method on comment (3), Observable.interval(), emits numbers
sequentially starting from 0, after each specified interval. It will continue emitting until you
unsubscribe and until the program runs. Whereas, the method on comment (4),
Observable.timer(), will emit only once with 0 after the specified time elapsed.

Observables, Observers, and Subjects Chapter 3

[54]

Here is the output if you are curious:

Subscribers - the Observer interface
The Subscriber from RxKotlin 1.x, essentially became an Observer in RxKotlin 2.x.
There is an Observer interface in RxKotlin 1.x, but Subscriber is what you pass to the
subscribe() method, and it implements Observer. However, In RxJava 2.x, Subscriber
only exists when talking about Flowables, which we will cover in Chapter 4, Introduction
to Backpressure and Flowables.

As you can see in the previous examples in this chapter, Observer is an interface with four
methods in it—onNext(item:T), onError(error:Throwable), onComplete(), and
onSubscribe(d:Disposable). As stated earlier, when we connect Observable to
Observer, it looks for these four methods in Observer and calls them. So, the following is
a short description of the four methods:

onNext: Observable calls this method of Observer to pass each of the items
one by one.
onComplete: When Observable wants to denote, it's done with passing items to
the onNext method, and it calls the onComplete method of Observer.

Observables, Observers, and Subjects Chapter 3

[55]

onError: When Observable faces any error, it calls the onError method to deal
with the error if defined in the Observer, otherwise, it throws the exception.
onSubscribe: This method is called whenever a new Observable subscribes to
the Observer.

Subscribing and disposing
So, we have Observable (the thing that should be observed upon) and we have Observer
(that should observe); now what? How to connect them? Observable and Observer are
like an input device (be it keyboard or mouse) and the computer, we need something to
connect them (even wireless input devices have some connectivity channels, be it Bluetooth
or Wi-Fi).

The subscribe operator serves the purpose of the media by connecting an Observable to
Observer. We can pass one to three methods (onNext, onComplete, onError) to the
subscribe operator, or we can pass an instance of the Observer interface to the
subscribe operator to get the Observable connected with an Observer.

So, let's take a look at the following example now:

 fun main(args: Array<String>) {
 val observable:Observable<Int> = Observable.range(1,5)//1

 observable.subscribe({//2
 //onNext method
 println("Next $it")
 },{
 //onError Method
 println("Error ${it.message}")
 },{
 //onComplete Method
 println("Done")
 })

 val observer: Observer<Int> = object : Observer<Int> {//3
 override fun onComplete() {
 println("All Completed")
 }

 override fun onNext(item: Int) {
 println("Next $item")
 }

 override fun onError(e: Throwable) {

Observables, Observers, and Subjects Chapter 3

[56]

 println("Error Occurred ${e.message}")
 }

 override fun onSubscribe(d: Disposable) {
 println("New Subscription ")
 }
 }

 observable.subscribe(observer)
 }

In this example, we have created Observable instance (on comment 1) and used it twice
with different overload subscribe operators. On comment 2, we have passed three
methods as arguments to the subscribe method. The first parameter is the onNext
method, the second one is the onError method, and last, onComplete. On comment 2, we
have passed an instance of the Observer interface.

The output can be easily predicted as follows:

So, we have got the concepts of subscribing, and we can do it now. What if you want to stop
the emissions after some period of subscription? There must be a way, right? So let's inspect
this.

Observables, Observers, and Subjects Chapter 3

[57]

Remember the onSubscribe method of Observer? There was a parameter on that method
that we have not talked about yet. While you subscribe, if you pass the methods instead
of the Observer instance, then the subscribe operator will return an instance of
Disposable, or if you use an instance of Observer, then you will get the instance of
Disposable in the parameter of the onSubscribe method.

You can use the instance of the Disposable interface to stop emissions at any given time.
Let's take a look at this example:

 fun main(args: Array<String>) {
 runBlocking {
 val observale:Observable<Long> =
 Observable.interval(100,TimeUnit.MILLISECONDS)//1
 val observer:Observer<Long> = object : Observer<Long> {
 lateinit var disposable:Disposable//2

 override fun onSubscribe(d: Disposable) {
 disposable = d//3
 }

 override fun onNext(item: Long) {
 println("Received $item")
 if(item>=10 && !disposable.isDisposed) {//4
 disposable.dispose()//5
 println("Disposed")
 }
 }

 override fun onError(e: Throwable) {
 println("Error ${e.message}")
 }

 override fun onComplete() {
 println("Complete")
 }

 }

 observale.subscribe(observer)
 delay(1500)//6
 }
 }

Observables, Observers, and Subjects Chapter 3

[58]

I hope you remember the Observable.interval factory method, from just few pages ago
in this chapter. This method takes two parameters describing the interval period and time
unit, then, it prints integers sequentially, starting from 0. Observable created with interval
never completes and never stops until you stop them or the program stops execution. I
thought it will be the perfect fit in this scenario, as here we want to stop the Observable
midway.

So, in this example on comment 1, we created an Observable with the
Observable.interval factory method that will emit an integer after each 100 millisecond
interval.

On comment 2, I have declared a lateinit var disposable of type Disposable
(lateinit means the variable will get initialized at a later point of time). On comment 3,
inside the onSubscribe method, we will assign the received parameter value to the
disposable variable.

We intend to stop the execution after the sequence reaches 10, that is, after 10 is emitted,
the emission should be stopped immediately. To achieve that, we placed a check inside the
onNext method, where we are checking if the value of the emitted item is equal to or
greater than 10, and if the emission is not already stopped (disposed), then we will dispose
the emission (comment 5).

Here is the output:

Received 0
Received 1
Received 2
Received 3
Received 4
Received 5
Received 6
Received 7
Received 8
Received 9
Received 10
Disposed

From the output, we can see that no integer got emitted after the disposable.dispose()
method was called, although the execution waited 500 milliseconds more (100*10=1000
milliseconds to print sequence until 10, and we called the delay method with 1500, thus
500 milliseconds after emitting 10).

Observables, Observers, and Subjects Chapter 3

[59]

If you are curious to know the Disposable interface, then the following is the definition:

 interface Disposable {
 /**
 * Dispose the resource, the operation should be idempotent.
 */
 fun dispose()
 /**
 * Returns true if this resource has been disposed.
 * @return true if this resource has been disposed
 */
 val isDisposed:Boolean
 }

It has one property that denotes if the emission is already notified to stop (disposed) and a
method to notify the emission to stop (dispose).

Hot and Cold Observables
So, as we have a grip on the basic concepts of Observables and Observers by now, let's
move to something more interesting and advanced. The Observables that we are talking
all about can be categorized into two categories based on their behavior. As the heading
suggests, the two categories are Hot Obervables and Cold Observable. I can bet that,
by now, you are craving to know more about Hot and Cold Observables, aren't you? So,
let's dive into it.

Cold Observables
Take a careful look at all the previous examples. In all the examples, if you subscribe to the
same Observable multiple times, you will get the emissions from the beginning for all the
subscriptions. Don't believe it? Take a look at the following example:

 fun main(args: Array<String>) {
 val observable: Observable<String> = listOf
 ("String 1","String 2","String 3","String 4").toObservable()//1

 observable.subscribe({//2
 println("Received $it")
 },{
 println("Error ${it.message}")
 },{
 println("Done")

Observables, Observers, and Subjects Chapter 3

[60]

 })

 observable.subscribe({//3
 println("Received $it")
 },{
 println("Error ${it.message}")
 },{
 println("Done")
 })
 }

Here is its output:

The program is quite straightforward. Declared an Observable on comment 1, subscribed
to the Observable twice—on comment 2 and 3. Now, look at the output. For both the
subscribe calls, you got the exact same emission from the first one to the last one.

Those Observables, which have this particular behavior, that is, emitting items from the
beginning for each subscription, are called Cold Observable. To be more specific, Cold
Observables start running upon subscriptions and Cold Observable starts pushing
items after subscribe gets called, and pushes the same sequence of items on each
subscription.

All the Observable factory methods we have used up until this chapter return Cold
Observables. Cold Observables resemble data. When we are working with data, for
example, say, while working with SQLite or Room database in Android, we rely more on
Cold Observables than Hot Observables.

Observables, Observers, and Subjects Chapter 3

[61]

Hot Observables
Cold Observables are passive, they don't emit anything until subscribe is called. Hot
Observables are contrary to Cold Observables; it doesn't need subscriptions to start
emission. While you can compare Cold Observables to CD/DVD recordings, Hot
Observables are like TV channels—they continue broadcasting (emitting) their content,
irrespective of whether anyone is watching (Observing) it or not.

Hot Observables resemble events more than data. The events may carry data with them,
but there is a time-sensitive component where Observers that subscribed lately can miss
out previously emitted data. They are specifically useful for UI events while working with
Android/JavaFX/Swing. They are also very useful in resembling server requests.

Introducing the ConnectableObservable object
A great example of Hot Observables is ConnectableObservable. It is one of the most
helpful forms of Hot Observables as well. It can turn any Observable, even a Cold
Observable, into a Hot Observable. It doesn't start emitting on the subscribe call;
instead, it gets activated after you call the connect method. You have to make the
subscribe calls before calling connect; any subscribe calls after calling connect will
miss the emissions fired previously.

Let's consider the following code snippet:

 fun main(args: Array<String>) {
 val connectableObservable = listOf
 ("String 1","String 2","String 3","String 4","String
 5").toObservable()
 .publish()//1
 connectableObservable.subscribe({ println
 ("Subscription 1: $it") })//2
 connectableObservable.map(String::reversed)//3
 .subscribe({ println("Subscription 2 $it")})//4
 connectableObservable.connect()//5
 connectableObservable.subscribe({ println
 ("Subscription 3: $it") })//6 //Will not receive emissions
 }

Observables, Observers, and Subjects Chapter 3

[62]

The main purpose of ConnectableObservable is for Observables with multiple
subscriptions to connect all subscriptions of an Observable together so that they can react
to a single push; contrary to Cold Observables that repeats operations for doing the
push, and pushes separately for each subscription, thus repeating the cycle.
ConnectableObservable connects all subscriptions (Observers) called before the
connect method and relays a single push to all Observers, Observers then react
to/process that push.

In the preceding example, we created Observable with the toObservable() method,
then, on comment 1, we used the publish operator to convert Cold Observable into
ConnectableObservable.

On comment 2, we subscribed to connectableObservable. On comment 3, we used the
map operator to reverse String, and, on comment 4, we subscribed to the mapped
connectableObservable.

On comment 5, we called connect method, and emissions got started to both Observers.

Note that we used the map operator in this example on comment 3. We
will discuss the map operator in detail in Chapter 5, Asynchronous Data
Operators and Transformations. However, here is the definition, if you are
curious. The map operator applies a function of your choosing to each item
emitted by the source Observable, and returns an Observable that emits
the results of these function applications.

Here is the output:

Observables, Observers, and Subjects Chapter 3

[63]

Note that, as the output suggests, each emission goes to each Observer
simultaneously, and they are processing data in an interleaved fashion.

This mechanism of emitting from Observable once and then relaying the emission to all
Subscriptions/Observers is known as multicasting.

Also note that the subscribe call on comment 6, after connect, has not received any
emissions, as ConnectableObservable is hot, and any new subscriptions occurred after
connect will miss out the emissions fired previously (between the call of the connect
method and the new subscription, remember that, within a few milliseconds, computers can
do a lot of tasks); in this case, it missed all the emissions.

The following piece of code is another example to make you understand it better:

 fun main(args: Array<String>) {
 val connectableObservable =
 Observable.interval(100,TimeUnit.MILLISECONDS)
 .publish()//1
 connectableObservable.
 subscribe({ println("Subscription 1: $it") })//2
 connectableObservable
 .subscribe({ println("Subscription 2 $it")})//3
 connectableObservable.connect()//4
 runBlocking { delay(500) }//5

 connectableObservable.
 subscribe({ println("Subscription 3: $it") })//6
 runBlocking { delay(500) }//7
 }

This example is almost the same as the previous one, just a few tweaks.

Here, we used the Observable.interval method to create Observable; the benefit is
that, as it takes an interval before each emission, it will give some room to the subscription
after connect to get a few emissions.

On comment 1, we converted Cold Observable to ConnectableObservable, as with the
previous one, and did two subscriptions and then connected, as in the previous example
(comment 2, 3, 4).

We called delay right after connect on comment 5, then subscribed again on comment 6,
and again a delay on comment 7 to allow the 3rd subscription to print some data.

Observables, Observers, and Subjects Chapter 3

[64]

The following output will allow us to understand better:

Go through the output carefully to note that the 3rd subscription received emissions from
sequence 5, and missed all previous ones (there were 5 emissions before the 3rd
subscription—500 millisecond delay/100 millisecond interval).

Subjects
Another great way to implement Hot Observables is Subject. Basically, it is a
combination of Observable and Observer, as it has many common behaviors to both
Observables and Observers. Like Hot Observables, it maintains an internal Observer
list and relays a single push to every Observer subscribed to it at the time of emission.

So, let's take a look at what Subject has to offer us. And why is it called a combination of
Observables and Observers? Please refer to the following points:

It has all the operators that Observable should have.
Like Observer, it can listen to any value emitted to it.
After Subject is completed/errored/unsubscribed, it cannot be reused.
The most interesting point is that it passes values through itself. As an
explanation, if you pass a value with onNext to a Subject (Observer) side, it
will come out of the Observable side of it.

Observables, Observers, and Subjects Chapter 3

[65]

So, Subject is a combination of Observable and Observer. You have already seen the
use of Subject in the previous chapters, but, to make things clearer, let's take a new
example:

 fun main(args: Array<String>) {
 val observable = Observable.interval(100,
 TimeUnit.MILLISECONDS)//1
 val subject = PublishSubject.create<Long>()//2
 observable.subscribe(subject)//3
 subject.subscribe({//4
 println("Received $it")
 })
 runBlocking { delay(1100) }//5
 }

Let's check the output first, and then we will explain the code:

Now, let's understand the code. In this program, we have used the good old
Observable.interval method. So, on comment 1, we again created an instance of
Observable with Observable.interval, with a 100 millisecond interval.

On comment 2, we created Subject with PublishSubject.create().

There are many types of Subject available. PublishSubject is one of
them. PublishSubject emits to an observer only those items that are
emitted by the Observable sources subsequent to the time of the
subscription.
We will discuss in detail about the various types of Subject in the next
section in this chapter.

Observables, Observers, and Subjects Chapter 3

[66]

On comment 3, we used the Subject instance just like Observer, to subscribe to the
emissions by the Observable instance. On comment 4, we used the Subject instance like
an Observable and subscribed with lambda to listen to the emissions by the Subject
instance.

You probably got used to it with the code in comment 5; if not, then we used it to make the
program wait for 1100 milliseconds so that we can see the outputs made by the interval
program. You can think of the delay method as similar to the sleep method in Java, the
only difference here is that you must use delay inside a Coroutine context, so, in order
to use delay method, you have to specify and start a Coroutine context; this is not quite
possible always. The runBlocking method is there to help you in that scenario; it mocks a
Coroutine context inside the calling thread while blocking that thread until
runBlocking completes executing all its code.

The Subject instance listens to the emissions by the Observable instance and then
broadcasts those emissions to its Observers, very likely, to a TV Channel broadcasting a
Film (from a CD/DVD recording).

You are probably thinking, what is the benefit of that? When I can directly subscribe and
Observer to Observable, why should I use PublishSubject in between? To find the
answers, let's modify this code a little bit in a way that will help us understand it better:

 fun main(args: Array<String>) {
 val observable = Observable.interval(100,
 TimeUnit.MILLISECONDS)//1
 val subject = PublishSubject.create<Long>()//2
 observable.subscribe(subject)//3
 subject.subscribe({//4
 println("Subscription 1 Received $it")
 })
 runBlocking { delay(1100) }//5
 subject.subscribe({//6
 println("Subscription 2 Received $it")
 })
 runBlocking { delay(1100) }//7
 }

Here, the code is almost the same until comment 5 (except on Subscribe on comment 3,
where I prepended Subscription 1 to the String output).

Observables, Observers, and Subjects Chapter 3

[67]

On comment 6, we again subscribed to subject. As we are subscribing after 1100
milliseconds, it should receive emissions after the first 11 emissions. On comment 7, we are
again making the program wait by 1100 milliseconds.

Let's see the output:

Subscription 1 Received 0
Subscription 1 Received 1
Subscription 1 Received 2
Subscription 1 Received 3
Subscription 1 Received 4
Subscription 1 Received 5
Subscription 1 Received 6
Subscription 1 Received 7
Subscription 1 Received 8
Subscription 1 Received 9
Subscription 1 Received 10
Subscription 1 Received 11
Subscription 2 Received 11
Subscription 1 Received 12
Subscription 2 Received 12
Subscription 1 Received 13
Subscription 2 Received 13
Subscription 1 Received 14
Subscription 2 Received 14
Subscription 1 Received 15
Subscription 2 Received 15
Subscription 1 Received 16
Subscription 2 Received 16
Subscription 1 Received 17
Subscription 2 Received 17
Subscription 1 Received 18
Subscription 2 Received 18
Subscription 1 Received 19
Subscription 2 Received 19
Subscription 1 Received 20
Subscription 2 Received 20
Subscription 1 Received 21
Subscription 2 Received 21

In the output, it is printing the second subscription from the 12th emission (sequence 11).
So, Subject doesn't replay the actions such as Cold Observables, it just relays the
emission to all Observers, turning a Cold Observable into Hot Oberservale one.

Observables, Observers, and Subjects Chapter 3

[68]

Varieties of Subject
As we mentioned earlier, there are a lot of varieties available for Subjects. As we have
gained some grip in Subject, let's now dive into varieties of Subject to understand it
better. So, these are some of the most useful and important varieties of Subject, which we
will discuss here:

AsyncSubject

PublishSubject

BehaviorSubject

ReplaySubject

Understanding AsyncSubject
AsyncSubject only emits the last value of the source observable (Observable it listens
on), and the last emission only. To say things more clearly, AsyncSubject will emit the last
value it got, and will emit it only one time.

This is a marble diagram for AsyncSubject, which has been taken from ReactiveX
documentation (http:/ /reactivex. io/ documentation/ subject. html):

http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html

Observables, Observers, and Subjects Chapter 3

[69]

Let's consider the following code example:

 fun main(args: Array<String>) {
 val observable = Observable.just(1,2,3,4)//1
 val subject = AsyncSubject.create<Int>()//2
 observable.subscribe(subject)//3
 subject.subscribe({//4
 //onNext
 println("Received $it")
 },{
 //onError
 it.printStackTrace()
 },{
 //onComplete
 println("Complete")
 })
 subject.onComplete()//5
 }

Here is the output:

Received 4
Complete

In this example, we created an example with Observable.just, with 4 integers (on
comment 1). Then, on comment 2, we created an AsyncSubject example. After that, on
comment 3 and 4, like the previous example, we subscribed to the observable instance
with subject and then subscribed to the Subject instance with lambda; only this time, we
passed all the three methods—onNext, onError, and onComplete.

On comment 6, we called onComplete.

As the output suggests, Subject only emitted the last value it got, that is, 4.

On Subject instances, you can pass values directly with the onNext method, without
subscribing to any Observable. Recall the examples in the previous chapters where we
used Subject (PublishSubject); there, we only used onNext to pass the values. You can
subscribe to another Observable with Subject, or pass values with onNext. Basically,
when you subscribe to Observable with Subject, Subject calls its onNext internally
upon Observable's value emission.

Observables, Observers, and Subjects Chapter 3

[70]

Have doubts? Let's tweak the code a little. Instead of subscribing to an Observable, we
will call onNext only to pass values, and will have another subscription. Here is the code, to
do so:

 fun main(args: Array<String>) {
 val subject = AsyncSubject.create<Int>()
 subject.onNext(1)
 subject.onNext(2)
 subject.onNext(3)
 subject.onNext(4)
 subject.subscribe({
 //onNext
 println("S1 Received $it")
 },{
 //onError
 it.printStackTrace()
 },{
 //onComplete
 println("S1 Complete")
 })
 subject.onNext(5)
 subject.subscribe({
 //onNext
 println("S2 Received $it")
 },{
 //onError
 it.printStackTrace()
 },{
 //onComplete
 println("S2 Complete")
 })
 subject.onComplete()
 }

Here is the output:

Observables, Observers, and Subjects Chapter 3

[71]

Here, we passed all values via onNext; it only emitted the last value it got (5) to both of the
subscriptions. Look carefully, the 1st subscription was before passing the last value.
As ConnectableObservable starts emitting on call of connect, AsyncSubject emits its
only value on call of onComplete only.

Note that as the outputs suggest, AsyncSubject doesn't in an interleave manner, that is, it
will replay its action multiple times to emit the value to multiple Observers, although it is
only one value.

Understanding PublishSubject
PublishSubject emits all subsequent values that it got at the time of subscription,
whether it got the value via the onNext method or through another subscription. We have
already seen the application of PublishSubject, and it is the most commonly used
Subject variant.

Here is a graphical representation of PublishSubject which has been taken from
ReactiveX documentation (http:/ / reactivex. io/ documentation/ subject. html):

http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html

Observables, Observers, and Subjects Chapter 3

[72]

Understanding BehaviorSubject
What if we combine AsyncSubject and PublishSubject? Or mix the benefits of both?
BehaviorSubject emits the last item it got before the subscription and all the subsequent
items at the time of subscription while working with multicasting, that is, it keeps an
internal list of Observers and relays the same emit to all of its Observers without
replaying.

Here is the graphical representation which has been taken from ReactiveX documentation
(http://reactivex. io/ documentation/ subject. html):

Let's modify the last example with BehaviorSubject and see what happens:

 fun main(args: Array<String>) {
 val subject = BehaviorSubject.create<Int>()
 subject.onNext(1)
 subject.onNext(2)
 subject.onNext(3)
 subject.onNext(4)
 subject.subscribe({
 //onNext
 println("S1 Received $it")
 },{
 //onError
 it.printStackTrace()

http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html

Observables, Observers, and Subjects Chapter 3

[73]

 },{
 //onComplete
 println("S1 Complete")
 })
 subject.onNext(5)
 subject.subscribe({
 //onNext
 println("S2 Received $it")
 },{
 //onError
 it.printStackTrace()
 },{
 //onComplete
 println("S2 Complete")
 })
 subject.onComplete()
 }

Here, I took the last example where we worked with AsyncSubject, and modified it with
BehaviorSubject. So, let's see the output and understand BehaviorSubject:

S1 Received 4
S1 Received 5
S2 Received 5
S1 Complete
S2 Complete

While the 1st subscription gets 4 and 5; 4 was emitted before its subscription and 5 after. For
the 2nd subscription, it only got 5, which was emitted before its subscription.

Understanding ReplaySubject
It is more like Cold Observable; it will replay all the items it got, regardless of
when Observer subscribes.

Observables, Observers, and Subjects Chapter 3

[74]

Here is the graphical representation:

Image credit: http:/ /reactivex. io/ documentation/ subject. html

Let's modify the previous program with ReplaySubject:

 fun main(args: Array<String>) {
 val subject = ReplaySubject.create<Int>()
 subject.onNext(1)
 subject.onNext(2)
 subject.onNext(3)
 subject.onNext(4)
 subject.subscribe({
 //onNext
 println("S1 Received $it")
 },{
 //onError
 it.printStackTrace()
 },{
 //onComplete
 println("S1 Complete")
 })
 subject.onNext(5)
 subject.subscribe({
 //onNext
 println("S2 Received $it")
 },{

http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html

Observables, Observers, and Subjects Chapter 3

[75]

 //onError
 it.printStackTrace()
 },{
 //onComplete
 println("S2 Complete")
 })
 subject.onComplete()
 }

And, here is the output:

S1 Received 1
S1 Received 2
S1 Received 3
S1 Received 4
S1 Received 5
S2 Received 1
S2 Received 2
S2 Received 3
S2 Received 4
S2 Received 5
S1 Complete
S2 Complete

It emitted all of the items for both the subscriptions.

Summary
In this chapter, we learned about Observables and Observers and how to use them. We
worked with several examples to get our grips strong on them. We learned that there are
two categories of Observables—Hot Observables and Cold Observables. We also
learned about several Subject and its variant. Several Subject are basically a combination
of Observables and many Observer.

While Observables provide us with great flexibilities and power, it too has some
disadvantages, such as backpressure. Curious about it? Want to know more about the
disadvantages of Observables and how to overcome them? Rush to the fourth chapter
then.

4
Introduction to Backpressure

and Flowables
So far, we were trying to understand the push-based architecture of reactive programming.
By now, we have gained a good understanding of Observables. We now understand that
an Observable emits items to be consumed by an Observer for further processing.
However, while going through previous chapters, did you ever think of a situation where
the Observable emits items faster than the Observer can consume them? This whole
chapter is devoted to this problem. We will start by trying to understand how and when
this problem may occur, and then we will try to solve the problem.

So, in this chapter, we will focus on the following topics, and by the end of the chapter we
should have a solution to the problem mentioned earlier:

Understanding backpressure
Flowables and Subscriber
Creating Flowables with Flowable.create()
Using Observable and Flowables together
Backpressure operators
An Flowable.generate() operator

So, now, let's start with backpressure—the problem with Observables.

Introduction to Backpressure and Flowables Chapter 4

[77]

Understanding backpressure
The only problem with Observable is when an Observer cannot cope with the pace of an
Observable. An Observable, by default, chains work by pushing items synchronously to
the Observer, one at a time. However, if the observer has to perform some time-
consuming computations, this may take longer than the interval of each item emission of
Observable. Confused? Let's consider this example:

 fun main(args: Array<String>) {
 val observable = Observable.just(1,2,3,4,5,6,7,8,9)//(1)
 val subject = BehaviorSubject.create<Int>()
 subject.observeOn(Schedulers.computation())//(2)
 .subscribe({//(3)
 println("Subs 1 Received $it")
 runBlocking { delay(200) }//(4)
 })

 subject.observeOn(Schedulers.computation())//(5)
 .subscribe({//(6)
 println("Subs 2 Received $it")
 })
 observable.subscribe(subject)//(7)
 runBlocking { delay(2000) }//(8)
 }

The code is quite simple. We created Observable on comment (1), then, we
created BehaviorSubject, and then, on comment (3) and (6), we subscribe
to BehaviorSubject. On comment (7), after subscribing to BehaviorSubject, we will
use BehaviorSubject to subscribe to the Observable so that Observers of
BehaviorSubject should get all the emissions. On comment (4), inside the first
subscription, we used the delay method to simulate a time-taking subscriber. There is a
new code on comment (2) and (6),
subject.observeOn(Schedulers.computation()); we will discuss this method in
detail in the later chapters, but, for now, just keep in mind that this observeOn method
helps us specify a thread to run the subscription, and Scheduler.computation()
provides us a with a thread to perform computations. On comment (8), we used the delay
method to wait for the execution, as the execution will occur in the background.

Based on the knowledge we gathered from previous chapters, we can easily say that
subscriptions should print all the numbers from 1-9 in an interleaved manner, or shouldn't
they? Let's see the output first:

Introduction to Backpressure and Flowables Chapter 4

[78]

Shocked to see the output? Instead of working in an interleaved manner, subscription 2
completes printing all the numbers before subscription 1 prints even the second number,
even though it starts printing first. So, why did it break the behavior of Hot Observables?
Why didn't both the Observers work in an interleaved manner? Let's inspect. The program
actually didn't break the behavior of Hot Observables, the subject actually emitted once
for both of the observers; however, as for the first observer, each computation took long,
the emissions got queued; and this is obviously not any good, as this could lead to a lot of
problems, including the OutOfMemoryError exceptions.

Still have doubts? Let's look at another example:

 fun main(args: Array<String>) {
 val observable = Observable.just(1,2,3,4,5,6,7,8,9)//(1)
 observable
 .map { MyItem(it) }//(2)
 .observeOn(Schedulers.computation())//(3)
 .subscribe({//(4)
 println("Received $it")
 runBlocking { delay(200) }//(5)
 })
 runBlocking { delay(2000) }//(6)
 }

 data class MyItem (val id:Int) {
 init {
 println("MyItem Created $id")//(7)
 }
 }

Introduction to Backpressure and Flowables Chapter 4

[79]

In this example, we eliminated the Subject and multiple Subscribers to make the
program simpler and easier to understand. We have already introduced the map operator in
the previous chapter that we used on comment (2) to convert the Int items to the MyItem
object.

If you forgot the map operator from the previous chapter, it takes a source
observable, processes items emitted by them on runtime, and creates
another observable to observe on. Put simply, the map operator sits before
subscribe to process each item emitted by observable before passing the
new generated item to observer. We will also take a closer look at the
map operator in the later chapters.

Here, we used it to keep track of each emission. Whenever an emission will occur, it will be
passed instantly to the map operator, where we are creating an object of the MyItem class. In
the init block of the MyItem class, we are printing the value passed to it; so, as soon as an
item is emitted, it will be printed by the MyItem class.

Here, the MyItem class is a data class, that is, it will have the getter of
val id and toString methods by default.

The remaining part of the program is almost the same; let's take a look at the output, then
we will continue to discuss:

Introduction to Backpressure and Flowables Chapter 4

[80]

As we can see in the output, the creation of many MyItem, as known as emissions was quite
fast, and completed even before the Observer as known as consumer can even start
printing.

So, the problem is that the emissions get queued in the consumer, while the consumer is
busy processing previous emissions by the producer.

A solution to this problem could be a feedback channel from consumer to producer,
through which the consumer can tell the producer to wait until it completes processing the
previous emission. This way, consumers or messaging middleware will not become
saturated and unresponsive under high load; instead, they may request fewer messages,
letting the producer decide how to slow down. This feedback channel is called
backpressure. Backpressure is not supported in Observables and Observers, the solution
could be using Flowables and Subscribers instead. Let's learn what those are.

Flowable
We may call Flowables a backpressured version of Observables. Probably, the only
difference between Flowables and Observables is that Flowable takes backpressure into
consideration. Observable does not. That's it. Flowable hosts the default buffer size of 128
elements for operators, so, when the consumer is taking time, the emitted items may wait in
the buffer.

Note that Flowables were added in ReactiveX 2.x (RxKotlin 2.X), and the
previous versions don't include them. Instead, in previous versions,
Observables was retrofitted to support backpressure that caused many
unexpected MissingBackpressureException.
Here is the release note if you are interested:
https://github.com/ReactiveX/RxJava/wiki/What%27s-different-in-2
.0#observable-and-flowable

https://github.com/ReactiveX/RxJava/wiki/What%27s-different-in-2.0#observable-and-flowable
https://github.com/ReactiveX/RxJava/wiki/What%27s-different-in-2.0#observable-and-flowable

Introduction to Backpressure and Flowables Chapter 4

[81]

We had a long discussion so far; let's now try our hands on code. At first, we will try a code
with Observable, and then we will do the same with Flowables to see and understand the
difference:

 fun main(args: Array<String>) {
 Observable.range(1,1000)//(1)
 .map { MyItem3(it) }//(2)
 .observeOn(Schedulers.computation())
 .subscribe({//(3)
 print("Received $it;\t")
 runBlocking { delay(50) }//(4)
 },{it.printStackTrace()})
 runBlocking { delay(60000) }//(5)
 }
 data class MyItem3 (val id:Int) {
 init {
 print("MyItem Created $id;\t")
 }
 }

A simple code with the Observable.range() operator, which should emit numbers from
1 to 1000. On comment (2), we used the map operator to create the MyItem3 object from
Int. On comment (3), we subscribed to Observable. On comment (4), we ran a blocking
delay to simulate a long running subscription code. On comment (5), we, again, ran a
blocking delay code to wait for the consumer to complete processing of all items before the
program stops execution.

Introduction to Backpressure and Flowables Chapter 4

[82]

The whole output will take some space, so we will put parts of outputs as screenshots here:

Introduction to Backpressure and Flowables Chapter 4

[83]

If you take a closer look at the output (screenshots), you will notice that the Observable
(producer) continued to emit items, though the Observer (consumer) was not at all in pace
with it. Until the time Observer (producer) finished emitting all the Items, the Observer
(consumer) processed only the very first item (item 1). As mentioned earlier, this could lead
to a lot of problems, including the OutOfMemory error. Now, let's replace Observable with
Flowable in this code:

 fun main(args: Array<String>) {
 Flowable.range(1,1000)//(1)
 .map { MyItem4(it) }//(2)
 .observeOn(Schedulers.io())
 .subscribe({//(3)
 println("Received $it")
 runBlocking { delay(50) }//(4)
 },{it.printStackTrace()})
 runBlocking { delay(60000) }//(5)
 }
 data class MyItem4 (val id:Int) {
 init {
 println("MyItem Created $id")
 }
 }

The code is exactly the same as the previous one, just the single difference is that we wrote
Flowable.range() instead of Observable. Now, let's see the output and note the
difference:

Introduction to Backpressure and Flowables Chapter 4

[84]

Have you noted the difference? Flowable, instead of emitting all the items, emitted few
items in a chunk, waited for the consumer to coup up then again continued, and completed
in an interleaved manner. This reduces a lot of problems itself.

Introduction to Backpressure and Flowables Chapter 4

[85]

When to use Flowables and Observables
By now, you may think Flowable is a handy tool to use, so you could replace Observable
everywhere. However, this may not always be the case. Although Flowable provides us
with backpressure strategies, Observables are here for a reason, and both of them have their
own advantages and disadvantages. So, when to use which? Let's see.

When to use Flowables?
The following are the situations when you should consider using Flowables. Remember,
Flowables are slower than Observables:

Flowables and backpressure are meant to help deal with larger amounts of data.
So, use flowable if your source may emit 10,000+ items. Especially when the
source is asynchronous so that the consumer chain may ask the producer to
limit/regulate emissions when required.
If you are reading from/parsing a file or database.
When you want to emit from network IO operations/Streaming APIs that support
blocking while returning results, which is how many IO sources work.

When to use Observables?
Now you know when to use Flowables, take a look at the conditions where you should
prefer Observables:

When you are dealing with a smaller amount of data (less than 10,000 emissions)
When you are performing strictly synchronous operations or operations with
limited concurrency
When you are emitting UI events (while working with Android, JavaFX, or
Swing)

Also, keep in mind that Flowables are slower in comparison to Observables.

Introduction to Backpressure and Flowables Chapter 4

[86]

Flowable and Subscriber
Instead of Observer, Flowable uses Subscriber, which is backpressure compatible. However,
if you use lambda expressions, then you will not notice any differences. So, why use
Subscriber instead of Observer? Because Subscriber supports some extra operations and
backpressure. For instance, it can convey how many items it wishes to receive as a message
to upstream. Or rather, we can say while using Subscriber; you must specify how many
items you want to receive (request) from upstream; if you don't specify it, you will not
receive any emissions.

As we already mentioned, using lambda with Subscriber is similar to Observe; this
implementation will automatically request an unbounded number of emissions from the
upstream. As with our last code, we didn't specify how many emissions we want, but it
internally requested unbounded number of emissions, and that's why we received all the
items emitted.

So, let's try replacing the previous program with a Subscriber instance:

 fun main(args: Array<String>) {
 Flowable.range(1, 1000)//(1)
 .map { MyItem5(it) }//(2)
 .observeOn(Schedulers.io())
 .subscribe(object : Subscriber<MyItem5> {//(3)
 override fun onSubscribe(subscription: Subscription) {
 subscription.request(Long.MAX_VALUE)//(4)
 }

 override fun onNext(s: MyItem5?) {
 runBlocking { delay(50) }
 println("Subscriber received " + s!!)
 }

 override fun onError(e: Throwable) {
 e.printStackTrace()
 }

 override fun onComplete() {
 println("Done!")
 }
 })
 runBlocking { delay(60000) }
 }

 data class MyItem5 (val id:Int) {
 init {
 println("MyItem Created $id")

Introduction to Backpressure and Flowables Chapter 4

[87]

 }
 }

The output of the preceding program will be the same as for the previous one, so we are
skipping the output here. Instead, let's understand the code. The program is almost
identical to the previous one, until comment (3), where we created an instance of
Subscriber. The methods of Subscriber are identical with Observer; however, as I
mentioned earlier, on the subscribe method, you have to request for the number of
emissions that you want initially. We did the same on comment (4); however, as we want
to receive all emissions, we requested it with Long.MAX_VALUE.

So, how does the request method work? The request() method will request the number
of emissions the Subscriber should listen on from the upstream, counting after the
method is called. The Subscriber will ignore any further emissions after the requested
emissions until you request for more.

So, let's modify this program to understand the request method better:

 fun main(args: Array<String>) {
 Flowable.range(1, 15)
 .map { MyItem6(it) }
 .observeOn(Schedulers.io())
 .subscribe(object : Subscriber<MyItem6> {
 lateinit var subscription: Subscription//(1)
 override fun onSubscribe(subscription: Subscription) {
 this.subscription = subscription
 subscription.request(5)//(2)
 }

 override fun onNext(s: MyItem6?) {
 runBlocking { delay(50) }
 println("Subscriber received " + s!!)
 if(s.id == 5) {//(3)
 println("Requesting two more")
 subscription.request(2)//(4)
 }
 }

 override fun onError(e: Throwable) {
 e.printStackTrace()
 }

 override fun onComplete() {
 println("Done!")
 }
 })

Introduction to Backpressure and Flowables Chapter 4

[88]

 runBlocking { delay(10000) }
 }

 data class MyItem6 (val id:Int) {
 init {
 println("MyItem Created $id")
 }
 }

So, what are the tweaks we made in this program? Let's go through it. On comment (1), we
declared a lateinit variable of type Subscription, we initialized that subscription
inside the onSubscribe method, just before comment (2). On comment (2), we requested
for 5 items with subscription.request(5). Then, inside onNext, on comment (3), we
checked if the received item is the 5th one (as we are using a range, the 5th item's value will
be 5); if the item is the 5th one, then we are again requesting for 2 more. So, the program
should print seven items instead of the 1-15 range. Let's check the following output:

So, although Flowable emitted all the items for the range, it was never passed to
Subscriber after 7.

Note that the request() method just not goes all the way upstream, it
just conveys to the latest preceding operator, which, in turn, decides on
whether to/how to relay that information to further upstream.

So, we got some understanding on Flowable and Subscriber. Now, it's time to explore
them in depth. We will start with creating a Flowable instance from scratch.

Introduction to Backpressure and Flowables Chapter 4

[89]

Creating Flowable from scratch
We learned about the Observable.create method in the previous chapter, but to make
things less complicated, let's have a quick recap, and then we can continue with
Flowable.create. Take a look at the following piece of code:

 fun main(args: Array<String>) {
 val observer: Observer<Int> = object : Observer<Int> {
 override fun onComplete() {
 println("All Completed")
 }

 override fun onNext(item: Int) {
 println("Next $item")
 }

 override fun onError(e: Throwable) {
 println("Error Occured ${e.message}")
 }

 override fun onSubscribe(d: Disposable) {
 println("New Subscription ")
 }
 }//Create Observer

 val observable: Observable<Int> = Observable.create<Int> {//1
 for(i in 1..10) {
 it.onNext(i)
 }
 it.onComplete()
 }

 observable.subscribe(observer)

 }

So, in this program, we created Observable with the Observable.create operator. This
operator let's define our own custom Observable. We can write our own rules to emit
items from Observable. It provides really great freedom, but the problem with
Observable is here as well. It doesn't support backpressure. Wouldn't it be great if we
could create a similar version with backpressure support? We will do it, but let's see the
output first:

Introduction to Backpressure and Flowables Chapter 4

[90]

So, as expected, it prints all the numbers from 1 through 10. Now, as discussed earlier, let's
try with Flowable:

 fun main(args: Array<String>) {
 val subscriber: Subscriber<Int> = object : Subscriber<Int> {
 override fun onComplete() {
 println("All Completed")
 }

 override fun onNext(item: Int) {
 println("Next $item")
 }

 override fun onError(e: Throwable) {
 println("Error Occured ${e.message}")
 }

 override fun onSubscribe(subscription: Subscription) {
 println("New Subscription ")
 subscription.request(10)
 }
 }//(1)

 val flowable: Flowable<Int> = Flowable.create<Int> ({
 for(i in 1..10) {
 it.onNext(i)
 }

Introduction to Backpressure and Flowables Chapter 4

[91]

 it.onComplete()
 },BackpressureStrategy.BUFFER)//(2)

 flowable
 .observeOn(Schedulers.io())
 .subscribe(subscriber)//(3)

 runBlocking { delay(10000) }

 }

So, on comment (1), we created an instance of Subscriber. Then, on comment (2), we
created an instance of Flowable with the Flowable.create() method, and, on comment
(3), we subscribed to it. However, focus on comment (2)—along with the lambda, we also
passed another argument to the Flowable.create method, which is
BackpressureStrategy.BUFFER. So, what is it? And what purpose does
BackpressureStrategy.BUFFER serve? Let's inspect.

Flowable.create() takes two parameters to create an instance of Flowable. The
following is the definition of the Flowable.create() method:

 fun <T> create(source:FlowableOnSubscribe<T>,
 mode:BackpressureStrategy):Flowable<T> {
 //...
 }

First parameter is the source from where the emissions will generate, and the second one
is BackpressureStrategy; it is an enum that helps supporting backpressure (it basically
helps choosing which strategy to follow for backpressure) by caching/buffering or dropping
some of the emissions if the downstream can't keep up. The enum
BackpressureStrategy has five underlying options for different kinds of
implementations of backpressure. In this example, BackpressureStrategy.BUFFER
buffers all the emissions until they are consumed by the downstream. This, obviously, is not
an optimal implementation of backpressure and can cause OutOfMemoryError while
handling too many emissions, but, at least it prevents MissingBackpressureException
and can make your custom Flowable workable to a small degree. We will learn about a
more robust way to implement backpressure later in this chapter using
Flowable.generate(); however, for now, let's know about the options we can choose
from BackpressureStrategyenum:

BackpressureStrategy.MISSING: This leads to no backpressure
implementation at all; downstream has to deal with backpressure overflows. This
option is helpful while using the onBackpressureXXX() operator. We will learn
this example later in this chapter.

Introduction to Backpressure and Flowables Chapter 4

[92]

BackpressureStrategy.ERROR: This, again, leads to no backpressure
implementation and signals MissingBackpressureException the very
moment the downstream cannot keep up with the source.
BackpressureStrategy.BUFFER: This buffers all the emissions in an
unbounded buffer until the downstream is able to consume them. This can lead
to OutOfMemoryError if there are a lot of emissions to buffer.
BackpressureStrategy.DROP: This strategy will let you drop all the emissions
while the downstream is busy and can't keep up; when the downstream finishes
the previous operation, it'll get the very first emission after its finishing time, and
will miss any emissions in between. For example, say the source is emitting five
values, 1, 2, 3, 4, and 5 respectively, the downstream got busy after receiving
1 and while the source emitted 2, 3, and 4, it got ready just before the source
emitted 5; the downstream will receive 5 only and will miss all remaining.
BackpressureStrategy.LATEST: This strategy will let you drop all the
emissions, but keeps the latest one while the downstream is busy and can't keep
up; when the downstream finishes the previous operation it'll get the last
emission just before it finished, and will miss any emissions in between. For
example, say the source is emitting five values 1, 2, 3, 4, and 5 respectively, the
downstream got busy after receiving 1 and while the source emitted 2, 3, and 4, it
got ready just before the source emitted 5; the downstream will receive both of
them (if it didn't again get busy after receiving 4, that it can't receive 5).

Let's implement some of these backpressure strategies as operators while creating
Flowables from Observables.

Creating Flowable from Observable
The Observable.toFlowable() operator provides you with another way to implement
BackpressureStrategy into non-backpressured source. This operator turns any
Observable into a Flowable, so let's get our hands dirty, and, first, let's try converting an
Observable into Flowable with the buffering strategy, then we will try out a few other
strategies in the same example to understand it better. Please refer to the following code:

 fun main(args: Array<String>) {
 val source = Observable.range(1, 1000)//(1)
 source.toFlowable(BackpressureStrategy.BUFFER)//(2)
 .map { MyItem7(it) }
 .observeOn(Schedulers.io())
 .subscribe{//(3)
 print("Rec. $it;\t")

Introduction to Backpressure and Flowables Chapter 4

[93]

 runBlocking { delay(1000) }
 }
 runBlocking { delay(100000) }
 }

 data class MyItem7 (val id:Int) {
 init {
 print("MyItem init $id")
 }
 }

So, on comment (1), we created an Observable with the Observable.range() method.
On comment (2), we converted it to Flowable with BackpressureStrategy.BUFFER.
Then, we subscribed to it with a lambda as the Subscriber. Let's see some portions of the
output as a screenshot (as the complete output will be too long to paste here):

So, as expected, the downstream here processes all the emissions, as the
BackpressureStrategy.BUFFER buffers all the emissions until the downstream
consumes.

Introduction to Backpressure and Flowables Chapter 4

[94]

So, now, let's try with BackpressureStrategy.ERROR and check what happens:

 fun main(args: Array<String>) {
 val source = Observable.range(1, 1000)
 source.toFlowable(BackpressureStrategy.ERROR)
 .map { MyItem8(it) }
 .observeOn(Schedulers.io())
 .subscribe{
 println(it)
 runBlocking { delay(600) }
 }
 runBlocking { delay(700000) }
 }

 data class MyItem8 (val id:Int) {
 init {
 println("MyItem Created $id")
 }
 }

The following is the output:

It showed an error as the downstream couldn't keep up with the upstream, as we described
it earlier.

Introduction to Backpressure and Flowables Chapter 4

[95]

What would happen if we use the BackpressureStrategy.DROP option? Let's check:

 fun main(args: Array<String>) {
 val source = Observable.range(1, 1000)
 source.toFlowable(BackpressureStrategy.DROP)
 .map { MyItem9(it) }
 .observeOn(Schedulers.computation())
 .subscribe{
 println(it)
 runBlocking { delay(1000) }
 }
 runBlocking { delay(700000) }
 }

 data class MyItem9 (val id:Int) {
 init {
 println("MyItem Created $id")
 }
 }

Everything is the same as in the previous example, except, here, we used the
BackpressureStrategy.DROP option. Let's check the output:

So, as we can see in the preceding output, BackpressureStrategy.DROP stopped
Flowable from emitting after 128, as the downstream couldn't keep up with, just as we
described earlier.

Introduction to Backpressure and Flowables Chapter 4

[96]

Now, as we have gained some grip on the options available in BackpressureStrategy,
let's focus on the BackpressureStrategy.MISSING option and how to use them with the
onBackpressureXXX() operators.

BackpressureStrategy.MISSING and
onBackpressureXXX()
BackpressureStrategy.MISSING implies that it'll not implement any backpressure
strategy, so you need to explicitly tell Flowable which backpressure strategy to follow. The
onBackpressureXXX() operators help you achieve the same, while providing you with
some additional configuration options.

There are mainly three types of onBackpressureXXX() operators available:

onBackpressureBuffer()

onBackpressureDrop()

onBackpressureLatest()

Operator onBackpressureBuffer()
This operator serves the purpose of BackpressureStrategy.BUFFER; except that here,
you'll get some extra configuration options, such as buffer size, bounded or unbounded,
and more. You may omit the configurations as well to use the default behavior.

So, let's look at some examples:

 fun main(args: Array<String>) {
 val source = Observable.range(1, 1000)
 source.toFlowable(BackpressureStrategy.MISSING)//(1)
 .onBackpressureBuffer()//(2)
 .map { MyItem11(it) }
 .observeOn(Schedulers.io())
 .subscribe{
 println(it)
 runBlocking { delay(1000) }
 }
 runBlocking { delay(600000) }
 }

 data class MyItem11 (val id:Int) {

Introduction to Backpressure and Flowables Chapter 4

[97]

 init {
 println("MyItem Created $id")
 }
 }

Again, we are using the previous program with little tweaks. On comment (1), we created
the Flowable instance with the BackpressureStrategy.MISSING option. On comment
(2), to deal with backpressure, we used onBackpressureBuffer; the output is similar to
the one in the BackpressureStrategy.BUFFER example, so we are omitting this.

You can specify the buffer size by using onBackpressureBuffer(). So let's modify the
onBackpressureBuffer() method call with onBackpressureBuffer(20). The
following is the output:

Introduction to Backpressure and Flowables Chapter 4

[98]

Yes, that change resulted in an error—the buffer is full. We defined 20 to be the buffer size,
but Flowable needed a lot more size. This could be avoided by implementing the onError
method.

Operator onBackpressureDrop()
Like onBackpressureBuffer matches with BackpressureStrategy.BUFFER,
onBackpressureDrop matches with BackpressureStrategy.DROP in terms of
backpressure strategy, with some configuration options.

So, let's now try this:

 fun main(args: Array<String>) {
 val source = Observable.range(1, 1000)
 source.toFlowable(BackpressureStrategy.MISSING)//(1)
 .onBackpressureDrop{ print("Dropped $it;\t") }//(2)
 .map { MyItem12(it) }
 .observeOn(Schedulers.io())
 .subscribe{
 print("Rec. $it;\t")
 runBlocking { delay(1000) }
 }
 runBlocking { delay(600000) }
 }

 data class MyItem12 (val id:Int) {
 init {
 print("MyItem init $id;\t")
 }
 }

Introduction to Backpressure and Flowables Chapter 4

[99]

As shown in the previous program, we used BackpressureStrategy.MISSING on
comment (1). On comment (2), we used the onBackpressureDrop() operator. This
operator provides a configuration option to pass a consumer instance, which will, in turn,
consume the dropped emissions so you can further process it. We used this configuration
and passed a lambda, which will print the dropped emissions, as shown in this screenshot:

As we can see from the output, Flowable dropped emissions after 128 (as it has an internal
buffer for 128 emissions). The consumer instance of onBackpressureDrop completed
processing even before the Subscriber instance started.

Operator onBackpressureLatest()
This operator works exactly the same as the BackpressureStrategy.LATEST-it drops all
the emissions keeping the latest one when the downstream is busy and can't keep up. When
the downstream finishes the previous operation, it'll get the last emission just before it
finished. Unfortunately, this doesn't provide any configurations; you will probably not need
it.

Introduction to Backpressure and Flowables Chapter 4

[100]

Let's take a look at this code example:

 fun main(args: Array<String>) {
 val source = Observable.range(1, 1000)
 source.toFlowable(BackpressureStrategy.MISSING)//(1)
 .onBackpressureLatest()//(2)
 .map { MyItem13(it) }
 .observeOn(Schedulers.io())
 .subscribe{
 print("-> $it;\t")
 runBlocking { delay(100) }
 }
 runBlocking { delay(600000) }
 }
 data class MyItem13 (val id:Int) {
 init {
 print("init $id;\t")
 }
 }

Here is the output:

As we can see, the Flowable dropped all emissions after 128, keeping only the last one
(1,000).

Introduction to Backpressure and Flowables Chapter 4

[101]

Generating Flowable with backpressure at
source
So far, we have learned to use standard libraries that handle backpressure at the
downstream. However, is this optimal? Is it always desirable to cache and drop emissions
whenever the downstream can't keep up? The answer to both questions is simply NO.
Instead, the better policy would be to backpressure the source at the first place.

Flowable.generate() serves the exact same purpose. It's somewhat similar to
Flowable.create(), but with a little difference. Let's take a look at an example, and then
we will try to understand how it works and what are the differences between
Flowable.create() and Flowable.generate().

Note that use Flowable.fromIterable() as it respects backpressure. So,
consider using Flowable.fromIterable() whenever you can convert
your source to an Iterator. Use Flowable.generate() only where you
need something more specific, as it is way more complex.

Consider the following code:

 fun main(args: Array<String>) {
 val flowable = Flowable.generate<Int> {
 it.onNext(GenerateFlowableItem.item)
 }//(1)

 flowable
 .map { MyItemFlowable(it) }
 .observeOn(Schedulers.io())
 .subscribe {
 runBlocking { delay(100) }
 println("Next $it")
 }//(2)

 runBlocking { delay(700000) }
 }

 data class MyItemFlowable(val id:Int) {
 init {
 println("MyItemFlowable Created $id")
 }
 }

 object GenerateFlowableItem {//(3)
 var item:Int = 0//(4)

Introduction to Backpressure and Flowables Chapter 4

[102]

 get() {
 field+=1
 return field//(5)
 }
 }

In that program, we created Flowable with the Flowable.generate() method. Unlike
Flowable.create(), where Flowable emits items and Subscriber receives/waits
for/buffers/drops them, Flowable.generate() generates items on request and emits
them. Flowable.generate() accepts a lambda to use as the source, which may seem
similar to Flowable.create, and calls it every time you request an item (unlike
Flowable.create). So, for example, if you call the onComplete method inside the
lambda, Flowable will emit only once. Also, you can't call onNext multiple times inside
the lambda. If you called onError, then you will get an error on the very first call.

In this program, we created object, GenerateFlowableItem, with var item; the var
item will automatically increment its value every time you access it (using a custom getter).
So, the program should work like Flowable.range(1, Int.MAX_VALUE), except that
once the item reaches Int.MAX_VALUE instead of calling onComplete, it'll again repeat
itself, starting from Int.MIN_VALUE.

In the output (omitted here as it is too large), Flowable emitted 128 items on the first go,
then waited for the downstream to process 96 items, then Flowable again emitted 128
items, and the cycle continued. Until you unsubscribe from Flowable or the program
execution stops, it will continue emitting items.

ConnectableFlowable
So far, in this chapter, we've dealt with Cold Observables. What if we want to deal with
hot source? Every type of Observable has their counterpart in Flowable. In the previous
chapter, we started hot source with ConnectableObservable, so let's start with
ConnectableFlowable.

As with Observable, ConnectableFlowable resembles an ordinary Flowable, except that it
does not begin emitting items when it is subscribed, but only when its connect() method
is called. In this way, you can wait for all intended Subscribers to
Flowable.subscribe(), before Flowable begins emitting items. Please refer to the
following code:

 fun main(args: Array<String>) {
 val connectableFlowable = listOf

Introduction to Backpressure and Flowables Chapter 4

[103]

 ("String 1","String 2","String 3","String 4",
 "String 5").toFlowable()//(1)
 .publish()//(2)
 connectableFlowable.
 subscribe({
 println("Subscription 1: $it")
 runBlocking { delay(1000) }
 println("Subscription 1 delay")
 })
 connectableFlowable
 .subscribe({ println("Subscription 2 $it")})
 connectableFlowable.connect()
 }

We tweaked the first example of ConnectableObservable from the previous chapter. As
with Observable, you can use the Iterable<T>.toFlowable() extension function in the
place of Flowable.fromIterable(). Flowable.publish() turns an ordinary Flowable
into a ConnectableFlowable.

In this example, on comment (1), we used the Iterable<T>.toFlowable() extension
function to create Flowable from List, and on comment (2), we used the
Flowable.publish() operator to create ConnectableFlowable from Flowable.

The following is the output:

Introduction to Backpressure and Flowables Chapter 4

[104]

As we used Flowable.fromIterable (Iterable<T>.toFlowable() calls
Flowable.fromIterable internally), which respects backpressure at the source, we can
see Flowable waited for all the downstream to complete processing, then emitted the next
item so that the downstreams can work in an interleaved manner.

By now, you may have been thinking of Subjects. It is a great tool, but, like Observable,
Subjects also lack backpressure support. So, what is the counterpart for Subjects in
Flowable?

Processor
Processors are the counterparts for Subjects in Flowable. Every type of Subject has its
counterpart as processor with backpressure support.

In the previous chapter (Chapter 3, Observables, Observers, and Subjects), we started
exploring Subject, with the PublishSubject; so, let's do the same here. Let's get started
with PublishProcessor.

The following is an example of PublishProcessor:

 fun main(args: Array<String>) {
 val flowable = listOf("String 1","String 2","String 3",
 "String 4","String 5").toFlowable()//(1)

 val processor = PublishProcessor.create<String>()//(2)

 processor.//(3)
 subscribe({
 println("Subscription 1: $it")
 runBlocking { delay(1000) }
 println("Subscription 1 delay")
 })
 processor//(4)
 .subscribe({ println("Subscription 2 $it")})

 flowable.subscribe(processor)//(5)

 }

Introduction to Backpressure and Flowables Chapter 4

[105]

So, in this example, on comment (1), we created a Flowable with the
Iterable<T>.toFlowable() method. On comment (2), we created a processor
instance with the PublishProcessor.create() method. On comment (3) and (4), we
subscribed to the processor instance, and, on comment (5). we subscribed to the
Flowable with the processor instance.

The following is the output:

The processor is waiting for all its Subscribers to complete before pushing the next
emission.

Learning Buffer, Throttle, and Window
operators
So far, we have learned about backpressure. We slowed down the source, dropped items, or
used buffer, which will hold items until the consumer consumes it; however, will all these
suffice? While handling backpressure at the downstream is not a good solution always, we
cannot always slow down the source as well.

While using Observable.interval/Flowable.interval, you cannot slow down the
source. A stop gap could be some operators that would somehow allow us to process the
emissions simultaneously.

Introduction to Backpressure and Flowables Chapter 4

[106]

There are the three operators that could help us in that way:

Buffer

Throttle

Window

The buffer() operator
Unlike the onBackPressureBuffer() operator, which buffers emissions until the
consumer consumes, the buffer() operator will gather emissions as a batch and will emit
them as a list or any other collection type.

So, let's look at this example:

 fun main(args: Array<String>) {
 val flowable = Flowable.range(1,111)//(1)
 flowable.buffer(10)//(2)
 .subscribe { println(it) }
 }

On comment (1), we created a Flowable instance with the Flowable.range() method,
which emits integers from 1 to 111. On comment (2), we used the buffer operator with
10 as the buffer size, so the buffer operator gathers 10 items from the Flowable and emits
them as a list.

The following is the output, which satisfies the understanding:

The buffer operator has quite good configuration options, such as the skip parameter.

Introduction to Backpressure and Flowables Chapter 4

[107]

It accepts a second integer parameter as the skip count. It works in a really interesting way.
If the value of the skip parameter is exactly the same as the count parameter, then it will
do nothing. Otherwise, it will first calculate the positive difference between the count and
skip parameters as actual_numbers_to_skip, and, then, if the value of the skip
parameter is greater than the value of the count parameter, it will skip the
actual_numbers_to_skip items after the last item of each emission. Otherwise, if the
value of the count parameter is greater than the value of the skip parameter, you'll get
rolling buffers, that is, instead of skipping the items, it will skip the counts from the
previous emissions.

Confused? Let's look at this example to clear things up:

 fun main(args: Array<String>) {
 val flowable = Flowable.range(1,111)
 flowable.buffer(10,15)//(1)
 .subscribe { println("Subscription 1 $it") }

 flowable.buffer(15,7)//(2)
 .subscribe { println("Subscription 2 $it") }
 }

On comment (1), we used buffer with count 10, skip 15, for the first subscription. On
comment (2), we used it as count 15, skip 8, for the second subscription. The following
is the output:

For the first subscription, it skipped 5 items after each subscription (15-10). However, for
the second one, it repeated items from the 8th item in each emission (15-7).

Introduction to Backpressure and Flowables Chapter 4

[108]

If the preceding uses of the buffer operator were not enough for you, then let me tell you
the buffer operator also lets you do time-based buffering. Put simply, it can gather
emissions from a source and emit them at a time interval. Interesting right? Let's explore it:

 fun main(args: Array<String>) {
 val flowable = Flowable.interval(100, TimeUnit.MILLISECONDS)//(1)
 flowable.buffer(1,TimeUnit.SECONDS)//(2)
 .subscribe { println(it) }

 runBlocking { delay(5, TimeUnit.SECONDS) }//(3)
 }

To understand things better, we used Flowable.interval in this example to create a
Flowable instance on comment (1). On comment (2), we used the
buffer(timespan:Long, unit:TimeUnit) overload to instruct the operator to buffer all
emissions for a second and emit them as a list.

This is the output:

As you can see in the example, each of the emissions contains 10 items
as Flowable.interval() is emitting one each 100 milliseconds and buffer is gathering
emissions within a second timeframe (1 second = 1000 milliseconds, emission with a 100
milliseconds interval would result in 10 emissions in one second).

Another exciting feature of the buffer operator is that it can take another producer as the
boundary, that is, the buffer operator will gather all the emissions of the source producer
between two emissions of the boundary producer, and will emit the list on each boundary
producer's emission.

Introduction to Backpressure and Flowables Chapter 4

[109]

Here is an example:

 fun main(args: Array<String>) {
 val boundaryFlowable = Flowable.interval(350, TimeUnit.MILLISECONDS)

 val flowable = Flowable.interval(100, TimeUnit.MILLISECONDS)//(1)
 flowable.buffer(boundaryFlowable)//(2)
 .subscribe { println(it) }

 runBlocking { delay(5, TimeUnit.SECONDS) }//(3)
 }

And the following is the output:

The buffer operator emits a gathered list whenever boundaryFlowable emits.

The window() operator
The window() operator works almost the same, except that, instead of buffering items in a
Collection object, it buffers items in another producer.

Here is an example:

 fun main(args: Array<String>) {
 val flowable = Flowable.range(1,111)//(1)
 flowable.window(10)
 .subscribe {
 flo->flo.subscribe {//(2)
 print("$it, ")
 }

Introduction to Backpressure and Flowables Chapter 4

[110]

 println()
 }
 }

Let's first see the output, as shown here, before we try to understand it:

The window operator buffers 10 emissions in a new Flowable instance, which we will
again subscribe to inside the flowable.subscribe lambda, and print them with a comma
as a suffix.

The window operator also has same functionality as the other overloads of the buffer
operator.

The throttle() operators
The buffer() and window() operators gather emissions. The throttle operators omit
emissions. We will discuss it in greater detail in the later chapters, but we will take a look at
it right now:

 fun main(args: Array<String>) {
 val flowable = Flowable.interval(100, TimeUnit.MILLISECONDS)//(1)
 flowable.throttleFirst(200,TimeUnit.MILLISECONDS)//(2)
 .subscribe { println(it) }
 runBlocking { delay(1,TimeUnit.SECONDS) }
 }

Introduction to Backpressure and Flowables Chapter 4

[111]

This is the output:

The throttleFirst skips the first emissions in every 200 milliseconds.

There are throttleLast and throttleWithTimeout operators as well.

Summary
In this chapter, we learned about backpressure. We learned how to support backpressure
and Flowables as well as processors. We also learned how to support backpressure from
consumers and producers.

Although we gained some grip on producers while working on real-time projects, we need
to do asynchronous operations. In the next chapter, we will focus on the same. We will
learn about asynchronous data operations, and we will learn more about the map operator,
which we are already using.

Curious? Turn to Chapter 5, Asynchronous Data Operators and Transformations right now.

5
Asynchronous Data Operators

and Transformations
Through the previous chapters, we got a strong grip on the producer (Observable and
Flowable) and consumer (Observer and Subscriber). While learning them, we used the map
method a lot. As already mentioned, the map method is actually an Rx-Operator. There are
also a number of operators in RxKotlin. I can guess you have an itching question in your
mind from the very first time we used the map operator. Why do we call it an operator
when it looks like a method? Well, in this chapter, we will first try to answer this question
by defining RxKotlin operators. We will then take a deeper look at the various operators
available and their implementations. With the help of operators, we will transform,
accumulate, map, group, and filter our data efficiently and with ease.

Operator
When we started with programming for the first time, we learned about operators. We
learned that operators are those special characters/sequence of characters that perform some
specific tasks on the operands and return the final results. In the reactive world, the
definition remains merely the same; they take one or more Observable/Flowable as
operands, transform them, and return the resultant Observable/Flowable.

Operators work such as a consumer to the preceding Observable/Flowable, listen to their
emissions, transform them, and emit them to the downstream consumer. For instance, think
of the map operator, it listens to the upstream producer, performs some operations on their
emissions, and then emits those modified items to the downstream.

Asynchronous Data Operators and Transformations Chapter 5

[113]

Operators help us leverage and express business logic and behaviors. There are a lot of
operators available with RxKotlin. Throughout this book, we will be covering various types
of operators comprehensively so that you know when to use which operator.

Remember, to implement business logic and behavior in your applications, you should use
operators instead of writing blocking code or mixing imperative programming with
reactive programming. By keeping algorithms and processes purely reactive, you can easily
leverage lower memory usage, flexible concurrency, and disposability, which are reduced
or not achieved if you mix reactive programming with imperative programming.

These are the five types of operators:

Filtering/suppressing operators
Transforming operators
Reducing operators
Collection operators
Error handling operators
Utility operators

So, now, let's take a closer look at them.

The filtering/suppressing operators
Think of a situation when you want to receive some emissions from the producer but want
to discard the rest. There may be some logic to determine the qualifying emissions, or you
may even wish to discard in bulk. The filtering/suppressing operators are there to
help you in these situations.

Here is a brief list of filtering/suppressing operators:

debounce

distinct and distinctUntilChanged
elementAt

Filter

first and last
ignoreElements

skip, skipLast, skipUntil, and skipWhile
take, takeLast, takeUntil, and takeWhile

Asynchronous Data Operators and Transformations Chapter 5

[114]

Let's now take a closer look at all of them.

The debounce operator
Think of a situation where you're receiving emissions rapidly, and are willing to take the
last one after taking some time to be sure about it.

When developing an application UI/UX, we often come to such a situation. For example,
you have created a text input and are willing to perform some operation when the user
types something, but you don't want to perform this operation on each keystroke. You
would like to wait a little bit for the user to stop typing (so you've got a good query
matching what the user actually wants) and then send it to the downstream operator. The
debounce operator serves that exact purpose.

For the sake of simplicity, we will not use any UI/UX code of any platform here (we will
definitely try that in the later chapters while learning to implement RxKotlin in Android).
Rather, we will try to simulate this using the Observable.create method (if you have any
doubt about the Observable.create method, then rush to Chapter 3, Observables,
Observers, and Subjects before this). Please refer to the following code:

 fun main(args: Array<String>) {
 createObservable()//(1)
 .debounce(200, TimeUnit.MILLISECONDS)//(2)
 .subscribe {
 println(it)//(3)
 }
 }

 inline fun createObservable():Observable<String> =
 Observable.create<String> {
 it.onNext("R")//(4)
 runBlocking { delay(100) }//(5)
 it.onNext("Re")
 it.onNext("Reac")
 runBlocking { delay(130) }
 it.onNext("Reactiv")
 runBlocking { delay(140) }
 it.onNext("Reactive")
 runBlocking { delay(250) }//(6)
 it.onNext("Reactive P")
 runBlocking { delay(130) }
 it.onNext("Reactive Pro")
 runBlocking { delay(100) }
 it.onNext("Reactive Progra")

Asynchronous Data Operators and Transformations Chapter 5

[115]

 runBlocking { delay(100) }
 it.onNext("Reactive Programming")
 runBlocking { delay(300) }
 it.onNext("Reactive Programming in")
 runBlocking { delay(100) }
 it.onNext("Reactive Programming in Ko")
 runBlocking { delay(150) }
 it.onNext("Reactive Programming in Kotlin")
 runBlocking { delay(250) }
 it.onComplete()
 }

In this program, we tried to keep the main function clean by exporting the Observable
creation to another function (createObservable()) to help you understand better. On
comment (1), we called the createObservable() function to create an Observable
instance.

Inside the createObservable() function, we tried to simulate user typing behavior by
emitting a series of incremental Strings with intervals, until it reached the final version
(Reactive Programming in Kotlin). We provided bigger intervals after completing
each word depicting an ideal user behavior.

On comment (2), we used the debounce() operator with 200 and
TimeUnit.MILLISECONDS as parameters that'll make the downstream wait for 200
milliseconds after each emission and take the emissions only if no other emissions occurred
in between.

The output is as follows:

Observer receives only three emits, after which the Observable took at least 200
milliseconds before emitting the next one.

Asynchronous Data Operators and Transformations Chapter 5

[116]

The distinct operators – distinct,
distinctUntilChanged
This operator is quite simple; it helps you filter duplicate emissions from the upstream.
Take a look at the following example for better understanding:

 fun main(args: Array<String>) {
 listOf(1,2,2,3,4,5,5,5,6,7,8,9,3,10)//(1)
 .toObservable()//(2)
 .distinct()//(3)
 .subscribe { println("Received $it") }//(4)
 }

On comment (1), we created a list of Int containing many duplicate values. On comment
(2), we created an Observable instance from that list with the help of the
toObservable() method. On comment (3), we used the distinct operator to filter out
all duplicate emissions.

Here is the output:

What the distinct operator does is remember all the emissions that took place and filters
any such emissions in future.

Asynchronous Data Operators and Transformations Chapter 5

[117]

The distinctUntilChange operator is slightly different. Instead of discarding all
duplicate emissions, it discards only consecutive duplicate emissions, keeping the rest at its
place. Please, refer to the following code:

 fun main(args: Array<String>) {
 listOf(1,2,2,3,4,5,5,5,6,7,8,9,3,10)//(1)
 .toObservable()//(2)
 .distinctUntilChanged()//(3)
 .subscribe { println("Received $it") }//(4)
 }

Here is the output:

Take a cautious look at the output; item 3 is printed twice, second time after 9. The
distinct operator remembers each item until it receives onComplete, but the
distinctUntilChanged operator remembers them only until it receives a new item.

The elementAt operator
With imperative programming, we have the ability to access the nth element of any
array/list, which is quite a common requirement. The elementAt operator is really helpful
in this regard; it pulls the nth element from the producer and emits it as its own sole
emission.

Asynchronous Data Operators and Transformations Chapter 5

[118]

Take a look at the following piece of code:

 fun main(args: Array<String>) {
 val observable = listOf(10,1,2,5,8,6,9)
 .toObservable()

 observable.elementAt(5)//(1)
 .subscribe { println("Received $it") }

 observable.elementAt(50)//(2)
 .subscribe { println("Received $it") }
 }

Take a look at the following output before we continue to inspect the code:

On comment (1), we requested the 5th element from Observable, and it emitted the same
(count starts with zero). However, on comment (2), we requested the 50th element, which
doesn't even exist in Observable, so it didn't emit anything.

This operator achieves this behavior with the help of the Maybe monad, which will be
covered later.

Filtering emissions - filter operator
The filter operator is arguably the most used filtering/suppressing operator. It lets
you implement custom logic to filter emissions.

The following code snippet is the simplest implementation of the filter operator:

 fun main(args: Array<String>) {
 Observable.range(1,20)//(1)
 .filter{//(2)
 it%2==0
 }
 .subscribe {
 println("Received $it")
 }
 }

Asynchronous Data Operators and Transformations Chapter 5

[119]

On comment (1), we created an Observable instance with the help of the
Observable.range() operator. We filtered out odd numbers from the emissions with the
help of the filter operator on comment (2).

The following is the output:

The first and last operator
These operators help you listen only for the first or last emission and discard the remaining
ones.

Check out the following example:

 fun main(args: Array<String>) {
 val observable = Observable.range(1,10)
 observable.first(2)//(1)
 .subscribeBy { item -> println("Received $item") }

 observable.last(2)//(2)
 .subscribeBy { item -> println("Received $item") }

 Observable.empty<Int>().first(2)//(3)
 .subscribeBy { item -> println("Received $item") }
 }

Asynchronous Data Operators and Transformations Chapter 5

[120]

The output is as follows:

On comment (1), we used the first operator, with the defaultValue parameter set to 2
so that it will emit the defaultValue parameter if it can't access the first element. On
comment (2), we used the last operator. On comment (3), we used the first operator
again, this time, with an empty Observable; so, instead of emitting the first element, it
emits defaultValue.

The ignoreElements operator
Sometimes, you may require to listen only on the onComplete of a producer. The
ignoreElements operator helps you to do that. Please refer to the following code:

 fun main(args: Array<String>) {
 val observable = Observable.range(1,10)
 observable
 .ignoreElements()
 .subscribe { println("Completed") }//(1)
 }

The ignoreElements operator returns a Completable monad, which only has the
onComplete event.

We will look into the skip and take operators in Chapter 6, More on Operators and Error
Handling while discussing conditional operators.

Asynchronous Data Operators and Transformations Chapter 5

[121]

The transforming operators
As the name suggests, the transforming operators help you transform items emitted by a
producer.

Here is a brief list of transforming operators:

map

flatMap, concatMap, and flatMapIterable
switchMap

switchIfEmpty

scan

groupBy

startWith

defaultIfEmpty

sorted

buffer

window

cast

delay

repeat

The map operator
The map operator performs a given task (lambda) on each of the emitted items and emits
them to the downstream. We have already seen a little use of the map operator. For a given
Observable<T> or Flowable<T>, the map operator will transform an emitted item of type
T into an emission of type R by applying the provided lambda of Function<T,R> to it.

So, now, let's take a look at another example with the map operator:

 fun main(args: Array<String>) {
 val observable = listOf(10,9,8,7,6,5,4,3,2,1).toObservable()
 observable.map {//(1)
 number-> "Transforming Int to String $number"
 }.subscribe {
 item-> println("Received $item")
 }
 }

Asynchronous Data Operators and Transformations Chapter 5

[122]

On comment (1), we used the map operator, which will transform the emitted item of type
Int to an emission of type String. Although we have a clear idea of what the output will
be, let's validate that by taking a look at the following screenshot:

Casting emissions (cast operator)
Think of a situation where you want to cast emissions from the Observable to another data
type. Passing a lambda just to cast the emissions doesn't seem like a good idea. The cast
operator is here to help in this scenario. Let's take a look:

 fun main(args: Array<String>) {
 val list = listOf<MyItemInherit>(
 MyItemInherit(1),
 MyItemInherit(2),
 MyItemInherit(3),
 MyItemInherit(4),
 MyItemInherit(5),
 MyItemInherit(6),
 MyItemInherit(7),
 MyItemInherit(8),
 MyItemInherit(9),
 MyItemInherit(10)
)//(1)

 list.toObservable()//(2)
 .map { it as MyItem }//(3)
 .subscribe {
 println(it)
 }

Asynchronous Data Operators and Transformations Chapter 5

[123]

 println("cast")

 list.toObservable()
 .cast(MyItem::class.java)//(4)
 .subscribe {
 println(it)
 }
 }

 open class MyItem(val id:Int) {//(5)
 override fun toString(): String {
 return "[MyItem $id]"
 }
 }

 class MyItemInherit(id:Int):MyItem(id) {//(6)
 override fun toString(): String {
 return "[MyItemInherit $id]"
 }
 }

In this program, we have defined two classes: MyItem and MyItemInherit on comment
(5) and (6) respectively. We will be using these two classes to demonstrate the uses of the
cast operator. So, on comment (1), we created a list of MyItemInherit; for this program,
our approach is to try the same thing, first with the map operator, and then we will do the
same with the cast operator. On comment (2), we created an observable with a list, and
then, on comment (3), we used the map operator and passed a lambda, where we type-
casted the emission to MyItemInherit.

We did the same on comment (4), but, this time with the cast operator. Just look at the
simplicity of the code now, it looks a lot cleaner and simpler.

The flatMap operator
Where the map operator takes each emission and transforms them, the flatMap operator
creates a new producer, applying the function you passed to each emission of the source
producer.

Asynchronous Data Operators and Transformations Chapter 5

[124]

So, let's look at this example:

 fun main(args: Array<String>) {
 val observable = listOf(10,9,8,7,6,5,4,3,2,1).toObservable()
 observable.flatMap {
 number-> Observable.just("Transforming Int to String $number")
 }.subscribe {
 item-> println("Received $item")
 }
 }

Here is the output:

The output is similar to the previous one, but the logic is different. Instead of just returning
the String, we are returning Observable with the desired String. Although, for this
example, you seem to have no benefit using it, think of a situation when you need to derive
multiple items from a single emission. Consider the following example where we will create
multiple items from each emission:

 fun main(args: Array<String>) {
 val observable = listOf(10,9,8,7,6,5,4,3,2,1).toObservable()
 observable.flatMap {
 number->
 Observable.create<String> {//(1)
 it.onNext("The Number $number")
 it.onNext("number/2 ${number/2}")
 it.onNext("number%2 ${number%2}")
 it.onComplete()//(2)
 }
 }.subscribeBy (
 onNext = {
 item-> println("Received $item")

Asynchronous Data Operators and Transformations Chapter 5

[125]

 },
 onComplete = {
 println("Complete")
 }
)
 }

Let's take a look at the output, and then we will try to understand the program:

Asynchronous Data Operators and Transformations Chapter 5

[126]

In this program, we've created a new instance of Observable inside the flatMap operator,
which will emit three strings. On comment (1), we created the Observable instance with
the Observable.create operator. We will emit three strings from the
Observable.create operator, and, on comment (2), we will send an onComplete
notification after emitting three items from Observable.

However, take a look at the output; it emitted all the items before sending the onComplete
notification. The reason is that all Obervables are combined together and then subscribed
to the downstream. The flatMap operator internally uses the merge operator to combine
multiple Observables.

The concatMap performs the same operation using the concat operator instead of the
merge operator to combine two Observable/Flowables.

We will learn more about these operators (merge, concat, and other combining operators)
in the next chapter.

We will again take a look at flatMap, along with concatMap, switchMap, and
flatMapIterable in Chapter 6, More on Operators and Error Handling after gaining some
knowledge on merging and concatenating producers.

The defaultIfEmpty operator
While working with filtering operators and/or working on complex requirements, it may
occur that we encounter an empty producer (see the following code block):

 fun main(args: Array<String>) {
 Observable.range(0,10)//(1)
 .filter{it>15}//(2)
 .subscribe({
 println("Received $it")
 })
 }

Here, on comment (1), we will create Observable of range 0 to 10; however, on comment
(2), we will filter it for emission value >15. So, basically, we will end up with an empty
Observable.

Asynchronous Data Operators and Transformations Chapter 5

[127]

The defaultIfEmpty operator helps us deal with such situations. The preceding example,
with defaultIfEmpty looks like this:

 fun main(args: Array<String>) {
 Observable.range(0,10)//(1)
 .filter{it>15}//(2)
 .defaultIfEmpty(15)//(3)
 .subscribe({
 println("Received $it")
 })
 }

This is the same program, but, just on comment (3), we added the defaultIfEmpty
operator.

The output looks like the following screenshot:

The output shows that, although Observable doesn't contain any number above
10, defaultIfEmpty adds 15 to the Observable as it's empty after filtering.

The switchIfEmpty operator
This operator is similar to the defaultIfEmpty operator; the only difference is that, for the
defaultIfEmpty operator, it adds an emission to empty producers, but for the
switchIfEmpty operator, it starts emitting from the specified alternative producer if the
source producer is empty.

Unlike the defaultIfEmpty operator, where you needed to pass an item, here, you have to
pass an alternate producer to the switchIfEmpty operator. If the source producer is
empty, it will start taking emissions from the alternate producer.

Here is an example:

 fun main(args: Array<String>) {
 Observable.range(0,10)//(1)
 .filter{it>15}//(2)
 .switchIfEmpty(Observable.range(11,10))//(3)
 .subscribe({

Asynchronous Data Operators and Transformations Chapter 5

[128]

 println("Received $it")
 })
 }

This is the same example as the previous one; just on comment (3), we used
switchIfEmpty instead of defaultIfEmpty with an alternate Observable. The following
output shows that the emissions were taken from the alternate Observable passed with the
switchIfEmpty operator:

The startWith operator
The startWith operator is simple; it enables you to add an item to the producer at the top
of all preexisting items.

Let's take a look at how it works:

 fun main(args: Array<String>) {
 Observable.range(0,10)//(1)
 .startWith(-1)//(2)
 .subscribe({
 println("Received $it")
 })
 listOf("C","C++","Java","Kotlin","Scala","Groovy")//(3)
 .toObservable()
 .startWith("Programming Languages")//(4)
 .subscribe({
 println("Received $it")
 })
 }

Asynchronous Data Operators and Transformations Chapter 5

[129]

The output is as follows:

As we can see, the startWith operator on comment (2) and (4) worked just like a prefix
on the existing list of emissions.

Sorting emissions (sorted operator)
There are some scenarios where you would like to sort the emissions. The sorted operator
helps you do that. It will internally collect and reemit all the emissions from the source
producer after sorting.

Asynchronous Data Operators and Transformations Chapter 5

[130]

Let's take a look at this example and try to understand this operator better:

 fun main(args: Array<String>) {
 println("default with integer")
 listOf(2,6,7,1,3,4,5,8,10,9)
 .toObservable()
 .sorted()//(1)
 .subscribe { println("Received $it") }

 println("default with String")
 listOf("alpha","gamma","beta","theta")
 .toObservable()
 .sorted()//(2)
 .subscribe { println("Received $it") }

 println("custom sortFunction with integer")
 listOf(2,6,7,1,3,4,5,8,10,9)
 .toObservable()
 .sorted { item1, item2 -> if(item1>item2) -1 else 1 }//(3)
 .subscribe { println("Received $it") }

 println("custom sortFunction with custom class-object")
 listOf(MyItem1(2),MyItem1(6),
 MyItem1(7),MyItem1(1),MyItem1(3),
 MyItem1(4),MyItem1(5),MyItem1(8),
 MyItem1(10),MyItem1(9))
 .toObservable()
 .sorted { item1, item2 ->
 if(item1.item<item2.item) -1 else 1 }//(4)
 .subscribe { println("Received $it") }
 }

 data class MyItem1(val item:Int)

Asynchronous Data Operators and Transformations Chapter 5

[131]

Take a look at the output first, and then we will explore the program:

Asynchronous Data Operators and Transformations Chapter 5

[132]

Now, let's explore the program. As we already know, the sorted operator helps sorting
emissions; to sort, we need to compare, thus, the sorted operator requires a Comparable
instance to compare emitted items and sort them respectively. This operator has two
overloads, one with no parameter—it assumes that the producer (here Observable) type
will implement Comparable and calls compareTo function, failing which will generate
error; the other overload is with a method (lambda) for comparing. On comment (1) and
(2), we implemented the sorted operator with a default sort function, that is, it will call
the compareTo function from the item instance and will throw error if the datatype doesn't
implement Comparable.

On comment (3), we used our own custom sortFunction to sort the integers in
descending order.

On comment (4), we used an Observable of type MyItem1, which obviously is a custom
class and doesn't implement Comparable, so we passed the sortFunction lambda here as
well.

Caution: As we already mentioned, the sorted operator collects all
emissions and then sorts them before reemitting them in a sorted order;
thus, using this operator can cause significant performance implications.
Moreover, while using with large producers, it can cause OutOfMemory
Error as well. So, use the sorted operator cautiously, or try to avoid it
unless extensively required.

Accumulating data – scan operator
The scan operator is a rolling aggregator; it emits incremental accumulation by adding
previous emissions to it.

Let's take a look at the following example before delving deeper:

 fun main(args: Array<String>) {
 Observable.range(1,10)
 .scan { previousAccumulation, newEmission ->
 previousAccumulation+newEmission }//(1)
 .subscribe { println("Received $it") }

 listOf("String 1","String 2", "String 3", "String 4")
 .toObservable()
 .scan{ previousAccumulation, newEmission ->
 previousAccumulation+" "+newEmission }//(2)
 .subscribe { println("Received $it") }

Asynchronous Data Operators and Transformations Chapter 5

[133]

 Observable.range(1,5)
 .scan { previousAccumulation, newEmission ->
 previousAccumulation*10+newEmission }//(3)
 .subscribe { println("Received $it") }
 }

The output is as follows:

So, in this program, we used the scan operator to implement three types of operations,
which we will discuss in detail, but, first, let's try to understand the scan operator itself. It
takes a lambda with two arguments. The first parameter is the result of a rolling
aggregation of all previous emissions; the second one is the current emission.

Asynchronous Data Operators and Transformations Chapter 5

[134]

The following graph will allow you to understand it better:

As we can see in the graph, the scan operator will accumulate all the previous emissions
with the current emission based on the provided accumulation function.

So, in the preceding program, on comment (1), we did the same thing with the scan
operator as it is described in the graph. We used it to get the sum of all integers emitted
up until then. On comment (2), we used it with Observable of type String and got
concatenated strings.

On comment (3), we used the scan operator to concatenate the integers by multiplying
the previous accumulation by 10 and adding the present emission to it.

One thing to note is that we can use the scan operator for almost any operation, not just for
summing, as long as it returns items of the same datatype.

Note that the scan operator has similarities with the reduce operator,
which we will cover soon in this chapter; however, be cautious not to get
confused. The scan operator is a rolling aggregator, which transforms all
the emissions it receives into accumulation; whereas, the reduce operator
reduces emissions to just one by accumulating all the emissions once it
receives the onComplete notification.

Asynchronous Data Operators and Transformations Chapter 5

[135]

Reducing operators
While developing applications, you may face such a situation where you may need to
accumulate and consolidate emissions. Note that nearly all the operators under this criteria
will only work on a finite producer (Observable/Flowable) that calls onComplete()
because typically, we can consolidate only finite datasets. We will explore this behavior as
we cover these operators.

Here is a short list of reducing operators, which we will cover in this chapter:

count

reduce

all

any

contains

Counting emissions (count operator)
The count operator subscribes to a producer, counts the emissions, and emits a Single,
containing the count of emissions by the producer.

Here is an example:

 fun main(args: Array<String>) {
 listOf(1,5,9,7,6,4,3,2,4,6,9).toObservable()
 .count()
 .subscribeBy { println("count $it") }
 }

The following is the output:

As we can see from the output, this operator counts the emissions from the producer, and
emits the count once it receives the onComplete notification.

Asynchronous Data Operators and Transformations Chapter 5

[136]

Accumulating emissions – reduce operator
Reduce is a perfect accumulation operator. It accumulates all the emissions by the producer
and emits them once it receives the onComplete notification from the producer.

Here is an example:

 fun main(args: Array<String>) {
 Observable.range(1,10)
 .reduce { previousAccumulation, newEmission ->
 previousAccumulation+newEmission }
 .subscribeBy { println("accumulation $it") }

 Observable.range(1,5)
 .reduce { previousAccumulation, newEmission ->
 previousAccumulation*10+newEmission }
 .subscribeBy { println("accumulation $it") }
 }

The output is shown as follows:

The reduce operator works similar to the scan operator, the only difference is that instead
of accumulating and emitting them on each emission, it accumulates all the emissions and
emits them on receiving the onComplete notification.

The all and any operators help validate emissions by the producer; we will look into them
in the next chapter.

The collection operators
Though it is not good practice, keeping some rare situations in mind, RxKotlin provides
you with operators that can listen to all the emissions and accumulate them to a collection
object.

The collection operators are basically a subset of the reducing operators.

Asynchronous Data Operators and Transformations Chapter 5

[137]

The following list consists of the most important collection operators:

toList and toSortedList
toMap

toMultiMap

collect

We will be covering collection operators in detail later in this book.

The error handling operators
We already learned about the onError event in the Subscriber/Observer. However, the
problem with the onError event is that the error is emitted to the downstream consumer
chain, and the subscription is terminated instantly. For example, take a look at the following
program:

 fun main(args: Array<String>) {
 Observable.just(1,2,3,5,6,7,"Errr",8,9,10)
 .map { it.toIntOrError() }
 .subscribeBy (
 onNext = {
 println("Next $it")
 },
 onError = {
 println("Error $it")
 }
)
 }

The output of the program is shown in the following screenshot:

Asynchronous Data Operators and Transformations Chapter 5

[138]

The program throws an exception in the map operator when the string Errr is emitted from
the Observable. The exception was caught by the onError handler, but the Subscription
doesn't get any further emissions.

This may not be the desired behavior every time. Although we cannot pretend the error
never happened and continue (we should not do this either), there should be a way to at
least resubscribe or switch to an alternate source producer.

Error handling operators help you achieve the same.

The following are the error handling operators.

onErrorResumeNext( )
onErrorReturn( )
onExceptionResumeNext( )
retry( )
retryWhen( )

We will cover error handling operators in detail in Chapter 6, More on Operators and Error
Handling.

The utility operators
These operators help us to perform various utility operations, such as performing some
action on emissions, remembering timestamps of each items emitted, caching, and much
more.

The following is the list of utility operators:

doOnNext, doOnComplete, and doOnError
doOnSubscribe, doOnDispose, and doOnSuccess
serialize

cache

We will cover utility operators in detail in the next chapter.

Asynchronous Data Operators and Transformations Chapter 5

[139]

Summary
In this chapter, we learned about operators and the types of operators available, and we
learned in detail about operators, especially the ones useful for transforming, filtering, and
accumulating emissions by the source producer. We also learned about the necessity of the
error handling operators, which we will cover in the next chapter.

This chapter and the next chapter, that is, Chapter 6, More on Operators and Error
Handling are highly related; while discussing topics in this chapter, we got a glance about
the contents of the next chapter. In the next chapter as well, we will refer to and use the
contents learned in this chapter.

While in this chapter we focused on the basics of operators, operator types, and operators
specifically useful for filtering, transforming, and accumulating emissions (aka data), in the
next chapter, we will cover the operators useful to combine Observable/Flowables and error
handling and for conditional purposes.

Turn the page right now to get started.

6
More on Operators and Error

Handling
In the previous chapter, we learned about operators and how to use them. We learned how
operators can help us in solving complex problems with ease. We got a grip on operators
and their types, and we learned basic filtering operators and transforming operators in
detail. It's time to move on to some interesting and advanced things you can do with
operators.

We will cover the following topics in this chapter:

Combining producers (Observable/Flowable)
Grouping emissions
Filtering/suppressing operators
Error handling operators
Real-world HTTP client example

More on Operators and Error Handling Chapter 6

[141]

So, what are we waiting for? Let's get started with combining producer
(Observable/Flowable) instances.

Combining producers (Observable/Flowable)
While developing applications, it's a common situation to combine data from multiple
sources before using them. One such situation is when you are building some offline
application following an offline-first approach, and you want to combine the resultant data
you got from the HTTP call with the data from the local database.

Now, without wasting much time, let's take a look at the operators that can help us combine
producers:

startWith()

merge(), mergeDelayError()
concat()

zip()

combineLatest()

Basically, there are a few mechanisms to combine producers (Observables/Flowables). They
are as follows:

Merging producers
Concatenating producers
Ambiguous combination of producers
Zipping
Combine latest

We will discuss all the previously mentioned techniques to combine producers in this
chapter. However, let's start with an operator that we are already aware of.

More on Operators and Error Handling Chapter 6

[142]

The startWith operator
We got introduced to the startWith operator in the previous chapter, but there's still a lot
to cover. This operator also lets you combine multiple producers. Take a look at the
following example:

 fun main(args: Array<String>) {
 println("startWith Iterator")
 Observable.range(5,10)
 .startWith(listOf(1,2,3,4))//(1)
 .subscribe {
 println("Received $it")
 }
 println("startWith another source Producer")
 Observable.range(5,10)
 .startWith(Observable.just(1,2,3,4))//(2)
 .subscribe {
 println("Received $it")
 }
 }

We can pass another source Observable or an Iterator instance to be prepended before
the source Observable that the operator has subscribed to starts emitting.

In the preceding program, on comment (1), we used the startWith operator and passed
an Interator instance to it. The startWith operator internally converts the passed
Iterator instance to an Observable instance (it'll convert it to a Flowable instance in
case you're using Flowable). Here is the signature of the startWith operator:

 fun startWith(items: Iterable<T>): Observable<T> {
 return concatArray<T>(fromIterable<out T>(items), this)
 }

From the preceding signature of the startWith operator, we can also see that it uses
concatArray internally, which we will be covering very soon in this chapter.

On comment (2), we used the startWith operator with another source Observable.

More on Operators and Error Handling Chapter 6

[143]

Here is the output of the program:

As we have got some grip on the startWith operator, now let's move forward with the
zip operator. The zip operator implements a zipping mechanism to combine producers.

More on Operators and Error Handling Chapter 6

[144]

Zipping emissions – zip operator
The zip operator is quite interesting. Think of a situation where you're working with
multiple Observable/Flowables and want to perform some kind of operation on each
subsequent emission of each producer. The zip operator enables you to perform exactly
that. It accumulates emissions of multiple producers to create a new emission via the
specified function. So, let's look at a pictorial representation to delve deeper:

As the picture depicts, the zip operator accumulates emissions from multiple producers
into a single emission. It also takes a function to apply on the emissions as the scan or
reduce operator, but applies them to emissions from different producers.

More on Operators and Error Handling Chapter 6

[145]

For the sake of simplicity, we used two Observable in the preceding
picture and the following example, but the zip operator works with up to
nine Observables/Flowables.

Consider the following code:

 fun main(args: Array<String>) {
 val observable1 = Observable.range(1,10)
 val observable2 = Observable.range(11,10)
 Observable.zip(observable1,observable2,
 io.reactivex.functions.BiFunction
 <Int, Int, Int> { emissionO1, emissionO2 ->
 emissionO1+emissionO2
 }).subscribe {
 println("Received $it")
 }
 }

The zip operator is defined in companion object (static method in Java) of the
Observable class, thus can be directly accessed by writing Observable.zip itself. No
need to access it through another instance. So, let's take a look at the output before we
proceed:

More on Operators and Error Handling Chapter 6

[146]

In order to understand and use the zip operator better, you need to keep the following
points about it in mind:

The zip operator works on each emission of the supplied producers. For
example, if you pass three producers x, y, and z to the zip operator, it will
accumulate the nth emission of x with the nth emission of y and z.
The zip operator waits for each of its producers to emit, before applying the
function to them. For example, if you use Observable.interval as one of the
producers in the zip operator, the zip operator will wait for each emission and
will emit the accumulated values at the specified intervals as well.
If any of the producers notify onComplete or onError without emitting the item
it was waiting for, then it'll discard all emissions afterwards, including that
particular one from other producers as well. For example, if producer x emits 10
items, producer y emits 11 items, and producer z emits 8 items, the zip operator
will accumulate the first 8 emissions from all the producers and will discard all
remaining emissions from producer x and y.

The zipWith operator
The instance version (that is, the copy of the function, which should be called with an
instance rather than static) of the zip operator is zipWith, which can be called from the
Observable instance itself. The only problem with this version is that you can pass only
another source Observable. If you need to work with three or more Observable
instances, you should rather consider using the zip operator instead of zipWith.

Here's an example:

 fun main(args: Array<String>) {
 val observable1 = Observable.range(1,10)
 val observable2 = listOf("String 1","String 2","String 3",
 "String 4","String 5","String 6","String 7","String 8",
 "String 9","String 10").toObservable()

 observable1.zipWith(observable2,{e1:Int,e2:String ->
 "$e2 $e1"})//(1)
 .subscribe {
 println("Received $it")
 }
 }

More on Operators and Error Handling Chapter 6

[147]

The output is as follows:

On comment (1), we used the zipWith operator on the Observable instance,
observable1, and passed another Observable instance, observable2, to it with a
lambda to apply to the emissions. From the output, we can tell that the zipWith operator
accumulates the producer it's subscribed to, with the producer it is provided with.

The combineLatest operator
The combineLatest operator works in a similar way like the zip operator. It accumulates
the emissions of the provided producers. The only difference between combineLatest and
zip is that the zip operator waits for each of its source producers to emit, before it starts
processing all the emissions to create its new one, but the combineLatest operator starts as
soon as it receives any emit from any of its source producers.

To understand this operator better, we will see an example with both, the zip and the
combineLatest operator. Let's first try the example with the zip operator, as we gained
some grip on it already:

 fun main(args: Array<String>) {
 val observable1 =
 Observable.interval(100,TimeUnit.MILLISECONDS)//(1)
 val observable2 =
 Observable.interval(250,TimeUnit.MILLISECONDS)//(2)

 Observable.zip(observable1,observable2,
 BiFunction { t1:Long, t2:Long -> "t1: $t1, t2: $t2" })//(3)

More on Operators and Error Handling Chapter 6

[148]

 .subscribe{
 println("Received $it")
 }

 runBlocking { delay(1100) }
 }

The output is as follows. As expected, it accumulates each and every emission and prints
them:

In this program, we created Observable with a 100 milliseconds interval on comment (1).
On comment (2), we created another Observable with a 250 milliseconds interval. In the
output, we can see 3 emits, as, after zipping them, the total interval becomes 350
milliseconds, and within 1,100 milliseconds of delay, there is room for only 3 emits with
350 milliseconds interval in between them.

Now, let's test the same code with combineLatest:

 fun main(args: Array<String>) {
 val observable1 = Observable.interval(100, TimeUnit.MILLISECONDS)
 val observable2 = Observable.interval(250, TimeUnit.MILLISECONDS)

 Observable.combineLatest(observable1,observable2,
 BiFunction { t1:Long, t2:Long -> "t1: $t1, t2: $t2" })
 .subscribe{
 println("Received $it")
 }

 runBlocking { delay(1100) }
 }

More on Operators and Error Handling Chapter 6

[149]

Here is the output:

As the output suggests, the combineLatest operator processes and emits the value as soon
as it gets an emit from any of its source producers by using the last emitted value for all
other source producers.

Now, let's move forward with merging producers, with the help of the merge operator.

Merging Observables/Flowables – merge operator
The zipping operation will let you accumulate emissions, but what if you want to subscribe
to each emission by all the source producers? Say you have two different producers and
have the same set of actions to be applied when subscribing to them; there's no way to mix
imperative programming and reactive programming and repeatedly subscribe to both of
the producers separately with the same code. It'll also result in redundant code. So, what is
the solution here? You got it right; merging all the emissions of all the source producers
together and subscribing to them as a whole is the solution.

So, let's get an example here:

 fun main(args: Array<String>) {
 val observable1 = listOf("Kotlin", "Scala",
 "Groovy").toObservable()
 val observable2 = listOf("Python", "Java", "C++",
 "C").toObservable()

 Observable

More on Operators and Error Handling Chapter 6

[150]

 .merge(observable1,observable2)//(1)
 .subscribe {
 println("Received $it")
 }
 }

In this program, on comment (1), we will merge two observable and subscribe to them
as a whole. The output is as follows:

As the output shows, the merge operator merged two Observables and put the emissions
of both the Observables in their order of emission.

The merging operation, however, doesn't maintain the order specified; rather, it'll start
listening to all the provided producers instantly and will fire emissions as soon as they are
emitted from the source. Let's look at an example that illustrates this:

 fun main(args: Array<String>) {
 val observable1 = Observable.interval(500,
 TimeUnit.MILLISECONDS).map { "Observable 1 $it" }//(1)
 val observable2 = Observable.interval(100,
 TimeUnit.MILLISECONDS).map { "Observable 2 $it" }//(2)

 Observable
 .merge(observable1,observable2)
 .subscribe {
 println("Received $it")
 }
 runBlocking { delay(1500) }
 }

More on Operators and Error Handling Chapter 6

[151]

In the preceding example, on comment (1) and (2), we created two Observable<Long>
instances with the Observable.interval operator, then mapped it with Observable
numbering and got instances of Observable<String>. The objective of the map operator
here is to inject an Observable identification in the output so we can easily identify the
Observable source from the merged output.

So, here is the much discussed output:

The output clearly shows that the merge operator took emissions from observable2 first,
as they came first, even though we put observable1 first in the merge operator.

The merge operator, however, supports up to four parameters. As a fallback, we have the
mergeArray operator, which accepts vararg of Observable; the following is an example:

 fun main(args: Array<String>) {
 val observable1 = listOf("A", "B", "C").toObservable()
 val observable2 = listOf("D", "E", "F", "G").toObservable()
 val observable3 = listOf("I", "J", "K", "L").toObservable()
 val observable4 = listOf("M", "N", "O", "P").toObservable()
 val observable5 = listOf("Q", "R", "S", "T").toObservable()
 val observable6 = listOf("U", "V", "W", "X").toObservable()
 val observable7 = listOf("Y", "Z").toObservable()

More on Operators and Error Handling Chapter 6

[152]

 Observable.mergeArray(observable1, observable2, observable3,
 observable4, observable5, observable6, observable7)
 .subscribe {
 println("Received $it")
 }
 }

The output is as follows:

More on Operators and Error Handling Chapter 6

[153]

As with the zip operator, the merge operator also has a version for calling on instances of
Observable's rather than, statically, mergeWith; we can call this operator on Observable
instances. So, let's look at an example:

 fun main(args: Array<String>) {
 val observable1 = listOf("Kotlin", "Scala",
 "Groovy").toObservable()
 val observable2 = listOf("Python", "Java", "C++",
 "C").toObservable()

 observable1
 .mergeWith(observable2)
 .subscribe {
 println("Received $it")
 }
 }

The program is simple enough. We are creating two Observable instances, and then
merging observable1 with observable2 with the mergeWith operator called on the
observable1 instance.

The output is as follows:

The literal meaning of merging is combining two things together to create a new one,
irrespective of any order; all the merging operators do the same thing. If you want to
maintain the order, you have to concatenate one after another.

More on Operators and Error Handling Chapter 6

[154]

Concatenating producers (Observable/Flowable)
Concatenating operators are almost the same with merge operators, except that the
concatenating operators respect the prescribed ordering. Instead of subscribing to all
provided producers in one go, it subscribes to the producers one after another; only once, it
received onComplete from the previous subscription.

So, let's modify our last program with the concatenate operator and see the changes:

 fun main(args: Array<String>) {
 val observable1 = Observable.interval(500, TimeUnit.MILLISECONDS)
 .take(2)//(1)
 .map { "Observable 1 $it" }//(2)
 val observable2 = Observable.interval(100,
 TimeUnit.MILLISECONDS).map { "Observable 2 $it" }//(3)

 Observable
 .concat(observable1,observable2)
 .subscribe {
 println("Received $it")
 }

 runBlocking { delay(1500) }
 }

As we already mentioned, the concat operator subscribes to the next source Observable
in the queue only after it got onComplete from its current source Observable; we also
know that the Observable instances created with Observable.interval never emit
onComplete. Rather, they keep emitting numbers until Long.MAX_VALUE is reached. So, as
a quick fix, we used the take operator on comment (1), which will take the first two
emissions from Observable.interval and then will append an onComplete notification
to it so that the concat operator can start listening to the next source Observable as well.

We are discussing the take operators in this chapter in the Skipping and
taking emissions section. Don't forget to take a look.

More on Operators and Error Handling Chapter 6

[155]

So, here is the output:

From the output, we can clearly see that the concat operator is subscribed to the next
supplied source Observable only after it got the onComplete notification from its first
one.

Just like the merge operator, the concat operator also has concatArray and concatWith
variants, and they work in almost the same way, just concatenating instead of merging.

Ambiguously combining producers
The ambiguous combination of producers is probably the easiest among all combination
types. Think of a situation where you're fetching data from two data sources (may be two
separate APIs or database tables), and want to proceed with the first one you got and
discard the other one. In the imperative programming technique, you would probably be
required to write checks for that; however, with RxKotlin, the amb operator is there to hold
your back.

The amb operator takes a list of Observable (Iterable<Observable> instance) as
parameter, subscribes to all Observables present in the Iterable instance, emits the
items that it got from the first Observable it got an emit from, and discards the rest
of Observables present on the Iterable instance.

The following example will help us understand better:

 fun main(args: Array<String>) {
 val observable1 = Observable.interval(500,
 TimeUnit.MILLISECONDS).map { "Observable 1 $it" }//(1)
 val observable2 = Observable.interval(100,
 TimeUnit.MILLISECONDS).map { "Observable 2 $it" }//(2)

More on Operators and Error Handling Chapter 6

[156]

 Observable
 .amb(listOf(observable1,observable2))//(3)
 .subscribe {
 println("Received $it")
 }

 runBlocking { delay(1500) }
 }

So, in this program, we created two Observable's with a 500 and a 100 milliseconds
interval on comment (1) and (2) respectively. On comment (3), we used the listOf
function to create a List<Observable> from those two Observable and passed it to the
amb operator. Here's the output:

We can see from the output that the amb operator took the emissions from observable2
and didn't care about observable1, as the observable2 instance emitted first.

Just like other combination operators, amb also has ambArray and ambWith operator
variants.

More on Operators and Error Handling Chapter 6

[157]

Grouping
Grouping is a powerful operation that can be achieved using RxKotlin. This operation
allows you to group emissions based on their property. Say, for example, you have an
Observable / Flowable emitting integer numbers (Int), and, as per your business logic,
you have some separate code for even and odd numbers and want to handle them
separately. Grouping is the best solution in that scenario.

Let's take an example:

 fun main(args: Array<String>) {
 val observable = Observable.range(1,30)

 observable.groupBy {//(1)
 it%5
 }.blockingSubscribe {//(2)
 println("Key ${it.key} ")
 it.subscribe {//(3)
 println("Received $it")
 }
 }
 }

In this example, I've grouped emissions based on their remainder when divided by 5, so,
basically, there should be 5 groups (0 through 4). On comment (1) of this example, we
used the groupBy operator and passed a predicate to it, upon which the grouping should
be performed. The groupBy operator takes the result of the predicate to group emissions.

On comment (2) of this example, we used the blockingSubscribe operator to subscribe
to the newly created Observable<GroupedObservable<K, T>> instance. We could also
use the simple subscribe operator; however, as we are printing the output to the console,
by using subscribe, everything will look like a mess. Mainly because the subscribe
operator doesn't wait for the given task on emission to complete before taking the next
emission. On the other hand, blockingSubscribe will make the program wait until it
completes processing an emission, before proceeding to a new one.

The groupBy operator returns Observable that emits GroupedObservable, containing
our groups; so, inside blockingSubscribe, we need to subscribe to the emitted
GroupedObservable instance. On comment (3), we did the same, after printing the key of
the emitted GroupedObservable instance.

More on Operators and Error Handling Chapter 6

[158]

The output is as follows:

More on Operators and Error Handling Chapter 6

[159]

flatMap, concatMap – In details
As promised in the previous chapter, now we will take a deeper dive into the flatMap and
concatMap operators, as, by now, we have already gained some sort of expertise on the
merge and concat operators and know the differences between them.

Let's start with the differences between flatMap and concatMap, after which, we will also
discuss their ideal implementation scenarios. We will also discuss some of their variants to
know them better.

In the previous chapter, we mentioned that flatMap internally uses the merge operator
and concatMap internally uses the concat operator. However, what difference does that
make? You just learned the differences between the merge and the concat operator, but
what is the point of having two separate mapping operators based on them? So, let's start
with an example. We will see an example with flatMap, and then we will try to implement
the same with concatMap:

 fun main(args: Array<String>) {
 Observable.range(1,10)
 .flatMap {
 val randDelay = Random().nextInt(10)
 return@flatMap Observable.just(it)
 .delay(randDelay.toLong(),TimeUnit.MILLISECONDS)//(1)
 }
 .blockingSubscribe {
 println("Received $it")
 }
 }

In the preceding program, we created an Observable instance. We then used the flatMap
operator with the delay operator on it to add a random delay to the emissions.

The output is as follows:

More on Operators and Error Handling Chapter 6

[160]

From the output, we can see that the downstream didn't get the emissions in their
prescribed order; I think you got the reason behind it, didn't you? That's right; the cause
behind it is simply the merge operator, as the merge operator subscribes and reemits the
emissions asynchronously all at one go, thus the order is not maintained.

Now, let's implement the code with the concatMap operator:

 fun main(args: Array<String>) {
 Observable.range(1,10)
 .concatMap {
 val randDelay = Random().nextInt(10)
 return@concatMap Observable.just(it)
 .delay(randDelay.toLong(), TimeUnit.MILLISECONDS)//(1)
 }
 .blockingSubscribe {
 println("Received $it")
 }
 }

The output is as follows:

As the concatMap operator uses concat internally, it maintains the prescribed order of
emissions.

So, when to use which operator? Let's take a look at the following real-time scenarios; all of
them are applicable, especially when you are building an app.

More on Operators and Error Handling Chapter 6

[161]

When to use flatMap operator
Take a look at the following list—it contains the contexts and situations where flatMap will
fit best:

When you're working with a list of data within a page, activity, or fragment and
want to send some data to a server or a database per item of the list. The
concatMap operator will also do here; however, as the flatMap operator works
asynchronously, it'll be faster, and, as you're sending data, the order doesn't
really matter.
Whenever you want to perform any operation on list items asynchronously and
in a comparatively short time period.

When to use concatMap operator
So, when to use concatMap?

The following list contains the contexts and situations where concatMap will fit best:

When you are downloading the list of data to display to the user. The order really
matters here, you will surely not want to load and display the second item of the
list after the third and fourth one are already displayed, would you?
Performing some operation on a sorted list, making sure the list stays the same.

Understanding switchMap operator
The switchMap operator is really interesting. It listens to all the emissions of the source
producer (Observable/Flowable) asynchronously, but emits only the latest one within the
timeframe. Let's explain it a bit more.

When the source Observable emits more than one item consecutively before the
switchMap has emitted any of them, switchMap will take the last one and discard any
emission that came in between. Let's take an example to understand it better:

 fun main(args: Array<String>) {
 println("Without delay")
 Observable.range(1,10)
 .switchMap {
 val randDelay = Random().nextInt(10)
 return@switchMap Observable.just(it)//(1)

More on Operators and Error Handling Chapter 6

[162]

 }
 .blockingSubscribe {
 println("Received $it")
 }
 println("With delay")
 Observable.range(1,10)
 .switchMap {
 val randDelay = Random().nextInt(10)
 return@switchMap Observable.just(it)
 .delay(randDelay.toLong(), TimeUnit.MILLISECONDS)//(2)
 }
 .blockingSubscribe {
 println("Received $it")
 }
 }

The output is as follows:

In the program, we took two approaches at first, we used the delay operator, and then we
reused the same with the delay operator. From the output, we can see that, for the second
one, switchMap only emitted the last item, as it got consecutive emission for each one
before it reemitted them. However, for the first one, it reemitted all the items before
receiving any further emit.

More on Operators and Error Handling Chapter 6

[163]

Still confused? Let's modify the program a bit more:

 fun main(args: Array<String>) {
 Observable.range(1,10)
 .switchMap {
 val randDelay = Random().nextInt(10)
 if(it%3 == 0)
 Observable.just(it)
 else
 Observable.just(it)
 .delay(randDelay.toLong(), TimeUnit.MILLISECONDS)
 }
 .blockingSubscribe {
 println("Received $it")
 }
 }

In this program, instead of adding delay to all the emissions, we emitted all the numbers
divisible by 3 without delay, and added a delay to the rest.

The output is as follows:

As expected, the switchMap operator emits the only those items which were emitted by the
source without delay, and the last emitted item by the source. The reason is quite simple;
the switchMap operator was able to emit them before it received the following item.

Skipping and taking emissions
Just like the preceding situation in this chapter, where we used the take operator, there are
often some scenarios where you would like to take some of the emissions and skip the
remaining ones. The skip and take operators are of huge help in those scenarios. They are
actually a part of the filtering operators we discussed in the previous chapter; however,
honestly, they do deserve a dedicated discussion. So, here it is.

More on Operators and Error Handling Chapter 6

[164]

Skipping emissions (skip, skipLast, skipUntil, and
skipWhile)
There may be a requirement where you would like to skip some emissions at the beginning
or skip emissions until a particular condition is met. You may even have to wait for another
producer before taking emissions and skip all remaining ones.

These operators are designed keeping the exact scenario in mind. They help you skip
emissions in various ways.

RxKotlin provides us with many variations and overloads of the skip operator; we will
discuss the most important ones among them:

skip

skipLast

skipWhile

skipUntil

We will take a look at all of the preceding listed operators one by one.

Let's start with skip:

 fun main(args: Array<String>) {
 val observable1 = Observable.range(1,20)
 observable1
 .skip(5)//(1)
 .subscribe(object:Observer<Int> {
 override fun onError(e: Throwable) {
 println("Error $e")
 }

 override fun onComplete() {
 println("Complete")
 }

 override fun onNext(t: Int) {
 println("Received $t")
 }

 override fun onSubscribe(d: Disposable) {
 println("starting skip(count)")
 }

 })

More on Operators and Error Handling Chapter 6

[165]

 val observable2 = Observable.interval(100,TimeUnit.MILLISECONDS)
 observable2
 .skip(400,TimeUnit.MILLISECONDS)//(2)
 .subscribe(
 object:Observer<Long> {
 override fun onError(e: Throwable) {
 println("Error $e")
 }

 override fun onComplete() {
 println("Complete")
 }

 override fun onNext(t: Long) {
 println("Received $t")
 }

 override fun onSubscribe(d: Disposable) {
 println("starting skip(time)")
 }

 }
)

 runBlocking {
 delay(1000)
 }

 }

The skip operator has two important overloads: skip(count:Long) and
skip(time:Long, unit:TimeUnit); the first overload works on count, discarding the
first n number of emissions, while the second overload works on time, discarding all the
emissions that came in the specified time duration.

In this program, on comment (1), we used the skip(count) operator to skip the first 5
emissions. On comment (2), we used the skip(time,unit) operator to skip all emissions
in the first 400 milliseconds (4 seconds) of the subscription.

More on Operators and Error Handling Chapter 6

[166]

Here is the output:

Now, let's take a look at how the skipLast operator works:

 fun main(args: Array<String>) {
 val observable = Observable.range(1,20)
 observable
 .skipLast(5)//(1)
 .subscribe(object: Observer<Int> {
 override fun onError(e: Throwable) {
 println("Error $e")
 }

 override fun onComplete() {
 println("Complete")
 }

 override fun onNext(t: Int) {
 println("Received $t")
 }

More on Operators and Error Handling Chapter 6

[167]

 override fun onSubscribe(d: Disposable) {
 println("starting skipLast(count)")
 }

 })
 }

The skipLast operator has many overloads like the skip operator. The only difference is
that this operator discards emissions from last. In this program, we used the
skipLast(count) operator to skip the last 5 emissions on comment (1).

Here is the output:

Unlike skip and skipLast, both of which skip emissions on the basis of count or time,
skipWhile skips them on the base of a predicate (logical expression). You've to pass a
predicate to the skipWhile operator, just like the filter operator. It will keep skipping
emissions while the predicate evaluates to true. It will start passing all emissions
downstream as soon as the predicate returns false. Let's take a look at the following piece of
code:

More on Operators and Error Handling Chapter 6

[168]

 fun main(args: Array<String>) {
 val observable = Observable.range(1,20)
 observable
 .skipWhile {item->item<10}//(1)
 .subscribe(object: Observer<Int> {
 override fun onError(e: Throwable) {
 println("Error $e")
 }

 override fun onComplete() {
 println("Complete")
 }

 override fun onNext(t: Int) {
 println("Received $t")
 }

 override fun onSubscribe(d: Disposable) {
 println("starting skipWhile")
 }

 })
 }

The output is as follows:

More on Operators and Error Handling Chapter 6

[169]

Note that, unlike filter, the skipWhile operator will execute the predicate
until it returns false and pass all the emissions thereafter. If you want the
predicate, check on all the emissions; you should rather consider the
filter operator.

Think of a situation where you're working with two producers, producer1 and producer2,
and want to start processing emissions from producer1 as soon as producer2 starts emitting.
In this scenario, skipUntil can help you out. Let's look at this example:

 fun main(args: Array<String>) {
 val observable1 = Observable.interval(100, TimeUnit.MILLISECONDS)
 val observable2 =
 Observable.timer(500,TimeUnit.MILLISECONDS)//(1)

 observable1
 .skipUntil(observable2)//(2)
 .subscribe(
 object: Observer<Long> {
 override fun onError(e: Throwable) {
 println("Error $e")
 }

 override fun onComplete() {
 println("Complete")
 }

 override fun onNext(t: Long) {
 println("Received $t")
 }

 override fun onSubscribe(d: Disposable) {
 println("starting skip(time)")
 }

 }
)

 runBlocking { delay(1500) }
 }

More on Operators and Error Handling Chapter 6

[170]

We will explain the code, but take a look at the output first:

On comment (1), we created an Observable instance (observable2) with
Observable.timer, which should trigger emission after 500 milliseconds. On comment
(2), we used that Observable instance (observable2) as the parameter to the skipUntil
operator, which will make it discard all the emissions of observable1 until observable2
emits.

Take operators (take, takeLast, takeWhile, and
takeUntil)
The take operators work in exactly the opposite way than the skip operators. Let's take an
example of them one by one and understand how they work:

 fun main(args: Array<String>) {
 val observable1 = Observable.range(1,20)
 observable1
 .take(5)//(1)
 .subscribe(object:Observer<Int> {
 override fun onError(e: Throwable) {
 println("Error $e")
 }

 override fun onComplete() {
 println("Complete")

More on Operators and Error Handling Chapter 6

[171]

 }

 override fun onNext(t: Int) {
 println("Received $t")
 }

 override fun onSubscribe(d: Disposable) {
 println("starting skip(count)")
 }

 })

 val observable2 = Observable.interval(100,TimeUnit.MILLISECONDS)
 observable2
 .take(400,TimeUnit.MILLISECONDS)//(2)
 .subscribe(
 object:Observer<Long> {
 override fun onError(e: Throwable) {
 println("Error $e")
 }

 override fun onComplete() {
 println("Complete")
 }

 override fun onNext(t: Long) {
 println("Received $t")
 }

 override fun onSubscribe(d: Disposable) {
 println("starting skip(time)")
 }

 }
)

 runBlocking {
 delay(1000)
 }

 }

More on Operators and Error Handling Chapter 6

[172]

This program is almost like the program with skip. The difference is that here, we used
take instead of skip. Let's check the difference to understand better:

The output shows it clearly. In the exact opposite way than the skip operator, the take
operator passes the specified emissions to downstream, discarding the remaining ones.
Most importantly, it also sends onComplete notifications to downstream on its own, as
soon as it completes passing all the specified emissions.

Let's test it with takeLast operator:

 fun main(args: Array<String>) {
 val observable = Observable.range(1,20)
 observable
 .takeLast(5)//(1)
 .subscribe(object: Observer<Int> {
 override fun onError(e: Throwable) {
 println("Error $e")
 }

 override fun onComplete() {
 println("Complete")
 }

 override fun onNext(t: Int) {
 println("Received $t")
 }

 override fun onSubscribe(d: Disposable) {
 println("starting skipLast(count)")

More on Operators and Error Handling Chapter 6

[173]

 }

 })
 }

And, here is the output; it prints the last 5 numbers in the emission:

Now take a look at the takeWhile:

 fun main(args: Array<String>) {
 val observable = Observable.range(1,20)
 observable
 .takeWhile{item->item<10}//(1)
 .subscribe(object: Observer<Int> {
 override fun onError(e: Throwable) {
 println("Error $e")
 }

 override fun onComplete() {
 println("Complete")
 }

 override fun onNext(t: Int) {
 println("Received $t")
 }

 override fun onSubscribe(d: Disposable) {
 println("starting skipWhile")
 }

 })
 }

More on Operators and Error Handling Chapter 6

[174]

The output is the exact opposite of skipWhile; instead of skipping the first 10 numbers, it
prints them and discards the remaining ones:

The error handling operators
While developing applications, errors may occur. We have to handle those errors properly
to make sure our applications perform seamlessly on the user's end. Take the following
program as an example:

 fun main(args: Array<String>) {
 Observable.just(1,2,3,4,5)
 .map { it/(3-it) }
 .subscribe {
 println("Received $it")
 }
 }

More on Operators and Error Handling Chapter 6

[175]

Here is the output:

As expected, the program threw an error and that is a bad thing if that occurs on the user
end. So, let's take a look at how we can handle errors in a reactive way. RxKotlin provides
us with a few operators for error handling, which we'll take a look at. We will use the
previous program and apply various error handling operators to them to understand them
better.

onErrorReturn – return a default value on
error
The onErrorReturn provides you with a technique to specify a default value to return to
the downstream in case an error occurred in the upstream. Take a look at the following
code snippet:

 fun main(args: Array<String>) {
 Observable.just(1,2,3,4,5)
 .map { it/(3-it) }
 .onErrorReturn { -1 }//(1)
 .subscribe {
 println("Received $it")
 }
 }

More on Operators and Error Handling Chapter 6

[176]

We used the onErrorReturn operator to return -1 whenever an error occurs. The output is
as follows:

As we can see in the output, the onErrorReturn operator returns the specified default
value. The downstream didn't receive any item further as the upstream stopped emitting
items as soon as the error occurred.

As we mentioned earlier, both onError and onComplete are terminal
operators, so the downstream stops listening to that upstream as soon as it
receives any of them.

The onErrorResumeNext operator
The onErrorResumeNext operator helps you subscribe to a different producer in case any
error occurs.

Here is an example:

 fun main(args: Array<String>) {
 Observable.just(1,2,3,4,5)
 .map { it/(3-it) }
 .onErrorResumeNext(Observable.range(10,5))//(1)
 .subscribe {
 println("Received $it")
 }
 }

More on Operators and Error Handling Chapter 6

[177]

The output is as follows:

This operator is especially useful when you want to subscribe to another source producer in
case any error occurs.

Retrying on error
The retry operator is another error handling operator that enables you to retry/re-
subscribe to the same producer when an error occurs. You just need to provide a predicate
or retry-limit when it should stop retrying. So, let's look at an example:

 fun main(args: Array<String>) {
 Observable.just(1,2,3,4,5)
 .map { it/(3-it) }
 .retry(3)//(1)
 .subscribeBy (
 onNext = {println("Received $it")},
 onError = {println("Error")}
)
 println("\n With Predicate \n")
 var retryCount = 0
 Observable.just(1,2,3,4,5)
 .map { it/(3-it) }
 .retry {//(2)
 _, _->
 (++retryCount)<3
 }
 .subscribeBy (
 onNext = {println("Received $it")},
 onError = {println("Error")}
)
 }

More on Operators and Error Handling Chapter 6

[178]

On comment (1), we used the retry operator with a retry limit, and on comment (2), we
used the retry operator with a predicate. The retry operator will keep retrying until the
predicate returns true and will pass the error to downstream whenever the predicate
returns false.

Here is the output:

An HTTP example
Any learning is not complete until and unless we apply it to a real-time scenario. So far, you
have learned many concepts of reactive programming. Now, it's time to apply them to a
real-world scenario, where we will use an API to get some data through an HTTP request
and print the response data to the console.

We used one additional plugin for this example—RxJava-Apache-HTTP. If you're using
Gradle as your build tool, add the following dependency:

 //RxJava - Apache - HTTP
 compile "com.netflix.rxjava:rxjava-apache-http:0.20.7"

More on Operators and Error Handling Chapter 6

[179]

Here is the code:

 fun main(args: Array<String>) {
 val httpClient = HttpAsyncClients.createDefault()//(1)
 httpClient.start()//(2)
 ObservableHttp.createGet("http://rivuchk.com/feed/json",
 httpClient).toObservable()//(3)
 .flatMap{ response ->
 response.content.map{ bytes ->
 String(bytes)
 }//(4)
 }
 .onErrorReturn {//(5)
 "Error Parsing data "
 }
 .subscribe {
 println(it)//(6)
 httpClient.close()//(7)
 }
 }

In this program, we used HttpAsyncClients.createDefault() to get an instance of
CloseableHttpAsyncClient. Before starting an HTTP request, we first need to start the
client. We did this in the code on comment (2), with httpClient.start(). On comment
(3), we created a GET request and converted it to an observable of type
ObservableHttpResponse, so we used the flatMap operator to get access to the content
of the response. Inside the flatMap operator, we used the map operator to convert the byte
response into a String on comment (4).

On comment (5), we used the onErrorReturn operator to return a default String in case
there's an error.

Finally, after the onErrorReturn operator, we subscribed to the chain and printed the
response on comment (6). We closed the httpClient as soon as we were done with the
response.

More on Operators and Error Handling Chapter 6

[180]

The following is partly a screenshot of the output:

Summary
This was a rather a long chapter. You learned about combining producers, and learned, in
depth, about the flatMap, concatMap, and switchMap operators. You got introduced to
the take and skip operators and their variants. You learned about the error handling
approaches in reactive programming. We also tried our skills with an HTTP client example,
where we requested an API to fetch JSON data and print it to the console. We didn't try to
parse the JSON data, as it could increase complexity at this level. Later in this book, we will
definitely parse data and display that properly.

More on Operators and Error Handling Chapter 6

[181]

While this and Chapter 5, Asynchronous Data Operators and Transformations were more about
operators, the next chapter, Chapter 7, Concurrency and Parallel Processing in RxKotlin with
Schedulers, is mainly about schedulers, handling concurrency, and multi-threading, and we
will get a deeper dive in asynchronous programming with RxKotlin. As we are gradually
moving to more advanced topics and chapters through this book, you need to pay more
attention to each chapter to get a proper grasp on each aspect of reactive programming in
Kotlin.

So, what are you waiting for? Turn the page, Chapter 7, Concurrency and Parallel Processing
in RxKotlin with Schedulers is waiting for you.

7
Concurrency and Parallel

Processing in RxKotlin with
Schedulers

So, up until now, you have learned the basics of reactive programming. You learned about
Observable, Observers, and Subjects, as well as backpressure, Flowable, processors, and
operators. Now, it's time for us to learn some other new topics in reactive programming,
probably the most important ones—concurrency and parallel processing.

A popular misconception regarding reactive programming is that reactive programming is
multi-threaded by default. The truth is actually that RxKotlin works on a single thread by
default, although it provides us with loads of operators to implement multi-threading as
per our business logic and requirements with ease.

In this chapter, we will cover the following topics:

Introduction to concurrency
The subscribeOn() and observeOn() operator
Parallelization

Concurrency and Parallel Processing in RxKotlin with Schedulers Chapter 7

[183]

Introduction to concurrency
The definition of concurrency can be described as follows:

As a programming paradigm, concurrent computing is a form of modular programming,
namely factoring an overall computation into subcomputations that may be executed
concurrently.
 – Wikipedia

As the definition says, concurrency is all about breaking the entire task into small parts and
then executing them concurrently (there's a small difference between concurrent execution
and parallel execution, which we will discuss shortly).

So, what does it mean to execute subcomputations concurrently? Let's look at a real-life
example. Think of a situation where you're cooking a new dish at your home and you have
three chores—bring the spices, cut the vegetables, and also marinate something. Now, if
you're doing it all alone, you have to do them one by one, but if you have a family member
at your disposal, then you can distribute the tasks between the two of you. You can cut the
vegetables while the other person is bringing the spices, and whoever between you two
completes early can continue on the third task—marinating the food.

You can think of you and the family member (who helped you) as two threads, or, to be
more specific, you're the main thread of the program (here, cooking) as you're the
responsible person for the entire job, and you'll be distributing tasks between you and the
family member, who is a worker thread. Together, you and your family member form a
thread pool.

The entire program will execute faster if there are more threads and the complete task is
divided properly among them.

Parallel execution versus concurrency
The concepts of concurrency and parallelization are not only related, but they are deeply
connected to each other; you may think of them as identical twin brothers. They look almost
the same, but there are differences. Let's try to discover.

Concurrency and Parallel Processing in RxKotlin with Schedulers Chapter 7

[184]

In the previous example, we discussed concurrency, but it seemed to execute in parallel.
Now, let's take a better example, which will not only help us understand parallelization, but
will allow us to understand the differences between concurrency and parallelization as
well.

Think of a hotel with 5 customers who ordered 15 dishes. These 15 dishes represent
identical tasks, and each of them require to be cooked by a chef. Now, as with the previous
example, think of the cooks as threads (in the previous example, you and your family
member were playing the role of a cook in your home), but rather than sharing sub-parts of
a dish, they will cook each dish at a time (because, obviously, there are 15 orders!).

Now, if you get 15 cooks at your disposal (along with 15 ovens and other resources), then
you can get all the dishes to be cooked in one go, but that's not quite economical. You
cannot infinitely increase your cooks and resources with the number of orders. The more
economical solution would be to hire 5 cooks and make a pool (or you may say a queue) of
orders and execute orders one after another. So, each cook has to make three dishes (or
iterations of tasks). If there are more orders, then the pool would grow bigger.

Parallelization says to wisely divide tasks in a pool; instead of creating threads for each
task, create a pool of tasks, and assign them to an existing thread, and reuse them.

The conclusion is, parallelization is achieved with concurrency, but it is not the same thing;
rather, it is about how to use concurrency.

Now, why is it so important? Or rather, why is it required at all? I think you already got the
answer, but let's inspect.

Think of a situation where you're working with a large dataset, and also have a long chain
of operations to be performed on them before being displayed to the user. If you're an
application developer, you'd probably want to perform all the operations in the background
and pass the resultant data to the foreground for displaying it to the user. Concurrency is
useful for this same scenario.

As I mentioned earlier, RxKotlin doesn't perform actions concurrently, but provides you
with loads of options to perform the selected operations concurrently, leaving the choice to
you.

Concurrency and Parallel Processing in RxKotlin with Schedulers Chapter 7

[185]

You're probably wondering if RxKotlin really is single threaded by default, then how is the
subscription handled by it? Should the subscription be concurrent? Let's find the answers
before we proceed further with concurrent computing with RxKotlin.

So, whenever you subscribe to an Observable and/or Flowable, the current thread is
blocked until all the items are emitted and received by the Observer chain (except for the
cases with interval and timer factory methods). Surprising, right? However, it's actually
good, because, for an Observable chain, if a separate thread is assigned to each operator
(any operator generally subscribes to the source Observable and performs operations on the
emissions, the next operator subscribes to the emissions by the current one), then it would
be totally messy.

To resolve this scenario, ReactiveX provided us with scheduler and scheduling operators.
By using them, thread management becomes easy, as the synchronization is almost
automatic and there's no shared data between threads (as a basic property of functional
programming, thus functional reactive programming).

Now that we have got some hands on the ideas behind concurrency, we can move forward
with implementing concurrency using RxKotlin.

What is a scheduler?
In ReactiveX, the heart of concurrency lies in schedulers. As I have already mentioned, by
default, the Observable and the chain of operators applied to it will do the work on the
same thread where subscribe is called, and the thread will be blocked until Observer
receives the onComplete or onError notification. We can use schedulers to change this
behavior.

A scheduler can be thought of as a thread pool, from which ReactiveX can pool a thread and
execute its task on it. It's basically an abstraction over multithreading and concurrency,
making the implementation of concurrency a lot easier in ReactiveX.

Concurrency and Parallel Processing in RxKotlin with Schedulers Chapter 7

[186]

Types of scheduler
As an abstraction layer for thread pool management, the scheduler API provides you with
some pre-composed scheduler. It also allows you to create a new user-defined scheduler.
Let's take a look at the available scheduler types:

Schedulers.io()

Schedulers.computation()

Schedulers.newThread()

Schedulers.single()

Schedulers.trampoline()

Schedulers.from()

We will look into their definitions and their prescribed use-cases, but first, let's get started
with some code.

We will start with a usual example without a scheduler, and then we will implement a
scheduler in the same example to observe the difference, as follows:

 fun main(args: Array<String>) {
 Observable.range(1,10)
 .subscribe {
 runBlocking { delay(200) }
 println("Observable1 Item Received $it")
 }

 Observable.range(21,10)
 .subscribe {
 runBlocking { delay(100) }
 println("Observable2 Item Received $it")
 }
 }

In this program, we used two Observable; we used delay inside their subscription to
simulate long running tasks.

Concurrency and Parallel Processing in RxKotlin with Schedulers Chapter 7

[187]

The following output displays the expected result. The Observers run one after another:

The total execution time of this program would be around 3,100 milliseconds (as the delay
is performed before printing), while the thread pool was sitting idle in between. Using
scheduler, this time can be significantly reduced. Let's get it done:

 fun main(args: Array<String>) {
 Observable.range(1, 10)
 .subscribeOn(Schedulers.computation())//(1)
 .subscribe {
 runBlocking { delay(200) }
 println("Observable1 Item Received $it")
 }

 Observable.range(21, 10)
 .subscribeOn(Schedulers.computation())//(2)
 .subscribe {
 runBlocking { delay(100) }
 println("Observable2 Item Received $it")
 }
 runBlocking { delay(2100) }//(3)
 }

Concurrency and Parallel Processing in RxKotlin with Schedulers Chapter 7

[188]

This program contains three new lines as compared to the previous one. On comment (1)
and (2), subscribeOn(Schedulers.computation()), and runBlocking {
delay(2100) } on comment (3). We will inspect the significance of those lines after
taking a look at the output:

As the output shows, Observable in this example is emitted concurrently. The line of the
subscribeOn(Schedulers.computation()) code enabled both downstreams to
subscribe to the Observable in a different (background) thread, which influenced
concurrency. You should already be used to it with using it runBlocking { delay(2100)
} on comment (3); we use it to keep the program alive. As all the operations are being
performed in different threads, we need to block the main thread to keep the program alive.
However, notice the time duration of the delay we passed; it's only 2,100 milliseconds, and
the output confirms both the subscriptions processed all the emissions. So, it's clear, we
saved 1,000 milliseconds right away.

Concurrency and Parallel Processing in RxKotlin with Schedulers Chapter 7

[189]

Let's now continue discussions on different types of schedulers available—we will then
dive into different ways to use them.

Schedulers.io() - I/O bound scheduler
Schedulers.io() provides us with I/O bound threads. To be more accurate,
Schedulers.io() provides you with ThreadPool, which can create an unbounded
number of worker threads that are meant to be performing I/O bounded tasks.

Now, what exactly does the I/O bounded thread mean? And why are we calling it I/O
bounded? Let's inspect.

All the threads in this pool are blocking and are meant to perform more I/O operations than
computationally intense tasks, giving less load to CPUs, but may take longer due to waiting
for I/O. By I/O operations, we mean interactions with file systems, databases, services, or
I/O devices.

We should be cautious about using this scheduler as it can create an infinite number of
threads (until the memory lasts) and can cause OutOfMemory errors.

Schedulers.computation() - CPU bound schedulers
The Schedulers.computation() is probably the most useful scheduler for programmers.
It provides us with a bounded thread-pool, which can contain a number of threads equal to
the number of available CPU cores. As the name suggests, this scheduler is meant for CPU
intense works.

We should use this scheduler only for CPU—intense tasks and not for any other cause. The
reason is that the threads in this scheduler keeps the CPU cores busy, and may slow down
the entire application if it is used for I/O bound or any other tasks that involves non-
computational tasks.

The main reason why we should consider Schedulers.io() for I/O bound tasks and
Schedulers.computation() for computational purposes is that computation() threads
utilize the processors better and create no more threads than the available CPU cores, and
reuses them. While Schedulers.io() is unbounded, and if you schedule 10,000
computational tasks on io() in parallel, then each of those 10,000 tasks each have their own
thread and be competing for CPU incurring context switching costs.

Concurrency and Parallel Processing in RxKotlin with Schedulers Chapter 7

[190]

Schedulers.newThread()
The Schedulers.newThread() provides us with a scheduler that creates a new thread for
each task provided. While at first glance it may seem similar to Schedulers.io(), there's
actually a huge difference.

The Schedulers.io() uses a thread pool, and whenever it gets a new unit of work, it first
looks into the thread pool to see if any idle thread is available to take up the task; it
proceeds to create a new thread if no pre-existing thread is available to take up the work.

However, Schedulers.newThread() doesn't even use a thread pool; instead, it creates a
new thread for every request and forgets them forever.

In most of the cases, when you're not using Schedulers.computation(), you should
consider Schedulers.io() and should predominantly avoid using
Schedulers.newThread(); threads are very expensive resources, you should try to avoid
the creation of new threads as much as possible.

Schedulers.single()
The Schedulers.single() provides us with a scheduler that contains only one thread
and returns the single instance for every call. Confused? Let's make it clear. Think of a
situation where you need to execute tasks that are strongly
sequential—Schedulers.single() is the best available option for you here. As it
provides you with only one thread, every task that you enqueue here is bound to be
executed sequentially.

Schedulers.trampoline()
Schedulers.single() and Schedulers.trampoline() sound somewhat similar, both
the schedulers are for sequential execution. While Schedulers.single() guarantees that
all its task will run sequentially, it may run parallel to the thread it was called upon (if not,
that thread is from Schedulers.single() as well); the Schedulers.trampoline() is
different in that sector.

Concurrency and Parallel Processing in RxKotlin with Schedulers Chapter 7

[191]

Unlike maintaining a thread to its disposal like Schedulers.single(),
Schedulers.trampoline() queues up the task on the thread it was called on.

So, it'll be sequential with the thread it was called upon.

Let's look at some examples of Schedulers.single() and Schedulers.trampoline()
to understand them better:

 fun main(args: Array<String>) {

 async(CommonPool) {
 Observable.range(1, 10)
 .subscribeOn(Schedulers.single())//(1)
 .subscribe {
 runBlocking { delay(200) }
 println("Observable1 Item Received $it")
 }

 Observable.range(21, 10)
 .subscribeOn(Schedulers.single())//(2)
 .subscribe {
 runBlocking { delay(100) }
 println("Observable2 Item Received $it")
 }

 for (i in 1..10) {
 delay(100)
 println("Blocking Thread $i")
 }
 }

 runBlocking { delay(6000) }
 }

Concurrency and Parallel Processing in RxKotlin with Schedulers Chapter 7

[192]

The output is as follows:

The output clearly shows that despite the fact that both the subscriptions run sequentially,
they run in parallel to the calling thread.

Concurrency and Parallel Processing in RxKotlin with Schedulers Chapter 7

[193]

Now, let's implement the same code with Schedulers.trampoline() and observe the
difference:

 fun main(args: Array<String>) {

 async(CommonPool) {
 Observable.range(1, 10)
 .subscribeOn(Schedulers.trampoline())//(1)
 .subscribe {
 runBlocking { delay(200) }
 println("Observable1 Item Received $it")
 }

 Observable.range(21, 10)
 .subscribeOn(Schedulers.trampoline())//(2)
 .subscribe {
 runBlocking { delay(100) }
 println("Observable2 Item Received $it")
 }

 for (i in 1..10) {
 delay(100)
 println("Blocking Thread $i")
 }
 }

 runBlocking { delay(6000) }
 }

The following output shows that the scheduler ran sequentially to the calling thread:

Concurrency and Parallel Processing in RxKotlin with Schedulers Chapter 7

[194]

Schedulers.from
So far, we've seen the default/predefined schedulers available within RxKotlin. However,
while developing applications, you may need to define your custom scheduler. Keeping
that scenario in mind, ReactiveX has provided you with
Schedulers.from(executor:Executor), which lets you convert any executor into a
scheduler.

Concurrency and Parallel Processing in RxKotlin with Schedulers Chapter 7

[195]

Let's look at the following example:

 fun main(args: Array<String>) {

 val executor:Executor = Executors.newFixedThreadPool(2)//(1)
 val scheduler:Scheduler = Schedulers.from(executor)//(2)

 Observable.range(1, 10)
 .subscribeOn(scheduler)//(3)
 .subscribe {
 runBlocking { delay(200) }
 println("Observable1 Item Received $it -
 ${Thread.currentThread().name}")
 }

 Observable.range(21, 10)
 .subscribeOn(scheduler)//(4)
 .subscribe {
 runBlocking { delay(100) }
 println("Observable2 Item Received $it -
 ${Thread.currentThread().name}")
 }

 Observable.range(51, 10)
 .subscribeOn(scheduler)//(5)
 .subscribe {
 runBlocking { delay(100) }
 println("Observable3 Item Received $it -
 ${Thread.currentThread().name}")
 }
 runBlocking { delay(10000) }//(6)
 }

In this example, we've created a custom Scheduler from an Executor (for the sake of
simplicity, we've used a standard Thread Pool Executor; you're free to use your own custom
executor).

On comment (1), we created the executor with the Executors.newFixedThreadPool()
method, on comment (2), we created the scheduler instance with the help of
Schedulers.from(executor:Executor). We used the scheduler instance on comment
(3), comment (4), and comment (5).

Concurrency and Parallel Processing in RxKotlin with Schedulers Chapter 7

[196]

Here is the output:

How to use schedulers – subscribeOn and
observeOn operators
Now that we have gained some grip on what schedulers are, how many types of schedulers
are available, and how to create a scheduler instance, we will focus on how to use
schedulers.

Concurrency and Parallel Processing in RxKotlin with Schedulers Chapter 7

[197]

There are basically two operators that help us implement schedulers. Up until now, in this
chapter, we've used the subscribeOn operator in all the examples with a scheduler;
however, there's another operator—observeOn. We will now focus on these two operators,
learning how they work, and how they differ.

Let's start with the subscribeOn operator.

Changing thread on subscription – subscribeOn
operator
We need to understand how the Observable works before delving any further in how to
use scheduler. Let's take a look at the following graphics:

Concurrency and Parallel Processing in RxKotlin with Schedulers Chapter 7

[198]

As the preceding image depicts, it's the threads that are responsible for carrying items from
the source all the way to the Subscriber through operators. It may be a single thread
throughout the subscription, or it may even be different threads at different levels.

By default, the thread in which we perform the subscription is the responsible of bringing
all the emissions down to the Subscriber, unless we instruct it otherwise.

Let's take a look at the code example first:

 fun main(args: Array<String>) {
 listOf("1","2","3","4","5","6","7","8","9","10")
 .toObservable()
 .map {
 item->
 println("Mapping $item ${Thread.currentThread().name}")
 return@map item.toInt()
 }
 .subscribe {
 item -> println("Received $item
 ${Thread.currentThread().name}")
 }

 }

It's a simple RxKotlin code example; we are creating Observable, mapping it, and then
subscribing to it. The only difference here is that I've printed the Thread name inside both
the map and the subscribe lambdas.

Concurrency and Parallel Processing in RxKotlin with Schedulers Chapter 7

[199]

Let's take a look at the output:

From the output, we can determine that the main thread executes the entire subscription.

The subscribeOn operator, as the name suggests, helps us change the thread of a
subscription. Let's modify the program once and take a look:

 fun main(args: Array<String>) {
 listOf("1","2","3","4","5","6","7","8","9","10")
 .toObservable()
 .map {
 item->
 println("Mapping $item - ${Thread.currentThread().name}")
 return@map item.toInt()
 }

Concurrency and Parallel Processing in RxKotlin with Schedulers Chapter 7

[200]

 .subscribeOn(Schedulers.computation())//(1)
 .subscribe {
 item -> println("Received $item -
 ${Thread.currentThread().name}")
 }

 runBlocking { delay(1000) }
 }

The entire program remains the same, except that, in between map and subscribe, we used
the subscribeOn operator at comment (1). Let's check the output:

The subscribeOn operator changes the thread for the entire subscription; you can use it
wherever you want in the subscription flow. It will change the thread once and for all.

Concurrency and Parallel Processing in RxKotlin with Schedulers Chapter 7

[201]

Observing on a different thread – observeOn
operator
While subscribeOn looks like an awesome gift from heaven, it may not be suited in some
cases. For example, you may want to do computations on the computation threads and
display the results from the io threads, which actually you should do. The subscribeOn
operator requires a companion for all these things; while it'll specify the thread for the
entire subscription, it requires its companion to specify threads for specific operators.

The perfect companion to the subscribeOn operator is the observeOn operator. The
observeOn operator specifies the scheduler for all the operators called after it.

Let's modify our program with observeOn to perform the map operation in the
Schedulers.computation() and receive the result of the subscription (onNext) in the
Schedulers.io():

 fun main(args: Array<String>) {
 listOf("1","2","3","4","5","6","7","8","9","10")
 .toObservable()
 .observeOn(Schedulers.computation())//(1)
 .map {
 item->
 println("Mapping $item - ${Thread.currentThread().name}")
 return@map item.toInt()
 }
 .observeOn(Schedulers.io())//(2)
 .subscribe {
 item -> println("Received $item -
 ${Thread.currentThread().name}")
 }

 runBlocking { delay(1000) }
 }

Concurrency and Parallel Processing in RxKotlin with Schedulers Chapter 7

[202]

The following output clearly shows we're successful in achieving our objective:

So, what did we do? We specified the computation threads for the map operator by calling
observeOn(Schedulers.computation()) just before it, and called
observeOn(Schedulers.io()) before subscribe to switch to io threads to receive the
results.

In this program, we did a context switch; we exchanged data with threads and
implemented communication in between threads with such an ease, with merely 7-8 lines of
code—that's the abstraction schedulers provides us with.

Concurrency and Parallel Processing in RxKotlin with Schedulers Chapter 7

[203]

Summary
In this chapter, you learned about concurrent execution and parallelism and how to achieve
multithreading in RxKotlin. Multithreading is a necessity in today's app driven era, as
modern users don't like to wait, or, to be blocked, you need to constantly switch threads to
perform computations and UX operations.

In this chapter, you learned how schedulers in RxKotlin can help you, or, rather, how
schedulers abstract the complexities of multithreading.

While concurrent execution and parallelism is an essential part of modern application
development, testing is probably the most crucial part. We cannot deliver any app without
testing it. Agile methodology (though we are not discussing agile here) says we should
perform testing repeatedly and with every iteration of our product (application)
development.

In the Chapter 8, Testing RxKotlin Applications, we will discuss testing. Don't dare miss it
out, turn the page right now!

8
Testing RxKotlin Applications

We have covered more than 60% of the book and have learned a lot of concepts. From the
first chapter, starting with concepts of reactive programming till the previous chapter about
concurrent execution and parallelism. But we cannot complete the application development
without introducing a few tests. It is probably the most crucial point in the process of
application development.

This chapter is dedicated to testing. As Kotlin itself is relatively new, our first objective
would be to learn testing in Kotlin. We will then proceed with testing in RxKotlin. The
following are the topics we are going to cover in this chapter:

Introduction to unit testing and its importance
Kotlin and JUnit, Kotlin-test
Testing tools in RxKotlin
Blocking subscribers
Blocking operators
TestObserver and TestSubscriber

So let's get started.

Testing RxKotlin Applications Chapter 8

[205]

Introduction to unit testing and its
importance
While testing is absolute necessary in application development, many novice developers get
away with a few basic questions regarding testing. They are:

What is unit testing? and why is it a developer's job?
Why is unit testing so important?
And, do we need to write unit tests for each section of our programs?

We will start this chapter by answering these basic questions. If you would like to rather
start with testing using RxKotlin directly, you can skip the first few sections in this chapter
and start from Testing tools in RxKotlin. Though I would encourage you to read the chapter
throughout, even if you have previous experience in testing with Kotlin.

Let's start by defining unit testing. Unit testing is a level of software testing where the
individual smallest testable components of a software (aka application), called units are
tested. The purpose is to validate that each unit of the software performs as it was supposed
to.

Unit tests can be done manually, but they are often automated. The sole purpose of
automated unit testing is to reduce human error and eliminate any extra bugs/errors caused
by them. To explain let's first remember the proverb:

To err is human

So, if we do the unit tests manually, the chances of additional errors or bugs will rise.
Automated unit tests can eliminate this risk as they include minimal human effort.

Also, we need to document the tests we've performed, and we need to perform the same
tests again with new ones with each incremental build of our product. Automated unit tests
eliminate that extra effort, as you would be required to write the test once and then you can
run them any time in the future. Also, automated unit tests also reduce documentation
efforts.

Why is it a developer's job? Who would write the code for automated testing other than the
developers?

Testing RxKotlin Applications Chapter 8

[206]

Also, it is not possible for developers to give understanding to tester after completing each
small units of an application. Even you may have completed some module, which is not yet
on the GUI, so the tester or anyone else than you may not even be able to reach that unit to
test. Also, it may not have any direct impact or relation with the UI/UX, it may be a small
internal code part.

To summarize, a developer better understands his code and he knows well what exactly he
wants from that bunch of code. So the developer is the best person to write unit tests on that
module.

Why is unit testing so important?
Let's have a real-life example. Think of an engineer, creating a new motor or device. The
engineer will test the functionality after completing each unit of that motor, rather than
testing the whole motor at the end (though he / she will test the whole motor at the end, but
will also test it repeatedly and incrementally while building it). The main reason behind this
behavior is that if he / she doesn't do that, at the end it would take a lot effort to identify the
exact problems (if any). While testing incrementally will allow you to fix any problem right
away as soon as it arises. The same applies for software (applications) as well.

You should perform unit tests periodically and repeatedly as you develop each module of
your application the more you test the better is the out product. And yes, we should write
unit tests for each and every functional section of our applications.

By functional section we mean each section that performs any small
operation and/or function. We can skip testing a POJO class with just
getters and setters, but we must test the code which uses that POJO class
to accomplish something.

So, as we've understood the importance of testing, let's start by writing JUnit tests in Kotlin.

Writing JUnit tests in Kotlin
If you've any experience with Java development, you've heard of or most probably worked
with JUnit. It is a testing framework, for Java (as well as Kotlin).

Testing RxKotlin Applications Chapter 8

[207]

Typically unit tests are created in a separate source folder than real source codes, to keep it
separated. The standard Maven/Gradle convention uses src/main for real codes
(Java/Kotlin files or classes) and src/test for test classes. The following screenshot shows
the structure for the project we're using in this book:

Before beginning to write test cases we've to add the following Gradle dependencies:

 testCompile 'junit:junit:4.12'
 testCompile "org.mockito:mockito-core:1.9.5"
 testCompile "org.jetbrains.kotlin:kotlin-test-
 junit:$kotlin_version"

We've added a dependency to Mockito as well, which we are going to cover soon.

So, we have got everything ready, let's write our first test case. Please refer to the following
code:

 package com.rivuchk.packtpub.reactivekotlin

 import org.junit.Test
 import kotlin.test.assertEquals

 class TestClass {
 @Test//(1)
 fun `my first test`() {//(2)
 assertEquals(3,1+2)//(3)
 }
 }

Testing RxKotlin Applications Chapter 8

[208]

Have a close look at the preceding program. Each JUnit test case should be defined as a
function inside a class. The class that contains the JUnit test functions should only be used
for testing purposes and should not serve any other purpose. The test function should be
annotated with the @Test annotation, as we did in comment (1). This annotation helps
JUnit to detect and execute the tests.

Now, give a cautious look at the line containing comment (2). The function name is `my
first test`(). Yes, it contains space within the function name. That is probably the best
thing you can get while writing test cases in Kotlin. Kotlin allows you to have functions that
have names without spaces, while they aren't good practice while writing codes, they are
quite a life saver while writing tests; as you don't need to call the test functions elsewhere,
they actually serve as readable test names.

In comment (3), we wrote the actual test. The assertEquals test checks for equality
between expected and actual values. The first parameter in this test is the expected
value, and the second one is the actual one, which should be equal to the expected one.

If you run the test, you'll get the following output:

If we modify the program and pass 2+3 instead of 1+2 as the actual parameter, then the test
would fail and give the following output:

Testing RxKotlin Applications Chapter 8

[209]

You can also pass a failure message, that would be shown in case of failure, as follows:

 class TestClass {
 @Test//(1)
 fun `my first test`() {//(2)
 assertEquals(3,2+3, "Actual value is not equal to the expected
 one.")//(3)
 }
 }

The message would be shown in the error report if the test fails. Have a look at the
following output:

Testing your code
In the earlier section, we learned how to write test cases, but did we test our code? No. We
did the tests with some oblivious values. And we know that is not the purpose of tests.
Tests are there to make sure that our functions, classes, and code blocks are working as
expected.

We should write the tests on top of our existing code (unless we are following Test-driven
development (TDD)).

Test-driven development is a development methodology where tests are
written first, and then the actual source code is written that would pass the
test cases. Test-driven development is hugely popular among developers
and architects and many companies follow TDD as their development
process.

Testing RxKotlin Applications Chapter 8

[210]

The following is a small Kotlin file that contains a few methods for calculations, we would
perform tests on top of this file:

 package com.rivuchk.packtpub.reactivekotlin.chapter8

 fun add(a:Int, b:Int):Int = a+b
 fun substract(a:Int, b:Int):Int = a-b
 fun mult(a:Int, b:Int):Int = a*b
 fun divide(a:Int, b:Int):Int = a/b

And, following class is with the test cases, go through the code carefully, and then we will
describe it:

 package com.rivuchk.packtpub.reactivekotlin.chapter8//(1)

 import org.junit.Test
 import kotlin.test.*

 class TestCalculator {
 @Test
 fun `addition test`() {//(2)
 assertEquals(1 + 2, add(1,2))
 }
 @Test
 fun `substraction test`() {//(3)
 assertEquals(8-5, substract(8,5))
 }
 @Test
 fun `multiplication test`() {//(4)
 assertEquals(4 * 2, mult(4,2))
 }
 @Test
 fun `division test`() {//(5)
 assertEquals(8 / 2, divide(8,2))
 }
 }

Have a look at the package declarations. Both files share the same package name, we
deliberately did this, so that we would not have to import the functions.

Testing RxKotlin Applications Chapter 8

[211]

We used the simplest functions in the source code so that you can understand the code
easily. Also notice that we wrote each test case separately, just like a function, we can
obviously call multiple test functions within a test case, though. Confused? Let's elaborate,
when you're testing multiple aspects of a single function or property you can (and should)
group them all inside a test function (a function with an @Test annotation). Generally,
compilers display test results as they encounter test functions, irrespective of how many
tests each test function performs. So rest assured that your tests will be performed if you
group them inside a single test function, they will however be shown as a single test.
However when you're writing tests for separate functions or properties you would
obviously want a separate report for all of them, in that case you should write them
separately just like the earlier example.

Have a look at the output now:

But in each of the earlier examples, we used only assertEquals; seeing this, you may have
a question, is assertEquals the only test function available? The answer is a big no. We've
plenty of test functions available with Kotlin. The following are a few test cases with
oblivious values, just to have an idea about the most useful test functions in Kotlin. Please
refer to the following code:

 package com.rivuchk.packtpub.reactivekotlin.chapter8

 import org.junit.Test
 import java.util.*
 import kotlin.test.*

 class TestFunctions {

 @Test
 fun `expected block evaluation`() {
 expect(10,{
 val x=5
 val y=2
 x*y
 })
 }

 @Test
 fun `assert illegal value`() {

Testing RxKotlin Applications Chapter 8

[212]

 assertNotEquals(-1,Random().nextInt(1))
 }

 @Test
 fun `assert true boolean value`() {
 assertTrue(true)
 }

 @Test
 fun `assert false boolean value`() {
 assertFalse(false)
 }

 @Test
 fun `assert that passed value is null`() {
 assertNull(null)
 }

 @Test
 fun `assert that passed value is not null`() {
 assertNotNull(null)
 }
 }

Before inspecting the test cases here, let's have a look at the following test output
screenshot:

Now, let's try to understand the code. We will start with the `expected block
evaluation`() test. The expect test function takes the expected value as the
first parameter and a block (lambda) as the second parameter, executes the lambda, and
checks the return value against the expected value for equality.

Testing RxKotlin Applications Chapter 8

[213]

The second test case was `assert illegal value`(), in that test case we are using the
assertNotEquals() test method. This test method does the exact opposite than the
assertEquals(). It fails the test if both parameters are equal. The assertNotEquals() is
especially useful when you've a function that should return any value except a particular
one.

In the `assert true boolean value`() and `assert true boolean value`() test
cases we used assertTrue() and assertFalse() respectively. Both test methods takes a
Boolean value as parameter. As the name suggests, assertTrue() expects the value to be
true, while assertFalse() expects to be false.

The next two test cases are for nulls. The first one `assert that passed value is
null`() uses assertNull(), which expects the passed value to contain null. The second
one uses assertNotNull() in complete opposite way, expects the value would not be
null.

So, as we got some hands-on idea on writing test cases, let's get started with testing in
RxKotlin.

Testing in RxKotlin
Now, as you've some hands-on testing in Kotlin and have some idea about RxKotlin as
well, you may be wondering how to implement test cases in RxKotlin? It is true that testing
in RxKotlin may not seem straightforward; the reason is that ReactiveX defines behavior
rather than states, and most testing frameworks, including JUnit and kotlin—test are good
for testing states.

To the aid of developers, RxKotlin comes with a set of tools for testing, which you can use
with your favorite testing frameworks. In this book, we will cover testing in RxKotlin with
JUnit and Kotlin-test.

So, what are we waiting for? Let's get started.

Testing RxKotlin Applications Chapter 8

[214]

Blocking subscribers
Try to remember the code blocks from previous chapters, where we used delay to make
the main thread wait whenever we used an Observable or Flowable that operates on a
different thread. A perfect example of this scenario is when we used
Observable.interval as a factory method or when we used the subscribeOn operator.
To get you refreshed, following is such a code example:

 fun main(args: Array<String>) {
 Observable.range(1,10)
 .subscribeOn(Schedulers.computation())
 .subscribe {
 item -> println("Received $item")
 }
 runBlocking { delay(10) }
 }

In this example, we switched to Schedulers.computation for the subscription. Now let's
see, how we can test this Observable and check that we received exactly 10 emissions:

 @Test
 fun `check emissions count` () {
 val emissionsCount = AtomicInteger()//(1)
 Observable.range(1,10)
 .subscribeOn(Schedulers.computation())
 .blockingSubscribe {//(2)
 _ -> emissionsCount.incrementAndGet()
 }

 assertEquals(10,emissionsCount.get())//(3)
 }

Let's have a look at the testing result first before digging into the code:

Testing RxKotlin Applications Chapter 8

[215]

There are a few things that need explanations in this code. The first one is AtomicInteger.
AtomicInteger is a wrapper around integer in Java, that allows an Int value to be
updated atomically. Though AtomicInteger extends Number to allow uniform access by
tools and utilities that deal with numerically-based classes, it cannot be used as a
replacement of Integer. We used AtomicInteger in this code to ensure atomicity, as the
subscription was running in the computationScheduler (thus in multiple threads).

The line, that demands our attention is where we put comment (2). We used
blockingSubscribe instead of just subscribe. When we subscribe to a producer with
the subscribe operator and the subscription is not in the current thread, the current thread
doesn't wait for the subscription to complete and moves to the next line instantly. That's
why we used delay to make the current thread wait. Using delay inside tests is
troublesome. While blockingSubscribe blocks the current running thread until the
subscription finishes up (even if the subscription occurs in a separate thread), that is useful
while writing tests.

Blocking operators
While blockingSubscribe is useful in testing, it cannot always serve your purpose. You
might need to test the first, last or all the values of the producer. For that purpose you
would need the data in its pure imperative nature.

The set of yet uncovered operators in RxKotlin is at your helm in that scenario. The
blocking operators serve as an immediate accessible bridge between the reactive world and
the imperative world. They block the current thread and make it wait for the results to be
emitted, but returns them in a non-reactive way.

The only similarity between blockingSubscribe and blocking operators are that both
block the declaring thread even if the reactive operations are performed in a different
thread.

Other than this one, there are no more similarities. The blockingSubscribe treats the data
as reactive and doesn't return anything. It rather pushes them to the subscriber (or lambda)
specified. Whereas blocking operators will return the data in a non-reactive nature.

The following list contains the blocking operators we are going to cover:

blockingFirst()

blockingGet()

blockingLast()

Testing RxKotlin Applications Chapter 8

[216]

blockingIterable()

blockingForEach()

Though we should avoid using them in production as they encourage anti-patterns and
reduce the benefits of reactive programming, however we can surely use them for testing
purposes.

Getting the first emitted item – blockingFirst()
The first blocking operator we are going discuss is the blockingFirst operator. This
operator blocks the calling thread until the first item is emitted and returns it. The following
is an ideal test case for blockingFirst(), where we are performing a sorting operation on
Observable and we are testing it by checking if the first emitted item is the smallest. Please
refer to the following code:

 @Test
 fun `test with blockingFirst`() {
 val observable = listOf(2,10,5,6,9,8,7,1,4,3).toObservable()
 .sorted()
 val firstItem = observable.blockingFirst()
 assertEquals(1,firstItem)
 }

The test result is as follows:

In the program, we created an unsorted list of integers from 1 to 10 and created an
Observable with the list, so the smallest item from that Observable should be 1. We
obtained the first item and made the thread to wait till we get it with the help of
the blockingFirst() operator.

Then used the assertEquals testing function to assert that the first emitted item is 1.

Testing RxKotlin Applications Chapter 8

[217]

Getting the only item from single or maybe -
blockingGet
When you're working with single or maybe, you just can't use any other blocking operator
other than blockingGet(). The reason is quite simple, both monads can contain only one
item.

So, let's create two new test cases by modifying the last test case as follows:

 @Test
 fun `test Single with blockingGet`() {
 val observable = listOf(2,10,5,6,9,8,7,1,4,3).toObservable()
 .sorted()

 val firstElement:Single<Int> = observable.first(0)

 val firstItem = firstElement.blockingGet()
 assertEquals(1,firstItem)
 }

 @Test
 fun `test Maybe with blockingGet`() {
 val observable = listOf(2,10,5,6,9,8,7,1,4,3).toObservable()
 .sorted()

 val firstElement:Maybe<Int> = observable.firstElement()

 val firstItem = firstElement.blockingGet()
 assertEquals(1,firstItem)
 }

In the first test case, we used observable.first() with a default value, this operator
returns a Single; on the second operator, we used observable.firstElement() this
operator returns a Maybe. Then we used blockingGet in both test cases to get the first
element as an Int and execute the test function.

Testing RxKotlin Applications Chapter 8

[218]

So, following screenshot is the test result:

Getting the last Item - blockingLast
We have blockingFirst, so it's quite obvious that we would have blockingLast. As
expected, it gets you the last emitted item while blocking the thread until the source emits
it. The following is the code example:

 @Test
 fun `test with blockingLast`() {
 val observable = listOf(2,10,5,6,9,8,7,1,4,3).toObservable()
 .sorted()

 val firstItem = observable.blockingLast()
 assertEquals(10,firstItem)
 }

As we are expecting the last emitted item, we are checking equality with 10.

Following is the screenshot of the testing result:

Testing RxKotlin Applications Chapter 8

[219]

Getting all emissions as iterable -
blockingIterable operator
So, we fetched the first emitted item, we fetched the last emitted item, but what if we want
all the items emitted for testing? The blockingIterable operator gets you with the same.
The blockingIterable operator works in an interesting way, it passes an emission to the
Iterable, then the Iterable will keep blocking the iterating thread until the next
emission is available. This operator queues up unconsumed values until the Iterator can
consume them, and this can cause OutOfMemory exceptions.

So following is an example, where we are obtaining the complete list and then we are
checking if the emissions were sorted by converting the returned Iterable to List and
checking equality with the source list after sorting. Please refer to the following code:

 @Test
 fun `test with blockingIterable`() {
 val list = listOf(2,10,5,6,9,8,7,1,4,3)

 val observable = list.toObservable()
 .sorted()

 val iterable = observable.blockingIterable()
 assertEquals(list.sorted(),iterable.toList())
 }

If the emissions were sorted, the iterable, when converted to list, should be equal to
list.sorted().

Following is the screenshot of the test result:

Testing RxKotlin Applications Chapter 8

[220]

Looping through all emissions - blockingForEach
If you want to loop through all the emissions then blockingForEach is probably a better
solution. It's better than blockingIterable as it will not queue up the emissions. Rather
will it block the calling thread and wait for each emission to be processed before allowing
the thread to continue.

In the following example, we created an Observable from a list of Int. Then applied a
filter for even numbers only and then within the blockingForEach we are testing whether
all the received numbers are even:

 @Test
 fun `test with blockingForEach`() {
 val list =
 listOf(2,10,5,6,9,8,7,1,4,3,12,20,15,16,19,18,17,11,14,13)

 val observable = list.toObservable()
 .filter { item -> item%2==0 }

 observable.forEach {
 item->
 assertTrue { item%2==0 }
 }
 }

The result of the test is as follows:

We covered the most useful blocking operators up until now. They are useful for simple
assertions and can effectively block the code so that we can perform our testing operations.

Testing RxKotlin Applications Chapter 8

[221]

However, using blocking code does no good in production. While it seems that using
blocking code for testing is ok, but it is actually not. It can do significant harm to keep you
from the benefits of testing. How? Just think of multiple Observables/Flowables are
emitting concurrently for your application, if you put them on the blocking code their
complete behavior may change and as a result you'll be deprived from the benefits of unit
testing.

So, what is the way out? Let's see.

Introducing TestObserver and
TestSubscriber
As you read through this chapter, you may have developed an idea that the only way we
can perform tests are through blocking the code, either by using blockingSubscribe or
by using blocking operators. But this is not the case. In fact, there are more comprehensive
ways to reactive code, or rather we can say that we can test reactive code reactively.

To say it more precisely, in a Subscriber we have onError and onComplete that demands
testing along with onNext, which is not always possible with just blocking. Yes some sort of
blocking is necessary, but it cannot alone do all the things and it also needs to be managed
reactively.

So, here are your two superheroes to make the developers life easy—TestObserver and
TestSubscriber. As with Subscriber and Observer, you can use TestSubscriber
with Flowables and TestObserver with Observables, everything except that is similar
between these two.

So, let's get started with an example:

 @Test
 fun `test with TestObserver`() {
 val list =
 listOf(2,10,5,6,9,8,7,1,4,3,12,20,15,16,19,18,17,11,14,13)

 val observable = list.toObservable().sorted()

 val testObserver = TestObserver<Int>()
 observable.subscribe(testObserver)//(1)

 testObserver.assertSubscribed()//(2)

 testObserver.awaitTerminalEvent()//(3)

Testing RxKotlin Applications Chapter 8

[222]

 testObserver.assertNoErrors()//(4)
 testObserver.assertComplete()//(5)
 testObserver.assertValueCount(20)//(6)
 testObserver.assertValues
 (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)//(7)
 }

 @Test
 fun `test with TestSubscriber`() {
 val list =
 listOf(2,10,5,6,9,8,7,1,4,3,12,20,15,16,19,18,17,11,14,13)

 val flowable = list.toFlowable().sorted()

 val testSubscriber = TestSubscriber<Int>()

 flowable.subscribe(testSubscriber)//(1)

 testSubscriber.assertSubscribed()//(2)

 testSubscriber.awaitTerminalEvent()//(3)

 testSubscriber.assertNoErrors()//(4)
 testSubscriber.assertComplete()//(5)
 testSubscriber.assertValueCount(20)//(6)
 testSubscriber.assertValues
 (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)//(7)
 }

So we did perform the same set of tests with TestObserver and TestSubscriber. The
test result is obviously passed:

Testing RxKotlin Applications Chapter 8

[223]

Let's now understand the test cases. On comment (1), we are subscribing to the
Observable/Flowable. On comment (2), we are checking if the Subscription was successful
and was only one with the help of the assertSubscribed() test. On comment (3), we are
blocking the thread until the Observable/Flowable completes its execution with the
awaitTerminalEvent() method. This terminal event can be onComplete or onError as
well. On comments (4) and (5), we are checking whether the Observable and/or
Flowable has completed successfully without any errors, assertNoErrors() will test
whether the Subscription hasn't received any errors and assertComplete() will test
whether the producer has completed successfully . On comment (6), we are testing that the
total received emission count was 20 (there were 20 items in the list),
assertValuesCount() helps us with this objective. On comment (6), with the help of
assertValues() we are testing the expected and actual values of each of the emissions in
its order.

So it was cool, right? The next thing I'm going to show is probably cooler.

Understanding TestScheduler
Think of an Observable/Flowable created with the Observable.interval() /
Flowable.interval() factory method. If you have given a long interval (say five
minutes) in them and have tested at least say 100 emissions then it would take a long time
for testing to complete (500 minutes = 8.3 hours, that is, a complete man-hour just to test a
single producer). Now if you have more producers like that with a larger interval and more
emissions to test then it would probably take the whole lifetime to test, when would you
ship the product then?

TestScheduler is here to save your life. They can effectively simulate time with time-
driven producers so that we can do assertions by fast-forwarding it by a specific amount.

So, the following is the respective implementation:

 @Test
 fun `test by fast forwarding time`() {
 val testScheduler = TestScheduler()

 val observable =
 Observable.interval(5,TimeUnit.MINUTES,testScheduler)
 val testObserver = TestObserver<Long>()

 observable.subscribe(testObserver)
 testObserver.assertSubscribed()
 testObserver.assertValueCount(0)//(1)

Testing RxKotlin Applications Chapter 8

[224]

 testScheduler.advanceTimeBy(100,TimeUnit.MINUTES)//(2)
 testObserver.assertValueCount(20)//(3)

 testScheduler.advanceTimeBy(400,TimeUnit.MINUTES)//(4)
 testObserver.assertValueCount(100)//(5)
 }

So, here we created an Observable with Observable.interval with a 5 minute interval
and TestScheduler as its Scheduler.

On comment (1), it should not receive any emissions (as there are still 5 minutes before it
should receive its first emission) and we are testing it with assertValuesCount(0).

We then fast-forwarded the time by 100 minutes on comment (2), and tested whether we
received 20 emissions on comment (3). TestScheduler provides us with the
advanceTimeBy method, which takes a timespan and unit as parameters and simulates that
for us.

We then fast-forwarded time by another 400 minutes and tested if we received a total of 100
emissions on comment (4) and comment (5).

As you would expect, the test passes.

Summary
So, in this chapter, we learned about testing in Kotlin. We started with the benefits of testing
and then moved on to testing in Kotlin, using JUnit and Kotlin-test.

As we got some hands-on testing experience in Kotlin, we gradually moved to testing in
RxKotlin, we learned a few technique to test RxKotlin and learnt about the super-
convenient testing tools that RxKotlin provides for us.

As we have built a strong base of knowledge in RxKotlin, in the next chapter—Chapter 9,
Resource Management and Extending RxKotlin we are going to discuss some advanced topics.
We will discuss managing resources—how to free allocated memory and prevent memory
leaks. We will also learn to create our own custom operators, which can be chained in the
RxKotlin logic just like those predefined operators.

So, what are you waiting for? Get started on Chapter 9, Resource Management and Extending
RxKotlin, right now, and from now on don't forget to test every code you write.

9
Resource Management and

Extending RxKotlin
So far, you've learned about Observables, Flowables, Subjects, processors, operators,
combining producers, testing, and many more things. We have gained most of the
necessary knowledge to start coding our applications. The only remaining topic to look at is
resource management—the technique of creating, accessing, and cleaning up resources.
Also if you're one of the developers who is hungry for a challenge, then you'll always look
for ways to customize everything. So far in this book, we've seen how to use operators in
their prescribed way. We did nothing innovative and didn't try to customize the operators.
So, this chapter is dedicated to resource management and extending RxKotlin through
custom operators.

The following list contains the topics we will cover in this chapter:

Resource management with the using method
Creating custom operators with the lift operator
Creating custom transformers (transforming operators) with the compose
operator

So, first things first, let's get started with resource management.

Resource Management and Extending RxKotlin Chapter 9

[226]

Resource management
Resource management, what does it mean? Why should we care about it? If you've a little
experience in application development with Java,Kotlin,JavaScript, or any other language,
then you're probably familiar with the fact that while developing applications, we often
need to access resources, and we must close them when we are done.

If you're not experienced with that phrase, resource management, then let's break things
down. We will be starting from the ground by exploring the definition of a resource.

So, what is resource? When developing applications, you may often need to access an API
(through an HTTP connection), access a database, read from/write to a file, or you may even
need to access any I/O ports/sockets/devices. All these things are considered resources in
general.

Why do we need to manage/close them? Whenever we are accessing a resource, especially
to write, the system often locks it for us, and blocks its access to any other program. If you
don't release or close a resource when you're done, system performance may degrade and
there may even be a deadlock. Even if the system doesn't lock the resource for us, it will
keep it open for us until we release or close it, resulting in poor performance.

So, we must close or release a resource whenever we are done working with it.

Generally, on the JVM, we access resources through a class. Often, that class implements the
Closable interface, making releasing a resource easy for us by calling its close method.
It's quite easy in imperative programming, but you're probably wondering how to do it in
reactive programming.

You're probably thinking of mixing imperative programming with reactive programming
and making the resources global properties, and then, inside the subscribe method, you'll
dispose them after using. This is basically what we did in Chapter 5,
Asynchronous Data Operators and Transformations HTTP Request.

Sorry to break your heart, but that is the wrong procedure; in Chapter 5,
Asynchronous Data Operators and Transformations, we did it to avoid further complexities in
order to make you understand the code better, but we should learn the correct approach
now.

To make things less complex, we will create a dummy resource with a custom
implementation of the Closable interface. So, no more suspense; take a look at the
following code snippet:

 class Resource():Closeable {
 init {

Resource Management and Extending RxKotlin Chapter 9

[227]

 println("Resource Created")
 }

 val data:String = "Hello World"

 override fun close() {
 println("Resource Closed")
 }
 }

In the preceding code, we created a Resource class and implemented Closeable in this
class (just to mock a typical Java resource class). We also created a val property
named data inside that class, which will be used to mock data fetching from Resource.

Now, how do we use it in a reactive chain? RxKotlin provides a very convenient way to
deal with disposable resources. To save your life with disposable resources, RxKotlin has a
gift for you—the using operator.

The using operator lets you create a resource that'll exist only during the life span of the
Observable, and it will be closed as soon as the Observable completes.

The following diagram describes the relation of lifespans of Observable created with
the using operator and the resource attached to it, which has been taken from ReactiveX
documentation (http:/ /reactivex. io/ documentation/ operators/ using. html):

http://reactivex.io/documentation/operators/using.html
http://reactivex.io/documentation/operators/using.html
http://reactivex.io/documentation/operators/using.html
http://reactivex.io/documentation/operators/using.html
http://reactivex.io/documentation/operators/using.html
http://reactivex.io/documentation/operators/using.html
http://reactivex.io/documentation/operators/using.html
http://reactivex.io/documentation/operators/using.html
http://reactivex.io/documentation/operators/using.html
http://reactivex.io/documentation/operators/using.html
http://reactivex.io/documentation/operators/using.html
http://reactivex.io/documentation/operators/using.html
http://reactivex.io/documentation/operators/using.html
http://reactivex.io/documentation/operators/using.html
http://reactivex.io/documentation/operators/using.html

Resource Management and Extending RxKotlin Chapter 9

[228]

The preceding image clearly displays that the resource will live during the lifespan of the
Observable only—a perfect life partner, wouldn't you say?

Here is the definition of the using operator:

 fun <T, D> using(resourceSupplier: Callable<out D>, sourceSupplier:
 Function<in D, out ObservableSource<out T>>,
 disposer: Consumer<in D>): Observable<T> {
 return using(resourceSupplier, sourceSupplier, disposer, true)
 }

It looks confusing, but it's easy when we break it down. The using method accepts a
Callable instance, which will create a resource and return it (out D is for that purpose).
And, the last one is to release/close the resource. The using operator will call the first
lambda before creating the Resource instance. Then, it'll pass the Resource instance to the
second lambda for you to create Observable and return it so that you can subscribe.
Finally, when the Observable calls its onComplete event, it will call the third lambda to
close the resource.

You're now dying to see the example, right? The following is the example:

 fun main(args: Array<String>) {
 Observable.using({//(1)
 Resource()
 },{//(2)
 resource:Resource->
 Observable.just(resource)
 },{//(3)
 resource:Resource->
 resource.close()
 }).subscribe {
 println("Resource Data ${it.data}")
 }
 }

In the preceding program, we passed three lambdas to the using operator. In the first
lambda (comment one), we created an instance of Resource and returned it (in a lambda,
the last statement works as return, you don't have to write it).

The second lambda will take resource as parameter and will create the Observable from
it to return.

Resource Management and Extending RxKotlin Chapter 9

[229]

The third lambda will again take resource as a parameter and close it.

The using operator will return the Observable you created in the second lambda for you
to apply the RxKotlin chain to it.

So, here is a screenshot of the output, if you're curious:

So, that is resource management made easy. Also note that you can create and pass as many
resources as you want to the using operator. We implemented the Closable interface for
ease of understanding, but it's not mandatory; you can easily create and pass an array of
resources.

Creating your own operators
So far, we have used lots of operators, but are we sure they will meet all our needs? Or, can
we always find a fitting operator for each requirement we face? No, that's not possible.
Sometimes, we may have to create our own operators for our own needs, but how?

RxKotlin is always there to make your life easier. It has an operator just for this
purpose—the lift operator. The lift operator receives an instance of
ObservableOperator; so, to create your own operator, you have to implement that
interface.

In my opinion, the best way to learn something is by doing it. What about creating a custom
operator that would add a sequential number to every emission? Let's create it as per the
following list of requirements:

The operator should emit a pair, with an added sequential number as the first
element. The second element of the pair should be the actual emission.
The operator should be generic and should work with any type of Observable.
As with other operators, the operator should work concurrently with other
operators.

Resource Management and Extending RxKotlin Chapter 9

[230]

The preceding points are our basic requirements; and, as per the preceding requirement, we
must use AtomicInteger for the counter (which will count the emissions, and we will pass
that count as a sequential number) so that the operator will work seamlessly with any
Scheduler.

Every custom operator should implement the ObservableOperator interface, which looks
like this:

 interface ObservableOperator<Downstream, Upstream> {
 /**
 * Applies a function to the child Observer and returns a new
 parent Observer.
 * @param observer the child Observer instance
 * @return the parent Observer instance
 * @throws Exception on failure
 */
 @NonNull
 @Throws(Exception::class)
 fun apply(@NonNull observer: Observer<in Downstream>):
 Observer<in Upstream>;
 }

Downstream and Upstream are two generic types here. Downstream specifies the type that
will be passed to the Downstream of the operator, and Upstream specifies the type that the
operator will receive from upstream.

The apply function has a parameter called the Observer that should be used to pass the
emission to the Downstream, and the function should return another Observer that will be
used to listen to the upstream emissions.

Enough theory. The following is the definition of our AddSerialNumber operator. Take a
careful look at it here:

 class AddSerialNumber<T> : ObservableOperator<Pair<Int,T>,T> {
 val counter:AtomicInteger = AtomicInteger()

 override fun apply(observer: Observer<in Pair<Int, T>>):
 Observer<in T> {
 return object : Observer<T> {
 override fun onComplete() {
 observer.onComplete()
 }

 override fun onSubscribe(d: Disposable) {
 observer.onSubscribe(d)
 }

Resource Management and Extending RxKotlin Chapter 9

[231]

 override fun onError(e: Throwable) {
 observer.onError(e)
 }

 override fun onNext(t: T) {
 observer.onNext(Pair(counter.incrementAndGet(),t))
 }

 }
 }
 }

Let's start describing this from the very first feature—the definition of the
AddSerialNumber class. This implements the ObservableOperator interface. As per our
requirement, we kept the class generic, that is, we specified the Upstream type to be generic
T.

We used an AtomicInteger as a val property of the class, which should be initialized
within the init block (as we are declaring and defining the property within the class, it
would be automatically initialized within init while creating instances of the class). That
AtomicInteger, counter should increment on each emission and should return the
emitted value as the serial number of the emission.

Inside the apply method, I created and returned an Observer instance, which would be
used to listen to the upstream as described earlier. Basically, every operator passes an
Observer to upstream by which it should receive the events.

Inside that observer, whenever we receive any event, we echoed that to the Observer
downstream (where it is received as a parameter).

Inside the onNext event of the Upstream Observer, we incremented the counter, added
it as the first element to a Pair instance, added the item we received (as a parameter in
onNext) as the second value, and, finally, passed it to the
onNext—observer.onNext(Pair(counter.incrementAndGet(),t)) downstream.

So, what now? We created a class that can be used as an operator, but how do we use it? It's
easy, take a look at this piece of code:

 fun main(args: Array<String>) {
 Observable.range(10,20)
 .lift(AddSerialNumber<Int>())
 .subscribeBy (
 onNext = {
 println("Next $it")
 },

Resource Management and Extending RxKotlin Chapter 9

[232]

 onError = {
 it.printStackTrace()
 },
 onComplete = {
 println("Completed")
 }
)
 }

You just have to create an instance of your operator and pass it to the lift operator; that's
all you need, we have now created our first operator.

Look at the following output:

Resource Management and Extending RxKotlin Chapter 9

[233]

We have created our first operator, and, frankly, that was super easy. Yes, it seemed a bit
confusing at the start, but as we moved forward, it became easier.

As you may have noticed, the ObservableOperator interface has only one method, so we
can obviously replace the class declaration and everything with just a lambda, as shown
here:

 fun main(args: Array<String>) {
 listOf("Reactive","Programming","in","Kotlin",
 "by Rivu Chakraborty","Packt")
 .toObservable()
 .lift<Pair<Int,String>> {
 observer ->
 val counter = AtomicInteger()
 object :Observer<String> {
 override fun onSubscribe(d: Disposable) {
 observer.onSubscribe(d)
 }

 override fun onNext(t: String) {
 observer.onNext(Pair(counter.incrementAndGet(), t))
 }

 override fun onComplete() {
 observer.onComplete()
 }

 override fun onError(e: Throwable) {
 observer.onError(e)
 }

 }
 }
 .subscribeBy (
 onNext = {
 println("Next $it")
 },
 onError = {
 it.printStackTrace()
 },
 onComplete = {
 println("Completed")
 }
)
 }

Resource Management and Extending RxKotlin Chapter 9

[234]

In this example, we used a list of String to create Observable instead of an Int range.

The following is the output:

The program is almost similar to the previous one, except that we used a lambda and used
Pair<Int,String> as the type of downstream Observer.

As we have gained our grip in creating our custom operators, let's move forward by
learning how to create transformers—no, not the autobot like the movie series; they are just
RxKotlin transformers. What are they? Let's see.

Composing operators with transformer
So, you have learned how to create custom operators, but think of a situation when you
want to create a new operator by combining multiple operators. For instance, I often
wanted to combine the functionality of the subscribeOn and observeOn operators so that
all the computations can be pushed to computation threads, and, when the results are
ready, we can receive them on the main thread.

Yes, it's possible to get the benefits of both operators by adding both operators one after the
other to the chain, as shown here:

 fun main(args: Array<String>) {
 Observable.range(1,10)
 .map {
 println("map - ${Thread.currentThread().name} $it")
 it
 }
 .subscribeOn(Schedulers.computation())
 .observeOn(Schedulers.io())

Resource Management and Extending RxKotlin Chapter 9

[235]

 .subscribe {
 println("onNext - ${Thread.currentThread().name} $it")
 }

 runBlocking { delay(100) }
 }

Though you're already aware of the output, the following is the screenshot if you need a
refresher:

Now, say we have this combination of the subscribeOn and observeOn operator
throughout our project, so we want a shortcut. We want to create our own operator where
we would pass the two Scheduler's where we want subscribeOn and observeOn, and
everything should work perfectly.

Resource Management and Extending RxKotlin Chapter 9

[236]

RxKotlin provides the Transformer interfaces (ObservableTransformer and
FlowableTransformer are two Transformer interfaces) for that purpose. Just like the
operator interfaces, it has only one method—apply. The only difference is that here,
instead of Observers, you have the Observable. So, instead of operating on individual
emits and their items, here, you work directly on the source.

Here is the signature of the ObservableTransformer interface:

 interface ObservableTransformer<Upstream, Downstream> {
 /**
 * Applies a function to the upstream Observable
 and returns an ObservableSource with
 * optionally different element type.
 * @param upstream the upstream Observable instance
 * @return the transformed ObservableSource instance
 */
 @NonNull
 fun apply(@NonNull upstream: Observable<Upstream>):
 ObservableSource<Downstream>
 }

The interface signature is almost the same. Unlike the apply method of
ObservableOperator, here, the apply method receives Upstream Observable and
should return the Observable that should be passed to the Downstream.

So, back to our topic, the following code block should fulfill our requirements:

 fun main(args: Array<String>) {
 Observable.range(1,10)
 .map {
 println("map - ${Thread.currentThread().name} $it")
 it
 }
 .compose(SchedulerManager(Schedulers.computation(),
 Schedulers.io()))
 .subscribe {
 println("onNext - ${Thread.currentThread().name} $it")
 }

 runBlocking { delay(100) }
 }

 class SchedulerManager<T>(val subscribeScheduler:Scheduler,
 val observeScheduler:Scheduler):ObservableTransformer<T,T> {
 override fun apply(upstream: Observable<T>):
 ObservableSource<T> {
 return upstream.subscribeOn(subscribeScheduler)

Resource Management and Extending RxKotlin Chapter 9

[237]

 .observeOn(observeScheduler)
 }

 }

In the preceding code, we created a class for our requirement—SchedulerManager—that
would take two Scheduler as parameters. The first one is to be passed to the subscribeOn
operator and the second one is for the observeOn operator.

Inside the apply method, we returned the Observable Upstream, after applying two
operators to it.

We are omitting the screenshot of the output, as it is the same as the previous one.

Like the lift operator, the compose operator can also be implemented using a lambda.
Let's have another example where we will transform an Observable<Int> to
an Observable<List>. Here is the code:

 fun main(args: Array<String>) {
 Observable.range(1,10)
 .compose<List<Int>> {
 upstream: Observable<Int> ->
 upstream.toList().toObservable()
 }
 .first(listOf())
 .subscribeBy {
 println(it)
 }
 }

In the preceding code, we used upstream.toList().toObservable() as the
Observable$toList() operator converts an Observable<T> to Single<List<T>>, so
we need the toObservable() operator to convert it back to Observable.

Here is the screenshot of the output:

Composing multiple operators to create a new one is also super easy in RxKotlin; just add a
bit extension function to it to see how things become more delightful.

Resource Management and Extending RxKotlin Chapter 9

[238]

Summary
This was a short chapter about resource management and custom operators in RxKotlin.
You learned how you can (or should) create, use, and dispose resources. You learned to
create custom operators. You also learned how to compose multiple operators to create
your desired one.

This was the last chapter on the fundamentals of RxKotlin. From the next chapter onward,
we will start applying our gained knowledge to real-life scenarios and projects.

In today's app-driven era, writing APIs is a primary requirement; in the next chapter, you
will start learning Spring in Kotlin so that you can develop your own API for your projects.

10
Introduction to Web

Programming with Spring for
Kotlin Developers

Kotlin is a powerful language, and its power increases, even more, when the Spring
Framework is used with it. Up until this point, you've learned the concepts of reactive
programming and how to apply these concepts to Kotlin. So far, we developed and wrote
code that interacts with the console, but that's not what we will do while developing
professional apps. We will either build apps that will run on mobile devices or we will
build web applications or REST APIs. At least those are the most commonly built
professional software solutions.

So, how to build them? How to create RESTful web APIs and Android apps? Let's discover.
The last three chapters of this book are dedicated to building REST APIs and Android apps
and, most importantly, making them reactive. Spring is such a vast topic that covering it in
a single chapter is simply not possible, so we will have two chapters on Spring.

This chapter will start by introducing you to Spring, and, by the end of this chapter, you
should be proficient enough to write REST APIs in Kotlin with Spring. We will not add
reactive features in this chapter because we don't want to distract you from the concepts
and ideas of Spring. We want you to grasp the concepts and knowledge of Spring itself well
enough before moving ahead with making them reactive.

Introduction to Web Programming with Spring for Kotlin Developers Chapter 10

[240]

In this chapter, we will cover the following topics:

Introduction to Spring, history, and origin of Spring
Spring IoC and dependency injection
Aspect-oriented programming in Spring
Introduction to Spring Boot
Building REST APIs with Spring Boot

So, what are we waiting for? Let's get started and get familiar with Spring.

Spring, history, and origin of Spring
What is Spring? We cannot give a short answer. It's really tough to define Spring in a
sentence or two. Many people may say Spring is a framework, but this would be also an
understatement for Spring, as it may also be called a framework of frameworks. Spring
provides you with a lot of tools, such as DI (dependency injection), IoC (Inversion of
Control), and AOP (Aspect-oriented programming). While we can use Spring in almost
any type of Java or Kotlin JVM application, it is most useful while developing web
applications on top of the Java EE platform. Before moving into the details of Spring, we
should first understand from where and why Spring originated and how it has evolved.

The origin and history of Spring
It has been more than two decades (around 22 years) since Java has been around. For
enterprise application development, Java introduced a few technologies that were
heavyweight and were very complex enough.

In 2003, Rod Johnson created Spring as an alternative to the heavyweight and complex
Enterprise Java Technologies and EJB to make it easy to develop enterprise applications in
Java. Being lightweight, flexible, and easy to use, Spring gained popularity soon. Over time,
EJB and Java Enterprise Edition (then J2EE) evolved to support POJO-oriented
programming models such as Spring. Not only that, arguably inspired by Spring, EJB also
started offering AOP, DI, and IoC.

However, Spring never looked back. As EJB and Java EE started including ideas inspired by
Spring, Spring started exploring more unconventional and unexplored technology areas,
such as Big Data, Cloud Computing, Mobile App Development, and even reactive
programming, leaving EJB and Java EE far behind.

Introduction to Web Programming with Spring for Kotlin Developers Chapter 10

[241]

During the start of the year, on the month of January 2017, Spring surprised everyone by
announcing its support for Kotlin (yes, they announced Kotlin support even before Google)
and released a few Kotlin APIs. And, when the power of Kotlin was combined with an
already powerful Spring Framework, both got even more powerful. As a reason behind
adding Kotlin support, they stated:

One of the key strengths of Kotlin is that it provides a very good interoperability with
libraries written in Java. But there are ways to go even further and allow writing fully
idiomatic Kotlin code when developing your next Spring application. In addition to Spring
Framework support for Java 8 that Kotlin applications can leverage like functional web or
bean registration APIs, there are additional Kotlin dedicated features that should allow you
to reach a new level of productivity.
That's why we are introducing a dedicated Kotlin support in Spring Framework 5.0.

By Pivotal Spring Team https:/ /spring. io/blog/ 2017/ 01/ 04/introducing- kotlin-
support-in- spring- framework- 5-0.

So, let's start by creating and setting up our Spring project.

Dependency injection and IoC
Inversion of Control (IoC) is a programming technique in which object coupling is bound
at runtime by an assembler object and is typically not known at compile time using static
analysis. IoC can be achieved using dependency injection. We can say that IoC is the idea
and dependency injection is its implementation. Now, what is dependency injection? Let's
find out.

Dependency injection is a technique where one component supplies dependencies for
another component during the instantiation time. The definition sounds confusing, right?
Let's explain it with an example. Consider the following interfaces:

 interface Employee {
 fun executeTask()
 }
 interface Task {
 fun execute()
 }

https://spring.io/blog/2017/01/04/introducing-kotlin-support-in-spring-framework-5-0
https://spring.io/blog/2017/01/04/introducing-kotlin-support-in-spring-framework-5-0
https://spring.io/blog/2017/01/04/introducing-kotlin-support-in-spring-framework-5-0
https://spring.io/blog/2017/01/04/introducing-kotlin-support-in-spring-framework-5-0
https://spring.io/blog/2017/01/04/introducing-kotlin-support-in-spring-framework-5-0
https://spring.io/blog/2017/01/04/introducing-kotlin-support-in-spring-framework-5-0
https://spring.io/blog/2017/01/04/introducing-kotlin-support-in-spring-framework-5-0
https://spring.io/blog/2017/01/04/introducing-kotlin-support-in-spring-framework-5-0
https://spring.io/blog/2017/01/04/introducing-kotlin-support-in-spring-framework-5-0
https://spring.io/blog/2017/01/04/introducing-kotlin-support-in-spring-framework-5-0
https://spring.io/blog/2017/01/04/introducing-kotlin-support-in-spring-framework-5-0
https://spring.io/blog/2017/01/04/introducing-kotlin-support-in-spring-framework-5-0
https://spring.io/blog/2017/01/04/introducing-kotlin-support-in-spring-framework-5-0
https://spring.io/blog/2017/01/04/introducing-kotlin-support-in-spring-framework-5-0
https://spring.io/blog/2017/01/04/introducing-kotlin-support-in-spring-framework-5-0
https://spring.io/blog/2017/01/04/introducing-kotlin-support-in-spring-framework-5-0
https://spring.io/blog/2017/01/04/introducing-kotlin-support-in-spring-framework-5-0
https://spring.io/blog/2017/01/04/introducing-kotlin-support-in-spring-framework-5-0
https://spring.io/blog/2017/01/04/introducing-kotlin-support-in-spring-framework-5-0
https://spring.io/blog/2017/01/04/introducing-kotlin-support-in-spring-framework-5-0
https://spring.io/blog/2017/01/04/introducing-kotlin-support-in-spring-framework-5-0
https://spring.io/blog/2017/01/04/introducing-kotlin-support-in-spring-framework-5-0
https://spring.io/blog/2017/01/04/introducing-kotlin-support-in-spring-framework-5-0
https://spring.io/blog/2017/01/04/introducing-kotlin-support-in-spring-framework-5-0
https://spring.io/blog/2017/01/04/introducing-kotlin-support-in-spring-framework-5-0
https://spring.io/blog/2017/01/04/introducing-kotlin-support-in-spring-framework-5-0
https://spring.io/blog/2017/01/04/introducing-kotlin-support-in-spring-framework-5-0
https://spring.io/blog/2017/01/04/introducing-kotlin-support-in-spring-framework-5-0
https://spring.io/blog/2017/01/04/introducing-kotlin-support-in-spring-framework-5-0
https://spring.io/blog/2017/01/04/introducing-kotlin-support-in-spring-framework-5-0

Introduction to Web Programming with Spring for Kotlin Developers Chapter 10

[242]

A common implementation of the preceding program will be as follows.

The Employee class is as follows:

 class RandomEmployee: Employee {
 val task = RandomTask()
 override fun executeTask() {
 task.execute()
 }
 }

And the Task interface is implemented as follows:

 class RandomTask : Task {
 override fun execute() {
 println("Executing Random Task")
 }
 }

Then, we will create and use the instance of the RandomEmployee class in the main method
as follows:

 fun main(args: Array<String>) {
 RandomEmployee().executeTask()
 }

The RandomTask class is a simple class implementing an interface Task, which has a
function named execute. The RandomEmployee class on the other hand depends on the
Task class. Now, what do we mean by depends? By depends, we mean that the output of
an instance of Employee class is dependent on the Task class.

Let's take a look at the following output:

The preceding program would work fine, and actually, it is a text book program. In
colleges/institutes, when we learned coding for the first time, we learned the way to
initialize variables and/or properties inside constructors or during construction time.

Introduction to Web Programming with Spring for Kotlin Developers Chapter 10

[243]

Now, just try to remember what you learned a few chapters earlier. We should test
everything we write. Now, take a look at the code again—is this piece of code testable? Or
even maintainable? How would you assure that the right Employee is given the right Task?
It's a tightly coupled code.

You should always use coupling concisely. It's true that we cannot achieve much without
coupling. Tightly coupled code, on the other hand, makes it difficult to test and maintain.

Rather than letting the objects create their dependencies at the construction time,
dependency injection provides objects with their dependencies at creation time with some
third-party class. That third-party class will also coordinate with each object in the system.
The following diagram shows the general idea behind dependency injection:

Introduction to Web Programming with Spring for Kotlin Developers Chapter 10

[244]

This image clearly depicts the flow of dependency injection. There will be a Config class (in
Spring, there can be an XML Config file or there can be a Config class as well) that will
create and drive a Bean Container. That Bean Container will control the creation of beans
or POJOs and will pass them where required.

Confused? Let's get our hands-on code and implement the preceding concept. Let's get
started with a brand new implementation of the Employee interface as follows:

 class SoftwareDeveloper(val task: ProgrammingTask) : Employee {
 override fun executeTask() {
 task.execute()
 }
 }

A SoftwareDeveloper class can only execute ProgrammingTask. Now, take a look at the
XML config file shown next:

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="employee"
 class="com.rivuchk.reactivekotlin.springdi.SoftwareDeveloper">
 <constructor-arg ref="task"/>
 </bean>

 <bean id="task" class="com.rivuchk.reactivekotlin.
 springdi.ProgrammingTask"/>

 </beans>

The ProgrammingTask class, a new implementation of the Task interface, looks like as
follows:

class ProgrammingTask: Task {
 override fun execute() {
 println("Writing Programms")
 }
}

This file should be located at \src\main\resources\META-INF\employee.xml. Now,
let's try to understand the config file. We declared each bean using the bean tag. Then, we
used the constructor-arg tag to indicate a constructor argument in that bean.

Introduction to Web Programming with Spring for Kotlin Developers Chapter 10

[245]

If you want to pass another object as a constructor-argref in a bean, you have to
declare that reference object as a bean as well. Alternatively, you can pass constructor-
arg value, as discussed later in this chapter.

The updated main function will look like this:

 fun main(args: Array<String>) {
 val context = ClassPathXmlApplicationContext(
 "META-INF/spring/employee.xml")//(1) val employee =
 context.getBean(Employee::class.java)//(2)
 employee.executeTask()
 context.close()//(3)
 }

Before moving into the details of the preceding program, let's take a look at its output:

Cropped output of DI with XML Configuration program

The first few red-lined outputs are logs of the Spring Framework. Then, we can spot the
output as Writing Programms.

Now, let's try to understand the program. The ClassPathXmlApplicationContext is the
Bean Container we mentioned in the figure. It creates and keeps record of all the beans
mentioned in the XML file and provides them to us when asked for. The String passed in
the constructor of ClassPathXmlApplicationContext is the relative path to the XML
configuration file.

On comment (2), we used context.getBean() to get the Employee instance. This
function takes a class name as a parameter and creates an instance of that class based on the
XML configuration.

Introduction to Web Programming with Spring for Kotlin Developers Chapter 10

[246]

On comment (3), we closed the context. The context, as a Bean Container, always
carries the configuration for you, which keeps the memory blocked. In order to clean the
memory, we should close the context.

Now, as we have some idea about dependency injection via XML configuration file, we
should move toward the annotation-based configuration class and take a look at how it
works.

Spring Annotation configuration
Other than XML, we can also define Spring configuration through annotations in a POJO
class, which will not be used as a bean. In the previous section, we took Employee task
example; let's now take the Student-Assignment example, a similar one. However, this
time, we will not use interfaces; instead, we will directly use classes.

So, here is the Assignment class that takes a lambda as a constructor parameter:

 class Assignment(val task:(String)->Unit) {
 fun performAssignment(assignmentDtl:String) {
 task(assignmentDtl)
 }
 }

This class takes a lambda as task, to execute it later, inside the performAssignment()
method. Here is the Student class that takes Assignment as a property:

 class Student(val assignment: Assignment) {
 fun completeAssignment(assignmentDtl:String) {
 assignment.performAssignment(assignmentDtl)
 }
 }

So, Student would depend on its Assignment and an Assignment would depend on its
task definition (Lambda). The following diagram describes the dependency flow for this
example:

Introduction to Web Programming with Spring for Kotlin Developers Chapter 10

[247]

How to depict this dependency flow in code? It's easy with Annotation Config. Here is the
Configuration class that we used:

 @Configuration
 class Configuration {

 @Bean
 fun student() = Student(assignment())

 @Bean
 fun assignment()
 = Assignment { assignmentDtl -> println
 ("Performing Assignment $assignmentDtl") }
 }

Simple and straightforward, isn't it? The class is annotated with @Configuration, and the
function to return the Student and Assignment beans is annotated with @Bean.

Introduction to Web Programming with Spring for Kotlin Developers Chapter 10

[248]

Now, how to use this class? Simple, like the previous one, take a look at the main function
here:

 fun main(args: Array<String>) {
 val context = AnnotationConfigApplicationContext
 (Configuration::class.java)
 val student = context.getBean(Student::class.java)
 student.completeAssignment("One")
 student.completeAssignment("Two")
 student.completeAssignment("Three")

 context.close()
 }

Instead of ClassPathXmlApplicationContext, we used
AnnotationConfigApplicationContext and passed the Configuration class. The rest
of the program is the same.

This is the output of the program:

Cropped output of DI with Annotation Configuration program

So, we learned dependency injection with Spring. It's really easy, isn't it? Actually, the
Spring Framework makes everything easy; whatever feature they offer, they make it as easy
as calling a method from a POJO class. Spring truly utilizes the power of a POJO.

So, as we got our hands on dependency injection, let's move forward with Aspect-oriented
programming.

Introduction to Web Programming with Spring for Kotlin Developers Chapter 10

[249]

Spring – AOP
Before learning how to implement Aspect-oriented programming with Spring, we should
first learn what Aspect-oriented programming is. The definition of Aspect-oriented
programming says it is a programming paradigm that aims to increase modularity by
allowing the separation of cross-cutting concerns. It does so by adding additional behavior
to existing code (an advice) without modifying the code itself.

Now, what did we mean by cross-cutting concerns? Let's explore.

In a real-life project, multiple components play their own role. For example, if we take our
previous scenario into account, the Student class itself is a component, similarly there
could be a faculty component who would evaluate the student based on his/her
performance. So, let's add a faculty to our program.

The Faculty class should be simple enough, with just a method to evaluate a student. Just
as follows:

 class Faculty {
 fun evaluateAssignment() {
 val marks = Random().nextInt(10)
 println("This assignment is evaluated and given $marks points")
 }
 }

Now, how should the faculty grade a student? He/she must somehow know that the
student has completed an assignment. A common implementation of this business logic
would be by modifying the Student class, as follows:

 class Student(val assignment: Assignment,
 val faculty: Faculty) {
 fun completeAssignment(assignmentDtl:String) {
 assignment.performAssignment(assignmentDtl)
 faculty.evaluateAssignment()
 }
 }

The Faculty instance will be passed to a Student instance, and, once the student is done
with performing the assignment, it will call the Faculty instance and instruct it to evaluate
the assignment. However, think again. Is this a proper implementation? Why should a
student instruct his/her faculty? It's the faculty's job to evaluate assignments of a student; it
just needs to get notified somehow.

Introduction to Web Programming with Spring for Kotlin Developers Chapter 10

[250]

That very thing is known as a cross-cutting concern. Faculty and Student are different
components of the program. They shouldn't have direct interaction at the time of the
assignment review.

AOP let's implement the same. So, here, the Student class will be back to almost its original
state:

 open class Student(public val assignment: Assignment) {
 open public fun completeAssignment(assignmentDtl:String) {
 assignment.performAssignment(assignmentDtl)
 }
 }

Did you notice the differences in the actual code for the Student class in the previous
section? Yes, here we added open keyword to the class declaration and all the properties
and functions of the class. The reason is that, to implement AOP, Spring sub-classes our
beans and overrides methods (including getters of our properties). However, with Kotlin,
everything is final unless you specify it as open, and that will block Spring AOP to
accomplish its purpose. So, in order to make Spring work, we have to mention each
property and method as open.

The main method will be similar, except that we are back to XML-based configuration. Take
a look at the following piece of code:

 fun main(args: Array<String>) {
 val context = ClassPathXmlApplicationContext(
 "META-INF/spring/student_faculty.xml"
)
 val student = context.getBean(Student::class.java)
 student.completeAssignment("One")
 student.completeAssignment("Two")
 student.completeAssignment("Three")

 context.close()
 }

The only file with new things is the configuration file. Take a look at the configuration file
here before we explain it:

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/aop

Introduction to Web Programming with Spring for Kotlin Developers Chapter 10

[251]

 http://www.springframework.org/schema/aop/spring-aop.xsd">

 <bean id="student" class="com.rivuchk.reactivekotlin.
 springdi.aop_student_assignment.Student">
 <constructor-arg ref="assignment"/>
 </bean>

 <bean id="assignment" class="com.rivuchk.reactivekotlin.springdi.
 aop_student_assignment.Assignment" />

 <bean id="faculty"
 class="com.rivuchk.reactivekotlin.springdi.aop_student_assignment.
 Faculty" /><!--1--> <aop:config><!--2--> <aop:aspect
 ref="faculty"><!--3--> <aop:pointcut
 id="assignment_complete"
 expression="execution(* *.completeAssignment(..))"/><!--4-->
 <aop:after pointcut-ref="assignment_complete"
 method="evaluateAssignment" /><!--5-->
 </aop:aspect>
 </aop:config>

 </beans>

So, let's explain the configuration. On comment (1), we declared a new bean named
faculty, although it really isn't a new thing to you and you may have already expected it. I
mentioned it in order to prepare you for the next few lines.

On comment (2), we indicated that the AOP configuration begins. On comment (3), we
indicated that this AOP is regarding the Faculty class, as the Faculty class is the class
that should be notified.

On comment (4), we declared pointcut. A pointcut is like a bookmark on a method, so
whenever that method is called, your class should get notified. The id field denotes the id
for that pointcut, so that you can refer to it in your code. The expression field denotes the
expression for which we should create the pointcut. Here, with the execution expression,
we stated that the pointcut should be on execution of the completeAssignment method.

On comment (5), we declared the method in Faculty class that should get called after the
pointcut expression is executed. We can also declare a method to execute before
pointcut by using aop:before.

Introduction to Web Programming with Spring for Kotlin Developers Chapter 10

[252]

So, now, let's take a look at the following output:

Cropped output of DI with Spring AOP program

As you can see, the evaluateAssignment method is called from the Faculty class every
time we call the completeAssignment method, apparently, with no code, but only with
configuration.

Introduction to Spring Boot
So, we are now familiar with Spring, especially with Spring DI and AOP. Spring Boot
makes a developer's life easier. So far, we've seen how to perform various operations just by
using POJO classes and Spring configurations. What would be your reaction if I tell you
that we can even minimize this configuration? Will you be shocked? Then brace yourself,
because it's true. With Spring Boot, you can get your code ready with minimal
configuration and in just a few steps.

So, what is Spring Boot? It is a Spring module that provides RAD (Rapid application
development) features to the Spring Framework. It is designed to simplify the
bootstrapping and development of new Spring applications. The framework takes an
opinionated approach to configuration, freeing developers from the requirement to define
boilerplate configurations, further reducing your development time.

Introduction to Web Programming with Spring for Kotlin Developers Chapter 10

[253]

So, let's get started. If you are using the IntelliJ IDEA Ultimate edition, you can follow these
steps to create a Spring Boot application:

Start a New Project.1.
From the New Project dialog, select Spring Initializr, define Project SDK, and2.
click on Next, as shown in the following screenshot:

Introduction to Web Programming with Spring for Kotlin Developers Chapter 10

[254]

On the next screen, define the Group, Artifact, Type (Gradle or Maven),3.
Language (Java/Kotlin), Packaging (Jar/War), Java Version, Name, and root
package for the project, as shown in the following screenshot:

Introduction to Web Programming with Spring for Kotlin Developers Chapter 10

[255]

The next screen lets you select multiple Spring dependencies. Make sure to set4.
the Spring Boot version to 2.0.0 M6 and above in this screen. For AOP and DI,
you need to select Aspects under Core, as shown in the screenshot:

Introduction to Web Programming with Spring for Kotlin Developers Chapter 10

[256]

Provide Project name and location and click on Finish.5.

Wasn't it quite easy? Don't get upset if you don't have IntelliJ IDEA Ultimate. Spring Boot is
for everyone. Follow these steps to create a new Spring Boot project for whatever IDE you
have:

Go to http:/ / start. spring. io/.1.
Provide the following details, which are similar to IntelliJ IDEA:2.

Click on Generate Project. The project will get downloaded to your machine.3.

Wasn't it simple enough? Let's try our hands at creating APIs with Spring.

Creating a Rest API with Spring Boot
We've seen the power of Spring and Spring Boot. So, let's use it without any further delay.
We will build a RESTful web service that will return a Todo object. We will further enhance
this project in the next chapter, where we will add Todo and fetch a list of Todo from the
database. We will use JPA and Hibernate along with Spring for that purpose.

http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/

Introduction to Web Programming with Spring for Kotlin Developers Chapter 10

[257]

When we are done with this example, we should get the following response:

Cropped screenshot of browser output

So, let's start by creating a new project. You can use http://start.spring.io/ or you can
use IntelliJ IDEA as well to create a new project.

After you have created the new project, you will see that there's an Application class;
don't give much focus to it, it's there in almost all Spring Boot applications. We need to
create a new class for Todo, as follows:

 data class Todo (
 var id:Int = 0,
 var todoDescription:String,
 var todoTargetDate:String,
 var status:String
)

A REST API requires us to create RestController, which would be the endpoint for API
requests, so here's our RestController:

 @RestController@RequestMapping("/api")
 class TodoController {
 @RequestMapping("/get_todo")
 fun getTodo() = Todo(1,"TODO Project","31/11/2017","Running")
 }

http://start.spring.io/

Introduction to Web Programming with Spring for Kotlin Developers Chapter 10

[258]

Study this small class carefully. First, we annotated our class with @RestController and
@RequestMapping. The purpose of them is simple @RestController denotes that this
class will act as a Controller, that is, all API requests should pass through this class,
@RequestMapping("/api") denotes that the URL of this class will have an /api suffix
after your base URL (note that the URL in the screenshot is
http://127.0.0.1:8080/api/get_todo). We can skip the second annotation if we want
for this class.

Then, we have the getTodo() function; the @RequestMapping annotation is required for
this method as it will define the endpoint. This method is also simple—it just returns a new
object of Todo, statically created.

What? Are you expecting anything more? Sorry to disappoint you, but we are done with
the API. You can just run the project and hit http://127.0.0.1:8080/api/get_todo to
get the following JSON response:

 {"id":1,"todoDescription":"TODO
 Project","todoTargetDate":"31/11/2017","status":"Running"}

Isn't it simple enough?

Summary
In this chapter, you were introduced to Spring with Kotlin. We learned about dependency
injection and Aspect-oriented programming. We learned how a simple POJO class can show
great power with the help of the Spring Framework. In this chapter, we also learned to
create a simple API with Spring.

In the next chapter, we will focus on enhancing our API to a fully functional one with the
help of JPA and Hibernate to work with MySQL database. We will also learn to implement
reactive programming with Spring.

So, don't wait! Head over to the next chapter right now. Our API is still incomplete.

11
REST APIs with Spring JPA

and Hibernate
In the previous chapter, we learned how to create REST APIs with ease. We learned how to
leverage the power of Spring, Hibernate, and JPA to create REST APIs with lines of code
that can be counted on one hand. Those were powerful REST APIs, but they weren't
reactive. This book's primary concern is to teach you how to make everything reactive and
to teach you how to create non-blocking apps and APIs.

So, let's move on. Let's make our REST API reactive. Due to the power of Spring, this
chapter will be short. We will cover the following topics:

Spring Boot with JPA and Hibernate
Reactive programming with Reactor

So, lets get started with the Reactor Framework.

REST API with Spring Boot, Hibernate, and
JPA
In the previous chapter, we saw how to create a static RESTful API. We will now learn how
to manipulate database records as response to an API request. I've used MySQL as a
database in this project.

REST APIs with Spring JPA and Hibernate Chapter 11

[260]

We will use JPA in this project. You can start a new project and add JPA as one of the
dependencies. Alternatively, you can add this to your Gradle dependencies list:

 compile('org.springframework.boot:spring-boot-starter-data-jpa')

Note: You don't need to put version and artifacts here, it is automatically
managed by a Spring Gradle plugin and Spring Boot.

Now, as you added the dependency, you have to add application.properties. Go to
resources and add a file named application.properties with the following content:

 ## Spring DATASOURCE (DataSourceAutoConfiguration &
 DataSourceProperties)
 spring.datasource.url = jdbc:mysql://localhost:3306/tododb
 spring.datasource.username = root
 spring.datasource.password = password

 ## Hibernate Properties

 # The SQL dialect makes Hibernate generate better
 SQL for the chosen database
 spring.jpa.properties.hibernate.dialect =
 org.hibernate.dialect.MySQL5Dialect

 # Hibernate ddl auto (create, create-drop, validate, update)
 spring.jpa.hibernate.ddl-auto = update

Replace tododb with your database name, root with your database username, and
password with your database password. Please note, that you have to create a blank
database with the provided database name (in this case, tododb) prior to running this app.

We've added a little modification to the Todo class. Take a look at the following piece of
code:

 @Entity
 data class Todo (
 @Id @GeneratedValue(strategy = GenerationType.AUTO)
 var id:Int = 0,

 @get: NotBlank
 var todoDescription:String,

 @get: NotBlank
 var todoTargetDate:String,

REST APIs with Spring JPA and Hibernate Chapter 11

[261]

 @get: NotBlank
 var status:String
) {
 constructor():this(
 0,"","",""
)
 }

Yes, we have just added the annotations and a blank constructor, which is required by
Spring Data. So, let's take a look at the annotations and their purposes:

@Entity: This defines a new entity in the database, that is, for every class annotated with
@Entity, a table in the database will be created.

@Id: This annotation defines the primary key (or composite primary key, if multiple) for a
table. The @GeneratedValue annotation denotes that the field value should be
autogenerated. JPA has three strategies for ID generation, as described here:

GenerationType.TABLE: This denotes that the primary keys should be
generated with an underlying table to ensure uniqueness, that is, a table with a
single column and a single row will be created, which will hold the next primary
key value with the column name next_val, and every time a row is inserted in
the target table (the table created with our entity), the primary key will be
assigned the value of next_val and next_val will be incremented.
GenerationType.SEQUENCE: This denotes that the primary keys should be
generated with an underlying database sequence.
GenerationType.IDENTITY: This denotes that the primary keys should be
generated with an underlying database identity.
GenerationTypeenum: This also provides an additional
option—GenerationType.AUTO, one which denotes that a proper
autogeneration strategy should be automatically selected.

The next annotation is @get: NotBlank, which denotes that the field in the table should be
not-null.

So, we are done with the changes in our Todo class. We also have to create a Repository
interface. Take a look at the following interface:

 @Repository
 interface TodoRepository: JpaRepository<Todo,Int>

REST APIs with Spring JPA and Hibernate Chapter 11

[262]

Yes, that short. The @Repository annotation denotes that this interface should be used as a
repository (a DAO class) for the project. We implemented JpaRepository in this interface,
which declares methods to manipulate the table. The first generic parameter for this
interface is the Entity and the second one is for the type of the ID field.

We have also created a new class, ResponseModel, to structure our response JSON. Find
the class definition here:

 data class ResponseModel (
 val error_code:String,
 val error_message:String,
 val data:List<Todo> = listOf()
) {
 constructor(error_code: String,error_message:
 String,todo: Todo)
 :this(error_code,error_message, listOf(todo))
 }

This response model contains the error_code and error_message properties. Let's
describe them; if there's an error while processing the API request, error_code will hold a
non-zero value and error_message will hold a message describing that error. The
error_message property can also hold a generic message.

The data property will hold a list of Todo, which will be converted to a JSON array in the
response JSON. The data property is optional, as this response model will be used for all
APIs in this project and all APIs may not return a list of Todo or even a single Todo object
(for example the edit, add, and delete Todo APIs do not require to send a Todo).

The final part of this API is the controller class. Here is the definition:

 @RestController
 @RequestMapping("/api")
 class TodoController(private val todoRepository: TodoRepository) {

 @RequestMapping("/get_todo", method =
 arrayOf(RequestMethod.POST))
 fun getTodos() = ResponseModel("0","", todoRepository.findAll())

 @RequestMapping("/add_todo", method =
 arrayOf(RequestMethod.POST))
 fun addTodo(@Valid @RequestBody todo:Todo) =
 ResponseEntity.ok().body(ResponseModel
 ("0","",todoRepository.save(todo)))

 @RequestMapping("/edit_todo", method =
 arrayOf(RequestMethod.POST))

REST APIs with Spring JPA and Hibernate Chapter 11

[263]

 fun editTodo(@Valid @RequestBody todo:Todo):ResponseModel {
 val optionalTodo = todoRepository.findById(todo.id)
 if(optionalTodo.isPresent) {
 return ResponseModel("0", "Edit
 Successful",todoRepository.save(todo))
 } else {
 return ResponseModel("1", "Invalid Todo ID")
 }
 }
 @RequestMapping("/add_todos", method =
 arrayOf(RequestMethod.POST))
 fun addTodos(@Valid @RequestBody todos:List<Todo>)
 = ResponseEntity.ok().body(ResponseModel
 ("0","",todoRepository.saveAll(todos)))

 @RequestMapping("/delete_todo/{id}", method =
 arrayOf(RequestMethod.DELETE))
 fun deleteTodo(@PathVariable("id") id:Int):ResponseModel {
 val optionalTodo = todoRepository.findById(id)
 if(optionalTodo.isPresent) {
 todoRepository.delete(optionalTodo.get())
 return ResponseModel("0", "Successfully Deleted")
 } else {
 return ResponseModel("1", "Invalid Todo")
 }
 }

 }

So, apart from the get_todo endpoint, we have added endpoints for add_todo,
edit_todo, delete_todo, and add_todos. We will take a closer look at each of them.
However, the first focus on the constructor of the TodoController class. It takes a
parameter for TodoRepository, which will be injected by the Spring Annotation. We are
using that todoRepository property in all our APIs to read/write to and from the
database.

Now, take a closer look at the get_todo API. It uses the findAll method of
TodoRepository to get all todos from the DB. Here is the JSON response of that API (note
this response will vary as per the state of the database and Todo table):

 {
 "error_code": "0",
 "error_message": "",
 "data": [
 {
 "id": 1,
 "todoDescription": "Trial Edit",

REST APIs with Spring JPA and Hibernate Chapter 11

[264]

 "todoTargetDate": "2018/02/28",
 "status": "due"
 },
 {
 "id": 2,
 "todoDescription": "Added 2",
 "todoTargetDate": "2018/02/28",
 "status": "due"
 },
 {
 "id": 3,
 "todoDescription": "Edited 3",
 "todoTargetDate": "2018/02/28",
 "status": "due"
 },
 {
 "id": 4,
 "todoDescription": "Added 4",
 "todoTargetDate": "2018/02/28",
 "status": "due"
 },
 {
 "id": 5,
 "todoDescription": "Added 5",
 "todoTargetDate": "2018/02/28",
 "status": "due"
 },
 {
 "id": 7,
 "todoDescription": "Added 7",
 "todoTargetDate": "2018/02/28",
 "status": "due"
 }
]
 }

The next API is the add_todo API:

 @RequestMapping("/add_todo", method = arrayOf(RequestMethod.POST))
 fun addTodo(@Valid @RequestBody todo:Todo) =
 ResponseEntity.ok().body(ResponseModel
 ("0","",todoRepository.save(todo)))

REST APIs with Spring JPA and Hibernate Chapter 11

[265]

This API takes a Todo from the body of a POST request, stores it, and returns a success
ResponseModel. The following Postman screenshot shows the request sent to the API:

In the JSON request, we are sending all details of Todo except the ID, as the id field will be
autogenerated.

The response of the API is as follows:

 {
 "error_code": "0",
 "error_message": "",
 "data": [
 {
 "id": 8,
 "todoDescription": "Added 8",
 "todoTargetDate": "2018/02/28",
 "status": "due"
 }
]
 }

The add_todos API is almost similar to the add_todo API, except that here it takes an
arbitrary number of Todos to be added to the database.

REST APIs with Spring JPA and Hibernate Chapter 11

[266]

The delete_todo API is different than all other APIs in this project. Take a closer look at
this API here:

 @RequestMapping("/delete_todo/{id}", method =
 arrayOf(RequestMethod.DELETE))
 fun deleteTodo(@PathVariable("id") id:Int):ResponseModel {
 val optionalTodo = todoRepository.findById(id)
 if(optionalTodo.isPresent) {
 todoRepository.delete(optionalTodo.get())
 return ResponseModel("0", "Successfully Deleted")
 } else {
 return ResponseModel("1", "Invalid Todo")
 }
 }

This API takes a DELETE request in all other APIs other than the POST request (reason is
simple, it just deletes Todo).

It also takes the ID of todo in the path variable instead of RequestBody; again, simple
reason, we just need one field in this API, that is, ID of the Todo, to be deleted. So, no need
to take an entire JSON as a request body here. Instead, a path variable will be a perfect fit
for this API.

An example request to this API will be this
URL—http://localhost:8080/api/delete_todo/7. The API will check if Todo with
the specified ID exists, it will delete Todo if it exists; otherwise, it will just return an error.

Here are two ideal responses of this API:

 {
 "error_code": "0",
 "error_message": "Successfully Deleted",
 "data": []
 }

If Todo was found and deleted, you'll get this response:

 {
 "error_code": "1",
 "error_message": "Invalid Todo",
 "data": []
 }

If Todo with the specified ID is not found.

REST APIs with Spring JPA and Hibernate Chapter 11

[267]

Now, as we gained some knowledge on Spring, let's get started with Reactor, a fourth-
generation reactive programming library by Pivotal—the custodian for Spring.

Reactive programming with Reactor
Just like the ReactiveX Framework, Reactor is also a fourth-generation reactive
programming library. It allows you to write non-blocking reactive apps. However, it has
some significant differences as compared to ReactiveX, as listed here:

Unlike ReactiveX, which supports several platforms and languages (for example,
RxSwift for Swift, RxJava for JVM, RxKotlin for Kotlin, RxJS for JavaScript,
RxCpp for C++, and so on), Reactor supports only JVM.
You can use RxJava and RxKotlin, if you have Java 6+. However, to use Reactor,
you need Java 8 and above.
RxJava and RxKotlin doesn't provide any direct integration with Java 8 functional
APIs, such as CompletableFuture, Stream, and Duration, which Reactor does.
If you're planning to implement reactive programming in Android, you have to
use RxAndroid, RxJava, and/or RxKotlin (collectively, ReactiveX) or Vert.X,
unless you have minimum SDK as Android SDK 26 and above, that too without
official support. As reactor project doesn't have official support on Android and it
works only on Android SDK 26 and above.

Other than these differences, Reactor and ReactiveX APIs are quite similar, so get started by
adding Reactor to your Kotlin project.

Add Reactor to your project
If you're using Gradle, add the following dependency:

 compile 'io.projectreactor:reactor-core:3.1.1.RELEASE'

If you're using Maven, add the following dependency to the POM.xml file:

 <dependency>
 <groupId>io.projectreactor</groupId>
 <artifactId>reactor-core</artifactId>
 <version>3.1.1.RELEASE</version>
 </dependency>

REST APIs with Spring JPA and Hibernate Chapter 11

[268]

You can also download the JAR file from
http://central.maven.org/maven2/io/projectreactor/reactor-core/3

.1.1.RELEASE/reactor-core-3.1.1.RELEASE.jar.

For more options, check
out https://mvnrepository.com/artifact/io.projectreactor/reactor-
core/3.1.1.RELEASE.

So, as we're done with adding Reactor Core to our project, let's get started with Flux and
Mono, producers in Reactor.

Understanding Flux and Mono
As I said, Reactor is another fourth-generation Reactive library like ReactiveX. It originally
started as a lightweight version of Rx; however, with time, it grew, and today it's almost of
the same weight as ReactiveX.

It also has a producer and consumer module, just like Rx. It has Flux, similar to Flowable
and Mono as a combination of Single and Maybe.

Note that when describing Flux, I said Flowable, not Observable. You can probably guess
the reason. Yes, all Reactor types are backpressure enabled. Basically, all the Reactor types
are a direct implementation of the Reactive Streams Publisher API.

Flux is a Reactor producer that can emit N number of emissions and can terminate
successfully or with an error. Similarly, with Mono, it may or may not emit single items. So,
what are we waiting for? Let's get started with Flux and Mono.

Consider the following code example:

 fun main(args: Array<String>) {
 val flux = Flux.just("Item 1","Item 2","Item 3")
 flux.subscribe(object:Consumer<String>{
 override fun accept(item: String) {
 println("Got Next $item")
 }
 })
 }

http://central.maven.org/maven2/io/projectreactor/reactor-core/3.1.1.RELEASE/reactor-core-3.1.1.RELEASE.jar
http://central.maven.org/maven2/io/projectreactor/reactor-core/3.1.1.RELEASE/reactor-core-3.1.1.RELEASE.jar
https://mvnrepository.com/artifact/io.projectreactor/reactor-core/3.1.1.RELEASE
https://mvnrepository.com/artifact/io.projectreactor/reactor-core/3.1.1.RELEASE

REST APIs with Spring JPA and Hibernate Chapter 11

[269]

The output is as follows:

The output, as well as the program, is quite similar to RxKotlin, isn't it? The only difference
is that we are using Flux instead of Flowable.

So, let's take a Mono example. Take a look at the following example:

 fun main(args: Array<String>) {

 val consumer = object : Consumer<String> {//(1)
 override fun accept(item: String) {
 println("Got $item")
 }
 }

 val emptyMono = Mono.empty<String>()//(2)
 emptyMono
 .log()
 .subscribe(consumer)

 val emptyMono2 = Mono.justOrEmpty<String>(null)//(3)
 emptyMono2
 .log()
 .subscribe(consumer)

 val monoWithData = Mono.justOrEmpty<String>("A String")//(4)
 monoWithData
 .log()
 .subscribe(consumer)

 val monoByExtension = "Another String".toMono()//(5)
 monoByExtension
 .log()
 .subscribe(consumer)
 }

REST APIs with Spring JPA and Hibernate Chapter 11

[270]

Before we describe the program line by line, let's first focus on the log operator in each of
the subscriptions. The Reactor Framework understands a developer's need to log things,
that's why they provided an operator so that we can have a log of every event within a Flux
or Mono.

On comment (1), in this program, we created a Consumer instance to use in all the
Subscriptions. On comment (2), we created an empty Mono with the Mono.empty()
factory method. As the name depicts, this factory method creates an empty Mono.

On comment (3), we created another empty Mono with Mono.justOrEmpty(); this
method creates Mono with the value passed or creates an empty Mono if null is passed as a
value.

On comment (4), we created Mono with the same factory method, but this time with a
String value passed.

On comment (5), we created Mono with the help of the toMono extension function.

Here is the output of the program:

REST APIs with Spring JPA and Hibernate Chapter 11

[271]

So, as you have learned about Spring and you also learned about reactive programming
with Reactor; would you like to do some research yourself and make our API reactive? As a
helping gesture, I would like to suggest that you study a little bit about WebFlux. You can
also read through Reactive Programming in Spring 5.0 by Oleh Dokuka and Igor
Lozynskyi (https://www. packtpub. com/ application- development/ reactive- programming-
spring-50).

Summary
In this chapter, we learned about creating a REST API quickly with Spring JPA, Hibernate,
and Spring Boot. We also learned about Reactor and its use. We created the RESTful API for
our project, which we will use in the next chapter while creating the Android app.

The next chapter, which is the last chapter of this book, is about creating an Android App
with Kotlin and reactive programming.

You're about to complete this book—complete learning Reactive Programming in Kotlin. Just
another chapter is ahead. So, turn the page fast.

https://www.packtpub.com/application-development/reactive-programming-spring-50
https://www.packtpub.com/application-development/reactive-programming-spring-50
https://www.packtpub.com/application-development/reactive-programming-spring-50
https://www.packtpub.com/application-development/reactive-programming-spring-50
https://www.packtpub.com/application-development/reactive-programming-spring-50
https://www.packtpub.com/application-development/reactive-programming-spring-50
https://www.packtpub.com/application-development/reactive-programming-spring-50
https://www.packtpub.com/application-development/reactive-programming-spring-50
https://www.packtpub.com/application-development/reactive-programming-spring-50
https://www.packtpub.com/application-development/reactive-programming-spring-50
https://www.packtpub.com/application-development/reactive-programming-spring-50
https://www.packtpub.com/application-development/reactive-programming-spring-50
https://www.packtpub.com/application-development/reactive-programming-spring-50
https://www.packtpub.com/application-development/reactive-programming-spring-50
https://www.packtpub.com/application-development/reactive-programming-spring-50
https://www.packtpub.com/application-development/reactive-programming-spring-50
https://www.packtpub.com/application-development/reactive-programming-spring-50
https://www.packtpub.com/application-development/reactive-programming-spring-50
https://www.packtpub.com/application-development/reactive-programming-spring-50
https://www.packtpub.com/application-development/reactive-programming-spring-50

12
Reactive Kotlin and Android

So, our learning about reactive programming in Kotlin is almost complete. We have arrived
at the last, but probably the most important, chapter of this book. Android is probably the
biggest platform for Kotlin. During the last Google IO—Google IO 17, Google announced
official support for Kotlin and added Kotlin as a first-class citizen of the Android
application development. Kotlin is now the only officially supported Android application
development language other than Java.

Reactive programming is already there in Android—most of the top libraries in Android
support reactiveness. So, it is quite obvious that in a book titled Reactive Programming in
Kotlin, we must cover Android as well.

Teaching you Android development from scratch is beyond the scope of this book, as it's a
vast topic. You can find many books out there if you would like to learn Android
development from scratch. This book assumes you have some basic knowledge in Android
application development and can work with RecyclerView, Adapter, Activity,
Fragment, CardView, AsyncTask, and more. If you are not familiar with any of the topics
mentioned, you can read Expert Android Programming by Prajyot Mainkar.

So, are you wondering what this chapter has for you? Take a look at the following list of the
topics we will cover:

Setting up Kotlin in Android Studio 2.3.3 and 3.0
Getting started with ToDoApp in Android and Kotlin
API calls with Retrofit 2
Setting up RxAndroid and RxKotlin
Using RxKotlin with Retrofit 2
Developing our app
A brief introduction to RxBinding

Reactive Kotlin and Android Chapter 12

[273]

So, let's get started with setting up Kotlin in Android Studio.

Setting up Kotlin in Android Studio
We strongly encourage you to use Android Studio 3.0 for Android development,
irrespective of whether you're using Kotlin or not. Android Studio 3.0 is the latest version of
Android Studio, with a lot of bug fixes, new features, and improved Gradle build time.

For Android Studio 3.0, you don't need to do any setup to use Kotlin for Android
development. You just need to select Include Kotlin support while creating a new project.
Here is a screenshot for your reference:

Reactive Kotlin and Android Chapter 12

[274]

We've highlighted the Include Kotlin support section of the Android Studio—Create
Android Project dialog.

However, if you're using Android Studio 2.3.3, then follow these steps:

Go to Android Studio | Settings | Plugins.1.
Search for Kotlin (take a look at the following screenshot) and install that plugin2.
as follows:

Reactive Kotlin and Android Chapter 12

[275]

Start a new Android project.3.
To apply the Kotlin plugin to the project, open the project level build.gradle4.
and modify the content, as shown here:

Open the build.gradle in your module (or we might say, app level5.
build.gradle) and add the following dependencies:

 compile "org.jetbrains.kotlin:kotlin-stdlib-jre7:$kotlin_version"

You are now all set to start writing Kotlin code in Android Studio.

However, before starting with the Kotlin code, let's first review our build.gradle. The
preceding code that I showed for Android Studio 2.3.3 is valid for Android Studio 3.0 as
well, you just don't have to manually add this as Android Studio 3.0 automatically adds it
for you. However, what is the purpose of those lines? Let's inspect them.

In the project level build.gradle file, the ext.kotlin_version = "1.1.51" line
creates a variable in Gradle with the name of kotlin_version; this variable will hold a
String value, 1.1.51 (which is the latest version of Kotlin at the time of writing this book).
We are writing this in a variable, as this version is required in a number of places in the
project level and app level build.gradle file. If we declare it once and use it in multiple
places, then there will be consistency, and there won't be any chance for human mistakes.

Then, on the same file (project level build.gradle), we will add classpath
"org.jetbrains.kotlin:kotlin-gradle-plugin:$kotlin_version". This will
define a classpath used by Gradle to search for kotlin-jre when we add them as a
dependency.

Reactive Kotlin and Android Chapter 12

[276]

Inside the app level build.gradle file, we will write implementation
"org.jetbrains.kotlin:kotlin-stdlib-jre7:$kotlin_version".

So, let's get started with the Kotlin code. As we mentioned in the previous chapter, we will
create a ToDoApp. There will be three screens, one for the ToDo List, one to create a ToDo,
and one to edit/delete ToDo.

Getting started with ToDoApp on Android
As mentioned earlier, we are using Android Studio 3.0 (stable) for this project. The
following screenshot depicts the project structure that we're using:

Reactive Kotlin and Android Chapter 12

[277]

In this project, we are using package-by features, and I do prefer to use package-by for
Android development, mainly for its scalability and maintainability. Also, note that it is
best practice to use package-by feature in Android; although, you can obviously use your
preferred model. You can read more about the package-by feature at
https://hackernoon.com/package-by-features-not-layers-2d076df1964d.

Now, let's understand the package structure used in this application. The root package here
is com.rivuchk.todoapplication, the package for the application, identical with the
applicationId. The root package contains two classes—ToDoApp and BaseActivity.
The ToDoApp class extends android.app.Application so that we can have our own
implementation of the Application class. Now, what is BaseActivity? BaseActivity is
an abstract class created within this project, and all activities in this project should extend
BaseActivity; so, if we want to implement something throughout all the activities in this
project, we can write the code in BaseActivity and rest assured that all activities will now
implement the same.

Next, we have an apis package for the classes and files related to the API calls (we will use
Retrofit) and datamodels for models (POJO) classes.

We have the Utils package for CommonFunctions and Constants (a singleton Object to
hold constant variables such as BASE_URL and others).

The addtodo, tododetails, and todolist are three feature-based packages. The
todolist package contains Activity and Adapter for displaying the list of todos. The
tododetails package contains the Activity responsible to display the details of todo. We
will use the same Activity to edit as well. The addtodo package holds the Activity that
will be used to accomplish the functionality of adding a todo.

Before starting with the activities and layouts, I want you to take a look inside
BaseActivity and ToDoApp, so here is the code inside the ToDoApp.kt file:

 class ToDoApp:Application() {
 override fun onCreate() {
 super.onCreate()
 instance = this
 }

 companion object {
 var instance:ToDoApp? = null
 }
 }

https://hackernoon.com/package-by-features-not-layers-2d076df1964d

Reactive Kotlin and Android Chapter 12

[278]

A small class indeed; it contains only a companion object to provide us with the instance.
This class will grow as we move ahead with this chapter. We declared ToDoApp as the
application class for this project in the manifest, as shown here:

 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/AppTheme"
 android:name=".ToDoApp">

 </application>

The BaseActivity is also now small. As with the ToDoApp, it'll also grow over the course
of this chapter:

 abstract class BaseActivity : AppCompatActivity() {
 final override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 onCreateBaseActivity(savedInstanceState)
 }
 abstract fun onCreateBaseActivity(savedInstanceState: Bundle?)
 }

For now, BaseActivity only hides the onCreate method from the Activity class, and
provides a new abstract method—onCreateBaseActivity. This class also mandates that
we override onCreateBaseActivity in child classes so that if there's anything we need to
implement inside the onCreate method, of all activities, we can do that inside the
onCreate method of BaseActivity, and forget the rest.

So, let's get started with the todolist. This package contains all the sources required to
display the list of todos. If you look at the previous screenshot carefully, you should notice
that the package contains two classes—TodoListActivity and ToDoAdapter.

Reactive Kotlin and Android Chapter 12

[279]

So, let's start with the design of TodoListActivity; when completed, this Activity
should look like the following screenshot:

As the screenshot depicts, we will need a FloatingActionButton and a RecyclerView
for this Activity, so here is the XML layout for this
example—activity_todo_list.xml:

 <?xml version="1.0" encoding="utf-8"?>
 <android.support.design.widget.CoordinatorLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"

Reactive Kotlin and Android Chapter 12

[280]

 tools:context="com.rivuchk.todoapplication.
 todolist.TodoListActivity">

 <android.support.design.widget.AppBarLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:theme="@style/AppTheme.AppBarOverlay">

 <android.support.v7.widget.Toolbar
 android:id="@+id/toolbar"
 android:layout_width="match_parent"
 android:layout_height="?attr/actionBarSize"
 android:background="?attr/colorPrimary"
 app:popupTheme="@style/AppTheme.PopupOverlay" />

 </android.support.design.widget.AppBarLayout>

 <android.support.v7.widget.RecyclerView
 android:id="@+id/rvToDoList"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:layoutManager="LinearLayoutManager"
 android:orientation="vertical"
 app:layout_behavior="@string/appbar_scrolling_view_behavior"/>

 <android.support.design.widget.FloatingActionButton
 android:id="@+id/fabAddTodo"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="bottom|end"
 android:layout_margin="@dimen/fab_margin"
 app:srcCompat="@drawable/ic_add" />

 </android.support.design.widget.CoordinatorLayout>

Take a look at the preceding layout. In the declaration of RecyclerView, we set
layoutManager to LinearLayoutManager and orientation to vertical-all from the layout
itself, so we would not need to worry about setting it inside the code.

We used a FloatingActionButton to add new todos. We also used AppBarLayout as an
action bar.

Reactive Kotlin and Android Chapter 12

[281]

It's time to move ahead and take a look inside the onCreateBaseActivity method of the
TodoListActivity, as shown here:

 lateinit var adapter: ToDoAdapter

 private val INTENT_EDIT_TODO: Int = 100

 private val INTENT_ADD_TODO: Int = 101

 override fun onCreateBaseActivity(savedInstanceState: Bundle?) {
 setContentView(R.layout.activity_todo_list)
 setSupportActionBar(toolbar)

 fabAddTodo.setOnClickListener { _ ->
 startActivityForResult(intentFor<AddTodoActivity>
 (),INTENT_ADD_TODO)
 }

 adapter = ToDoAdapter(this,{
 todoItem->
 startActivityForResult(intentFor<TodoDetailsActivity>
 (Pair(Constants.INTENT_TODOITEM,todoItem)),INTENT_EDIT_TODO)
 })
 rvToDoList.adapter = adapter

 fetchTodoList()
 }

In the preceding program, we created an instance of ToDoAdapter to set it as the adapter of
rvToDoList, the RecyclerView where we will display the list of todos. While creating the
instance of ToDoAdapter, we passed a lambda; this lambda should be called when an item
from the rvToDoList is clicked.

We also called a fetchTodoList()function at the end of the onCreateBaseActivity
method. As the name indicates, it is responsible to fetch the todo list from the REST API. We
will see the definition and go into the details of this method later, but, for now, let's take a
look at Adapter:

 class ToDoAdapter(
 private val context:Context, //(1)
 val onItemClick:(ToDoModel?)->Unit = {}//(2)
):RecyclerView.Adapter<ToDoAdapter.ToDoViewHolder>() {
 private val inflater:LayoutInflater =
 LayoutInflater.from(context)//(3) private val
 todoList:ArrayList<ToDoModel> = arrayListOf()//(4) fun
 setDataset(list:List<ToDoModel>) {//(5)
 todoList.clear()

Reactive Kotlin and Android Chapter 12

[282]

 todoList.addAll(list)
 notifyDataSetChanged()
 }
 override fun getItemCount(): Int = todoList.size

 override fun onBindViewHolder(holder: ToDoViewHolder?,
 position: Int) {
 holder?.bindView(todoList[position])
 }

 override fun onCreateViewHolder
 (parent: ViewGroup?, viewType: Int): ToDoViewHolder {
 return ToDoViewHolder
 (inflater.inflate(R.layout.item_todo,parent,false))
 }

 inner class ToDoViewHolder(itemView:View):
 RecyclerView.ViewHolder(itemView) {
 fun bindView(todoItem:ToDoModel?) {
 with(itemView) {//(6)
 txtID.text = todoItem?.id?.toString()
 txtDesc.text = todoItem?.todoDescription
 txtStatus.text = todoItem?.status
 txtDate.text = todoItem?.todoTargetDate

 onClick {
 this@ToDoAdapter.onItemClick(todoItem)//(7)
 }
 }
 }
 }
 }

Study the preceding code carefully. It's the complete ToDoAdapter class. We took an
instance of context as a comment (1) constructor parameter. We used that context to get
an instance of Inflater, which in turn was used to inflate the layouts inside the
onCreateViewHolder method. We created a blank ArrayList of ToDoModel. We used
that list to get item counts of the adapter getItemCount() function, and inside the
onBindViewHolder function, to pass it to the ViewHolder instance.

We also took a lambda as a val parameter inside the constructor of
ToDoAdapter—onItemClick (comment (2)). That lambda should receive an instance of
ToDoModel as a parameter and should return unit.

Reactive Kotlin and Android Chapter 12

[283]

We used that lambda at bindView of ToDoViewHolder, inside onClick (comment (7)) of
itemView (the view for that item in the list). So, whenever we click on an item, the
onItemClick lambda will be called, which is passed from the TodoListActivity.

Now, focus on comment (5)—setDataset() method. This method is used to assign a
new list to the adapter. It will clear the ArrayList—TodoList and add all items from the
passed list to it. This method, setDataset, should be called by the fetchTodoList()
method in TodoListActivity. That fetchTodoList() method is responsible for
fetching the list from the REST API, and it will pass that list to the adapter.

We will look inside the fetchTodoList() method later, but let's concentrate on the REST
API and Retrofit 2 for API calls.

Retrofit 2 for API calls
Retrofit by Square is one of the most famous and widely used REST clients for Android. It
internally uses OkHTTP for HTTP and network calls. The word REST client makes it
different from other networking libraries in Android. While most of the networking
libraries (Volley, OkHTTP, and others) focus on synchronous/asynchronous requests,
prioritization, ordered requests, concurrent/parallel requests, caching, and more. Retrofit
gives more attention to making network calls and parsing data more like method calls. It
simply turns your HTTP API into a Java interface. And it doesn't even try to solve network
problems by itself, but delegates this to OkHTTP internally.

So, how does it transform an HTTP API into a Java interfaces? Retrofit simply uses a
converter to serialize/deserialize POJO (plain old Java object) classes into/from JSON or
XML. Now, what is a converter? Converters are those helper classes that parse JSON/XML
for you. A converter generally uses the Serializable interface internally to convert
to/from JSON/XML and POJO classes (data classes in Kotlin). It being pluggable gives you
many choices of converters, such as the following:

Gson
Jackson
Guava
Moshi
Java 8 converter
Wire
Protobuf
SimpleXML

Reactive Kotlin and Android Chapter 12

[284]

We will use Gson for our book. To work with Retrofit, you'll need the following three
classes:

A Model class (POJO or data class)
A class to provide you with the Retrofit client instance with the help of
Retrofit.Builder()

An Interface that defines possible HTTP operations, including the request type
(GET or POST), parameters/request body/query strings, and finally the response
type

So, let's get started with the Model class.

Before creating the class, we need to know the structure of the JSON response first. We all
saw JSON responses in the previous chapter, but, as a quick recap, here is the JSON
response for the GET_TODO_LIST API:

 {
 "error_code": 0,
 "error_message": "",
 "data": [
 {
 "id": 1,
 "todoDescription": "Lorem ipsum dolor sit amet, consectetur
 adipiscing elit. Integer tincidunt quis lorem id rhoncus. Sed
 tristique arcu non sapien consequat commodo. Nulla dolor
 tellus, molestie nec ipsum at, eleifend bibendum quam.",
 "todoTargetDate": "2017/11/18",
 "status": "complete"
 }
]
 }

The error_code denotes whether there are any errors. If error_code is a non-zero value,
then there must be an error. If it's zero, then there is no error, and you can proceed with
parsing the data.

The error_message will contain information for you if there's an error. If the error_code
is zero, the error_message will be blank.

The data key will hold a JSON array for the list of todos.

One thing to note here is that error_code and error_message will be consistent for all
APIs in our project, so it will be better if we create a base class for all the APIs, and then we
extend that class for each API when required.

Reactive Kotlin and Android Chapter 12

[285]

This is our BaseAPIResponse class:

 open class BaseAPIResponse (
 @SerializedName("error_code")
 val errorCode:Int,
 @SerializedName("error_message")
 val errorMessage:String): Serializable

We have two val properties in this class—errorCode and errorMessage; note the
annotations @SerializedName. This annotation is used by Gson to declare the serialized
name for a property; the serialized name should be the same as the JSON response. You can
easily avoid this annotation if you have the same variable name as the JSON response. If the
variable name is different, the serialized name is used to match the JSON response.

Let's now move ahead with GetToDoListAPIResponse; the following is the class
definition:

 open class GetToDoListAPIResponse(
 errorCode:Int,
 errorMessage:String,
 val data:ArrayList<ToDoModel>
):BaseAPIResponse(errorCode,errorMessage)

Here, we skipped the @Serialized annotation for data, as we are using the same name as
the JSON response. The remaining two properties are declared by the BaseAPIResponse
class.

For data, we are using an ArrayList of ToDoModel; Gson will take care of the rest to
convert a JSON array to an ArrayList.

Let's now take a look at the ToDoModel class:

 data class ToDoModel (
 val id:Int,
 var todoDescription:String,
 var todoTargetDate:String,
 var status:String
):Serializable

The builder class for Retrofit is simple, as shown here:

 class APIClient {
 private var retrofit: Retrofit? = null
 fun getClient(): Retrofit {
 if(null == retrofit) {

 val client = OkHttpClient.Builder().connectTimeout(3,

Reactive Kotlin and Android Chapter 12

[286]

 TimeUnit.MINUTES)
 .writeTimeout(3, TimeUnit.MINUTES)
 .readTimeout(3,
 TimeUnit.MINUTES).addInterceptor(interceptor).build()

 retrofit = Retrofit.Builder()
 .baseUrl(Constants.BASE_URL)
 .addConverterFactory(GsonConverterFactory.create())
 .client(client)
 .build()
 }

 return retrofit!!
 }

 fun getAPIService() =
 getClient().create(APIService::class.java)
 }

The getClient() function is responsible to create and provide you with a Retrofit client.
The getAPIService() function helps you with pairing the Retrofit client with your
defined HTTP operations and create an instance of the interface.

We used OkHttpClient and Retrofit.Builder() to create the
Retrofit instance. If you're not familiar with them, you may visit
http://www.vogella.com/tutorials/Retrofit/article.html.

Let's now create the interface for the HTTP operations—APIService—as follows:

 interface APIService {
 @POST(Constants.GET_TODO_LIST)
 fun getToDoList(): Call<GetToDoListAPIResponse>

 @FormUrlEncoded
 @POST(Constants.EDIT_TODO)
 fun editTodo(
 @Field("todo_id") todoID:String,
 @Field("todo") todo:String
): Call<BaseAPIResponse>

 @FormUrlEncoded
 @POST(Constants.ADD_TODO)
 fun addTodo(@Field("newtodo") todo:String): Call<BaseAPIResponse>
 }

http://www.vogella.com/tutorials/Retrofit/article.html

Reactive Kotlin and Android Chapter 12

[287]

We have created API interfaces for all our APIs. Note the return types of the functions. They
return a Call instance that encapsulates the actual expected response.

Now, what is Call instance? And what is the purpose of using it?

The Call instance is an invocation of a Retrofit method that sends a request to a webserver
and returns a response. Each call yields its own HTTP request and response pair. What to
do with the Call<T> instance? We have to enqueue it with a Callback<T> instance.

So, the same pull mechanism, same callback hell. However, we should be reactive,
shouldn't we? Let's do that.

RxKotlin with Retrofit
In Android, we can use RxAndroid in addition to RxKotlin for added Android flavors and
benefits, and Retrofit supports them as well.

So, let's start by modifying our build.gradle in favor of ReactiveX. Add the following
dependencies to the app level build.gradle:

 implementation 'com.squareup.retrofit2:adapter-rxjava2:2.3.0 '
 implementation 'io.reactivex.rxjava2:rxandroid:2.0.1'
 implementation 'io.reactivex.rxjava2:rxkotlin:2.1.0'

The first one will provide Retrofit 2 Adapters for RxJava 2, while the following two add
RxAndroid and RxKotlin to the project.

Note that RxKotlin is a wrapper on top of RxJava, so adapters for RxJava 2
will work perfectly with RxKotlin 2.

Now that we have added the dependencies, let's move on by modifying our code to work
with Observable/Flowable instead of Call.

This is the modified APIClient.kt file:

 class APIClient {
 private var retrofit: Retrofit? = null
 enum class LogLevel {
 LOG_NOT_NEEDED,
 LOG_REQ_RES,
 LOG_REQ_RES_BODY_HEADERS,
 LOG_REQ_RES_HEADERS_ONLY

Reactive Kotlin and Android Chapter 12

[288]

 }
 /**
 * Returns Retrofit builder to create
 * @param logLevel - to print the log of Request-Response
 * @return retrofit
 */
 fun getClient(logLevel: Int): Retrofit {

 val interceptor = HttpLoggingInterceptor()
 when(logLevel) {
 LogLevel.LOG_NOT_NEEDED ->
 interceptor.level = HttpLoggingInterceptor.Level.NONE
 LogLevel.LOG_REQ_RES ->
 interceptor.level = HttpLoggingInterceptor.Level.BASIC
 LogLevel.LOG_REQ_RES_BODY_HEADERS ->
 interceptor.level = HttpLoggingInterceptor.Level.BODY
 LogLevel.LOG_REQ_RES_HEADERS_ONLY ->
 interceptor.level =
 HttpLoggingInterceptor.Level.HEADERS
 }

 val client = OkHttpClient.Builder().connectTimeout(3,
 TimeUnit.MINUTES)
 .writeTimeout(3, TimeUnit.MINUTES)
 .readTimeout(3,
 TimeUnit.MINUTES).addInterceptor(interceptor).build()

 if(null == retrofit) {
 retrofit = Retrofit.Builder()
 .baseUrl(Constants.BASE_URL)
 .addConverterFactory(GsonConverterFactory.create())
 .addCallAdapterFactory
 (RxJava2CallAdapterFactory.create())
 .client(client)
 .build()
 }

 return retrofit!!
 }

 fun getAPIService(logLevel: LogLevel =
 LogLevel.LOG_REQ_RES_BODY_HEADERS) =
 getClient(logLevel).create(APIService::class.java)
 }

Reactive Kotlin and Android Chapter 12

[289]

This time, we added an OkHttp Logging interceptor (HttpLoggingInterceptor) along
with an RxJava adapter. This OkHttp Logging interceptor will help us log requests and
responses. Coming back to the RxJava adapters, look at the highlighted code—we added
RxJava2CallAdapterFactory as the CallAdapterFactory of the Retrofit client.

We will need to modify the APIService.kt file as well, to make the functions return
Observable instead of Call, as shown here:

 interface APIService {
 @POST(Constants.GET_TODO_LIST)
 fun getToDoList(): Observable<GetToDoListAPIResponse>

 @POST(Constants.EDIT_TODO)
 fun editTodo(
 @Body todo:String
): Observable<BaseAPIResponse>

 @POST(Constants.ADD_TODO)
 fun addTodo(@Body todo:String): Observable<BaseAPIResponse>
 }

All the APIs now return Observable instead of Call. Finally, we are all set to look inside
the fetchTodoList() function from TodoListActivity.

 private fun fetchTodoList() {
 APIClient()
 .getAPIService()
 .getToDoList()
 .subscribeOn(Schedulers.computation())
 .observeOn(AndroidSchedulers.mainThread())
 .subscribeBy(
 onNext = { response ->
 adapter.setDataset(response.data)
 },
 onError = {
 e-> e.printStackTrace()
 }
)
 }

The function does a simple task; it subscribes to the API (Observable from the API) and
sets the data to the adapter when it arrives. You should consider adding logic to check the
error code before setting the data here, but for now it works quite well. The screenshot of
this activity is already shown at the beginning of this chapter, so we will omit it here.

Reactive Kotlin and Android Chapter 12

[290]

Making Android events reactive
We have made our API calls reactive, but what about our events? Remember the
ToDoAdapter; we took a lambda, used it inside ToDoViewHolder, and created and passed
the lambda at TodoListActivity. Quite messy. This should be reactive as well, shouldn't
it? So, let's make the events reactive as well.

Subject plays an awesome role in making events reactive. As Subject is a great
combination of Observable and Observer, we can use them as Observer inside Adapter
and as Observable inside Activity, thus making passing events easy.

So, let's modify the ToDoAdapter as follows:

 class ToDoAdapter(
 private val context:Context, //(1)
 val onClickTodoSubject:Subject<Pair<View,ToDoModel?>>//(2)
):RecyclerView.Adapter<ToDoAdapter.ToDoViewHolder>() {
 private val inflater:LayoutInflater =
 LayoutInflater.from(context)//(3)
 private val todoList:ArrayList<ToDoModel> = arrayListOf()//(4)

 fun setDataset(list:List<ToDoModel>) {//(5)
 todoList.clear()
 todoList.addAll(list)
 notifyDataSetChanged()
 }

 override fun getItemCount(): Int = todoList.size

 override fun onBindViewHolder(holder: ToDoViewHolder?,
 position: Int) {
 holder?.bindView(todoList[position])
 }

 override fun onCreateViewHolder
 (parent: ViewGroup?, viewType: Int): ToDoViewHolder {
 return ToDoViewHolder(inflater.inflate
 (R.layout.item_todo,parent,false))
 }

 inner class ToDoViewHolder(itemView:View):
 RecyclerView.ViewHolder(itemView) {
 fun bindView(todoItem:ToDoModel?) {
 with(itemView) {//(6)
 txtID.text = todoItem?.id?.toString()
 txtDesc.text = todoItem?.todoDescription

Reactive Kotlin and Android Chapter 12

[291]

 txtStatus.text = todoItem?.status
 txtDate.text = todoItem?.todoTargetDate

 onClick {
 onClickTodoSubject.onNext(Pair
 (itemView,todoItem))//(7)
 }
 }
 }
 }
 }

The adapter looks cleaner now. We've got a Subject instance in the constructor, and when
the itemView is clicked, we call the onNext event of the Subject and pass both the
itemView and ToDoModel instance with help of Pair.

However, it still looks like something is missing. The onClick method is still a callback;
can't we make it reactive as well? Let's do that.

Introducing RxBinding in Android
To aid us Android developers, Jake Wharton created the RxBinding library, which helps
you get Android events in a reactive way. You can find them at
https://github.com/JakeWharton/RxBinding. Let's get started by adding it to the project.

Add the following dependency to the app level build.gradle file:

 implementation 'com.jakewharton.rxbinding2:rxbinding-kotlin:2.0.0'

Then we can replace onClick inside ToDoViewHolder with the following line of code:

 itemView.clicks()
 .subscribeBy {
 onClickTodoSubject.onNext(Pair(itemView,todoItem))
 }

https://github.com/JakeWharton/RxBinding

Reactive Kotlin and Android Chapter 12

[292]

It's that easy. However, you're probably thinking, what's the benefit of making them
reactive? The implementation here was simple enough, but think of a situation where
you've tons of logic. You can easily divide the logic into operators, especially map and
filter could be of great help to you. Not only that, but RxBindings provides you with
consistency. For example, when we need to observe text changes on an EditText, we
generally end up writing lines of code in a TextWatcher instance, but if you use
RxBindings, it will let you do that as follows:

 textview.textChanges().subscribeBy {
 changedText->Log.d("Text Changed",changedText)
 }

Yes, it's really that simple and that easy. RxBinding provides you with a lot more benefits as
well. You can take a look at
https://speakerdeck.com/lmller/kotlin-plus-rxbinding-equals and
http://adavis.info/2017/07/using-rxbinding-with-kotlin-and-rxjava2.html.

So now, thanks to Jake Wharton, we can make our views and events reactive as well.

Kotlin extensions
At the end of this chapter, I would like to introduce you to the Kotlin extensions. No, not
exactly the Kotlin extensions functions, although they are very much related to the Kotlin
extension functions. Kotlin extensions is a curated list of the most commonly used extension
functions in Android.

For example, if you want an extension function to create a bitmap from a View/ViewGroup
instance (especially useful while adding Markers in MapFragment), you can copy and paste
the following extension function from there:

 fun View.getBitmap(): Bitmap {
 val bmp = Bitmap.createBitmap(width, height,
 Bitmap.Config.ARGB_8888)
 val canvas = Canvas(bmp)
 draw(canvas)
 canvas.save()
 return bmp
 }

https://speakerdeck.com/lmller/kotlin-plus-rxbinding-equals
http://adavis.info/2017/07/using-rxbinding-with-kotlin-and-rxjava2.html

Reactive Kotlin and Android Chapter 12

[293]

Or, a more common case, when you need to hide your keyboard, the following extension
function will help you:

 fun Activity.hideSoftKeyboard() {
 if (currentFocus != null) {
 val inputMethodManager = getSystemService(Context
 .INPUT_METHOD_SERVICE) as InputMethodManager
 inputMethodManager.hideSoftInputFromWindow
 (currentFocus!!.windowToken, 0)
 }
 }

This online listing has a lot more extension functions for you, which are maintained by
Ravindra Kumar (Twitter, GitHub—@ravidsrk). So, the next time you need an extension
function, take a look at http:/ /kotlinextensions. com/ before writing your own.

Summary
We are done with the final chapter of the book. In this chapter, we learned how to configure
Retrofit for RxKotlin and RxAndroid. We learned how to make our Android views and
events as well as our custom views reactive.

We learned how to use RxJava2Adapter for Retrofit and how to use Subject for event
passing. We also learned how to use RxBindings.

Throughout this book, we tried to go to the depth of reactive programming and cover every
possible concept, and we tried to make all our code reactive.

If you find any questions, or if you get any concerns regarding this book,
feel free to drop a email at rivu.chakraborty6174@gmail.com and
mention Book Query - Reactive Programming in Kotlin in the
subject line of the email. You can also check out Rivu Chakraborty's
website (http://www.rivuchk.com) as he regularly posts there about
Kotlin, Google Developer Group Kolkata, and Kotlin Kolkata User Group
Meetups. He also writes tutorials and blogs there as well as writes
introductions to Android Plugins developed by him. Also, when he writes
blogs and articles elsewhere, he posts URLs to them on his site.

Thank you for reading this book. Happy reactive programming in Kotlin.

http://kotlinextensions.com/
http://kotlinextensions.com/
http://kotlinextensions.com/
http://kotlinextensions.com/
http://kotlinextensions.com/
http://kotlinextensions.com/
http://kotlinextensions.com/
http://kotlinextensions.com/
mailto:rivu.chakraborty6174@gmail.com
http://www.rivuchk.com

Index

A
Android events
 making, reactive 290
 RxBinding 291
Android Studio
 Kotlin, setting up 273, 274, 276
Android
 ToDoApp 276, 279, 281, 283
AOP (Aspect-oriented programming)
 about 240
 with Spring 249, 252
Apache Maven
 about 33
 URL 33
AsyncSubject 68, 69, 70, 71

B
backpressure
 about 77, 80
 used, for generating Flowable 101
BackpressureStrategy.MISSING 96
BehaviorSubject 72
blocking operators
 about 215
 blockingFirst() 216
 blockingForEach 220
 blockingGet() 217
 blockingIterable operator 219
 with blockingLast 218
blockingFirst()
 used, for obtaining first emitted item 216
blockingForEach
 used, for looping emissions 220
blockingGet()
 used, for obtaining single item 217
blockingIterable operator

 used, for obtaining emissions as iterable 219
blockingLast
 used, for obtaining last item 218
buffer() operator 105, 106, 107, 108, 109
buildSequence function
 using 35, 36

C
callback hell 10
callback mechanism 10
cast operator 122
cold Observables 59
collection operators
 about 136
 important operators 137
combineLatest operator 147, 149
concatMap operator
 about 159, 160
 using 161
concurrency
 definition 183
 versus parallel execution 183, 185
ConnectableFlowable 102, 104
coroutines
 about 31, 33
 buildSequence function, using 35, 36
 ReactiveCalculator class 36, 38
 starting with 33, 34
count operator
 used, for counting emissions 135
custom operators
 creating 229, 231, 232, 233, 234

D
data
 accumulating, with scan operator 134
debounce operator 114, 115

[295]

defaultIfEmpty operator 126
DI (dependency injection) 240, 241, 244, 246
disposing 55, 57, 59
distinct operator 116, 117
distinctUntilChanged operator 116, 117

E
elementAt operator 117
emissions
 accumulating, with reduce operator 136
 casting, with cast operator 122
 counting, with count operator 135
 skipping 163
 skipping, with skip operator 164, 165, 170
 skipping, with skipLast operator 164, 165, 170
 skipping, with skipUntil operator 164, 165, 170
 skipping, with skipWhile operator 164, 166, 170
 sorting, with sorted operator 129, 132
 taking 163
 taking, with take operator 170, 174
 taking, with takeLast operator 170, 174
 taking, with takeUntil operator 170, 174
 taking, with takeWhile operator 170, 174
 zipping, with zip operator 144, 146
error handling operators
 about 137, 174
 onErrorResumeNext() 138
 onErrorReturn() 138
 onExceptionResumeNext() 138
 retry() 138
 retryWhen() 138
error
 retrying 177

F
filter operator 118
filtering/suppressing operators
 about 113
 debounce operator 114, 115
 distinct operator 116, 117
 distinctUntilChanged operator 116, 117
 elementAt operator 117
 emissions, filtering 118
 filter operator 118
 first operator 119

 ignoreElements operator 120
 last operator 119
first operator 119
flatMap operator
 about 123, 126, 159, 160
 using 161
Flowables
 about 80, 81, 82, 83
 creating, from Observable 92, 94, 95, 96
 creating, from scratch 89, 92
 generating, with backpressure at source 101
 reference link 80
 Subscriber, using 86
 using 85
Flux 268, 270
functional programming languages
 about 22
 Clojure 22
 Erlang 22
 F# 22
 Haskell 22
 Lisp 22
 OCaml 22
 Scala 22
 Wolfram 22
functional programming
 about 22
 applying, to ReactiveCalculator class 28, 31
 fundamentals 23
 high-order functions 25
 inline functions 26, 27
 lambda expressions 23
 monad 38
 pure function 24
functional reactive programming (FRP)
 about 22
 benefits 10
functional section 206

G
grouping 157

H
Hibernate
 used, for creating REST API 259, 261, 263, 266

[296]

high-order functions 25
hot Observables
 about 59, 61
 ConnectableObservable object 61, 62, 63, 64
 subjects 64, 65, 66, 67
HTTP example 178

I
ignoreElements operator 120
inline functions 26, 27
Inversion of Control (IoC) 240, 241, 244, 246

J
JAR file
 URL, for downloading 268
JPA
 used, for creating REST API 259, 261, 263, 267
JUnit tests
 code, testing 209, 211, 213
 writing, in Kotlin 206, 208, 209

K
Kotlin extension 292
Kotlin
 about 8
 JUnit tests, writing in 206, 208, 209
 Reactive Frameworks 12
 setting, in Android Studio 273, 274, 276

L
lambda expressions 23
last operator 119

M
map operator 121
Maybe monad 39
merge operator 149, 151, 153
monads
 about 38
 Maybe monad 39
Mono 268, 270
multicasting 63

O
Object-oriented programming (OOP) 21
Observable contract
 reference link 47
Observable factory methods
 about 52, 54
 disposing 55, 57, 58, 59
 Observer interface 54
 Subscribers 54
 subscribing 55, 57, 58, 59
Observable.create method 45, 47
Observable.from methods 47, 48
Observable.just method 51
Observable
 about 42
 Flowable, creating from 92, 94, 95, 96
 using 85
 working 42, 43, 45
observeOn operator
 about 196
 used, for observing thread 201, 202
Observer interface 54
Observer
 onComplete method 54
 onError method 55
 onNext method 54
 onSubscribe method 55
onBackpressureXXX()
 about 96
 operator onBackpressureBuffer() 96, 98
 operator onBackpressureDrop() 98, 99
 operator onBackpressureLatest() 99, 100
onErrorResumeNext operator
 about 176
 error, retrying 177
onErrorReturn
 default value, returning on error 175
operator onBackpressureBuffer() 96
operator onBackpressureDrop() 98, 99
operator onBackpressureLatest() 99, 100
operators
 about 112
 composing, with transformer 236, 237
 creating, with transformer 234

[297]

P
package-by feature
 reference link 277
parallel execution
 versus concurrency 183, 185
Pivotal 267
POJO (plain old Java object) 283
principles, Reactive Manifesto
 about 11
 elastic 11
 message driven 11
 resilient 11
 responsive 11
processor 104, 105
producers (Observable/Flowable), combining
 about 141, 155, 156
 combineLatest operator 147, 149
 concatenating operator, using 154, 155
 emissions, zipping with zip operator 144, 146
 merge operator, using 149, 151, 153
 startWith operator, using 142, 143
 zipWith operator, using 146
Project Object Model (POM) 33
PublishSubject 71
pull mechanism
 versus RxJava push mechanism 14, 16
pure function 24

R
RAD (Rapid application development) 252
Reactive 8
Reactive Frameworks
 for Kotlin 12
Reactive Manifesto
 about 11
 Reactive Frameworks, for Kotlin 12
 Reactive Streams, standard specification 12
 URL 11
reactive programming
 about 9
 with Reactor 267
reactive programs 9
Reactive Streams
 standard specification 12

 URL 12
ReactiveCalculator 17, 20
ReactiveCalculator class
 functional programming, applying to 28, 31
 with coroutines 36, 38
ReactiveEvenOdd 16
ReactiveX 267
Reactor Core
 reference link 268
Reactor
 about 267
 adding, to project 267
 Flux 268, 270
 Mono 268, 270
 reactive programming 267
reduce operator 136
reducing operators
 about 135
 collection operators 136
 emissions, accumulating with reduce operator

136

 emissions, counting with count operator 135
ReplaySubject 73
resource management 226, 227, 228
resources 226
REST API
 creating, with Hibernate 259, 261, 263, 267
 creating, with JPA 259, 261, 263, 267
Rest API
 creating, with Spring Boot 256, 258
REST API
 creating, with Spring Boot 259, 261, 263, 266
Retrofit 2
 for API calls 283
Retrofit instance
 reference link 286
Retrofit
 RxKotlin 287
retry operator 177
RxBinding
 about 291
 reference link 291
 URL, for benefits 292
RxJava push mechanism
 versus pull mechanism 14, 16

[298]

RxKotlin
 about 13, 213
 downloading 13
 ReactiveEvenOdd 16
 reference link 13
 setting up 13
 starting with 13
 testing 213
 with Retrofit 287

S
scan operator 132, 134
scheduler
 about 185
 Schedulers.computation() 189
 Schedulers.io() 189
 Schedulers.newThread() 190
 Schedulers.single() 190
 Schedulers.trampoline() 190, 193
 types 186
 using 196
Schedulers.computation()
 for CPU bound schedulers 189
Schedulers.from 194, 195
Schedulers.io()
 I/O bound scheduler 189
side effects
 about 24
 reference link 25
skip operator 164
skipLast operator 164
skipUntil operator 164
skipWhile operator 164
sorted operator 129, 132
Spring Boot
 about 252, 254, 255, 256
 used, for creating Rest API 256, 258
 used, for creating REST API 259, 261, 263, 266
Spring Framework
 reference link 241
Spring
 annotation, configuring 246, 248
 AOP 249, 252
 history 240
 origination 240

 URL 256, 257
startWith operator
 about 128, 142
 using 143
string Errr 138
Subject
 AsyncSubject 68, 69, 70, 71
 BehaviorSubject 72
 PublishSubject 71
 ReplaySubject 73
 types 68
subscribeOn operator
 about 197
 used, for modifying thread on subscription 197,

198, 200
Subscriber
 blocking 214, 215
 using, with Flowable 86
subscribing 55, 57, 59
switchIfEmpty operator 127
switchMap operator 161, 163

T
Test-driven development (TDD) 209
TestObserver 221, 223
TestScheduler 223, 224
TestSubscriber 221, 223
thread
 modifying, with subscribeOn operator 197, 198,

200

 observing, with observeOn operator 201, 202
throttle() operators 105, 106, 110, 111
ToDoApp
 on Android 276, 278, 279, 281, 283
toObservable extension function 49, 51
transformer
 used, for composing operators 234, 236, 237
transforming operators
 about 121
 data, accumulating with scan operator 132
 defaultIfEmpty operator 126
 emissions, casting with cast operator 122
 emissions, sorting with sorted operator 129
 flatMap operator 123, 126
 map operator 121

 scan operator 132, 134
 sorted operator 132
 startWith operator 128
 switchIfEmpty operator 127

U
unit testing
 about 205
 importance 205, 206
units 205
utility operators
 about 138
 cache 138
 doOnComplete 138

 doOnDispose 138
 doOnError 138
 doOnNext 138
 doOnSubscribe 138
 doOnSuccess 138
 serialize 138

W
window() operator 105, 106, 109

Z
zip operator 144, 146
zipWith operator 146

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Customer Feedback
	Dedication
	Table of Contents
	Preface
	Chapter 1: A Short Introduction to Reactive Programming
	What is reactive programming?
	Reasons to adapt functional reactive programming
	Reactive Manifesto
	Reactive Streams standard specifications
	Reactive Frameworks for Kotlin

	Getting started with RxKotlin
	Downloading and setting up RxKotlin
	Comparing the pull mechanism with the RxJava push mechanism
	The ReactiveEvenOdd program

	The ReactiveCalculator project
	Summary

	Chapter 2: Functional Programming with Kotlin and RxKotlin
	Introducing functional programming
	Fundamentals of functional programming
	Lambda expressions
	Pure function
	High-order functions
	Inline functions

	Applying functional programming to the ReactiveCalculator class
	Coroutines
	Getting started with coroutines
	Building sequences
	The ReactiveCalculator class with coroutines

	Functional programming – monads
	Single monad

	Summary

	Chapter 3: Observables, Observers, and Subjects
	Observables
	How Observable works
	Understanding the Observable.create method
	Understanding the Observable.from methods
	Understanding the toObservable extension function
	Understanding the Observable.just method

	Other Observable factory methods
	Subscribers - the Observer interface
	Subscribing and disposing

	Hot and Cold Observables
	Cold Observables
	Hot Observables
	Introducing the ConnectableObservable object
	Subjects

	Varieties of Subject
	Understanding AsyncSubject
	Understanding PublishSubject
	Understanding BehaviorSubject
	Understanding ReplaySubject

	Summary

	Chapter 4: Introduction to Backpressure and Flowables
	Understanding backpressure
	Flowable
	When to use Flowables and Observables
	When to use Flowables?
	When to use Observables?

	Flowable and Subscriber
	Creating Flowable from scratch
	Creating Flowable from Observable
	BackpressureStrategy.MISSING and onBackpressureXXX()
	Operator onBackpressureBuffer()
	Operator onBackpressureDrop()
	Operator onBackpressureLatest()

	Generating Flowable with backpressure at source
	ConnectableFlowable
	Processor
	Learning Buffer, Throttle, and Window operators
	The buffer() operator
	The window() operator
	The throttle() operators

	Summary

	Chapter 5: Asynchronous Data Operators and Transformations
	Operator
	The filtering/suppressing operators
	The debounce operator
	The distinct operators – distinct, distinctUntilChanged
	The elementAt operator
	Filtering emissions - filter operator
	The first and last operator
	The ignoreElements operator

	The transforming operators
	The map operator
	Casting emissions (cast operator)
	The flatMap operator
	The defaultIfEmpty operator
	The switchIfEmpty operator
	The startWith operator
	Sorting emissions (sorted operator)
	Accumulating data – scan operator

	Reducing operators
	Counting emissions (count operator)
	Accumulating emissions – reduce operator
	The collection operators

	The error handling operators
	The utility operators
	Summary

	Chapter 6: More on Operators and Error Handling
	Combining producers (Observable/Flowable)
	The startWith operator
	Zipping emissions – zip operator
	The zipWith operator

	The combineLatest operator
	Merging Observables/Flowables – merge operator
	Concatenating producers (Observable/Flowable)
	Ambiguously combining producers

	Grouping
	flatMap, concatMap – In details
	When to use flatMap operator
	When to use concatMap operator

	Understanding switchMap operator
	Skipping and taking emissions
	Skipping emissions (skip, skipLast, skipUntil, and skipWhile)
	Take operators (take, takeLast, takeWhile, and takeUntil)

	The error handling operators
	onErrorReturn – return a default value on error
	The onErrorResumeNext operator
	Retrying on error

	An HTTP example
	Summary

	Chapter 7: Concurrency and Parallel Processing in RxKotlin with Schedulers
	Introduction to concurrency
	Parallel execution versus concurrency
	What is a scheduler?
	Types of scheduler
	Schedulers.io() - I/O bound scheduler
	Schedulers.computation() - CPU bound schedulers
	Schedulers.newThread()
	Schedulers.single()
	Schedulers.trampoline()

	Schedulers.from

	How to use schedulers – subscribeOn and observeOn operators
	Changing thread on subscription – subscribeOn operator
	Observing on a different thread – observeOn operator

	Summary

	Chapter 8: Testing RxKotlin Applications
	Introduction to unit testing and its importance
	Why is unit testing so important?

	Writing JUnit tests in Kotlin
	Testing your code

	Testing in RxKotlin
	Blocking subscribers
	Blocking operators
	Getting the first emitted item – blockingFirst()
	Getting the only item from single or maybe - blockingGet
	Getting the last Item - blockingLast
	Getting all emissions as iterable - blockingIterable operator
	Looping through all emissions - blockingForEach

	Introducing TestObserver and TestSubscriber
	Understanding TestScheduler
	Summary

	Chapter 9: Resource Management and Extending RxKotlin
	Resource management
	Creating your own operators
	Composing operators with transformer
	Summary

	Chapter 10: Introduction to Web Programming with Spring for Kotlin Developers
	Spring, history, and origin of Spring
	The origin and history of Spring

	Dependency injection and IoC
	Spring Annotation configuration

	Spring – AOP
	Introduction to Spring Boot
	Creating a Rest API with Spring Boot
	Summary

	Chapter 11: REST APIs with Spring JPA and Hibernate
	REST API with Spring Boot, Hibernate, and JPA
	Reactive programming with Reactor
	Add Reactor to your project
	Understanding Flux and Mono

	Summary

	Chapter 12: Reactive Kotlin and Android
	Setting up Kotlin in Android Studio
	Getting started with ToDoApp on Android
	Retrofit 2 for API calls
	RxKotlin with Retrofit
	Making Android events reactive
	Introducing RxBinding in Android

	Kotlin extensions
	Summary

	Index

